blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
85677bd4300ff04247348fd1fbac5edc67089b73
0e584ab671bfe87eee671119b9d3d3f42111a650
/bboard/urls.py
12474158e94731d873a76de0a07e5a663d850b99
[]
no_license
kotbegemot1/billboard-m
218019e3bdd0f821a125e20729be118398dfe644
65d20d123e09fcbf9484f5f37ff943517e36508f
refs/heads/main
2023-07-19T03:31:44.481340
2021-09-29T11:28:15
2021-09-29T11:28:15
402,050,084
0
0
null
null
null
null
UTF-8
Python
false
false
1,247
py
"""bboard URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static from django.contrib.staticfiles.views import serve from django.views.decorators.cache import never_cache urlpatterns = [ path('admin/', admin.site.urls), path('captcha/', include('captcha.urls')), path('api/', include('api.urls')), path('', include('main.urls', namespace='')), ] if settings.DEBUG: urlpatterns.append(path('static/<path:path>', never_cache(serve))) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "kk1slorod@gmail.com" ]
kk1slorod@gmail.com
9aee4b79f4e49359063df643cc7d1abf5693d4e2
e28d3a25cb399aa407769abe820ce8236c13fcce
/progress_proposal/nb_tweet.py
25c00ed8cb1d1446f6bea02de5bc8846344ec294
[]
no_license
grant-park/nlp_project
42d515f0bdc94f6b4f21ee50c70b5ff7d8ed21a6
01662cf1340c82cc8092f3296a90b1581f909422
refs/heads/master
2021-06-09T17:36:10.301519
2016-12-22T23:21:37
2016-12-22T23:21:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,665
py
from __future__ import division from collections import defaultdict import math import os PATH_TO_DATA = 'twitter_dataset' TRAIN_DIR, TRAIN_FILE = os.path.join(PATH_TO_DATA, 'train'), "trainingdata-all-annotations.txt" TEST_DIR, TEST_FILE = os.path.join(PATH_TO_DATA, 'test'), "testdata-taskA-all-annotations.txt" class NB_Baseline: def __init__(self): self.targets = ['Atheism', 'Legalization of Abortion', 'Feminist Movement', 'Climate Change is a Real Concern', 'Hillary Clinton'] self.vocab = set() self.doc_count_dict = { "Atheism": 0.0, "Legalization of Abortion": 0.0, "Feminist Movement": 0.0, "Climate Change is a Real Concern": 0.0, "Hillary Clinton": 0.0 } self.token_count_dict = { "Atheism": 0.0, "Legalization of Abortion": 0.0, "Feminist Movement": 0.0, "Climate Change is a Real Concern": 0.0, "Hillary Clinton": 0.0 } self.doc_token_count_dict = { "Atheism": defaultdict(float), "Legalization of Abortion": defaultdict(float), "Feminist Movement": defaultdict(float), "Climate Change is a Real Concern": defaultdict(float), "Hillary Clinton": defaultdict(float) } self.total_doc_count = 0 def train(self, dir, filename): with open(os.path.join(dir, filename),'r') as doc: iterdoc = iter(doc) attr = next(iterdoc).split() # differentiate first line for index,line in enumerate(iterdoc): entry = line.split("\t") target = entry[1] tweet_content = map(lambda x: x.lower(), entry[2].split()) self.total_doc_count += 1 self.doc_count_dict[target] += 1 self.token_count_dict[target] += len(tweet_content) for each in tweet_content: if each not in self.doc_token_count_dict[target]: self.doc_token_count_dict[target][each] = 0 self.doc_token_count_dict[target][each] += 1 self.vocab.add(each) def p_word_given_label_and_psuedocount(self, word, label, alpha): return (self.doc_token_count_dict[label][word] + alpha)/(self.token_count_dict[label] + (len(self.vocab)*alpha)) def log_posterior(self, bag, label, alpha): return math.log(self.doc_count_dict[label]/self.total_doc_count) + sum(map(lambda x: math.log(self.p_word_given_label_and_psuedocount(x,label,alpha)), bag)) def classify(self, bag, alpha): return max(map(lambda x: (x, self.log_posterior(bag,x,alpha)), self.targets), key = lambda x: x[1])[0] def eval(self, alpha): accuracy = 0 total = 0 with open(os.path.join(TEST_DIR, TEST_FILE),'r') as doc: iterdoc = iter(doc) attr = next(iterdoc).split() # differentiate first line for index,line in enumerate(iterdoc): entry = line.split("\t") if entry[1] == self.classify(entry[2].lower(), alpha): accuracy += 1 total += 1 return accuracy/total def plot_psuedocount_vs_accuracy(psuedocounts, accuracies): import matplotlib.pyplot as plt plt.plot(psuedocounts, accuracies) plt.xlabel('Psuedocount Parameter') plt.ylabel('Accuracy (%)') plt.title('Psuedocount Parameter vs. Accuracy Experiment') plt.show() if __name__ == '__main__': nb = NB_Baseline() nb.train(TRAIN_DIR,TRAIN_FILE) test = "i love hillary clinton" print(nb.classify(test,36)) print(nb.eval(36)) # Plot psuedocounts = range(1,50) accuracies = map(lambda x: nb.eval(x),psuedocounts) plot_psuedocount_vs_accuracy(psuedocounts, accuracies)
[ "gpark18@amherst.edu" ]
gpark18@amherst.edu
964b6f7b7cee9313ed96171733560c201741a868
ff57cd713e5ed1cbca6c621e505f29eae42aa48f
/python_socket_demo/block/c.py
04895609b6aeac5dd1103e311f40109865fae974
[]
no_license
cdhello/git_code
f918c62d49b7a81e4761f128c34fb26576c1d31f
51220a15702e94b7f5cbb7f6178aca3cd80c18a4
refs/heads/master
2021-03-30T20:52:01.413224
2020-05-16T16:47:38
2020-05-16T16:47:38
124,522,021
0
0
null
null
null
null
UTF-8
Python
false
false
2,725
py
import sys import socket import time import logging BUF_SIZE = 256 srcfilename = "a.pptx" def run(): print "hi, i m client"; global srcfilename s = socket.socket(socket.AF_INET,socket.SOCK_STREAM); ser_add = "10.140.162.26"; ser_port = 1567; try: result = s.connect((ser_add, ser_port)); except: print "connect failed, return" return else: print "connect ok" if len(sys.argv)<2: pass else: srcfilename = sys.argv[1] ltime = time.localtime(time.time()) print "time: %d:%d:%d"%(ltime.tm_hour,ltime.tm_min,ltime.tm_sec) try: srcfile = open(srcfilename, "rb") except: print "There is no file named '%s'. return"%(srcfilename) s.close(); return else: print "File '%s' is opend"%srcfilename outputfile = open("output.txt","wb") timestart = time.time() bytesCount = 0; bytesCount2 = 0 while(1): data2send=srcfile.read(BUF_SIZE) if (0 == len(data2send)): s.shutdown(socket.SHUT_WR); #inform server break; bytesCount2+=len(data2send) #logging.info("read %u bytes"%(len(data2send))) #s.send(data2send); # return the length of the sent data. s.sendall(data2send); # try to send all of the data, return none, else raise a exception recv_data = s.recv(BUF_SIZE); logging.info("read %u, write %u "%(len(data2send), len(recv_data))) outputfile.write(recv_data); bytesCount += len(recv_data); try: recv_data = s.recv(BUF_SIZE); except: print "recv failed." while(1): if (0 == len(recv_data)): break; logging.info("(last data) write %u "%( len(recv_data))) outputfile.write(recv_data); bytesCount += len(recv_data); recv_data = s.recv(BUF_SIZE); timeend = time.time() print "seconds: %lf, bytes: %u, rate: %lf(KBs)"%(timeend - timestart, bytesCount, (bytesCount>>10)/(timeend - timestart)); print "2 byes %u"%bytesCount2 ltime = time.localtime(time.time()) print "time :%d:%d:%d"%(ltime.tm_hour,ltime.tm_min,ltime.tm_sec) outputfile.close() srcfile.close() s.close(); print "client bye bye" if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%d %b %Y %H:%M:%S', filename='client.log', filemode='w') run()
[ "cdh130128@126.com" ]
cdh130128@126.com
1f69d2212665b7c450ddadc6b800bd1963b6a8a7
06190b30798084ff91261c554accf5ff47f7fabf
/src/ssllabs/migrations/0001_initial.py
040a4ea0cb8e763ad9b4d14cabcfcb71c46349f0
[ "BSD-3-Clause" ]
permissive
kidmose/tlsscout
a51624377523200334730c565b964188ddc622d3
ebb6bf296f16db1b247952d584df671b98945243
refs/heads/master
2021-01-22T19:53:51.672518
2016-04-15T07:29:22
2016-04-15T07:29:22
56,300,248
0
0
null
2016-04-15T07:27:44
2016-04-15T07:27:44
null
UTF-8
Python
false
false
1,683
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import uuidfield.fields class Migration(migrations.Migration): dependencies = [ ('sitecheck', '0001_initial'), ] operations = [ migrations.CreateModel( name='ApiClientState', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('sleep_until', models.DateTimeField(null=True)), ('max_concurrent_assessments', models.IntegerField()), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='RequestLog', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('datetime', models.DateTimeField(auto_now_add=True)), ('uuid', uuidfield.fields.UUIDField(max_length=32)), ('request_url', models.CharField(max_length=1000)), ('request_headers', models.TextField()), ('request_body', models.TextField(null=True)), ('response_code', models.IntegerField(null=True)), ('response_headers', models.TextField(null=True)), ('response_body', models.TextField(null=True)), ('sitecheck', models.ForeignKey(related_name='requestlogs', to='sitecheck.SiteCheck', null=True)), ], options={ 'ordering': ['-datetime'], }, bases=(models.Model,), ), ]
[ "thomas@gibfest.dk" ]
thomas@gibfest.dk
05572bbf0ccce85e4248ee4ba97f4167ca183086
d0a2771cb86fffbc213597125ed140a37e00f2e9
/unet/config.py
3876571f6790b968ef2c9d9619f640e4a8ceb705
[]
no_license
shuaigezhu/star_galaxy_classification
eff7a135419036f8a28a6f784049f44972c2426a
a319beca9f8d2a62dd0714d78f70f788603219d6
refs/heads/master
2020-12-12T17:40:42.575255
2020-03-30T15:40:29
2020-03-30T15:40:29
234,187,615
0
2
null
null
null
null
UTF-8
Python
false
false
3,704
py
import argparse # ---------------------------------------- # Global variables within this script arg_lists = [] parser = argparse.ArgumentParser() def str2bool(v): return v.lower() in ("true", "1") def add_argument_group(name): arg = parser.add_argument_group(name) arg_lists.append(arg) return arg # ---------------------------------------- # Arguments for the main program main_arg = add_argument_group("Main") main_arg.add_argument("--mode", type=str, default="train", choices=["train", "test"], help="Run mode") # ---------------------------------------- # Arguments for training train_arg = add_argument_group("Training") train_arg.add_argument("--data_dir", type=str, default="/Users/kwang/Downloads/cifar-10-batches-py", help="Directory with CIFAR10 data") train_arg.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate (gradient step size)") train_arg.add_argument("--batch_size", type=int, default=100, help="Size of each training batch") train_arg.add_argument("--num_epoch", type=int, default=100, help="Number of epochs to train") train_arg.add_argument("--val_intv", type=int, default=1000, help="Validation interval") train_arg.add_argument("--rep_intv", type=int, default=1000, help="Report interval") train_arg.add_argument("--log_dir", type=str, default="./logs", help="Directory to save logs and current model") train_arg.add_argument("--save_dir", type=str, default="./save", help="Directory to save the best model") train_arg.add_argument("--resume", type=str2bool, default=True, help="Whether to resume training from existing checkpoint") # ---------------------------------------- # Arguments for model model_arg = add_argument_group("Model") model_arg.add_argument("--feature_type", type=str, default="hog", choices=["hog", "h_histogram", "rgb"], help="Type of feature to be used") model_arg.add_argument("--loss_type", type=str, default="cross_entropy", choices=["cross_entropy", "svm"], help="Type of data loss to be used") model_arg.add_argument("--normalize", type=str2bool, default=True, help="Whether to normalize with mean/std or not") model_arg.add_argument("--l2_reg", type=float, default=1e-4, help="L2 Regularization strength") model_arg.add_argument("--num_unit", type=int, default=64, help="Number of neurons in the hidden layer") model_arg.add_argument("--num_hidden", type=int, default=3, help="Number of hidden layers") model_arg.add_argument("--num_class", type=int, default=10, help="Number of classes in the dataset") model_arg.add_argument("--activ_type", type=str, default="relu", choices=["relu", "tanh"], help="Activation type") def get_config(): config, unparsed = parser.parse_known_args() return config, unparsed def print_usage(): parser.print_usage()
[ "noreply@github.com" ]
shuaigezhu.noreply@github.com
4f00554ddd6bda5f64f1638ae2fe1ee98b3cd7ad
5331ae322ed9c1ff76e83840a0f9a392f7b97c41
/EE/Caaa(openMV-arduino communication)/drive_newest.py
6b31e0ea64b32fbfbdf3245a9d63c3844353a01b
[]
no_license
tanMcCree/EE
4560d5c352c045e28e22c6334c2bed907ae905a2
11d2e8293e5c9709d57fbdfd4fe5c2941ee4b1b4
refs/heads/main
2023-06-14T20:37:31.520964
2021-06-27T02:58:49
2021-06-27T02:58:49
380,638,027
0
0
null
null
null
null
UTF-8
Python
false
false
1,800
py
# UART Control import time from pyb import UART uart = UART(1, 115200) #uart.init(115200, bits=8, parity=None, stop=1) # init with given parameters def sending_data(data): #data = "SY 90 + " s = list(data) for i in range(len(s)): uart.write(s[i]) time.sleep(1) def recive_data(): while((uart.any())==0): 1 while((uart.any())!=0): tmp_data = uart.readchar() #print(tmp_data) return tmp_data """ def s_and_r_data(int value): while(True): sending_data() recive_data() break """ def GetAngle(): sending_data("Y") time.sleep(20) yaw = recive_data() time.sleep(20) sending_data("P") time.sleep(20) pitch = recive_data() time.sleep(20) return yaw,pitch def Motor(v1, v2, v3, v4): sending_data("M "+str(v1)+" "+str(v2)+" "+str(v3)+" "+str(v4)+" ") time.sleep(20) #def Motor_L(v1, v2): # sending_data("ML "+str(v1)+" "+str(v2)+" ") # time.sleep(20) def Servo_Y(a): if(a>=0): sending_data("SY "+str(a)+" "+"+"+" ") else: a=-a; sending_data("SY "+str(a)+" "+"-"+" ") time.sleep(20) def Servo_P(a): if(a>=0): sending_data("SP "+str(a)+" "+"+"+" ") else: a=-a; sending_data("SP "+str(a)+" "+"-"+" ") time.sleep(20) def Fire1(): sending_data("F") time.sleep(500) time.sleep(20) def Fire2(): sending_data("H") time.sleep(20) def GetDistance(): sending_data("D") time.sleep(20) d = uart.readchar() time.sleep(20) return d def Show1(): sending_data("A") time.sleep(100) def Show2(): sending_data("B") time.sleep(100)
[ "noreply@github.com" ]
tanMcCree.noreply@github.com
85b05ddcac79aafc6d9a2166090d92c50d8ce798
cc22be434dd05f7d5637f3beffe8681da88afc45
/python-pass.py
42ab0bbddc83a51704f606c0889cd7e12df7e936
[]
no_license
shobhit-bhatt-14/Getting-Started-with-Python
f877fb0fb23ea5e80ff13e1129359793ec997550
a0aada154ae777bb140ed984f0e40cf483b2d8b1
refs/heads/main
2023-06-04T15:49:34.851813
2021-06-22T19:54:17
2021-06-22T19:54:17
374,080,922
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
# initialize a blank loop func or condition for i in range(1,5) : pass print('End')
[ "shobhit.bhatt.14@gmail.com" ]
shobhit.bhatt.14@gmail.com
15cb6f4a4b2a69e6eebe258bef70f4ee918bcdde
38ada05c7ce06c78f3196e26d94bd7943b7866fc
/SuPyMode/superset.py
9f482342485331a82ed53c4c087737cd5df94e0b
[ "MIT" ]
permissive
MartinPdeS/SuPyMode
467ac526bea47513680a50d217d5ba893618dc70
f6dd3f1e390728c189ce053ee164ca3ebc776e44
refs/heads/master
2023-08-17T12:18:22.709146
2023-08-14T15:36:39
2023-08-14T15:36:39
366,930,899
4
2
null
null
null
null
UTF-8
Python
false
false
45,834
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Built-in imports import pickle import numpy import logging import matplotlib.pyplot as plt from dataclasses import dataclass from pathlib import Path from itertools import combinations, product # Third-party imports from scipy.interpolate import interp1d from scipy.integrate import solve_ivp import pyvista # Local imports from SuPyMode.supermode import SuperMode from SuPyMode.slice_structure import SliceStructure from SuPyMode.tools import plot_style from SuPyMode.tools.utils import test_valid_input, get_intersection from SuPyMode.profiles import AlphaProfile from SuPyMode.tools import directories from MPSPlots.Render2D import Scene2D, SceneList, Axis, Multipage, Line, ColorBar, Mesh, Scatter from MPSPlots import colormaps @dataclass class SuperSet(object): """ Solver to which is associated the computed SuperSet Modes .. note:: This class is a representation of the fiber optic structures set of supermodes, hence the name. This class has not ling to c++ codes, it is pure Python. The items of this class are the supermodes generated from within the SuPySolver """ parent_solver: object wavelength: float def __post_init__(self): self.wavenumber = 2 * numpy.pi / self.wavelength self._transmission_matrix = None self.supermodes = [] self._itr_to_slice = interp1d(self.itr_list, numpy.arange(self.itr_list.size)) self._slice_to_itr = interp1d(numpy.arange(self.itr_list.size), self.itr_list) def __getitem__(self, idx: int): return self.supermodes[idx] def __setitem__(self, idx: int, value): self.supermodes[idx] = value @property def geometry(self): """ Return geometry of the coupler structure """ return self.parent_solver.geometry @property def itr_list(self): """ Return list of itr value that are used to compute the supermodes """ return self.parent_solver.itr_list @property def coordinate_system(self): """ Return axes object of the geometry """ return self.parent_solver.geometry.coordinate_system @property def fundamental_supermodes(self): return self.get_fundamental_supermodes(tolerance=1e-3) @property def non_fundamental_supermodes(self): return self.get_non_fundamental_supermodes(tolerance=1e-3) @property def transmission_matrix(self) -> numpy.ndarray: """ Return supermode transfert matrix """ if self._transmission_matrix is None: self.compute_transmission_matrix() return self._transmission_matrix def itr_to_slice(self, itr_list: list[float]) -> list[int]: """ Return slice number associated to itr value :param itr_list: Inverse taper ration value to evaluate the slice. :type itr_list: { type_description } :returns: List of itr values, :rtype: list[float] """ itr_list = numpy.asarray(itr_list) return numpy.floor(self._itr_to_slice(itr_list)).astype(int) def slice_to_itr(self, slice_list: list[int]) -> list[float]: """ Return slice number associated to itr value :param slice_list: Value of the slice to which evaluate the itr. :type slice_list: list[int] :returns: List of itr values, :rtype: list[float] """ slice_list = numpy.asarray(slice_list) % self.itr_list.size return self._slice_to_itr(slice_list) def get_fundamental_supermodes(self, *, tolerance: float = 0.1) -> list[SuperMode]: """ Returns list of modes that do not spatially overlap and that have the highest propagation constant values. :param tolerance: The tolerance to which consider the spatial overlap :type tolerance: float :returns: List of the fundamental modes. :rtype: list """ self.sorting_modes_beta() fundamental_supermodes = [self.supermodes[0]] def coupling(mode_0: SuperMode, mode_1: SuperMode): field_0 = numpy.abs(mode_0.field[0]) field_1 = numpy.abs(mode_1.field[0]) return numpy.sum(field_0 * field_1) for mode_0 in self.supermodes: couplings = [ coupling(mode_0, mode_1) for mode_1 in fundamental_supermodes ] couplings = numpy.asarray(couplings) if numpy.any(couplings > tolerance): continue fundamental_supermodes.append(mode_0) return fundamental_supermodes def get_non_fundamental_supermodes(self, *, tolerance: float = 0.1) -> list[SuperMode]: """ Returns list of modes that do not spatially don't overlap with the fundamental modes. Those mode are usually related to higher-order or cladding supermodes. :param tolerance: The tolerance to which consider the spatial overlap :type tolerance: float :returns: List of the non-fundamental modes. :rtype: list """ non_fundamental_supermodes = self.supermodes for supermodes in self.get_fundamental_supermodes(tolerance=tolerance): non_fundamental_supermodes.remove(supermodes) return non_fundamental_supermodes def get_mode_solver_classification(self) -> list[list[SuperMode]]: """ Returns a list containing the modes ordered per solver number. :returns: The mode solver classification. :rtype: list[list[SuperMode]] """ solver_numbers = [mode.solver_number for mode in self] number_of_solvers = len(set(solver_numbers)) mode_solver_array = [ [] for i in range(number_of_solvers) ] for mode in self: mode_solver_array[mode.solver_number].append(mode) return mode_solver_array def label_supermodes(self, *label_list) -> None: for n, label in enumerate(label_list): self[n].label = label setattr(self, label, self[n]) def reset_labels(self) -> None: for n, super_mode in self: super_mode.label = f'mode_{n}' def swap_supermode_order(self, idx0: int, idx1: int) -> "SuperSet": """ Swap two supermodes. it doesn't change any of their characteristic, it only changes the order on whihc they will appear, notably for the plots. :param idx0: Index of the first mode to swap :type idx0: int :param idx1: Index of the second mode to swap :type idx1: int """ self.supermodes[idx0], self.supermodes[idx1] = self.supermodes[idx1], self.supermodes[idx0] return self def get_slice_structure(self, *, itr: int, add_symmetries: bool = True) -> SliceStructure: x, y = self.supermodes[0].get_axis_vector() output_slice = SliceStructure( parent_superset=self, itr=itr, supermodes=self.supermodes, add_symmetries=add_symmetries ) return output_slice def compute_transmission_matrix(self) -> None: """ Calculates the transmission matrix with only the propagation constant included. :returns: The transmission matrix. :rtype: numpy.ndarray """ shape = [ len(self.supermodes), len(self.supermodes), len(self.itr_list) ] self._transmission_matrix = numpy.zeros(shape) for mode in self.supermodes: self._transmission_matrix[mode.mode_number, mode.mode_number, :] = mode.beta._data * 2.0 * numpy.pi def add_coupling_to_t_matrix(self, *, t_matrix: numpy.ndarray, adiabatic_factor: numpy.ndarray) -> numpy.ndarray: """ Add the coupling coefficients to the transmission matrix. :param t_matrix: The t matrix to which add the coupling values :type t_matrix: numpy.ndarray :param adiabatic_factor: The adiabatic factor, if None, it is set to one meaning normalized coupling [z-independent] :type adiabatic_factor: numpy.ndarray :returns: The transmission matrix. :rtype: numpy.ndarray """ if adiabatic_factor is None: adiabatic_factor = 1 size = t_matrix.shape[-1] t_matrix = t_matrix.astype(complex) for mode_0, mode_1 in combinations(self.supermodes, 2): coupling = mode_0.normalized_coupling.get_values(mode_1)[:size] * adiabatic_factor t_matrix[mode_0.mode_number, mode_1.mode_number, :] = - coupling t_matrix[mode_1.mode_number, mode_0.mode_number, :] = + coupling return t_matrix def compute_coupling_factor(self, *, coupler_length: float) -> numpy.ndarray: r""" Compute the coupling factor defined as: .. math:: f_c = \frac{1}{\rho} \frac{d \rho}{d z} :param coupler_length: The length of the coupler :type coupler_length: float :returns: The amplitudes as a function of the distance in the coupler :rtype: numpy.ndarray """ dx = coupler_length / (self.itr_list.size) ditr = numpy.gradient(numpy.log(self.itr_list), axis=0) return ditr / dx def get_transmision_matrix_from_profile(self, *, profile: AlphaProfile, coupling: str = 'normalized') -> tuple: """ Gets the transmision matrix from profile. :param profile: The z-profile of the coupler :type profile: object :param coupling: Defines how the coupling is added to the transmission matrix, either 'none', 'normalized', 'unnormalized' :type coupling: str """ final_slice = self.itr_to_slice(itr_list=profile.smallest_itr) sub_t_matrix = self.transmission_matrix[..., :final_slice] sub_itr_vector = self.itr_list[: final_slice] match coupling.lower(): case 'none': sub_t_matrix = self.add_coupling_to_t_matrix( t_matrix=sub_t_matrix, adiabatic_factor=0 ) case 'normalized': sub_t_matrix = self.add_coupling_to_t_matrix( t_matrix=sub_t_matrix, adiabatic_factor=profile.evaluate_adiabatic_factor(itr=sub_itr_vector) ) case 'unnormalized': sub_t_matrix = self.add_coupling_to_t_matrix( t_matrix=sub_t_matrix, adiabatic_factor=1 ) sub_distance = profile.evaluate_distance_vs_itr(sub_itr_vector) return sub_distance, sub_itr_vector, sub_t_matrix def propagate(self, *, profile: AlphaProfile, initial_amplitude: list, max_step: float = None, n_step: int = None, coupling: str = 'normalized', method: str = 'RK45', **kwargs) -> numpy.ndarray: """ Returns the amplitudes value of the supermodes in the coupler. :param initial_amplitude: The initial amplitude :type initial_amplitude: list :param profile: The z-profile of the coupler :type profile: object :param max_step: The maximum stride to use in the solver :type max_step: float :param coupling: Defines how the coupling is added to the transmission matrix, either 'none', 'normalized', 'unnormalized' :type coupling: str :param kwargs: The keywords arguments to be passed to the solver :type kwargs: dictionary :returns: The amplitudes as a function of the distance in the coupler :rtype: numpy.ndarray """ initial_amplitude = numpy.asarray(initial_amplitude).astype(complex) if max_step is None: max_step = self.parent_solver.wavelength / 200 if n_step is not None: t_eval = numpy.linspace(0, profile.length, n_step) sub_distance, sub_itr_vector, sub_t_matrix = self.get_transmision_matrix_from_profile( profile=profile, coupling=coupling, ) z_to_itr = interp1d( profile.distance, profile.itr_list, bounds_error=False, fill_value='extrapolate', axis=-1 ) itr_to_t_matrix = interp1d( sub_itr_vector, sub_t_matrix, bounds_error=False, fill_value='extrapolate', axis=-1 ) def model(z, y): itr = z_to_itr(z) return 1j * itr_to_t_matrix(itr).dot(y) sol = solve_ivp( model, y0=initial_amplitude, t_span=[0, profile.length], vectorized=True, # max_step=max_step, method=method, # t_eval=t_eval, **kwargs ) norm = (numpy.abs(sol.y)**2).sum(axis=0) if not numpy.all(numpy.isclose(norm, 1.0, atol=1e-1)): logging.warning(f'Warning Power conservation is not acheived [tol: 1e-1]. You should considerate reducing the max step size [{max_step}]') return sol.t, sol.y, z_to_itr(sol.t) def interpret_initial_input(self, initial_amplitude): if isinstance(initial_amplitude, SuperMode): return initial_amplitude.amplitudes else: return numpy.asarray(initial_amplitude).astype(complex) def plot_propagation(self, *, profile: AlphaProfile, initial_amplitude, max_step: float = None, coupling: str = 'normalized', method: str = 'RK45', sub_sampling: int = 5, save_directory: str = 'new_figure.gif', **kwargs) -> tuple: initial_amplitude = self.interpret_initial_input( initial_amplitude=initial_amplitude ) z, amplitudes, itr_list = self.propagate( initial_amplitude=initial_amplitude, profile=profile, coupling=coupling, max_step=max_step, method=method ) slc = slice(None, None, sub_sampling) figure, ax = plt.subplots(1, 1, figsize=(16, 6)) for n, mode in enumerate(self.supermodes): ax.plot(z[slc], abs(amplitudes[n][slc])**2, label=mode.stylized_label) ax1 = ax.twinx() ax1.plot(z, itr_list, 'k--', label='coupler profile') ax1.legend() ax.legend() ax.set_xlabel('Propagation distance z') ax.set_ylabel('Mode power distribution') ax1.set_ylabel('Inverse taper ratio') plt.tight_layout() plt.savefig(f'{save_directory}') plt.show() return z, amplitudes, itr_list def generate_propagation_gif(self, *, profile: AlphaProfile, initial_amplitude, max_step: float = None, coupling: str = 'normalized', method: str = 'RK45', sub_sampling: int = 5, mutliplicative_factor: float = 1, save_directory: str = 'new_figure.gif', delta_azimuth: float = 0, **kwargs) -> tuple: """ Generates a gif video of the mode propagation. :param initial_amplitude: The initial amplitude :type initial_amplitude: list :param coupler_length: The length of the coupler :type coupler_length: float :param max_step: The maximum stride to use in the solver :type max_step: float :param sub_sampling: Propagation undersampling factor for the video production :type sub_sampling: int :param kwargs: The keywords arguments :type kwargs: dictionary """ initial_amplitude = self.interpret_initial_input( initial_amplitude=initial_amplitude ) z_list, amplitudes_list, itr_list = self.propagate( initial_amplitude=initial_amplitude, profile=profile, coupling=coupling, max_step=max_step, method=method ) self.generate_propagation_gif_from_values( amplitudes_list=amplitudes_list, itr_list=itr_list, z_list=z_list, mutliplicative_factor=mutliplicative_factor, save_directory=save_directory, delta_azimuth=delta_azimuth, sub_sampling=sub_sampling ) return z_list, amplitudes_list, itr_list def generate_propagation_gif_from_values(self, *, amplitudes_list: numpy.ndarray, itr_list: numpy.ndarray, z_list: numpy.ndarray, sub_sampling: int = 10000, mutliplicative_factor: float = -100, delta_azimuth: float = 0, save_directory: str = 'new_figure.gif', colormap: str = 'bwr', **kwargs) -> None: """ Generates a gif video of the mode propagation. :param initial_amplitude: The initial amplitude :type initial_amplitude: list :param coupler_length: The length of the coupler :type coupler_length: float :param max_step: The maximum stride to use in the solver :type max_step: float :param sub_sampling: Propagation undersampling factor for the video production :type sub_sampling: int :param kwargs: The keywords arguments :type kwargs: dictionary """ amplitudes_list = amplitudes_list[:, ::sub_sampling] itr_list = itr_list[::sub_sampling] z_list = z_list[::sub_sampling] structure = self.get_slice_structure(itr=1.0, add_symmetries=True) total_field = structure.get_field_combination(amplitudes_list[:, 0], Linf_normalization=True) * mutliplicative_factor x, y = numpy.mgrid[0: total_field.shape[0], 0: total_field.shape[1]] grid = pyvista.StructuredGrid(x, y, total_field) plotter = pyvista.Plotter(notebook=False, off_screen=True) plotter.open_gif(save_directory, fps=20) plotter.view_isometric() # plotter.set_background('black', top='white') plotter.add_mesh( grid, scalars=total_field, style='surface', show_edges=True, edge_color='k', colormap=colormap, show_scalar_bar=False, clim=[-100, 100] ) pts = grid.points.copy() azimuth = 0 for z, amplitudes, itr in zip(z_list, amplitudes_list.T, itr_list): print(f'itr: {itr}') plotter.camera.elevation = -20 plotter.camera.azimuth = azimuth azimuth += delta_azimuth structure = self.get_slice_structure(itr=itr, add_symmetries=True) total_field = structure.get_field_combination(amplitudes, Linf_normalization=True) * mutliplicative_factor pts[:, -1] = total_field.T.ravel() plotter.update_coordinates(pts, render=True) plotter.update_scalars(total_field.T.ravel(), render=False) plotter.add_title(f'ITR: {itr: .3f}\t z: {z: .3e}', font='courier', color='w', font_size=20) plotter.write_frame() plotter.close() def _sorting_modes_(self, *ordering_list) -> None: """ Generic mode sorting method :param ordering_parameters: The ordering list to sort the supermodes :type ordering_parameters: list """ order = numpy.lexsort(ordering_list) supermodes = [self.supermodes[idx] for idx in order] for n, supermode in enumerate(supermodes): supermode.mode_number = n return supermodes def sorting_modes_beta(self) -> None: """ Re-order modes to sort them in descending value of propagation constant. """ return self._sorting_modes_([-mode.beta[-1] for mode in self.supermodes]) def sorting_modes(self, *, sorting_method: str = "beta", keep_only: int = None) -> None: """ Re-order modes according to a sorting method, either "beta" or "symmetry+beta". The final mode selection will also be filter to keep only a certain number of modes """ assert sorting_method.lower() in ["beta", "symmetry+beta"], \ f"Unrecognized sortingmethod: {sorting_method}, accepted values are ['beta', 'symmetry+beta']" match sorting_method.lower(): case "beta": supermodes = self.sorting_modes_beta() case "symmetry+beta": supermodes = self.sorting_modes_solver_beta() self.all_supermodes = supermodes self.supermodes = supermodes[:keep_only] def sorting_modes_solver_beta(self): """ Re-order modes to sort them in with two parameters: ascending cpp_solver number and descending value of propagation constant. """ return self._sorting_modes_( [-mode.beta[-1] for mode in self.supermodes], [mode.solver_number for mode in self.supermodes], ) def _interpret_itr_slice_list_(self, *, slice_list: list, itr_list: list): slice_list = [*slice_list, *self.itr_to_slice(itr_list=itr_list)] if len(slice_list) == 0: slice_list = [0, -1] itr_list = self.slice_to_itr(slice_list) itr_list = numpy.sort(itr_list)[::-1] return self.itr_to_slice(itr_list=itr_list), itr_list @staticmethod def single_plot(plot_function): def wrapper(self, *args, **kwargs): figure = SceneList(unit_size=(16, 6), ax_orientation='vertical') figure.append_ax() plot_function(self, ax=figure[0], *args, **kwargs) return figure return wrapper @single_plot def plot_index(self, ax: Axis, show_crossings: bool = False, mode_of_interest: list[SuperMode] = 'all') -> SceneList: """ Plot effective index for each mode as a function of itr :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.index) mode_of_interest = self.interpret_mode_of_interest(mode_of_interest) for mode in mode_of_interest: y = mode.index.get_values() artist = Line( x=self.itr_list, y=y, label=f'{mode.stylized_label}' ) ax.add_artist(artist) if show_crossings: crossings = self.get_index_crossing(mode_of_interest=mode_of_interest) for crossing in crossings.values(): artist = Scatter( x=crossing['itr'], y=crossing['index'], marker='o', color='black', marker_size=5, label='mode crossing' ) ax.add_artist(artist) @single_plot def plot_beta(self, ax: Axis, show_crossings: bool = False, mode_of_interest: list[SuperMode] = 'all') -> SceneList: """ Plot propagation constant for each mode as a function of itr :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.beta) mode_of_interest = self.interpret_mode_of_interest(mode_of_interest) for mode in mode_of_interest: y = mode.beta.get_values() artist = Line( x=self.itr_list, y=y, label=f'{mode.stylized_label}' ) ax.add_artist(artist) if show_crossings: crossings = self.get_beta_crossing() for crossing in crossings.values(): artist = Scatter( x=crossing['itr'], y=crossing['beta'], marker='o', color='black', marker_size=5 ) ax.add_artist(artist) @single_plot def plot_eigen_value(self, ax: Axis, mode_of_interest: list[SuperMode] = 'all') -> SceneList: """ Plot propagation constant for each mode as a function of itr :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.eigen_value) mode_of_interest = self.interpret_mode_of_interest(mode_of_interest) for mode in mode_of_interest: y = mode.eigen_value.get_values() artist = Line(x=self.itr_list, y=y, label=f'{mode.stylized_label}') ax.add_artist(artist) @single_plot def plot_normalized_coupling(self, ax: Axis, mode_of_interest: list = 'all', mode_selection='pairs') -> SceneList: """ Plot coupling value for each mode as a function of itr :param mode_of_interest: List of the mode that are to be considered in the adiabatic criterion plotting. :type mode_of_interest: list :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.normalized_coupling) combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection=mode_selection ) for mode_0, mode_1 in combination: if mode_0.is_computation_compatible(mode_1): y = numpy.abs(mode_0.normalized_coupling.get_values(other_supermode=mode_1)) artist = Line(x=self.itr_list, y=y, label=f'{mode_0.stylized_label} - {mode_1.stylized_label}') ax.add_artist(artist) @single_plot def plot_overlap(self, ax: Axis, mode_of_interest: list = 'all', mode_selection='pairs') -> SceneList: """ Plot overlap value for each mode as a function of itr :param mode_of_interest: List of the mode that are to be considered in the adiabatic criterion plotting. :type mode_of_interest: list :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.overlap) combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection=mode_selection ) for mode_0, mode_1 in combination: if mode_0.is_computation_compatible(mode_1): y = mode_0.overlap.get_values(other_supermode=mode_1) artist = Line(x=self.itr_list, y=y, label=f'{mode_0.stylized_label} - {mode_1.stylized_label}') ax.add_artist(artist) @single_plot def plot_beating_length(self, ax: Axis, mode_of_interest: list = 'all', mode_selection='pairs', add_profile: list[AlphaProfile] = [], core_radius: float = None) -> SceneList: """ Plot coupling value for each mode as a function of itr :param mode_of_interest: List of the mode that are to be considered in the adiabatic criterion plotting. :type mode_of_interest: list :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.beating_length) combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection=mode_selection ) for mode_0, mode_1 in combination: if mode_0.is_computation_compatible(mode_1): y = mode_0.beating_length.get_values(other_supermode=mode_1) artist = Line(x=self.itr_list, y=y, label=f'{mode_0.stylized_label} - {mode_1.stylized_label}') ax.add_artist(artist) for profile in numpy.atleast_1d(add_profile): profile._render_taper_length_scale_vs_itr_on_ax_(ax=ax, core_radius=core_radius) @single_plot def plot_adiabatic(self, ax: Axis, mode_of_interest: list[SuperMode] = 'all', mode_selection: str = 'pairs', add_profile: list[AlphaProfile] = []) -> SceneList: """ Plot adiabatic criterion for each mode as a function of itr :param pair_of_interest: List of the mode that are to be considered in the adiabatic criterion plotting. :type pair_of_interest: list :param mode_selection: The type of combination to be plotted, either 'specific/all/pairs' :type mode_selection: str :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.adiabatic) combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection=mode_selection ) for mode_0, mode_1 in combination: if mode_0.is_computation_compatible(mode_1): y = mode_0.adiabatic.get_values(other_supermode=mode_1) artist = Line(x=self.itr_list, y=y, label=f'{mode_0.stylized_label} - {mode_1.stylized_label}') ax.add_artist(artist) for profile in numpy.atleast_1d(add_profile): profile._render_adiabatic_factor_vs_itr_on_ax_(ax) @single_plot def plot_normalized_adiabatic(self, ax: Axis, mode_of_interest: list = 'all', mode_selection: str = 'pairs') -> SceneList: """ Plot adiabatic criterion for each mode as a function of itr :param pair_of_interest: List of the mode that are to be considered in the adiabatic criterion plotting. :type pair_of_interest: list :param mode_selection: The type of combination to be plotted, either 'specific/all/pairs' :type mode_selection: str :returns: figure instance, to plot the show() method. :rtype: SceneList """ ax.set_style(**plot_style.adiabatic) combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection=mode_selection ) for mode_0, mode_1 in combination: if mode_0.is_computation_compatible(mode_1): n0 = mode_0.index._data n1 = mode_1.index._data beating_length = mode_0.wavelength / abs(n0 - n1) y = mode_0.adiabatic.get_values(other_supermode=mode_1) * beating_length artist = Line(x=self.itr_list, y=y, label=f'{mode_0.stylized_label} - {mode_1.stylized_label}') ax.add_artist(artist) def interpret_combinations(self, mode_of_interest: list, mode_selection: str): mode_of_interest = self.interpret_mode_of_interest(mode_of_interest) combination = self.interpret_mode_selection( mode_of_interest=mode_of_interest, mode_selection=mode_selection ) return combination def is_compute_compatible(self, pair_of_mode: tuple) -> bool: """ Determines whether the specified pair of mode is compatible for computation. :param pair_of_mode: The pair of mode :type pair_of_mode: tuple :returns: True if the specified pair of mode is compute compatible, False otherwise. :rtype: bool """ mode_0, mode_1 = pair_of_mode return mode_0.is_computation_compatible(mode_1) def remove_duplicate_combination(self, supermodes_list: list) -> list[SuperMode]: """ Removes a duplicate combination in the mode combination list irrespectively of the order. :param supermodes_list: The supermodes list :type supermodes_list: list :returns: The reduced supermode list :rtype: list """ output_list = [] for mode0, mode1 in supermodes_list: if (mode0, mode1) not in output_list and (mode1, mode0) not in output_list: output_list.append((mode0, mode1)) return output_list def interpret_mode_selection(self, mode_of_interest: list, mode_selection: str): """ Interpret user input for mode selection and return the combination of mode to consider. :param mode_of_interest: The mode of interest :type mode_of_interest: list :param mode_selection: The mode selection :type mode_selection: str """ test_valid_input( variable_name='mode_selection', user_input=mode_selection, valid_inputs=['pairs', 'specific'] ) match mode_selection: case 'pairs': mode_combinations = product(mode_of_interest, mode_of_interest) case 'specific': mode_combinations = product(mode_of_interest, self.supermodes) mode_combinations = filter(self.is_compute_compatible, mode_combinations) mode_combinations = self.remove_duplicate_combination(mode_combinations) return set(mode_combinations) def interpret_mode_of_interest(self, mode_of_interest: list) -> list: if isinstance(mode_of_interest, SuperMode): return [mode_of_interest] if isinstance(mode_of_interest, list): return mode_of_interest test_valid_input( variable_name='mode_of_interest', user_input=mode_of_interest, valid_inputs=['all', 'fundamental', 'non-fundamental'] ) match mode_of_interest: case 'fundamental': mode_of_interest = self.fundamental_supermodes case 'non-fundamental': mode_of_interest = self.non_fundamental_supermodes case 'all': mode_of_interest = self.supermodes return mode_of_interest def plot_field(self, mode_of_interest: list = 'all', itr_list: list[float] = [], slice_list: list[int] = [], show_mode_label: bool = True, show_itr: bool = True, show_slice: bool = True) -> SceneList: """ Plot each of the mode field for different itr value or slice number. :param itr_list: List of itr value to evaluate the mode field :type itr_list: list :param slice_list: List of integer reprenting the slice where the mode field is evaluated :type slice_list: list :returns: The figure :rtype: SceneList """ figure = Scene2D(unit_size=(3, 3)) slice_list, itr_list = self._interpret_itr_slice_list_(slice_list=slice_list, itr_list=itr_list) mode_of_interest = self.interpret_mode_of_interest(mode_of_interest=mode_of_interest) for m, mode in enumerate(mode_of_interest): for n, (itr, slice_number) in enumerate(zip(itr_list, slice_list)): title = self.get_plot_mode_field_title( supermode=mode, itr=itr, slice_number=slice_number, show_mode_label=show_mode_label, show_itr=show_itr, show_slice=show_slice ) ax = Axis( row=n, col=m, title=title ) ax.colorbar = ColorBar(symmetric=True, position='right') field = mode.field.get_field_mesh(slice_number=slice_number, add_symmetries=True) x, y = mode.field.get_scaled_axis(slice_number=slice_number) artist = Mesh(x=x, y=y, scalar=field, colormap=colormaps.blue_black_red) ax.add_artist(artist) ax.set_style(**plot_style.field) figure.add_axes(ax) return figure def get_plot_mode_field_title(self, supermode: SuperMode, itr: float, slice_number: int, show_mode_label: bool, show_itr: bool, show_slice: bool) -> str: """ Gets the title for the plot_field outputed subplots. :param supermode: The supermode corresponding to the specific subplot. :type supermode: SuperMode :param itr: The itr value :type itr: float :param slice_number: The slice number :type slice_number: int :param show_mode_label: If True the mode label will be shown. :type show_mode_label: bool :param show_itr: If True the title contains the itr value. :type show_itr: bool :param show_slice: If True the title contains the slice number of the evaluated ITR :type show_slice: bool :returns: The plot mode field title. :rtype: str """ title = '' if show_mode_label: title += f'{supermode.stylized_label}' if show_itr or show_slice: title += '\n' if show_slice: title += f'slice: {slice_number}' if show_itr: title += f' itr: {itr:.3f}' return title def plot(self, plot_type: str, **kwargs) -> SceneList: """ Generic plot function. Args: type: Plot type ['index', 'beta', 'adiabatic', 'normalized-adiabatic', 'overlap', 'coupling', 'field', 'beating-length'] """ test_valid_input( variable_name='plot_type', user_input=plot_type, valid_inputs=['index', 'beta', 'eigen_value', 'adiabatic', 'overlap' 'normalized-adiabatic', 'normalized-coupling', 'field', 'beating-length'] ) match plot_type.lower(): case 'index': return self.plot_index(**kwargs) case 'beta': return self.plot_beta(**kwargs) case 'eigen-value': return self.plot_eigen_value(**kwargs) case 'normalized-coupling': return self.plot_normalized_coupling(**kwargs) case 'overlap': return self.plot_overlap(**kwargs) case 'adiabatic': return self.plot_adiabatic(**kwargs) case 'field': return self.plot_field(**kwargs) case 'beating-length': return self.plot_beating_length(**kwargs) case 'normalized-adiabatic': return self.plot_normalized_adiabatic(**kwargs) def generate_pdf_report(self, filename: str = "report", directory: str = '.', itr_list: list[float] = [], slice_list: list[int] = [], dpi: int = 200, mode_of_interest: list = 'all', mode_selection: str = 'specific') -> None: """ Generate a full report of the coupler properties as a .pdf file :param filename: Name of the Report file to be outputed. :type filename: str :param itr_list: List of itr value to evaluate the mode field. :type itr_list: Array :param slice_list: List of slice value to evaluate the mode field. :type slice_list: Array :param dpi: Pixel density for the image included in the report. :type dpi: int :param mode_of_interest: List of the mode that are to be considered in the adiabatic criterion plotting. :type mode_of_interest: list :returns: { description_of_the_return_value } :rtype: None """ if directory == 'auto': directory = directories.reports_path filename = Path(directory).joinpath(filename).with_suffix('.pdf') logging.info(f"Saving report pdf into: {filename}") figures = [] figures.append(self.geometry.plot()._render_()) figures.append(self.plot_field(itr_list=itr_list, slice_list=slice_list)._render_()) figures.append(self.plot_index()._render_()) figures.append(self.plot_beta()._render_()) figures.append(self.plot_normalized_coupling(mode_of_interest=mode_of_interest, mode_selection=mode_selection)._render_()) figures.append(self.plot_adiabatic(mode_of_interest=mode_of_interest, mode_selection=mode_selection)._render_()) Multipage(filename, figs=figures, dpi=dpi) for figure in figures: figure.close() def save_instance(self, filename: str, directory: str = '.'): """ Saves the superset instance as a serialized pickle file. :param filename: The directory where to save the file, 'auto' options means the superset_instance folder :type filename: str :param filename: The filename :type filename: str """ if directory == 'auto': directory = directories.instance_directory filename = Path(directory).joinpath(filename).with_suffix('.pickle') logging.info(f"Saving pickled superset into: {filename}") with open(filename, 'wb') as output_file: pickle.dump(self, output_file, pickle.HIGHEST_PROTOCOL) def get_beta_crossing(self, mode_of_interest: list) -> dict: """ Returns a dictionnay of the beta mode-crossing, meaning points where the modes propagation constant do cross. :returns: The mode crossing dictionnary. :rtype: dict """ output_dictionnary = {} combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection='pairs' ) n_crossing = 0 for mode_0, mode_1 in combination: itr, beta = get_intersection( x=self.itr_list, y0=mode_0.beta.get_values(), y1=mode_1.beta.get_values(), average=True ) if len(beta) != 0: output_dictionnary[n_crossing] = { 'mode0': mode_0, 'mode1': mode_1, 'itr': itr, 'beta': beta } n_crossing += 1 return output_dictionnary def get_index_crossing(self, mode_of_interest: list) -> dict: """ Returns a dictionnay of the beta mode-crossing, meaning points where the modes propagation constant do cross. :returns: The mode crossing dictionnary. :rtype: dict """ output_dictionnary = {} combination = self.interpret_combinations( mode_of_interest=mode_of_interest, mode_selection='pairs' ) n_crossing = 0 for mode_0, mode_1 in combination: itr, index = get_intersection( x=self.itr_list, y0=mode_0.index.get_values(), y1=mode_1.index.get_values(), average=True ) if len(index) != 0: output_dictionnary[n_crossing] = { 'mode0': mode_0, 'mode1': mode_1, 'itr': itr, 'index': index } n_crossing += 1 return output_dictionnary # def __getattribute__(self, key: str): # print(key, key.__class__) # for supermode in super().__getattribute__('supermodes'): # if supermode.label == key: # return supermode # return super().__getattribute__(key) # -
[ "Martin.Poinsinet.de.Sivry@gmail.com" ]
Martin.Poinsinet.de.Sivry@gmail.com
1b500ae5665ebddb4b225dc5d03bf80bd29675de
55f2ab76334f13b80632e55010f0e846369d86f8
/view.py
3568ad8fe3d26dfb58768e0746e2d0275ef3f63a
[]
no_license
fakhouri-junior/ImageSearch
7ad7b8024fed7df079a50a31ea86347d214b0803
681da9ace0cbbfec699934a8d9fd8b10b4672cb9
refs/heads/master
2021-09-09T04:04:05.092097
2018-03-13T18:13:35
2018-03-13T18:13:35
125,086,380
0
0
null
null
null
null
UTF-8
Python
false
false
5,077
py
from flask import Flask, render_template, request, redirect,jsonify, url_for, flash import urllib import random, string from flask_mail import Mail, Message from model import Prediction, FinalResult from core_classification import * import time import numpy as np from multiprocessing.pool import ThreadPool app = Flask(__name__) """ WORK WITH THE NUMPY ARRAY IN A THREAD, TRY TO MAKE IT READY FOR WORK BEFORE NEEDING IT """ pool = ThreadPool(processes=5) async_result = pool.apply_async(load_array,()) @app.route('/') @app.route('/index') def homePage(): return render_template("index.html") @app.route('/api/v1/<path:url_path>') def myAPI(url_path): # 2- download the image path_of_image = downloadImage(url_path) if path_of_image.startswith("Non"): return render_template('error.html') # 3- get the path of the image .... DONE IN STEP #2 # 4- form the proper main method for core_classification result = mainWeb(path_of_image) # 5- display the output # 5'- slice the result into useful parts parts = result.split('\n') # 6- extract info from the parts to form the FinalResult object and jsonify it predictions = [] for part in parts: part = part.strip() if part.startswith("Prediction") or part == "": continue myParts = part.split(' ') print myParts percentage = myParts[0]#percentage value = myParts[2]#value prediction prediction = Prediction(percentage,value) predictions.append(prediction) finalResult = FinalResult(url_path,predictions) return jsonify(Result=finalResult.serialize) @app.route('/classify', methods=['POST']) def classifyImage(): if request.method == 'POST': # 1- get the url if request.form['url']: url_path = request.form['url'] # 2- download the image path_of_image = downloadImage(url_path) if path_of_image.startswith("Non"): return render_template('error.html') # 3- get the path of the image .... DONE IN STEP #2 # 4- form the proper main method for core_classification result = mainWeb(path_of_image) # 5- display the output # 5'- slice the result into useful parts # list of percentages predictions = [] parts = result.split('\n') for part in parts: part = part.strip() if part.startswith("Prediction") or part == "": continue myParts = part.split(' ') percentage = myParts[0] # percentage value = myParts[2] # value prediction prediction = Prediction(percentage, value) predictions.append(prediction) path_parts = path_of_image.split('/') betterPath = path_parts[5]+"/"+path_parts[6]+"/"+path_parts[7] """ RETRIEVAL CODE GOES HERE """ script_start_time = time.time() features_array = async_result.get() print 'async_result took %f ' % (time.time() - script_start_time,) list_of_paths = findSimilar([path_of_image], features_array) print list_of_paths # parse the location from disk to a location in server server_similar_images_parsed = parseImageSimilarPath(list_of_paths) # pass list_of_paths which represents the similar images to the template #return render_template('result.html', result=predictions, path_of_image=betterPath) return render_template('result.html', result=predictions, path_of_image=betterPath, similar=server_similar_images_parsed) else: return "REJECTED" def downloadImage(url): # sanity checks # 1- check for http and .jpg or .png if url.startswith("http") and (url.endswith(".jpg") or url.endswith(".png")): resource = urllib.urlopen(url) jebrish = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in xrange(20)) if url.endswith(".png"): output = open("/home/salim/PycharmProjects/ImageSearch/static/images/" + jebrish + ".png", "wb") else: output = open("/home/salim/PycharmProjects/ImageSearch/static/images/" + jebrish + ".jpg", "wb") output.write(resource.read()) output.close() # return the path of the saved image return "/home/salim/PycharmProjects/ImageSearch/static/images/"+jebrish+".jpg" else: return "NonValid" def parseImageSimilarPath(list_of_images): new_list = [] for image_path in list_of_images: parts_slash = image_path.split('/') # '/home/salim/Downloads/test/tshirt1.jpg' name_of_image = parts_slash[5] # what we need new_list.append("/static/images_similar/"+name_of_image) return new_list if __name__ == '__main__': app.secret_key = 'super_secret_key' app.debug = True app.run(host = '0.0.0.0', port = 5000)
[ "noreply@github.com" ]
fakhouri-junior.noreply@github.com
10b6910d59ae321ecacd90b79a73471e32d301e7
2b167e29ba07e9f577c20c54cb943861d0ccfa69
/numerical_analysis_backup/large-scale-multiobj2/core-arch2-guard0-beta100-hebbe/pareto6.py
4ad77b5ac1b8c19557dfa96eb5e314381e537b2a
[]
no_license
LiYan1988/kthOld_OFC
17aeeed21e195d1a9a3262ec2e67d6b1d3f9ff0f
b1237577ea68ad735a65981bf29584ebd889132b
refs/heads/master
2021-01-11T17:27:25.574431
2017-01-23T05:32:35
2017-01-23T05:32:35
79,773,237
0
0
null
null
null
null
UTF-8
Python
false
false
2,395
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 4 15:15:10 2016 @author: li optimize both throughput and connections """ #import sys #sys.path.insert(0, '/home/li/Dropbox/KTH/numerical_analysis/ILPs') import csv from gurobipy import * import numpy as np from arch2_decomposition_new import Arch2_decompose np.random.seed(2010) num_cores=10 num_slots=320 i = 6 time_limit_routing = 3600 time_limit_sa = 10800 filename = 'traffic_matrix_pod250_load50_'+str(i)+'.csv' tm = [] with open(filename) as f: reader = csv.reader(f) for idx, row in enumerate(reader): row = [float(u) for u in row] tm.append(row) tm = np.array(tm) #%% arch2 corev = np.array([1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) #corev = np.array([1, 2]) connection_ub = [] throughput_ub = [] obj_ub = [] connection_lb = [] throughput_lb = [] obj_lb = [] connection_he = [] throughput_he = [] obj_he = [] for c in corev: m = Arch2_decompose(tm, num_slots=num_slots, num_cores=c, alpha=1,beta=100, num_guard_slot=0) m.create_model_routing(mipfocus=1,timelimit=7200,mipgap=0.01, method=2) connection_ub.append(m.connection_ub_) throughput_ub.append(m.throughput_ub_) obj_ub.append(m.obj_ub_) # m.create_model_sa(mipfocus=1,timelimit=10800,mipgap=0.01, method=2, # SubMIPNodes=2000, heuristics=0.8) # connection_lb.append(m.connection_lb_) # throughput_lb.append(m.throughput_lb_) # obj_lb.append(m.obj_lb_) # m.write_result_csv('cnklist_lb_%d_%d.csv'%(i,c), m.cnklist_lb) connection_lb.append(0) throughput_lb.append(0) obj_lb.append(0) m.heuristic() connection_he.append(m.obj_heuristic_connection_) throughput_he.append(m.obj_heuristic_throughput_) obj_he.append(m.obj_heuristic_) m.write_result_csv('cnklist_heuristic_i%d_c%d.csv'%(i,c), m.cnklist_heuristic_) result = np.array([corev, connection_ub,throughput_ub,obj_ub, connection_lb,throughput_lb,obj_lb, connection_he,throughput_he,obj_he]).T file_name = "result_pareto_arch2_old_pod100_i{}.csv".format(i) with open(file_name, 'w') as f: writer = csv.writer(f, delimiter=',') writer.writerow(['#cores', 'connection_ub', 'throughput_ub', 'obj_ub', 'connection_lb', 'throughput_lb', 'obj_lb', 'connection_he', 'throughput_he', 'obj_he']) writer.writerows(result)
[ "li.yan.ly414@gmail.com" ]
li.yan.ly414@gmail.com
af56eb2199b94de3f5eae3ad06f929398286bfb7
7e7f08d947c1162fc5978914c0b7333502c783b9
/python_tutorial/polls/migrations/0001_initial.py
95d7307aa65960d3c1fd15cb41bd3e3b8b2d9fdd
[]
no_license
shundesu/study_python
a052618137262e177fb7d6c8dc6928637090c12a
bcdf52c2200c6c3cf63bde5a0cacd7ee2db621e9
refs/heads/master
2020-04-24T05:09:56.050008
2019-02-20T18:29:31
2019-02-20T18:29:31
171,727,470
0
0
null
null
null
null
UTF-8
Python
false
false
1,165
py
# Generated by Django 2.1.5 on 2019-01-07 15:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ], ), migrations.AddField( model_name='choice', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question'), ), ]
[ "my.instant.ramen568@gmail.com" ]
my.instant.ramen568@gmail.com
6c2fd404feebc2e0e08b6077c268bd624a020c61
62251173a123ef987a4ba8b34a52987d1001d8a7
/app/routes/items.py
064bb65ef41c27f6625f4d1d744e154c86cacefc
[]
no_license
tianhuizhou/FlaskRestful-p2
e4fea0645b92060a9eb6bbb19c89b77e5096e546
50af3c7cc6e61c1704ca63dda69098cb788fb682
refs/heads/master
2023-05-04T17:43:23.227784
2021-05-20T09:53:48
2021-05-20T09:53:48
369,152,076
0
0
null
null
null
null
UTF-8
Python
false
false
1,643
py
from flask import Blueprint, jsonify, request from app.database.item import Item from flask_jwt import jwt_required module = Blueprint('items', __name__, url_prefix='/api/items') @module.route('', methods=['GET']) @jwt_required() def index(): return {'items': list(map(lambda x: x.json(), Item.query.all()))} @module.route('/<item_name>',methods=['GET']) def show(item_name): item = Item.find_by_name(item_name) if item: return item.json() return jsonify({'message': 'Item not found'}), 404 @module.route('',methods=['POST']) @jwt_required() def create(): request_data = request.get_json() try: if Item.find_by_name(request_data['name']): return {'message': "An item with name '{}' already exists.".format(name)}, 400 except: return {"message": "the field of name is required"} try: new_item = Item(**request_data) new_item.save_to_db() return new_item.json(), 201 except: return {"message": "An error occurred inserting the item."}, 500 @module.route('/<item_id>',methods=['DELETE']) @jwt_required() def delete(item_id): item = Item.find_by_id(item_id) if item: item.delete_from_db() return jsonify({'message': 'Item has been deleted'}) return jsonify({'message': 'Item not found.'}), 404 @module.route('<item_name>',methods=['PUT']) @jwt_required() def update(item_name): request_data = request.get_json() item = Item.find_by_name(item_name) if item: item.price = request_data['price'] else: item = Item(request_data) item.save_to_db() return item.json()
[ "tianhui@hawaii.edu" ]
tianhui@hawaii.edu
6f0f9d1289c37416d382d33a1d10309de7a567cd
e0592ee35c8d7923d63e90417f11234f3bf4c26b
/mapc2/scripts/get_list_of_mlab_providers.py
83c98b8de91f9b5430630ea3d247acc1cb6ae7fe
[]
no_license
e-south/CS506Spring2021Repository
82e786edb9cede918f02946e9465a88918cc699c
5f9864eb4f1b0fa9bce33ed851584dd95f8ecd8f
refs/heads/master
2023-04-16T02:45:35.936057
2021-04-29T01:57:25
2021-04-29T13:35:47
339,234,954
1
2
null
2021-04-20T18:07:38
2021-02-15T23:26:26
Jupyter Notebook
UTF-8
Python
false
false
751
py
# In this script, we extract out a list of all the Providers present in the MLAB data # # Author: Nathan Lauer # Please feel free to ask me any questions, I hope you're having a nice day! import pandas as pd import argparse ########## Main execution flow parser = argparse.ArgumentParser(description='Map AS Numbers to Provider Name') parser.add_argument('--mlab-data', dest='mlab_data', help='The input MLAB data csv file') parser.add_argument('--output', dest='output_file', help='Output file to write to') args = parser.parse_args() # Read the MLAB data df = pd.read_csv(args.mlab_data) providers = df.ProviderName.unique() providers_df = pd.DataFrame(data=providers, columns=['ProviderName']) providers_df.to_csv(args.output_file, index=False)
[ "lauern91@gmail.com" ]
lauern91@gmail.com
5f0b559e80eb4c98096bc1b141255cb0359b131c
3722d884f8229968a549d90b62d3ae39f2da78b1
/python/IK.py
bb6b365d4c8e73516dae6111e7ebcd22e2cf3216
[]
no_license
Roboy/BulletUnityRoboy
7579bb70de1b4aa19f3d7ce3bac969fe9b4aebd0
bb09175b42b978a4a53648df8af9377d66027ee8
refs/heads/master
2021-05-20T12:32:04.232639
2020-06-20T16:53:43
2020-06-20T16:53:43
252,296,978
1
1
null
null
null
null
UTF-8
Python
false
false
2,937
py
import pybullet as p import math import time p.connect(p.GUI) ob = p.loadURDF("C:\\Users\\roboy\\Documents\\code\\roboy3_models\\upper_body\\bullet.urdf", useFixedBase=1) p.setGravity(0,0,-10) t = 0. prevPose = [0, 0, 0] prevPose1 = [0, 0, 0] hasPrevPose = 0 useNullSpace = 0 useOrientation = 0 #This can be used to test the IK result accuracy. useSimulation = 1 useRealTimeSimulation = 1 ikSolver = 0 p.setRealTimeSimulation(useRealTimeSimulation) #trailDuration is duration (in seconds) after debug lines will be removed automatically #use 0 for no-removal trailDuration = 15 numJoints = p.getNumJoints(ob) freeJoints = [] for i in range(numJoints): info = p.getJointInfo(ob,i) if info[2] == p.JOINT_REVOLUTE: freeJoints.append(i) if info[12] == b'hand_right': endEffectorId = i; print("EF id: " + str(i)) break def accurateCalculateInverseKinematics(ob, endEffectorId, targetPos, threshold, maxIter): closeEnough = False iter = 0 dist2 = 1e30 while (not closeEnough and iter < maxIter): jointPoses = p.calculateInverseKinematics(ob, endEffectorId, targetPos) #import pdb; pdb.set_trace() for i in range(len(freeJoints)): p.resetJointState(ob, freeJoints[i], jointPoses[i]) ls = p.getLinkState(ob, endEffectorId) newPos = ls[4] diff = [targetPos[0] - newPos[0], targetPos[1] - newPos[1], targetPos[2] - newPos[2]] dist2 = (diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2]) closeEnough = (dist2 < threshold) iter = iter + 1 #print ("Num iter: "+str(iter) + "threshold: "+str(dist2)) return jointPoses while True: if (useRealTimeSimulation): t = time.time() #(dt, micro) = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f').split('.') #t = (dt.second/60.)*2.*math.pi else: t = t + 0.001 if (useSimulation and useRealTimeSimulation == 0): p.stepSimulation() pos = [0.2 * math.cos(t)-0.4, -0.4, 0. + 0.2 * math.sin(t) + 0.7] threshold = 0.001 maxIter = 100 jointPoses = accurateCalculateInverseKinematics(ob, endEffectorId, pos, threshold, maxIter) if (useSimulation): for i in range(len(freeJoints)): p.setJointMotorControl2(bodyIndex=ob, jointIndex=freeJoints[i], controlMode=p.POSITION_CONTROL, targetPosition=jointPoses[i], targetVelocity=0, force=100, positionGain=1, velocityGain=0.1) ls = p.getLinkState(ob, endEffectorId) if (hasPrevPose): p.addUserDebugLine(prevPose, pos, [0, 0, 0.3], 1, trailDuration) p.addUserDebugLine(prevPose1, ls[4], [1, 0, 0], 1, trailDuration) prevPose = pos prevPose1 = ls[4] hasPrevPose = 1
[ "aliona.kharchenko@gmail.com" ]
aliona.kharchenko@gmail.com
0f09b275880b051fdadc094ead0cfbd02ae60a9f
5b5c22a8c8cbc4baf184061817c57c8acb202f94
/docal/calculation.py
21246ab3f846c03984881daaa9b3974532e4ec42
[ "MIT" ]
permissive
kirtan29/docal
fafb65f90a84174a07af9cdbb0db31fc7e099ad6
62368194402e4153fc6030cec80ec7e23a8df076
refs/heads/master
2023-07-21T12:20:24.043742
2021-07-16T18:21:28
2021-07-16T18:21:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,268
py
''' module procedure does the calculations needed, sets the appropriate variables in the main module and returns the procedure of the calculations ''' import ast import logging from .parsing import to_math, MathVisitor, eqn, UNIT_PF, build_eqn, _split, DEFAULT_MAT_SIZE log = logging.getLogger(__name__) # units that are not base units DERIVED = { 'N': 'kg*m/s**2', 'Pa': 'kg/(m*s**2)', 'J': 'kg*m**2/s**2', 'W': 'kg*m**2/s**3', 'Hz': '_/s', } DERIVED = {u: ast.parse(DERIVED[u]).body[0].value for u in DERIVED} FALLBACK_OPTIONS = { 'steps': [], 'mat_size': DEFAULT_MAT_SIZE, 'unit': None, 'mode': 'default', 'vert': True, 'note': None, 'hidden': False, 'decimal': 3, 'result' : None, 'newlines': 0, } def _calculate(expr: ast.AST, options: dict, working_dict: dict, mul=' ', div='/', syntax=None): '''carryout the necesary calculations and assignments''' lx_args = lambda ex, subs=None: MathVisitor(mul=mul, div=div, subs=subs, mat_size=options['mat_size'], decimal=options['decimal'], working_dict=working_dict, syntax=syntax ).visit(ex) value_ast = expr if options['result'] is None else options['result'] value = eval(compile(ast.Expression(value_ast), '<calculation>', 'eval'), working_dict) result = [lx_args(expr)] result_rest = [ lx_args(expr, True), lx_args(value if not isinstance(value_ast, ast.Lambda) else value_ast)] if options['steps']: result += result_rest result = [result[s] for s in options['steps'] if 0 <= s <= 2] # remove repeated steps (retaining order) elif isinstance(expr, ast.Constant) or isinstance(value_ast, ast.Lambda): result = [result_rest[1]] elif isinstance(expr, ast.Name): result = [result[0], result_rest[1]] else: last_str = str(result[0]) for step in result_rest: step_str = str(step) if step_str != last_str: last_str = step_str result.append(step) # detect if the user is trying to give a different unit and give warning if options['unit']: # in their dict forms compared = [UnitHandler(True, working_dict).visit(options['unit']), UnitHandler(False, working_dict).visit(expr)] # when the calculated already has a unit compared = [compared, [compared[1], [{}, {}]]] # if it is detected, warn the user but accept it anyway if not are_equivalent(*compared[1]) and not are_equivalent(*compared[0]): log.warning( 'The input unit is not equivalent to the calculated one.') else: options['unit'] = unitize(expr, working_dict) result[-1] += to_math(options['unit'], div='/', syntax=syntax, ital=False) if options['note'] is not None: result[-1] += syntax.txt(syntax.halfsp) + syntax.txt_math(options['note']) return result def _process_options(additionals, defaults=FALLBACK_OPTIONS, syntax=None): options = {} if additionals: for a in _split(additionals, ','): if a.isdigit(): options['steps'] = [int(num) - 1 for num in a] # only the first # is used to split the line (see above) so others elif a.startswith('#'): note = a[1:].strip() # remove the hash options['note'] = note[1:-1] \ if note.startswith('(') and note.endswith(')') else note elif a.startswith('m') and a[1:].isdigit(): options['mat_size'] = (int(a[1:]), int(a[1:])) elif a.startswith('d') and a[1:].isdigit(): options['decimal'] = int(a[1:]) elif a == '$': options['mode'] = 'inline' elif a == '$$': options['mode'] = 'display' elif a == '|': options['vert'] = True elif a == '-': options['vert'] = False elif a == ';': options['hidden'] = True elif a.startswith('='): try: options['result'] = ast.parse(a[1:]).body[0].value except SyntaxError: log.warning('Could not evaluate answer, using default') elif set(a) == {'\\'}: options['newlines'] = len(a) elif a and a != '_': # if it is a valid python expression, take it as a unit try: compile(a, '', 'eval') except SyntaxError: log.warning('Unknown option %s found, ignoring...', repr(a)) else: options['unit'] = ast.parse(a).body[0].value # merge the options, with the specific one taking precedence return {**defaults, **options} def cal(input_str: ast.AST, working_dict={}, mul=' ', div='frac', syntax=None, options={}) -> str: ''' evaluate all the calculations, carry out the appropriate assignments, and return all the procedures ''' result = _calculate(input_str.value, options, working_dict, mul, div, syntax=syntax) if options['mode'] == 'inline': displ = False elif options['mode'] == 'display': displ = True else: if len(options['steps']) == 1 and options['steps'][0] == 0: displ = False else: displ = True disp = 'disp' if displ else 'inline' if isinstance(input_str, ast.Assign): var_names = [v.id for v in input_str.targets] var_lx = syntax.txt('=').join([to_math(var_name, syntax=syntax) for var_name in input_str.targets]) procedure = [[var_lx, result[0]]] for step in result[1:]: procedure.append([syntax.txt(''), step]) if options['result'] is not None: input_str.value = options['result'] # override the value stored # carry out normal op in main script co = compile(ast.Module([input_str], []), '<calculation>', 'exec') exec(co, working_dict) # for later unit retrieval for var in var_names: working_dict[var + UNIT_PF] = options['unit'] else: if len(result) > 1: procedure = [[result[0], result[1]]] if result[2:]: procedure.append([syntax.txt(''), result[2]]) else: procedure = [result] if options['hidden']: return ('text', '') output = build_eqn(procedure, displ, options['vert'], syntax) return (disp, output) class UnitHandler(ast.NodeVisitor): ''' simplify the given expression as a combination of units ''' def __init__(self, norm=False, working_dict={}): self.norm = norm self.dict = working_dict def visit_Name(self, n): if self.norm: unit = n else: if n.id + UNIT_PF in self.dict: unit = self.dict[n.id + UNIT_PF] else: unit = ast.parse('_').body[0].value if isinstance(unit, ast.Name): if unit.id in DERIVED: unit = DERIVED[unit.id] elif hasattr(n, 'upper') and not n.upper: return [{}, {unit.id: 1}] else: return [{unit.id: 1}, {}] unit.upper = n.upper if hasattr(n, 'upper') else True # store and temporarily disregard the state self.norm prev_norm = self.norm self.norm = True ls = self.visit(unit) # revert to the previous state self.norm = prev_norm return ls def visit_Call(self, n): if isinstance(n.func, ast.Attribute): func = n.func.attr elif isinstance(n.func, ast.Name): func = n.func.id else: func = self.visit(n.func) if func == 'sqrt': return self.visit(ast.BinOp(left=n.args[0], op=ast.Pow(), right=ast.Num(n=1/2))) return [{}, {}] def visit_BinOp(self, n): if hasattr(n, 'upper') and not n.upper: upper = False else: upper = True n.left.upper = upper left = self.visit(n.left) if isinstance(n.op, ast.Pow): if isinstance(n.right, ast.BinOp): if isinstance(n.right.left, ast.Num) and isinstance(n.right, ast.Num): if isinstance(n.right.op, ast.Add): p = n.right.left.n + n.right.n elif isinstance(n.right.op, ast.Sub): p = n.right.left.n - n.right.n elif isinstance(n.right.op, ast.Mult): p = n.right.left.n * n.right.n elif isinstance(n.right.op, ast.Div): p = n.right.left.n / n.right.n elif isinstance(n.right.op, ast.Pow): p = n.right.left.n ** n.right.n else: # XXX p = 1 elif isinstance(n.right, ast.UnaryOp): if isinstance(n.right.operand, ast.Num): if isinstance(n.right.op, ast.USub): p = - n.right.operand.n elif isinstance(n.right.op, ast.UAdd): p = n.right.operand.n elif isinstance(n.right, ast.Num): p = n.right.n else: # XXX p = 1 for u in left[0]: left[0][u] *= p for u in left[1]: left[1][u] *= p return left elif isinstance(n.op, ast.Mult): n.right.upper = upper right = self.visit(n.right) for u in right[0]: if u in left[0]: left[0][u] += right[0][u] else: left[0][u] = right[0][u] for u in right[1]: if u in left[1]: left[1][u] += right[1][u] else: left[1][u] = right[1][u] return left elif isinstance(n.op, ast.Div): n.right.upper = not upper right = self.visit(n.right) for u in right[0]: if u in left[0]: left[0][u] += right[0][u] else: left[0][u] = right[0][u] for u in right[1]: if u in left[1]: left[1][u] += right[1][u] else: left[1][u] = right[1][u] return left elif isinstance(n.op, ast.Add) or isinstance(n.op, ast.Sub): n.right.upper = upper left = reduce(left) right = reduce(self.visit(n.right)) if are_equivalent(left, right): return left log.warning('The units of the two sides are not equivalent.') return [{}, {}] def visit_UnaryOp(self, n): return self.visit(n.operand) def visit_Expr(self, n): return self.visit(n.value) def generic_visit(self, n): return [{}, {}] def unitize(s: ast.AST, working_dict={}) -> str: ''' look for units of the variable names in the expression, cancel-out units that can be canceled out and return an expression of units that can be converted into latex using to_math ''' ls = reduce(UnitHandler(False, working_dict).visit(s)) # the var names that are of units in the main dict that are not _ in_use = {working_dict[u] for u in working_dict if u.endswith(UNIT_PF) and working_dict[u] != ast.Name(id='_')} # var names in in_use whose values contain one of the DERIVED units in_use = [u for u in in_use if any([n.id in DERIVED for n in [n for n in ast.walk(u) if isinstance(n, ast.Name)]])] # search in reverse order to choose the most recently used unit in_use.reverse() # if this unit is equivalent to one of them, return that for unit in in_use: if are_equivalent(UnitHandler(True, working_dict).visit(unit), ls): return unit upper = "*".join([u if ls[0][u] == 1 else f'{u}**{ls[0][u]}' for u in ls[0]]) lower = "*".join([u if ls[1][u] == 1 else f'{u}**{ls[1][u]}' for u in ls[1]]) s_upper = f'({upper})' if ls[0] else "_" s_lower = f'/({lower})' if ls[1] else "" return ast.parse(s_upper + s_lower).body[0].value def are_equivalent(unit1: dict, unit2: dict) -> bool: ''' return True if the units are equivalent, False otherwise ''' unit1, unit2 = reduce(unit1), reduce(unit2) conditions = [ # the numerators have the same elements set(unit1[0]) == set(unit2[0]) and \ # each item's value (power) is the same in both all([unit1[0][e] == unit2[0][e] for e in unit1[0]]), # the denominators have the same elements set(unit1[1]) == set(unit2[1]) and \ # and each item's value (power) is the same in both all([unit1[1][e] == unit2[1][e] for e in unit1[1]]), ] return all(conditions) def reduce(ls: list) -> list: ''' cancel out units that appear in both the numerator and denominator, those that have no name (_) and those with power of 0 ''' upper = {**ls[0]} lower = {**ls[1]} for u in ls[0]: if u in ls[1]: if upper[u] > lower[u]: upper[u] -= lower[u] del lower[u] elif upper[u] < lower[u]: lower[u] -= upper[u] del upper[u] else: del upper[u] del lower[u] for u in {**upper}: if upper[u] == 0 or u == '_': del upper[u] for u in {**lower}: if lower[u] == 0 or u == '_': del lower[u] return [upper, lower]
[ "kidusadugna@gmail.com" ]
kidusadugna@gmail.com
c5813069ab74084371832db97cf363db3c1d548c
689e06888840d9aaf30fd89f874608f110a935fd
/ER/regExp.py
36951be8be5c488574e2541921212b163dcbf968
[]
no_license
yuehongOlivia/LearnPython
58871db2d019e9689c662ca413fb5515339a3038
5bdde927f8bf8a5550d0ef3a06aaa5de66a1e09d
refs/heads/master
2020-04-03T13:16:37.687052
2019-02-09T22:25:46
2019-02-09T22:25:46
155,279,833
0
0
null
null
null
null
UTF-8
Python
false
false
1,083
py
# -*- coding: utf-8 -*- # write a RE to verify an email adress like : someone@gmail.com, bill.gates@microsoft.com import re def is_valid_email(addr): re_email = re.compile(r'([\w]([\w\d](?!-))*.)*([\w\d]*)@([\d\w]+.com)') if re_email.match(addr): return True else: return False # Test: assert is_valid_email('someone@gmail.com') assert is_valid_email('bill.gates@microsoft.com') assert not is_valid_email('bob#example.com') assert not is_valid_email('mr-bob@example.com') print('ok') # write another RE in order to extract the username def name_of_email(addr): username1 = re.compile(r'<([\w\s]*)>(\s)*([\w\d]*)@([\d\w]+.[\w]+)') username2 = re.compile(r'([\w\d]*)@([\d\w]+.[\w]+)') if username1.match(addr): m1 = username1.match(addr) return m1.group(1) elif username2.match(addr): m2 = username2.match(addr) return m2.group(1) else: return False # Test: assert name_of_email('<Tom Paris> tom@voyager.org') == 'Tom Paris' assert name_of_email('tom@voyager.org') == 'tom' print('ok')
[ "hongyue192447@gmail.com" ]
hongyue192447@gmail.com
ac583b22e70d14346b739f3638ad361d420f7569
7c92fa902082c1683887296808c22e55bfa4c24f
/finalPlotsReallyFinal/NewEfficiencyCorrection.py
06763a63c465c6d4582a211295025bf979992e3a
[]
no_license
ElenaGramellini/QuickDumpster2
6a82402658d47e0ec1f8b118f8882526a4a32334
178e30cb993cfc29ae79238e5a65946ef9ca43ec
refs/heads/master
2020-03-10T11:13:35.477466
2018-08-13T19:07:12
2018-08-13T19:07:12
129,352,039
0
0
null
null
null
null
UTF-8
Python
false
false
3,440
py
from ROOT import * import os import math import argparse def CalculateErrorRatio (num, numErr, den, denErr): if num and den: relativeErrorNum = numErr/num relativeErrorDen = denErr/den relativeErrorRatio = TMath.Sqrt(relativeErrorNum*relativeErrorNum + relativeErrorDen*relativeErrorDen) ratio = num/den totErrorRatio = relativeErrorRatio*ratio else : totErrorRatio = 10000. return totErrorRatio pionTrueMC_MCCutMin_FileName = "/Users/elenag/Desktop/TrackingStudy/Resolution/60ACuts/AngleCut_" pionTrueMC_MCCutMax_FileName = "/Users/elenag/Desktop/TrackingStudy/Resolution/60ACuts/AngleCut_0.15734_histo.root" pionTrueMC_MCCut_FileName = "/Users/elenag/Desktop/TrackingStudy/Resolution/60ACuts/AngleCut_0.07954_histo.root" pionTrueMC_DataCut_FileName = "/Users/elenag/Desktop/TrackingStudy/Resolution/60ACuts/AngleCut_0.08334_histo.root" pionTrueMC_All_FileName = '/Volumes/Seagate/Elena/TPC/TruePionGen.root' pionRecoMC_FileName = '/Volumes/Seagate/Elena/TPC/MC60A_Pions.root' pionTrueMC_MCCut_File = TFile.Open(pionTrueMC_MCCut_FileName ) pionTrueMC_DataCut_File = TFile.Open(pionTrueMC_DataCut_FileName ) pionTrueMC_All_File = TFile.Open(pionTrueMC_All_FileName ) pionRecoMC_File = TFile.Open(pionRecoMC_FileName ) # Get Interacting and Incident plots Reco intTrue_MCC = pionTrueMC_MCCut_File.Get("AngleCutTrueXS/hInteractingKE") incTrue_MCC = pionTrueMC_MCCut_File.Get("AngleCutTrueXS/hIncidentKE") intTrue_Data = pionTrueMC_DataCut_File.Get("AngleCutTrueXS/hInteractingKE") incTrue_Data = pionTrueMC_DataCut_File.Get("AngleCutTrueXS/hIncidentKE") intTrue_All = pionTrueMC_All_File.Get("TrueXS/hInteractingKE") incTrue_All = pionTrueMC_All_File.Get("TrueXS/hIncidentKE") intReco = pionRecoMC_File.Get("RecoXS/hRecoInteractingKE") incReco = pionRecoMC_File.Get("RecoXS/hRecoIncidentKE") # Eff with MC Angle Cut eff_MCC_Int = intReco.Clone("eff_MCC_Int") eff_MCC_Int.Sumw2() eff_MCC_Int.Divide(intTrue_MCC) eff_MCC_Inc = incReco.Clone("eff_MCC_Inc") eff_MCC_Inc.Sumw2() eff_MCC_Inc.Divide(incTrue_MCC) # Eff with Data Angle Cut eff_Data_Int = intReco.Clone("eff_Data_Int") eff_Data_Int.Sumw2() eff_Data_Int.Divide(intTrue_Data) eff_Data_Inc = incReco.Clone("eff_Data_Inc") eff_Data_Inc.Sumw2() eff_Data_Inc.Divide(incTrue_Data) # Eff with All Interactions eff_All_Int = intReco.Clone("eff_All_Int") eff_All_Int.Sumw2() eff_All_Int.Divide(intTrue_All) eff_All_Inc = incReco.Clone("eff_All_Inc") eff_All_Inc.Sumw2() eff_All_Inc.Divide(incTrue_All) # Cross Section Plots XSTrue_MCC = intTrue_MCC .Clone("XS_MCC") XSTrue_Data = intTrue_Data.Clone("XS_Data") XSTrue_All = intTrue_All .Clone("XS_All") XSReco = intReco .Clone("XSReco") XSTrue_MCC .Scale(101.) XSTrue_Data.Scale(101.) XSTrue_All .Scale(101.) XSReco .Scale(101.) XSTrue_MCC .Sumw2() XSTrue_Data.Sumw2() XSTrue_All .Sumw2() XSReco .Sumw2() XSTrue_MCC .Divide(incTrue_MCC ) XSTrue_Data.Divide(incTrue_Data ) XSTrue_All .Divide(incTrue_All ) XSReco .Divide(incReco ) outFile = TFile("NewEfficiencyCorrectionPions60A.root","recreate") outFile.cd() eff_MCC_Int.Write() eff_Data_Int.Write() eff_All_Int.Write() eff_MCC_Inc.Write() eff_Data_Inc.Write() eff_All_Inc.Write() XSTrue_MCC .Write() XSTrue_Data.Write() XSTrue_All .Write() XSReco .Write() outFile.Write() outFile.Close() raw_input()
[ "elena.gramellini@yale.edu" ]
elena.gramellini@yale.edu
2cd5d6af253d31c2282981c26b189a482c49ccde
0965812e37b6f12256f22c876b87370223cd3c8d
/beerproject/breweries/models/__init__.py
99d8e333ef3fc2cf3886e18e1c30ab51d15f4f06
[]
no_license
MargaritaKartaviciute/BeerProject
72bd1850f431fda1d51e64963855119477112581
148f10a54fb0b1dac553328f644c5e14a8306a4c
refs/heads/master
2023-01-10T00:01:38.890208
2020-01-02T14:32:54
2020-01-02T14:32:54
228,893,049
0
0
null
2022-12-27T15:34:16
2019-12-18T17:48:38
Python
UTF-8
Python
false
false
150
py
from .categories import Categories from .styles import Styles from .geocodes import Geocodes from .breweries import Breweries from .beers import Beers
[ "margarityte@gmail.com" ]
margarityte@gmail.com
fa1166d85281f86c70d72480c47ae13add17bb3e
bfef33b25941c0358e95a97738bbe0392b8158b5
/MyDairy/main/migrations/0004_auto_20210121_1028.py
c3182027796f2c8b107faca5d967dad7d7aba0d9
[]
no_license
FacelessWanderer/mydairy
d882fbe29c6b248be7994f1690a14a1ce8908399
2b4adcb5c1f808a05dc14c336c89241e03e13aab
refs/heads/master
2023-04-19T18:10:46.549451
2021-05-15T15:30:33
2021-05-15T15:30:33
333,198,218
1
0
null
null
null
null
UTF-8
Python
false
false
361
py
# Generated by Django 3.1.5 on 2021-01-21 08:28 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0003_auto_20210121_1010'), ] operations = [ migrations.RenameField( model_name='post', old_name='categry', new_name='category', ), ]
[ "68087847+FacelessWanderer@users.noreply.github.com" ]
68087847+FacelessWanderer@users.noreply.github.com
2d12c679815abff67ca583fa1de9385e393a0303
a45b0b8d2ad5b17506ace412cd755d29b2b57872
/cookbook-python/misc/slate-test.py
cc9918fcddab807a74868d6ab3ec5718e979cea8
[]
no_license
hiepbkhn/ml2017
e89a1546e412c3f203184006a2423922a4f95af0
0fd18fc53712db5e89802913e96f9fdd6e73f573
refs/heads/master
2023-08-16T15:14:41.786857
2023-08-03T03:21:32
2023-08-03T03:21:32
82,892,920
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
''' Created on Feb 27, 2017 @author: Administrator ''' import slate with open('How to Read a Paper.pdf') as f: doc = slate.PDF(f) doc[1]
[ "hiepnh.vtt@gmail.com" ]
hiepnh.vtt@gmail.com
4254446828a2d41fb2fc7c0ce9b1dd1a6cc086f4
3f4a035504508835de9ff53498d44b5872efb4c1
/gui/windows/win_window.py
d11adb380640ade4f51354294e0e7a8e3dedbeab
[]
no_license
gODeaLoAple/Zuma
d87bab1715d90c1dfd33c575a11e7deacc749388
d65451eae0db3aa384f4ce4bad76ffd0ce54597a
refs/heads/master
2023-01-05T07:39:27.581785
2020-11-07T13:49:20
2020-11-07T13:49:20
273,963,542
1
0
null
null
null
null
UTF-8
Python
false
false
1,118
py
from PyQt5.QtWidgets import QWidget, QLabel, QVBoxLayout, QPushButton from PyQt5.QtCore import pyqtSlot, Qt class WinWindow(QWidget): def __init__(self, parent): super().__init__(parent) self.init_ui() def init_ui(self): text_label = QLabel("You are win!", self) text_label.setAlignment(Qt.AlignCenter) text_label.setFixedSize(200, 50) restart_button = QPushButton("Next Level", self) restart_button.setFixedSize(200, 50) restart_button.clicked.connect(self.on_next_level_click) open_main_menu_button = QPushButton("Main menu", self) open_main_menu_button.setFixedSize(200, 50) open_main_menu_button.clicked.connect(self.on_main_menu_click) vbox = QVBoxLayout(self) vbox.setAlignment(Qt.AlignCenter) vbox.addWidget(text_label) vbox.addWidget(restart_button) vbox.addWidget(open_main_menu_button) @pyqtSlot() def on_next_level_click(self): self.parent().restart_level() @pyqtSlot() def on_main_menu_click(self): self.parent().open_main_menu()
[ "maksim.math@gmail.com" ]
maksim.math@gmail.com
6c67bbd556a27d366714130c5f3f6f12314679ea
7f59e2c4e771c19378e9839406c220d3985e7efe
/public-engines/kaggle-titanic-engine/marvin_titanic_engine/prediction/__init__.py
e9b3c7c5a02a68e210e9f618975dfb6fa53f8cc7
[ "Apache-2.0" ]
permissive
apache/incubator-marvin
c6ff32d50eb01ccd84266587d79f562a9e371496
58fdccf2e677041a13966ddbdd96d484edf3b474
refs/heads/develop
2023-08-30T12:46:56.973102
2022-11-18T15:27:52
2022-11-18T15:27:52
148,087,939
112
77
Apache-2.0
2023-03-07T05:45:59
2018-09-10T02:27:54
Jupyter Notebook
UTF-8
Python
false
false
157
py
#!/usr/bin/env python # coding=utf-8 from .prediction_preparator import PredictionPreparator from .predictor import Predictor from .feedback import Feedback
[ "daniel.takabayashi@gmail.com" ]
daniel.takabayashi@gmail.com
6ff3928c2cc469c30d69a24c9694ee0f7764fa32
9d540749a258509b4f1e80cbc5833cba7320c976
/biointeract/hub/dataload/sources/biogrid/__init__.py
418920f09752fa7ef84fa85e3c0caa9c6071fd86
[ "Apache-2.0" ]
permissive
shunsunsun/biothings.interactions
208f8c32d5fa998a601b58e70d1299f9277a355b
7a8b16e8119d6505b6b5d89623051c11f3649430
refs/heads/master
2021-09-15T04:30:41.584419
2018-05-25T19:44:56
2018-05-25T19:44:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
72
py
from .dumper import BiogridDumper from .uploader import BiogridUploader
[ "greg@spritzr.com" ]
greg@spritzr.com
cb9e35f9d5650b245d2818ff48eed06905914d59
8369cc6396310b6d6012c6ca78b2bcbbad4ac5d3
/db/dbconnect.py
69d2106a97679dd7269e5a4c598f2de2e9309ebc
[]
no_license
warthogs32/locker
af59f694248a24ecf9d5103ca208d81208c2d331
f2b96c52515d23f38542e0c869d5f6ad87e11828
refs/heads/master
2023-01-27T12:30:10.275595
2020-03-02T01:32:38
2020-03-02T01:32:38
243,481,020
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
import firebase_admin from firebase_admin import credentials from firebase_admin import firestore cred = credentials.Certificate('slohacks-269509-firebase-adminsdk-dun4x-9342e5bf13.json') firebase_admin.initialize_app(cred) db = firestore.Client() doc_ref = db.collection(u'log').document(u'test') doc_ref.set( { u'first' : u'jason' })
[ "jj@jj-jj.org" ]
jj@jj-jj.org
ce0d718523e13d1eae47d2d286507489e5e5dbcb
9b9817ee1029fdca265e6536fe51b4f1fe6f5e03
/data_structures/test/test_my_array_list.py
9367ed26e373ba210eafd299b62070fdd3bdb8c5
[]
no_license
toebgen/exercises
1809d56d18aead4bf41b123de6c61e9febe2c149
cd56d29173cb9fde171f94ad6651ea2f5766d125
refs/heads/master
2020-05-24T11:23:30.391827
2020-04-24T14:30:30
2020-04-24T14:30:30
187,247,490
0
0
null
null
null
null
UTF-8
Python
false
false
1,930
py
import unittest from my_array_list import MyArrayList class TestMyArrayList(unittest.TestCase): def appendWithDummyData(self, length): for x in range(length): self.array_list.append(x) def setUp(self): self.array_list = MyArrayList() def testExtend(self): expected_size_after = self.array_list.size * self.array_list.extension_factor self.array_list.extend() self.assertEqual(self.array_list.size, expected_size_after) def testDiminish(self): self.appendWithDummyData(9) expected_size_after = 8 expected_index_after = 8 self.array_list.diminish() self.assertEqual(self.array_list.size, expected_size_after) self.assertEqual(self.array_list.index, expected_index_after) def testAppend(self): self.assertEqual(len(self.array_list), 0) test_values = [x for x in range(10)] for counter, test_value in enumerate(test_values, 1): self.array_list.append(test_value) self.assertEqual(len(self.array_list), counter) self.assertEqual(self.array_list[counter-1], test_value) # TODO Test self.array_list.size ? def testPop(self): # Add 5 values self.appendWithDummyData(5) expected_value = 4 # Pop 1 value, hence 4 should be left expected_size_after = 4 expected_index_after = 4 popped_value = self.array_list.pop() self.assertEqual(popped_value, expected_value) self.assertEqual(self.array_list.size, expected_size_after) self.assertEqual(self.array_list.index, expected_index_after) def testOperatorIn(self): self.appendWithDummyData(3) self.assertEqual(1 in self.array_list, True) self.assertEqual(4 in self.array_list, False) if __name__ == '__main__': unittest.main()
[ "toebgen@gmail.com" ]
toebgen@gmail.com
f400cabc87d522781cbaeca42830eb1280a17f5c
bc2e77b92ae12e34aec9445f5e8c92fc399e6cc8
/vautils/orchestration/vcenter/__init__.py
f6d9e885db50dabf4acf38b33be40864884ab7f6
[]
no_license
18782967131/test
fc8049c10f02f7b49a4dd4a675618ccf388c4f2f
cb02979e233ce772bd5fe88ecdc31caf8764d306
refs/heads/master
2020-05-27T08:41:57.535153
2017-11-09T08:31:07
2017-11-09T08:31:07
82,536,387
1
0
null
null
null
null
UTF-8
Python
false
false
2,421
py
import os,glob from imp import find_module, load_module from vautils import logger from vautils.orchestration.vcenter.vcenter_connector import VcenterConnector from feature.exceptions import * supported_mod = ['host','operation','network','vm','connector'] class VcenterConfig(object): @classmethod def get_vcenter_config_util(cls_name, resource=None): """ function to dynamically load the all vcenter class Kwargs: :resource: supported vm factory resource type Returns: :instance of the self class for the resource """ if not resource: raise InvalidResource(resource) product = resource.get_nodetype() abs_path = os.path.dirname(os.path.abspath(__file__)) for smod in supported_mod: if smod == 'connector' : filenames = ['vcenter_connector.py'] abs_path1 = abs_path else : abs_path1 = os.path.join(abs_path,smod) filename='{}_{}'.format(product,smod) filenames = glob.glob(os.path.join(abs_path1,'*.py')) for file_name in filenames : file_name = os.path.basename(file_name) if file_name == '__init__.py' or file_name == 'vm_verification.py' \ or file_name == 'vcenter_verification.py' or file_name == 'vnet_action.py' : continue if len(filenames) == 2 : filename = '{}_{}'.format(product, smod) else : filename = file_name.split('.')[0] try: modloc = find_module(filename, [abs_path1]) except ImportError: raise else: load_mod = load_module(filename, modloc[0], modloc[1], modloc[2]) vcs = filename.split('_') modulename = vcs[0].capitalize() + vcs[1].capitalize() if modulename == 'VcenterVm' : modulename = 'VcenterVMs' try: util = getattr(load_mod, modulename) setattr(cls_name,modulename,util(resource)) except AttributeError: raise return cls_name
[ "515947075@qq.com" ]
515947075@qq.com
79c3488d815b757d1d05562e57013879c7606de0
8683bf70ea56283caf0c7b1fb742ed002ce1d8cd
/pages/migrations/0015_auto_20200223_1754.py
64981d98cf32971db40b96fce5cadc903583e861
[]
no_license
Arzor529/learn-pi
df6b18cd1735eb31f1f712d902209ff73040c441
1a021181bb768d8f0a78fd64988f484a925f4b0b
refs/heads/main
2023-02-24T18:48:38.614643
2021-01-31T19:52:11
2021-01-31T19:52:11
334,742,500
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
# Generated by Django 3.0.2 on 2020-02-23 17:54 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('pages', '0014_auto_20200223_1749'), ] operations = [ migrations.RemoveField( model_name='award', name='lesson_complete', ), migrations.DeleteModel( name='LessonComplete', ), ]
[ "aaron.keel@hotmail.co.uk" ]
aaron.keel@hotmail.co.uk
163c8f79f45c34299206a1c1b091dc70a20faabe
304e639beb84844f9f2dbd13292177016e658f8b
/application/sources/database/base.py
f148127511463efdfbfc7182b006fdab658198ea
[ "MIT" ]
permissive
JuiceFV/Cats_Queue_Management_System
f7dd3cdbf24499160042c25e1f5d21b2e542d0b9
1aa57fefcd96059ac63391d6d178ea7cfa49e1d0
refs/heads/master
2022-12-13T01:22:46.859127
2021-09-27T14:16:25
2021-09-27T14:16:25
185,384,218
1
0
MIT
2022-12-08T04:09:28
2019-05-07T11:04:53
Python
UTF-8
Python
false
false
5,782
py
"""In this module contains the basic functions for database interactions. """ import asyncpgsa from .db import tokens from sqlalchemy import ( select, insert, delete, text, asc, func, ) async def db_empty(app): """Check for database emptiness. Key arguments: app -- our application returns True/False depending on database emptiness. """ async with app['db'].acquire() as conn: query = text("SELECT True FROM tokens LIMIT(1)") return False if await conn.fetch(query) else True async def on_start(app): """When the application starts it will configure the database with options from the 'database_config' which are places at config.yaml. Key arguments: app -- our application """ config = app['config'] app['db'] = await asyncpgsa.create_pool(**config['database_config']) async def insert_token_into_db(app, token): """This function responsible for token's insertion into database. Key arguments: app -- our application token -- the token which should be inserted """ async with app['db'].acquire() as conn: # SQL equivalent: 'INSERT INTO tokens (token) values ('A00')' query = insert(tokens).values( token=token ) await conn.fetchrow(query) async def delete_token_from_db(app, token): """Delete a token from database. Keywords arguments: app -- the application token -- the deleting token There are several implementations of this function. For instance, we'd inquire only one but huge request. Like that: DO $$ BEGIN IF (SELECT token FROM tokens ORDER BY id ASC LIMIT 1) = <required-token> THEN RETURN DELETE FROM tokens WHERE token = <required-token> RETURNING 't' ELSE IF (SELECT True FROM tokens WHERE token = <required-token>) = True THEN RETURN "I don't know how to return (specifically in what format) but I believe you can come up with this:)" ELSE RETURN 'f' END IF; END $$; However I used another way. I don't want to use big query like that, therefore I decide to split these queries within python script. May be it makes some influence onto performance due to several queries but difference is few. Returns whether the token is available and the token-self. """ async with app['db'].acquire() as conn: # Checks for the table emptiness. query = text("SELECT True FROM tokens LIMIT(1)") if await conn.fetch(query): # If the table isn't empty then acquiring the token placed at the first position. token_at_first_pos = await conn.fetch(select([tokens.c.token]).order_by(asc(tokens.c.id)).limit(1)) # If the first-pos token coincides with the token passed as the argument specifically the # token which was passed as the user-token by a client. if token_at_first_pos[0]['token'] == token: # If all is fine then remove it from the table. query = delete(tokens).where(tokens.c.token == token).returning(tokens.c.token) await conn.fetch(query) # Returns following: (Both are true) # 1) Is the token available? # 2) Does the token coincides with the first token? return True, True # If passed token isn't first then check for the token availability at whole. elif await conn.fetch(select([tokens]).where(tokens.c.token == token)): # Return that token is available, but it isn't first. return True, False # Otherwise returns that the token passed by user isn't available. # (According the task it means "cheating") else: return False, False # Table is already empty. User need to get a token. else: return False, 'Table is empty' async def get_all_tokens(app): """This function created for a js displaying function. We're calling this function when sending a request to auto-update a queue. Keywords arguments: app -- the application returns all tokens in database """ async with app['db'].acquire() as conn: # SQL equivalent: 'SELECT token FROM tokens'. # If database is empty then the query returns empty list ('[]') query = select([tokens.c.token]) result = await conn.fetch(query) return result async def get_num_of_tokens(app): """This function returns number of tokens in database It uses only once in the Token.get for a position retrieving. We're calling this function when sending a request to append a token. Therefore we need to get a position of appended token, and because of we use a queue-resembling data structure the position is the number of tokens in database. Keywords arguments: app -- the application returns number of tokens/position """ async with app['db'].acquire() as conn: query = select([func.count(tokens.c.token)]) result = await conn.fetch(query) return result async def on_shutdown(app): """When the application ends its work it will close the connection with database Key arguments: app -- our application """ async with app['db'].acquire() as conn: query = delete(tokens) # frees db await conn.fetchrow(query) # Sets id counting from very beginning await conn.execute("ALTER SEQUENCE tokens_id_seq RESTART ") await app['db'].close() # It's important step for the tests if app['config']['run_type'] == 'test': with open(app['ban_list'][0].name, 'w') as file: file.write('') app['ban_list'][0].close()
[ "alexcar19622000@gmail.com" ]
alexcar19622000@gmail.com
e6bf86ac11ef8bd91e210aac264b6377a9e75b9b
e949629d3f61aabd7645d097dd4d4537261c69f0
/data-preparation/generate_classes_meta_stanford_cars.py
dfbd0398554cd893eb8edc57d717ec04a4078645
[]
no_license
alirazamir7781/image-search-poc
fcf8f974c4838082bb151584af8f034cbe2421f4
dc60e8cb0c729f20c29a2eac5d03bf6f5fd2f894
refs/heads/master
2022-01-19T09:05:46.785713
2019-01-03T17:43:15
2019-01-03T17:43:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,556
py
import sys import argparse import simplejson as json import scipy.io as sio import time from functools import partial from toolz.dicttoolz import get_in if __name__ == '__main__': p = argparse.ArgumentParser(description='Filters a dataset.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) p.add_argument('--cars_meta', type=str, required=True) p.add_argument('--cars_annos', type=str, required=True) p.add_argument('classes_output_file', nargs='?', type=argparse.FileType('w'), default=sys.stdout, help='The prepared dataset will be writen to here.') args = p.parse_args() cars_meta = sio.loadmat(args.cars_meta) cars_annos = sio.loadmat(args.cars_annos) def to_dataset_elem(cars_meta,cars_annos): description = get_in([0], cars_meta) classes = str(get_in([0,0,0], cars_annos)) split_desc = ''.join(description).split(" ") return {str(cars_meta[0]): {'id':classes, 'make': split_desc[0], 'model': split_desc[1], 'body': split_desc[2], 'year': split_desc[3]}} dataset = list(map(partial(to_dataset_elem), cars_meta["class_names"][0], cars_annos['annotations'][0])) print('[') prev = None for item in dataset: if prev is not None: print(',') print(json.dumps(item, indent=4, separators=(',', ': ')), end='', file=args.classes_output_file) prev = item print('\n]')
[ "zeeshanmalik@Zeeshans-MacBook-Pro-2.local" ]
zeeshanmalik@Zeeshans-MacBook-Pro-2.local
60142c0fc413f3a23ace11f584957f13800b4491
680d2229b64d80b9d31cbf1c1d4866e7c8242258
/hyperconnect/junho85-gets-gem.py
f05404170addfc45a374cbf6f0fc4c77a3de5415
[]
no_license
junho85/ps-python
c72f05c4390a2331b2e4a9fd4bdb5a173822ba76
5b1de5d76a5f7577ca76d7a533542b3da2614ee7
refs/heads/master
2021-06-12T01:38:30.912376
2021-03-30T15:27:54
2021-03-30T15:27:54
167,168,091
0
0
null
null
null
null
UTF-8
Python
false
false
4,822
py
# -'- coding: utf-8 -*- import sys import json from random import choice import math def dotproduct(v1, v2): return sum((a * b) for a, b in zip(v1, v2)) def length(v): return math.sqrt(dotproduct(v, v)) def angle(v1, v2): return math.acos(dotproduct(v1, v2) / (length(v1) * length(v2))) def get_position_from_location(location): return location[1] + location[0] * 8 def get_location_from_position(position): return (position % 8, position // 8) def get_player_location(map_yx, player): for y in range(0, 8): for x in range(0, 8): if map_yx[y][x] == player: return (y, x) return (-1, -1) def tuple_sum(a, b): return (a[0] + b[0], a[1] + b[1]) def next_step(step): if step == 'U': return (-1, 0) elif step == 'D': return (1, 0) elif step == 'L': return (0, -1) elif step == 'R': return (0, 1) return (0, 0) def is_available(map_yx, location): position = get_position_from_location(location) if position < 0 or (location[0] < 0 or location[0] >= 8 or location[1] < 0 or location[1] >= 8): return False ret = map_yx[location[0]][location[1]] if ret != '*': return False return True is_debug = False def main(): ''' 아래는 처음 판의 상태이다. 위로 가고 싶을 경우 U, 아래로 가고 싶을 경우 D, 오른쪽으로 가고 싶을 경우 R, 왼쪽으로 가고 싶을 경우 L 을 출력해주면 된다. 인풋은 json형식으로 들어오며 'map' : 8 * 8 크기의 판의 상태를 한 칸당 한 글자로 공백없이 string의 형태로 준다. 'opponent_history' : 지금까지 상대가 움직인 방향들을 string의 형태로 공백없이 준다. ex) 'UDDLLUR' 'my_history' : 지금까지 내가 움직인 방향들을 string의 형태로 공백없이 준다. ex) 위와 동일 'me' : 내가 누군지 알려줌. ex) 'A' or 'B' 'opponent' : 상대가 누군지 알려줌. ex) 위와 동일 map에 대한 상세한 설명 💎 : 갈 수 있는 곳입니다. 젬이라고 불리죠 A, B : 위에서 설명했듯 me로 들어온 알파벳이 본인이 움직일 말이 됩니다. a, b : A, B가 이미 지나간 길, 다시말해 다시는 갈 수 없는 길입니다. ''' ######################## # # # A 💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎💎 # # 💎💎💎💎💎💎💎B # # # ######################## if (is_debug): data = json.loads(argv[2]) else: data = json.loads(sys.argv[1]) map_string = data['map'] opponent_history = data['opponent_history'] my_history = data['my_history'] player = data['me'] opponent = data['opponent'] # 재미를 위해 젬을 직접 이용해서 코드를 짜보세요! new_input_str = map_string.replace("*", "💎") map_yx = [] for i in range(8): map_yx.append(list(map_string[8 * i:8 * i + 8])) # TODO: 아래쪽을 변경하여 멋진 코드를 만들어 주세요! available = [ ['R', (1, 0), 0], ['L', (-1, 0), 0], ['D', (0, 1), 0], ['U', (0, -1), 0] ] location = get_player_location(map_yx, player) position = get_position_from_location(location) # check availables for i in range(0, len(available)): if is_available(map_yx, tuple_sum(location, next_step(available[i][0]))): available[i][2] = 1.0 available_target = sorted([x for x in available], key=lambda x: x[2], reverse=True) # calc opponent's center if opponent_history: op_x = 0 op_y = 0 for j in range(8): for i in range(8): if 'b' == map_yx[j][i]: op_x += i; op_y += j op_x /= len(opponent_history) op_y /= len(opponent_history) for i in range(len(available_target)): if available_target[i][2] == 0: continue a = angle(available_target[i][1], (op_x, op_y)) if a == 0.0: a = math.inf else: a = a available_target[i][2] = a available_target = sorted([x for x in available], key=lambda x: x[2], reverse=True) ret = available_target[0][0] if (is_debug): return bytes(ret, 'utf-8') else: print(ret) if is_debug == False: main()
[ "junho85@gmail.com" ]
junho85@gmail.com
b8951924632dac460f7d4f314645390863883216
f504253210cec1c4ec6c3ea50a45564db7d6cd7f
/prettyqt/bluetooth/bluetoothserviceinfo.py
1550d47d7d25b376a8935aee536e083c25471963
[ "MIT" ]
permissive
phil65/PrettyQt
b1150cb4dce982b9b8d62f38f56694959b720a3e
f00500d992d1befb0f2c2ae62fd2a8aafba7fd45
refs/heads/master
2023-08-30T21:00:08.905444
2023-08-17T12:24:45
2023-08-17T12:24:45
177,451,205
17
5
MIT
2020-08-15T22:21:18
2019-03-24T18:10:21
Python
UTF-8
Python
false
false
4,059
py
from __future__ import annotations from collections.abc import MutableMapping from typing import Literal from prettyqt.qt import QtBluetooth from prettyqt.utils import bidict, datatypes AttributeIdStr = Literal[ "service_record_handle", "service_class_ids", "service_record_state", "service_id", "protocol_descriptor_list", "browse_group_list", "language_base_attribute_id_list", "service_info_time_to_live", "service_availablity", "bluetooth_profile_descriptor_list", "documentation_url", "client_executable_url", "icon_url", "additional_protocol_descriptor_list", "primary_language_base", "service_name", "service_description", "service_provider", ] AttributeId = QtBluetooth.QBluetoothServiceInfo.AttributeId ATTRIBUTE_IDS: bidict[AttributeIdStr, AttributeId] = bidict( service_record_handle=AttributeId.ServiceRecordHandle, service_class_ids=AttributeId.ServiceClassIds, service_record_state=AttributeId.ServiceRecordState, service_id=AttributeId.ServiceId, protocol_descriptor_list=AttributeId.ProtocolDescriptorList, browse_group_list=AttributeId.BrowseGroupList, language_base_attribute_id_list=AttributeId.LanguageBaseAttributeIdList, service_info_time_to_live=AttributeId.ServiceInfoTimeToLive, service_availablity=AttributeId.ServiceAvailability, bluetooth_profile_descriptor_list=AttributeId.BluetoothProfileDescriptorList, documentation_url=AttributeId.DocumentationUrl, client_executable_url=AttributeId.ClientExecutableUrl, icon_url=AttributeId.IconUrl, additional_protocol_descriptor_list=AttributeId.AdditionalProtocolDescriptorList, primary_language_base=AttributeId.PrimaryLanguageBase, # service_name=AttributeId.ServiceName, service_description=AttributeId.ServiceDescription, service_provider=AttributeId.ServiceProvider, ) Protocol = QtBluetooth.QBluetoothServiceInfo.Protocol ProtocolStr = Literal["unknown", "l2_cap", "rfcomm"] PROTOCOL: bidict[ProtocolStr, Protocol] = bidict( unknown=Protocol.UnknownProtocol, l2_cap=Protocol.L2capProtocol, rfcomm=Protocol.RfcommProtocol, ) class BluetoothServiceInfo( QtBluetooth.QBluetoothServiceInfo, MutableMapping, metaclass=datatypes.QABCMeta ): """Enables access to the attributes of a Bluetooth service. Also implements MutableMapping interface, can be used as a dicionary. """ def __getitem__(self, value: str | int | AttributeId): match value: case int(): flag = value case str(): if value not in ATTRIBUTE_IDS: raise KeyError(value) flag = ATTRIBUTE_IDS[value].value case AttributeId(): flag = value.value case _: raise KeyError(value) return self.attribute(flag) def __delitem__(self, value: str | int | AttributeId): match value: case int(): flag = value case str(): flag = ATTRIBUTE_IDS[value].value case AttributeId(): flag = value.value return self.removeAttribute(flag) def __setitem__(self, index: str | int | AttributeId, value): """Set attribute.""" match index: case int(): flag = index case str(): flag = ATTRIBUTE_IDS[index].value case AttributeId(): flag = index.value return self.setAttribute(flag, value) def __contains__(self, value: int) -> bool: attr = ATTRIBUTE_IDS.inverse[value] return self.contains(attr) def __iter__(self): """Iter the info attributes.""" return iter(self.attributes()) def __len__(self): return len(self.attributes()) if __name__ == "__main__": from prettyqt import widgets app = widgets.app() address = BluetoothServiceInfo() address["documentation_url"] = "test" del address["documentation_url"]
[ "philipptemminghoff@googlemail.com" ]
philipptemminghoff@googlemail.com
dfed2e98d13ccd325edc9957274158b2793b8f0b
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/dougsouza_face-frontalization/face-frontalization-master/frontalize.py
288c5ab260d12118c575d932c733df5094a5c992
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
4,885
py
__author__ = 'Douglas' import scipy.io as scio import cv2 import numpy as np np.set_printoptions(formatter={'float_kind': lambda x: "%.4f" % x}) class ThreeD_Model: def __init__(self, path, name): self.load_model(path, name) def load_model(self, path, name): model = scio.loadmat(path)[name] self.out_A = np.asmatrix(model['outA'][0, 0], dtype='float32') #3x3 self.size_U = model['sizeU'][0, 0][0] #1x2 self.model_TD = np.asarray(model['threedee'][0,0], dtype='float32') #68x3 self.indbad = model['indbad'][0, 0]#0x1 self.ref_U = np.asarray(model['refU'][0,0]) def frontalize(img, proj_matrix, ref_U, eyemask): ACC_CONST = 800 img = img.astype('float32') print "query image shape:", img.shape bgind = np.sum(np.abs(ref_U), 2) == 0 # count the number of times each pixel in the query is accessed threedee = np.reshape(ref_U, (-1, 3), order='F').transpose() temp_proj = proj_matrix * np.vstack((threedee, np.ones((1, threedee.shape[1])))) temp_proj2 = np.divide(temp_proj[0:2, :], np.tile(temp_proj[2, :], (2,1))) bad = np.logical_or(temp_proj2.min(axis=0) < 1, temp_proj2[1, :] > img.shape[0]) bad = np.logical_or(bad, temp_proj2[0, :] > img.shape[1]) bad = np.logical_or(bad, bgind.reshape((-1), order='F')) bad = np.asarray(bad).reshape((-1), order='F') nonbadind = np.nonzero(bad == 0)[0] temp_proj2 = temp_proj2[:, nonbadind] # because python arrays are zero indexed temp_proj2 -= 1 ind = np.ravel_multi_index((np.asarray(temp_proj2[1, :].round(), dtype='int64'), np.asarray(temp_proj2[0, :].round(), dtype='int64')), dims=img.shape[:-1], order='F') synth_frontal_acc = np.zeros(ref_U.shape[:-1]) ind_frontal = np.arange(0, ref_U.shape[0]*ref_U.shape[1]) ind_frontal = ind_frontal[nonbadind] c, ic = np.unique(ind, return_inverse=True) bin_edges = np.r_[-np.Inf, 0.5 * (c[:-1] + c[1:]), np.Inf] count, bin_edges = np.histogram(ind, bin_edges) synth_frontal_acc = synth_frontal_acc.reshape(-1, order='F') synth_frontal_acc[ind_frontal] = count[ic] synth_frontal_acc = synth_frontal_acc.reshape((320, 320), order='F') synth_frontal_acc[bgind] = 0 synth_frontal_acc = cv2.GaussianBlur(synth_frontal_acc, (15, 15), 30., borderType=cv2.BORDER_REPLICATE) frontal_raw = np.zeros((102400, 3)) frontal_raw[ind_frontal, :] = cv2.remap(img, temp_proj2[0, :].astype('float32'), temp_proj2[1, :].astype('float32'), cv2.INTER_CUBIC) frontal_raw = frontal_raw.reshape((320, 320, 3), order='F') # which side has more occlusions? midcolumn = np.round(ref_U.shape[1]/2) sumaccs = synth_frontal_acc.sum(axis=0) sum_left = sumaccs[0:midcolumn].sum() sum_right = sumaccs[midcolumn+1:].sum() sum_diff = sum_left - sum_right if np.abs(sum_diff) > ACC_CONST: # one side is ocluded ones = np.ones((ref_U.shape[0], midcolumn)) zeros = np.zeros((ref_U.shape[0], midcolumn)) if sum_diff > ACC_CONST: # left side of face has more occlusions weights = np.hstack((zeros, ones)) else: # right side of face has more occlusions weights = np.hstack((ones, zeros)) weights = cv2.GaussianBlur(weights, (33, 33), 60.5, borderType=cv2.BORDER_REPLICATE) # apply soft symmetry to use whatever parts are visible in ocluded side synth_frontal_acc /= synth_frontal_acc.max() weight_take_from_org = 1. / np.exp(0.5+synth_frontal_acc) weight_take_from_sym = 1 - weight_take_from_org weight_take_from_org = np.multiply(weight_take_from_org, np.fliplr(weights)) weight_take_from_sym = np.multiply(weight_take_from_sym, np.fliplr(weights)) weight_take_from_org = np.tile(weight_take_from_org.reshape(320, 320, 1), (1, 1, 3)) weight_take_from_sym = np.tile(weight_take_from_sym.reshape(320, 320, 1), (1, 1, 3)) weights = np.tile(weights.reshape(320, 320, 1), (1, 1, 3)) denominator = weights + weight_take_from_org + weight_take_from_sym frontal_sym = np.multiply(frontal_raw, weights) + np.multiply(frontal_raw, weight_take_from_org) + np.multiply(np.fliplr(frontal_raw), weight_take_from_sym) frontal_sym = np.divide(frontal_sym, denominator) # exclude eyes from symmetry frontal_sym = np.multiply(frontal_sym, 1-eyemask) + np.multiply(frontal_raw, eyemask) frontal_raw[frontal_raw > 255] = 255 frontal_raw[frontal_raw < 0] = 0 frontal_raw = frontal_raw.astype('uint8') frontal_sym[frontal_sym > 255] = 255 frontal_sym[frontal_sym < 0] = 0 frontal_sym = frontal_sym.astype('uint8') else: # both sides are occluded pretty much to the same extent -- do not use symmetry frontal_sym = frontal_raw return frontal_raw, frontal_sym
[ "659338505@qq.com" ]
659338505@qq.com
1d0de82fd05133a73c2fa3479a0c7be727ae2905
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02821/s020142349.py
50cb9d7c7baefeb952496c4a3c79bcfb25bba6c7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
import sys from collections import * import heapq import math import bisect from itertools import permutations,accumulate,combinations,product from fractions import gcd def input(): return sys.stdin.readline()[:-1] def ruiseki(lst): return [0]+list(accumulate(lst)) mod=pow(10,9)+7 n,m=map(int,input().split()) a=list(map(int,input().split())) a.sort() left=0 right=(10**5)*2+5 s=ruiseki(a) ans=0 while 1: mid=(left+right)//2 cnt=0 for i in range(n): tmp=bisect.bisect_left(a,mid-a[i]) cnt+=n-tmp if cnt<m: right=mid else: left=mid # print(left,right,mid) if right-left<=1: break for i in range(n): tmp=bisect.bisect(a,left-a[i]) cnt=n-tmp ans+=cnt*a[i]+s[n]-s[tmp] m-=cnt ans+=m*left print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
3c9e22c6450f222400baa09f6df8f48791d76322
a7d56438307e90d2939ecd203d062525b078dd80
/MedicineLibrary/asgi.py
49cec13f702daaf6c04550d89c647b991a9e0969
[]
no_license
rak1b/MedicineLibrary
c7834654280dc19a51395421643e6c0536b15401
07e2ef8bff82371b9f091bcb48911eb7eee245b5
refs/heads/master
2023-08-08T01:03:43.519888
2021-09-18T18:46:22
2021-09-18T18:46:22
406,848,086
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" ASGI config for MedicineLibrary project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'MedicineLibrary.settings') application = get_asgi_application()
[ "rak13.dev@gmail.com" ]
rak13.dev@gmail.com
cb3ab2a00c7c63d9d6b35fd9139e532e65e770de
7992bfaf2b16fb39d8951d3f0ec1998f139f3a7e
/runner.py
68c28d2ee2a93b91641345f3e436b8628f596eab
[]
no_license
anjyzplace/drakefork
f6ca6a83fa53dad7b08b5d3a6a81d6c905b6bafd
08d3c23f776bc96e4f1bd6b102e97c685576cad0
refs/heads/main
2023-02-19T02:06:03.790650
2021-01-20T21:04:25
2021-01-20T21:04:25
331,431,643
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
import getopt, sys from fetcher import fetch argumentList = sys.argv[1:] # Options options = "heo:" # Long options long_options = ["Help", "Email", "Output ="] try: # Parsing argument arguments, values = getopt.getopt(argumentList, options, long_options) # checking each argument for currentArgument, currentValue in arguments: if currentArgument in ("-h", "--Help"): print ("Diplaying Help") elif currentArgument in ("-e", "--Email"): # print ("Displaying file_name:", sys.argv[0]) email = argumentList[1] fetch(email) elif currentArgument in ("-o", "--Output"): print ("Displaying file_name:", sys.argv[0]) except getopt.error as err: print (str(err))
[ "anjola@outlook.com" ]
anjola@outlook.com
d4312d38b45c273521c11d2ca388d74497fe0102
808eb39006b7d1baa7a2b15c2e9614a47a5019f0
/regressão linear simples - mundo com exceção.py
a9f8e90e3ed2f0d497eccf289c62054be4011f34
[ "MIT" ]
permissive
MarlonBeloMarques/Consumo-de-bebida-alcoolica-mundial
40c706c6c6e568c8986e0fb311ae70e72ca2b4b6
edc5637f963ba5702295fc20badbbd231cddc3b1
refs/heads/master
2022-11-07T09:45:15.337463
2020-06-28T19:53:31
2020-06-28T19:53:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,223
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from yellowbrick.regressor import ResidualsPlot '''Criação de correlação entre o consumo total de cada bebida alcoólica consumida VS total de álcool ingerido em todo o mundo, com exceções, per capita''' #Carregamento da base de dados de todos os países, e remoção dos países não alcoólicos bebida_mundo = pd.read_csv('Consumo de bebidas alcoólicas ao redor do mundo.csv') for index, row in bebida_mundo.iterrows(): if row['total_litres_of_pure_alcohol'] == 0: bebida_mundo = bebida_mundo.drop(index) '''1)Regressão linear da cerveja VS total álcool ingerido''' #Seleciona as colunas para serem as variáveis explanatória e resposta, respectivamente X = bebida_mundo.iloc[:, 1].values y = bebida_mundo.iloc[:, 4].values correlacao_cerveja = np.corrcoef(X, y) #Criação do modelo de regressão linear X = X.reshape(-1, 1) modelo_cerveja = LinearRegression() modelo_cerveja.fit(X, y) #Mostra a acurácia do modelo de regresão linear da cerveja score_cerveja = modelo_cerveja.score(X, y) #Mostra a interceptação e inclinação da reta de regressão linear do modelo, respectivamente modelo_cerveja.intercept_ modelo_cerveja.coef_ #Gráfico da regressão linear da cerveja plt.scatter(X, y) plt.title('Quantidade de cerveja ingerida por ano', fontsize = 16) plt.xlabel('Copos de cerveja por pessoa') plt.ylabel('Total de álcool ingerido (L)') plt.plot(X, modelo_cerveja.predict(X), color = 'red') #Calculo manual e utilizando o modelo para prever o valor de y, respectivamente modelo_cerveja.intercept_ + modelo_cerveja.coef_ * 400 modelo_cerveja.predict([[400]]) ''' Como no estudo não informou uma porção em litros como referência, podemos fazer suposições a partir desse modelo por exemplo, se uma pessoa bebe 400 copos de cerveja por ano, e adotando um copo de cerveja com 300 ml (0,3L), uma pessoa que bebe 400 copos por ano (dependendo de cada país, obviamente), bebe 120 litros de cerveja, e só de alcool puro, uma pessoa bebe, aproximadamente, 13.65 litros de álcool (cerca de 11.37% aproximadamente) ''' #Visualização dos resíduos e o seu gráfico(resultado entre a distância dos pontos com a linha de regressão) modelo_cerveja._residues visualizador_cerveja = ResidualsPlot(modelo_cerveja) visualizador_cerveja.fit(X, y) visualizador_cerveja.poof() '''2)Regressão linear de destilados VS total álcool ingerido''' A = bebida_mundo.iloc[:, 2].values b = bebida_mundo.iloc[:, 4].values correlacao_destilados = np.corrcoef(A, b) A = A.reshape(-1, 1) modelo_destilados = LinearRegression() modelo_destilados.fit(A, b) score_destilados = modelo_destilados.score(A, b) modelo_destilados.intercept_ modelo_destilados.coef_ plt.scatter(A, b) plt.title('Quantidade de destilados ingerido por ano', fontsize = 16) plt.xlabel('Copos de destilados por pessoa') plt.ylabel('Total de álcool ingerido (L)') plt.plot(A, modelo_destilados.predict(A), color = 'yellow') modelo_destilados.intercept_ + modelo_destilados.coef_ * 400 modelo_destilados.predict([[400]]) ''' Como no estudo não informou uma porção em litros como referência, podemos fazer suposições a partir desse modelo por exemplo, se uma pessoa bebe 400 copos de destilados por ano, e adotando um copo de destilado com 100 ml (0,1L), uma pessoa que bebe 400 copos por ano (dependendo de cada país, obviamente), bebe 40 litros de destilado, e só de alcool puro, uma pessoa bebe, aproximadamente, 13.21 litros de álcool (cerca de 33.2% aproximadamente) ''' modelo_destilados._residues visualizador_destilados = ResidualsPlot(modelo_destilados) visualizador_destilados.fit(A, b) visualizador_destilados.poof() '''3)Regressão linear de vinho VS total álcool ingerido''' C = bebida_mundo.iloc[:, 3].values d = bebida_mundo.iloc[:, 4].values correlacao_vinho = np.corrcoef(C, d) C = C.reshape(-1, 1) modelo_vinho = LinearRegression() modelo_vinho.fit(C, d) modelo_vinho.intercept_ modelo_vinho.coef_ score_vinho = modelo_vinho.score(C, d) plt.scatter(C, d) plt.title('Quantidade de vinho ingerido por ano', fontsize = 16) plt.xlabel('Taças de vinho por pessoa') plt.ylabel('Total de álcool ingerido (L)') plt.plot(C, modelo_vinho.predict(C), color = 'purple') modelo_vinho.intercept_ + modelo_vinho.coef_ * 400 modelo_vinho.predict([[400]]) ''' Como no estudo não informou uma porção em litros como referência, podemos fazer suposições a partir desse modelo por exemplo, se uma pessoa bebe 400 copos de destilados por ano, e adotando uma taça de de vinho com 450 ml (0,45L), entretanto uma pessoa só bebe cerca de 1/3 da taça então uma pessoa bebe 150 ml (0,15L), uma pessoa que bebe 400 copos por ano (dependendo de cada país, obviamente), bebe 60 litros de vinho, e só de alcool puro, uma pessoa bebe, aproximadamente, 15.38 litros de álcool (cerca de 25.63% aproximadamente) ''' modelo_vinho._residues visualizador_vinho = ResidualsPlot(modelo_vinho) visualizador_vinho.fit(C, d) visualizador_vinho.poof()
[ "noreply@github.com" ]
MarlonBeloMarques.noreply@github.com
b573f6454ee0b453076f72b2e7ea8f09a2cd3522
bc2bc86fc1666968aaf640af03c5b24f4735d66b
/Task 2/Q.11.py
a4ab6d7036623904e1effd4ebb2ab48b9c12b0e4
[]
no_license
ghimireu57/AssignmentCA2020
0404b49ff98acc85d9275197e60fcadb8ecb75c2
af5328aca1b1c9cc75717cd55e07a3b08b098a41
refs/heads/master
2022-04-17T08:52:29.644316
2020-04-10T23:37:02
2020-04-10T23:37:02
254,523,717
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
#11. In the previous question, insert “break” after the “Good guess!” print statement. # “break” will terminate the while loop so that users do not have to continue guessing after they found the number. # If the user does not guess the number at all, print “Sorry but that was not very successful”. ans=100 counter=1 while counter <= 5: num = int(input("Guess the lucky number ")) print('your',counter,"number",num) counter = counter + 1 if num != ans: print ("Try again.") else: print ("Good guess!") break else: print("sorry but that was not very successful")
[ "noreply@github.com" ]
ghimireu57.noreply@github.com
b5236ae52e5df10400422f3de177c87d0979cdf6
94aedd9dd803799ed5e8f871a7da90a26eaad596
/100 exercises/001.py
9dc03725b940694235d9f32802f8890b47773172
[]
no_license
NguyenDucHung1601/Python-Basic
a238d39ea72d1c304a37b5b528f2dc72773468ec
db18592e38689c143492beb0cdf8f68d72788765
refs/heads/master
2020-09-17T11:09:52.980290
2019-11-26T02:24:53
2019-11-26T02:24:53
224,081,676
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
''' Bai 1: Tim tat ca cac so nam trong [2000,3200] chia het cho 7 nhung khong phai boi cua 5 ''' list = [] for i in range(2000, 3201): if i % 7 == 0 and i % 5 != 0: list.append(str(i)) print(','.join(list))
[ "48803420+NguyenDucHung1601@users.noreply.github.com" ]
48803420+NguyenDucHung1601@users.noreply.github.com
4584aeb03fc5fe1e1267705fee3f37e0b7a301d7
c94f888541c0c430331110818ed7f3d6b27b788a
/saastest6/python/antchain_sdk_saastest6/models.py
75c4a8dc219b072244894e13e7800c6975e58841
[ "Apache-2.0", "MIT" ]
permissive
alipay/antchain-openapi-prod-sdk
48534eb78878bd708a0c05f2fe280ba9c41d09ad
5269b1f55f1fc19cf0584dc3ceea821d3f8f8632
refs/heads/master
2023-09-03T07:12:04.166131
2023-09-01T08:56:15
2023-09-01T08:56:15
275,521,177
9
10
MIT
2021-03-25T02:35:20
2020-06-28T06:22:14
PHP
UTF-8
Python
false
false
32,769
py
# -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel from typing import List, BinaryIO class Config(TeaModel): """ Model for initing client """ def __init__( self, access_key_id: str = None, access_key_secret: str = None, security_token: str = None, protocol: str = None, read_timeout: int = None, connect_timeout: int = None, http_proxy: str = None, https_proxy: str = None, endpoint: str = None, no_proxy: str = None, max_idle_conns: int = None, user_agent: str = None, socks_5proxy: str = None, socks_5net_work: str = None, max_idle_time_millis: int = None, keep_alive_duration_millis: int = None, max_requests: int = None, max_requests_per_host: int = None, ): # accesskey id self.access_key_id = access_key_id # accesskey secret self.access_key_secret = access_key_secret # security token self.security_token = security_token # http protocol self.protocol = protocol # read timeout self.read_timeout = read_timeout # connect timeout self.connect_timeout = connect_timeout # http proxy self.http_proxy = http_proxy # https proxy self.https_proxy = https_proxy # endpoint self.endpoint = endpoint # proxy white list self.no_proxy = no_proxy # max idle conns self.max_idle_conns = max_idle_conns # user agent self.user_agent = user_agent # socks5 proxy self.socks_5proxy = socks_5proxy # socks5 network self.socks_5net_work = socks_5net_work # 长链接最大空闲时长 self.max_idle_time_millis = max_idle_time_millis # 长链接最大连接时长 self.keep_alive_duration_millis = keep_alive_duration_millis # 最大连接数(长链接最大总数) self.max_requests = max_requests # 每个目标主机的最大连接数(分主机域名的长链接最大总数 self.max_requests_per_host = max_requests_per_host def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.access_key_id is not None: result['accessKeyId'] = self.access_key_id if self.access_key_secret is not None: result['accessKeySecret'] = self.access_key_secret if self.security_token is not None: result['securityToken'] = self.security_token if self.protocol is not None: result['protocol'] = self.protocol if self.read_timeout is not None: result['readTimeout'] = self.read_timeout if self.connect_timeout is not None: result['connectTimeout'] = self.connect_timeout if self.http_proxy is not None: result['httpProxy'] = self.http_proxy if self.https_proxy is not None: result['httpsProxy'] = self.https_proxy if self.endpoint is not None: result['endpoint'] = self.endpoint if self.no_proxy is not None: result['noProxy'] = self.no_proxy if self.max_idle_conns is not None: result['maxIdleConns'] = self.max_idle_conns if self.user_agent is not None: result['userAgent'] = self.user_agent if self.socks_5proxy is not None: result['socks5Proxy'] = self.socks_5proxy if self.socks_5net_work is not None: result['socks5NetWork'] = self.socks_5net_work if self.max_idle_time_millis is not None: result['maxIdleTimeMillis'] = self.max_idle_time_millis if self.keep_alive_duration_millis is not None: result['keepAliveDurationMillis'] = self.keep_alive_duration_millis if self.max_requests is not None: result['maxRequests'] = self.max_requests if self.max_requests_per_host is not None: result['maxRequestsPerHost'] = self.max_requests_per_host return result def from_map(self, m: dict = None): m = m or dict() if m.get('accessKeyId') is not None: self.access_key_id = m.get('accessKeyId') if m.get('accessKeySecret') is not None: self.access_key_secret = m.get('accessKeySecret') if m.get('securityToken') is not None: self.security_token = m.get('securityToken') if m.get('protocol') is not None: self.protocol = m.get('protocol') if m.get('readTimeout') is not None: self.read_timeout = m.get('readTimeout') if m.get('connectTimeout') is not None: self.connect_timeout = m.get('connectTimeout') if m.get('httpProxy') is not None: self.http_proxy = m.get('httpProxy') if m.get('httpsProxy') is not None: self.https_proxy = m.get('httpsProxy') if m.get('endpoint') is not None: self.endpoint = m.get('endpoint') if m.get('noProxy') is not None: self.no_proxy = m.get('noProxy') if m.get('maxIdleConns') is not None: self.max_idle_conns = m.get('maxIdleConns') if m.get('userAgent') is not None: self.user_agent = m.get('userAgent') if m.get('socks5Proxy') is not None: self.socks_5proxy = m.get('socks5Proxy') if m.get('socks5NetWork') is not None: self.socks_5net_work = m.get('socks5NetWork') if m.get('maxIdleTimeMillis') is not None: self.max_idle_time_millis = m.get('maxIdleTimeMillis') if m.get('keepAliveDurationMillis') is not None: self.keep_alive_duration_millis = m.get('keepAliveDurationMillis') if m.get('maxRequests') is not None: self.max_requests = m.get('maxRequests') if m.get('maxRequestsPerHost') is not None: self.max_requests_per_host = m.get('maxRequestsPerHost') return self class DemoClass(TeaModel): def __init__( self, some_string: str = None, some_date: str = None, some_boolean: bool = None, some_int: int = None, some_list: List[str] = None, ): # 字符串测试 self.some_string = some_string # 日期测试 self.some_date = some_date # Boolean测试 self.some_boolean = some_boolean # 整数测试 self.some_int = some_int # 列表测试 self.some_list = some_list def validate(self): self.validate_required(self.some_string, 'some_string') self.validate_required(self.some_date, 'some_date') if self.some_date is not None: self.validate_pattern(self.some_date, 'some_date', '\\d{4}[-]\\d{1,2}[-]\\d{1,2}[T]\\d{2}:\\d{2}:\\d{2}([Z]|([\\.]\\d{1,9})?[\\+]\\d{2}[\\:]?\\d{2})') self.validate_required(self.some_boolean, 'some_boolean') self.validate_required(self.some_int, 'some_int') if self.some_int is not None: self.validate_maximum(self.some_int, 'some_int', 2000) self.validate_minimum(self.some_int, 'some_int', 1) self.validate_required(self.some_list, 'some_list') def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.some_string is not None: result['some_string'] = self.some_string if self.some_date is not None: result['some_date'] = self.some_date if self.some_boolean is not None: result['some_boolean'] = self.some_boolean if self.some_int is not None: result['some_int'] = self.some_int if self.some_list is not None: result['some_list'] = self.some_list return result def from_map(self, m: dict = None): m = m or dict() if m.get('some_string') is not None: self.some_string = m.get('some_string') if m.get('some_date') is not None: self.some_date = m.get('some_date') if m.get('some_boolean') is not None: self.some_boolean = m.get('some_boolean') if m.get('some_int') is not None: self.some_int = m.get('some_int') if m.get('some_list') is not None: self.some_list = m.get('some_list') return self class NameValuePair(TeaModel): def __init__( self, name: str = None, value: str = None, ): # 键名 self.name = name # 键值 self.value = value def validate(self): self.validate_required(self.name, 'name') self.validate_required(self.value, 'value') def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.name is not None: result['name'] = self.name if self.value is not None: result['value'] = self.value return result def from_map(self, m: dict = None): m = m or dict() if m.get('name') is not None: self.name = m.get('name') if m.get('value') is not None: self.value = m.get('value') return self class TestStruct(TeaModel): def __init__( self, x: str = None, y: DemoClass = None, z: List[DemoClass] = None, ): # x self.x = x # y self.y = y # z self.z = z def validate(self): self.validate_required(self.x, 'x') self.validate_required(self.y, 'y') if self.y: self.y.validate() self.validate_required(self.z, 'z') if self.z: for k in self.z: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.x is not None: result['x'] = self.x if self.y is not None: result['y'] = self.y.to_map() result['z'] = [] if self.z is not None: for k in self.z: result['z'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('x') is not None: self.x = m.get('x') if m.get('y') is not None: temp_model = DemoClass() self.y = temp_model.from_map(m['y']) self.z = [] if m.get('z') is not None: for k in m.get('z'): temp_model = DemoClass() self.z.append(temp_model.from_map(k)) return self class QueryMap(TeaModel): def __init__( self, name: str = None, value: List[NameValuePair] = None, ): # 键值 self.name = name # 额外用户信息 self.value = value def validate(self): self.validate_required(self.name, 'name') if self.value: for k in self.value: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.name is not None: result['name'] = self.name result['value'] = [] if self.value is not None: for k in self.value: result['value'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('name') is not None: self.name = m.get('name') self.value = [] if m.get('value') is not None: for k in m.get('value'): temp_model = NameValuePair() self.value.append(temp_model.from_map(k)) return self class XNameValuePair(TeaModel): def __init__( self, name: str = None, value: str = None, ): # 键名 self.name = name # 键值 self.value = value def validate(self): self.validate_required(self.name, 'name') self.validate_required(self.value, 'value') def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.name is not None: result['name'] = self.name if self.value is not None: result['value'] = self.value return result def from_map(self, m: dict = None): m = m or dict() if m.get('name') is not None: self.name = m.get('name') if m.get('value') is not None: self.value = m.get('value') return self class EchoDemoGatewayCheckRequest(TeaModel): def __init__( self, auth_token: str = None, product_instance_id: str = None, input_demo: DemoClass = None, input_string: str = None, input_array: List[TestStruct] = None, file_object: BinaryIO = None, file_object_name: str = None, file_id: str = None, input_int: int = None, file_name: str = None, ): # OAuth模式下的授权token self.auth_token = auth_token self.product_instance_id = product_instance_id # demo self.input_demo = input_demo # echo self.input_string = input_string # input_array self.input_array = input_array # file_id # 待上传文件 self.file_object = file_object # 待上传文件名 self.file_object_name = file_object_name self.file_id = file_id # 1 self.input_int = input_int # 测试一下 self.file_name = file_name def validate(self): if self.input_demo: self.input_demo.validate() if self.input_string is not None: self.validate_max_length(self.input_string, 'input_string', 20) self.validate_required(self.input_array, 'input_array') if self.input_array: for k in self.input_array: if k: k.validate() self.validate_required(self.file_id, 'file_id') self.validate_required(self.input_int, 'input_int') if self.input_int is not None: self.validate_maximum(self.input_int, 'input_int', 40) self.validate_minimum(self.input_int, 'input_int', 10) self.validate_required(self.file_name, 'file_name') def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.auth_token is not None: result['auth_token'] = self.auth_token if self.product_instance_id is not None: result['product_instance_id'] = self.product_instance_id if self.input_demo is not None: result['input_demo'] = self.input_demo.to_map() if self.input_string is not None: result['input_string'] = self.input_string result['input_array'] = [] if self.input_array is not None: for k in self.input_array: result['input_array'].append(k.to_map() if k else None) if self.file_object is not None: result['fileObject'] = self.file_object if self.file_object_name is not None: result['fileObjectName'] = self.file_object_name if self.file_id is not None: result['file_id'] = self.file_id if self.input_int is not None: result['input_int'] = self.input_int if self.file_name is not None: result['file_name'] = self.file_name return result def from_map(self, m: dict = None): m = m or dict() if m.get('auth_token') is not None: self.auth_token = m.get('auth_token') if m.get('product_instance_id') is not None: self.product_instance_id = m.get('product_instance_id') if m.get('input_demo') is not None: temp_model = DemoClass() self.input_demo = temp_model.from_map(m['input_demo']) if m.get('input_string') is not None: self.input_string = m.get('input_string') self.input_array = [] if m.get('input_array') is not None: for k in m.get('input_array'): temp_model = TestStruct() self.input_array.append(temp_model.from_map(k)) if m.get('fileObject') is not None: self.file_object = m.get('fileObject') if m.get('fileObjectName') is not None: self.file_object_name = m.get('fileObjectName') if m.get('file_id') is not None: self.file_id = m.get('file_id') if m.get('input_int') is not None: self.input_int = m.get('input_int') if m.get('file_name') is not None: self.file_name = m.get('file_name') return self class EchoDemoGatewayCheckResponse(TeaModel): def __init__( self, req_msg_id: str = None, result_code: str = None, result_msg: str = None, output_demo: DemoClass = None, output_string: str = None, file_url: str = None, ): # 请求唯一ID,用于链路跟踪和问题排查 self.req_msg_id = req_msg_id # 结果码,一般OK表示调用成功 self.result_code = result_code # 异常信息的文本描述 self.result_msg = result_msg # output_demo self.output_demo = output_demo # output_string self.output_string = output_string # file_url self.file_url = file_url def validate(self): if self.output_demo: self.output_demo.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.req_msg_id is not None: result['req_msg_id'] = self.req_msg_id if self.result_code is not None: result['result_code'] = self.result_code if self.result_msg is not None: result['result_msg'] = self.result_msg if self.output_demo is not None: result['output_demo'] = self.output_demo.to_map() if self.output_string is not None: result['output_string'] = self.output_string if self.file_url is not None: result['file_url'] = self.file_url return result def from_map(self, m: dict = None): m = m or dict() if m.get('req_msg_id') is not None: self.req_msg_id = m.get('req_msg_id') if m.get('result_code') is not None: self.result_code = m.get('result_code') if m.get('result_msg') is not None: self.result_msg = m.get('result_msg') if m.get('output_demo') is not None: temp_model = DemoClass() self.output_demo = temp_model.from_map(m['output_demo']) if m.get('output_string') is not None: self.output_string = m.get('output_string') if m.get('file_url') is not None: self.file_url = m.get('file_url') return self class CreateAntcloudOpenapiApiserviceGroupRequest(TeaModel): def __init__( self, auth_token: str = None, provider_name: str = None, suite_version: str = None, description: str = None, group_name: str = None, api_group_type: str = None, ): # OAuth模式下的授权token self.auth_token = auth_token # 所属产品 self.provider_name = provider_name # 套件版本 self.suite_version = suite_version # 分组描述 self.description = description # 分组名称 self.group_name = group_name # 分组类型 self.api_group_type = api_group_type def validate(self): self.validate_required(self.provider_name, 'provider_name') self.validate_required(self.suite_version, 'suite_version') self.validate_required(self.description, 'description') self.validate_required(self.group_name, 'group_name') def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.auth_token is not None: result['auth_token'] = self.auth_token if self.provider_name is not None: result['provider_name'] = self.provider_name if self.suite_version is not None: result['suite_version'] = self.suite_version if self.description is not None: result['description'] = self.description if self.group_name is not None: result['group_name'] = self.group_name if self.api_group_type is not None: result['api_group_type'] = self.api_group_type return result def from_map(self, m: dict = None): m = m or dict() if m.get('auth_token') is not None: self.auth_token = m.get('auth_token') if m.get('provider_name') is not None: self.provider_name = m.get('provider_name') if m.get('suite_version') is not None: self.suite_version = m.get('suite_version') if m.get('description') is not None: self.description = m.get('description') if m.get('group_name') is not None: self.group_name = m.get('group_name') if m.get('api_group_type') is not None: self.api_group_type = m.get('api_group_type') return self class CreateAntcloudOpenapiApiserviceGroupResponse(TeaModel): def __init__( self, req_msg_id: str = None, result_code: str = None, result_msg: str = None, ): # 请求唯一ID,用于链路跟踪和问题排查 self.req_msg_id = req_msg_id # 结果码,一般OK表示调用成功 self.result_code = result_code # 异常信息的文本描述 self.result_msg = result_msg def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.req_msg_id is not None: result['req_msg_id'] = self.req_msg_id if self.result_code is not None: result['result_code'] = self.result_code if self.result_msg is not None: result['result_msg'] = self.result_msg return result def from_map(self, m: dict = None): m = m or dict() if m.get('req_msg_id') is not None: self.req_msg_id = m.get('req_msg_id') if m.get('result_code') is not None: self.result_code = m.get('result_code') if m.get('result_msg') is not None: self.result_msg = m.get('result_msg') return self class InitDemoBbpInsuranceUserRequest(TeaModel): def __init__( self, auth_token: str = None, product_instance_id: str = None, business_code: str = None, third_part_id: str = None, channel: str = None, burieds: QueryMap = None, ): # OAuth模式下的授权token self.auth_token = auth_token self.product_instance_id = product_instance_id # 保司编码 self.business_code = business_code # 第三方id,此处为天猫uid self.third_part_id = third_part_id # 来源渠道 self.channel = channel # 埋点信息 self.burieds = burieds def validate(self): self.validate_required(self.business_code, 'business_code') self.validate_required(self.third_part_id, 'third_part_id') self.validate_required(self.channel, 'channel') if self.burieds: self.burieds.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.auth_token is not None: result['auth_token'] = self.auth_token if self.product_instance_id is not None: result['product_instance_id'] = self.product_instance_id if self.business_code is not None: result['business_code'] = self.business_code if self.third_part_id is not None: result['third_part_id'] = self.third_part_id if self.channel is not None: result['channel'] = self.channel if self.burieds is not None: result['burieds'] = self.burieds.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('auth_token') is not None: self.auth_token = m.get('auth_token') if m.get('product_instance_id') is not None: self.product_instance_id = m.get('product_instance_id') if m.get('business_code') is not None: self.business_code = m.get('business_code') if m.get('third_part_id') is not None: self.third_part_id = m.get('third_part_id') if m.get('channel') is not None: self.channel = m.get('channel') if m.get('burieds') is not None: temp_model = QueryMap() self.burieds = temp_model.from_map(m['burieds']) return self class InitDemoBbpInsuranceUserResponse(TeaModel): def __init__( self, req_msg_id: str = None, result_code: str = None, result_msg: str = None, ): # 请求唯一ID,用于链路跟踪和问题排查 self.req_msg_id = req_msg_id # 结果码,一般OK表示调用成功 self.result_code = result_code # 异常信息的文本描述 self.result_msg = result_msg def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.req_msg_id is not None: result['req_msg_id'] = self.req_msg_id if self.result_code is not None: result['result_code'] = self.result_code if self.result_msg is not None: result['result_msg'] = self.result_msg return result def from_map(self, m: dict = None): m = m or dict() if m.get('req_msg_id') is not None: self.req_msg_id = m.get('req_msg_id') if m.get('result_code') is not None: self.result_code = m.get('result_code') if m.get('result_msg') is not None: self.result_msg = m.get('result_msg') return self class CreateAntcloudGatewayxFileUploadRequest(TeaModel): def __init__( self, auth_token: str = None, api_code: str = None, file_label: str = None, file_metadata: str = None, file_name: str = None, mime_type: str = None, api_cluster: str = None, ): # OAuth模式下的授权token self.auth_token = auth_token # 上传文件作用的openapi method self.api_code = api_code # 文件标签,多个标签;分割 self.file_label = file_label # 自定义的文件元数据 self.file_metadata = file_metadata # 文件名,不传则随机生成文件名 self.file_name = file_name # 文件的多媒体类型 self.mime_type = mime_type # 产品方的api归属集群,即productInstanceId self.api_cluster = api_cluster def validate(self): self.validate_required(self.api_code, 'api_code') if self.file_label is not None: self.validate_max_length(self.file_label, 'file_label', 100) if self.file_metadata is not None: self.validate_max_length(self.file_metadata, 'file_metadata', 1000) if self.file_name is not None: self.validate_max_length(self.file_name, 'file_name', 100) def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.auth_token is not None: result['auth_token'] = self.auth_token if self.api_code is not None: result['api_code'] = self.api_code if self.file_label is not None: result['file_label'] = self.file_label if self.file_metadata is not None: result['file_metadata'] = self.file_metadata if self.file_name is not None: result['file_name'] = self.file_name if self.mime_type is not None: result['mime_type'] = self.mime_type if self.api_cluster is not None: result['api_cluster'] = self.api_cluster return result def from_map(self, m: dict = None): m = m or dict() if m.get('auth_token') is not None: self.auth_token = m.get('auth_token') if m.get('api_code') is not None: self.api_code = m.get('api_code') if m.get('file_label') is not None: self.file_label = m.get('file_label') if m.get('file_metadata') is not None: self.file_metadata = m.get('file_metadata') if m.get('file_name') is not None: self.file_name = m.get('file_name') if m.get('mime_type') is not None: self.mime_type = m.get('mime_type') if m.get('api_cluster') is not None: self.api_cluster = m.get('api_cluster') return self class CreateAntcloudGatewayxFileUploadResponse(TeaModel): def __init__( self, req_msg_id: str = None, result_code: str = None, result_msg: str = None, expired_time: str = None, file_id: str = None, upload_headers: List[XNameValuePair] = None, upload_url: str = None, ): # 请求唯一ID,用于链路跟踪和问题排查 self.req_msg_id = req_msg_id # 结果码,一般OK表示调用成功 self.result_code = result_code # 异常信息的文本描述 self.result_msg = result_msg # 上传有效期 self.expired_time = expired_time # 32位文件唯一id self.file_id = file_id # 放入http请求头里 self.upload_headers = upload_headers # 文件上传地址 self.upload_url = upload_url def validate(self): if self.expired_time is not None: self.validate_pattern(self.expired_time, 'expired_time', '\\d{4}[-]\\d{1,2}[-]\\d{1,2}[T]\\d{2}:\\d{2}:\\d{2}([Z]|([\\.]\\d{1,9})?[\\+]\\d{2}[\\:]?\\d{2})') if self.upload_headers: for k in self.upload_headers: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.req_msg_id is not None: result['req_msg_id'] = self.req_msg_id if self.result_code is not None: result['result_code'] = self.result_code if self.result_msg is not None: result['result_msg'] = self.result_msg if self.expired_time is not None: result['expired_time'] = self.expired_time if self.file_id is not None: result['file_id'] = self.file_id result['upload_headers'] = [] if self.upload_headers is not None: for k in self.upload_headers: result['upload_headers'].append(k.to_map() if k else None) if self.upload_url is not None: result['upload_url'] = self.upload_url return result def from_map(self, m: dict = None): m = m or dict() if m.get('req_msg_id') is not None: self.req_msg_id = m.get('req_msg_id') if m.get('result_code') is not None: self.result_code = m.get('result_code') if m.get('result_msg') is not None: self.result_msg = m.get('result_msg') if m.get('expired_time') is not None: self.expired_time = m.get('expired_time') if m.get('file_id') is not None: self.file_id = m.get('file_id') self.upload_headers = [] if m.get('upload_headers') is not None: for k in m.get('upload_headers'): temp_model = XNameValuePair() self.upload_headers.append(temp_model.from_map(k)) if m.get('upload_url') is not None: self.upload_url = m.get('upload_url') return self
[ "sdk-team@alibabacloud.com" ]
sdk-team@alibabacloud.com
d0fffadb2e1f3cb94ea162f5007996610d2c1570
8f213337c875f3c344b2a9f7e5b5a39622b86f5b
/auxiliary_functions.py
28b5759dd042fbf6661a64027f441d78c215f431
[]
no_license
jgoncalocouto/Transient_energy_equation
abd05806cb05b4f44a3a70be314c975f1523a4bd
d9f96ebebd3b06c1503a72d6d43356eb11c59371
refs/heads/master
2022-12-23T04:51:05.675989
2020-09-28T16:31:35
2020-09-28T16:31:35
299,368,829
0
0
null
null
null
null
UTF-8
Python
false
false
3,828
py
from fluid_properties import * def external_natural_convection(T_in,T_amb,material,L_characteristic,A_ht): Q_conv=0 material=material.lower() g = 9.80665 # [m/s^2] T_film = (T_in+T_amb) * 0.5 beta = 1 / (273.15 + T_film) vu = thermal_properties('vu', material, T_film) # [m^2/(s)] k = thermal_properties('k', material, T_film) # [W/(m*ºK)] Pr = thermal_properties('Pr', 'air', T_film) Gr = (g * beta * (L_characteristic ** 3) * (T_in - T_amb)) / (vu ** 2) ht={} ht['Gr'] = Gr ht['Pr']=Pr ht = nusselt_external_free(ht) Nu= ht['Nu'] h_ext = (Nu * k) / (L_characteristic) Q_conv = h_ext * (A_ht) * (T_amb-T_in) return Q_conv def external_forced_convection(T_in,T_amb,material,V_wind=0.5,L=0.4,W=0.7,H=2): Q_conv=0 external={} geometry={} geometry['H']=H; geometry['W']=W; geometry['L']=L; external['v_Wind'] = V_wind external['T_film']=(T_in + T_amb) * 0.5 external['mu'] = thermal_properties('mu', material, external['T_film']) # [m^2/(s)] external['rho'] = thermal_properties('rho', material, external['T_film']) # [kg/(m^3)] external['k'] = thermal_properties('k', material, external['T_film']) # [W/m*°K] external['Pr'] = thermal_properties('Pr', material, external['T_film']) # Front Face external_facefront = external.copy() external_facefront['L_characteristic'] = geometry['H'] external_facefront['Re'] = (external_facefront['rho'] * external_facefront['v_Wind'] * external_facefront[ 'L_characteristic']) / external_facefront['mu'] external_facefront = nusselt_external_frontplate(external_facefront) external_facefront['h'] = (external_facefront['Nu'] * external_facefront['k']) / ( external_facefront['L_characteristic']) external_facefront['A_sup'] = geometry['H'] * geometry['L'] # Laterals external_laterals = external.copy() external_laterals['L_characteristic'] = geometry['W'] external_laterals['Re'] = (external_laterals['rho'] * external_laterals['v_Wind'] * external_laterals[ 'L_characteristic']) / external_laterals['mu'] external_laterals = nusselt_external_flatplate(external_laterals) external_laterals['h'] = (external_laterals['Nu'] * external_laterals['k']) / ( external_laterals['L_characteristic']) external_laterals['A_sup'] = 2 * geometry['H'] * geometry['W'] # Top Face external_top = external_laterals.copy() external_top['A_sup'] = geometry['L'] * geometry['W'] # Back Face external_faceback = external.copy() external_faceback['L_characteristic'] = geometry['H'] external_faceback['Re'] = (external_faceback['rho'] * external_faceback['v_Wind'] * external_faceback[ 'L_characteristic']) / external_faceback['mu'] external_faceback = nusselt_external_backplate(external_faceback) external_faceback['h'] = (external_faceback['Nu'] * external_faceback['k']) / ( external_faceback['L_characteristic']) external_faceback['A_sup'] = geometry['H'] * geometry['L'] external['A_sup'] = ( external_facefront['A_sup'] + external_laterals['A_sup'] + external_top['A_sup'] + external_faceback[ 'A_sup']) external['h_ext'] = ((external_facefront['h'] * external_facefront['A_sup']) + ( external_laterals['h'] * external_laterals['A_sup']) + (external_top['h'] * external_top['A_sup']) + ( external_faceback['h'] * external_faceback['A_sup'])) / (external['A_sup']) external['Q_conv'] = external['h_ext'] * (external['A_sup']) * (T_amb-T_in) Q_conv=external['Q_conv'] return Q_conv def heating_resistance(T,Q,T_on=0,T_off=10): if T<=T_on: Q_heat=Q elif T>=T_off: Q_heat=0 else: Q_heat=0 return Q_heat
[ "jgoncalocouto@gmail.com" ]
jgoncalocouto@gmail.com
ffe5c6c7f4b092f6b047a7ef7fa5b5df516006c2
5889393a7b591c7848333cd729412fe03f991c9c
/main/migrations/0004_auto_20210326_1259.py
e3cec324b99c5a5cfd4ee47e969a90e3569d6086
[]
no_license
nishit-popat/Codemania
553928f8ecca11181c7a1f0b93876e58ca712f8b
ea204de8dd4511db6d028ef15fe20f40a07d2580
refs/heads/master
2023-06-03T13:06:16.704507
2021-06-19T06:00:54
2021-06-19T06:00:54
351,455,916
0
1
null
null
null
null
UTF-8
Python
false
false
558
py
# Generated by Django 3.1.5 on 2021-03-26 07:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0003_auto_20210326_1256'), ] operations = [ migrations.AlterField( model_name='contest', name='contest_name', field=models.CharField(max_length=200), ), migrations.AlterField( model_name='problem', name='problem_definition', field=models.TextField(max_length=700), ), ]
[ "nisitpopat9999@gmail.com" ]
nisitpopat9999@gmail.com
90af23c2bff81ddafc6558e33d142447fc8311dd
8b8e41ad1b1f457c32c8ffcf446da5f60c72588d
/nokia_app/test_source_code.py
1d9572fee29c598d498d08dd185d9550d3f24777
[]
no_license
NestorBracho/nokia-test
1b90e1acf307a9dd835b51254120efc7e0d12192
969509af41212e5fbd9862216af8d77bf72fd615
refs/heads/master
2023-05-30T04:48:22.118718
2021-06-13T22:18:23
2021-06-13T22:18:23
376,617,861
0
0
null
null
null
null
UTF-8
Python
false
false
1,925
py
""" Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468. Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420. We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number; for example, 155349. Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy. In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538. Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%. Find the least number for which the proportion of bouncy numbers is exactly 99%. """ def nokia_test(percentage: float = 90): initial_number = 100 bounce = 0 # Total bouncy numbers final_percentage = percentage / 100 while True: aux_i = str(initial_number) aux_list = [int(j) for j in aux_i] is_bounce = False aux_bool = None for k in range(0, len(aux_list) - 1): if aux_list[k] > aux_list[k + 1]: if aux_bool is None: aux_bool = True elif aux_bool is False: is_bounce = True break elif aux_list[k] < aux_list[k + 1]: if aux_bool is None: aux_bool = False elif aux_bool is True: is_bounce = True break if is_bounce: bounce += 1 if float(bounce) / float(initial_number) >= final_percentage: break initial_number += 1 return { 'final_number': initial_number, 'bounce_amount': bounce, 'percentage': float(bounce) * 100 / float(initial_number) }
[ "nestorbrachi2207@gmail.com" ]
nestorbrachi2207@gmail.com
939922b8fd157040e6378dbe5e8c5dd212043968
20bb3c70e753417009448de2741e8ed94a1aa78c
/sim/experiments/taas/experiment3.py
29d33e82dac5b0838eef5a6b5f5b3fcce9e08434
[]
no_license
ravi-rajyaguru15/simulatorMA
a4ef33f3312b3b01c3fb0b3ba36e512a93eff27c
34f326e47c265d3b0f12eebe756a9790b80e5b11
refs/heads/master
2023-03-28T11:08:44.478375
2020-12-30T15:59:34
2020-12-30T15:59:34
353,339,113
0
0
null
null
null
null
UTF-8
Python
false
false
3,089
py
import multiprocessing import sys import traceback from sim import debug, counters, plotting from sim.experiments.experiment import executeMulti from sim.experiments.scenario import REGULAR_SCENARIO_ROUND_ROBIN from sim.learning.agent.lazyTableAgent import lazyTableAgent from sim.learning.agent.minimalTableAgent import minimalTableAgent from sim.learning.agent.dqnAgent import dqnAgent from sim.learning.agent.randomAgent import randomAgent from sim.learning.state.minimalSystemState import minimalSystemState from sim.simulations import localConstants, constants from sim.simulations.SimpleSimulation import SimpleSimulation from sim.experiments.experiment import executeMulti, setupMultithreading from sim.tasks.tasks import HARD maxjobs = 5 numEnergyStates = 3 def runThread(agent, numEpisodes, results, finished): exp = SimpleSimulation(numDevices=2, maxJobs=maxjobs, agentClass=agent, tasks=[HARD], systemStateClass=minimalSystemState, scenarioTemplate=REGULAR_SCENARIO_ROUND_ROBIN, centralisedLearning=True, numEnergyLevels=numEnergyStates, trainClassification=True) # exp.scenario.setInterval(1) exp.sharedAgent.loadModel() exp.sharedAgent.setProductionMode() exp.setBatterySize(1e-1) exp.setFpgaIdleSleep(1e-3) e = None try: for e in range(numEpisodes): debug.infoEnabled = False exp.simulateEpisode(e) agentName = exp.devices[0].agent.__name__ result = [f"{agentName}", e, exp.numFinishedJobs] print(result) results.put(result) # results.put([f"{agentName}", e, exp.getCurrentTime()]) except: debug.printCache() traceback.print_exc(file=sys.stdout) print(agent, e) print("Error in experiment :", exp.time) sys.exit(0) finished.put(True) def run(numEpisodes): print("starting experiment") processes = list() results = multiprocessing.Queue() finished = multiprocessing.Queue() localConstants.REPEATS = 4 # localConstants.REPEATS = 8 numEpisodes = int(numEpisodes) # agentsToTest = [minimalTableAgent] agentsToTest = [dqnAgent, minimalTableAgent] # minimalTableAgent, , localAgent] for agent in agentsToTest: # [minimalAgent, lazyAgent]: for _ in range(localConstants.REPEATS): for centralised in [True]: if not (not centralised and agent is randomAgent): processes.append(multiprocessing.Process(target=runThread, args=(agent, numEpisodes, results, finished))) results = executeMulti(processes, results, finished, numResults=len(processes) * numEpisodes) # plotting.plotMultiWithErrors("experiment1", title="experiment 1", results=results, ylabel="", xlabel="Episode #") # , save=True) plotting.plotMultiWithErrors("experiment3", title="experiment 3", results=results, ylabel="Job #", xlabel="Episode #") # , save=True) if __name__ == "__main__": setupMultithreading() try: run(1e1) except: traceback.print_exc(file=sys.stdout) print("ERROR")
[ "alwyn.burger@uni-due.de" ]
alwyn.burger@uni-due.de
1691bfa1eae47e55c1184a3c08098c2b274228ab
0233464a567919d7f32ff0d4ccf0fad3787d5b0d
/superlists/settings.py
8f84d3f8b2cfe161c9c2bd1866f7ae78789d7cef
[]
no_license
slaneslane/superlists
939637282c0dbde7b68f9f3bfae3cdf3d369ab1c
3725daeb8aa4f4a78f7cf4e821dae51bac4e3c1b
refs/heads/master
2018-10-10T17:31:11.400215
2018-06-25T07:05:31
2018-06-25T07:05:31
110,593,740
0
0
null
null
null
null
UTF-8
Python
false
false
3,984
py
""" Django settings for superlists project. Generated by 'django-admin startproject' using Django 1.10. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ if 'DJANGO_DEBUG_FALSE' in os.environ: # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ['DJANGO_SECRET_KEY'] ALLOWED_HOSTS = [os.environ['SITENAME']] else: DEBUG = True SECRET_KEY = 'insecure-key-for-dev' ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ #'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'lists', 'accounts', 'functional_tests', ] AUTH_USER_MODEL = 'accounts.User' AUTHENTICATION_BACKENDS = [ 'accounts.authentication.PasswordlessAuthenticationBackend', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'superlists.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'superlists.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', }, }, 'loggers': { 'django': { 'handlers': ['console'], }, }, 'root': {'level': 'INFO'}, } # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = 'twojelisty.serwis@gmail.com' EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_PASSWORD') EMAIL_PORT = 587 EMAIL_USE_TLS = True
[ "slane@wp.pl" ]
slane@wp.pl
ed0342f84e421f349bc8f9087c1e3b93ecf96cf2
96a1e8c1ca1bfc463ae2d6e6d9af854cd8764eb0
/ch02/heldout.py
f4f61e94865c0877554889962864e3c6e5d63920
[ "MIT" ]
permissive
rob-nn/BuildingMachineLearningSystemsWithPython
a53b8eb85684ce84896a8c5dd33ea0275b4b5191
cf02b13a569126a46cf75200e85be3ecb410fc64
refs/heads/master
2021-01-21T01:17:23.009494
2019-10-09T22:25:46
2019-10-09T22:25:46
22,963,266
0
0
null
null
null
null
UTF-8
Python
false
false
1,286
py
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # This script demonstrates the difference between the training accuracy and # testing (held-out) accuracy. from matplotlib import pyplot as plt import numpy as np from sklearn.datasets import load_iris from threshold import fit_model, accuracy data = load_iris() features = data['data'] labels = data['target_names'][data['target']] # We are going to remove the setosa examples as they are too easy: setosa = (labels == 'setosa') features = features[~setosa] labels = labels[~setosa] # Now we classify virginica vs non-virginica virginica = (labels == 'virginica') # Split the data in two: testing and training testing = np.tile([True, False], 50) # testing = [True,False,True,False,True,False...] training = ~testing model = fit_model(features[training], virginica[training]) train_accuracy = accuracy(features[training], virginica[training], model) test_accuracy = accuracy(features[testing], virginica[testing], model) print('''\ Training accuracy was {0:.1%}. Testing accuracy was {1:.1%} (N = {2}). '''.format(train_accuracy, test_accuracy, testing.sum()))
[ "luis@luispedro.org" ]
luis@luispedro.org
12ae02ddbb89a411f91a060815ce6dc4d0fb35e8
5a5eb1f043c529cc5d451c4da8475dabb048494c
/catkin_ws/build/hector_slam/hector_imu_tools/catkin_generated/pkg.installspace.context.pc.py
b46493ecdf54c1a5fb18a6333443a538110ad4da
[]
no_license
XiaoYunhan/Vincent
d865e1af8fe198d4ee2e79109fc64acbc4576883
4894cb966862029816a522adc89b9e03c820de90
refs/heads/master
2020-07-03T04:30:52.862219
2019-08-11T15:40:26
2019-08-11T15:40:26
201,783,414
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "hector_imu_tools" PROJECT_SPACE_DIR = "/home/user/EPP_slamBot/catkin_ws/install" PROJECT_VERSION = "0.3.5"
[ "2028427786@qq.com" ]
2028427786@qq.com
52b8eeb49579e8f4b716a86d3f2530a419da0a7f
7056aa7d801b19e705f733db6a2113a39f27e234
/python/app.py
e583679b973d1779ca9000c20db0db0984d96ebc
[]
no_license
markszechely/content-gitops
997a9f4b20b9e37bfa1fa25213d368ccf7c13889
f293647a6d1786b0120ed947ce3dad8c4bafc42e
refs/heads/master
2023-06-19T01:21:47.014984
2021-07-12T12:55:20
2021-07-12T12:55:20
385,198,135
0
0
null
2021-07-12T12:25:57
2021-07-12T09:45:30
Python
UTF-8
Python
false
false
177
py
from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return "Hello LA students..." if __name__ == "__main__": app.run(host='0.0.0.0', port=8000)
[ "noreply@github.com" ]
markszechely.noreply@github.com
ed1f5e3ec2f758d15da7f792256bafb01568a1ff
82e2e318ae480e59a129ba31d5a79a3475a8fe73
/cube_auto_rotate.py
b3a8054e13e1ce2212c2ab38389dae39df499f25
[]
no_license
gluttony47/python-practice
bdcfc4981031b4e39bf680666b5040d27e770f33
6abe87075f7853bf1c088668b35b7ad384fc3cb3
refs/heads/master
2020-05-05T05:37:14.126224
2019-04-05T23:28:33
2019-04-05T23:28:33
179,759,384
0
0
null
null
null
null
UTF-8
Python
false
false
1,099
py
## importing modules import pygame from pygame.locals import * from OpenGL.GL import * from OpenGL.GLU import * vertices = ( (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, -1), (0, 0, 1) ) ## edge vertices description edges = ( (0, 1), (0, 3), (0, 4), (1, 4), (1, 2), (2, 4), (2, 3), (3, 4) ) def Pyramid(): glLineWidth(5) glBegin(GL_LINES) for edge in edges: for vertex in edge: glVertex3fv(vertices[vertex]) glColor3f(1, 0, 0) glEnd() def main(): pygame.init() display = (800, 800) pygame.display.set_mode(display, DOUBLEBUF | OPENGL) gluPerspective(45, (display[0] / display[1]), 0.1, 50) glTranslatef(0, 0, -5) clock = pygame.time.Clock() while True: clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() glRotatef(2, 1, 1, 3) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) Pyramid() pygame.display.flip() main()
[ "philmist@gmail.com" ]
philmist@gmail.com
9806a2889ffd8af1d35bdfd67621b06f203d1dd9
c53b3e120c59557daaa2fa5b7626413105eb5965
/tendenci/apps/resumes/migrations/0002_resume_association_id.py
9d8c58df4c2fd8fbc37a301dc162aced7be751e2
[]
no_license
chendong0444/ams
8483334d9b687708d533190b62c1fa4fd4690f2c
f2ac4ecc076b223c262f2cde4fa3b35b4a5cd54e
refs/heads/master
2021-05-01T03:59:18.682836
2018-07-23T06:33:41
2018-07-23T06:33:41
121,194,728
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resumes', '0001_initial'), ] operations = [ migrations.AddField( model_name='resume', name='association_id', field=models.IntegerField(default=0), ), ]
[ "chendong0444@gmail.com" ]
chendong0444@gmail.com
693ee3203451ac350387ab5a02f912dc67b5bbed
b998c7550393b9aa469cde84bad421d9cbe87c45
/proximity_widget.py
43807e7ac321926c3e416e5a3a2e82398eef8e0a
[ "Apache-2.0" ]
permissive
negasora/proximity_graph
84b4d306956812f0b176d9060756347314dc8ef0
5df1201a6c11559cf07d2306a1bb0626f664b088
refs/heads/master
2022-11-26T13:51:15.235499
2020-08-07T23:39:58
2020-08-07T23:39:58
183,114,509
1
0
null
null
null
null
UTF-8
Python
false
false
2,800
py
from collections import defaultdict from binaryninjaui import FlowGraphWidget, ViewType from binaryninja import Function from binaryninja.flowgraph import FlowGraph, FlowGraphNode from binaryninja.function import InstructionTextToken, DisassemblyTextLine, Function from binaryninja.enums import InstructionTextTokenType, BranchType from .proximity_graph import ProximityGraph #TODO: add ability to find paths #TODO: highlight nodes without children in red? (or add dummy "..." node to those that do) class ProximityWidget(FlowGraphWidget): def __init__(self, parent, data): self.bv = data self.edges = defaultdict(set) self.graph = ProximityGraph(self, self.edges) super(ProximityWidget, self).__init__(parent, self.bv, self.graph) self.populate_initial() def update_graph(self): self.graph = ProximityGraph(self, self.edges) self.updateToGraph(self.graph) def populate_initial(self): self.add_proximity_layer(self.bv.entry_function) def navigateToFunction(self, func, addr): self.add_proximity_layer(func) return True def navigate(self, addr): func = self.bv.get_function_at(addr) if func is None: return False self.navigateToFunction(func, addr) return True def get_children_nodes(self, func): refs = self.bv.get_code_refs_from(func.lowest_address, func=func, length=func.highest_address-func.lowest_address) refs = set(refs) #TODO: fix api and remove this workaround return refs def get_parent_nodes(self, func): refs = self.bv.get_code_refs(func.start) return refs def add_proximity_layer(self, func): parents = self.get_parent_nodes(func) for r in parents: self.edges[r.function].add(func) children = self.get_children_nodes(func) for r in children: for f in self.bv.get_functions_containing(r): self.edges[func].add(f) #TODO: if a layer was expanded and a new node was added, check if it has a child that's in current graph. If it is, add an edge, else add '...' if it has other children #TODO: iterate over IL and add nodes and edge if there is a reference to a function #TODO: data vars self.update_graph() class ProximityViewType(ViewType): def __init__(self): super(ProximityViewType, self).__init__("Proximity View", "Proximity") def getPriority(self, data, filename): if data.executable: # Use low priority so that this view is not picked by default return 1 return 0 def create(self, data, view_frame): return ProximityWidget(view_frame, data) ViewType.registerViewType(ProximityViewType())
[ "negasora@negasora.com" ]
negasora@negasora.com
a01a76518c57c2c50243b1d886052d3150c71b0e
3da6b8a0c049a403374e787149d9523012a1f0fc
/Coder_Old/爬虫数据/news/news/settings.py
8bb3db23bbe57c4bb90ee2d5415c41a313879b56
[]
no_license
AndersonHJB/PyCharm_Coder
d65250d943e84b523f022f65ef74b13e7c5bc348
32f2866f68cc3a391795247d6aba69a7156e6196
refs/heads/master
2022-07-25T11:43:58.057376
2021-08-03T02:50:01
2021-08-03T02:50:01
348,922,058
3
3
null
2021-09-05T02:20:10
2021-03-18T02:57:16
Python
UTF-8
Python
false
false
3,046
py
# -*- coding: utf-8 -*- # Scrapy settings for news project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'news' SPIDER_MODULES = ['news.spiders'] NEWSPIDER_MODULE = 'news.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'news (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'news.middlewares.NewsSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'news.middlewares.NewsDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'news.pipelines.NewsPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "1432803776@qq.com" ]
1432803776@qq.com
f26826fa4b56b1fe1686840c62f5adcc71d9d161
c793a449c4a2aa227ce25a8e3e72146f98e26dc4
/python/made_2020/d.py
cb082008bb1632722ed3eed8e436d99d6141a584
[ "MIT" ]
permissive
holyketzer/ctci_v6
65ae4b000efc35222272cc7843ed7dd138d4827a
8877093c3f6744887a4c04ffcdee44d3592170c8
refs/heads/master
2021-07-22T18:30:30.219531
2020-08-20T07:14:31
2020-08-20T07:14:31
204,212,301
3
1
null
null
null
null
UTF-8
Python
false
false
1,749
py
import sys def is_open_tag(tag): return len(tag) > 1 and tag[0] == '<' and tag[1] != '/' and tag[-1] == '>' def is_close_tag(tag): return len(tag) > 1 and tag[1] == '/' def convert_to_open_tag(tag): return tag[0:1] + tag[2:] def convert_to_close_tag(tag): return tag[0:1] + '/' + tag[1:] x = int(sys.stdin.readline().strip()) for i in range(x): s = int(sys.stdin.readline().strip()) all_tags = [] tags = [] invalid_closes = [] for j in range(s): tag = sys.intern(sys.stdin.readline().strip().upper()) all_tags.append(tag) if is_open_tag(tag): tags.append(tag) else: if len(tags) > 0 and tags[-1] == convert_to_open_tag(tag): del tags[-1] else: invalid_closes.append(tag) if len(tags) == 0 and len(invalid_closes) == 0: print('CORRECT') elif len(tags) + len(invalid_closes) == 1: if len(tags) > 0: print('ALMOST ' + tags[0]) else: print('ALMOST ' + invalid_closes[0]) else: tags = [] invalid_opens = [] for tag in reversed(all_tags): if is_close_tag(tag): tags.append(tag) else: if len(tags) > 0 and tags[-1] == convert_to_close_tag(tag): del tags[-1] else: invalid_opens.append(tag) if len(tags) == 0 and len(invalid_opens) == 0: print('CORRECT') elif len(tags) + len(invalid_opens) == 1: if len(tags) > 0: print('ALMOST ' + tags[0]) else: print('ALMOST ' + invalid_opens[0]) else: print('INCORRECT')
[ "holyketzer@gmail.com" ]
holyketzer@gmail.com
8e396267e0d8e0ee2807aaf4f1eb912f1f152398
7069623dbf1f8cec1733955704ef91221499789b
/hippy/builtin_klass.py
eff2601e9ae7f29ff27036496840d9439c2c3bf7
[ "MIT" ]
permissive
rlamy/hippyvm
5bb9a4bfc5fbeeb61514c6b8ef0b29830b505f33
c5aff3f7ffe963b2845550ad1688fbe2b5104ef1
refs/heads/master
2020-12-24T16:06:05.378843
2014-08-26T17:31:13
2014-08-26T17:31:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,771
py
""" This module implements helpers for implementing builtin classes. """ from hippy.klass import GetterSetter, def_class from hippy.builtin import wrap_method, Optional, ThisUnwrapper, Nullable from hippy.objects.instanceobject import W_InstanceObject from hippy import consts class GetterSetterWrapper(object): def __init__(self, getter, setter, name, accflags): self.getter = getter self.setter = setter self.name = name self.accflags = accflags def build(self, klass): """NOT_RPYTHON: we need some magic RPython hackery here to convince the getter/setter functions that we're passing a "this" of the exact W_Xxx class rather than just a W_InstanceObject.""" if klass.custom_instance_class is not None: W_ExactClass = klass.custom_instance_class real_getter = self.getter real_setter = self.setter def typecasting_getter(interp, this): assert isinstance(this, W_ExactClass) return real_getter(interp, this) def typecasting_setter(interp, this, w_newvalue): assert isinstance(this, W_ExactClass) return real_setter(interp, this, w_newvalue) getter = typecasting_getter setter = typecasting_setter else: getter = self.getter setter = self.setter return GetterSetter(getter, setter, self.name, klass, self.accflags) class W_ExceptionObject(W_InstanceObject): def setup(self, interp): self.traceback = interp.get_traceback() def get_message(self, interp): return self.getattr(interp, 'message', k_Exception) @wrap_method(['interp', ThisUnwrapper(W_ExceptionObject), Optional(str), Optional(int), Optional(Nullable('object'))], name='Exception::__construct') def new_exception(interp, this, message='', code=0, w_previous=None): this.setattr(interp, 'file', interp.space.wrap(this.traceback[0][0]), k_Exception) this.setattr(interp, 'message', interp.space.wrap(message), k_Exception) this.setattr(interp, 'code', interp.space.wrap(code), k_Exception) if w_previous is None: w_previous = interp.space.w_Null elif not k_Exception.is_parent_of(w_previous.klass): interp.fatal("Wrong parameters for " "Exception([string $exception [, long $code [, " "Exception $previous = NULL]]])") this.setattr(interp, 'previous', w_previous, k_Exception) @wrap_method(['interp', 'this'], name='Exception::getMessage') def exc_getMessage(interp, this): return this.getattr(interp, 'message', k_Exception) @wrap_method(['interp', 'this'], name='Exception::getCode') def exc_getCode(interp, this): return this.getattr(interp, 'code', k_Exception) @wrap_method(['interp', 'this'], name='Exception::getPrevious') def exc_getPrevious(interp, this): return this.getattr(interp, 'previous', k_Exception) @wrap_method(['interp', ThisUnwrapper(W_ExceptionObject)], name='Exception::getTrace') def exc_getTrace(interp, this): from hippy.module.internal import backtrace_to_applevel return backtrace_to_applevel(interp.space, this.traceback) @wrap_method(['interp', ThisUnwrapper(W_ExceptionObject)], name='Exception::getFile') def exc_getFile(interp, this): return this.getattr(interp, 'file', k_Exception) @wrap_method(['interp', ThisUnwrapper(W_ExceptionObject)], name='Exception::getLine') def exc_getLine(interp, this): return this.getattr(interp, 'line', k_Exception) @wrap_method(['interp', ThisUnwrapper(W_ExceptionObject)], name='Exception::__toString') def exc___toString(interp, this): name = this.klass.name space = interp.space message = space.str_w(this.getattr(interp, 'message', k_Exception)) file = space.str_w(this.getattr(interp, 'file', k_Exception)) line = space.int_w(this.getattr(interp, 'line', k_Exception)) msg = ["exception '%s' with message '%s' in %s:%d" % (name, message, file, line)] msg.append("Stack trace") for i, (filename, funcname, line, source) in enumerate(this.traceback): msg.append("#%d %s(%d): %s()" % (i, filename, line, funcname)) return space.wrap("\n".join(msg)) @wrap_method(['interp', ThisUnwrapper(W_ExceptionObject)], name='Exception::getTraceAsString') def exc_getTraceAsString(interp, this): msg = [] for i, (filename, funcname, line, source) in enumerate(this.traceback): msg.append("#%d %s(%d): %s()" % (i, filename, line, funcname)) return interp.space.wrap("\n".join(msg)) k_Exception = def_class('Exception', [new_exception, exc_getMessage, exc_getCode, exc_getPrevious, exc_getTrace, exc_getFile, exc_getLine, exc___toString, exc_getTraceAsString], [('message', consts.ACC_PROTECTED), ('code', consts.ACC_PROTECTED), ('previous', consts.ACC_PRIVATE), ('file', consts.ACC_PROTECTED), ('line', consts.ACC_PROTECTED), ], instance_class=W_ExceptionObject) def_class('OutOfBoundsException', [], extends=k_Exception, instance_class=W_ExceptionObject) k_stdClass = def_class('stdClass', []) k_incomplete = def_class('__PHP_Incomplete_Class', []) k_RuntimeException = def_class('RuntimeException', [], extends=k_Exception, instance_class=W_ExceptionObject) k_LogicException = def_class('LogicException', [], extends=k_Exception, instance_class=W_ExceptionObject) k_DomainException = def_class('DomainException', [], extends=k_Exception, instance_class=W_ExceptionObject) k_UnexpectedValueException = def_class('UnexpectedValueException', [], extends=k_Exception, instance_class=W_ExceptionObject) def new_abstract_method(args, **kwds): name = kwds['name'] assert args[0] == 'interp' kwds['flags'] = kwds.get('flags', 0) | consts.ACC_ABSTRACT def method(interp, *args): interp.fatal("Cannot call abstract method %s()" % (name,)) return wrap_method(args, **kwds)(method) k_Iterator = def_class('Iterator', [new_abstract_method(["interp"], name="Iterator::current"), new_abstract_method(["interp"], name="Iterator::next"), new_abstract_method(["interp"], name="Iterator::key"), new_abstract_method(["interp"], name="Iterator::rewind"), new_abstract_method(["interp"], name="Iterator::valid")], flags=consts.ACC_INTERFACE | consts.ACC_ABSTRACT, is_iterator=True ) def_class('SeekableIterator', [new_abstract_method(["interp"], name="SeekableIterator::seek")], flags=consts.ACC_INTERFACE | consts.ACC_ABSTRACT, implements=[k_Iterator]) def_class('RecursiveIterator', [new_abstract_method(["interp"], name="RecursiveIterator::hasChildren"), new_abstract_method(["interp"], name="RecursiveIterator::getChildren")], flags=consts.ACC_INTERFACE | consts.ACC_ABSTRACT, implements=[k_Iterator]) def_class('Countable', [new_abstract_method(["interp"], name="Countable::count")], flags=consts.ACC_INTERFACE | consts.ACC_ABSTRACT) ArrayAccess = def_class('ArrayAccess', [ new_abstract_method(["interp"], name="ArrayAccess::offsetExists"), new_abstract_method(["interp"], name="ArrayAccess::offsetGet"), new_abstract_method(["interp"], name="ArrayAccess::offsetSet"), new_abstract_method(["interp"], name="ArrayAccess::offsetUnset"),], flags=consts.ACC_INTERFACE | consts.ACC_ABSTRACT, is_array_access=True) def_class('Reflector', [new_abstract_method(["interp"], name="Reflector::export"), new_abstract_method(["interp"], name="Reflector::__toString")], flags=consts.ACC_INTERFACE | consts.ACC_ABSTRACT)
[ "fijall@gmail.com" ]
fijall@gmail.com
9f7b8b024fc721abf2fca89d322f5068423d0bc7
f139a99d51cfa01a7892f0ac5bbb022c0cee0664
/Pythonlogy/draft/Adder/01_ExampleDoc.py
55ec4b537c59fd5073243f672de6030d945b696f
[ "MIT" ]
permissive
Ledoux/ShareYourSystem
90bb2e6be3088b458348afa37ace68c93c4b6a7a
3a2ffabf46f1f68b2c4fd80fa6edb07ae85fa3b2
refs/heads/master
2021-01-25T12:14:34.118295
2017-01-12T14:44:31
2017-01-12T14:44:31
29,198,670
0
1
null
null
null
null
UTF-8
Python
false
false
634
py
#ImportModules import ShareYourSystem as SYS from ShareYourSystem.Noders import Adder #Definition an Tree instance MyAdder=Adder.AdderClass()+[ [ ('NodeCollectionStr','Tree'), ('NodeKeyStr','MyTuplesList'), ('MyStr','Hello') ], { 'NodeCollectionStr':'Tree', 'NodeKeyStr':'MyDict', 'MyOtherStr':'Bonjour' }, Adder.AdderClass().update( [ ('NodeCollectionStr','Tree'), ('NodeKeyStr','MyChildAppender') ] ) ] #Definition the AttestedStr SYS._attest( [ 'MyAdder is '+SYS._str( MyAdder, **{ 'RepresentingBaseKeyStrsListBool':False, 'RepresentingAlineaIsBool':False } ) ] ) #Print
[ "erwan.ledoux@ens.fr" ]
erwan.ledoux@ens.fr
9f7a83c238900a1f3570eddb548aae958fc3ebf0
11d85b9e229521088eaead36140f593c18a5c7fd
/ResistanceModel/TextElement.py
1608a2d1be69a754bcf04ab4129ef3c50b9da14c
[]
no_license
Ritten11/LAMAS2021
03ef83bbf96a0ee73adafd88012d542eb62f33b7
55ee618cecf35bb228442cf2173847b9da2f51f5
refs/heads/main
2023-06-05T10:06:28.640424
2021-06-25T12:09:15
2021-06-25T12:09:15
371,036,049
0
0
null
2021-06-25T12:09:16
2021-05-26T13:03:07
Python
UTF-8
Python
false
false
574
py
from mesa import Agent class TextElement(Agent): def __init__(self, unique_id, model, description): ''' An agent solely created for the purpose of adding text within the grid of the simulation. It has no other purpose than being informational. :param unique_id: Id of the agent :param model: Model in which the agent resides :param description: Text that is to be printed within the grid ''' super().__init__(unique_id, model) self.description = description def step(self): pass
[ "ritten98@hotmail.com" ]
ritten98@hotmail.com
f32a96ae5925a732bdf5a0d320c48011869dee45
05e859f77075cd4a469a3115a03c82748f6b684a
/cryptage/crypt.py
3cf123770fd288ce53c6eeaa7cff19611a3dabbe
[]
no_license
Mistigrix/Crypto
3312c1a87c7286e143366069dedce6b1e09a89d4
5739629196fbc8625a23c8e8f694ba8ec68973fa
refs/heads/main
2023-05-15T21:49:21.040717
2021-06-04T08:04:18
2021-06-04T20:35:26
374,756,372
0
0
null
null
null
null
UTF-8
Python
false
false
2,440
py
# coding:utf-8 from constantes import * class Cryptage: """Classe permettant de cryptage de fichier ou de message""" def __init__(self): pass def lockMess(self, message, clef): """Methode permettant de crypter un message et retourne le message crypter Paramètre: message à crypter et la clé de chiffrement""" return self.lock(message, clef) def lockFile(self, path, clef): """Methode permettant de crypter un fichier en retournant une liste. Paramètre: Chemin menant au fichier et la clé de chiffrement""" try: clef = int(clef) file = open(path, 'r+') content = file.readlines() list_crypt = [] file.close() # recupere chaque ligne, la crypte et l'ajoute a liste crypter for line in content: line_crypt = self.lock(line, clef) list_crypt.append(line_crypt) return list_crypt except FileNotFoundError: return None except ValueError: raise ValueError("The clef is not int ") except: raise Exception def lock(self, message, clef): message_crypter = '' clef = int(clef) # conversion de la clé en entier (etait en chaine de carrctère au paravant) # on verifie les numeroos des lettres et on les additionnent avec la clef for lettre in message: # recuperation des lettres et leurs indices dans la variables alphabets for numero_lettre, lettre_alpha in alphabets.items(): # on verifie si on a la bonne lettre if lettre == lettre_alpha: # ajout de la clé au numero de la lettre numero_lettre = numero_lettre + clef # on verifie dabord si l'addition ne depasse par les nombres de lettres while numero_lettre > len(alphabets) - 1: # on prend la difference le numero de la lettre trouvé et le nombre de lettre dans notre alphabets numero_lettre = numero_lettre - len(alphabets) # notre alphabets commence avec l'indice 0 # on ajoute la lettre crypter à notre message crypter message_crypter += alphabets[numero_lettre] return message_crypter if __name__ == '__main__': cryptage = Cryptage()
[ "irierayan@gmail.com" ]
irierayan@gmail.com
3865c8dc73bf2c2a6ecc8a6eb39838dbb44b7e95
756a6a31ba96721ce0846094751eb0eaa1f5e7fd
/core/migrations/0009_auto_20191017_1747.py
8ddb182f3a88d7f65973459699cf9acc40824421
[]
no_license
36Boxes/5starpropertymaintenance
4f65f47a897b1edc98331aa2963c6bbf8edc4d22
56d47bd76488a0062ca4f75e2e7921d47dba6fc9
refs/heads/master
2022-03-18T22:15:08.230921
2019-10-18T13:37:35
2019-10-18T13:37:35
216,035,149
0
0
null
null
null
null
UTF-8
Python
false
false
907
py
# Generated by Django 2.2 on 2019-10-17 17:47 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0008_auto_20191017_1738'), ] operations = [ migrations.RenameField( model_name='before_and_afters', old_name='review_4_PROJECT', new_name='review_for_Project', ), migrations.AddField( model_name='before_and_afters', name='project_name', field=models.CharField(default='project', max_length=100), preserve_default=False, ), migrations.AlterField( model_name='before_and_afters', name='review_for_Project', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='core.Review'), ), ]
[ "46636974+36Boxes@users.noreply.github.com" ]
46636974+36Boxes@users.noreply.github.com
f4aa1e2ef414ef15547121af46b5fc9fcebbe9ca
c5663f82e382fc203cd1748a6386fd51e723a040
/NlpBase/test.py
3ae2fdde1ef19e977a546be56f4078286e222178
[]
no_license
gl-coding/OpenBaseCode
c7d8aaff255acc3de77ee760739504c3f3c80a10
14ce620291e67aa0d31b5fb63c5745b1f5512d64
refs/heads/master
2020-11-24T18:41:30.788494
2019-12-23T06:00:56
2019-12-23T06:00:56
228,295,455
0
0
null
null
null
null
UTF-8
Python
false
false
327
py
#encoding=utf8 from service_jieba import * if __name__ == "__main__": #test data s = u'我想和女朋友一起去北京故宫博物院参观和闲逛。' cuts = jieba.cut(s.strip()) #test case #cixing_dic = load_cixing_ch("./cixing.dic") #load_stop_words("./stopword.txt") remove_stopwords(cuts)
[ "1451607278@qq.com" ]
1451607278@qq.com
f70d7614a6afa47c081519fa0f35eecb2d78171c
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5648941810974720_0/Python/asikowitz/base.py
d74480f407445e0c560bfb4baab19db770a191eb
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
3,247
py
inp = open("A-small-attempt0.in","r") out = open("a0.out","w") def readline(f): return f.readline().strip() n = int(readline(inp)) for case in range(n): s = readline(inp) ans = "" def zero(s): global ans c = 0 while (s.find("Z") != -1): s=s.replace("Z","",1) s=s.replace("E","",1) s=s.replace("R","",1) s=s.replace("O","",1) c += 1 ans += "0"*c return s def two(s): global ans c = 0 while (s.find("W") != -1): s=s.replace("T","",1) s=s.replace("W","",1) s=s.replace("O","",1) c += 1 ans += "2"*c return s def four(s): global ans c = 0 while (s.find("U") != -1): s=s.replace("F","",1) s=s.replace("O","",1) s=s.replace("U","",1) s=s.replace("R","",1) c += 1 ans += "4"*c return s def six(s): global ans c = 0 while (s.find("X") != -1): s=s.replace("S","",1) s=s.replace("I","",1) s=s.replace("X","",1) c += 1 ans += "6"*c return s def eight(s): global ans c = 0 while (s.find("G") != -1): s=s.replace("E","",1) s=s.replace("I","",1) s=s.replace("G","",1) s=s.replace("H","",1) s=s.replace("T","",1) c += 1 ans += "8"*c return s def three(s): global ans c = 0 while (s.find("H") != -1): s=s.replace("T","",1) s=s.replace("H","",1) s=s.replace("R","",1) s=s.replace("E","",1) s=s.replace("E","",1) c += 1 ans += "3"*c return s def five(s): global ans c = 0 while (s.find("F") != -1): s=s.replace("F","",1) s=s.replace("I","",1) s=s.replace("V","",1) s=s.replace("E","",1) c += 1 ans += "5"*c return s def seven(s): global ans c = 0 while (s.find("V") != -1): s=s.replace("S","",1) s=s.replace("E","",1) s=s.replace("V","",1) s=s.replace("E","",1) s=s.replace("N","",1) c += 1 ans += "7"*c return s def one(s): global ans c = 0 while (s.find("O") != -1): s=s.replace("O","",1) s=s.replace("N","",1) s=s.replace("E","",1) c += 1 ans += "1"*c return s def nine(s): global ans c = 0 while (s.find("N") != -1): s=s.replace("N","",1) s=s.replace("I","",1) s=s.replace("N","",1) s=s.replace("E","",1) c += 1 ans += "9"*c return s s = zero(s) s = two(s) s = four(s) s = six(s) s = eight(s) s = three(s) s = five(s) s = seven(s) s = one(s) s = nine(s) out.write("Case #%d: %s\n" % (case+1,"".join(sorted(ans)))) inp.close() out.close()
[ "alexandra1.back@gmail.com" ]
alexandra1.back@gmail.com
ff0be3e5c5011f111fbc44a6dc7e311ec6dd177d
6b46331618b432795f148a2a44cd8ae41ee73373
/tests/left_tests/folder_tests/test_definition.py
0b71eded54c7613c93bc9894023c02ed476c8ea8
[ "MIT" ]
permissive
lycantropos/lz
325530a63680fa1a52f7455ff4152df86d073fdf
a9c204ebe8620b1237c65178e83a5dac2be7255b
refs/heads/master
2023-03-07T18:56:21.468639
2023-02-23T23:36:34
2023-02-23T23:36:34
132,186,508
7
0
MIT
2019-12-22T09:53:21
2018-05-04T20:33:42
Python
UTF-8
Python
false
false
991
py
from hypothesis import given from lz import (left, right) from lz.replication import duplicate from tests.hints import LeftFolderCall from tests.utils import are_objects_similar from . import strategies @given(strategies.empty_folder_calls) def test_base_case(empty_folder_call: LeftFolderCall) -> None: function, initial, empty_iterable = empty_folder_call fold = left.folder(function, initial) result = fold(empty_iterable) assert result is initial @given(strategies.non_empty_folder_calls) def test_step(non_empty_folder_call: LeftFolderCall) -> None: function, initial, non_empty_iterable = non_empty_folder_call non_empty_iterator = iter(non_empty_iterable) element = next(non_empty_iterator) original, target = duplicate(non_empty_iterator) fold = left.folder(function, initial) attach = right.attacher(element) result = fold(attach(target)) assert are_objects_similar(result, function(fold(original), element))
[ "noreply@github.com" ]
lycantropos.noreply@github.com
81c35a41e0a045ec59debf61bbb167737cfb4083
597001e5134ac597e7f2701cfaabfde58d8d82c2
/html_parser.py
fc5b70c1fc0823bc0dfbb4d77e6d8ca99ab65a6c
[]
no_license
ranmx/ToolBox_python
79940a3bbc55e211b779841071c19c6fea3f381e
5e8ea9b4cabc79f412c030a080d0727429dcb7e5
refs/heads/master
2021-06-08T11:26:28.833382
2016-10-31T06:01:05
2016-10-31T06:01:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,425
py
class HTML(object): def __init__(self): self.body = '' class Table(object): def __init__(self, attrs=None): self.table = '' self.attr_len = 0 if attrs is not None: self.table_create(attrs) def __str__(self): return self.table + '</table>' def table_create(self, attrs): self.table = '<table style="width:100%">' self.attr_len = len(attrs) self._table_add_item(attrs, head=True) def table_add(self, attrs): self._table_add_item(attrs) def _table_add_item(self, attrs, head=False): if len(attrs) == self.attr_len: pass else: raise TypeError('Attribution of the table is not correct') if isinstance(attrs, list): self.table += '<tr>' for item in attrs: if head: self.table += '<th>{0}</th>'.format(str(item)) else: self.table += '<td>{0}</td>'.format(str(item)) self.table += '</tr>' elif isinstance(attrs, str): self.table += '<tr>' if head: self.table += '<th>{0}</th>'.format(str(attrs)) else: self.table += '<td>{0}</td>'.format(str(attrs)) self.table += '</tr>' else: raise TypeError('Attribution of the table is not correct') def __repr__(self): return '<html>' + '<head>' + self.style() + '</head>' + \ '<body>' + self.body + '</body>' + '<html>' @staticmethod def title(text): return '<h1>{0}</h1>'.format(str(text)) @staticmethod def _table_type(tp=None): if tp is not None: table_type = tp else: table_type = 'table, th, td {border: 1px solid black;}' return table_type def add(self, text): self.body += '<p>{0}</p>'.format(str(text)) def style(self, tp='', table_type=None): return '<style>' + tp + self._table_type(table_type) + '</style>' html = HTML() title1 = html.title('This is a test table') html.add(title1) html.add('Do not tell anybody!') table = html.Table(['name', 'age', 'gender']) table.table_add(['Alfred', '27', 'M']) html.add(table) print str(html)
[ "noreply@github.com" ]
ranmx.noreply@github.com
d1175e336af81fa2abba853f6f35ad2ce6f411bf
d735694b03c63cf8facda84e1d926f8cebdf3f99
/Ejercicio3-1.py
d0cfde94083534d19d7546b5a910d41c643f655e
[]
no_license
MauroLG/ejercicios-python
2243ecedf510596e9207a3093d7f5a0fca23a4ab
a32236eb29e1ed6a5c49bb8442578f19d64ac633
refs/heads/main
2023-07-14T06:43:29.766603
2021-08-18T20:15:12
2021-08-18T20:15:12
397,723,818
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
import math # Ejercicio 3.1a def intervalo_a_seg(h, m, s): s += h * 3600 s += m * 60 return s # Ejercicio 3.1b def intervalo_a_hms(s): total_s = s h = round(math.modf(s/3600)[1]) m = round(math.modf((math.modf(s/3600)[0]*3600)/60)[1]) s = round(math.modf((math.modf(s/3600)[0]*3600)/60)[0]*60) print("{total_s} segundos son {h} hora/s, {m} minuto/s y {s} segundo/s".format(total_s=total_s, h=h, m=m, s=s))
[ "maurogheco@gmail.com" ]
maurogheco@gmail.com
8089fe4de34510647070bf8e5e00c7aaa2371e66
15f6e61d9ee8542d9feda70c3cf17d8c5028ef44
/validate_getattr.py
e1b1efb35fe7a8a2d96885ba03cc3f26bd87efbe
[]
no_license
pniewiadowski/learing_python
e6446783dbef6105d026b94ec4b1ac8ce5c46ae9
ef12d299da40ec99b1d4550e1e2c2264c6c4dea5
refs/heads/master
2020-06-18T15:19:01.172124
2018-02-21T20:24:35
2018-02-21T20:24:35
94,167,240
0
0
null
null
null
null
UTF-8
Python
false
false
969
py
class CardHolder: acctlen = 8 retirage = 59.5 def __init__(self, acct, name, age, addr): self.acct = acct self.name = name self.age = age self.addr = addr def __getattr__(self, item): if item == 'acct': return self._acct[:-3] + '***' elif item == 'remain': return self.retirage - self.age else: raise AttributeError(item) def __setattr__(self, key, value): if key == 'name': value.lower().replace(' ', '_') elif key == 'age': if value < 0 or value > 150: raise ValueError('invalid age') elif key == 'acct': name = '_acct' value = value.replace('-', '') if len(value) != self.acctlen: raise TypeError('invalid acct number') elif key == 'remain': raise TypeError('can not set remain') self.__dict__[key] = value
[ "niewiadowski@gmail.com" ]
niewiadowski@gmail.com
ab813a77be5a81313190f7803ab9e57268e43c88
d0677b27a5360651c5ca491cf566207810e57639
/pterasoftware/steady_horseshoe_vortex_lattice_method.py
629d5048b1f5464fd82b227ac6a8f519972599cd
[ "MIT" ]
permissive
Haider-BA/PteraSoftware
a0e9a73b7474a379cf1fbc686042ec9e3b52d4c5
06b62a78e1da04975d115af2d7b95434ab9cc550
refs/heads/master
2023-09-02T20:05:12.799392
2021-10-27T05:23:28
2021-10-27T05:23:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,221
py
""" This module contains the class definition of this package's steady horseshoe vortex lattice solver. This module contains the following classes: SteadyHorseshoeVortexLatticeMethodSolver: This is an aerodynamics solver that uses a steady horseshoe vortex lattice method. This module contains the following exceptions: None This module contains the following functions: None """ import logging import numpy as np from . import aerodynamics from . import functions # ToDo: Update this class's documentation. class SteadyHorseshoeVortexLatticeMethodSolver: """This is an aerodynamics solver that uses a steady horseshoe vortex lattice method. Citation: Adapted from: aerodynamics.vlm3.py in AeroSandbox Author: Peter Sharpe Date of Retrieval: 04/28/2020 This class contains the following public methods: run: Run the solver on the steady problem. initialize_panel_vortices: This method calculates the locations of the vortex vertices, and then initializes the panels' vortices. collapse_geometry: This method converts attributes of the problem's geometry into 1D ndarrays. This facilitates vectorization, which speeds up the solver. calculate_wing_wing_influences: This method finds the matrix of wing-wing influence coefficients associated with this airplane's geometry. calculate_vortex_strengths: Solve for each panels' vortex strengths. calculate_near_field_forces_and_moments: Find the the forces and moments calculated from the near field. This class contains the following class attributes: None Subclassing: This class is not meant to be subclassed. """ def __init__(self, steady_problem): """This is the initialization method. :param steady_problem: SteadyProblem This is the steady problem to be solved. :return: None """ # Initialize this solution's attributes. self.steady_problem = steady_problem self.airplane = self.steady_problem.airplane self.operating_point = self.steady_problem.operating_point # Initialize attributes to hold aerodynamic data that pertains to this problem. self.wing_wing_influences = np.zeros( (self.airplane.num_panels, self.airplane.num_panels) ) self.freestream_velocity = ( self.operating_point.calculate_freestream_velocity_geometry_axes() ) self.freestream_wing_influences = np.zeros(self.airplane.num_panels) self.vortex_strengths = np.zeros(self.airplane.num_panels) self.panel_normal_directions = np.zeros((self.airplane.num_panels, 3)) self.panel_areas = np.zeros(self.airplane.num_panels) self.panel_collocation_points = np.zeros((self.airplane.num_panels, 3)) self.panel_vortex_strengths = np.zeros(self.airplane.num_panels) self.panel_back_right_vortex_vertices = np.zeros((self.airplane.num_panels, 3)) self.panel_front_right_vortex_vertices = np.zeros((self.airplane.num_panels, 3)) self.panel_front_left_vortex_vertices = np.zeros((self.airplane.num_panels, 3)) self.panel_back_left_vortex_vertices = np.zeros((self.airplane.num_panels, 3)) self.panels = np.empty(self.airplane.num_panels, dtype=object) self.panel_bound_vortex_centers = np.zeros((self.airplane.num_panels, 3)) self.panel_bound_vortex_vectors = np.zeros((self.airplane.num_panels, 3)) self.seed_points = np.empty((0, 3)) self.streamline_points = None def run(self, logging_level="Warning"): """Run the solver on the steady problem. :param logging_level: str, optional This parameter determines the detail of information that the solver's logger will output while running. The options are, in order of detail and severity, "Debug", "Info", "Warning", "Error", "Critical". The default value is "Warning". :return: None """ # Configure the problem's logger. logging_level_value = functions.convert_logging_level_name_to_value( logging_level ) logging.basicConfig(level=logging_level_value) # Initialize this problem's panels to have vortices congruent with this # solver type. logging.info("Initializing the panel vortices.") self.initialize_panel_vortices() # Collapse this problem's geometry matrices into 1D ndarrays of attributes. logging.info("Collapsing the geometry.") self.collapse_geometry() # Find the matrix of aerodynamic influence coefficients associated with this # problem's geometry. logging.info("Calculating the wing-wing influences.") self.calculate_wing_wing_influences() # Find the normal freestream speed at every collocation points without # vortices. logging.info("Calculating the freestream-wing influences.") functions.calculate_steady_freestream_wing_influences(steady_solver=self) # Solve for each panel's vortex strengths. logging.info("Calculating the vortex strengths.") self.calculate_vortex_strengths() # Solve for the near field forces and moments on each panel. logging.info("Calculating the near field forces.") self.calculate_near_field_forces_and_moments() # Solve for the location of the streamlines coming off the back of the wings. logging.info("Calculating streamlines.") functions.calculate_streamlines(self) def initialize_panel_vortices(self): """This method calculates the locations of the vortex vertices, and then initializes the panels' vortices. Every panel has a horseshoe vortex. The vortex's finite leg runs along the panel's quarter chord from right to left. It's infinite legs points backwards in the positive x direction. :return: None """ # Find the freestream direction in geometry axes. freestream_direction = ( self.operating_point.calculate_freestream_direction_geometry_axes() ) # Iterate through the current_airplane's wings. for wing in self.airplane.wings: # Find a suitable length for the "infinite" legs of the horseshoe # vortices on this wing. At twenty-times the wing's span, these legs are # essentially infinite. infinite_leg_length = wing.span * 20 # Iterate through the wing's chordwise and spanwise panel positions. for chordwise_position in range(wing.num_chordwise_panels): for spanwise_position in range(wing.num_spanwise_panels): # Pull the panel object out of the wing's list of panels. panel = wing.panels[chordwise_position, spanwise_position] # Find the location of the panel's front and right vortex vertices. front_left_vortex_vertex = panel.front_left_vortex_vertex front_right_vortex_vertex = panel.front_right_vortex_vertex # Initialize the horseshoe vortex at this panel. panel.horseshoe_vortex = aerodynamics.HorseshoeVortex( finite_leg_origin=front_right_vortex_vertex, finite_leg_termination=front_left_vortex_vertex, strength=None, infinite_leg_direction=freestream_direction, infinite_leg_length=infinite_leg_length, ) def collapse_geometry(self): """This method converts attributes of the problem's geometry into 1D ndarrays. This facilitates vectorization, which speeds up the solver. :return: None """ # Initialize a variable to hold the global position of the panel as we # iterate through them. global_panel_position = 0 # Iterate through the airplane's wings. for wing in self.airplane.wings: # Convert this wing's 2D array of panels into a 1D array. panels = np.ravel(wing.panels) # Iterate through the 1D array of this wing's panels. for panel in panels: # Update the solver's list of attributes with this panel's attributes. self.panels[global_panel_position] = panel self.panel_normal_directions[ global_panel_position, : ] = panel.normal_direction self.panel_areas[global_panel_position] = panel.area self.panel_collocation_points[ global_panel_position, : ] = panel.collocation_point self.panel_back_right_vortex_vertices[ global_panel_position, : ] = panel.horseshoe_vortex.right_leg.origin self.panel_front_right_vortex_vertices[ global_panel_position, : ] = panel.horseshoe_vortex.right_leg.termination self.panel_front_left_vortex_vertices[ global_panel_position, : ] = panel.horseshoe_vortex.left_leg.origin self.panel_back_left_vortex_vertices[ global_panel_position, : ] = panel.horseshoe_vortex.left_leg.termination self.panel_bound_vortex_centers[ global_panel_position, : ] = panel.horseshoe_vortex.finite_leg.center self.panel_bound_vortex_vectors[ global_panel_position, : ] = panel.horseshoe_vortex.finite_leg.vector # Check if this panel is on the trailing edge. if panel.is_trailing_edge: # If it is, calculate it's streamline seed point and add it to # the solver's array of seed points. self.seed_points = np.vstack( ( self.seed_points, panel.back_left_vertex + 0.5 * (panel.back_right_vertex - panel.back_left_vertex), ) ) # Increment the global panel position. global_panel_position += 1 def calculate_wing_wing_influences(self): """This method finds the matrix of wing-wing influence coefficients associated with this airplane's geometry. :return: None """ # Find the matrix of normalized velocities induced at every panel's # collocation point by every panel's horseshoe vortex. induced_velocities = aerodynamics.expanded_velocities_from_horseshoe_vortices( points=self.panel_collocation_points, back_right_vortex_vertices=self.panel_back_right_vortex_vertices, front_right_vortex_vertices=self.panel_front_right_vortex_vertices, front_left_vortex_vertices=self.panel_front_left_vortex_vertices, back_left_vortex_vertices=self.panel_back_left_vortex_vertices, strengths=np.ones(self.airplane.num_panels), ) # Take the batch dot product of the normalized velocities with each panel's # normal direction. This is now the problem's matrix of wing-wing influence # coefficients. self.wing_wing_influences = np.einsum( "...k,...k->...", induced_velocities, np.expand_dims(self.panel_normal_directions, axis=1), ) def calculate_vortex_strengths(self): """Solve for each panel's vortex strengths. :return: None """ # Solve for the strength of each panel's vortex. self.vortex_strengths = np.linalg.solve( self.wing_wing_influences, -self.freestream_wing_influences ) # Iterate through the panels and update their vortex strengths. for panel_num in range(self.panels.size): # Get the panel at this location. panel = self.panels[panel_num] # Update this panel's horseshoe vortex strength. panel.horseshoe_vortex.update_strength(self.vortex_strengths[panel_num]) # ToDo: Update this method's documentation. def calculate_solution_velocity(self, points): """ :return: """ induced_velocities = aerodynamics.collapsed_velocities_from_horseshoe_vortices( points=points, back_right_vortex_vertices=self.panel_back_right_vortex_vertices, front_right_vortex_vertices=self.panel_front_right_vortex_vertices, front_left_vortex_vertices=self.panel_front_left_vortex_vertices, back_left_vortex_vertices=self.panel_back_left_vortex_vertices, strengths=self.vortex_strengths, ) total_velocities = induced_velocities + self.freestream_velocity return total_velocities def calculate_near_field_forces_and_moments(self): """Find the the forces and moments calculated from the near field. Note: The forces and moments calculated are in geometry axes. The moment is about the airplane's reference point, which should be at the center of gravity. The units are Newtons and Newton-meters. :return: None """ # Calculate the velocities induced at every panel's bound vortex center. induced_velocities = aerodynamics.collapsed_velocities_from_horseshoe_vortices( points=self.panel_bound_vortex_centers, back_right_vortex_vertices=self.panel_back_right_vortex_vertices, front_right_vortex_vertices=self.panel_front_right_vortex_vertices, front_left_vortex_vertices=self.panel_front_left_vortex_vertices, back_left_vortex_vertices=self.panel_back_left_vortex_vertices, strengths=self.vortex_strengths, ) # Add the freestream velocity to the induced velocities to calculate the # total velocity at every panel's bound vortex center. total_velocities = induced_velocities + self.freestream_velocity # Calculate the near field force, in geometry axes, on each panel's bound # vortex. near_field_forces_geometry_axes = ( self.operating_point.density * np.expand_dims(self.vortex_strengths, axis=1) * np.cross(total_velocities, self.panel_bound_vortex_vectors, axis=-1) ) # Calculate the near field moments, in geometry axes, on each panel's bound # vortex. near_field_moments_geometry_axes = np.cross( self.panel_bound_vortex_centers - self.airplane.xyz_ref, near_field_forces_geometry_axes, axis=-1, ) functions.process_steady_solver_forces( steady_solver=self, near_field_forces_geometry_axes=near_field_forces_geometry_axes, near_field_moments_geometry_axes=near_field_moments_geometry_axes, )
[ "camerongurban@gmail.com" ]
camerongurban@gmail.com
84829197581dab53cc849f2dd19f3832c32eded1
e8fad6e19d96b142f9d15e836b964b187a066777
/FilterPosition.py
737e954252f0bca21e57d5c02f2213063c226070
[]
no_license
RABKKK/CenterAxis
348daacb247926e180622fbf2a633bc58e4f1b20
176839251dc2bce41b314270c7d1c24b89e391ce
refs/heads/master
2020-11-30T00:08:16.579525
2020-01-10T07:08:17
2020-01-10T07:08:17
230,247,773
0
0
null
null
null
null
UTF-8
Python
false
false
932
py
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D #import math fig = plt.figure() ax = fig.add_subplot(111, projection='3d') posmat=np.genfromtxt('Position.csv') refposmat=np.array([]) for val in posmat: if val[2]>0: if refposmat.shape[0]==0: refposmat=np.array([val[0],val[1],val[2],0]) inval=val else: indist=np.power(np.sum((val-inval)*(val-inval)),0.5) if indist<np.power(2,0.5)*0.09:#maximum distance of diagonal refposmat=np.vstack((refposmat,np.array([val[0],val[1],val[2],0]))) refposmat[-1,3]=indist np.savetxt('FiltPosition.csv',refposmat) ax.scatter(refposmat[:,0],refposmat[:,1],refposmat[:,2],c=refposmat[:,3]/np.max(refposmat[:,3])) #ax.plot(refposmat[:,0],refposmat[:,1],refposmat[:,2]) plt.xlim(-0.1,0.06) plt.ylim(-0.06,.1) #ax.zlim() plt.show()
[ "noreply@github.com" ]
RABKKK.noreply@github.com
3597810923be7e5ba27e70e1a7d632e48b3f4bfd
f225049121c2a7b1cc0e0e3e1dff038343796829
/GetComputeComplexity.py
01119915c32d8c6b90de6a7ef9a55cbe40b35341
[]
no_license
GulshanSaleem/Surveilia
225602800d2fc74e80ca906b52468608b78e54b1
a4e1138f646658945b2eb4e0ee9e99260c69951e
refs/heads/main
2023-04-15T05:03:13.379710
2022-09-04T03:08:26
2022-09-04T03:08:26
476,690,151
0
0
null
null
null
null
UTF-8
Python
false
false
2,261
py
# performance metrics import torch from ops.models import TSN from ops.transforms import * from ptflops import get_model_complexity_info this_weights='checkpoint/TSM_ucfcrime_RGB_mobilenetv2_shift8_blockres_avg_segment8_e25/ckpt.best.pth.tar' #this_weights='checkpoint/TSM_ucfcrime_RGB_resnet50_shift8_blockres_avg_segment8_e25/ckpt.best.pth.tar' this_arch = 'mobilenetv2' def parse_shift_option_from_log_name(log_name): if 'shift' in log_name: strings = log_name.split('_') for i, s in enumerate(strings): if 'shift' in s: break return True, int(strings[i].replace('shift', '')), strings[i + 1] else: return False, None, None is_shift, shift_div, shift_place = parse_shift_option_from_log_name(this_weights) print(is_shift, shift_div, shift_place) with torch.cuda.device(0): net = TSN(2, 1, 'RGB', base_model=this_arch, consensus_type='avg', img_feature_dim='225', #pretrain=args.pretrain, is_shift=is_shift, shift_div=shift_div, shift_place=shift_place, non_local='_nl' in this_weights, ) macs, params = get_model_complexity_info(net, (1,3, 224, 224), as_strings=True,print_per_layer_stat=False, verbose=False) print("Using ptflops") print('{:<30} {:<8}'.format('Computational complexity: ', macs)) print('{:<30} {:<8}'.format('Number of parameters: ', params)) from thop import profile model = net = TSN(2, 1, 'RGB', base_model=this_arch, consensus_type='avg', img_feature_dim='225', #pretrain=args.pretrain, is_shift=is_shift, shift_div=shift_div, shift_place=shift_place, non_local='_nl' in this_weights, ) input = torch.randn(1, 3, 224, 224) macs, params = profile(model, inputs=(input, )) from thop import clever_format macs, params = clever_format([macs, params], "%.3f") print('{:<30} {:<8}'.format('Computational complexity: ', macs)) print('{:<30} {:<8}'.format('Number of parameters: ', params)) # Draw model graph. from torch.utils.tensorboard import SummaryWriter tb = SummaryWriter() tb.add_graph(model,input) tb.close()
[ "noreply@github.com" ]
GulshanSaleem.noreply@github.com
4253fd5f2ff9e52127da94da2d9d23cc343574be
d06644461b679a08b98d0da9bed9781c0ed2ffba
/DocumentClassification/code/__init__.py
6848590808e833a64d563fff646299be0d119d78
[]
no_license
xxx0624/QA_Model
e9478e67576bbd023ec5f8dcdff02e16d8b113b3
6b72e6d4049bd1cc526dda6e024ef63783f790b4
refs/heads/master
2021-06-05T00:05:06.912489
2019-03-05T03:09:29
2019-03-05T03:09:29
96,797,586
23
4
null
null
null
null
UTF-8
Python
false
false
55
py
__author__ = 'xing' a={1:2,3:4} for k in a: print k
[ "xzheng0624@gmail.com" ]
xzheng0624@gmail.com
afcbf7fadfed65175c99e47818275c1d00e368d4
02267c8104c951faf4fee48f525225b7f605d9ee
/venv/Lib/site-packages/gslib/tests/testcase/integration_testcase.py
15f488b31f4c5fe40a2cff72bf2b62f9c382189d
[]
no_license
zakaria6193/examproject
9c559df703bb03ce993f4ca0666c3f56f1b8b12b
b07f3a2e795f8efb1d9bdd2aaa677352279176a4
refs/heads/master
2023-06-03T12:13:24.627470
2021-06-19T20:22:42
2021-06-19T20:22:42
378,498,436
0
0
null
null
null
null
UTF-8
Python
false
false
53,345
py
# -*- coding: utf-8 -*- # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains gsutil base integration test case class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import contextlib import datetime import locale import logging import os import signal import subprocess import sys import tempfile import threading import time import boto from boto import config from boto.exception import StorageResponseError from boto.s3.deletemarker import DeleteMarker from boto.storage_uri import BucketStorageUri import gslib from gslib.boto_translation import BotoTranslation from gslib.cloud_api import PreconditionException from gslib.cloud_api import Preconditions from gslib.discard_messages_queue import DiscardMessagesQueue from gslib.exception import CommandException from gslib.gcs_json_api import GcsJsonApi from gslib.kms_api import KmsApi from gslib.project_id import GOOG_PROJ_ID_HDR from gslib.project_id import PopulateProjectId from gslib.tests.testcase import base import gslib.tests.util as util from gslib.tests.util import InvokedFromParFile from gslib.tests.util import ObjectToURI as suri from gslib.tests.util import RUN_S3_TESTS from gslib.tests.util import SetBotoConfigForTest from gslib.tests.util import SetEnvironmentForTest from gslib.tests.util import unittest from gslib.tests.util import USING_JSON_API import gslib.third_party.storage_apitools.storage_v1_messages as apitools_messages from gslib.utils.constants import UTF8 from gslib.utils.encryption_helper import Base64Sha256FromBase64EncryptionKey from gslib.utils.encryption_helper import CryptoKeyWrapperFromKey from gslib.utils.hashing_helper import Base64ToHexHash from gslib.utils.metadata_util import CreateCustomMetadata from gslib.utils.metadata_util import GetValueFromObjectCustomMetadata from gslib.utils.posix_util import ATIME_ATTR from gslib.utils.posix_util import GID_ATTR from gslib.utils.posix_util import MODE_ATTR from gslib.utils.posix_util import MTIME_ATTR from gslib.utils.posix_util import UID_ATTR from gslib.utils.retry_util import Retry import six from six.moves import range LOGGER = logging.getLogger('integration-test') # TODO: Replace tests which looks for test_api == ApiSelector.(XML|JSON) with # these decorators. def SkipForXML(reason): """Skips the test if running S3 tests, or if prefer_api isn't set to json.""" if not USING_JSON_API or RUN_S3_TESTS: return unittest.skip(reason) else: return lambda func: func def SkipForJSON(reason): if USING_JSON_API: return unittest.skip(reason) else: return lambda func: func def SkipForGS(reason): if not RUN_S3_TESTS: return unittest.skip(reason) else: return lambda func: func def SkipForS3(reason): if RUN_S3_TESTS: return unittest.skip(reason) else: return lambda func: func # TODO: Right now, most tests use the XML API. Instead, they should respect # prefer_api in the same way that commands do. @unittest.skipUnless(util.RUN_INTEGRATION_TESTS, 'Not running integration tests.') class GsUtilIntegrationTestCase(base.GsUtilTestCase): """Base class for gsutil integration tests.""" GROUP_TEST_ADDRESS = 'gs-discussion@googlegroups.com' GROUP_TEST_ID = ( '00b4903a97d097895ab58ef505d535916a712215b79c3e54932c2eb502ad97f5') USER_TEST_ADDRESS = 'gsutiltestuser@gmail.com' USER_TEST_ID = ( '00b4903a97b201e40d2a5a3ddfe044bb1ab79c75b2e817cbe350297eccc81c84') DOMAIN_TEST = 'google.com' # No one can create this bucket without owning the gmail.com domain, and we # won't create this bucket, so it shouldn't exist. # It would be nice to use google.com here but JSON API disallows # 'google' in resource IDs. nonexistent_bucket_name = 'nonexistent-bucket-foobar.gmail.com' def setUp(self): """Creates base configuration for integration tests.""" super(GsUtilIntegrationTestCase, self).setUp() self.bucket_uris = [] # Set up API version and project ID handler. self.api_version = boto.config.get_value('GSUtil', 'default_api_version', '1') # Instantiate a JSON API for use by the current integration test. self.json_api = GcsJsonApi(BucketStorageUri, logging.getLogger(), DiscardMessagesQueue(), 'gs') self.xml_api = BotoTranslation(BucketStorageUri, logging.getLogger(), DiscardMessagesQueue, self.default_provider) self.kms_api = KmsApi(logging.getLogger()) self.multiregional_buckets = util.USE_MULTIREGIONAL_BUCKETS if util.RUN_S3_TESTS: self.nonexistent_bucket_name = ( 'nonexistentbucket-asf801rj3r9as90mfnnkjxpo02') # Retry with an exponential backoff if a server error is received. This # ensures that we try *really* hard to clean up after ourselves. # TODO: As long as we're still using boto to do the teardown, # we decorate with boto exceptions. Eventually this should be migrated # to CloudApi exceptions. @Retry(StorageResponseError, tries=7, timeout_secs=1) def tearDown(self): super(GsUtilIntegrationTestCase, self).tearDown() while self.bucket_uris: bucket_uri = self.bucket_uris[-1] try: bucket_list = self._ListBucket(bucket_uri) except StorageResponseError as e: # This can happen for tests of rm -r command, which for bucket-only # URIs delete the bucket at the end. if e.status == 404: self.bucket_uris.pop() continue else: raise while bucket_list: error = None for k in bucket_list: try: if isinstance(k, DeleteMarker): bucket_uri.get_bucket().delete_key(k.name, version_id=k.version_id) else: k.delete() except StorageResponseError as e: # This could happen if objects that have already been deleted are # still showing up in the listing due to eventual consistency. In # that case, we continue on until we've tried to deleted every # object in the listing before raising the error on which to retry. if e.status == 404: # This could happen if objects that have already been deleted are # still showing up in the listing due to eventual consistency. In # that case, we continue on until we've tried to deleted every # obj in the listing before raising the error on which to retry. error = e elif e.status == 403 and (e.error_code == 'ObjectUnderActiveHold' or e.error_code == 'RetentionPolicyNotMet'): # Object deletion fails if they are under active Temporary Hold, # Event-Based hold or still under retention. # # We purposefully do not raise error in order to allow teardown # to process all the objects in a bucket first. The retry logic on # the teardown method will kick in when bucket deletion fails (due # to bucket being non-empty) and retry deleting these objects # and their associated buckets. self._ClearHoldsOnObjectAndWaitForRetentionDuration( bucket_uri, k.name) else: raise if error: raise error # pylint: disable=raising-bad-type bucket_list = self._ListBucket(bucket_uri) bucket_uri.delete_bucket() self.bucket_uris.pop() def _ClearHoldsOnObjectAndWaitForRetentionDuration(self, bucket_uri, object_name): """Removes Holds on test objects and waits till retention duration is over. This method makes sure that object is not under active Temporary Hold or Release Hold. It also waits (up to 1 minute) till retention duration for the object is over. This is necessary for cleanup, otherwise such test objects cannot be deleted. It's worth noting that tests should do their best to remove holds and wait for objects' retention period on their own and this is just a fallback. Additionally, Tests should not use retention duration longer than 1 minute, preferably only few seconds in order to avoid lengthening test execution time unnecessarily. Args: bucket_uri: bucket's uri. object_name: object's name. """ object_metadata = self.json_api.GetObjectMetadata( bucket_uri.bucket_name, object_name, fields=['timeCreated', 'temporaryHold', 'eventBasedHold']) object_uri = '{}{}'.format(bucket_uri, object_name) if object_metadata.temporaryHold: self.RunGsUtil(['retention', 'temp', 'release', object_uri]) if object_metadata.eventBasedHold: self.RunGsUtil(['retention', 'event', 'release', object_uri]) retention_policy = self.json_api.GetBucket(bucket_uri.bucket_name, fields=['retentionPolicy' ]).retentionPolicy retention_period = (retention_policy.retentionPeriod if retention_policy is not None else 0) # throwing exceptions for Retention durations larger than 60 seconds. if retention_period <= 60: time.sleep(retention_period) else: raise CommandException(('Retention duration is too large for bucket "{}".' ' Use shorter durations for Retention duration in' ' tests').format(bucket_uri)) def _SetObjectCustomMetadataAttribute(self, provider, bucket_name, object_name, attr_name, attr_value): """Sets a custom metadata attribute for an object. Args: provider: Provider string for the bucket, ex. 'gs' or 's3. bucket_name: The name of the bucket the object is in. object_name: The name of the object itself. attr_name: The name of the custom metadata attribute to set. attr_value: The value of the custom metadata attribute to set. Returns: None """ obj_metadata = apitools_messages.Object() obj_metadata.metadata = CreateCustomMetadata({attr_name: attr_value}) if provider == 'gs': self.json_api.PatchObjectMetadata(bucket_name, object_name, obj_metadata, provider=provider) else: self.xml_api.PatchObjectMetadata(bucket_name, object_name, obj_metadata, provider=provider) def SetPOSIXMetadata(self, provider, bucket_name, object_name, atime=None, mtime=None, uid=None, gid=None, mode=None): """Sets POSIX metadata for the object.""" obj_metadata = apitools_messages.Object() obj_metadata.metadata = apitools_messages.Object.MetadataValue( additionalProperties=[]) if atime is not None: CreateCustomMetadata(entries={ATIME_ATTR: atime}, custom_metadata=obj_metadata.metadata) if mode is not None: CreateCustomMetadata(entries={MODE_ATTR: mode}, custom_metadata=obj_metadata.metadata) if mtime is not None: CreateCustomMetadata(entries={MTIME_ATTR: mtime}, custom_metadata=obj_metadata.metadata) if uid is not None: CreateCustomMetadata(entries={UID_ATTR: uid}, custom_metadata=obj_metadata.metadata) if gid is not None: CreateCustomMetadata(entries={GID_ATTR: gid}, custom_metadata=obj_metadata.metadata) if provider == 'gs': self.json_api.PatchObjectMetadata(bucket_name, object_name, obj_metadata, provider=provider) else: self.xml_api.PatchObjectMetadata(bucket_name, object_name, obj_metadata, provider=provider) def ClearPOSIXMetadata(self, obj): """Uses the setmeta command to clear POSIX attributes from user metadata. Args: obj: The object to clear POSIX metadata for. """ provider_meta_string = 'goog' if obj.scheme == 'gs' else 'amz' self.RunGsUtil([ 'setmeta', '-h', 'x-%s-meta-%s' % (provider_meta_string, ATIME_ATTR), '-h', 'x-%s-meta-%s' % (provider_meta_string, MTIME_ATTR), '-h', 'x-%s-meta-%s' % (provider_meta_string, UID_ATTR), '-h', 'x-%s-meta-%s' % (provider_meta_string, GID_ATTR), '-h', 'x-%s-meta-%s' % (provider_meta_string, MODE_ATTR), suri(obj) ]) def _ServiceAccountCredentialsPresent(self): # TODO: Currently, service accounts cannot be project owners (unless # they are exempted for legacy reasons). Unfortunately, setting a canned ACL # other than project-private, the ACL that buckets get by default, removes # project-editors access from the bucket ACL. So any canned ACL that would # actually represent a change the bucket would also orphan the service # account's access to the bucket. If service accounts can be owners # in the future, remove this function and update all callers. return (config.has_option('Credentials', 'gs_service_key_file') or config.has_option('GoogleCompute', 'service_account')) def _ListBucket(self, bucket_uri): if bucket_uri.scheme == 's3': # storage_uri will omit delete markers from bucket listings, but # these must be deleted before we can remove an S3 bucket. return list(v for v in bucket_uri.get_bucket().list_versions()) return list(bucket_uri.list_bucket(all_versions=True)) def AssertNObjectsInBucket(self, bucket_uri, num_objects, versioned=False): """Checks (with retries) that 'ls bucket_uri/**' returns num_objects. This is a common test pattern to deal with eventual listing consistency for tests that rely on a set of objects to be listed. Args: bucket_uri: storage_uri for the bucket. num_objects: number of objects expected in the bucket. versioned: If True, perform a versioned listing. Raises: AssertionError if number of objects does not match expected value. Returns: Listing split across lines. """ def _CheckBucket(): command = ['ls', '-a'] if versioned else ['ls'] b_uri = [suri(bucket_uri) + '/**'] if num_objects else [suri(bucket_uri)] listing = self.RunGsUtil(command + b_uri, return_stdout=True).split('\n') # num_objects + one trailing newline. self.assertEquals(len(listing), num_objects + 1) return listing if self.multiregional_buckets: # Use @Retry as hedge against bucket listing eventual consistency. @Retry(AssertionError, tries=5, timeout_secs=1) def _Check1(): return _CheckBucket() return _Check1() else: return _CheckBucket() def AssertObjectUsesCSEK(self, object_uri_str, encryption_key): """Strongly consistent check that the correct CSEK encryption key is used. This check forces use of the JSON API, as encryption information is not returned in object metadata via the XML API. Args: object_uri_str: uri for the object. encryption_key: expected CSEK key. """ with SetBotoConfigForTest([('GSUtil', 'prefer_api', 'json')]): stdout = self.RunGsUtil(['stat', object_uri_str], return_stdout=True) self.assertIn( Base64Sha256FromBase64EncryptionKey(encryption_key).decode('ascii'), stdout, 'Object %s did not use expected encryption key with hash %s. ' 'Actual object: %s' % (object_uri_str, Base64Sha256FromBase64EncryptionKey(encryption_key), stdout)) def AssertObjectUsesCMEK(self, object_uri_str, encryption_key): """Strongly consistent check that the correct KMS encryption key is used. This check forces use of the JSON API, as encryption information is not returned in object metadata via the XML API. Args: object_uri_str: uri for the object. encryption_key: expected CMEK key. """ with SetBotoConfigForTest([('GSUtil', 'prefer_api', 'json')]): stdout = self.RunGsUtil(['stat', object_uri_str], return_stdout=True) self.assertRegexpMatches(stdout, r'KMS key:\s+%s' % encryption_key) def AssertObjectUnencrypted(self, object_uri_str): """Checks that no CSEK or CMEK attributes appear in `stat` output. This check forces use of the JSON API, as encryption information is not returned in object metadata via the XML API. Args: object_uri_str: uri for the object. """ with SetBotoConfigForTest([('GSUtil', 'prefer_api', 'json')]): stdout = self.RunGsUtil(['stat', object_uri_str], return_stdout=True) self.assertNotIn('Encryption key SHA256', stdout) self.assertNotIn('KMS key', stdout) def CreateBucketWithRetentionPolicy(self, retention_period_in_seconds, is_locked=None, bucket_name=None): """Creates a test bucket with Retention Policy. The bucket and all of its contents will be deleted after the test. Args: retention_period_in_seconds: Retention duration in seconds is_locked: Indicates whether Retention Policy should be locked on the bucket or not. bucket_name: Create the bucket with this name. If not provided, a temporary test bucket name is constructed. Returns: StorageUri for the created bucket. """ # Creating bucket with Retention Policy. retention_policy = (apitools_messages.Bucket.RetentionPolicyValue( retentionPeriod=retention_period_in_seconds)) bucket_uri = self.CreateBucket(bucket_name=bucket_name, retention_policy=retention_policy, prefer_json_api=True) if is_locked: # Locking Retention Policy self.RunGsUtil(['retention', 'lock', suri(bucket_uri)], stdin='y') # Verifying Retention Policy on the bucket. self.VerifyRetentionPolicy( bucket_uri, expected_retention_period_in_seconds=retention_period_in_seconds, expected_is_locked=is_locked) return bucket_uri def VerifyRetentionPolicy(self, bucket_uri, expected_retention_period_in_seconds=None, expected_is_locked=None): """Verifies the Retention Policy on a bucket. Args: bucket_uri: Specifies the bucket. expected_retention_period_in_seconds: Specifies the expected Retention Period of the Retention Policy on the bucket. Setting this field to None, implies that no Retention Policy should be present. expected_is_locked: Indicates whether the Retention Policy should be locked or not. """ actual_retention_policy = self.json_api.GetBucket( bucket_uri.bucket_name, fields=['retentionPolicy']).retentionPolicy if expected_retention_period_in_seconds is None: self.assertEqual(actual_retention_policy, None) else: self.assertEqual(actual_retention_policy.retentionPeriod, expected_retention_period_in_seconds) self.assertEqual(actual_retention_policy.isLocked, expected_is_locked) # Verifying the effectiveTime of the Retention Policy: # since this is integration test and we don't have exact time of the # server. We just verify that the effective time is a timestamp within # last minute. effective_time_in_seconds = self.DateTimeToSeconds( actual_retention_policy.effectiveTime) current_time_in_seconds = self.DateTimeToSeconds(datetime.datetime.now()) self.assertGreater(effective_time_in_seconds, current_time_in_seconds - 60) def DateTimeToSeconds(self, datetime_obj): return int(time.mktime(datetime_obj.timetuple())) def CreateBucket(self, bucket_name=None, test_objects=0, storage_class=None, retention_policy=None, provider=None, prefer_json_api=False, versioning_enabled=False, bucket_policy_only=False, bucket_name_prefix='', bucket_name_suffix='', location=None): """Creates a test bucket. The bucket and all of its contents will be deleted after the test. Args: bucket_name: Create the bucket with this name. If not provided, a temporary test bucket name is constructed. test_objects: The number of objects that should be placed in the bucket. Defaults to 0. storage_class: Storage class to use. If not provided we us standard. retention_policy: Retention policy to be used on the bucket. provider: Provider to use - either "gs" (the default) or "s3". prefer_json_api: If True, use the JSON creation functions where possible. versioning_enabled: If True, set the bucket's versioning attribute to True. bucket_policy_only: If True, set the bucket's iamConfiguration's bucketPolicyOnly attribute to True. bucket_name_prefix: Unicode string to be prepended to bucket_name bucket_name_suffix: Unicode string to be appended to bucket_name location: The location/region in which the bucket should be created. Returns: StorageUri for the created bucket. """ if not provider: provider = self.default_provider # Location is controlled by the -b test flag. if location is None: if self.multiregional_buckets or provider == 's3': location = None else: # We default to the "us-central1" location for regional buckets, # but allow overriding this value in the Boto config. location = boto.config.get('GSUtil', 'test_cmd_regional_bucket_location', 'us-central1') bucket_name_prefix = six.ensure_text(bucket_name_prefix) bucket_name_suffix = six.ensure_text(bucket_name_suffix) if bucket_name: bucket_name = ''.join( [bucket_name_prefix, bucket_name, bucket_name_suffix]) bucket_name = util.MakeBucketNameValid(bucket_name) else: bucket_name = self.MakeTempName('bucket', prefix=bucket_name_prefix, suffix=bucket_name_suffix) if prefer_json_api and provider == 'gs': json_bucket = self.CreateBucketJson(bucket_name=bucket_name, test_objects=test_objects, storage_class=storage_class, location=location, versioning_enabled=versioning_enabled, retention_policy=retention_policy, bucket_policy_only=bucket_policy_only) bucket_uri = boto.storage_uri('gs://%s' % json_bucket.name.lower(), suppress_consec_slashes=False) return bucket_uri bucket_uri = boto.storage_uri('%s://%s' % (provider, bucket_name.lower()), suppress_consec_slashes=False) if provider == 'gs': # Apply API version and project ID headers if necessary. headers = { 'x-goog-api-version': self.api_version, GOOG_PROJ_ID_HDR: PopulateProjectId() } else: headers = {} # @Retry(StorageResponseError, tries=7, timeout_secs=1) def _CreateBucketWithExponentialBackoff(): """Creates a bucket, retrying with exponential backoff on error. Parallel tests can easily run into bucket creation quotas. Retry with exponential backoff so that we create them as fast as we reasonably can. Returns: StorageUri for the created bucket """ try: bucket_uri.create_bucket(storage_class=storage_class, location=location or '', headers=headers) except StorageResponseError as e: # If the service returns a transient error or a connection breaks, # it's possible the request succeeded. If that happens, the service # will return 409s for all future calls even though our intent # succeeded. If the error message says we already own the bucket, # assume success to reduce test flakiness. This depends on # randomness of test naming buckets to prevent name collisions for # test buckets created concurrently in the same project, which is # acceptable because this is far less likely than service errors. if e.status == 409 and e.body and 'already own' in e.body: pass else: raise _CreateBucketWithExponentialBackoff() self.bucket_uris.append(bucket_uri) if versioning_enabled: bucket_uri.configure_versioning(True) for i in range(test_objects): self.CreateObject(bucket_uri=bucket_uri, object_name=self.MakeTempName('obj'), contents='test {:d}'.format(i).encode('ascii')) return bucket_uri def CreateVersionedBucket(self, bucket_name=None, test_objects=0): """Creates a versioned test bucket. The bucket and all of its contents will be deleted after the test. Args: bucket_name: Create the bucket with this name. If not provided, a temporary test bucket name is constructed. test_objects: The number of objects that should be placed in the bucket. Defaults to 0. Returns: StorageUri for the created bucket with versioning enabled. """ # Note that we prefer the JSON API so that we don't require two separate # steps to create and then set versioning on the bucket (as versioning # propagation on an existing bucket is subject to eventual consistency). bucket_uri = self.CreateBucket(bucket_name=bucket_name, test_objects=test_objects, prefer_json_api=True, versioning_enabled=True) return bucket_uri def CreateObject(self, bucket_uri=None, object_name=None, contents=None, prefer_json_api=False, encryption_key=None, mode=None, mtime=None, uid=None, gid=None, storage_class=None, gs_idempotent_generation=0, kms_key_name=None): """Creates a test object. Args: bucket_uri: The URI of the bucket to place the object in. If not specified, a new temporary bucket is created. object_name: The name to use for the object. If not specified, a temporary test object name is constructed. contents: The contents to write to the object. If not specified, the key is not written to, which means that it isn't actually created yet on the server. prefer_json_api: If true, use the JSON creation functions where possible. encryption_key: AES256 encryption key to use when creating the object, if any. mode: The POSIX mode for the object. Must be a base-8 3-digit integer represented as a string. mtime: The modification time of the file in POSIX time (seconds since UTC 1970-01-01). If not specified, this defaults to the current system time. uid: A POSIX user ID. gid: A POSIX group ID. storage_class: String representing the storage class to use for the object. gs_idempotent_generation: For use when overwriting an object for which you know the previously uploaded generation. Create GCS object idempotently by supplying this generation number as a precondition and assuming the current object is correct on precondition failure. Defaults to 0 (new object); to disable, set to None. kms_key_name: Fully-qualified name of the KMS key that should be used to encrypt the object. Note that this is currently only valid for 'gs' objects. Returns: A StorageUri for the created object. """ bucket_uri = bucket_uri or self.CreateBucket() # checking for valid types - None or unicode/binary text if contents is not None: if not isinstance(contents, (six.binary_type, six.text_type)): raise TypeError('contents must be either none or bytes, not {}'.format( type(contents))) contents = six.ensure_binary(contents) if (contents and bucket_uri.scheme == 'gs' and (prefer_json_api or encryption_key or kms_key_name)): object_name = object_name or self.MakeTempName('obj') json_object = self.CreateObjectJson( contents=contents, bucket_name=bucket_uri.bucket_name, object_name=object_name, encryption_key=encryption_key, mtime=mtime, storage_class=storage_class, gs_idempotent_generation=gs_idempotent_generation, kms_key_name=kms_key_name) object_uri = bucket_uri.clone_replace_name(object_name) # pylint: disable=protected-access # Need to update the StorageUri with the correct values while # avoiding creating a versioned string. md5 = (Base64ToHexHash(json_object.md5Hash), json_object.md5Hash.strip('\n"\'')) object_uri._update_from_values(None, json_object.generation, True, md5=md5) # pylint: enable=protected-access return object_uri bucket_uri = bucket_uri or self.CreateBucket() object_name = object_name or self.MakeTempName('obj') key_uri = bucket_uri.clone_replace_name(object_name) if contents is not None: if bucket_uri.scheme == 'gs' and gs_idempotent_generation is not None: try: key_uri.set_contents_from_string(contents, headers={ 'x-goog-if-generation-match': str(gs_idempotent_generation) }) except StorageResponseError as e: if e.status == 412: pass else: raise else: key_uri.set_contents_from_string(contents) custom_metadata_present = (mode is not None or mtime is not None or uid is not None or gid is not None) if custom_metadata_present: self.SetPOSIXMetadata(bucket_uri.scheme, bucket_uri.bucket_name, object_name, atime=None, mtime=mtime, uid=uid, gid=gid, mode=mode) return key_uri def CreateBucketJson(self, bucket_name=None, test_objects=0, storage_class=None, location=None, versioning_enabled=False, retention_policy=None, bucket_policy_only=False): """Creates a test bucket using the JSON API. The bucket and all of its contents will be deleted after the test. Args: bucket_name: Create the bucket with this name. If not provided, a temporary test bucket name is constructed. test_objects: The number of objects that should be placed in the bucket. Defaults to 0. storage_class: Storage class to use. If not provided we use standard. location: Location to use. versioning_enabled: If True, set the bucket's versioning attribute to True. retention_policy: Retention policy to be used on the bucket. bucket_policy_only: If True, set the bucket's iamConfiguration's bucketPolicyOnly attribute to True. Returns: Apitools Bucket for the created bucket. """ bucket_name = util.MakeBucketNameValid(bucket_name or self.MakeTempName('bucket')) bucket_metadata = apitools_messages.Bucket(name=bucket_name.lower()) if storage_class: bucket_metadata.storageClass = storage_class if location: bucket_metadata.location = location if versioning_enabled: bucket_metadata.versioning = (apitools_messages.Bucket.VersioningValue( enabled=True)) if retention_policy: bucket_metadata.retentionPolicy = retention_policy if bucket_policy_only: iam_config = apitools_messages.Bucket.IamConfigurationValue() iam_config.bucketPolicyOnly = iam_config.BucketPolicyOnlyValue() iam_config.bucketPolicyOnly.enabled = True bucket_metadata.iamConfiguration = iam_config # TODO: Add retry and exponential backoff. bucket = self.json_api.CreateBucket(bucket_name, metadata=bucket_metadata) # Add bucket to list of buckets to be cleaned up. # TODO: Clean up JSON buckets using JSON API. self.bucket_uris.append( boto.storage_uri('gs://%s' % bucket_name, suppress_consec_slashes=False)) for i in range(test_objects): self.CreateObjectJson(bucket_name=bucket_name, object_name=self.MakeTempName('obj'), contents='test {:d}'.format(i).encode('ascii')) return bucket def CreateObjectJson(self, contents, bucket_name=None, object_name=None, encryption_key=None, mtime=None, storage_class=None, gs_idempotent_generation=None, kms_key_name=None): """Creates a test object (GCS provider only) using the JSON API. Args: contents: The contents to write to the object. bucket_name: Name of bucket to place the object in. If not specified, a new temporary bucket is created. Assumes the given bucket name is valid. object_name: The name to use for the object. If not specified, a temporary test object name is constructed. encryption_key: AES256 encryption key to use when creating the object, if any. mtime: The modification time of the file in POSIX time (seconds since UTC 1970-01-01). If not specified, this defaults to the current system time. storage_class: String representing the storage class to use for the object. gs_idempotent_generation: For use when overwriting an object for which you know the previously uploaded generation. Create GCS object idempotently by supplying this generation number as a precondition and assuming the current object is correct on precondition failure. Defaults to 0 (new object); to disable, set to None. kms_key_name: Fully-qualified name of the KMS key that should be used to encrypt the object. Note that this is currently only valid for 'gs' objects. Returns: An apitools Object for the created object. """ bucket_name = bucket_name or self.CreateBucketJson().name object_name = object_name or self.MakeTempName('obj') preconditions = Preconditions(gen_match=gs_idempotent_generation) custom_metadata = apitools_messages.Object.MetadataValue( additionalProperties=[]) if mtime is not None: CreateCustomMetadata({MTIME_ATTR: mtime}, custom_metadata) object_metadata = apitools_messages.Object( name=object_name, metadata=custom_metadata, bucket=bucket_name, contentType='application/octet-stream', storageClass=storage_class, kmsKeyName=kms_key_name) encryption_keywrapper = CryptoKeyWrapperFromKey(encryption_key) try: return self.json_api.UploadObject(six.BytesIO(contents), object_metadata, provider='gs', encryption_tuple=encryption_keywrapper, preconditions=preconditions) except PreconditionException: if gs_idempotent_generation is None: raise with SetBotoConfigForTest([('GSUtil', 'decryption_key1', encryption_key) ]): return self.json_api.GetObjectMetadata(bucket_name, object_name) def VerifyObjectCustomAttribute(self, bucket_name, object_name, attr_name, expected_value, expected_present=True): """Retrieves and verifies an object's custom metadata attribute. Args: bucket_name: The name of the bucket the object is in. object_name: The name of the object itself. attr_name: The name of the custom metadata attribute. expected_value: The expected retrieved value for the attribute. expected_present: True if the attribute must be present in the object metadata, False if it must not be present. Returns: None """ gsutil_api = (self.json_api if self.default_provider == 'gs' else self.xml_api) metadata = gsutil_api.GetObjectMetadata(bucket_name, object_name, provider=self.default_provider, fields=['metadata/%s' % attr_name]) attr_present, value = GetValueFromObjectCustomMetadata( metadata, attr_name, default_value=expected_value) self.assertEqual(expected_present, attr_present) self.assertEqual(expected_value, value) def RunGsUtil(self, cmd, return_status=False, return_stdout=False, return_stderr=False, expected_status=0, stdin=None, env_vars=None): """Runs the gsutil command. Args: cmd: The command to run, as a list, e.g. ['cp', 'foo', 'bar'] return_status: If True, the exit status code is returned. return_stdout: If True, the standard output of the command is returned. return_stderr: If True, the standard error of the command is returned. expected_status: The expected return code. If not specified, defaults to 0. If the return code is a different value, an exception is raised. stdin: A string of data to pipe to the process as standard input. env_vars: A dictionary of variables to extend the subprocess's os.environ with. Returns: If multiple return_* values were specified, this method returns a tuple containing the desired return values specified by the return_* arguments (in the order those parameters are specified in the method definition). If only one return_* value was specified, that value is returned directly rather than being returned within a 1-tuple. """ cmd = [ gslib.GSUTIL_PATH, '--testexceptiontraces', '-o', 'GSUtil:default_project_id=' + PopulateProjectId() ] + cmd if stdin is not None: if six.PY3: if not isinstance(stdin, bytes): stdin = stdin.encode(UTF8) else: stdin = stdin.encode(UTF8) # checking to see if test was invoked from a par file (bundled archive) # if not, add python executable path to ensure correct version of python # is used for testing cmd = [str(sys.executable)] + cmd if not InvokedFromParFile() else cmd env = os.environ.copy() if env_vars: env.update(env_vars) # Ensuring correct text types envstr = dict() for k, v in six.iteritems(env): envstr[six.ensure_str(k)] = six.ensure_str(v) cmd = [six.ensure_str(part) for part in cmd] # executing command - the setsid allows us to kill the process group below # if the execution times out. With python 2.7, there's no other way to # stop the execution (p.kill() doesn't work). Since setsid is not available # on Windows, we just deal with the occasional timeouts on Windows. preexec_fn = os.setsid if hasattr(os, 'setsid') else None p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, env=envstr, preexec_fn=preexec_fn) comm_kwargs = {'input': stdin} def Kill(): os.killpg(os.getpgid(p.pid), signal.SIGKILL) if six.PY3: # TODO(b/135936279): Make this number configurable in .boto comm_kwargs['timeout'] = 180 else: timer = threading.Timer(180, Kill) timer.start() c_out = p.communicate(**comm_kwargs) if not six.PY3: timer.cancel() try: c_out = [six.ensure_text(output) for output in c_out] except UnicodeDecodeError: c_out = [ six.ensure_text(output, locale.getpreferredencoding(False)) for output in c_out ] stdout = c_out[0].replace(os.linesep, '\n') stderr = c_out[1].replace(os.linesep, '\n') status = p.returncode if expected_status is not None: cmd = map(six.ensure_text, cmd) self.assertEqual( int(status), int(expected_status), msg='Expected status {}, got {}.\nCommand:\n{}\n\nstderr:\n{}'.format( expected_status, status, ' '.join(cmd), stderr)) toreturn = [] if return_status: toreturn.append(status) if return_stdout: toreturn.append(stdout) if return_stderr: toreturn.append(stderr) if len(toreturn) == 1: return toreturn[0] elif toreturn: return tuple(toreturn) def RunGsUtilTabCompletion(self, cmd, expected_results=None): """Runs the gsutil command in tab completion mode. Args: cmd: The command to run, as a list, e.g. ['cp', 'foo', 'bar'] expected_results: The expected tab completion results for the given input. """ cmd = [gslib.GSUTIL_PATH] + ['--testexceptiontraces'] + cmd if InvokedFromParFile(): argcomplete_start_idx = 1 else: argcomplete_start_idx = 2 # Prepend the interpreter path; ensures we use the same interpreter that # was used to invoke the integration tests. In practice, this only differs # when you're running the tests using a different interpreter than # whatever `/usr/bin/env python` resolves to. cmd = [str(sys.executable)] + cmd cmd_str = ' '.join(cmd) @Retry(AssertionError, tries=5, timeout_secs=1) def _RunTabCompletion(): """Runs the tab completion operation with retries.""" # Set this to True if the argcomplete tests start failing and you want to # see any output you can get. I've had to do this so many times that I'm # just going to leave this in the code for convenience ¯\_(ツ)_/¯ # # If set, this will print out extra info from the argcomplete subprocess. # You'll probably want to find one test that's failing and run it # individually, e.g.: # python3 ./gsutil test tabcomplete.TestTabComplete.test_single_object # so that only one subprocess is run, thus routing the output to your # local terminal rather than swallowing it. hacky_debugging = False results_string = None with tempfile.NamedTemporaryFile( delete=False) as tab_complete_result_file: if hacky_debugging: # These redirectons are valuable for debugging purposes. 1 and 2 are, # obviously, stdout and stderr of the subprocess. 9 is the fd for # argparse debug stream. cmd_str_with_result_redirect = ( '{cs} 1>{fn} 2>{fn} 8>{fn} 9>{fn}'.format( cs=cmd_str, fn=tab_complete_result_file.name)) else: # argcomplete returns results via the '8' file descriptor, so we # redirect to a file so we can capture the completion results. cmd_str_with_result_redirect = '{cs} 8>{fn}'.format( cs=cmd_str, fn=tab_complete_result_file.name) env = os.environ.copy() env['_ARGCOMPLETE'] = str(argcomplete_start_idx) # Use a sane default for COMP_WORDBREAKS. env['_ARGCOMPLETE_COMP_WORDBREAKS'] = '''"'@><=;|&(:''' if 'COMP_WORDBREAKS' in env: env['_ARGCOMPLETE_COMP_WORDBREAKS'] = env['COMP_WORDBREAKS'] env['COMP_LINE'] = cmd_str env['COMP_POINT'] = str(len(cmd_str)) subprocess.call(cmd_str_with_result_redirect, env=env, shell=True) results_string = tab_complete_result_file.read().decode( locale.getpreferredencoding()) if results_string: if hacky_debugging: print('---------------------------------------') print(results_string) print('---------------------------------------') results = results_string.split('\013') else: results = [] self.assertEqual(results, expected_results) # When tests are run in parallel, tab completion could take a long time, # so choose a long timeout value. with SetBotoConfigForTest([('GSUtil', 'tab_completion_timeout', '120')]): _RunTabCompletion() @contextlib.contextmanager def SetAnonymousBotoCreds(self): # Tell gsutil not to override the real error message with a warning about # anonymous access if no credentials are provided in the config file. boto_config_for_test = [('Tests', 'bypass_anonymous_access_warning', 'True') ] # Also, maintain any custom host/port/API configuration, since we'll need # to contact the same host when operating in a development environment. for creds_config_key in ('gs_host', 'gs_json_host', 'gs_json_host_header', 'gs_post', 'gs_json_port'): boto_config_for_test.append(('Credentials', creds_config_key, boto.config.get('Credentials', creds_config_key, None))) boto_config_for_test.append( ('Boto', 'https_validate_certificates', boto.config.get('Boto', 'https_validate_certificates', None))) for api_config_key in ('json_api_version', 'prefer_api'): boto_config_for_test.append(('GSUtil', api_config_key, boto.config.get('GSUtil', api_config_key, None))) with SetBotoConfigForTest(boto_config_for_test, use_existing_config=False): # Make sure to reset Developer Shell credential port so that the child # gsutil process is really anonymous. Also, revent Boto from falling back # on credentials from other files like ~/.aws/credentials or environment # variables. with SetEnvironmentForTest({ 'DEVSHELL_CLIENT_PORT': None, 'AWS_SECRET_ACCESS_KEY': '_' }): yield def _VerifyLocalMode(self, path, expected_mode): """Verifies the mode of the file specified at path. Args: path: The path of the file on the local file system. expected_mode: The expected mode as a 3-digit base-8 number. Returns: None """ self.assertEqual(expected_mode, int(oct(os.stat(path).st_mode)[-3:], 8)) def _VerifyLocalUid(self, path, expected_uid): """Verifies the uid of the file specified at path. Args: path: The path of the file on the local file system. expected_uid: The expected uid of the file. Returns: None """ self.assertEqual(expected_uid, os.stat(path).st_uid) def _VerifyLocalGid(self, path, expected_gid): """Verifies the gid of the file specified at path. Args: path: The path of the file on the local file system. expected_gid: The expected gid of the file. Returns: None """ self.assertEqual(expected_gid, os.stat(path).st_gid) def VerifyLocalPOSIXPermissions(self, path, gid=None, uid=None, mode=None): """Verifies the uid, gid, and mode of the file specified at path. Will only check the attribute if the corresponding method parameter is not None. Args: path: The path of the file on the local file system. gid: The expected gid of the file. uid: The expected uid of the file. mode: The expected mode of the file. Returns: None """ if gid is not None: self._VerifyLocalGid(path, gid) if uid is not None: self._VerifyLocalUid(path, uid) if mode is not None: self._VerifyLocalMode(path, mode) def FlatListDir(self, directory): """Perform a flat listing over directory. Args: directory: The directory to list Returns: Listings with path separators canonicalized to '/', to make assertions easier for Linux vs Windows. """ result = [] for dirpath, _, filenames in os.walk(directory): for f in filenames: result.append(os.path.join(dirpath, f)) return '\n'.join(result).replace('\\', '/') def FlatListBucket(self, bucket_url_string): """Perform a flat listing over bucket_url_string.""" return self.RunGsUtil(['ls', suri(bucket_url_string, '**')], return_stdout=True) def StorageUriCloneReplaceKey(self, storage_uri, key): """Wrapper for StorageUri.clone_replace_key(). Args: storage_uri: URI representing the object to be cloned key: key for the new StorageUri to represent """ return storage_uri.clone_replace_key(key) def StorageUriCloneReplaceName(self, storage_uri, name): """Wrapper for StorageUri.clone_replace_name(). Args: storage_uri: URI representing the object to be cloned key: new object name """ return storage_uri.clone_replace_name(name) def StorageUriSetContentsFromString(self, storage_uri, contents): """Wrapper for StorageUri.set_contents_from_string(). Args: storage_uri: URI representing the object contents: String of the new contents of the object """ return storage_uri.set_contents_from_string(contents) class KmsTestingResources(object): """Constants for KMS resource names to be used in integration testing.""" KEYRING_LOCATION = 'us-central1' # Since KeyRings and their child resources cannot be deleted, we minimize the # number of resources created by using a hard-coded keyRing name. KEYRING_NAME = 'keyring-for-gsutil-integration-tests' # Used by tests where we don't need to alter the state of a cryptoKey and/or # its IAM policy bindings once it's initialized the first time. CONSTANT_KEY_NAME = 'key-for-gsutil-integration-tests' CONSTANT_KEY_NAME2 = 'key-for-gsutil-integration-tests2' # Pattern used for keys that should only be operated on by one tester at a # time. Because multiple integration test invocations can run at the same # time, we want to minimize the risk of them operating on each other's key, # while also not creating too many one-time-use keys (as they cannot be # deleted). Tests should fill in the %d entries with a digit between 0 and 9. MUTABLE_KEY_NAME_TEMPLATE = 'cryptokey-for-gsutil-integration-tests-%d%d%d'
[ "afif.zakaria1997@gmail.com" ]
afif.zakaria1997@gmail.com
162d2cbb02462b15ffcb61197211d4d535f9ee79
2df257136428898816895dc303d3b9b3e4b9b853
/blog/blog/urls.py
97917052f02a52114169ff401780150906260513
[]
no_license
Arkaim/Endterm
d4dd5afea0efdcbbab2bf465bdd5d27665181b9e
96f1a72838943b2f829a3412431b6e1fe74cbdc3
refs/heads/master
2020-03-11T23:02:07.989841
2018-04-20T06:50:42
2018-04-20T06:50:42
130,310,517
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
"""blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path urlpatterns = [ path('admin/', admin.site.urls), path('api/blog/', include('blogApp.urls') ) ]
[ "kaimbayev@gmail.com" ]
kaimbayev@gmail.com
486d1b61f79a31a74f2983f06dff9745c4743031
4899940597a48d28c01fdffbe66e098543ee43f8
/experiment_v2/train_daegc.py
a31b2c8132a0ad05e82701e3ff875c164d8026f2
[]
no_license
BigPig-LittleTail/clean_dp
d7a0f8af6ea0808c252580a8e0c7239fa66535d7
47113cd2393b800fe15390b81d99f1098212913a
refs/heads/master
2023-05-03T17:04:02.619923
2021-06-02T11:08:27
2021-06-02T11:08:27
372,802,310
0
0
null
null
null
null
UTF-8
Python
false
false
3,661
py
import sys import os import argparse import torch import numpy as np import torch.nn.functional as F sys.path.append(os.path.dirname(os.path.dirname(__file__))) from sklearn.cluster import KMeans from torch.optim import Adam from torch_geometric.nn import GAE from torch_geometric.utils import to_undirected from model.model import DAEGCEncoder from model.utils import construct_edge_index_direction, eva, target_distribution if __name__ == '__main__': parser = argparse.ArgumentParser( description="train", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--x_path", type=str, default="") parser.add_argument("--y_path", type=str, default="") parser.add_argument("--graph_x_path", type=str, default="") parser.add_argument("--pre_path", type=str, default="") parser.add_argument("--lr", type=float, default=0.0001) parser.add_argument("--train_epoch", type=int, default=200) parser.add_argument("--input_dim", type=int, default=2000) parser.add_argument("--n_z", type=int, default=10) parser.add_argument("--n_cluster", type=int, default=30) parser.add_argument("--seed", type=int, default=None) parser.add_argument("--beta", type=float, default=10) args = parser.parse_args() lr = args.lr train_epoch = args.train_epoch input_dim = args.input_dim n_z = args.n_z n_cluster = args.n_cluster seed = args.seed beta = args.beta if seed is not None: torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True x_path = args.x_path y_path = args.y_path pre_path = args.pre_path graph_x_path = args.graph_x_path device = torch.device("cuda" if torch.cuda.is_available() else "cpu") feature = np.loadtxt(x_path, dtype=np.float32) y = np.loadtxt(y_path, dtype=np.int32) graph_x = np.loadtxt(graph_x_path, dtype=np.float32) encoder = DAEGCEncoder(4, 1, 500, input_dim, n_z, n_cluster, att_dropout=0.0, fdd_dropout=0.0) x = torch.from_numpy(feature) graph_x = torch.from_numpy(graph_x) edge_index_direction = torch.from_numpy(construct_edge_index_direction(graph_x)).t().contiguous() edge_index = to_undirected(edge_index_direction, num_nodes=graph_x.shape[0]) model = GAE(encoder) model.load_state_dict(torch.load(pre_path)) model = model.to(device) x = x.to(device) edge_index = edge_index.to(device) optimizer = Adam(model.parameters(), lr=lr) with torch.no_grad(): z, q = model.encode(x, edge_index) kmeans = KMeans(n_clusters=n_cluster, n_init=20, random_state=seed) k_predict = kmeans.fit_predict(z.data.cpu().numpy()) encoder.cluster_layer.data = torch.tensor(kmeans.cluster_centers_).to(device) eva(y, k_predict, "pretrain") for epoch in range(train_epoch): z, q = model.encode(x, edge_index) out_edge = model.decode(z, edge_index) if epoch % 1 == 0: p = target_distribution(q.data) res1 = q.data.cpu().numpy().argmax(1) # Q res2 = p.data.cpu().numpy().argmax(1) # P eva(y, res1, str(epoch) + 'Q') eva(y, res2, str(epoch) + 'P') kl_loss = F.kl_div(q.log(), p, reduction='batchmean') re_loss = F.mse_loss(out_edge, torch.ones_like(out_edge)) loss = re_loss + beta * kl_loss print("kl_loss{}, re_loss{}".format(kl_loss, re_loss)) optimizer.zero_grad() loss.backward() optimizer.step()
[ "1070437907@qq.com" ]
1070437907@qq.com
236c1bb3ab27151734793ded3b60b40ee401d7e3
41df5552f879a8ed4f4ec7f3e2f5b50958bac4af
/lib/python3.4/site-packages/parsel/selector.py
282f2e130ec876b06b50a03903f3f7e79390bc51
[]
no_license
pengye91/py3_spider
cc1d3fb526b0d9b031e77dc65c386b0aae486c72
9e4a519aebaf1707aed0707e1ff925459d4105be
refs/heads/master
2016-09-13T03:34:16.110251
2016-04-24T08:52:05
2016-04-24T08:52:05
56,961,231
0
0
null
null
null
null
UTF-8
Python
false
false
8,837
py
""" XPath selectors based on lxml """ import six from lxml import etree from .utils import flatten, iflatten, extract_regex from .csstranslator import HTMLTranslator, GenericTranslator class SafeXMLParser(etree.XMLParser): def __init__(self, *args, **kwargs): kwargs.setdefault('resolve_entities', False) super(SafeXMLParser, self).__init__(*args, **kwargs) _ctgroup = { 'html': {'_parser': etree.HTMLParser, '_csstranslator': HTMLTranslator(), '_tostring_method': 'html'}, 'xml': {'_parser': SafeXMLParser, '_csstranslator': GenericTranslator(), '_tostring_method': 'xml'}, } def _st(st): if st is None: return 'html' elif st in _ctgroup: return st else: raise ValueError('Invalid type: %s' % st) def create_root_node(text, parser_cls, base_url=None): """Create root node for text using given parser class. """ body = text.strip().encode('utf8') or b'<html/>' parser = parser_cls(recover=True, encoding='utf8') return etree.fromstring(body, parser=parser, base_url=base_url) class SelectorList(list): """ The :class:`SelectorList` class is a subclass of the builtin ``list`` class, which provides a few additional methods. """ # __getslice__ is deprecated but `list` builtin implements it only in Py2 def __getslice__(self, i, j): o = super(SelectorList, self).__getslice__(i, j) return self.__class__(o) def __getitem__(self, pos): o = super(SelectorList, self).__getitem__(pos) return self.__class__(o) if isinstance(pos, slice) else o def xpath(self, xpath): """ Call the ``.xpath()`` method for each element in this list and return their results flattened as another :class:`SelectorList`. ``query`` is the same argument as the one in :meth:`Selector.xpath` """ return self.__class__(flatten([x.xpath(xpath) for x in self])) def css(self, xpath): """ Call the ``.css()`` method for each element in this list and return their results flattened as another :class:`SelectorList`. ``query`` is the same argument as the one in :meth:`Selector.css` """ return self.__class__(flatten([x.css(xpath) for x in self])) def re(self, regex): """ Call the ``.re()`` method for each element is this list and return their results flattened, as a list of unicode strings. """ return flatten([x.re(regex) for x in self]) def re_first(self, regex): for el in iflatten(x.re(regex) for x in self): return el def extract(self): """ Call the ``.extract()`` method for each element is this list and return their results flattened, as a list of unicode strings. """ return [x.extract() for x in self] def extract_first(self, default=None): for x in self: return x.extract() else: return default class Selector(object): """ :class:`Selector` allows you to select parts of an XML or HTML text using CSS or XPath expressions and extract data from it. ``text`` is a ``unicode`` object in Python 2 or a ``str`` object in Python 3 ``type`` defines the selector type, it can be ``"html"``, ``"xml"`` or ``None`` (default). If ``type`` is ``None``, the selector defaults to ``"html"``. """ __slots__ = ['text', 'namespaces', 'type', '_expr', 'root', '__weakref__', '_parser', '_csstranslator', '_tostring_method'] _default_type = None _default_namespaces = { "re": "http://exslt.org/regular-expressions", # supported in libxslt: # set:difference # set:has-same-node # set:intersection # set:leading # set:trailing "set": "http://exslt.org/sets" } _lxml_smart_strings = False selectorlist_cls = SelectorList def __init__(self, text=None, type=None, namespaces=None, root=None, base_url=None, _expr=None): self.type = st = _st(type or self._default_type) self._parser = _ctgroup[st]['_parser'] self._csstranslator = _ctgroup[st]['_csstranslator'] self._tostring_method = _ctgroup[st]['_tostring_method'] if text is not None: if not isinstance(text, six.text_type): raise TypeError("text argument should be of type %s" % six.text_type) root = self._get_root(text, base_url) elif root is None: raise ValueError("Selector needs either text or root argument") self.namespaces = dict(self._default_namespaces) if namespaces is not None: self.namespaces.update(namespaces) self.root = root self._expr = _expr def _get_root(self, text, base_url=None): return create_root_node(text, self._parser, base_url=base_url) def xpath(self, query): """ Find nodes matching the xpath ``query`` and return the result as a :class:`SelectorList` instance with all elements flattened. List elements implement :class:`Selector` interface too. ``query`` is a string containing the XPATH query to apply. """ try: xpathev = self.root.xpath except AttributeError: return self.selectorlist_cls([]) try: result = xpathev(query, namespaces=self.namespaces, smart_strings=self._lxml_smart_strings) except etree.XPathError: msg = u"Invalid XPath: %s" % query raise ValueError(msg if six.PY3 else msg.encode("unicode_escape")) if type(result) is not list: result = [result] result = [self.__class__(root=x, _expr=query, namespaces=self.namespaces, type=self.type) for x in result] return self.selectorlist_cls(result) def css(self, query): """ Apply the given CSS selector and return a :class:`SelectorList` instance. ``query`` is a string containing the CSS selector to apply. In the background, CSS queries are translated into XPath queries using `cssselect`_ library and run ``.xpath()`` method. """ return self.xpath(self._css2xpath(query)) def _css2xpath(self, query): return self._csstranslator.css_to_xpath(query) def re(self, regex): """ Apply the given regex and return a list of unicode strings with the matches. ``regex`` can be either a compiled regular expression or a string which will be compiled to a regular expression using ``re.compile(regex)`` """ return extract_regex(regex, self.extract()) def extract(self): """ Serialize and return the matched nodes as a list of unicode strings. Percent encoded content is unquoted. """ try: return etree.tostring(self.root, method=self._tostring_method, encoding='unicode', with_tail=False) except (AttributeError, TypeError): if self.root is True: return u'1' elif self.root is False: return u'0' else: return six.text_type(self.root) def register_namespace(self, prefix, uri): """ Register the given namespace to be used in this :class:`Selector`. Without registering namespaces you can't select or extract data from non-standard namespaces. See :ref:`selector-examples-xml`. """ self.namespaces[prefix] = uri def remove_namespaces(self): """ Remove all namespaces, allowing to traverse the document using namespace-less xpaths. See :ref:`removing-namespaces`. """ for el in self.root.iter('*'): if el.tag.startswith('{'): el.tag = el.tag.split('}', 1)[1] # loop on element attributes also for an in el.attrib.keys(): if an.startswith('{'): el.attrib[an.split('}', 1)[1]] = el.attrib.pop(an) def __bool__(self): """ Return ``True`` if there is any real content selected or ``False`` otherwise. In other words, the boolean value of a :class:`Selector` is given by the contents it selects. """ return bool(self.extract()) __nonzero__ = __bool__ def __str__(self): data = repr(self.extract()[:40]) return "<%s xpath=%r data=%s>" % (type(self).__name__, self._expr, data) __repr__ = __str__
[ "pengye91@hotmail.com" ]
pengye91@hotmail.com
119415bc326dbc3ad52fff959dd118ea2bbd69bd
5ddc0cc9a788cc51cebe5407d1ea3a16203835ca
/sunshine_conversations_client/model/quoted_message_message.py
fec16d4e0408e9e25574a1016559d532e47c3b38
[ "Apache-2.0" ]
permissive
pizanao/sunshine-conversations-python
117f18d48ecd772114853a1b1551883f7f2d1d76
28c710c36344d50ffa26c953c6e9ee6815f2b211
refs/heads/master
2023-08-13T22:09:35.470568
2021-09-28T17:18:04
2021-09-28T17:18:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,214
py
# coding: utf-8 """ Sunshine Conversations API The version of the OpenAPI document: 9.4.5 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from sunshine_conversations_client.configuration import Configuration from sunshine_conversations_client.undefined import Undefined class QuotedMessageMessage(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'message': 'Message' } attribute_map = { 'type': 'type', 'message': 'message' } nulls = set() def __init__(self, type='message', message=None, local_vars_configuration=None): # noqa: E501 """QuotedMessageMessage - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._type = None self._message = None self.discriminator = None if type is not None: self.type = type if message is not None: self.message = message @property def type(self): """Gets the type of this QuotedMessageMessage. # noqa: E501 The type of quotedMessage - a complete Sunshine Conversations message is provided. # noqa: E501 :return: The type of this QuotedMessageMessage. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this QuotedMessageMessage. The type of quotedMessage - a complete Sunshine Conversations message is provided. # noqa: E501 :param type: The type of this QuotedMessageMessage. # noqa: E501 :type: str """ self._type = type @property def message(self): """Gets the message of this QuotedMessageMessage. # noqa: E501 :return: The message of this QuotedMessageMessage. # noqa: E501 :rtype: Message """ return self._message @message.setter def message(self, message): """Sets the message of this QuotedMessageMessage. :param message: The message of this QuotedMessageMessage. # noqa: E501 :type: Message """ self._message = message def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, QuotedMessageMessage): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, QuotedMessageMessage): return True return self.to_dict() != other.to_dict()
[ "zendesk-ops-ci@zendesk.com" ]
zendesk-ops-ci@zendesk.com
a498d8e90a7422320e43f47cf9b9ea43862a41fe
d371b8e4c6d19a4ca7c75145b642940221072b5c
/prac1.py
a92a59615c92a86b91bbd242c79169e984b4b628
[]
no_license
jaypal1046/IotPrac
77357e25686064d2b0043ab3575c21d5e53c665b
e2b47b975fa92fd3a282019325b1cb017e5ac3bd
refs/heads/master
2022-12-25T09:42:13.906547
2020-09-14T06:48:41
2020-09-14T06:48:41
295,312,254
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
import telepot token = '1212487782:AAFiqI9MymcNubUOoo9TzGCVE0OyCOsa_r4' TelegramBot = telepot.Bot(token) print(TelegramBot.getMe()) def handle(msg): content_type, chat_type, chat_id = telepot.glance(msg) print(content_type, chat_type, chat_id) if content_type == "text": TelegramBot.sendMessage(chat_id, "You said '{}'".format(msg["text"])) TelegramBot.message_loop(handle)
[ "noreply@github.com" ]
jaypal1046.noreply@github.com
0e165c9f0d837468b9a0c6dcaa7e10a3fe342087
76df8b5fbbafaafeba585db013f29fb05427df44
/LIST_TUPLE.py
f4081f88485ccb69a1673f350084e0c6deb95d79
[]
no_license
rfsip/learnpython
f911750719e8314d4440380890b023c5e04bee9b
ffecdb2ca1d169741948b9eeab6a38ecbfaa3687
refs/heads/master
2021-01-20T12:22:59.619955
2017-06-02T12:51:26
2017-06-02T12:51:26
90,357,486
0
0
null
null
null
null
UTF-8
Python
false
false
1,909
py
#coding:UTF-8 ''' list是有序集合,可更改元素。len()获得个数。 l[n]索引值0~n-1,可为负数,-1表示n-1。 list函数: l.append(x):追加x到列表末尾。 l.insert(索引号,x):在指定索引号插入x, 原该索引号及以后的元素依次后移。 l.pop(i):删除指定位置的元素并返回被删除元素。默认为最后一个。 l.sort(reverse=0/1):排序,参考值可选,默认正序。 **对于可迭代对象采用sorted()全局函数。 l.index(x):返回第一次出现x的索引值。 l.count(x):返回x在list中的数量。 l.remove(x):取出第一次出现的x元素。 ''' ''' tuple是有序序列,元素不可变。 在定义tuple时其元素就被定义,一个元素其后面必须加',' eg : tl = (1,) 除了对元素的修改,其他函数与list一致。 ''' ''' **************join与split函数************* str.split('i'):将字符串str以字符串中的i为界限分为list。(默认为空格) 'i'.join(iterable):将可迭代序列按照'i'连接为字符串。(其中序列元素必须为str格式) >>> '1 2 3 4 5 6 7 8 9'.split() ['1', '2', '3', '4', '5', '6', '7', '8', '9'] >>> l = ['1','2','3'] >>> '-'.join(l) '1-2-3' ''' #列表生成式 a = [i for i in range(10)] print(a) print('\n') #生成器,按需生成可迭代对象 ''' 将列表生成式中的[]改为()或加上yield. 遇到yield返回,再次执行时在上次返回的yield处执行。 使用next()调用下一个值。或者使用循环来遍历。 **生成器的return要通过捕获StopIteration的value. ''' aa = (i1 for i1 in range(10)) print(aa) print(next(aa)) print('\n') for i2 in aa: print(i2) print('\n') #练习索引 L = [ ['Apple','Google','Microsoft'], ['Java','Python','Ruby','PHP'], ('Bob','Lisa','icefog') ] #打印'Google' print(L[0][1]) #打印'Python' print(L[1][1]) #打印'icefog' print(L[2][2])
[ "rfsip@outlook.com" ]
rfsip@outlook.com
1ded337a5ffdfb6cfa5b77d979c6e05e6b0f2bce
12420f2f97277e3dda4bfba9b101448616bbfc76
/Second_attempt_Exercise7.1.py
38a7b5e20b9bfdc67d086f5a9231bb935b534982
[]
no_license
Environmental-Informatics/building-more-complex-programs-with-python-Gautam6-asmita
171585d8b038d0c56e608bdf8cf27365281918e0
fbd319dd09fda955dfbda47beb7b8718755c7183
refs/heads/master
2020-12-19T21:03:57.253160
2020-03-08T19:22:44
2020-03-08T19:22:44
235,852,593
0
0
null
null
null
null
UTF-8
Python
false
false
1,724
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Created on 2020-01-24 by Asmita Gautam Assignment 01: Python - Learning the Basics Think Python Chapter 7: Exercises 7.1 ##To make the table as given in 7.1 Modified for resubmission on 2020-03-04 """ """ Importing the required module math, which allows for doing mathematical operations """ import math """ This function 'mysqrt' takes a parameter a to determine squareroot of the variable a """ def mysqrt (a): #Defines a function mysqrt which takes a variable a x=2 a=int(a) while True: #while function runs the iteration untile the statement is true y=(x+a/x)/2 if y==x: break x=y return y """ This function 'diff' takes a parameter a to i.e difference of math.sqrt and my.sqrt for each value of a """ def diff(a): #Define the function diff, d=math.sqrt(a)- mysqrt(a) return d """ This function 'test_square_root' doesnot takes any argument to print the test_square_root as sample table in Exercise 7.1 """ def test_square_root(): #Defines a function test_square_root header=['a','mysqrt(a)','math.sqrt(a)','diff'] #For header of table print('{:<6s} {:<20s} {:<20s} {:<20s}'.format(header[0],header[1],header[2],header[3])) #Print the header print('{:<6s} {:<20s} {:<20s} {:<20s}'.format('-','------','--------','------')) # Print the -- lines making as string for a in range(1,10): lst=[a,mysqrt(a),math.sqrt(a),diff(a)] #[ ] includes the list of variables and functions print('{:.1f} {:<20.11f} {:<20.11f} {:<20.11f}'.format(lst[0],lst[1],lst[2],lst[3])) test_square_root() #Displays the table created
[ "noreply@github.com" ]
Environmental-Informatics.noreply@github.com
78c4802a1bfdcd6878a1375099b9dce3165985b3
0153b5eae4fa4ee1b04dbab75c1bd71c799f773f
/bucles_while_6_VII.py
4bc60e489389c7d37bce6ee82d97dd59859cc6b1
[]
no_license
dasafo/Python
deab015777792f55c85c2758cf529c4486efdb13
00839b819abd60af981bfed6446d5b154d98ed40
refs/heads/master
2022-01-07T17:33:22.699096
2019-07-25T09:09:51
2019-07-25T09:09:51
155,708,564
0
0
null
null
null
null
UTF-8
Python
false
false
496
py
import math print("Programa de cálculo de raiz cuadrada") numero=int(input("Introduce un numero ostias: ")) intentos=0 while numero<0: print("No se puede hallar la raiz de un numero negrativo") if intentos==2: print("demasiados intentos bye bye") break; numero=int(input("Introduce un numero ostias: ")) if numero<0: intentos=intentos+1 if intentos<2: solucion=math.sqrt(numero) print("La raiz cuadrada de " +str(numero) + " es " + str(solucion)) import sys print(sys.version)
[ "dasafo1985@gmail.com" ]
dasafo1985@gmail.com
f7fff813f7ca53db6b298e1ecfd99d606882e9c2
768727ae72be16afd27c54ac22227e160fa457bd
/angr_ctf/scaffold06.py
cb68005dc05028264494a427c1ffc5566404ad21
[]
no_license
Reijaff/CTF_reverse
3279798b9e6b06315834d19c8f7700521301ecd6
2201297203bd480b73c4baf716f0bf57cf929c3d
refs/heads/master
2020-06-24T17:36:28.539068
2019-12-01T16:42:32
2019-12-01T16:42:32
199,032,380
2
1
null
null
null
null
UTF-8
Python
false
false
2,611
py
import angr import claripy import sys def main(argv): path_to_binary = argv[1] project = angr.Project(path_to_binary) start_address = 0x8048699 initial_state = project.factory.blank_state(addr=start_address) # The binary is calling scanf("%8s %8s"). # (!) password0 = claripy.BVS('password0', 64) password1 = claripy.BVS('password1', 64) # Instead of telling the binary to write to the address of the memory # allocated with malloc, we can simply fake an address to any unused block of # memory and overwrite the pointer to the data. This will point the pointer # with the address of pointer_to_malloc_memory_address0 to fake_heap_address. # Be aware, there is more than one pointer! Analyze the binary to determine # global location of each pointer. # Note: by default, Angr stores integers in memory with big-endianness. To # specify to use the endianness of your architecture, use the parameter # endness=project.arch.memory_endness. On x86, this is little-endian. # (!) fake_heap_address0 = 0x4444440 fake_heap_address1 = 0x4444448 pointer_to_malloc_memory_address0 = 0xABCC8A4 pointer_to_malloc_memory_address1 = 0xABCC8AC initial_state.memory.store(pointer_to_malloc_memory_address0, fake_heap_address0, endness=project.arch.memory_endness) initial_state.memory.store(pointer_to_malloc_memory_address1, fake_heap_address1, endness=project.arch.memory_endness) # Store our symbolic values at our fake_heap_address. Look at the binary to # determine the offsets from the fake_heap_address where scanf writes. # (!) initial_state.memory.store(fake_heap_address0, password0) initial_state.memory.store(fake_heap_address1, password1) simulation = project.factory.simgr(initial_state) def is_successful(state): stdout_output = state.posix.dumps(sys.stdout.fileno()) return "Good Job." in stdout_output def should_abort(state): stdout_output = state.posix.dumps(sys.stdout.fileno()) return "Try again."in stdout_output simulation.explore(find=is_successful, avoid=should_abort) if simulation.found: solution_state = simulation.found[0] solution0 = solution_state.se.eval(password0, cast_to=str) solution1 = solution_state.se.eval(password1, cast_to=str) solution = " ".join([solution0, solution1]) print solution else: raise Exception('Could not find the solution') if __name__ == '__main__': main(sys.argv)
[ "interlord406@gmail.com" ]
interlord406@gmail.com
7d93d4dcf5fdb754a691c73ec36aa5a0525aed3b
54f406f134a000c4b92edebc6b888e343c39a105
/3_aggregate_count.py
1111dd414a80964c8e1ef18643c5537210d40eef
[]
no_license
wattlebird/KaggleTalkingData
6f44ef2398d2b9f61690d8f3a836f3b8a0ffd792
bc5c4fdadf61c269405a7fb90f8f4ed6c40d102e
refs/heads/master
2020-03-08T21:13:09.688937
2018-05-05T00:38:31
2018-05-05T00:38:31
128,402,259
0
0
null
null
null
null
UTF-8
Python
false
false
10,103
py
import pandas as pd import numpy as np from setting import * import gc gc.enable() dtype={ 'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint16', 'os' : 'uint16', 'channel' : 'uint16', 'hour' : 'uint8', 'click_id' : 'uint32', 'ip_app_nclick' : 'uint32', 'ip_app_os_nclick': 'uint16', 'ip_app_os_device_nclick': 'uint16', 'ip_channel_nclick': 'uint32', 'ip_hour_day_nclick': 'uint16', 'ip_day_nuniqhour': 'uint8', 'ip_device_os_nuniqapp': 'uint8', 'ip_nuniqapp': 'uint8', 'ip_nuniqchannel': 'uint8', 'ip_nuniqdevice': 'uint16', 'app_nuniqchannel': 'uint8', 'ip_app_channel_varhour': 'float32', 'ip_app_os_varhour': 'float32', 'ip_day_channel_varhour': 'float32', 'ip_app_channel_avghour': 'float32' } train = pd.read_csv(DATA + 'train/train.csv', dtype=dtype, usecols=['ip', 'app', 'device', 'os', 'channel', 'is_attributed', 'hour', 'day'], engine='c') c1 = pd.read_csv(FDATA+'feature/train/ip_app_nclick.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'app']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_os_nclick.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_os_device_nclick.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'app', 'os', 'device']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_channel_nclick.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_hour_day_nclick.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'hour', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_day_nuniqhour.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_device_os_nuniqapp.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'device', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_nuniqapp.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_nuniqchannel.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_nuniqdevice.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/train/app_nuniqchannel.csv', dtype=dtype) train = train.merge(c1, how='left', on=['app']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_channel_varhour.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_os_varhour.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_day_channel_varhour.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'day', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_channel_avghour.csv', dtype=dtype) train = train.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 train.to_csv(FDATA+'feature/train/train_withcount.csv', index=False) del train test = pd.read_csv(DATA + 'train/test.csv', dtype=dtype, usecols=['ip', 'app', 'device', 'os', 'channel', 'is_attributed', 'hour', 'day'], engine='c') c1 = pd.read_csv(FDATA+'feature/train/ip_app_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_os_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_os_device_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os', 'device']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_channel_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_hour_day_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'hour', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_day_nuniqhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_device_os_nuniqapp.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'device', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_nuniqapp.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_nuniqchannel.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_nuniqdevice.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/train/app_nuniqchannel.csv', dtype=dtype) test = test.merge(c1, how='left', on=['app']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_channel_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_os_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_day_channel_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'day', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/train/ip_app_channel_avghour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 test.to_csv(FDATA+'feature/train/test_withcount.csv', index=False) del test test = pd.read_csv(DATA + 'test/train.csv', dtype=dtype, usecols=['ip', 'app', 'device', 'os', 'channel', 'is_attributed', 'hour', 'day'], engine='c') c1 = pd.read_csv(FDATA+'feature/test/ip_app_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_os_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_os_device_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os', 'device']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_channel_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_hour_day_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'hour', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_day_nuniqhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_device_os_nuniqapp.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'device', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_nuniqapp.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_nuniqchannel.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_nuniqdevice.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/test/app_nuniqchannel.csv', dtype=dtype) test = test.merge(c1, how='left', on=['app']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_channel_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_os_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_day_channel_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'day', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_channel_avghour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 test.to_csv(FDATA+'feature/test/train_withcount.csv', index=False) test = pd.read_csv(DATA + 'test/test.csv', dtype=dtype, usecols=['ip', 'app', 'device', 'os', 'channel', 'click_id', 'hour', 'day'], engine='c') c1 = pd.read_csv(FDATA+'feature/test/ip_app_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_os_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_os_device_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os', 'device']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_channel_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_hour_day_nclick.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'hour', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_day_nuniqhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'day']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_device_os_nuniqapp.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'device', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_nuniqapp.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_nuniqchannel.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_nuniqdevice.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip']) del c1 c1 = pd.read_csv(FDATA+'feature/test/app_nuniqchannel.csv', dtype=dtype) test = test.merge(c1, how='left', on=['app']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_channel_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_os_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'os']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_day_channel_varhour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'day', 'channel']) del c1 c1 = pd.read_csv(FDATA+'feature/test/ip_app_channel_avghour.csv', dtype=dtype) test = test.merge(c1, how='left', on=['ip', 'app', 'channel']) del c1 test.to_csv(FDATA+'feature/test/test_withcount.csv', index=False)
[ "geniusxiaoguai@gmail.com" ]
geniusxiaoguai@gmail.com
db8b1e3552c89679bea007f10213550429f8d25f
1869948448dd20a4abb309d2c35b58c6ede816d6
/binary/_mac/pandoc/pandoc.py
3d00f1104d2a6d7c87cd53aa4385b474634b9100
[ "BSD-2-Clause" ]
permissive
sklnet/craft-blueprints-kde
52a5637adab75b30a90a79bbfcf31626267da5d9
b07b8736b2b6686b447956fa09e4b9ade7284401
refs/heads/master
2022-12-30T01:32:59.744929
2020-10-18T07:20:54
2020-10-18T07:20:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
974
py
# -*- coding: utf-8 -*- import info class subinfo(info.infoclass): def setTargets(self): versions = ["2.9.2.1"] for ver in versions: self.targets[ver] = f"https://github.com/jgm/pandoc/releases/download/{ver}/pandoc-{ver}-macOS.zip" self.targetDigestsX64["2.9.2.1"] = (['c4847f7a6e6a02a7d1b8dc17505896d8a6e4c2ee9e8b325e47a0468036675307'], CraftHash.HashAlgorithm.SHA256) self.defaultTarget = "2.9.2.1" from Package.BinaryPackageBase import * class Package(BinaryPackageBase): def __init__(self): BinaryPackageBase.__init__(self) def install(self): # On Mac, the files are neetly sorted into /bin and /share in the upstream zip, already. We just need to copy the whole thing, stripping the outer folder. dirs = os.listdir(self.workDir()) if len(dirs) != 1: return False utils.copyDir(os.path.join(self.workDir(), dirs[0]), self.installDir()) return True
[ "thomas.friedrichsmeier@kdemail.net" ]
thomas.friedrichsmeier@kdemail.net
1682abe6e823855c668cc36f52c5e2edd2c0f47c
d08de24371daf54419ebd430e232ae0e92c6b262
/api/migrations/0004_auto_20201001_1820.py
872e6f4ae6deb7994595520b03d0a89d5d309cb9
[]
no_license
iTh1nk/server-portfolio
3baad63e78f00344e95178ec9483ccda89ff41c2
d00a46dcec16ce1f6aee7755fa65361e0cf01b6e
refs/heads/master
2022-12-22T21:24:54.271556
2020-10-05T05:37:10
2020-10-05T05:37:10
299,807,885
0
0
null
null
null
null
UTF-8
Python
false
false
1,207
py
# Generated by Django 3.1.1 on 2020-10-02 01:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0003_auto_20201001_1751'), ] operations = [ migrations.AlterField( model_name='message', name='created_at', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='message', name='updated_at', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='post', name='created_at', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='post', name='updated_at', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='project', name='created_at', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='project', name='updated_at', field=models.DateTimeField(auto_now=True), ), ]
[ "fnchao@hotmail.com" ]
fnchao@hotmail.com
2916662efe193673fd0888fc719d215581ecaee1
c6c45b4f3f06a8f7a23235d396acbe66b599a303
/graphgen.py
198beabbc90784be06870b1bb0e6ec0962953945
[]
no_license
ivanpostolski/sed2017
77033485f747fd29a0f0d18d49ce197918875531
9f5856ec2941235ab90d96fd7799b7fb79dbd624
refs/heads/master
2021-07-04T20:32:47.609296
2017-09-25T20:12:34
2017-09-25T20:12:34
104,384,446
0
0
null
null
null
null
UTF-8
Python
false
false
1,522
py
import random as rnd import networkx as nx from networkx.utils import uniform_sequence, create_degree_sequence import sys def printma(CM,infect=[]): #prelude print "[top]" #components components = "components: " nodes = CM.nodes() for n in nodes: components += "node%d@persona%d " % (n,CM.degree(n) if CM.degree(n) > 0 else 1) print components print "in: infect" for i in infect: print "link: infect infect@node%d" % i ports = [0 for i in range(0,len(nodes))] for edge in CM.edges(): origin = edge[0] target = edge[1] print "link: out%d@node%d in%d@node%d" % (ports[origin],origin,ports[target],target) print "link: out%d@node%d in%d@node%d" % (ports[target],target,ports[origin],origin) ports[origin] += 1 ports[target] += 1 if (len(sys.argv) < 2): print "arg[0] is population size, arg[1] is gamma alpha (default 10), arg[2] is beta (default 1) and arg[3] is infected size (default 1%)" sys.exit(0); n = int(sys.argv[1]) seq=create_degree_sequence(n,lambda x: [rnd.gammavariate(alpha=10.0 if len(sys.argv) < 3 else float(sys.argv[2]) ,beta=1.0 if len(sys.argv) < 4 else float(sys.argv[3])) for i in range(x)]) G=nx.configuration_model(seq) G.remove_edges_from(G.selfloop_edges()) G=nx.Graph(G) degree_sequence=sorted(nx.degree(G).values(),reverse=True) # degree sequence print "%Degree sequence is ", degree_sequence dmax=max(degree_sequence) print "%%Max degree is: %d"%dmax printma(G,infect=[rnd.randint(0,n-1) for i in range(n/100 if len(sys.argv) < 5 else int(sys.argv[4]))])
[ "ivan.postolski@gmail.com" ]
ivan.postolski@gmail.com
346e11a0107d50cc89d7540ea87bb1c421c330ac
8a95359a35ee57bf87f64bb49b2552adfbdac9fd
/2015/day02.py
d72721dae6f489ea41b99f038d4c0e7706109cd7
[]
no_license
ekuns/AdventOfCode
f0461b60d77cdb08e4a877bf13a7bd847168e043
fa17fcca93e5ff4684a37b75997383f9a883cf83
refs/heads/master
2020-08-08T04:36:13.314391
2019-10-11T03:16:52
2019-10-11T03:16:52
213,715,179
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
f = open("input02.txt", "r") lines = f.readlines() f.close() print('Number of lines: ' + str(len(lines))) paper = 0 ribbon = 0 for line in lines: items = [int(i) for i in line.split('x') if 'x' in line] if len(items) < 3: break items.sort() l, w, h = items sides = (l*w, w*h, l*h) paper += sides[0]*2 + sides[1]*2 + sides[2]*2 + min(sides) ribbon += l*2 + w*2 + l*w*h print('Total paper: ' + str(paper)) print('Total ribbon: ' + str(ribbon))
[ "eddie.kuns@gmail.com" ]
eddie.kuns@gmail.com
2b1bedb198e506521c38280ccfe2c01b71ccd450
2d5470377cf53854eb7e899c2cb0c3aecd9505b8
/constants.py
7a7cac32d7bd31fc360828e98797b278f63a2fa2
[]
no_license
ammarinjtk/Neural-Relation-Extraction
ed565b5b56b38345d53fb5b5b26eda5392d95380
4fbf77e728bb21c0cf5ddb39c1e9fd33acead2cc
refs/heads/master
2020-04-09T19:52:43.925779
2019-12-12T03:39:22
2019-12-12T03:39:22
160,556,429
3
1
null
null
null
null
UTF-8
Python
false
false
954
py
WORD_EMBEDDING_DIM = 200 POS_EMBEDDING_DIM = 100 DISTANCE_EMBEDDING_DIM = 300 DEPENDENCY_EMBEDDING_DIM = 300 UNKNOWN_WORD = '_UNK_' PADDING_WORD = '_PAD_' ELMO_EMBEDDING_DIM = 400 BERT_FEATURE_DIM = 768 # SEED = 239387 SEED_LIST = [345, 166977, 239387, 240825, 250906, 290780, 312510, 439708, 489995, 545617, 585845, 614636, 675969, 820719, 920316, 1187617, 1484458, 3835082, 5064379, 5647183, 5694250, 6333898, 6797546, 7144728, 7461780, 7696045, 8468732, 8730848, 8842617, 9975400] DATA_DIR_PATH = "./data" W2V_MODEL_PATH = "/home/mind/ammarinjtk/wikipedia-pubmed-and-PMC-w2v.bin" ELMO_MODEL_PATH = "/home/mind/ammarinjtk/Neural-Relation-Extraction/entitykeyword_finetune_weights.hdf5" ELMO_OPTIONS_PATH = "/home/mind/ammarinjtk/Neural-Relation-Extraction/options.json" BERT_FEATURES_PATH = "/home/mind/ammarinjtk/Neural-Relation-Extraction/finetuned_bert.jsonl" OUTPUT_DIR_PATH = "./our_predictions"
[ "ammarinjtk@outlook.com" ]
ammarinjtk@outlook.com
900ce326d55c5c3faef62bdd31921280baddee7a
380a47268c5975473a2e7c38c747bc3bdbd981b1
/benchmark/third_party/transformers/tests/repo_utils/test_tests_fetcher.py
0541b72d9581f1fd8b9c1808637c7dcc534b90d8
[ "Apache-2.0" ]
permissive
FMInference/FlexGen
07aa9b1918c19b02077e13ad07e76840843810dd
d34f7b4b43ed87a374f394b0535ed685af66197b
refs/heads/main
2023-07-24T02:29:51.179817
2023-07-21T22:38:31
2023-07-21T22:38:31
602,270,517
6,821
411
Apache-2.0
2023-07-07T22:59:24
2023-02-15T21:18:53
Python
UTF-8
Python
false
false
2,759
py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from git import Repo git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) transformers_path = os.path.join(git_repo_path, "src", "transformers") # Tests are run against this specific commit for reproducibility # https://github.com/huggingface/transformers/tree/07f6690206e39ed7a4d9dbc58824314f7089bb38 GIT_TEST_SHA = "07f6690206e39ed7a4d9dbc58824314f7089bb38" from tests_fetcher import checkout_commit, clean_code, get_module_dependencies # noqa: E402 class CheckDummiesTester(unittest.TestCase): def test_clean_code(self): # Clean code removes all strings in triple quotes self.assertEqual(clean_code('"""\nDocstring\n"""\ncode\n"""Long string"""\ncode\n'), "code\ncode") self.assertEqual(clean_code("'''\nDocstring\n'''\ncode\n'''Long string'''\ncode\n'''"), "code\ncode") # Clean code removes all comments self.assertEqual(clean_code("code\n# Comment\ncode"), "code\ncode") self.assertEqual(clean_code("code # inline comment\ncode"), "code \ncode") def test_checkout_commit(self): repo = Repo(git_repo_path) self.assertNotEqual(repo.head.commit.hexsha, GIT_TEST_SHA) with checkout_commit(repo, GIT_TEST_SHA): self.assertEqual(repo.head.commit.hexsha, GIT_TEST_SHA) self.assertNotEqual(repo.head.commit.hexsha, GIT_TEST_SHA) def test_get_module_dependencies(self): bert_module = os.path.join(transformers_path, "models", "bert", "modeling_bert.py") expected_deps = [ "activations.py", "modeling_outputs.py", "modeling_utils.py", "pytorch_utils.py", "models/bert/configuration_bert.py", ] expected_deps = set(os.path.join(transformers_path, f) for f in expected_deps) repo = Repo(git_repo_path) with checkout_commit(repo, GIT_TEST_SHA): deps = get_module_dependencies(bert_module) deps = set(os.path.expanduser(f) for f in deps) self.assertEqual(deps, expected_deps)
[ "sqy1415@gmail.com" ]
sqy1415@gmail.com
b02300f7f4d44d5f678fb6c496e47722a709a37a
9ddf25b50d7ac91a6e17566e5dcfd477c7d1ad2d
/catkin_ws/devel/lib/python3/dist-packages/shoulderexo/msg/_Torque.py
065551410c9a3687b9e48c3b87a3b8bdc8686442
[]
no_license
yuihjk7412/ROS_FRAME_FOR_EXO
3679ee436430f14dffdcbb479ec4eb2cb088ac71
e119e8a0969ddfbb10bb354ff57974b241d48ed4
refs/heads/master
2021-07-08T00:31:09.844979
2020-10-22T09:27:30
2020-10-22T09:27:30
199,652,574
0
0
null
2019-09-05T03:34:23
2019-07-30T13:00:50
Makefile
UTF-8
Python
false
false
3,932
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from shoulderexo/Torque.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class Torque(genpy.Message): _md5sum = "67e3a742abd7e4b159e23cb00d1df783" _type = "shoulderexo/Torque" _has_header = False #flag to mark the presence of a Header object _full_text = """float32 torque1 float32 torque2 int32 port_num """ __slots__ = ['torque1','torque2','port_num'] _slot_types = ['float32','float32','int32'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: torque1,torque2,port_num :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(Torque, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.torque1 is None: self.torque1 = 0. if self.torque2 is None: self.torque2 = 0. if self.port_num is None: self.port_num = 0 else: self.torque1 = 0. self.torque2 = 0. self.port_num = 0 def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_2fi().pack(_x.torque1, _x.torque2, _x.port_num)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 12 (_x.torque1, _x.torque2, _x.port_num,) = _get_struct_2fi().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_2fi().pack(_x.torque1, _x.torque2, _x.port_num)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 12 (_x.torque1, _x.torque2, _x.port_num,) = _get_struct_2fi().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2fi = None def _get_struct_2fi(): global _struct_2fi if _struct_2fi is None: _struct_2fi = struct.Struct("<2fi") return _struct_2fi
[ "514522970@qq.com" ]
514522970@qq.com
99d35785724da17460e3fe45148f72499f12b4aa
b483c598fa375e9af02348960f210b9f482bd655
/cursoemvideo/desafios/Desafio049.py
f63ec756f03b607ef01a6eddcbbbbe52a49e72ab
[ "MIT" ]
permissive
brunofonsousa/python
6f766d08bf193180ea9a4903cb93ffd167db588d
8f2f26c77015c0baaa76174e004406b4115272c7
refs/heads/master
2022-09-30T14:58:01.080749
2020-06-08T09:55:35
2020-06-08T09:55:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
''' Exercício Python 049: Refaça o DESAFIO 009, mostrando a tabuada de um número que o usuário escolher, só que agora utilizando um laço for. ''' n = int(input('Digite um número para sua tabuada: ')) for i in range(1,11): print('{} x {} = {}'.format(n, i, n*i))
[ "brunofonsousa@gmail.com" ]
brunofonsousa@gmail.com
a25b814d42997df433f9921542984d2788f3e6b0
a74fb42803de854f321b40bf55a07007580321b8
/test_file.py
e855cda8d95cdb35848d138e44dacf43e5af8541
[]
no_license
pritishyuvraj/learning_git
7b756e87d394c93ce6149498be6fb472f79e3e3e
90453079672af676db26ecbf83f912f66ef85905
refs/heads/master
2020-03-22T00:08:31.271774
2018-07-09T03:38:41
2018-07-09T03:38:41
139,226,380
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
a = 2 b = 4 c = a + b print (c) d = c + 1 e = d + 1
[ "pyuvraj@fb.com" ]
pyuvraj@fb.com
1ea24b35a310c4d10a022d73322a3be2200f596f
e4ff7740492da84d4bfda5ffc51887921a52c865
/ear/models/resnet.py
7cf1b16a6d3fd6fa29df701ed81f7c38f22a5b2e
[]
no_license
daiguoxi/Demo_ear
a8bc33ee513f6663b49059e3e7da19104ababb67
3c0d031733c9428d96c5e26a6c50ad50f6f372e3
refs/heads/master
2023-05-07T02:03:27.416169
2021-05-28T12:28:25
2021-05-28T12:28:25
371,668,778
0
0
null
null
null
null
UTF-8
Python
false
false
9,530
py
# coding = utf-8 # @File : resnet.py # @Cont : resnet网络结构 import torch import torch.nn as nn # 调用从url网址加载网络参数的函数 try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # 不同的网络名称 __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101','resnet152'] # 不同的参数地址 model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth' } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """ 定义3x3卷积 :param in_planes:输入通道 :param out_planes: 输出通道 :param stride: 步长 :param groups: 控制输入输出之间的连接 :param dilation:空洞卷积的膨胀率 :return: """ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """ 定义1x1卷积 :param in_planes:输入通道 :param out_planes: 输出通道 :param stride: 步长 :return: """ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) # 基础模块 class BasicBlock(nn.Module): expansion = 1 __constants__ = ['downsample'] # 参数预定义 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride # 前向传播 def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) # 残差连接 out += identity out = self.relu(out) return out # Bottleneck的模块 class Bottleneck(nn.Module): expansion = 4 __constants__ = ['downsample'] # 参数预定义 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride # 前向传播 def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out # 网络结构 class ResNet(nn.Module): # 参数预定义 def __init__(self, block, layers, num_classes=8, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # 参数初始化 # 方式1 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # 方式2 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # 构造网络层 def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) # 前向传播 def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x # 调用预训练参数 def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def resnet18(pretrained=False, progress=True, **kwargs): return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
[ "daiguoxi@gmail.com" ]
daiguoxi@gmail.com
2342cdb977881b769c979d66492d5f5164debdee
1fbb4bd8aefa855c3c9181c3bc490f5131151a71
/test_snippets/parentFolder.py
692f49c7c84cf29e4de97499fe93ea4b182b2589
[]
no_license
thesraid/pyvmomi
e600a24a79b2bcc94e2f9057e0f6680437acb50d
250d076c2cc4904707d64bcc485aaf120c6c55f9
refs/heads/master
2021-06-10T11:40:47.867044
2020-07-09T09:40:33
2020-07-09T09:40:33
90,965,042
0
0
null
null
null
null
UTF-8
Python
false
false
4,357
py
#!/usr/bin/env python """ Program to authenticate and print VM details """ import atexit import argparse import getpass # Ignore SSL warnings # http://pyvmomi.2338814.n4.nabble.com/Connect-to-esxi-host-with-self-Signed-certificate-td21.html import requests requests.packages.urllib3.disable_warnings() import ssl try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context from pyVim import connect from pyVmomi import vmodl from pyVmomi import vim def get_args(): """Get command line args from the user. """ parser = argparse.ArgumentParser( description='Standard Arguments for talking to vCenter') # because -h is reserved for 'help' we use -s for service parser.add_argument('-s', '--host', required=True, action='store', help='vSphere service to connect to') # because we want -p for password, we use -o for port parser.add_argument('-o', '--port', type=int, default=443, action='store', help='Port to connect on') parser.add_argument('-u', '--user', required=True, action='store', help='User name to use when connecting to host') parser.add_argument('-p', '--password', required=False, action='store', help='Password to use when connecting to host') parser.add_argument('-f', '--folder', required=True, action='store', help='Folder to list') args = parser.parse_args() if not args.password: args.password = getpass.getpass( prompt='Enter password for host %s and user %s: ' % (args.host, args.user)) return args def get_obj(content, vimtype, name): """ Return an object by name, if name is None the first found object is returned """ obj = None container = content.viewManager.CreateContainerView( content.rootFolder, vimtype, True) for c in container.view: if name: if c.name == name: obj = c break else: obj = c break return obj def main(): """ Simple command-line program for listing the vms in a foler. """ args = get_args() try: service_instance = connect.SmartConnect(host=args.host, user=args.user, pwd=args.password, port=int(args.port)) atexit.register(connect.Disconnect, service_instance) print " " session_name = service_instance.content.sessionManager.currentSession.fullName print "Hello {}".format(session_name) print "You have successfully logged into {}".format(args.host) # NOTE (hartsock): only a successfully authenticated session has a # session key aka session id. print " " print " " # Print list of VMs in the specified folder FOLDER = args.folder # This dumps all of the vCenter data into an object content = service_instance.RetrieveContent() # get_obj is defined above. It searchs through the content for the specified folder # It returns a folder object folder = get_obj(content, [vim.Folder], FOLDER) # If the folder was found list it's contents if folder is not None: depth = 5 while folder.name != "vm": if depth != 0: print folder.name folder = folder.parent depth = depth-1 else: print "Error: Specified folder is nested in too many subdirectories (max: 5)" return -1 else: print "Folder", FOLDER, "not found" except vmodl.MethodFault as error: #print "Caught vmodl fault : " + error.msg print error.msg return -1 return 0 # Start program if __name__ == "__main__": main()
[ "noreply@github.com" ]
thesraid.noreply@github.com
c443aeb9fd5b230fe86f42e359139ce8be319587
6f9533673f3349801141c3899fe5d090dd55c7bb
/user/Matt/changeSpeedOfficial.py
3dafbc55c1459810cc0ee3d9849a65916418971c
[]
no_license
henokalem/teamge
60ece1636aed22932bd65c5c3ff6e04730a67a9d
0e54c058afc2d746d5fd70f0fedcd425eda19b9d
refs/heads/master
2021-01-11T15:45:50.796048
2019-01-09T19:14:10
2019-01-09T19:14:10
79,923,993
1
0
null
null
null
null
UTF-8
Python
false
false
107
py
import changeSpeed import sys test = changeSpeed.speedChanger() test.changeSpeed(sys.argv[1],sys.argv[2])
[ "msopata59@gmail.com" ]
msopata59@gmail.com
11b025858233eaea3f653c54b4de638aa117c62a
8acd3e44316a0ff955f0d21470f3e60ae9ab8095
/BFS.py
350b0acfddfc6ae2c78f2c0791ce7093744231dd
[]
no_license
hchs710623/test-py
d4aac24ae85f2f64034d0cf79856b9842c60a338
40a2f4aec77b5675923c3e2b63acc58f0500143b
refs/heads/master
2020-03-24T09:57:44.545403
2018-09-19T16:45:51
2018-09-19T16:45:51
142,643,382
0
0
null
null
null
null
UTF-8
Python
false
false
2,153
py
import collections import itertools class Solution(object): def shortestPathAllKeys(self, grid): R, C = len(grid), len(grid[0]) # location['a'] = the coordinates of 'a' on the grid, etc. location = {v: (r, c) for r, row in enumerate(grid) for c, v in enumerate(row) if v not in '.#'} def neighbors(r, c): for cr, cc in ((r-1, c), (r, c-1), (r+1, c), (r, c+1)): if 0 <= cr < R and 0 <= cc < C: yield cr, cc def bfs(source, target, keys = ()): sr, sc = location[source] tr, tc = location[target] seen = [[False] * C for _ in range(R)] seen[sr][sc] = True queue = collections.deque([(sr, sc, 0)]) while queue: r, c, d = queue.popleft() if r == tr and c == tc: return d for cr, cc in neighbors(r, c): if not seen[cr][cc] and grid[cr][cc] != '#': if grid[cr][cc].isupper() and grid[cr][cc].lower() not in keys: continue queue.append((cr,cc,d+1)) seen[cr][cc] = True return float('inf') ans = float('inf') keys = "".join(chr(ord('a') + i) for i in range(len(location) // 2)) for cand in itertools.permutations(keys): # bns : the built candidate answer, consisting of the sum # of distances of the segments from '@' to cand[0] to cand[1] etc. bns = 0 for i, target in enumerate(cand): source = cand[i-1] if i > 0 else '@' d = bfs(source, target, cand[:i]) bns += d if bns >= ans: break else: ans = bns return ans if ans < float('inf') else -1 if __name__=="__main__": grid = ["@.a.#","###.#","b.A.B"] grid2 = ["@..aA","..B#.","....b"] a = Solution() # result = a.shortestPathAllKeys(grid) result = a.shortestPathAllKeys(grid2) print(result)
[ "mylin.cs04g@nctu.edu.tw" ]
mylin.cs04g@nctu.edu.tw
bf069a215b11a3007349f39443a33af4924f4ac9
fa4aaaa682b9f947260699cef2cccd936bdbd185
/pro_minimized.py
9269377845980249da6feb133b143caff4d98d34
[]
no_license
ravikiranrao/metamath
b294ee85c58e793892408bb606deba7bfbd18162
e85250fc81dcd8d5495f7f8ee644d30cf9351674
refs/heads/master
2021-09-27T18:46:05.175817
2021-09-27T15:18:53
2021-09-27T15:18:53
157,056,750
0
0
null
null
null
null
UTF-8
Python
false
false
4,232
py
import networkx as nx import re import matplotlib.pyplot as plt import PyPDF2 from networkx.algorithms import community from collections import Counter # Defining variables G, G1, G2 = nx.DiGraph(), nx.DiGraph(), nx.DiGraph() pdfFileObj = open('WebPage.pdf', 'rb') pdfReader = PyPDF2.PdfFileReader(pdfFileObj) pages = pdfReader.numPages a, b, c, d, e = [], [], [], [], [] chapter_pages = [0, 48, 68, 108, 128, 154, 192, 226, 252, 280, 422, 470, 504]; # Generating Nodes for the Graph takes parameter as chapter number color_map = [] def generate_nodes(chapter_number): text = "" # Contains text of input chapter if (chapter_number == 100): for x in range(1, 14): generate_nodes(x); else: page_start = chapter_pages[chapter_number - 1] # starting page of the chapter page_end = chapter_pages[chapter_number] - 1 # ending page of the chapter # looping over all the pages while page_start < page_end: pageObj = pdfReader.getPage(page_start) # reading text from current page text += pageObj.extractText().replace('\n', '') # append extracted text to variable text pattern = re.findall( "(?:Proposition\d{1,3}|\[Prop\.\d{1,2}\.\d{1,3}|\[Post\.\d|\[Def\.\d{1,2}\.\d{1,3}|\[C\.N\.\d)", text) # regex pattern to find in the book # looping through the pattern to distinguish among Proposition, Postulates, Definitions and Common Notions i = 0 # loop counter while i < len(pattern): if "Proposition" in pattern[i]: e = pattern[i].replace('Proposition', '') m = str(chapter_number) + "." + e a.append(m) # append Proposition to list a elif "[Prop." in pattern[i]: t = pattern[i].replace('[Prop.', '') p = t.replace(']', '') b.append((p, m)) # append above used proposition in b elif "[Post." in pattern[i]: y = pattern[i].replace('[Post.', 'p') x = y.replace(']', '') b.append((x, m)) # append above used postulates in b elif "[Def." in pattern[i]: y = pattern[i].replace('[Def.', 'd') x = y.replace(']', '') b.append((x, m)) # append above used definitions in b elif "[C.N." in pattern[i]: y = pattern[i].replace('[C.N.', 'c') x = y.replace(']', '') b.append((x, m)) # append above used common notions in b i += 1 # increment the loop counter page_start += 1 # go to next page G.add_nodes_from(a) # append list a in Graph G G.add_edges_from(b) # append list b in Graph1 G # Colouring nodes for node in G: if ("d" in node): color_map.append('blue') elif ("p" in node): color_map.append('green') else: color_map.append('red') num = input("Enter chapter number: (1-13) and 100 for complete book :- ") generate_nodes(int(num)) nx.draw(G, node_color=color_map, with_labels=True) # nx.draw(G,with_labels = True, node_color = 'r') plt.show() in_degrees = list(G.in_degree(list(G.nodes))) out_degrees = list(G.out_degree(list(G.nodes))) print("in degrees of all the nodes:", in_degrees) print('--------------------------------------------------------------------') print("out degrees of all the nodes:", out_degrees) print('--------------------------------------------------------------------') print("communities:") communities_generator = community.girvan_newman(G) top_level_communities = next(communities_generator) next_level_communities = next(communities_generator) coms = sorted(map(sorted, next_level_communities)) for i in coms: print(i) print('--------------------------------------------------------------------') def lin_eq(z): if G.in_degree(z) == 0: d.append(z) else: for i in list(G.predecessors(z)): c.append((i, z)) lin_eq(i) num1 = input("Enter the node:") lin_eq(num1) G1.add_edges_from(c) nx.draw(G1, with_labels=True, node_color='r') plt.show() print("linear combinations for 1.33 is:", Counter(d)) pdfFileObj.close()
[ "2014csb1027@iitrpr.ac.in" ]
2014csb1027@iitrpr.ac.in
3d272deaf1fb9734514e093b81f139fef41c0ff6
08c382c2cf8cace902ade2a3d33b3abab3629e9b
/fb_api.py
da8712cd2ff361045352f744da703fa2ec6f82df
[ "BSD-3-Clause" ]
permissive
wing3s/shop_bot
4d1966fef32a38f6128f82bf70bbc515deda577f
4c6a34538ac8de9999edae190f6269bc6a63c2cf
refs/heads/master
2021-01-10T02:20:02.953645
2016-04-11T01:06:04
2016-04-11T01:06:04
55,930,711
1
0
null
null
null
null
UTF-8
Python
false
false
3,142
py
import os import requests import time import ConfigParser import logging import logging.config from requests.exceptions import RequestException from helper import get_logger, base_path config = ConfigParser.ConfigParser() config.read(os.path.join(base_path, 'config.ini')) logger = get_logger('fb_api', __file__) __author__ = "Wen-Hao Lee" __email__ = "wing3s@gmail.com" __copyright__ = "Copyright 2014, Numnum" class FBBot(object): graph_url = "https://graph.facebook.com" cooldown = 120 # sec search_radius = 500 # m def search_restaurant(self, lat, lon): restaurants = self._search_place('restaurant', lat, lon) steakhouses = self._search_place('steakhouse', lat, lon) bars = self._search_place('bar', lat, lon) return restaurants + steakhouses + bars def _search_place(self, query, lat, lon): params = { 'q': query, 'type': 'place', 'center': '%s,%s' % (lat, lon), 'distance': self.search_radius, 'limit': 500, 'offset': 0 } return self.search(params) def search(self, params): params['access_token'] = "{app_id}|{app_key}".format( app_key=config.get('fbAPI', 'key'), app_id=config.get('fbAPI', 'id')) try: r = requests.get( "%s/%s" % (self.graph_url, 'search'), params=params) resp = r.json() if r.status_code != 200: resp_err = resp.get('error') err_code = resp_err.get('code') if err_code == 4: logger.warning( 'Reach limit, cooldown %ds' % self.cooldown) time.sleep(self.cooldown) return self.search(params) else: logger.error(resp) return None return resp['data'] except RequestException as err: logger.error(err) def fetch(self, fbid): try: r = requests.get("%s/%s" % (self.graph_url, fbid)) resp = r.json() if r.status_code != 200: resp_err = resp.get('error') err_code = resp_err.get('code') if err_code == 4: logger.warning( 'Reach limit, cooldown %ds' % self.cooldown) time.sleep(self.cooldown) return self.fetch(fbid) elif err_code == 21: err_msg = resp_err.get('message') new_fbid_pt = 'page ID' new_fbid = err_msg[ err_msg.index(new_fbid_pt)+len(new_fbid_pt)+1: err_msg.index('.')] logger.warning( 'Get new fbid %s for %s' % (new_fbid, fbid)) return self.fetch(new_fbid) else: logger.error([resp, r.url]) return None return resp except RequestException as err: logger.error(err)
[ "wing3s@gmail.com" ]
wing3s@gmail.com
bfe5bc53944a45e3c846724c381e265f586251a1
74577eb1ba5f1e01d5f651880b28f7872e2ee422
/lib/datasets/decoder.py
61942440dee614f9bf01216b369f6c62f6924982
[ "Apache-2.0" ]
permissive
CV-IP/mgma
5b06ec149bfb6f31a0e638676d633e1f454e790b
4007b9b0a86b3b926bb7de6a017679b58ea319cf
refs/heads/main
2023-06-19T09:25:23.464106
2021-07-18T17:00:47
2021-07-18T17:00:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,468
py
# Code adapted from: # https://github.com/facebookresearch/SlowFast import math import numpy as np import random import torch import torchvision.io as io def temporal_sampling(frames, start_idx, end_idx, num_samples): """ Given the start and end frame index, sample num_samples frames between the start and end with equal interval. Args: frames (tensor): a tensor of video frames, dimension is `num video frames` x `channel` x `height` x `width`. start_idx (int): the index of the start frame. end_idx (int): the index of the end frame. num_samples (int): number of frames to sample. Returns: frames (tersor): a tensor of temporal sampled video frames, dimension is `num clip frames` x `channel` x `height` x `width`. """ index = torch.linspace(start_idx, end_idx, num_samples) index = torch.clamp(index, 0, frames.shape[0] - 1).long() frames = torch.index_select(frames, 0, index) return frames def get_start_end_idx(video_size, clip_size, clip_idx, num_clips): """ Sample a clip of size clip_size from a video of size video_size and return the indices of the first and last frame of the clip. If clip_idx is -1, the clip is randomly sampled, otherwise uniformly split the video to num_clips clips, and select the start and end index of clip_idx-th video clip. Args: video_size (int): number of overall frames. clip_size (int): size of the clip to sample from the frames. clip_idx (int): if clip_idx is -1, perform random jitter sampling. If clip_idx is larger than -1, uniformly split the video to num_clips clips, and select the start and end index of the clip_idx-th video clip. num_clips (int): overall number of clips to uniformly sample from the given video for testing. Returns: start_idx (int): the start frame index. end_idx (int): the end frame index. """ delta = max(video_size - clip_size, 0) if clip_idx == -1: # Random temporal sampling. start_idx = random.uniform(0, delta) else: # Uniformly sample the clip with the given index. start_idx = delta * clip_idx / num_clips end_idx = start_idx + clip_size - 1 return start_idx, end_idx def pyav_decode_stream( container, start_pts, end_pts, stream, stream_name, buffer_size=0 ): """ Decode the video with PyAV decoder. Args: container (container): PyAV container. start_pts (int): the starting Presentation TimeStamp to fetch the video frames. end_pts (int): the ending Presentation TimeStamp of the decoded frames. stream (stream): PyAV stream. stream_name (dict): a dictionary of streams. For example, {"video": 0} means video stream at stream index 0. buffer_size (int): number of additional frames to decode beyond end_pts. Returns: result (list): list of frames decoded. max_pts (int): max Presentation TimeStamp of the video sequence. """ # Seeking in the stream is imprecise. Thus, seek to an ealier PTS by a # margin pts. margin = 1024 seek_offset = max(start_pts - margin, 0) container.seek(seek_offset, any_frame=False, backward=True, stream=stream) frames = {} buffer_count = 0 max_pts = 0 for frame in container.decode(**stream_name): max_pts = max(max_pts, frame.pts) if frame.pts < start_pts: continue if frame.pts <= end_pts: frames[frame.pts] = frame else: buffer_count += 1 frames[frame.pts] = frame if buffer_count >= buffer_size: break result = [frames[pts] for pts in sorted(frames)] return result, max_pts def torchvision_decode( video_handle, sampling_rate, num_frames, clip_idx, video_meta, num_clips=10, target_fps=30, modalities=("visual",), max_spatial_scale=0, ): """ If video_meta is not empty, perform temporal selective decoding to sample a clip from the video with TorchVision decoder. If video_meta is empty, decode the entire video and update the video_meta. Args: video_handle (bytes): raw bytes of the video file. sampling_rate (int): frame sampling rate (interval between two sampled frames). num_frames (int): number of frames to sample. clip_idx (int): if clip_idx is -1, perform random temporal sampling. If clip_idx is larger than -1, uniformly split the video to num_clips clips, and select the clip_idx-th video clip. video_meta (dict): a dict contains VideoMetaData. Details can be found at `pytorch/vision/torchvision/io/_video_opt.py`. num_clips (int): overall number of clips to uniformly sample from the given video. target_fps (int): the input video may has different fps, convert it to the target video fps. modalities (tuple): tuple of modalities to decode. Currently only support `visual`, planning to support `acoustic` soon. max_spatial_scale (int): the maximal resolution of the spatial shorter edge size during decoding. Returns: frames (tensor): decoded frames from the video. fps (float): the number of frames per second of the video. decode_all_video (bool): if True, the entire video was decoded. """ # Convert the bytes to a tensor. video_tensor = torch.from_numpy(np.frombuffer(video_handle, dtype=np.uint8)) decode_all_video = True video_start_pts, video_end_pts = 0, -1 # The video_meta is empty, fetch the meta data from the raw video. if len(video_meta) == 0: # Tracking the meta info for selective decoding in the future. meta = io._probe_video_from_memory(video_tensor) # Using the information from video_meta to perform selective decoding. video_meta["video_timebase"] = meta.video_timebase video_meta["video_numerator"] = meta.video_timebase.numerator video_meta["video_denominator"] = meta.video_timebase.denominator video_meta["has_video"] = meta.has_video video_meta["video_duration"] = meta.video_duration video_meta["video_fps"] = meta.video_fps video_meta["audio_timebas"] = meta.audio_timebase video_meta["audio_numerator"] = meta.audio_timebase.numerator video_meta["audio_denominator"] = meta.audio_timebase.denominator video_meta["has_audio"] = meta.has_audio video_meta["audio_duration"] = meta.audio_duration video_meta["audio_sample_rate"] = meta.audio_sample_rate fps = video_meta["video_fps"] if ( video_meta["has_video"] and video_meta["video_denominator"] > 0 and video_meta["video_duration"] > 0 ): # try selective decoding. decode_all_video = False clip_size = sampling_rate * num_frames / target_fps * fps start_idx, end_idx = get_start_end_idx( fps * video_meta["video_duration"], clip_size, clip_idx, num_clips ) # Convert frame index to pts. pts_per_frame = video_meta["video_denominator"] / fps video_start_pts = int(start_idx * pts_per_frame) video_end_pts = int(end_idx * pts_per_frame) # Decode the raw video with the tv decoder. v_frames, _ = io._read_video_from_memory( video_tensor, seek_frame_margin=1.0, read_video_stream="visual" in modalities, video_width=0, video_height=0, video_min_dimension=max_spatial_scale, video_pts_range=(video_start_pts, video_end_pts), video_timebase_numerator=video_meta["video_numerator"], video_timebase_denominator=video_meta["video_denominator"], ) if v_frames.shape == torch.Size([0]): # failed selective decoding decode_all_video = True video_start_pts, video_end_pts = 0, -1 v_frames, _ = io._read_video_from_memory( video_tensor, seek_frame_margin=1.0, read_video_stream="visual" in modalities, video_width=0, video_height=0, video_min_dimension=max_spatial_scale, video_pts_range=(video_start_pts, video_end_pts), video_timebase_numerator=video_meta["video_numerator"], video_timebase_denominator=video_meta["video_denominator"], ) return v_frames, fps, decode_all_video def pyav_decode( container, sampling_rate, num_frames, clip_idx, num_clips=10, target_fps=30 ): """ Convert the video from its original fps to the target_fps. If the video support selective decoding (contain decoding information in the video head), the perform temporal selective decoding and sample a clip from the video with the PyAV decoder. If the video does not support selective decoding, decode the entire video. Args: container (container): pyav container. sampling_rate (int): frame sampling rate (interval between two sampled frames. num_frames (int): number of frames to sample. clip_idx (int): if clip_idx is -1, perform random temporal sampling. If clip_idx is larger than -1, uniformly split the video to num_clips clips, and select the clip_idx-th video clip. num_clips (int): overall number of clips to uniformly sample from the given video. target_fps (int): the input video may has different fps, convert it to the target video fps before frame sampling. Returns: frames (tensor): decoded frames from the video. Return None if the no video stream was found. fps (float): the number of frames per second of the video. decode_all_video (bool): If True, the entire video was decoded. """ # Try to fetch the decoding information from the video head. Some of the # videos does not support fetching the decoding information, for that case # it will get None duration. fps = float(container.streams.video[0].average_rate) frames_length = container.streams.video[0].frames duration = container.streams.video[0].duration if duration is None: # If failed to fetch the decoding information, decode the entire video. decode_all_video = True video_start_pts, video_end_pts = 0, math.inf else: # Perform selective decoding. decode_all_video = False start_idx, end_idx = get_start_end_idx( frames_length, sampling_rate * num_frames / target_fps * fps, clip_idx, num_clips, ) timebase = duration / frames_length video_start_pts = int(start_idx * timebase) video_end_pts = int(end_idx * timebase) frames = None # If video stream was found, fetch video frames from the video. if container.streams.video: video_frames, max_pts = pyav_decode_stream( container, video_start_pts, video_end_pts, container.streams.video[0], {"video": 0}, ) container.close() frames = [frame.to_rgb().to_ndarray() for frame in video_frames] frames = torch.as_tensor(np.stack(frames)) return frames, fps, decode_all_video def decode( container, sampling_rate, num_frames, clip_idx=-1, num_clips=10, video_meta=None, target_fps=30, backend="pyav", max_spatial_scale=0, ): """ Decode the video and perform temporal sampling. Args: container (container): pyav container. sampling_rate (int): frame sampling rate (interval between two sampled frames). num_frames (int): number of frames to sample. clip_idx (int): if clip_idx is -1, perform random temporal sampling. If clip_idx is larger than -1, uniformly split the video to num_clips clips, and select the clip_idx-th video clip. num_clips (int): overall number of clips to uniformly sample from the given video. video_meta (dict): a dict contains VideoMetaData. Details can be find at `pytorch/vision/torchvision/io/_video_opt.py`. target_fps (int): the input video may have different fps, convert it to the target video fps before frame sampling. backend (str): decoding backend includes `pyav` and `torchvision`. The default one is `pyav`. max_spatial_scale (int): keep the aspect ratio and resize the frame so that shorter edge size is max_spatial_scale. Only used in `torchvision` backend. Returns: frames (tensor): decoded frames from the video. """ # Currently support two decoders: 1) PyAV, and 2) TorchVision. assert clip_idx >= -1, "Not valied clip_idx {}".format(clip_idx) try: if backend == "pyav": frames, fps, decode_all_video = pyav_decode( container, sampling_rate, num_frames, clip_idx, num_clips, target_fps, ) elif backend == "torchvision": frames, fps, decode_all_video = torchvision_decode( container, sampling_rate, num_frames, clip_idx, video_meta, num_clips, target_fps, ("visual",), max_spatial_scale, ) else: raise NotImplementedError( "Unknown decoding backend {}".format(backend) ) except Exception as e: print("Failed to decode by {} with exception: {}".format(backend, e)) return None # Return None if the frames was not decoded successfully. if frames is None or frames.size(0) == 0: return None clip_sz = sampling_rate * num_frames / target_fps * fps start_idx, end_idx = get_start_end_idx( frames.shape[0], clip_sz, clip_idx if decode_all_video else 0, num_clips if decode_all_video else 1, ) # Perform temporal sampling from the decoded video. frames = temporal_sampling(frames, start_idx, end_idx, num_frames) return frames
[ "zhenshengshi@gmail.com" ]
zhenshengshi@gmail.com
2241a4a393031facd3ede7fd7fd26b94149db3f8
46ce7046c5b3d33c12abda3f82002145b433884e
/macro.py
f19380873974c8ee001e2252503b8d40028f9197
[]
no_license
htsrjdrouse/labbot_pcr
f5386bfef8891007b4d57b11a1e1da97d8a84c0a
ec54996e0f60b0c593835e36f016c8e449d719f2
refs/heads/master
2023-08-21T21:39:31.565620
2020-09-10T03:14:11
2020-09-10T03:14:11
285,470,984
0
0
null
null
null
null
UTF-8
Python
false
false
6,765
py
#runeachmacrocmd(i,dser,aser) def runeachmacrocmd(cmd,dser,aser): sim = 0 if len(cmd)>0: if re.match("^G1",cmd): gss = re.split("_", cmd) gcodecmd = gss[0] tme = gss[1] if float(tme) < 0.2: tme = str(0.2) if sim == 0: #sersmoothie.readlines() dser.write(gcodecmd+"\r\n") time.sleep(float(tme)) gg =dser.readlines() upublisher(cmd) else: print(gcodecmd) print(tme) if re.match("^G28",cmd): gss = re.split("_", cmd) gcodecmd = gss[0] tme = gss[1] print("sim is"+str(sim)) if sim == 0: #sersmoothie.readlines() dser.write(gcodecmd+"\r\n") time.sleep(float(tme)) gg =dser.readlines() upublisher(cmd) else: print(gcodecmd) print(tme) if re.match("^M114",cmd): upublisher(cmd) if sim == 0: gg = getposition(dser) upublisher(gg) time.sleep(0.2) else: print(cmd) print("1") if re.match("^[wash|waste|pcv].*", cmd): microfluidic(cmd,aser) if re.match("^//",cmd): upublisher(cmd) def putmacrolinestogether(reformatmacro): macrorunready = [] for i in reformatmacro: if isinstance(i, list): for j in i: macrorunready.append(j) else: macrorunready.append(i) return macrorunready def tmecalc(gcodebatch): mesg = readnxjson() coordlog = readschedularjson() try: X = coordlog['X'][len(coordlog['X'])-1] except: X = mesg['currcoord']['X'] try: Y = coordlog['Y'][len(coordlog['Y'])-1] except: Y = mesg['currcoord']['Y'] try: Z = coordlog['Z'][len(coordlog['Z'])-1] except: Z = mesg['currcoord']['Z'] try: E = coordlog['E'][len(coordlog['E'])-1] except: E = mesg['currcoord']['E'] tmln = [] b = [] tim = 0 poscmds = [] ct = 0 for i in gcodebatch: i = re.sub("\n|\r", "", i) dt = {} #G1 F1800.000 E1.00000 #here I need to have a conditional if to separate non gcodes from gcodes if re.match('^G1', i): if re.match("^.*_", i): cc = re.split("_", i) ci = cc[0] tt = cc[1] else: ci = i tt = 0 i = ci if re.match('^.*F.*', i): df = re.match('^.*F(.*)$', i) abf = re.sub('[ |X|x|Y|y|Z|z|E|e].*', '', df.group(1)) pf = float(abf) if pf > 0: F = pf if re.match('^.*[Z|X|Y|E]', i): dt['F'] = F ct = ct + 1 dt['ct'] = ct pe = 0 px = 0 py = 0 pz = 0 if re.match('^.*E', i): d = re.match('^.*E(.*)', i) abe = re.sub('[ |X|x|Y|y|Z|z|F|f].*', '', d.group(1)) pe = float(abe) dt['diffe'] = abs(E-pe) E = pe dt['E'] = pe if re.match('^.*X', i): dx = re.match('^.*X(.*)', i) abx = re.sub('[ |E|e|Y|y|Z|z|F|f].*', '', dx.group(1)) px = float(abx) dt['diffx'] = abs(X-px) X = px dt['X'] = px if re.match('^.*Y', i): dy = re.match('^.*Y(.*)', i) aby = re.sub('[ |E|e|X|x|Z|z|F|f].*', '', dy.group(1)) py = float(aby) dt['diffy'] = abs(Y-py) Y = py dt['Y'] = py if re.match('^.*Z', i): dz = re.match('^.*Z(.*)', i) abz = re.sub('[ |E|e|X|x|Y|y|F|f].*', '', dz.group(1)) pz = float(abz) dt['diffz'] = abs(Z-pz) Z = pz dt['Z'] = pz dt['cmd'] = i comp = {} try: comp['diffx'] = dt['diffx'] except: pass try: comp['diffy'] = dt['diffy'] except: pass try: comp['diffz'] = dt['diffz'] except: pass try: comp['diffe'] = dt['diffe'] except: pass sorted_comp = sorted(comp.items(), key=operator.itemgetter(1)) dt['maxdiff'] = sorted_comp[int(len(comp)-1)][1] if dt['F'] > 0: dt['time'] = (dt['maxdiff'] / dt['F']) * 60 else: dt['time'] = 0 if tt > 0: dt['time'] = float(tt) tmln.append(i+"_"+str(dt['time'])) tim = tim + dt['time'] poscmds.append(dt) else: tmln.append(i) delaytme = int(tim)+1 return tmln def gcodesplitter(gcr): coordlog = readschedularjson() gtba = [] ba = [] bba = [] tba = [] fl = 0 for i in gcr: if re.match('^G', i): try: cc = re.split('_', i) ci = cc[0] ti = cc[1] except: ti = 0 coord = jogcoordparser(ci) if 'X' in coord: coordlog['X'].append(coord['X']) if 'Y' in coord: coordlog['Y'].append(coord['Y']) if 'Z' in coord: coordlog['Z'].append(coord['Z']) if 'E' in coord: coordlog['E'].append(coord['E']) writeschedularjson(coordlog) gtba.append(i) fl = 1 else: fl = 0 if fl == 1: bba.append(i) if fl == 0: if len(bba)>0: tmln = tmecalc(bba) bba = [] tba.append(tmln) tba.append(i) if i == gcr[len(gcr)-1]: if len(bba)>0 and re.match('^G', i): tmln = tmecalc(bba) tba.append(tmln) reformatmacro = tba return reformatmacro def readtaskjobjson(): pcv = open('labbot.programtorun.json') pcvdata = json.load(pcv) pcv.close() return pcvdata def writeschedularjson(dat): pcvdatar = json.dumps(dat) pcv = open('schedular.json','w') pcv.write(pcvdatar) pcv.close() def runmacro(dser,aser): coordlog = {} coordlog['X'] =[] coordlog['Y'] =[] coordlog['Z'] =[] coordlog['E'] =[] #resets teh schedular writeschedularjson(coordlog) taskjob = readtaskjobjson() #reformatmacro = gcodesplitter(taskjob['data'][str(taskjob['track'])]) reformatmacro = gcodesplitter(taskjob['program']) macroready = putmacrolinestogether(reformatmacro) for i in macroready: runeachmacrocmd(i,dser,aser) def readschedularjson(): pcv = open('schedular.json') pcvdata = json.load(pcv) pcv.close() return pcvdata
[ "rjdrouse@htsresources.com" ]
rjdrouse@htsresources.com
1ed28b7939bf6d05618bd755d4ec4e877c264f2e
99e20672172fb118c2529d85f277134049d433c0
/ex23.py
c998a43bc2ce5b3a6814700b3ce75d78b54d7070
[]
no_license
jamesmacak/learn-python
7b6e7fa50b9723261f6081baa50658cc10c01900
b19902de84e0bbd63162623e57336b62878074e1
refs/heads/master
2020-04-13T12:14:32.836765
2019-02-08T02:37:47
2019-02-08T02:37:47
163,196,677
1
0
null
null
null
null
UTF-8
Python
false
false
543
py
import sys script, input_encoding, error = sys.argv def main(language_file, encoding, errors): line = language_file.readline() if line: print_line(line, encoding, errors) return main(language_file, encoding, errors) def print_line(line, encoding, errors): next_lang = line.strip() raw_bytes = next_lang.encode(encoding, errors=errors) cooked_string = raw_bytes.decode(encoding, errors=errors) print(raw_bytes, "<===>", cooked_string) languages = open("languages.txt", encoding="utf-8") main(languages, input_encoding, error)
[ "26549968+jamesmacak@users.noreply.github.com" ]
26549968+jamesmacak@users.noreply.github.com
f7577561d9f52a1764bc894694c3c2e5d6eeffb2
c910f446a630c2d8a6f20c98b0e40c59edd35453
/model/processing/utils/plot_WRF.py
946069585359948e46cb264dbf1047b8469e1741
[]
no_license
percylink/wind-thesis
efd94f92cc776e9e55f877eb6a3dc7d2fb5c3bfe
d05c75e5cfb46324d591707bdd034105ed1df7d5
refs/heads/master
2020-05-19T22:27:20.032299
2015-01-04T20:21:25
2015-01-04T20:21:25
22,615,603
0
0
null
null
null
null
UTF-8
Python
false
false
20,807
py
''' PAL 5/8/2013 mod Aug 2014 make WRF plots in map perspective ''' import cPickle import datetime import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from mpl_toolkits.basemap import Basemap import numpy as np import os from scipy.interpolate import interp2d from scipy.io import netcdf as nc import shutil import sys class Plotter: def __init__(self, file_in=None, file2=None, plot_interval=1, run_name=None, reg_diff='reg', domain='d01'): # instance parameters self.plot_interval = plot_interval self.domain = domain if run_name is None: raise Exception('run_name is a required parameter') self.run_name = run_name if (reg_diff != 'reg') and (reg_diff != 'diff'): raise Exception('reg_diff must be "reg" or "diff"') self.reg_diff = reg_diff # whether netcdf file is regular model output, or diff of 2 runs self.root_dir = os.path.join(os.environ['SCRATCH'], 'WRF', 'output', self.run_name) if run_name[:2] == 'CA': self.hr_diff = 8 elif run_name[:2] == 'KS': self.hr_diff = 7 elif run_name[:2] == 'DK': self.hr_diff = -1 print "file:", file_in, ", plot_interval:", self.plot_interval, ", run_name:", self.run_name, ", reg_diff:", reg_diff, ", domain:", self.domain # physical parameters self.latent_heat_evap = 2.27e6 # J/kg # open netcdf file if file_in is None: raise Exception('file_in is a required parameter') self.f = nc.netcdf_file(os.path.join(self.root_dir, file_in), 'r') if self.reg_diff == 'diff': self.f_abs = nc.netcdf_file(os.path.join(self.root_dir, file2), 'r') # file with absolute magnitudes for diff case # get min/max lat and lon self.minlon = np.floor(np.min(self.f.variables['XLONG'][0,:,:]/10.))*10. self.maxlon = np.ceil(np.max(self.f.variables['XLONG'][0,:,:]/10.))*10. self.minlat = np.floor(np.min(self.f.variables['XLAT'][0,:,:]/10.))*10. self.maxlat = np.ceil(np.max(self.f.variables['XLAT'][0,:,:]/10.))*10. # list of string times self.times = [''.join(self.f.variables['Times'][ii,:]) \ for ii in xrange(self.f.variables['Times'].shape[0])] # subsample masks for winds self.subx = np.arange(0,getattr(self.f,'WEST-EAST_GRID_DIMENSION')-1,3) self.suby = np.arange(0,getattr(self.f,'SOUTH-NORTH_GRID_DIMENSION')-1,3) self.get_pressure_levels() # get landmask if self.reg_diff == 'reg': self.landmask = self.f.variables['LANDMASK'][0, :, :] elif self.reg_diff == 'diff': self.landmask = self.f_abs.variables['LANDMASK'][0, :, :] def get_pressure_levels(self): if self.reg_diff == 'reg': self.pressures = self.f.variables['PB'][0,:,0,0] # background pressure profile elif self.reg_diff == 'diff': self.pressures = self.f_abs.variables['PB'][0,:,0,0] # background pressure profile self.maskP = {} self.P = {} # get index for ~950 hPa, ~850 hPa, ~500 hPa on unstaggered grid dif = abs(self.pressures-95000.) self.maskP['950'] = dif.argmin() # index of minimum difference self.P['950'] = self.pressures[self.maskP['950']]/100. # actual pressure near 950, in hPa dif = abs(self.pressures-85000.) self.maskP['850'] = dif.argmin() # index of minimum difference self.P['850'] = self.pressures[self.maskP['850']]/100. # actual pressure near 850, in hPa dif = abs(self.pressures-50000.) self.maskP['500'] = dif.argmin() # index of minimum difference self.P['500'] = self.pressures[self.maskP['500']]/100. # actual pressure near 500, in hPa # get index for ~950 hPa, ~850 hPa, ~500 hPa on vertically staggered grid if self.reg_diff == 'reg': self.eta = self.f.variables['ZNW'][0,:] elif self.reg_diff == 'diff': self.eta = self.f_abs.variables['ZNW'][0,:] dif = abs(self.eta-0.95) self.maskP['950s'] = dif.argmin() # index of minimum difference self.P['950s'] = self.eta[self.maskP['950s']]*1000. # actual pressure near 950, in hPa dif = abs(self.eta-0.85) self.maskP['850s'] = dif.argmin() # index of minimum difference self.P['850s'] = self.eta[self.maskP['850s']]*1000. # actual pressure near 850, in hPa dif = abs(self.eta-0.5) self.maskP['500s'] = dif.argmin() # index of minimum difference self.P['500s'] = self.eta[self.maskP['500s']]*1000. # actual pressure near 500, in hPa def setup_map(self, subplot_index=None, fig=None): f = self.f a = fig.add_subplot(subplot_index) m = Basemap(width=f.DX*1.2*getattr(f,'WEST-EAST_GRID_DIMENSION'),\ height=f.DY*1.2*getattr(f,'SOUTH-NORTH_GRID_DIMENSION'),resolution='l',\ projection='lcc',lat_1=f.TRUELAT1,lat_2=f.TRUELAT2,lat_0=f.CEN_LAT,lon_0=f.CEN_LON) return a, m def decorate_map(self, m=None, a=None, h=None, fig=None): m.drawparallels(np.arange(self.minlat, self.maxlat, 5)) m.drawmeridians(np.arange(self.minlon, self.maxlon, 5)) m.drawcoastlines() m.drawstates() fig.colorbar(h, ax=a) def make_filename(self, ii=None, variable=None): if variable == 'smois': fname = variable+'.png' else: fname = variable+'_'+self.times[ii]+'.png' if self.reg_diff == 'reg': file_out = os.path.join(self.plot_dir, variable, fname) elif self.reg_diff == 'diff': file_out = os.path.join(self.plot_dir, variable, 'diffCTRL_'+fname) return file_out def plot_PH(self, fig=None, subplot_index=None, pressure_level=None, contour_int=None, ii=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f if type(pressure_level) is not str: pressure_level = str(int(pressure_level)) x,y = m(f.variables['XLONG'][0, :, :],f.variables['XLAT'][0, :, :]) tmp = f.variables['PH'][ii, self.maskP[pressure_level], :, :] + f.variables['PHB'][ii, self.maskP[pressure_level], :, :] #if contour_int is not None: # h = m.pcolormesh(x, y, tmp) #, contour_int) #else: h = m.pcolormesh(x, y, tmp) a.set_ylabel(str(round(self.P[pressure_level]))+' hPa') a.set_title('geopotential') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_wind(self, fig=None, subplot_index=None, pressure_level=None, contour_int=None, ii=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f if type(pressure_level) is not str: pressure_level = str(int(pressure_level)) x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) xu,yu = m(f.variables['XLONG_U'][0,:,:],f.variables['XLAT_U'][0,:,:]) xv,yv = m(f.variables['XLONG_V'][0,:,:],f.variables['XLAT_V'][0,:,:]) ui = np.mean([f.variables['U'][ii, self.maskP[pressure_level], :, :-1], f.variables['U'][ii, self.maskP[pressure_level], :, 1:]], axis=0) vi = np.mean([f.variables['V'][ii, self.maskP[pressure_level], :-1, :], f.variables['V'][ii, self.maskP[pressure_level], 1:, :]], axis=0) #wspeed = (ui**2+vi**2)**0.5 #h = m.contourf(x, y, wspeed, contour_int) #limits = [np.min(ui)]+range(-8, 9)+[np.max(ui)] h = m.pcolormesh(x, y, ui) #, limits) ur,vr = m.rotate_vector(ui, vi, f.variables['XLONG'][0,:,:], f.variables['XLAT'][0,:,:]) m.quiver(x[self.suby, :][:, self.subx],y[self.suby, :][:, self.subx], ur[self.suby, :][:, self.subx], vr[self.suby, :][:, self.subx]) a.set_title('wind, m/s '+str(round(self.P[pressure_level]))+' hPa') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_T(self, fig=None, subplot_index=None, pressure_level=None, contour_int=None, ii=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f if type(pressure_level) is not str: pressure_level = str(int(pressure_level)) x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) tmp = f.variables['T'][ii, self.maskP[pressure_level], :, :] + f.variables['T00'][ii] h = m.pcolormesh(x,y,tmp) a.set_title('pot. temp. at '+str(round(self.P[pressure_level]))+' hPa') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_q(self, fig=None, subplot_index=None, pressure_level=None, contour_int=None, ii=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f if type(pressure_level) is not str: pressure_level = str(int(pressure_level)) x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) tmp = f.variables['QVAPOR'][ii, self.maskP[pressure_level], :, :] h = m.pcolormesh(x,y,tmp) a.set_title('q at '+str(round(self.P[pressure_level]))+' hPa') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_latent(self, fig=None, subplot_index=None, contour_int=None, ii=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) tmp = f.variables['QFX'][ii, :, :] * self.latent_heat_evap if contour_int is not None: h = m.pcolormesh(x,y,tmp,contour_int) else: h = m.pcolormesh(x,y,tmp) a.set_title('LH, W/m2') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_sensible(self, fig=None, subplot_index=None, contour_int=None, ii=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) tmp = f.variables['HFX'][ii, :, :] if contour_int is not None: h = m.pcolormesh(x,y,tmp,contour_int) else: h = m.pcolormesh(x,y,tmp) a.set_title('SH, W/m2') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_smois_diff(self, fig=None, subplot_index=None, integrated=True, contour_int=None): a, m = self.setup_map(subplot_index=subplot_index, fig=fig) f = self.f x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) smois_diff = f.variables['SMOIS'][-1,:,:,:]-f.variables['SMOIS'][0,:,:,:] if integrated: tmp = smois_diff.sum(axis=0) else: tmp = smois_diff[0, :, :] if contour_int is not None: h = m.pcolormesh(x,y,tmp,contour_int) else: h = m.pcolormesh(x,y,tmp) if integrated: a.set_title('d(SMOIS), column') else: a.set_title('d(SMOIS), surface') self.decorate_map(m=m, a=a, h=h, fig=fig) def plot_PH_winds(self, ii=None): fig = plt.figure() self.plot_PH(fig=fig, subplot_index=321, pressure_level='950', contour_int=20, ii=ii) self.plot_PH(fig=fig, subplot_index=323, pressure_level='850', contour_int=20, ii=ii) self.plot_PH(fig=fig, subplot_index=325, pressure_level='500', contour_int=20, ii=ii) self.plot_wind(fig=fig, subplot_index=322, pressure_level='950', ii=ii) self.plot_wind(fig=fig, subplot_index=324, pressure_level='850', ii=ii) self.plot_wind(fig=fig, subplot_index=326, pressure_level='500', ii=ii) fig.suptitle(self.times[ii]) file_out = self.make_filename(ii=ii, variable='PH_winds') print file_out fig.savefig(file_out) plt.close(fig) def plot_wind_only(self, ii=None): fig = plt.figure() self.plot_wind(fig=fig, subplot_index=131, pressure_level='950', ii=ii) self.plot_wind(fig=fig, subplot_index=132, pressure_level='850', ii=ii) self.plot_wind(fig=fig, subplot_index=133, pressure_level='500', ii=ii) local_hour = int(self.times[ii][11:13])-self.hr_diff if local_hour < 0: local_hour += 24 fig.set_size_inches(15,5) fig.suptitle('color = u-wind '+self.times[ii]+', local hour '+str(local_hour)) file_out = self.make_filename(ii=ii, variable='winds') print file_out fig.savefig(file_out) plt.close(fig) def plot_wind_surface(self, ii=None): fig= plt.figure() ax = [] vmin = 0 if self.reg_diff == 'reg': vmax = 10 cmap = plt.get_cmap('jet') elif self.reg_diff == 'diff': vmax = 4 cmap = plt.get_cmap('GnBu') for i_lev in xrange(3): a, m = self.setup_map(subplot_index=131+i_lev, fig=fig) ax.append(a) f = self.f # get x and y coords x,y = m(f.variables['XLONG'][0,:,:], f.variables['XLAT'][0,:,:]) xu,yu = m(f.variables['XLONG_U'][0,:,:], f.variables['XLAT_U'][0,:,:]) xv,yv = m(f.variables['XLONG_V'][0,:,:], f.variables['XLAT_V'][0,:,:]) # make approximate x and y grids that are regular (ignore slight variations, which are usually < 10 m) x_row = np.mean(x, axis=0) x_approx = np.tile(x_row, (x.shape[0], 1)) y_col = np.mean(y, axis=1) y_approx = np.tile(np.array([y_col]).T, (1, y.shape[1])) # get u and v at center grid points ui = np.mean([f.variables['U'][ii, i_lev, :, :-1], f.variables['U'][ii, i_lev, :, 1:]], axis=0) vi = np.mean([f.variables['V'][ii, i_lev, :-1, :], f.variables['V'][ii, i_lev, 1:, :]], axis=0) # rotate vectors to x-y projection ur,vr = m.rotate_vector(ui, vi, f.variables['XLONG'][0,:,:], f.variables['XLAT'][0,:,:]) speed = (ur**2 + vr**2)**0.5 # plot h = m.pcolormesh(x, y, speed, vmin=vmin, vmax=vmax, cmap=cmap) m.streamplot(x_approx, y_approx, ur, vr, color='purple') a.set_title('level '+str(i_lev)) self.decorate_map(m=m, a=a, h=h, fig=fig) a.contour(x, y, self.landmask, [.5], colors='k') local_hour = int(self.times[ii][11:13])-self.hr_diff if local_hour < 0: local_hour += 24 fig.set_size_inches(20,5) fig.suptitle('wind (m/s), local hour '+str(local_hour)) file_out = self.make_filename(ii=ii, variable='winds_surface') print file_out fig.savefig(file_out) #plt.show() #1/0 plt.close(fig) def plot_PH_only(self, ii=None): fig = plt.figure() self.plot_PH(fig=fig, subplot_index=131, pressure_level='950', ii=ii) self.plot_PH(fig=fig, subplot_index=132, pressure_level='850', ii=ii) self.plot_PH(fig=fig, subplot_index=133, pressure_level='500', ii=ii) fig.suptitle(self.times[ii]) file_out = self.make_filename(ii=ii, variable='PH') print file_out fig.savefig(file_out) plt.close(fig) def plot_T_q(self, ii=None): fig = plt.figure() self.plot_T(fig=fig, subplot_index=221, pressure_level='950', ii=ii) self.plot_T(fig=fig, subplot_index=223, pressure_level='850', ii=ii) self.plot_q(fig=fig, subplot_index=222, pressure_level='950', ii=ii) self.plot_q(fig=fig, subplot_index=224, pressure_level='850', ii=ii) fig.suptitle(self.times[ii]) file_out = self.make_filename(ii=ii, variable='T_q') print file_out fig.savefig(file_out) plt.close(fig) def plot_T_surface(self, ii=None): fig= plt.figure() ax = [] for i_lev in xrange(2): a, m = self.setup_map(subplot_index=121+i_lev, fig=fig) ax.append(a) f = self.f x,y = m(f.variables['XLONG'][0,:,:], f.variables['XLAT'][0,:,:]) if i_lev == 0: T = f.variables['TSK'][ii, :, :] level = 'skin' elif i_lev == 1: T = f.variables['T2'][ii, :, :] level = '2 m' h = m.pcolormesh(x, y, T) a.set_title(level+' temperature') self.decorate_map(m=m, a=a, h=h, fig=fig) #a.contour(x, y, self.landmask, [0.99], colors='k') local_hour = int(self.times[ii][11:13])-self.hr_diff if local_hour < 0: local_hour += 24 fig.set_size_inches(10,5) fig.suptitle('surface temperature, local hour '+str(local_hour)) file_out = self.make_filename(ii=ii, variable='T_surface') print file_out fig.savefig(file_out) #plt.show() #1/0 plt.close(fig) def plot_sfc_flx(self, ii=None): fig = plt.figure() self.plot_latent(fig=fig, subplot_index=121, ii=ii) self.plot_sensible(fig=fig, subplot_index=122, ii=ii) fig.set_size_inches(15,7) fig.suptitle(self.times[ii]) file_out = self.make_filename(ii=ii, variable='sfc_flx') print file_out fig.savefig(file_out) plt.close(fig) def plot_smois_diff_driver(self): fig = plt.figure() self.plot_smois_diff(fig=fig, subplot_index=121, integrated=False) self.plot_smois_diff(fig=fig, subplot_index=122, integrated=True) fig.set_size_inches(15,7) file_out = self.make_filename(variable='smois') print file_out fig.savefig(file_out) plt.close(fig) def plot_smois_init(self): fig = plt.figure() a, m = self.setup_map(subplot_index=111, fig=fig) f = self.f x,y = m(f.variables['XLONG'][0,:,:],f.variables['XLAT'][0,:,:]) smois_init = f.variables['SMOIS'][0,0,:,:].copy() # surface smois_masked = np.ma.masked_where(self.landmask == 0, smois_init) #contours = list(np.arange(0.08, 0.4, 0.04)) #if smois_init.min() < contours[0]: # contours = [smois_init.min()]+contours #if smois_init[smois_init < 1].max() > contours[-1]: # don't use 1 as max # contours = contours+[smois_init.max()] h = m.pcolormesh(x, y, smois_masked) #, contours) a.set_title('initial SMOIS, surface') self.decorate_map(m=m, a=a, h=h, fig=fig) #1/0 if not os.path.exists(os.path.join(self.plot_dir, 'smois')): os.mkdir(os.path.join(self.plot_dir, 'smois')) fig.savefig(os.path.join(self.plot_dir, 'smois', 'initial_smois.png')) def run(self, plot_list=[]): if not isinstance(plot_list, list): plot_list = [plot_list] # make output directories and call plotting functions plot_dir = os.path.join(self.root_dir, 'plots', self.domain) if not os.path.exists(plot_dir): os.makedirs(plot_dir) self.plot_dir = plot_dir if self.reg_diff == 'reg': self.plot_smois_init() for plot in plot_list: #if os.path.exists(os.path.join(plot_dir, plot)): # shutil.rmtree(os.path.join(plot_dir, plot)) #os.mkdir(os.path.join(plot_dir, plot)) if not os.path.exists(os.path.join(plot_dir, plot)): os.mkdir(os.path.join(plot_dir, plot)) if plot == 'smois': self.plot_smois_diff_driver() for ii in range(len(self.times))[0::self.plot_interval]: print self.times[ii] if plot == 'PH_winds': self.plot_PH_winds(ii=ii) elif plot == 'T_q': self.plot_T_q(ii=ii) elif plot == 'T_surface': self.plot_T_surface(ii=ii) elif plot == 'winds': self.plot_wind_only(ii=ii) elif plot == 'winds_surface': self.plot_wind_surface(ii=ii) elif plot == 'PH': self.plot_PH_only(ii=ii) elif plot == 'sfc_flx': self.plot_sfc_flx(ii=ii) #if ii==3: # 1/0 if __name__ == "__main__": if len(sys.argv) >= 2: file_in = sys.argv[1] else: raise Exception("Usage: python plot_WRF.py <wrfout file name>") if len(sys.argv) >2: plot_interval = int(sys.argv[2]) else: plot_interval = 1 p = Plotter(file_in=file_in, plot_interval=plot_interval) p.run(['winds', 'PH', 'T_q'])
[ "percy@Percys-MacBook-Pro.local" ]
percy@Percys-MacBook-Pro.local
d5a26391dd2100e00077808d2ee65ebf6939b9ce
d1449d0a1778ecc5eea24fa28e8541407345a740
/P02_P04_basics/python_building_functions_01_20200813.py
bc7bbfeab0398a4fb343af5553ffc4a6c605c58f
[]
no_license
EdvardsAm/RTR108_2020
7da518978ee26f4d0ab982f204b519ab987de8f8
58309d2fc13211ea2424e8c9098368218f997e8b
refs/heads/master
2020-12-23T13:42:50.845861
2020-08-19T10:57:13
2020-08-19T10:57:13
237,170,468
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
def print_lyrics(): print("Im a lumberjack, and Im okay.") print('I sleep all night and I work all day.')
[ "edvardsamelko@gmail.com" ]
edvardsamelko@gmail.com
ede762b0243f59ef13dba36398b3d9c0e2a4fcbe
63e6ed1f76daba3dc299edf4cd4b9714a7863804
/HW_8_3.py
d292ed5ff404f15ee799134b78668efcbcb8a67c
[]
no_license
lukowar/study
d0cc216113d78157113f6fa53f8a8e0b7f048ac0
6552495cd62786c70538774d23ec7a91b9539dcc
refs/heads/master
2020-12-26T10:18:48.128644
2020-03-12T00:53:23
2020-03-12T00:53:23
237,479,115
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
def shorten_to_date(long_date): return long_date.split(',')[0] print(shorten_to_date("Wed September 1, 3am"))
[ "arsen.lukovskyi@gmail.com" ]
arsen.lukovskyi@gmail.com
f9806c659eca0a8dfef49c696328b04316722b3f
38677ccd3951547c9eb0ec5e49026ee734fd3eea
/gupta_sim/linear_dyna.py
658a09413040cd2150bca5e933e7ec3e913f95f2
[]
no_license
PaulEcoffet/gupta_replay_model_master1_internship
40c449f1c5b18532071fa72e24531c15342e12de
2abc735dfa43a54fe50458ca6f7551e832506a91
refs/heads/master
2021-03-19T16:01:37.706135
2016-06-23T13:27:18
2016-06-23T13:27:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,844
py
# -*- coding: utf8 -*- from __future__ import print_function import numpy as np from Queue import PriorityQueue # From Sutton et al., 2012 ######################################################### # F numerical radius should be < 1 for convergence !!!! # # sum_inf alpha = inf # # sum_inf alpha**2 < inf # # alpha = alpha_0 * N_0 / (N_0 + t) ######################################################### gamma = 0.8 alpha_0 = 0.07 N_0 = 1000 def softmax(score, tau, straight_bias=False): """ get what action to do with a combination of a softmax and a straight bias adapted from Minija Tamosiunaite et al. (2008) if `straight_bias` is True. Note that I no longer use a straight bias which lead to weird behaviours and I train the agent in a TrainingEnvironment instead which is way better. The TrainingEnvironment was also used in Gupta et al. (2010) """ exp_score = np.exp(score/tau) assert (not np.any(exp_score == float("+inf"))) prob1 = exp_score/np.sum(exp_score) if straight_bias: prob2 = np.array([0.5, 0.183, 0.183, 0.0665, 0.0665, 0.01]) # Geometric sequence with u0 = 0.5, 2 * sum(u_i, i=1..(len(action)-1)/2) = 0.5 else: prob2 = prob1 res = np.random.choice(len(score), p=0.5*prob1+0.5*prob2) return res # TODO : Stop the day / nb_ep_per_day thing and move this logic in the environment def ep_lindyn_mg(env, theta, F, b, nb_day, nb_ep_per_day, pqueue_in=None, step=0, log=None): """ Does a linear dyna variation from Sutton et al. (2012) with replay. env - The environment to use theta - The weight vector to compute V(Phi) F - The transition tables from Phi to Phi', one per action b - A reward matrix which gives for each values of phi and an action the expected reward. For instance, if the 32 place cell is at the center of the environment, and action 8 is "going south", then because it's forbidden to go south at the center of the enviroment, b[32][8] will converge to -10. b is somewhat the Q(s, a) matrix. nb_day - number of "days" before ending the training. Days can also be understood as the number of replay sessions. nb_ep_per_day - number of time to do the task before going into "sleep mode". The task is done `nb_day` * `nb_ep_per_day` in total. replay_max - Number of experienced feature activations to replay before waking up. log - A list in which every place cells activation is recorded, along with the position of the agent and the position of the goal. While the agent sleeps, only the feature which is reactivated is logged. See Sutton et al. 2012 Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping for details about the algorithm (it is the algorithm 3 in the article). """ if pqueue_in: pqueue = pqueue_in else: pqueue = PriorityQueue() for day in range(nb_day): for episode in range(nb_ep_per_day): print ("day", day, ", episode", episode) if log is not None: log.append("session_begin") env.reinit() while not env.end: step += 1 alpha = alpha_0 * (N_0 + 1)/(N_0 + step) phi = env.get_features() #print("theta") #print(theta) q = np.array([-np.inf for i in env.action]) # Q of Q-learning for a in env.possible_actions(): # The impossible actions stay to -inf q[a] = np.inner(b[a], phi) + gamma * np.inner(theta.T, np.dot(F[a], phi)) a = softmax(q, 20, straight_bias=False) phi_n, r = env.do_action(a) delta = r + gamma * np.inner(theta, phi_n) - np.inner(theta, phi) theta = theta + alpha * delta * phi F[a] = F[a] + alpha * np.outer((phi_n - np.dot(F[a], phi)), phi) b[a] = b[a] + alpha * (r - np.inner(b[a], phi)) * phi for i in range(len(phi)): if phi[i] != 0: pqueue.put((-np.abs(delta * phi[i]), i)) has_replayed = False if log is not None: log.append([env.get_features(), np.copy(env.pos), np.copy(env.goals[0]), theta]) if env.p > 0: log.append("sleep") has_replayed = True # Replay p = env.p # Number of replay max while not pqueue.empty() and p > 0: unused_prio, i = pqueue.get() if log is not None: activation = np.zeros(env.pc.nb_place_cells) activation[i] = 1 log.append([activation, np.copy(env.pos), np.copy(env.goals[0]), theta]) for j in range(F.shape[2]): if np.any(F[:, i, j] != 0) or np.any(F[:, j, i] != 0): # Utilisation des lieux futurs possibles mais aussi lieux passées possibles, ne devrait pas gêner convergence #raw_input() delta = - np.inf for a in range(len(env.action)): cur = b[a][j] + gamma * np.inner(theta, F[a, j, :]) - theta[j] if cur > delta: delta = cur theta[j] = theta[j] + alpha * delta pqueue.put((-np.abs(delta), j)) p -= 1 if log is not None and has_replayed: log.append("end") return theta, b, F, pqueue, step
[ "ecoffet.paul@gmail.com" ]
ecoffet.paul@gmail.com