blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
a11b6df5b3eab6c6aa3df119ccb976ed561e0356
a1be38a8108f03dfef02a471bdd3daad6f3ae9af
/graph_garden/cli.py
9f594e027175196a2af23cbf038462aaefa16b1e
[ "Apache-2.0" ]
permissive
ldtoolkit/graph-garden
1bd4882d150d7ded6dbe583559071eb848b41375
335761ef1c0b98c644b61236561f5ac93eb5a54e
refs/heads/master
2022-12-15T13:54:06.068520
2020-09-19T12:23:25
2020-09-19T12:23:25
296,370,201
1
0
null
null
null
null
UTF-8
Python
false
false
1,673
py
from graph_garden import arangodb from pathlib import Path from typing import Optional import sys import typer arangodb_app = typer.Typer() app = typer.Typer() app.add_typer(arangodb_app, name="arangodb") @arangodb_app.command() def list_versions(clear_cache: bool = False): for version in arangodb.list_versions(clear_cache=clear_cache): print(version) @arangodb_app.command() def install(path: Path = arangodb.DEFAULT_INSTALL_PATH, version: Optional[str] = None): arangodb.install(path=path, version=version) @arangodb_app.command() def start( exe_path: Path = arangodb.DEFAULT_INSTALL_PATH, data_path: Path = arangodb.DEFAULT_DATA_PATH, connection_uri: str = arangodb.DEFAULT_CONNECTION_URI, database: str = arangodb.SYSTEM_DATABASE, username: str = arangodb.DEFAULT_USERNAME, password: str = arangodb.DEFAULT_PASSWORD, ): arangodb.start( exe_path=exe_path, data_path=data_path, connection_uri=connection_uri, database=database, username=username, password=password, ) @arangodb_app.command() def stop(): arangodb.stop() @arangodb_app.command() def is_running( connection_uri: str = arangodb.DEFAULT_CONNECTION_URI, database: str = arangodb.SYSTEM_DATABASE, username: str = arangodb.DEFAULT_USERNAME, password: str = arangodb.DEFAULT_PASSWORD, ): status_code = ( 0 if arangodb.is_running( connection_uri=connection_uri, database=database, username=username, password=password, ) else 1 ) sys.exit(status_code)
[ "infroma@gmail.com" ]
infroma@gmail.com
caff9b449e11c9ecb37a05412c24abcb58c8f83e
6ebe740bfeee7d0782ce95d9b4256ebb430599ac
/hitcount/migrations/0005_auto_20180511_1446.py
4c3f1ff9121d0615e568bfa2f87b6ddd41f80ca8
[ "MIT" ]
permissive
fsymonenko/django-hitcount
61635f6d00ee02788cae78470dd6e71d4136ae2d
cb7690a9a6e9a59da2a63abd6d915855963f8c20
refs/heads/master
2021-05-25T16:09:52.125038
2018-12-21T08:59:47
2018-12-21T08:59:47
253,820,160
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2018-05-11 11:46 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hitcount', '0004_auto_20180427_1254'), ] operations = [ migrations.AlterField( model_name='hit', name='ip', field=models.CharField(db_index=True, editable=False, max_length=40), ), migrations.AlterField( model_name='hit', name='session', field=models.CharField(db_index=True, editable=False, max_length=40), ), ]
[ "megoloman@ukr.net" ]
megoloman@ukr.net
ab949e014ed3ce90f3961aac4caac1c65008e47d
f5a62d76dcb1534ff3100d14a03856ca630ea40f
/src/yamlu/__init__.py
20b5316a8e3a6cec15beff51bc225c55675c6af7
[ "Apache-2.0" ]
permissive
bernhardschaefer/yamlu
8a9b8cbee9ecccc423edce9e18379b5dacf34201
c4e4aa09f3be41eef5cec6372f01dccb78c435fd
refs/heads/main
2022-11-12T07:35:03.832266
2022-10-26T19:11:25
2022-10-26T19:11:25
169,756,110
0
0
null
null
null
null
UTF-8
Python
false
false
999
py
import sys from yamlu.img import read_img, plot_img, plot_imgs, plot_img_paths, plot_anns from yamlu.misc import flatten from yamlu.np_utils import bin_stats from yamlu.path import ls, glob if sys.version_info[:2] >= (3, 8): # TODO: Import directly (no need for conditional) when `python_requires = >= 3.8` from importlib.metadata import PackageNotFoundError, version # pragma: no cover else: from importlib_metadata import PackageNotFoundError, version # pragma: no cover try: # Change here if project is renamed and does not equal the package name dist_name = __name__ __version__ = version(dist_name) except PackageNotFoundError: # pragma: no cover __version__ = "unknown" finally: del version, PackageNotFoundError all = [ "read_img", "plot_img", "plot_imgs", "plot_img_paths", "plot_anns", "flatten", "bin_stats", "ls", "glob", ] try: from yamlu.pytorch import isin all.append("isin") except ImportError: pass __all__ = all
[ "bernhard.schaefer@sap.com" ]
bernhard.schaefer@sap.com
038378c030394f3b2bf97bb64ff1ad870e004712
cc415b328a443937016ede691badddc6ac116055
/Python/List Comprehensions.py
b303aa8b0ea992b5bbe9670aa390181498415fc6
[ "MIT" ]
permissive
hakerarena/HackerRank-Solutions
0480278c5174f0676fd8ef5c78681fa6e624f823
4159711286231fd4eb45b65c5a44bd72f7352889
refs/heads/master
2022-04-16T18:03:24.686060
2020-04-13T22:16:56
2020-04-13T22:16:56
189,284,284
0
0
null
2020-04-13T22:16:57
2019-05-29T19:14:16
Java
UTF-8
Python
false
false
261
py
/*Code provided by hakerarenatutorials.wordpress.com*/ if __name__ == '__main__': x = int(input()) y = int(input()) z = int(input()) n = int(input()) print([[i,j,k] for i in range(x+1) for j in range(y+1) for k in range(z+1) if(i+j+k!=n)])
[ "noreply@github.com" ]
hakerarena.noreply@github.com
22532dae8e0d9b5ab6b14479bf3acb78f77c966f
6689007e1eec7644a236dead507d2209cf34609d
/accretionStructures/linearAccDisk.py
6573e5d36b45f8452d49694542fb116e59106fa8
[]
no_license
jomen93/RayTrace
daf3109902b5e4568800c3a6f2b50b3f4ab84126
0a2b23400ab76b18660f5dd6d147ff82fe9b3a23
refs/heads/master
2020-03-26T06:44:07.995683
2018-08-27T18:12:50
2018-08-27T18:12:50
144,619,342
1
0
null
2018-08-13T18:37:45
2018-08-13T18:37:44
null
UTF-8
Python
false
false
571
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 19 23:16:05 2018 @author: ashcat """ import numpy as np class Disk: def __init__(self, rData, R_in = 3., R_out = 5.): self.rData = rData self.Shape = np.shape(self.rData) self.R_out = R_out*np.ones(self.Shape) self.R_in = R_in*np.ones(self.Shape) self.m = (1.-0.)/(self.R_in - self.R_out) self.intens = self.m * (self.rData - self.R_out) self.image = self.intens*(self.R_in <= self.rData) * (self.rData <= self.R_out)
[ "eduardalexis@gmail.com" ]
eduardalexis@gmail.com
c7d76c19005b0196b147820d46386e2c1d922bb2
1d528bb263879737eae6f483fac3590ed65f32f9
/Homework/Lesson 7/Homework Lesson 7 - 1.py
de5b5a9c1666bcfab04e9dd32402e9bf4ff369e9
[]
no_license
DAMaas/V1D-Dion_Maas
323417aae2222b13f6f98c5dec8945782b1d1569
0de4859656a9ac9757a1cfc052623c6b7749481d
refs/heads/master
2020-03-29T12:16:18.212101
2019-09-29T17:11:06
2019-09-29T17:11:06
149,891,403
1
0
null
null
null
null
UTF-8
Python
false
false
408
py
# Homework Lesson 7 - 1 def convert(tempCelsius): res = ((tempCelsius*1.8)+32) return res def table(vanafTemp, totTemp, gradenPerStap): print('{:5} {:5}'.format(" F ", " C ")) for tempCelsius in range(vanafTemp, totTemp, gradenPerStap): tempFahrenheit = convert(tempCelsius) print('{:5} {:5}'.format(tempFahrenheit, float(tempCelsius))) print(table(-30, 50, 10))
[ "dion.maas@gmail.com" ]
dion.maas@gmail.com
985547429de5e26f0c8cd7b885546ad0e5d927f0
f7288d0406579863364129b588cd24a6ae7b327c
/manage.py
0440701e39fd72af63b495efe776416cd65287d7
[]
no_license
tcosta84/sample_djangoapp
6a3d98903730f2f2c4aafb887dfa026d2e95ed3a
e57e9969e8f74cd3e256825ed0cedc9c6c83bb1f
refs/heads/master
2020-04-21T14:34:28.999094
2014-11-23T16:04:31
2014-11-23T16:04:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sample_djangoapp.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "thiagodacosta@gmail.com" ]
thiagodacosta@gmail.com
955892170707a2c8a470295357132c1efdd22686
3d4a3bebf614086cce8a22510d8c27c0bea52f92
/untitled0.py
5bd8d5dbe7f74619061831dab5515e2402fe2e77
[]
no_license
caelus95/MantaOcean
dc031518051daac9b718b4c7664a057a956475f8
dbc5774f6ecd949a8d8f58c66d0101f816b90dc9
refs/heads/master
2023-06-18T22:00:26.353952
2021-06-29T13:25:48
2021-06-29T13:25:48
365,965,350
0
0
null
null
null
null
UTF-8
Python
false
false
9,731
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jun 29 13:57:54 2021 @author: caelus """ PKG_path = '/home/caelus/dock_1/Working_hub/LGnDC_dep/python_cent/MantaPKG/' import sys sys.path.append(PKG_path) from Manta_Signals.procc_index import sig_pro, linearRegress4Cube from Manta_Signals.utility import nc2npy import os import numpy as np import pandas as pd import xarray as xr from netCDF4 import Dataset from tqdm import tqdm import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from mpl_toolkits.axes_grid1 import make_axes_locatable r_path4 = '/home/caelus/dock_1/Working_hub/DATA_dep/Kuroshio/ALL/analysis_sigs/' Sig_set,Corr_map,Annual_mean = sig_pro(r_path4,['1993-01-01',324,300]) Sig_set['dates'] = pd.to_datetime(Sig_set.index).strftime('%Y-%m') minlon,maxlon = 112,180 minlat,maxlat = 5,30 # data_a_6M = data_a_6M.mean(dim='latitude') def MantaCurl2D(u,v,dx=28400.0,dy=28400.0 ): import numpy as np ''' dx = 28400.0 # meters calculated from the 0.25 degree spatial gridding dy = 28400.0 # meters calculated from the 0.25 degree spatial gridding ''' u_T = u.transpose([1,0]) v_T = v.transpose([1,0]) du_dx, du_dy = np.gradient(u_T, dx,dy) dv_dx, dv_dy = np.gradient(v_T, dx,dy) curl = dv_dx - du_dy return curl.transpose([1,0]) KVTe = Sig_set.KVTe_index_2Y_Rm ADT_t = xr.open_dataset('/home/caelus/dock_1/Working_hub/DATA_dep/CDS/T_CDS_monthly_199301_201912.nc',decode_times=True) ADT_t = ADT_t.drop(['crs','lat_bnds','lon_bnds','err','sla','ugosa','vgosa']) ADT_t = ADT_t.loc[dict(latitude=slice(minlat,maxlat),longitude=slice(minlon,maxlon),nv= 1 )] # Calculating Vorticity (Curl) tmp_ugos = ADT_t.ugos.values tmp_vgos = ADT_t.vgos.values t,at,on = tmp_ugos.shape Curl = np.zeros_like(tmp_ugos) for i in range(t): Curl[i,:,:] = MantaCurl2D(tmp_ugos[i,:,:],tmp_vgos[i,:,:]) CURL = xr.Dataset( { 'curl': (["time","latitude", "longitude"], Curl)#, # "mask": (["y","x"],mask) }, coords={ "longitude": (["longitude"], ADT_t.longitude), "latitude": (["latitude"], ADT_t.latitude), "time": (['time'], ADT_t.time), # "reference_time": pd.Timestamp("2014-09-05"), },) # Calculating EKE ADT_t['EKE'] = (ADT_t.ugos*2 + ADT_t.vgos*2)/2 # Merge data ADT_t = xr.merge([ADT_t,CURL]) # Data 2 anomaly ADT_t = ADT_t - ADT_t.mean(dim='time') # ------Masking (Extension) -------- import copy mask_mlon,mask_Mlon = 130,190 mask_mlat,mask_Mlat = 30, 40 tmp_data = copy.deepcopy(ADT_t) tmp_data = tmp_data.where( (tmp_data.longitude<mask_mlon) | (tmp_data.longitude>mask_Mlon) |\ (tmp_data.latitude<mask_mlat) | (tmp_data.latitude>mask_Mlat),drop=False) tmp_data.drop(['EKE','adt','Curl']) ADT_.drop(['ugos','vgos']) ADT_t = xr.merge([tmp_data,ADT_t]) # -------------- Time=[['1994-12','1999-01'],['2003-01','2005-03'],['2006-12','2009-07']] # Time_p1 = ['1994-12','1999-01'] # Time_p2 = ['2003-01','2005-03'] # Time_p3 = ['2006-12','2009-07'] for t in Time: PN_data = ADT_t.loc[dict(time=slice(t[0],t[1]))] PN_data = PN_data.mean(dim='time') # P1_data = ADT_t.loc[dict(time=slice(Time_p1[0],Time_p1[1]))] # P2_data = ADT_t.loc[dict(time=slice(Time_p2[0],Time_p2[1]))] # P3_data = ADT_t.loc[dict(time=slice(Time_p3[0],Time_p3[1]))] # P1 = P1_data.mean(dim='time') # P2 = P2_data.mean(dim='time') # P3 = P3_data.mean(dim='time') # ============================================================================= # ============================================================================= # ============================================================================= # # # # ============================================================================= # ============================================================================= # ============================================================================= # ------------- def r_vector4cube(x,y,data1,data2,factor): xx = x.values.shape[0] yy = y.values.shape[0] a = np.arange(0,xx,factor[0]) b = np.arange(0,yy,factor[1]) r_x, r_y = x[a], y[b] r_data1 = data1.where( (data1.longitude==r_x) & (data1.latitude==r_y), drop=True ) r_data2 = data2.where( (data2.longitude==r_x) & (data2.latitude==r_y), drop=True ) return r_x, r_y, r_data1, r_data2 figdata11 = P2.adt.values lon11 = P1.adt.longitude lat11 = P1.adt.latitude r_x12, r_y12, r_data121,r_data122 = r_vector4cube(P1.ugos.longitude,P1.ugos.latitude, P2.ugos,P2.vgos,[4,4]) figdata121 = r_data121 figdata122 = r_data122 lon12 = r_x12 lat12 = r_y12 figdata13 = P2.EKE.values # lon13 = P1.adt.longitude # lat13 = P1.adt.latitude lon_m11, lat_m11 = np.meshgrid(lon11,lat11) lon_m12, lat_m12 = np.meshgrid(lon12,lat12) #------------- plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" plt.rcParams['axes.linewidth'] = 3 # plt.rcParams['axes.grid'] = False plt.rcParams['xtick.labeltop'] = False plt.rcParams['xtick.labelbottom'] = True plt.rcParams['ytick.labelright'] = False plt.rcParams['ytick.labelleft'] = True # w_path_sig = '/home/caelus/dock_1/Working_hub/DATA_dep/Kuroshio/ALL/task_adt/1/' fig, ax = plt.subplots(figsize=(18,5),linewidth=1) ax = plt.gca() m = Basemap(projection='cyl',llcrnrlat=minlat,urcrnrlat=maxlat,\ llcrnrlon=minlon,urcrnrlon=maxlon,resolution='i') # lon_m, lat_m = np.meshgrid(lon_00,lat_00) # x, y = m(lon, lat) m.fillcontinents(color='black',lake_color='black') m.drawcoastlines() m.drawparallels(np.arange(-80.,81.,5.),labels=[True,False,False,False], dashes=[2,2],fontsize=22,fontweight='bold',color='k') m.drawmeridians(np.arange(-180.,181.,10.),labels=[False,False,False,True], dashes=[2,2],fontsize=22,fontweight='bold',color='k') plt.title('b) ADTa UVa Mean [2003-01, 2005-03] ', fontproperties='',loc='left',pad=15,fontsize=28,fontweight='regular') #plt.suptitle(' UV (mean flow) & speed (anomaly) ',fontstyle='italic',position=(0.5, .92),fontsize=20) # cs1 = m.contour(lon_m11,lat_m11,np.flipud(figdata111[n,:,:]),colors='grey',linewidths=2.5,levels=10) # plt.clim(-3.3,3.3) # plt.clabel(cs1,fontsize=10,fmt='%1.1f',colors='k') cs2 = m.pcolormesh(lon_m11,lat_m11,figdata11*10,cmap=plt.cm.get_cmap('seismic'),shading='gouraud') plt.clim(-1.5,1.5) # plt.clim(-max_figdata02,max_figdata02) q = m.quiver(lon_m12,lat_m12,figdata121,figdata122, scale=2.5,headwidth=7.5,headaxislength=10,headlength=13,color='k', minlength=1,edgecolor='y',minshaft=1.3,alpha=.7) # plt.axis('equal') # Unit vector p = plt.quiverkey(q,115.,29,.1,"0.1 m/s",coordinates='data',color='r', labelpos='S',alpha=1,labelcolor='w',fontproperties={'size':16}, labelsep=0.13) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="2.5%", pad=0.1) cax.tick_params(labelsize=15) cax.set_ylabel('',{'fontsize':20,'fontweight':'bold','style':'italic'}) #label # h = plt.colorbar(label='',cax=cax); h = plt.colorbar(label='$10^{-1} [m]$',cax=cax); # plt.savefig(w_path01+'Climatology_WSC_Press',bbox_inches='tight') plt.tight_layout() # plt.savefig(w_path_sig+'ADTa_GeoUVa_'+Sig_set.dates[n]) plt.show() # n+=1 figdata11 = P2.adt.values # r_x12, r_y12, r_data121,r_data122 = r_vector4cube(P1.ugos.longitude,P1.ugos.latitude,P3.ugos,P3.vgos,[3,3]) # figdata121 = r_data121 # figdata122 = r_data122 lon12 = r_x12 lat12 = r_y12 figdata13 = P2.EKE.values # ----------EKE ------------- fig, ax = plt.subplots(figsize=(18,5),linewidth=1) ax = plt.gca() m = Basemap(projection='cyl',llcrnrlat=minlat,urcrnrlat=maxlat,\ llcrnrlon=minlon,urcrnrlon=maxlon,resolution='i') # lon_m, lat_m = np.meshgrid(lon_00,lat_00) # x, y = m(lon, lat) m.fillcontinents(color='black',lake_color='black') m.drawcoastlines() m.drawparallels(np.arange(-80.,81.,5.),labels=[True,False,False,False], dashes=[2,2],fontsize=22,fontweight='bold',color='k') m.drawmeridians(np.arange(-180.,181.,10.),labels=[False,False,False,True], dashes=[2,2],fontsize=22,fontweight='bold',color='k') plt.title('[Positive] EKEa Mean [2003-01, 2005-03] ', fontproperties='',loc='left',pad=15,fontsize=28,fontweight='regular') #plt.suptitle(' UV (mean flow) & speed (anomaly) ',fontstyle='italic',position=(0.5, .92),fontsize=20) # cs1 = m.contour(lon_m11,lat_m11,figdata11*100,colors='k',linewidths=2.5,levels=10,alpha=.45) # plt.clim(-300.3,300.3) # plt.clabel(cs1,fontsize=10,fmt='%1.1f',colors='k') cs2 = m.pcolormesh(lon_m11,lat_m11,figdata13*10,cmap=plt.cm.get_cmap('seismic'),shading='gouraud') plt.clim(-1.5,1.5) # plt.clim(-max_figdata02,max_figdata02) m.plot([120,180,180,120,120],[18,18,28,28,18],color='k',linestyle='--',linewidth=4,alpha=.8) # q = m.quiver(lon_m12,lat_m12,figdata121,figdata122, # scale=2.5,headwidth=7.5,headaxislength=10,headlength=13,color='k', # minlength=1,edgecolor='y',minshaft=1.3,alpha=.7) # # plt.axis('equal') # # Unit vector # p = plt.quiverkey(q,115.,29,.1,"0.1 m/s",coordinates='data',color='r', # labelpos='S',alpha=1,labelcolor='w',fontproperties={'size':16}, # labelsep=0.13) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="2.5%", pad=0.1) cax.tick_params(labelsize=15) cax.set_ylabel('',{'fontsize':20,'fontweight':'bold','style':'italic'}) #label # h = plt.colorbar(label='',cax=cax); h = plt.colorbar(label='$\mathit{10^{-1}[(m/s)^{2}]}$',cax=cax); # plt.savefig(w_path01+'Climatology_WSC_Press',bbox_inches='tight') plt.tight_layout() # plt.savefig(w_path_sig+'ADTa_GeoUVa_'+Sig_set.dates[n]) plt.show() # n+=1
[ "caelus9536@gmail.com" ]
caelus9536@gmail.com
93a9b3ba43545d0eb32bdf3285680ef5b4023855
22b70235f43be24186fcac6b7563d41493563ee0
/tests/test_examples.py
f1c093d6522ae70eadba50aec4503a48940d2e26
[]
no_license
zeta1999/jaxlie
d469da8c5f2c1f7a9644609a377b10f00ceaa9ce
ea6aa6fe914fc6709bc11852f736a99e5a498055
refs/heads/master
2023-02-13T04:16:15.800416
2021-01-16T08:59:06
2021-01-16T08:59:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,926
py
"""Tests with explicit examples. """ import numpy as onp from hypothesis import given, settings from hypothesis import strategies as st from utils import assert_arrays_close, assert_transforms_close, sample_transform import jaxlie @settings(deadline=None) @given(_random_module=st.random_module()) def test_so2_from_to_radians_bijective(_random_module): """Check that we can convert from and to radians.""" radians = onp.random.uniform(low=-onp.pi, high=onp.pi) assert_arrays_close(jaxlie.SO2.from_radians(radians).to_radians(), radians) @settings(deadline=None) @given(_random_module=st.random_module()) def test_se2_translation(_random_module): """Simple test for SE(2) translation terms.""" translation = onp.random.randn(2) T = jaxlie.SE2.from_xy_theta(*translation, theta=0.0) assert_arrays_close(T @ translation, translation * 2) @settings(deadline=None) @given(_random_module=st.random_module()) def test_se3_translation(_random_module): """Simple test for SE(3) translation terms.""" translation = onp.random.randn(3) T = jaxlie.SE3.from_rotation_and_translation( rotation=jaxlie.SO3.identity(), translation=translation, ) assert_arrays_close(T @ translation, translation * 2) def test_se2_rotation(): """Simple test for SE(2) rotation terms.""" T_w_b = jaxlie.SE2.from_rotation_and_translation( rotation=jaxlie.SO2.from_radians(onp.pi / 2.0), translation=onp.zeros(2), ) p_b = onp.array([1.0, 0.0]) p_w = onp.array([0.0, 1.0]) assert_arrays_close(T_w_b @ p_b, p_w) def test_se3_rotation(): """Simple test for SE(3) rotation terms.""" T_w_b = jaxlie.SE3.from_rotation_and_translation( rotation=jaxlie.SO3.from_rpy_radians(onp.pi / 2.0, 0.0, 0.0), translation=onp.zeros(3), ) p_b = onp.array([0.0, 1.0, 0.0]) p_w = onp.array([0.0, 0.0, 1.0]) assert_arrays_close(T_w_b @ p_b, p_w) def test_so3_xyzw_basic(): """Check that we can create an SO3 object from an xyzw quaternion.""" assert_transforms_close( jaxlie.SO3.from_quaternion_xyzw(onp.array([0, 0, 0, 1])), jaxlie.SO3.identity(), ) @settings(deadline=None) @given(_random_module=st.random_module()) def test_so3_xyzw_bijective(_random_module): """Check that we can convert between xyzw and wxyz quaternions.""" T = sample_transform(jaxlie.SO3) assert_transforms_close(T, jaxlie.SO3.from_quaternion_xyzw(T.as_quaternion_xyzw())) @settings(deadline=None) @given(_random_module=st.random_module()) def test_se3_compose(_random_module): """Compare SE3 composition in matrix form vs compact form.""" T1 = sample_transform(jaxlie.SE3) T2 = sample_transform(jaxlie.SE3) assert_arrays_close(T1.as_matrix() @ T2.as_matrix(), (T1 @ T2).as_matrix()) assert_transforms_close( jaxlie.SE3.from_matrix(T1.as_matrix() @ T2.as_matrix()), T1 @ T2 )
[ "yibrenth@gmail.com" ]
yibrenth@gmail.com
752cda865c0dbb20a9dfd40052cb59e8af24741b
d1aefe862050b56314d766939dea97133b84132f
/modules/core/private_channel/private_channel_controller.py
8b07c623715b47ac7a39bb0d9daaa1aefb34fc21
[]
no_license
Nepherius/Mangopie
3ec348ba030385984e2c713481dcc6aab5cd926a
f5293b902bc7217ae053f94c5b5fa85e9cd3cc4d
refs/heads/master
2020-03-11T21:01:04.803139
2018-05-21T10:08:02
2018-05-21T10:08:02
130,253,173
0
0
null
2018-04-27T19:14:44
2018-04-19T17:58:38
Python
UTF-8
Python
false
false
2,522
py
from core.decorators import instance, command, event from tools.command_param_types import Any from core.private_channel_manager import PrivateChannelManager @instance() class PrivateChannelController: def __init__(self): pass def inject(self, registry): self.bot = registry.get_instance("mangopie") self.private_channel_manager = registry.get_instance("private_channel_manager") self.character_manager = registry.get_instance("character_manager") @command(command="join", params=[], access_level="member", description="Join the private channel") def join_cmd(self, channel, sender, reply, args): self.private_channel_manager.invite(sender.char_id) @command(command="leave", params=[], access_level="all", description="Leave the private channel") def leave_cmd(self, channel, sender, reply, args): self.private_channel_manager.kick(sender.char_id) @command(command="invite", params=[Any("character")], access_level="member", description="Invite a character to the private channel") def invite_cmd(self, channel, sender, reply, args): char = args[0].capitalize() char_id = self.character_manager.resolve_char_to_id(char) if sender.char_id == char_id: self.private_channel_manager.invite(sender.char_id) elif char_id: self.bot.send_private_message(char_id, "You have been invited to the private channel by <highlight>%s<end>." % sender.name) self.private_channel_manager.invite(char_id) reply("You have invited <highlight>%s<end> to the private channel." % char) else: reply("Could not find character <highlight>%s<end>." % char) @event(PrivateChannelManager.JOINED_PRIVATE_CHANNEL_EVENT, "Notify private channel when someone joins") def private_channel_joined_event(self, event_type, event_data): char_name = self.character_manager.get_char_name(event_data.char_id) self.bot.send_private_channel_message("<highlight>%s<end> has joined the private channel." % char_name) @event(PrivateChannelManager.LEFT_PRIVATE_CHANNEL_EVENT, "Notify private channel when someone leaves") def private_channel_left_event(self, event_type, event_data): char_name = self.character_manager.get_char_name(event_data.char_id) self.bot.send_private_channel_message("<highlight>%s<end> has left the private channel." % char_name)
[ "nepherius@live.com" ]
nepherius@live.com
cca4433d0c9ae3754b43c7408071a1e60e271914
6bed3db6f1682134631e106c1653397ca7478d2d
/build/ros_controllers/joint_trajectory_controller/catkin_generated/pkg.installspace.context.pc.py
86857d5f44df2c4221f03e8e2152d71d47d432c5
[]
no_license
158774581/carbot_ws
f09fbd405850c20169b6593ab19920446d049716
8a4681c4c4a66e0943ec4bbd5cd8cdffe8381fa0
refs/heads/master
2022-01-11T13:50:25.024901
2019-07-21T14:03:04
2019-07-21T14:03:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/imhs/carbot_ws/install/include".split(';') if "/home/imhs/carbot_ws/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "actionlib;angles;roscpp;urdf;control_toolbox;controller_interface;hardware_interface;realtime_tools;control_msgs;trajectory_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-ljoint_trajectory_controller".split(';') if "-ljoint_trajectory_controller" != "" else [] PROJECT_NAME = "joint_trajectory_controller" PROJECT_SPACE_DIR = "/home/imhs/carbot_ws/install" PROJECT_VERSION = "0.15.0"
[ "rb4609@rit.edu" ]
rb4609@rit.edu
7b0d2ebbf06bacd3bc9759378933e33c4c134c72
1b9eb5ba155285500877fd73faab0ae901f0e874
/zotnote/__init__.py
96618daced5b50add19ef98fd41a116f81ab415c
[]
no_license
sdaza/zotnote
a097c39e655c23c76363b662d2d5b9447efae5cc
01428e96fe962d792fcbdda14f419bba3b2b95ad
refs/heads/main
2023-06-17T08:11:22.049813
2021-07-06T08:10:39
2021-07-06T08:10:39
372,754,875
0
0
null
null
null
null
UTF-8
Python
false
false
98
py
from .functions import extractNotes from .functions import exportNotes from pyzotero import zotero
[ "sebastian.daza@gmail.com" ]
sebastian.daza@gmail.com
08e691d2006ed65d94012585946e12fffff4ee0b
601ac0c9f7138b3e506c0511d4a3e7f60a499305
/src/pykeen/nn/init.py
9b1110588b84ebf7380f76235524e0e61daefbff
[ "MIT" ]
permissive
cdpierse/pykeen
9aa551adc05c9e609353d473db1d3da1b92f4ab0
e8225c066b56bcdd3180ba895ce3e153808e7e38
refs/heads/master
2023-09-02T06:30:25.849873
2021-11-09T17:32:15
2021-11-09T17:32:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,348
py
# -*- coding: utf-8 -*- """Embedding weight initialization routines.""" import math import numpy as np import torch import torch.nn import torch.nn.init from torch.nn import functional from ..utils import compose __all__ = [ "xavier_uniform_", "xavier_uniform_norm_", "xavier_normal_", "xavier_normal_norm_", "uniform_norm_", "normal_norm_", "init_phases", ] def xavier_uniform_(tensor, gain: float = 1.0): r"""Initialize weights of the tensor similarly to Glorot/Xavier initialization. Proceed as if it was a linear layer with fan_in of zero and Xavier uniform initialization is used, i.e. fill the weight of input `embedding` with values values sampled from :math:`\mathcal{U}(-a, a)` where .. math:: a = \text{gain} \times \sqrt{\frac{6}{\text{embedding_dim}}} :param tensor: A tensor :param gain: An optional scaling factor, defaults to 1.0. :return: Embedding with weights by the Xavier uniform initializer. """ bound = gain * 6 / math.sqrt(tensor.shape[-1]) torch.nn.init.uniform_(tensor, -bound, bound) return tensor def xavier_normal_(tensor: torch.Tensor, gain: float = 1.0) -> torch.Tensor: r"""Initialize weights of the tensor similarly to Glorot/Xavier initialization. Proceed as if it was a linear layer with fan_in of zero and Xavier normal initialization is used. Fill the weight of input `embedding` with values values sampled from :math:`\mathcal{N}(0, a^2)` where .. math:: a = \text{gain} \times \sqrt{\frac{2}{\text{embedding_dim}}} :param tensor: A tensor :param gain: An optional scaling factor, defaults to 1.0. :return: Embedding with weights by the Xavier normal initializer. """ std = gain * 2 / math.sqrt(tensor.shape[-1]) torch.nn.init.normal_(tensor, mean=0.0, std=std) return tensor def init_phases(x: torch.Tensor) -> torch.Tensor: r"""Generate random phases between 0 and :math:`2\pi`.""" phases = 2 * np.pi * torch.rand_like(x[..., : x.shape[-1] // 2]) return torch.cat([torch.cos(phases), torch.sin(phases)], dim=-1).detach() xavier_uniform_norm_ = compose( torch.nn.init.xavier_uniform_, functional.normalize, ) xavier_normal_norm_ = compose( torch.nn.init.xavier_normal_, functional.normalize, ) uniform_norm_ = compose( torch.nn.init.uniform_, functional.normalize, ) normal_norm_ = compose( torch.nn.init.normal_, functional.normalize, ) def init_quaternions( x: torch.FloatTensor, ) -> torch.FloatTensor: """Initialize quaternion.""" num_elements, dim = x.shape if dim % 4 != 0: raise ValueError("Quaternions have four components, but dimension {dim} is not divisible by four.") dim //= 4 # scaling factor s = 1.0 / math.sqrt(2 * num_elements) # modulus ~ Uniform[-s, s] modulus = 2 * s * torch.rand(num_elements, dim) - s # phase ~ Uniform[0, 2*pi] phase = 2 * math.pi * torch.rand(num_elements, dim) # real part real = (modulus * phase.cos()).unsqueeze(dim=-1) # purely imaginary quaternions unitary imag = torch.rand(num_elements, dim, 3) imag = functional.normalize(imag, p=2, dim=-1) imag = imag * (modulus * phase.sin()).unsqueeze(dim=-1) x = torch.cat([real, imag], dim=-1) return x.view(num_elements, 4 * dim)
[ "noreply@github.com" ]
cdpierse.noreply@github.com
18138586a59aaaf1e29e0069c865e664e73e1bfa
0f2cd75b6712ad4b4c5508fd30467f9a812357a5
/tripadvisorScrap.py
b635cdfca89ab7fd1ba8dd9af9668df852b30646
[]
no_license
kartikb7/We-Do-Ticket
ac3c4e8dd5b13308714f7c16132eaa888a074029
549d121789027f9fc9d554dfada77881daaa375f
refs/heads/master
2022-03-28T22:17:02.793893
2020-01-05T21:02:06
2020-01-05T21:02:06
213,017,183
0
0
null
null
null
null
UTF-8
Python
false
false
10,548
py
#reference code:https://www.scrapehero.com/how-to-scrape-tripadvisor/ from datetime import datetime from time import time from lxml import html import requests,re import unicodecsv as csv from operator import itemgetter import pandas as pd from prettytable import PrettyTable def hotel_scrap(MatchCity): locality=MatchCity userInputCheckin=input("Please enter checkin data as YYYY/MM/DD:") userInputCheckout=input("Please enter checkout data as YYYY/MM/DD:") checkin_date = datetime.strptime(userInputCheckin,"%Y/%m/%d") checkout_date = datetime.strptime(userInputCheckout,"%Y/%m/%d") checkIn = checkin_date.strftime("%Y/%m/%d") checkOut = checkout_date.strftime("%Y/%m/%d") sort="popularity" checkIn = checkin_date.strftime("%Y/%m/%d") checkOut = checkout_date.strftime("%Y/%m/%d") print ("Scraper Inititated for Locality:%s"%locality) # TA rendering the autocomplete list using this API print ("Finding search result page URL") geo_url = 'https://www.tripadvisor.com/TypeAheadJson?action=API&startTime='+str(int(time()))+'&uiOrigin=GEOSCOPE&source=GEOSCOPE&interleaved=true&types=geo,theme_park&neighborhood_geos=true&link_type=hotel&details=true&max=12&injectNeighborhoods=true&query='+locality api_response = requests.get(geo_url, verify=False).json() #getting the TA url for th equery from the autocomplete response url_from_autocomplete = "http://www.tripadvisor.com"+api_response['results'][0]['url'] print ('URL found %s'%url_from_autocomplete) geo = api_response['results'][0]['value'] #Formating date for writing to file date = checkin_date.strftime("%Y_%m_%d")+"_"+checkout_date.strftime("%Y_%m_%d") #form data to get the hotels list from TA for the selected date form_data = {'changeSet': 'TRAVEL_INFO', 'showSnippets': 'false', 'staydates':date, 'uguests': '2', 'sortOrder':sort } #Referrer is necessary to get the correct response from TA if not provided they will redirect to home page headers = { 'Accept': 'text/javascript, text/html, application/xml, text/xml, */*', 'Accept-Encoding': 'gzip,deflate', 'Accept-Language': 'en-US,en;q=0.5', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Content-Type': 'application/x-www-form-urlencoded; charset=utf-8', 'Host': 'www.tripadvisor.com', 'Pragma': 'no-cache', 'Referer': url_from_autocomplete, 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:28.0) Gecko/20100101 Firefox/28.0', 'X-Requested-With': 'XMLHttpRequest' } cookies= {"SetCurrency":"USD"} print ("Downloading search results page") page_response = requests.post(url = url_from_autocomplete,data=form_data,headers = headers, cookies = cookies, verify=False) print ("Parsing results ") parser = html.fromstring(page_response.text) hotel_lists = parser.xpath('//div[contains(@class,"listItem")]//div[contains(@class,"listing collapsed")]') hotel_data = [] if not hotel_lists: hotel_lists = parser.xpath('//div[contains(@class,"listItem")]//div[@class="listing "]') for hotel in hotel_lists: XPATH_HOTEL_LINK = './/a[contains(@class,"property_title")]/@href' XPATH_REVIEWS = './/a[@class="review_count"]//text()' XPATH_RANK = './/div[@class="popRanking"]//text()' XPATH_RATING = './/a[contains(@class,"rating")]/@alt' XPATH_HOTEL_NAME = './/a[contains(@class,"property_title")]//text()' XPATH_HOTEL_FEATURES = './/div[contains(@class,"common_hotel_icons_list")]//li//text()' XPATH_HOTEL_PRICE = './/div[contains(@data-sizegroup,"mini-meta-price")]/text()' XPATH_VIEW_DEALS = './/div[contains(@data-ajax-preserve,"viewDeals")]//text()' XPATH_BOOKING_PROVIDER = './/div[contains(@data-sizegroup,"mini-meta-provider")]//text()' raw_booking_provider = hotel.xpath(XPATH_BOOKING_PROVIDER) raw_no_of_deals = hotel.xpath(XPATH_VIEW_DEALS) raw_hotel_link = hotel.xpath(XPATH_HOTEL_LINK) raw_no_of_reviews = hotel.xpath(XPATH_REVIEWS) raw_rank = hotel.xpath(XPATH_RANK) raw_rating = hotel.xpath(XPATH_RATING) raw_hotel_name = hotel.xpath(XPATH_HOTEL_NAME) raw_hotel_features = hotel.xpath(XPATH_HOTEL_FEATURES) raw_hotel_price_per_night = hotel.xpath(XPATH_HOTEL_PRICE) url = 'http://www.tripadvisor.com'+raw_hotel_link[0] if raw_hotel_link else None reviews = ''.join(raw_no_of_reviews).replace("reviews","").replace(",","") if raw_no_of_reviews else 0 rank = ''.join(raw_rank) if raw_rank else None rating = ''.join(raw_rating).replace('of 5 bubbles','').strip() if raw_rating else None name = ''.join(raw_hotel_name).replace(',','-').strip() if raw_hotel_name else None hotel_features = ','.join(raw_hotel_features).replace(',',';') # price_per_night = ''.join(raw_hotel_price_per_night).encode('utf-8').replace('\n','') if raw_hotel_price_per_night else None price_per_night = ''.join(raw_hotel_price_per_night).replace('\n','') if raw_hotel_price_per_night else None no_of_deals = re.findall("all\s+?(\d+)\s+?",''.join(raw_no_of_deals)) booking_provider = ''.join(raw_booking_provider).strip() if raw_booking_provider else None if no_of_deals: no_of_deals = no_of_deals[0] else: no_of_deals = 0 data = { 'hotel_name':name, 'url':url, 'locality':locality, 'reviews':reviews, 'tripadvisor_rating':rating, 'checkOut':checkOut, 'checkIn':checkIn, 'hotel_features':hotel_features, 'price_per_night':price_per_night, 'no_of_deals':no_of_deals, 'booking_provider':booking_provider } hotel_data.append(data) # data = parse(locality,checkin_date,checkout_date,sort) with open('tripadvisor_data.csv','wb')as csvfile: fieldnames = ['hotel_name','url','locality','reviews','tripadvisor_rating','checkIn','checkOut','price_per_night','booking_provider','no_of_deals','hotel_features'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in hotel_data: writer.writerow(row) def hotel_visual(): input_file=open("tripadvisor_data.csv") output_file=open("tripadvisor_data_sorted.csv","w") table=[] header=input_file.readline() for line in input_file: col=line.split(",") if col[7]!='': col[7]=float(col[7][1:]) table.append(col) table_sorted=sorted(table,key=itemgetter(7),reverse=False) output_file.write(header) input_file.close() output_file.close() for row in table_sorted: row=[str(x) for x in row] row=[','.join(row)] f2=pd.DataFrame(table_sorted,columns=header.split(",")) # print(f2.iloc[:,[0,3,4,7]]) print('\033[1;31m Top Cheapest Hotels\033[0m') x = PrettyTable() x.field_names = ["hotel_name", "reviews", "tripadvisor_rating", "price_per_night"] hotelCount = len(table_sorted) if len(table_sorted)<10 else 10 for i in range(hotelCount): list_hotel=[] list_hotel.append(table_sorted[i][0]) list_hotel.append(table_sorted[i][3]) list_hotel.append(table_sorted[i][4]) list_hotel.append(table_sorted[i][7]) x.add_row(list_hotel) print(x) #Ten Most Popular Hotels (most people reviewed) # input_file=open("tripadvisor_data.csv") # output_file=open("tripadvisor_data_sorted.csv","w") # # table=[] # header=input_file.readline() # for line in input_file: # col=line.split(",") # col[3]=float(col[3]) # table.append(col) # table_sorted=sorted(table,key=itemgetter(3),reverse=True) # output_file.write(header) # input_file.close() # output_file.close() # for row in table_sorted: # row=[str(x) for x in row] # row=[','.join(row)] # f2=pd.DataFrame(table_sorted,columns=header.split(",")) # # print(f2.iloc[:,[0,3,4,7]]) # print('\033[1;31m Ten Most Popular Hotels (most people reviewed)\033[0m') # x = PrettyTable() # x.field_names = ["hotel_name", "reviews", "tripadvisor_rating", "price_per_night"] # hotelCount = len(table_sorted) if len(table_sorted)<10 else 10 # for i in range(hotelCount): # list_hotel=[] # list_hotel.append(table_sorted[i][0]) # list_hotel.append(table_sorted[i][3]) # list_hotel.append(table_sorted[i][4]) # list_hotel.append(table_sorted[i][7]) # x.add_row(list_hotel) # # print(x) #Ten Hotels with Most highest Rating input_file=open("tripadvisor_data.csv") output_file=open("tripadvisor_data_sorted.csv","w") table=[] header=input_file.readline() for line in input_file: col=line.split(",") col[4]=float(col[4]) table.append(col) table_sorted=sorted(table,key=itemgetter(4),reverse=True) output_file.write(header) input_file.close() output_file.close() for row in table_sorted: row=[str(x) for x in row] row=[','.join(row)] f2=pd.DataFrame(table_sorted,columns=header.split(",")) # print(f2.iloc[:,[0,3,4,7]]) print('\033[1;31m Top Hotels with Most highest Rating\033[0m') x = PrettyTable() x.field_names = ["hotel_name", "reviews", "tripadvisor_rating", "price_per_night"] hotelCount = len(table_sorted) if len(table_sorted)<10 else 10 for i in range(hotelCount): list_hotel=[] list_hotel.append(table_sorted[i][0]) list_hotel.append(table_sorted[i][3]) list_hotel.append(table_sorted[i][4]) list_hotel.append(table_sorted[i][7]) x.add_row(list_hotel) print(x)
[ "noreply@github.com" ]
kartikb7.noreply@github.com
f7a1f6c2de3fe073db61c020696bfe9329f1bb0a
c983c4cc1ca2e88885d4c94ae615c6817711f2fe
/fsm.py
b3e98d687716e84fca51f534f4aaf706f93f9ff7
[]
no_license
dinobby/facebook-messenger-chat-bot
8e2b884ee4fc49dd0f116f39392d7442da6149a3
a65d148c7bf6f297984adac6767ef6939b711bd1
refs/heads/master
2020-04-12T09:20:53.943305
2018-12-19T14:25:19
2018-12-19T14:25:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,679
py
import requests from bs4 import BeautifulSoup as bs from transitions.extensions import GraphMachine from utils import send_text_message path = ['綠幹線','綠1','綠2','綠3','綠4','綠5','綠6','綠7','綠10','綠11','綠12','綠13','綠14','綠15','綠16','綠17','綠20','綠20-1','綠21','綠22','綠23','綠24','綠25','綠26','綠27', '藍幹線','藍1','藍2','藍3','藍10','藍11','藍12','藍13','藍20','藍21','藍22','藍23','藍24','藍25', '棕幹線','棕1','棕2','棕3','棕3-1','棕10','棕11', '橘幹線','橘1','橘2','橘3','橘4','橘4-1','橘5','橘10','橘10-1','橘11','橘12','橘20', '黃幹線','黃1','黃2','黃3','黃4','黃5','黃6','黃6-1','黃7','黃9','黃10','黃10-1','黃11','黃11-1','黃11-2','黃12','黃12-2','黃13','黃14','黃14-1','黃15','黃16','黃20', '紅幹線','紅1','紅2','紅3','紅3-1','紅4','紅10','紅11','紅12','紅13','紅14'] ids = [1100,1101,1102,1103,1104,1105,1106,1107,1110,1111,1112,1113,1114,1115,1116,1117,1120,1804,1121,1122,1123,1124,1125,1126,1127, 1200,1201,1202,1203,1210,1211,1212,1213,1220,1221,1222,1223,1224,1225, 1300, 1301, 1302, 1303, 1810, 1310, 1311, 1400,1401,1402,1403,1404,1808,1405,1410,1807,1411,1412,1420, 1500,1501,1502,1503,1504,1505,1506,1802,1507,1509,1510,1812,1511,1809,1813,1512,1805,1513,1514,1806,1515,1516,1520, 1600,1601,1602,1603,1801,1604,1610,1611,1612,1613,1614] class TocMachine(GraphMachine): def __init__(self, **machine_configs): self.machine = GraphMachine( model=self, **machine_configs ) def is_going_to_state1(self, event): if event.get("message"): text = event['message']['text'] return text == '開始使用' return False def state1_going_to_state2(self, event): if event.get("message"): text = event['message']['text'] return text == '1' return False def state1_going_to_state3(self, event): if event.get("message"): text = event['message']['text'] return text == '2' return False def state1_going_to_state4(self, event): if event.get("message"): text = event['message']['text'] return text == '3' return False def state2_going_to_state5(self, event): if event.get("message"): text = event['message']['text'] return len(text) > 0 and self.state == 'state2' def state5_going_to_state1(self, event): if event.get("message"): text = event['message']['text'] return text == '返回' def state3_going_to_state6(self, event): if event.get("message"): text = event['message']['text'] return len(text) > 0 and self.state == 'state3' def state6_going_to_state1(self, event): if event.get("message"): text = event['message']['text'] return text == '返回' def on_enter_state1(self, event): print("I'm entering state1") sender_id = event['sender']['id'] responese = send_text_message(sender_id, "歡迎使用「沒有機車沒關係我來幫你找公車」!\n輸入「1」查詢公車到站時間\n輸入「2」查詢公車票價\n輸入「3」查詢公車優惠說明") #self.go_back() # def on_exit_state1(self): # print('Leaving state1') def on_enter_state2(self, event): print("I'm entering state2") sender_id = event['sender']['id'] send_text_message(sender_id, "請輸入您想要查詢的路線以及去/返程,例如:綠1 去 / 橘4-1 返 / 紅13 去...等,路線名稱與去返程中間以空格隔開") #self.go_back() # def on_exit_state2(self): # print('Leaving state2') def on_enter_state3(self, event): print("I'm entering state3") sender_id = event['sender']['id'] responese = send_text_message(sender_id, "輸入路線及起訖站來查詢票價,例如:綠1 新化站 國泰大樓,路線與起訖站中間以空格隔開") #self.go_back() # def on_exit_state3(self): # print('Leaving state3') def on_enter_state4(self, event): print("I'm entering state4") s = '⭐市民卡1日9元搭到飽\n\ 台南市民持市民卡搭乘市區公車(0~99路,33路除外),\ 並且上、下車都刷市民卡,第1段半價(9元),當日第2段起免費!💖\ (下車未刷卡時,當日搭乘下一段次仍維持半價9元計費)\n\ \n\ ⭐幹支線公車8公里免費\n\ 持電子票證(市民卡、一卡通、悠遊卡、iCash 2.0)\ 搭乘幹支線公車(綠、藍、棕、橘、黃、紅),並且上、下車都刷卡,享前8公里免費!💖\ \n\ ⭐轉乘優惠加碼為4小時\n\ 持電子票證(市民卡、一卡通、悠遊卡、iCash 2.0)\ 搭乘台鐵及大台南公車,並且上、下車都刷卡,\ 4小時內轉乘市區公車1段票免費、轉乘幹支線公車8公里免費再折扣9元!💖\n\ \n\ ⚡特別提醒⚡\n\ 學生證就是市民卡:本市高中職以下學生,刷學生證即享優惠。\ 設籍臺南市民眾,可攜帶身分證至臺南市37區公所申辦市民卡一般卡,每張新臺幣100元。\ 107年9月1日開放iCash 2.0,9月底前每趟加贈OPENPOINT 300點,歡迎多加利用👍\n\ \n\ ※實施期間:自107年8月1日起至107年12月31日止。' sender_id = event['sender']['id'] send_text_message(sender_id, s) self.go_back() def on_enter_state5(self, event): global path, ids query_path = 0 sender_id = event['sender']['id'] if sender_id != '312249102747382': if event.get("message"): if event.get("message") == '返回': self.go_back() else: l = event['message']['text'].split(" ") if len(l) == 2: query_path = l[0] if l[1] == '去': goback = 0 elif l[1] == '返': goback = 1 else: goback = 0 try: id = ids[path.index(query_path)] url = 'http://2384.tainan.gov.tw/NewTNBusAPI_V2/API/GoAndBackWithTimeV1.ashx?id={0}&goback={1}&Lang=cht'.format(id,goback) res = requests.get(url) d = res.json() s = '' for i in d: if i['Time'] == '末班已駛離': s+=('離{0}站,末班已駛離').format(i['StopName']) + '\n' else: s+=('離{0}站,還有{1}分鐘'.format(i['StopName'],i['Time'])) + '\n' send_text_message(sender_id, s) except ValueError: send_text_message(sender_id, "對不起,您輸入的路線不存在") def on_enter_state6(self, event): global path, ids query_path = 0 query_start = '' query_end = '' sender_id = event['sender']['id'] if sender_id != '312249102747382': if event.get("message"): if event.get("message") == '返回': self.go_back() else: l = event['message']['text'].split(" ") if len(l) == 3: query_path = l[0] query_start = l[1] query_end = l[2] try: id = ids[path.index(query_path)] url = 'http://2384.tainan.gov.tw/NewTNBusAPI_V2/API/FareV1.ashx?pathid={0}&sname={1}&ename={2}'.format(id, query_start, query_end) res = requests.get(url) d = res.json() s = '現金全票:' + d['fareCash'] + '元\n' + \ '現金半票:' + d['fareCashHalf'] + '元\n' + \ '電子票卡全票:' + d['fareIc'] + '元\n' + \ '電子票卡半票:' + d['fareIcHalf'] + '元' send_text_message(sender_id, s) except ValueError: send_text_message(sender_id, "對不起,您輸入的路線或起訖站不存在") # def on_exit_state3(self): # print('Leaving state4')
[ "noreply@github.com" ]
dinobby.noreply@github.com
12d863d79095b97e96ea274f2a32bf1fc79c1279
1c0f09e25d3601f4b7c692c494514f19d3fc1bce
/Two-stage Recoverable FLP/test/test_scipy.io.py
b5349cca145cc595600ef9496a3aacae8c28b27d
[]
no_license
dubo0111/Python
9be94d7670c9eb841d237e6ff4bc45ed5796c7b1
bcf03b360ceb18da75e867d1d63522f1d350e907
refs/heads/master
2020-03-23T21:36:27.155231
2019-09-02T03:32:57
2019-09-02T03:32:57
142,118,526
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
# test .mat I/O import scipy.io mat = scipy.io.loadmat('city_250.mat') a=mat['city_250'] #print(a) b=a[0,:] #print(b) scipy.io.savemat('save_b.mat',{'b':b}) bb = scipy.io.loadmat('save_b.mat')
[ "dubo0111@hotmail.com" ]
dubo0111@hotmail.com
24df43e3a494a253832fa18042119ad13e94661c
0946818d16631ebd2366c9c225ddd0c7301bb85e
/05 - 文本分析/0417-textCNN/20190417/news_classfication_textcnn/preprocess_data.py
21ef1aa8c1e0d8eb748049c14e0d1d5c6a471f69
[]
no_license
frozenYu/AI-course
49a24520040f7bf1df650039a88be378e848c9a7
d64208acacdbe1c0ddc9b30d5d61ad8b80b3074a
refs/heads/master
2020-06-24T11:25:30.446181
2019-05-09T04:29:34
2019-05-12T04:29:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,495
py
import numpy as np import jieba from keras.preprocessing import sequence from keras import utils def split_dataset(filename_in): data_in = open(filename_in,'r',encoding='utf8') label_sentences_dict = {} # 定义一个标签:样本的字典 for line in data_in: label,sentence = line.strip().split('\t') if label not in label_sentences_dict: lst = [] lst.append(sentence) label_sentences_dict[label] = lst else: lst = label_sentences_dict[label] lst.append(sentence) label_sentences_dict[label] = lst # print(len(label_sentences_dict)) data_in.close() return label_sentences_dict def save2file(label_sentences_dict,train_ratio,training_file,testing_file): data_out_training = open(training_file,'w',encoding='utf8') data_out_testing = open(testing_file,'w',encoding='utf8') for label in label_sentences_dict: sentences = label_sentences_dict[label] np.random.shuffle(sentences) for i in range(0,len(sentences)): if i <int(train_ratio*len(sentences)): data_out_training.write(label+':'+sentences[i]+'\n') else: data_out_testing.write(label+':'+sentences[i]+'\n') data_out_training.close() data_out_testing.close() # 返回字典集合 标签集合 过滤低频词 def create_word2index(train_file,min_num): data_in = open(train_file,'r',encoding='utf8') label_set = set() # word_set = set() word_dict={} for line in data_in: label,sentence = line.strip().split('\t') label_set.add(label) # 添加label words = jieba.cut(sentence) # 添加word for word in words: word = word.strip() if word == '' or word == '\t' or word == ',' or word == ':': # 过来特殊符号 可自定义 continue if word not in word_dict: word_dict[word] = 1 else: num = word_dict[word] num+=1 word_dict[word] = num # word_set.add(word) data_in.close() print('word_dict is: ',word_dict) # 过滤掉word_dict中低频的词 word_dict_new,word_set = filter_word_dict(word_dict,min_num) print('word_dict_new is: ',word_dict_new) word2index = {} index = 0 for word in word_set: word2index[word] = index index+=1 label2index = {} index = 0 for label in label_set: label2index[label] = index index+=1 if '' in word_set: print('exist') else: print('no exist') return word2index,label2index def filter_word_dict(word_dict,min_num): word_dict_new = {} word_set = set() for word,num in word_dict.items(): if num>=min_num: word_dict_new[word] = num word_set.add(word) return word_dict_new,word_set def create_trainingdata(training_file,word2index,label2index,padding_length = 300): data_in = open(training_file,'r',encoding='utf8') training_data = [] for line in data_in: label,sentence = line.strip().split('\t') words = jieba.cut(sentence) feas = [word2index[word]for word in words if word in word2index] label = [label2index[label]] training_data.append((feas,label)) # 将特征和标签放一起读取 然后随机打乱 data_in.close() np.random.shuffle(training_data) training_feas = [] training_labels = [] for feas, label in training_data: training_feas.append(feas) training_labels.append(label) # print('training_feas is: ',training_feas) # print('training_labels is: ',training_labels) training_feas = sequence.pad_sequences(training_feas,maxlen=padding_length,padding='post', truncating='post') training_labels = utils.to_categorical(training_labels,num_classes=10) # print('after, training_feas is: ',training_feas) # print('after, training_labels is: ',training_labels) training_feas = np.array(training_feas) training_labels = np.array(training_labels) return training_feas,training_labels if __name__ == '__main__': # label = label_sentences_dict = split_dataset('cnews_test.txt') train_ratio = 0.1 save2file(label_sentences_dict,train_ratio,'cnews_test1.txt','cnews_test2.txt') # for label in label_sentences_dict: # print(label) # print(len(label_sentences_dict[label]))
[ "lizhicq@gmail.com" ]
lizhicq@gmail.com
ca73adb0ece5f7a1cbeb842f3c0078a486c78355
38a03a8c4426eb31ec566cd62cab05b47ddc123a
/qcwy/qcwy/settings.py
44a6cdd7d83d845b510d55f6a6a0fe86ec7c2c9e
[]
no_license
leehwayou/Scrapy_51job
85a3efaa9790bf6f830665887523a669005e16dc
8bb3f05371261fd5f71d92dcdbd2db9f486615ac
refs/heads/master
2021-03-30T01:58:22.748712
2020-03-17T15:24:05
2020-03-17T15:24:05
248,004,208
0
0
null
null
null
null
UTF-8
Python
false
false
3,285
py
# -*- coding: utf-8 -*- # Scrapy settings for qcwy project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'qcwy' SPIDER_MODULES = ['qcwy.spiders'] NEWSPIDER_MODULE = 'qcwy.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'qcwy (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'qcwy.middlewares.QcwySpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'qcwy.middlewares.QcwyDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'qcwy.pipelines.QcwyPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' USER_AGENT = 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36' DOWNLOAD_DELAY = 0.3 COOKIES_ENABLED = False ITEM_PIPELINES = { 'qcwy.pipelines.QcwyPipeline': 300, }
[ "317551047@qq.com" ]
317551047@qq.com
de7786b217ba7f38702ef86869144ea48d5a1da3
32288fb5bfcef7ee45d45dd8f97f7229a631512b
/python_code/inc.py
0444375b0556b44b5114663693ac69d943af275a
[]
no_license
GalotonReone/PPPPPPP
f4dfd849251c9e1c182a8ae0472050d5b37ac14f
bc6bca69741504b79da03372799bd086dc8e023e
refs/heads/master
2023-08-10T17:29:11.306148
2021-10-02T13:59:17
2021-10-02T13:59:17
412,811,110
0
0
null
null
null
null
UTF-8
Python
false
false
3,685
py
import csv import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB import os.path with open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/extra.csv','r') as ro1: read1=csv.reader(ro1) new_rows=list(read1) if os.path.isfile('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/new.csv'): print ("File exist") with open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/new.csv', 'a') as ao: append = csv.writer(ao) append.writerows(new_rows) print("done if") else: print ("File not exist") with open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/hist.csv','r') as ro: read=csv.reader(ro) rows=list(read) with open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/new.csv','w',newline='') as wo: write=csv.writer(wo) write.writerows(rows) with open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/new.csv', 'a') as ao: append = csv.writer(ao) append.writerows(new_rows) print("done else") data2 = pd.read_csv(open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/hist.csv'),sep=',') #print(data2) data2.loc[data2["recruited"]=='Yes',"recruited"]=1 data2.loc[data2["recruited"]=='No',"recruited"]=0 data2.loc[data2['verbal']=='Excellent','verbal']=1 data2.loc[data2['verbal']=='Good','verbal']=2 data2.loc[data2['verbal']=='Average','verbal']=0 data2.loc[data2['verbal']=='Poor','verbal']=3 data2.loc[data2['comm']=='Excellent','comm']=1 data2.loc[data2['comm']=='Good','comm']=2 data2.loc[data2['comm']=='Average','comm']=0 data2.loc[data2['comm']=='Poor','comm']=3 data2.loc[data2['logical']=='Excellent','logical']=1 data2.loc[data2['logical']=='Good','logical']=2 data2.loc[data2['logical']=='Average','logical']=0 data2.loc[data2['logical']=='Poor','logical']=3 data2.loc[data2['quantitative']=='Excellent','quantitative']=1 data2.loc[data2['quantitative']=='Good','quantitative']=2 data2.loc[data2['quantitative']=='Average','quantitative']=0 data2.loc[data2['quantitative']=='Poor','quantitative']=3 data2.loc[data2['extracurr']=='others','extracurr']=0 data2.loc[data2['extracurr']=='cultural','extracurr']=1 data2.loc[data2['extracurr']=='sports','extracurr']=2 data2.loc[data2["drops"]=='Yes',"drops"]=1 data2.loc[data2["drops"]=='No',"drops"]=0 #print(data2.head(5)) data2_x=data2[['verbal','quantitative','logical','comm','extracurr','drops']] data2_y=data2['recruited'] #print((data2_x).toarray()) #print((data2_y).toarray()) features_train, features_test, target_train, target_test = train_test_split(data2_x,data2_y, test_size=0.33, random_state=10) data1 = pd.read_csv(open('C:/Users/Chinmay Chaughule/PycharmProjects/proj1/extra.csv'),sep=',') cv = CountVectorizer(lowercase=False) X = cv.fit_transform(data1.verbal+data1.quantitative+data1.logical+data1.comm+data1.extracurr+data1.drops).toarray() y=cv.fit_transform(data1.recruited).toarray() print(len(X)) print(len(y)) ''''cv1=CountVectorizer(lowercase=False) #f_t=[str (item) for item in features_train] #f_t=[item for item in f_t if not isinstance(item,int)] X=cv1.fit_transform(features_train).toarray() print(type(features_train)) print(type(target_train.to_frame())) t_t=[str (item1) for item1 in target_train] t_t=[item1 for item1 in t_t if not isinstance(item1,int)] y=cv1.fit_transform(target_train.to_frame()).toarray() ''''' print(X) print(y) gb = GaussianNB() gb.partial_fit(X,y) print("model created")
[ "noreply@github.com" ]
GalotonReone.noreply@github.com
a6eb0098a1c416649e25f8560bcf7e9e3d2097e5
c61b43cd266ecc5a3ff5244c079e4324383340f8
/example/proxy/app.py
9eb7223102e359482214c5c84a83f148cd18095b
[ "MIT" ]
permissive
fusion44/fastapi-versioning
9cc6dc45f13defa105a7cf58f5aac9ecbdcc9925
c1832936726d9ffce364ac63a9aac2ff3712b37d
refs/heads/master
2023-08-03T12:00:21.601970
2021-09-26T09:00:37
2021-09-26T09:00:37
410,499,977
0
0
MIT
2021-09-26T08:57:34
2021-09-26T08:53:13
null
UTF-8
Python
false
false
331
py
from fastapi import FastAPI from fastapi_versioning import VersionedFastAPI, version app = FastAPI(title="My App") @app.get("/greet") @version(1, 0) def greet_with_hello() -> str: return "Hello" @app.get("/greet") @version(1, 1) def greet_with_hi() -> str: return "Hi" app = VersionedFastAPI(app, root_path="/api")
[ "deanway93@gmail.com" ]
deanway93@gmail.com
830fbda9a688ec4516ba2b640b81b59383c26b62
ddb3db602622334ba1209f0784b91c7630836e97
/skribblr_project/skribblr_project/urls.py
53613d34741b0a9a72683a2fa32e41bafd1520de
[ "MIT" ]
permissive
mhhoban/skribblr
701a98ea9b4615f1104cb3a98389e14ffbf810f2
834d351ab5adfacb187cbb7d4e1abda30c335e99
refs/heads/master
2021-01-19T08:45:58.478857
2017-04-09T07:19:19
2017-04-09T07:19:19
87,672,189
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
"""skribblr_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), ]
[ "mhhoban@gmail.com" ]
mhhoban@gmail.com
9b34ab457f4794bb6e1f54543d0d87cd1e9e509b
38b9fa8384d8b852558fd79148e02ffa95447c12
/METValidator/python/metvalidator_cfi.py
e65c801aae2049967433e8a3689e2084a5acdf83
[]
no_license
mageisler/MyAnalyzers
5aa24a29945f19220c0ac03937b51164bd5aeaaf
dca0cbd2e01e3a31df7572d7ff7e6422083f3545
refs/heads/master
2016-09-05T18:26:52.723547
2014-01-29T08:44:42
2014-01-29T10:06:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
81
py
import FWCore.ParameterSet.Config as cms demo = cms.EDAnalyzer('METValidator' )
[ "mgeisler@cern.ch" ]
mgeisler@cern.ch
a3bea9cd17507051e84abafad2fbda57bfda2d5e
b34b6910a4d46fd38e25a64e885bd435ef02528d
/program3.py
a5000c285c9f5a7fbe7028352ef6eced67121c99
[]
no_license
Naush22/codekata
161c29da539a4d641108cc65086a3be8d7f795f6
7767c454353e7a86cf7da75fca6b315e159da032
refs/heads/master
2020-04-21T16:04:37.463247
2019-02-19T08:13:30
2019-02-19T08:13:30
169,688,880
0
1
null
null
null
null
UTF-8
Python
false
false
107
py
yz=raw_input() if((yz>='a'and yz<='z')or(yz>='A'and yz<='Z')): print("Alphabet") else: print("NO")
[ "noreply@github.com" ]
Naush22.noreply@github.com
ec45bb5ab5f0dc0c1d56e349ed7ea43b25cd7037
4066190a88d59b66a1a8712358992df3a3a35a8b
/tetris_v3/pygame_enums.py
bf2ac9a97891f3c215d60c0626b2854091774c54
[]
no_license
ReijoJaakkola/Pygame-Tetris
fbbff240e4f968b587e8811d93dc6206679266af
a9bf151fbddaff9270c94e96a7ecc3fcaf4e09a6
refs/heads/master
2021-07-12T15:20:29.445351
2021-07-10T10:11:07
2021-07-10T10:11:07
210,703,688
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
from enum import Enum # Enum for the possible directions for the current piece. class Direction(Enum): RIGHT = 0 LEFT = 1 DOWN = 2 # Enum for the possible colors. class Color(Enum): GREEN = 0 RED = 1 BLUE = 2 YELLOW = 3 VIOLET = 4 # Enum for the possible shapes for the current piece. class Shape(Enum): SQUARE = 0 PIPE = 1 FIVE = 2 L = 3 MIDDLE = 4
[ "reijo.jaakkola@tuni.fi" ]
reijo.jaakkola@tuni.fi
4387be7e2c57b61f2b6431b23a407b8aa32b9082
94e1151d9a7f1a214ec3d4b282ce5ea7a43a93f3
/LSAs/RouterLSA.py
a74e0e5f63730a151f6e38031dcb3687cbd2d8ad
[]
no_license
andreppires/OSPF-ABR_ArbTop
c45e0a0e2c3f854bfe73b8f79e69e83339b66a75
93be7d9e737118ef04f818df634d0ad4f138d2a7
refs/heads/master
2021-07-03T00:00:42.025183
2019-02-20T23:37:10
2019-02-20T23:37:10
95,771,424
1
0
null
null
null
null
UTF-8
Python
false
false
2,500
py
import struct import utils from LSAs.LSAHeader import LSAHeader OSPF_LSA_ROUTER = "> BBH " OSPF_LSA_ROUTER_LEN = struct.calcsize(OSPF_LSA_ROUTER) OSPF_LSA_ROUTER_LINK_DATA = "> I I BBH" OSPF_LSA_ROUTER_LINK_DATA_LEN = struct.calcsize(OSPF_LSA_ROUTER_LINK_DATA) class RouterLSA(LSAHeader): def __init__(self,sourceR, lsage, opt, lstype, lsid, advert, lsNumber, ck, lg, v, e, b, links, linksData): LSAHeader.__init__(self,sourceR, lsage, opt, lstype, lsid, advert, lsNumber, ck, lg) self.V = v self.E = e self.B = b self.NumberLinks = links self.LinksData = linksData def printLSA(self): print "Router LSA: ABR? ADV Router Age Seq# Link count" print " ",self.getBbit()," ",self.getADVRouter()," ",self.getAge(),\ " ", self.getSeqNumber()," ", len(self.LinksData) def calculateLength(self, ck): hdlen = self.getLengthHeader(ck) netlen = (OSPF_LSA_ROUTER_LEN + (OSPF_LSA_ROUTER_LINK_DATA_LEN * self.NumberLinks)) self.setLength(hdlen+netlen, ck) return hdlen+netlen def calculateChecksum(self): lg = self.calculateLength(True) pack = self.packRLSA() structn = self.getHeaderPack() + pack checkum = utils.fletcher(structn, 16, lg) self.setChecksum(checkum) return 0 def printaTudoo(self): self.printaTudo() print "EVB:", self.E, self.V, self.B print "Number Links:", self.NumberLinks print "Links Data:", self.LinksData def packRLSA(self): first = self.V*4 + self.E*2 + self.B pack = struct.pack(OSPF_LSA_ROUTER, first, 0, self.NumberLinks) for x in self.LinksData: pack = pack + struct.pack(OSPF_LSA_ROUTER_LINK_DATA, utils.IPtoDec(x[0]), utils.IPtoDec(x[1]), x[2], x[3], x[4]) return pack def getLSAtoSend(self, ): pack = self.packRLSA() return [self.getHeaderPack() + pack, self.getLength()] def setBbit(self, value): self.B = value def getBbit(self): return self.B def getEbit(self): return self.E def getPrefixandCost(self): return [10, self.AdvertisingRouter] # TODO get the right cost def getDicOfNeighbors(self): out ={} for x in self.LinksData: if x[2] == 2: #se o link for do tipo transit out[x[0]] = x[4] return out
[ "andre.pinheiro.pires@gmail.com" ]
andre.pinheiro.pires@gmail.com
de4f42e4dc390bf799a0d75d062b12372cbdba7c
27d7b9f1c88b85d524f94163648aa117d7b17a9b
/Face detector ,Motion detector and gaming programs/frame_diff.py
c628470459a7352ecdffe193aa20ab4ed76f2303
[]
no_license
DipeshDhandha07/Machine-Learning-Projects
a8658b788e49c6841f88fa51145c468dc217c44b
0e5164680798f2e0139e5082d5b7709cd4e2ae35
refs/heads/main
2023-07-26T03:19:39.461631
2023-07-24T06:35:57
2023-07-24T06:35:57
393,878,353
0
0
null
null
null
null
UTF-8
Python
false
false
1,806
py
import cv2 # Compute the frame differences def frame_diff(prev_frame, cur_frame, next_frame): # Difference between the current frame and the next frame diff_frames_1 = cv2.absdiff(next_frame, cur_frame) # Difference between the current frame and the previous frame diff_frames_2 = cv2.absdiff(cur_frame, prev_frame) return cv2.bitwise_and(diff_frames_1, diff_frames_2) # Define a function to get the current frame from the webcam def get_frame(cap, scaling_factor): # Read the current frame from the video capture object _, frame = cap.read() # Resize the image frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) # Convert to grayscale gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) return gray if __name__=='__main__': # Define the video capture object cap = cv2.VideoCapture(0) # Define the scaling factor for the images scaling_factor = 0.5 # Grab the current frame prev_frame = get_frame(cap, scaling_factor) # Grab the next frame cur_frame = get_frame(cap, scaling_factor) # Grab the frame after that next_frame = get_frame(cap, scaling_factor) # Keep reading the frames from the webcam # until the user hits the 'Esc' key while True: # Display the frame difference cv2.imshow('Object Movement', frame_diff(prev_frame, cur_frame, next_frame)) # Update the variables prev_frame = cur_frame cur_frame = next_frame # Grab the next frame next_frame = get_frame(cap, scaling_factor) # Check if the user hit the 'Esc' key key = cv2.waitKey(10) if key == 27: break # Close all the windows cv2.destroyAllWindows()
[ "noreply@github.com" ]
DipeshDhandha07.noreply@github.com
51924aaac8fe49727a533d4c2e7fe1f306daab0e
40bbf089bdd60e95e124bdf273f3d16480c9d568
/base/read_excel.py
b26ee43e880c5f249e194e28f182e0463c9cd409
[]
no_license
wulimin523/webAutoTest
0449f61a7b3ea7e457923ff181ab4f6922604f5d
a5d7a57edf70de79c1b6f008be8027fd670fd98a
refs/heads/master
2023-02-19T04:24:51.813719
2021-01-18T09:20:13
2021-01-18T09:20:13
327,577,360
0
0
null
null
null
null
UTF-8
Python
false
false
482
py
# -*- coding: utf-8 -*- """ ------------------------------------------------- # @Project :webAutoTest # @File :read_excel # @Date :2020/12/31 18:07 # @Author :吴利民 # @Email :wulimin523@163.com # @Software :PyCharm ------------------------------------------------- """ import xlrd import config data = xlrd.open_workbook_xls('E:\\job\\CRM系统\\data\\CRM系统_测试用例.xlsx') table = data.sheets()[0] rows = table.nrows() cols = table.ncols() print(rows)
[ "wulimin523@163.com" ]
wulimin523@163.com
452d5370d5e9797725db180985a3c061d18c0bd8
16121595581229e6666bfc52cdd526d7451a4c15
/ideas/misc/strange_idb/dev/helper.py
65f02bd61edee200c3606c7abfefb3baff4e06da
[ "MIT" ]
permissive
HackerDom/ctfcup-2019-tb
c78a69cf4b95339048f7d44ce3a40561d6e56ca0
b10f887a5cebfd311fd6577973a5381ac45594d6
refs/heads/master
2020-09-21T19:47:36.291637
2019-12-02T08:59:21
2019-12-02T08:59:21
224,905,498
5
2
null
null
null
null
UTF-8
Python
false
false
3,849
py
import binascii a = {0x0: 0x2055, 0x1: 0x4084, 0x2: 0x4088, 0x3: 0x408c, 0x4: 0x4090, 0x5: 0x4094, 0x6: 0x4098, 0x7: 0x409c, 0x8: 0x40a0, 0x9: 0x40a4, 0xa: 0x40a8, 0xb: 0x40ac, 0xc: 0x40b0, 0xd: 0x40b4, 0xe: 0x40b8, 0xf: 0x40bc, 0x10: 0x40c0, 0x11: 0x40c4, 0x12: 0x40c8, 0x13: 0x40cc, 0x14: 0x40d0, 0x15: 0x40d4, 0x16: 0x40d8, 0x17: 0x40dc, 0x18: 0x40e0, 0x19: 0x40e4, 0x1a: 0x40e8, 0x1b: 0x40ec, 0x1c: 0x40f0, 0x1d: 0x40f4, 0x1e: 0x40f8, 0x1f: 0x40fc, 0x20: 0x4100, 0x21: 0x4104, 0x22: 0x4108, 0x23: 0x410c, 0x24: 0x4110, 0x25: 0x4114, 0x26: 0x4118, 0x27: 0x411c, 0x28: 0x4120, 0x29: 0x4124, 0x2a: 0x4128, 0x2b: 0x412c, 0x2c: 0x4130, 0x2d: 0x4134, 0x2e: 0x4138, 0x2f: 0x413c, 0x3a: 0x4160, 0x3b: 0x4164, 0x3c: 0x4168, 0x3d: 0x416c, 0x3e: 0x4170, 0x3f: 0x4174, 0x40: 0x4178, 0x5b: 0x4180, 0x5c: 0x4181, 0x5d: 0x4182, 0x5e: 0x4183, 0x5f: 0x4184, 0x60: 0x4185, 0x7b: 0x4186, 0x7c: 0x4187, 0x7d: 0x4188, 0x7e: 0x4189, 0x7f: 0x41a0, 0x80: 0x41a4, 0x81: 0x41a8, 0x82: 0x41ac, 0x83: 0x41b0, 0x84: 0x41b4, 0x85: 0x41b8, 0x86: 0x41bc, 0x87: 0x41c0, 0x88: 0x41c4, 0x89: 0x41c8, 0x8a: 0x41cc, 0x8b: 0x41d0, 0x8c: 0x41d4, 0x8d: 0x41d8, 0x8e: 0x41dc, 0x8f: 0x41e0, 0x90: 0x41e4, 0x91: 0x41e8, 0x92: 0x41ec, 0x93: 0x41f0, 0x94: 0x41f4, 0x95: 0x41f8, 0x96: 0x41fc, 0x97: 0x4200, 0x98: 0x4204, 0x99: 0x4208, 0x9a: 0x420c, 0x9b: 0x4210, 0x9c: 0x4214, 0x9d: 0x4218, 0x9e: 0x421c, 0x9f: 0x4220, 0xa0: 0x4224, 0xa1: 0x4228, 0xa2: 0x422c, 0xa3: 0x4230, 0xa4: 0x4234, 0xa5: 0x4238, 0xa6: 0x423c, 0xa7: 0x4240, 0xa8: 0x4244, 0xa9: 0x4248, 0xaa: 0x424c, 0xab: 0x4250, 0xac: 0x4254, 0xad: 0x4258, 0xae: 0x425c, 0xaf: 0x4260, 0xb0: 0x4264, 0xb1: 0x4268, 0xb2: 0x426c, 0xb3: 0x4270, 0xb4: 0x4274, 0xb5: 0x4278, 0xb6: 0x427c, 0xb7: 0x4280, 0xb8: 0x4284, 0xb9: 0x4288, 0xba: 0x428c, 0xbb: 0x4290, 0xbc: 0x4294, 0xbd: 0x4298, 0xbe: 0x429c, 0xbf: 0x42a0, 0xc0: 0x42a4, 0xc1: 0x42a8, 0xc2: 0x42ac, 0xc3: 0x42b0, 0xc4: 0x42b4, 0xc5: 0x42b8, 0xc6: 0x42bc, 0xc7: 0x42c0, 0xc8: 0x42c4, 0xc9: 0x42c8, 0xca: 0x42cc, 0xcb: 0x42d0, 0xcc: 0x42d4, 0xcd: 0x42d8, 0xce: 0x42dc, 0xcf: 0x42e0, 0xd0: 0x42e4, 0xd1: 0x42e8, 0xd2: 0x42ec, 0xd3: 0x42f0, 0xd4: 0x42f4, 0xd5: 0x42f8, 0xd6: 0x42fc, 0xd7: 0x4300, 0xd8: 0x4304, 0xd9: 0x4308, 0xda: 0x430c, 0xdb: 0x4310, 0xdc: 0x4314, 0xdd: 0x4318, 0xde: 0x431c, 0xdf: 0x4320, 0xe0: 0x4324, 0xe1: 0x4328, 0xe2: 0x432c, 0xe3: 0x4330, 0xe4: 0x4334, 0xe5: 0x4338, 0xe6: 0x433c, 0xe7: 0x4340, 0xe8: 0x4344, 0xe9: 0x4348, 0xea: 0x434c, 0xeb: 0x4350, 0xec: 0x4354, 0xed: 0x4358, 0xee: 0x435c, 0xef: 0x4360, 0xf0: 0x4364, 0xf1: 0x4368, 0xf2: 0x436c, 0xf3: 0x4370, 0xf4: 0x4374, 0xf5: 0x4378, 0xf6: 0x437c, 0xf7: 0x4380, 0xf8: 0x4384, 0xf9: 0x4388, 0xfa: 0x438c, 0xfb: 0x4390, 0xfc: 0x4394, 0xfd: 0x4398, 0xfe: 0x439c, 0xff: 0x43a0, 0x51: 0x2018, 0x57: 0x2019, 0x45: 0x201a, 0x52: 0x201b, 0x54: 0x201c, 0x59: 0x201d, 0x55: 0x201e, 0x49: 0x201f, 0x4f: 0x2020, 0x50: 0x2021, 0x41: 0x2022, 0x53: 0x2023, 0x44: 0x2024, 0x46: 0x2025, 0x47: 0x2026, 0x48: 0x2027, 0x4a: 0x2028, 0x4b: 0x2029, 0x4c: 0x202a, 0x5a: 0x202b, 0x58: 0x202c, 0x43: 0x202d, 0x56: 0x202e, 0x42: 0x202f, 0x4e: 0x2030, 0x4d: 0x2031, 0x71: 0x2032, 0x77: 0x2033, 0x65: 0x2034, 0x72: 0x2035, 0x74: 0x2036, 0x79: 0x2037, 0x75: 0x2038, 0x69: 0x2039, 0x6f: 0x203a, 0x70: 0x203b, 0x61: 0x203c, 0x73: 0x203d, 0x64: 0x203e, 0x66: 0x203f, 0x67: 0x2040, 0x68: 0x2041, 0x6a: 0x2042, 0x6b: 0x2043, 0x6c: 0x2044, 0x7a: 0x2045, 0x78: 0x2046, 0x63: 0x2047, 0x76: 0x2048, 0x62: 0x2049, 0x6e: 0x204a, 0x30: 0x204b, 0x31: 0x204c, 0x32: 0x204d, 0x33: 0x204e, 0x34: 0x204f, 0x35: 0x2050, 0x36: 0x2051, 0x37: 0x2052, 0x38: 0x2053, 0x39: 0x2054} buf = "4a07ea371a587a623482f86f23b7f3bc48cba1344e9f7fdac85998c5568b9a1caeccd44cb12137959601011bcc3e5aa7591142a4524f865de08335963bf772e95b3ffd9a13fef6239100" buf = binascii.unhexlify( buf ) for i in buf: print( "buf += p_8( get_db_byte(", hex( a[ i ] ), ") )" )
[ "revervand@MacBook-Air-Anon.local" ]
revervand@MacBook-Air-Anon.local
6f6e10881068b659801fd52a1403787fb8c14723
9be00f2d22ad6594b278a2c47845c9f6315463ad
/category/migrations/0004_auto_20191118_0617.py
65bffd05c400479974d49dc79e0c2d4ce98473f3
[]
no_license
RanaFrazKhan/KingBestMallBackend
207e66b3acc1f7f6fd0dcbf9e7cfe33f49a93f64
570032c625ffbaf51ac62585b4f8a6b81f3abb21
refs/heads/master
2022-03-16T02:10:13.716275
2019-11-27T13:48:23
2019-11-27T13:48:23
224,174,473
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
# Generated by Django 2.2.6 on 2019-11-18 06:17 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('category', '0003_auto_20191118_0520'), ] operations = [ migrations.AlterField( model_name='sub_categories', name='Cat_ID', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='subname', to='category.Main_Categories'), ), ]
[ "rana.faraz@brainplow.com" ]
rana.faraz@brainplow.com
be45ca90af900d93250db15965ddd47db514bb0b
4388363ba45b95910c25bae3d9c02ad78f4a75d6
/python/anaconda/pkgs/notebook-5.0.0-py27_0/bin/jupyter-serverextension
667d4d4d9ba8d68af1c25ae696d1f3e047806c81
[]
no_license
locolucco209/MongoScraper
d494e02531f4f165b1e821633dc9661c579337b5
74476c9f00ee43338af696da7e9cd02b273f9005
refs/heads/master
2022-11-25T19:09:27.248747
2018-07-10T03:54:06
2018-07-10T03:54:06
137,553,786
3
1
null
2022-11-16T04:32:26
2018-06-16T04:49:22
null
UTF-8
Python
false
false
173
#!/opt/anaconda1anaconda2anaconda3/bin/python if __name__ == '__main__': import sys import notebook.serverextensions sys.exit(notebook.serverextensions.main())
[ "lukemassetti@WestSide-Luke.local" ]
lukemassetti@WestSide-Luke.local
2741d5264563affb353f6ae75f914192654b32cd
2a43932e2248f209ca995f143d49cb66dbcc86dd
/SSG_client/matfyz/nswi177/my_ssg.py.save
2596e398997bd1dace801ec29da4a1a3f789a430
[]
no_license
dominikrathan/Python
4a7fc4257be37e0ee4ce7fbc709612d293f25809
660a3138dd810208a20c922659422a1830e502b7
refs/heads/master
2022-11-12T04:21:24.295423
2020-07-02T11:47:00
2020-07-02T11:47:00
276,628,376
0
0
null
null
null
null
UTF-8
Python
false
false
4,358
save
#!/usr/bin/env python3 """ my_ssg - My simple static site generator for the NSWI177 course at MFF CUNI. """ import argparse import os import pathlib import sys import matfyz.nswi177.mdyml as mdyml import matfyz.nswi177.files as files def generate_one_file(template, all_pages, base_dir, input_filename, destination_filename): """ Generate one HTML file from Markdown source. Parameters ---------- template Templating engine object. all_pages: list List of all pages (already pre-parsed). base_dir: str Base directory with content input_filename: str Filename to process. destination_filename: str Where to store the converted file. """ print("{} => {}".format(input_filename, destination_filename)) (meta, content) = mdyml.load_markdown_with_yaml_header_from_file(input_filename) rendered = content with open(destination_filename, 'w') as out: out.write(rendered) def get_html_filename(relative_markdown_filename): """ Get HTML filename from given Markdown filename. """ return os.path.splitext(relative_markdown_filename)[0] + '.html' def action_generate(content_dir, templates_dir, static_dir, destination_dir): """ Callback for the `generate` action. Parameters ---------- content_dir: str Path to directory with input Markdown files. templates_dir: str Path to directory with Jinja templates. static_dir: str Path to directory with static files (CSS, images etc.). destinatation_dir: str Path to directory where to put the generated files. """ from jinja2 import Environment, PackageLoader, select_autoescape env = Environment( loader=PackageLoader() # TODO: get Jinja template here! template = None for (file_in, file_in_rel, relative_dirname) in files.relative_paths_walk(content_dir, '*.md'): dir_out = os.path.join(destination_dir, relative_dirname) file_out = os.path.join(destination_dir, get_html_filename(file_in_rel)) pathlib.Path(dir_out).mkdir(parents=True, exist_ok=True) generate_one_file(template, [], content_dir, file_in, file_out) def main(): """ Entry point of the whole program. Only parses command-line arguments and executes the right callback. """ args = argparse.ArgumentParser(description='My SSG') args_sub = args.add_subparsers(help='Select what to do') args.set_defaults(action='help') args_help = args_sub.add_parser('help', help='Show this help.') args_help.set_defaults(action='help') args_version = args_sub.add_parser( 'version', help='Show version of this tool.' ) args_version.set_defaults(action='version') args_generate = args_sub.add_parser( 'generate', help='Generate the web.' ) args_generate.set_defaults(action='generate') args_generate.add_argument( '--content', dest='content_dir', default='content/', metavar='PATH', help='Directory with source (content) files.' ) args_generate.add_argument( '--templates', dest='templates_dir', default='templates/', metavar='PATH', help='Directory with Jinja templates.' ) args_generate.add_argument( '--static', dest='static_dir', default='static/', metavar='PATH', help='Directory with static files (images, styles, ...).' ) args_generate.add_argument( '--destination', dest='destination_dir', default='out/', metavar='PATH', help='Directory where to store the result.' ) if len(sys.argv) < 2: # pylint: disable=too-few-public-methods,missing-class-docstring class HelpConfig: def __init__(self): self.action = 'help' config = HelpConfig() else: config = args.parse_args() if config.action == 'help': args.print_help() elif config.action == 'generate': action_generate( config.content_dir, config.templates_dir, config.static_dir, config.destination_dir ) else: raise Exception("Internal error, unknown action") if __name__ == '__main__': main()
[ "rathan.dominik@gmail.com" ]
rathan.dominik@gmail.com
8e7e5dc0a360e26ee19ed473db213ee94c8030d7
dc47a524573e143aeebe604edf632503b115516f
/src/learn/experimenter.py
6b51238404cdba0b053fd4bb78c061c237adac45
[]
no_license
bradcarter1994/trump-or-not-trump
186944ab6654964a0fc7b04abbdb96a63d46e4ef
2a5cb63e0691d40f879c1cd86eef01615c829472
refs/heads/master
2020-04-05T05:42:12.749392
2018-12-05T21:17:21
2018-12-05T21:17:21
156,607,037
0
0
null
2018-12-05T21:17:23
2018-11-07T20:55:10
Python
UTF-8
Python
false
false
480
py
import argparse class Experimenter: def __init__(self): pass def main(self): raise NotImplementedError def parser(self): parser = argparse.ArgumentParser(description='Machine Learning System Manager') parser.add_argument('-V', '--verbose', action='store_true', help='Print debug information') return parser def run_experiments(self): raise NotImplementedError if __name__ == 'main': Experimenter().main()
[ "bradcarter1994@gmail.com" ]
bradcarter1994@gmail.com
6a76881dceed0be75445a3cac3cb9816b26109b0
5228d0cfda662eb16b739a01690a6378436dc03b
/flow-builder.py
0e9fb1f0331ab40bde7ec5b13b8ec21587de7419
[]
no_license
vgthoppae/appflow-compliance
23fe7752adeaace34f72da367e3cce4a56df7a77
e6ff7e984fd5cbcccedde79b9e7d509da473c4b0
refs/heads/main
2023-05-10T04:33:29.230976
2021-06-01T12:44:01
2021-06-01T12:44:01
360,546,333
0
0
null
null
null
null
UTF-8
Python
false
false
762
py
import json, boto3 client = boto3.client('appflow', region_name='us-east-1') flow_name = 'prod-flow' def build(): with open('config/source_config.json') as source_config_contents: source_config = json.load(source_config_contents) with open('config/dest_config.json') as dest_config_contents: dest_config = json.load(dest_config_contents) with open('config/tasks_config.json') as tasks_config_contents: tasks_config = json.load(tasks_config_contents) response = client.create_flow( flowName = flow_name, triggerConfig = { 'triggerType': 'OnDemand' }, sourceFlowConfig = source_config, destinationFlowConfigList = dest_config, tasks = tasks_config ) print(response) if __name__ == '__main__': build()
[ "venkat.thoppae@gmail.com" ]
venkat.thoppae@gmail.com
5b9e5d6d6c233fcacaf5dc6fbc9c4b12589fb903
daa2c79f7c774b287b71612b374bc5383f294193
/explore_dataset.py
7bb2838037ae938f8565d68d7aa51850caf5f2a7
[]
no_license
phuongdoviet/VCCorp20173_MiniProject
41b112bb2aea94aff57b0978f0c04c72bfefa16e
284950e37124b601a71874853b0421ea1dff2974
refs/heads/master
2020-03-26T15:42:03.560444
2018-08-16T12:12:09
2018-08-16T12:12:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,376
py
import os, time import numpy as np import pandas as pd import matplotlib.pyplot as plt import utils from preprocessing import FeatureTransformer if __name__ == "__main__": # Load data to explore training_file_path = "./Dataset/encoded_training_data_345.json" # test_file_path = "./Dataset/data_sent.json" # training_data = utils.load_data(training_file_path) training_data, labels = FeatureTransformer.load_encoded_data(training_file_path) # training_size = len(training_data) # test_data = utils.load_data(test_file_path) # test_size = len(test_data) # print("Training data size : ", training_size) # print("Test data size : ", test_size) print("========================================") # training_df = utils.convert_original_data_to_df(training_data) # print(training_df.info()) print("\nStatistic") # stats_by_label = training_df.label.value_counts().sort_index().reset_index() stats_by_label = pd.DataFrame(labels, columns=["label"]).label.value_counts().sort_index().reset_index() cols = ["label", "total(%)"] stats_by_label.columns = cols # stats_by_label["total"] = stats_by_label["total"] / stats_by_label["total"].sum() * 100 print(stats_by_label.head()) print("Number distinct label : ", stats_by_label.shape[0]) utils.plot_stats_count(stats_by_label, is_save=True)
[ "quancq.it@gmail.com" ]
quancq.it@gmail.com
0005181720c920227c79102a8f0b946a124a3609
8552de797d96609b6ab306f0a30e0924d4da17da
/code/pather.py
d2b1bccf38e5246be4cce78b3893da57d6a44ec1
[]
no_license
YanB25/Snake
49235f150a66c57940028a2c4359d37954e13034
d8409888c416e77499ce509864274d05670409c9
refs/heads/master
2020-04-10T18:45:12.167093
2018-12-12T06:02:51
2018-12-12T06:02:51
161,211,494
2
0
null
null
null
null
UTF-8
Python
false
false
5,613
py
import json from snake import Snake from fruit import Fruit import queue import copy class PathSolve(): def __init__(self, snake, fruit, config): self.snake = copy.deepcopy(snake) self.fruit = copy.deepcopy(fruit) self.config = config width = int(config['window-width']) height = int(config['window-height']) blk = int(config['block-size']) self.width = int(width / blk) self.height = int(height / blk) self.delX = [0, 0, -1, 1] self.delY = [-1, 1, 0, 0] self.dir = ['U', 'D', 'L', 'R'] self.rev_dir = ['D', 'U', 'R', 'L'] self.rev_map = { 'U': 'D', 'D': 'U', 'L': 'R', 'R': 'L' } def shortest_path(self, target): ''' find the shortest path. snake body is blocked. @param target tuple of size 2. the x-y pair of destination @ret Tuple(Boolean, List[Str]). first element tells you whether it has a shortest path. Second element tells you the path from SNAKE HEAD to target. Empty list if no path. ''' # print('target', target) # print('snake', self.snake.head()) game_map = [ ['O' for i in range(self.width)] for j in range(self.height) ] dir_map = copy.deepcopy(game_map) for x, y in self.snake.snakebody[1:]: game_map[y][x] = 'X' # block # PathSolve.printList(game_map) x, y = target game_map[y][x] = 'F' q = queue.Queue() q.put(self.snake.head()) while not q.empty(): x, y = q.get() # print(x, y, game_map[y][x]) if game_map[y][x] != 'O': continue # print(x, y) game_map[y][x] = 'X' for i in range(4): nx = x + self.delX[i] ny = y + self.delY[i] if not self.isValid(nx, ny): continue if game_map[ny][nx] == 'F': dir_map[ny][nx] = self.rev_dir[i] return True, self.__findPath(dir_map, target) if game_map[ny][nx] != 'O': continue q.put((nx, ny)) # print('put', nx, ny) dir_map[ny][nx] = self.rev_dir[i] return False, [] def longest_path(self, target): y, sp = self.shortest_path(target) if not y: return False, [] game_map = [ ['O' for i in range(self.width)] for j in range(self.height) ] for x, y in self.snake.snakebody: game_map[y][x] = 'X' idx = 0 cur = self.snake.head() while True: extended = False direction = sp[idx] if direction in ['U', 'D']: test_extend = ['L', 'R'] else: assert(direction in ['L', 'R']) test_extend = ['U', 'D'] next_cur = self.pos_move(cur[0], cur[1], direction) for d in test_extend: t1 = self.pos_move(cur[0], cur[1], d) t2 = self.pos_move(next_cur[0], next_cur[1], d) if self.__exstendable(*t1, game_map) and self.__exstendable(*t2, game_map): extended = True sp.insert(idx, d) sp.insert(idx + 2, self.rev_map[d]) x, y = t1 game_map[y][x] = 'X' x, y = t2 game_map[y][x] = 'X' break if not extended: cur = next_cur idx += 1 if idx >= len(sp): break return True, sp def __findPath(self, dir_map, target): ''' inner function called by shortest path ''' # PathSolve.printList(dir_map) x, y = target ret = [] while dir_map[y][x] != 'O': ret.append(self.rev_map[dir_map[y][x]]) i = self.dir.index(dir_map[y][x]) # print('step', dir_map[y][x], i) nx = self.delX[i] ny = self.delY[i] x, y = x + nx, y + ny return ret[::-1] @staticmethod def printList(ls): for i in ls: print(i) print() def isValid(self, x, y): return x >= 0 and x < self.width and y >= 0 and y < self.height def __exstendable(self, x, y, game_map): return self.isValid(x, y) and game_map[y][x] == 'O' def pos_move(self, x, y, d): i = self.dir.index(d) delX = self.delX[i] delY = self.delY[i] return (x + delX, y + delY) def shortest_path_fruit(self): return self.shortest_path(self.fruit.where()) def longest_path_tail(self): return self.longest_path(self.snake.snakebody[-1]) if __name__ == '__main__': dt = None with open('config.json', 'r') as f: dt = json.load(f) with open ('output_9223372036568707794.log', 'r') as flog: data = flog.read() data = data.strip().split('\n') snake = Snake() snake.snakebody = [] for d in data: x, y = d.split(' ') x = int(x) y = int(y) snake.snakebody.append((x, y)) fruit = Fruit(dt) fruit.last_generate = (3, 8) solver = PathSolve(snake, fruit, dt) # print(solver.longest_path(fruit.where())) print(solver.longest_path(snake.snakebody[-1]))
[ "yanb25@mail2.sysu.edu.cn" ]
yanb25@mail2.sysu.edu.cn
9067ba5d706c78c3468b537a19d3d1530b92d744
1e420c670a8b457d4a046e4559a9e72bacb77572
/tools/initial_abundance/pinput_radii_reader.py
ea66fd6637c22b30fa0836f46f13a53fd98baa29
[ "BSD-3-Clause" ]
permissive
vishaltiwari/XNet
b213bb9cfcb60537eac98f08ceb990de1babc591
a7ad8d9a610edb1d522fef56b8ed1067fb39f30f
refs/heads/master
2020-06-07T09:13:44.373139
2019-06-28T00:13:27
2019-06-28T00:13:27
192,984,409
0
0
BSD-3-Clause
2019-06-20T20:36:56
2019-06-20T20:36:55
null
UTF-8
Python
false
false
572
py
def pinput_radii_reader(pinput_file): import numpy as np import imp #Read file of radii for each row of particles radius_pathname = pinput_file fradius = open(radius_pathname,'r') rad_list = np.loadtxt(fradius,skiprows=1,usecols=(0,)) with open(radius_pathname, 'r') as f_pnum: line_1 = f_pnum.readline() print line_1 line_list = line_1.split() n_part_x = int(line_list[1]) n_part_y = int(line_list[3]) n_part_z = int(line_list[5]) return rad_list,n_part_x,n_part_y,n_part_z
[ "jaharris87@users.noreply.github.com" ]
jaharris87@users.noreply.github.com
52a78ecf355ee0e7f8b171659bee062669b20d41
20777c40d35fa4b9b535a76545c9300a57624657
/prediction_baselines.py
95d10e7bf50f75a78a65cd04667381f49fc9bbbb
[]
no_license
robsdedude/graph-pattern-learner
6e658a3a4c56bbdbcf26f4f128dd98b09629cca7
eb8ddd14732cd719e67a712c11b324152a41baa6
refs/heads/master
2021-06-20T04:34:42.452313
2017-06-07T22:20:51
2017-06-07T22:20:51
91,547,799
0
0
null
null
null
null
UTF-8
Python
false
false
3,420
py
#!/usr/bin/env python2.7 # encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from SPARQLWrapper import SPARQLWrapper from rdflib import URIRef from rdflib import Literal from rdflib import Variable from splendid import get_path import config from gp_learner import find_in_prediction from graph_pattern import TARGET_VAR from ground_truth_tools import get_semantic_associations from ground_truth_tools import split_training_test_set import gp_query from utils import sparql_json_result_bindings_to_rdflib TIMEOUT = 30 LIMIT = 300 def predict_target_with_query( sparql, query, source, timeout=TIMEOUT, limit=LIMIT): """Predicts target with given query. For example for pagerank_bidi: SELECT distinct(?target) ?score { { dbr:Circle ?p ?target .} UNION { ?target ?q dbr:Circle . } ?target dbo:wikiPageRank ?score } ORDER BY DESC(?score) LIMIT 100 """ q = query % {'source': source.n3()} q += '\nLIMIT %d' % limit t, q_res = gp_query._query(sparql, timeout, q) res_rows_path = ['results', 'bindings'] bindings = sparql_json_result_bindings_to_rdflib( get_path(q_res, res_rows_path, default=[]) ) target_scores = [ (get_path(row, [TARGET_VAR]), get_path(row, [Variable('score')])) for row in bindings] # print(target_scores) return target_scores def query_template(name, triple): template_out = ''' SELECT distinct(?target) ?score { %(source)s ?p ?target . %(triple)s } ORDER BY DESC(?score) ''' template_in = ''' SELECT distinct(?target) ?score { ?target ?p %(source)s . %(triple)s } ORDER BY DESC(?score) ''' template_bidi = ''' SELECT distinct(?target) ?score { { %(source)s ?p ?target .} UNION { ?target ?q %(source)s . } %(triple)s } ORDER BY DESC(?score) ''' names = map(lambda s: name + '_%s' % s, ['out', 'in', 'bidi']) replace = { 'triple': triple, 'source': '%(source)s', # we want to keep '%(source)s' for later } queries = map(lambda t: t % replace, [template_out, template_in, template_bidi]) return dict(zip(names, queries)) prediction_queries = {} prediction_queries.update( query_template('pagerank', '?target dbo:wikiPageRank ?score .') ) prediction_queries.update( query_template('hits', '?target dbo:wikiHITS ?score .') ) prediction_queries.update( query_template('outdeg', '?target dbo:wikiPageOutLinkCountCleaned ?score .') ) prediction_queries.update( query_template('indeg', '?target dbo:wikiPageInLinkCountCleaned ?score .') ) def main(): semantic_associations = get_semantic_associations( config.GT_ASSOCIATIONS_FILENAME) assocs_train, assocs_test = split_training_test_set( semantic_associations, variant='random' ) # setup node expander sparql = SPARQLWrapper(config.SPARQL_ENDPOINT) predict_set = assocs_test for method, query in sorted(prediction_queries.items()): target_idxs = [] for source, target in predict_set: prediction = predict_target_with_query(sparql, query, source) target_idxs.append(find_in_prediction(prediction, target)) print("'%s': %s," % (method, target_idxs)) if __name__ == '__main__': main()
[ "dev@joernhees.de" ]
dev@joernhees.de
ce2c633262339c77e0699a3d819f196a5f81baa6
c9b0251fffad837bb39acb11760fd210b20a0454
/lib/blocks.py
ad1e802c7a9aadcde1eade9f238b3b982cb43ddf
[ "MIT" ]
permissive
jpinsonault/blocks
7ea9456318dab7453c96f9b87547c3297bbf3c0a
9e62012309aa3ccb291e31f01824c329c74bd165
refs/heads/master
2021-01-20T05:41:23.526762
2017-08-29T02:51:06
2017-08-29T02:51:06
101,465,050
0
1
null
2017-08-29T02:51:07
2017-08-26T05:34:02
Python
UTF-8
Python
false
false
3,469
py
import pygame from pygame.locals import * from random import randint import time ### Grid def create_grid(width, height, colors): column = lambda: [colors['grey']() for _ in range(width)] rows = [column() for _ in range(height)] return rows def move_to_pos(grid, row, column, creature, color_map): grid[row][column] = color_map['blue']() return grid ### Creature def create_creature(): creature = {'position': {'row': 0, 'column': 0}} return creature def ask_creature_where_to_move_to(creature): return ['up', 'down', 'left', 'right'][randint(0, 3)] def move_creature(creature, grid, color_map): #import pdb; pdb.set_trace() row = creature['position']['row'] column = creature['position']['column'] direction = ask_creature_where_to_move_to(creature) grid[row][column] = color_map['grey']() new_pos = [row, column] if row > 0 and direction == 'up': new_pos = [row-1, column] elif row < (len(grid) - 1) and direction == 'down': new_pos = [row+1, column] elif column > 0 and direction == 'left': new_pos = [row, column-1] elif column < (len(grid[0]) - 1) and direction == 'right': new_pos = [row, column+1] creature['position']['row'] = new_pos[0] creature['position']['column'] = new_pos[1] print(new_pos) grid = move_to_pos(grid, new_pos[0], new_pos[1], creature, color_map) return grid ### App class App: def __init__(self): self._running = True self._display_surf = None self.width = 4 self.height = 4 self.scale = 100 self.win_width = self.width * self.scale self.win_height = self.height * self.scale self.size = self.win_width, self.win_height rand_color = lambda: randint(0, 255) blue = lambda: (0, 128, 255) grey = lambda: (128, 128, 128) #color_map = {'blue': lambda: (rand_color(), rand_color(), 255)} self.color_map = {'blue': blue, 'grey': grey} self.grid = create_grid(self.width, self.height, self.color_map) self.creature = create_creature() def on_init(self): pygame.init() self._display_surf = pygame.display.set_mode(self.size, pygame.HWSURFACE | pygame.DOUBLEBUF) self._running = True def on_event(self, event): if event.type == pygame.QUIT: self._running = False def on_loop(self): pass def on_render(self): scale_for_box = lambda x: int(self.scale / len(x)) width = scale_for_box(self.grid[0]) height = scale_for_box(self.grid) for i, row in enumerate(self.grid): for j, color in enumerate(row): x = j * self.scale y = i * self.scale if not type(color) == type(tuple()): #import pdb; pdb.set_trace() pass pygame.draw.rect(self._display_surf, color, pygame.Rect(x, y, self.scale-5, self.scale-5)) pygame.display.flip() self.grid = move_creature(self.creature, self.grid, self.color_map) time.sleep(.1) def on_cleanup(self): pygame.quit() def on_execute(self): if self.on_init() == False: self._running = False while (self._running): for event in pygame.event.get(): self.on_event(event) self.on_loop() self.on_render() self.on_cleanup()
[ "ben@weaveup.com" ]
ben@weaveup.com
7179647af042fc71cb587a3d24047fe7ca109158
aad3b4ec3f36bb3ebb00288e77dc2dfbb9e72d78
/Baseball_Stats/Django_Stats/models.py
d4eca5458e9c432b4c996af88252b3f875471b92
[]
no_license
zseaborn63/Baseball
0430629be3c01f69d2901fb4f2fd4f4b5b28d9ec
3f2db5356befe6e7be8eb8d3c92d93a302c4134b
refs/heads/master
2021-01-10T01:49:17.791825
2016-02-19T17:13:27
2016-02-19T17:13:27
51,536,884
0
0
null
null
null
null
UTF-8
Python
false
false
1,812
py
from django.db import models # Create your models here. class Player(models.Model): lahmanID = models.IntegerField() player_key = models.CharField(max_length=10) managerID = models.CharField(max_length=10, blank=True) hofID = models.CharField(max_length=10, blank=True) birthYear = models.IntegerField() birthMonth = models.IntegerField() birthDay = models.IntegerField() birthCountry = models.CharField(max_length = 50) birthState = models.CharField(max_length = 2, blank=True) birthCity = models.CharField(max_length = 50) deathYear = models.IntegerField(blank=True) deathMonth = models.IntegerField(blank=True) deathDay = models.IntegerField(blank=True) deathCountry = models.CharField(max_length = 50, blank=True) deathState = models.CharField(max_length = 2, blank=True) deathCity = models.CharField(max_length = 50, blank=True) nameFirst = models.CharField(max_length=50) nameLast = models.CharField(max_length=50) nameNote = models.CharField(max_length=255) nameGiven = models.CharField(max_length=255) nameNick = models.CharField(max_length=255) height = models.IntegerField() weight = models.IntegerField() bats = models.CharField(max_length=1, choices=(('L', 'Left'), ('R', 'Right'), ('B', 'Both'))) throws = models.CharField(max_length=1, choices=(('L', 'Left'), ('R', 'Right'), ('B', 'Both'))) debut = models.CharField(max_length=12) finalGame = models.CharField(max_length=12, blank=True) college = models.CharField(max_length=50, blank=True) lahman40ID = models.CharField(max_length=9) lahman45ID = models.CharField(max_length=9) holtzID = models.CharField(max_length=9) bbrefID = models.CharField(max_length=9) def __str__(self): return self.player_key
[ "zseaborn63@gmail.com" ]
zseaborn63@gmail.com
0052e5593e820026f416055ebfbc862c2af184f2
3c0508785ac17f1b48e385c6273a1e068130ceac
/user_items
0819be02cba3a0a57b326beaf5d28d2b71639c2a
[]
no_license
zhanchangbao/recommand-system
735430505897dc448ac76f015cd6160d86236e9d
5dc4d74b60cee0300961129b8b69f1c2df8c340d
refs/heads/master
2020-04-18T00:57:25.536076
2018-04-09T13:59:46
2018-04-09T13:59:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,176
#! /usr/bin/env python # -*- coding: utf-8 -*-#! #time:2018/2/9 ____author____= pengxiaoxin import pandas as pd import numpy as np import math from operator import * rating = pd.read_csv('C:\\Users\\Administrator\\Desktop\\movie-data\\ml-latest-small\\ratings.csv') #ratings.csv's columns are user,movieId,rating,timestamp user = rating['userId'] movieId = rating['movieId'] rating1 = rating['rating'] #人对电影的评分 timestamp = rating['timestamp'] #打分的时间 user_item = dict()#构造一个字典,格式{userid:[movieid,movieid],……}因为一个人会看多部电影 for i in range(len(user)): if user[i] not in user_item: user_item[user[i]] = set() user_item[user[i]].add(movieId[i]) item_user = dict()#建立物品——用户的倒排表,为了降低表的稀疏性 for i in range(len(user)): if movieId[i] not in item_user: item_user[movieId[i]] = set()#set结构可以看成一个不重复的数组 item_user[movieId[i]].add(user[i]) N = dict()#计数,看看每个电影被看了多少次 C = dict()#得出两个物品同时被一个用户看的次数 for i,items in item_user.items(): for item in items: if item not in N: N[item] = 0 N[item]+=1 for item2 in items: if item ==item2: continue if (item, item2) not in C: C[item,item2] = 0 C[item,item2]+=1 w = dict()#通过C(1,2)/N[1]*N[2] 算出系数表,等于把物品的关联程度算出来啦;如果想加上时间的因素,就用log加入 for i ,item in C.items(): w[i[0],i[1]] = C[i[0], i[1]]/math.sqrt(N[i[0]] * N[i[1]] *1.0) rank = dict()#推荐列表 target_user = 1 #input("write the user you want to recommand:") train = user_item[target_user] ralated_item = dict() for i in w: if i[0] in train and i[1] not in train:#找出同时出现的两部电影,两部电影有1部被target-user看过 if i[1] not in ralated_item: ralated_item[i[1]] = 0 ralated_item[i[1]] = w[i[0],i[1]] print(sorted(ralated_item.items(), key = itemgetter(1), reverse=True)[:10])#打印出前十的。
[ "noreply@github.com" ]
zhanchangbao.noreply@github.com
3fbf9686fdab322a9bb64352bcb0e47b8d8ec3f1
61e82c9fd238483bceeae6670df2de6732daba21
/La_Course/src/Test_ing.py
049cd338a35b15340a3a7361593ecd6602c2d292
[]
no_license
h4r4ld-git/P1-A6
7b729462b09f0f6be96d0842d74d471994a6193b
90a3ebb736bfe65be55b0153758e60281dbc1aaa
refs/heads/main
2023-03-18T05:35:33.495972
2021-03-14T14:14:01
2021-03-14T14:14:01
345,929,532
0
0
null
null
null
null
UTF-8
Python
false
false
2,456
py
import unittest import correct import student class TestLa_Course(unittest.TestCase): def test_La_course(self): a = "Luka: 14\nIsam :1\n6 : 001\nAwidYamak:7\Bouchlaghem : 9\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\n54564\n'(-è: 2" i = "Ismail: 14\nIzadin :1\n6 : 001\nBoukabouz:9\nRafik : 7\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\n58:Samad" b = "Ismail: 20\nRomayssa :1\n6 : 001\nKartasou:7\nSaid : 9\n Ismail;7\njdef:?!\n4: Mohamed\nSaid?5\n\n\njkfjr\n\n\n;;;..?" c = "Mohamed: 15\nRodayna :13\n6 : 001\nRiiF:715\nAbjij : 14\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\;,?:325" d = "Zafzafi: 19\nNassir :16\n6 : 001\nZafzafi:25\nAhdidouch : 24\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\n$*^:&é3" e = "Zafzafi: 1\nHamza :16\n6 : 001\nAwidAbak:15\nFikri : 24\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\nSamir: 6" f = "Karim: 6\nBilal :8\n6 : 001\nYouta:65\nGholam : 7\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\n54564\nSaid:10\n\n\neff:64\nytu:Ay7" g = "Ilyass: 1\nSaffah :5\n6 : 001\nHalamala:715\nRayan : 4\n Ismail;7\njdef:zefezf\n4: Mohamed\nSaid?5\n\n\njkfjr\n54564\nImane:2" h = "Kamal: 1\nImad :5\n6 : 001\nAyoube:715\Lina : 4\nMohamed:10\nYassir:3\nRayan:14\nImran:2\nSouraya: 7\nImane:4\nAnissa:15" j = "Mohamed:3\nSalwa:2\nIsmail:4\nAymane:6\nAyoube:9\nRodayna:12\nImran:13\nYassir:14\nRayan:15\nFikri:1" k = "Sara:11\nNisrine:12\nSophia:13\nMarouan:14\nFatiha:15" m = "Wassima:1\nWassim:2\nWadie:3\nMohamed:4\nfjf:23\n2:Halim\??:2" l = [a,b,c,d,e,f,g,h,i,j,k,m] for i in range(len(l)): rep = ("Votre fonction a retourné {} alors que la réponse attendue est {}") f1 = open("Timssah_i+1.txt","w") f1.write(l[i]) f1.close() try: student_course = student.La_course("Timssah_i+1.txt") except Exception as error: self.fail("la fonction 'La_course' a provoqué l'exception {}: {}".format(type(error), error)) correct_course = correct.La_course("Timssah_i+1.txt") self.assertEqual(student_course, correct_course, rep.format(student_course, correct_course)) if __name__ == '__main__': unittest.main(verbosity=2)
[ "luka.chkoidze@student.uclouvain.be" ]
luka.chkoidze@student.uclouvain.be
ea1c10e06fee9d8a040e69ae1b16700b007c9f87
939266abe034b73c513b65b1d9d73167494655a8
/script_job_file_stage_plus.py
7c4589eca45b42f6c90c5b1278c8b9620ff59231
[]
no_license
pmbasene/xml_log
6bfbce24977c9e7eb51e9d2879b2ffcb6aec74a1
c73e018e9aba14a95e5b186d2ab80a9786ab754a
refs/heads/master
2020-07-23T09:48:11.791877
2019-10-10T09:46:17
2019-10-10T09:46:17
207,346,473
0
0
null
null
null
null
UTF-8
Python
false
false
25,343
py
#!/anaconda3/bin/python # coding: utf-8 import os from lxml import etree import xml.etree.ElementTree as ET import numpy as np import pandas as pd from pprint import pprint # import random # from XML_HANDLE import * from XML_HANDLE import Xml_logfile from clean_file import CleanFolder """ DESCRIPTION DES MODULES -------------------------- Modules : - lxml: permet de parser les fichiers xml. Pour plus d'infos rtfm la documentation sur le package lxml consulter: https://docs.python.org/3.4/library/xml.etree.elementtree.html#module-xml.etree.ElementTree ;) - Pandas et Numpy permettent de travailler sur des dataframes et de manipuler les donnees plus facilement. - clean_file.py permet de nettoyer au prealable le dossier qui contient les excecutables. Taches : - extraire les valeurs des cles(jobname, filename, directory) qui sont en format string ou variable depuis les fichiers XML. - recuperer leurs valeurs exactes en utilisant les jobnames des fichiers xml pour trouver leurs fichiers excecutables corespndantes. """ class ParseElementXML(): """cette classe a ete creee dans l'optique de faciliter l'extraction de données à partir d'un fichier de format XML. Elle comporte un ensemble de fonctions qui permettent de recuperer, manipuler, et extraire à partir du xml-projet Note: Pour l'instant afin d'eviter toutes erreurs d'excecution, les fichier XML doivent etre dans le meme dossier que le prog main_scrpit.py """ def document(self, fileProjetXML="SUPprd.xml"): #DOC-FTSACprd.xml, SUPprd.xml , MGTPRD.xml """cette fonction prend en input le nom du fichier .xml et renvoie le path absolu. Ce dernier sera utilise aussi en input par la fonction getroot() pour instancier le module lmxl.etree """ basePath = os.path.dirname( __file__) # path abs du dossier de ce file fullPath = os.path.join(basePath, fileProjetXML) # fullPath = os.path.abspath(fileProjetXML) # os.chdir(fullPath) # # ---------------------------------------------------------------------, # try: # basePath = os.path.dirname(__file__) # fullPath = os.path.join(basePath, fileProjetXML) # print(fullPath) # return fullPath # except OSError: # return "verifier bien le path du fichier. Il doit etre dans le dossier" # __________________________________# # print(fullPath) return fullPath def getRoot(self, fullPath): """getroot() prend en input le path absolu un objet appele root """ tree = etree.parse(fullPath) root = tree.getroot() # print(root.tag, root.attrib) # print(f"Infos - nombre de child pour {root.tag}:", len(root)) # print("_________-------_____----Header------___----___----___----___ ") return root def removeDuplicates(self, listDoublons): # not use '''cette methode permet de supprimer les doublons dans une liste. Elle prend en entree une liste d'elements et retourne ensuite la meme liste dans laquelle tous elements dupliques sont supprimes''' liste = [] for i in listDoublons: if i not in liste: liste.append(i) # return liste # liste = [liste.append(x) for x in listDoublons if x not in liste] # list method comprehension return liste def recupererCleOuValeurInString(self, string, sep=" "): '''cette fonction prend en entree une chaine de caractere <str> et un separateur(= ou , ou ; ou : etc) et retourne la cle et la valeur de la chaine splitee''' key, val = string.split(sep) Key = key.strip() Val = val.strip() return Key, Val def recuperer_PAR_dir(self, string): """ cette fonction prend en entree une la valeur du file du xML (format string) et retourne une liste d'elements filtres (format list). Comment ca marche : Elle splite d'abord une chaine de caractere en se basant sur le separator # qui est donne en entree, ensuite filtre tous les items non desirables tels que les items vides, underscore, etc. et retourne finalement que les variables-repertoires du logfile """ PAR_list = [] # RESULTAT A RECUPERER COMME RETURN DE LA FONCTION # LIST DES CARACTERES EXCLUS COMME PREMIER ITEM DE LA LISTE caract_exclu = ['', '_'] result = string.split("\\") for res in result: if 'PAR' in res: res = res.split("#") # print(res) del res[0] for r in res: if r not in caract_exclu and 'DS_' not in r: PAR_list.append(r) if 'DS_' in r: r, r_ext = os.path.splitext(r) PAR_list.append(r) PAR_list.append(r_ext) # print(res) # print(PAR_list) return PAR_list def buildFullPath(self, PAR_list, realFilePath): # global realFilePathFull extensions = ['.ds', '.ext', 'csv'] extension = PAR_list[-1] DSfile = PAR_list[-2] if extension in extensions: if 'PAR' not in DSfile: # realFilePathFull = realFilePath+DSfile+extension return realFilePath+DSfile+extension else: # realFilePathFull = realFilePath+extension return realFilePath+extension elif extension not in extensions: return realFilePath+extension def makePathForFileOrFileDataset(self, filePath, PAR_list): """ cette fonction prend en input le filePath cad la liste des key-repertoire des chemins PATH des files,... """ realFilePath = " " if len(filePath) == 1: realFilePath = os.path.join(filePath[0]) realFilePath = self.buildFullPath(PAR_list, realFilePath) elif len(filePath) == 2: realFilePath = os.path.join(filePath[0], filePath[1]) realFilePath = self.buildFullPath(PAR_list, realFilePath) elif len(filePath) == 3: realFilePath = os.path.join(filePath[0], filePath[1], filePath[2]) realFilePath = self.buildFullPath(PAR_list, realFilePath) elif len(filePath) == 4: realFilePath = os.path.join( filePath[0], filePath[1], filePath[2], filePath[3]) realFilePath = self.buildFullPath(PAR_list, realFilePath) elif len(filePath) == 5: realFilePath = os.path.join( filePath[0], filePath[1], filePath[2], filePath[3], filePath[4]) realFilePath = self.buildFullPath(PAR_list, realFilePath) elif len(filePath) == 6: realFilePath = os.path.join( filePath[0], filePath[1], filePath[2], filePath[3], filePath[4], filePath[5]) realFilePath = self.buildFullPath(PAR_list, realFilePath) elif len(filePath) == 7: realFilePath = os.path.join( filePath[0], filePath[1], filePath[2], filePath[3], filePath[4], filePath[5], filePath[5]) realFilePath = self.buildFullPath(PAR_list, realFilePath) # else: # fileValueTrueRecord.append(None) return realFilePath def retrieveFilePath(self, fileValue, blockTextPar): # les filepath fonctionnent correctement si le bloc est au debut du logfile. donc il me faut trouver une solution pour resoudre le cas ou le boc est a une ligne x du logfile. pour cela se referer a la variable PAR filePath = [] # recuperation des parametres directory # print("PAR",len(PAR_list),PAR_list) blockTextPar_list = blockTextPar PAR_list = self.recuperer_PAR_dir(fileValue) # la valeur PAR_list = 0 signifie que le bloc n'est pas en debut du logfile for par in PAR_list: for line in blockTextPar_list: # line = line.strip() # pour enlever tous les espaces a gauche et a droite if r'=' in line: # ceci est du a une levee dexcpection ie unpacking items kline, vline = self.recupererCleOuValeurInString( line, sep="=") if par == kline: filePath.append(vline) return PAR_list, filePath def funcname(self, *param): # # PropertyOrcollection, fileValueRecord, fileValueTrueRecord, datasetValueRecord, datasetValueTrueRecord if PropertyOrcollection.tag == 'Collection' and PropertyOrcollection.attrib.get("Name") == 'Properties': # attribute_Name = PropertyOrcollection.attrib.get('Name') for subrecord in PropertyOrcollection: # ACCES NIVEAU 5 for prop in subrecord: if prop.attrib.get('Name') == 'Value': Textprop = str(prop.text) fileValue = Textprop if (r')file' in fileValue) and (jobN == jobFromXML): # print(fileValue) PAR_list, filePath = self.retrieveFilePath( fileValue, blockTextPar) realFilePath = self.makePathForFileOrFileDataset( filePath, PAR_list) # print(realFilePath) fileValueRecord.append(fileValue) fileValueTrueRecord.append(realFilePath) tup = (jobN, logfile, fileValue, realFilePath, attribute_type) tuple_Job_logfile_file_trueFile_attr.append(tup) # print( # f"{jobN},{logfile},{fileValue},{realFilePath},NaN,NaN,NaN ,NaN,{attribute_type}") # print(f"jobN, logfile, fileValue, realFilePath, datasetValue, realFilePathDataset, stageName, stageType,recordTypeRecord") # return fileValueRecord, fileValueTrueRecord, # print(tup) datasetValue = Textprop if ('.ds' in datasetValue) and (jobN == jobFromXML): # print(realFilePathDataset) PAR_dataset_list, filePathDataset = self.retrieveFilePath( datasetValue, blockTextPar) realFilePathDataset = self.makePathForFileOrFileDataset( filePathDataset, PAR_dataset_list) datasetValueRecord.append(datasetValue) datasetValueTrueRecord.append(realFilePathDataset) # print( # f"{jobN},{logfile},NaN,NaN,{datasetValue},{realFilePathDataset},NaN,NaN,{attribute_type}") # print(f"jobN, logfile, fileValue, realFilePath, datasetValue, realFilePathDataset, stageName, stageType,recordTypeRecord") # return realFilePathDataset, datasetValueTrueRecord return fileValueRecord, fileValueTrueRecord, datasetValueRecord, datasetValueTrueRecord, tuple_Job_logfile_file_trueFile_attr # def funcname2(record): # for PropertyOrcollection in record: # ACCES NIVEAU 4 # attribute_Name = PropertyOrcollection.attrib.get('Name') # if attribute_Name == 'Name': # TextPropertyOrcollection = str(PropertyOrcollection.text) # stageName = TextPropertyOrcollection # # print(f"{jobN}, {logfile}, NaN, NaN, NaN, NaN, {stageName},NaN, {attribute_type}") # # print(f"jobN, logfile, fileValue, realFilePath, datasetValue, realFilePathDataset, stageName, stageType,recordTypeRecord") # elif attribute_Name == 'StageType': # TextPropertyOrcollection = str(PropertyOrcollection.text) # stageType = TextPropertyOrcollection # # print(f"{jobN}, {logfile}, NaN, NaN, NaN, NaN, NaN,{stageType},{attribute_type}") # # print(f"jobN, logfile, fileValue, realFilePath, datasetValue, realFilePathDataset, stageName, stageType,recordTypeRecord") class ParseLog(): def changeDir(self): path_to_logfullDS = '/Users/ganasene/Downloads/folder/logsfullDS' r = os.chdir(path_to_logfullDS) return r def blockEventID(self, string): ''' cette fonction prend en entree une string et retourne une liste. ici on va prendre comme separator_word le -Event iD-, donc sep_word=Event !!! -Dans les listes qui seront generees il en y aura certaines qui seront vides. Donc il faut en prendre compte lors de suppression des occurences inutiles(msgid -00126 par exples) de la liste bloc_jb.- ''' blockPar2 = [] blockPar3 = [] bloc_jb = string.split( 'Event ') # Note : prendre juste Event plus espace pour que ca marche # del bloc_jb[2] # permet d'enlever la deuxieme occurence qui comporte que les parametre de conf du datastage # enleve la permiere occ qui est vide del bloc_jb[0] # ceci est la liste d'element ou bloc a suprrimer msgId_list = ['IIS-DSTAGE-RUN-I-0126', 'IIS-DSTAGE-RUN-I-0034', 'IIS-DSTAGE-RUN-I-0070'] for i, l in enumerate(bloc_jb): # i, la ligne et l est la ligne if msgId_list[0] in l: # suppression de l'environnement varaible inutiles del bloc_jb[i] for l2 in bloc_jb: if (msgId_list[1] in l2) or (msgId_list[2] in l2): blockPar2.append(l2) for l3 in blockPar2: # conversion de str en list car blockTextPar etait en format list blockPar2_list = l3.split('\n') for l4 in blockPar2_list: if r'=' in l4: blockPar3.append(l4) blockPar3 = list(set(blockPar3)) return blockPar3 ### ===================MAIN0 : nettoyage du dossier =================================================== p = CleanFolder() content = p.cleaning_files() ### affichage # print("------ traitement1: Resultat nettoyage du dossier {} !!!!------".format(p)) for i in content: # print(i, sep='\n') pass # print('---<>_<>__ Dossier nettoye!!!!---<>_<>__', sep='\n') # # ===================MAIN1=================================================== ### Initiation des listes suivants en vue de creeer un dataframe en output datasetName = [] datasetValueTrue = [] logFile = [] b = Xml_logfile() ######## ======================== ====================== q = ParseLog() path_to_logfullDS = q.changeDir() # changement de repertoire tuple_job_logfile = [] compt = 0 jobFromXMLpd = [] logfilepd = [] tuple_job_logfilepd = [] print(f'Projet,job,file,truefile,stage,idIO,typeIO') # fileProjetXML = "MGTPRD.xml" for fileProjetXML in os.listdir('/Users/ganasene/Downloads/projet_xml_insyco/xmlFile/'): if (fileProjetXML != ".DS_Store") and (fileProjetXML != ".vscode"): # fileProjetXML, ext= os.path.splitext(fileProjetXML) # print(fileProjetXML) filename, ext = os.path.splitext(fileProjetXML) ###DOC-FTSACprd.xml, SUPprd.xml , MGTPRD.xml, SOC-CLIPIprd.xml, DOC-OCTAVprd.xml ###UTIprd.xml Docprd.xml,SOC-OSCARprd.xml #no files in FTSACprd.xml ,DOC-OCTAVprd.xml, UTIprd.xml #1 file in SOC-CLIPIprd.xml fullPath = b.document(fileProjetXML) # Instanciation du module etree ## methode parse tree = etree.parse(fullPath) root = tree.getroot() # Initiation des listes de collection des jobs extraits dans les fichiers xml jobList = [] stageNumberList= [] stageList = [] fileInput = [] fileOutput= [] idInputList = [] idOuputList = [] p = ParseElementXML() fullPath = p.document(fileProjetXML) root = p.getRoot(fullPath) # snippet pour rechercher et collecter les PAR au niveau des logs for logfile in os.listdir(path_to_logfullDS): with open(logfile, encoding='utf8') as f: f = f.read() # for idx, jobFromXML in enumerate(collectionJobFromXML): # if jobFromXML in f: for job in root: jobName = job.attrib.get('Identifier') jobName = str(jobName) # print(jobName) if jobName in f: # print(jobName+'-->'+logfile) jobList.append(jobName) blockTextPar = q.blockEventID(f) for record in job: attribute_type = record.attrib.get('Type') attribute_identifier = record.attrib.get('Identifier') if attribute_type == 'CustomStage': stageNumberList.append(attribute_type) # col 4 for PropertyOrcollection in record: # ACCES NIVEAU 4 attribute_Name = PropertyOrcollection.attrib.get('Name') if attribute_Name == 'Name': stageName = str(PropertyOrcollection.text) stageList.append(stageName) elif attribute_Name == 'InputPins': idxs = str(PropertyOrcollection.text) # idxs ---> identifianr if r"|" in idxs: idInput = idxs.split('|') # les id des inputs idInputList.append(idInput) # print(jobName+';'+stageName+';'+str(idInputList)+';'+attribute_Name) else: idInput = idxs idInputList.append(idInput) # print(jobName+';'+stageName+';'+str(idInputList)+';'+attribute_Name) # print(jobN,'--',stageType,'--', stageName,'--',idInput,'(I)') elif attribute_Name == 'OutputPins': idxs = str(PropertyOrcollection.text) # idxs ---> identifianr if r"|" in idxs: idOutput = idxs.split('|') idOuputList.append(idOutput) # print(jobName+';'+stageName+';'+str(idOuputList)+';'+attribute_Name) else: idOutput = idxs idOuputList.append(idOutput) # print(jobName+';'+stageName+';' +str(idOuputList)+';'+attribute_Name) elif attribute_type == 'CustomInput': for PropertyOrcollection in record: if PropertyOrcollection.tag == 'Collection' and PropertyOrcollection.attrib.get("Name") == 'Properties': # attribute_Name = PropertyOrcollection.attrib.get('Name') for subrecord in PropertyOrcollection: # ACCES NIVEAU 5 # print(idInput, 'Input') # print(stageName) for prop in subrecord: if prop.attrib.get('Name') == 'Value': fileValue = str(prop.text) datasetValue = str(prop.text) if (r')file' in fileValue) and (attribute_identifier == idInput): # if attribute_identifier == idInput: # print(idInput, 'Input') # print(stageName) PAR_list, filePath = p.retrieveFilePath(fileValue, blockTextPar) realFilePath = p.makePathForFileOrFileDataset( filePath, PAR_list) print(filename+','+jobName+','+fileValue+','+realFilePath+','+stageName+','+attribute_identifier+','+attribute_type) fileInput.append(fileValue) if ('.ds' in datasetValue) and (attribute_identifier == idInput): # print(idInput, 'Input') # print(stageName) PAR_list, filePath = p.retrieveFilePath(fileValue, blockTextPar) realFilePath = p.makePathForFileOrFileDataset( filePath, PAR_list) print(filename+',' + jobName+','+datasetValue + ',' + realFilePath + ',' + stageName+','+attribute_identifier+','+attribute_type) fileInput.append(datasetValue) elif attribute_type == 'CustomOutput': for PropertyOrcollection in record: if PropertyOrcollection.tag == 'Collection' and PropertyOrcollection.attrib.get("Name") == 'Properties': # attribute_Name = PropertyOrcollection.attrib.get('Name') for subrecord in PropertyOrcollection: # ACCES NIVEAU 5 for prop in subrecord: if prop.attrib.get('Name') == 'Value': fileValue = str(prop.text) datasetValue = str(prop.text) if r')file' in fileValue and (attribute_identifier == idOutput): PAR_list, filePath = p.retrieveFilePath(fileValue, blockTextPar) realFilePath = p.makePathForFileOrFileDataset( filePath, PAR_list) print( filename+','+jobName+','+fileValue+','+realFilePath+','+stageName+','+attribute_identifier+','+attribute_type) fileOutput.append(fileValue) if ('.ds' in datasetValue) and (attribute_identifier == idOutput): PAR_list, filePath = p.retrieveFilePath(fileValue, blockTextPar) realFilePath = p.makePathForFileOrFileDataset( filePath, PAR_list) print(filename+','+jobName+','+datasetValue+','+realFilePath +','+stageName+','+attribute_identifier+','+attribute_type) fileOutput.append(datasetValue) # # # print("------ traitement2: collection des jobs dans xml {} !!!!------".format(fullPath)) print(len(jobList)) jobList = list(set(jobList)) jobList = p.removeDuplicates(jobList) # # # stageList = p.removeDuplicates(stageList) # ne supprime pas les doublons des stages, maybe c important # # # stageList = p.removeDuplicates(stageList) # jobList.remove(None) print(len(jobList)) # # # print(len(stageNumberList)) # # print(len(stageList)) # # print(len(fileInput)) # # print(len(fileOutput)) # # # print(stageList) # # print(idInputList)
[ "pmbasene@gmail.com" ]
pmbasene@gmail.com
16a9e29d931fdaa72f0e92f17d73fadeb046554d
33cc8b2684dddf64fb730f42bf90c0d3e0a4f1c6
/client/src/assets/papers/rename.py
bed4d7ee0dfbf0869efc2bc17fc43df3c64bba3c
[]
no_license
apujol09/NUIWebReact
1f74a9ed175babd304ab96c52ae0c9d12dac10a1
64598cd0ae1fa776615716aa607b0a30ac7d7c9d
refs/heads/master
2020-04-07T18:26:20.631019
2019-02-27T18:05:51
2019-02-27T18:05:51
158,610,159
0
1
null
null
null
null
UTF-8
Python
false
false
178
py
import os directory = 'D:/Repos/web2/assets/papers' [os.rename(os.path.join(directory, f), os.path.join(directory, f).replace(' ', '_').lower()) for f in os.listdir(directory)]
[ "apujo010@AD.CS.FIU.EDU" ]
apujo010@AD.CS.FIU.EDU
872d3a57cfcf35f46c151c463b307c38cb2f8821
4b1c693a6a18ac3856f2f855c15bb2c9bed90410
/quat2/actions.py
9837018b7316cef26cb34e41bd71d4753c7590f1
[]
no_license
mouboo/quat2
73cb06315400dd725bfd34dc13634f61366f8597
f5d0519d0279aff8d0e5069db6211200a1e8263f
refs/heads/master
2020-09-23T11:07:27.077622
2020-01-05T13:37:53
2020-01-05T13:37:53
225,485,097
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
#actions.py def cmd_help(args): if h == 'go': print("'Go' usage: go [to] <direction>") def go(args): print("You go to {}".format(args)) def inventory(args): s = '' for item in p.inventory: s += item + ', ' def look(args): pass
[ "peterkvillegard@gmail.com" ]
peterkvillegard@gmail.com
a3c0fb4b5518284323f259aefadfe664f7532bd1
6a44d6071d9bc632b234da40f04393ed05e5f9d5
/plugins/lektor-github/lektor_github.py
2feace77361dfc201bb51047a1139eb4e9799992
[]
no_license
zupo/seaintome
431d6533e4d8bcdd4a0eea3a5c210f26a7ed3477
37b9c49133173b2f6e531246a8f48432b5b0b718
refs/heads/master
2023-03-28T12:04:14.345668
2018-07-03T17:02:47
2018-07-03T17:02:47
98,026,930
0
0
null
2021-03-25T21:32:43
2017-07-22T11:26:07
CSS
UTF-8
Python
false
false
822
py
from __future__ import unicode_literals from lektor.publisher import Command, Publisher from lektor.pluginsystem import Plugin class GitHubPlugin(Plugin): name = 'GitHub' description = 'Support for pushing changes to GitHub.' def on_setup_env(self, **extra): self.env.publishers['github'] = GitHubPublisher class GitHubPublisher(Publisher): def publish(self, target, credentials=None, **extra): for line in Command(['git', 'status']).safe_iter(): yield line for line in Command(['git', 'add', '-A']).safe_iter(): yield line for line in Command(['git', 'commit', '-m', 'Automatic commit by Lektor']).safe_iter(): yield line for line in Command(['git', 'push', 'origin', 'HEAD:master']).safe_iter(): yield line
[ "nejc.zupan@gmail.com" ]
nejc.zupan@gmail.com
dbad2d478c3ae3f0a07b7d0bbc72a1c1d30c8325
9bd270e6713ef7f4f887ff8413d6b94d314849a1
/10. Raspberry Pi/9.LED Button time increment.py
d6e561482651a40a6ddad13cea7c18d0ba0e2ef4
[]
no_license
dongryoung/Class_Examples
ab0242dde514ab72f1d8088cf0698693fb36d665
90040f40742d9bf8d8030388cec24bc548ae9c92
refs/heads/master
2023-04-10T20:37:01.794232
2020-07-29T03:56:24
2020-07-29T03:56:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,331
py
#버튼 한 번 누를때마다 #LED 켜지는 시간 10초씩 증가 import RPi.GPIO as GPIO import time led_pin = 7 pushButton_pin = 11 GPIO.setmode(GPIO.BOARD) GPIO.setup(led_pin, GPIO.OUT) GPIO.setup(pushButton_pin, GPIO.IN) led_on = False #초기 LED 상태 pressed = 0 #버튼 상태 (눌림: 1, 안눌림: 0) start_time = 0 #처음 버튼이 눌린 시간 remain_time = 0 #LED 불 남아 있는 시간 try: while True: a = GPIO.input(pushButton_pin) if a == 1: #버튼이 눌렸는가 if pressed == 0: #버튼 상태가 계속 눌렸는가 if led_on == False: #불이 꺼진 상태인가 remain_time = 0 start_time = time.time() print(start_time) led_on = True remain_time = remain_time + 3 print(remain_time) pressed = 1 else: pressed = 0 if led_on: GPIO.output(led_pin, True) else: GPIO.output(led_pin, False) #현재시간에서 (처음 시간 + 남은 시간)을 빼면 if ((start_time + remain_time) - time.time()) <= 0: led_on = False else: led_on = True except KeyboardInterrupt: GPIO.cleanup()
[ "noreply@github.com" ]
dongryoung.noreply@github.com
f9fe4c293d98a8c59e1a94cc7dfdb508f86e3d8b
6b2d5488cc8a06cab81c1524bb14c347f3bf015a
/multiflood_python/bin/pyreverse
2100194fbe0033c18d4e3ba098107366aff70d65
[ "MIT" ]
permissive
devanshk/MultiFlood
b169c47afc402afc5cbe9f139f9887d9c6bc2df1
73f8e40beeec9f818b8419b7ef4db6121a60b709
refs/heads/master
2023-02-23T04:12:55.395589
2021-01-25T01:01:16
2021-01-25T01:01:16
299,680,934
2
1
MIT
2020-12-28T20:26:00
2020-09-29T16:52:33
TypeScript
UTF-8
Python
false
false
267
#!/Users/jay/Documents/MultiFlood/multiflood_python/bin/python # -*- coding: utf-8 -*- import re import sys from pylint import run_pyreverse if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(run_pyreverse())
[ "koolguru2@gmail.com" ]
koolguru2@gmail.com
ef62ce3eb7ac8f03084c6369bbcb145a4ad9648c
8ea7912401d3f609765738f38b44561e4b2dbd5f
/sshmng/cli.py
9d70863d14a9860279cc7888b1e7e3018843920e
[ "MIT" ]
permissive
zeroam/sshmng
1b46099ef6d9b174e7debf64e35663c6998b01c9
c3b705aeb6b086ec02664e74a31650ec2ffc41f6
refs/heads/master
2023-03-15T13:52:02.056589
2021-03-22T12:16:32
2021-03-22T12:16:32
343,767,017
1
1
MIT
2021-03-22T12:16:33
2021-03-02T12:29:04
Python
UTF-8
Python
false
false
3,630
py
"""Console script for sshmng.""" import os import sys import click import subprocess import tempfile from pathlib import Path from pprint import pprint from sshmng.repo import Repo @click.group() @click.option("--debug/--nodebug", default=False, envvar="SSHMNG_DEBUG") @click.pass_context def main(ctx, debug): ctx.obj = Repo(debug) @main.command() @click.pass_obj def list(repo: Repo): hosts = repo.load_hosts() # TODO: print host info more pretty (+ colors) for name, host in hosts.items(): print(f"- {name}: {host['username']}@{host['host']}:{host['port']}") @main.command() @click.argument("name") @click.pass_obj def add(repo: Repo, name): hosts = repo.load_hosts() if hosts.get(name): replace = input( f"The connection for {name} already exists.\nDo you want to replace? [y/N] " ) if replace.lower() != "y": print("Canceled add host") return print(f"Saving {name}...") # TODO: check input is empty username = input("Enter user name: ") address = input("Enter server address: ") port = int(input("Enter ssh port[22]: ") or 22) private_key_path = input(f"Enter private key path[{repo.private_key}]: ") if not private_key_path: private_key = repo.private_key.read_text() # add ssh-copy-id logic subprocess.call( f'cat {repo.public_key} | ssh -p {port} {username}@{address} "mkdir -p ~/.ssh && chmod 700 ~/.ssh && cat >> ~/.ssh/authorized_keys"', shell=True, ) else: # check add pem file instead private_key = Path(private_key_path).read_text() hosts[name] = { "username": username, "host": address, "port": port, "private_key": private_key, } repo.save_hosts(hosts) print(f"Saved {name}") @main.command() @click.argument("name") @click.pass_obj def connect(repo: Repo, name): host = repo.load_hosts().get(name) if host is None: print(f"connection for '{name}' not exists") return sys.exit(1) # TODO: check if pem file exists with tempfile.NamedTemporaryFile("w") as fp: fp.write(host["private_key"]) fp.flush() temppath = os.path.join(tempfile.gettempdir(), fp.name) print(temppath) subprocess.call( f"ssh -i {temppath} -p {host['port']} {host['username']}@{host['host']}", shell=True, ) @main.command() @click.argument("name") @click.pass_obj def delete(repo: Repo, name): hosts = repo.load_hosts() if hosts.get(name) is None: print(f"connection for '{name}' not exists") return sys.exit(1) replace = input( f"connection for '{name}' permenantly deleted. Are you sure? [y/N] " ) if replace.lower() != "y": return del hosts[name] repo.save_hosts(hosts) print(f"Delete '{name}' Complete") @main.command() @click.argument("name") @click.argument("command", nargs=-1) @click.pass_obj def exec(repo: Repo, name, command): host = repo.load_hosts().get(name) if host is None: print(f"connection for '{name}' not exists") return sys.exit(1) with tempfile.NamedTemporaryFile("w") as fp: fp.write(host["private_key"]) fp.flush() temppath = os.path.join(tempfile.gettempdir(), fp.name) print(temppath) subprocess.call( f"ssh -i {temppath} -p {host['port']} {host['username']}@{host['host']} '{' '.join(command)}'", shell=True, ) if __name__ == "__main__": sys.exit(main()) # pragma: no cover
[ "imdff0803@gmail.com" ]
imdff0803@gmail.com
422920aa326471336694645680d370c24a513dd2
78d86701e3406750c712e22b4883d70063025659
/bert_lightning_adapter.py
ce15942c06c266924ed254ec7f3b7768521028df
[]
no_license
jq8205/qa-for-ta
44d8cf97afab5426930a556aabf4b323fd7afe2b
f83de4152672962f5a5c449bdb5327bbba7f2839
refs/heads/master
2022-11-16T22:53:09.632515
2020-07-07T01:30:43
2020-07-07T01:30:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,909
py
from typing import Dict from collections import OrderedDict from functools import partial import lineflow as lf import lineflow.datasets as lfds import lineflow.cross_validation as lfcv from lineflow.core import lineflow_load import torch from torch.utils.data import DataLoader, ConcatDataset import pytorch_lightning as pl from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.logging import TestTubeLogger from transformers import BertTokenizer, AdamW, get_linear_schedule_with_warmup from adapter_bert import AdapterBert, setup_adapters import os # model_name = "bert-large-uncased-whole-word-masking" model_name = "bert-base-uncased" cache_directory = "/mnt/nfs/work1/andrewlan/bzylich/cached_models/" nb_gpus = 1 nb_nodes = 1 # world = nb_gpus * nb_nodes long_candidates_per_example = 4 nq_save_path = "/mnt/nfs/work1/andrewlan/bzylich/datasets/natural_questions/simplified/v1.0-simplified-nq-train-" + str(long_candidates_per_example) + "-cands-per-example.pkl" MAX_LEN = 300 NUM_LABELS = 2 def preprocess(tokenizer: BertTokenizer, x: Dict) -> Dict: # Given two sentences, x["string1"] and x["string2"], this function returns BERT ready inputs. inputs = tokenizer.encode_plus( x["question"], x["context"], add_special_tokens=True, max_length=MAX_LEN, ) # First `input_ids` is a sequence of id-type representation of input string. # Second `token_type_ids` is sequence identifier to show model the span of "string1" and "string2" individually. input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] attention_mask = [1] * len(input_ids) # BERT requires sequences in the same batch to have same length, so let's pad! padding_length = MAX_LEN - len(input_ids) pad_id = tokenizer.pad_token_id input_ids = input_ids + ([pad_id] * padding_length) attention_mask = attention_mask + ([0] * padding_length) token_type_ids = token_type_ids + ([pad_id] * padding_length) # Super simple validation. assert len(input_ids) == MAX_LEN, "Error with input length {} vs {}".format(len(input_ids), MAX_LEN) assert len(attention_mask) == MAX_LEN, "Error with input length {} vs {}".format(len(attention_mask), MAX_LEN) assert len(token_type_ids) == MAX_LEN, "Error with input length {} vs {}".format(len(token_type_ids), MAX_LEN) # Convert them into PyTorch format. label = torch.tensor(int(not x["is_impossible"])).long() input_ids = torch.tensor(input_ids) attention_mask = torch.tensor(attention_mask) token_type_ids = torch.tensor(token_type_ids) # DONE! return { "label": label, "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids } def get_dataloader(): tokenizer = BertTokenizer.from_pretrained(model_name, do_lower_case="uncased" in model_name, cache_dir=cache_directory) preprocessor = partial(preprocess, tokenizer) train = lfds.Squad("train", 2) test = lfds.Squad("dev", 2) train, val = lfcv.split_dataset_random(train, int(len(train) * 0.9), seed=42) train = train.map(preprocessor) print("SQuAD Train dataset length:", len(train), flush=True) # nq = lineflow_load(nq_save_path) # train, val = lfcv.split_dataset_random(nq, int(len(nq) * 0.9), seed=42) # train = train.map(preprocessor) # nq = nq.map(preprocessor) # print("NQ Train dataset length:", len(nq), flush=True) # train = ConcatDataset([train, nq]) print("Train dataset length:", len(train), flush=True) print("Val dataset length:", len(val), flush=True) print("Test dataset length:", len(test), flush=True) val = val.map(preprocessor) test = test.map(preprocessor) return train, val, test class Model(pl.LightningModule): def __init__(self, num_epochs, adapter_size, learning_rate, batch_size): super(Model, self).__init__() self.num_epochs = num_epochs self.adapter_size = adapter_size self.learning_rate = learning_rate self.batch_size = batch_size setup_adapters(self.adapter_size) model = AdapterBert.from_pretrained(model_name, num_labels=NUM_LABELS, cache_dir=cache_directory) self.model = model train, val, test = get_dataloader() self._train = train self._val = val self._test = test self._train_dataloader = None self._val_dataloader = None self._test_dataloader = None def configure_optimizers(self): param_optimizer = list(self.model.named_parameters()) no_decay = ["bias", "LayerNorm.weight"] # ["bias", "gamma", "beta"] optimizer_grouped_parameters = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay_rate": 0.0 # 0.01 }, { "params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay_rate": 0.0 }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=self.learning_rate, eps=1e-8 ) t_total = len(self.train_dataloader()) * self.num_epochs t_warmup = int(0.1 * float(t_total)) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=t_warmup, num_training_steps=t_total) return [optimizer], [scheduler] def training_step(self, batch, batch_idx): labels = batch["label"] input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] token_type_ids = batch["token_type_ids"] loss, _ = self.model( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels ) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp or self.trainer.use_ddp2: loss = loss.unsqueeze(0) tqdm_dict = {"train_loss": loss} output = OrderedDict({ "loss": loss, "progress_bar": tqdm_dict, "log": tqdm_dict }) return output def validation_step(self, batch, batch_idx): labels = batch["label"] input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] token_type_ids = batch["token_type_ids"] loss, logits = self.model( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels ) labels_hat = torch.argmax(logits, dim=1) correct_count = torch.sum(labels == labels_hat) if self.on_gpu: correct_count = correct_count.cuda(loss.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp or self.trainer.use_ddp2: loss = loss.unsqueeze(0) correct_count = correct_count.unsqueeze(0) output = OrderedDict({ "val_loss": loss, "correct_count": correct_count, "batch_size": len(labels) }) return output def validation_end(self, outputs): val_acc = sum([torch.mean(out["correct_count"]) if (self.trainer.use_dp or self.trainer.use_ddp2) else out["correct_count"] for out in outputs]).float() / sum(out["batch_size"] for out in outputs) val_loss = sum([torch.mean(out["val_loss"]) if (self.trainer.use_dp or self.trainer.use_ddp2) else out["val_loss"] for out in outputs]) / len(outputs) tqdm_dict = { "val_loss": val_loss, "val_acc": val_acc, } result = {"progress_bar": tqdm_dict, "log": tqdm_dict, "val_loss": val_loss} return result def test_step(self, batch, batch_idx): labels = batch["label"] input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] token_type_ids = batch["token_type_ids"] loss, logits = self.model( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, labels=labels ) labels_hat = torch.argmax(logits, dim=1) correct_count = torch.sum(labels == labels_hat) if self.on_gpu: correct_count = correct_count.cuda(loss.device.index) output = OrderedDict({ "test_loss": loss, "correct_count": correct_count, "batch_size": len(labels) }) return output def test_end(self, outputs): test_acc = sum([out["correct_count"] for out in outputs]).float() / sum(out["batch_size"] for out in outputs) test_loss = sum([out["test_loss"] for out in outputs]) / len(outputs) tqdm_dict = { "test_loss": test_loss, "test_acc": test_acc, } result = {"progress_bar": tqdm_dict, "log": tqdm_dict} return result @pl.data_loader def train_dataloader(self): if self._train_dataloader is None: train_dist_sampler = torch.utils.data.distributed.DistributedSampler(self._train) self._train_dataloader = DataLoader( self._train, sampler=train_dist_sampler, # RandomSampler(train), # sampler=RandomSampler(train), batch_size=self.batch_size, num_workers=0 ) return self._train_dataloader @pl.data_loader def val_dataloader(self): if self._val_dataloader is None: val_dist_sampler = torch.utils.data.distributed.DistributedSampler(self._val) self._val_dataloader = DataLoader( self._val, sampler=val_dist_sampler, # SequentialSampler(val), # sampler=SequentialSampler(val), batch_size=self.batch_size, num_workers=0 ) return self._val_dataloader @pl.data_loader def test_dataloader(self): if self._test_dataloader is None: test_dist_sampler = torch.utils.data.distributed.DistributedSampler(self._test) self._test_dataloader = DataLoader( self._test, sampler=test_dist_sampler, # SequentialSampler(test), # sampler=SequentialSampler(test), batch_size=self.batch_size, num_workers=0 ) return self._test_dataloader if __name__ == "__main__": # BEGIN Hyperparameters BATCH_SIZE = 32 # LEARNING_RATE = 5e-5 # ADAPTER_SIZE = 8 # NUM_EPOCHS = 3 # END learning_rate_options = [1e-3, 1e-2, 1e-1] adapter_size_options = [64, 256] num_epochs_options = [20, 30] for NUM_EPOCHS in num_epochs_options: for LEARNING_RATE in learning_rate_options: for ADAPTER_SIZE in adapter_size_options: name = model_name + "_" + str(LEARNING_RATE) + "_" + str(BATCH_SIZE) + "_adapter_" + str(ADAPTER_SIZE) + "_epochs_" + str(NUM_EPOCHS) + "_SQuAD_Grid" # _NQ_2-cands-per-example_plus- ckpt_directory = "./" + name + "/" SAVE_PREFIX = name + "_" # early_stop_callback = EarlyStopping( # monitor="val_loss", # min_delta=0.0, # patience=3, # verbose=True, # mode="min" # ) # default logger used by trainer logger = TestTubeLogger( save_dir="./lightning_logs/", name=name, debug=False, create_git_tag=False ) checkpoint_callback = ModelCheckpoint( filepath=ckpt_directory, save_top_k=1, verbose=True, monitor='val_loss', mode='min', prefix=SAVE_PREFIX ) trainer = pl.Trainer( logger=logger, nb_gpu_nodes=nb_nodes, gpus=nb_gpus, early_stop_callback=False, # early_stop_callback, checkpoint_callback=checkpoint_callback, distributed_backend='ddp', amp_level='O2', use_amp=True, max_epochs=NUM_EPOCHS ) print("-----------------------------------------------------------------------") print(name) model = Model(NUM_EPOCHS, ADAPTER_SIZE, LEARNING_RATE, BATCH_SIZE) print("all params:", model.model.count_all_params(), "trainable params:", model.model.count_trainable_params()) print("Model initiated.", flush=True) print("Commencing training...", flush=True) trainer.fit(model) print("Training completed.", flush=True) # print("Testing model...", flush=True) # trainer.test() # print("Finished!", flush=True) del logger del checkpoint_callback del trainer del model torch.cuda.empty_cache()
[ "noreply@github.com" ]
jq8205.noreply@github.com
ce1097d24dcb81d3104358d7723a962b1be9dccb
69b98035ededca206f7139ec68d61aaca74f7f1f
/src/lidar_odometry_and_mapping/src/gnss_ins_sim/src/recorder_node_allan_variance_analysis.py
f94fa2138a08164344cfd0fe56bfa08ecc701e7e
[]
no_license
xiekunpeng0379/SensorFusion
69378ad1077b8769566ea05b5c4b3c359ec3252d
fbd1ddeb55c610714b456be76bc501efac86344e
refs/heads/main
2023-04-08T12:34:03.059967
2021-04-18T06:23:58
2021-04-18T06:23:58
483,066,678
1
0
null
2022-04-19T02:26:05
2022-04-19T02:26:05
null
UTF-8
Python
false
false
7,205
py
#!/usr/bin/python import os import rospkg import rospy import rosbag import math import numpy as np from gnss_ins_sim.sim import imu_model from gnss_ins_sim.sim import ins_sim from std_msgs.msg import String from sensor_msgs.msg import Imu from nav_msgs.msg import Odometry def get_gnss_ins_sim(motion_def_file, fs_imu, fs_gps): ''' Generate simulated GNSS/IMU data using specified trajectory. ''' # set IMU model: D2R = math.pi/180.0 # imu_err = 'low-accuracy' imu_err = { # 1. gyro: # a. random noise: # gyro angle random walk, deg/rt-hr 'gyro_arw': np.array([0.75, 0.75, 0.75]), # gyro bias instability, deg/hr 'gyro_b_stability': np.array([10.0, 10.0, 10.0]), # gyro bias isntability correlation time, sec 'gyro_b_corr': np.array([100.0, 100.0, 100.0]), # b. deterministic error: 'gyro_b': np.array([0.0, 0.0, 0.0]), 'gyro_k': np.array([1.0, 1.0, 1.0]), 'gyro_s': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), # 2. accel: # a. random noise: # accel velocity random walk, m/s/rt-hr 'accel_vrw': np.array([0.05, 0.05, 0.05]), # accel bias instability, m/s2 'accel_b_stability': np.array([2.0e-4, 2.0e-4, 2.0e-4]), # accel bias isntability correlation time, sec 'accel_b_corr': np.array([100.0, 100.0, 100.0]), # b. deterministic error: 'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]), 'accel_k': np.array([1.0, 1.0, 1.0]), 'accel_s': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), # 3. mag: 'mag_si': np.eye(3) + np.random.randn(3, 3)*0.0, 'mag_hi': np.array([10.0, 10.0, 10.0])*0.0, 'mag_std': np.array([0.1, 0.1, 0.1]) } # generate GPS and magnetometer data: imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True) # init simulation: sim = ins_sim.Sim( [fs_imu, fs_gps, fs_imu], motion_def_file, ref_frame=1, imu=imu, mode=None, env=None, algorithm=None ) # run: sim.run(1) # get simulated data: rospy.logwarn( "Simulated data size {}".format( len(sim.dmgr.get_data_all('gyro').data[0]) ) ) # imu measurements: step_size = 1.0 / fs_imu for i, (gyro, accel, ref_pos, ref_att_quat, ref_vel) in enumerate( zip( # a. gyro sim.dmgr.get_data_all('gyro').data[0], # b. accel sim.dmgr.get_data_all('accel').data[0], sim.dmgr.get_data_all('ref_pos').data[0], sim.dmgr.get_data_all('ref_att_quat').data[0], sim.dmgr.get_data_all('ref_vel').data[0] ) ): yield { 'stamp': i * step_size, 'data': { # a. gyro: 'gyro_x': gyro[0], 'gyro_y': gyro[1], 'gyro_z': gyro[2], # b. accel: 'accel_x': accel[0], 'accel_y': accel[1], 'accel_z': accel[2], # c. ref_pos: 'ref_pos_x': ref_pos[0], 'ref_pos_y': ref_pos[1], 'ref_pos_z': ref_pos[2], # d. ref_att_quat: 'ref_att_quat_x': ref_att_quat[0], 'ref_att_quat_y': ref_att_quat[1], 'ref_att_quat_z': ref_att_quat[2], 'ref_att_quat_w': ref_att_quat[3], # e. ref_vel: 'ref_vel_x': ref_vel[0], 'ref_vel_y': ref_vel[1], 'ref_vel_z': ref_vel[2], } } def gnss_ins_sim_recorder(): """ Record simulated GNSS/IMU data as ROS bag """ # ensure gnss_ins_sim_node is unique: rospy.init_node('gnss_ins_sim_recorder_node') # parse params: motion_def_name = rospy.get_param('/gnss_ins_sim_recorder_node/motion_file') sample_freq_imu = rospy.get_param('/gnss_ins_sim_recorder_node/sample_frequency/imu') sample_freq_gps = rospy.get_param('/gnss_ins_sim_recorder_node/sample_frequency/gps') topic_name_imu = rospy.get_param('/gnss_ins_sim_recorder_node/topic_name') rosbag_output_path = rospy.get_param('/gnss_ins_sim_recorder_node/output_path') rosbag_output_name = rospy.get_param('/gnss_ins_sim_recorder_node/output_name') rosbag_output_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), rosbag_output_path) # generate simulated data: motion_def_path = os.path.join( rospkg.RosPack().get_path('gnss_ins_sim'), 'config', 'motion_def', motion_def_name ) imu_simulator = get_gnss_ins_sim( # motion def file: motion_def_path, # gyro-accel/gyro-accel-mag sample rate: sample_freq_imu, # GPS sample rate: sample_freq_gps ) with rosbag.Bag( os.path.join(rosbag_output_path, rosbag_output_name), 'w' ) as bag: # get timestamp base: timestamp_start = rospy.Time.now() for measurement in imu_simulator: # init: msg = Imu() # a. set header: time_stamp = timestamp_start + rospy.Duration.from_sec(measurement['stamp']) msg.header.frame_id = 'NED' msg.header.stamp = time_stamp # b. set orientation estimation: msg.orientation.x = 0.0 msg.orientation.y = 0.0 msg.orientation.z = 0.0 msg.orientation.w = 1.0 # c. gyro: msg.angular_velocity.x = measurement['data']['gyro_x'] msg.angular_velocity.y = measurement['data']['gyro_y'] msg.angular_velocity.z = measurement['data']['gyro_z'] msg.linear_acceleration.x = measurement['data']['accel_x'] msg.linear_acceleration.y = measurement['data']['accel_y'] msg.linear_acceleration.z = measurement['data']['accel_z'] odom_msg = Odometry() odom_msg.header.frame_id = 'ENU' odom_msg.child_frame_id = 'ENU' odom_msg.header.stamp = time_stamp # a. set orientation : odom_msg.pose.pose.x = measurement['data']['ref_pos_x'] odom_msg.pose.pose.y = measurement['data']['ref_pos_y'] odom_msg.pose.pose.z = measurement['data']['ref_pos_z'] odom_msg.orientation.x = measurement['data']['ref_att_quat_x'] odom_msg.orientation.y = measurement['data']['ref_att_quat_y'] odom_msg.orientation.z = measurement['data']['ref_att_quat_z'] odom_msg.orientation.w = measurement['data']['ref_att_quat_w'] # b. set position odom_msg.twist.twist.linear.x = measurement['data']['ref_vel_x'] odom_msg.twist.twist.linear.y = measurement['data']['ref_vel_y'] odom_msg.twist.twist.linear.z = measurement['data']['ref_vel_z'] # write: bag.write(topic_name_imu, msg, msg.header.stamp) bag.write("/pose/ground_truth", odom_msg, odom_msg.header.stamp) if __name__ == '__main__': try: gnss_ins_sim_recorder() except rospy.ROSInterruptException: pass
[ "uupks0325@gmail.com" ]
uupks0325@gmail.com
1fac3d7e1d754ceccd22e2a44d7aa79d21809451
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-4739.py
d5abb8e7fb73baa88a694920865ec11d866b424b
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,292
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, $TypedVar, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
cedf0f9f7e4a3f3e462c9ece960b06285598723e
e2ab8200b81d7c3d5b0f6bd090aa8c587fe8ae35
/insertsort.py
41eec2659a0c786f4bb9dc5033a3b37c723407a1
[]
no_license
Ananth-Adhikarla/Python-Programming
d13c320e5d23407acc62842848975051fde2057b
b3b03dac771c3c6337c1cd5016ce4f8826e1058d
refs/heads/master
2020-03-12T04:54:55.975415
2018-04-21T08:13:06
2018-04-21T08:13:06
130,453,799
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
""" Insert Sort """ def insertion_sort(nlist): for i in range(1,len(nlist)): temp = nlist[i] j = i while( j>0 and temp < nlist[j - 1]): nlist[j] = nlist[j-1] j -= 1 nlist[j] = temp return nlist l = [1,3,5,7,4,2] print("Original List : ",l) print("After insert sort ", insertion_sort(l) ) assert insertion_sort([5,19,4,1,36,99,2]) == sorted([5,19,4,1,36,99,2]) assert insertion_sort(["Greg", "Armen", "Ken"]) == sorted(["Greg", "Armen", "Ken"]) assert insertion_sort([9,8,7,6,5,4,3,2,1]) == [1,2,3,4,5,6,7,8,9]
[ "ananth.adhikarla@gmail.com" ]
ananth.adhikarla@gmail.com
9a0c824e0a63c04fd42985900a538f7a3e5a1ed2
5af277b5819d74e61374d1d78c303ac93c831cf5
/bisimulation_aaai2020/dopamine/rainbow_agent.py
7c9a614beabc4a088e107685b25a5c86d430673c
[ "Apache-2.0" ]
permissive
Ayoob7/google-research
a2d215afb31513bd59bc989e09f54667fe45704e
727ec399ad17b4dd1f71ce69a26fc3b0371d9fa7
refs/heads/master
2022-11-11T03:10:53.216693
2020-06-26T17:13:45
2020-06-26T17:13:45
275,205,856
2
0
Apache-2.0
2020-06-26T16:58:19
2020-06-26T16:58:18
null
UTF-8
Python
false
false
18,472
py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rainbow agent used for learning the bisimulation metric.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from dopamine.agents.rainbow import rainbow_agent import gin import numpy as np import tensorflow.compat.v1 as tf from tensorflow.contrib import layers as contrib_layers from tensorflow.contrib import slim as contrib_slim @gin.configurable def atari_network(num_actions, num_atoms, support, network_type, state, representation_layer=10): """The convolutional network used to compute agent's Q-value distributions. Args: num_actions: int, number of actions. num_atoms: int, the number of buckets of the value function distribution. support: tf.linspace, the support of the Q-value distribution. network_type: namedtuple, collection of expected values to return. state: `tf.Tensor`, contains the agent's current state. representation_layer: int, the layer which will be used as the representation for computing the bisimulation distances. Defaults to a high value, which defaults to the penultimate layer. Returns: net: _network_type object containing the tensors output by the network. """ weights_initializer = contrib_slim.variance_scaling_initializer( factor=1.0 / np.sqrt(3.0), mode='FAN_IN', uniform=True) curr_layer = 1 net = tf.cast(state, tf.float32) net = tf.div(net, 255.) representation = None if representation_layer <= curr_layer: representation = contrib_slim.flatten(net) net = contrib_slim.conv2d( net, 32, [8, 8], stride=4, weights_initializer=weights_initializer, trainable=False) curr_layer += 1 if representation is None and representation_layer <= curr_layer: representation = contrib_slim.flatten(net) net = contrib_slim.conv2d( net, 64, [4, 4], stride=2, weights_initializer=weights_initializer, trainable=False) curr_layer += 1 if representation is None and representation_layer <= curr_layer: representation = contrib_slim.flatten(net) net = contrib_slim.conv2d( net, 64, [3, 3], stride=1, weights_initializer=weights_initializer, trainable=False) net = contrib_slim.flatten(net) curr_layer += 1 if representation is None and representation_layer <= curr_layer: representation = net net = contrib_slim.fully_connected( net, 512, weights_initializer=weights_initializer, trainable=False) curr_layer += 1 if representation is None: representation = net net = contrib_slim.fully_connected( net, num_actions * num_atoms, activation_fn=None, weights_initializer=weights_initializer, trainable=False) logits = tf.reshape(net, [-1, num_actions, num_atoms]) probabilities = contrib_layers.softmax(logits) q_values = tf.reduce_sum(support * probabilities, axis=2) return network_type(q_values, logits, probabilities, representation) @gin.configurable def bisimulation_network(states, hidden_dimension=512, num_layers=1, trainable=True): """Creates the network for approximating the bisimulation distances. Args: states: Tensor, concatentation of two state representations. hidden_dimension: int, dimensionality of hidden_layers. num_layers: int, the number of layers to use for the approximant. trainable: bool, whether this network will be trainable. Returns: Network to approximate bisimulation metric. """ net = tf.cast(states, tf.float32) net = contrib_slim.flatten(net) for _ in range(num_layers): net = contrib_slim.fully_connected( net, hidden_dimension, trainable=trainable) return contrib_slim.fully_connected(net, 1, trainable=trainable) SequentialDistances = ( collections.namedtuple('sequential_distances', ['bisimulation', 'value'])) @gin.configurable class BisimulationRainbowAgent(rainbow_agent.RainbowAgent): """A subclass of Rainbow which learns the on-policy bisimulation metric.""" def __init__(self, sess, num_actions, optimizer=tf.train.AdamOptimizer( learning_rate=0.000075, epsilon=0.00015), bisim_horizon_discount=0.99, evaluate_metric_only=False, summary_writer=None): """Initializes the agent and constructs the components of its graph. Args: sess: tf.Session, for executing ops. num_actions: int, number of actions the agent can take at any state. optimizer: `tf.train.Optimizer`, for training the bisimulation estimator. bisim_horizon_discount: float, amount by which to increase the horizon for estimating the distance. evaluate_metric_only: bool, if set, will evaluate the loaded metric approximant. summary_writer: SummaryWriter object for outputting training statistics. Summary writing disabled if set to None. """ self.bisim_optimizer = optimizer self.bisim_horizon_discount = bisim_horizon_discount self.bisim_horizon_discount_value = 1.0 self.bisim_horizon = 0.0 self.evaluate_metric_only = evaluate_metric_only self.start_recording = False super(BisimulationRainbowAgent, self).__init__( sess, num_actions, network=atari_network, summary_writer=summary_writer) self._source_state = np.copy(self.state) self._evaluation_steps = 0 self.eval_distances = SequentialDistances([], []) def reload_checkpoint(self, checkpoint_path): """Reload variables from a fully specified checkpoint. Args: checkpoint_path: string, full path to a checkpoint to reload. """ assert checkpoint_path global_vars = set([x.name for x in tf.global_variables()]) ckpt_vars = [ '{}:0'.format(name) for name, _ in tf.train.list_variables(checkpoint_path) ] # Only include non trainable variables which are also present in the # checkpoint to restore include_vars = list(global_vars.intersection(set(ckpt_vars))) variables_to_restore = contrib_slim.get_variables_to_restore( include=include_vars) if variables_to_restore: reloader = tf.train.Saver(var_list=variables_to_restore) reloader.restore(self._sess, checkpoint_path) tf.logging.info('Done restoring from %s!', checkpoint_path) def _get_network_type(self): """Returns the type of the outputs of a Q value network. Returns: net_type: _network_type object defining the outputs of the network. """ return collections.namedtuple('c51_network', ['q_values', 'logits', 'probabilities', 'representation']) def _concat_states(self, states, transpose=False): """Concatenate all pairs of states in a batch. Args: states: Tensor, batch of states from which we will concatenate batch_size^2 pairs of states. transpose: bool, whether to concatenate states in transpose order. Returns: A batch_size^2 Tensor containing the concatenation of all elements in `states`. """ # tiled_states will have shape # [batch_size, batch_size, representation_dimension] and will be of the # following form (where \phi_1 is the representation of the state of the # first batch_element): # [ \phi_1 \phi_2 ... \phi_batch_size ] # [ \phi_1 \phi_2 ... \phi_batch_size ] # ... # [ \phi_1 \phi_2 ... \phi_batch_size ] tiled_states = tf.tile([states], [self.batch_size, 1, 1]) # transpose_tiled_states will have shape # [batch_size, batch_size, representation_dimension] and will be of the # following form (where \phi_1 is the representation of the state of the # first batch_element): # [ \phi_1 \phi_1 ... \phi_1 ] # [ \phi_2 \phi_2 ... \phi_2 ] # ... # [ \phi_batch_size \phi_batch_size ... \phi_batch_size ] transpose_tiled_states = tf.keras.backend.repeat(states, self.batch_size) # concat_states will be a # [batch_size, batch_size, representation_dimension*2] matrix containing the # concatenation of all pairs of states in the batch. if transpose: concat_states = tf.concat([transpose_tiled_states, tiled_states], 2) else: concat_states = tf.concat([tiled_states, transpose_tiled_states], 2) # We return a reshaped matrix which results in a new batch of size # batch_size ** 2. Resulting matrix will have shape # [batch_size**2, representation_dimension]. representation_dimension = tf.shape(states)[1] return tf.reshape(concat_states, (self.batch_size**2, representation_dimension * 2)) def _build_bisimulation_target(self): """Build the bisimulation target.""" r1 = tf.tile([self._replay.rewards], [self.batch_size, 1]) r2 = tf.transpose(r1) reward_differences = tf.abs(r1 - r2) reward_differences = tf.reshape(reward_differences, (self.batch_size**2, 1)) if self.summary_writer is not None: mean_reward_diff = tf.reduce_mean(reward_differences) tf.summary.scalar('Training/AverageRewardDiff', mean_reward_diff) self.next_state_distances = self.bisim_horizon_ph * self.s2_target_distances return reward_differences + self.gamma * self.next_state_distances def _build_train_op(self): return tf.no_op() def _sync_qt_ops(self): return tf.no_op() def _build_networks(self): super(BisimulationRainbowAgent, self)._build_networks() self._build_all_bisimulation_parts() def _build_all_bisimulation_parts(self): """Builds the bisimulation networks and ops.""" self.batch_size = tf.shape(self._replay.rewards)[0] self._replay_target_outputs = self.target_convnet(self._replay.states) self.bisim_horizon_ph = tf.placeholder(tf.float32, ()) self.online_bisimulation = tf.make_template('OnlineBisim', bisimulation_network) self.target_bisimulation = tf.make_template('TargetBisim', bisimulation_network, trainable=False) # For evaluating the metric from an episode's first state. self.source_state_ph = tf.placeholder(self.observation_dtype, self.state_ph.shape, name='source_state_ph') self._initial_state_net = self.online_convnet(self.source_state_ph) concat_states = tf.concat( [self._initial_state_net.representation, self._net_outputs.representation], 1) self.state_distances = tf.squeeze(self.online_bisimulation(concat_states)) self.state_value = tf.reduce_max(self._net_outputs.q_values, axis=1)[0] if self.summary_writer is not None: tf.summary.scalar('Eval/StateDistances', self.state_distances) if self.evaluate_metric_only: return self.s1_online_distances = self.online_bisimulation( self._concat_states(self._replay_net_outputs.representation)) self.s2_target_distances = self.target_bisimulation( self._concat_states( self._replay_next_target_net_outputs.representation)) # bisimulation_target = rew_diff + gamma * next_distance. bisimulation_target = tf.stop_gradient(self._build_bisimulation_target()) # We zero-out diagonal entries, since those are estimating the distance # between a state and itself, which we know to be 0. diagonal_mask = 1.0 - tf.diag(tf.ones(self.batch_size, dtype=tf.float32)) diagonal_mask = tf.reshape(diagonal_mask, (self.batch_size**2, 1)) bisimulation_target *= diagonal_mask bisimulation_estimate = self.s1_online_distances bisimulation_loss = tf.losses.mean_squared_error( bisimulation_target, bisimulation_estimate) if self.summary_writer is not None: average_distance = tf.reduce_mean(bisimulation_estimate) average_target = tf.reduce_mean(bisimulation_target) average_next_state_dists = tf.reduce_mean(self.next_state_distances) tf.summary.scalar('Training/loss', bisimulation_loss) tf.summary.scalar('Training/AverageDistance', average_distance) tf.summary.scalar('Training/AverageTargetDistance', average_target) tf.summary.scalar('Training/AverageNextStateDistance', average_next_state_dists) tf.summary.scalar('Training/BisimHorizon', self.bisim_horizon_ph) tf.summary.histogram('Training/OnlineDistance', bisimulation_estimate) tf.summary.histogram('Training/TargetDistance', bisimulation_target) self._train_bisim_op = self.bisim_optimizer.minimize(bisimulation_loss) self._bisim_sync_op = self._build_sync_op(online_scope='OnlineBisim', target_scope='TargetBisim') def _build_sync_op(self, online_scope='Online', target_scope='Target'): # Get trainable variables from online and target Rainbow sync_qt_ops = [] trainables_online = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=online_scope) trainables_target = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=target_scope) for (w_online, w_target) in zip(trainables_online, trainables_target): # Assign weights from online to target network. sync_qt_ops.append(w_target.assign(w_online, use_locking=True)) return sync_qt_ops def _train_bisimulation(self): if self._replay.memory.add_count > self.min_replay_history: if self.training_steps % self.update_period == 0: self._sess.run(self._train_bisim_op, {self.bisim_horizon_ph: self.bisim_horizon}) if (self.summary_writer is not None and self.training_steps > 0 and self.training_steps % self.summary_writing_frequency == 0): summary = self._sess.run(self._merged_summaries, {self.source_state_ph: self._source_state, self.state_ph: self.state, self.bisim_horizon_ph: self.bisim_horizon}) self.summary_writer.add_summary(summary, self.training_steps) if self.training_steps % self.target_update_period == 0: self._sess.run(self._bisim_sync_op) self.bisim_horizon = 1.0 - self.bisim_horizon_discount_value self.bisim_horizon_discount_value *= self.bisim_horizon_discount self.training_steps += 1 def _evaluate_bisimulation(self): if self.start_recording: current_distance = self._sess.run( self.state_distances, {self.source_state_ph: self._source_state, self.state_ph: self.state, self.bisim_horizon_ph: self.bisim_horizon}) self.eval_distances.bisimulation.append(current_distance) source_v = self._sess.run(self.state_value, {self.state_ph: self.state}) target_v = self._sess.run(self.state_value, {self.state_ph: self._source_state}) self.eval_distances.value.append(abs(source_v - target_v)) if self.evaluate_metric_only and self.summary_writer is not None: summary = self._sess.run(self._merged_summaries, {self.source_state_ph: self._source_state, self.state_ph: self.state, self.bisim_horizon_ph: self.bisim_horizon}) self.summary_writer.add_summary(summary, self._evaluation_steps) self._evaluation_steps += 1 def begin_episode(self, observation): """Returns the agent's first action for this episode. Args: observation: numpy array, the environment's initial observation. Returns: int, the selected action. """ action = super(BisimulationRainbowAgent, self).begin_episode(observation) if not self.evaluate_metric_only: self._train_bisimulation() self._evaluate_bisimulation() return action def step(self, reward, observation, set_source_state=False): """Records the most recent transition and returns the agent's next action. We store the observation of the last time step since we want to store it with the reward. Args: reward: float, the reward received from the agent's most recent action. observation: numpy array, the most recent observation. set_source_state: bool, whether to set the current state as the source state. Returns: int, the selected action. """ _ = super(BisimulationRainbowAgent, self).step(reward, observation) self._store_transition(self._last_observation, self.action, reward, False) if set_source_state and not self.start_recording: # We only want to set the source state once. self.start_recording = True self._source_state = np.copy(self.state) if not self.evaluate_metric_only: self._train_bisimulation() self._evaluate_bisimulation() return self.action def end_episode(self, reward): """Signals the end of the episode to the agent. We store the observation of the current time step, which is the last observation of the episode. Args: reward: float, the last reward from the environment. """ self._store_transition(self._observation, self.action, reward, True) def _store_transition(self, last_observation, action, reward, is_terminal, priority=None): if priority is None: if self._replay_scheme == 'uniform': priority = 1. else: priority = self._replay.memory.sum_tree.max_recorded_priority self._replay.add(last_observation, action, reward, is_terminal, priority) def get_distances(self): return self.eval_distances
[ "copybara-worker@google.com" ]
copybara-worker@google.com
f31df43de849fa6395cf5ea42e6c2ee9f3772cbf
553daabc841cc19d0729880e2624bdaaa2b8219a
/problem_109/problem_109.py
7a9f6e85d38de529b83b5d9dcb78fe4cff653807
[]
no_license
yuhlearn/project_euler
ed915b426a6c7d3de8d165165749cae97e4dd156
83bd0713994bea1745540855bb4141e4b91308a6
refs/heads/master
2021-10-10T00:52:11.537263
2021-10-07T07:40:22
2021-10-07T07:40:22
122,016,990
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
values = [ 1, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 18, 19, 20, 20, 21, 22, 24, 24, 25, 26, 27, 28, 30, 30, 32, 33, 34, 36, 36, 38, 39, 40, 42, 45, 48, 50, 51, 54, 57, 60 ] doubles = [ 2, 6, 9, 13, 17, 20, 24, 28, 31, 35, 37, 38, 41, 43, 44, 46, 48, 49, 51, 53, 57 ] result = [0]*100 def count_aux(s, v, d): for v in range(v, len(values)): ss = s + values[v] if ss < 100 and d < 3: result[ss] += 1 count_aux(ss, v, d + 1) return def count(): for d in doubles: s = values[d] result[s] += 1 count_aux(s, 0, 1) return count() print sum(result), result
[ "reeves.max@gmail.com" ]
reeves.max@gmail.com
f080048d5c41225d37ffd5e330c98243d87982c8
4e0f79fbc1d3a090a5c7f633f360e41514e1fad9
/election_by_state.py
bca072ca5f2123d1a2949f92a8675c3f2fab8258
[ "MIT" ]
permissive
powergascan/mod3-hypothesis-testing
3b9d6db874755b928aacccba053125b224fc044a
f529e02463b33f9f20657c7e7c3eb249477622ff
refs/heads/master
2020-07-08T07:50:34.839721
2019-08-25T01:52:01
2019-08-25T01:52:01
203,608,883
0
0
MIT
2019-08-25T01:52:02
2019-08-21T15:06:50
Jupyter Notebook
UTF-8
Python
false
false
986
py
import pandas as pd def DT_Effect(election_data, labels=['US Blue','US Red']): election_data=election_data[election_data['year'].isin([2012, 2016])] election_data=election_data[election_data['party'].isin(['republican'])] election_data.sort_values(['state_po','year'],inplace=True) election_data['Vote_Percent']=election_data['candidatevotes']/election_data['totalvotes'] election_data['Vote_Percent_shift']=election_data.groupby(['state'])['Vote_Percent'].shift(1) election_data=election_data[~election_data['Vote_Percent_shift'].isnull()] election_data['DT_Effect']=election_data['Vote_Percent']-election_data['Vote_Percent_shift'] election_data=election_data[['state_po','Vote_Percent','DT_Effect']] election_data=election_data[~election_data['DT_Effect'].isnull()] election_data.rename(columns={"state_po":"State"},inplace=True) election_data['Ideology_Bin']=pd.qcut(election_data['DT_Effect'], 2, labels=labels) return election_data
[ "powergascan@gmail.com" ]
powergascan@gmail.com
b4713a8a30c7c5bf5f3f25909e5870277470c208
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_196/ch79_2020_04_07_01_22_28_765152.py
c9ba46f971fba6baced161e18915f79d3384d840
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
def monta_dicionario(a,b): for i in range (len(a)): print {a[i]: b[i]} return {a[i]: b[i]}
[ "you@example.com" ]
you@example.com
1e0e6b3ba1be9373e3fdbe2a95120a7d459522d2
95b119cf752125f1c783267d385dae89ac8e29a1
/trees/tree-level-order-traversal.py
08b86a3e1871cb2fe97cd8834d7f1fb89e4bd0a3
[]
no_license
hanksudo/hackerrank
037496b78acc5d41fb2ef9198d45f567409bce15
f529fddb5c01e8b10203b043a033e20aeeee8e2d
refs/heads/master
2022-05-01T19:24:02.966337
2022-03-15T13:39:05
2022-03-15T13:39:05
234,511,679
0
0
null
null
null
null
UTF-8
Python
false
false
1,381
py
class Node: def __init__(self, info): self.info = info self.left = None self.right = None self.level = None def __str__(self): return str(self.info) class BinarySearchTree: def __init__(self): self.root = None def create(self, val): if self.root == None: self.root = Node(val) else: current = self.root while True: if val < current.info: if current.left: current = current.left else: current.left = Node(val) break elif val > current.info: if current.right: current = current.right else: current.right = Node(val) break else: break """ Node is defined as self.left (the left child of the node) self.right (the right child of the node) self.info (the value of the node) """ def levelOrder(root): queue = [] queue.append(root) while queue: # dequeue node = queue.pop(0) print(node.info, end=" ") # enqueue if node.left: queue.append(node.left) if node.right: queue.append(node.right)
[ "drapho@gmail.com" ]
drapho@gmail.com
31af1ed2e3cab55ea4a1708340ded06d077d9a47
dd72bd5a699cfabb400dca6528816c74795cc208
/accounts/models.py
2eb405e18006395295656571364db9c4efb79ecb
[]
no_license
Francis-Ebere-Emeafu/donations
1d6889a58ce989ab6447cb3b90ee4c933415a097
702eb09bae5f3f38a3cab981004a4f5f0d88be63
refs/heads/master
2023-02-18T18:37:19.631418
2021-01-21T01:31:05
2021-01-21T01:31:05
331,082,795
0
0
null
null
null
null
UTF-8
Python
false
false
3,860
py
from __future__ import unicode_literals from django.contrib.auth.models import User from django.db import models from django.utils import timezone # Create your models here. class Membership(models.Model): name = models.CharField(max_length=100) description = models.TextField(blank=True) dues = models.DecimalField(max_digits=10, decimal_places=2) def __unicode__(self): return '{} ({} per annum)'.format(self.name, self.dues) class Account(models.Model): BANK_TRANSFER = 0 DEBIT_CARD = 1 PAYMENT_TYPES = enumerate(('Bank Transfer', 'Debit Card')) first_name = models.CharField(max_length=250) last_name = models.CharField(max_length=250) email = models.EmailField(max_length=200) phone = models.CharField(max_length=20) address = models.TextField(blank=True) bio = models.TextField(blank=True) country = models.CharField(max_length=100, blank=True, null=True) city = models.CharField(max_length=100, blank=True, null=True) when = models.DateTimeField(default=timezone.now) membership = models.ForeignKey(Membership, null=True, on_delete=models.SET_NULL) payment_type = models.PositiveIntegerField( choices=PAYMENT_TYPES, default=DEBIT_CARD) paid = models.BooleanField(default=False) membership_email_sent = models.BooleanField(default=False) membership_number = models.PositiveIntegerField(null=True, blank=True) certificate = models.ImageField( upload_to='certificates', null=True, blank=True) next_payment_due = models.DateField(null=True, blank=True) def __unicode__(self): return self.email @property def member_id(self): if self.membership_number: mem_no = '{:0>4}'.format(self.membership_number) yr = self.when.strftime('%y') return 'ASN{}{}'.format(yr, mem_no) #return 'ASN17{}'.format("{0:0>4}".format(self.membership_number)) else: return 'N/A' @property def full_name(self): return '{} {}'.format(self.first_name, self.last_name) class GiftOptions(models.Model): amount = models.DecimalField(max_digits=10, decimal_places=2) dollar_value = models.DecimalField( max_digits=20, decimal_places=2, default=0) def __unicode__(self): return '{} (${})'.format(self.amount, self.dollar_value) class Meta: verbose_name_plural = 'Gift Options' class Gift(models.Model): BANK_TRANSFER = 0 DEBIT_CARD = 1 PAYMENT_TYPES = enumerate(('Bank Transfer', 'Debit card')) NGN = 0 USD = 1 GBP = 2 EURO = 3 CURRENCIES = enumerate(('NGN', 'USD', 'GBP', 'EURO')) first_name = models.CharField(max_length=100, null=True) last_name = models.CharField(max_length=100, null=True) email = models.EmailField(max_length=200) phone = models.CharField(max_length=20) country = models.CharField(max_length=100, blank=True, null=True) city = models.CharField(max_length=100, blank=True, null=True) address = models.CharField(max_length=100, blank=True, null=True) amount = models.DecimalField(max_digits=10, decimal_places=2, null=True) #currency = models.PositiveIntegerField(choices=CURRENCIES, default=NGN) #gift_option = models.ForeignKey(GiftOptions, null=True) when = models.DateTimeField(default=timezone.now) bio = models.TextField(blank=True) email_sent = models.BooleanField(default=False) payment_type = models.PositiveIntegerField(choices=PAYMENT_TYPES, default=BANK_TRANSFER) paid = models.BooleanField(default=False) def __unicode__(self): return self.first_name class Renewal(models.Model): account = models.ForeignKey(Account, null=True, on_delete=models.SET_NULL) payment_date = models.DateField() def __unicode__(self): return unicode(self.account)
[ "freemandigits@gmail.com" ]
freemandigits@gmail.com
13edb85f07a2b7803336ad1485f6102d93b4bc74
eebf2e3578ccb79147c3f5c21438e4296f773a89
/pytorch-cifar/models/.ipynb_checkpoints/resnet-checkpoint.py
ca9d4bdb7e89e3e31155d17be75606b494630122
[ "MIT" ]
permissive
minoriwww/waterquality
336dbe4ecd2b382669be0e777aec3a83e3d3138c
97db2406c37295dfdea5d2e006611243bd7ca01d
refs/heads/main
2023-03-22T05:24:41.153869
2021-03-09T06:44:12
2021-03-09T06:44:12
345,905,665
0
0
null
null
null
null
UTF-8
Python
false
false
4,263
py
'''ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) # self.linear = nn.Linear(512*block.expansion, num_classes) self.linear = nn.Linear(512*256, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) # print("After3: x.shape: " + str(out.shape)) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) # print("last shape " + str(out.shape)) out = self.linear(out) return out def ResNet18(n_classes): return ResNet(BasicBlock, [2,2,2,2], n_classes) def ResNet34(n_classes): return ResNet(BasicBlock, [3,4,6,3], n_classes) def ResNet50(n_classes): return ResNet(Bottleneck, [3,4,6,3], n_classes) def ResNet101(n_classes): return ResNet(Bottleneck, [3,4,23,3], n_classes) def ResNet152(n_classes): return ResNet(Bottleneck, [3,8,36,3], n_classes) def test(): net = ResNet18() y = net(torch.randn(1,3,32,32)) print(y.size()) # test()
[ "dltdc@gpu12.ttic.edu" ]
dltdc@gpu12.ttic.edu
b6d9f7d19b82b9b6caf04f24e684f12677eb8384
bb8acf1eef4c746a220dd94be0f9d8af42ac6f27
/cad_python_Ext/MyLayers/structured_gate_action.py
d494109c4a66da8b949a2c6acd9ca352ea666716
[ "Apache-2.0" ]
permissive
Lucas2012/simplified-SIM-structure-inference-machine
4342efa9f779c1e4fc15610ce8fbe76eaa7783dd
45998fd52ed19753ed0c8c3658cde7e3d964218c
refs/heads/master
2021-10-24T07:20:04.420140
2019-03-23T06:06:22
2019-03-23T06:06:22
43,234,820
3
1
Apache-2.0
2019-03-23T06:06:23
2015-09-27T04:51:43
Jupyter Notebook
UTF-8
Python
false
false
6,905
py
import unittest import tempfile import os import numpy import caffe class structured_gate(caffe.Layer): """A layer that initialize messages for recurrent belief propagation""" def setup(self, bottom, top): self.nScene = 6 self.nAction = 6 self.nPeople = 14 self.K_ = 0; self.bottom_batchsize = 0 self.slen = 0 self.alen = 0 self.tlen_leaf = 0 self.tlen_mid = 0 self.sunit = 0 self.aunit = 0 self.tunit = 0 self.regularizer = 1 self.message_num_action = self.nPeople+1+2*(self.K_>0) self.label_stop = [] self.top_batchsize = 0 self.on_edge = True self.block_diff = True self.zero2one = True self.lamda = 0.01 self.C = 10 self.id = 0 def reshape(self, bottom, top): # have 3 inputs: gate, a2a message, labels # have one output: gated a2a message bottom_batchsize = bottom[2].data.shape[0] edge_num = self.nPeople self.frame_num = bottom_batchsize/self.nPeople self.bottom_batchsize = bottom[0].data.shape[0] top[0].reshape(*bottom[1].data.shape) def forward(self, bottom, top): self.id += 1 gate_input = bottom[0].data.copy() messages = bottom[1].data.copy() label_stop = self.nPeople*numpy.ones([self.frame_num]) labels = bottom[2].data count = 0 for i in range(0,self.frame_num): for j in range(0,self.nPeople): if labels[i*self.nPeople+j] == 0: label_stop[i] = j break self.label_stop = label_stop # the paired up inputs should be: # [(1,2),(2,1)] [(1,3),(3,1)] [(1,4),(4,1)] [(1,5),(5,1)] [(1,6),(6,1)] # [(2,3),(3,2)] [(2,4),(4,2)] [(2,5),(5,2)] [(2,6),(6,2)] # [(3,4),(4,3)] [(3,5),(5,3)] [(3,6),(6,3)] # [(4,5),(5,4)] [(4,6),(6,4)] # [(5,6),(6,5)] # gate design: if self.on_edge: s_gate = numpy.zeros(bottom[0].data.shape[0]) else: s_gate = numpy.zeros([bottom[0].data.shape[0],self.nAction]) zero2one = self.zero2one for i in range(0,self.bottom_batchsize): s_gate[i] = (1+numpy.tanh(self.C*gate_input[i]))/2.0 '''idx = 0 for f in range(0,self.frame_num): for i in range(0,int(self.label_stop[f])): for j in range(0,int(self.label_stop[f]-1)): if numpy.argmax(bottom[3].data[idx])-1 == labels[i+f*self.nPeople]: s_gate[idx] = 1 else: s_gate[idx] = 0''' for i in range(0,self.bottom_batchsize): top[0].data[i] = numpy.multiply(s_gate[i],messages[i]) def backward(self, top, propagate_down, bottom): # to be written # diffs for : bottom[0] -> paired gates input; bottom[1] -> messages # diffs from top: gated_messages gate_input = bottom[0].data.copy() gates_diff = bottom[0].diff.copy() messages = bottom[1].data message_diff = bottom[1].diff.copy() gated_message_diff = top[0].diff.copy() label_stop = self.nPeople*numpy.ones([self.frame_num]) labels = bottom[2].data count = 0 for i in range(0,self.frame_num): for j in range(0,self.nPeople): if labels[i*self.nPeople+j] == 0: label_stop[i] = j break self.label_stop = label_stop # gates diff: # the paired up inputs should be: # [(1,2),(2,1)] [(1,3),(3,1)] [(1,4),(4,1)] [(1,5),(5,1)] [(1,6),(6,1)] # [(2,3),(3,2)] [(2,4),(4,2)] [(2,5),(5,2)] [(2,6),(6,2)] # [(3,4),(4,3)] [(3,5),(5,3)] [(3,6),(6,3)] # [(4,5),(5,4)] [(4,6),(6,4)] # [(5,6),(6,5)] # gate design: if self.on_edge: s_gate = numpy.zeros(bottom[0].data.shape[0]) else: s_gate = numpy.zeros([bottom[0].data.shape[0],self.nAction]) # non-linearity design: zero2one = self.zero2one for i in range(0,self.bottom_batchsize): s_gate[i] = (1+numpy.tanh(self.C*gate_input[i]))/2.0 #print s_gate[i] count = 0 idx = 0 for i in range(0,self.bottom_batchsize): diff = numpy.multiply(gated_message_diff[i],messages[i]) tanh_sq = numpy.multiply(s_gate[i],s_gate[i]) #print numpy.sum(diff) if self.regularizer == 1: gates_diff[i] = numpy.sum(diff)*(1-tanh_sq)*self.C + self.lamda*(1-tanh_sq)*self.C/2.0 #print numpy.sum(diff)*(1-tanh_sq)*self.C/2.0 + self.lamda*(1-tanh_sq)*self.C/2.0 #print 'gate',gates_diff[i] #print 'diff',numpy.sum(diff)*(1-tanh_sq)*self.C elif self.regularizer == 2: gates_diff[i] = numpy.sum(diff)*(1-tanh_sq)*self.C + self.lamda*s_gate[i]*(1-tanh_sq)*self.C message_diff[i] = numpy.multiply(gated_message_diff[i],s_gate[i]) bottom[0].diff[...] = gates_diff if self.block_diff: bottom[1].diff[...] = 0.0*message_diff else: bottom[1].diff[...] = message_diff def python_net_file(): with tempfile.NamedTemporaryFile(delete=False) as f: f.write("""name: 'pythonnet' force_backward: true input: 'data' input_shape { dim: 10 dim: 9 dim: 8 } layer { type: 'Python' name: 'one' bottom: 'data' top: 'one' python_param { module: 'test_python_layer' layer: 'SimpleLayer' } } layer { type: 'Python' name: 'two' bottom: 'one' top: 'two' python_param { module: 'test_python_layer' layer: 'SimpleLayer' } } layer { type: 'Python' name: 'three' bottom: 'two' top: 'three' python_param { module: 'test_python_layer' layer: 'SimpleLayer' } }""") return f.name class TestPythonLayer(unittest.TestCase): def setUp(self): net_file = python_net_file() self.net = caffe.Net(net_file, caffe.TRAIN) os.remove(net_file) def test_forward(self): x = 8 self.net.blobs['data'].data[...] = x self.net.forward() for y in self.net.blobs['three'].data.flat: self.assertEqual(y, 10**3 * x) def test_backward(self): x = 7 self.net.blobs['three'].diff[...] = x self.net.backward() for y in self.net.blobs['data'].diff.flat: self.assertEqual(y, 10**3 * x) def test_reshape(self): s = 4 self.net.blobs['data'].reshape(s, s, s, s) self.net.forward() for blob in self.net.blobs.itervalues(): for d in blob.data.shape: self.assertEqual(s, d)
[ "zhiweid@sfu.ca" ]
zhiweid@sfu.ca
6915850a16fdfc44342600508b47769fafc8541e
be5bcff6544928bdbb7501f778ddbee11d589235
/dataScripts/xls_files_to_csv.py
68e0b868f170cf4936f8f5238eb10c1da75f783f
[]
no_license
Armadindon/PythonData
7441c2235861d9bb0a0acf72d38f5dfb91c225af
23127c80eb2b5f91d4760dac7eb7dbddb4bc67c5
refs/heads/master
2023-02-17T21:44:14.492906
2021-01-17T16:02:39
2021-01-17T16:02:39
309,948,480
0
0
null
2021-01-08T13:55:28
2020-11-04T08:59:43
Python
UTF-8
Python
false
false
3,790
py
""" Script permettant la conversion de fichier xls (Excel) vers csv pour la lecture avec la librairie pandas """ import os import csv import xlrd def conversion_num_dept(code_dept): """ Convertit un département au bon format Args: code_dept (str): Code du département à convertir. Returns: code_dept (str): Code département au bon format. """ if code_dept[-1] == '0': code_dept = code_dept[:-1] if code_dept[0] == '0': code_dept = code_dept[1] return code_dept def main(): """ Fonction Principale """ results = [] result_depts = [] for file in sorted(filter(lambda x: x.endswith(".xls"), os.listdir(os.path.join("data", "RevenusFiscaux")))): workbook = xlrd.open_workbook(os.path.join("data", "RevenusFiscaux", file)) started = False sheet = workbook.sheets()[0] dept = conversion_num_dept(file.replace(".xls", "")) for line in range(sheet.nrows): line_data = sheet.row(line) if line_data[2].value == "Commune": started = True continue if line_data[4].value == "Total": if not started: result_depts.append({ "code_departement": dept, "nom_departement": line_data[3].value, "nbFoyerFiscaux": line_data[5].value if line_data[5].value != "n.c." else "", "revFiscalRefFoyers": line_data[6].value if line_data[6].value != "n.c." else "", "impotNet": line_data[7].value if line_data[7].value != "n.c." else "", "nbFoyersImposes": line_data[8].value if line_data[8].value != "n.c." else "", "revFiscalRefFoyersImpos": line_data[9].value if line_data[9].value != "n.c." else "" }) else: results.append({ "code_ville": dept + line_data[2].value, "nom_commune": line_data[3].value, "nbFoyerFiscaux": line_data[5].value if line_data[5].value != "n.c." else "", "revFiscalRefFoyers": line_data[6].value if line_data[6].value != "n.c." else "", "impotNet": line_data[7].value if line_data[7].value != "n.c." else "", "nbFoyersImposes": line_data[8].value if line_data[8].value != "n.c." else "", "revFiscalRefFoyersImpos": line_data[9].value if line_data[9].value != "n.c." else "" }) with open(os.path.join("data", "revenuFiscauxDepts.csv"), "w+", encoding='utf-8') as file: fields = ["code_departement", "nom_departement", "nbFoyerFiscaux", "revFiscalRefFoyers", "impotNet", "nbFoyersImposes", "revFiscalRefFoyersImpos"] writer = csv.DictWriter(file, fields) writer.writeheader() writer.writerows(result_depts) with open(os.path.join("data", "revenuFiscauxCommunes.csv"), "w+", encoding='utf-8') as file: fields = ["code_ville", "nom_commune", "nbFoyerFiscaux", "revFiscalRefFoyers", "impotNet", "nbFoyersImposes", "revFiscalRefFoyersImpos"] writer = csv.DictWriter(file, fields) writer.writeheader() writer.writerows(results) if __name__ == "__main__": main()
[ "baptisteperrin77@gmail.com" ]
baptisteperrin77@gmail.com
2aef48d1aa8dec4012fd07f8560afbd4b24fafeb
540df8592749de8e9dc429ad7f5365238bc850c4
/4.Practice.py
92048ad37ad116409215419c025814de2a84d9bd
[]
no_license
2anirban/heroku_demo
f50bc10c348030d52e2f5ec1c0bd47e3162474ce
da52bdf5cfea21e98f5b4d9b4868ab1985c7eaa2
refs/heads/main
2023-04-08T13:50:20.071207
2021-04-29T15:15:34
2021-04-29T15:15:34
362,854,758
0
0
null
null
null
null
UTF-8
Python
false
false
1,145
py
import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle dataset = pd.read_csv('hiring_1.csv') print(dataset) dataset['Experience'].fillna(0, inplace=True) dataset['test_score'].fillna(dataset['test_score'].mean(), inplace=True) X = dataset.iloc[:, :3] ###Converting words to integer values ##def convert_to_int(word): ## word_dict = {'one':1, 'two':2, 'three':3, 'four':4, 'five':5, 'six':6, 'seven':7, 'eight':8, ## 'nine':9, 'ten':10, 'eleven':11, 'twelve':12, 'zero':0, 0: 0} ## return word_dict[word] ## ##X['experience'] = X['Experience'].apply(lambda x : convert_to_int(x)) y = dataset.iloc[:, -1] #Splitting Training and Test Set #Since we have a very small dataset, we will train our model with all availabe data. from sklearn.linear_model import LinearRegression regressor = LinearRegression() #Fitting model with trainig data regressor.fit(X, y) # Saving model to disk pickle.dump(regressor, open('model.pkl','wb')) ### Loading model to compare the results model = pickle.load(open('model.pkl','rb')) print(model.predict([[2, 9, 6]]))
[ "noreply@github.com" ]
2anirban.noreply@github.com
c796416794b9fa7de79303f934efe14617e7f2da
d75b1b88ef64786498ad257a9a6d12c01a3f8cd2
/certif_page/models/Token.py
0c7e80d08532c62cb8a903f691e718a0a23632d7
[ "Apache-2.0" ]
permissive
xSandie/schoolCertif
9d8928efbbb134aa4139dad00dc5b4cfd93affab
df5e235305886a0f110cc5d507d863c89df56e57
refs/heads/master
2022-12-15T11:41:55.119178
2019-07-02T14:59:39
2019-07-02T14:59:39
157,819,681
0
0
Apache-2.0
2022-12-08T04:54:33
2018-11-16T05:56:37
Python
UTF-8
Python
false
false
465
py
from certif_page.models.base import Base, db class Token(Base): id = db.Column(db.BigInteger,primary_key=True, autoincrement=True) value = db.Column(db.String(140), index=True, nullable=False) limitPerDay = db.Column(db.Integer,default=80000)#日限额,默认300000次一天 status = db.Column(db.SmallInteger,default=1)#正常 permission = db.Column(db.SmallInteger,default=0)#0 无看头像权限 1 有查看头像权限 10 有全部权限
[ "sandiexiang@foxmail.com" ]
sandiexiang@foxmail.com
58f5ebbdecaff2dbcb6be1432c7638d04fefd5ef
e733d07a1492f6e9b762d9ca496ec59668aedb95
/qcloudsdkbmeip/EipAclBmApplyRequest.py
bf62678e2db69b2618ca2c58f848c0db67259c13
[ "Apache-2.0" ]
permissive
QcloudApi/qcloudcli
1f67d8467b81ac8964362491cd4f3104f8e59161
ba16161f65df5f621d9f1c5587b9900dca600cb5
refs/heads/master
2023-08-15T01:51:05.236254
2018-07-11T08:07:29
2018-07-11T08:07:29
100,922,202
8
6
null
2018-03-29T11:57:26
2017-08-21T06:55:45
Python
UTF-8
Python
false
false
565
py
# -*- coding: utf-8 -*- from qcloudsdkcore.request import Request class EipAclBmApplyRequest(Request): def __init__(self): super(EipAclBmApplyRequest, self).__init__( 'bmeip', 'qcloudcliV1', 'EipAclBmApply', 'bmeip.api.qcloud.com') def get_aclName(self): return self.get_params().get('aclName') def set_aclName(self, aclName): self.add_param('aclName', aclName) def get_status(self): return self.get_params().get('status') def set_status(self, status): self.add_param('status', status)
[ "zhiqiangfan@tencent.com" ]
zhiqiangfan@tencent.com
6d8c6af32fef5c9cfcf561b7acdec6ef6048243d
a841be002c03abcf03c875ba8cde5ab28e34de79
/Toxic/bayes.py
091fd7c3353edb719c46586b1307c12837209117
[]
no_license
PForet/Kaggle
a7a89e02be0f980671b6c4393c7dc0cf9ac7348a
c970708cb975d234f2b8b664e5bdc0bab9758d61
refs/heads/master
2021-05-15T12:17:31.756098
2018-01-05T16:05:06
2018-01-05T16:05:06
108,417,092
0
0
null
null
null
null
UTF-8
Python
false
false
3,617
py
from utils import load_dataframes, _all_labels, remove_non_strings, dict_to_submit import numpy as np import re, string from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.model_selection import train_test_split #from sklearn.naive_bayes import MultinomialNB as model from sklearn.ensemble import GradientBoostingClassifier from NBSVM import NBSVM as model from sklearn.metrics import log_loss sample, test, train = load_dataframes() Y_dict = {k:train[k] for k in _all_labels} X = train['comment_text'] y_train, y_val = {}, {} for k in _all_labels: X_train_r, X_val_r, y_train[k], y_val[k] = train_test_split(X, Y_dict[k], random_state = 1) re_tok = re.compile(f'([{string.punctuation}“”¨«»®´·º½¾¿¡§£₤‘’])') #def tokenize(s): return re_tok.sub(r' \1 ', s).split() def tokenize(s): return re.findall(r"[\w']+|!|@|!!",s) def processing(s): re_links = re.compile("http.*?\s") s = re_links.sub("_link_", s) return s.lower() tf_transformer = TfidfVectorizer(use_idf=True, tokenizer=tokenize, #ngram_range=(1,2), sublinear_tf=True, preprocessor=processing, min_df=10, max_df=0.9).fit(X_train_r) """ tf_transformer = CountVectorizer(min_df=12, max_df=0.5, ngram_range=(1,2)).fit(X_train) """ X_train = tf_transformer.transform(X_train_r) X_val = tf_transformer.transform(X_val_r) X_test = tf_transformer.transform(remove_non_strings(test['comment_text'])) predictions_dict, val_dict, train_dict = {}, {}, {} logloss_ = [] print("Naive Bayes classifier") for k in _all_labels: gnb = model(alpha=0.3, C=1.5) gnb.fit(X_train, y_train[k]) prediction = [e[1] for e in gnb.predict_proba(X_val)] train_prediction = [e[1] for e in gnb.predict_proba(X_train)] print("Naive bayes Logloss for {} : {} with train loss of {}".format(k, log_loss(y_val[k], prediction),log_loss(y_train[k], train_prediction))) val_dict[k] = prediction train_dict[k] = train_prediction logloss_.append(log_loss(y_val[k], prediction)) predictions_dict[k] = [e[1] for e in gnb.predict_proba(X_test)] print("Mean logloss : {}".format(np.mean(logloss_))) print("Assembling") def dict_to_X(d): return np.array([d[k] for k in _all_labels]).transpose() X_train_pred = dict_to_X(train_dict) X_val_pred = dict_to_X(val_dict) X_test_pred = dict_to_X(predictions_dict) assembled_predictions_dict, assembled_val_dict, assembled_train_dict = {}, {}, {} assembled_logloss_ = [] for k in _all_labels: gnb = GradientBoostingClassifier(n_estimators=1000) gnb.fit(X_train_pred, y_train[k]) prediction = [e[1] for e in gnb.predict_proba(X_val_pred)] train_prediction = [e[1] for e in gnb.predict_proba(X_train_pred)] print("Assembled Logloss for {} : {} with train loss of {}".format(k, log_loss(y_val[k], prediction),log_loss(y_train[k], train_prediction))) assembled_val_dict[k] = prediction assembled_train_dict[k] = train_prediction assembled_logloss_.append(log_loss(y_val[k], prediction)) assembled_predictions_dict[k] = [e[1] for e in gnb.predict_proba(X_test_pred)] print("Mean logloss : {}".format(np.mean(assembled_logloss_))) dict_to_submit(assembled_predictions_dict,"assembled_BNBv2_all.csv")
[ "noreply@github.com" ]
PForet.noreply@github.com
304752a2b7b71e334f306da10f61daa8c1aa16d8
cb34657f22bd7754aa1c9e134e06c73bf91c4cde
/sv94.py
b52636aa738a900dab5027440399a0c92af209bd
[]
no_license
varsha126/varshaguvi
4cf4b0b4d25264340ee23e5d968a8403eab3d33a
ea624a972c0d8b84d7f6081cf789eca35a4d6e81
refs/heads/master
2020-06-07T17:04:45.831040
2019-08-04T02:44:45
2019-08-04T02:44:45
193,061,419
2
4
null
null
null
null
UTF-8
Python
false
false
28
py
nvn=input() print(ord(nvn))
[ "noreply@github.com" ]
varsha126.noreply@github.com
e1c7ce2caac30bd082b0767f7ae4434eb4acc734
7b35e24e1164a5356b37e1e705c0d5e08540157f
/src/cnn_mod_cla.py
ca95ee390904620f6295db82ec40a7c39203b272
[ "CC0-1.0", "LicenseRef-scancode-public-domain" ]
permissive
Lighting-Zhu/py-radio-autoencoder
6fe341fea3e96f13499571c9c65ef95104211924
842cd1f14a17ee0798766dffcf132950a9e745bd
refs/heads/master
2023-07-02T00:14:35.491304
2021-08-09T04:57:02
2021-08-09T04:57:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,078
py
import tensorflow as tf from tensorflow.keras import layers, Model, Sequential def cnn_mod_cla_2d(in_shape, class_num): '''2是(mod, snr)''' input_tensor = layers.Input(shape=in_shape, dtype='float32') x = layers.Conv2D(filters=128, kernel_size=8, padding='valid')(input_tensor) x = layers.ReLU()(x) x = layers.MaxPooling2D(pool_size=2, strides=2, padding='valid')(x) x = layers.Conv2D(filters=64, kernel_size=16, padding='valid')(x) x = layers.ReLU()(x) x = layers.MaxPooling2D(pool_size=2, strides=2, padding='valid')(x) x = layers.Flatten()(x) x = layers.Dense(units=128)(x) x = layers.ReLU()(x) x = layers.Dense(units=64)(x) x = layers.ReLU()(x) x = layers.Dense(units=32)(x) x = layers.ReLU()(x) x = layers.Dense(units=class_num)(x) output = layers.Softmax()(x) # 定义完 layers 后还要调用 Model 才算真正建立了模型 model = Model(inputs=input_tensor, outputs=output) return model def cnn_mod_cla_1d(in_shape, class_num): '''2是(mod, snr)''' input_tensor = layers.Input(shape=in_shape, dtype='float32') x = layers.Conv1D(filters=128, kernel_size=8, padding='valid')(input_tensor) x = layers.ReLU()(x) x = layers.MaxPooling1D(pool_size=2, strides=2, padding='valid')(x) x = layers.Conv1D(filters=64, kernel_size=16, padding='valid')(x) x = layers.ReLU()(x) x = layers.MaxPooling1D(pool_size=2, strides=2, padding='valid')(x) x = layers.Flatten()(x) x = layers.Dense(units=128)(x) x = layers.ReLU()(x) x = layers.Dense(units=64)(x) x = layers.ReLU()(x) x = layers.Dense(units=32)(x) x = layers.ReLU()(x) x = layers.Dense(units=class_num)(x) output = layers.Softmax()(x) # 定义完 layers 后还要调用 Model 才算真正建立了模型 model = Model(inputs=input_tensor, outputs=output) return model if __name__ == '__main__': model = cnn_mod_cla_1d(in_shape=(128, 2), class_num=11) model.summary()
[ "whw0315@gmail.com" ]
whw0315@gmail.com
b9da5c9c9860ad4abda5235757331a6bd4a6f19b
3e2447737acc8e6bef6728b1a8e5f1d5e6db2968
/opennem/spiders/wem/__init__.py
d55ac53eb10d2c124149c65b442bb414f607efbd
[ "MIT" ]
permissive
gaslitbytech/opennem
5a5197003662725ccd2f82d790cdb1495a975a07
deec3e2079db9d9d84171010fd0c239170d1e7ce
refs/heads/master
2023-07-23T14:08:28.949054
2020-10-09T03:53:20
2020-10-09T03:53:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,092
py
import logging from datetime import datetime import scrapy from opennem.pipelines.files import LinkExtract from opennem.pipelines.nem import ExtractCSV from opennem.pipelines.wem.balancing_summary import WemStoreBalancingSummary from opennem.spiders.dirlisting import DirlistingSpider def get_date_component(format_str): return datetime.now().strftime(format_str) class WemCurrentSpider(scrapy.Spider): url_params = { "day": get_date_component("%d"), "month": get_date_component("%m"), "year": get_date_component("%Y"), } def start_requests(self): request_url = self.start_url.format(**self.url_params) yield scrapy.Request(request_url) def parse(self, response): yield {"content": response.text} class WemHistoricSpider(DirlistingSpider): allowed_domains = ["wa.nemweb.com.au"] pipelines = set([LinkExtract,]) # Archives tend to contain large zips of embedded zips so throttle # to limit memory use custom_settings = { "CONCURRENT_REQUESTS": 4, "CONCURRENT_ITEMS": 8, }
[ "nc9@protonmail.com" ]
nc9@protonmail.com
ea27dda43f6f92c519b2d4f892418fabf50c910a
be6bba1b253552aca871c1f6b005f880fe3ee637
/tax_calculator/controllers/register_all_controllers.py
76500bd9977c79c4314c4b48e549b8bb199f00cf
[]
no_license
kadekutama/TaxCalculator
fd116075aeb5cafad52d8f22e4a7aa942c7a02de
51eb4ba16685325d183ca4fe0ba16dbd4f4c1317
refs/heads/master
2021-07-05T12:22:20.719561
2020-09-08T18:23:40
2020-09-08T18:23:40
177,821,898
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
from .products import * def register_routes(app): app.add_route(index, "/", methods=["GET"]) app.add_route(get_all_products, "/get_all_products/<mode>", methods=["GET"]) app.add_route(get_bill, "/get_bill", methods=["POST"])
[ "kadekdwibudiutama@gmail.com" ]
kadekdwibudiutama@gmail.com
72b2936601244a9d25293638394d04fed8cfece3
836ea2055f7d7b73ef1c970268801884799d8f59
/lib/risksense_api/__subject/__application_findings/__init__.py
736e0937bf1eca346b873459234d4b34694cd17f
[ "Apache-2.0" ]
permissive
mtornga/risksense_tools
aee3ee71597712077cd67406c38b4e2087444b55
1564cd93505a4d4ccd546f68310e0a09f888e590
refs/heads/master
2023-05-14T15:26:00.912692
2021-06-09T00:03:42
2021-06-09T00:03:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,112
py
""" ******************************************************************************************************************* | | Name : __init__.py | Description : Application Findings | Project : risksense_api | Copyright : 2019 RiskSense, Inc. | License : Apache-2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) | ******************************************************************************************************************* """ from .__application_findings import ApplicationFindings """ Copyright 2019 RiskSense, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """
[ "burr.webb@risksense.com" ]
burr.webb@risksense.com
b056ae7c81d4aeb266972e6bf0ec2b8a88e4a3bf
bed2fb940e90ef573a047aee5f5154ccca4a1c13
/scripts/doppler_sim/dopsim.py
411ca9f70e6f2658af442196641b39df9ccdba85
[]
no_license
dcoder-mm/heli-shadow-supplementary
045f387b64d596e3356c6c566384e7cd3d7899ff
fac9e6277dfb091e5ee004a8dbde51269a473508
refs/heads/main
2023-06-27T15:51:15.883570
2021-08-02T01:59:11
2021-08-02T01:59:11
391,168,015
3
0
null
null
null
null
UTF-8
Python
false
false
4,790
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile from scipy.signal import sweep_poly from PIL import Image, ImageDraw # Ground truth from https://mars.nasa.gov/mars2020/mission/where-is-the-rover/ meters_per_pixel = 50/167 rover = np.array([740, 274, 0])*meters_per_pixel heli_p1 = np.array([501,209, 5])*meters_per_pixel heli_p2 = np.array([573, 653, 5])*meters_per_pixel heli_p3 = np.array([520, 210, 5])*meters_per_pixel title = "Ingenuity 4th flight. BPF tone Doppler shift simulation" # rover = np.array([740, 274, 0])*meters_per_pixel # heli_p1 = np.array([501,209, 5])*meters_per_pixel # heli_p2 = np.array([457, 653, 5])*meters_per_pixel # heli_p3 = np.array([520, 210, 5])*meters_per_pixel # title = "10° test" # rover = np.array([740, 274, 0])*meters_per_pixel # heli_p1 = np.array([520, 210, 5])*meters_per_pixel # heli_p2 = np.array([531, 306, 5])*meters_per_pixel # heli_p3 = np.array([633, 639, 5])*meters_per_pixel # title = "Offscreen 10° turn" # meters_per_pixel=1.0 # rover = np.array([0, 0, 0])*meters_per_pixel # heli_p1 = np.array([5000.0,200, 200])*meters_per_pixel # heli_p2 = np.array([-3000.0, 200, 200])*meters_per_pixel # title = "Flyby, 200m above, 200m sideways, 200m/s" heli_pos = heli_p1.copy() heli_direction = np.zeros(3) heli_target = heli_p2 heli_speed = 0 heli_vel = 0 dt = 0.1 hover_time_at_liftoff = 10 hover_time_at_landing = 10 hover_time_at_p2 = 3 accel_time = 10 max_speed = 3.5 center_freq = 84.36 speed_of_sound = 250 do_map = True rovel_color = (220,20,20) heli_color = (20,20,220) r = 5 points = [] time = 0.0 dist_p1 = np.linalg.norm(rover-heli_p1) print("Rover-Heli dist @ start: %.1f meters, sound lag %.2f sec"%( dist_p1, dist_p1/speed_of_sound )) dist_p2 = np.linalg.norm(rover-heli_p2) print("Rover-Heli dist max: %.1f meters, sound lag %.2f sec"%( dist_p2, dist_p2/speed_of_sound )) print("p1-p2 trip: %.1f meters"%( np.linalg.norm(heli_p1-heli_p2) )) print("p2-p3 trip: %.1f meters"%( np.linalg.norm(heli_p2-heli_p3) )) if do_map: flight_map = Image.open("flight_map.jpg") draw = ImageDraw.Draw(flight_map) p = rover / meters_per_pixel draw.ellipse((p[0]-r, p[1]-r, p[0]+r, p[1]+r), fill = rovel_color, outline ='black') def set_target(p): global heli_direction, heli_target heli_target = p v = p - heli_pos heli_direction = v/np.linalg.norm(v) def update_heli(): global heli_pos, heli_vel, points, time heli_vel = heli_direction * heli_speed heli_pos += heli_vel*dt d1 = np.linalg.norm(rover-heli_pos) d2 = np.linalg.norm(rover-(heli_pos+heli_vel*dt)) sh = (d2 - d1)/dt fo = center_freq*(speed_of_sound)/(speed_of_sound+sh) print("%.1fs\t%.1fm\t%.1fm/s\t%.1fm/s\t%.1fHz"%(time, d1, heli_speed, sh, fo)) points.append(fo) if do_map: m = flight_map.copy() draw = ImageDraw.Draw(m) p = heli_pos / meters_per_pixel draw.ellipse((p[0]-r, p[1]-r, p[0]+r, p[1]+r), fill = heli_color, outline ='black') m.save("./frames/%d.jpg"%(int(time*10)), quality=95) m.close() time += dt def hover(s): for i in range(int(s/dt)): update_heli() def accelerate(speed, time, k=1): global heli_speed for i in range(int(time/dt)): heli_speed+=speed/(time/dt)*k update_heli() def decelerate(target_speed, time): accelerate(heli_speed-target_speed, time, k=-1) def free_flight(warn_time): while True: braking_dist = heli_speed/2*warn_time update_heli() if np.linalg.norm(heli_pos-heli_target)<braking_dist: break # ~~~~~~ Ground truth hover(hover_time_at_liftoff) # Hovering at p1 set_target(heli_p2) accelerate(max_speed, accel_time) # Accelerating at p1 free_flight(accel_time) # Flying to p2 decelerate(0, accel_time) # Decelerating at p2 hover(hover_time_at_p2) # Hovering at p2 set_target(heli_p3) # Going home accelerate(max_speed, accel_time) # Accelerating at p2 free_flight(accel_time) # Flying to p3 decelerate(0, accel_time) # Decelerating at p3 hover(hover_time_at_landing) # Hovering at p3 # ~~~~~~ 10° offscreen turn # hover(hover_time_at_liftoff) # set_target(heli_p2) # accelerate(max_speed, accel_time) # free_flight(0.5) # set_target(heli_p3) # free_flight(accel_time) # decelerate(0, accel_time) # hover(hover_time_at_p2) # set_target(heli_p2) # accelerate(max_speed, accel_time) # free_flight(0.5) # set_target(heli_p1) # free_flight(accel_time) # decelerate(0, accel_time) # hover(hover_time_at_landing) # ~~~~~~ Flyby 200m/s # set_target(heli_p2) # accelerate(200, 1) # free_flight(1) plt.figure(figsize=(12, 6), dpi=100) plt.title(title) plt.xlabel("Time (s)") plt.ylabel("BPF1 tone (Hz)") plt.axhline(y=center_freq, color='g', linestyle='--', linewidth=1) plt.plot(np.linspace(0, len(points)*dt, len(points)), points) plt.show()
[ "dcoder.mail@gmail.com" ]
dcoder.mail@gmail.com
baae253d96fb13826c09de4bf5fcd9dc7272919d
73cd7ebe847adf267a3f9d9a5176d1421e1e93b3
/Exercises/testExercise.py
196c5d1c8ba800165629fa706fb02aac23b583e2
[ "MIT" ]
permissive
davidavg/OOP_Python
4658b891b6a27397751072f54e621614c7b5ae87
ca4e8376a50b9c81b5ac18c466bd8d147bdbe679
refs/heads/master
2020-05-25T07:13:15.737224
2019-05-20T17:15:48
2019-05-20T17:15:48
187,681,035
0
0
null
null
null
null
UTF-8
Python
false
false
1,891
py
''' Created on Nov 05, 2018 @author: jose aperez ''' #import abstract library from abc import abstractmethod, ABC 'Class Declaration Person' class Person(ABC): 'Constructor declaration' def __init__(self,name): 'Class variables' self.name = name 'Method talk' def talk(self, name): print("Words = " + str(name)) 'Method hobby' @abstractmethod def hobby(self): pass 'Class Declaration Teacher' class Teacher(Person): 'Constructor declaration' def __init__(self,signature): 'Class variables' 'Private' self.__name = name self.signature = signature 'Method hobby' def hobby(self): print("My hobby is to read") 'Method teach' def teach(self): print(str(name)+" is giving "+ str(signature) + " class") 'Getter' def getName(self): return self.__name 'Setter' def setName(self,Newvalue): self.__name = Newvalue 'Class Declaration Engineer' class Engineer(Person): 'Method hobby' def hobby(self): print("My hobby is to play video games") ''' Main program ''' 'Save variables' name= str(input("Please write your name: ")) 'Create Object' #PersonObj = Person(name) EngineerObj = Engineer(name) 'Create Class Object Teacher' TeacherObj = Teacher(name) TeacherObj.teach() 'Print Variables from Object' #print("Accediendo a name desde Object Person = " + str(PersonObj.name)) print("Accediendo a name desde Object Engineer = " + str(EngineerObj.name)) 'Print encapsulated name' print("Accediendo a variable encapsulada:", TeacherObj.getName()) 'Change encapsulated name value' TeacherObj.setName("New name value") print("Accediendo a variable con valor nuevo:", TeacherObj.getName())
[ "david avalos@tiempodevelopment.com" ]
david avalos@tiempodevelopment.com
6b200f1ece1ee35292f0e8cd767179a1932d439b
bb21604fde22e52d9136c95569d469316dc1b3a9
/blog/admin.py
2eecbd25abc3cefa7adf6b8d74ac0271a5878fa9
[]
no_license
MerryPoppins92/django-blogphoto
7be47ad6893cdba30e89b8787c0bf2514cb74505
62f7f1f2019f4c49aaa7c20171f9900a9cfe8719
refs/heads/master
2023-01-18T17:15:11.064804
2020-11-20T14:08:40
2020-11-20T14:08:40
297,322,851
0
0
null
null
null
null
UTF-8
Python
false
false
157
py
from django.contrib import admin from .models import Blog, Blogbuster admin.site.register(Blog) admin.site.register(Blogbuster) # Register your models here.
[ "merry2lassus@gmail.com" ]
merry2lassus@gmail.com
3f099eee1f57de1fb0b2421f2f6f6a424b5ca067
d6d0b175251e8bce792381b5c8140c1e64154e66
/aliexpress.py
21ae2e9046621f9cc5df91ba94fea292b99ee973
[]
no_license
AURZeeshan/Practice
4724711ef5443120a81fe676a3a2bd6a4ed464fb
3a9fbfb6a49f51d1aff483211b9f2c9050f46ae8
refs/heads/master
2023-02-15T11:11:00.093950
2020-12-14T16:50:45
2020-12-14T16:50:45
321,410,074
1
0
null
null
null
null
UTF-8
Python
false
false
6,132
py
from selenium import webdriver from selenium.webdriver.common.keys import Keys import os import urllib import urllib.request import time import pandas as pd import csv import random from os import name, system # Current Working directory or root_dir current = os.getcwd() # image name and root_dir global var direc = "/ image" global root_dir # this ali express # driver browser = r'chromedriver.exe' # url of aliexpress url = "https://www.aliexpress.com" # url ="http://api.scraperapi.com?api_key=4b12245e29bfe1d452c932337876fc9e&url=https://www.aliexpress.com" # url = "http://api.scraperapi.com?api_key=4b12245e29bfe1d452c932337876fc9e&url=https://www.aliexpress.com/wholesale?catId=0&initiative_id=SB_20201129104137&SearchText=Men+s+Fashion" driver = webdriver.Chrome(executable_path=browser) # Input from user find = input("input a category : ") # get url driver.get(url) List_page_window = driver.current_window_handle # Download Images and save in sub DIR def download_img(url , address): name = random.randrange(1,1000) global full_name try: full_name = str(address) full_name += str(name) + '.jpg' urllib.request.urlretrieve(url,full_name) print('\t Your image is downloaded and saved.') except: full_name = None # function for directrys make two directory one root_directory and one sub directory with name category def directry(): global photospath root_dir = 'Ali express- ' + str(find) os.mkdir(root_dir) os.chdir(root_dir) # change root dir to sub dir os.mkdir(find) os.chdir(find) sub_dir = os.getcwd() photospath = sub_dir + direc # call directory function and one step back directory directry() os.getcwd() os.chdir("..") os.getcwd() # Send Category for search InputField = driver.find_element_by_name('SearchText') InputField.send_keys(find) InputField.submit() driver.minimize_window() time.sleep(3) # function for scroll of page def Scroll(): driver.execute_script("window.scroll(500,1500)") time.sleep(4) driver.execute_script("window.scroll(1500,2500)") time.sleep(4) driver.execute_script("window.scroll(2500,3500)") time.sleep(4) driver.execute_script("window.scroll(2500,4500)") time.sleep(4) driver.execute_script("window.scroll(4500,5200)") time.sleep(4) # Scroll() # # get Product Linkshoe # cats = driver.find_elements_by_xpath('//*[@class="item-title"]') driver.execute_script("window.scroll(4000,5000)") Getpage = driver.find_elements_by_xpath('//*[@class="next-pagination-list"]/button') for pageNo in range(len(Getpage)): key = 0 print("\n\n \t Scraper Start...wait a few mint >> PageNo : ", pageNo) if pageNo >= 0: # Empty dictionary key of dicsho D = {} Scroll() # # get Product Link cats = driver.find_elements_by_xpath('//*[@class="item-title"]') # Start of for loop ----------------------- for c in cats: try: # Main try-cat cat = c.get_attribute('href') driver.execute_script("window.open('" + cat +"');") detail_page_window = driver.window_handles new_window = [x for x in detail_page_window if x != List_page_window][0] driver.switch_to.window(new_window) time.sleep(2) #driver1 = webdriver.Chrome(browser) # driver.execute_script("window.open('" + my_href +"');") try: # 1 try-title Title = driver.find_element_by_xpath('//*[@id="root"]/div/div/div/div/div/h1').text except: #1 except -title Title = None try: # 2 try-price price = driver.find_element_by_xpath('//*[@class="product-price-current"]/span').text except: # 2 except -price price = None try: # 3 try-rating rating = driver.find_element_by_xpath('//*[@class="product-reviewer-reviews black-link"]').text except: # 3 except -rating rating = None try: # 4 try-image # Img = driver1.find_element_by_xpath('//*[@class="magnifier-image"]') Img = driver.find_elements_by_xpath('//*[@class="images-view-item"]/img') for photo in Img: image = photo.get_attribute('src') download_img(image, photospath) # print("\t {}\n {}\n {}\n {}\n {}\n ".format(Title, price, rating, full_name,cat)) D[key] = [Title,price,rating,full_name,cat] except: # 4 except -image image = None except IndexError as e: #except -Main print(e) # os.chdir(os.path.dirname(Main)) time.sleep(2) key +=1 df = pd.DataFrame.from_dict(D,orient='index',columns=['Title','Price','rating','Image Path','Product URL']).drop_duplicates(keep=False) name = find + '.csv' if os.path.isfile(name): df.drop_duplicates(keep=False).to_csv(name,mode='w',header=True, index=True) else: df.drop_duplicates(keep=False).to_csv(name,mode='w', header=True,index=True) print("\t Get Detail NO {} from , Page No << {} \n".format(key,pageNo)) driver.close() driver.switch_to.window(List_page_window) # end of for loop------------------------- print("\t Completed Pages Are : ",pageNo) driver.execute_script("window.scroll(4000,5000)") time.sleep(2) driver.find_element_by_xpath('//*[@class="next-btn next-medium next-btn-normal next-pagination-item next-next"]').click()
[ "zk40003@gmail.com" ]
zk40003@gmail.com
31cacf2f4017c05027b72b80151b2a4900c83bcb
b223a4176da6e9510175929ac049d1990b3cbedf
/blogs/blog/templatetags/blog_tags.py
bac880b5161099028b05fcf73a7a7d422b8ce2d0
[]
no_license
DewangYang/Blogs
3ff81ceedcf31a458629a1de8d94a10feca1934b
cc15a6d3da376e49cee2babc9bf9ca75fceecc31
refs/heads/master
2020-04-09T21:22:39.743400
2018-12-06T01:38:01
2018-12-06T01:38:01
160,598,869
2
0
null
null
null
null
UTF-8
Python
false
false
766
py
from django import template from django.db.models.aggregates import Count from ..models import Post, Category, Tag register = template.Library() #最新文章模板标签 @register.simple_tag def get_recent_posts(num=5): return Post.objects.all().order_by('-created_time')[:num] #归档模板标签 @register.simple_tag def archives(): return Post.objects.dates('created_time', 'month', order='DESC') #分类模板标签 @register.simple_tag def get_categories(): # 记得在顶部引入 count 函数 return Category.objects.annotate(num_posts=Count('post')).filter(num_posts__gt=0) @register.simple_tag def get_tags(): # 记得在顶部引入 Tag model return Tag.objects.annotate(num_posts=Count('post')).filter(num_posts__gt=0)
[ "1697755202@qq.com" ]
1697755202@qq.com
76b217501082a69184f849b87695f10f5261347c
3d68b35626311dacee3bb1b1b830d430c7d33a4e
/Code-part1/plot/gainloss_plot.py
ef10191cb357af28edef409fdeee6e05db530828
[]
no_license
Jal-ghamdi/INFS7410
b6709e8137357293fa644d9033343437424a22e5
01ac6fb34a440db0b4e5c54f3b292c24d7aa9eda
refs/heads/main
2023-06-04T18:44:57.416078
2021-06-19T06:53:15
2021-06-19T06:53:15
378,132,194
0
1
null
null
null
null
UTF-8
Python
false
false
877
py
import sys import matplotlib.pyplot as plt import numpy as np from trectools import TrecRes if __name__ == "__main__": if len(sys.argv) < 5: print("not enough arguments specified") sys.exit(1) fname1 = sys.argv[1] fname2 = sys.argv[2] measure = sys.argv[3] output = sys.argv[4] ev1 = TrecRes(fname1) ev2 = TrecRes(fname2) r1 = ev1.get_results_for_metric(measure) r2 = ev2.get_results_for_metric(measure) ind = np.arange(len(r1)) # HINT: https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html plt.bar(ind,np.subtract(list(r1.values()),list(r2.values()))) plt.xticks(ind, list(r1.keys()), rotation="vertical") plt.ylim(-1, 1) plt.title("2018 Testing Title Queries using KLI at 0.5 - BM25 and TF_IDF") plt.ylabel(measure) plt.tight_layout() plt.savefig(output)
[ "ijawaher.a.al.ghamdi@gmail.com" ]
ijawaher.a.al.ghamdi@gmail.com
b5a6a0a6412e193f6feab24d96c611f4ca9a46d9
4738ab5811476237576fa5cabce548c50940e8a7
/day 9/untitled1.py
c20f422b24a215fef9f4401d040464cb654b9065
[]
no_license
vijayshersiya/pythoncodes
0b1d9b4839b2ff495358d53fe374dfdce3180f78
38c70d73e28d388a9a4dda4a6492ce5880c1d198
refs/heads/master
2020-05-24T07:16:23.929640
2019-05-17T07:26:36
2019-05-17T07:26:36
187,155,984
1
0
null
null
null
null
UTF-8
Python
false
false
1,562
py
# -*- coding: utf-8 -*- """ Created on Thu May 16 11:43:01 2019 @author: Vijay """ """ Code Challenge 2 Perform similar steps as in the above code challenge but store the contents in an online mongo atlas database """ import pymongo #import dns # required for connecting with SRV #client = pymongo.MongoClient("mongodb://K_Vaid:123chandu30%26@cluster0-shard-00-00-tofyu.mongodb.net:27017,cluster0-shard-00-01-tofyu.mongodb.net:27017,cluster0-shard-00-02-tofyu.mongodb.net:27017/test?ssl=true&replicaSet=Cluster0-shard-0&authSource=admin&retryWrites=true") client = pymongo.MongoClient("mongodb://vijay1997:vijay%401997@vijay-shard-00-00-obffw.gcp.mongodb.net:27017,vijay-shard-00-01-obffw.gcp.mongodb.net:27017,vijay-shard-00-02-obffw.gcp.mongodb.net:27017/test?ssl=true&replicaSet=vijay-shard-0&authSource=admin&retryWrites=true") mydb = client.vijayshersiyadb def add_stu(student_name,student_age,student_roll_no,student_branch): #unique_employee = mydb.employees.find_one({"id":idd}) #if unique_employee: # return "Employee already exists" #else: mydb.vijay.insert_one( { "student_name" :student_name , "student_age" :student_age, "student_roll_no" : student_roll_no, "student_branch " : student_branch }) return "stu added successfully" def fetch_all_stu(): user = mydb.vijay.find() for i in user: print (i) add_stu ('vijay',22, 45, 'cs') add_stu ('mohit',21, 46, 'cs') add_stu ('dig',23, 47, 'cs') add_stu ('viku',24, 48, 'cs') add_stu ('anupam',22, 49, 'cs') fetch_all_stu()
[ "vijayshersiya1997@gmail.com" ]
vijayshersiya1997@gmail.com
9828e3bacaa6964bc3c123c316e9e504fce3dc5a
674f5dde693f1a60e4480e5b66fba8f24a9cb95d
/tests/armv6_tests/opcode_tests/test_mul.py
6858af0a7cb71951d5fbb8f90d2ebe8a80622ddd
[ "MIT" ]
permissive
matan1008/armulator
75211c18ebc9cd9d33a02890e76fc649483c3aad
44f4275ab1cafff3cf7a1b760bff7f139dfffb07
refs/heads/master
2023-08-17T14:40:52.793120
2023-08-08T04:57:02
2023-08-08T04:57:02
91,716,042
29
7
MIT
2023-08-08T04:55:59
2017-05-18T16:37:55
Python
UTF-8
Python
false
false
2,265
py
from armulator.armv6.opcodes.concrete.mul_a1 import MulA1 from armulator.armv6.opcodes.concrete.mul_t1 import MulT1 from armulator.armv6.opcodes.concrete.mul_t2 import MulT2 def test_mul_t1(thumb_v6_without_fetch): arm = thumb_v6_without_fetch arm.opcode = 0b0100001101000001 arm.opcode_len = 16 opcode = arm.decode_instruction(arm.opcode) opcode = opcode.from_bitarray(arm.opcode, arm) assert type(opcode) == MulT1 assert opcode.instruction == arm.opcode assert opcode.m == 1 assert opcode.d == 1 assert opcode.n == 0 assert opcode.setflags arm.registers.set(0, 5) arm.registers.set(1, 4) arm.emulate_cycle() assert arm.registers.get(1) == 20 assert arm.registers.cpsr.n == 0 assert arm.registers.cpsr.z == 0 assert arm.registers.cpsr.c == 0 assert arm.registers.cpsr.v == 0 def test_mul_t2(thumb_v6_without_fetch): arm = thumb_v6_without_fetch arm.opcode = 0b11111011000000001111001000000001 arm.opcode_len = 32 opcode = arm.decode_instruction(arm.opcode) opcode = opcode.from_bitarray(arm.opcode, arm) assert isinstance(opcode, MulT2) assert opcode.setflags is False assert opcode.n == 0 assert opcode.m == 1 assert opcode.d == 2 arm.registers.set(opcode.n, 0x00000004) arm.registers.set(opcode.m, 0x00000002) arm.emulate_cycle() assert arm.registers.get(opcode.d) == 0x00000008 assert arm.registers.cpsr.n == 0 assert arm.registers.cpsr.z == 0 assert arm.registers.cpsr.c == 0 assert arm.registers.cpsr.v == 0 def test_mul_a1(arm_v6_without_fetch): arm = arm_v6_without_fetch arm.opcode = 0b11100000000100100000000010010001 arm.opcode_len = 32 opcode = arm.decode_instruction(arm.opcode) opcode = opcode.from_bitarray(arm.opcode, arm) assert isinstance(opcode, MulA1) assert opcode.setflags assert opcode.n == 1 assert opcode.m == 0 assert opcode.d == 2 arm.registers.set(opcode.n, 0x00000004) arm.registers.set(opcode.m, 0x00000002) arm.emulate_cycle() assert arm.registers.get(opcode.d) == 0x00000008 assert arm.registers.cpsr.n == 0 assert arm.registers.cpsr.z == 0 assert arm.registers.cpsr.c == 0 assert arm.registers.cpsr.v == 0
[ "matan1008@gmail.com" ]
matan1008@gmail.com
18798f0266954d7f7e163c351ce49b0a4761e852
5f34c24225991f6332d73fd57e74e0f4145499bf
/pyarubaoss/acls.py
c1cfc9163b31518747163951411fe595b86b05b7
[ "Apache-2.0" ]
permissive
RouteNotTaken/pyarubaoss
9b09c9901e374e59939cf894f03fb68bdbf801c4
14f8e132f3ab17d109bf724568c2b498e8d35cc9
refs/heads/master
2021-08-20T09:09:50.648826
2017-11-28T18:25:31
2017-11-28T18:25:31
104,519,191
0
0
null
2017-09-22T21:12:48
2017-09-22T21:12:47
null
UTF-8
Python
false
false
941
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import requests, json def get_acls(auth): url = 'http://{}/rest/{}/acls'.format(auth.ipaddr, auth.version) try: r = requests.get(url, headers = auth.cookie) acls = json.loads(r.text)['acl_element'] return acls except requests.exceptions.RequestException as error: return 'Error:\n' + str(error) + ' get_acls: An Error has occured' def get_acl_rules(auth, acl_id=None): if acl_id: url = 'http://{}/rest/{}/acls/{}/rules'.format(auth.ipaddr, auth.version, acl_id) else: url = 'http://{}/rest/{}/acls/rules'.format(auth.ipaddr, auth.version) try: r = requests.get(url, headers = auth.cookie) acl_rules = json.loads(r.text)['acl_rule_element'] return acl_rules except requests.exceptions.RequestException as error: return 'Error:\n' + str(error) + ' get_acl_rules: An Error has occured'
[ "nrhernandez@scoe.net" ]
nrhernandez@scoe.net
044706e36d879630d9396ab0241eca736624048f
48af945e9f8933d1cdddb3d99e6656ddf0285cca
/new/feed/urls.py
92cd4e032d4cdb3e9c058debbdb26d2729c54188
[]
no_license
kumarprafful/Website
324860aeb933279098564e753efc5d831b0ba0d8
40ab08c8378b888eb7b179b3ed1adba8d138e593
refs/heads/master
2021-01-22T18:23:32.140256
2017-03-15T11:22:05
2017-03-15T11:22:05
85,077,872
3
0
null
2017-03-15T13:48:52
2017-03-15T13:48:52
null
UTF-8
Python
false
false
781
py
from django.conf.urls import url from . import views app_name = 'feed' urlpatterns = [ url(r'^$', views.IndexView.as_view(), name='index'), #url(r'^(?P<pk>[0-9]+)/$', views.DetailView.as_view(), name='read'), url(r'^(?P<pk>[0-9]+)/$', views.story_detail, name='read'), url(r'^(?P<pk>[0-9]+)/like/$', views.story_like, name='like'), url(r'publish/$', views.AddStory.as_view(), name='story-publish'), url(r'^(?P<pk>[0-9]+)/edit/$', views.StoryUpdate.as_view(), name='story-edit'), url(r'^(?P<pk>[0-9]+)/delete/$', views.StoryDelete.as_view(), name='story-delete'), #comment #url(r'^(?P<pk>[0-9]+)/$', views.comment, name='comment'), url(r'^about/$', views.about, name='about'), url(r'^profile/$', views.profile, name='profile'), ]
[ "pal.vishal41@gmail.com" ]
pal.vishal41@gmail.com
ee2e5f8bb3bbdb0ceadcb8b720066148e1e4cace
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5766201229705216_0/Python/tripodduan/p2.py
0870e361c9dc6c9ade8a7942a368c04a11fba496
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
795
py
#p2 import sys def test(edges, root, notin): outedges = filter(lambda x: x != notin, edges[root]) if len(outedges) < 2: return 1 results = [] for edge in outedges: results += [test(edges, edge, root)] results.sort() return 1 + results[-1] + results[-2] lines = sys.stdin.readlines() t = int(lines[0]) counter = 1 for ncase in range(t): n = int(lines[counter]) counter += 1 edges = [[] for i in range(n)] results = [] for a in range(n-1): data = map(lambda x: int(x) - 1, lines[counter].split()) counter+=1 edges[data[0]] += [data[1]] edges[data[1]] += [data[0]] for i in range(n): results += [test(edges, i, n)] print "Case #%d:"%(ncase+1), n-max(results)
[ "eewestman@gmail.com" ]
eewestman@gmail.com
21dacff46e3742d8562593d6ea73dcae3f477040
3f11e22b7bdf8a45345776f7bc2cfd2e6a9d1bf7
/src/data/preprocessing.py
829f6fe8d6eb71c21ff022dec0a38aa8e10964a8
[ "MIT" ]
permissive
wuyukun888/ocsvm
4beec777a4c362097b4f6d08ce0a565bcdc8e8d3
fcb7588782cf671baa670616bbeb1b4cde052a9e
refs/heads/master
2022-11-04T15:57:33.359848
2020-06-21T09:07:20
2020-06-21T09:07:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,998
py
import numpy as np from sklearn.decomposition import MiniBatchDictionaryLearning, PCA from sklearn.feature_extraction.image import PatchExtractor from PIL import Image def center_data(X_train, X_val, X_test, mode, offset=None): """ center images per channel or per pixel """ if offset is None: if mode == "per channel": n_channels = np.shape(X_train)[1] offset = np.mean(X_train, axis=(0, 2, 3)).reshape(1, n_channels, 1, 1) elif mode == "per pixel": offset = np.mean(X_train, 0) else: raise ValueError("Specify mode of centering " "(should be 'per channel' or 'per pixel')") X_train -= offset X_val -= offset X_test -= offset def normalize_data(X_train, X_val, X_test, mode="per channel", scale=None): """ normalize images per channel, per pixel or with a fixed value """ if scale is None: if mode == "per channel": n_channels = np.shape(X_train)[3] scale = np.std(X_train, axis=(0, 2, 1)).reshape(1, n_channels, 1, 1) elif mode == "per pixel": scale = np.std(X_train, 0) elif mode == "fixed value": scale = 255. else: raise ValueError("Specify mode of scaling (should be " "'per channel', 'per pixel' or 'fixed value')") X_train /= scale X_val /= scale X_test /= scale def rescale_to_unit_interval(X_train, X_val, X_test): """ Scaling all data to [0,1] w.r.t. the min and max in the train data is very important for networks without bias units. (data close to zero would otherwise not be recovered) """ X_train = np.array(X_train, dtype=np.float32) X_val = np.array(X_val, dtype=np.float32) X_test = np.array(X_test, dtype=np.float32) X_train_min = np.min(X_train) X_train_max = np.max(X_train) # X_train_min = np.array(X_train_min, dtype=np.float32) # X_train_max = np.array(X_train_max, dtype=np.float32) X_train -= X_train_min X_val -= X_train_min X_test -= X_train_min X_train /= (X_train_max - X_train_min) X_val /= (X_train_max - X_train_min) X_test /= (X_train_max - X_train_min) def global_contrast_normalization(X_train, X_val, X_test, scale="std"): """ Subtract mean across features (pixels) and normalize by scale, which is either the standard deviation, l1- or l2-norm across features (pixel). That is, normalization for each sample (image) globally across features. """ assert scale in ("std", "l1", "l2") na = np.newaxis X_train_mean = np.mean(X_train, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_val_mean = np.mean(X_val, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_test_mean = np.mean(X_test, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_train = np.array(X_train, dtype=np.float32) X_val = np.array(X_val, dtype=np.float32) X_test = np.array(X_test, dtype=np.float32) X_train -= X_train_mean X_val -= X_val_mean X_test -= X_test_mean if scale == "std": X_train_scale = np.std(X_train, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_val_scale = np.std(X_val, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_test_scale = np.std(X_test, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] if scale == "l1": X_train_scale = np.sum(np.absolute(X_train), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_val_scale = np.sum(np.absolute(X_val), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_test_scale = np.sum(np.absolute(X_test), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] if scale == "l2": # equivalent to "std" since mean is subtracted beforehand X_train_scale = np.sqrt(np.sum(X_train ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] X_val_scale = np.sqrt(np.sum(X_val ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] X_test_scale = np.sqrt(np.sum(X_test ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] X_train /= X_train_scale X_val /= X_val_scale X_test /= X_test_scale return [ X_train, X_val, X_test ] def zca_whitening(X_train, X_val, X_test, eps=0.1): """ Apply ZCA whitening. Epsilon parameter eps prevents division by zero. """ # get shape to later reshape data to original format shape_train = X_train.shape shape_val = X_val.shape shape_test = X_test.shape if X_train.ndim > 2: X_train = X_train.reshape(shape_train[0], np.prod(shape_train[1:])) X_val = X_val.reshape(shape_val[0], np.prod(shape_val[1:])) X_test = X_test.reshape(shape_test[0], np.prod(shape_test[1:])) # center data means = np.mean(X_train, axis=0) X_train -= means X_val -= means X_test -= means # correlation matrix sigma = np.dot(X_train.T, X_train) / shape_train[0] # SVD U,S,V = np.linalg.svd(sigma) # ZCA Whitening matrix ZCAMatrix = np.dot(U, np.dot(np.diag(1.0 / np.sqrt(S + eps)), U.T)) # Whiten X_train = np.dot(X_train, ZCAMatrix.T) X_val = np.dot(X_val, ZCAMatrix.T) X_test = np.dot(X_test, ZCAMatrix.T) # reshape to original shape X_train = X_train.reshape(shape_train) X_val = X_val.reshape(shape_val) X_test = X_test.reshape(shape_test) return X_train, X_val, X_test def make_unit_norm(X_train, X_val, X_test, norm="l2"): """ Normalize each image/tensor to length 1 w.r.t. to the selected norm """ assert norm in ("l1", "l2") na = np.newaxis if norm == "l2": X_train_norms = np.sqrt(np.sum(X_train ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] X_val_norms = np.sqrt(np.sum(X_val ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] X_test_norms = np.sqrt(np.sum(X_test ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] if norm == "l1": X_train_norms = np.sum(np.absolute(X_train), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_val_norms = np.sum(np.absolute(X_val), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_test_norms = np.sum(np.absolute(X_test), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X_train /= X_train_norms X_val /= X_val_norms X_test /= X_test_norms def pca(X_train, X_val, X_test, var_retained=0.95): """ PCA such that var_retained of variance is retained (w.r.t. train set) """ print("Applying PCA...") # reshape to 2D if input is tensor if X_train.ndim > 2: X_train = X_train.reshape(X_train.shape[0], -1) if X_val.size > 0: X_val = X_val.reshape(X_val.shape[0], -1) if X_test.size > 0: X_test = X_test.reshape(X_test.shape[0], -1) pca = PCA(n_components=var_retained) pca.fit(X_train) X_train = pca.transform(X_train) if X_val.size > 0: X_val = pca.transform(X_val) if X_test.size > 0: X_test = pca.transform(X_test) print("PCA pre-processing finished.") return X_train, X_val, X_test def crop_to_square(image): """ crops an image (n_channels, height, width) to have square size with center as in original image """ h, w = image[0, ...].shape min_len = min(h, w) h_start = (h / 2) - (min_len / 2) h_end = (h / 2) + (min_len / 2) w_start = (w / 2) - (min_len / 2) w_end = (w / 2) + (min_len / 2) return image[:, h_start:h_end, w_start:w_end] def downscale(image, pixels=64): """ downscale image (n_channels, height, width) by factor """ img = Image.fromarray(np.rollaxis(image, 0, 3)) return np.rollaxis(np.array(img.resize(size=(pixels, pixels))), 2) def gcn(X, scale="std"): """ Subtract mean across features (pixels) and normalize by scale, which is either the standard deviation, l1- or l2-norm across features (pixel). That is, normalization for each sample (image) globally across features. """ assert scale in ("std", "l1", "l2") na = np.newaxis X_mean = np.mean(X, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] X -= X_mean if scale == "std": X_scale = np.std(X, axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] if scale == "l1": X_scale = np.sum(np.absolute(X), axis=(1, 2, 3), dtype=np.float32)[:, na, na, na] if scale == "l2": # equivalent to "std" since mean is subtracted beforehand X_scale = np.sqrt(np.sum(X ** 2, axis=(1, 2, 3), dtype=np.float32))[:, na, na, na] X /= X_scale def extract_norm_and_out(X, y, normal, outlier): ''' :param X: numpy array with data features :param y: numpy array with labels :param normal: list with labels declared normal :param outlier: list with labels declared outliers :return: X_normal, X_outlier, y_normal, y_outlier ''' # Reshape to fit the new architecture of autoencoder X = np.reshape(X,(len(X),X.shape[3],X.shape[2],X.shape[1])) y = np.reshape(y,(len(y))) # print("[INFO:] THe shape of X is ",X.shape) # print("[INFO:] THe shape of y is ", y.shape) # print(y[0:100]) idx_normal = np.any(y[..., None] == np.array(normal)[None, ...], axis=1) idx_outlier = np.any(y[..., None] == np.array(outlier)[None, ...], axis=1) print("[INFO] : The idx_normal is: ", idx_normal) print("[INFO] : The idx_outlier is: ", idx_outlier) X_normal = X[idx_normal] y_normal = np.zeros(np.sum(idx_normal), dtype=np.uint8) # print("[INFO] : The shape of X is: ", X.shape) # print("[INFO] : The shape of y is: ", y.shape) X_outlier = X[idx_outlier] # y_outlier = -1*np.ones(np.sum(idx_outlier), dtype=np.uint8) y_outlier = np.ones(np.sum(idx_outlier), dtype=np.uint8) # print("[INFO] : The shape of X_normal is: ", X_normal.shape) # print("[INFO] : The shape of X_outlier is: ", X_outlier.shape) return X_normal, X_outlier, y_normal, y_outlier def learn_dictionary(X, n_filters, filter_size, n_sample=1000, n_sample_patches=0, **kwargs): """ learn a dictionary of n_filters atoms from n_sample images from X """ print("[ INFO ] : The shape of Xtrain is ",X.shape) n_channels = X.shape[3] # subsample n_sample images randomly rand_idx = np.random.choice(len(X), n_sample, replace=False) # extract patches patch_size = (filter_size, filter_size) patches = PatchExtractor(patch_size).transform( X[rand_idx, ...].reshape(n_sample, X.shape[1], X.shape[2], X.shape[3])) patches = patches.reshape(patches.shape[0], -1) patches -= np.mean(patches, axis=0) patches /= np.std(patches, axis=0) if n_sample_patches > 0 and (n_sample_patches < len(patches)): np.random.shuffle(patches) patches = patches[:n_sample_patches, ...] # learn dictionary print('Learning dictionary for weight initialization...') dico = MiniBatchDictionaryLearning(n_components=n_filters, alpha=1, n_iter=1000, batch_size=10, shuffle=True, verbose=True, **kwargs) W = dico.fit(patches).components_ W = W.reshape(n_filters, filter_size, filter_size,n_channels) print('Dictionary learned.') return W.astype(np.float32)
[ "thinhbka.nguyenvan@gmail.com" ]
thinhbka.nguyenvan@gmail.com
ba8dca8825a048583c7978ad04a9c927dee30dd4
93f4df46e9ddd5e4aebac862256805c7c6a2290f
/Orientation/rep1ace.py
8cac5e91acecf2aaa10f74b230cbf6d4fcc515a1
[]
no_license
heraldia/ADLR-Python
038de9af4c625f738e0e08e22efb9fb0b9a7b924
9013e2ac820ba84d570f47eab395f6ced54d1e4d
refs/heads/master
2020-12-22T13:01:46.659905
2016-11-02T13:04:50
2016-11-02T13:04:50
34,348,381
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
import re f1=open('activityList1.txt','r').read() f1 = re.sub('Cooking chopping','Chopping',f1) f_w=open('activityList.txt','wb') f_w.write(f1) f_w.close()
[ "wlmqxx@gmail.com" ]
wlmqxx@gmail.com
3c57e140f888ce19cc88bbd58b0eeae119b722af
ab06098bb8ecab6f0e4dcbc78e952a8bed090342
/exercise5.py
65872a0be5d1602f2f2e7826496c645c160aeded
[]
no_license
divyaamin9825/Learn-Python-the-Hard-Way-Code
c889f4ba0b30d07133162ea00f288456e0685ca4
f2381e417a30ba5aa906c807eda2022c06c5021a
refs/heads/master
2021-04-04T05:00:49.954538
2020-03-23T04:03:39
2020-03-23T04:03:39
248,426,066
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
name = 'Zed A. Shaw' age = 35 # not a lie height = 74 # inches height_cm = height*2.54 weight = 180 # lbs weight_kg = weight/2-weight/20 eyes = 'Blue' teeth = 'White' hair = 'Brown' print(f"Let's talk about {name}.") print(f"He's {height} inches tall and {height_cm} cm tall.") print(f"He's {weight} lbs heavy and {weight_kg} kgs heavy.") print("Actually that's not too heavy.") print(f"He's got {eyes} eyes and {hair} hair.") print(f"His teeth are usually {teeth} depending on the coffee.") # This line is tricky, try to get it exactly right total = age + height + weight print(f"If I add {age}, {height}, and {weight} I get {total}.") print(round(1.7333))
[ "noreply@github.com" ]
divyaamin9825.noreply@github.com
6c1111afd168fa48bd9f06b72a8a04d163020534
1dc0be5908067202eddbd4c071695bdd6125132e
/server/Classification_Standard.py
a1ea1037c81b5732506cae39513c8e8be0d3209c
[]
no_license
onlywant/NIDS
ffe992a340284703c71c7a71b954e9ff2f1db18a
05ae34dd7609383603a6d59687b99fdd430889db
refs/heads/master
2023-02-15T03:36:13.845107
2021-01-08T08:21:20
2021-01-08T08:21:20
327,822,813
1
1
null
null
null
null
UTF-8
Python
false
false
12,834
py
# import warnings filter from warnings import simplefilter # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) import numpy as np import pandas as pd from time import sleep from queue import Queue import multiprocessing from gensim.models import Doc2Vec from gensim.models.doc2vec import TaggedDocument from logging import basicConfig,INFO from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from Feature_DB import Fea_test, Fea_train, Extra_train from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score # from gensim.test.test_doc2vec import ConcatenatedDoc2Vec basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=INFO) class Classification: ''' 1. init -> get_category_from_feature 2. init -> -train_dbow ->test -train_dm ''' def __init__(self): self.sizeDbow = 50 self.sizeDm = 16 self.circle = 5 self.epoch = 4 self.rate = 0.5 self.derate = 0.0025 self.success = None self.addNew = False self.docTrain_Tagged = None self.docTest_Tagged = None self.vec_token_dbow = None self.mid_model_dbow = None self.modelDbow = None self.list_flag = ['normal', 'dos', 'probe'] # self.list_flag = ['normal.', 'err.'] ############加载模型 self.load_model_dbow() print(self.modelDbow) self.set_token_dbow(self.modelDbow) print('classification init finished') # 从特征获得分类 def get_category_from_feature(self, fea): # TODO # 1. fea to taggled sentence # 2. get vec of sentence # 3. sents = fea for i in range(len(sents)): sents[i] = str(sents[i]) vec = self.modelDbow.infer_vector(sents, steps=20) cur = -1 maxdis = -1 for i in range(3): dis = float( np.dot(vec, self.vec_token_dbow[i]) / (np.linalg.norm(vec) * np.linalg.norm(self.vec_token_dbow[i]))) if maxdis < dis: maxdis = dis cur = i return self.list_flag[cur] # 设置训练参数 def set_para(self, sizeDbow, circle, epoch, rate, derate, addNew): self.sizeDbow = sizeDbow self.circle = circle self.epoch = epoch self.rate = rate self.derate = derate self.addNew = addNew # 通过模型设置标签向量 def set_token_dbow(self, model): self.vec_token_dbow = [] for i in range(len(self.list_flag)): self.vec_token_dbow.append(model.docvecs[self.list_flag[i]]) def set_token_dm(self): self.vec_token_dm = [] for i in range(len(self.list_flag)): self.vec_token_dm.append(self.modelDm.docvecs[self.list_flag[i]]) # 加载模型 def load_model_dbow(self): self.modelDbow = Doc2Vec.load( './model/docmodel__dbow__standard__cos_and_logis.model') def load_model_dm(self): self.modelDm = Doc2Vec.load( './model/docmodel__dm__standard__cos_and_logis.model') # 保存中间模型并重新加载 def save_model_from_mid(self): self.modelDbow = Doc2Vec.load( './model/docmodel__mid__dbow__standard__cos_and_logis.model') self.modelDbow.save( './model/docmodel__dbow__standard__cos_and_logis.model') self.set_token_dbow(self.modelDbow) print('cover finish') ''' 数据预处理 ''' def data_preprocess(self): # csvDataTrain = pd.read_csv('./data/nsl-train.csv') # 读取训练数据 # arrCsvTrain = np.array(csvDataTrain) # csvDataTest = pd.read_csv('./data/nsl-test.csv') # 读取测试数据 # arrCsvTest = np.array(csvDataTest) # docTrain = arrCsvTrain[:, :-1] # tagTrain = arrCsvTrain[:, -1] # docTest = arrCsvTest[:, :-1] # tagTest = arrCsvTest[:, -1] # docTrain_Tagged = [] # docTest_Tagged = [] # # for i in range(len(docTrain)): # docTrain_Tagged.append( # TaggedDocument(' '.join(docTrain[i]).split(' '), [str(tagTrain[i])])) # for i in range(len(docTest)): # docTest_Tagged.append(TaggedDocument(' '.join(docTest[i]).split(' '), [str(tagTest[i])])) # self.docTrain_Tagged = docTrain_Tagged # self.docTest_Tagged = docTest_Tagged engine = create_engine('sqlite:///./data/Fea.db') DBSession = sessionmaker(bind=engine) # 创建session对象: session = DBSession() train_data = session.query(Fea_train).all() test_data = session.query(Fea_test).all() extra_data = session.query(Extra_train).all() session.close() docTrain_Tagged = [] docTest_Tagged = [] for i in range(len(train_data)): docTrain_Tagged.append( TaggedDocument(train_data[i].feature.split(' '), [train_data[i].classification])) if self.addNew: for i in range(len(extra_data)): docTrain_Tagged.append( TaggedDocument(train_data[i].feature.split(' '), [train_data[i].classification])) for i in range(len(test_data)): docTest_Tagged.append( TaggedDocument(test_data[i].feature.split(' '), [test_data[i].classification])) print(docTest_Tagged[0]) self.docTrain_Tagged = docTrain_Tagged self.docTest_Tagged = docTest_Tagged ''' 获得向量函数 ''' def get_vector_for_learning(self, model, tagged_docs): sents = tagged_docs targets, regressors = zip(*[(doc.tags[0], model.infer_vector(doc.words, steps=20)) for doc in sents]) return targets, regressors ''' 余弦相似度预测函数 ''' def calculate_cos_sim(self, X_test, y_test, buffer_p=None): y_pred_cos = [] for i in range(len(X_test)): maxdis = -1 cur = -1 for j in range(len(self.list_flag)): dis = float(np.dot(X_test[i], self.vec_token_dbow[j]) / ( np.linalg.norm(X_test[i]) * np.linalg.norm(self.vec_token_dbow[j]))) if maxdis < dis: maxdis = dis cur = j y_pred_cos.append(self.list_flag[cur]) if buffer_p is not None: buffer_p.put(90.0) # with open('C:\\Users\\ThinkPad\\Desktop\\bishe\\test\\2.txt', 'w', newline='') as file: # for i in range(len(y_pred_cos)): # file.write(str(y_pred_cos[i])) # with open('C:\\Users\\ThinkPad\\Desktop\\bishe\\test\\3.txt', 'w', newline='') as file: # for i in range(len(y_test)): # file.write(str(y_test[i])) # f = open('./test.txt', 'w') num_acc = 0 num_attack = 0 num_attack_p = 0 num_normal = 0 num_p_attack = 0 for i in range(len(y_pred_cos)): # f.write(y_pred_cos[i] + '\n') # print(y_test[i],y_pred_cos[i]) if y_test[i] != 'normal': num_attack += 1 if y_pred_cos[i] != 'normal': num_attack_p += 1 else: num_normal += 1 if y_pred_cos[i] != 'normal': num_p_attack += 1 if y_test[i] == y_pred_cos[i]: num_acc += 1 # f.close() if buffer_p is not None: buffer_p.put(100.0) sleep(1) if buffer_p is not None: buffer_p.put(None) buffer_p.put("余弦相似度正确率为:"+str(num_acc / len(y_pred_cos)) + " 检测率(DR):"+str( num_attack_p / num_attack) + " 误报率(DR):"+str( num_p_attack / num_normal)) # print("余弦相似度正确率为:{}".format(num_acc / len(y_pred_cos)) + \ # "检测率(DR):{}".format( num_attack_p / num_attack) + \ # "误报率(DR):{}".format( num_p_attack / num_normal)) ''' logistics回归预测函数 ''' def calculate_logist_sim(X_train, y_train, X_test, y_test): logreg = LogisticRegression(n_jobs=1, C=1e5) logreg.fit(X_train, y_train) y_pred_logis = logreg.predict(X_test) # with open('../model/test/4.txt', 'w', newline='') as file: # for i in range(len(y_pred_logis)): # file.write(str(y_pred_logis[i] + ' ' + str(y_test[i]) + '\n')) print('逻辑回归Testing accuracy :%s' % accuracy_score(y_test, y_pred_logis) + \ '逻辑回归Testing F1 score: {}'.format(f1_score(y_test, y_pred_logis, average='weighted'))) ''' 训练并保存 dbow模型 ''' def train_dbow(self, buffer_p=None): print('start dbow train') self.data_preprocess() if buffer_p is not None: buffer_p.put(1 / self.circle * 100 - 1) cores = multiprocessing.cpu_count() self.mid_model_dbow = Doc2Vec(dm=0, min_count=1, workers=cores, vector_size=self.sizeDbow) self.mid_model_dbow.build_vocab(self.docTrain_Tagged) for epoch in range(self.circle): self.mid_model_dbow.train(self.docTrain_Tagged, total_examples=len(self.docTrain_Tagged), epochs=self.epoch) self.mid_model_dbow.alpha -= self.derate self.mid_model_dbow.min_alpha = self.mid_model_dbow.alpha if buffer_p is not None: buffer_p.put(((epoch + 1) / self.circle) * 100) sleep(1) print("dbow train over") self.mid_model_dbow.save( './model/docmodel__mid__dbow__standard__cos_and_logis.model') self.test_model(self.mid_model_dbow, self.docTest_Tagged, buffer_p) ''' 训练并保存 dm模型 ''' def train_dm(self): print('start train dm') cores = multiprocessing.cpu_count() docmodel_dm = Doc2Vec(alpha=0.025, dm_mean=None, dm=1, min_count=1, window=2, vector_size=16, sample=1e-3, min_alpha=0.0001, epochs=10, negative=5, workers=4) docmodel_dm.build_vocab(self.docTrain_Tagged) docmodel_dm.train(self.docTrain_Tagged, total_examples=len(self.docTrain_Tagged), epochs=docmodel_dm.epochs) print("dm over") docmodel_dm.save('./model/docmodel__dm__standard__cos_and_logis.model') ''' 加载dbow模型,获得向量,预测结果,显示结果 目前74 ''' def test_model(self, model, docstest, buffer_p=None, docs=None): print('start test model') self.set_token_dbow(model) if buffer_p is not None: buffer_p.put(20.0) # y_train, X_train = self.get_vector_for_learning(model,docs) y_test, X_test = self.get_vector_for_learning(model, docstest) if buffer_p is not None: buffer_p.put(50.0) # 余弦相似度预测 self.calculate_cos_sim(X_test, y_test, buffer_p) # 逻辑回归预测 # y_train, X_train = self.get_vector_for_learning(model, docs) # self.calculate_logist_sim(X_train, y_train, X_test, y_test) ''' 段向量加和求平均 和 标签向量结合 提高2%左右 ''' def CalTokenDoc(self, tags, X_train, size): num_doc = [0] * 5 token_doc = np.zeros((5, size)) for i in range(len(tags)): index = int(tags[i]) token_doc[index] += X_train[i] num_doc[index] += 1 for i in range(5): token_doc[i] = token_doc[i] / num_doc[i] return token_doc ''' 词向量加和求平均 和 标签向量结合 提高 左右 ''' def CalTokenWord(self, tags, model, size, docTrain): num_word = [0] * 5 token_word = np.zeros((5, size)) for i in range(len(tags)): index = int(tags[i]) words = docTrain[i].split() for j in range(len(words)): token_word[index] += model.wv.get_vector(words[j]) num_word[index] += 1 for i in range(5): token_word[i] = token_word[i] / num_word[i] return token_word if __name__ == '__main__': c = Classification() q = Queue() c.train_dbow(q)
[ "1114128406@qq.com" ]
1114128406@qq.com
f4a16702a4149f1c2674845ef79d67e9eede14ac
104b4f496df84cc74cbd1b1c97e24f5b3061e85a
/news/rest/serializers.py
eee1cf9f6e36eb802048fb07733196ddd9afef6e
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
osuka/dognews-server
5f29f49f0200374809236f9408bdcd7b61be5102
0db18946b62379039791794c702f91b75ab95258
refs/heads/master
2023-03-03T00:43:33.016837
2023-02-04T19:47:22
2023-02-04T19:47:22
219,573,887
2
0
BSD-3-Clause
2023-02-15T20:39:40
2019-11-04T18:53:44
Python
UTF-8
Python
false
false
10,364
py
""" Django rest framework serializers for all the entities These transform models into various representations """ from collections import OrderedDict from dogauth.models import User from typing import Any, List from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from rest_framework import serializers from rest_framework.fields import SerializerMethodField from rest_framework.validators import UniqueValidator from drf_spectacular.utils import ( extend_schema, extend_schema_field, extend_schema_serializer, ) from drf_spectacular.types import OpenApiTypes from dogauth import permissions from ..models import Retrieval, Moderation, Submission, Vote # pylint: disable=missing-class-docstring # note on django rest framework and nulls: by default fields that are null # in the DB are serialized as nulls. We extend the default model serializer # not remove them class NonNullModelSerializer(serializers.ModelSerializer): """Any field that has a value of null _or_ empty string in the output json will be removed """ def to_representation(self, instance): result = super().to_representation(instance) # see discussion https://stackoverflow.com/a/45569581 return OrderedDict( [ (key, result[key]) for key in result if result[key] is not None and result[key] != "" ] ) # -------------------------------------- def _username_masking_admins(user: User) -> str: """Helper that hides some information we don't want to show externally about users""" if not user or user.is_superuser: return "admin" return user.username class UserSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = ["id", "username", "groups"] username = serializers.SerializerMethodField() groups = serializers.SerializerMethodField() def get_username(self, user: User) -> str: # we fake an 'admin' user given to all superusers return _username_masking_admins(user) def get_groups(self, user: User) -> List[str]: # we fake an 'admin' group groups = [g.name for g in user.groups.all()] if user.is_superuser: return groups + ["admin"] return groups class GroupSerializer(serializers.ModelSerializer): class Meta: model = Group fields = ["url", "name"] # class RatingSerializer(serializers.ModelSerializer): # class Meta: # model = Rating # read_only_fields = ["user"] # exclude = [] # -------------------------------------- class ModerationSerializer(NonNullModelSerializer): """A human evaluation of a submission""" class Meta: model = Moderation fields = [ "url", "target_url", "status", "owner", "title", "description", "last_updated", "date_created", ] read_only_fields = [ "url", "target_url", "owner", "title", "description", "last_updated", "date_created", ] # -------------------------------------- class RetrievalSerializer(NonNullModelSerializer): """The result of a bot retrieving the information""" class Meta: model = Retrieval fields = [ "url", "status", "owner", "title", "description", "thumbnail", "fetched_page", "last_updated", "date_created", "thumbnail_from_page", "thumbnail_submitted", "thumbnail_processed", ] read_only_fields = [ "thumbnail_from_page", "thumbnail_submitted", "thumbnail_processed", "url", "owner", "last_updated", "date_created", ] thumbnail = serializers.SerializerMethodField() # https://drf-spectacular.readthedocs.io/en/latest/customization.html#step-3-extend-schema-field-and-type-hints @extend_schema_field( { "type": "string", "example": "https://s3.amazonaws.com/xxxx/env/name.png?xxx&yyy", } ) def get_thumbnail(self, obj: Retrieval): """return the most specific thumbnail available: the one parsed by the system, the one submitted by the user or the one extracted from the page - depending on the state of the submission.""" return ( obj.thumbnail_processed or obj.thumbnail_submitted or obj.thumbnail_from_page ) class RetrievalThumbnailImageSerializer(serializers.ModelSerializer): """The normal serializer can be used for FormUpload but for API upload we enable this one that can expose only the image as separate endpoint""" class Meta: model = Retrieval fields = ["thumbnail_from_page", "thumbnail_submitted", "thumbnail_processed"] def validate(self, attrs: Any) -> Any: if not any(x in attrs for x in self.Meta.fields): raise serializers.ValidationError( f"One of {self.Meta.fields} must be provided as a multipart form-data" ) return super().validate(attrs) def save(self, *args, **kwargs): # if self.instance.thumbnail_image: # self.instance.thumbnail_image.delete() return super().save(*args, **kwargs) # -------------------------------------- class VoteSerializer(NonNullModelSerializer): """Votes are provided in Lists and don't link back to their submissions once serialized""" class Meta: model = Vote exclude = [] read_only_fields = [ "owner", "date_created", "last_updated", ] # list of fields changes based on permissions def get_fields(self, *args, **kwargs): fields = super().get_fields(*args, **kwargs) request = self.context.get("request") if request: user = request.user if not permissions.is_moderator(request): # TODO: can we do this also if it's not the owner? fields.pop("owner", None) fields.pop("submission", None) fields.pop("date_created", None) fields.pop("last_updated", None) fields.pop("id", None) return fields # -------------------------------------- class SubmissionSerializer( NonNullModelSerializer, serializers.HyperlinkedModelSerializer ): """A submission object that is in initial processing""" class Meta: model = Submission fields = [ "id", "url", "target_url", "status", "owner", "title", "description", "date", "retrieval", "moderation", "votes", ] read_only_fields = [ "owner", "status", "date_created", "last_updated", "last_modified_by", "domain", "retrieval", "moderation", ] url = serializers.HyperlinkedIdentityField( view_name="submission-detail", lookup_field="pk" ) retrieval = RetrievalSerializer(required=False, allow_null=True) moderation = ModerationSerializer(required=False, allow_null=True) owner = serializers.HyperlinkedRelatedField(view_name="user-detail", read_only=True) votes = serializers.ListSerializer( child=VoteSerializer(), required=False, allow_empty=True, allow_null=True ) # -------------------------------------- def _first(elements: List[str], defvalue: str) -> str: """Returns the first element that is not none. If all are none returns the default provided""" l = [x for x in elements if x] if len(l): return l[0] return defvalue class ArticleSerializer(NonNullModelSerializer): """An article is an approved submission and it takes the title and description from either the automated bots or the moderation, if the moderator entered any""" thumbnail = serializers.SerializerMethodField() description = serializers.SerializerMethodField() title = serializers.SerializerMethodField() submitter = serializers.SerializerMethodField() approver = serializers.SerializerMethodField() # submitter = serializers.CharField(source="owner__username", read_only=True) # approver = serializers.CharField( # source="moderation__owner__username", read_only=True # ) class Meta: model = Submission fields = read_only_fields = [ "url", "status", "target_url", "title", "description", "thumbnail", "last_updated", "date_created", "submitter", # "moderated_submission", "approver", ] def get_thumbnail(self, sub: Submission) -> str: retrieval: Retrieval = sub.retrieval return _first( [ retrieval.thumbnail_processed, retrieval.thumbnail_submitted, retrieval.thumbnail_from_page, ], "https://onlydognews.com/gfx/site/onlydognews-logo-main.png", ) def get_description(self, sub: Submission) -> str: values = [ sub.moderation.description, sub.retrieval.description, sub.description, ] return _first(values, "") def get_title(self, sub: Submission) -> str: values = [sub.moderation.title, sub.retrieval.title, sub.title] return _first(values, "") def get_target_url(self, sub: Submission) -> str: return _first([sub.moderation.target_url], sub.target_url) def get_submitter(self, sub: Submission) -> str: return _username_masking_admins(sub.owner) def get_approver(self, sub: Submission) -> str: if hasattr(sub, "moderation"): return _username_masking_admins(sub.moderation.owner) else: return _username_masking_admins(None)
[ "486736+osuka@users.noreply.github.com" ]
486736+osuka@users.noreply.github.com
6a89e4ce43df01a945f17c15ff2b1d7caf4ada62
5058e5fb05efe6050c33f2a389da49284922d9b9
/apps/the_wall/migrations/0001_initial.py
ed0232f2af43fda5e8f0ce9ba909e1df1db396eb
[]
no_license
akshay5193/The-Wall_Django
d1a7849b4e4c660a05fee54675a7ab7b2a38bb4d
76f85f1ea3cafdcfda0aa5cc78034a3d0f6fd20d
refs/heads/master
2020-07-22T16:04:46.115793
2019-09-09T07:52:35
2019-09-09T07:52:35
207,254,929
0
0
null
null
null
null
UTF-8
Python
false
false
903
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2019-07-18 22:01 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('login_reg', '0001_initial'), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('post_content', models.TextField(max_length=1000)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to='login_reg.User')), ], ), ]
[ "akshaytnande@gmail.com" ]
akshaytnande@gmail.com
a802f9c9136a652dccdbc4f90a28432961097d39
246fd025719a952a66c8cf3ccb9952fa60aab79e
/mbgpDriver/myDB.py
4f2f4cfac7504488d7a9a92e70411d25b55fd5cf
[]
no_license
srxzr/decoyrouter
d2295fae64145b2bd04d46b30909d6b4d448ff0d
949281457d802bc9672065d1eb35751392656ecc
refs/heads/master
2021-05-03T21:47:29.456143
2016-10-21T06:33:59
2016-10-21T06:33:59
71,536,304
0
0
null
null
null
null
UTF-8
Python
false
false
7,534
py
__author__ = 'milad' import cPickle as pickle import logging import copy logging.basicConfig(level=logging.DEBUG, format='[%(levelname)s] (%(threadName)-10s) %(message)s', ) class Route: def __init__(self,source,dest): self.source=source self.destination= dest self.bestpath=[] self.alternativepaths=[] self.radpath=[] self.selectedpath=[] self.routetype=0 self.radpath=[] def setbestpath(self,path): self.bestpath=path self.selectedpath=self.bestpath def addpath(self,path): self.alternativepaths.append(path) def getallpathes(self): return self.alternativepaths class RouteMananger: def __init__(self): self.routes={} self.asrels={} self.fillASrels() def fillASrels(self): asf= open('../Datasets/caida-m.txt','r') for l in asf: as1 , as2 =l.split(' ')[0:2] self.asrels.setdefault(as1,{})[as2]=int(l.split(' ')[2]) self.asrels.setdefault(as2,{})[as1]=-int(l.split(' ')[2]) asf.close() def addRoutes(self,source,dest,route): path=self.routes.setdefault(source,{}).setdefault(dest,Route(source,dest)) path.addpath(route) def setBestRoute(self,source,dest,route): path=self.routes.setdefault(source,{}).setdefault(dest,Route(source,dest)) path.setbestpath(route) def save(self,path): f=open(path,'wb') pickle.dump(self.routes,f) f.close() def getRoutes(self): return self.routes def getRouteForSource(self,src): res= self.routes.get(src,[]) #logging.debug( str(len(res))) return res def hasDecoy(self,r,decoys): if len(r)<2: return False for i in r[0]: if decoys.has_key(str(i)): return True return False def compareRAD(self,r1,r2): per1=int(r1[1]) per2=int(r2[1]) #LOCAL PRE if per2>per1: return r2 elif per1>per2: return r1 #SHORTEST if len(r2[0])>len(r1[0]): return r1 if len(r2[0])<len(r1[0]): return r2 if r1[0][0]<r2[0][0]: return r1 return r2 def computeRAD(self,source,destination,decoys): if not self.routes.has_key(source) or not self.routes[source].has_key(destination): return [],-1 route=self.routes[source][destination] if not self.hasDecoy(route.bestpath,decoys): route.radpath=copy.deepcopy(route.bestpath) route.routetype=0 return route.radpath, 0 early_selection=[] for i in route.alternativepaths: if not self.hasDecoy(i,decoys): early_selection.append(i) if len(early_selection) == 0 : route.routetype=-1 route.radpath=[] return [],-1 best=[] for r in relays: if not self.routes.has_key(r) or not self.routes[r].has_key(destination): continue rel= self.routes[r][destination] for ass in rel.alternativepaths: if self.hasDecoy(ass,decoys): continue if best==[]: best=ass best= self.compareRAD(best,ass) if best == []: return [],-2 return best,2 best= early_selection[0] for i in early_selection: best=self.compareRAD(best,i) route.radpath=copy.deepcopy(best) route.routetype=1 return best , 1 def computeRAD_justcompute(self,source,destination,decoys): if not self.routes.has_key(source) or not self.routes[source].has_key(destination): return [],-1 route=self.routes[source][destination] if not self.hasDecoy(route.bestpath,decoys): return route.radpath, 0 early_selection=[] for i in route.alternativepaths: if not self.hasDecoy(i,decoys): early_selection.append(i) if len(early_selection) == 0 : return [],-1 best=[] for r in relays: if not self.routes.has_key(r) or not self.routes[r].has_key(destination): continue rel= self.routes[r][destination] for ass in rel.alternativepaths: if self.hasDecoy(ass,decoys): continue if best==[]: best=ass best= self.compareRAD(best,ass) if best == []: return [],-2 return best,2 best= early_selection[0] for i in early_selection: best=self.compareRAD(best,i) return best , 1 class RouteParser: def __init__(self,path): self.rm=RouteMananger() self.file= open(path,'r') def parseForDests(self,dests): source='' dest='' count=0 for i in self.file : sp= i.replace('\n','').split('\t') if len(sp)==1 and len(i)>1: source=sp[0] elif len(sp)>1: pref=sp[2] isbest=sp[0][:2]=='*>' path=sp[4] dest=path.split(' ')[-1] if not dest in dests: continue self.rm.addRoutes(source,dest,([ int(ss) for ss in (source+' '+path).split(' ')],pref)) if isbest: self.rm.setBestRoute(source,dest,([ int(ss) for ss in (source+' '+path).split(' ')],pref)) count +=1 if count%1000000==0: print count self.file.close() self.check() def startParsing(self,sources,rings): source='' dest='' count=0 for i in self.file : sp= i.replace('\n','').split('\t') if len(sp)==1 and len(i)>1: source=sp[0] elif len(sp)>1: pref=sp[2] isbest=sp[0][:2]=='*>' path=sp[4] dest=path.split(' ')[-1] if dest in sources or int(dest) in rings or str(dest) in rings: continue self.rm.addRoutes(source,dest,([ int(ss) for ss in (source+' '+path).split(' ')],pref)) if isbest: self.rm.setBestRoute(source,dest,([ int(ss) for ss in (source+' '+path).split(' ')],pref)) #break count +=1 if count%1000000==0: #break print count self.file.close() self.check() def check(self): m=[] for i in self.rm.routes: m.append(len(self.rm.routes[i])) alt=[] for i in self.rm.routes: avg=0 for j in self.rm.routes[i]: avg += len(self.rm.routes[i][j].alternativepaths) avg=float(avg)/float(len(self.rm.routes[i])) alt.append(avg) alt.sort() m.sort() print avg def saveRoutes(self,path): self.rm.save(path) def getRouteManager(self): return self.rm import multiprocessing.managers class MyManager(multiprocessing.managers.BaseManager): pass
[ "milad@cs.umass.edu" ]
milad@cs.umass.edu
a83a5e4abbe7b76e5cbdcc7adad28cf164c569fd
72e7e02fa0731ff6991329f5a706154a3dc8de6e
/API_num.py
af28a450cbcd54d817caa94d9e0df4669826dcb0
[]
no_license
11111001001/STEPIK
2006ab7506f7e7aa37e4773d44cc6e8d6f6656ac
36a86cd9ef06def916fdb062108d4ff13bf63a76
refs/heads/master
2022-12-05T02:24:49.486750
2020-08-20T12:17:27
2020-08-20T12:17:27
288,160,743
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
import requests import json # Обработка чисел из файла # with open("example_dataset.txt") as f: # for num in f: # res = requests.get(api_url + num.strip() + "/math?json=true").text # print(json.loads(res)["text"] if json.loads(res)["found"] else 'Boring') api_url = 'http://numbersapi.com/' for num in input().split(): res = requests.get(api_url + str(num) + "/math?json=true").text print(json.loads(res)["text"] if json.loads(res)["found"] else 'Boring')
[ "noreply@github.com" ]
11111001001.noreply@github.com
29eaa6b1fd044584f45a9580ce32b5f7f7e7ec2d
173c0986418c758ed9372e3a5bb18baf96925ce9
/QA_03_基本数据类型_字符串.py
23a8080187156394bc47e65e635a28cbfeb709a8
[]
no_license
leadecree/python
8ecd64045196117dc8c6f64d529fb6206ae53d93
429faaf4ff8b092c0f54d33586140c65ecceb6b7
refs/heads/main
2023-08-02T07:30:44.616302
2021-10-02T08:14:24
2021-10-02T08:14:24
350,205,951
0
0
null
null
null
null
UTF-8
Python
false
false
580
py
# *_* coding:utf-8 *_* # @author:sdh # @Time : 2021/9/19 0019 08:04 # 字符串:单引号、双引号、三引号字符串 # 1 字符串的三种形式 x = 'python' y = "python" z = """python""" print(x, y, z) # python python python # 2 字符串中有字符串 a = "this is 'python'" print(a) # this is 'python' # 3 字符串的切片 b = "learn python" print(b[:]) # 取全部的字符串learn python print(b[0:5]) # 取部分左闭右开区间,learn print(b[0:6:2]) # 区间内间隔取,lan print(b[::-1]) # 字符串翻转,nohtyp nrael
[ "noreply@github.com" ]
leadecree.noreply@github.com
1af7319609de94556066e619b6963688250a26b3
e50eaf7779e8073bf511e17ec5006f9ccfe9e48d
/other/lab2/messenger/examples/app.py
408b756c561618d39bd23e12e22fda6f95cbc0c3
[]
no_license
serhiisad/xmlDb_labs_2019
2d0b06a7af3ddc83bdb5eb4dd5035a05b8f5a4de
a9e5d6fa76f34c7f5a4432dd10a666f81a0828fa
refs/heads/master
2021-06-13T10:39:39.928224
2019-06-22T09:39:24
2019-06-22T09:39:24
170,873,247
0
0
null
2021-03-29T20:00:20
2019-02-15T13:57:32
Python
UTF-8
Python
false
false
2,292
py
import redis import time import traceback import random def check_spam(self, message): ''' imitation of spam-checking :param self: :param message: :return: ''' time.sleep(random.randint(0, 3)) r = bool(random.getrandbits(1)) print(r) return r def RedisCheck(): try: r = redis.StrictRedis(host='localhost', port=6379) # Connect to local Redis instance p = r.pubsub() # See https://github.com/andymccurdy/redis-py/#publish--subscribe p.subscribe('startScripts') # Subscribe to startScripts channel PAUSE = True while PAUSE: # Will stay in loop until START message received print("Waiting For redisStarter...") message = p.get_message() # Checks for message if message: command = message['data'] # Get data from message if command == b'START': # Checks for START message PAUSE = False # Breaks loop time.sleep(1) print("Permission to start...") except Exception as e: print("Connecting error") print(str(e)) print(traceback.format_exc()) RedisCheck() # # def WorkCheck(): # try: # # # HERE SOME INITIAL WORK IS DONE THAT SCRIPTS 1 & 2 NEED TO WAIT FOR # # IDs SERIAL PORTS # # SAVE TO db # # r = redis.StrictRedis(host='localhost', port=6379) # Connect to local Redis instance # p = r.pubsub() # See https://github.com/andymccurdy/redis-py/#publish--subscribe # # print("Starting main scripts...") # # r.publish('startScripts', 'START') # PUBLISH START message on startScripts channel # # print("Done") # # except Exception as e: # print("Connection error") # print(str(e)) # print(traceback.format_exc())
[ "serhiisad.kpi@gmail.com" ]
serhiisad.kpi@gmail.com
04cd950ffd4444f0180c80dfafcffab70bcbc0dd
57a958244cd90f1cd8a21d958f70bb96e1ecb75e
/migrations/versions/9c17c43cf372_notifications.py
703f1581cf1a758dc28cc20cf184c951d9a2d44f
[]
no_license
victoriaroan/microblog
cd5c7ea1a0ab3d80afd396abf4827e94b13a7c10
b9a5d59d8c5fd6f2fda1899dfe451ee17b248f94
refs/heads/master
2022-12-09T19:14:55.386839
2019-12-23T20:47:47
2019-12-23T20:47:47
226,374,523
0
0
null
2022-12-08T03:20:11
2019-12-06T17:05:36
Python
UTF-8
Python
false
false
1,326
py
"""notifications Revision ID: 9c17c43cf372 Revises: 9a08e453b7bc Create Date: 2019-12-20 11:03:38.251403 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '9c17c43cf372' down_revision = '9a08e453b7bc' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('notification', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('timestamp', sa.Float(), nullable=True), sa.Column('payload_json', sa.Text(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_notification_name'), 'notification', ['name'], unique=False) op.create_index(op.f('ix_notification_timestamp'), 'notification', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_notification_timestamp'), table_name='notification') op.drop_index(op.f('ix_notification_name'), table_name='notification') op.drop_table('notification') # ### end Alembic commands ###
[ "vgood@linode.com" ]
vgood@linode.com
7c75e1037951eecb90c898a717ca71f18c263273
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02747/s173828040.py
26114d23e715060f839c2e250c10e568d43e5e65
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
47
py
print('YNeos'[input().replace('hi','')!=''::2])
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
644e8272099f69cc01b87e9f14836df016df6f42
bb53e49aee013758573f3b9db3739c38e81e0e84
/converter_2_10.py
97b5891cbb0bebafab8201a3ebb4159e8f13996b
[]
no_license
LaszloNagy85/Converter_Dojo
db57384f75b08921f298b60e557ec5851b3bc626
8d7f06d929b4310c03a37bb782c83b7f86712e1d
refs/heads/master
2020-05-29T21:24:11.039655
2019-05-30T08:47:06
2019-05-30T08:47:06
189,379,001
0
0
null
null
null
null
UTF-8
Python
false
false
524
py
# 2 / 10 converter num = (input("Add number and the type of it(separated by space): ")).split() n, v = int(num[0]), int(num[1]) bin = [] if v == 10: while n >= 1: bin.insert(0, n % 2) n = n // 2 for i in range(len(bin)): bin[i] = str(bin[i]) result = "".join(bin) print(f"The result is: {result} 2") result = 0 if v == 2: n = str(n) n = n[::-1] for i in range(len(n)): if n[i] == "1": result = result + 2**i print(f"The result is: {result} 10")
[ "n.laszlo.uk@gmail.com" ]
n.laszlo.uk@gmail.com
090b6cdc689365e07f78330f5f2da9f2ff75ba8b
8f5b67b222e14a5eae5b1afa795351ed7ceb2c67
/backend/bg_test_app_25843/urls.py
19798f357903f89a228d1e1c6faacf01b61a393b
[]
no_license
crowdbotics-apps/bg-test-app-25843
f495ec91078a5818ae413061ac65e3ef4acb29bf
9c0ffe925b29a4bb1d89449689937e1687b2d4ba
refs/heads/master
2023-04-14T08:14:39.111199
2021-04-22T20:34:40
2021-04-22T20:34:40
360,675,010
0
0
null
null
null
null
UTF-8
Python
false
false
2,229
py
"""bg_test_app_25843 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "BG test app" admin.site.site_title = "BG test app Admin Portal" admin.site.index_title = "BG test app Admin" # swagger api_info = openapi.Info( title="BG test app API", default_version="v1", description="API documentation for BG test app App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
ced201d5272d848d0d8e7da843b200dca85ffdd0
a9bf6b6595adb92fb0302c08b5fc55a3b4a8000d
/other_models/cutter_model1/model1.py
6b0769b2952d1904543a126c5fa60d001ff91b9b
[]
no_license
JanCVanB/cs152model
5356c9bcb168b52d4a3b8531a44e4c7f6342f428
3e5f9b4bc2efda51a7c93afcd3b00af75d03a4fc
refs/heads/master
2021-06-06T05:17:08.390511
2014-12-06T21:53:16
2014-12-06T21:53:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,868
py
import numpy as np import numpy.random as random import matplotlib.pyplot as pl import sys import plot_defaults ################## ### Parameters ### num_songs = 1e2 # number of songs in songspace frac = 1e-1 # fraction of songs in songspace that are intended power = 1e0 # for skewing the utilities toward 0 (power > 1) or 1 (power < 1) ################## def pick_song(probs_all): # songs indicies are 0 to num_songs - 1, with intended songs occupying lower indices return random.choice(int(num_songs), p=probs_all) def KL_divergence(distribution, approx_distribution): return np.sum(distribution * np.log(distribution / approx_distribution)) def pirate(N, eta, probs_all): ''' Pirate by listening `N` times. `eta` is the multiplicative weights update parameter. ''' weights = np.ones(num_songs) probs = weights / np.sum(weights) for _ in range(int(N)): song = pick_song(probs_all) weights[song] *= np.exp(eta) probs = weights / np.sum(weights) return KL_divergence(probs_all, probs) ################ ### Plotting ### num_Ns = 50 upper_N_exponent = 4 ntrials = 10 # trials at each N, epsilon value eta = 1e-3 fig = pl.figure(figsize=(10,8)) fig.subplots_adjust(left=0.2) fig.subplots_adjust(bottom=0.16) fig.subplots_adjust(top=0.85) fig.subplots_adjust(right=0.85) for epsilon in (0.1, 1, 10, 100): num_intended = frac * num_songs num_unintended = num_songs - num_intended utilities = (random.random(size=num_intended))**power # sensitivity assumed 1 intended_weights = np.exp(0.5 * epsilon * utilities) intended_weight = np.sum(intended_weights) unintended_weight = num_unintended # probabilities we pick X prob_intended = intended_weight / (intended_weight + unintended_weight) probs_intended = intended_weights / (intended_weight + unintended_weight) probs_unintended = np.ones(num_unintended) / (intended_weight + unintended_weight) probs_all = np.concatenate((probs_intended, probs_unintended)) print "Probability a given picked song is intended: ", prob_intended # setup toolbar toolbar_width = num_Ns sys.stdout.write("[%s]" % (" " * toolbar_width)) sys.stdout.flush() sys.stdout.write("\b" * (toolbar_width+1)) # return to start of line, after '[' Ns = np.logspace(-1, upper_N_exponent, num=num_Ns) div_means = [] div_stds = [] for N in Ns: divs = [] for _ in range(ntrials): divs.append(pirate(N, eta, probs_all)) div_means.append(np.mean(divs)) div_stds.append(np.std(divs)) sys.stdout.write("-") sys.stdout.flush() pl.plot(Ns, div_means, lw=8, label=r"\(\varepsilon = {}\)".format(epsilon)) pl.xlabel('Number of queries') pl.ylabel('KL-divergence') pl.xscale('log') pl.yscale('log') pl.legend(loc="center left") pl.show()
[ "cyghost@gmail.com" ]
cyghost@gmail.com
b875a411996438c00d0f845d3d9830153a3ffd06
ae90864ffefaae65da9c6e1809bf27208a9d34fc
/EXAMPLES/API/export_basetype_csv_default_options.py
cccc38b623f26762619346fdc09368f88db9197b
[]
no_license
apDataGuy/pytan
6374f128c4b4070d041d8bfb05c22e2434ff4a68
24c2907e28b3a93f3a96aa4cb42933ed2c6f83bf
refs/heads/master
2021-01-16T22:10:31.715453
2015-03-26T17:32:11
2015-03-26T17:32:11
38,935,203
0
0
null
2015-07-11T17:56:56
2015-07-11T17:56:56
null
UTF-8
Python
false
false
4,369
py
""" Export a BaseType from getting objects as CSV with the default options """ import os import sys sys.dont_write_bytecode = True # Determine our script name, script dir my_file = os.path.abspath(sys.argv[0]) my_dir = os.path.dirname(my_file) # determine the pytan lib dir and add it to the path parent_dir = os.path.dirname(my_dir) pytan_root_dir = os.path.dirname(parent_dir) lib_dir = os.path.join(pytan_root_dir, 'lib') path_adds = [lib_dir] for aa in path_adds: if aa not in sys.path: sys.path.append(aa) # connection info for Tanium Server USERNAME = "Tanium User" PASSWORD = "T@n!um" HOST = "172.16.31.128" PORT = "444" # Logging conrols LOGLEVEL = 2 DEBUGFORMAT = False import tempfile import pytan handler = pytan.Handler( username=USERNAME, password=PASSWORD, host=HOST, port=PORT, loglevel=LOGLEVEL, debugformat=DEBUGFORMAT, ) print handler # setup the export_obj kwargs for later export_kwargs = {} export_kwargs["export_format"] = u'csv' # get the objects that will provide the basetype that we want to use get_kwargs = { 'name': [ "Computer Name", "IP Route Details", "IP Address", 'Folder Name Search with RegEx Match', ], 'objtype': 'sensor', } response = handler.get(**get_kwargs) # export the object to a string # (we could just as easily export to a file using export_to_report_file) export_kwargs['obj'] = response export_str = handler.export_obj(**export_kwargs) print "" print "print the export_str returned from export_obj():" out = export_str if len(out.splitlines()) > 15: out = out.splitlines()[0:15] out.append('..trimmed for brevity..') out = '\n'.join(out) print out '''Output from running this: Handler for Session to 172.16.31.128:444, Authenticated: True, Version: 6.2.314.3279 print the export_str returned from export_obj(): category,creation_time,delimiter,description,exclude_from_parse_flag,hash,hidden_flag,id,ignore_case_flag,last_modified_by,max_age_seconds,metadata_item_0_admin_flag,metadata_item_0_name,metadata_item_0_value,modification_time,name,parameter_definition,queries_query_0_platform,queries_query_0_script,queries_query_0_script_type,queries_query_1_platform,queries_query_1_script,queries_query_1_script_type,queries_query_2_platform,queries_query_2_script,queries_query_2_script_type,source_id,string_count,subcolumns_subcolumn_0_hidden_flag,subcolumns_subcolumn_0_ignore_case_flag,subcolumns_subcolumn_0_index,subcolumns_subcolumn_0_name,subcolumns_subcolumn_0_value_type,subcolumns_subcolumn_1_hidden_flag,subcolumns_subcolumn_1_ignore_case_flag,subcolumns_subcolumn_1_index,subcolumns_subcolumn_1_name,subcolumns_subcolumn_1_value_type,subcolumns_subcolumn_2_hidden_flag,subcolumns_subcolumn_2_ignore_case_flag,subcolumns_subcolumn_2_index,subcolumns_subcolumn_2_name,subcolumns_subcolumn_2_value_type,subcolumns_subcolumn_3_hidden_flag,subcolumns_subcolumn_3_ignore_case_flag,subcolumns_subcolumn_3_index,subcolumns_subcolumn_3_name,subcolumns_subcolumn_3_value_type,subcolumns_subcolumn_4_hidden_flag,subcolumns_subcolumn_4_ignore_case_flag,subcolumns_subcolumn_4_index,subcolumns_subcolumn_4_name,subcolumns_subcolumn_4_value_type,subcolumns_subcolumn_5_hidden_flag,subcolumns_subcolumn_5_ignore_case_flag,subcolumns_subcolumn_5_index,subcolumns_subcolumn_5_name,subcolumns_subcolumn_5_value_type,value_type Reserved,,,"The assigned name of the client machine. Example: workstation-1.company.com",0,3409330187,0,3,1,,86400,,,,,Computer Name,,Windows,select CSName from win32_operatingsystem,WMIQuery,,,,,,,0,9,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,String Network,2015-03-03T19:03:36,|,"Returns IPv4 network routes, filtered to exclude noise. With Flags, Metric, Interface columns. Example: 172.16.0.0|192.168.1.1|255.255.0.0|UG|100|eth0",1,435227963,0,737,1,Jim Olsen,60,0,defined,Tanium,2015-03-03T19:03:36,IP Route Details,,Windows,"strComputer = &quot;.&quot; Set objWMIService = GetObject(&quot;winmgmts:&quot; _ &amp; &quot;{impersonationLevel=impersonate}!\\&quot; &amp; strComputer &amp; &quot;\root\cimv2&quot;) Set collip = objWMIService.ExecQuery(&quot;select * from win32_networkadapterconfiguration where IPEnabled=&#039;True&#039;&quot;) dim ipaddrs() ipcount = 0 for each ipItem in collip for each ipaddr in ipItem.IPAddress ipcount = ipcount + 1 next ..trimmed for brevity.. '''
[ "jim.olsen@tanium.com" ]
jim.olsen@tanium.com
43536d8db6c4c1914e4a95e7d5c4197d02ecbbfd
98efe1aee73bd9fbec640132e6fb2e54ff444904
/loldib/getratings/models/NA/na_tahmkench/na_tahmkench_bot.py
dac7b83b91ea31853e289b78ea698d1ad2a695fd
[ "Apache-2.0" ]
permissive
koliupy/loldib
be4a1702c26546d6ae1b4a14943a416f73171718
c9ab94deb07213cdc42b5a7c26467cdafaf81b7f
refs/heads/master
2021-07-04T03:34:43.615423
2017-09-21T15:44:10
2017-09-21T15:44:10
104,359,388
0
0
null
null
null
null
UTF-8
Python
false
false
6,959
py
from getratings.models.ratings import Ratings class NA_TahmKench_Bot_Aatrox(Ratings): pass class NA_TahmKench_Bot_Ahri(Ratings): pass class NA_TahmKench_Bot_Akali(Ratings): pass class NA_TahmKench_Bot_Alistar(Ratings): pass class NA_TahmKench_Bot_Amumu(Ratings): pass class NA_TahmKench_Bot_Anivia(Ratings): pass class NA_TahmKench_Bot_Annie(Ratings): pass class NA_TahmKench_Bot_Ashe(Ratings): pass class NA_TahmKench_Bot_AurelionSol(Ratings): pass class NA_TahmKench_Bot_Azir(Ratings): pass class NA_TahmKench_Bot_Bard(Ratings): pass class NA_TahmKench_Bot_Blitzcrank(Ratings): pass class NA_TahmKench_Bot_Brand(Ratings): pass class NA_TahmKench_Bot_Braum(Ratings): pass class NA_TahmKench_Bot_Caitlyn(Ratings): pass class NA_TahmKench_Bot_Camille(Ratings): pass class NA_TahmKench_Bot_Cassiopeia(Ratings): pass class NA_TahmKench_Bot_Chogath(Ratings): pass class NA_TahmKench_Bot_Corki(Ratings): pass class NA_TahmKench_Bot_Darius(Ratings): pass class NA_TahmKench_Bot_Diana(Ratings): pass class NA_TahmKench_Bot_Draven(Ratings): pass class NA_TahmKench_Bot_DrMundo(Ratings): pass class NA_TahmKench_Bot_Ekko(Ratings): pass class NA_TahmKench_Bot_Elise(Ratings): pass class NA_TahmKench_Bot_Evelynn(Ratings): pass class NA_TahmKench_Bot_Ezreal(Ratings): pass class NA_TahmKench_Bot_Fiddlesticks(Ratings): pass class NA_TahmKench_Bot_Fiora(Ratings): pass class NA_TahmKench_Bot_Fizz(Ratings): pass class NA_TahmKench_Bot_Galio(Ratings): pass class NA_TahmKench_Bot_Gangplank(Ratings): pass class NA_TahmKench_Bot_Garen(Ratings): pass class NA_TahmKench_Bot_Gnar(Ratings): pass class NA_TahmKench_Bot_Gragas(Ratings): pass class NA_TahmKench_Bot_Graves(Ratings): pass class NA_TahmKench_Bot_Hecarim(Ratings): pass class NA_TahmKench_Bot_Heimerdinger(Ratings): pass class NA_TahmKench_Bot_Illaoi(Ratings): pass class NA_TahmKench_Bot_Irelia(Ratings): pass class NA_TahmKench_Bot_Ivern(Ratings): pass class NA_TahmKench_Bot_Janna(Ratings): pass class NA_TahmKench_Bot_JarvanIV(Ratings): pass class NA_TahmKench_Bot_Jax(Ratings): pass class NA_TahmKench_Bot_Jayce(Ratings): pass class NA_TahmKench_Bot_Jhin(Ratings): pass class NA_TahmKench_Bot_Jinx(Ratings): pass class NA_TahmKench_Bot_Kalista(Ratings): pass class NA_TahmKench_Bot_Karma(Ratings): pass class NA_TahmKench_Bot_Karthus(Ratings): pass class NA_TahmKench_Bot_Kassadin(Ratings): pass class NA_TahmKench_Bot_Katarina(Ratings): pass class NA_TahmKench_Bot_Kayle(Ratings): pass class NA_TahmKench_Bot_Kayn(Ratings): pass class NA_TahmKench_Bot_Kennen(Ratings): pass class NA_TahmKench_Bot_Khazix(Ratings): pass class NA_TahmKench_Bot_Kindred(Ratings): pass class NA_TahmKench_Bot_Kled(Ratings): pass class NA_TahmKench_Bot_KogMaw(Ratings): pass class NA_TahmKench_Bot_Leblanc(Ratings): pass class NA_TahmKench_Bot_LeeSin(Ratings): pass class NA_TahmKench_Bot_Leona(Ratings): pass class NA_TahmKench_Bot_Lissandra(Ratings): pass class NA_TahmKench_Bot_Lucian(Ratings): pass class NA_TahmKench_Bot_Lulu(Ratings): pass class NA_TahmKench_Bot_Lux(Ratings): pass class NA_TahmKench_Bot_Malphite(Ratings): pass class NA_TahmKench_Bot_Malzahar(Ratings): pass class NA_TahmKench_Bot_Maokai(Ratings): pass class NA_TahmKench_Bot_MasterYi(Ratings): pass class NA_TahmKench_Bot_MissFortune(Ratings): pass class NA_TahmKench_Bot_MonkeyKing(Ratings): pass class NA_TahmKench_Bot_Mordekaiser(Ratings): pass class NA_TahmKench_Bot_Morgana(Ratings): pass class NA_TahmKench_Bot_Nami(Ratings): pass class NA_TahmKench_Bot_Nasus(Ratings): pass class NA_TahmKench_Bot_Nautilus(Ratings): pass class NA_TahmKench_Bot_Nidalee(Ratings): pass class NA_TahmKench_Bot_Nocturne(Ratings): pass class NA_TahmKench_Bot_Nunu(Ratings): pass class NA_TahmKench_Bot_Olaf(Ratings): pass class NA_TahmKench_Bot_Orianna(Ratings): pass class NA_TahmKench_Bot_Ornn(Ratings): pass class NA_TahmKench_Bot_Pantheon(Ratings): pass class NA_TahmKench_Bot_Poppy(Ratings): pass class NA_TahmKench_Bot_Quinn(Ratings): pass class NA_TahmKench_Bot_Rakan(Ratings): pass class NA_TahmKench_Bot_Rammus(Ratings): pass class NA_TahmKench_Bot_RekSai(Ratings): pass class NA_TahmKench_Bot_Renekton(Ratings): pass class NA_TahmKench_Bot_Rengar(Ratings): pass class NA_TahmKench_Bot_Riven(Ratings): pass class NA_TahmKench_Bot_Rumble(Ratings): pass class NA_TahmKench_Bot_Ryze(Ratings): pass class NA_TahmKench_Bot_Sejuani(Ratings): pass class NA_TahmKench_Bot_Shaco(Ratings): pass class NA_TahmKench_Bot_Shen(Ratings): pass class NA_TahmKench_Bot_Shyvana(Ratings): pass class NA_TahmKench_Bot_Singed(Ratings): pass class NA_TahmKench_Bot_Sion(Ratings): pass class NA_TahmKench_Bot_Sivir(Ratings): pass class NA_TahmKench_Bot_Skarner(Ratings): pass class NA_TahmKench_Bot_Sona(Ratings): pass class NA_TahmKench_Bot_Soraka(Ratings): pass class NA_TahmKench_Bot_Swain(Ratings): pass class NA_TahmKench_Bot_Syndra(Ratings): pass class NA_TahmKench_Bot_TahmKench(Ratings): pass class NA_TahmKench_Bot_Taliyah(Ratings): pass class NA_TahmKench_Bot_Talon(Ratings): pass class NA_TahmKench_Bot_Taric(Ratings): pass class NA_TahmKench_Bot_Teemo(Ratings): pass class NA_TahmKench_Bot_Thresh(Ratings): pass class NA_TahmKench_Bot_Tristana(Ratings): pass class NA_TahmKench_Bot_Trundle(Ratings): pass class NA_TahmKench_Bot_Tryndamere(Ratings): pass class NA_TahmKench_Bot_TwistedFate(Ratings): pass class NA_TahmKench_Bot_Twitch(Ratings): pass class NA_TahmKench_Bot_Udyr(Ratings): pass class NA_TahmKench_Bot_Urgot(Ratings): pass class NA_TahmKench_Bot_Varus(Ratings): pass class NA_TahmKench_Bot_Vayne(Ratings): pass class NA_TahmKench_Bot_Veigar(Ratings): pass class NA_TahmKench_Bot_Velkoz(Ratings): pass class NA_TahmKench_Bot_Vi(Ratings): pass class NA_TahmKench_Bot_Viktor(Ratings): pass class NA_TahmKench_Bot_Vladimir(Ratings): pass class NA_TahmKench_Bot_Volibear(Ratings): pass class NA_TahmKench_Bot_Warwick(Ratings): pass class NA_TahmKench_Bot_Xayah(Ratings): pass class NA_TahmKench_Bot_Xerath(Ratings): pass class NA_TahmKench_Bot_XinZhao(Ratings): pass class NA_TahmKench_Bot_Yasuo(Ratings): pass class NA_TahmKench_Bot_Yorick(Ratings): pass class NA_TahmKench_Bot_Zac(Ratings): pass class NA_TahmKench_Bot_Zed(Ratings): pass class NA_TahmKench_Bot_Ziggs(Ratings): pass class NA_TahmKench_Bot_Zilean(Ratings): pass class NA_TahmKench_Bot_Zyra(Ratings): pass
[ "noreply@github.com" ]
koliupy.noreply@github.com
dfbed0cf31ade9a3f9c18e54055c6eff0e25863c
58654db29fc3dfb5af340b0368d85b7141db4263
/mf6shell/rasterfiles.py
c6a7359cce77807c03bc835cc0945e926abf72cd
[ "MIT" ]
permissive
tomvansteijn/mf6shell
2149174ef849f26cfbfcdbdbbd02962ef98bf073
670fdcda33a4e1322cf62e478069d496dd0d7be1
refs/heads/master
2020-06-20T13:45:42.475305
2019-12-04T13:16:50
2019-12-04T13:16:50
197,139,015
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # Tom van Steijn, Royal HaskoningDHV import rasterio import logging import os log = logging.getLogger(os.path.basename(__file__)) def read_raster(rasterfile, masked=True, band=1): log.debug('reading {f.name:}'.format(f=rasterfile)) with rasterio.open(rasterfile) as src: return src.read(band, masked=masked) def write_raster(rasterfile, values, profile): log.debug('writing {f.name:}'.format(f=rasterfile)) with rasterio.open(rasterfile, 'w', **profile) as dst: return dst.write(values, 1)
[ "tom.van.steijn@rhdhv.com" ]
tom.van.steijn@rhdhv.com
d6fd3b369eb3b14ede95e9dc1ccdadb80a68081c
7d22c06007cfa981585fd7144d8463e3f9ce4793
/index/index_download_daily.py
550955254f832dbbb7e4e1a7493294cc748d349c
[]
no_license
helenypan/petrologica-python
7aedf2bb4ac283c8badf97bfec9144c4ea515f06
60bce447d262797d73dcae283bffd60ef5e7e240
refs/heads/master
2021-01-19T11:16:27.022755
2017-07-13T11:56:10
2017-07-13T11:56:10
87,949,542
0
0
null
null
null
null
UTF-8
Python
false
false
1,846
py
import sys sys.path.append('../includes') from db import DB from common_functions import parse_company_prices, parse_ftse_prices,parse_currency import urllib.request import ssl import re context = ssl._create_unverified_context() url_to_complete = "https://uk.finance.yahoo.com/quote/{}/history?interval=1d&filter=history&frequency=1d" url_ftse_current = "https://uk.investing.com/indices/uk-100-historical-data" url_currency_current = "https://www.investing.com/currencies/eur-nok-historical-data" db = DB() def extract_ftse_current_data(url): req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0'}) with urllib.request.urlopen(req, context = context) as url_file: html = str(url_file.read()) html_list = re.split("<html |</html>",html) html_to_parse = "<html " + html_list[1] + "</html>" parse_ftse_prices(html_to_parse, db) def extract_currency_current_data(url, currency): req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0'}) with urllib.request.urlopen(req, context = context) as url_file: html = str(url_file.read()) html_list = re.split("<html |</html>",html) html_to_parse = "<html " + html_list[1] + "</html>" parse_currency(html_to_parse, db,currency ) def extract_company_current_prices(company_code): url = url_to_complete.format(company_code) with urllib.request.urlopen(url, context=context) as url_file: html = url_file.read() parse_company_prices(company_code,html, db) db.cur.execute('''select company_code from tomorrow_external_data.index_company;''') for row in db.cur.fetchall(): company_code = row["company_code"] extract_company_current_prices(company_code) # extract ftse100 data extract_ftse_current_data(url_ftse_current) # retrieve eur_nok currency data extract_currency_current_data(url_currency_current,"EUR_NOK" ) db.close_connection()
[ "yue.pan@me.com" ]
yue.pan@me.com