blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
e312fb490ae757aa717461c6ed782f2015e967f6
efa04e5831e6defadabf8dc8f506a415c54710f5
/visitstat/migrations/0001_initial.py
95e4fa3eb384fd44a5974ca48c978f06598def83
[]
no_license
fomalhaut88/django-visitstat
c3e9e7b6b9643474342e87ba065624602bd742c9
c642d6602e1e0bd4d786493a2a61cfa1dfa60b6c
refs/heads/master
2021-05-04T13:15:02.949612
2020-07-29T16:05:19
2020-07-29T16:05:19
120,310,020
0
0
null
null
null
null
UTF-8
Python
false
false
1,022
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2018-02-05 12:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Visit', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('datetime', models.DateTimeField()), ('ip', models.CharField(max_length=15)), ('method', models.CharField(max_length=6)), ('url', models.CharField(max_length=1000)), ('referer', models.CharField(blank=True, default=None, max_length=1000, null=True)), ('querystring', models.TextField(blank=True, default=None, null=True)), ('status', models.IntegerField()), ('reason', models.CharField(max_length=64)), ], ), ]
[ "a.khlebushchev@cashoff.ru" ]
a.khlebushchev@cashoff.ru
2cadfee2afa2e0b3e38f70d81d48f2c2bdfd4658
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5636311922769920_0/Python/Adipt/my_code4.py
47e9f815cf1aa2439e447299359df6fe1901dd12
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,251
py
t = int(raw_input().strip()) i = 0 while t>0: t-=1 i+=1 k, c, s = tuple(map(int, raw_input().strip().split())) """if c==1: if k>s: print "Case #%d:" %(i), "IMPOSSIBLE" continue else: print "Case #%d:" %(i), ' '.join(map(str, range(1, k+1))) continue elif s<(int(k/2)+(k%2)): print "Case #%d:" %(i), "IMPOSSIBLE" continue else: arr = ['2'] while s>0: temp = int(arr[-1])+2+2*(k**(c-1)) if temp<=(k**c): arr.append(str(temp)) s-=1 else: if temp == (k**c)+1: arr.append(str(temp-1)) break r = ' '.join(arr)""" if k>=s+c: print "Case #%d:" %i, "IMPOSSIBLE" continue elif k<=s: print "Case #%d:" %i, " ".join(map(str, range(1, k+1))) continue a = [] b = 1 d = 1 f = 1 while d<=s: e=c b = f while e>1: e-= 1 b = (b-1)*k+b+1 f+=1 a.append(str(b)) if f>=k: break a = ' '.join(a) print "Case #%d:" %(i), a
[ "alexandra1.back@gmail.com" ]
alexandra1.back@gmail.com
9aac6a17890049f6aa5499a52d28bd3164c3e9ff
fa6c05962e814b4d9cbb8f41ccf58229150ef9d6
/controllers/webswarm/asb/behavior_module.py
ed74f4a4e1e54371736b2b70ded8bd2c48f92a2e
[]
no_license
mikaelbr/SwarmWebots
86dc02ca6ee6403ed8ecd50e599e6f6fe4e7d017
7a66ff876a2fb338bf6b9cba11a8a3ddfe97a639
refs/heads/master
2023-08-30T04:58:13.102013
2012-04-20T11:24:50
2012-04-20T11:24:50
4,014,348
2
0
null
null
null
null
UTF-8
Python
false
false
1,273
py
""" A module used by the behavior controller. This is the base layer ment to be extended by different implementations. All layers must implement their own do() method. When either left or right wheel speed is set/altered, the reacted flag will be set, and the controller know that this layer has been executed (reacted). """ class BehaviorModule(object): def __init__(self): self.reacted = False self.robot = None self._left_wheel_speed = 0 self._right_wheel_speed = 0 def reset(self): self._left_wheel_speed = 0 self._right_wheel_speed = 0 self.reacted = False @property def left_wheel_speed(self): return self._left_wheel_speed @left_wheel_speed.setter def left_wheel_speed(self, value): self.reacted = True self._left_wheel_speed = value @property def right_wheel_speed(self): return self._right_wheel_speed @right_wheel_speed.setter def right_wheel_speed(self, value): self.reacted = True self._right_wheel_speed = value def do(self): """ Implementation method. Abstract in this case, but must be implementet by the sub classes. """ pass
[ "mikaelb@mikaelb.net" ]
mikaelb@mikaelb.net
e0aa72c3a4ebf1441caee7340dc892d5993aa0f8
57acf349a3438613baa1754551ddc1469aed7692
/Neural_network1_coursera/propagate.py
615a0bc4b133ce9dc5e5cddafcda66356b908e2f
[]
no_license
girish010789/Deep_learning.ai
4821df16bd982cb85fb05ac070b8509f34eccd3e
0693c9feaf6fb9bab8835086f7b2581b4e6f0c8c
refs/heads/master
2020-08-05T20:35:51.288073
2019-10-04T00:16:29
2019-10-04T00:16:29
212,700,800
0
0
null
null
null
null
UTF-8
Python
false
false
1,446
py
import numpy as np from dataset import load_dataset from calc_sigmoid import sigmoid def propagate(w, b, X, Y): """ Implement the cost function and its gradient for the propagation explained above Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return: cost -- negative log-likelihood cost for logistic regression dw -- gradient of the loss with respect to w, thus same shape as w db -- gradient of the loss with respect to b, thus same shape as b Tips: - Write your code step by step for the propagation. np.log(), np.dot() """ m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST) A = sigmoid(np.dot(w.T,X) + b) # compute activation # cost = -1/m * (np.dot(Y,np.log(A).T) + np.dot((1-Y),np.log(1 - A).T)) cost = np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))/(-m) # compute cost # BACKWARD PROPAGATION (TO FIND GRAD) dw = (1/m) * np.dot(X,(A-Y).T) db = (1/m) * np.sum(A-Y) assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost) assert(cost.shape == ()) grads = {"dw": dw, "db": db} return grads, cost
[ "gr959202@c02x1ab9jg5j.vpn.broadcom.net" ]
gr959202@c02x1ab9jg5j.vpn.broadcom.net
a316eb324713181356194142ff00bc2577481b9e
df6c33d4c960b30e5965ceee1d6cf76d7ff7d7b4
/general.py
db9b0cfa1a56c0b6bccf0cafe96d21de040e802d
[]
no_license
selinachua/dbn_xml_scraper
6eef49f4b084206ce5f195141da3bb1a8d3ab7f2
28cee3c0a5595262a36b4fe35e23c7f5ff5ddc9c
refs/heads/master
2020-05-09T17:40:46.019697
2019-04-14T14:19:02
2019-04-14T14:19:02
181,310,366
0
0
null
null
null
null
UTF-8
Python
false
false
703
py
''' # Created by: # Selina Chua # selina.a.chua@gmail.com # # This file contains the class declaration for a general service. # It contains the information required for any general service. ''' class GeneralService(): def __init__(self, name, cover, wait, limits, max_ben): self.name = name self.cover = cover self.wait = wait self.limits = limits self.max_ben = max_ben def __str__(self): string = ( f"--- {self.name} ---\n" f"Covered = {self.cover}\n" f"Waiting Period = {self.wait}\n" f"Limits = {self.limits}\n" f"Max Benefits = {self.max_ben}\n" ) return string
[ "selina.a.chua@gmail.com" ]
selina.a.chua@gmail.com
88357c0c8134c695dca8dadeb9dba7b97228a29a
82762d776e2400948af54ca2e1bdf282885d922c
/914. 卡牌分组.py
7b4635bd0aab03aa3ab0d89be36c4fbb70288ae4
[]
no_license
dx19910707/LeetCode
f77bab78bcba2d4002c9662c122b82fc3c9caa46
624975f767f6efa1d7361cc077eaebc344d57210
refs/heads/master
2020-03-17T02:50:46.546878
2019-06-25T09:22:13
2019-06-25T09:22:13
133,208,490
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
class Solution(object): def hasGroupsSizeX(self, deck): """ :type deck: List[int] :rtype: bool 40ms, beats: 82.81% """ lens = len(deck) if lens <= 1: return False d = {} for i in deck: if i in d: d[i] += 1 else: d[i] = 1 middle = lens // 2 for i in range(2, middle + 2): if lens % i == 0: if all(map(lambda x: x % i == 0, d.values())): return True return False
[ "duxi@aircos.com" ]
duxi@aircos.com
71d863a94ff6db89e2905cf7a8bdb64fe5ef4f22
316a46f8fc4969fe2bbe457107778bddff7dc224
/Bookord/Bookord/urls.py
3d567867c20845fcf50723610cf3e1d9af424311
[ "MIT" ]
permissive
MahtaFetrat/Bookord
18344eb91273bdfbeb148f93de6d0809ee1d6aae
9f19d9caf777e3ba6a6aa587ddd65738671a9703
refs/heads/main
2023-07-04T15:54:19.492892
2021-08-06T17:11:28
2021-08-06T17:23:31
349,975,663
0
0
null
null
null
null
UTF-8
Python
false
false
943
py
"""Bookord URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls.conf import include from user import views urlpatterns = [ path('', views.homepage_view, name='homepage'), path('book/', include('core.urls')), path('user/', include('user.urls')), path('admin/', admin.site.urls), ]
[ "77fetrat@gmail.com" ]
77fetrat@gmail.com
88b8c6b5252f23faf07d481d2c75f34d80c9e455
7f2511240539b1327a5a97060fa59f811bdc2889
/django_functest/tests/test_utils.py
e8d876c67348a46b9591772a47dfbe9a8f346ac3
[]
no_license
liushilive/django-functest
e1080c2e8b9031ba9b271bfd56029f0b77082e5a
8cffd4ae01dd9a004acc0f37088a34ce5b5e0983
refs/heads/master
2021-01-20T14:16:23.133597
2018-03-30T07:06:22
2018-03-30T07:06:22
82,748,549
0
0
null
2018-03-30T07:06:23
2017-02-22T01:57:10
Python
UTF-8
Python
false
false
4,299
py
from __future__ import absolute_import, print_function, unicode_literals import inspect from unittest import TestCase from django.contrib.auth import get_user_model from django_functest import AdminLoginMixin, FuncBaseMixin, FuncSeleniumMixin, FuncWebTestMixin, ShortcutLoginMixin from .base import ChromeBase, FirefoxBase, PhantomJSBase, WebTestBase LOGGED_OUT_URL = "/admin/login/?next=/admin/" class TestShortcutLoginBase(ShortcutLoginMixin): def setUp(self): super(TestShortcutLoginBase, self).setUp() User = get_user_model() self.user = User.objects.create_superuser("admin", "admin@example.com", "password") def test_login_succeeds(self): self.shortcut_login(username=self.user.username, password="password") self.get_url("admin:index") self.assertUrlsEqual("/admin/") def test_login_raises_exception_with_wrong_password(self): self.assertRaises(ValueError, lambda: self.shortcut_login(username=self.user.username, password="foo")) def test_logout_succeeds(self): self.shortcut_login(username=self.user.username, password="password") self.shortcut_logout() self.get_url("admin:index") self.assertUrlsEqual(LOGGED_OUT_URL) class TestShortcutLoginWebTest(TestShortcutLoginBase, WebTestBase): pass class TestShortcutLoginFirefox(TestShortcutLoginBase, FirefoxBase): pass class TestShortcutLoginChrome(TestShortcutLoginBase, ChromeBase): pass class TestShortcutLoginPhantomJS(TestShortcutLoginBase, PhantomJSBase): pass class TestAdminLoginBase(AdminLoginMixin): def setUp(self): super(TestAdminLoginBase, self).setUp() User = get_user_model() self.user = User.objects.create_superuser("admin", "admin@example.com", "password") def test_login_succeeds(self): self.do_login(username="admin", password="password", shortcut=False) self.get_url("admin:index") self.assertUrlsEqual("/admin/") def test_login_shortcut_succeeds(self): self.do_login(username="admin", password="password", shortcut=True) self.get_url("admin:index") self.assertUrlsEqual("/admin/") def test_login_raises_exception_with_wrong_password(self): self.assertRaises(ValueError, lambda: self.do_login(username="admin", password="password_2")) def test_logout_succeeds(self): self.shortcut_login(username="admin", password="password") self.do_logout(shortcut=True) self.get_url("admin:index") self.assertUrlsEqual(LOGGED_OUT_URL) def test_logout_shortcut_succeeds(self): self.shortcut_login(username="admin", password="password") self.do_logout(shortcut=False) self.get_url("admin:index") self.assertUrlsEqual(LOGGED_OUT_URL) class TestAdminLoginWebTest(TestAdminLoginBase, WebTestBase): pass class TestAdminLoginFirefox(TestAdminLoginBase, FirefoxBase): pass class TestAdminLoginChrome(TestAdminLoginBase, ChromeBase): pass class TestAdminLoginPhantomJS(TestAdminLoginBase, PhantomJSBase): pass class TestDocStrings(TestCase): def test_doc_strings(self): bad_docstrings = [] for cls in [FuncSeleniumMixin, FuncWebTestMixin]: for name, member in inspect.getmembers(cls): if name.startswith('__'): continue if hasattr(member, 'im_func'): member = member.im_func # Python 2 method member_doc = getattr(member, '__doc__', None) base_member = getattr(FuncBaseMixin, name, None) if base_member is not None: if hasattr(base_member, 'im_func'): base_member = base_member.im_func # Python 2 method base_doc = getattr(base_member, '__doc__', None) if base_doc is not None and member_doc != base_doc: bad_docstrings.append((cls, name)) if bad_docstrings: self.fail("The following methods have incorrect or missing docstrings " "compared to FuncBaseMixin: \n" + "\n".join("{0}.{1}".format(cls.__name__, name) for cls, name in bad_docstrings))
[ "L.Plant.98@cantab.net" ]
L.Plant.98@cantab.net
b0d34e5bfa233e736dd8f800f1f405ae4197c355
b3f74be8c7456cc58969f0767022ff4036ad2594
/movement.py
57ce2fc98fea4c3eaa9c5a6a97639a7f95cca3b1
[ "MIT" ]
permissive
deadrobots/Create-17
2cf2abafa7ed1f580a2a64df8c3e8f82b8fb47cd
c90c985c75f5994e17b6b9e5f1754e582b2d1310
refs/heads/master
2021-01-12T03:58:00.038999
2017-07-09T16:00:00
2017-07-09T16:00:00
81,684,872
0
0
null
null
null
null
UTF-8
Python
false
false
2,540
py
from wallaby import * from math import pi def drive_timed(left, right, time): create_drive_direct(-right, -left) msleep(time) create_drive_direct(0, 0) def spin_cw(power, time): create_drive_direct(power, -power) msleep(time) create_drive_direct(0, 0) def spin_ccw(power, time): create_drive_direct(-power, power) msleep(time) create_drive_direct(0, 0) def rotate(power, time): if power > 0: spin_ccw(power, time) else: spin_cw(abs(power), time) def split_drive(left, right, time, increments, turnTime): power = -100 if turnTime < 0: turnTime = abs(turnTime) power = abs(power) if turnTime == 0: drive_timed(left, right, time) else: for _ in range(0, increments): drive_timed(left, right, int(time / increments)) rotate(power, turnTime) def split_drive_condition(left, right, min, time, turnTime, condition, state=True): start = seconds() + time create_drive_direct(-left, -right) msleep(min) while condition() is state: current = seconds() if current > start: print turnTime start = current + time rotate(-100, turnTime) create_drive_direct(left, right) msleep(min) create_drive_direct(0, 0) def drive_conditional(left, right, testFunction, state=True): create_drive_direct(-right, -left) while testFunction() is state: pass stop() def drive_forever(left, right): create_drive_direct(-right, -left) def stop(): create_stop() INCH_TO_MIL = 25.4 def drive_distance(distance, speed): dist_mil = INCH_TO_MIL * distance time = dist_mil / speed drive_timed(speed, speed, time) def rotate_degrees(degrees, speed): if degrees < 0: speed = -speed degrees = abs(degrees) degrees = degrees * 1.13 set_create_total_angle(0) drive_forever(-speed, speed) while abs(get_create_total_angle()) < degrees: pass stop() # diameter_inch = 9 # diameter_mil = diameter_inch * INCH_TO_MIL # if degrees < 0: # speed = -speed # degrees = -degrees # angle = abs(degrees / 360.0) # circ = pi * diameter_mil # drive_mil = angle * circ # time = drive_mil / speed # rotate(speed, time) def drive_accel(speed, time): for sub_speed in range(0, speed+1, 100): create_drive_direct(-sub_speed, -sub_speed) msleep(100) msleep(time) create_drive_direct(0, 0)
[ "botball@deadrobots.com" ]
botball@deadrobots.com
cde51ef8d77d7eea0628333be77b2fe4484394bf
ae0c46da3a3a741a1fdec4cfafe61be60c02708d
/utils/plot/general.py
1b1576fdca3c8109708a9f0c4f54e280012800f1
[ "MIT" ]
permissive
kvanderwijst/IAMDiagnostics
9baae6dea403a74cf41d1e128c9e2d28e434dd56
caf28a69c669e0aea2170827913ba56de163c7e2
refs/heads/main
2023-04-19T05:25:50.538539
2021-11-25T14:47:49
2021-11-25T14:47:49
345,969,617
2
0
null
null
null
null
UTF-8
Python
false
false
8,512
py
""" General utils - add_legend_item: Adds Plotly legend item manually """ import numpy as np import plotly.io as pio pio.templates.default = "none" try: # Bugfix for Plotly default export size pio.kaleido.scope.default_width = None pio.kaleido.scope.default_height = None except: pass GRIDCOLOR = "rgba(.2,.2,.2,.1)" def add_model_comparison( fig, meta, models, fig_col, meta_col, label_posx=None, label_width=None, narrative_left=None, narrative_right=None, shared_yaxes=False, showlegendlines=True, labelshift=1, exclude_models=None, ): """ Used to create the right part of each figure: the indicator comparison. This is shared code for each indicator. fig: Plotly subplot figure fig_col: typically will be 2 if the right subplot is used meta_col: column from meta df used to get the indicator values label_posx [None]: by default, the position (relative to the x-axis of col fig_col) is calculated automatically based on the spread of indicator values. This can be overrided manually if this calculation doesn't work properly. narrative_left: string for arrow pointing left of median value of indicators narrative_right: same for right shared_yaxes: if the left subplot has to share the same y-axis, set to True showlegendlines: while the legend is always shown, the coloured lines are not always necessary. Setting this to False hides these lines. labelshift: shift the labels a bit more ( > 1) or less ( < 1) to the left. exclude_models: list of model names that should be excluded from this plot models: by default the normal `models` dataframe, but can be used as override. """ if exclude_models is not None: models = models[~models["Full model"].str.contains(exclude_models)].copy() models["i"] = np.arange(len(models)) n = models["i"].max() meta_selection = meta[meta["Stripped model"].isin(models.index)] # Add legend items for name, symbol, size in [("Newest", "star", 8), ("Older version", "circle", 4)]: add_legend_item( fig, name, marker={"symbol": symbol, "size": size, "color": "black"}, legendgroup="Age", ) # Add shade for 1-sigma range q0, median, q1 = meta_selection[meta_col].quantile([0.16, 0.5, 0.84]) # mean = meta_selection[meta_col].mean() fig.add_scatter( x=[q0, q0, q1, q1], y=[-1, n + 1, n + 1, -1], fill="toself", fillcolor="rgba(0,0,0,.1)", line_width=0, mode="lines", name="16-84th perc.", row=1, col=fig_col, ) # Add lines for median and mean fig.add_scatter( x=[median, median], y=[-1, n + 1], mode="lines", line={"color": "#888", "width": 2}, name="Median", row=1, col=fig_col, ) # Calculate position of legend items vmin, vmax = meta_selection[meta_col].min(), meta_selection[meta_col].max() label_posx = ( vmin - 0.66 * labelshift * (vmax - vmin) if label_posx is None else label_posx ) label_width = 0.15 * (vmax - vmin) if label_width is None else label_width for model, (modeltype, fullmodel, i, color) in models.iterrows(): selection = meta_selection[meta_selection["Stripped model"] == model] # Add dots and stars fig.add_scatter( x=selection[meta_col], y=[i] * len(selection), marker={ "color": color, "opacity": 1, "symbol": [ "star" if is_newest else "circle" for is_newest in selection["Newest"] ], "size": [12 if is_newest else 7 for is_newest in selection["Newest"]], "line": {"color": "#FFF", "width": 1}, }, mode="markers", showlegend=False, row=1, col=fig_col, ) # Add legend line if showlegendlines: fig.add_scatter( x=[label_posx - label_width, label_posx], y=[i, i], mode="lines", line={"color": color, "width": 3}, row=1, col=fig_col, showlegend=False, ) # Name of model fig.add_annotation( text=model, x=label_posx, y=i, xanchor="left", row=1, col=fig_col, bgcolor="#FFF", showarrow=False, ) # Add model type brackets x_max = meta_selection[meta_col].max() dx = x_max - meta_selection[meta_col].min() x_right = 0.05 * dx + x_max # 6% to the right of the most right point x_width = 0.03 * dx for modeltype, selection in models.groupby("Type"): first, last = selection["i"].min(), selection["i"].max() # Bracket itself dy = 0.3 fig.add_scatter( x=[x_right, x_right + x_width, x_right + x_width, x_right], y=[first - dy, first - dy, last + dy, last + dy], mode="lines", line_color="#999", showlegend=False, row=1, col=fig_col, ) # Name of model type fig.add_annotation( x=x_right + 1.25 * x_width, y=(first + last) / 2, text=modeltype, textangle=90, bgcolor="#FFF", showarrow=False, yanchor="middle", xanchor="left", row=1, col=fig_col, ) # Add narrative arrows for label, toLeft in [(narrative_left, True), (narrative_right, False)]: if label is None: continue arrowlength = 65 multiplier = -1 if toLeft else 1 fig.add_annotation( xref=f"x{fig_col}", yref="paper", xanchor="center", yanchor="top", x=median, y=-0.08, ax=arrowlength * multiplier, ay=0, xshift=multiplier * 5, width=arrowlength * 2, align="right" if toLeft else "left", text=label, showarrow=True, arrowside="start", ) # Update layout fig.update_yaxes( col=None if shared_yaxes else fig_col, gridcolor=GRIDCOLOR, tickvals=models["i"], range=[n + 1, -1], zeroline=False, showticklabels=False, ).update_layout(legend={"tracegroupgap": 0, "y": 0.5},) def add_legend_item(fig, name="", mode="markers", **kwargs): """ In Plotly, a legend item can be added manually by adding an empty trace """ fig.add_scatter(x=[None], y=[None], name=name, mode=mode, **kwargs) ################## ## Functions required to generate confidence ellipse ################## def ellipse(a, b, npoints): x = np.linspace(-a, a, npoints) y1 = b * np.sqrt(1 - (x / a) ** 2) y2 = -y1 return np.concatenate([x, x[::-1]]), np.concatenate([y1, y2[::-1]]) def rotate(x, y, theta): return x * np.cos(theta) - y * np.sin(theta), x * np.sin(theta) + y * np.cos(theta) def confidence_ellipse(x_values, y_values, nsigma, npoints=300): # Calculate center of confidence ellipse mu_x, mu_y = np.mean(x_values), np.mean(y_values) # Calculate correlation coefficient and covariances cov_matrix = np.cov([x_values, y_values]) cov_xy = cov_matrix[0, 1] sigma_x, sigma_y = np.sqrt(cov_matrix[0, 0]), np.sqrt(cov_matrix[1, 1]) rho = cov_xy / (sigma_x * sigma_y) # Get the x-y points for the default ellipse with a=sqrt(1+rho), b=sqrt(1-rho) ellipse_x, ellipse_y = ellipse(np.sqrt(1 + rho), np.sqrt(1 - rho), npoints) # Rotate ellipse 45 degrees counter-clockwise ellipse_x, ellipse_y = rotate(ellipse_x, ellipse_y, np.pi / 4) # Scale ellipse horizontally by (2*n*sigma_x) and vertically by (2*n*sigma_y) # Note: scaling by 2*n*sigma_x means that the x_values (centered around 0) should # be multiplied by n*sigma_x, not 2*n*sigma_x ellipse_x = nsigma * sigma_x * ellipse_x ellipse_y = nsigma * sigma_y * ellipse_y # Shift ellipse such that its center is situated at the point mu_x, mu_y ellipse_x += mu_x ellipse_y += mu_y return ellipse_x, ellipse_y
[ "k.i.vanderwijst@gmail.com" ]
k.i.vanderwijst@gmail.com
b0c6a18cbd8dccdb343c2f23d8cb296436d7a3a7
1ff77c29479170c5fb09aa3bbf06f0026e8f5a13
/W2D4/knn.py
a5d1639a8150a15bf9e69475d54c3cebe959b3dd
[]
no_license
nwoch/Artificial-Intelligence
9eb5e74d63db662c886d3eae9fd2e397ca90930e
1dca1d1b1f56803249f5c29e46a55095dea67f6c
refs/heads/master
2020-04-08T01:39:47.896097
2018-11-24T06:07:44
2018-11-24T06:07:44
158,904,110
0
0
null
null
null
null
UTF-8
Python
false
false
1,934
py
# -*- coding: utf-8 -*- """ Created on Sat Nov 3 19:52:53 2018 @author: Nicole """ import numpy as np import pandas as pd from scipy.spatial import distance class Knn: def __init__(self): self.x = None self.y = None def predict(self, k = 5): df = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/iris/iris.data', header=None) self.x = df.iloc[0:150, 0:4].values self.y = df.iloc[0:150, [4]].values predicted_labels = [] for x in self.x: # Find distance between x and each point in training set euclidean_distances = distance.cdist(self.x, x.reshape(1, -1)) euclidean_distances[np.where(euclidean_distances == 0)] = np.nan k_labels = [] # Find k closest neighbors to x for i in range(k): min_index = np.nanargmin(euclidean_distances, axis=0) euclidean_distances[min_index] = np.nan k_labels.append(self.y[min_index]) # Choose label which appears the most among the k closest neighbors unique, counts = np.unique(k_labels, return_counts=True) k_label_counts = dict(zip(unique, counts)) keys = list(k_label_counts.keys()) values = list(k_label_counts.values()) predicted_labels.append(keys[values.index(max(values))]) return predicted_labels def calc_classification_error(self, predicted): errors = 0 for i in range(len(self.y)): if self.y[i] != predicted[i]: errors += 1 print("Errors: ", errors, "/", len(self.y)) return errors / len(self.y) def main(): knn = Knn() error_rate = knn.calc_classification_error(knn.predict(k=20)) print("Final classification error rate: ", error_rate) if __name__== "__main__": main()
[ "nwoch101@gmail.com" ]
nwoch101@gmail.com
5b684616d65a8a1c6b38aac44c6267f16b24e5bd
24fb4447def3fab6a64f8e44f21a0371179a248b
/for_smartphone/try_1003.py
ab43dd051cfb28a7062f4bb7706c7c133fd2cdb8
[ "MIT" ]
permissive
TakenokoEmpire/mypj
28f3c2d208e6ee139318a8e02c77d842c72eb38f
fcc56c1113c88d6611b60d0855d6c79df7add7fb
refs/heads/main
2023-08-28T14:42:28.148268
2021-10-29T02:47:32
2021-10-29T02:47:32
407,075,672
0
0
null
null
null
null
UTF-8
Python
false
false
36,325
py
# coding: UTF-8 # このファイルは、run.pyと同じ階層に入れないとバグる # import send_recieve from send_recieve import SendReceive import random import math import copy """ やること  【万一のバグに備える】  もし同じ数字でループするなら、「3回cond!=9の中でランダムに実行する」をやってみるといいかも?  なんかの手違いでhit=4になったら、blowlistの残りをぶち込むシステムを入れていいかも  【より強くする】  位置情報の強化:確定hitが発生したら、過去のデータを遡り、そのhitが該当してかつhit数が1である探索回があれば、その探索回におけるhit以外の数字の位置情報を1から2にする(これが一番コスパよさそう)  終盤の強化:探索数を2にする(平均1ターンくらい早くなりそう。ただ、かなりめんどくさそう)  中盤の強化:終盤のように、位置情報の和が大きいものを優先する(これは早く…なるのか?(終盤とは状況が違うので、これで早くなるかは分からない)) """ class AutoPlay(): """自動解答プログラム""" def __init__(self, print_mode): self.print_mode = print_mode self.ram = [] self.gnum_count = -1 self.ans_list = [0, 0, 0, 0, 0] self.ans_str = "" # room_id = input("input room id ->") # player_id = input("input your name ->") # グローバル関数 self.numberinfo = [{"number": j, 0: 0, 1: 0, 2: 0, 3: 0, 4: 0, "cond": 0, "gnum": -1} for j in range(16)] self.groupinfo = [] self.history = [] self.wholeinfo = {"phase": 0, "turn": 1, "confirmed_blow_and_hit": 0, "confirmed_hit": 0, "noob": 0, "rough_blow": 0, "special_mode": 0} self.blow_list = [] self.hit_list = [-1, -1, -1, -1, -1] self.phase_list = {0: "Early phase", 1: "Early phase", 2: "Early phase", 3: "Middle phase", 4: "FINAL phase"} self.game_record = [] # {"Early_phase_turns": 0, "Middle_phase_turns": 0, "Final_phase_turns": 0,} def pos(self, x): if x > 0: return True else: return False def zero_checker(self, x): if x == 0: return 0 else: return 1 def curse(self, x): if x == 3 and self.wholeinfo["special_mode"] >= 1: return 1 else: return 100 def fugaku(self, ninfo, ginfo, hist, winfo): """ 更新されたデータをもとに、回答を自動生成する。 序盤、中盤、終盤で振る舞いが異なる。 ※序盤:0~4,5~9,a~eを総当りで試す3ターン 中盤:当たりの数字5つを探索する 終盤:探索された5つの数字を並び替える """ """序盤""" if winfo["phase"] < 3: if winfo["phase"] == 0: return ("01234") elif winfo["phase"] == 1: return ("56789") elif winfo["phase"] == 2: return ("abcde") else: print("unexpected error 001") exit() """中盤""" elif winfo["phase"] == 3: guess_mid_list = [-1, -1, -1, -1, -1] # 中盤用アルゴリズムの答えを入力する箱 guess_mid_str = "" # # # #どのグループから探索するかを決める。ハズレを4つ見つけるまでは、ハズレ発見を優先する # # # if winfo["noob"] < 4: # # # priority_value = [(1000 - 100 * j["leng"] - (j["blow"]+j["hit"]))* self.zero_checker((j["blow"]+j["hit"])*(j["leng"]-(j["blow"]+j["hit"]))) for j in ginfo] # # # else: # # # priority_value = [(1000 - 100 * j["leng"] - 10 * j["hit"] + (j["blow"]+j["hit"]))*self.zero_checker((j["blow"]+j["hit"])*(j["leng"]-(j["blow"]+j["hit"]))) for j in ginfo] # # # print(priority_value) # どのグループから探索するかを決める。簡略化のため、常にハズレ発見を優先する。 # ゼロチェッカーは、blowとhitの和が0になるか、lengthとblow+hitの差が0になったときに0を返す(探索の必要がなくなったグループを意味する) priority_value = [(1000 - 100 * j["leng"] - (j["blow"]+j["hit"])) * self.zero_checker( (j["blow"]+j["hit"])*(j["leng"]-(j["blow"]+j["hit"])))*self.curse(j["gnum"]) for j in ginfo] # if winfo["special_mode"] == 1: # for j in gnifo: # if j["gnum"] ==3: # 全てのpriority_valueが0になっていたら、このターンに来る前のinfo_updaterでphaseが4になっているはずであり、ここには来ていないはず。 if sum(priority_value) == 0: print("error:phaseが更新されていませんby fugaku") exit() target_gnum_order = priority_value.index(max(priority_value)) target_gnum = ginfo[target_gnum_order]["gnum"] default_length = ginfo[target_gnum_order]["leng"] target_length = max( math.ceil(default_length / 2), 5 - winfo["noob"]) """特別モードの中盤への分岐 0~4,5~9,a~e,fそれぞれにblowがある場合(ハズレなし、つまりtarget_length=5の場合)は、特別な処理をする必要がある。 具体的には、確定blowである「f」を「ハズレ」として用い、後で全体のblow数を1追加する。""" # 場合分けが簡単そうだったから、全パターン記述した。 if target_length == 5: winfo["special_mode"] = 1 print("You are in special mode...") self.get_gnum() if target_gnum == 0: guess_mid_str = "f0123" self.ram.append({"turn": winfo["turn"], "group_member": [0, 1, 2, 3], "non_group_member": [ 4], "group_qty": 1, "gnum0": 0, "gnum1": 3, "gnum2": -1, "guess_mid_list": [15, 0, 1, 2, 3]}) for i in [0, 1, 2, 3]: ninfo[i]["gnum"] = 3 elif target_gnum == 1: guess_mid_str = "f5678" self.ram.append({"turn": winfo["turn"], "group_member": [5, 6, 7, 8], "non_group_member": [ 9], "group_qty": 1, "gnum0": 1, "gnum1": 3, "gnum2": -1, "guess_mid_list": [15, 5, 6, 7, 8]}) for i in [5, 6, 7, 8]: ninfo[i]["gnum"] = 3 else: guess_mid_str = "fabcd" self.ram.append({"turn": winfo["turn"], "group_member": [10, 11, 12, 13], "non_group_member": [ 14], "group_qty": 1, "gnum0": 2, "gnum1": 3, "gnum2": -1, "guess_mid_list": [15, 10, 11, 12, 13]}) for i in [10, 11, 12, 13]: ninfo[i]["gnum"] = 3 if target_gnum != 2: print("message: target_gnumの値がおかしい(続行可能)") return (guess_mid_str) """通常モードの中盤続き""" # 新たなグループをつくる。探索された側とされなかった側で、2つのグループに分割される。分割後の長さが1の場合、グループ解除(gnum=-1)する。 if target_length == 1: gnum1 = -1 else: gnum1 = self.get_gnum() if default_length - target_length <= 1: gnum2 = -1 else: gnum2 = self.get_gnum() # ターゲットの情報を集めるための空リスト target = [] # メンバーの記録用リスト member = [] bocchi = [] # 探索したい数字を登録し、ninfoのgnumを更新する。 # ninfo更新は、できればinfo_updaterに移したほうがいい for i in range(16): if ninfo[i]["gnum"] == target_gnum and len(target) < target_length: target.append(ninfo[i]) ninfo[i]["gnum"] = gnum1 member.append(ninfo[i]["number"]) elif ninfo[i]["gnum"] == target_gnum: ninfo[i]["gnum"] = gnum2 bocchi.append(ninfo[i]["number"]) # 【未実装事項(機能拡張)】 # 終盤のように、それぞれの位置の位置情報値(0,1,2)の合計が大きい順に(つまり、より多くのターゲットに使われている数字から順に)選ぶようにする # 余ったスペースに、確定blowを乱入させたい(これは負担が膨大なので無理そう) # どの位置にどの数字を入力するかを決める。 # 偏らないように、どの位置から決めるかはターンによって異なるようにする input_order = [(winfo["turn"] + _ - 3) % 5 for _ in range(5)] for p in input_order: for k in range(len(target)): if target[k][p] == 2: # ==1のときも考慮したい(未実装) pass else: guess_mid_list[p] = target[k]["number"] target.pop(k) # print(guess_mid_list) break # これで二重に登録してしまうケースを防げるはず # if target != []: # for p in input_order: # for k in range(len(target)): # print("judging"+str(p)+str(k)) # if target[k][p] == 1: #←ここが1になってる、これで位置情報が1のケースも考慮できるか?後で確認 # pass # else: # guess_mid_list[p] = target[k]["number"] # target.pop(k) # print("written") # print(guess_mid_list) # print(target) # break #これで二重に登録してしまうケースを防げるはず # 上記のやり方で決まらなかった場合。位置情報に関係なく決める。 if target != []: for p in input_order: for k in range(len(target)): guess_mid_list[p] = target[k]["number"] target.pop(k) break # これで二重に登録してしまうケースを防げるはず # 余ったところにハズレを入れる # ハズレ一覧のリストをつくる nooblist = [] noobcount = 0 for i in range(16): if ninfo[i]["cond"] == 9: nooblist.append(ninfo[i]["number"]) for p in range(5): if guess_mid_list[p] == -1: # nooblistの範囲外までnoobcountをforループしてそう guess_mid_list[p] = ninfo[nooblist[noobcount]]["number"] noobcount += 1 # 最後に、list型のguessをstr型にする for p in range(5): guess_mid_str += str(hex(guess_mid_list[p]))[2] # 次のinfo_updateで処理するために必要な情報を、グローバル関数に残す self.ram.append({"mode": "normal", "turn": winfo["turn"], "group_member": member, "non_group_member": bocchi, "group_qty": len( list(filter(self.pos, [gnum1, gnum2]))), "gnum0": target_gnum, "gnum1": gnum1, "gnum2": gnum2, "guess_mid_list": guess_mid_list}) return (guess_mid_str) """終盤""" elif winfo["phase"] == 4: guess_mid_list = copy.copy(self.hit_list) guess_mid_str = "" memb = ginfo[-1]["final_member"] posi = ginfo[-1]["position"] hits = 5 - len(memb) # 並び替えの優先順位を決める。残り場所の候補が少ない順、つまり、位置情報の和の少ない順に行う。 order_value = [] for i in memb: memo_order = 0 for p in range(5): memo_order += ninfo[i][p] order_value.append([i, memo_order]) order_value.sort(key=lambda x: x[1], reverse=True) order = [order_value[i][0] for i in range(len(order_value))] # hits=0のとき、targets=3にしてもいいかも(時間あれば)。hits=3ならガチャ(位置情報次第では確定) # 位置情報を見て、多く残ってるようであればそこから探索するのが良さそう… if hits < 3: targets = 1 elif hits == 3: targets = 2 else: print("error:hit4...?blowの組間違えてない?") winfo["phase"] -= 1 counter = 0 reg_count = 0 memo_mem = [] memo_pos = [] while counter < 60: for k in order: for p in posi: if reg_count >= targets: counter += 999 break if ninfo[k][p] == 2: pass else: guess_mid_list[p] = ninfo[k]["number"] reg_count += 1 memo_mem.append(k) memo_pos.append(p) posi.remove(p) order.remove(k) break counter += 1 # ハズレ一覧のリストをつくる nooblist = [] noobcount = 0 for i in range(16): if ninfo[i]["cond"] == 9: nooblist.append(ninfo[i]["number"]) for p in range(5): if guess_mid_list[p] < 0: guess_mid_list[p] = nooblist[p] self.ram.append({"hits": hits, "done_number": memo_mem, "done_position": memo_pos}) # 最後に、list型のguessをstr型にする for p in range(5): guess_mid_str += str(hex(guess_mid_list[p]))[2] return (guess_mid_str) else: print("unexpected error 101") exit() def info_update(self, ninfo, ginfo, hist, winfo): new_hit_checker = 0 """序盤の処理""" if winfo["phase"] < 3: # 位置情報(ninfo)の更新 guessa = hist[-1]["guess"] hita = hist[-1]["hit"] blowa = hist[-1]["blow"] # その回の調査で、hit=0場合は、同じ位置に数字が来ないことが確定する。このとき、それぞれの位置の情報を「2」とする。 if hita == 0: for order, num in enumerate(guessa): ninfo[int(num, base=16)][order] = 2 # その回の調査で、hitが発生した場合は、その位置に数字が来る可能性がある。しかし、その回の他の数字がhitし、他全てがblowであった場合、その位置情報は有効となる。この状態の位置情報は「1」とする(この状態では情報に価値はない) else: for order, num in enumerate(guessa): if ninfo[int(num, base=16)][order] < 2: ninfo[int(num, base=16)][order] = 1 # 発見blow数の更新 winfo["rough_blow"] += hita + blowa # 偵察した数について、ninfoのblow可能性の更新 if hita + blowa == 0: for num in guessa: ninfo[int(num, base=16)]["cond"] = 9 else: for num in guessa: ninfo[int(num, base=16)]["cond"] = 1 # グループ情報の更新 group_num = self.get_gnum() for num in guessa: ninfo[int(num, base=16)]["gnum"] = group_num ginfo.append({"gnum": group_num, "leng": 5, "blow": blowa, "hit": hita}) # 「56789」までで5blow出尽くした場合の処理 if winfo["phase"] < 2 and winfo["rough_blow"] == 5: for num in range(16): # これが0のときは、一回も偵察されていないことを示す。5blowが出尽くした時点で一回も偵察されていないのはハズレ確定 if ninfo[num]["cond"] == 0: ninfo[num]["cond"] = 9 winfo["phase"] = 2 # 「abcde」まで終わったとき、fがどうなってるかを判別 elif winfo["phase"] == 2: if winfo["rough_blow"] == 5: ninfo[15]["cond"] = 9 elif winfo["rough_blow"] == 4: ninfo[15]["cond"] = 1 winfo["confirmed_blow_and_hit"] += 1 self.blow_list.append(15) else: print("unexpected error 003") exit() winfo["phase"] += 1 """中盤の処理""" elif winfo["phase"] == 3: # 探索対象のグループ(分割前)を、hit,blowを一時期録してginfoから削除 for i in range(100): try: if ginfo[i]["gnum"] == self.ram[0]["gnum0"]: hit_past = ginfo[i]["hit"] blow_past = ginfo[i]["blow"] ginfo.pop(i) except IndexError: break # 「探索対象グループ」のうち、「探索された部分(表)」と「探索されなかった部分(裏)」の2つに分けて考える。 # 例:「01234」を探索対象とし、「012」を探索した場合、「012」が表、「34」が裏 """「表」の処理""" # 現状、探索対象グループ以外の数字は全てハズレにしているので、(グループ外のBlow確定の数字を乱入させることはしていない、ということ) # 「5文字全体のhit,blow」=「表のhit,blow」となる。 guessb = self.ram[0]["guess_mid_list"] memberb = self.ram[0]["group_member"] hitb = hist[-1]["hit"] blowb = hist[-1]["blow"] # 「Special mode」の場合。hit+blowが最小になるグループを探索したので、「探索対象グループ」(01234とか)のhit+blowは必ず1。 # fはblow確定なので、hitb+blowbは必ず1か2になる。 if winfo["special_mode"] == 1: # hitb+blowbが1なら脱出、2なら残留(ゲーム終了までspecial_modeのまま) if hitb + blowb == 1: winfo["special_mode"] = 0 # 今回の処理ではhitかblowの値を1引く(ハズレ代わりに入れたfが確定blowなので)。 """「hitbが1以上のときはhitbから1引く」としてしまうと、hitが発生したにも関わらず位置情報に2が入力されてしまう場合がある これを防ぐために、blowbから常に1引くことにする。 blowbが使用される箇所は、以下の3種類 blowb+hitbの形(これは、hitbから引いても変わらないので問題なし) この回からは絶対に分岐しない位置 ginfoへの登録 おそらく、ginfo以外では問題を起こさないはず。""" blowb -= 1 # このループには1度しか入らないようにする必要があるので、値を変更しておく。 winfo["special_mode"] = 2 # その回の調査で、hit=0場合は、同じ位置に数字が来ないことが確定する。このとき、それぞれの位置の情報を「2」とする。 if hitb == 0: for order, num in enumerate(guessb): ninfo[num][order] = 2 # その回の調査で、hitが発生した場合は、その位置に数字が来る可能性がある。しかし、その回の他の数字がhitし、他全てがblowであった場合、その位置情報は有効となるため、情報を保存したい。そこで、この状態の位置情報は「1」とする(この状態では情報に価値はない) else: for order, num in enumerate(guessb): if ninfo[num][order] < 2: ninfo[num][order] = 1 # hit,blowなしの場合 if hitb + blowb == 0: for num in memberb: ninfo[num]["cond"] = 9 # 全てblow以上確定の場合 elif hitb + blowb == len(memberb): # 全てhit確定の場合 if blowb == 0: for num in memberb: order = guessb.index(num) ninfo[num]["cond"] = 3 # 位置情報更新。一度全てを2にして、hit位置のみ0にする for p in range(5): ninfo[num][p] = 2 ninfo[num][order] = 0 # hit確定でも位置情報は2にしてる。3にしてもいいかも? # hitlist,blowlist等を更新 self.blow_list.append(num) self.hit_list[order] = num winfo["confirmed_hit"] += 1 winfo["confirmed_blow_and_hit"] += 1 new_hit_checker = 1 # そうでない場合(blow確定) else: for num in memberb: ninfo[num]["cond"] = 2 self.blow_list.append(num) winfo["confirmed_blow_and_hit"] += 1 # 探索続行の場合 else: for num in memberb: ninfo[num]["cond"] = 1 # 分裂後のグループをginfoに登録(分裂後の大きさが2以上場合のみ) if len(memberb) >= 2: ginfo.append({"gnum": self.ram[0]["gnum1"], "leng": len( memberb), "hit": hitb, "blow": blowb}) """「裏」の処理""" # guessb,hitb,blowbの値を更新した後は、「表」の処理と似ているように思うが、いくつか違う点があるので注意。 guessb = self.ram[0]["guess_mid_list"] memberb = self.ram[0]["non_group_member"] hitb = hit_past - hitb blowb = blow_past - blowb # 「裏」については、実際に探索したわけではないので、位置情報は更新できない。 # hit,blowなしの場合 if hitb + blowb == 0: for num in memberb: ninfo[num]["cond"] = 9 # 全てblow以上確定の場合 elif hitb + blowb == len(memberb): # 「表」と異なる処理(裏では、hit確定は存在しない) # (blow確定) for num in memberb: ninfo[num]["cond"] = 2 self.blow_list.append(num) winfo["confirmed_blow_and_hit"] += 1 # 探索続行の場合 else: for num in memberb: ninfo[num]["cond"] = 1 # 分裂後のグループをginfoに登録(分裂後の大きさが2以上場合のみ) # 「表」の処理と異なる(gnum1とgnum2) if len(memberb) >= 2: ginfo.append({"gnum": self.ram[0]["gnum2"], "leng": len( memberb), "hit": hitb, "blow": blowb}) """共通の処理(中盤終了判定)""" # 「探索の必要がないグループについては0になる関数」であるpriority_valueを使い、全てのグループについて0になった場合に終了とする。 priority_value = [(1000 - 100 * j["leng"] - (j["blow"]+j["hit"])) * self.zero_checker( (j["blow"]+j["hit"])*(j["leng"]-(j["blow"]+j["hit"]))) for j in ginfo] if sum(priority_value) == 0: winfo["phase"] = 4 # もし終了してたら、既存のginfoを全て削除し、確定blowのうちhit確定していない部分のみで構成したグループをginfoに登録 final_position = [] ginfo = [] gnum = self.get_gnum() final_member = copy.copy(self.blow_list) # self.hit_listに記載がない(つまり-1)場合、その位置をfinal_positionに追加し、final_memberから消す for p, num in enumerate(self.hit_list): if num < 0: final_position.append(p) else: final_member.pop(final_member.index(num)) ginfo.append({"gnum": gnum, "leng": len(final_member), "hit": 0, "blow": len( final_member), "final_member": final_member, "position": final_position}) # グループ情報をninfoに登録 for i in final_member: ninfo[i]["gnum"] = gnum """終盤の処理""" # 終盤に入った瞬間の処理はすでに終えているので、elifで繋いでOK elif winfo["phase"] == 4: hits_before = self.ram[0]["hits"] hits_after = hist[-1]["hit"] memb = self.ram[0]["done_number"] posi = self.ram[0]["done_position"] """ hits=3以外のときは、探索数を1とすることを前提に作られている(簡単に拡張できるようにはしてある)。 """ if hits_after == hits_before: # hitを探せなかったとき。位置情報を更新して次へ。 for _, i in enumerate(memb): ninfo[i][posi[_]] = 2 elif hits_after == hits_before + 1: if len(memb) == 1: # hit確定 ninfo[memb[0]]["cond"] = 3 # 位置情報更新。一度全てを2にして、hit位置のみ0にする for p in range(5): ninfo[memb[0]][p] = 2 ninfo[memb[0]][posi[0]] = 0 # この3行いる? # self.hit_list更新 self.hit_list[posi[0]] = memb[0] winfo["confirmed_hit"] += 1 new_hit_checker = 1 else: print("hitが2以上増えてるゾ(その1)") elif hits_before == 3: pass else: print("hitが2以上増えてるゾ(その2)") # ginfoの更新。基本的には、中盤の最後にやったのと同じ final_position = [] ginfo = [] gnum = self.get_gnum() final_member = copy.copy(self.blow_list) # self.hit_listに記載がない(つまり-1)場合、その位置をfinal_positionに追加し、final_memberから消す for p, num in enumerate(self.hit_list): if num < 0: final_position.append(p) else: final_member.pop(final_member.index(num)) ginfo.append({"gnum": gnum, "leng": len(final_member), "hit": 0, "blow": len( final_member), "final_member": final_member, "position": final_position}) # グループ情報をninfoに登録 for i in final_member: ninfo[i]["gnum"] = gnum else: print("error:phaseがおかしいです。") exit() # 共通の更新事項 # ハズレ数の更新 winfo["noob"] = sum([i == 9 for i in [j["cond"] for j in ninfo]]) # hit発生時の処理(全ての数字の位置情報を更新) if new_hit_checker == 1: for p in range(5): if self.hit_list[p] != -1: for i in range(16): ninfo[i][p] = 2 new_hit_checker = 0 # ターン数の更新 winfo["turn"] += 1 # ninfo,ginfoは辞書表記だと見づらいのでprintするときはlist化 nlist = ([list(ninfo[j].values()) for j in range(16)]) glist = ([list(ginfo[p].values()) for p in range(len(ginfo))]) # 終盤だけ辞書表記で表示する場合は↓を有効化 # if winfo["phase"] == 4: # print(ninfo) # print(ginfo) # else: if self.print_mode == "on": print(nlist) print(glist) print(winfo) print(self.hit_list) print(self.blow_list) return ninfo, ginfo, hist, winfo def get_gnum(self): """ 新たなグループナンバーgnumを得る関数 """ if self.wholeinfo["phase"] >= 4: gnum_boost = 50 elif self.wholeinfo["phase"] < 4: gnum_boost = 0 else: print("error code 494") self.gnum_count += 1 return self.gnum_count + gnum_boost def define_answer(self): """ """ # if type(defined_answer) == str and len(defined_answer) == 5: # self.ans_str = defined_answer # return defined_answer # else: digit_kari = 0 count = 0 check = 0 while count < 5: if count == 0: self.ans_list[count] = random.randint(0, 15) count += 1 else: digit_kari = random.randint(0, 15) for j in range(count): if self.ans_list[j] == digit_kari: check = -1 if check == 0: self.ans_list[count] = digit_kari count += 1 else: check = 0 for i in range(5): self.ans_str += str(hex(self.ans_list[i]))[2] print("answer:"+self.ans_str) # あらかじめ答えを知りたいときのみ有効化する def ending(self): # それぞれのステージにかかったターン数を計算 used_turn = [] for i in range(len(self.game_record) - 1): if self.game_record[i] != 3 and self.game_record[i + 1] == 3: used_turn.append(i + 1) elif self.game_record[i] != 4 and self.game_record[i + 1] == 4: used_turn.append(i + 1) # ズレを補正 used_turn[0] += 2 used_turn[1] -= 2 used_turn.append(len(self.game_record) - sum(used_turn)) if self.print_mode == "on": print() print("ANSWER: "+self.ans_str) print("CONGRATULATIONS!!!!") print(" *     +    巛 ヽ") print("            〒 !   +    。     +    。") print("      +    。  |  |") print("   *     +   / /   イヤッッホォォォオオォオウ!") print("       ∧_∧ / /") print("      (´∀` / / +    。     +    。   *") print("      ,-     f") print("      / ュヘ    | *     +    。     +   。 +") print("     〈_} )   |") print("        /    ! +    。     +    +     *") print("       ./  ,ヘ  |") print(" ガタン ||| j  / |  | |||") print("――――――――――――") print("You have solved at " + str(self.wholeinfo["turn"]-1) + " turns!") print(" Early phase: "+str(used_turn[0]) + " turns") print(" Middle phase:"+str(used_turn[1]) + " turns") print(" FINAL phase: "+str(used_turn[2]) + " turns") print(" T H A N K Y O U F O R P L A Y I N G ! ! !") # 別ファイルにゲームデータを書き込み path_w = 'self.game_record.txt' s = "\n["+self.ans_str + ", " + \ str(sum(used_turn))+", " + str(used_turn)+"]" with open(path_w, mode='a') as f: f.write(s) # exit() def run(self): if self.print_mode == "off": print("Autoplay is on progress...") while True: try: room = random.randint(8400, 8800) drun = SendReceive(room_id=room) drun.enter_room() d2run = SendReceive(room_id=room, player_name="D2") d2run.enter_room() break except KeyError: pass drun.get_room() drun.get_table() drun.post_hidden(ans="1a2b3") # 指定する場合はdefine_answer()のカッコ内に入力。ランダムでよい場合は""と入力 self.define_answer() d2run.post_hidden(ans=self.ans_str) drun.get_table() # 368af while True: # drun.post_guess("12345") drun.post_guess(self.fugaku( self.numberinfo, self.groupinfo, self.history, self.wholeinfo)) result = drun.get_table()['table'][-1] self.history.append(result) # 情報のアップデート self.numberinfo, self.groupinfo, self.history, self.wholeinfo = self.info_update( self.numberinfo, self.groupinfo, self.history, self.wholeinfo) if self.print_mode == "on": for tt in range(len(self.history)): print(self.history[tt]) self.game_record.append(self.wholeinfo["phase"]) """クリア判定""" if self.history[-1]["hit"] == 5: self.ending() """ここで終了""" return self.history if self.print_mode == "on": print() print("--------------------------------------------") print("You are in "+self.phase_list[self.wholeinfo["phase"]]) print("TURN" + str(self.wholeinfo["turn"])) elif self.print_mode == "off": if self.wholeinfo["turn"] % 3 == 0: print("TURN" + str(self.wholeinfo["turn"])) # 文字の入力 # guess2 = input("player1 guess ->") """ショートカット 中盤まで:3 終盤まで:4 最後まで:5""" if self.wholeinfo["phase"] < 5: guess2 = 12345 else: guess2 = input("player1 guess ->") if guess2 == "": guess2 = 12345 d2run.post_guess(guess2) drun.get_table() # self.ramの消去 self.ram = []
[ "taka.satoh@keio.jp" ]
taka.satoh@keio.jp
852dc9368213b72f365c73d8188cab2dfbe9cfbe
c65705dcc8b8fa5f033873da60dbd5ab85b8e394
/compare_py_web_frameworks/web/migrations/0006_externalapicallmeasurement.py
4f181926141de8ba344de8aba3374102d6400681
[]
no_license
comparepywebframework/ComparePyWebFrameworks
127f56b9afe6c4c6e210b886c05c89f8b3f74f19
41fbe5e4d639c97b2415c7871084747c72c87ec7
refs/heads/master
2021-06-23T16:54:48.839532
2019-07-15T06:27:10
2019-07-15T06:27:10
184,575,076
0
0
null
2021-06-10T21:25:19
2019-05-02T12:14:55
HTML
UTF-8
Python
false
false
750
py
# Generated by Django 2.1 on 2019-04-29 19:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0005_auto_20190426_1939'), ] operations = [ migrations.CreateModel( name='ExternalApiCallMeasurement', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date', models.DateTimeField(auto_now=True)), ('execution_time', models.FloatField()), ('framework', models.CharField(max_length=20)), ], options={ 'db_table': 'external_api_call_measurement', }, ), ]
[ "mariuszozdoba@e902ab1f.local" ]
mariuszozdoba@e902ab1f.local
562b5276ac476e24cb34dba56014d146d59cfdc5
63f6f3f054e7135076f3f55dcccbcd076a960d49
/main.py
62fe8793957dda1d4d08db2faa5660209fd0fae0
[]
no_license
MrMohammadY/FinancialManagement
4691b458888c6db757a1ddb45412eec8603ba9e7
3b4c78f12612a9d701b4ba4ddf7c8f4ff33808e6
refs/heads/master
2023-01-07T21:55:19.306927
2020-11-01T10:02:49
2020-11-01T10:02:49
309,067,427
1
0
null
null
null
null
UTF-8
Python
false
false
4,992
py
import os from create_files import create_folder_user, create_folder_product from login import login from Users import User from Delete_Edit_User import DeleteUser, EditUser from Delete_Edit_Product import DeleteProduct, EditProduct from Show_Product_User import show_user, search_user, show_product, \ search_product from Data import Data def run(): cwd_usr = os.getcwd() + '\\user' try: with open(f'{cwd_usr}/user.json', 'r') as fr: if len(fr.read()) == 0: create_folder_user() except: create_folder_user() cwd_data = os.getcwd() + '\\data' try: with open(f'{cwd_data}/data.json', 'r') as fr: if len(fr.read()) == 0: create_folder_product() except: create_folder_product() def log(): username = input('please enter your username: ').strip() password = input('please enter your password: ').strip() result = login(username, password) if result is not None: return result[0], result[1], result[2] def menu(): print(f'1. Create User\n' f'2. Delete User\n' f'3. Edit User\n' f'4. Show User\n' f'5. Search User\n' f'6. Create Product\n' f'7. Delete Product\n' f'8. Edit Product\n' f'9. Show Product\n' f'10. Search Product' ) try: choice = int(input('please choice a number(1-8): ')) except ValueError: print('Enter a Number') return menu() if choice in range(1, 11): return choice else: return menu() if __name__ == '__main__': run() login_user = log() choice = menu() if choice == 1: if login_user[2]: username = input('please enter your username: ').strip() password = input('please enter your password: ').strip() confirm_pass = input('please confirm your password: ').strip() user_type = int(input('please enter 0(guest) or 1(admin): ')) new = User(username, password, confirm_pass, user_type) create_user = new.create_user(new.check_pass(), new.check_username()) new.insert_to_file(create_user) if choice == 2: if login_user[2]: username = input('please enter your username for delete: ').strip() password = input('please enter your password for delete: ').strip() delete = DeleteUser(username, password) delete.delete() if choice == 3: if login_user[2]: username = input('please enter your username for edit: ').strip() password = input('please enter your password for edit: ').strip() new_username = input( 'please enter your new username for edit: ').strip() new_password = input( 'please enter your new password for edit: ').strip() confirm_pass = input('please confirm your password: ').strip() user_type = int(input('please enter 0(guest) or 1(admin):')) edit = EditUser(username, password, new_username, new_password, confirm_pass, user_type) edit.edit() if choice == 4: show_user() if choice == 5: username = input('please enter your username for search: ').strip() search_user(username) if choice == 6: if login_user[2]: upc = int((input('please enter upc product: '))) name = input('please enter name product: ').strip() price = int(input('please enter price product: ')) number = int(input('please enter number product: ')) new = Data(upc, name, price, number) create_product = new.create_product(new.check_upc(), new.check_name()) new.insert_to_file(create_product) if choice == 7: if login_user[2]: upc = int((input('please enter upc product to delete: '))) name = input('please enter name product to delete: ').strip() delete = DeleteProduct(upc, name) delete.delete() if choice == 8: if login_user[2]: upc = int((input('please enter upc product: '))) name = input('please enter name product: ').strip() new_upc = int((input('please enter upc product for edit: '))) new_name = input('please enter name product for edit: ').strip() new_price = int(input('please enter price product for edit: ')) new_number = int(input('please enter number product for edit: ')) edit = EditProduct(upc, name, new_upc, new_name, new_price, new_number) edit.edit_pro() if choice == 9: show_product() if choice == 10: upc = int(input('please enter upc for search: ')) search_product(upc)
[ "m.yazdani000@gmail.com" ]
m.yazdani000@gmail.com
de8b455b1a89a21b140b39faf0fcf2fd66da035c
2c3ae2052fcf07f7dbe2bb1c1da221df61545b02
/app/migrations/0023_merge_20180705_1402.py
eadfb92e95fd126663a560b18298550d94908cc7
[]
no_license
ManuelBilbao/Prode
afd1e53c3e43b6fb6aabaddedc31eb2cf1d806c4
836565c4a272801c2028dcd301bf9567707d7ecb
refs/heads/master
2020-03-21T23:37:09.622152
2018-07-06T22:13:01
2018-07-06T22:13:01
139,196,482
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
# Generated by Django 2.0.6 on 2018-07-05 17:02 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('app', '0004_auto_20180705_1336'), ('app', '0022_auto_20180702_1825'), ] operations = [ ]
[ "bilbaomanuel98@gmail.com" ]
bilbaomanuel98@gmail.com
3e9d8ec048755bc1b7308f48bac5f252d8872da9
2581df170f614c1324b881f0462837ef09d66728
/wsgi/openshift/comment/migrations/0003_auto__del_field_comment_submessage.py
5cd6467385d0d3a25f1c28122063fee88b0cef46
[]
no_license
neudesk/20thst
eeb43e2351dab06eec448273d8a137cd1efc7509
01c30230c2bd981befa9a7b1225df417b726cd1b
refs/heads/master
2021-01-10T18:53:02.055952
2014-01-30T23:59:16
2014-01-30T23:59:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,221
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting field 'Comment.submessage' db.delete_column(u'comment_comment', 'submessage_id') # Adding M2M table for field submessage on 'Comment' m2m_table_name = db.shorten_name(u'comment_comment_submessage') db.create_table(m2m_table_name, ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('from_comment', models.ForeignKey(orm[u'comment.comment'], null=False)), ('to_comment', models.ForeignKey(orm[u'comment.comment'], null=False)) )) db.create_unique(m2m_table_name, ['from_comment_id', 'to_comment_id']) def backwards(self, orm): # Adding field 'Comment.submessage' db.add_column(u'comment_comment', 'submessage', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['comment.Comment'], null=True, blank=True), keep_default=False) # Removing M2M table for field submessage on 'Comment' db.delete_table(db.shorten_name(u'comment_comment_submessage')) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'comment.comment': { 'Meta': {'object_name': 'Comment'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_pub': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'message': ('django.db.models.fields.CharField', [], {'max_length': '350'}), 'posted': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'submessage': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'submessage_rel_+'", 'null': 'True', 'to': u"orm['comment.Comment']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['comment']
[ "neumerance@neudev.(none)" ]
neumerance@neudev.(none)
cee97c47a3ba17ae565e2903c5d57423032c94ed
5c9115e44fda400a669aca27333c7ef8de93d7b4
/db_downgrade.py
fb699d4d5cb7e8bdb6b3c4538b0ee1006b8c47f6
[]
no_license
weijiayun/blog
26963cdd0dea87eb3300cc63d83c5062def0e12a
2388545c3e06ca63a04e93b94fd9ce4f86d27cc2
refs/heads/master
2021-01-17T19:17:43.911255
2016-06-25T06:39:46
2016-06-25T06:39:46
59,274,249
0
1
null
null
null
null
UTF-8
Python
false
false
447
py
#!/opt/Apps/local/Python/anaconda/bin/python2.7 from migrate.versioning import api from config import SQLALCHEMY_DATABASE_URI from config import SQLALCHEMY_MIGRATE_REPO def dbdowngrade(): v = api.db_version(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO) api.downgrade(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO, v - 1) print 'Current database version: ' + str(api.db_version(SQLALCHEMY_DATABASE_URI, SQLALCHEMY_MIGRATE_REPO))
[ "jiayun.wei@foxmail.com" ]
jiayun.wei@foxmail.com
9055c72993e785a6a3143bb062dd04af9f5dc404
56915113a742e8bc3d8b2260300311e0bb22afa0
/django_blog/blog/migrations/0001_initial.py
fb0ab4c1c3f28084e6c102c4d8425b1a18da12e3
[]
no_license
tenkeyvey/django_blog
2bcdf33471ec0686fa3e619d43c9516ee35bd251
19ee26db0c852f0d9b2728ca81e845bae889fb6f
refs/heads/main
2023-06-29T07:33:30.736142
2021-07-29T11:56:00
2021-07-29T11:56:00
390,700,427
0
1
null
2021-07-29T11:56:01
2021-07-29T11:25:12
Python
UTF-8
Python
false
false
558
py
# Generated by Django 3.2.4 on 2021-07-01 11:13 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('content', models.TextField()), ], ), ]
[ "noreply@github.com" ]
tenkeyvey.noreply@github.com
a3075584a19f72349d8cd754df7b70208a2217cd
6d3da15e989b8448d15ea0e47cf320d8051a2715
/data/gvdb/conversion_scripts/convert_gvdb_to_json.py
5c9457d9c80f476f43dfabc31e45f9b9cc3faf1f
[ "Apache-2.0" ]
permissive
pitrack/arglinking
7881dee77ad883100d88f769253b22d65c207e2e
ebc84d15e9a46cd0a65a42ee391e9f249dfeda72
refs/heads/master
2023-02-16T18:02:54.591148
2022-08-06T18:07:45
2022-08-06T18:07:45
254,181,282
23
5
Apache-2.0
2023-02-11T01:17:22
2020-04-08T19:27:52
Jupyter Notebook
UTF-8
Python
false
false
5,991
py
import csv import sys import json def convert_gvdb_to_span(gvdb_dict, role): if gvdb_dict['startIndex'] != -1: # +2 is for the ". " added to separate title and body return ((int(gvdb_dict['startIndex']) + 2, int(gvdb_dict['endIndex']) + 2, role, gvdb_dict['value'])) else: return None cgts = convert_gvdb_to_span def convert_json_to_char_spans(blob, full_text, tok_map, tokenized): # circumstances all_roles = [] all_roles.append(cgts(blob['circumstances']['number-of-shots-fired'], "CIR-NUM-SHOTS")) all_roles.append(cgts(blob['circumstances']['type-of-gun'], "CIR-WEAPON")) all_roles.append(cgts(blob['date-and-time']['city'], "DAT-CITY")) all_roles.append(cgts(blob['date-and-time']['clock-time'], "DAT-CLOCK")) all_roles.append(cgts(blob['date-and-time']['details'], "DAT-LOC")) all_roles.append(cgts(blob['date-and-time']['time-day'], "DAT-TIME")) for victim in blob['victim-section']: all_roles.append(cgts(victim['age'], "VIC-AGE")) all_roles.append(cgts(victim['name'], "VIC-NAME")) all_roles.append(cgts(victim['race'], "VIC-RACE")) break # only look at first one for shooter in blob['shooter-section']: all_roles.append(cgts(shooter['age'], "SHO-AGE")) all_roles.append(cgts(shooter['name'], "SHO-NAME")) all_roles.append(cgts(shooter['race'], "SHO-RACE")) break # only look at first one all_roles = [role for role in all_roles if role is not None] checksums = [role[3] == full_text[min(role[0], role[1]):max(role[0], role[1])] for role in all_roles] checksums_2 = [role[3] == full_text[min(role[0], role[1]) - 2:max(role[0], role[1]) - 2] for role in all_roles] for i, (isVerified, isVerified2) in enumerate(zip(checksums, checksums_2)): if not isVerified and not isVerified2: old_start = all_roles[i][0] old_end = all_roles[i][1] old_role = all_roles[i][2] old_value = all_roles[i][3].strip() start = full_text.find(old_value) if start == -1 or old_value == "": print ("LOST:\t\t {} [==x]".format(all_roles[i])) all_roles[i] = None else: all_roles[i] = (start, start + len(old_value), old_role, old_value) print ("NO:\t\t{} [==>] {}".format(full_text[old_start:old_end], all_roles[i])) elif not isVerified: new_start = all_roles[i][0] - 2 new_end = all_roles[i][1] - 2 all_roles[i] = (new_start, new_end, all_roles[i][2], all_roles[i][3]) print ("MAYBE:\t\t{} [=?=] {}".format(full_text[new_start:new_end], all_roles[i])) else: print ("YES:\t\t{} [===] {}".format(full_text[all_roles[i][0]:all_roles[i][1]], all_roles[i])) for i, span in enumerate(all_roles): if span is None: continue old_start = span[0] old_end = span[1] old_role = span[2] old_value = span[3] if old_value == "": all_roles[i] = None elif old_value[0] == " ": all_roles[i] = (old_start + 1, old_end, old_role, old_value) # retokenize def retokenize(span): start_idx = int(tok_map[span[0]]) # If you hit an exception here, check the original data, maybe the document is empty? end_idx = int(tok_map[span[1] - 1]) + 1 return (start_idx, end_idx, span[2], span[3], tokenized[start_idx:end_idx]) return [retokenize(role) for role in all_roles if role is not None] from spacy.lang.en import English import numpy as np nlp = English() nlp.add_pipe(nlp.create_pipe('sentencizer')) def process_full_text(text): text = text.replace('\x96', '-').replace('\x97', '-') tokenized_text = nlp(text) sents = list(tokenized_text.sents) sentences = [[w.text for w in s] for s in sents] flat_char_offs = [w.idx for s in sents for w in s] + [len(text)] flat_token_offs = [w.i for s in sents for w in s] diffs = list(np.diff(flat_char_offs)) char_tok_map = np.repeat(flat_token_offs, diffs) continuous = [w.text for s in sents for w in s] return sentences, continuous, char_tok_map def process_file(file_it, doc_dict, avoid_dict): num_spans = 0 next(file_it, None) for i, row in enumerate(file_it): title = row[-4] text_body = row[-3].split(title)[-1] full_text = title.strip() + ". " + text_body.strip() json_blob = json.loads(row[-2]) new_json = {} new_json["doc_key"] = str(i) new_json["date"] = json_blob["date-and-time"]["date"] if len(new_json["date"]) == 0 or str(new_json["date"])[0] == "{": continue new_json["full_text"], continuous, tok_map = process_full_text(full_text) new_json["spans"] = convert_json_to_char_spans(json_blob, full_text, tok_map, continuous) if full_text in doc_dict or full_text in avoid_dict: continue else: doc_dict[full_text] = new_json num_spans += len(new_json["spans"]) return num_spans test_file = open(sys.argv[2], 'r', encoding='utf-8') in_file = open(sys.argv[1], 'r', encoding='utf-8') tsvtest = csv.reader(test_file, delimiter='\t') tsvin = csv.reader(in_file, delimiter='\t') test_docs = {} train_docs = {} num_test_spans = process_file(tsvtest, test_docs, {}) chron_test_spans = sorted(list(test_docs.values()), key=lambda x:str(x["date"])) filtered = chron_test_spans filtered_date = [x["date"] for x in filtered] filtered_spans = [x["spans"] for x in filtered] test = open("test.json", 'w+', encoding='utf-8') dev = open("dev.json", 'w+', encoding='utf-8') train = open("train.json", 'w+', encoding='utf-8') for json_blob in filtered[:-1010]: train.write(json.dumps(json_blob)) train.write("\n") for json_blob in filtered[-1010:-610]: dev.write(json.dumps(json_blob)) dev.write("\n") for json_blob in filtered[-510:-10]: test.write(json.dumps(json_blob)) test.write("\n") # The top 10 have clearly incorrect dates, like something in the year 3000
[ "paxia@jhu.edu" ]
paxia@jhu.edu
58d9792ff4177d3aea632b38fd8d7443be137527
174ef43bc002b2fb31b4b301d97f59d9ff848a51
/models/resnet.py
384074293df4729ed6479c8363fc4dff3915b3af
[]
no_license
chandu-97/Invertible-GAN
d181eb465228c7c8e79cb6c049b4a83a1952a16a
6afb14c5272d857bbf2f55fab78113eda003c36d
refs/heads/master
2022-03-14T12:04:55.793902
2019-12-17T21:56:10
2019-12-17T21:56:10
222,968,114
1
0
null
null
null
null
UTF-8
Python
false
false
2,107
py
import torch import torch.nn as nn import torch.nn.functional as F from models.residual_block import ResidualBlock from utils import WNConv2d class ResNet(nn.Module): """ResNet for scale and translate factors in Real NVP. Args: in_channels (int): Number of channels in the input. mid_channels (int): Number of channels in the intermediate layers. out_channels (int): Number of channels in the output. num_blocks (int): Number of residual blocks in the network. kernel_size (int): Side length of each filter in convolutional layers. padding (int): Padding for convolutional layers. double_after_norm (bool): Double input after input BatchNorm. """ def __init__(self, in_channels, mid_channels, out_channels, num_blocks, kernel_size, padding, double_after_norm): super(ResNet, self).__init__() self.in_norm = nn.BatchNorm2d(in_channels) self.double_after_norm = double_after_norm self.in_conv = WNConv2d(2 * in_channels, mid_channels, kernel_size, padding, bias=True) self.in_skip = WNConv2d(mid_channels, mid_channels, kernel_size=1, padding=0, bias=True) self.blocks = nn.ModuleList([ResidualBlock(mid_channels, mid_channels) for _ in range(num_blocks)]) self.skips = nn.ModuleList([WNConv2d(mid_channels, mid_channels, kernel_size=1, padding=0, bias=True) for _ in range(num_blocks)]) self.out_norm = nn.BatchNorm2d(mid_channels) self.out_conv = WNConv2d(mid_channels, out_channels, kernel_size=1, padding=0, bias=True) def forward(self, x): x = self.in_norm(x) if self.double_after_norm: x *= 2. x = torch.cat((x, -x), dim=1) x = F.relu(x) x = self.in_conv(x) x_skip = self.in_skip(x) for block, skip in zip(self.blocks, self.skips): x = block(x) x_skip += skip(x) x = self.out_norm(x_skip) x = F.relu(x) x = self.out_conv(x) return x
[ "ee14btech11014@iith.ac.in" ]
ee14btech11014@iith.ac.in
b888d97751c1a71fe356a509e5e43f5733362ec1
1362b977fd45dcdc773c836e9895701a20152bba
/multilayer/1d/rarefaction.py
d2f2f3e724001e4c8584ba01f63f71573d7c5e52
[]
no_license
nthakkar/apps
4cceacf85e5bdb505f7593fcb7e5c5f4bc5bc371
f195821e4c8d153a93062af3ecb0c787ed51207f
refs/heads/master
2021-01-18T11:59:18.972898
2013-08-13T00:28:33
2013-08-13T00:28:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,240
py
#!/usr/bin/env python # encoding: utf-8 r""" Run the suite of tests for the 1d two-layer equations""" import sys import clawpack.riemann as riemann import clawpack.clawutil.runclaw as runclaw from clawpack.pyclaw.plot import plot import multilayer as ml def rarefaction(num_cells,eigen_method,entropy_fix,**kargs): r"""docstring for oscillatory_wind""" # Construct output and plot directory paths prefix = 'ml_e%s_m%s_fix' % (eigen_method,num_cells) if entropy_fix: prefix = "".join((prefix,"T")) else: prefix = "".join((prefix,"F")) name = 'all_rare' outdir,plotdir,log_path = runclaw.create_output_paths(name,prefix,**kargs) # Redirect loggers # This is not working for all cases, see comments in runclaw.py for logger_name in ['io','solution','plot','evolve','f2py','data']: runclaw.replace_stream_handlers(logger_name,log_path,log_file_append=False) # Load in appropriate PyClaw version if kargs.get('use_petsc',False): import clawpack.petclaw as pyclaw else: import clawpack.pyclaw as pyclaw # ================= # = Create Solver = # ================= if kargs.get('solver_type','classic') == 'classic': solver = pyclaw.ClawSolver1D() else: raise NotImplementedError('Classic is currently the only supported solver.') # Solver method parameters solver.cfl_desired = 0.9 solver.cfl_max = 1.0 solver.max_steps = 5000 solver.fwave = True solver.kernel_language = 'Fortran' solver.num_waves = 4 solver.limiters = 3 solver.source_split = 1 # Boundary conditions solver.bc_lower[0] = 1 solver.bc_upper[0] = 1 solver.aux_bc_lower[0] = 1 solver.aux_bc_upper[0] = 1 # Set the Riemann solver solver.rp = riemann.rp1_layered_shallow_water # Set the before step function solver.before_step = lambda solver,solution:ml.step.before_step(solver,solution) # Use simple friction source term solver.step_source = ml.step.friction_source # ============================ # = Create Initial Condition = # ============================ num_layers = 2 x = pyclaw.Dimension('x',0.0,1.0,num_cells) domain = pyclaw.Domain([x]) state = pyclaw.State(domain,2*num_layers,3+num_layers) state.aux[ml.aux.kappa_index,:] = 0.0 # Set physics data state.problem_data['g'] = 9.8 state.problem_data['manning'] = 0.0 state.problem_data['rho_air'] = 1.15e-3 state.problem_data['rho'] = [0.95,1.0] state.problem_data['r'] = state.problem_data['rho'][0] / state.problem_data['rho'][1] state.problem_data['one_minus_r'] = 1.0 - state.problem_data['r'] state.problem_data['num_layers'] = num_layers # Set method parameters, this ensures it gets to the Fortran routines state.problem_data['eigen_method'] = eigen_method state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['inundation_method'] = 2 state.problem_data['entropy_fix'] = entropy_fix solution = pyclaw.Solution(state,domain) solution.t = 0.0 # Set aux arrays including bathymetry, wind field and linearized depths eta = [0.0,-0.5] ml.aux.set_jump_bathymetry(solution.state,0.5,[-1.0,-1.0]) ml.aux.set_no_wind(solution.state) ml.aux.set_h_hat(solution.state,0.5,eta,eta) # Set sea at rest initial condition with diverging velocities u_left = [0.0,-0.5] u_right = [0.0,0.5] h_hat = [eta[0] - eta[1],eta[1] + 1.0] q_left = [h_hat[0] * state.problem_data['rho'][0], u_left[0] * h_hat[0] * state.problem_data['rho'][0], h_hat[1] * state.problem_data['rho'][1], u_left[1] * h_hat[1] * state.problem_data['rho'][1]] q_right = [h_hat[0] * state.problem_data['rho'][0], u_right[0] * h_hat[0] * state.problem_data['rho'][0], h_hat[1] * state.problem_data['rho'][1], u_right[1] * h_hat[1] * state.problem_data['rho'][1]] ml.qinit.set_riemann_init_condition(state,0.5,q_left,q_right) # ================================ # = Create simulation controller = # ================================ controller = pyclaw.Controller() controller.solution = solution controller.solver = solver # Output parameters controller.output_style = 3 controller.nstepout = 1 controller.num_output_times = 100 controller.write_aux_init = True controller.outdir = outdir controller.write_aux = True # ================== # = Run Simulation = # ================== state = controller.run() # ============ # = Plotting = # ============ plot_kargs = {'rho':solution.state.problem_data['rho'], 'dry_tolerance':solution.state.problem_data['dry_tolerance']} plot(setplot_path="./setplot_drystate.py",outdir=outdir,plotdir=plotdir, htmlplot=kargs.get('htmlplot',False),iplot=kargs.get('iplot',False), file_format=controller.output_format,**plot_kargs) if __name__ == "__main__": rarefaction(100,2,False,iplot=False,htmlplot=True)
[ "kyle.mandli@gmail.com" ]
kyle.mandli@gmail.com
50bb15ab47df9e53950a20c7fb3a9589dfa069c3
6197e65fffdd12dee288dc394d6c4a7b0a151172
/train.py
a5a6fe07819e7250487fd223b6a3102e54aba52e
[]
no_license
yuntai/horse
0fc7ab868c6e12ac209929bc7bc2753508513533
b70f38c14c36331be2518300358f6ca8b802bdca
refs/heads/main
2022-12-27T03:37:38.935003
2020-10-07T07:38:57
2020-10-07T07:38:57
301,961,007
0
0
null
null
null
null
UTF-8
Python
false
false
6,447
py
import torch import settings from torch.utils.data import TensorDataset, DataLoader import argparse from dataset import get_datasets from graph_transformer import GraphTransformer import numpy as np import itertools import torch.nn as nn from torch import optim import tqdm parser = argparse.ArgumentParser(description='Graph Transformer on Horse Racing outcome') parser.add_argument('--batch_size', type=int, default=128, help='batch size') parser.add_argument('--max_epoch', type=int, default=1000, help='upper epoch limit') parser.add_argument('--d_model', type=int, default=640, help='model dimension') parser.add_argument('--n_layer', type=int, default=14, help='number of total layers') parser.add_argument('--n_head', type=int, default=10, help='number of heads') parser.add_argument('--d_inner', type=int, default=3800, help='inner dimension in posFF') parser.add_argument('--d_embed', type=int, default=128, help='inner dimension in posFF') parser.add_argument('--final_dim', type=int, default=280, help='final layer hidden dimension') parser.add_argument('--lr', type=float, default=0.0005, help='initial learning rate (0.0001|5 for adam|sgd)') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--decay_rate', type=float, default=0.5, help='decay factor when ReduceLROnPlateau is used') parser.add_argument('--patience', type=int, default=5, help='patience') parser.add_argument('--lr_min', type=float, default=0.0, help='minimum learning rate during annealing') parser.add_argument('--dropout', type=float, default=0.03, help='global dropout rate (applies to residual blocks in transformer)') parser.add_argument('--dropatt', type=float, default=0.0, help='attention probability dropout rate') parser.add_argument('--final_dropout', type=float, default=0.04, help='final layer dropout rate') parser.add_argument('--wnorm', action='store_true', help='use weight normalization') parser.add_argument('--cuda', type=bool, default=True, help='use CUDA') parser.add_argument('--seed', type=int, default=1234, help='random seed') parser.add_argument('--scheduler', default='cosine', type=str, choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant'], help='lr scheduler to use.') parser.add_argument('--eta_min', type=float, default=1e-7, help='min learning rate for cosine scheduler') args = parser.parse_args() train_dataset, val_dataset = get_datasets() train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True) np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available() and args.cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') torch.cuda.manual_seed_all(args.seed) device = torch.device('cuda' if args.cuda else 'cpu') model = GraphTransformer(dim=args.d_model, n_layers=args.n_layer, d_inner=args.d_inner, n_toks=[3, 12], d_embed=args.d_embed, final_dim=args.final_dim, dropout=args.dropout, n_feat=18, dropatt=args.dropatt, final_dropout=args.final_dropout, n_head=args.n_head, wnorm=args.wnorm).to(device) bce_loss = nn.BCEWithLogitsLoss(reduction='none') loss_func = nn.MSELoss(reduction='none') def criterion(pred, y, mask, x): loss = loss_func(pred, y) res = (loss * mask).sum()/((mask>0).sum()) return res args.max_step = args.max_epoch * len(train_loader) # initlize optimizer and lr scheduler optimizer = optim.Adam(model.parameters(), lr=args.lr) if args.scheduler == 'dev_perf': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min) elif args.scheduler == 'cosine': scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.max_epoch, eta_min=args.eta_min) #TODO: prper union with val_dataset max_num_horses = train_dataset.tensors[1].max().long() def accuracy(pred, y, mask, threshold=0.7): pred = (torch.sigmoid(pred) > threshold).long() return (pred * y).sum() / 5. / pred.size(0) ix = 0 start_epoch = 0 train_step = 0 min_val_loss = float('inf') for epoch_i in range(start_epoch, args.max_epoch): losses = [] accs = [] model.train() with torch.enable_grad(): for _batch in tqdm.tqdm(train_loader): optimizer.zero_grad() x, cnt = (b.to(device) for b in _batch) bsz = x.size(0) rix = torch.stack([torch.randperm(max_num_horses) for _ in range(bsz)]) # with gather possible? x = x[torch.arange(bsz)[:,None,None], rix[...,None], torch.arange(x.size(-1))] mask = (rix < cnt[:,None]).float() feats, toks, y = x.split([18, 2, 1], dim=-1) toks = toks.type(torch.long) pred = model(feats, toks, mask) loss = criterion(pred, y.squeeze(), mask, x) #acc = accuracy(pred, y.squeeze(), mask) #accs.append(acc.detach().cpu()) loss.backward() losses.append(loss.detach().cpu()) torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() train_step += 1 model.eval() with torch.no_grad(): val_losses = [] for _batch in tqdm.tqdm(val_loader): x, cnt = (b.to(device) for b in _batch) bsz = x.size(0) rix = torch.stack([torch.randperm(max_num_horses) for _ in range(bsz)]) # with gather possible? x = x[torch.arange(bsz)[:,None,None], rix[...,None], torch.arange(x.size(-1))] mask = (rix < cnt[:,None]).float() feats, toks, y = x.split([18, 2, 1], dim=-1) toks = toks.type(torch.long) pred = model(feats, toks, mask) loss = criterion(pred, y.squeeze(), mask, x) val_losses.append(loss.detach().cpu()) scheduler.step() lr = optimizer.param_groups[0]['lr'] tr_loss = np.array(losses).mean() val_loss = np.array(val_losses).mean() if val_loss < min_val_loss: torch.save(model, 'model.ckpt') print(f"Saving model ...") min_val_loss = val_loss print(f"epoch {epoch_i} loss({tr_loss:.7f}) lr({lr:.7f}) val_loss({val_loss:.7f})")
[ "yuntai.kyong@gmail.com" ]
yuntai.kyong@gmail.com
03c3734ef7b7cc25a20cb6c977058b94d348cee0
228c54822400aaf033679fa49f2a7475e64b5a73
/mriutils/models/modules/metrics.py
36f0e7bc141f2b8ccf857090c565e5b3afd7c299
[ "MIT" ]
permissive
kuangmeng/MRIUtils
3111da0c212b8bd74b4b35bb6a5fbf641c4d28ff
3a79e8104071deb0dc17c402ac878f94161d9b4a
refs/heads/master
2023-06-01T14:51:24.547215
2021-06-23T07:22:15
2021-06-23T07:22:15
322,794,871
0
0
null
null
null
null
UTF-8
Python
false
false
2,631
py
#!/usr/bin/env python from tensorflow.keras import metrics from tensorflow.keras import backend as K class Metric: def __init__(self, metric = '', customization = None): self.metric = metrics.categorical_accuracy if 'dice' in metric: self.metric = self.dice_score elif 'iou' in metric: self.metric = self.iou elif 'sensitivity' in metric: self.metric = self.sensitivity elif 'ppv' in metric: self.metric = self.ppv elif customization != None: self.metric = customization def dice_coef(self, y_true_f, y_pred_f, smooth = 1): intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def iou_coef(self, y_true_f, y_pred_f, smooth = 1): intersection = K.sum(y_true_f * y_pred_f) return (intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth - intersection) def dice_score(self, y_true, y_pred): ret_loss = 0.0 for index in range(1, y_true.shape[-1]): y_true_f = K.flatten(y_true[:,:,:,:,index]) y_pred_f = K.flatten(y_pred[:,:,:,:,index]) ret_loss += self.dice_coef(y_true_f, y_pred_f) return ret_loss / (y_true.shape[-1] - 1) def iou(self, y_true, y_pred): ret_loss = 0.0 for index in range(1, y_true.shape[-1]): y_true_f = K.flatten(y_true[:,:,:,:,index]) y_pred_f = K.flatten(y_pred[:,:,:,:,index]) ret_loss += self.iou_coef(y_true_f, y_pred_f) return ret_loss / (y_true.shape[-1] - 1) def S(self, y_true_f, y_pred_f, smooth = 1e-5): intersection = K.sum(y_true_f * y_pred_f) return intersection / (K.sum(y_pred_f) + smooth) def sensitivity(self, y_true, y_pred): ret_sen = 0.0 for index in range(1, y_true.shape[-1]): y_true_f = K.flatten(y_true[:,:,:,:,index]) y_pred_f = K.flatten(y_pred[:,:,:,:,index]) ret_sen += self.S(y_true_f, y_pred_f) return ret_sen / (y_true.shape[-1] - 1) def ppv_cal(self, y_true_f, y_pred_f, smooth = 1e-5): intersection = K.sum(y_true_f * y_pred_f) return intersection / (K.sum(y_true_f) + smooth) def ppv(self, y_true, y_pred): ret_ppv = 0.0 for index in range(1, y_true.shape[-1]): y_true_f = K.flatten(y_true[:,:,:,:,index]) y_pred_f = K.flatten(y_pred[:,:,:,:,index]) ret_ppv += self.ppv_cal(y_true_f, y_pred_f) return ret_ppv / (y_true.shape[-1] - 1)
[ "kuangmeng@msn.com" ]
kuangmeng@msn.com
069d23d123f3c38400dbad4b87ff53b3e7047772
a5be588253399c19c6f65f42a3d00324aa38a0e3
/HW5/Q4.py
e4df29d27002190b6f62ae267391f52da4012935
[]
no_license
zahrahosseini99/computer-vision-course
b7e9e3869552e9395aa3e7ba2db2be2421b1bb0d
0c98d95cfc703acf08cbb62f42506d915905f8b2
refs/heads/main
2023-07-15T04:26:55.527095
2021-08-26T08:47:12
2021-08-26T08:47:12
338,807,780
0
0
null
null
null
null
UTF-8
Python
false
false
939
py
def get_45_edges(image): ''' Returns the image which shows the 45-degree edges. Parameters: image (numpy.ndarray): The input image. Returns: edges_45 (numpy.ndarray): The 45-degree edges of input image. ''' kernel = None edges_45 = image.copy() #Writer your code here kernel=np.array([[2,1,0],[1,0,-1],[0,-1,-2]],np.float) edges_45=cv2.filter2D(image,-1,np.float32(kernel)) return edges_45 def get_135_edges(image): ''' Returns the image which shows the 135-degree edges. Parameters: image (numpy.ndarray): The input image. Returns: edges_135 (numpy.ndarray): The 135-degree edges of input image. ''' kernel = None edges_135 = image.copy() #Writer your code here kernel=np.array([[0,-1,-2],[1,0,-1],[2,1,0]],np.float) edges_135=cv2.filter2D(image,-1,np.float32(kernel)) return edges_135
[ "hosseini99.zahra@gmail.com" ]
hosseini99.zahra@gmail.com
a4c6d9b46b276041c17bd2f1719a9186f8519449
35edf8f827bbb380e380c8cf1d0ce177754676e7
/Tercero/ISSBC/Practica 5/rdflib/samples-tutorial-old/s6.py
c5d7524d77b795f57801dd068d143af4c8f79ad4
[]
no_license
IronSenior/PracticasUNI
e25182aaee9ceaad07cf2546879836c3fcbaea24
b5b2041e529923636eeba426a7efd32269ba6fc0
refs/heads/master
2021-07-11T01:48:18.915121
2020-06-07T00:07:38
2020-06-07T00:07:38
130,170,973
6
2
null
null
null
null
UTF-8
Python
false
false
597
py
# -*- coding: utf-8 -*- """ Created on Wed Mar 18 20:25:07 2015 @author: acalvo """ """ SPARQL Update statements can be applied with :meth:`rdflib.graph.Graph.update` """ import rdflib if __name__=='__main__': g = rdflib.Graph() g.load("foaf.rdf") g.update(''' PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX dbpedia: <http://dbpedia.org/resource/> INSERT { ?s a dbpedia:Human . } WHERE { ?s a foaf:Person . } ''') for x in g.subjects( rdflib.RDF.type, rdflib.URIRef('http://dbpedia.org/resource/Human')): print x
[ "jose.marquez@atlantyasoftware.com" ]
jose.marquez@atlantyasoftware.com
22c3ed54ea958655229e920bed61a6cd380cabb1
57cf9b9dca994e1df417b7484c464a2826357254
/tipo_conjunto.py
7ee392cfe1c48261978bf725b1f0e3cc71769324
[]
no_license
academia-szycho/clases
f471d9e48bff90c5a09ef78ca1635cbcb8b2d904
eac9117ec496ce35d1ed33631219e5b23a966fb3
refs/heads/master
2023-01-19T07:39:57.924852
2020-11-14T18:39:44
2020-11-14T18:39:44
293,975,311
1
2
null
2020-11-08T06:00:52
2020-09-09T02:00:08
Python
UTF-8
Python
false
false
355
py
lista = ["banana", "manzana", "naranja", "naranja"] frutas_sin_repetir = set(lista) ''' for fruta in lista: if fruta not in frutas_sin_repetir: frutas_sin_repetir.append(fruta) ''' print(frutas_sin_repetir) frutas_sin_repetir = {"naranja", "frutilla"} print(frutas_sin_repetir) frutas_sin_repetir.remove("naranja") print(frutas_sin_repetir)
[ "licefim254@acceptmail.net" ]
licefim254@acceptmail.net
79d221d5ee82105be91e5eb4e356874dc967f295
5408da89e75c5a79f858eb2c7159c0e5c3c6f615
/test.py
cd6d8f3812a756fed15afadd7c3a91836cf2df8e
[ "MIT" ]
permissive
Spanfile/Dijkstra
848c65de580d494d643a073bd0049e7f54deba3b
ea4e7ba68b6b1a7feed29c09f6108db32c57fd17
refs/heads/master
2020-03-12T02:02:02.861489
2018-04-20T17:09:40
2018-04-20T17:09:40
130,391,460
0
0
null
null
null
null
UTF-8
Python
false
false
3,060
py
from random import randint from time import perf_counter from multiprocessing import Process, JoinableQueue, current_process from progressbar import ProgressBar from dijkstra import Graph, dijkstra def generate_random_graph(nodes, edges_per_node, max_weight): graph = Graph() for node_index in range(1, nodes + 1): for edge_index in range(edges_per_node): weight = randint(1, max_weight) neighbour = node_index while neighbour == node_index: neighbour = randint(0, nodes) graph.add_edge_with_cost(node_index, neighbour, weight) return graph def test(queue, output): start = 1 edges_per_node = 6 max_weight = 100 pid = current_process().pid while True: graph_size, graph_index = queue.get() if not graph_size: break end = graph_size #print("PID {}: Starting graph_size={}, graph_index={}".format(pid, graph_size, graph_index)) #csv.write("Time,Steps,Length,Nodes\n") while True: graph = generate_random_graph(graph_size, edges_per_node, max_weight) try: start_time = perf_counter() moves, weights, steps = dijkstra(graph, start) end_time = perf_counter() except: continue elapsed = end_time - start_time path = [] length = weights[end] current = end complete = False while current: path.append(current) if current == start: complete = True break current = moves[current] if not complete: continue row = "{},{},{},{},{},{}".format(graph_size, graph_index, elapsed, steps, length, len(path)) #print("PID {}: {}".format(pid, row)) output.put(row) #csv.write(row + "\n") break queue.task_done() print("PID {}: done".format(pid)) def writer(output): with open("results.csv", "w") as f, ProgressBar(max_value=5000) as bar: f.write("Graph size,Test index,Elapsed time,Steps,Path length,Path nodes\n") i = 0 while True: row = output.get() if not row: break f.write(row + "\n") i += 1 bar.update(i) output.task_done() def main(): queue = JoinableQueue() output = JoinableQueue() processes = [Process(target=test, args=(queue, output)) for index in range(8)] write_proc = Process(target=writer, args=(output,)) for p in processes: p.start() write_proc.start() for size in range(100, 5100, 100): for index in range(0, 100): queue.put((size, index)) queue.join() output.join() for i in range(100, 5000, 100): queue.put((None, None)) output.put(None) for p in processes: p.join() if __name__ == "__main__": main()
[ "spansdev@gmail.com" ]
spansdev@gmail.com
612580bde3a415ac4d0e860531c600f737b1f3fd
1b03fa00961eff21a8b0dea12ae2a78de5275765
/M5T1_COATS.py
687a3f88e62c391f67a74f68f2b98b1f871c7bb5
[]
no_license
coatsb9112/M2T1
fd1c27c2a8a38e0820e069f2c489ea6f28a89a3a
5f667f1ad6c8a8dcc9754a4032c18eb01cebae33
refs/heads/master
2021-01-20T11:39:28.172419
2017-12-09T19:53:18
2017-12-09T19:53:18
101,679,082
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# Brandon Coats # CTI 110 # 10/22/17 # M5T1 import turtle turtle.shape("turtle") turtle.forward(50) turtle.left(90) turtle.forward(50) turtle.left(90) turtle.forward(50) turtle.left(90) turtle.forward(50) turtle.left(90) turtle.forward(100) turtle.left(175) turtle.forward(100) turtle.left(90) turtle.forward(10) turtle.left(90) turtle.right(2)
[ "noreply@github.com" ]
coatsb9112.noreply@github.com
69c2c00b0870c64fb7a2debb3e6aa6790c731a80
bfa2796ba38793b88dce8515f01b4b315639d51e
/exercise_01/app.py
974428428abd7c481ea092df4422115f0d2339b0
[]
no_license
EniDev911/Flask
c2a4ef45e7eccc10ec924241143d44dcbdb9ecaf
2d35af9b2ffe10803d0acdb3b46c27ecb7394fd4
refs/heads/master
2023-06-08T12:26:57.267470
2021-06-24T23:27:17
2021-06-24T23:27:17
309,044,877
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
from flask import Flask app = Flask(__name__) @app.route('/') def index(): return '<h1>Hello World from view function!.</h1>' @app.route('/user/<name>') def user(name): return '<h1>Hello %s welcome to Flask</h1>' % name @app.route('/profile') def profile(): return '<h2>Welcome to profile</h2>' if __name__ == '__main__': app.run(debug=True)
[ "enidev911@gmail.com" ]
enidev911@gmail.com
7961fd11a9aeb2bf7b63127c7e250a4c4aa7994c
155f59e3aa788cdb7d9256e685bfe5446fe6c623
/FxStocks/Plot/DemoWithMatplotLib.py
2c1c859bd5061dca5f60b697b56466af61cc0d72
[]
no_license
fictor/FxFinance
81eb2e15cb4d069ffc7b9e3a56edc1c598fa37a1
b0ff6d698d707d47c99808568b5527c4461eddf9
refs/heads/master
2021-04-30T09:11:33.852312
2021-01-09T16:19:09
2021-01-09T16:19:09
121,302,507
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
import quandl import matplotlib.pyplot as plt import pandas as pd auth_token = 'QTxeC7MJ_NMJoFhfmMjG' def MatPlotLibDemo(): # Example Two: with open('quandlkey.txt', 'r') as quandl_key_file: auth_token = quandl_key_file.read() perth_silver = quandl.get("PERTH/SLVR_USD_M", authtoken = auth_token) # Convert to pandas dataframe: silver_df = pd.DataFrame(perth_silver) print(silver_df.head(6)) print(silver_df.tail(6)) plt.subplot(2, 1, 1) plt.plot(silver_df.index, silver_df['Bid Average']) plt.title(''' Perth Mint Monthly Prices For Silver (USD) \n''') plt.xticks(silver_df.index[0::75],[]) plt.xlabel('\n Year') plt.ylabel('Avg. Bid Price \n') plt.subplot(2, 1, 2) plt.plot(silver_df.index, silver_df['Ask Average']) plt.xlabel('\n Year') plt.ylabel('Avg. Ask Price \n') plt.show()
[ "felix.clap@gmail.com" ]
felix.clap@gmail.com
146aa11c9c3cb3f4bed5cca81a0563e4850a8408
45936e8150b52167fb03d8cae528f99b7d802371
/compare/path.py
c66c563e407194f51d9779cc4540a9e5f8f35963
[ "MIT" ]
permissive
reneschaub/opt_einsum
527dbd78ef8a46529debdbb88b7c0238994bc71b
8b4ba900eb6e216a9daae9f2d06791cec8049a1f
refs/heads/master
2021-01-25T08:07:59.813777
2018-04-09T07:35:32
2018-04-09T07:35:32
93,721,957
0
0
null
2017-06-08T07:49:59
2017-06-08T07:49:59
null
UTF-8
Python
false
false
2,545
py
import numpy as np import pandas as pd import sys, traceback import timeit import time import test_helper as th from opt_einsum import contract pd.set_option('display.width', 200) import resource rsrc = resource.RLIMIT_DATA limit = int(1e10) resource.setrlimit(rsrc, (limit, limit)) test_einsum = False test_paths = True opt_path_time = True term_thresh = 4 tdot=True #scale_list = [1.0, 1.1, 1.2, 1.3, 1.4, 1.5] scale_list = [2] out = [] for key in th.tests.keys(): sum_string, index_size = th.tests[key] for scale in scale_list: views = th.build_views(sum_string, index_size, scale=scale) # At this point lets assume everything works correctly t = time.time() opt_path = contract(sum_string, *views, path='optimal', return_path=True) opt_time = time.time() - t opp_path = contract(sum_string, *views, path='opportunistic', return_path=True) if opt_path_time and (len(views) > term_thresh): print 'Path optimal took %3.5f seconds for %d terms.' % (opt_time, len(views)) # If identical paths lets just skip them if all(x==y for x, y in zip(opp_path, opt_path)): break setup = "import numpy as np; from opt_einsum import contract; \ from __main__ import sum_string, views, opt_path, opp_path, tdot" opportunistic_string = "contract(sum_string, *views, path=opp_path, tensordot=tdot)" optimal_string = "contract(sum_string, *views, path=opt_path, tensordot=tdot)" # Optional test if test_paths: opp = contract(sum_string, *views, path=opp_path) opt = contract(sum_string, *views, path=opt_path) assert np.allclose(opp, opt) if test_einsum and test_paths: assert np.allclose(opp, np.einsum(sum_string, *views)) num_loops = 5 optimal_time = timeit.timeit(opportunistic_string, setup=setup, number=num_loops) / num_loops opportunistic_time = timeit.timeit(optimal_string, setup=setup, number=num_loops) / num_loops out.append([key, sum_string, scale, optimal_time, opportunistic_time]) df = pd.DataFrame(out) df.columns = ['Key', 'String', 'Scale', 'Optimal time', 'Opportunistic time'] df['Ratio'] = np.around(df['Opportunistic time']/df['Optimal time'], 2) df = df.set_index(['Key', 'Scale']) df = df.sort_index() print df print '\nDescription of speedup:' print df['Ratio'].describe() print '\nNumber of optimal paths slower than opportunistic paths: %d.' % np.sum(df['Ratio']<0.8)
[ "malorian@me.com" ]
malorian@me.com
327232060f0e15512e93eebf1f7d39b82e1718d7
926b3c52070f6e309567c8598248fd5c57095be9
/src/mmdeploy/mmdeploy/codebase/mmdet/deploy/object_detection.py
ede6a08b4e991848bdcc9c02f7fbbeaa39d40a09
[ "Apache-2.0" ]
permissive
fengbingchun/PyTorch_Test
410f7cd2303707b0141d433fb9d144a961e1f4c8
df5c2169f0b699bcd6e74adb4cb0e57f7dcd9348
refs/heads/master
2023-05-23T16:42:29.711338
2023-03-25T11:31:43
2023-03-25T11:31:43
167,339,907
15
4
null
2023-03-25T11:31:45
2019-01-24T09:24:59
C++
UTF-8
Python
false
false
12,325
py
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Dict, Optional, Sequence, Tuple, Union import mmcv import numpy as np import torch from mmcv.parallel import DataContainer from torch.utils.data import Dataset from mmdeploy.utils import Task from mmdeploy.utils.config_utils import get_input_shape, is_dynamic_shape from ...base import BaseTask from .mmdetection import MMDET_TASK def process_model_config(model_cfg: mmcv.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None): """Process the model config. Args: model_cfg (mmcv.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmcv.Config: the model config after processing. """ from mmdet.datasets import replace_ImageToTensor cfg = model_cfg.copy() if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' # for static exporting if input_shape is not None: cfg.data.test.pipeline[1]['img_scale'] = tuple(input_shape) transforms = cfg.data.test.pipeline[1]['transforms'] for trans in transforms: trans_type = trans['type'] if trans_type == 'Resize': trans['keep_ratio'] = False elif trans_type == 'Pad': trans['size_divisor'] = 1 cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) return cfg @MMDET_TASK.register_module(Task.OBJECT_DETECTION.value) class ObjectDetection(BaseTask): def __init__(self, model_cfg: mmcv.Config, deploy_cfg: mmcv.Config, device: str) -> None: super().__init__(model_cfg, deploy_cfg, device) def init_backend_model(self, model_files: Optional[str] = None, **kwargs) -> torch.nn.Module: """Initialize backend model. Args: model_files (Sequence[str]): Input model files. Returns: nn.Module: An initialized backend model. """ from .object_detection_model import build_object_detection_model model = build_object_detection_model( model_files, self.model_cfg, self.deploy_cfg, device=self.device) return model.eval() def init_pytorch_model(self, model_checkpoint: Optional[str] = None, cfg_options: Optional[Dict] = None, **kwargs) -> torch.nn.Module: """Initialize torch model. Args: model_checkpoint (str): The checkpoint file of torch model, defaults to `None`. cfg_options (dict): Optional config key-pair parameters. Returns: nn.Module: An initialized torch model generated by other OpenMMLab codebases. """ if self.from_mmrazor: from mmrazor.apis import init_mmdet_model as init_detector else: from mmdet.apis import init_detector model = init_detector(self.model_cfg, model_checkpoint, self.device, cfg_options) return model.eval() def create_input(self, imgs: Union[str, np.ndarray, Sequence], input_shape: Sequence[int] = None) \ -> Tuple[Dict, torch.Tensor]: """Create input for detector. Args: imgs (str|np.ndarray): Input image(s), accpeted data type are `str`, `np.ndarray`. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Defaults to `None`. Returns: tuple: (data, img), meta information for the input image and input. """ from mmcv.parallel import collate, scatter from mmdet.datasets.pipelines import Compose if isinstance(imgs, (str, np.ndarray)): imgs = [imgs] dynamic_flag = is_dynamic_shape(self.deploy_cfg) cfg = process_model_config(self.model_cfg, imgs, input_shape) # Drop pad_to_square when static shape. Because static shape should # ensure the shape before input image. if not dynamic_flag: transform = cfg.data.test.pipeline[1] if 'transforms' in transform: transform_list = transform['transforms'] for i, step in enumerate(transform_list): if step['type'] == 'Pad' and 'pad_to_square' in step \ and step['pad_to_square']: transform_list.pop(i) break test_pipeline = Compose(cfg.data.test.pipeline) data_list = [] for img in imgs: # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) data_list.append(data) data = collate(data_list, samples_per_gpu=len(imgs)) for k, v in data.items(): # batch_size > 1 if isinstance(v[0], DataContainer): data[k] = v[0].data if self.device != 'cpu': data = scatter(data, [self.device])[0] return data, data['img'] def visualize(self, model: torch.nn.Module, image: Union[str, np.ndarray], result: list, output_file: str, window_name: str, show_result: bool = False, score_thr: float = 0.3): """Visualize predictions of a model. Args: model (nn.Module): Input model. image (str | np.ndarray): Input image to draw predictions on. result (list): A list of predictions. output_file (str): Output file to save drawn image. window_name (str): The name of visualization window. Defaults to an empty string. show_result (bool): Whether to show result in windows, defaults to `False`. score_thr (float): The score threshold to display the bbox. Defaults to 0.3. """ show_img = mmcv.imread(image) if isinstance(image, str) else image output_file = None if show_result else output_file model.show_result( show_img, result=result, win_name=window_name, show=show_result, out_file=output_file, score_thr=score_thr) @staticmethod def run_inference(model: torch.nn.Module, model_inputs: Dict[str, torch.Tensor]) -> list: """Run inference once for a object detection model of mmdet. Args: model (nn.Module): Input model. model_inputs (dict): A dict containing model inputs tensor and meta info. Returns: list: The predictions of model inference. """ return model(**model_inputs, return_loss=False, rescale=True) @staticmethod def get_partition_cfg(partition_type: str) -> Dict: """Get a certain partition config for mmdet. Args: partition_type (str): A string specifying partition type. Returns: dict: A dictionary of partition config. """ from .model_partition_cfg import MMDET_PARTITION_CFG assert (partition_type in MMDET_PARTITION_CFG), \ f'Unknown partition_type {partition_type}' return MMDET_PARTITION_CFG[partition_type] @staticmethod def get_tensor_from_input(input_data: Dict[str, Any]) -> torch.Tensor: """Get input tensor from input data. Args: input_data (dict): Input data containing meta info and image tensor. Returns: torch.Tensor: An image in `Tensor`. """ img_tensor = input_data['img'][0] if isinstance(img_tensor, DataContainer): img_tensor = img_tensor.data[0] return img_tensor @staticmethod def evaluate_outputs(model_cfg: mmcv.Config, outputs: Sequence, dataset: Dataset, metrics: Optional[str] = None, out: Optional[str] = None, metric_options: Optional[dict] = None, format_only: bool = False, log_file: Optional[str] = None): """Perform post-processing to predictions of model. Args: model_cfg (mmcv.Config): Model config. outputs (list): A list of predictions of model inference. dataset (Dataset): Input dataset to run test. metrics (str): Evaluation metrics, which depends on the codebase and the dataset, e.g., "bbox", "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC in mmdet. out (str): Output result file in pickle format, defaults to `None`. metric_options (dict): Custom options for evaluation, will be kwargs for dataset.evaluate() function. Defaults to `None`. format_only (bool): Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to `False`. log_file (str | None): The file to write the evaluation results. Defaults to `None` and the results will only print on stdout. """ from mmcv.utils import get_logger logger = get_logger('test', log_file=log_file) if out: logger.debug(f'writing results to {out}') mmcv.dump(outputs, out) kwargs = {} if metric_options is None else metric_options if format_only: dataset.format_results(outputs, **kwargs) if metrics: eval_kwargs = model_cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule', 'dynamic_intervals' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=metrics, **kwargs)) logger.info(dataset.evaluate(outputs, **eval_kwargs)) def get_preprocess(self) -> Dict: """Get the preprocess information for SDK. Return: dict: Composed of the preprocess information. """ input_shape = get_input_shape(self.deploy_cfg) model_cfg = process_model_config(self.model_cfg, [''], input_shape) preprocess = model_cfg.data.test.pipeline return preprocess def get_postprocess(self) -> Dict: """Get the postprocess information for SDK. Return: dict: Composed of the postprocess information. """ postprocess = self.model_cfg.model.test_cfg if 'rpn' in postprocess: postprocess['min_bbox_size'] = postprocess['rpn']['min_bbox_size'] if 'rcnn' in postprocess: postprocess['score_thr'] = postprocess['rcnn']['score_thr'] if 'mask_thr_binary' in postprocess['rcnn']: postprocess['mask_thr_binary'] = postprocess['rcnn'][ 'mask_thr_binary'] return postprocess def get_model_name(self) -> str: """Get the model name. Return: str: the name of the model. """ assert 'type' in self.model_cfg.model, 'model config contains no type' name = self.model_cfg.model.type.lower() return name
[ "fengbingchun@163.com" ]
fengbingchun@163.com
43ac288294f7307ef6b7397e48bc66fde0727010
5093e1a9ea2c8619965e5e071f3b4a70f3b7dfc0
/src/infra/orm/entities/user.py
42b82a3429fb7ab76100246bd4126bffde1b0db3
[]
no_license
Genial-Ideias/poc_multi_tenant_sqlalchemy
891df3ec48ee5cc2bfd85d8a24e2be25b5c0f8a1
dc8b5c0f95107b2b2674c4509d8ad3123989c14c
refs/heads/main
2023-06-03T18:05:25.153427
2021-06-14T21:31:26
2021-06-14T21:31:26
376,933,111
2
0
null
null
null
null
UTF-8
Python
false
false
365
py
from sqlalchemy import Column, String, Integer, Boolean from src.config.database import TenantBase class User(TenantBase): __tablename__ = 'users' id = Column(Integer, primary_key=True, index=True) email = Column(String, unique=True, index=True) password = Column(String) name = Column(String) is_active = Column(Boolean, default=True)
[ "leonardofreitasdev@gmail.com" ]
leonardofreitasdev@gmail.com
dc8e0abea47e97f42d6101bb38afad1d85cc9a18
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_182/ch11_2019_03_01_14_42_49_680696.py
986f9bb900d027d3760911518e83cb97aa2593fb
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
def celsius_para_fahrenheit(x): y=(((9*x)/5)+32) return y
[ "you@example.com" ]
you@example.com
25c701924f1d7d293fb25a0f20ffcea9adec6f4e
1d7c4b6ea4c761dffd432cc289ba4f8216543a30
/bsc/auth/views.py
21e81b4b1c547060041941f53f1bfab01aa33eda
[]
no_license
gitter-badger/bsc
7f99a457b08d108f1c405df49e065fedf226301e
ccc3e1db1213d33407967be17da81ce2d8544b23
refs/heads/master
2021-01-21T15:43:00.908560
2010-10-08T09:50:54
2010-10-08T09:50:54
48,218,508
0
0
null
2015-12-18T06:28:18
2015-12-18T06:28:16
CSS
UTF-8
Python
false
false
690
py
from django.shortcuts import render_to_response, redirect from django.template import RequestContext from django.contrib.auth import authenticate, login from django.contrib.auth.models import User from django.contrib import messages from bsc.auth.forms import AuthLoginForm def auth_login(request): if (request.POST): user = authenticate(username=request.POST['username'], password=request.POST['password']) if user is not None: if user.is_active: login(request, user) # Redirect. f = AuthLoginForm() ctx = RequestContext(request, {'form': f.as_table()}) return render_to_response('auth/login_form.html', ctx)
[ "rutcreate@gmail.com" ]
rutcreate@gmail.com
ac5ac60276052ded09478de66bf53d6a7da4485b
e81e949d4897370cec3c7307f7dbd2054e91087c
/main/serializers.py
69d89d5c819f95e0288637ca799a4f697a5be8c8
[]
no_license
Niteshks247/BookAppointment
c72e9520e334b999b60f933e277e152c64f4a806
aeafe34ff682e19f9559d88bcd92692cc546e9bb
refs/heads/main
2023-03-29T12:08:13.636633
2021-04-07T19:26:49
2021-04-07T19:26:49
355,494,924
0
0
null
null
null
null
UTF-8
Python
false
false
1,605
py
from django.contrib.auth.models import User from rest_framework import serializers from main.models import * class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['email'] class patientSerializer(serializers.ModelSerializer): email = serializers.StringRelatedField() class Meta: model = patient fields = ['email', 'name'] class AppointmentSerializer(serializers.ModelSerializer): user = patientSerializer() class Meta: model = appointment fields = ['user', 'venue','id'] def to_representation(self, obj): representation = super().to_representation(obj) user_representation = representation.pop('user') for key in user_representation: representation[key] = user_representation[key] return representation def to_internal_value(self, data): user_internal = {} for key in patientSerializer.Meta.fields: if key in data: user_internal[key] = data.pop(key) internal = super().to_internal_value(data) internal['user'] = user_internal return internal def update(self, instance, validated_data): user_data = validated_data.pop('user') super().update(instance, validated_data) user = instance.user for attr, value in user_data.items(): setattr(user, attr, value) user.save() return instance class hospitalSerializer(serializers.ModelSerializer): class Meta: model = hospital fields = ['id', 'name']
[ "niteshks247@gmail.com" ]
niteshks247@gmail.com
0f7084ce8ff2a815b81a9be6c27c5c103b3e645e
7b9dbd6fadd79a6bf061e1879140ac6d8604c0a6
/tests/relaymotortest.py
da54e0b4f6fc0abb8994fdfca7b7ed83a11804f1
[]
no_license
diegorodriguezv/Dora
8743482762a5d182a442e635132994298128ea89
209bd7de60d0fdfb7fbc5687db3325ac62fc701e
refs/heads/master
2020-04-19T09:33:14.924662
2017-03-06T22:07:02
2017-03-06T22:07:02
67,390,700
1
0
null
null
null
null
UTF-8
Python
false
false
5,198
py
import unittest import time import logging from dora.motor.relaymotor import RelayMotor class TestRelayMotor(unittest.TestCase): on = 0 off = 0 on_time = 0.0 off_time = 0.0 def setUp(self): self.motor = RelayMotor(self.count_on, self.count_off, .03) self.is_first = True logging.getLogger().setLevel(logging.DEBUG) def tearDown(self): self.motor.alive = False self.motor.control_thread.join() def count_on(self): now = time.time() if self.is_first: self.start_time = self.last_time = now self.is_first = False self.off_time += now - self.last_time self.last_time = now elapsed = now - self.start_time self.on += 1 # print "{:f} off: {:f} ".format(elapsed, self.off_time) def count_off(self): now = time.time() self.on_time += now - self.last_time self.last_time = now elapsed = now - self.start_time self.off += 1 # print "{:f} on: {:f} ".format(elapsed, self.on_time) def test_init(self): self.assertEqual(self.motor.throttle, 0) self.assertEqual(self.on, 0) self.assertEqual(self.off, 0) # def test_shape(self): # precision = 10 # cycles = 3 # throttle = .2 # ones_ok = 0 # zeros_ok = 0 # delta = .2 # self.motor = RelayMotor(self.countOn, self.countOff, 1) # self.assertEqual(self.on, 0) # self.assertEqual(self.off, 0) # self.motor.set_throttle(throttle) # time.sleep(self.motor.period / precision / 2.0) # for c in range(cycles): # for i in range(precision): # if self.on == c + 1: # ones_ok += 1 # if float(i) / precision < throttle: # if self.off == c: # zeros_ok += 1 # else: # if self.off == c + 1: # zeros_ok += 1 # time.sleep(self.motor.period / precision) # ones_rate = float(ones_ok) / float(cycles * precision) # ones_error = abs(ones_rate - 1) # zeros_rate = float(zeros_ok) / float(cycles * precision) # zeros_error = abs(zeros_rate - 1) # # print "ones_error: {} zeros_error: {}".format(ones_error, zeros_error) # self.assertLess(ones_error, delta) # # self.assertGreater(zeros_error, -delta) def test_distribution(self, throttle=.0): now = time.time() self.start_time = self.last_time = now elapsed = now - self.start_time # print "{} start throttle: {} ".format(elapsed, throttle) cycles = 5 delta = 5 / 100.0 self.assertEqual(self.on, 0) self.assertEqual(self.off, 0) self.motor.set_throttle(throttle) time.sleep((cycles + 1) * self.motor.period) if throttle == 0: now = time.time() elapsed = now - self.start_time logging.info("{:f} finish throttle: {} on: {} of: {} ont: {:f} oft: {:f} tt: {:f} \ real: {:f} ".format(elapsed, throttle, self.on, self.off, self.on_time, self.off_time, self.on_time + self.off_time, 0)) self.assertTrue(self.on_time == 0) self.assertTrue(self.off_time == 0) else: now = time.time() if self.off == self.on: self.off_time += now - self.last_time else: self.on_time += now - self.last_time total_time = self.on_time + self.off_time self.assertTrue(total_time != 0) on_rate = self.on_time / total_time elapsed = now - self.start_time logging.info("{:f} finish throttle: {} on: {} of: {} ont: {:f} oft: {:f} tt: {} \ real: {} ".format(elapsed, throttle, self.on, self.off, self.on_time, self.off_time, self.on_time + self.off_time, on_rate)) self.assertGreaterEqual(on_rate, throttle - delta) self.assertLessEqual(on_rate, throttle + delta) def test_distribution_005(self): throttle = 5 / 100.0 self.test_distribution(throttle) def test_distribution_010(self): throttle = 10 / 100.0 self.test_distribution(throttle) def test_distribution_020(self): throttle = 20 / 100.0 self.test_distribution(throttle) def test_distribution_025(self): throttle = 25 / 100.0 self.test_distribution(throttle) def test_distribution_0333(self): throttle = 33.3333333 / 100.0 self.test_distribution(throttle) def test_distribution_050(self): throttle = 50 / 100.0 self.test_distribution(throttle) def test_distribution_080(self): throttle = 80 / 100.0 self.test_distribution(throttle) def test_distribution_090(self): throttle = 90 / 100.0 self.test_distribution(throttle) def test_distribution_095(self): throttle = 95 / 100.0 self.test_distribution(throttle) def test_distribution_100(self): throttle = 100 / 100.0 self.test_distribution(throttle)
[ "diegorodriguezv@gmail.com" ]
diegorodriguezv@gmail.com
9117ba1df298fe098fa12d7edc7e6e0021796cb9
a64b578a271af2491d3f0ca06ac569dd22246e27
/Resource/bxAPI.py
2d3f65f6a1f4933f713ba6ebb8f2ccea570ea089
[]
no_license
fufu2193/chatb0t1234
15ca14d30fb42de1082c16916793a61c09203675
9dc57a5a26261b454f7ba799456ce02ae43ae0ba
refs/heads/master
2022-12-21T22:10:05.184642
2019-09-15T11:19:38
2019-09-15T11:19:38
208,576,798
0
1
null
2022-12-08T14:55:27
2019-09-15T10:24:18
Python
UTF-8
Python
false
false
1,038
py
import requests #ต้อง pip install ก่อน import pprint ## ดึงราคาจาก Bx.in.th def GetBxPrice(Number_to_get = 5): data = requests.get('https://bx.in.th/api/').json() # pp = pprint.PrettyPrinter(indent=3) # pp.pprint(data) result = [] for key in list(data.keys())[0:Number_to_get]: prim_name = data[key]['primary_currency'] sec_name = data[key]['secondary_currency'] change = data[key]['change'] last_price = data[key]['last_price'] volume = data[key]['volume_24hours'] price_data = { 'prim_name' : prim_name, 'sec_name' : sec_name, 'change' : change, 'last_price' : last_price, 'volume' : volume , } result.append(price_data) # print(prim_name , change , ' : ' , sec_name , ' : ', last_price , ' : ', change , ' : ', volume) return result # if __name__ == '__main__': # print(GetBxPrice()) pp = pprint.PrettyPrinter(indent=3)
[ "petchicclub@gmail.com" ]
petchicclub@gmail.com
ee423771b495161e5671e232ae8dccc9f743ee72
c0f328a2f595440c3f8674bbfef054009348e66a
/pset6/credit.py
3f16f5848dbb48205762f651838229e9bb2ba9e1
[]
no_license
wilcokuyper/cs50
3b314e8fbcbd011671d228298b9cedfe05d57333
21ef27fcb0d4b939930f5c746c445666b9a99d74
refs/heads/master
2021-08-30T11:18:19.014682
2017-12-17T17:35:51
2017-12-17T17:35:51
114,556,084
0
0
null
null
null
null
UTF-8
Python
false
false
1,752
py
def sumOfDigits(number): sum = 0 length = len(number) val = int(number) # creditcard is only valid if it contains 13, 15 or 16 digits if length == 13 or length == 15 or length == 16: # calculate the sum of the digits by adding the individual numbers to each other, every other number should also be doubled for i in range(1,length+1): # find the current digits currentDigit = int(val % 10); # nth mod 2 digits should be doubled if i % 2 == 0: currentDigit *= 2; if currentDigit > 9: sum += int(currentDigit % 10) + 1 else: sum += currentDigit else: sum += currentDigit val = int(val / 10) return sum; def typeOfCard(number): lastTwoDigits = int(int(number) / (pow(10.0, len(number)-2) )) if lastTwoDigits == 34 or lastTwoDigits == 37: return "AMEX" elif (lastTwoDigits == 51 or lastTwoDigits == 52 or lastTwoDigits == 53 or lastTwoDigits == 54 or lastTwoDigits == 55): return "MASTERCARD" elif int(lastTwoDigits / 10) == 4: return "VISA" else: return "INVALID" def printCardType(number): # calculatie the sum of the creditcard digits, if it is positive and divisible by 10 it is valid sum = sumOfDigits(number) if sum > 0 and sum % 10 == 0: print(typeOfCard(number)) else: print("INVALID") def main(): try: number = input("Number: ") printCardType(number) exit(0) except ValueError: print("INVALID") exit(1) if __name__ == "__main__": main()
[ "wilcokuyper@hotmail.com" ]
wilcokuyper@hotmail.com
b20d5a6493549d6d865fea913a3776a70d7f3533
5b8c2e4a1382e495c279e9ff0c97a964d5f8940e
/component_testing/calcPWM_Motor.py
34c6e78567937b9460cbee34bca9908dabf3b151
[]
no_license
ImamMuis/TugasAkhir
1f8f087b9e118d3cd02d66d343af6b13728866d2
585b7ffb14b498798c61caee9e9624ecc7f939ca
refs/heads/master
2023-08-21T02:02:28.891325
2021-10-23T10:13:23
2021-10-23T10:13:23
398,738,079
1
0
null
null
null
null
UTF-8
Python
false
false
1,683
py
# Perhitungan konversi nilai PWM V_in = 24 #V (Tegangan Maksimal untuk motor DC) freq = 50 #Hz (Frekuensi PWM) PWM_Res = 2 ** 16 - 1 #Lebar bit PWM def motorCalc(value, selector): valueError = 0 perioda = 1 / freq * 1000 if selector == "PWM": PWM_Out = value if PWM_Out > PWM_Res: print("Input", value, "PWM terlalu besar!") print("Input maksimal", PWM_Res, "PWM\n") valueError = 1 else: dutyCycle = PWM_Out / PWM_Res V_Out = dutyCycle * V_in T_on = dutyCycle * perioda T_off = perioda - T_on elif selector == "DUTYCYCLE": dutyCycle = value / 100 if dutyCycle > 1: print("Input", str(value) + "% Duty Cycle terlalu besar!") print("Input maksimal 100% Duty Cycle\n") valueError = 1 else: V_Out = dutyCycle * V_in PWM_Out = dutyCycle * PWM_Res T_on = dutyCycle * perioda T_off = perioda - T_on elif selector == "VOLT": V_Out = value if V_Out > V_in: print("Input", value, "Volt terlalu besar!") print("Input maksimal", V_in, "Volt\n") valueError = 1 else: dutyCycle = V_Out / V_in PWM_Out = dutyCycle * PWM_Res T_on = dutyCycle * perioda T_off = perioda - T_on else: print("Parameter 'value' harus PWM, DUTYCYCLE atau VOUT!\n") valueError = 1 if valueError == 0: print("Perioda :", round(perioda, 2), "ms") print("PWM :", round(PWM_Out, 2)) print("Duty Cycle:", round(dutyCycle * 100, 2), "%") print("Voltage :", round(V_Out, 2), "V") print("Time On :", round(T_on, 2), "ms") print("Time Off :", round(T_off, 2), "ms\n") # Cara pakai: # motorCalc(26214, "PWM") # motorCalc(40, "DUTYCYCLE") # motorCalc(9.6, "VOLT")
[ "imuis373@gmail.com" ]
imuis373@gmail.com
ddc567904f52522ee544a175b6283bc8884ff50b
34d88082307281333ef4aeeec012a3ff5f8ec06e
/Work/removeDuplicatedresult.py
b4b1711dfa80276421755ae80c9ac27a03967b34
[]
no_license
JKChang2015/Python
a6f8b56fa3f9943682470ae57e5ad3266feb47a7
adf3173263418aee5d32f96b9ea3bf416c43cc7b
refs/heads/master
2022-12-12T12:24:48.682712
2021-07-30T22:27:41
2021-07-30T22:27:41
80,747,432
1
8
null
2022-12-08T04:32:06
2017-02-02T17:05:19
HTML
UTF-8
Python
false
false
1,663
py
# removeDuplicatedresult # Created by JKChang # 07/11/2018, 12:07 # Tag: # Description: from Work.ontology.ontology_info import entity def removeDuplicated(res_list): priority = {'MTBLS': 0, 'NCBITAXON': 1, 'BTO': 2, 'EFO': 3, 'CHEBI': 4, 'CHMO': 5, 'NCIT': 6, 'PO': 7} res = {} for enti in res_list: term_name = enti.name.lower() onto_name = enti.ontoName try: prior = priority.get(onto_name) except: prior = 1000 if term_name in res: try: old_prior = priority.get(res[term_name].ontoName) except: old_prior = 1000 if prior < old_prior: res[term_name] = enti else: res[term_name] = enti return list(res.values()) e1 = entity(name="mass spectrometry", iri="www.google.com", obo_ID="NICT123", ontoName="NCIT", provenance_name="Metabolights", provenance_uri="www.ebi.ac.uk", Zooma_confidence="high") e2 = entity(name="mass spectrometry", iri="www.google.com", obo_ID="NCBITAXON231", ontoName="NCBITAXON", provenance_name="Metabolights", provenance_uri="www.ebi.ac.uk", Zooma_confidence="high") e3 = entity(name="Mass spectrometry", iri="www.google.com", obo_ID="BTO231", ontoName="BTO", provenance_name="Metabolights", provenance_uri="www.ebi.ac.uk", Zooma_confidence="high") e4 = entity(name="mass Spectrometry", iri="www.google.com", obo_ID="CHEBI22", ontoName="CHEBI", provenance_name="Metabolights", provenance_uri="www.ebi.ac.uk", Zooma_confidence="high") res = [e1, e2, e3, e4] r = removeDuplicated(res) print(r)
[ "jkchang2015@gmail.com" ]
jkchang2015@gmail.com
abb3c656035e3dc6d0f7f69e10bc5862b7a67991
f7d7d5f24e5c3f80ba21a36215a653da2a386d87
/snaketest.py
2b42190d44571e8e86c799cff51bc6eb7bfe8e96
[]
no_license
lukeh3nderson/snake_game_python
2a1ef5946768eb3b5c9ab0f0f0494e1acf4119ba
ceb322229aa77aaea2f04fde4aa6bd0be8583f83
refs/heads/main
2023-01-29T19:42:55.910440
2020-12-11T18:00:11
2020-12-11T18:00:11
313,690,871
0
0
null
null
null
null
UTF-8
Python
false
false
3,967
py
import turtle import random import time delay = 0.1 #score score = 0 high_score = 0 #Set up the screen wn = turtle.Screen() wn.title("Snake by Luke Henderson") wn.bgcolor("Blue") wn.setup(width=700, height=700) wn.tracer(0) #Snake head head = turtle.Turtle() head.speed(1) head.shape("square") head.color("Black") head.penup() head.goto(0, 0) head.direction = "stop" #Snake food food = turtle.Turtle() food.speed(0) food.color("White") food.shape("circle") food.penup() food.goto(0, 100) segments = [] # Pen pen = turtle.Turtle() pen.speed(0) pen.shape("square") pen.color("red") pen.penup() pen.hideturtle() pen.goto(0, 300) pen.write("Score : 0 High Score : 0", align = "center", font = ("Courier", 24, "normal")) # Fuctions def go_up(): if head.direction != "down": head.direction = "up" def go_down(): if head.direction != "up": head.direction = "down" def go_left(): if head.direction != "right": head.direction = "left" def go_right(): if head.direction != "left": head.direction = "right" def move(): if head.direction == "up": y = head.ycor() head.sety(y + 20) if head.direction == "down": y = head.ycor() head.sety(y - 20) if head.direction == "left": x = head.xcor() head.setx(x - 20) if head.direction == "right": x = head.xcor() head.setx(x + 20) #Setting up keyboard wn.listen() wn.onkeypress(go_up, "w") wn.onkeypress(go_down, "s") wn.onkeypress(go_left, "a") wn.onkeypress(go_right, "d") # Main loop while True: wn.update() # Check for border collision if head.xcor()>340 or head.xcor()< -340 or head.ycor()>340 or head.ycor()< -340: time.sleep(1) head.goto(0,0) head.direction = "stop" # Hide the segments for segment in segments: segment.goto(1000,1000) # Clear the segments list segments.clear() #Reset the score score = 0 #Reset the Delay delay = 0.1 #reset pen pen.clear() pen.write("Score: {} High Score: {}".format(score, high_score), align="center", font=("Courier", 24, "normal")) #Check for collison with food if head.distance(food) < 20: # Move food to random location x = random.randint(-300, 300) y = random.randint(-300, 300) food.goto(x,y) #Add segments new_segment = turtle.Turtle() new_segment.speed(0) new_segment.shape("square") new_segment.color("grey") new_segment.penup() segments.append(new_segment) #Shorten the delay delay -=0.001 #Increase score score += 10 if score > high_score: high_score = score pen.clear() pen.write("Score: {} High Score: {}".format(score, high_score), align="center", font=("Courier", 24, "normal")) # Move segments to end in reverse order for index in range(len(segments)-1, 0, -1): x = segments[index-1].xcor() y = segments[index-1].ycor() segments[index].goto(x,y) # Move segment 0 to where the head is if len(segments) > 0: x = head.xcor() y = head.ycor() segments[0].goto(x,y) move() #Check for head collsion with body for segment in segments: if segment.distance(head) < 20: time.sleep(1) head.goto(0,0) head.direction = "stop" #Hide the segments for segment in segments: segment.goto(1000,1000) #Clear the segments segments.clear() #Reset the score score = 0 #Reset delay delay = 0.1 #Update score display pen.clear() pen.write("Score: {} High Score: {}".format(score, high_score), align="center", font=("Courier", 24, "normal")) time.sleep(delay) wn.mainloop()
[ "henderln@dukes.jmu.edu" ]
henderln@dukes.jmu.edu
95365343ebd1d22bf9fdeb48fff8e8cbba2971f4
2ef867a1f6e823c5e36a0699c11f0f1214d096d8
/scripts/train_classifier.py
397a279f2c1c98a6e5a8a7645642fe8781bf4841
[]
no_license
afcarl/deconvolution_cam
55566e618244c7e07e9afb2448a7fe655f67a5da
cb41a420d4bdc58bad7acccb25001ebfe966f79f
refs/heads/master
2020-03-18T16:40:20.805192
2017-10-27T16:44:10
2017-10-27T16:44:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,632
py
import sys import math import time import gzip import glob import pickle import argparse import datetime import torch import torchvision import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import torch.backends.cudnn as cudnn from models import VGGlike_vanilla, VGGlike_upsample from utils import get_loaders, load_log parser = argparse.ArgumentParser(description='Kaggle Cdiscounts Training') parser.add_argument('--gpu', default=1, type=int, help='which gpu to run') parser.add_argument('--batch_size', default=128, type=int, help='size of batches') parser.add_argument('--epochs', default=500, type=int, help='number of epochs') parser.add_argument('--lr', default=0.001, type=float, help='learning rate') parser.add_argument('--es_patience', default=3, type=int, help='early stopping patience') parser.add_argument('--lr_patience', default=1, type=int, help='learning rate decay patience') parser.add_argument('--lr_decay_scale', default=0.1, type=float, help='how much to scale learning rate on each decay') parser.add_argument('--load_best', action='store_true', help='flag to load from checkpoint') parser.add_argument('--load_last', action='store_true', help='flag to load from end of training') parser.add_argument('--model_name', default='vgglike', type=str, help='name of model for saving/loading weights') parser.add_argument('--exp_name', default='vanilla', type=str, help='name of experiment for saving files') parser.add_argument('--num_workers', default=3, type=int, help='how many workers to use for data loader') parser.add_argument('--imsize', default=128, type=int, help='what size to set images') args = parser.parse_args() # set model filenames MODEL_CKPT = '../models/best_{}_{}_classifier.pth'.format(args.model_name, args.exp_name) MODEL_FINL = '../models/last_{}_{}_classifier.pth'.format(args.model_name, args.exp_name) # init some training params or load from saved valid_patience = 0 lr_patience = 0 # load the model if args.exp_name == 'vanilla': print('Using vanilla model ...') net = VGGlike_vanilla() else: print('Using upsample model ...') net = VGGlike_upsample() # load from previous run, if args.load_best: print('Loading from checkpoint ...') #net.load_state_dict(torch.load(MODEL_CKPT)) net.load_state_dict(torch.load('../models/best_{}_{}_classifier.pth'.format(args.model_name, args.exp_name))) # load stats from saved run STRT_EPOCH, best_val_loss = load_log(model_nm=args.model_name, exp_nm=args.exp_name, load_best=True) print('Starting from epoch {}, with best val loss {}'.format(STRT_EPOCH, best_val_loss)) elif args.load_last: print('Loading from end of run ...') net.load_state_dict(torch.load(MODEL_FINL)) # load stats from saved run STRT_EPOCH, best_val_loss = load_log(args.model_name, exp_nm=args.exp_name, load_best=False) print('Starting from epoch {}, with best val loss {}'.format(STRT_EPOCH, best_val_loss)) else: STRT_EPOCH, best_val_loss = 0, 10.0 # cuda and GPU settings if args.gpu == 99: net = torch.nn.DataParallel(net, device_ids=[0,1]).cuda() else: torch.cuda.set_device(args.gpu) net.cuda() cudnn.benchmark = True criterion = nn.CrossEntropyLoss().cuda() optimizer = optim.Adam(net.parameters(), lr=args.lr) train_loader, val_loader, len_train = get_loaders(args.batch_size, args.num_workers, args.imsize) # training loop def train(): net.train() # keep track of accuracy total = 0 correct = 0 # keep track of losses iter_loss = 0. iter_correct = 0. num_batch_epoch = 0 for i, data in enumerate(train_loader): # get the inputs inputs, labels = data inputs = Variable(inputs.cuda()) labels = Variable(labels.cuda(async=True)) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += predicted.eq(labels.data).cpu().sum() iter_loss += loss.data[0] num_batch_epoch += 1 #print('Processed batch', num_batch_epoch, labels.data) sys.stdout.write('\r') multiplier = int((float(i) / (len_train // args.batch_size)) * 10) sys.stdout.write('B: {:>3}/{:<3} | {:.3} | {:.3}'.format(i, len_train // args.batch_size, iter_loss / num_batch_epoch, 100.*correct/total)) #sys.stdout.write('-' * multiplier) sys.stdout.flush() avg_loss = iter_loss / num_batch_epoch print('\n' + 'Train Loss: {:.3} | Train Acc: {:.3}'.format(avg_loss, 100.*correct/total)) return iter_loss / num_batch_epoch # validation loop def validate(): net.eval() # keep track of accuracy val_total = 0 val_correct = 0 # keep track of losses val_loss = 0. val_batch_num = 0 for j, data in enumerate(val_loader): val_in, val_lab = data #val_in = torch.from_numpy(val_in).float() #val_lab = torch.from_numpy(val_lab).long() val_in = Variable(val_in.cuda(), volatile=True) val_lab = Variable(val_lab.cuda(async=True)) val_out = net(val_in) v_l = criterion(val_out, val_lab) val_loss += v_l.data[0] _, val_pred = torch.max(val_out.data, 1) val_total += val_lab.size(0) val_correct += val_pred.eq(val_lab.data).cpu().sum() val_batch_num += 1 avg_vloss = float(val_loss) / val_batch_num print('Eval Loss: {:.3} | Eval Acc: {:.3}'.format(avg_vloss, 100.*val_correct/val_total)) return val_loss / val_batch_num, 100.*val_correct/val_total # train the model try: print('Training ...') train_losses = [] valid_losses = [] for e in range(STRT_EPOCH, args.epochs): print('\n' + 'Epoch {}/{}'.format(e, args.epochs)) start = time.time() t_l = train() v_l, v_a = validate() train_losses.append(t_l) valid_losses.append(v_l) # write the losses to a text file with open('../logs/losses_{}_{}.txt'.format(args.model_name, args.exp_name), 'a') as logfile: logfile.write('{},{},{},{}'.format(e, t_l, v_l, v_a) + "\n") # save the model everytime we get a new best valid loss if v_l < best_val_loss: torch.save(net.state_dict(), MODEL_CKPT) best_val_loss = v_l valid_patience = 0 lr_patience = 0 # if the validation loss gets worse increment 1 to the patience values if v_l > best_val_loss: valid_patience += 1 lr_patience += 1 # if the model doesn't improve by a certain amount of epochs, # lower learning rate if lr_patience >= args.lr_patience: print('Changing learning rate by {}'.format(args.lr_decay_scale)) for params in optimizer.param_groups: params['lr'] = params['lr'] * args.lr_decay_scale lr_patience = 0 #LR_DECAY += 5 # start the net from the previous best #net.load_state_dict(torch.load(MODEL_CKPT)) # if the model stops improving by a certain number epochs, stop if valid_patience == args.es_patience: break print('Time: {}'.format(time.time()-start)) print('Finished Training') except KeyboardInterrupt: pass torch.save(net.state_dict(), MODEL_FINL)
[ "f.muellerklein@gmail.com" ]
f.muellerklein@gmail.com
054b5a380f5c808db9a55ee682fd68ce632c77b9
05be6f562f1ac2445c835e717649a70bd747b21a
/ScrapyForAndroidDashboard/ScrapyForAndroidDashboard/pipelines.py
b7405d29892f1479993edf9e088095c48c7d31f9
[ "Apache-2.0" ]
permissive
Kyson/ScrapyForAndroidDashboard
a5be0e390203d992c52bbcd4c28c4919b0a55985
a77a81564980fc0fde64b534d82991136e82e8ff
refs/heads/master
2021-01-20T05:14:15.560308
2017-04-29T06:01:48
2017-04-29T06:01:48
89,765,230
1
0
null
null
null
null
UTF-8
Python
false
false
2,522
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import json # --- # title: hello,hikyson # tags: [Default] # category: [Default] # comments: true # date: 2014-04-20 22:18:43 # --- # # hello,hikyson # # <!-- more --> # # |Version|Codename|API|Distribution| # |---|---|---|---| # |111|222|333|444| import os from ScrapyForAndroidDashboard.git_pusher import post_title, local_time_str, post_name, push, post_file_dir class ScrapyforandroiddashboardPipeline(object): def process_item(self, item, spider): # generate md file divider = "---" line_feed = "\r\n" title = post_title tags = "[android,spider,scrapy]" category = "[scrapy]" comments = "true" date = local_time_str more = "<!-- more -->" head = "".join( [divider, line_feed, "title: ", title, line_feed, "tags: ", tags, line_feed, "category: ", category, line_feed, "comments: ", comments, line_feed, "date: ", date, line_feed, divider, line_feed]) summary = "This is a post generate by a spider , grab from url: [developer.android.google.cn](developer.android.google.cn)" updatetime = "Update time: %s" % local_time_str version_data_dict = json.loads(item["version_data"]) version_chart_url = "https:" + version_data_dict["chart"] + ".png" # version text text_version = "".join( ["![version_chart](%s)" % version_chart_url, line_feed, line_feed, "|Codename|API|Distribution|", line_feed, "|---|---|---|", line_feed]) version_items = version_data_dict["data"] for version_item in version_items: api = version_item["api"] name = version_item["name"] perc = version_item["perc"] text_version = text_version + "|" + str(api) + "|" + name + "|" + str(perc) + "|" + line_feed post = "".join( [head, line_feed, line_feed, summary, line_feed, updatetime, line_feed, line_feed, more, line_feed, line_feed, text_version]) for file_name in os.listdir(post_file_dir): if file_name.find(post_title) >= 0: os.remove(os.path.join(post_file_dir, file_name)) file_name = os.path.join(post_file_dir, post_name) with open(file_name, 'wb') as f: f.write(post) push() return item
[ "kysonchao@gmail.com" ]
kysonchao@gmail.com
a425f5725507444a3e99b41db0e6814131a13d9e
cd2af363104e2f95f1fa25c7be1d24da9d7dfc74
/flask-hello-world/env/bin/wheel
8a0beb58ee6f2a04ef7f1ca48ae8d95e76ed3ea3
[]
no_license
mnuman/real-python-2
27ebcd26bec3c292c4356898675888b68b8957ce
84ca78ceb9172a1f65bdcfe5fdda98215b8ed2a5
refs/heads/master
2021-01-10T06:06:47.968160
2016-01-09T16:21:10
2016-01-09T16:21:10
48,548,690
0
0
null
null
null
null
UTF-8
Python
false
false
266
#!/home/milco/real-python/real-python-2/flask-hello-world/env/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "milco.numan@gmail.com" ]
milco.numan@gmail.com
29dbd5c2e549839b8b31bd5f7b351b3c5fecf4f5
ee60cd0d0a69555df79934af79cf6d9cb54a3294
/dictionary.py
10a041ab4de2d746ccf7300cc866fcb998731711
[]
no_license
rlllzk/pydasar
36a0e3312e8ee5e193c3f7efa1b50de00eb55031
5d257730e17b058aac75a2c067767427c2d78036
refs/heads/master
2021-08-03T00:15:43.038123
2021-07-20T15:11:21
2021-07-20T15:11:21
184,442,242
0
0
null
null
null
null
UTF-8
Python
false
false
313
py
#dictionary def main(): d = {'satu':10, 'dua':20, 'tiga':30} #menampilkan nilai dictionary print("d['satu']: ", d['satu']) print("d['dua']: ", d['dua']) print("d['tiga']: ", d['tiga']) print("d['dua'] * d['tiga']: ", (d['dua'] * d['tiga'])) if __name__=="__main__": main()
[ "rezkysy@gmail.com" ]
rezkysy@gmail.com
14290c30bf5ee52588265a1f4cf3d29f5c862a38
7d188086e76d6eb58d3f66a8606b1c18ea228caf
/blog/models.py
b8a80a22cac911e177ab0924aee7eec61c49a47f
[]
no_license
gastonvera/Domus-2.0
069db70084cf7fbc0cac86e430ebee8f3d75c396
b852df1184a1b54c8262663f39f74609d86fa488
refs/heads/master
2023-04-23T12:38:17.258479
2021-05-19T20:18:46
2021-05-19T20:18:46
365,814,656
0
0
null
null
null
null
UTF-8
Python
false
false
5,802
py
from django.contrib.auth.models import User from django.db import models TPO_CLIENTE = ( ('CORPORATIVO', 'CORPORATIVO'), ('INDIVIDUO', 'INDIVIDUO'), ) ESTADO_PAGO = ( ('PAGADO', 'Pagado'), ('PENDIENTE', 'Pendiente'), ) MEDIO_PAGO = ( ('TRANSFERENCIA', 'Transferencia'), ('EFECTIVO', 'Efectivo'), ) TPO_PROPIEDAD = ( ('VENTA', 'Venta'), ('ALQUILER', 'Alquiler'), ) FRENTE_CONTRAFRENTE = ( ('FRENTE', 'Frente'), ('CONTRAFRENTE', 'Contrafrente'), ) ORIENTACION = ( ('ESTE', 'Este'), ('OESTE', 'Oeste'), ('NORTE', 'Norte'), ('SUR', 'Sur'), ) class JefeAdministracion(models.Model): nombre = models.ForeignKey(User, on_delete = models.CASCADE) def __str__(self): return self.nombre.username class JefeComercializacion(models.Model): nombre = models.ForeignKey(User, on_delete = models.CASCADE) def __str__(self): return self.nombre.username class Cajera(models.Model): nombre = models.ForeignKey(User, on_delete = models.CASCADE) def __str__(self): return self.nombre.username class EmpleadoMarketing(models.Model): nombre = models.ForeignKey(User, on_delete = models.CASCADE) def __str__(self): return self.nombre.username class Agente(models.Model): nombre = models.ForeignKey(User, on_delete = models.CASCADE) def __str__(self): return self.nombre.username class Secretaria(models.Model): nombre = models.ForeignKey(User, on_delete = models.CASCADE) def __str__(self): return self.nombre.username class Propiedades(models.Model): pid = models.AutoField('PID', primary_key = True, unique = True, help_text='Identificación de propiedad' ) foto = models.ImageField('imagen de propiedad', blank = True, null = True) nombrep = models.CharField('Nombre', max_length = 50, blank = False, null = False) direccion = models.CharField('direccion', max_length = 100) superficie = models.CharField('Superficie', max_length=50, blank=False, help_text='Superficie medida en m2' ) piso = models.IntegerField('Piso') dpto = models.CharField('Departamento', max_length=4) orientacion = models.CharField('orientacion', max_length = 5, choices = ORIENTACION ) frente_contra = models.CharField('frente-contrafrente', max_length = 15, choices = FRENTE_CONTRAFRENTE ) dormitorios = models.IntegerField('Dormitorios', blank=False) baños = models.IntegerField('Baños', blank=False) cocina = models.BooleanField('Cocina') comedor = models.BooleanField('Comedor') cochera = models.BooleanField('Cochera') balcon = models.BooleanField('Balcon') observaciones = models.TextField('observaciones', max_length = 300, help_text='Datos adicionales para la propiedad', blank = True, null = True ) expensa = models.DecimalField('Expensa', max_digits = 16, decimal_places = 2, help_text='Precio aproximado' ) precio = models.DecimalField('Precio', max_digits = 16, decimal_places = 2, help_text='Valor neto total de la propiedad/alquiler' ) tpo_propiedad = models.CharField('Tipo de propiedad', max_length = 15, choices = TPO_PROPIEDAD ) disponible = models.BooleanField('Disponible') class Meta: verbose_name = "Propiedad" verbose_name_plural = "Propiedades" def __str__(self): nombre = str(self.nombrep) return nombre class Citas(models.Model): identificacion = models.AutoField('ID Cita', primary_key = True, unique = True, help_text='Identificación de propiedad' ) nombre_apellido = models.CharField('Nombre cliente', max_length=100, blank=False) num_cliente = models.IntegerField('Cel./Tel.') email = models.EmailField('Email', blank = True, null = True) propiedad = models.ForeignKey(Propiedades, on_delete=models.CASCADE) fecha_cita = models.DateField('Fecha de cita', blank = True, null=True) hora_cita = models.TimeField('Hora de cita', blank=True, null=True) agente = models.ForeignKey(Agente, on_delete = models.CASCADE, blank=True, null=True) estado_cita = models.BooleanField('Atendido/a', blank=True, null=True) class Meta: verbose_name = "Cita" verbose_name_plural = "Citas" def __str__(self): id = str(self.identificacion) return id class Venta(models.Model): id_pay = models.AutoField('ID. Pago', primary_key = True, unique = True) propiedad = models.ForeignKey(Propiedades, on_delete = models.CASCADE) medio_pago = models.CharField('Medio de Pago', max_length = 25, choices = MEDIO_PAGO) nya_cliente = models.CharField('Nombre Cliente', max_length = 100, blank = False, null = False) dni_cli = models.IntegerField('DNI Cliente') estado_pago = models.CharField('Estado de Pago', max_length = 20, choices = ESTADO_PAGO) fecha_creacion = models.DateTimeField('Fecha de creacion', auto_now_add= True, editable=False) class Meta: verbose_name = "Venta" verbose_name_plural = "Ventas" def __str__(self): id_pago = str(self.id_pay) return id_pago class Cliente(models.Model): nombre = models.CharField('Nombre', max_length = 50, blank = False, null = False) apellido = models.CharField('apellido', max_length = 50, blank = False, null = False) domicilio = models.CharField('domicilio', max_length = 100, blank = False, null = False) dni = models.IntegerField('DNI Cliente') tpo_cliente = models.CharField('tipo de cliente', max_length = 20, choices = TPO_CLIENTE) class Meta: verbose_name = "Cliente" verbose_name_plural = "Clientes" def __str__(self): return self.nombre
[ "vera.gastonn@gmail.com" ]
vera.gastonn@gmail.com
ea2e0d118494909d212b7941c5f48b6e19e3df73
41c830ef97809c6b696c02948c99a6c0ef06ac1b
/week3/todo/auth_/models.py
5d136d8784325d3264d29e4cb06cf5a81bd4403a
[]
no_license
sidakinaddd/BFDjango
b3523fec9d7ad0064848c9d4817c803e57d186e6
331f3e9df1af9927f9d6bc5d693619f256f28d24
refs/heads/master
2020-12-11T11:19:15.780295
2020-04-19T21:54:46
2020-04-19T21:54:46
233,829,497
0
0
null
null
null
null
UTF-8
Python
false
false
1,585
py
from django.contrib.auth.base_user import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin, UserManager, AbstractUser from django.contrib.auth.validators import UnicodeUsernameValidator from django.core.mail import send_mail from django.db import models from django.utils import timezone from django.utils.translation import gettext_lazy as _ class MyUserManager(UserManager): def create_editor(self, username, email=None, password=None, **extra_fields): extra_fields.setdefault('is_staff', False) extra_fields.setdefault('is_superuser', False) extra_fields.setdefault('is_editor', True) return self._create_user(username, email, password, **extra_fields) class MyUser(AbstractUser): pass class MyAbstractUser(AbstractBaseUser,PermissionsMixin): username = models.CharField(max_length=100, unique=True) first_name = models.CharField(50, blank=True) last_name = models.CharField(max_length=50, blank=True) email = models.EmailField(blank=True) is_staff = models.BooleanField(default=False) is_active = models.BooleanField(default=False) data_joined = models.DateTimeField() objects = UserManager() EMAIL_FIELD = 'email' USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email'] class Meta: abstract = True verbose_name = ('user') verbose_name_plural = ('users') def get_full_name(self): full_name = '%s %s' % (self.first_name, self.last_name) return full_name def get_short_name(self): return self.first_name
[ "sidakinaddd@gmail.com" ]
sidakinaddd@gmail.com
be478a6cbfe4b853f6711255d424dbda052d3cf6
a8b143284c5d887a8c808e3449ab734689a86247
/10/day10.py
aa9f726066c2faa8604bb35d85f3120eea79b4b8
[]
no_license
killmaster/adventofcode2016
afd2556ae488aef70401d02ea46d5eb344b1d61a
9ce4fe39cbf7479685be29433aa437a8168a8e13
refs/heads/master
2020-06-16T07:26:54.411904
2016-12-23T12:12:27
2016-12-23T12:12:27
75,234,535
0
0
null
null
null
null
UTF-8
Python
false
false
2,203
py
import re import collections rule1 = re.compile(r'value (\d+) goes to (\w+ \d+)') rule2 = re.compile(r'(\w+ \d+) gives low to (\w+ \d+) and high to (\w+ \d+)') lines = open('input.txt').readlines() bots = collections.OrderedDict() for line in lines: if rule1.match(line): botid = rule1.match(line).group(2) value = int(rule1.match(line).group(1)) if botid in bots: if 'value1' in bots[botid]: bots[botid]['value2'] = value else: bots[botid]['value1'] = value else: bots[botid] = {} bots[botid]['value1'] = value if rule2.match(line): botid = rule2.match(line).group(1) id1 = rule2.match(line).group(2) id2 = rule2.match(line).group(3) if botid not in bots: bots[botid] = {} bots[botid]['rule'] = [] bots[botid]['rule'].append(id1) bots[botid]['rule'].append(id2) if id1.startswith('output') and id1 not in bots: bots[id1] = [] if id2.startswith('output') and id2 not in bots: bots[id2] = [] def give(botid, value): if 'value1' in bots[botid]: bots[botid]['value2'] = value else: bots[botid]['value1'] = value #print('{} {}'.format(botid,value)) def part1(bots): flag = True found = False while flag: flag = False for k,v in bots.items(): #print('{} {}'.format(k,v)) if 'value2' in v: flag = True values = sorted([v.pop('value1'), v.pop('value2')]) #print(v['rule']) if v['rule'][0].startswith('output'): bots[v['rule'][0]].append(values[0]) else: give(v['rule'][0], values[0]) if v['rule'][1].startswith('output'): bots[v['rule'][1]].append(values[1]) else: give(v['rule'][1], values[1]) if values == [17,61] and not found: print(k) found = True part1(bots) print(bots['output 0'][0] * bots['output 1'][0] * bots['output 2'][0])
[ "carlosmartins8@gmail.com" ]
carlosmartins8@gmail.com
9779357a90fccd1a63511b35172902fb31492148
788444066bdd20ccb7d3c743053eb7a5e6dcae09
/topic_urls.py
a79370e0e059e6243cda81db005c843fd11be712
[ "MIT" ]
permissive
mp314/waste.d
b7fb077069fd92db8c3e16cf9ab77442e582a112
77604e76467cecd061cc0dbf8d8a5fc141f9d5a3
refs/heads/main
2023-01-09T18:00:59.960433
2020-11-04T08:23:07
2020-11-04T08:23:07
309,759,883
0
1
null
null
null
null
UTF-8
Python
false
false
187
py
from django.conf.urls.defaults import * urlpatterns = patterns('', (r'post/$','topic_views.post'), #(r'(?P<topicid>.*)/$','topic_views.index'), (r'','topic_views.index'), )
[ "pylkkanen@gmail.com" ]
pylkkanen@gmail.com
eecbf583448148ec9571603ebdab287bf511a52f
8a8b0267c4db8847a898ac73ccb6e78e1744e24c
/fundamentals/ppf-ex08/ppf-ex09/factorial.py
1e76fec5709c74a5e1ba2e52da6db990e882f38d
[]
no_license
entirelymagic/Link_Academy
41ba890df6793924d186ea94dc8d13b0636c6679
844c39ff1281fae8406cd1a0dc06afd357f0bef3
refs/heads/master
2023-06-07T03:17:00.527924
2021-07-03T09:59:25
2021-07-03T09:59:25
314,755,255
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
def factorial(n): res = 1 for i in range(1,n+1): res *= i return res while True: n = int(input("Enter number: ")) print(factorial(n))
[ "entirelymagic@gmail.com" ]
entirelymagic@gmail.com
c60099d87e9bf3227dd1b3546e417e7e405aee6f
6df24c8e7d80704574dfd21886d66b0930851999
/MNIST/train_mnist.py
fb22e7ba1d12a08306e846e80532bc14dc555425
[]
no_license
Seiya-Yamamoto/example_TensorFlow
e2e0a31f6432eccb4ab675d7837cd2eaca9438df
ad61cd8a82a166e564e597afd48676d0f058b378
refs/heads/master
2020-03-17T21:10:55.234397
2018-05-19T10:56:24
2018-05-19T10:56:24
133,947,324
0
0
null
null
null
null
UTF-8
Python
false
false
2,264
py
# -*- coding:utf-8 -*- from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf def main(): # mnistデータを格納したオブジェクトを呼び出す mnist = input_data.read_data_sets('data/', one_hot=True) # 訓練用の入力データ、正解データをミニバッチ数を指定して取得 train_images, train_labels = mnist.train.next_batch(50) # テスト用の全画像データを取得 test_images = mnist.test.images # テスト用の全正解データを取得 test_labels = mnist.test.labels # 入力データを定義 x = tf.placeholder(tf.float32, [None, 784]) # 入力層から中間層1 w_1 = tf.Variable(tf.truncated_normal([784, 1000], stddev=0.1), name='w1') b_1 = tf.Variable(tf.zeros([1000]), name='b1') h_1 = tf.nn.relu(tf.matmul(x, w_1) + b_1) # 中間層1から中間層2 w_2 = tf.Variable(tf.truncated_normal([1000, 1000], stddev=0.1), name='w2') b_2 = tf.Variable(tf.zeros([1000]), name='b2') h_2 = tf.nn.relu(tf.matmul(h_1, w_2) + b_2) # 中間層2から出力層 w_3 = tf.Variable(tf.truncated_normal([1000, 10], stddev=0.1), name='w3') b_3 = tf.Variable(tf.zeros([10]), name='b3') out = tf.nn.softmax(tf.matmul(h_2, w_3) + b_3) # 誤差関数(平均二乗誤差) y = tf.placeholder(tf.float32, [None, 10]) loss = tf.reduce_mean(tf.square(y - out)) # 訓練 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # 評価 correct = tf.equal(tf.argmax(out, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) # 初期化 init = tf.global_variables_initializer() with tf.Session() as sess: # 変数の初期化を実行 sess.run(init) for i in range(1500): step = i + 1 train_images, train_labels = mnist.train.next_batch(50) sess.run(train_step, feed_dict={x: train_images, y: train_labels}) if step % 10 == 0: acc_val = sess.run(accuracy, feed_dict={ x: test_images, y: test_labels}) print('Step %d: accuracy = %.2f' % (step, acc_val)) if __name__ == '__main__': main()
[ "linux.yamagen@gmail.com" ]
linux.yamagen@gmail.com
61cc88976873bcfe9505f2d7b64690bb756da0ac
060b64eda0f17f975e40d5b48f0e0111462f1670
/백준저지/파이썬코드/8-2.py
6549b1afc65f43f5c6e0356d392fcb78181b9e5b
[]
no_license
LEE-JAEHAK/Algorithm
1fb4546e0ee134d13b43c53a4de6b23d313e9086
8df48259edf9ae96d56f5d9a24f86bac54bdc12b
refs/heads/master
2023-05-24T10:37:43.218844
2021-06-25T10:17:10
2021-06-25T10:17:10
304,694,972
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
memo = [0] * 100 def fib(x): if x == 1 or x == 2: return 1 if memo[x] != 0: return memo[x] memo[x] = fib(x-1) + fib(x-2) return memo[x] print(fib(90))
[ "wogkr101@gmail.com" ]
wogkr101@gmail.com
16edaa87d2d0ab903b85c77d613befdb52240f7b
3bee45ec4afdff252007beb9680f254854e61cfe
/Squeeze/squeeze.py
e963425c675797c8a9611abcbf80be32d40663dd
[]
no_license
adelevski/finance_dashboards
9aef76c82cd561736ddc45438e5cd1e3257f584a
ab15462cf545ade37106c5b357ee3973bc6b9b90
refs/heads/main
2023-08-18T12:27:54.115696
2021-10-22T01:02:54
2021-10-22T01:02:54
337,586,586
1
1
null
null
null
null
UTF-8
Python
false
false
1,820
py
import os import yfinance as yf import pandas as pd import plotly.graph_objects as go symbols = ['AAPL'] for filename in os.listdir("datasets/daily"): symbol = filename.split(".")[0] df = pd.read_csv(f'datasets/daily/{filename}') if df.empty: continue df['20sma'] = df['Close'].rolling(window=20).mean() df['std'] = df['Close'].rolling(window=20).std() df['lowerband'] = df['20sma'] - (2 * df['std']) df['upperband'] = df['20sma'] + (2 * df['std']) df['TR'] = abs(df['High']-df['Low']) df['ATR'] = df['TR'].rolling(window=20).mean() df['upperKC'] = df['20sma'] + (df['ATR'] * 1.5) df['lowerKC'] = df['20sma'] - (df['ATR'] * 1.5) def in_squeeze(df): return df['lowerband']>df['lowerKC'] and df['upperband']<df['upperKC'] df['squeeze_on'] = df.apply(in_squeeze, axis=1) if df.iloc[-3]['squeeze_on'] and not df.iloc[-1]['squeeze_on']: print(f"{symbol} is coming out of the squeeze") # if symbol in symbols: # aapl_df = df # candlestick = go.Candlestick(x=aapl_df['Date'], open=aapl_df['Open'], high=aapl_df['High'], low=aapl_df['Low'], close=aapl_df['Close']) # upperband = go.Scatter(x=aapl_df['Date'], y=aapl_df['upperband'], name='Upper Bollinger Band', line={'color': 'orange'}) # lowerband = go.Scatter(x=aapl_df['Date'], y=aapl_df['lowerband'], name='Lower Bollinger Band', line={'color': 'orange'}) # upperKC = go.Scatter(x=aapl_df['Date'], y=aapl_df['upperKC'], name='Upper Keltner Channel', line={'color': 'blue'}) # lowerKC = go.Scatter(x=aapl_df['Date'], y=aapl_df['lowerKC'], name='Lower Keltner Channel', line={'color': 'blue'}) # fig = go.Figure(data=[candlestick, upperband, lowerband, upperKC, lowerKC]) # fig.layout.xaxis.type = 'category' # fig.layout.xaxis.rangeslider.visible = False # fig.show()
[ "adelevski@gmail.com" ]
adelevski@gmail.com
b29a4e91beb1a9edf20222c85bb6c9f11c3a5d6e
14c26c5ed676f0df4b8e67a0d0ec48155686c7a4
/setup.py
34215ee5d9675681800c7ea16f126fabd36712b0
[ "MIT" ]
permissive
mahi97/RCJRVision
b21f85f8ac6a60fda691d9e1a1ed53cabd4abc68
0f73d1a1f2ac2eca02bef47699f9c1afdc6c1617
refs/heads/master
2022-09-03T18:23:31.402983
2020-05-07T00:50:33
2020-05-07T00:50:33
267,239,947
0
0
MIT
2020-05-27T06:35:02
2020-05-27T06:33:54
null
UTF-8
Python
false
false
1,474
py
"""Setup module.""" from setuptools import setup, find_packages from os import path def get_requires(): """Read requirements.txt.""" requirements = open("requirements.txt", "r").read() return list(filter(lambda x: x != "", requirements.split())) here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md')) as f: long_description = f.read() setup( # Name of Project # $ pip install RCJRVision # where it will live on PyPI: https://pypi.org/project/RCJRVision/ name='RCJRVision', version='1.5', description='A fast and simple image processing method to detect H S U victims in rescue maze', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/mhmmdshirazi/RCJRVision', author='Mohammad Mahdi Shirazi', author_email='mhmmdshirazi@gmail.com', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], packages=['RCJRVision'], python_requires='>=3.5, <4', install_requires=get_requires(), )
[ "mhmmdshirazi@gmail.com" ]
mhmmdshirazi@gmail.com
a3a167d6317c1fda6c2a2f5360dd5acfe9c8076b
6b2d3a5beaed0f1a52a978d6bba6ee19301f8468
/src/pickyoptions/core/configuration/child.py
7a0473d8259c90720d2d9eccb859c08904eb69b4
[]
no_license
nickmflorin/pickyoptions
4fb0e01845414d6a9419f94024672428cbaea1af
68e07ac9d1d040cdab2f3e0eefb2fe884a17d875
refs/heads/master
2022-12-18T03:54:25.004279
2020-09-20T18:12:52
2020-09-20T18:12:52
292,388,986
0
0
null
null
null
null
UTF-8
Python
false
false
6,911
py
import logging from pickyoptions import settings from pickyoptions.lib.utils import extends_or_instance_of from pickyoptions.core.base import Base, BaseMixin from pickyoptions.core.decorators import raise_with_error from pickyoptions.core.exceptions import ( PickyOptionsError, ValueTypeError, ) logger = logging.getLogger(settings.PACKAGE_NAME) class ChildMixin(BaseMixin): abstract_properties = ('parent_cls', ) required_errors = ( 'set_error', 'not_set_error', 'required_error', 'not_required_error', 'invalid_type_error', 'invalid_error', 'locked_error', 'not_null_error', ) def _init(self, parent=None, error_map=None): self._assigned = False self._parent = None if parent is not None: self.assign_parent(parent) @property def field(self): return self._field def raise_with_self(self, *args, **kwargs): kwargs['name'] = self.field return super(ChildMixin, self).raise_with_self(*args, **kwargs) def assert_set(self, *args, **kwargs): if not self.set: self.raise_not_set(*args, **kwargs) def assert_not_set(self, *args, **kwargs): if self.set: self.raise_set(*args, **kwargs) def assert_required(self, *args, **kwargs): if not self.required: self.raise_not_required(*args, **kwargs) def assert_not_required(self, *args, **kwargs): if self.required: self.raise_required(*args, **kwargs) @raise_with_error(error='set_error') def raise_set(self, *args, **kwargs): """ Raises an exception to indicate that the `obj:Child` instance is set when it is not expected to be set. """ return self.raise_with_self(*args, **kwargs) @raise_with_error(error='not_set_error') def raise_not_set(self, *args, **kwargs): """ Raises an exception to indicate that the `obj:Child` instance is not set when it is expected to be set. """ return self.raise_with_self(*args, **kwargs) @raise_with_error(error='locked_error') def raise_locked(self, *args, **kwargs): """ Raises an exception to indicate that the `obj:Child` instance is locked and cannot be altered. """ return self.raise_with_self(*args, **kwargs) @raise_with_error(error='required_error') def raise_required(self, *args, **kwargs): """ Raises an exception to indicate that the `obj:Child` instance is required and does not exist. """ return self.raise_with_self(*args, **kwargs) # TODO: Come up with extensions for the specific object. # TODO: Is this even being used anymore? @raise_with_error(error='not_required_error') def raise_not_required(self, *args, **kwargs): return self.raise_with_self(*args, **kwargs) @raise_with_error(error='not_null_error') def raise_null_not_allowed(self, *args, **kwargs): return self.raise_with_self(*args, **kwargs) @raise_with_error(error='invalid_error') def raise_invalid(self, *args, **kwargs): """ Raises an exception to indicate that the `obj:Child` instance is invalid. """ return self.raise_with_self(*args, **kwargs) @raise_with_error(error='invalid_type_error') def raise_invalid_type(self, *args, **kwargs): """ Raises an exception to indicate that the `obj:Child` instance is of invalid type. """ assert 'types' in kwargs return self.raise_invalid(*args, **kwargs) @property def assigned(self): return self._assigned @property def parent(self): """ Returns the assigned parent of the `obj:Child` instance if it is assigned. If the parent is not assigned to the `obj:Child` instance, an exception will be thrown - so it is necessary to check if the `obj:Child` is assigned before accessing the parent. TODO: ---- - What should we do if the parent is changed? We don't have a setter for parent, but the parent can still be removed/re-assigned. Do we have to trigger some sort of reconfiguration? """ if self._parent is None: raise PickyOptionsError( "The %s instance has not been assigned a parent yet." % self.__class__.__name__ ) return self._parent def validate_parent(self, parent): if not extends_or_instance_of(parent, self.parent_cls): # TODO: Come up with a better error. raise ValueTypeError( value=parent, message="The parent must be of type `{types}`.", types=self.parent_cls, ) def remove_parent(self): """ Removes the parent from the `obj:Child` instance. """ if not self.assigned: raise PickyOptionsError( "The %s instance does not have an assigned parent." % self.__class__.__name__ ) self._parent = None self._assigned = False def assign_parent(self, parent): """ Assigns an `obj:Parent` (or another object) instance as the parent of the `obj:Child` instance. Parameters: ---------- parent: `obj:object` The parent which we want to assign to this `obj:Child` instance. The parent can be arbitrary - it does need not be an instance of `obj:Parent` or have this `obj:Child` class defined in it's `child_cls` property. This is because there are cases where we want to assign a `obj:Parent` to a `obj:Child` but not assign the `obj:Child` as a child to the `obj:Parent`. Usually, this is because the `obj:Parent` is a parent to another set of children. """ from .parent import Parent self.validate_parent(parent) if self.assigned: raise PickyOptionsError( "The %s instance already has an assigned parent." % self.__class__.__name__ ) self._parent = parent if isinstance(parent, Parent) and isinstance(self, parent.child_cls): if not parent.has_child(self): parent.assign_child(self) else: logger.debug( "Not adding child %s instance as a child of the parent, " "since it is already a child." % self.__class__.__name__ ) self._assigned = True class Child(ChildMixin, Base): __abstract__ = True def __init__(self, parent=None, **kwargs): super(Child, self).__init__() ChildMixin._init(parent=parent, **kwargs)
[ "nickmflorin@gmail.com" ]
nickmflorin@gmail.com
bf85b4c2e99a6d2c06480e307f6e2aa43e16059b
2d688097c44c37084a494f5b34efce64493c7ef7
/update_stk_json.py
e92478255bc01d38c4b54e9474afe4d0ff80fedf
[]
no_license
lukasturcani/chem_tools
98d302670abfae963936ded3caf5ffbd1c2191c1
75120e1112b920739248882e6d1060a260cae15c
refs/heads/master
2021-06-04T02:26:00.323449
2019-08-04T00:46:26
2019-08-04T00:46:26
108,840,929
2
3
null
2020-08-28T12:57:21
2017-10-30T11:22:59
Python
UTF-8
Python
false
false
2,635
py
import json import argparse import multiprocessing as mp import stk import rdkit.Chem.AllChem as rdkit def load_dict(filename): with open(filename, 'r') as f: content = json.load(f) return content def write_dict(d, filename): with open(filename, 'w') as f: json.dump(d, f, indent=4) def convert_bb_counter(counter): return [[convert_bb(bb), count] for bb, count in counter] def convert_bb(bb): new_bb = {'atom_props': {}} for key, value in bb.items(): if key == 'func_grp': new_bb['func_groups'] = [value] elif key == 'mol_block': stk.StructUnit(rdkit.MolFromMolBlock(value, removeHs=False)) new_bb['conformers'] = [[0, value]] else: new_bb[key] = value return new_bb def convert(key, value): if key == 'mol_block': return 'conformers', [[0, value]] elif key == 'topology': new_value = value.replace('bb_assignments', 'bb_positions') return 'topology', new_value elif key == 'bb_counter': return key, convert_bb_counter(value) elif key == 'building_blocks': return key, [convert_bb(bb) for bb in value] else: return key, value def macromol_func_groups(atom_props): func_groups = {} for atom, props in atom_props.items(): if 'fg_id' in props: fg_id = props['fg_id'] if fg_id not in func_groups: func_groups[fg_id] = stk.FunctionalGroup( id_=props['fg_id'], atom_ids=[], bonder_ids=[], deleter_ids=[], info=props['fg'] ) fg = func_groups[fg_id] atom_id = int(atom) fg.atom_ids.append(atom_id) if 'bonder' in props: fg.bonder_ids.append(atom_id) return repr(list(func_groups.values())) def convert_macromol(macromol): new = {} for key, value in macromol.items(): new_key, new_value = convert(key, value) new[new_key] = new_value new['func_groups'] = macromol_func_groups(macromol['atom_props']) return new def main(): parser = argparse.ArgumentParser() parser.add_argument('old_json') parser.add_argument('new_json') args = parser.parse_args() pop = load_dict(args.old_json) with mp.Pool() as pool: new_pop = pool.map(convert_macromol, pop) write_dict(new_pop, args.new_json) if __name__ == '__main__': main()
[ "lukasturcani93@gmail.com" ]
lukasturcani93@gmail.com
13a25905f5fd3ae343b1417b4c68ea593bf84b22
ccd9f9b59074cc710a7bc94c86efc6ceffd5f56a
/poo/article/__init__.py
71f5ac48edd1aa941ce4e02af7b8a2dc5dbacba4
[]
no_license
krosf-university/oop-python
8899d0c4e9e5c780999a59db5a6884f4006eb5b9
50cc88d074c67aa2c225d60cadd875d59040c32c
refs/heads/master
2022-01-15T01:35:29.516182
2019-08-14T18:16:31
2019-08-14T18:16:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
from .article import Article, EBook, Book, USB, PsycalArticle, ArticleException from .author import Author __all__ = [ "Article", "EBook", "Book", "USB", "PsycalArticle", "Author", "ArticleException", ]
[ "rodrigosanabria22@gmail.com" ]
rodrigosanabria22@gmail.com
04540cf1f86fd312a71a789d3edfb1386bd05bf3
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/CISCO-EPC-GATEWAY-MIB.py
ae6b7a3a41c6bc0948a86237d93017c15bfe3978
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
28,904
py
# # PySNMP MIB module CISCO-EPC-GATEWAY-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-EPC-GATEWAY-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 17:40:03 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsIntersection, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") IpAddress, Counter64, ModuleIdentity, Bits, Unsigned32, iso, TimeTicks, Integer32, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, ObjectIdentity, Gauge32, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "Counter64", "ModuleIdentity", "Bits", "Unsigned32", "iso", "TimeTicks", "Integer32", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "ObjectIdentity", "Gauge32", "Counter32") TruthValue, TextualConvention, TimeStamp, DisplayString, TimeInterval = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "TextualConvention", "TimeStamp", "DisplayString", "TimeInterval") ciscoEpcGatewayMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 731)) ciscoEpcGatewayMIB.setRevisions(('2012-02-08 00:00', '2011-05-10 00:00', '2011-03-04 00:00', '2010-06-28 00:00', '2010-05-06 00:00', '2010-04-21 00:00',)) if mibBuilder.loadTexts: ciscoEpcGatewayMIB.setLastUpdated('201202080000Z') if mibBuilder.loadTexts: ciscoEpcGatewayMIB.setOrganization('Cisco Systems, Inc.') ciscoEpcGatewayMIBNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 0)) ciscoEpcGatewayMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1)) ciscoEpcGatewayStatistics = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1)) cegOverloadProtectionStats = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 1)) cegBufferStats = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2)) ciscoEpcGatewayConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2)) cegOverloadProtectionConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 1)) cegBufferingAgentConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 2)) ciscoEpcGatewayStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3)) ciscoEpcGatewayNotifMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 4)) cegCongestionIncomingReqDrops = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionIncomingReqDrops.setStatus('current') cegCongestionLowThresholdReached = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionLowThresholdReached.setStatus('current') cegCongestionHighThresholdReached = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionHighThresholdReached.setStatus('current') cegBuffersCreated = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 1), Counter32()).setUnits('buffer').setMaxAccess("readonly") if mibBuilder.loadTexts: cegBuffersCreated.setStatus('current') cegBuffersDeleted = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 2), Counter32()).setUnits('buffer').setMaxAccess("readonly") if mibBuilder.loadTexts: cegBuffersDeleted.setStatus('current') cegBuffersTimedOut = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegBuffersTimedOut.setStatus('current') cegBufferPacketsEnqueued = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 4), Counter32()).setUnits('packet').setMaxAccess("readonly") if mibBuilder.loadTexts: cegBufferPacketsEnqueued.setStatus('current') cegBufferPacketsDequeued = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 5), Counter32()).setUnits('packet').setMaxAccess("readonly") if mibBuilder.loadTexts: cegBufferPacketsDequeued.setStatus('current') cegBufferBytesEnqueued = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 6), Counter32()).setUnits('Bytes').setMaxAccess("readonly") if mibBuilder.loadTexts: cegBufferBytesEnqueued.setStatus('current') cegBufferBytesDequeued = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 7), Counter32()).setUnits('Bytes').setMaxAccess("readonly") if mibBuilder.loadTexts: cegBufferBytesDequeued.setStatus('current') cegBufferRejMemUnavailable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegBufferRejMemUnavailable.setStatus('current') cegBufferRejLowMem = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegBufferRejLowMem.setStatus('current') cegPacketDropDueToMaxPacketLimit = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegPacketDropDueToMaxPacketLimit.setStatus('current') cegPacketDropDueToMaxBufferLimit = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 1, 2, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegPacketDropDueToMaxBufferLimit.setStatus('current') cegCongestionLowThreshold = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 100)).clone(95)).setUnits('percent').setMaxAccess("readwrite") if mibBuilder.loadTexts: cegCongestionLowThreshold.setStatus('current') cegCongestionHighThreshold = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 100)).clone(100)).setUnits('percent').setMaxAccess("readwrite") if mibBuilder.loadTexts: cegCongestionHighThreshold.setStatus('current') cegBufferingAgentEnabled = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 2, 1), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: cegBufferingAgentEnabled.setStatus('current') cegBufferMaxSize = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 2, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(400, 12000)).clone(1024)).setUnits('Bytes').setMaxAccess("readwrite") if mibBuilder.loadTexts: cegBufferMaxSize.setStatus('current') cegBufferDiscardDataTime = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 2, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 300)).clone(30)).setUnits('second').setMaxAccess("readwrite") if mibBuilder.loadTexts: cegBufferDiscardDataTime.setStatus('current') cegBufferMaxPacketsPerBuffer = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 2, 2, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 15)).clone(5)).setUnits('packet').setMaxAccess("readwrite") if mibBuilder.loadTexts: cegBufferMaxPacketsPerBuffer.setStatus('current') cegVersion = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 1), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 100))).setMaxAccess("readonly") if mibBuilder.loadTexts: cegVersion.setStatus('current') cegActivatedIpv4Bearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 2), Gauge32()).setUnits('bearer').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedIpv4Bearers.setStatus('current') cegActivatedIpv6Bearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 3), Gauge32()).setUnits('bearer').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedIpv6Bearers.setStatus('current') cegTotalUsers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalUsers.setStatus('current') cegTotalIdleUsers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 5), Gauge32()).setUnits('Users').setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalIdleUsers.setStatus('current') cegTotalSuspendedUsers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalSuspendedUsers.setStatus('current') cegActivatedIpv4v6Sessions = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 7), Gauge32()).setUnits('sessions').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedIpv4v6Sessions.setStatus('current') cegActivatedIpv4v6Bearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 10), Gauge32()).setUnits('bearers').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedIpv4v6Bearers.setStatus('current') cegActivatedGtpv2SgwSessions = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 11), Gauge32()).setUnits('sessions').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedGtpv2SgwSessions.setStatus('current') cegActivatedGtpv2PgwSessions = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 12), Gauge32()).setUnits('sessions').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedGtpv2PgwSessions.setStatus('current') cegActivatedGtpv2SPgwSessions = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 13), Gauge32()).setUnits('sessions').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedGtpv2SPgwSessions.setStatus('current') cegOverloadProtectionStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8)) cegCongestionDfpWeight = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionDfpWeight.setStatus('current') cegCongestionStatus = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("normal", 1), ("low", 2), ("high", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionStatus.setStatus('current') cegCongestionLowLastOccurTime = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8, 3), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionLowLastOccurTime.setStatus('current') cegCongestionLowLastDuration = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8, 4), TimeInterval()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionLowLastDuration.setStatus('current') cegCongestionHighLastOccurTime = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8, 5), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionHighLastOccurTime.setStatus('current') cegCongestionHighLastDuration = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 8, 6), TimeInterval()).setMaxAccess("readonly") if mibBuilder.loadTexts: cegCongestionHighLastDuration.setStatus('current') cegBufferStatus = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 9)) cegActivatedBearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 14), Gauge32()).setUnits('Bearers').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedBearers.setStatus('current') cegActivatedDedicatedBearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 15), Gauge32()).setUnits('Bearers').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedDedicatedBearers.setStatus('current') cegActivatedIpv4DedicatedBearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 16), Gauge32()).setUnits('Bearers').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedIpv4DedicatedBearers.setStatus('current') cegActivatedIpv6DedicatedBearers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 17), Gauge32()).setUnits('Bearers').setMaxAccess("readonly") if mibBuilder.loadTexts: cegActivatedIpv6DedicatedBearers.setStatus('current') cegTotalIdleSessions = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 18), Gauge32()).setUnits('Sessions').setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalIdleSessions.setStatus('current') cegTotalInUseBuffers = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 9, 1), Gauge32()).setUnits('buffer').setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalInUseBuffers.setStatus('current') cegTotalBufferedPackets = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 9, 2), Gauge32()).setUnits('packet').setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalBufferedPackets.setStatus('current') cegTotalBufferedBytes = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 9, 3), Gauge32()).setUnits('Bytes').setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalBufferedBytes.setStatus('current') cegTotalBufferAvailable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 3, 9, 4), Gauge32()).setUnits('Bytes').setMaxAccess("readonly") if mibBuilder.loadTexts: cegTotalBufferAvailable.setStatus('current') cegCongestionHighNotifEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 4, 1), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: cegCongestionHighNotifEnable.setStatus('current') cegCongestionLowNotifEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 4, 2), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: cegCongestionLowNotifEnable.setStatus('current') cegCongestionClearNotifEnable = MibScalar((1, 3, 6, 1, 4, 1, 9, 9, 731, 1, 4, 3), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: cegCongestionClearNotifEnable.setStatus('current') cegCongestionHighThresholdNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 9, 731, 0, 1)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegVersion"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionDfpWeight"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionStatus"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighThreshold")) if mibBuilder.loadTexts: cegCongestionHighThresholdNotif.setStatus('current') cegCongestionLowThresholdNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 9, 731, 0, 2)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegVersion"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionDfpWeight"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionStatus"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowThreshold"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighThreshold")) if mibBuilder.loadTexts: cegCongestionLowThresholdNotif.setStatus('current') cegCongestionClearedNotif = NotificationType((1, 3, 6, 1, 4, 1, 9, 9, 731, 0, 3)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegVersion"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionDfpWeight"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionStatus"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowThreshold")) if mibBuilder.loadTexts: cegCongestionClearedNotif.setStatus('current') ciscoEpcGatewayMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 3)) ciscoEpcGatewayMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 1)) ciscoEpcGatewayMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2)) ciscoEpcGatewayMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 1, 1)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifMgmtGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatusGrp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEpcGatewayMIBCompliance = ciscoEpcGatewayMIBCompliance.setStatus('deprecated') ciscoEpcGatewayMIBComplianceRev1 = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 1, 2)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifMgmtGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrpSup1"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatusGrp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEpcGatewayMIBComplianceRev1 = ciscoEpcGatewayMIBComplianceRev1.setStatus('deprecated') ciscoEPCGatewayMIBComplianceRev2 = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 1, 3)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifMgmtGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrpSup1"), ("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrpSup2"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatusGrp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEPCGatewayMIBComplianceRev2 = ciscoEPCGatewayMIBComplianceRev2.setStatus('deprecated') ciscoEpcGatewayMIBComplianceRev3 = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 1, 4)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifMgmtGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegOverloadProtectionNotifGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrpSup1"), ("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrpSup2"), ("CISCO-EPC-GATEWAY-MIB", "cegSystemStatusGrpSup3"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatsGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentConfigGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatusGrp"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentStatsGrpSup1")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoEpcGatewayMIBComplianceRev3 = ciscoEpcGatewayMIBComplianceRev3.setStatus('current') cegSystemStatusGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 1)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegVersion"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedIpv4Bearers"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedIpv6Bearers"), ("CISCO-EPC-GATEWAY-MIB", "cegTotalUsers"), ("CISCO-EPC-GATEWAY-MIB", "cegTotalSuspendedUsers"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedIpv4v6Sessions"), ("CISCO-EPC-GATEWAY-MIB", "cegTotalIdleUsers")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegSystemStatusGrp = cegSystemStatusGrp.setStatus('current') cegOverloadProtectionStatsGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 2)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegCongestionIncomingReqDrops"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighThresholdReached"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowThresholdReached")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegOverloadProtectionStatsGrp = cegOverloadProtectionStatsGrp.setStatus('current') cegBufferingAgentStatsGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 3)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegBuffersCreated"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferPacketsEnqueued"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferBytesEnqueued"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferPacketsDequeued"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferBytesDequeued"), ("CISCO-EPC-GATEWAY-MIB", "cegBuffersDeleted"), ("CISCO-EPC-GATEWAY-MIB", "cegBuffersTimedOut"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferRejMemUnavailable"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferRejLowMem")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegBufferingAgentStatsGrp = cegBufferingAgentStatsGrp.setStatus('current') cegOverloadProtectionConfigGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 4)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowThreshold"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighThreshold")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegOverloadProtectionConfigGrp = cegOverloadProtectionConfigGrp.setStatus('current') cegBufferingAgentConfigGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 5)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegBufferingAgentEnabled"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferMaxSize"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferDiscardDataTime"), ("CISCO-EPC-GATEWAY-MIB", "cegBufferMaxPacketsPerBuffer")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegBufferingAgentConfigGrp = cegBufferingAgentConfigGrp.setStatus('current') cegBufferingAgentStatusGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 6)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegTotalInUseBuffers"), ("CISCO-EPC-GATEWAY-MIB", "cegTotalBufferedPackets"), ("CISCO-EPC-GATEWAY-MIB", "cegTotalBufferedBytes"), ("CISCO-EPC-GATEWAY-MIB", "cegTotalBufferAvailable")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegBufferingAgentStatusGrp = cegBufferingAgentStatusGrp.setStatus('current') cegOverloadProtectionStatusGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 7)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegCongestionDfpWeight"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionStatus"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowLastOccurTime"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowLastDuration"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighLastOccurTime"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighLastDuration")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegOverloadProtectionStatusGrp = cegOverloadProtectionStatusGrp.setStatus('current') cegOverloadProtectionNotifMgmtGrp = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 8)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighNotifEnable"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowNotifEnable"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionClearNotifEnable")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegOverloadProtectionNotifMgmtGrp = cegOverloadProtectionNotifMgmtGrp.setStatus('current') cegOverloadProtectionNotifGrp = NotificationGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 9)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegCongestionHighThresholdNotif"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionLowThresholdNotif"), ("CISCO-EPC-GATEWAY-MIB", "cegCongestionClearedNotif")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegOverloadProtectionNotifGrp = cegOverloadProtectionNotifGrp.setStatus('current') cegSystemStatusGrpSup1 = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 10)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegActivatedIpv4v6Bearers"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedGtpv2SgwSessions"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedGtpv2PgwSessions"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedGtpv2SPgwSessions")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegSystemStatusGrpSup1 = cegSystemStatusGrpSup1.setStatus('current') cegSystemStatusGrpSup2 = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 11)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegActivatedBearers"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedDedicatedBearers"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedIpv4DedicatedBearers"), ("CISCO-EPC-GATEWAY-MIB", "cegActivatedIpv6DedicatedBearers")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegSystemStatusGrpSup2 = cegSystemStatusGrpSup2.setStatus('current') cegSystemStatusGrpSup3 = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 12)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegTotalIdleSessions")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegSystemStatusGrpSup3 = cegSystemStatusGrpSup3.setStatus('current') cegBufferingAgentStatsGrpSup1 = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 731, 3, 2, 13)).setObjects(("CISCO-EPC-GATEWAY-MIB", "cegPacketDropDueToMaxPacketLimit"), ("CISCO-EPC-GATEWAY-MIB", "cegPacketDropDueToMaxBufferLimit")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cegBufferingAgentStatsGrpSup1 = cegBufferingAgentStatsGrpSup1.setStatus('current') mibBuilder.exportSymbols("CISCO-EPC-GATEWAY-MIB", cegCongestionClearedNotif=cegCongestionClearedNotif, cegTotalBufferedPackets=cegTotalBufferedPackets, cegBufferBytesEnqueued=cegBufferBytesEnqueued, cegBufferingAgentConfigGrp=cegBufferingAgentConfigGrp, cegSystemStatusGrpSup1=cegSystemStatusGrpSup1, cegOverloadProtectionStats=cegOverloadProtectionStats, cegSystemStatusGrp=cegSystemStatusGrp, cegCongestionLowThresholdReached=cegCongestionLowThresholdReached, cegSystemStatusGrpSup3=cegSystemStatusGrpSup3, ciscoEpcGatewayNotifMgmt=ciscoEpcGatewayNotifMgmt, cegTotalIdleUsers=cegTotalIdleUsers, cegBufferStatus=cegBufferStatus, cegTotalBufferedBytes=cegTotalBufferedBytes, ciscoEpcGatewayMIBNotifications=ciscoEpcGatewayMIBNotifications, cegCongestionLowThreshold=cegCongestionLowThreshold, cegOverloadProtectionConfig=cegOverloadProtectionConfig, PYSNMP_MODULE_ID=ciscoEpcGatewayMIB, cegActivatedIpv4v6Bearers=cegActivatedIpv4v6Bearers, cegBufferStats=cegBufferStats, cegBufferingAgentStatsGrpSup1=cegBufferingAgentStatsGrpSup1, cegBufferRejMemUnavailable=cegBufferRejMemUnavailable, ciscoEPCGatewayMIBComplianceRev2=ciscoEPCGatewayMIBComplianceRev2, cegTotalIdleSessions=cegTotalIdleSessions, cegTotalInUseBuffers=cegTotalInUseBuffers, cegPacketDropDueToMaxBufferLimit=cegPacketDropDueToMaxBufferLimit, cegActivatedIpv4v6Sessions=cegActivatedIpv4v6Sessions, cegCongestionClearNotifEnable=cegCongestionClearNotifEnable, cegCongestionStatus=cegCongestionStatus, cegCongestionHighLastOccurTime=cegCongestionHighLastOccurTime, ciscoEpcGatewayMIBGroups=ciscoEpcGatewayMIBGroups, cegBuffersTimedOut=cegBuffersTimedOut, cegBufferPacketsDequeued=cegBufferPacketsDequeued, cegBufferMaxSize=cegBufferMaxSize, cegVersion=cegVersion, cegCongestionLowLastDuration=cegCongestionLowLastDuration, cegCongestionHighNotifEnable=cegCongestionHighNotifEnable, cegBufferBytesDequeued=cegBufferBytesDequeued, cegBuffersDeleted=cegBuffersDeleted, cegActivatedIpv4DedicatedBearers=cegActivatedIpv4DedicatedBearers, cegCongestionHighThreshold=cegCongestionHighThreshold, ciscoEpcGatewayMIBObjects=ciscoEpcGatewayMIBObjects, cegOverloadProtectionNotifMgmtGrp=cegOverloadProtectionNotifMgmtGrp, ciscoEpcGatewayMIBComplianceRev1=ciscoEpcGatewayMIBComplianceRev1, ciscoEpcGatewayMIBCompliances=ciscoEpcGatewayMIBCompliances, cegOverloadProtectionConfigGrp=cegOverloadProtectionConfigGrp, cegOverloadProtectionStatusGrp=cegOverloadProtectionStatusGrp, cegActivatedDedicatedBearers=cegActivatedDedicatedBearers, cegBufferPacketsEnqueued=cegBufferPacketsEnqueued, cegActivatedGtpv2PgwSessions=cegActivatedGtpv2PgwSessions, cegTotalUsers=cegTotalUsers, cegBufferingAgentStatsGrp=cegBufferingAgentStatsGrp, cegActivatedIpv6Bearers=cegActivatedIpv6Bearers, ciscoEpcGatewayStatus=ciscoEpcGatewayStatus, cegActivatedIpv4Bearers=cegActivatedIpv4Bearers, cegCongestionHighThresholdNotif=cegCongestionHighThresholdNotif, cegBufferingAgentConfig=cegBufferingAgentConfig, ciscoEpcGatewayMIB=ciscoEpcGatewayMIB, cegActivatedBearers=cegActivatedBearers, cegTotalSuspendedUsers=cegTotalSuspendedUsers, cegBufferingAgentEnabled=cegBufferingAgentEnabled, cegPacketDropDueToMaxPacketLimit=cegPacketDropDueToMaxPacketLimit, cegBufferMaxPacketsPerBuffer=cegBufferMaxPacketsPerBuffer, cegOverloadProtectionStatsGrp=cegOverloadProtectionStatsGrp, ciscoEpcGatewayMIBConformance=ciscoEpcGatewayMIBConformance, ciscoEpcGatewayMIBCompliance=ciscoEpcGatewayMIBCompliance, cegBufferRejLowMem=cegBufferRejLowMem, cegBufferDiscardDataTime=cegBufferDiscardDataTime, ciscoEpcGatewayMIBComplianceRev3=ciscoEpcGatewayMIBComplianceRev3, ciscoEpcGatewayStatistics=ciscoEpcGatewayStatistics, cegBuffersCreated=cegBuffersCreated, cegActivatedGtpv2SgwSessions=cegActivatedGtpv2SgwSessions, cegTotalBufferAvailable=cegTotalBufferAvailable, cegOverloadProtectionStatus=cegOverloadProtectionStatus, cegCongestionHighLastDuration=cegCongestionHighLastDuration, cegCongestionLowLastOccurTime=cegCongestionLowLastOccurTime, cegCongestionDfpWeight=cegCongestionDfpWeight, cegCongestionLowNotifEnable=cegCongestionLowNotifEnable, cegBufferingAgentStatusGrp=cegBufferingAgentStatusGrp, cegActivatedIpv6DedicatedBearers=cegActivatedIpv6DedicatedBearers, ciscoEpcGatewayConfig=ciscoEpcGatewayConfig, cegCongestionIncomingReqDrops=cegCongestionIncomingReqDrops, cegCongestionLowThresholdNotif=cegCongestionLowThresholdNotif, cegOverloadProtectionNotifGrp=cegOverloadProtectionNotifGrp, cegActivatedGtpv2SPgwSessions=cegActivatedGtpv2SPgwSessions, cegCongestionHighThresholdReached=cegCongestionHighThresholdReached, cegSystemStatusGrpSup2=cegSystemStatusGrpSup2)
[ "dcwangmit01@gmail.com" ]
dcwangmit01@gmail.com
6c78a14b6f14f0a105896c9e9244dccdaf40733c
9d011587623b1ca590c8c85db6b46b87a6d6e97d
/simulation/VFA_v2-2.py
7081a54997de09cdb521f58ef793e4b396b8db4b
[]
no_license
haugerud/epsSensorNetwork
2b26984ca754b0a195711e3fcd800ef48c0a6215
e4bc81fe409366e073ab79275beac7e8e5010225
refs/heads/master
2020-04-10T04:43:47.035480
2018-12-07T10:55:13
2018-12-07T10:55:13
160,807,357
0
0
null
null
null
null
UTF-8
Python
false
false
14,878
py
#Rajouter une situation où certains nodes ne peuvent plus bouger (drône en panne) #-> définir une nouvelle liste où l'on met les nodes statiques #-> ou un paramètre booléen dans la class node pour indiquer si le noeud peut bouger ou non. #Source for mathematique: https://fr.wikibooks.org/wiki/Math%C3%A9matiques_avec_Python_et_Ruby/Points_en_Python from math import * #Source for drawing: https://matplotlib.org/ #https://stackoverflow.com/questions/21519203/plotting-a-list-of-x-y-coordinates-in-python-matplotlib import numpy.random as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches #obstacle class, define a rectangular area or polygon (python polygon intersection with line) #http://geoexamples.blogspot.com/2014/08/shortest-distance-to-geometry-in.html #Install libaries : $ sudo pip3 install Shapely # $ sudo pip3 install descartes from shapely.geometry import Polygon, Point, LinearRing, LineString from descartes import PolygonPatch #library for JSON object import json class Node:#Definition of a class Node """This class defines a node described by: - its coordinate on X axis - its coordinate on Y axis - its node ID""" def __init__(self, x, y, id): self.coord = Point(x,y) # class Point from shapely.geometry self.id=id self.s=0 # variable to know for how long the node is stable self.mobil=True # variable to know if the node is mobile or not (in case of broken node) def display(self):#Display the coordinates between () separed by ; after converted them in string return 'Node '+str(self.id)+'='+str(self.coord.wkt) def middle(self, p): return Node((self.coord.x+p.coord.x)/2,(self.coord.y+p.coord.y)/2) def vector(self, p): return Vector(p.coord.x-self.coord.x , p.coord.y-self.coord.y) def distance(self, p): return self.vector(p).norm() def translation(self, p): return Node(self.coord.x+p.x, self.coord.y+p.y, self.id) class Vector:#Definition of a class Vector """This class defines a vector described by: - its coordinate on X axis - its coordinate on Y axis""" def __init__(self, x, y): self.x=x self.y=y def display(self): return '('+str(self.x)+';'+str(self.y)+')' def norm(self): return hypot(self.x, self.y) """.hypot(x, y) returns the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point (x, y).""" def __add__(self, v):#Method to add 2 vectors return Vector(self.x+v.x, self.y+v.y) def VF_sensors(i, j):#Function to calculte the VF exert on a node by a neighboor node """This function takes 2 inputs: - i: the node on which the force is exerted - j: the neighboor node which exerted the force It returns a vector Fij_temp""" Fij_temp = Vector(0,0)#temporary Vector initialized to zero vector # d_ij = i.distance(j) d_ij = i.coord.distance(j.coord) if Cr >= d_ij and d_ij>d_th:#In this case, Si and Sj are too far and an attractive force is exerted by Sj on Si #print("Node {} is too far from node {}, Cr({}) >= d_ij({}) and d_ij > d_th ({}): Attractive force".format(i.id, j.id, Cr, d_ij, d_th)) Fij_temp.x = (Ka * (d_ij - d_th)) * ((j.coord.x - i.coord.x) / d_ij) Fij_temp.y = (Ka * (d_ij - d_th)) * ((j.coord.y - i.coord.y) / d_ij) elif d_ij < d_th:#In this case, Si and Sj are too close and a repulsive force is exerted by Sj on Si #print("Node {} is too close from node {}, d_ij({}) < d_th ({}): Repulsive force".format(i.id, j.id, d_ij, d_th)) Fij_temp.x = (Kr * (d_th - d_ij)) * ((i.coord.x - j.coord.x) / d_ij); Fij_temp.y = (Kr * (d_th - d_ij)) * ((i.coord.y - j.coord.y) / d_ij); #If none of the previous conditions are met, the force vector is still null because no force is exerted on node i. return Fij_temp def VF_obstacles(i ,j): """This function takes 2 inputs: - i: the node on which the force is exerted - j: the obstacle (a polygon) which exerted the force It returns a vector Fij_temp""" Fiobs_temp = Vector(0,0) d_iobs = i.coord.distance(j) # Distance between point Si (i.coord) and Obsj (a polygon) if d_iobs < d_thobs and d_iobs>0:#In this case, Si is too close from the obstable and a repulsive force is exerted by the obstable. # print("Obstacle detected, d_iobs<d_thobs") pol_ext = LinearRing(j.exterior.coords) d = pol_ext.project(i.coord) closest_point = pol_ext.interpolate(d) Fiobs_temp.x = (Kr_obs * (d_thobs - d_iobs)) * ((i.coord.x - closest_point.x) / d_iobs); Fiobs_temp.y = (Kr_obs * (d_thobs - d_iobs)) * ((i.coord.y - closest_point.y) / d_iobs); #else the obstacle is too far, so no force is exerted on node i and Fiobs_temps = vector zero return Fiobs_temp def Node_translation(i, F, list_o): """This function takes 3 inputs: - i: the node to move - F: the force that moves the node - list_o: the obstacle list It returns a new node that is the result of the input node translation""" temp = i.translation(F) dist_init = i.coord.distance(temp.coord) g = F.x * 1000 h = F.y * 1000 F_temp=Vector(g,h) projection = i.translation(F_temp) line = LineString([(i.coord.x, i.coord.y),(projection.coord.x, projection.coord.y)]) dist_min = None closest_obs = None for elt in list_o: difference = line.difference(elt) if difference.geom_type == 'MultiLineString': # In this case we meet an obstacle on our way dist = list(difference.geoms)[0].length if dist_min is None or dist_min > dist: dist_min = dist closest_obs = elt if dist_min != None and dist_min < dist_init: # If dist_min is different from None, that means we meet and osbtacle and we need to reduce the translation. #print("CHANGEMENT CAR distance initale {} > dist_min {}".format(dist_init, dist_min)) ratio = (dist_min * 0.9)/dist_init F.x = F.x * ratio F.y = F.y * ratio temp = i.translation(F) #We must also verify that the node doesn't move out of our field of interest. inField=True x=temp.coord.x y=temp.coord.y if temp.coord.x < (-xfield)/2: x = (-xfield)/2 inField = False elif temp.coord.x > xfield/2: x = xfield/2 inField = False if temp.coord.y < (-yfield)/2: y = (-yfield)/2 inField = False elif temp.coord.y > yfield/2: y = yfield/2 inField = False if inField == False: temp=Node(x, y, i.id) return temp # As range() doesn't allow to use decimal, I defined my own function to use decimal def frange(start, stop, step): i = start while i < stop: yield i i += step def Estimate_coverage(list_n): """This function takes only 1 input: - list_n: the list of nodes It returns the % of covered area""" covered=0 # number of covered point total=0 # total number of point for x in frange(-xfield/2, xfield/2, 0.5): for y in frange(-yfield/2, yfield/2, 0.5): test=False for node in list_n: # If the distance between the current point and a node is less than the sensing range the point is covered if node.coord.distance(Point(x,y)) < Sr: test=True # Change the value of test break # Now leave the loop, it's useless to verify for the other nodes # else, the point is uncovered if test == True: # In this case, the point is covered covered+=1 total+=1 coverage=(covered/total)*100 return coverage #Parameters definition global Cr #Communication range global Sr #Sensing range global L_th # Distance threshold where a node stop to move if its movement is less than this one global S_th #Time duration after what we consider a node reach its optimal position (use number of iteration, no time units) global d_th #Distance threshold (= sqrt(3)*Sr) global Ka #Attraction coefficient global Kr #Repulsion coefficient global Kr_obs #Repulsion coefficient for obstacle global d_thobs #Distance threshold (= sqrt(3)*Sr / 2) global xfield global yfield global xfield_min global yfield_min Cr=20 Sr=Cr/2 S_th=10 L_th=0.001 Ka=0.001 Kr=0.3 d_th = sqrt(3)*Sr Kr_obs = 0.6 d_thobs = d_th / 2 Max_iteration=300 iteration=0 xfield=75 yfield=75 #System definition (field, nodes, obstacles) #field = Polygon([(xfield/2,yfield/2),(-xfield/2,yfield/2),(xfield/2,-yfield/2),(-xfield/2,-yfield/2)]) list_node=[] master_node=False #Initialise each node with the json object #The first object read will be considered as Master Node with open("demonstration_input.txt", "r") as file: for line in file: rdata = json.loads(line) if master_node == False:#we need to center the grah on the master node (0,0) x_to_center=rdata['la'] y_to_center=rdata['lo'] master_node=True #Need to convert the data to use them on the map. x=(rdata['la']-x_to_center)/100 y=(rdata['lo']-y_to_center)/100 temp = Node(x, y, rdata['nr']) print(temp.display()) list_node.append(temp) x_to_center=59976109 y_to_center=11043916 #n10.mobil=False poly0 = Polygon([(-3,8),(-7,6),(-5,11)]) poly1 = Polygon([(8,1),(7,4),(10,3)]) poly2 = Polygon([(3,29),(2,32),(5,28)]) poly3 = Polygon([(-7,-24),(-5,-27),(-7,-28)]) poly4 = Polygon([(0,-8),(0,-11),(3,-5)]) poly5 = Polygon([(-13,29),(-10,28),(-14,27)]) poly6 = Polygon([(-24,12),(-22,11),(-25,10)]) poly7 = Polygon([(34,17),(33,19),(34,15)]) poly8 = Polygon([(-27,-34),(-28,-35),(-27,-33)]) poly9 = Polygon([(-27,-18),(-24,-18),(-26,-15)]) poly10 = Polygon([(18,-31),(16,-32),(17,-29)]) poly11 = Polygon([(14,-18),(15,-16),(13,-15)]) poly12 = Polygon([(22,31),(20,32),(23,29)]) poly13 = Polygon([(30,16),(29,14),(28,15)]) poly14 = Polygon([(25,-3),(25,-1),(23,-0)]) poly15 = Polygon([(32,-24),(30,-21),(33,-22)]) #list_node=[n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13] list_poly=[poly0, poly1, poly2, poly3, poly4, poly5, poly6, poly7, poly8, poly9, poly10, poly11, poly12, poly13, poly14, poly15] #Plot the initial positions on the graph and legend #xx, yy = np.meshgrid(np.arange(-25, 26), np.arange(-25,26), sparse=True) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_xlim(-(xfield/2), xfield/2) ax.set_ylim(-(yfield/2), yfield/2) """for elt in list_node: plt.scatter(elt.coord.x, elt.coord.y, color="#7f7f7f")""" #Plot obstacles (polygons) for elt in list_poly: patch2b = PolygonPatch(elt, fc='#ff7f7f', ec='#ff3232', alpha=1., zorder=2) ax.add_patch(patch2b) #Legend display """label = "Cr={} | Sr={} | S_th={} | L_th={}\nKr={} | Ka={} | Kr_obs={}".format(Cr, Sr, S_th, L_th, Kr, Ka, Kr_obs) legend = mpatches.Patch(color='none', label=label) plt.legend(handles=[legend])""" #Main loop while iteration<Max_iteration: print("Iteration n°", iteration) test=0#Testing variable, reset at each iteration for index, i in enumerate(list_node):#For each node in the system SumF_node=Vector(0,0)#Reset the force sums at each iteration SumF_obs=Vector(0,0) if i.s < S_th and i.mobil==True: # If the node isn't stable for a certain amount of time and still mobile, use VF on it. for jndex, j in enumerate(list_node):#For each node Sj in the system, calculation of the force it exertes on Si if index!=jndex:#To avoid to calculate the force exerted by Si on itself. F_node=VF_sensors(i, j) SumF_node=SumF_node.__add__(F_node) for obs in list_poly:#For each obstacle Oj in the system, calculation of the force it exertes on Si F_obs=VF_obstacles(i, obs) SumF_obs=SumF_obs.__add__(F_obs) F_tot=SumF_node.__add__(SumF_obs)#Total of the forces exerted on Si (SumF_obs + SumF_node) if i.distance(i.translation(F_tot)) < L_th:#Stable ? If the node should move more than a distance treshold: YES i.s+=1#Increment the stability timer else:#Stable ? NO, so translation i.s=0#Reset stability timer list_node[index]=Node_translation(list_node[index], F_tot, list_poly)#Move the node to its new position elif i.s >= S_th: # The node is stable for more than the time threshold, we don't use VF on it. It already reach its optimal position. test+=1 # Increment the testing variable else: test+=1 # Still incrementing the testing variable #Plot every points on a graph for elt in list_node:#elt takes the value of each elements in list_node plt.scatter(elt.coord.x, elt.coord.y, color="#cbcbcb") #Test if test==index+1:#If all nodes are stable, the system is optimize so leave the loop break iteration+=1 if test==index+1: print("Opimized after {} iterations".format(iteration, index)) else: print("Non optimized after {} iterations".format(Max_iteration)) print("Area covered at {}% with {} nodes".format(Estimate_coverage(list_node), index)) for elt in list_node: print(elt.display()) #Write the new positions in a JSON object #JSON object format : {"nr":unint32_t,"cn":boolean,"al":boolean,"la":int32_t,"lo":int32_t} with open("demonstration_output.txt", "w") as wfile: for elt in list_node: # #Note that is neccessary to double any { or } that are not part of a formatting placeholder. #data='{{"nr":{},"cn":true,"al":false,"la":{},"lo":{}}}'.format(elt.id, int(elt.coord.x), int(elt.coord.y)) x=elt.coord.x*100+x_to_center y=elt.coord.y*100+y_to_center # data="{'nr':"+str(elt.id)+",'cn':true,'al':false,'la':"+str(int(elt.coord.x))+",'lo':"+str(int(elt.coord.y))+"}" data="{'nr':"+str(elt.id)+",'cn':true,'al':false,'la':"+str(int(x))+",'lo':"+str(int(y))+"}" jsonlike_data = data.replace("'", "\"") wfile.write(jsonlike_data) wfile.write("\n") #Plot the final positions for index,elt in enumerate(list_node):#elt takes the value of each elements in list_node if elt.mobil == False: # use different color if node is broken circ = plt.Circle((elt.coord.x, elt.coord.y), radius=Sr, edgecolor='#FFA500', facecolor="none")#Draw a circle around the point, show the sensing range plt.scatter(elt.coord.x, elt.coord.y, color="#FFA500") ax.add_patch(circ) else: circ = plt.Circle((elt.coord.x, elt.coord.y), radius=Sr, edgecolor='b', facecolor="none")#Draw a circle around the point, show the sensing range plt.scatter(elt.coord.x, elt.coord.y, color="b") ax.add_patch(circ) plt.show()
[ "haugerud@hioa.no" ]
haugerud@hioa.no
6d27efdd7d47cfcfddb3c0e52419afd2ec0433e5
fba1de0664363c24ef7233c2a3dd423b80cbc61f
/download.py
f3355b17b1c0c51d088b01d6b8f202287e68a76a
[]
no_license
alex-993/web_scraper
ff37c005e9a6cfff4d35483f5addf83d4533f625
784351e5150d2863d3db694c288dbb8182d20e31
refs/heads/master
2022-04-05T06:47:53.022205
2020-01-30T16:00:47
2020-01-30T16:02:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
718
py
import urllib.request from urllib.error import URLError, HTTPError, ContentTooShortError def download(url, user_agent='wswp', num_retries=2, charset='utf-8'): request = urllib.request.Request(url) request.add_header('User-agent', user_agent) try: resp = urllib.request.urlopen(request) cs = resp.headers.get_content_charset() if not cs: cs = charset html = resp.read().decode(cs) except (URLError, HTTPError, ContentTooShortError) as e: print('Download error:', e.reason) html = None if num_retries > 0: if hasattr(e, 'code') and 500 <= e.code < 600: return download(url, num_retries - 1) return html
[ "alex14.an@gmail.com" ]
alex14.an@gmail.com
63cd814987f8153f78e5743152e0cc25c4c23c63
3c8bc614c9f09db5efce54af3cbcaf78e0f48b54
/0x00-python-hello_world/8-concat_edges.py
f531e57e0ce482b0c1cb28ede6ce2094ad90bd11
[]
no_license
davidknoppers/holbertonschool-higher_level_programming
7848d301c4bf5c1fa285314392adfb577d6d082f
beaf6e5ece426c2086f34763e50c3ce0f56923ac
refs/heads/master
2021-04-29T10:10:27.071278
2017-05-03T02:46:44
2017-05-03T02:46:44
77,847,936
1
0
null
null
null
null
UTF-8
Python
false
false
208
py
#!/usr/bin/python3 str = "Python is an interpreted, interactive, object-oriented programming\ language that combines remarkable power with very clear syntax" str = str[39:67]+str[107:112]+str[:6] print(str)
[ "david.knoppers@holbertonschool.com" ]
david.knoppers@holbertonschool.com
fcc09a982519bbf5b31efdd28089428f5328ed9d
ba0cbdae81c171bd4be7b12c0594de72bd6d625a
/MyToontown/Panda3D-1.9.0/direct/leveleditor/LevelLoaderBase.py
f5c0b44ab0ad2f0f0900cdabd038db10f55e2cdf
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
sweep41/Toontown-2016
65985f198fa32a832e762fa9c59e59606d6a40a3
7732fb2c27001264e6dd652c057b3dc41f9c8a7d
refs/heads/master
2021-01-23T16:04:45.264205
2017-06-04T02:47:34
2017-06-04T02:47:34
93,279,679
0
0
null
null
null
null
UTF-8
Python
false
false
1,221
py
import imp class LevelLoaderBase: """ Base calss for LevelLoader which you will use to load level editor data in your game. Refer LevelLoader.py for example. """ def __init__(self): self.defaultPath = None # this should be set in your LevelLoader.py self.initLoader() def initLoader(self): # You should implement this in subclass raise NotImplementedError('populate() must be implemented in your LevelLoader.py') def cleanUp(self): # When you don't need to load any more data, you can call clean up del base.objectPalette del base.protoPalette del base.objectHandler del base.objectMgr def loadFromFile(self, fileName, filePath=None): if filePath is None: filePath = self.defaultPath if fileName.endswith('.py'): fileName = fileName[:-3] file, pathname, description = imp.find_module(fileName, [filePath]) try: module = imp.load_module(fileName, file, pathname, description) return True except: print 'failed to load %s'%fileName return None
[ "sweep14@gmail.com" ]
sweep14@gmail.com
5c78b2aead19ffa8b1950c6a1dc99dc58910c08e
c3d244c51e4c8a318f67872330b0166614fd22b5
/Srp/venv/bin/cygdb
1dcf69eb01f484725c1027922146feb3c3f87957
[]
no_license
siva-28/Srp
cf8f38e3360d79a4efd471812b5e1d9ebd7f0001
b7797448b883762aae4106ef2d31dafd2fec0ab3
refs/heads/master
2020-03-27T02:58:34.758865
2018-09-06T08:19:06
2018-09-06T08:19:06
145,830,383
0
0
null
null
null
null
UTF-8
Python
false
false
256
#!/home/siva-m/PycharmProjects/Srp/venv/bin/python # -*- coding: utf-8 -*- import re import sys from Cython.Debugger.Cygdb import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "smartsiva939@gmail.com" ]
smartsiva939@gmail.com
704f013c130662ebe0573fac63f33843058e6de6
c4c58279db858356c41e2a90074181fdf0dd6735
/Django相关/auth_form/auth_demo/settings.py
b9bf9437ab29361b297bd833119f7ec31e7751a3
[]
no_license
mowangmo/mini_apps
3ae9e269cd6dcfbdc850113962ffac541b03ff8c
f5c2d71ea057b9dbdf554bed4d94f5aabab6b2c4
refs/heads/master
2021-09-07T16:20:32.298619
2018-02-26T01:53:04
2018-02-26T01:53:04
107,953,009
0
0
null
null
null
null
UTF-8
Python
false
false
3,239
py
""" Django settings for auth_demo project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'v(oph1*5_e^h#i!s&so0@i5^gvjkcjn126=4f8d78@8fbwd*rh' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] #from django.contrib.auth.middleware import AuthenticationMiddleware ROOT_URLCONF = 'auth_demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'auth_demo.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' SESSION_COOKIE_AGE =10
[ "wangmo@syberos.com" ]
wangmo@syberos.com
c21bb2097509c60695c3b4904a525faa92d6f888
b65f7a26db907a5e24671d31bae491ac3b351959
/word_pattern.py
c045e0c4a00c61f991e8e2225855237b5c6781a5
[]
no_license
srivats0603/Algos_Practice
3db7dadd910976cd4284a04a4de6e2b4b4ad9a8a
1c0e9f579a2dc0bf2c0cac4510dc12c396302825
refs/heads/master
2020-12-13T14:25:14.976398
2020-06-07T13:13:10
2020-06-07T13:13:10
234,443,685
0
0
null
null
null
null
UTF-8
Python
false
false
1,309
py
class Solution_wordPattern: def find_num_words(self,str_x,len_str_x): num_words = 1 space_list = [] for i in range(0,len_str_x): if str_x[i] == ' ': space_list.append(i) num_words = num_words+1 space_list.append(len_str_x+1) return num_words,space_list def wordPattern(self, pattern, str_x): len_pat = len(pattern) len_str_x = len(str_x) num_words,space_list = self.find_num_words(str_x,len_str_x) if len_pat != num_words: return False pattern_dict = {pattern[0] : str_x[0:space_list[0]]} word_list = [str_x[0:space_list[0]]] for i in range(1,len_pat): this_word = str_x[(space_list[i-1]+1):space_list[i]] if (pattern[i] not in pattern_dict.keys()): if this_word not in word_list: pattern_dict[pattern[i]] = this_word word_list.append(this_word) else: #print("the patterns for the word {} don't match".format(this_word)) return False elif (pattern_dict[pattern[i]] == this_word): #print(pattern_dict[pattern[i]],"matches",this_word, "and") pass elif (pattern_dict[pattern[i]] != this_word): #print("the words for the pattern {} don't match".format(pattern[i])) return False #print(pattern_dict) return True
[ "shuklasr@utopusinsights.com" ]
shuklasr@utopusinsights.com
a3da4fc993c60e6e717dd3a753c22ba7c5a1debb
0e82ad56b79439520c656b45b068c8f6528b1796
/Assignment5/GameMaster.py
7320a2a8f7c59d224ff71f80ced5ec5c0d75c6e4
[ "MIT" ]
permissive
vaibhavi-r/CSE-415
a755dec25e836786ce726d14ddaf320ea8212194
f5fc90e01aa5a2e1c338b5e9eeccb56c05e39a7c
refs/heads/master
2021-08-28T04:19:14.913498
2017-12-11T06:54:22
2017-12-11T06:54:22
106,122,569
0
1
null
null
null
null
UTF-8
Python
false
false
4,734
py
'''GameMaster.py based on code from RunKInARow.py ''' USE_HTML = True import Hobgoblin as player1 import Player as player2 from winTesterForK import winTesterForK if USE_HTML: import gameToHTML TTT_INITIAL_STATE = \ [[[' ',' ',' '], [' ',' ',' '], [' ',' ',' ']], "X"] K = 3 GAME_TYPE = 'TIC-TAC-TOE' FIVE_INITIAL_STATE = \ [[['-',' ',' ',' ',' ',' ','-'], [' ',' ',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ',' ',' '], [' ',' ',' ',' ',' ',' ',' '], ['-',' ',' ',' ',' ',' ','-']], "X"] K = 5 GAME_TYPE = "Five in a Row on Seven-by-Seven Board with Corners Forbidden" INITIAL_STATE = FIVE_INITIAL_STATE TIME_PER_MOVE = 10 N = len(INITIAL_STATE[0]) # height of board M = len(INITIAL_STATE[0][0]) # width of board FINISHED = False def runGame(): currentState = INITIAL_STATE print('The Gamemaster says, "Players, introduce yourselves."') print(' (Playing X:) '+player1.introduce()) print(' (Playing O:) '+player2.introduce()) if USE_HTML: gameToHTML.startHTML(player1.nickname(), player2.nickname(), GAME_TYPE, 1) try: p1comment = player1.prepare(INITIAL_STATE, K, 'X', player2.nickname()) except: report = 'Player 1 ('+player1.nickname()+' failed to prepare, and loses by default.' print(report) if USE_HTML: gameToHTML.reportResult(report) report = 'Congratulations to Player 2 ('+player2.nickname()+')!' print(report) if USE_HTML: gameToHTML.reportResult(report) if USE_HTML: gameToHTML.endHTML() return try: p2comment = player2.prepare(INITIAL_STATE, K, 'O', player1.nickname()) except: report = 'Player 2 ('+player2.nickname()+' failed to prepare, and loses by default.' print(report) if USE_HTML: gameToHTML.reportResult(report) report = 'Congratulations to Player 1 ('+player1.nickname()+')!' print(report) if USE_HTML: gameToHTML.reportResult(report) if USE_HTML: gameToHTML.endHTML() return return print('The Gamemaster says, "Let\'s Play!"') print('The initial state is...') currentRemark = "The game is starting." if USE_HTML: gameToHTML.stateToHTML(currentState) XsTurn = True name = None global FINISHED FINISHED = False turnCount = 0 printState(currentState) while not FINISHED: who = currentState[1] if XsTurn: playerResult = player1.makeMove(currentState, currentRemark, TIME_PER_MOVE) name = player1.nickname() XsTurn = False else: playerResult = player2.makeMove(currentState, currentRemark, TIME_PER_MOVE) name = player2.nickname() XsTurn = True moveAndState, currentRemark = playerResult if moveAndState==None: FINISHED = True; continue move, currentState = moveAndState moveReport = "Move is by "+who+" to "+str(move) print(moveReport) utteranceReport = name +' says: '+currentRemark print(utteranceReport) if USE_HTML: gameToHTML.reportResult(moveReport) if USE_HTML: gameToHTML.reportResult(utteranceReport) possibleWin = winTesterForK(currentState, move, K) if possibleWin != "No win": FINISHED = True printState(currentState) if USE_HTML: gameToHTML.stateToHTML(currentState, finished=True) print(possibleWin) if USE_HTML: gameToHTML.reportResult(possibleWin) if USE_HTML: gameToHTML.endHTML() return printState(currentState) if USE_HTML: gameToHTML.stateToHTML(currentState) turnCount += 1 #if turnCount == 9: FINISHED=True printState(currentState) if USE_HTML: gameToHTML.stateToHTML(currentState) who = currentState[1] print("Game over.") if USE_HTML: gameToHTML.reportResult("Game Over; it's a draw") if USE_HTML: gameToHTML.endHTML() def printState(s): global FINISHED board = s[0] who = s[1] horizontalBorder = "+"+3*N*"-"+"+" print(horizontalBorder) for row in board: print("|",end="") for item in row: print(" "+item+" ", end="") print("|") print(horizontalBorder) if not FINISHED: print("It is "+who+"'s turn to move.\n") runGame()
[ "vaibhavi.rangarajan@gmail.com" ]
vaibhavi.rangarajan@gmail.com
21b16f6a2046047120d8a98f0d49823758acea53
7d12a2b57b5f72755029e6a71357b2ae749fcc0b
/StockInsightPython/predict/GetPredict.py
bc727042e9affb3a2c9dd13ee27f0cb7536f2733
[]
no_license
DeveloperHailie/StockInsight
b06c911e7d9672f02bf167ca5d52fbc4eff3e9b1
23bc455fcde82d68991a136bc6b961ad2df29745
refs/heads/main
2023-06-02T06:03:07.245164
2021-06-19T05:39:17
2021-06-19T05:39:17
310,904,981
0
3
null
null
null
null
UTF-8
Python
false
false
4,627
py
import numpy as np import cv2 from urllib.request import urlopen import tensorflow as tf import FinanceDataReader as fdr from sklearn.preprocessing import MinMaxScaler import pandas as pd import csv import os import pymysql import tkinter from datetime import datetime import time import sys from DBInfo import DB # 장 열려있지 않으면 바로 종료 n = time.localtime().tm_wday n_tm = time.localtime() # 현재 시간 구하기 if(n==5 or n==6) : # 토요일 혹은 일요일이면 sys.exit() # now.tm_hour, now.tm_min if(n_tm.tm_hour<9 or n_tm.tm_hour>16) : sys.exit() dbInformation = DB() # DB 연결 connect = pymysql.connect(host=dbInformation.host, port=dbInformation.port, user=dbInformation.user, password=dbInformation.password, db=dbInformation.dbName) #cursor 객체 생성 cursor = conn.cursor() #모델 로드 함수 def loadModel(model) : np.set_printoptions(suppress=True) classifierLoad = tf.keras.models.load_model(model) return classifierLoad def predict(code) : df = fdr.DataReader(df_krx_stock, '2020') source = df.tail(5) # 최근 5일치 api source = source[['Open', 'High', 'Low', 'Close', 'Volume']] source = source.values transformer = MinMaxScaler() train = transformer.fit_transform(source) train = np.array([train]) y = model.predict(train) y_inverse = transformer.inverse_transform([[0, 0, 0, y[0], 0]]) predict_close = y_inverse[0][3] return predict_close # model path 설정 및 model load model_path = "C:\\StockInsightPython\\predict\\DeepLearningModel.h5" model = loadModel(model_path) #한국거래소 상장종목 전체 df_krx_code = fdr.StockListing('KRX')['Symbol'] # 업종 코드 df_krx_name = fdr.StockListing('KRX')['Name'] # 회사명 # csv 저장할 list c = list() check = True # 모델 가지고 예측값 구하기 for df_krx_stock in df_krx_code: #source는 5일간의 데이터 if(os.path.isfile("..\\realtimeData\\"+df_krx_stock + ".csv")) : # 파일 있을 시 check = True else : # 파일 없을 시 check = False # csv 받아오기 if(check == True) : try : df_today = pd.read_csv("..\\realtimeData\\"+df_krx_stock + ".csv", header=None) # today dateframe(가격) len(df_today) # csv row 갯수 df_close_list = df_today[1] # today close 열 list df_open = df_close_list[0] # 현재가격 Open 시가 df_close = df_close_list[len(df_today)-1] # 현재가격 Close 종가 df_volume = df_today[4][len(df_today)-1] # 현재가격 거래량 # csv 값 list에 넣기 for x in df_close_list: c.append(x) # 현재가격 colume 받아오기 # 정렬 후 - 내림차순 정렬 c.sort() df_low = c[0] # Low - 저가 df_high = c[len(c)-1] #High - 고가 df = fdr.DataReader(df_krx_stock, '2020') if df.empty : # dataframe none 확인 continue else : source = df.tail(5) # 최근 5일치 api source = source[['Open', 'High', 'Low', 'Close', 'Volume']] source = source.values ## update 할 내용이 있을 때 source = np.delete(source,0, axis=0) source = np.insert(source,4, [df_open, df_high, df_low, df_close, df_volume], axis=0) ## transformer = MinMaxScaler() train = transformer.fit_transform(source) train = np.array([train]) y = model.predict(train) y_inverse = transformer.inverse_transform([[0, 0, 0, y[0], 0]]) predict_close = y_inverse[0][3] c = [] # 초기화 except: predict_close = predict(df_krx_stock) else : try: predict_close = predict(df_krx_stock) except: continue #DB 업데이트 try: sql = "UPDATE Stock SET stock_future = '"+str(predict_close)+"' WHERE stock_code ="+(df_krx_stock) cursor.execute(sql) conn.commit() except: print("error") conn.close()
[ "20181011@sungshin.ac.kr" ]
20181011@sungshin.ac.kr
c1e495c692005ed98eeeddca13ac61b00102c9c9
7d946a2105a4f08f97df3c99d6348bbb216a3fc9
/assignment2/cs231n/im2col.py
f400fef7928dfd517f41674b7f0e4385b075e231
[]
no_license
srivatsa96/cs231n
c2628d1edd7a30b7e96ec3ecc443b9e8d705990a
62ca2fef3e64c2ecee1e5aab34496a993f92d473
refs/heads/master
2021-07-12T19:31:10.437684
2017-10-13T09:26:24
2017-10-13T09:26:24
105,500,626
0
0
null
null
null
null
UTF-8
Python
false
false
2,256
py
from builtins import range import numpy as np def get_im2col_indices(x_shape, field_height, field_width, padding=1, stride=1): # First figure out what the size of the output should be N, C, H, W = x_shape assert (H + 2 * padding - field_height) % stride == 0 assert (W + 2 * padding - field_width) % stride == 0 out_height = (H + 2 * padding - field_height) / stride + 1 out_height = int(out_height) out_width = (W + 2 * padding - field_width) / stride + 1 out_width = int(out_width) i0 = np.repeat(np.arange(field_height), field_width) i0 = np.tile(i0, C) i1 = stride * np.repeat(np.arange(out_height), out_width) j0 = np.tile(np.arange(field_width), field_height * C) j1 = stride * np.tile(np.arange(out_width), out_height) i = i0.reshape(-1, 1) + i1.reshape(1, -1) j = j0.reshape(-1, 1) + j1.reshape(1, -1) k = np.repeat(np.arange(C), field_height * field_width).reshape(-1, 1) return (k, i, j) def im2col_indices(x, field_height, field_width, padding=1, stride=1): """ An implementation of im2col based on some fancy indexing """ # Zero-pad the input p = padding x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant') k, i, j = get_im2col_indices(x.shape, field_height, field_width, padding, stride) cols = x_padded[:, k, i, j] C = x.shape[1] cols = cols.transpose(1, 2, 0).reshape(field_height * field_width * C, -1) return cols def col2im_indices(cols, x_shape, field_height=3, field_width=3, padding=1, stride=1): """ An implementation of col2im based on fancy indexing and np.add.at """ N, C, H, W = x_shape H_padded, W_padded = H + 2 * padding, W + 2 * padding x_padded = np.zeros((N, C, H_padded, W_padded), dtype=cols.dtype) k, i, j = get_im2col_indices(x_shape, field_height, field_width, padding, stride) cols_reshaped = cols.reshape(C * field_height * field_width, -1, N) cols_reshaped = cols_reshaped.transpose(2, 0, 1) np.add.at(x_padded, (slice(None), k, i, j), cols_reshaped) if padding == 0: return x_padded return x_padded[:, :, padding:-padding, padding:-padding] pass
[ "srivatsasinha@gmail.com" ]
srivatsasinha@gmail.com
d9cfc49a82bc5c833bfc34078ccb8862441965ff
665a0ec78f8b26972868dbc8ac5acbb29482527b
/venv/bin/f2py
a0f1f9ddf293011510ec9b3985ba6faa502bfcf6
[]
no_license
tanjan-sj/Android-Malware-Analysis
8f1fd95196b600d8649a9d51941bccf3dd7404da
8cfe748d0e39ba6d3d8550f5dd7e0b06951cbaed
refs/heads/master
2020-03-27T14:23:32.360290
2018-08-29T22:00:06
2018-08-29T22:00:06
146,659,749
0
0
null
null
null
null
UTF-8
Python
false
false
254
#!/home/sj/PycharmProjects/irisMal/venv/bin/python # -*- coding: utf-8 -*- import re import sys from numpy.f2py.__main__ import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "tanjan.sj@gmail.com" ]
tanjan.sj@gmail.com
4292ca66d299ecd2c72db2fabefb7a193e512295
d1ec14b25b3489993079b36b7971dacb3bd09340
/app/trace.py
0d808beddb833a01d35ad4f1e5ac790575150058
[ "Apache-2.0" ]
permissive
TinlokLee/Django-Celery
9cb23fe902302eb5d6ed626dd7ed2a1403c04346
320b36ee2091aa876ecf92003af6b8e11b3041ed
refs/heads/master
2020-04-12T11:11:32.115875
2018-12-20T13:01:07
2018-12-20T13:01:07
162,451,990
0
0
null
null
null
null
UTF-8
Python
false
false
24,548
py
# -*- coding: utf-8 -*- """Trace task execution. This module defines how the task execution is traced: errors are recorded, handlers are applied and so on. """ from __future__ import absolute_import, unicode_literals import logging import os import sys from collections import namedtuple from warnings import warn from billiard.einfo import ExceptionInfo from kombu.exceptions import EncodeError from kombu.serialization import loads as loads_message from kombu.serialization import prepare_accept_content from kombu.utils.encoding import safe_repr, safe_str from celery import current_app, group, signals, states from celery._state import _task_stack from celery.app.task import Context from celery.app.task import Task as BaseTask from celery.exceptions import Ignore, InvalidTaskError, Reject, Retry from celery.five import monotonic, text_t from celery.utils.log import get_logger from celery.utils.nodenames import gethostname from celery.utils.objects import mro_lookup from celery.utils.saferepr import saferepr from celery.utils.serialization import (get_pickleable_etype, get_pickleable_exception, get_pickled_exception) # ## --- # This is the heart of the worker, the inner loop so to speak. # It used to be split up into nice little classes and methods, # but in the end it only resulted in bad performance and horrible tracebacks, # so instead we now use one closure per task class. # pylint: disable=redefined-outer-name # We cache globals and attribute lookups, so disable this warning. # pylint: disable=broad-except # We know what we're doing... __all__ = ( 'TraceInfo', 'build_tracer', 'trace_task', 'setup_worker_optimizations', 'reset_worker_optimizations', ) logger = get_logger(__name__) #: Format string used to log task success. LOG_SUCCESS = """\ Task %(name)s[%(id)s] succeeded in %(runtime)ss: %(return_value)s\ """ #: Format string used to log task failure. LOG_FAILURE = """\ Task %(name)s[%(id)s] %(description)s: %(exc)s\ """ #: Format string used to log task internal error. LOG_INTERNAL_ERROR = """\ Task %(name)s[%(id)s] %(description)s: %(exc)s\ """ #: Format string used to log task ignored. LOG_IGNORED = """\ Task %(name)s[%(id)s] %(description)s\ """ #: Format string used to log task rejected. LOG_REJECTED = """\ Task %(name)s[%(id)s] %(exc)s\ """ #: Format string used to log task retry. LOG_RETRY = """\ Task %(name)s[%(id)s] retry: %(exc)s\ """ log_policy_t = namedtuple( 'log_policy_t', ('format', 'description', 'severity', 'traceback', 'mail'), ) log_policy_reject = log_policy_t(LOG_REJECTED, 'rejected', logging.WARN, 1, 1) log_policy_ignore = log_policy_t(LOG_IGNORED, 'ignored', logging.INFO, 0, 0) log_policy_internal = log_policy_t( LOG_INTERNAL_ERROR, 'INTERNAL ERROR', logging.CRITICAL, 1, 1, ) log_policy_expected = log_policy_t( LOG_FAILURE, 'raised expected', logging.INFO, 0, 0, ) log_policy_unexpected = log_policy_t( LOG_FAILURE, 'raised unexpected', logging.ERROR, 1, 1, ) send_prerun = signals.task_prerun.send send_postrun = signals.task_postrun.send send_success = signals.task_success.send STARTED = states.STARTED SUCCESS = states.SUCCESS IGNORED = states.IGNORED REJECTED = states.REJECTED RETRY = states.RETRY FAILURE = states.FAILURE EXCEPTION_STATES = states.EXCEPTION_STATES IGNORE_STATES = frozenset({IGNORED, RETRY, REJECTED}) #: set by :func:`setup_worker_optimizations` _localized = [] _patched = {} trace_ok_t = namedtuple('trace_ok_t', ('retval', 'info', 'runtime', 'retstr')) def info(fmt, context): """Log 'fmt % context' with severity 'INFO'. 'context' is also passed in extra with key 'data' for custom handlers. """ logger.info(fmt, context, extra={'data': context}) def task_has_custom(task, attr): """Return true if the task overrides ``attr``.""" return mro_lookup(task.__class__, attr, stop={BaseTask, object}, monkey_patched=['celery.app.task']) def get_log_policy(task, einfo, exc): if isinstance(exc, Reject): return log_policy_reject elif isinstance(exc, Ignore): return log_policy_ignore elif einfo.internal: return log_policy_internal else: if task.throws and isinstance(exc, task.throws): return log_policy_expected return log_policy_unexpected def get_task_name(request, default): """Use 'shadow' in request for the task name if applicable.""" # request.shadow could be None or an empty string. # If so, we should use default. return getattr(request, 'shadow', None) or default class TraceInfo(object): """Information about task execution.""" __slots__ = ('state', 'retval') def __init__(self, state, retval=None): self.state = state self.retval = retval def handle_error_state(self, task, req, eager=False, call_errbacks=True): store_errors = not eager if task.ignore_result: store_errors = task.store_errors_even_if_ignored return { RETRY: self.handle_retry, FAILURE: self.handle_failure, }[self.state](task, req, store_errors=store_errors, call_errbacks=call_errbacks) def handle_reject(self, task, req, **kwargs): self._log_error(task, req, ExceptionInfo()) def handle_ignore(self, task, req, **kwargs): self._log_error(task, req, ExceptionInfo()) def handle_retry(self, task, req, store_errors=True, **kwargs): """Handle retry exception.""" # the exception raised is the Retry semi-predicate, # and it's exc' attribute is the original exception raised (if any). type_, _, tb = sys.exc_info() try: reason = self.retval einfo = ExceptionInfo((type_, reason, tb)) if store_errors: task.backend.mark_as_retry( req.id, reason.exc, einfo.traceback, request=req, ) task.on_retry(reason.exc, req.id, req.args, req.kwargs, einfo) signals.task_retry.send(sender=task, request=req, reason=reason, einfo=einfo) info(LOG_RETRY, { 'id': req.id, 'name': get_task_name(req, task.name), 'exc': text_t(reason), }) return einfo finally: del tb def handle_failure(self, task, req, store_errors=True, call_errbacks=True): """Handle exception.""" _, _, tb = sys.exc_info() try: exc = self.retval # make sure we only send pickleable exceptions back to parent. einfo = ExceptionInfo() einfo.exception = get_pickleable_exception(einfo.exception) einfo.type = get_pickleable_etype(einfo.type) task.backend.mark_as_failure( req.id, exc, einfo.traceback, request=req, store_result=store_errors, call_errbacks=call_errbacks, ) task.on_failure(exc, req.id, req.args, req.kwargs, einfo) signals.task_failure.send(sender=task, task_id=req.id, exception=exc, args=req.args, kwargs=req.kwargs, traceback=tb, einfo=einfo) self._log_error(task, req, einfo) return einfo finally: del tb def _log_error(self, task, req, einfo): eobj = einfo.exception = get_pickled_exception(einfo.exception) exception, traceback, exc_info, sargs, skwargs = ( safe_repr(eobj), safe_str(einfo.traceback), einfo.exc_info, safe_repr(req.args), safe_repr(req.kwargs), ) policy = get_log_policy(task, einfo, eobj) context = { 'hostname': req.hostname, 'id': req.id, 'name': get_task_name(req, task.name), 'exc': exception, 'traceback': traceback, 'args': sargs, 'kwargs': skwargs, 'description': policy.description, 'internal': einfo.internal, } logger.log(policy.severity, policy.format.strip(), context, exc_info=exc_info if policy.traceback else None, extra={'data': context}) def build_tracer(name, task, loader=None, hostname=None, store_errors=True, Info=TraceInfo, eager=False, propagate=False, app=None, monotonic=monotonic, trace_ok_t=trace_ok_t, IGNORE_STATES=IGNORE_STATES): """Return a function that traces task execution. Catches all exceptions and updates result backend with the state and result. If the call was successful, it saves the result to the task result backend, and sets the task status to `"SUCCESS"`. If the call raises :exc:`~@Retry`, it extracts the original exception, uses that as the result and sets the task state to `"RETRY"`. If the call results in an exception, it saves the exception as the task result, and sets the task state to `"FAILURE"`. Return a function that takes the following arguments: :param uuid: The id of the task. :param args: List of positional args to pass on to the function. :param kwargs: Keyword arguments mapping to pass on to the function. :keyword request: Request dict. """ # noqa: C901 # pylint: disable=too-many-statements # If the task doesn't define a custom __call__ method # we optimize it away by simply calling the run method directly, # saving the extra method call and a line less in the stack trace. fun = task if task_has_custom(task, '__call__') else task.run loader = loader or app.loader backend = task.backend ignore_result = task.ignore_result track_started = task.track_started track_started = not eager and (task.track_started and not ignore_result) publish_result = not eager and not ignore_result hostname = hostname or gethostname() loader_task_init = loader.on_task_init loader_cleanup = loader.on_process_cleanup task_on_success = None task_after_return = None if task_has_custom(task, 'on_success'): task_on_success = task.on_success if task_has_custom(task, 'after_return'): task_after_return = task.after_return store_result = backend.store_result mark_as_done = backend.mark_as_done backend_cleanup = backend.process_cleanup pid = os.getpid() request_stack = task.request_stack push_request = request_stack.push pop_request = request_stack.pop push_task = _task_stack.push pop_task = _task_stack.pop _does_info = logger.isEnabledFor(logging.INFO) resultrepr_maxsize = task.resultrepr_maxsize prerun_receivers = signals.task_prerun.receivers postrun_receivers = signals.task_postrun.receivers success_receivers = signals.task_success.receivers from celery import canvas signature = canvas.maybe_signature # maybe_ does not clone if already def on_error(request, exc, uuid, state=FAILURE, call_errbacks=True): if propagate: raise I = Info(state, exc) R = I.handle_error_state( task, request, eager=eager, call_errbacks=call_errbacks, ) return I, R, I.state, I.retval def trace_task(uuid, args, kwargs, request=None): # R - is the possibly prepared return value. # I - is the Info object. # T - runtime # Rstr - textual representation of return value # retval - is the always unmodified return value. # state - is the resulting task state. # This function is very long because we've unrolled all the calls # for performance reasons, and because the function is so long # we want the main variables (I, and R) to stand out visually from the # the rest of the variables, so breaking PEP8 is worth it ;) R = I = T = Rstr = retval = state = None task_request = None time_start = monotonic() try: try: kwargs.items except AttributeError: raise InvalidTaskError( 'Task keyword arguments is not a mapping') push_task(task) task_request = Context(request or {}, args=args, called_directly=False, kwargs=kwargs) root_id = task_request.root_id or uuid push_request(task_request) try: # -*- PRE -*- if prerun_receivers: send_prerun(sender=task, task_id=uuid, task=task, args=args, kwargs=kwargs) loader_task_init(uuid, task) if track_started: store_result( uuid, {'pid': pid, 'hostname': hostname}, STARTED, request=task_request, ) # -*- TRACE -*- try: R = retval = fun(*args, **kwargs) state = SUCCESS except Reject as exc: I, R = Info(REJECTED, exc), ExceptionInfo(internal=True) state, retval = I.state, I.retval I.handle_reject(task, task_request) except Ignore as exc: I, R = Info(IGNORED, exc), ExceptionInfo(internal=True) state, retval = I.state, I.retval I.handle_ignore(task, task_request) except Retry as exc: I, R, state, retval = on_error( task_request, exc, uuid, RETRY, call_errbacks=False) except Exception as exc: I, R, state, retval = on_error(task_request, exc, uuid) except BaseException: raise else: try: # callback tasks must be applied before the result is # stored, so that result.children is populated. # groups are called inline and will store trail # separately, so need to call them separately # so that the trail's not added multiple times :( # (Issue #1936) callbacks = task.request.callbacks if callbacks: if len(task.request.callbacks) > 1: sigs, groups = [], [] for sig in callbacks: sig = signature(sig, app=app) if isinstance(sig, group): groups.append(sig) else: sigs.append(sig) for group_ in groups: group_.apply_async( (retval,), parent_id=uuid, root_id=root_id, ) if sigs: group(sigs, app=app).apply_async( (retval,), parent_id=uuid, root_id=root_id, ) else: signature(callbacks[0], app=app).apply_async( (retval,), parent_id=uuid, root_id=root_id, ) # execute first task in chain chain = task_request.chain if chain: _chsig = signature(chain.pop(), app=app) _chsig.apply_async( (retval,), chain=chain, parent_id=uuid, root_id=root_id, ) mark_as_done( uuid, retval, task_request, publish_result, ) except EncodeError as exc: I, R, state, retval = on_error(task_request, exc, uuid) else: Rstr = saferepr(R, resultrepr_maxsize) T = monotonic() - time_start if task_on_success: task_on_success(retval, uuid, args, kwargs) if success_receivers: send_success(sender=task, result=retval) if _does_info: info(LOG_SUCCESS, { 'id': uuid, 'name': get_task_name(task_request, name), 'return_value': Rstr, 'runtime': T, }) # -* POST *- if state not in IGNORE_STATES: if task_after_return: task_after_return( state, retval, uuid, args, kwargs, None, ) finally: try: if postrun_receivers: send_postrun(sender=task, task_id=uuid, task=task, args=args, kwargs=kwargs, retval=retval, state=state) finally: pop_task() pop_request() if not eager: try: backend_cleanup() loader_cleanup() except (KeyboardInterrupt, SystemExit, MemoryError): raise except Exception as exc: logger.error('Process cleanup failed: %r', exc, exc_info=True) except MemoryError: raise except Exception as exc: if eager: raise R = report_internal_error(task, exc) if task_request is not None: I, _, _, _ = on_error(task_request, exc, uuid) return trace_ok_t(R, I, T, Rstr) return trace_task def trace_task(task, uuid, args, kwargs, request={}, **opts): """Trace task execution.""" try: if task.__trace__ is None: task.__trace__ = build_tracer(task.name, task, **opts) return task.__trace__(uuid, args, kwargs, request) except Exception as exc: return trace_ok_t(report_internal_error(task, exc), None, 0.0, None) def _trace_task_ret(name, uuid, request, body, content_type, content_encoding, loads=loads_message, app=None, **extra_request): app = app or current_app._get_current_object() embed = None if content_type: accept = prepare_accept_content(app.conf.accept_content) args, kwargs, embed = loads( body, content_type, content_encoding, accept=accept, ) else: args, kwargs, embed = body hostname = gethostname() request.update({ 'args': args, 'kwargs': kwargs, 'hostname': hostname, 'is_eager': False, }, **embed or {}) R, I, T, Rstr = trace_task(app.tasks[name], uuid, args, kwargs, request, app=app) return (1, R, T) if I else (0, Rstr, T) trace_task_ret = _trace_task_ret # noqa: E305 def _fast_trace_task(task, uuid, request, body, content_type, content_encoding, loads=loads_message, _loc=_localized, hostname=None, **_): embed = None tasks, accept, hostname = _loc if content_type: args, kwargs, embed = loads( body, content_type, content_encoding, accept=accept, ) else: args, kwargs, embed = body request.update({ 'args': args, 'kwargs': kwargs, 'hostname': hostname, 'is_eager': False, }, **embed or {}) R, I, T, Rstr = tasks[task].__trace__( uuid, args, kwargs, request, ) return (1, R, T) if I else (0, Rstr, T) def report_internal_error(task, exc): _type, _value, _tb = sys.exc_info() try: _value = task.backend.prepare_exception(exc, 'pickle') exc_info = ExceptionInfo((_type, _value, _tb), internal=True) warn(RuntimeWarning( 'Exception raised outside body: {0!r}:\n{1}'.format( exc, exc_info.traceback))) return exc_info finally: del _tb def setup_worker_optimizations(app, hostname=None): """Setup worker related optimizations.""" global trace_task_ret hostname = hostname or gethostname() # make sure custom Task.__call__ methods that calls super # won't mess up the request/task stack. _install_stack_protection() # all new threads start without a current app, so if an app is not # passed on to the thread it will fall back to the "default app", # which then could be the wrong app. So for the worker # we set this to always return our app. This is a hack, # and means that only a single app can be used for workers # running in the same process. app.set_current() app.set_default() # evaluate all task classes by finalizing the app. app.finalize() # set fast shortcut to task registry _localized[:] = [ app._tasks, prepare_accept_content(app.conf.accept_content), hostname, ] trace_task_ret = _fast_trace_task from celery.worker import request as request_module request_module.trace_task_ret = _fast_trace_task request_module.__optimize__() def reset_worker_optimizations(): """Reset previously configured optimizations.""" global trace_task_ret trace_task_ret = _trace_task_ret try: delattr(BaseTask, '_stackprotected') except AttributeError: pass try: BaseTask.__call__ = _patched.pop('BaseTask.__call__') except KeyError: pass from celery.worker import request as request_module request_module.trace_task_ret = _trace_task_ret def _install_stack_protection(): # Patches BaseTask.__call__ in the worker to handle the edge case # where people override it and also call super. # # - The worker optimizes away BaseTask.__call__ and instead # calls task.run directly. # - so with the addition of current_task and the request stack # BaseTask.__call__ now pushes to those stacks so that # they work when tasks are called directly. # # The worker only optimizes away __call__ in the case # where it hasn't been overridden, so the request/task stack # will blow if a custom task class defines __call__ and also # calls super(). if not getattr(BaseTask, '_stackprotected', False): _patched['BaseTask.__call__'] = orig = BaseTask.__call__ def __protected_call__(self, *args, **kwargs): stack = self.request_stack req = stack.top if req and not req._protected and \ len(stack) == 1 and not req.called_directly: req._protected = 1 return self.run(*args, **kwargs) return orig(self, *args, **kwargs) BaseTask.__call__ = __protected_call__ BaseTask._stackprotected = True
[ "noreply@github.com" ]
TinlokLee.noreply@github.com
7e1ae2a09303d86c91821f6b1b682f862e1d061d
d42955505163519b01f8abdca398434921269f24
/accounts/migrations/0003_auto_20170905_0746.py
42905c0e43e4a7a0242d89c02a2ff9a87a7ee85e
[]
no_license
k-murata08/tweet_analysis_app
fde1b780b8177988875542288d8ee303cb47e637
3fd227779e6497e51541220d10e6fb534ad0600b
refs/heads/master
2022-12-12T01:06:15.336412
2017-09-15T07:56:35
2017-09-15T07:56:35
102,452,623
1
0
null
2022-12-08T00:38:18
2017-09-05T08:04:25
CSS
UTF-8
Python
false
false
389
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-05 07:46 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0002_oauthkey'), ] operations = [ migrations.RenameModel( old_name='OauthKey', new_name='OathKey', ), ]
[ "murata.kazuma@donuts.ne.jp" ]
murata.kazuma@donuts.ne.jp
20f6e72dddae300aa3184c98ab23b84680089df2
8fb5d9c56e10099d4f0a2c6032d241f30c3adc36
/0x01-python-if_else_loops_functions/7-islower.py
0172706a6aa9f95b25ad98201c9ceeee557debe0
[]
no_license
kbetoacero/holbertonschool-higher_level_programming
c58a8dfd5cc8995333753f13feefb30ec6c938a7
7fc926a16b2a3cf8f9d46868eda73f92f4cafe51
refs/heads/master
2023-06-14T18:00:19.579279
2021-07-14T00:22:43
2021-07-14T00:22:43
291,780,520
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
#!/usr/bin/python3 def islower(c): if ord(c) >= 97 and ord(c) <= 122: return True else: return False
[ "carlos.acero@holbertonschool.com" ]
carlos.acero@holbertonschool.com
be5c87c45174526f8ada272a4e3a067a2cc9c0ff
fc2619a1ff0d829d6c5ceaf29658d2252d9a72f8
/src/basics/args-order.py
a3aaf3022015fc0e0863422a1dcd24b31223faf7
[]
no_license
IamManchanda/functional-python
c0cc2160e609aa2a2bd23dc8f213cc1c9eb88aa2
af6c9f31e18adc22baddff27530fbb0099e2bf1f
refs/heads/master
2020-05-24T20:58:41.129650
2019-07-08T08:49:43
2019-07-08T08:49:43
187,466,393
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
""" Python Functions """ def display_info(*args, instructor="Harry", **kwargs): return [args, instructor, kwargs] print( display_info(1, 2, 3, last_name="Manchanda", job="Engineer") )
[ "harmanmanchanda182@gmail.com" ]
harmanmanchanda182@gmail.com
db6ea7991721033afb5df26c7653df2e61182af7
0377c6a9b4d692845aa58e98537ff4861473af08
/lambda.py
d920bcd90fcb1cf9c158030033a606ac46e8507c
[]
no_license
ferryvanmaurik/rekognition
6dbd78d939817b438172b0438f8d0ad8cd649035
f2e6719c19355f02e01d527d7aa69123c63ed148
refs/heads/master
2021-08-31T14:20:46.443586
2017-12-21T16:53:14
2017-12-21T16:53:14
114,996,638
0
0
null
null
null
null
UTF-8
Python
false
false
2,064
py
from __future__ import print_function import boto3 from decimal import Decimal import json import urllib print('Loading function') rekognition = boto3.client('rekognition') # --------------- Helper Functions to call Rekognition APIs ------------------ def detect_faces(bucket, key): response = rekognition.detect_faces(Image={"S3Object": {"Bucket": bucket, "Name": key}}) return response def detect_labels(bucket, key): response = rekognition.detect_labels(Image={"S3Object": {"Bucket": bucket, "Name": key}}) # Sample code to write response to DynamoDB table 'MyTable' with 'PK' as Primary Key. # Note: role used for executing this Lambda function should have write access to the table. #table = boto3.resource('dynamodb').Table('MyTable') #labels = [{'Confidence': Decimal(str(label_prediction['Confidence'])), 'Name': label_prediction['Name']} for label_prediction in response['Labels']] #table.put_item(Item={'PK': key, 'Labels': labels}) return response def index_faces(bucket, key): # Note: Collection has to be created upfront. Use CreateCollection API to create a collecion. #rekognition.create_collection(CollectionId='BLUEPRINT_COLLECTION') response = rekognition.index_faces(Image={"S3Object": {"Bucket": bucket, "Name": key}}, CollectionId="BLUEPRINT_COLLECTION") return response # --------------- Main handler ------------------ def lambda_handler(event, context): '''Demonstrates S3 trigger that uses Rekognition APIs to detect faces, labels and index faces in S3 Object. ''' #print("Received event: " + json.dumps(event, indent=2)) # Get the object from the event bucket = event['Records'][0]['s3']['bucket']['name'] key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8')) try: # Calls rekognition DetectFaces API to detect faces in S3 object response = detect_faces(bucket, key) # Calls rekognition DetectLabels API to detect labels in S3 object #response = detect_labels(bucket, key)
[ "ferry.van.maurik@nike.com" ]
ferry.van.maurik@nike.com
8e9f34d3aeef20f60dcd9993fa14cb2d81573f58
800f0b03a69f965cc910ebcbb7ddfacf7be70182
/dbase.py
db6e1a8b66712fee9184d1f43e03796a4e04e0f2
[]
no_license
hellorobo/EBookOfTheDayAPI
db33bca8face40bb381f492d485413bc1703c653
a43c1b1d8428718a2d6d5ec948455923ed9d8bd2
refs/heads/master
2020-03-08T06:22:02.657980
2018-06-20T21:39:25
2018-06-20T21:39:25
127,970,217
0
0
null
null
null
null
UTF-8
Python
false
false
601
py
import pymongo class Database(): def __init__(self, connection, database, collection): self.dbcol = database+"/"+collection self.connection = pymongo.MongoClient(connection) self.db = self.connection[database] self.col = self.db[collection] print("opened new connection to "+self.dbcol) def find_record(self, json): return self.col.find_one(json) def insert_record(self, json): return self.col.insert_one(json) def __del__(self): print("closing "+self.dbcol+ " connection") return self.connection.close()
[ "trebor.oknewokaj@gmail.com" ]
trebor.oknewokaj@gmail.com
275dd07d0b26c066736a0b3493b3cbdb2251b1be
5a5de156afd9e42cafdf17905a023a37b43b9191
/hw session 4/ex1.py
9e98e5f38c55552ee4e924470231cc50c6de7ff5
[]
no_license
damvip12/duonganhminh-fundamentals-c4e23
f240d81e3bbf86f888fcf367d2431c87b398e203
157b926b993a8a34c39b7aa81e56328befe59f40
refs/heads/master
2020-04-02T18:26:47.741271
2018-11-26T10:24:05
2018-11-26T10:24:05
154,700,421
0
0
null
null
null
null
UTF-8
Python
false
false
865
py
flock = [5 , 7 , 300 , 90 , 24 , 50 , 75] print("Hello , my name is Hiep and these are my sheep sizes :" ) print(*flock , sep =", ") print("Now my biggest sheep has size :", max(flock) , "lets shear it") s = 8 i = flock.index(max(flock)) flock[i] = s print("After shearing , here is my flock :" ) print(*flock , sep =", ") print("MONTH 1:") increased_flock = [x+50 for x in flock] print("One month has passed , here is my flock :") print(*increased_flock, sep =", ") print("Now my biggest sheep has size :", max(increased_flock) , "lets shear it") i = increased_flock.index(max(increased_flock)) increased_flock[i] = s print("After shearing , here is my flock :" ) print(*increased_flock , sep =", ") summary = sum(increased_flock) print("My flock has size in total: ", summary) print("I would get ",summary ," *2$ = ", summary*2 ,"$")
[ "noreply@github.com" ]
damvip12.noreply@github.com
fb8adb5e534ce40c5a72575a471c00cca53470c5
6ad044e7538c8b87f3992949ad0b0294863fca26
/boardapp/views.py
e35f6db56cf5d163396ea2dbeae05791900386e7
[]
no_license
kawaguchi1102/boardproject
195db4b14b1baefd80c4df17111b83f0d5ae1871
879066806e7fc62576ba2fedae206606ecd187c9
refs/heads/master
2020-06-24T04:29:29.670770
2019-07-28T15:28:54
2019-07-28T15:28:54
198,849,580
0
0
null
2019-07-28T15:28:55
2019-07-25T14:44:16
Python
UTF-8
Python
false
false
1,208
py
from django.shortcuts import render, redirect from django.contrib.auth import authenticate, login from django.contrib.auth.models import User def signupfunc(request): if request.method == 'POST': username_post = request.POST['username'] password_post = request.POST['password'] try: User.objects.get(username=username_post) return render(request, 'signup.html', {'error': 'このユーザーは登録されています'}) except: user = User.objects.create_user(username_post, 'mail@example.com', password_post) return render(request, 'signup.html', {'some': 100}) return render(request, 'signup.html', {'some': 100}) def loginfunc(request): if request.method == 'POST': username_post = request.POST['username'] password_post = request.POST['password'] user = authenticate(request, username=username_post, password=password_post) if user is not None: login(request, user) return redirect('signup') else: return redirect('login') return render(request, 'login.html') def listfunc(request): return render(request, 'list.html')
[ "info@kawaguchi-design.com" ]
info@kawaguchi-design.com
bf1a5d4fbc64933eaee40dc208a104c8b60186a8
af6beab37b0b5f2de788e56c1738ecbb11d0f815
/build/costmap_2d/cmake/costmap_2d-genmsg-context.py
e3c5ad180e2880c5b08917ca486b22b0ba12f41b
[]
no_license
ThanhTVBK61/ROS_Navigation
37bfaf8fd5965c8f0c8612162ffd489d92cace81
66e9764058ac405caf370fa53558958f9d5ae445
refs/heads/master
2020-12-15T02:46:03.690907
2020-01-21T19:38:46
2020-01-21T19:38:46
234,965,124
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
# generated from genmsg/cmake/pkg-genmsg.context.in messages_str = "/home/tranthanh/cafebot_ws/src/costmap_2d/msg/VoxelGrid.msg" services_str = "" pkg_name = "costmap_2d" dependencies_str = "std_msgs;geometry_msgs;map_msgs" langs = "gencpp;geneus;genlisp;gennodejs;genpy" dep_include_paths_str = "costmap_2d;/home/tranthanh/cafebot_ws/src/costmap_2d/msg;std_msgs;/opt/ros/kinetic/share/std_msgs/cmake/../msg;geometry_msgs;/opt/ros/kinetic/share/geometry_msgs/cmake/../msg;map_msgs;/opt/ros/kinetic/share/map_msgs/cmake/../msg;sensor_msgs;/opt/ros/kinetic/share/sensor_msgs/cmake/../msg;nav_msgs;/opt/ros/kinetic/share/nav_msgs/cmake/../msg;actionlib_msgs;/opt/ros/kinetic/share/actionlib_msgs/cmake/../msg" PYTHON_EXECUTABLE = "/usr/bin/python" package_has_static_sources = '' == 'TRUE' genmsg_check_deps_script = "/opt/ros/kinetic/share/genmsg/cmake/../../../lib/genmsg/genmsg_check_deps.py"
[ "thanh.tvbk61@gmail.com" ]
thanh.tvbk61@gmail.com
af367f7a5eab4747919a59bbd0e0b2d6adf354b6
124a2f096adb7f9b0a67311ee55a1191c1b1c7eb
/trader/migrations/0037_auto_20210817_1535.py
a2daa564019c3bd76c81044505fa65a2ada1b383
[]
no_license
webclinic017/bot-3
9913cc785fd5245638a4c811fec8ae0c2dc90a07
7c856d237d91e9fa8db8960be2e4d57faa5227bd
refs/heads/main
2023-08-11T05:34:25.174756
2021-09-26T08:13:41
2021-09-26T08:13:41
426,765,932
1
0
null
2021-11-10T20:24:27
2021-11-10T20:24:27
null
UTF-8
Python
false
false
577
py
# Generated by Django 2.2.24 on 2021-08-17 12:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('trader', '0036_auto_20210817_1509'), ] operations = [ migrations.RemoveField( model_name='variants', name='amount_perc', ), migrations.AddField( model_name='variants', name='deal_perc', field=models.FloatField(blank=True, null=True, verbose_name='Процент от баланса на сделку'), ), ]
[ "" ]
574923447ef569066205755da06eda7b200eb558
6b6e20004b46165595f35b5789e7426d5289ea48
/config_app/config_util/config/TransientDirectoryProvider.py
5ac6855924fc6b2dd302f1be9d0fe223bee02639
[ "Apache-2.0" ]
permissive
anwarchk/quay
2a83d0ab65aff6a1120fbf3a45dd72f42211633b
23c5120790c619174e7d36784ca5aab7f4eece5c
refs/heads/master
2020-09-12T18:53:21.093606
2019-11-15T19:29:02
2019-11-15T19:29:02
222,517,145
0
0
Apache-2.0
2019-11-18T18:32:35
2019-11-18T18:32:35
null
UTF-8
Python
false
false
2,233
py
import os from shutil import copytree from backports.tempfile import TemporaryDirectory from config_app.config_util.config.fileprovider import FileConfigProvider OLD_CONFIG_SUBDIR = 'old/' class TransientDirectoryProvider(FileConfigProvider): """ Implementation of the config provider that reads and writes the data from/to the file system, only using temporary directories, deleting old dirs and creating new ones as requested. """ def __init__(self, config_volume, yaml_filename, py_filename): # Create a temp directory that will be cleaned up when we change the config path # This should ensure we have no "pollution" of different configs: # no uploaded config should ever affect subsequent config modifications/creations temp_dir = TemporaryDirectory() self.temp_dir = temp_dir self.old_config_dir = None super(TransientDirectoryProvider, self).__init__(temp_dir.name, yaml_filename, py_filename) @property def provider_id(self): return 'transient' def new_config_dir(self): """ Update the path with a new temporary directory, deleting the old one in the process """ self.temp_dir.cleanup() temp_dir = TemporaryDirectory() self.config_volume = temp_dir.name self.temp_dir = temp_dir self.yaml_path = os.path.join(temp_dir.name, self.yaml_filename) def create_copy_of_config_dir(self): """ Create a directory to store loaded/populated configuration (for rollback if necessary) """ if self.old_config_dir is not None: self.old_config_dir.cleanup() temp_dir = TemporaryDirectory() self.old_config_dir = temp_dir # Python 2.7's shutil.copy() doesn't allow for copying to existing directories, # so when copying/reading to the old saved config, we have to talk to a subdirectory, # and use the shutil.copytree() function copytree(self.config_volume, os.path.join(temp_dir.name, OLD_CONFIG_SUBDIR)) def get_config_dir_path(self): return self.config_volume def get_old_config_dir(self): if self.old_config_dir is None: raise Exception('Cannot return a configuration that was no old configuration') return os.path.join(self.old_config_dir.name, OLD_CONFIG_SUBDIR)
[ "jimmy.zelinskie+git@gmail.com" ]
jimmy.zelinskie+git@gmail.com
2a59d24c2f7b50a7d34d28be79e4088ca29e9dce
3a2029810870989258ecd3394274f7ae978f2113
/resnet-in-tensorflow/old/cifar10_train.py
b1f30379198cdc566d5fb6df3a7a75a6c48aa1ce
[]
no_license
JudyMRSD/Tensor_Flow_VLR
b11eb27ea1409e730a9297ac9302d23f6f4b4695
3f57e1437e2d38351feb316b10248b8f6a333145
refs/heads/master
2021-01-18T17:59:56.723685
2017-04-17T04:58:20
2017-04-17T04:58:20
86,833,350
0
0
null
null
null
null
UTF-8
Python
false
false
19,360
py
# Coder: Wenxin Xu # Github: https://github.com/wenxinxu/resnet_in_tensorflow # ============================================================================== from resnet import * from datetime import datetime import time from cifar10_input import * import pandas as pd class Train(object): ''' This Object is responsible for all the training and validation process ''' def __init__(self): # Set up all the placeholders self.placeholders() def placeholders(self): ''' There are five placeholders in total. image_placeholder and label_placeholder are for train images and labels vali_image_placeholder and vali_label_placeholder are for validation imgaes and labels lr_placeholder is for learning rate. Feed in learning rate each time of training implements learning rate decay easily ''' self.image_placeholder = tf.placeholder(dtype=tf.float32, shape=[FLAGS.train_batch_size, IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH]) self.label_placeholder = tf.placeholder(dtype=tf.int32, shape=[FLAGS.train_batch_size]) self.vali_image_placeholder = tf.placeholder(dtype=tf.float32, shape=[FLAGS.validation_batch_size, IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH]) self.vali_label_placeholder = tf.placeholder(dtype=tf.int32, shape=[FLAGS.validation_batch_size]) self.lr_placeholder = tf.placeholder(dtype=tf.float32, shape=[]) def build_train_validation_graph(self): ''' This function builds the train graph and validation graph at the same time. ''' global_step = tf.Variable(0, trainable=False) validation_step = tf.Variable(0, trainable=False) # Logits of training data and valiation data come from the same graph. The inference of # validation data share all the weights with train data. This is implemented by passing # reuse=True to the variable scopes of train graph logits = inference(self.image_placeholder, FLAGS.num_residual_blocks, reuse=False) vali_logits = inference(self.vali_image_placeholder, FLAGS.num_residual_blocks, reuse=True) # The following codes calculate the train loss, which is consist of the # softmax cross entropy and the relularization loss regu_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) loss = self.loss(logits, self.label_placeholder) self.full_loss = tf.add_n([loss] + regu_losses) predictions = tf.nn.softmax(logits) self.train_top1_error = self.top_k_error(predictions, self.label_placeholder, 1) # Validation loss self.vali_loss = self.loss(vali_logits, self.vali_label_placeholder) vali_predictions = tf.nn.softmax(vali_logits) self.vali_top1_error = self.top_k_error(vali_predictions, self.vali_label_placeholder, 1) self.train_op, self.train_ema_op = self.train_operation(global_step, self.full_loss, self.train_top1_error) self.val_op = self.validation_op(validation_step, self.vali_top1_error, self.vali_loss) def train(self): ''' This is the main function for training ''' # For the first step, we are loading all training images and validation images into the # memory all_data, all_labels = prepare_train_data(padding_size=FLAGS.padding_size) vali_data, vali_labels = read_validation_data() # Build the graph for train and validation self.build_train_validation_graph() # Initialize a saver to save checkpoints. Merge all summaries, so we can run all # summarizing operations by running summary_op. Initialize a new session saver = tf.train.Saver(tf.all_variables()) summary_op = tf.merge_all_summaries() init = tf.initialize_all_variables() sess = tf.Session() # If you want to load from a checkpoint if FLAGS.is_use_ckpt is True: saver.restore(sess, FLAGS.ckpt_path) print 'Restored from checkpoint...' else: sess.run(init) # This summary writer object helps write summaries on tensorboard summary_writer = tf.train.SummaryWriter(train_dir, sess.graph) # These lists are used to save a csv file at last step_list = [] train_error_list = [] val_error_list = [] print 'Start training...' print '----------------------------' for step in xrange(FLAGS.train_steps): train_batch_data, train_batch_labels = self.generate_augment_train_batch(all_data, all_labels, FLAGS.train_batch_size) validation_batch_data, validation_batch_labels = self.generate_vali_batch(vali_data, vali_labels, FLAGS.validation_batch_size) # Want to validate once before training. You may check the theoretical validation # loss first if step % FLAGS.report_freq == 0: if FLAGS.is_full_validation is True: validation_loss_value, validation_error_value = self.full_validation(loss=self.vali_loss, top1_error=self.vali_top1_error, vali_data=vali_data, vali_labels=vali_labels, session=sess, batch_data=train_batch_data, batch_label=train_batch_labels) vali_summ = tf.Summary() vali_summ.value.add(tag='full_validation_error', simple_value=validation_error_value.astype(np.float)) summary_writer.add_summary(vali_summ, step) summary_writer.flush() else: _, validation_error_value, validation_loss_value = sess.run([self.val_op, self.vali_top1_error, self.vali_loss], {self.image_placeholder: train_batch_data, self.label_placeholder: train_batch_labels, self.vali_image_placeholder: validation_batch_data, self.vali_label_placeholder: validation_batch_labels, self.lr_placeholder: FLAGS.init_lr}) val_error_list.append(validation_error_value) start_time = time.time() _, _, train_loss_value, train_error_value = sess.run([self.train_op, self.train_ema_op, self.full_loss, self.train_top1_error], {self.image_placeholder: train_batch_data, self.label_placeholder: train_batch_labels, self.vali_image_placeholder: validation_batch_data, self.vali_label_placeholder: validation_batch_labels, self.lr_placeholder: FLAGS.init_lr}) duration = time.time() - start_time if step % FLAGS.report_freq == 0: summary_str = sess.run(summary_op, {self.image_placeholder: train_batch_data, self.label_placeholder: train_batch_labels, self.vali_image_placeholder: validation_batch_data, self.vali_label_placeholder: validation_batch_labels, self.lr_placeholder: FLAGS.init_lr}) summary_writer.add_summary(summary_str, step) num_examples_per_step = FLAGS.train_batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.4f (%.1f examples/sec; %.3f ' 'sec/batch)') print format_str % (datetime.now(), step, train_loss_value, examples_per_sec, sec_per_batch) print 'Train top1 error = ', train_error_value print 'Validation top1 error = %.4f' % validation_error_value print 'Validation loss = ', validation_loss_value print '----------------------------' step_list.append(step) train_error_list.append(train_error_value) if step == FLAGS.decay_step0 or step == FLAGS.decay_step1: FLAGS.init_lr = 0.1 * FLAGS.init_lr print 'Learning rate decayed to ', FLAGS.init_lr # Save checkpoints every 10000 steps if step % 10000 == 0 or (step + 1) == FLAGS.train_steps: checkpoint_path = os.path.join(train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) df = pd.DataFrame(data={'step':step_list, 'train_error':train_error_list, 'validation_error': val_error_list}) df.to_csv(train_dir + FLAGS.version + '_error.csv') def test(self, test_image_array): ''' This function is used to evaluate the test data. Please finish pre-precessing in advance :param test_image_array: 4D numpy array with shape [num_test_images, img_height, img_width, img_depth] :return: the softmax probability with shape [num_test_images, num_labels] ''' num_test_images = len(test_image_array) num_batches = num_test_images // FLAGS.test_batch_size remain_images = num_test_images % FLAGS.test_batch_size print '%i test batches in total...' %num_batches # Create the test image and labels placeholders self.test_image_placeholder = tf.placeholder(dtype=tf.float32, shape=[FLAGS.test_batch_size, IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH]) # Build the test graph logits = inference(self.test_image_placeholder, FLAGS.num_residual_blocks, reuse=False) predictions = tf.nn.softmax(logits) # Initialize a new session and restore a checkpoint saver = tf.train.Saver(tf.all_variables()) sess = tf.Session() saver.restore(sess, FLAGS.test_ckpt_path) print 'Model restored from ', FLAGS.test_ckpt_path prediction_array = np.array([]).reshape(-1, NUM_CLASS) # Test by batches for step in range(num_batches): if step % 10 == 0: print '%i batches finished!' %step offset = step * FLAGS.test_batch_size test_image_batch = test_image_array[offset:offset+FLAGS.test_batch_size, ...] batch_prediction_array = sess.run(predictions, feed_dict={self.test_image_placeholder: test_image_batch}) prediction_array = np.concatenate((prediction_array, batch_prediction_array)) # If test_batch_size is not a divisor of num_test_images if remain_images != 0: self.test_image_placeholder = tf.placeholder(dtype=tf.float32, shape=[remain_images, IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH]) # Build the test graph logits = inference(self.test_image_placeholder, FLAGS.num_residual_blocks, reuse=True) predictions = tf.nn.softmax(logits) test_image_batch = test_image_array[-remain_images:, ...] batch_prediction_array = sess.run(predictions, feed_dict={ self.test_image_placeholder: test_image_batch}) prediction_array = np.concatenate((prediction_array, batch_prediction_array)) return prediction_array ## Helper functions def loss(self, logits, labels): ''' Calculate the cross entropy loss given logits and true labels :param logits: 2D tensor with shape [batch_size, num_labels] :param labels: 1D tensor with shape [batch_size] :return: loss tensor with shape [1] ''' labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') return cross_entropy_mean def top_k_error(self, predictions, labels, k): ''' Calculate the top-k error :param predictions: 2D tensor with shape [batch_size, num_labels] :param labels: 1D tensor with shape [batch_size, 1] :param k: int :return: tensor with shape [1] ''' batch_size = predictions.get_shape().as_list()[0] in_top1 = tf.to_float(tf.nn.in_top_k(predictions, labels, k=1)) num_correct = tf.reduce_sum(in_top1) return (batch_size - num_correct) / float(batch_size) def generate_vali_batch(self, vali_data, vali_label, vali_batch_size): ''' If you want to use a random batch of validation data to validate instead of using the whole validation data, this function helps you generate that batch :param vali_data: 4D numpy array :param vali_label: 1D numpy array :param vali_batch_size: int :return: 4D numpy array and 1D numpy array ''' offset = np.random.choice(10000 - vali_batch_size, 1)[0] vali_data_batch = vali_data[offset:offset+vali_batch_size, ...] vali_label_batch = vali_label[offset:offset+vali_batch_size] return vali_data_batch, vali_label_batch def generate_augment_train_batch(self, train_data, train_labels, train_batch_size): ''' This function helps generate a batch of train data, and random crop, horizontally flip and whiten them at the same time :param train_data: 4D numpy array :param train_labels: 1D numpy array :param train_batch_size: int :return: augmented train batch data and labels. 4D numpy array and 1D numpy array ''' offset = np.random.choice(EPOCH_SIZE - train_batch_size, 1)[0] batch_data = train_data[offset:offset+train_batch_size, ...] batch_data = random_crop_and_flip(batch_data, padding_size=FLAGS.padding_size) batch_data = whitening_image(batch_data) batch_label = train_labels[offset:offset+FLAGS.train_batch_size] return batch_data, batch_label def train_operation(self, global_step, total_loss, top1_error): ''' Defines train operations :param global_step: tensor variable with shape [1] :param total_loss: tensor with shape [1] :param top1_error: tensor with shape [1] :return: two operations. Running train_op will do optimization once. Running train_ema_op will generate the moving average of train error and train loss for tensorboard ''' # Add train_loss, current learning rate and train error into the tensorboard summary ops tf.scalar_summary('learning_rate', self.lr_placeholder) tf.scalar_summary('train_loss', total_loss) tf.scalar_summary('train_top1_error', top1_error) # The ema object help calculate the moving average of train loss and train error ema = tf.train.ExponentialMovingAverage(FLAGS.train_ema_decay, global_step) train_ema_op = ema.apply([total_loss, top1_error]) tf.scalar_summary('train_top1_error_avg', ema.average(top1_error)) tf.scalar_summary('train_loss_avg', ema.average(total_loss)) opt = tf.train.MomentumOptimizer(learning_rate=self.lr_placeholder, momentum=0.9) train_op = opt.minimize(total_loss, global_step=global_step) return train_op, train_ema_op def validation_op(self, validation_step, top1_error, loss): ''' Defines validation operations :param validation_step: tensor with shape [1] :param top1_error: tensor with shape [1] :param loss: tensor with shape [1] :return: validation operation ''' # This ema object help calculate the moving average of validation loss and error # ema with decay = 0.0 won't average things at all. This returns the original error ema = tf.train.ExponentialMovingAverage(0.0, validation_step) ema2 = tf.train.ExponentialMovingAverage(0.95, validation_step) val_op = tf.group(validation_step.assign_add(1), ema.apply([top1_error, loss]), ema2.apply([top1_error, loss])) top1_error_val = ema.average(top1_error) top1_error_avg = ema2.average(top1_error) loss_val = ema.average(loss) loss_val_avg = ema2.average(loss) # Summarize these values on tensorboard tf.scalar_summary('val_top1_error', top1_error_val) tf.scalar_summary('val_top1_error_avg', top1_error_avg) tf.scalar_summary('val_loss', loss_val) tf.scalar_summary('val_loss_avg', loss_val_avg) return val_op def full_validation(self, loss, top1_error, session, vali_data, vali_labels, batch_data, batch_label): ''' Runs validation on all the 10000 valdiation images :param loss: tensor with shape [1] :param top1_error: tensor with shape [1] :param session: the current tensorflow session :param vali_data: 4D numpy array :param vali_labels: 1D numpy array :param batch_data: 4D numpy array. training batch to feed dict and fetch the weights :param batch_label: 1D numpy array. training labels to feed the dict :return: float, float ''' num_batches = 10000 // FLAGS.validation_batch_size order = np.random.choice(10000, num_batches * FLAGS.validation_batch_size) vali_data_subset = vali_data[order, ...] vali_labels_subset = vali_labels[order] loss_list = [] error_list = [] for step in range(num_batches): offset = step * FLAGS.validation_batch_size feed_dict = {self.image_placeholder: batch_data, self.label_placeholder: batch_label, self.vali_image_placeholder: vali_data_subset[offset:offset+FLAGS.validation_batch_size, ...], self.vali_label_placeholder: vali_labels_subset[offset:offset+FLAGS.validation_batch_size], self.lr_placeholder: FLAGS.init_lr} loss_value, top1_error_value = session.run([loss, top1_error], feed_dict=feed_dict) loss_list.append(loss_value) error_list.append(top1_error_value) return np.mean(loss_list), np.mean(error_list) maybe_download_and_extract() # Initialize the Train object train = Train() # Start the training session train.train()
[ "jinzhu@Jins-MBP.wv.cc.cmu.edu" ]
jinzhu@Jins-MBP.wv.cc.cmu.edu
882133f97a36e02d9b2be5233fcf40003635be7b
ffef2fe37864ca154e0e31b9092df89d50d77f3b
/data/LR_dataset.py
8db08de82c2d17ed7ad49e9d61d02e15ea3e2a26
[ "MIT" ]
permissive
penguin1214/General_Framework_for_SR_Tasks
66205b6c041c294c4c74191bb1c62ddc84d071fc
4f18bc37d6cb7f1355770a1c321f20a58402e993
refs/heads/master
2020-03-21T03:08:45.343603
2018-08-15T20:41:34
2018-08-15T20:41:34
138,038,245
17
3
null
2018-07-04T09:22:11
2018-06-20T13:42:00
Python
UTF-8
Python
false
false
1,312
py
import os.path import cv2 import numpy as np import torch import torch.utils.data as data import data.common as util class LRDataset(data.Dataset): ''' Read LR images only in test phase. ''' def name(self): return 'LRDataset' def __init__(self, opt): super(LRDataset, self).__init__() self.opt = opt self.paths_LR = None self.LR_env = None # environment for lmdb # read image list from lmdb or image files self.LR_env, self.paths_LR = util.get_image_paths(opt['data_type'], opt['dataroot_LR']) assert self.paths_LR, 'Error: LR paths are empty.' def __getitem__(self, index): LR_path = None # get LR image LR_path = self.paths_LR[index] img_LR = util.read_img(self.LR_env, LR_path) H, W, C = img_LR.shape # channel conversion if self.opt['color']: img_LR = util.channel_convert(C, self.opt['color'], [img_LR])[0] # HWC to CHW, BGR to RGB, numpy to tensor if img_LR.shape[2] == 3: img_LR = img_LR[:, :, [2, 1, 0]] img_LR = torch.from_numpy(np.ascontiguousarray(np.transpose(img_LR, (2, 0, 1)))).float() return {'LR': img_LR, 'LR_path': LR_path} def __len__(self): return len(self.paths_LR)
[ "jinglei_yang@outlook.com" ]
jinglei_yang@outlook.com
c97a02f2a96a5d905eb8a17e5ef60aa967f81f26
ddf2e85b8e8fda8cbaf92fc79a53abdb962c8bde
/tests/violated/basic_routing_stripped/orig.py
d4a180eed5e2964cdb78944a50b2c83762b3ceb5
[ "Apache-2.0" ]
permissive
p4gauntlet/toz3
359bd20bdc8fe2b7ccf3564a90988823d94df078
0fddd9e21ac7b80e4a0bf8a4e6b1bdcc01308724
refs/heads/master
2023-05-11T17:23:10.972917
2023-05-09T16:02:56
2023-05-09T16:02:56
329,900,719
4
0
Apache-2.0
2023-02-22T23:28:49
2021-01-15T12:03:53
Python
UTF-8
Python
false
false
24,983
py
from p4z3 import * def p4_program(prog_state): prog_state.declare_global( Enum( "error", ["NoError", "PacketTooShort", "NoMatch", "StackOutOfBounds", "HeaderTooShort", "ParserTimeout", "ParserInvalidArgument", ]) ) prog_state.declare_global( P4Extern("packet_in", type_params=[], methods=[P4Declaration("extract", P4Method("extract", type_params=(None, [ "T",]), params=[ P4Parameter("out", "hdr", "T", None),])), P4Declaration("extract", P4Method("extract", type_params=(None, [ "T",]), params=[ P4Parameter("out", "variableSizeHeader", "T", None), P4Parameter("in", "variableFieldSizeInBits", z3.BitVecSort(32), None),])), P4Declaration("lookahead", P4Method("lookahead", type_params=("T", [ "T",]), params=[])), P4Declaration("advance", P4Method("advance", type_params=(None, []), params=[ P4Parameter("in", "sizeInBits", z3.BitVecSort(32), None),])), P4Declaration("length", P4Method("length", type_params=(z3.BitVecSort(32), []), params=[])), ]) ) prog_state.declare_global( P4Extern("packet_out", type_params=[], methods=[P4Declaration("emit", P4Method("emit", type_params=(None, [ "T",]), params=[ P4Parameter("in", "hdr", "T", None),])), ]) ) prog_state.declare_global( P4Declaration("verify", P4Method("verify", type_params=(None, []), params=[ P4Parameter("in", "check", z3.BoolSort(), None), P4Parameter("in", "toSignal", "error", None),])) ) prog_state.declare_global( P4Declaration("NoAction", P4Action("NoAction", params=[], body=BlockStatement([] ) )) ) prog_state.declare_global( P4Declaration("match_kind", ["exact", "ternary", "lpm", ]) ) prog_state.declare_global( P4Declaration("match_kind", ["range", "optional", "selector", ]) ) prog_state.declare_global( ValueDeclaration("__v1model_version", 20180101, z3_type=z3.BitVecSort(32)) ) prog_state.declare_global( StructType("standard_metadata_t", prog_state, fields=[("ingress_port", z3.BitVecSort(9)), ("egress_spec", z3.BitVecSort(9)), ("egress_port", z3.BitVecSort(9)), ("instance_type", z3.BitVecSort(32)), ("packet_length", z3.BitVecSort(32)), ("enq_timestamp", z3.BitVecSort(32)), ("enq_qdepth", z3.BitVecSort(19)), ("deq_timedelta", z3.BitVecSort(32)), ("deq_qdepth", z3.BitVecSort(19)), ("ingress_global_timestamp", z3.BitVecSort(48)), ("egress_global_timestamp", z3.BitVecSort(48)), ("mcast_grp", z3.BitVecSort(16)), ("egress_rid", z3.BitVecSort(16)), ("checksum_error", z3.BitVecSort(1)), ("parser_error", "error"), ("priority", z3.BitVecSort(3)), ], type_params=[]) ) prog_state.declare_global( Enum( "CounterType", ["packets", "bytes", "packets_and_bytes", ]) ) prog_state.declare_global( Enum( "MeterType", ["packets", "bytes", ]) ) prog_state.declare_global( P4Extern("counter", type_params=[], methods=[P4Declaration("counter", P4Method("counter", type_params=(None, []), params=[ P4Parameter("none", "size", z3.BitVecSort(32), None), P4Parameter("none", "type", "CounterType", None),])), P4Declaration("count", P4Method("count", type_params=(None, []), params=[ P4Parameter("in", "index", z3.BitVecSort(32), None),])), ]) ) prog_state.declare_global( P4Extern("direct_counter", type_params=[], methods=[P4Declaration("direct_counter", P4Method("direct_counter", type_params=(None, []), params=[ P4Parameter("none", "type", "CounterType", None),])), P4Declaration("count", P4Method("count", type_params=(None, []), params=[])), ]) ) prog_state.declare_global( P4Extern("meter", type_params=[], methods=[P4Declaration("meter", P4Method("meter", type_params=(None, []), params=[ P4Parameter("none", "size", z3.BitVecSort(32), None), P4Parameter("none", "type", "MeterType", None),])), P4Declaration("execute_meter", P4Method("execute_meter", type_params=(None, [ "T",]), params=[ P4Parameter("in", "index", z3.BitVecSort(32), None), P4Parameter("out", "result", "T", None),])), ]) ) prog_state.declare_global( P4Extern("direct_meter", type_params=[ "T",], methods=[P4Declaration("direct_meter", P4Method("direct_meter", type_params=(None, []), params=[ P4Parameter("none", "type", "MeterType", None),])), P4Declaration("read", P4Method("read", type_params=(None, []), params=[ P4Parameter("out", "result", "T", None),])), ]) ) prog_state.declare_global( P4Extern("register", type_params=[ "T",], methods=[P4Declaration("register", P4Method("register", type_params=(None, []), params=[ P4Parameter("none", "size", z3.BitVecSort(32), None),])), P4Declaration("read", P4Method("read", type_params=(None, []), params=[ P4Parameter("out", "result", "T", None), P4Parameter("in", "index", z3.BitVecSort(32), None),])), P4Declaration("write", P4Method("write", type_params=(None, []), params=[ P4Parameter("in", "index", z3.BitVecSort(32), None), P4Parameter("in", "value", "T", None),])), ]) ) prog_state.declare_global( P4Extern("action_profile", type_params=[], methods=[P4Declaration("action_profile", P4Method("action_profile", type_params=(None, []), params=[ P4Parameter("none", "size", z3.BitVecSort(32), None),])), ]) ) prog_state.declare_global( P4Declaration("random", P4Method("random", type_params=(None, [ "T",]), params=[ P4Parameter("out", "result", "T", None), P4Parameter("in", "lo", "T", None), P4Parameter("in", "hi", "T", None),])) ) prog_state.declare_global( P4Declaration("digest", P4Method("digest", type_params=(None, [ "T",]), params=[ P4Parameter("in", "receiver", z3.BitVecSort(32), None), P4Parameter("in", "data", "T", None),])) ) prog_state.declare_global( Enum( "HashAlgorithm", ["crc32", "crc32_custom", "crc16", "crc16_custom", "random", "identity", "csum16", "xor16", ]) ) prog_state.declare_global( P4Declaration("mark_to_drop", P4Method("mark_to_drop", type_params=(None, []), params=[])) ) prog_state.declare_global( P4Declaration("mark_to_drop", P4Method("mark_to_drop", type_params=(None, []), params=[ P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),])) ) prog_state.declare_global( P4Declaration("hash", P4Method("hash", type_params=(None, [ "O", "T", "D", "M",]), params=[ P4Parameter("out", "result", "O", None), P4Parameter("in", "algo", "HashAlgorithm", None), P4Parameter("in", "base", "T", None), P4Parameter("in", "data", "D", None), P4Parameter("in", "max", "M", None),])) ) prog_state.declare_global( P4Extern("action_selector", type_params=[], methods=[P4Declaration("action_selector", P4Method("action_selector", type_params=(None, []), params=[ P4Parameter("none", "algorithm", "HashAlgorithm", None), P4Parameter("none", "size", z3.BitVecSort(32), None), P4Parameter("none", "outputWidth", z3.BitVecSort(32), None),])), ]) ) prog_state.declare_global( Enum( "CloneType", ["I2E", "E2E", ]) ) prog_state.declare_global( P4Extern("Checksum16", type_params=[], methods=[P4Declaration("Checksum16", P4Method("Checksum16", type_params=(None, []), params=[])), P4Declaration("get", P4Method("get", type_params=(z3.BitVecSort(16), [ "D",]), params=[ P4Parameter("in", "data", "D", None),])), ]) ) prog_state.declare_global( P4Declaration("verify_checksum", P4Method("verify_checksum", type_params=(None, [ "T", "O",]), params=[ P4Parameter("in", "condition", z3.BoolSort(), None), P4Parameter("in", "data", "T", None), P4Parameter("in", "checksum", "O", None), P4Parameter("none", "algo", "HashAlgorithm", None),])) ) prog_state.declare_global( P4Declaration("update_checksum", P4Method("update_checksum", type_params=(None, [ "T", "O",]), params=[ P4Parameter("in", "condition", z3.BoolSort(), None), P4Parameter("in", "data", "T", None), P4Parameter("inout", "checksum", "O", None), P4Parameter("none", "algo", "HashAlgorithm", None),])) ) prog_state.declare_global( P4Declaration("verify_checksum_with_payload", P4Method("verify_checksum_with_payload", type_params=(None, [ "T", "O",]), params=[ P4Parameter("in", "condition", z3.BoolSort(), None), P4Parameter("in", "data", "T", None), P4Parameter("in", "checksum", "O", None), P4Parameter("none", "algo", "HashAlgorithm", None),])) ) prog_state.declare_global( P4Declaration("update_checksum_with_payload", P4Method("update_checksum_with_payload", type_params=(None, [ "T", "O",]), params=[ P4Parameter("in", "condition", z3.BoolSort(), None), P4Parameter("in", "data", "T", None), P4Parameter("inout", "checksum", "O", None), P4Parameter("none", "algo", "HashAlgorithm", None),])) ) prog_state.declare_global( P4Declaration("resubmit", P4Method("resubmit", type_params=(None, [ "T",]), params=[ P4Parameter("in", "data", "T", None),])) ) prog_state.declare_global( P4Declaration("recirculate", P4Method("recirculate", type_params=(None, [ "T",]), params=[ P4Parameter("in", "data", "T", None),])) ) prog_state.declare_global( P4Declaration("clone", P4Method("clone", type_params=(None, []), params=[ P4Parameter("in", "type", "CloneType", None), P4Parameter("in", "session", z3.BitVecSort(32), None),])) ) prog_state.declare_global( P4Declaration("clone3", P4Method("clone3", type_params=(None, [ "T",]), params=[ P4Parameter("in", "type", "CloneType", None), P4Parameter("in", "session", z3.BitVecSort(32), None), P4Parameter("in", "data", "T", None),])) ) prog_state.declare_global( P4Declaration("truncate", P4Method("truncate", type_params=(None, []), params=[ P4Parameter("in", "length", z3.BitVecSort(32), None),])) ) prog_state.declare_global( P4Declaration("assert", P4Method("assert", type_params=(None, []), params=[ P4Parameter("in", "check", z3.BoolSort(), None),])) ) prog_state.declare_global( P4Declaration("assume", P4Method("assume", type_params=(None, []), params=[ P4Parameter("in", "check", z3.BoolSort(), None),])) ) prog_state.declare_global( P4Declaration("log_msg", P4Method("log_msg", type_params=(None, []), params=[ P4Parameter("none", "msg", z3.StringSort(), None),])) ) prog_state.declare_global( P4Declaration("log_msg", P4Method("log_msg", type_params=(None, [ "T",]), params=[ P4Parameter("none", "msg", z3.StringSort(), None), P4Parameter("in", "data", "T", None),])) ) prog_state.declare_global( ControlDeclaration(P4ParserType("Parser", params=[ P4Parameter("none", "b", "packet_in", None), P4Parameter("out", "parsedHdr", "H", None), P4Parameter("inout", "meta", "M", None), P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),], type_params=[ "H", "M",])) ) prog_state.declare_global( ControlDeclaration(P4ControlType("VerifyChecksum", params=[ P4Parameter("inout", "hdr", "H", None), P4Parameter("inout", "meta", "M", None),], type_params=[ "H", "M",])) ) prog_state.declare_global( ControlDeclaration(P4ControlType("Ingress", params=[ P4Parameter("inout", "hdr", "H", None), P4Parameter("inout", "meta", "M", None), P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),], type_params=[ "H", "M",])) ) prog_state.declare_global( ControlDeclaration(P4ControlType("Egress", params=[ P4Parameter("inout", "hdr", "H", None), P4Parameter("inout", "meta", "M", None), P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),], type_params=[ "H", "M",])) ) prog_state.declare_global( ControlDeclaration(P4ControlType("ComputeChecksum", params=[ P4Parameter("inout", "hdr", "H", None), P4Parameter("inout", "meta", "M", None),], type_params=[ "H", "M",])) ) prog_state.declare_global( ControlDeclaration(P4ControlType("Deparser", params=[ P4Parameter("none", "b", "packet_out", None), P4Parameter("in", "hdr", "H", None),], type_params=[ "H",])) ) prog_state.declare_global( ControlDeclaration(P4Package("V1Switch", params=[ P4Parameter("none", "p", TypeSpecializer("Parser", "H", "M", ), None), P4Parameter("none", "vr", TypeSpecializer("VerifyChecksum", "H", "M", ), None), P4Parameter("none", "ig", TypeSpecializer("Ingress", "H", "M", ), None), P4Parameter("none", "eg", TypeSpecializer("Egress", "H", "M", ), None), P4Parameter("none", "ck", TypeSpecializer("ComputeChecksum", "H", "M", ), None), P4Parameter("none", "dep", TypeSpecializer("Deparser", "H", ), None),],type_params=[ "H", "M",])) ) prog_state.declare_global( StructType("ingress_metadata_t", prog_state, fields=[("vrf", z3.BitVecSort(12)), ("bd", z3.BitVecSort(16)), ("nexthop_index", z3.BitVecSort(16)), ], type_params=[]) ) prog_state.declare_global( HeaderType("ethernet_t", prog_state, fields=[("dstAddr", z3.BitVecSort(48)), ("srcAddr", z3.BitVecSort(48)), ("etherType", z3.BitVecSort(16)), ], type_params=[]) ) prog_state.declare_global( HeaderType("ipv4_t", prog_state, fields=[("version", z3.BitVecSort(4)), ("ihl", z3.BitVecSort(4)), ("diffserv", z3.BitVecSort(8)), ("totalLen", z3.BitVecSort(16)), ("identification", z3.BitVecSort(16)), ("flags", z3.BitVecSort(3)), ("fragOffset", z3.BitVecSort(13)), ("ttl", z3.BitVecSort(8)), ("protocol", z3.BitVecSort(8)), ("hdrChecksum", z3.BitVecSort(16)), ("srcAddr", z3.BitVecSort(32)), ("dstAddr", z3.BitVecSort(32)), ], type_params=[]) ) prog_state.declare_global( StructType("metadata", prog_state, fields=[("ingress_metadata", "ingress_metadata_t"), ], type_params=[]) ) prog_state.declare_global( StructType("headers", prog_state, fields=[("ethernet", "ethernet_t"), ("ipv4", "ipv4_t"), ], type_params=[]) ) prog_state.declare_global( ControlDeclaration(P4Parser( name="ParserImpl", type_params=[], params=[ P4Parameter("none", "packet", "packet_in", None), P4Parameter("out", "hdr", "headers", None), P4Parameter("inout", "meta", "metadata", None), P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),], const_params=[], local_decls=[], body=ParserTree([ ParserState(name="parse_ipv4", select="accept", components=[ MethodCallStmt(MethodCallExpr(P4Member("packet", "extract"), ["ipv4_t", ], hdr=P4Member("hdr", "ipv4"), )), ]), ParserState(name="start", select=ParserSelect([P4Member(P4Member("hdr", "ethernet"), "etherType"), ], [(z3.BitVecVal(2048, 16), "parse_ipv4"), (DefaultExpression(), "accept"), ]), components=[ MethodCallStmt(MethodCallExpr(P4Member("packet", "extract"), ["ethernet_t", ], hdr=P4Member("hdr", "ethernet"), )), ]), ]) )) ) prog_state.declare_global( ControlDeclaration(P4Control( name="egress", type_params=[], params=[ P4Parameter("inout", "hdr", "headers", None), P4Parameter("inout", "meta", "metadata", None), P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),], const_params=[], body=BlockStatement([ MethodCallStmt(MethodCallExpr(P4Member("rewrite_mac_0", "apply"), [], )),] ), local_decls=[ P4Declaration("NoAction_0", P4Action("NoAction", params=[], body=BlockStatement([] ) )), P4Declaration("on_miss", P4Action("on_miss", params=[], body=BlockStatement([] ) )), P4Declaration("rewrite_src_dst_mac", P4Action("rewrite_src_dst_mac", params=[ P4Parameter("none", "smac", z3.BitVecSort(48), None), P4Parameter("none", "dmac", z3.BitVecSort(48), None),], body=BlockStatement([ AssignmentStatement(P4Member(P4Member("hdr", "ethernet"), "srcAddr"), "smac"), AssignmentStatement(P4Member(P4Member("hdr", "ethernet"), "dstAddr"), "dmac"),] ) )), P4Declaration("rewrite_mac_0", P4Table("rewrite_mac", actions=[MethodCallExpr("on_miss", [], ), MethodCallExpr("rewrite_src_dst_mac", [], ), ], key=[(P4Member(P4Member("meta", "ingress_metadata"), "nexthop_index"), "exact"), ], size=32768, default_action=MethodCallExpr("NoAction_0", [], ), immutable=False)), ] )) ) prog_state.declare_global( ControlDeclaration(P4Control( name="ingress", type_params=[], params=[ P4Parameter("inout", "hdr", "headers", None), P4Parameter("inout", "meta", "metadata", None), P4Parameter("inout", "standard_metadata", "standard_metadata_t", None),], const_params=[], body=BlockStatement([ SwitchStatement(P4Member(MethodCallExpr(P4Member("ipv4_fib_0", "apply"), [], ), "action_run"),cases=[("on_miss_2", BlockStatement([ MethodCallStmt(MethodCallExpr(P4Member("ipv4_fib_lpm_0", "apply"), [], )),] )), ]),] ), local_decls=[ P4Declaration("NoAction_8", P4Action("NoAction", params=[], body=BlockStatement([] ) )), P4Declaration("NoAction_9", P4Action("NoAction", params=[], body=BlockStatement([] ) )), P4Declaration("on_miss_2", P4Action("on_miss", params=[], body=BlockStatement([] ) )), P4Declaration("on_miss_5", P4Action("on_miss", params=[], body=BlockStatement([] ) )), P4Declaration("fib_hit_nexthop", P4Action("fib_hit_nexthop", params=[ P4Parameter("none", "nexthop_index", z3.BitVecSort(16), None),], body=BlockStatement([ AssignmentStatement(P4Member(P4Member("meta", "ingress_metadata"), "nexthop_index"), "nexthop_index"), AssignmentStatement(P4Member(P4Member("hdr", "ipv4"), "ttl"), P4add(P4Member(P4Member("hdr", "ipv4"), "ttl"), z3.BitVecVal(255, 8))),] ) )), P4Declaration("fib_hit_nexthop_2", P4Action("fib_hit_nexthop", params=[ P4Parameter("none", "nexthop_index", z3.BitVecSort(16), None),], body=BlockStatement([ AssignmentStatement(P4Member(P4Member("meta", "ingress_metadata"), "nexthop_index"), "nexthop_index"), AssignmentStatement(P4Member(P4Member("hdr", "ipv4"), "ttl"), P4add(P4Member(P4Member("hdr", "ipv4"), "ttl"), z3.BitVecVal(255, 8))),] ) )), P4Declaration("ipv4_fib_0", P4Table("ipv4_fib", actions=[MethodCallExpr("on_miss_2", [], ), MethodCallExpr("fib_hit_nexthop", [], ), ], key=[(P4Member(P4Member("meta", "ingress_metadata"), "vrf"), "exact"), (P4Member(P4Member("hdr", "ipv4"), "dstAddr"), "exact"), ], size=131072, default_action=MethodCallExpr("NoAction_8", [], ), immutable=False)), P4Declaration("ipv4_fib_lpm_0", P4Table("ipv4_fib_lpm", actions=[MethodCallExpr("on_miss_5", [], ), MethodCallExpr("fib_hit_nexthop_2", [], ), ], key=[(P4Member(P4Member("meta", "ingress_metadata"), "vrf"), "exact"), (P4Member(P4Member("hdr", "ipv4"), "dstAddr"), "lpm"), ], size=16384, default_action=MethodCallExpr("NoAction_9", [], ), immutable=False)), ] )) ) prog_state.declare_global( ControlDeclaration(P4Control( name="DeparserImpl", type_params=[], params=[ P4Parameter("none", "packet", "packet_out", None), P4Parameter("in", "hdr", "headers", None),], const_params=[], body=BlockStatement([ MethodCallStmt(MethodCallExpr(P4Member("packet", "emit"), ["ethernet_t", ], hdr=P4Member("hdr", "ethernet"), )), MethodCallStmt(MethodCallExpr(P4Member("packet", "emit"), ["ipv4_t", ], hdr=P4Member("hdr", "ipv4"), )),] ), local_decls=[] )) ) prog_state.declare_global( ControlDeclaration(P4Control( name="verifyChecksum", type_params=[], params=[ P4Parameter("inout", "hdr", "headers", None), P4Parameter("inout", "meta", "metadata", None),], const_params=[], body=BlockStatement([ MethodCallStmt(MethodCallExpr("verify_checksum", [ListType("tuple", prog_state, [z3.BitVecSort(4), z3.BitVecSort(4), z3.BitVecSort(8), z3.BitVecSort(16), z3.BitVecSort(16), z3.BitVecSort(3), z3.BitVecSort(13), z3.BitVecSort(8), z3.BitVecSort(8), z3.BitVecSort(32), z3.BitVecSort(32), ]), z3.BitVecSort(16), ], data=[P4Member(P4Member("hdr", "ipv4"), "version"), P4Member(P4Member("hdr", "ipv4"), "ihl"), P4Member(P4Member("hdr", "ipv4"), "diffserv"), P4Member(P4Member("hdr", "ipv4"), "totalLen"), P4Member(P4Member("hdr", "ipv4"), "identification"), P4Member(P4Member("hdr", "ipv4"), "flags"), P4Member(P4Member("hdr", "ipv4"), "fragOffset"), P4Member(P4Member("hdr", "ipv4"), "ttl"), P4Member(P4Member("hdr", "ipv4"), "protocol"), P4Member(P4Member("hdr", "ipv4"), "srcAddr"), P4Member(P4Member("hdr", "ipv4"), "dstAddr"), ], checksum=P4Member(P4Member("hdr", "ipv4"), "hdrChecksum"), condition=z3.BoolVal(True), algo=P4Member("HashAlgorithm", "csum16"), )),] ), local_decls=[] )) ) prog_state.declare_global( ControlDeclaration(P4Control( name="computeChecksum", type_params=[], params=[ P4Parameter("inout", "hdr", "headers", None), P4Parameter("inout", "meta", "metadata", None),], const_params=[], body=BlockStatement([ MethodCallStmt(MethodCallExpr("update_checksum", [ListType("tuple", prog_state, [z3.BitVecSort(4), z3.BitVecSort(4), z3.BitVecSort(8), z3.BitVecSort(16), z3.BitVecSort(16), z3.BitVecSort(3), z3.BitVecSort(13), z3.BitVecSort(8), z3.BitVecSort(8), z3.BitVecSort(32), z3.BitVecSort(32), ]), z3.BitVecSort(16), ], condition=z3.BoolVal(True), data=[P4Member(P4Member("hdr", "ipv4"), "version"), P4Member(P4Member("hdr", "ipv4"), "ihl"), P4Member(P4Member("hdr", "ipv4"), "diffserv"), P4Member(P4Member("hdr", "ipv4"), "totalLen"), P4Member(P4Member("hdr", "ipv4"), "identification"), P4Member(P4Member("hdr", "ipv4"), "flags"), P4Member(P4Member("hdr", "ipv4"), "fragOffset"), P4Member(P4Member("hdr", "ipv4"), "ttl"), P4Member(P4Member("hdr", "ipv4"), "protocol"), P4Member(P4Member("hdr", "ipv4"), "srcAddr"), P4Member(P4Member("hdr", "ipv4"), "dstAddr"), ], algo=P4Member("HashAlgorithm", "csum16"), checksum=P4Member(P4Member("hdr", "ipv4"), "hdrChecksum"), )),] ), local_decls=[] )) ) prog_state.declare_global( InstanceDeclaration("main", TypeSpecializer("V1Switch", "headers", "metadata", ), p=ConstCallExpr("ParserImpl", ), ig=ConstCallExpr("ingress", ), vr=ConstCallExpr("verifyChecksum", ), eg=ConstCallExpr("egress", ), ck=ConstCallExpr("computeChecksum", ), dep=ConstCallExpr("DeparserImpl", ), ) ) var = prog_state.get_main_function() return var if isinstance(var, P4Package) else None
[ "noreply@github.com" ]
p4gauntlet.noreply@github.com
57a53c43996ff1173b87517ec8a8c6faeff2f551
da8f4c19d2b7c996623da126adef1153293e1881
/code/stock_scrapper/gunicorn-config.py
8b1beda80cec557f46aa91be7a96ad63fb689abc
[ "MIT" ]
permissive
erickfis/stock_scrapper
d7637dd195ba7cab8133121f444c7b76766b93b4
7480d7277c3f5530b51df42cb18b1c281521a9e1
refs/heads/master
2023-06-26T23:59:39.116985
2021-07-30T14:09:04
2021-07-30T14:09:04
388,815,754
2
1
null
2021-07-30T02:41:38
2021-07-23T13:45:56
Python
UTF-8
Python
false
false
150
py
"""Configuration for gunicorn.""" import os timeout = 20 bind = f":{os.environ.get('PORT', '8000')}" worker_class = "uvicorn.workers.UvicornWorker"
[ "erickfis@gmail.com" ]
erickfis@gmail.com
2f9d4b19f169370ca5e35a8505672eb1b7b6d700
e81d274d6a1bcabbe7771612edd43b42c0d48197
/Django/day60(自定义管理器)/demo/02_webapp/booktest/models.py
a85c8a71d12b0947243429f766482df7fc35b17c
[ "MIT" ]
permissive
ChWeiking/PythonTutorial
1259dc04c843382f2323d69f6678b9431d0b56fd
1aa4b81cf26fba2fa2570dd8e1228fef4fd6ee61
refs/heads/master
2020-05-15T00:50:10.583105
2016-07-30T16:03:45
2016-07-30T16:03:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,767
py
from django.db import models from django.db.models.manager import Manager from datetime import * """ 自定义管理器 """ class BookInfo_Manager(Manager): def get_queryset(self): return super().get_queryset().filter(isdelete=0) def create(self,btitle='xx',bpubdate=date.today(),bread=0,bcomment=0,isdelete=0): b = BookInfo() b.btitle = btitle b.bpubdate = bpubdate b.bread = bread b.bcomment = bcomment b.isdelete = isdelete return b class BookInfo(models.Model): btitle = models.CharField(max_length=100) bpubdate = models.DateField() bread = models.IntegerField() bcomment = models.IntegerField() isdelete = models.BooleanField() bookinfo_manager1 = Manager() bookinfo_manager2 = BookInfo_Manager() def __str__(self): return self.btitle """ @classmethod def create(cls,btitle='xx',bpubdate=date.today(),bread=0,bcomment=0,isdelete=0): b = BookInfo() b.btitle = btitle b.bpubdate = bpubdate b.bread = bread b.bcomment = bcomment b.isdelete = isdelete return b """ class HeroInfo(models.Model): hname = models.CharField(max_length=100) hgender = models.TextField() hbookinfo = models.ForeignKey(BookInfo) hcontent = models.CharField(max_length=200) isdelete = models.BooleanField() """ class Meta(): db_table = 'bookinfo22222222222222222222222' ordering = ['a'] def myhgender(self): if self.hgender: return '男' else: return '女' def myhname(self): return self.hname myhgender.short_description = '性别' myhname.short_description = '姓名' """
[ "1025212779@qq.com" ]
1025212779@qq.com
9cba16904c3d6c84fa17c84c14a4c69a517dcf65
c491494017eeecc83ebaaeb74a1f60a9031e3a39
/tethysapp/hs_modflow/model.py
349df073ba30738475ba481254495b4736e03bf1
[]
no_license
c-krew/hs_modflow
49f1900631c080a9c3254b277e5dbdcc849afd3b
a625ed113f9a4e498fd3712b3b904e67446f0207
refs/heads/master
2021-10-08T18:33:33.541728
2018-12-16T00:04:44
2018-12-16T00:04:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,382
py
import json import os import flopy from datetime import datetime as dt from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import * from sqlalchemy.orm import sessionmaker from django.http import JsonResponse, Http404, HttpResponse from hs_restclient import HydroShare from .app import HsModflow as app Base = declarative_base() # SQLAlchemy ORM definition for the models table class Model(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'models' # Columns id = Column(Integer, primary_key=True) resourceid = Column(String) displayname = Column(String) modeltype = Column(String) modelfiles = Column(String) zoneid = Column(Integer, ForeignKey("zone.id"), nullable=True) multid = Column(Integer, ForeignKey("mult.id"), nullable=True) pvalid = Column(Integer, ForeignKey("pval.id"), nullable=True) bas6id = Column(Integer, ForeignKey("bas6.id"), nullable=True) disid = Column(Integer, ForeignKey("dis.id"), nullable=True) disuid = Column(Integer, ForeignKey("disu.id"), nullable=True) bcf6id = Column(Integer, ForeignKey("bcf6.id"), nullable=True) lpfid = Column(Integer, ForeignKey("lpf.id"), nullable=True) hfb6id = Column(Integer, ForeignKey("hfb6.id"), nullable=True) chdid = Column(Integer, ForeignKey("chd.id"), nullable=True) fhbid = Column(Integer, ForeignKey("fhb.id"), nullable=True) welid = Column(Integer, ForeignKey("wel.id"), nullable=True) mnw1id = Column(Integer, ForeignKey("mnw1.id"), nullable=True) mnw2id = Column(Integer, ForeignKey("mnw2.id"), nullable=True) mnwiid = Column(Integer, ForeignKey("mnwi.id"), nullable=True) drnid = Column(Integer, ForeignKey("drn.id"), nullable=True) rchid = Column(Integer, ForeignKey("rch.id"), nullable=True) evtid = Column(Integer, ForeignKey("evt.id"), nullable=True) ghbid = Column(Integer, ForeignKey("ghb.id"), nullable=True) gmgid = Column(Integer, ForeignKey("gmg.id"), nullable=True) lmt6id = Column(Integer, ForeignKey("lmt6.id"), nullable=True) lmt7id = Column(Integer, ForeignKey("lmt7.id"), nullable=True) rivid = Column(Integer, ForeignKey("riv.id"), nullable=True) strid = Column(Integer, ForeignKey("str.id"), nullable=True) swi2id = Column(Integer, ForeignKey("swi2.id"), nullable=True) pcgid = Column(Integer, ForeignKey("pcg.id"), nullable=True) pcgnid = Column(Integer, ForeignKey("pcgn.id"), nullable=True) nwtid = Column(Integer, ForeignKey("nwt.id"), nullable=True) pksid = Column(Integer, ForeignKey("pks.id"), nullable=True) smsid = Column(Integer, ForeignKey("sms.id"), nullable=True) sfrid = Column(Integer, ForeignKey("sfr.id"), nullable=True) lakid = Column(Integer, ForeignKey("lak.id"), nullable=True) gageid = Column(Integer, ForeignKey("gage.id"), nullable=True) sipid = Column(Integer, ForeignKey("sip.id"), nullable=True) sorid = Column(Integer, ForeignKey("sor.id"), nullable=True) de4id = Column(Integer, ForeignKey("de4.id"), nullable=True) ocid = Column(Integer, ForeignKey("oc.id"), nullable=True) uzfid = Column(Integer, ForeignKey("uzf.id"), nullable=True) upwid = Column(Integer, ForeignKey("upw.id"), nullable=True) subid = Column(Integer, ForeignKey("sub.id"), nullable=True) swtid = Column(Integer, ForeignKey("swt.id"), nullable=True) hydid = Column(Integer, ForeignKey("hyd.id"), nullable=True) hobid = Column(Integer, ForeignKey("hob.id"), nullable=True) vdfid = Column(Integer, ForeignKey("vdf.id"), nullable=True) vscid = Column(Integer, ForeignKey("vsc.id"), nullable=True) drtid = Column(Integer, ForeignKey("drt.id"), nullable=True) pvlid = Column(Integer, ForeignKey("pvl.id"), nullable=True) etsid = Column(Integer, ForeignKey("ets.id"), nullable=True) basid = Column(Integer, ForeignKey("bas.id"), nullable=True) namid = Column(Integer, ForeignKey("nam.id"), nullable=True) class zone(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'zone' # Columns id = Column(Integer, primary_key=True) data = Column(String) class mult(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'mult' # Columns id = Column(Integer, primary_key=True) data = Column(String) class pval(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'pval' # Columns id = Column(Integer, primary_key=True) data = Column(String) class bas6(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'bas6' # Columns id = Column(Integer, primary_key=True) data = Column(String) class dis(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'dis' # Columns id = Column(Integer, primary_key=True) data = Column(String) class disu(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'disu' # Columns id = Column(Integer, primary_key=True) data = Column(String) class bcf6(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'bcf6' # Columns id = Column(Integer, primary_key=True) data = Column(String) class lpf(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'lpf' # Columns id = Column(Integer, primary_key=True) data = Column(String) class hfb6(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'hfb6' # Columns id = Column(Integer, primary_key=True) data = Column(String) class chd(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'chd' # Columns id = Column(Integer, primary_key=True) data = Column(String) class fhb(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'fhb' # Columns id = Column(Integer, primary_key=True) data = Column(String) class wel(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'wel' # Columns id = Column(Integer, primary_key=True) data = Column(String) class mnw1(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'mnw1' # Columns id = Column(Integer, primary_key=True) data = Column(String) class mnw2(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'mnw2' # Columns id = Column(Integer, primary_key=True) data = Column(String) class mnwi(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'mnwi' # Columns id = Column(Integer, primary_key=True) data = Column(String) class drn(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'drn' # Columns id = Column(Integer, primary_key=True) data = Column(String) class rch(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'rch' # Columns id = Column(Integer, primary_key=True) data = Column(String) class evt(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'evt' # Columns id = Column(Integer, primary_key=True) data = Column(String) class ghb(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'ghb' # Columns id = Column(Integer, primary_key=True) data = Column(String) class gmg(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'gmg' # Columns id = Column(Integer, primary_key=True) data = Column(String) class lmt6(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'lmt6' # Columns id = Column(Integer, primary_key=True) data = Column(String) class lmt7(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'lmt7' # Columns id = Column(Integer, primary_key=True) data = Column(String) class riv(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'riv' # Columns id = Column(Integer, primary_key=True) data = Column(String) class str(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'str' # Columns id = Column(Integer, primary_key=True) data = Column(String) class swi2(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'swi2' # Columns id = Column(Integer, primary_key=True) data = Column(String) class pcg(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'pcg' # Columns id = Column(Integer, primary_key=True) data = Column(String) class pcgn(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'pcgn' # Columns id = Column(Integer, primary_key=True) data = Column(String) class nwt(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'nwt' # Columns id = Column(Integer, primary_key=True) data = Column(String) class pks(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'pks' # Columns id = Column(Integer, primary_key=True) data = Column(String) class sms(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'sms' # Columns id = Column(Integer, primary_key=True) data = Column(String) class sfr(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'sfr' # Columns id = Column(Integer, primary_key=True) data = Column(String) class lak(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'lak' # Columns id = Column(Integer, primary_key=True) data = Column(String) class gage(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'gage' # Columns id = Column(Integer, primary_key=True) data = Column(String) class sip(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'sip' # Columns id = Column(Integer, primary_key=True) data = Column(String) class sor(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'sor' # Columns id = Column(Integer, primary_key=True) data = Column(String) class de4(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'de4' # Columns id = Column(Integer, primary_key=True) data = Column(String) class oc(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'oc' # Columns id = Column(Integer, primary_key=True) data = Column(String) class uzf(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'uzf' # Columns id = Column(Integer, primary_key=True) data = Column(String) class upw(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'upw' # Columns id = Column(Integer, primary_key=True) data = Column(String) class sub(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'sub' # Columns id = Column(Integer, primary_key=True) data = Column(String) class swt(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'swt' # Columns id = Column(Integer, primary_key=True) data = Column(String) class hyd(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'hyd' # Columns id = Column(Integer, primary_key=True) data = Column(String) class hob(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'hob' # Columns id = Column(Integer, primary_key=True) data = Column(String) class vdf(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'vdf' # Columns id = Column(Integer, primary_key=True) data = Column(String) class vsc(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'vsc' # Columns id = Column(Integer, primary_key=True) data = Column(String) class drt(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'drt' # Columns id = Column(Integer, primary_key=True) data = Column(String) class pvl(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'pvl' # Columns id = Column(Integer, primary_key=True) data = Column(String) class ets(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'ets' # Columns id = Column(Integer, primary_key=True) data = Column(String) class bas(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'bas' # Columns id = Column(Integer, primary_key=True) data = Column(String) class nam(Base): """ SQLAlchemy Model DB Model """ __tablename__ = 'nam' # Columns id = Column(Integer, primary_key=True) data = Column(String) def init_primary_db(engine, first_time): """ Initializer for the primary database. """ # Create all the tables Base.metadata.create_all(engine) # Add data if first_time: # Make session Session = sessionmaker(bind=engine) session = Session() session.commit() session.close() def get_all_models(): """ Get all persisted dams. """ # Get connection/session to database Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() # Query for all model records models = session.query(Model).all() modellist = [(model.displayname, model.displayname) for model in models] session.close() return modellist def save_hs_to_favorites(resourceid, displayname, modeltype): dbs = { 'zone': zone, 'mult': mult, 'pval': pval, 'bas6': bas6, 'dis': dis, 'disu': disu, 'bcf6': bcf6, 'lpf': lpf, 'hfb6': hfb6, 'chd': chd, 'fhb': fhb, 'wel': wel, 'mnw1': mnw1, 'mnw2': mnw2, 'mnwi': mnwi, 'drn': drn, 'rch': rch, 'evt': evt, 'ghb': ghb, 'gmg': gmg, 'lmt6': lmt6, 'lmt7': lmt7, 'riv': riv, 'str': str, 'swi2': swi2, 'pcg': pcg, 'pcgn': pcgn, 'nwt': nwt, 'pks': pks, 'sms': sms, 'sfr': sfr, 'lak': lak, 'gage': gage, 'sip': sip, 'sor': sor, 'de4': de4, 'oc': oc, 'uzf': uzf, 'upw': upw, 'sub': sub, 'swt': swt, 'hyd': hyd, 'hob': hob, 'vdf': vdf, 'vsc': vsc, 'drt': drt, 'pvl': pvl, 'ets': ets, 'bas': bas, 'nam': nam, } Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() hs = HydroShare() app_dir = app.get_app_workspace().path resourcelist = hs.getResourceFileList(resourceid) filelist = [] for resource in resourcelist: url = resource['url'].split("/") fname = url[-1] hs.getResourceFile(resourceid, fname, destination=app_dir) filelist.append(fname) json.dumps(filelist) fav = Model( resourceid=resourceid, displayname=displayname, modeltype=modeltype, modelfiles=filelist ) # Add the model to the session, commit, and close session.add(fav) model = session.query(Model).filter(Model.displayname==displayname).first() mainid = model.id for fi in filelist: ext = fi.split(".")[1] filepath = os.path.join(app.get_app_workspace().path, fi) with open( filepath, 'r' ) as myfile: data = myfile.read() json.dumps(data) tbl = dbs[ext]( data=data, ) # Add the model to the session, commit, and close session.add(tbl) session.commit() setattr(model, ext + 'id', tbl.id) session.commit() os.remove(filepath) session.close() return def upload_to_hs(uploadtype, modelname, resource_name, resource_abstract, resource_key): dbs = { 'zone':zone, 'mult':mult, 'pval':pval, 'bas6':bas6, 'dis':dis, 'disu':disu, 'bcf6':bcf6, 'lpf':lpf, 'hfb6':hfb6, 'chd':chd, 'fhb':fhb, 'wel':wel, 'mnw1':mnw1, 'mnw2':mnw2, 'mnwi':mnwi, 'drn':drn, 'rch':rch, 'evt':evt, 'ghb':ghb, 'gmg':gmg, 'lmt6':lmt6, 'lmt7':lmt7, 'riv':riv, 'str':str, 'swi2':swi2, 'pcg':pcg, 'pcgn':pcgn, 'nwt':nwt, 'pks':pks, 'sms':sms, 'sfr':sfr, 'lak':lak, 'gage':gage, 'sip':sip, 'sor':sor, 'de4':de4, 'oc':oc, 'uzf':uzf, 'upw':upw, 'sub':sub, 'swt':swt, 'hyd':hyd, 'hob':hob, 'vdf':vdf, 'vsc':vsc, 'drt':drt, 'pvl':pvl, 'ets':ets, 'bas':bas, 'nam':nam } hs = HydroShare() Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() fileliststr = session.query(Model).filter(Model.displayname == modelname).first() filelist = [i for i in fileliststr.modelfiles.strip('{}').split(',')] mainid = fileliststr.id resourceid = fileliststr.resourceid if uploadtype == 'new': abstract = resource_abstract title = resource_name keywords = (i for i in resource_key.split(',')) rtype = 'ModelInstanceResource' new_resource_id = hs.createResource(rtype, title, keywords=keywords, abstract=abstract) for fi in filelist: parts = fi.split(".") ext_data = session.query(dbs[parts[1]]).filter(dbs[parts[1]].id == mainid).first().data if uploadtype == 'add': date = dt.now().strftime("%m-%d-%Y-%X") filename = "{}_{}.{}".format(parts[0], date, parts[1]) else: filename = fi if uploadtype == 'new': hs.addResourceFile(new_resource_id, ext_data, resource_filename=filename) elif uploadtype == 'overwrite': hs.deleteResourceFile(resourceid, filename) hs.addResourceFile(resourceid, ext_data, resource_filename=filename) else: hs.addResourceFile(resourceid, ext_data, resource_filename=filename) session.close() return_obj = {'success': True} return JsonResponse(return_obj) def save_to_db(resourceid, displayname, modeltype): dbs = { 'zone':zone, 'mult':mult, 'pval':pval, 'bas6':bas6, 'dis':dis, 'disu':disu, 'bcf6':bcf6, 'lpf':lpf, 'hfb6':hfb6, 'chd':chd, 'fhb':fhb, 'wel':wel, 'mnw1':mnw1, 'mnw2':mnw2, 'mnwi':mnwi, 'drn':drn, 'rch':rch, 'evt':evt, 'ghb':ghb, 'gmg':gmg, 'lmt6':lmt6, 'lmt7':lmt7, 'riv':riv, 'str':str, 'swi2':swi2, 'pcg':pcg, 'pcgn':pcgn, 'nwt':nwt, 'pks':pks, 'sms':sms, 'sfr':sfr, 'lak':lak, 'gage':gage, 'sip':sip, 'sor':sor, 'de4':de4, 'oc':oc, 'uzf':uzf, 'upw':upw, 'sub':sub, 'swt':swt, 'hyd':hyd, 'hob':hob, 'vdf':vdf, 'vsc':vsc, 'drt':drt, 'pvl':pvl, 'ets':ets, 'bas':bas, 'nam':nam, } Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() app_dir = app.get_app_workspace().path # app_dir = '/Users/travismcstraw/tethysdev/hs_modflow/tethysapp/hs_modflow/workspaces/app_workspace/' fileliststr = session.query(Model).filter(Model.displayname == displayname).first() filelist = [i for i in fileliststr.modelfiles.strip('{}').split(',')] json.dumps(filelist) model = session.query(Model).filter(Model.displayname==displayname).first() mainid = model.id for fi in filelist: ext = fi.split(".")[1] setattr(model, ext + 'id', mainid) with open( os.path.join(app_dir, fi), 'r' ) as myfile: data = myfile.read() json.dumps(data) session.query(dbs[ext]).filter(dbs[ext].id==mainid).one().data = data os.remove(os.path.join(app_dir, fi)) session.commit() session.close() return def load_resource(request): dbs = { 'zone': zone, 'mult': mult, 'pval': pval, 'bas6': bas6, 'dis': dis, 'disu': disu, 'bcf6': bcf6, 'lpf': lpf, 'hfb6': hfb6, 'chd': chd, 'fhb': fhb, 'wel': wel, 'mnw1': mnw1, 'mnw2': mnw2, 'mnwi': mnwi, 'drn': drn, 'rch': rch, 'evt': evt, 'ghb': ghb, 'gmg': gmg, 'lmt6': lmt6, 'lmt7': lmt7, 'riv': riv, 'str': str, 'swi2': swi2, 'pcg': pcg, 'pcgn': pcgn, 'nwt': nwt, 'pks': pks, 'sms': sms, 'sfr': sfr, 'lak': lak, 'gage': gage, 'sip': sip, 'sor': sor, 'de4': de4, 'oc': oc, 'uzf': uzf, 'upw': upw, 'sub': sub, 'swt': swt, 'hyd': hyd, 'hob': hob, 'vdf': vdf, 'vsc': vsc, 'drt': drt, 'pvl': pvl, 'ets': ets, 'bas': bas, 'nam': nam, } app_dir = app.get_app_workspace().path ex_filelist = os.listdir(app_dir) for ex_file in ex_filelist: if ex_file == 'models': continue else: os.remove(os.path.join(app_dir, ex_file)) displayname = request.POST.get('displayname') Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() model = session.query(Model).filter(Model.displayname == displayname).first() filelist = [i for i in model.modelfiles.strip('{}').split(',')] for fi in filelist: ext = fi.split(".")[1] extid = getattr(model, ext + 'id') ext_data = session.query(dbs[ext]).filter(dbs[ext].id == extid).first().data filepath = os.path.join(app.get_app_workspace().path, fi) # filepath = os.path.join('/Users/travismcstraw/tethysdev/hs_modflow/tethysapp/hs_modflow/workspaces/app_workspace/', fi) with open( filepath, 'w' ) as myfile: myfile.write(ext_data) session.close() return_obj = {'success': True, 'filelist': filelist} return JsonResponse(return_obj) def save_to_db_newentry(resourceid, displayname, new_display_name, modeltype): dbs = { 'zone':zone, 'mult':mult, 'pval':pval, 'bas6':bas6, 'dis':dis, 'disu':disu, 'bcf6':bcf6, 'lpf':lpf, 'hfb6':hfb6, 'chd':chd, 'fhb':fhb, 'wel':wel, 'mnw1':mnw1, 'mnw2':mnw2, 'mnwi':mnwi, 'drn':drn, 'rch':rch, 'evt':evt, 'ghb':ghb, 'gmg':gmg, 'lmt6':lmt6, 'lmt7':lmt7, 'riv':riv, 'str':str, 'swi2':swi2, 'pcg':pcg, 'pcgn':pcgn, 'nwt':nwt, 'pks':pks, 'sms':sms, 'sfr':sfr, 'lak':lak, 'gage':gage, 'sip':sip, 'sor':sor, 'de4':de4, 'oc':oc, 'uzf':uzf, 'upw':upw, 'sub':sub, 'swt':swt, 'hyd':hyd, 'hob':hob, 'vdf':vdf, 'vsc':vsc, 'drt':drt, 'pvl':pvl, 'ets':ets, 'bas':bas, 'nam':nam, } Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() app_dir = app.get_app_workspace().path # app_dir = '/Users/travismcstraw/tethysdev/hs_modflow/tethysapp/hs_modflow/workspaces/app_workspace/' fileliststr = session.query(Model).filter(Model.displayname == displayname).first() filelist = [i for i in fileliststr.modelfiles.strip('{}').split(',')] json.dumps(filelist) fav = Model( resourceid=resourceid, displayname=new_display_name, modeltype=modeltype, modelfiles=filelist ) # Add the model to the session, commit, and close session.add(fav) session.commit() model = session.query(Model).filter(Model.displayname==new_display_name).first() mainid = model.id for fi in filelist: ext = fi.split(".")[1] filepath = os.path.join(app.get_app_workspace().path, fi) with open( filepath, 'r' ) as myfile: data = myfile.read() json.dumps(data) tbl = dbs[ext]( data=data, ) # Add the model to the session, commit, and close session.add(tbl) session.commit() setattr(model, ext + 'id', tbl.id) session.commit() os.remove(os.path.join(app_dir, fi)) session.commit() session.close() return def run_model(request): displayname = request.POST.get('displayname') app_dir = app.get_app_workspace().path # app_dir = '/Users/travismcstraw/tethysdev/hs_modflow/tethysapp/hs_modflow/workspaces/app_workspace/' ex_filelist = os.listdir(app_dir) for ex_file in ex_filelist: if ex_file == 'models': continue else: if ex_file.split(".")[1] == 'nam': modelnam = ex_file break Session = app.get_persistent_store_database('primary_db', as_sessionmaker=True) session = Session() model = session.query(Model).filter(Model.displayname == displayname).one() model_type = model.modeltype app_dir = app.get_app_workspace().path # app_dir = '/Users/travismcstraw/tethysdev/hs_modflow/tethysapp/hs_modflow/workspaces/app_workspace/' # first lets load an existing model ml = flopy.modflow.Modflow.load(modelnam, model_ws=app_dir, verbose=False, check=False, exe_name=os.path.join(app_dir, 'models', model_type)) ml.run_model() mfl = flopy.utils.MfListBudget(os.path.join(app_dir, modelnam.split(".")[0] + ".lst")) df_flux, df_vol = mfl.get_dataframes() dict_flux = df_flux.to_dict() dict_vol = df_vol.to_dict() flux_results = {} vol_results = {} for key1 in dict_flux: for key2 in dict_flux[key1]: datetime = key2.strftime('%Y-%m-%d %X') if datetime not in flux_results: flux_results[datetime] = {} flux_results[datetime][key1] = dict_flux[key1][key2] else: flux_results[datetime][key1] = dict_flux[key1][key2] for key1 in dict_vol: for key2 in dict_vol[key1]: datetime = key2.strftime('%Y-%m-%d %X') if datetime not in vol_results: vol_results[datetime] = {} vol_results[datetime][key1] = dict_flux[key1][key2] else: vol_results[datetime][key1] = dict_flux[key1][key2] print(vol_results) return_obj = {'success': True, 'vol': vol_results, "flux": flux_results} return JsonResponse(return_obj)
[ "coreykrewson@gmail.com" ]
coreykrewson@gmail.com
7fe7a2d3a65e3c80c48c513dbca332369b6f1feb
8dcddd65561a5c0cca8e0727d4df260ac9a17062
/pycat
8b81ddf3eb89bf8a14f78703ed46f15babe3b056
[]
no_license
lverweijen/pytools
edb08a462530b4275389a514a57ec88fd0228b3d
bad12f57ee1d5be6eaed23d047e9a9614da77284
refs/heads/master
2021-01-10T07:43:33.093956
2016-02-09T18:51:08
2016-02-09T18:51:08
47,980,400
1
0
null
null
null
null
UTF-8
Python
false
false
2,369
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Utility to display part of a python. Usage: pycat <filename> <identifier> Dependencies: astunparse or meta Unsupported: astor, astmonkey, macropy Bugs: meta (v0.4.1) can't handle some assignments. Use astunparse instead. """ __author__ = __maintainer__ = "Laurent Verweijen" __license__ = "GPL3" import sys import ast INDENT_WIDTH = 2 try: import astunparse def unparse(node): """Undo the effect of ast.parse using astunparse.""" return astunparse.unparse(node).strip() except ImportError: import meta def unparse(node): """Undo the effect of ast.parse using meta. Install astunparse for a stabler version. """ try: return meta.dump_python_source(node).strip() except Exception as e: print('oo', repr(e)) if hasattr(node, 'targets'): targets = ", ".join(target.id for target in node.targets) return "{} = BUG <{}>".format(targets, repr(e)) else: return "BUG <{}>".format(repr(e)) def main(): """Program entry point.""" with open(sys.argv[1]) as code_file: parsed = ast.parse(code_file.read()) t = DocumentationVisitor(sys.argv[2].split('.')) t.visit(parsed) class DocumentationVisitor(ast.NodeVisitor): """Visits the document looking for the required parts.""" def __init__(self, keywords): """Create instance.""" self.keywords = keywords def visit(self, node): """Try to match. If a partial match is found delegate to a submatch.""" if hasattr(node, 'name') and node.name == self.keywords[0]: if len(self.keywords) == 1: try: from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter print(highlight(unparse(node), PythonLexer(), TerminalFormatter())) except ImportError: print(unparse(node)) else: dv = DocumentationVisitor(self.keywords[1:]) dv.visit(node) else: self.generic_visit(node) if __name__ == "__main__": main()
[ "lverweijen" ]
lverweijen
8135d4bbab19fd1ba6a3d4ba541a7fddfe935954
5a281cb78335e06c631181720546f6876005d4e5
/swift-2.21.0/swift/container/replicator.py
ea18fbd962d46eb609540a60bd1167faf07b0d60
[ "Apache-2.0" ]
permissive
scottwedge/OpenStack-Stein
d25b2a5bb54a714fc23f0ff0c11fb1fdacad85e8
7077d1f602031dace92916f14e36b124f474de15
refs/heads/master
2021-03-22T16:07:19.561504
2020-03-15T01:31:10
2020-03-15T01:31:10
247,380,811
0
0
Apache-2.0
2020-03-15T01:24:15
2020-03-15T01:24:15
null
UTF-8
Python
false
false
16,737
py
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import itertools import json from collections import defaultdict from eventlet import Timeout from swift.container.sync_store import ContainerSyncStore from swift.container.backend import ContainerBroker, DATADIR, SHARDED from swift.container.reconciler import ( MISPLACED_OBJECTS_ACCOUNT, incorrect_policy_index, get_reconciler_container_name, get_row_to_q_entry_translator) from swift.common import db_replicator from swift.common.storage_policy import POLICIES from swift.common.swob import HTTPOk, HTTPAccepted from swift.common.exceptions import DeviceUnavailable from swift.common.http import is_success from swift.common.utils import Timestamp, majority_size, get_db_files class ContainerReplicator(db_replicator.Replicator): server_type = 'container' brokerclass = ContainerBroker datadir = DATADIR default_port = 6201 def __init__(self, conf, logger=None): super(ContainerReplicator, self).__init__(conf, logger=logger) self.reconciler_cleanups = self.sync_store = None def report_up_to_date(self, full_info): reported_key_map = { 'reported_put_timestamp': 'put_timestamp', 'reported_delete_timestamp': 'delete_timestamp', 'reported_bytes_used': 'bytes_used', 'reported_object_count': 'count', } for reported, value_key in reported_key_map.items(): if full_info[reported] != full_info[value_key]: return False return True def _gather_sync_args(self, replication_info): parent = super(ContainerReplicator, self) sync_args = parent._gather_sync_args(replication_info) if len(POLICIES) > 1: sync_args += tuple(replication_info[k] for k in ('status_changed_at', 'count', 'storage_policy_index')) return sync_args def _handle_sync_response(self, node, response, info, broker, http, different_region=False): if is_success(response.status): remote_info = json.loads(response.data.decode('ascii')) if incorrect_policy_index(info, remote_info): status_changed_at = Timestamp.now() broker.set_storage_policy_index( remote_info['storage_policy_index'], timestamp=status_changed_at.internal) sync_timestamps = ('created_at', 'put_timestamp', 'delete_timestamp') if any(info[key] != remote_info[key] for key in sync_timestamps): broker.merge_timestamps(*(remote_info[key] for key in sync_timestamps)) if 'shard_max_row' in remote_info: # Grab remote's shard ranges, too self._fetch_and_merge_shard_ranges(http, broker) return super(ContainerReplicator, self)._handle_sync_response( node, response, info, broker, http, different_region) def _sync_shard_ranges(self, broker, http, local_id): # TODO: currently the number of shard ranges is expected to be _much_ # less than normal objects so all are sync'd on each cycle. However, in # future there should be sync points maintained much like for object # syncing so that only new shard range rows are sync'd. shard_range_data = broker.get_all_shard_range_data() if shard_range_data: if not self._send_replicate_request( http, 'merge_shard_ranges', shard_range_data, local_id): return False self.logger.debug('%s synced %s shard ranges to %s', broker.db_file, len(shard_range_data), '%(ip)s:%(port)s/%(device)s' % http.node) return True def _choose_replication_mode(self, node, rinfo, info, local_sync, broker, http, different_region): if 'shard_max_row' in rinfo: # Always replicate shard ranges to new-enough swift shard_range_success = self._sync_shard_ranges( broker, http, info['id']) else: shard_range_success = False self.logger.warning( '%s is unable to replicate shard ranges to peer %s; ' 'peer may need upgrading', broker.db_file, '%(ip)s:%(port)s/%(device)s' % node) if broker.sharding_initiated(): if info['db_state'] == SHARDED and len( broker.get_objects(limit=1)) == 0: self.logger.debug('%s is sharded and has nothing more to ' 'replicate to peer %s', broker.db_file, '%(ip)s:%(port)s/%(device)s' % node) else: # Only print the scary warning if there was something that # didn't get replicated self.logger.warning( '%s is able to shard -- refusing to replicate objects to ' 'peer %s; have shard ranges and will wait for cleaving', broker.db_file, '%(ip)s:%(port)s/%(device)s' % node) self.stats['deferred'] += 1 return shard_range_success success = super(ContainerReplicator, self)._choose_replication_mode( node, rinfo, info, local_sync, broker, http, different_region) return shard_range_success and success def _fetch_and_merge_shard_ranges(self, http, broker): response = http.replicate('get_shard_ranges') if is_success(response.status): broker.merge_shard_ranges(json.loads( response.data.decode('ascii'))) def find_local_handoff_for_part(self, part): """ Look through devices in the ring for the first handoff device that was identified during job creation as available on this node. :returns: a node entry from the ring """ nodes = self.ring.get_part_nodes(part) more_nodes = self.ring.get_more_nodes(part) for node in itertools.chain(nodes, more_nodes): if node['id'] in self._local_device_ids: return node return None def get_reconciler_broker(self, timestamp): """ Get a local instance of the reconciler container broker that is appropriate to enqueue the given timestamp. :param timestamp: the timestamp of the row to be enqueued :returns: a local reconciler broker """ container = get_reconciler_container_name(timestamp) if self.reconciler_containers and \ container in self.reconciler_containers: return self.reconciler_containers[container][1] account = MISPLACED_OBJECTS_ACCOUNT part = self.ring.get_part(account, container) node = self.find_local_handoff_for_part(part) if not node: raise DeviceUnavailable( 'No mounted devices found suitable to Handoff reconciler ' 'container %s in partition %s' % (container, part)) broker = ContainerBroker.create_broker( os.path.join(self.root, node['device']), part, account, container, logger=self.logger, put_timestamp=timestamp, storage_policy_index=0) if self.reconciler_containers is not None: self.reconciler_containers[container] = part, broker, node['id'] return broker def feed_reconciler(self, container, item_list): """ Add queue entries for rows in item_list to the local reconciler container database. :param container: the name of the reconciler container :param item_list: the list of rows to enqueue :returns: True if successfully enqueued """ try: reconciler = self.get_reconciler_broker(container) except DeviceUnavailable as e: self.logger.warning('DeviceUnavailable: %s', e) return False self.logger.debug('Adding %d objects to the reconciler at %s', len(item_list), reconciler.db_file) try: reconciler.merge_items(item_list) except (Exception, Timeout): self.logger.exception('UNHANDLED EXCEPTION: trying to merge ' '%d items to reconciler container %s', len(item_list), reconciler.db_file) return False return True def dump_to_reconciler(self, broker, point): """ Look for object rows for objects updates in the wrong storage policy in broker with a ``ROWID`` greater than the rowid given as point. :param broker: the container broker with misplaced objects :param point: the last verified ``reconciler_sync_point`` :returns: the last successful enqueued rowid """ max_sync = broker.get_max_row() misplaced = broker.get_misplaced_since(point, self.per_diff) if not misplaced: return max_sync translator = get_row_to_q_entry_translator(broker) errors = False low_sync = point while misplaced: batches = defaultdict(list) for item in misplaced: container = get_reconciler_container_name(item['created_at']) batches[container].append(translator(item)) for container, item_list in batches.items(): success = self.feed_reconciler(container, item_list) if not success: errors = True point = misplaced[-1]['ROWID'] if not errors: low_sync = point misplaced = broker.get_misplaced_since(point, self.per_diff) return low_sync def _post_replicate_hook(self, broker, info, responses): if info['account'] == MISPLACED_OBJECTS_ACCOUNT: return try: self.sync_store.update_sync_store(broker) except Exception: self.logger.exception('Failed to update sync_store %s' % broker.db_file) point = broker.get_reconciler_sync() if not broker.has_multiple_policies() and info['max_row'] != point: broker.update_reconciler_sync(info['max_row']) return max_sync = self.dump_to_reconciler(broker, point) success = responses.count(True) >= majority_size(len(responses)) if max_sync > point and success: # to be safe, only slide up the sync point with a majority on # replication broker.update_reconciler_sync(max_sync) def cleanup_post_replicate(self, broker, orig_info, responses): if broker.sharding_required(): # despite being a handoff, since we're sharding we're not going to # do any cleanup so we can continue cleaving - this is still # considered "success" self.logger.debug( 'Not deleting db %s (requires sharding, state %s)', broker.db_file, broker.get_db_state()) return True return super(ContainerReplicator, self).cleanup_post_replicate( broker, orig_info, responses) def delete_db(self, broker): """ Ensure that reconciler databases are only cleaned up at the end of the replication run. """ if (self.reconciler_cleanups is not None and broker.account == MISPLACED_OBJECTS_ACCOUNT): # this container shouldn't be here, make sure it's cleaned up self.reconciler_cleanups[broker.container] = broker return if self.sync_store: try: # DB is going to get deleted. Be preemptive about it self.sync_store.remove_synced_container(broker) except Exception: self.logger.exception('Failed to remove sync_store entry %s' % broker.db_file) return super(ContainerReplicator, self).delete_db(broker) def replicate_reconcilers(self): """ Ensure any items merged to reconciler containers during replication are pushed out to correct nodes and any reconciler containers that do not belong on this node are removed. """ self.logger.info('Replicating %d reconciler containers', len(self.reconciler_containers)) for part, reconciler, node_id in self.reconciler_containers.values(): self.cpool.spawn_n( self._replicate_object, part, reconciler.db_file, node_id) self.cpool.waitall() # wipe out the cache do disable bypass in delete_db cleanups = self.reconciler_cleanups self.reconciler_cleanups = self.reconciler_containers = None self.logger.info('Cleaning up %d reconciler containers', len(cleanups)) for reconciler in cleanups.values(): self.cpool.spawn_n(self.delete_db, reconciler) self.cpool.waitall() self.logger.info('Finished reconciler replication') def run_once(self, *args, **kwargs): self.reconciler_containers = {} self.reconciler_cleanups = {} self.sync_store = ContainerSyncStore(self.root, self.logger, self.mount_check) rv = super(ContainerReplicator, self).run_once(*args, **kwargs) if any([self.reconciler_containers, self.reconciler_cleanups]): self.replicate_reconcilers() return rv class ContainerReplicatorRpc(db_replicator.ReplicatorRpc): def _db_file_exists(self, db_path): return bool(get_db_files(db_path)) def _parse_sync_args(self, args): parent = super(ContainerReplicatorRpc, self) remote_info = parent._parse_sync_args(args) if len(args) > 9: remote_info['status_changed_at'] = args[7] remote_info['count'] = args[8] remote_info['storage_policy_index'] = args[9] return remote_info def _get_synced_replication_info(self, broker, remote_info): """ Sync the remote_info storage_policy_index if needed and return the newly synced replication info. :param broker: the database broker :param remote_info: the remote replication info :returns: local broker replication info """ info = broker.get_replication_info() if incorrect_policy_index(info, remote_info): status_changed_at = Timestamp.now().internal broker.set_storage_policy_index( remote_info['storage_policy_index'], timestamp=status_changed_at) info = broker.get_replication_info() return info def _abort_rsync_then_merge(self, db_file, old_filename): if super(ContainerReplicatorRpc, self)._abort_rsync_then_merge( db_file, old_filename): return True # if the local db has started sharding since the original 'sync' # request then abort object replication now; instantiate a fresh broker # each time this check if performed so to get latest state broker = ContainerBroker(db_file) return broker.sharding_initiated() def _post_rsync_then_merge_hook(self, existing_broker, new_broker): # Note the following hook will need to change to using a pointer and # limit in the future. new_broker.merge_shard_ranges( existing_broker.get_all_shard_range_data()) def merge_shard_ranges(self, broker, args): broker.merge_shard_ranges(args[0]) return HTTPAccepted() def get_shard_ranges(self, broker, args): return HTTPOk(headers={'Content-Type': 'application/json'}, body=json.dumps(broker.get_all_shard_range_data()))
[ "Wayne Gong@minbgong-winvm.cisco.com" ]
Wayne Gong@minbgong-winvm.cisco.com
413330fcb08d0e45e153a765303e131cb0d38ace
68bca3f840d11cb3e611e3b2227a857f170a5cf9
/imio/dms/mail/browser/viewlets.py
edd484d647808c331e995d21bd34b2c4d154d09c
[]
no_license
gotcha/imio.dms.mail
8e2e6e465313ef02e16dc890a7aaba03a55ed9aa
4bde3665d67ebd8a6ebca31fd1a497806c64fce6
refs/heads/master
2021-01-17T18:08:26.411910
2016-06-01T11:39:29
2016-06-01T11:39:29
60,174,237
0
0
null
null
null
null
UTF-8
Python
false
false
1,965
py
# -*- coding: utf-8 -*- from zope.component import getUtility from zope.intid.interfaces import IIntIds from zc.relation.interfaces import ICatalog from plone.app.layout.viewlets import ViewletBase from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from collective.contact.widget.interfaces import IContactContent from collective.task.browser.viewlets import TaskParentViewlet class ContactContentBackrefsViewlet(ViewletBase): #def update(self): # super(ContactContentBackrefsViewlet, self).update() def backrefs(self): # indirection method added to be easier overrided return sorted(self.find_relations(), key=lambda obj: obj.created(), reverse=True) def find_relations(self, from_attribute=None, from_interfaces_flattened=None): """ Parameters: - from_attribute: schema attribute string - from_interfaces_flattened: Interface class (only one) """ ret = [] catalog = getUtility(ICatalog) intids = getUtility(IIntIds) query = {'to_id': intids.getId(self.context)} if from_attribute is not None: query['from_attribute'] = from_attribute if from_interfaces_flattened is not None: query['from_interfaces_flattened'] = from_interfaces_flattened for relation in catalog.findRelations(query): # we skip relations between contacts (already shown) # nevertheless what about heldposition references for a person: subquery ? if IContactContent.providedBy(relation.from_object): continue # PERFORMANCE TEST TO DO: use directly objects or use the path as request in the portal_catalog to find brain ret.append(relation.from_object) return ret index = ViewPageTemplateFile("templates/contactcontent_backrefs.pt") class DMSTaskParentViewlet(TaskParentViewlet): display_above_element = False
[ "s.geulette@imio.be" ]
s.geulette@imio.be
dea57509913619d26d849ff19edfbe19e5a3a580
8e6530405b5bba192c5a2855eee9d0adb14574fa
/widget.py
e5b4fff1b74263952367bd0feeb88c939eaeb2bb
[]
no_license
kstep/ajenti-mpd
3b07c1527a45b90ac980e5998b41971215f7f8d9
666676fe08d01a5c0e6fd478c7c496e4ee0ebd02
refs/heads/master
2023-08-18T01:55:15.321386
2014-09-03T17:10:30
2014-09-03T17:10:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
from ajenti.api import plugin from ajenti.api.sensors import Sensor from ajenti.plugins.dashboard.api import DashboardWidget from ajenti.ui.binder import Binder @plugin class MpdWidget (DashboardWidget): name = _('MPD Status') icon = 'music' def init(self): self.append(self.ui.inflate('mpd:widget')) Binder(Sensor.find('mpd').value(), self.find('mpd')).populate()
[ "me@kstep.me" ]
me@kstep.me
767c1e70373576b3d4094240c8a8600259f84576
26e91aead18d0fad6f5ce8fc4adf7d8e05a2f07f
/byceps/services/ticketing/barcode_service.py
559b9b6769e392dfbe4934e9227ba03bcb05f85b
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
leathe/byceps
40c1f8a1aab3521fcac45d88eab6364d448d4e67
cd0c618af63fed1cd7006bb67da46eac0ddbb1c7
refs/heads/master
2020-12-02T09:02:51.087511
2019-12-14T17:00:22
2019-12-14T17:00:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,595
py
""" byceps.services.ticketing.barcode_service ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Render Code 128 (set B) barcodes as SVG images. This implementation only supports code set B. :Copyright: 2006-2019 Jochen Kupperschmidt :License: Modified BSD, see LICENSE for details. """ from jinja2 import Template # As seen on https://en.wikipedia.org/wiki/Code_128#Bar_code_widths # # (Value, 128B, Widths) VALUES_CHARS_WIDTHS = [ ( 0, ' ', '212222' ), ( 1, '!', '222122' ), ( 2, '"', '222221' ), ( 3, '#', '121223' ), ( 4, '$', '121322' ), ( 5, '%', '131222' ), ( 6, '&', '122213' ), ( 7, '\'', '122312' ), ( 8, '(', '132212' ), ( 9, ')', '221213' ), ( 10, '*', '221312' ), ( 11, '+', '231212' ), ( 12, ',', '112232' ), ( 13, '-', '122132' ), ( 14, '.', '122231' ), ( 15, '/', '113222' ), ( 16, '0', '123122' ), ( 17, '1', '123221' ), ( 18, '2', '223211' ), ( 19, '3', '221132' ), ( 20, '4', '221231' ), ( 21, '5', '213212' ), ( 22, '6', '223112' ), ( 23, '7', '312131' ), ( 24, '8', '311222' ), ( 25, '9', '321122' ), ( 26, ':', '321221' ), ( 27, ';', '312212' ), ( 28, '<', '322112' ), ( 29, '=', '322211' ), ( 30, '>', '212123' ), ( 31, '?', '212321' ), ( 32, '@', '232121' ), ( 33, 'A', '111323' ), ( 34, 'B', '131123' ), ( 35, 'C', '131321' ), ( 36, 'D', '112313' ), ( 37, 'E', '132113' ), ( 38, 'F', '132311' ), ( 39, 'G', '211313' ), ( 40, 'H', '231113' ), ( 41, 'I', '231311' ), ( 42, 'J', '112133' ), ( 43, 'K', '112331' ), ( 44, 'L', '132131' ), ( 45, 'M', '113123' ), ( 46, 'N', '113321' ), ( 47, 'O', '133121' ), ( 48, 'P', '313121' ), ( 49, 'Q', '211331' ), ( 50, 'R', '231131' ), ( 51, 'S', '213113' ), ( 52, 'T', '213311' ), ( 53, 'U', '213131' ), ( 54, 'V', '311123' ), ( 55, 'W', '311321' ), ( 56, 'X', '331121' ), ( 57, 'Y', '312113' ), ( 58, 'Z', '312311' ), ( 59, '[', '332111' ), ( 60, '\\', '314111' ), ( 61, ']', '221411' ), ( 62, '^', '431111' ), ( 63, '_', '111224' ), ( 64, '`', '111422' ), ( 65, 'a', '121124' ), ( 66, 'b', '121421' ), ( 67, 'c', '141122' ), ( 68, 'd', '141221' ), ( 69, 'e', '112214' ), ( 70, 'f', '112412' ), ( 71, 'g', '122114' ), ( 72, 'h', '122411' ), ( 73, 'i', '142112' ), ( 74, 'j', '142211' ), ( 75, 'k', '241211' ), ( 76, 'l', '221114' ), ( 77, 'm', '413111' ), ( 78, 'n', '241112' ), ( 79, 'o', '134111' ), ( 80, 'p', '111242' ), ( 81, 'q', '121142' ), ( 82, 'r', '121241' ), ( 83, 's', '114212' ), ( 84, 't', '124112' ), ( 85, 'u', '124211' ), ( 86, 'v', '411212' ), ( 87, 'w', '421112' ), ( 88, 'x', '421211' ), ( 89, 'y', '212141' ), ( 90, 'z', '214121' ), ( 91, '{', '412121' ), ( 92, '|', '111143' ), ( 93, '}', '111341' ), ( 94, '~', '131141' ), ( 95, 'DEL', '114113' ), ( 96, 'FNC_3', '114311' ), ( 97, 'FNC_2', '411113' ), ( 98, 'Shift_A', '411311' ), ( 99, 'Code_C', '113141' ), (100, 'FNC_4', '114131' ), (101, 'Code_A', '311141' ), (102, 'FNC_1', '411131' ), (103, 'Start_A', '211412' ), (104, 'Start_B', '211214' ), (105, 'Start_C', '211232' ), (106, 'Stop', '2331112'), ] VALUES_TO_WIDTHS = {value: width for value, _, width in VALUES_CHARS_WIDTHS} CHARS_TO_VALUES = {char: value for value, char, _ in VALUES_CHARS_WIDTHS} SVG_TEMPLATE = Template(''' <svg xmlns="http://www.w3.org/2000/svg" width="{{ image_width }}" height="{{ image_height }}" viewBox="0 0 {{ image_width }} {{ image_height }}"> <rect width="{{ image_width }}" height="{{ image_height }}" fill="white"/> {%- for bar_x, bar_width in bars %} <rect x="{{ bar_x }}" width="{{ bar_width }}" height="{{ image_height }}"/> {%- endfor %} </svg> '''.strip()) def render_svg(text, *, thickness=3): values = list(_generate_values(text)) bar_widths = list(_generate_bars(values, thickness)) return _generate_svg(bar_widths) def _generate_values(text): check_digit_calculation_values = [] # start symbol start_symbol_value = _to_value('Start_B') yield start_symbol_value check_digit_calculation_values.append(start_symbol_value) text_values = list(map(_to_value, text)) yield from text_values check_digit_calculation_values.extend(text_values) # check digit symbol check_digit_value = _calculate_check_digit_value( check_digit_calculation_values ) yield check_digit_value # stop symbol stop_symbol_value = _to_value('Stop') yield stop_symbol_value def _to_value(char): return CHARS_TO_VALUES[char] def _calculate_check_digit_value(values): # Important: *Both* the start code *and* the # first encoded symbol are in position 1. symbol_products_sum = sum( max(1, position) * value for position, value in enumerate(values) ) return symbol_products_sum % 103 def _generate_bars(values, thickness): for value in values: for width in VALUES_TO_WIDTHS[value]: bar_width = int(width) * thickness yield bar_width def _generate_svg(bar_widths, *, image_height=100): image_width = sum(bar_widths) x = 0 # Calculate where the individual bars are positioned # horizontally and how wide they are. bar_positions_and_widths = list( _calculate_bar_positions_and_widths(x, bar_widths) ) # Render template. return SVG_TEMPLATE.render( image_width=image_width, image_height=image_height, bars=bar_positions_and_widths, ) def _calculate_bar_positions_and_widths(start_x, bar_widths): """Yield a (horizontal position, width) pair for each bar.""" x = start_x draw_bar = True for width in bar_widths: if draw_bar: yield x, width draw_bar = not draw_bar x += width
[ "homework@nwsnet.de" ]
homework@nwsnet.de
0bc79cb00c697176464895afec40839910b3ffad
8c85ec94d1d7cfd5c0df2053b46321ff8e006c9c
/cm.py
89bd9ab07cf5223d2b182157acfb7afe2575023a
[]
no_license
onikazu/Doppel
c63ade484dd4aaec31a6147a0355412532907324
4eef6867f6aa94fec6a4f25f535179055e5ef110
refs/heads/master
2020-04-12T13:45:54.053763
2018-12-20T05:30:29
2018-12-20T05:30:29
162,531,021
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
import cv2 cap = cv2.VideoCapture(0) # 引数はカメラのデバイス番号 while True: ret, frame = cap.read() print(frame.shape)
[ "kazuki.masumura@adminnoMacBook-puro-8.local" ]
kazuki.masumura@adminnoMacBook-puro-8.local
14e4c8929a0590efb9cd81847f91e95ae862b8a5
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_110/ch4_2020_10_07_12_11_33_920910.py
a8fd249a14f02121d81fa5213aecbdbb654e4af1
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
def classifica_idade(idade): if idade <= 11: print ("crianca") elif 12 <= idade and idade<= 17: print ("adolescente") else: print("adulto")
[ "you@example.com" ]
you@example.com
6db3e27cddc408c3fa4ad706ac9ab210f5fe9b00
eb05fd62ad7085dbe37e93db1beeb423ccbd1dbe
/5.10-shellsort.py
5fcfad8fd3bc286627ada9406a048413391e4234
[]
no_license
hechty/datastructure
cb552099f329fa7c2a500b24b62380d279cdc90f
32adfe893b384e7a004fc045b9c6dbf1870ba7a0
refs/heads/master
2021-01-20T09:41:43.998692
2017-06-03T03:45:12
2017-06-03T03:45:12
90,276,738
1
0
null
null
null
null
UTF-8
Python
false
false
1,296
py
#! /usr/bin/env python3 from time import clock from random import randint def insertion_sort(alist): orded_list = alist[:1] for i in range(len(alist)-1): new_data = alist[i+1] orded_list = insertion(new_data, orded_list) alist = orded_list def insertion(new_data, orded_list): posi = 0 for i in range(len(orded_list) - 1, -1, -1): if new_data >= orded_list[i]: posi = i + 1 break orded_list.insert(posi, new_data) return orded_list def shellsort(alist): gap = len(alist) // 2 while gap > 0: for startposi in range(gap): for i in range(startposi + gap, len(alist), gap): currposi = i while alist[currposi] < alist[currposi - gap] and currposi - gap >= 0: alist[currposi],alist[currposi - gap] = alist[currposi - gap],alist[currposi] currposi = currposi - gap gap = gap // 2 return alist ls = [randint(0,1000) for _ in range(1000)] start = clock() for i in range(10): insertion_sort(ls) end = clock() print("insertion_sort runningtime:",end-start) print(ls[:15]) start = clock() for i in range(10): shellsort(ls) end = clock() print("shell_sort runningtime:", end - start) print(ls[:15])
[ "hchw1230@qq.com" ]
hchw1230@qq.com
06f183d8e03559a241d25b8ab307285ffe3613c2
19b701d35c1f566ac4e1823708603889924c91cb
/routes.py
fcf6bc61692426954d14232f4c4a3bc3c19b004d
[]
no_license
peterdorsi/made-with-angular
dae89649c824f949a3eaf54991f38399612e684d
96981448bd05868b097a83a219ce1261855ee010
refs/heads/master
2021-01-22T19:13:45.849537
2017-09-05T01:15:47
2017-09-05T01:15:47
102,416,384
0
0
null
2017-09-05T00:59:47
2017-09-05T00:59:47
null
UTF-8
Python
false
false
5,746
py
from flask import Flask, render_template, request, redirect import requests # import requests_toolbelt.adapters.appengine import json from flask_sslify import SSLify app = Flask(__name__) sslify = SSLify(app) # Use the App Engine Requests adapter. This makes sure that Requests uses # URLFetch. # requests_toolbelt.adapters.appengine.monkeypatch() @app.route("/") def index(): categories = { "google": {"name": "By Google", "sites": []}, "books-reference": {"name": "Books & Reference", "sites": []}, "business": {"name": "Business", "sites": []}, "communication": {"name": "Communication", "sites": []}, "education": {"name": "Education", "sites": []}, "entertainment": {"name": "Entertainment", "sites": []}, "finance": {"name": "Finance", "sites": []}, "health-fitness": {"name": "Health & Fitness", "sites": []}, "lifestyle": {"name": "Lifestyle", "sites": []}, "media-video": {"name": "Media & Video", "sites": []}, "music-audio": {"name": "Music & Audio", "sites": []}, "news-magazines": {"name": "News & Magazines", "sites": []}, "photography": {"name": "Photography", "sites": []}, "productivity": {"name": "Productivity", "sites": []}, "shopping": {"name": "Shopping", "sites": []}, "social": {"name": "Social", "sites": []}, "sports": {"name": "Sports", "sites": []}, "tools": {"name": "Tools", "sites": []}, "travel-local": {"name": "Travel & Local", "sites": []}, "transportation": {"name": "Transportation", "sites": []}, "weather": {"name": "Weather", "sites": []}, "community": {"name": "From the Community", "sites": []} } r = requests.get('https://s3.amazonaws.com/madewithangular.com/projects.json') projects = json.loads(r.text) for project in reversed(projects): for tag in project['tags']: categories[tag]["sites"].append(project) return render_template('index.html', categories=categories) @app.route("/categories/<category>") def categories(category): categories = { "google": {"name": "By Google", "sites": []}, "books-reference": {"name": "Books & Reference", "sites": []}, "business": {"name": "Business", "sites": []}, "communication": {"name": "Communication", "sites": []}, "education": {"name": "Education", "sites": []}, "entertainment": {"name": "Entertainment", "sites": []}, "finance": {"name": "Finance", "sites": []}, "health-fitness": {"name": "Health & Fitness", "sites": []}, "lifestyle": {"name": "Lifestyle", "sites": []}, "media-video": {"name": "Media & Video", "sites": []}, "music-audio": {"name": "Music & Audio", "sites": []}, "news-magazines": {"name": "News & Magazines", "sites": []}, "photography": {"name": "Photography", "sites": []}, "productivity": {"name": "Productivity", "sites": []}, "shopping": {"name": "Shopping", "sites": []}, "social": {"name": "Social", "sites": []}, "sports": {"name": "Sports", "sites": []}, "tools": {"name": "Tools", "sites": []}, "travel-local": {"name": "Travel & Local", "sites": []}, "transportation": {"name": "Transportation", "sites": []}, "weather": {"name": "Weather", "sites": []}, "community": {"name": "From the Community", "sites": []} } r = requests.get('https://s3.amazonaws.com/madewithangular.com/projects.json') projects = json.loads(r.text) for project in reversed(projects): for tag in project['tags']: if tag == category: categories[tag]["sites"].append(project) return render_template('category.html', category=categories[category]) @app.route("/sites/<site>") def sites(site): r = requests.get('https://s3.amazonaws.com/madewithangular.com/projects.json') projects = json.loads(r.text) s = {} for project in projects: if project['slug'] == site: s = project print s return render_template('site.html', site=s) @app.route("/about") def about(): return render_template('about.html') @app.route("/sitemap.xml") def sitemap(): categories = { "google": {"name": "By Google", "sites": []}, "books-reference": {"name": "Books & Reference", "sites": []}, "business": {"name": "Business", "sites": []}, "communication": {"name": "Communication", "sites": []}, "education": {"name": "Education", "sites": []}, "entertainment": {"name": "Entertainment", "sites": []}, "finance": {"name": "Finance", "sites": []}, "health-fitness": {"name": "Health & Fitness", "sites": []}, "lifestyle": {"name": "Lifestyle", "sites": []}, "media-video": {"name": "Media & Video", "sites": []}, "music-audio": {"name": "Music & Audio", "sites": []}, "news-magazines": {"name": "News & Magazines", "sites": []}, "photography": {"name": "Photography", "sites": []}, "productivity": {"name": "Productivity", "sites": []}, "shopping": {"name": "Shopping", "sites": []}, "social": {"name": "Social", "sites": []}, "sports": {"name": "Sports", "sites": []}, "tools": {"name": "Tools", "sites": []}, "travel-local": {"name": "Travel & Local", "sites": []}, "transportation": {"name": "Transportation", "sites": []}, "weather": {"name": "Weather", "sites": []}, "community": {"name": "From the Community", "sites": []} } r = requests.get('https://s3.amazonaws.com/madewithangular.com/projects.json') projects = json.loads(r.text) return render_template('sitemap.xml', categories=categories, projects=projects), {'Content-Type': 'application/xml'} @app.route("/.well-known/acme-challenge/992pNK1lUhKrHf3iIWuASHa9Wq-5-MtDsHnDS25JU5E") def challenge(): return '992pNK1lUhKrHf3iIWuASHa9Wq-5-MtDsHnDS25JU5E.JOWRB-Zapoo_KR7LqPnalfsmcjZbBDdjBvaVR213WYg' if __name__ == "__main__": app.run(debug=True)
[ "lpolepeddi@gmail.com" ]
lpolepeddi@gmail.com
454a94a13985924e0e27c3014dde5c053e7d4662
ff5c2c9f390da92e083eff64e4ea12483d6bf1e9
/mit601/ch4_hanoi_tower.py
919261f044905ee7f2dc7e53a40cedefc33ebbcb
[]
no_license
MI-7/python
5942a713c7dea355ac6a39df87e129c33ca0e262
df0f1fac9bd6af27a49086026e31595ee7b3926e
refs/heads/master
2021-01-12T09:50:11.963456
2017-01-17T13:38:05
2017-01-17T13:38:05
76,270,209
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
# towers of hanoi steps = 0 # n levels of tower, from pole A to pole B, using pole C def move(n, A, B, C): if n == 1: print "move 1 from ", A, " to ", B global steps steps+=1 else: move(n-1, A, C, B) # move(n, A, B, C) print "move ", n , " from ", A, " to ", B global steps steps+=1 move(n-1, C, B, A) move(5, 'a', 'b', 'c') print "total steps: ", steps
[ "leonchan@chenliangdeiMac-2.local" ]
leonchan@chenliangdeiMac-2.local
5a73c4dea7915f11e4b8c87c2ccec2c0b32b93f2
9aa0a487f5ec98b752b079a4cc283223ac1d9299
/src/pathbuild.py
8c4076e2b7f9a2e7d4ba0bbfa3b8645255b0a56d
[]
no_license
subsetOfInsanity/tourent-plans
8e8e5430f6ef1de04caf01ed8308ee321da6601e
3014d794b09b1eb56a249e8e8fd812bea13d1080
refs/heads/master
2020-12-24T12:52:26.334462
2012-10-27T16:40:43
2012-10-27T16:40:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,615
py
#!/usr/bin/env python # encoding: utf-8 """ pathbuild.py creates paths around various places (TSP) uses google maps api for distance measurement and point-to-point route creation Created by Benjamin Fields on 2012-01-28. Copyright (c) 2012 . All rights reserved. """ import sys import os import unittest import urllib2 import random from simplejson import loads import numpy as np class PathBuild: uri = "http://maps.googleapis.com/maps/api/distancematrix/json?origins={points_list}&destinations={points_list}&sensor=false" def __init__(self, points): self.points = points self.dists = None def get_matrix(self): if not self.dists: points_as_str = '|'.join([','.join([lat,lon]) for (lat,lon) in self.points]) print "opening", PathBuild.uri.format(points_list=points_as_str) raw_matrix = loads(urllib2.urlopen(PathBuild.uri.format(points_list=points_as_str)).read())['rows'] print raw_matrix self.dists = np.zeros((len(self.points),len(self.points))) for idx, row in enumerate(raw_matrix): print "adding", row, "to", idx self.dists[idx] =[item['distance']['value'] for item in row['elements'] if item['status']=='OK'] return self.dists def get_random_path(self): return random.sample(self.points, len(self.points)) def get_optimal_path(self): """ tsp here """ return self.get_random_path() class PathBuildTests(unittest.TestCase): def setUp(self): pass if __name__ == '__main__': unittest.main()
[ "me@benfields.net" ]
me@benfields.net
a70a5b7c8d235f92204efb35d6b0f4c4767e6633
7d192e7a63ce7f4e294ea0f2b6639aecddcc7167
/models.py
023e9609e2a722a04f26f325b5d90ac180b33803
[]
no_license
WaterCountry/BottleBlog
2a48149301733354d686caaf3fb438783d45d87f
2cf19a1d63045cd6972d35cabebb1cf00474a37d
refs/heads/master
2020-05-26T06:12:46.695588
2019-06-05T14:34:14
2019-06-05T14:34:14
188,132,501
0
0
null
null
null
null
UTF-8
Python
false
false
2,352
py
from pony.orm import * from datetime import date,datetime db=Database('sqlite', filename="blog.sqlite", create_db=True) class User(db.Entity): name=Required(str) nick=Required(str) password=Required(str) email=Required(str,unique=True) regdate=Required(date) blogs=Set("Blog") photos=Set("Photo") class Blog(db.Entity): title=Required(str) content=Required(str) update=Required(date) author=Required(User) class Photo(db.Entity): name=Required(str) ext=Required(str) url=Required(str) size=Required(str) update=Required(date) author=Required(User) class Program(db.Entity): title=Required(str) code=Required(str) level=Required(str) update=Required(date) sql_debug(True) db.generate_mapping(create_tables=True) today=datetime.now() @db_session def populate_database(): if select(u for u in User).count()>0: addtable_photo() addtable_program() return u1=User(name='zhou',nick='fun',password='123',email='zhou@bottle.com',regdate=today) u2=User(name='shen',nick='阳光',password='123',email='shen@bottle.com',regdate=today) Blog(title='Every day',content='Meet a better self every day !',update=today,author=u1) Blog(title='每一天',content='每一天遇见更好的自己!',update=today,author=u2) @db_session def addtable_program(): if select(p for p in Program).count()>0: return Program(title='a+b',code='a=1' 'b=2' 'c=a+b' 'print(c) ' ,level='0',update=today) @db_session def addtable_photo(): if select(p for p in Photo).count()>0: return Photo(name='1',ext='jpg',url='/store/1.jpg',size='557kb',update=today,author=User[1]) Photo(name='2',ext='jpg',url='/store/2.jpg',size='40kb',update=today,author=User[1]) populate_database() @db_session def check_login(username,password): loginuser = select(u for u in User if u.name == username and u.password == password).first() return loginuser @db_session def update_upload(): ps=select(p for p in Photo) if ps.count()>0: for p in ps: p.url='/static'+p.url @db_session def del_upload(): ps=select(p for p in Photo) for p in ps: p.delete()
[ "33112897@qq.com" ]
33112897@qq.com
bcfc8ca641c899996b681c98278808626a82b869
fc4bd93298961d886f59ac8f75cfe713b127eaa4
/prog10.py
90f953415a309cef9a631d20337c6ec2eb742925
[]
no_license
Kamaljeetsingh02/pythonProject1
39f13c2226a80c6bff6795288b40efb29a4bc86d
e9fd64350c436a99d134ccf1b02008f84cdf10d1
refs/heads/master
2023-07-28T21:40:04.943198
2021-09-20T06:20:55
2021-09-20T06:20:55
408,332,618
0
0
null
null
null
null
UTF-8
Python
false
false
464
py
# def sum(*sum): # # return result # # for x in num: # # result += (x) # # sum(1,2) opt=int(input("plz enter 1 for add,2 for subtract,3 for multiply and 4 for divide")) a=[] b=int(input("please en no")) a.append(int(b)) while b: b = input("please en no") if b: a.append(int(b)) print(a) def calculator(opt,*args): res=0 for arg in args: if(opt==1): res +=arg return res calculator()
[ "kamalrai98765@gmail.com" ]
kamalrai98765@gmail.com