blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
29a7f8fd4f7d2a2ab86528e4452628e868896892
46b9f8dd70d2da13ceadfc3ca5ac6fb0ec82acf1
/examples/solar_cell/log.py
ced1c1cb910fc96c1a639a06053c97d3b4c77d03
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
misaelnieto/devsim
4a2d16705c0f669af4ab4b8cc68ff8957607388c
1d614ba92c4abea7734df5ee7ecd81e8bca3b12c
refs/heads/master
2020-03-15T08:44:11.854865
2018-08-13T19:58:25
2018-08-13T19:58:25
123,771,828
0
0
Apache-2.0
2018-03-04T08:51:41
2018-03-04T08:51:41
null
UTF-8
Python
false
false
322
py
HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = "\033[1m" def infog(msg): print(OKGREEN + msg + ENDC) def info(msg): print(OKBLUE + msg + ENDC) def warn(msg): print(WARNING + msg + ENDC) def err(msg): print(FAIL + msg + ENDC)
[ "nnieto@noenieto.com" ]
nnieto@noenieto.com
5cbbb3255cb564286de601d5a17ec543b88b7f58
b2b03fe08e5b97f2a53852538c738aa60677a2af
/python/tests/unit/test_maasdriver_vlan.py
6094efea069d8060b8ca4c388d31aa163f90046c
[ "Apache-2.0" ]
permissive
spyd3rweb/drydock
8685b82f340f590f75a3893244486754f77c048f
9d1c65dc87807b694d00564bb9fa4fdd25297dc6
refs/heads/master
2020-09-02T09:51:42.220866
2020-04-05T18:53:10
2020-04-05T18:53:10
219,194,440
0
0
Apache-2.0
2019-11-17T05:41:12
2019-11-02T18:12:00
null
UTF-8
Python
false
false
1,813
py
# Copyright 2018 AT&T Intellectual Property. All other rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''Tests for the maasdriver node_results routine.''' import pytest from drydock_provisioner.drivers.node.maasdriver.models.vlan import Vlan from drydock_provisioner.drivers.node.maasdriver.errors import RackControllerConflict class TestMaasVlan(): def test_add_rack_controller(self, mocker): '''Test vlan model method for setting a managing rack controller.''' # A object to return that looks like a requests response # object wrapping a MAAS API response class MockedResponse(): status_code = 200 vlan_fields = {'name': 'test', 'dhcp_on': True, 'mtu': 1500} primary_rack = "asdf79" secondary_rack = "asdf80" tertiary_rack = "asdf81" api_client = mocker.MagicMock() api_client.get.return_value = MockedResponse() vlan_obj = Vlan(api_client, **vlan_fields) vlan_obj.add_rack_controller(primary_rack) assert vlan_obj.primary_rack == primary_rack vlan_obj.add_rack_controller(secondary_rack) assert vlan_obj.secondary_rack == secondary_rack with pytest.raises(RackControllerConflict): vlan_obj.add_rack_controller(tertiary_rack)
[ "sh8121@att.com" ]
sh8121@att.com
8122cd63318c83fba3251e64209f9f3899bd2f3b
35942792e6dbec7862dd7bbc1aaec2b76ec0bc85
/ABC/C/c110.py
433dbf7458b7562b7e2b7332698102a7372d8afb
[]
no_license
hokekiyoo/AtCoder
97f870421b513a5366681d1e05ba1e5038dfa077
2be1558c71a3ad8e1852645df050bca494b3afca
refs/heads/master
2020-04-27T17:51:11.337193
2019-10-28T11:42:47
2019-10-28T11:42:47
174,541,189
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
from collections import Counter S = input() T = input() import numpy as np S_num = dict(Counter(S)).values() T_num = dict(Counter(T)).values() Ss = np.array([s for s in S_num]) Ts = np.array([s for s in T_num]) if len(Ss) != len(Ts): print("No") else: if all(np.sort(Ss)==np.sort(Ts)): print("Yes") else: print("No") ## 別解? """ 普通にsortedとできるっぽい。わざわざnumpy配列にしなくてOK from collections import Counter s, t = input(), input() c1 = sorted(Counter(s).values()) c2 = sorted(Counter(t).values()) print('Yes') if c1 == c2 else print('No') """
[ "imslotter1@gmail.com" ]
imslotter1@gmail.com
5706b504bbfd62978d8f2c01925c25b21fbda95d
8a72dc41c3628e44c777981d4a4735643084ed95
/W5/sales_file_io.py
4f4304f81479d640fdaf5e725dfe7a68748130d7
[]
no_license
kakalimahapatra/PythonExplore
9ed0c9a2d290931fd3882e3d586a9fc026c09a92
61ed3d9796e2f1bd0f958893f5d2f6e9762f7a66
refs/heads/master
2020-04-22T09:11:50.318057
2015-05-09T01:47:08
2015-05-09T01:47:08
34,756,378
0
0
null
null
null
null
UTF-8
Python
false
false
876
py
# Name - Kakali Mahapatra # File I/O def main(): #reading the file SALES.txt grandtotal=0 readfile = open('SALES.txt','r') print("writing these total values into the TOTAL file") print("Please check the TOTAL.txt file for the result") outfile = open('TOTAL.txt','w') print("name", " ","total", file=outfile) for i in range(16): data = readfile.readline() stringdata = data.split() #print(stringdata) name = stringdata[0] print(name) sale1 = eval(stringdata[1]) sale2 = eval(stringdata[2]) sale3 = eval(stringdata[3]) sale4 = eval(stringdata[4]) total = sale1+sale2+sale3+sale4 print(total) grandtotal = grandtotal+total print(name," ", total, file=outfile) print("Total", " ",grandtotal, file=outfile) main()
[ "getkakali@gmail.com" ]
getkakali@gmail.com
515505b793747253c2090d1532f184922247092c
5494fe26fdaa2e69d2b3f5e298383fbea1044f88
/moveit_ros/planning_interface/test/python_move_group_ns.py
88efc06858d17d9c63c874f793b3b32ff50f71d6
[ "BSD-3-Clause" ]
permissive
mamoll/moveit
6b70e41ac5ff28acfee80c48c4d4b070729d3b69
353e5dec62ce1060e920c527cf17309cf516831b
refs/heads/kinetic-devel
2023-03-10T18:17:15.693036
2019-09-12T08:44:09
2019-09-12T08:44:09
212,438,759
2
0
BSD-3-Clause
2019-10-02T20:50:25
2019-10-02T20:50:24
null
UTF-8
Python
false
false
3,977
py
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Author: William Baker # # This test is used to ensure planning with a MoveGroupInterface is # possbile if the robot's move_group node is in a different namespace import unittest import numpy as np import rospy import rostest import os from moveit_ros_planning_interface._moveit_move_group_interface import MoveGroupInterface class PythonMoveGroupNsTest(unittest.TestCase): PLANNING_GROUP = "manipulator" PLANNING_NS = "test_ns/" @classmethod def setUpClass(self): self.group = MoveGroupInterface(self.PLANNING_GROUP, "%srobot_description"%self.PLANNING_NS, self.PLANNING_NS) @classmethod def tearDown(self): pass def check_target_setting(self, expect, *args): if len(args) == 0: args = [expect] self.group.set_joint_value_target(*args) res = self.group.get_joint_value_target() self.assertTrue(np.all(np.asarray(res) == np.asarray(expect)), "Setting failed for %s, values: %s" % (type(args[0]), res)) def test_target_setting(self): n = self.group.get_variable_count() self.check_target_setting([0.1] * n) self.check_target_setting((0.2,) * n) self.check_target_setting(np.zeros(n)) self.check_target_setting([0.3] * n, {name: 0.3 for name in self.group.get_active_joints()}) self.check_target_setting([0.5] + [0.3]*(n-1), "joint_1", 0.5) def plan(self, target): self.group.set_joint_value_target(target) return self.group.compute_plan() def test_validation(self): current = np.asarray(self.group.get_current_joint_values()) plan1 = self.plan(current + 0.2) plan2 = self.plan(current + 0.2) # first plan should execute self.assertTrue(self.group.execute(plan1)) # second plan should be invalid now (due to modified start point) and rejected self.assertFalse(self.group.execute(plan2)) # newly planned trajectory should execute again plan3 = self.plan(current) self.assertTrue(self.group.execute(plan3)) if __name__ == '__main__': PKGNAME = 'moveit_ros_planning_interface' NODENAME = 'moveit_test_python_move_group' rospy.init_node(NODENAME) rostest.rosrun(PKGNAME, NODENAME, PythonMoveGroupNsTest) # suppress cleanup segfault os._exit(0)
[ "dave@picknik.ai" ]
dave@picknik.ai
a38cb63d4933a71216ca298c2595eaceb6005c82
d32fd3dce3d7a3f6b3c0c47d21e9d21e78e140e1
/day1/ex6_math.py
1cf29b6d6ff36c00318ac3a5633a929a55d1a004
[ "Apache-2.0" ]
permissive
ktbyers/pynet_ons
0fe77d14d5e1f119396c1f72d98eaeb56849c2ab
7e84060f547ee8346a6ecb2db68a89d0ddf17aa6
refs/heads/master
2021-01-17T17:30:58.832361
2016-10-05T23:23:02
2016-10-05T23:23:02
63,434,341
2
13
null
2016-08-01T19:02:47
2016-07-15T16:01:39
Python
UTF-8
Python
false
false
297
py
#!/usr/bin/env python num1 = int(raw_input("Enter first number: ")) num2 = int(raw_input("Enter second number: ")) print "\n\nSum: {}".format(num1 + num2) print "Difference: {}".format(num1 - num2) print "Product: {}".format(num1 * num2) print "Division: {:.2f}".format(num1/float(num2)) print
[ "ktbyers@twb-tech.com" ]
ktbyers@twb-tech.com
3bdf1c017d00a66aed4a8b527f024a2fd8af0a95
552beb5d4f118e4dbe9484b3a7615d9911c03fc3
/check.py
c3e81bd4341511c54a89c738ec81e71cf29c772c
[]
no_license
WangHaoming/HLS
684d489a1796cd4e5c565c211b86bec0dd48ea20
297eef667b551a52ef1ab081e236ce23a76f242c
refs/heads/master
2021-01-18T11:08:38.997236
2015-06-04T09:23:11
2015-06-04T09:23:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
''' Created on 2013-4-24 @author: xweiyan ''' import fileinput import glob import hls import os import re import string import sys def readfiles(path): for line in fileinput.input(glob.glob(path + "/*.txt")): if fileinput.isfirstline(): sys.stderr.write("--reading %s--\n" % fileinput.filename()) sys.stdout.write(str(fileinput.lineno()) + " " + string.lower(line)) def checkfile(file): content = open(file).read().strip() data = hls.M3U8(content) print "playlist length is " + str(len(data.segments)) for no, segment in enumerate(data.segments): m = re.match("^#EXTINF\:\d{1,2}(\.\d+)?\,\\n(\w{15})-(\d{2})-(\d+).ts$", str(segment)) if str(no) != m.group(4): print "the record file: "+ file +"is not regular" print "the error line is " + m.group(4) print "the record file:" +file +" is regular" def checkTxt(path): for file in os.listdir(path): if os.path.splitext(file)[1] == ".txt": checkfile(os.path.join(path,file)) if __name__ == "__main__": # readfiles(r"c:\stream\4") checkfile(r"c:\Users\xweiyan\Desktop\01.txt") # checkfile(r"c:\stream\4\04.txt")
[ "weiyang@wistronits.com" ]
weiyang@wistronits.com
d1fda44ec807b70aafa3fff5927fd9ecf8ae40a6
a4fa45a00051bdb4c0f182bbe29d154170c3af9b
/report_printing.py
420927ae82e8ab5d514f1dea5f3e5203db14ff8f
[]
no_license
yanghaihuo/diabetes_prediction_pyqt5
82f55442d4dafd8b9e6aa4ad48f0db98b64ad345
bcbd14c3941f662e79cbdef5cdf155c567bec96f
refs/heads/master
2022-11-18T14:32:50.495408
2020-07-21T07:53:31
2020-07-21T07:53:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
864
py
from jinja2 import Environment, FileSystemLoader from weasyprint import HTML #['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] def print_report(fname,arr,res): res=round(res[0][0][0]*100,2) env = Environment(loader=FileSystemLoader('.')) template = env.get_template("template.html") template_vars = {"name" : fname, "age": arr[7], "preg":arr[0], "glucose":arr[1], "bp":arr[2], "sk_thick":arr[3], "insu":arr[4], "bmi":arr[5], "dpi":arr[6], "result":res } html_out = template.render(template_vars) fname="reports/"+fname+"_report.pdf" HTML(string=html_out).write_pdf(fname)
[ "nitishkumarchauhan1996@gmail.com" ]
nitishkumarchauhan1996@gmail.com
546a1923ba578b58a263e4e4a8c6151cc1b740ea
84b04d0787cf4cca686f54dcb4ca8eb0a480bdd5
/src/plonetheme/kasteeldehaar/tests/test_robot.py
637d955684aa80abb6b0c6a48ffd0cdc2dd7c458
[]
no_license
plone-ve/plonetheme.kasteeldehaar
357c1399d2d14d1b07cbd507521af4bfd4182897
136e0304b935f3ffb085824ed85d7a71a71924d4
refs/heads/master
2023-08-25T15:10:11.249942
2016-11-04T16:58:00
2016-11-04T16:58:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
901
py
# -*- coding: utf-8 -*- from plonetheme.kasteeldehaar.testing import plonetheme.kasteeldehaar_ACCEPTANCE_TESTING # noqa from plone.app.testing import ROBOT_TEST_LEVEL from plone.testing import layered import os import robotsuite import unittest def test_suite(): suite = unittest.TestSuite() current_dir = os.path.abspath(os.path.dirname(__file__)) robot_dir = os.path.join(current_dir, 'robot') robot_tests = [ os.path.join('robot', doc) for doc in os.listdir(robot_dir) if doc.endswith('.robot') and doc.startswith('test_') ] for robot_test in robot_tests: robottestsuite = robotsuite.RobotTestSuite(robot_test) robottestsuite.level = ROBOT_TEST_LEVEL suite.addTests([ layered( robottestsuite, layer=plonetheme.kasteeldehaar_ACCEPTANCE_TESTING ), ]) return suite
[ "andreslb1@gmail.com" ]
andreslb1@gmail.com
d65289fb5d30eaac8f86b4cc9a51781e50c8359d
8945ff1d0a2ebde75ccb0906c29c1c92afd3419f
/readparqutespark.py
14e6f20f5efb3cd4ecad47049514d4532e6159e0
[]
no_license
nikhilpatil19/assignment
d60787fe554994ca54e0011da7b0706b19ab8954
d031fb3804874fd1f7967e126043455b37e85ed9
refs/heads/master
2020-05-13T22:25:26.765548
2019-04-16T11:04:18
2019-04-16T11:04:18
181,667,773
0
0
null
null
null
null
UTF-8
Python
false
false
1,147
py
from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.sql import SparkSession from pyspark.sql import HiveContext sc = SparkSession.builder \ .master("local") \ .enableHiveSupport() \ .appName("parquets") \ .config("spark.some.config.option", "some-value") \ .getOrCreate() sqlContext = HiveContext(sc) import sys reload(sys) sys.setdefaultencoding('utf8') # to read parquet file df1 = sqlContext.read.parquet('file:////home/mapr/Nikhil/userdata1.parquet') df2 = sqlContext.read.parquet('file:////home/mapr/Nikhil/userdata2.parquet') df3 = sqlContext.read.parquet('file:////home/mapr/Nikhil/userdata3.parquet') df4 = sqlContext.read.parquet('file:////home/mapr/Nikhil/userdata4.parquet') df5 = sqlContext.read.parquet('file:////home/mapr/Nikhil/userdata5.parquet') join = df1.union(df2) join = join.union(df3) join = join.union(df4) join = join.union(df5) table1 = join.createOrReplaceTempView("sample_table") table1 = sc.sql("create table hive_t_1 as select * from sample_table") table1.write.option("header", "true").csv('file:////home/mapr/Nikhil/out.csv') print('All things done right')
[ "nikhil.patil@emtecinc.com" ]
nikhil.patil@emtecinc.com
912198bc71c0aca72cd66b68a560dd698503898a
72200c201fcc6d2ebed915e902ecca35469b904f
/server/ca/models.py
4584a48b6628705110851e08974e633e5e46d84a
[ "MIT" ]
permissive
knaou/mysign
a86f68c78b2b84f163af5afb1f40ca1cdb95187a
83a2748f2e3a69bc8741bc6a4ee2bb508a8aadba
refs/heads/master
2021-11-03T05:31:43.581688
2020-05-28T16:05:47
2020-05-28T16:05:47
176,100,477
0
0
MIT
2021-09-01T01:57:14
2019-03-17T12:50:59
Python
UTF-8
Python
false
false
1,140
py
from django.db import models class CertificateAuthority(models.Model): name = models.CharField(max_length=255, null=False) description = models.TextField(null=False, blank=True, default='') next_serial = models.IntegerField(null=False) key_pem = models.TextField(null=False) csr_pem = models.TextField(null=False) cert_pem = models.TextField(null=False) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Certificate(models.Model): certificate_authority = models.ForeignKey(CertificateAuthority, related_name='certificates', on_delete=models.CASCADE) name = models.CharField(max_length=255, null=False) description = models.TextField(null=False, blank=True, default='') serial = models.IntegerField(null=False) key_pem = models.TextField(null=False) csr_pem = models.TextField(null=False) cert_pem = models.TextField(null=False) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: unique_together = ('certificate_authority', 'serial',)
[ "monaou@gmail.com" ]
monaou@gmail.com
9203c91286bc5ec6669b399df3679ab852e02685
35f102cb79a609770ee4d2bccd4c9b79d4379295
/setup.py
90c54bd55e7322d5ef4c3507cd8326528359c88d
[ "MIT" ]
permissive
ahitrin/SiebenApp
b404aab2fb248db4a8bec727b25c73aa574e23e8
07782976bddecb1e3ba1ca2ab03ccbad024beda1
refs/heads/master
2023-08-16T16:25:32.409525
2023-08-14T06:53:07
2023-08-14T07:26:14
74,811,457
18
1
MIT
2023-09-11T06:08:01
2016-11-26T07:28:17
Python
UTF-8
Python
false
false
373
py
#!/usr/bin/env python3 from distutils.core import setup setup( name='SiebenApp', version='0.12', description='An experimental dependency-aware goal manager', author='Andrey Hitrin', author_email='andrey.hitrin@gmail.com', url='https://github.com/ahitrin/SiebenApp', packages=['siebenapp'], scripts=['clieben', 'sieben', 'sieben-manage'], )
[ "andrey.hitrin@gmail.com" ]
andrey.hitrin@gmail.com
7cfb4549c04fd2a922479184e4f8fa07cafb908d
56417f91c7a66ba5ba77380aa8f1433299f0fadc
/ranker/asf.py
2d305c1732594750aa95b60fbf19bdcd105bfaa8
[]
no_license
zbanks/rankazoo
ef6a1b7836c7c9acab9eb806d85ba4a068d75102
a6972c7bf48c559e846d3adaa4cde8bac088fa88
refs/heads/master
2021-01-10T20:14:12.301878
2012-12-08T07:53:13
2012-12-08T07:53:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,799
py
from django.db.models import CharField from django.utils.encoding import force_unicode from django.template.defaultfilters import slugify def _get_field(instance, name): try: return getattr(instance, name) except AttributeError: raise ValueError("Model %s has no field '%s'" % \ (instance.__class__.__name__, name)) class AutoSlugField(CharField): """ A SlugField that automatically populate itself using the value of another field. In addition to CharField's usual parameters you can specify: populate_from (mandatory): the name of the field to be used for the slug creation. ValueError will be raised at the object save() time if the field does not exist. slugify_func: the function to apply on the value of the field. If unspecified django.template.defaultfilters.slugify will be used. append_field: the name of a field that will be appended to the slug, or None. ValueError will be raised at the object save() time if the field does not exist. prepend_field: the name of a field that will be prepended to the slug, or None. ValueError will be raised at the object save() time if the field does not exist. field_separator: the separator between the slug and the {pre, ap}pended fields. The default value is u'-'. Unless explicitly set otherwise, the field will be created with the 'editable' and 'db_index' parameters set respectively to False and True. """ def __init__(self, *args, **kwargs): # Set editable=False if not explicitly set if 'editable' not in kwargs: kwargs['editable'] = False # Set db_index=True if not explicitly set if 'db_index' not in kwargs: kwargs['db_index'] = True populate_from = kwargs.pop('populate_from', None) slugify_func = kwargs.pop('slugify_func', slugify) append_field = kwargs.pop('append_field', None) prepend_field = kwargs.pop('prepend_field', None) field_separator = kwargs.pop('field_separator', u'-') if populate_from is None: raise ValueError("missing 'populate_from' argument") else: self._populate_from = populate_from self._slugify_func = slugify_func self._prepend_field = prepend_field self._append_field = append_field self._field_separator = field_separator super(AutoSlugField, self).__init__(*args, **kwargs) def pre_save(self, model_instance, add): populate_from = _get_field(model_instance, self._populate_from) make_slug = self._slugify_func chunks = list() if self._prepend_field is not None: prepend_field = _get_field(model_instance, self._prepend_field) # Prepend the field's value only if it is not empty if prepend_field: chunks.append(force_unicode(prepend_field)) chunks.append(make_slug(populate_from)) if self._append_field is not None: append_field = _get_field(model_instance, self._append_field) # Append the field's value only if it is not empty if append_field: chunks.append(force_unicode(append_field)) value = self._field_separator.join(chunks) setattr(model_instance, self.attname, value) return value def get_internal_type(self): return 'SlugField'
[ "zbanks@mit.edu" ]
zbanks@mit.edu
9f900007269828e38296a9cb405a59c496d3de71
2479f74eec86d34c65f7c3b132346ca303e3cc23
/TrueHome/TrueHome/wsgi.py
41a3f3ce490255137f3a52f83adcb3749fc0b377
[ "MIT" ]
permissive
AletzB/true_home_test
2cdfa11161bc5258221e2d7ea2c0449ba73622ef
fc03fdf1ef09fe6283a4cd706c06e0a5a413a36d
refs/heads/main
2023-03-05T15:26:54.785018
2021-02-16T22:33:01
2021-02-16T22:33:01
339,537,664
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for TrueHome project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'TrueHome.settings') application = get_wsgi_application()
[ "alexanderbermudez@usantotomas.edu.co" ]
alexanderbermudez@usantotomas.edu.co
d64822947bd318ef999a252c8a3923e1a6f107a8
f654f5f07dd8109c0ee31ba89dd4804e6b288343
/src/programy/utils/oob/email.py
7ce0678ee5141d87a71f7ce51bfe85ecb32f96c5
[ "MIT" ]
permissive
sprinteroz/program-y
3d1f5f28e4f3be770705d4bef15410b8b78f19da
454c6bde225dce7c3fb01c549d46249248caf7b5
refs/heads/master
2021-01-19T16:05:25.636700
2017-08-22T03:56:33
2017-08-22T03:56:33
100,986,551
1
0
null
2017-08-21T19:43:43
2017-08-21T19:43:43
null
UTF-8
Python
false
false
1,220
py
import logging import xml.etree.ElementTree as ET from programy.utils.oob.oob import OutOfBandProcessor """ <oob> <email> <to>recipient</to> <subject>subject text</subject> <body>body text</body> </email> </oob> """ class EmailOutOfBandProcessor(OutOfBandProcessor): def __init__(self): OutOfBandProcessor.__init__(self) self._to = None self._subject = None self._body = None def parse_oob_xml(self, oob: ET.Element): for child in oob: if child.tag == 'to': self._to = child.text elif child.tag == 'subject': self._subject = child.text elif child.tag == 'body': self._body = child.text else: logging.error ("Unknown child element [%s] in email oob"%(child.tag)) if self._to is not None and \ self._subject is not None and \ self._body is not None: return True logging.error("Invalid email oob command") return False def execute_oob_command(self, bot, clientid): logging.info("EmailOutOfBandProcessor: Emailing=%s", self._to) return "EMAIL"
[ "keith@keithsterling.com" ]
keith@keithsterling.com
910d89742125c89f6d83d759cdbd1a70be21888b
b29589f95734682663ae6cd40ab00eb0a94b6d87
/longwave/lblnew_20160916/study__g1_threshold/h2o/conc_None/band02_wn_340_540/nv_1000/dv_0.001/ng_11/g_ascending_k_descending/refPTs_P_1_T_250__P_10_T_250__P_500_T_250/ng_refs_2__3__6/ng_adju_-2__-2__0/getabsth_auto__auto__auto/absth_dlogN_uniform__dlogN_uniform__dlogN_uniform/klin_none/atmpro_saw/wgt_k_1/wgt_0.6_0.6__0.6_0.6_0.6__0.6_0.6_0.6_0.6_0.6_0.6/wgt_flux_1/w_diffuse_1.66_1.66__1.8_1.8_1.8__1.8_1.66_1.45_1.45_1.45_1.45/option_compute_ktable_0/option_compute_btable_0/crd_d5931a1/param.py
3f670efc4d7a78f1fba5f8514ea4cd44e2aa502f
[]
no_license
qAp/offline_radiation_notebooks
02c2b2414ef1410f235776001a668f7df0b9f1cf
44fb62391c27e4e314ad68ae3e91f6111b3172c5
refs/heads/master
2020-04-15T14:31:34.675322
2019-07-08T04:45:54
2019-07-08T04:45:54
43,118,324
0
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
DIR_FORTRAN = '/chia_cluster/home/jackyu/radiation/crd/LW/examples/separate_g_groups/study__lblnew_g1_threshold/h2o/conc_None/band02_wn_340_540/nv_1000/dv_0.001/ng_11/g_ascending_k_descending/refPTs_P_1_T_250__P_10_T_250__P_500_T_250/ng_refs_2__3__6/ng_adju_-2__-2__0/getabsth_auto__auto__auto/absth_dlogN_uniform__dlogN_uniform__dlogN_uniform/klin_none/atmpro_saw/wgt_k_1/wgt_0.6_0.6__0.6_0.6_0.6__0.6_0.6_0.6_0.6_0.6_0.6/wgt_flux_1/w_diffuse_1.66_1.66__1.8_1.8_1.8__1.8_1.66_1.45_1.45_1.45_1.45/option_compute_ktable_0/option_compute_btable_0/crd_d5931a1' PARAM = {'molecule': 'h2o', 'band': '2', 'vmin': 340, 'vmax': 540, 'ref_pts': [(1, 250), (10, 250), (500, 250)], 'ng_refs': [2, 3, 6], 'ng_adju': [-2, -2, 0], 'klin': 0, 'option_wgt_k': 1, 'wgt': [(0.6, 0.6), (0.6, 0.6, 0.6), (0.6, 0.6, 0.6, 0.6, 0.6, 0.6)], 'w_diffuse': [(1.66, 1.66), (1.8, 1.8, 1.8), (1.8, 1.66, 1.45, 1.45, 1.45, 1.45)], 'commitnumber': 'd5931a1', 'conc': None, 'dv': 0.001, 'nv': 1000, 'option_wgt_flux': 1, 'option_compute_ktable': 0, 'option_compute_btable': 0, 'atmpro': 'saw', 'tsfc': 257}
[ "llacque@gmail.com" ]
llacque@gmail.com
5e494f738e2347aa42a5db0272e5ee6fb9c74abf
310fbab72b4b4f1c308a7ddefd34cb04e54b1fa0
/care/migrations/0003_patient_status.py
12be556c703104420aa886fc4548c291b78f1309
[ "MIT" ]
permissive
GituMbugua/patient-care
767748c764b2fd9269f2328a17be18edbfa09007
79935ff27ebef5c160ac77e0c958c31c6dccb3f6
refs/heads/master
2021-08-30T00:04:17.584295
2017-12-15T10:59:11
2017-12-15T10:59:11
113,864,824
1
1
null
null
null
null
UTF-8
Python
false
false
567
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-13 17:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('care', '0002_auto_20171213_1204'), ] operations = [ migrations.AddField( model_name='patient', name='status', field=models.CharField(blank=True, choices=[('green', 'SAFE'), ('yellow', 'MINIMAL INJURY'), ('red', 'SEVERE INJURY'), ('black', 'DECEASED')], max_length=30), ), ]
[ "gmbugua38@gmail.com" ]
gmbugua38@gmail.com
257df738efd0e547ba5ba634c311402e70e970cf
683066a6da961f3539037d2763dca05bbb317280
/zip.py
3dd7b5163052f50e93a095da97cdf270cc46cdc1
[]
no_license
zmwieand/PDF-Scrapper
df41c223c8c4514774ae1c7660fd231ff7765cd4
e430b2862943365f7299f4154ce807f7fca8b9fd
refs/heads/master
2016-09-05T19:33:01.360604
2015-07-21T04:06:10
2015-07-21T04:06:10
39,423,057
0
0
null
null
null
null
UTF-8
Python
false
false
772
py
import os import zipfile from shutil import copyfile def download_clicked(selected_list): # make a list of all file names to be downloaded cp_files(selected_list) zip_folder() # clean out Download/ directory rm_files() def cp_files(selected_files): for a in selected_files: current = "samples/" + a destination = "Download/" + a copyfile(current, destination) def rm_files(): path = 'Download/' for a in os.listdir(path): os.remove(path + a) def zip_folder(): foo = zipfile.ZipFile('Resumes.zip', 'w') for root, dirs, files in os.walk('Download/'): for f in files: foo.write(os.path.join(root, f)) foo.close() my_list = ['ZachWieandResume.pdf'] download_clicked(my_list)
[ "zmwieand@gmail.com" ]
zmwieand@gmail.com
636eabbfe9b1909c7aaa44fde421170464adefb2
7cf04200a04a92a682f50bbd3866ec1e0052278b
/ddosdb/ddosdb/apps.py
d476e18379ef2a359e7ff3b1dafdf87d0542971c
[]
no_license
ddosgrid/ddosdb
ca2a75816eeb81e45f25a9ee2d1d2b81cd496271
8491535c245d56fcf770fc3d7689f2ae4bc14559
refs/heads/master
2023-02-21T07:42:48.986929
2021-01-21T14:09:22
2021-01-21T14:09:22
294,374,673
0
0
null
2020-09-10T10:14:37
2020-09-10T10:14:36
null
UTF-8
Python
false
false
87
py
from django.apps import AppConfig class DdosdbConfig(AppConfig): name = 'ddosdb'
[ "remco.poortinga@surfnet.nl" ]
remco.poortinga@surfnet.nl
f5db9f6c7200aa09c359fa4156c99124cbaf9b9a
a7e09640c081cf858f30c3cc3fe2d6ffc986eb7c
/gui/system/migrations/0008_auto_20170906_2335.py
ead8a168e06533db3ffd002005ee3b25fcc68f3b
[]
no_license
cbwest3/freenas
3fbeffe66c78a375843f138afd1ee306954a9c87
9947174014dd740145d540f03c1849a851f3b6e7
refs/heads/master
2021-04-30T13:59:53.975592
2018-02-12T05:25:55
2018-02-12T05:25:55
121,202,118
1
0
null
2018-02-12T05:01:39
2018-02-12T05:01:38
null
UTF-8
Python
false
false
869
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-09-06 23:35 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('system', '0007_auto_201708211858'), ] operations = [ migrations.AddField( model_name='certificate', name='cert_san', field=models.TextField(blank=True, help_text='Multi-domain support. Enter additional space separated domains', null=True, verbose_name='Subject Alternate Names'), ), migrations.AddField( model_name='certificateauthority', name='cert_san', field=models.TextField(blank=True, help_text='Multi-domain support. Enter additional space separated domains', null=True, verbose_name='Subject Alternate Names'), ), ]
[ "wg@FreeBSD.org" ]
wg@FreeBSD.org
9d2fa34a66d6dbc7159a496377e64a378cf8bf8a
ebd5c4632bb5f85c9e3311fd70f6f1bf92fae53f
/P.O.R.-master/pirates/npc/BossAI.py
20a0702863d316eba876ab90f147f6b3362cec96
[]
no_license
BrandonAlex/Pirates-Online-Retribution
7f881a64ec74e595aaf62e78a39375d2d51f4d2e
980b7448f798e255eecfb6bd2ebb67b299b27dd7
refs/heads/master
2020-04-02T14:22:28.626453
2018-10-24T15:33:17
2018-10-24T15:33:17
154,521,816
2
1
null
null
null
null
UTF-8
Python
false
false
568
py
from direct.distributed import DistributedObjectAI class BossAI(DistributedObjectAI.DistributedObjectAI): def ___init___(self, air): DistributedObjectAI.DistributedObjectAI.__init__(self, air) def announceGenerate(self): DistributedObjectAI.DistributedObjectAI.announceGenerate(self) def generate(self): DistributedObjectAI.DistributedObjectAI.generate(self) def delete(self): DistributedObjectAI.DistributedObjectAI.delete(self) def disable(self): DistributedObjectAI.DistributedObjectAI.disable(self)
[ "brandoncarden12345@gmail.com" ]
brandoncarden12345@gmail.com
f47be1e90574e504511a04096a3f2df63f0e990b
6f3899860af3546672092072e77401aa07eb78b7
/Week5 HW/Week5HW-synthetic3.py
dd50652fa984fd26929659f4ef588676d9811ec6
[]
no_license
winnie800821/EE559_Pattern_Recognition
2f0ad4d270ddf0cb01f401a857e6580868d44f6e
fc080c7a810a2bf6594be756957ec4843b09524a
refs/heads/master
2021-03-28T05:32:54.268336
2020-03-17T06:43:49
2020-03-17T06:43:49
247,841,953
0
0
null
null
null
null
UTF-8
Python
false
false
2,910
py
import numpy as np import matplotlib.pyplot as plt import math from scipy.spatial.distance import cdist np.set_printoptions(threshold=np.inf) import plotDecBoundaries_revised as pDBR feature_train = np.loadtxt(open("feature_train.csv"),delimiter=",") label_train = np.loadtxt(open("label_train.csv"),delimiter=",") training_data=np.zeros([label_train.shape[0],feature_train.shape[1]+1]) training_data[:,0:2]=feature_train[:,:] training_data[:,2]=label_train data_column=len(training_data[0]) data_row=len(training_data) training=np.zeros([data_row,data_column]) for i in range(len(training)): if training_data[i,2]==2: training[i,0] = (-1) training[i,1]=(-1)*training_data[i,0] training[i,2] = (-1) * training_data[i, 1] else: training[i, 0] = 1 training[i, 1] = training_data[i, 0] training[i, 2] = training_data[i, 1] np.random.shuffle(training) data_w=[0.1,0.1,0.1] data_k=[0.1,0.1,0.1] W_modifytimes=0 for epoch in range(1,10000): errorpoint = 0 for i in range(data_row): a=np.inner(data_k,training[i]) if a<0: errorpoint = errorpoint + 1 data_k[0]=data_k[0]+training[i][0] data_k[1] = data_k[1] + training[i][1] data_k[2] = data_k[2] + training[i][2] W_modifytimes = W_modifytimes + 1 data_w = np.insert(data_w, len(data_w), data_k, axis=0) if errorpoint==0: # print('epoch is',(epoch)) break if epoch==1000: # print('epoch is 1000', (epoch)) break size=len(data_w)/3 data_w=np.reshape(data_w,(int(size),3)) #print(data_w) #print(W_modifytimes) final_w=data_w[len(data_w)-1] print(final_w) err=0 for i in range(data_row): innervalue=np.inner(final_w,training[i]) if innervalue<0: err=err+1 errorrate=err/len(training) print("The error rate of of training data %.5f" % errorrate) label_train=training_data[:,2] pDBR.plotDecBoundaries_revised(training_data, label_train, final_w) ##############testing feature_test = np.loadtxt(open("feature_test.csv"),delimiter=",") label_test = np.loadtxt(open("label_test.csv"),delimiter=",") testing_data=np.zeros([len(label_test),1+len(feature_test[0])]) testing_data[:,0:2]=feature_test[:,:] testing_data[:,2]=label_test testing=np.zeros([len(testing_data),len(testing_data[0])]) for i in range(len(testing_data)): if testing_data[i,2]==2: testing[i,0] = -1 testing[i,1]=(-1)*testing_data[i,0] testing[i,2] = (-1) * testing_data[i,1] else: testing[i, 0] = 1 testing[i, 1] = testing_data[i, 0] testing[i, 2] = testing_data[i, 1] error_test=0 for i in range(len(testing_data)): test_inner=np.inner(final_w,testing[i]) if test_inner<0: error_test=error_test+1 errrate_test=error_test/len(testing) print("The error rate of testing data is %.5f" % errrate_test)
[ "60027808+winnie800821@users.noreply.github.com" ]
60027808+winnie800821@users.noreply.github.com
f07504b3b4c9717a85031b9b16b66da1b901b37c
309d452ec97f7003e2ef681bde102986c373ebaf
/djangoAdmin/asgi.py
59e54533ae58cfc71ac7cd20b79abb86954c498f
[]
no_license
CleytonCLois/APS-2020
b2c99488a8e2ddef35e32163fdeddb64b6c00450
479330a416798e8ca6158f055f59ecbdd46a96a2
refs/heads/master
2023-07-11T10:07:38.138180
2020-11-18T00:00:36
2020-11-18T00:00:36
265,688,681
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" ASGI config for djangoAdmin project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/dev/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djangoAdmin.settings') application = get_asgi_application()
[ "cleytonclois@gmail.com" ]
cleytonclois@gmail.com
c41d4a8545a558b242743537e1ac944437a90c6d
448a18bb54062a5e477f17adc3e2dbf7f5d19586
/preparation/get_density_map_gaussian.py
a122a91d4b95a63824a9e382f05cccc8cf12269a
[]
no_license
guoswang/Crowd-Counting
ae65e3f567e96ea7d31f9099e5ab757abee5b153
1c1e1b3f712039a7411dd405ff01c984cc9d5673
refs/heads/master
2020-04-16T13:29:45.938637
2018-09-25T14:52:33
2018-09-25T14:52:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,981
py
import numpy as np import math def matlab_style_gauss2D(shape=(3, 3), sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2. * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def get_density_map_gaussian(im, points): im_density = np.zeros(im.shape) [h, w] = im_density.shape for j in range(0, len(points)): f_sz = 15 sigma = 4.0 # H = matlab.fspecial('Gaussian', [f_sz, f_sz], sigma) H = matlab_style_gauss2D([f_sz, f_sz], sigma) x = min(w, max(1, abs(int(math.floor(points[j, 0]))))) y = min(h, max(1, abs(int(math.floor(points[j, 1]))))) if x > w or y > h: continue x1 = x - int(np.floor(f_sz / 2)) y1 = y - int(np.floor(f_sz / 2)) x2 = x + int(np.floor(f_sz / 2)) y2 = y + int(np.floor(f_sz / 2)) dfx1 = 0 dfy1 = 0 dfx2 = 0 dfy2 = 0 change_H = False if x1 < 1: dfx1 = abs(x1) + 1 x1 = 1 change_H = True if y1 < 1: dfy1 = abs(y1) + 1 y1 = 1 change_H = True if x2 > w: dfx2 = x2 - w x2 = w change_H = True if y2 > h: dfy2 = y2 - h y2 = h change_H = True x1h = 1 + dfx1 y1h = 1 + dfy1 x2h = f_sz - dfx2 y2h = f_sz - dfy2 if change_H: # H = matlab.fspecial('Gaussian', [double(y2h - y1h + 1), double(x2h - x1h + 1)], sigma) H = matlab_style_gauss2D([float(y2h - y1h + 1), float(x2h - x1h + 1)], sigma) im_density[y1-1: y2, x1-1: x2] = im_density[y1-1: y2, x1-1: x2] + H return im_density
[ "609012488@qq.com" ]
609012488@qq.com
cb860b9132b59035ea6c32bbac91d56cf9d58630
827e04177a3bec11aaa2a73eb124538e6712d7d8
/blog/migrations/0005_blogpost_views.py
3e51c827359ab40ec46b500b7538db4de86bd0f3
[]
no_license
iamajaykharat/TechnoWorld-Dynamic-Blog
de938f11925346c2047e3436ecd57522096758ae
d1dad8f7c451e7516b76cea3623b74dac87a70ac
refs/heads/master
2023-08-15T03:13:12.745049
2020-07-18T11:15:53
2020-07-18T11:15:53
280,628,874
0
0
null
2021-09-22T19:27:27
2020-07-18T10:00:52
HTML
UTF-8
Python
false
false
401
py
# Generated by Django 3.0.8 on 2020-07-18 09:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0004_blogcomment'), ] operations = [ migrations.AddField( model_name='blogpost', name='views', field=models.IntegerField(default=0, verbose_name='Post Views'), ), ]
[ "iamajaykharat@gmail.com" ]
iamajaykharat@gmail.com
d5d7b8d6c78ac89d67efcee7fda2c0c241f8e41c
9b0b746bffa1bc4b54ee46397d4ca837c0a62733
/SocialMedia Project/backends/apps/userprofile/migrations/0002_userprofile_bio.py
8605f48c0553749091fcf2da8045831155f47930
[]
no_license
indalyadav56/Django-React-Projects
548b1132f713b8466e6254a70c4c69ac8f6ad328
a01b7a770f77ddf804caf0ee78b50a6a38ace0ee
refs/heads/main
2023-06-23T06:26:28.399644
2021-07-09T23:23:15
2021-07-09T23:23:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
# Generated by Django 3.1 on 2021-05-23 11:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('userprofile', '0001_initial'), ] operations = [ migrations.AddField( model_name='userprofile', name='bio', field=models.TextField(blank=True, null=True), ), ]
[ "yadavindal269@gmail.com" ]
yadavindal269@gmail.com
f4b6d2cb02e5d3c46fa681499e99a27767d36b5e
7e24d101e793afa60cb4252f3b9bf8726c104a9c
/petaldata/datasets/stripe/reports/abstract_stripe_report.py
8bbc43f639030b11e5cbc35f9ccbe8208d974f47
[ "MIT" ]
permissive
petaldata/petaldata-python
42fbe496ee259a2ffd4f083f5d420f28be273e44
6d3b7bdc8f2d6f6ef86f7e61606ffebed168c81d
refs/heads/master
2020-05-16T14:34:28.724775
2019-06-06T22:47:49
2019-06-06T22:47:49
183,106,671
3
1
null
null
null
null
UTF-8
Python
false
false
3,209
py
import pandas as pd import datetime from datetime import datetime from datetime import date import pygsheets import petaldata from petaldata.datasets.stripe.reports import query_filters from petaldata.datasets.stripe.reports.adjusted_invoices import AdjustedInvoices class AbstractStripeReport(object): def __init__(self,invoices,tz='UTC',end_time=datetime.now().astimezone()): """ Parameters ---------- invoices : stripe.Invoice or stripe.reports.AdjustedInvoices tz : str The timezone all report data should be presented with. end_time: tz-aware datetime Returns ------- AbstractStripeReport """ self.df = invoices.df self.tz = tz if invoices.__class__.__name__ == 'Invoices': self.df = AdjustedInvoices(invoices,tz='UTC',end_time=datetime.now().astimezone()).df self._gsheet_client = None self.end_timestamp = self.setup_time(end_time,tz=tz) @staticmethod def strip_frame_tz(df): print("Stripping timezone from datetime columns.") df = df.copy() for col in df.columns: if 'datetime64' in str(df[col].dtype): df[col] = df[col].apply(lambda x:datetime.replace(x,tzinfo=None)) return df @staticmethod def setup_time(dt,tz=None): t=pd.Timestamp(dt) t=t.tz_convert(tz) return t @staticmethod def cents_to_dollars(df,cols=None): print("Converting cents to dollars. Cols=",cols) df[cols]=df[cols]/100 return df def gsheet_client(self,creds): if self._gsheet_client is None: self._gsheet_client = pygsheets.authorize(custom_credentials=creds.with_scopes(['https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive.metadata.readonly'])) return self._gsheet_client; def find_or_create_wks(self,sh,worksheet_title): try: wks = sh.worksheet_by_title(worksheet_title) print("\t...opening existing worksheet. title=",worksheet_title) except pygsheets.exceptions.WorksheetNotFound: print("\t...creating new worksheet. title=",worksheet_title) wks = sh.add_worksheet(worksheet_title) return wks def to_gsheet(self,creds,spreadsheet_title=None,worksheet_title=None): """ Parameters ---------- creds : google.oauth2.service_account.Credentials Google Authentication Credentials. spreadsheet_title : str The title of the Google spreadsheet to update. The spreadsheet must exist and the user associated with the creds must have read/write access to the sheet. worksheet_title: str The title of the worksheet to update (a worksheet is within a spreadsheet). The worksheet will be created if it doesn't exist. Returns ------- None """ frame = self.to_frame() print("Opening Google Sheet...title=",spreadsheet_title) # Must share sheet with "client_email" from JSON creds sh = self.gsheet_client(creds).open(spreadsheet_title) wks = self.find_or_create_wks(sh,worksheet_title) print("\t...updating worksheet") wks.clear() wks.set_dataframe(self.strip_frame_tz(frame),(1,1), copy_index=True, nan="") wks.cell('A1').value = frame.index.name print("\t...Done.")
[ "derek.haynes@gmail.com" ]
derek.haynes@gmail.com
dae4dad98f402fcd4f26493669a7c17624c0be8f
e7e4b4ee58aeb8d55ee4d301ff6debaaf6c1e3ff
/app/constansts.py
60726dba9c0dd5a19ed7d997680ee0426737782f
[]
no_license
eduna75/news-reader
ef724a25536902d56259806f42a9b2d7948550b6
d18775f52a6f6db8be1527a04c29f85ab2a90e67
refs/heads/master
2023-05-27T03:01:07.780629
2020-02-19T14:33:18
2020-02-19T14:33:18
30,923,274
0
0
null
2019-10-05T12:21:36
2015-02-17T15:33:43
HTML
UTF-8
Python
false
false
233
py
# User role ADMIN = 0 STAFF = 1 USER = 2 ROLE = { ADMIN: 'admin', STAFF: 'staff', USER: 'user', } # User status INACTIVE = 0 NEW = 1 ACTIVE = 2 STATUS = { INACTIVE: 'inactive', NEW: 'new', ACTIVE: 'active', }
[ "justus@justus.justus" ]
justus@justus.justus
2a63560da1481242bfff318fc858f7393a06df42
44080d747fd7454c11d575baaa4dcd17acc2b362
/gamelogic.py
9f18ae845471796a06a89c45078b8bb4589a2b0b
[]
no_license
oltyan/mathmagical
545fd38e552becc50067558dcaf0bb652c253fdb
73cc3869323d4914044098bfa918f03613eb0b0d
refs/heads/master
2021-09-02T06:21:43.263209
2017-12-31T01:01:44
2017-12-31T01:01:44
109,418,597
0
0
null
null
null
null
UTF-8
Python
false
false
1,759
py
import random def get_continue(hp,enemy_count): if hp > 0 and enemy_count > 0: return True else: return False def choose_difficulty(): print("Please Select a difficulty: \n" "1. Easy (5 mosters, 0-10 numbers\n" "2. Challenge (8 monsters, 0-20\n" "3. Brutal (10 monsters, 0-100\n") selection_made = False while selection_made == False: try: difficulty = input("Selection: ") if int(difficulty) not in [1, 2, 3]: raise Exception selection_made = True except Exception as e: print("Invalid Input") return difficulty def additions(difficulty): # Change parameters based on difficulty settings if int(difficulty) == 1: print("Difficulty set to Easy") max_int = 10 if int(difficulty) == 2: print("Difficulty set to Challenging") max_int = 20 if int(difficulty) == 3: print("Difficulty set to Brutal") max_int = 100 hp = 3 enemy_count = 5 repeat = True while repeat == True: a = random.randint(0, max_int) b = random.randint(0, max_int) problem_string = str(a) + " + " + str(b) + " = ???" print(problem_string) problem = a + b answer = input("Answer: ") if int(answer) == int(problem): print("Correct") enemy_count -= 1 else: print("Incorrect") hp -= 1 hp_remaining = "HP Remaining: " + str(hp) enemy_remaining = "Enemies Left: " +str(enemy_count) print(hp_remaining) print(enemy_remaining) repeat = get_continue(hp, enemy_count) def main(): additions(choose_difficulty())
[ "oltyan@gmail.com" ]
oltyan@gmail.com
06aaaeed472b7854be2301e974e4720c1124be28
ae0de2f4bc8e7436a4c6e789b6249fc51a9404d0
/Speaker_Verification/src/layers/batch_preprocess.py
16c0077eb3fcfa2ec82ff3d5c5d709a650256c1c
[ "MIT" ]
permissive
TaeYoon2/KerasSpeakerEmbedding
69e1046ea401c7813fd032b5bd0fc9f2700d4a3b
a4a53ac0c209a283cab4969d61305f056a99b6c3
refs/heads/master
2020-11-25T20:27:05.072887
2019-12-18T12:28:54
2019-12-18T12:28:54
228,831,223
5
0
null
null
null
null
UTF-8
Python
false
false
3,502
py
import tensorflow as tf class Batch_preprocess(tf.keras.layers.Layer): def __init__(self, sr, fft_hop, fft_window, nfft, nmel, mode, window, hop, **kwargs): self.sr = sr self.fft_hop = fft_hop / 1000 self.fft_window = fft_window / 1000 self.nfft = nfft self.nmel = nmel if mode == 'ms': # time in milisecond self.window = window / 1000 self.hop = hop / 1000 self.frame_per_win = int((self.window - self.fft_window)/self.fft_hop + 1) self.frame_per_hop = int((self.hop - self.fft_window)/self.fft_hop + 1) elif mode == 'frame': self.frame_per_win = self.window self.frame_per_hop = self.hop super(Batch_preprocess, self).__init__(**kwargs) def _mel(self, sig): ### batch mel extraction stfts = tf.signal.stft(sig, frame_length=int(self.fft_window * self.sr), frame_step=int(self.fft_hop * self.sr), fft_length=self.nfft) spectrograms = tf.abs(stfts) # Warp the linear scale spectrograms into the mel-scale. num_spectrogram_bins = stfts.shape[-1].value lower_edge_hertz, upper_edge_hertz = 80.0, 7600.0 linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix(self.nmel, num_spectrogram_bins, self.sr, lower_edge_hertz, upper_edge_hertz) mel_spectrograms = tf.tensordot(spectrograms, linear_to_mel_weight_matrix, 1) mel_spectrograms.set_shape(spectrograms.shape[:-1].concatenate(linear_to_mel_weight_matrix.shape[-1:])) log_mel_spectrograms = tf.math.log(mel_spectrograms + 1e-6) # [seq_length, num_mel] return log_mel_spectrograms def slice_bathces(self, list_mels): '''slice each mel of wavs and put them together''' # 자른 멜을 모을 리스트, 멜 사이즈 리스트 텐서 batch_mels = [] sizes_per_mel = None for list_mel in list_mels: lastidx = tf.shape(list_mel)[0] - self.frame_per_win + 1 batch_mel = tf.map_fn(lambda i: tf.slice(list_mel, begin=tf.pad([i], paddings=[[0,1]]),size=[self.frame_per_win, self.nmel],name="sliding_window"), tf.range(lastidx, delta=self.frame_per_hop), dtype=tf.float32) size_per_mel = tf.shape(batch_mel)[:1] if sizes_per_mel is None: sizes_per_mel = size_per_mel else: sizes_per_mel = tf.concat([sizes_per_mel, size_per_mel],axis=0) batch_mels.append(batch_mel) # 자른 멜을 합친다. long_batch = tf.concat(batch_mels,axis=0) return (long_batch, sizes_per_mel) def call(self, inputs): sig = tf.squeeze(inputs[0],axis=0) sig_lengths = tf.squeeze(inputs[1],axis=0) mel_lengths = tf.map_fn(lambda x : (tf.math.floordiv(tf.math.subtract(x, int(self.fft_window*self.sr)), int(self.fft_hop*self.sr)))+1, sig_lengths) ragged_wavs = tf.RaggedTensor.from_row_lengths(values=sig, row_lengths=sig_lengths) sparse_wavs = ragged_wavs.to_tensor(default_value=0) sparse_mels = self._mel(sparse_wavs) ragged_mels = tf.RaggedTensor.from_tensor(sparse_mels, lengths=mel_lengths) size_splits = ragged_mels.row_lengths() list_mels = tf.split(ragged_mels.flat_values, mel_lengths, axis=0, num=size_splits[0], name="list_mels") # 배치 멜 + 길이 정보 long_batch, sizes_per_mel = self.slice_bathces(list_mels) return (long_batch, sizes_per_mel)
[ "lty92@naver.com" ]
lty92@naver.com
1cb1a5a7d714a543f49ebabf54a2b5ea99009cc6
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/DFL260-MIB.py
125dad8d74ee966bee6ebfc13c5c740e0dec552b
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
96,348
py
# # PySNMP MIB module DFL260-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DFL260-MIB # Produced by pysmi-0.3.4 at Wed May 1 12:42:07 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint") ModuleCompliance, NotificationGroup, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "ObjectGroup") iso, Unsigned32, IpAddress, Integer32, TimeTicks, Counter64, enterprises, Counter32, ModuleIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity, Gauge32, MibIdentifier, NotificationType, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "iso", "Unsigned32", "IpAddress", "Integer32", "TimeTicks", "Counter64", "enterprises", "Counter32", "ModuleIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity", "Gauge32", "MibIdentifier", "NotificationType", "Bits") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") dfl260_MIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 1, 2)).setLabel("dfl260-MIB") dfl260_MIB.setRevisions(('2010-09-02 11:39', '2010-03-30 09:00', '2009-11-10 09:16', '2008-11-18 16:05', '2008-10-14 12:27', '2007-10-31 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: dfl260_MIB.setRevisionsDescriptions(('Added 64-bit counters', 'Added values for SMTP ALG objects.', 'Added values for opened and closed connections per second', 'Added value for timer usage', 'Added values for memory usage and TCP buffer usage', 'Initial version.',)) if mibBuilder.loadTexts: dfl260_MIB.setLastUpdated('201009021139Z') if mibBuilder.loadTexts: dfl260_MIB.setOrganization('D-Link Corporation') if mibBuilder.loadTexts: dfl260_MIB.setContactInfo('Postal: D-Link Corporation No. 289, Sinhu 3rd Road, Neihu District, Taipei City 114, Taiwan, R.O.C. Tel: +886-2-66000123 Fax: +886-2-55509988') if mibBuilder.loadTexts: dfl260_MIB.setDescription('The MIB module for D-Link DFL-260 series product.') dlink = MibIdentifier((1, 3, 6, 1, 4, 1, 171)) netdefendMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20)) utmFirewall = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2)) dfl260 = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1)) dfl260OS = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1)) dfl260OSStats = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2)) dfl260reg = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2)) dfl260MibModules = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 1)) dfl260MibConfs = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 2)) dfl260MibObjectGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3)) dfl260System = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1)) dfl260SysCpuLoad = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysCpuLoad.setStatus('current') if mibBuilder.loadTexts: dfl260SysCpuLoad.setDescription('The system cpu load.') dfl260SysForwardedBits = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysForwardedBits.setStatus('current') if mibBuilder.loadTexts: dfl260SysForwardedBits.setDescription('The number of bits forwarded through the gateway.') dfl260SysForwardedPackets = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysForwardedPackets.setStatus('current') if mibBuilder.loadTexts: dfl260SysForwardedPackets.setDescription('Total number of forwarded packets.') dfl260SysBuffUse = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysBuffUse.setStatus('current') if mibBuilder.loadTexts: dfl260SysBuffUse.setDescription('The current number of buffers in use.') dfl260SysConns = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysConns.setStatus('current') if mibBuilder.loadTexts: dfl260SysConns.setDescription('The numer of connections.') dfl260SysPerStateCounters = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6)) dfl260SysPscTcpSyn = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysPscTcpSyn.setStatus('current') if mibBuilder.loadTexts: dfl260SysPscTcpSyn.setDescription('Number of TCP connections in the SYN state.') dfl260SysPscTcpOpen = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysPscTcpOpen.setStatus('current') if mibBuilder.loadTexts: dfl260SysPscTcpOpen.setDescription('Number of TCP connections in the OPEN state.') dfl260SysPscTcpFin = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysPscTcpFin.setStatus('current') if mibBuilder.loadTexts: dfl260SysPscTcpFin.setDescription('Number of TCP connections in the FIN state.') dfl260SysPscUdp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysPscUdp.setStatus('current') if mibBuilder.loadTexts: dfl260SysPscUdp.setDescription('Number of UDP connections.') dfl260SysPscIcmp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysPscIcmp.setStatus('current') if mibBuilder.loadTexts: dfl260SysPscIcmp.setDescription('Number of ICMP connections.') dfl260SysPscOther = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 6, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysPscOther.setStatus('current') if mibBuilder.loadTexts: dfl260SysPscOther.setDescription('Number of other connections.') dfl260IfStatsTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7), ) if mibBuilder.loadTexts: dfl260IfStatsTable.setStatus('current') if mibBuilder.loadTexts: dfl260IfStatsTable.setDescription('A table of DFL-260 specific interfaces statistics') dfl260IfStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260IfStatsIndex")) if mibBuilder.loadTexts: dfl260IfStatsEntry.setStatus('current') if mibBuilder.loadTexts: dfl260IfStatsEntry.setDescription('The row in a table of DFL-260 specific interface statistics') dfl260IfStatsIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260IfStatsIndex.setStatus('current') if mibBuilder.loadTexts: dfl260IfStatsIndex.setDescription('Index of a row in dfl260SysIfStatsTable') dfl260IfName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfName.setStatus('current') if mibBuilder.loadTexts: dfl260IfName.setDescription('The name of the interface.') dfl260IfFragsIn = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfFragsIn.setStatus('current') if mibBuilder.loadTexts: dfl260IfFragsIn.setDescription('Number of IP packet fragments received in the interface.') dfl260IfFragReassOk = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfFragReassOk.setStatus('current') if mibBuilder.loadTexts: dfl260IfFragReassOk.setDescription('Number of complete IP packets successfully reassembled from the fragments received in the interface.') dfl260IfFragReassFail = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfFragReassFail.setStatus('current') if mibBuilder.loadTexts: dfl260IfFragReassFail.setDescription('Number of packets that could not be reassembled, either due to resource starvation, illegal fragmentation, or just packet loss.') dfl260IfPktsInCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfPktsInCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfPktsInCnt.setDescription('Number of packets received by the interface.') dfl260IfPktsOutCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfPktsOutCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfPktsOutCnt.setDescription('Number of packets sent by the interface') dfl260IfBitsInCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfBitsInCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfBitsInCnt.setDescription('Number of bits received by the interface') dfl260IfBitsOutCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfBitsOutCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfBitsOutCnt.setDescription('Number of bits sent by the interface') dfl260IfPktsTotCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfPktsTotCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfPktsTotCnt.setDescription('Totat number of packets transmited by the interface') dfl260IfBitsTotCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfBitsTotCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfBitsTotCnt.setDescription('Totat number of bits transmited by the interface') dfl260IfHCPktsInCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfHCPktsInCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfHCPktsInCnt.setDescription('Number of packets received by the interface. This object is a 64-bit version of dfl260IfPktsInCnt.') dfl260IfHCPktsOutCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfHCPktsOutCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfHCPktsOutCnt.setDescription('Number of packets sent by the interface. This object is a 64-bit version of dfl260IfPktsOutCnt.') dfl260IfHCBitsInCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 14), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfHCBitsInCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfHCBitsInCnt.setDescription('Number of bits received by the interface. This object is a 64-bit version of dfl260IfBitsInCnt.') dfl260IfHCBitsOutCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 15), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfHCBitsOutCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfHCBitsOutCnt.setDescription('Number of bits sent by the interface. This object is a 64-bit version of dfl260IfBitsOutCnt.') dfl260IfHCPktsTotCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 16), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfHCPktsTotCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfHCPktsTotCnt.setDescription('Totat number of packets transmited by the interface. This object is a 64-bit version of dfl260IfPktsTotCnt.') dfl260IfHCBitsTotCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 7, 1, 17), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfHCBitsTotCnt.setStatus('current') if mibBuilder.loadTexts: dfl260IfHCBitsTotCnt.setDescription('Totat number of bits transmited by the interface. This object is a 64-bit version of dfl260IfBitsTotCnt.') dfl260IfRxRingTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8), ) if mibBuilder.loadTexts: dfl260IfRxRingTable.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxRingTable.setDescription('A table of DFL-260 specific interface Rx ring statistics') dfl260IfRxRingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260IfRxRingIndex")) if mibBuilder.loadTexts: dfl260IfRxRingEntry.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxRingEntry.setDescription('The row in a table of DFL-260 specific interface Rx ring statistics.') dfl260IfRxRingIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260IfRxRingIndex.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxRingIndex.setDescription('Index of a row in dfl260IfRxRingTable.') dfl260IfRxRingFifoErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfRxRingFifoErrors.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxRingFifoErrors.setDescription('Rx Ring number of FIFO errors.') dfl260IfRxDespools = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfRxDespools.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxDespools.setDescription('Number of despool events per second.') dfl260IfRxAvgUse = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfRxAvgUse.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxAvgUse.setDescription('Rx Ring average usage.') dfl260IfRxRingSaturation = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfRxRingSaturation.setStatus('current') if mibBuilder.loadTexts: dfl260IfRxRingSaturation.setDescription('Rx Ring sturation. Percentage of ring use per despool event when the ring has been more than half full.') dfl260RxRingFlooded = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 8, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260RxRingFlooded.setStatus('current') if mibBuilder.loadTexts: dfl260RxRingFlooded.setDescription('Rx Ring number of despool events for which the ring has been completely flooded') dfl260IfTxRingTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9), ) if mibBuilder.loadTexts: dfl260IfTxRingTable.setStatus('current') if mibBuilder.loadTexts: dfl260IfTxRingTable.setDescription('A table of DFL-260 specific interface Tx ring statistics') dfl260IfTxRingEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260IfTxRingIndex")) if mibBuilder.loadTexts: dfl260IfTxRingEntry.setStatus('current') if mibBuilder.loadTexts: dfl260IfTxRingEntry.setDescription('The row in a table of DFL-260 specific interface Tx ring statistics.') dfl260IfTxRingIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260IfTxRingIndex.setStatus('current') if mibBuilder.loadTexts: dfl260IfTxRingIndex.setDescription('Index of a row in dfl260IfRxRingTable.') dfl260IfTxDespools = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9, 1, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfTxDespools.setStatus('current') if mibBuilder.loadTexts: dfl260IfTxDespools.setDescription('Tx Ring number of despool event per second (polls when there is at least one buffer in the ring)') dfl260IfTxAvgUse = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfTxAvgUse.setStatus('current') if mibBuilder.loadTexts: dfl260IfTxAvgUse.setDescription('Tx Ring number of despool events when the ring has been completely flooded') dfl260IfTxRingSaturation = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfTxRingSaturation.setStatus('current') if mibBuilder.loadTexts: dfl260IfTxRingSaturation.setDescription('Tx Ring percentage of use per despool event when the ring has been more than half full.') dfl260RxTingFlooded = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 9, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260RxTingFlooded.setStatus('current') if mibBuilder.loadTexts: dfl260RxTingFlooded.setDescription('Tx Ring number of despool events for in which the ring has been completely flooded') dfl260IfVlanStatsTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10), ) if mibBuilder.loadTexts: dfl260IfVlanStatsTable.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanStatsTable.setDescription('A table of DFL-260 VLAN statistics') dfl260IfVlanStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260IfVlanIndex")) if mibBuilder.loadTexts: dfl260IfVlanStatsEntry.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanStatsEntry.setDescription('The row in a table of dfl260IfVlanStatsTable. Each has an index equal to the ifIndex of the corresponding physical interface') dfl260IfVlanIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260IfVlanIndex.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanIndex.setDescription('Extended index of a row in dfl260IfVlanStatsTable.') dfl260IfVlanUntaggedInPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfVlanUntaggedInPkts.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanUntaggedInPkts.setDescription('Number of untaged packets untagged packets received by the interface.') dfl260IfVlanUntaggedOutPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfVlanUntaggedOutPkts.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanUntaggedOutPkts.setDescription('Number of untagged packets sent by the interface.') dfl260IfVlanUntaggedTotPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfVlanUntaggedTotPkts.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanUntaggedTotPkts.setDescription('Total number of untagged packets processed by the interface.') dfl260IfVlanUntaggedInOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfVlanUntaggedInOctets.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanUntaggedInOctets.setDescription('Total number of octects in untagged packets received by the interface.') dfl260IfVlanUntaggedOutOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfVlanUntaggedOutOctets.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanUntaggedOutOctets.setDescription('Total number of octects in untagged packets sent by the interface.') dfl260IfVlanUntaggedTotOctets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 10, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IfVlanUntaggedTotOctets.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanUntaggedTotOctets.setDescription('Total number of octects in untagged packets processed by the interface.') dfl260HWSensorTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 11), ) if mibBuilder.loadTexts: dfl260HWSensorTable.setStatus('current') if mibBuilder.loadTexts: dfl260HWSensorTable.setDescription('Table of hardware sensors.') dfl260HWSensorEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 11, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260HWSensorIndex")) if mibBuilder.loadTexts: dfl260HWSensorEntry.setStatus('current') if mibBuilder.loadTexts: dfl260HWSensorEntry.setDescription('Entry of table of hardware sensors.') dfl260HWSensorIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 11, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260HWSensorIndex.setStatus('current') if mibBuilder.loadTexts: dfl260HWSensorIndex.setDescription('Index of the entries of the sensor table.') dfl260HWSensorName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 11, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HWSensorName.setStatus('current') if mibBuilder.loadTexts: dfl260HWSensorName.setDescription('The description of the sensor.') dfl260HWSensorValue = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 11, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HWSensorValue.setStatus('current') if mibBuilder.loadTexts: dfl260HWSensorValue.setDescription('The value of the sensor.') dfl260HWSensorUnit = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 11, 1, 4), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HWSensorUnit.setStatus('current') if mibBuilder.loadTexts: dfl260HWSensorUnit.setDescription('The description of the unit of the value mesured by sensor.') dfl260SysMemUsage = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 12), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysMemUsage.setStatus('current') if mibBuilder.loadTexts: dfl260SysMemUsage.setDescription('The current memory usage.') dfl260SysTCPUsage = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 13)) dfl260SysTCPRecvSmall = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 13, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysTCPRecvSmall.setStatus('current') if mibBuilder.loadTexts: dfl260SysTCPRecvSmall.setDescription('Small TCP receive windows usage.') dfl260SysTCPRecvLarge = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 13, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysTCPRecvLarge.setStatus('current') if mibBuilder.loadTexts: dfl260SysTCPRecvLarge.setDescription('Large TCP receive windows usage.') dfl260SysTCPSendSmall = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 13, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysTCPSendSmall.setStatus('current') if mibBuilder.loadTexts: dfl260SysTCPSendSmall.setDescription('Small TCP send windows usage.') dfl260SysTCPSendLarge = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 13, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysTCPSendLarge.setStatus('current') if mibBuilder.loadTexts: dfl260SysTCPSendLarge.setDescription('Large TCP send windows usage.') dfl260SysTimerUsage = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 14), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysTimerUsage.setStatus('current') if mibBuilder.loadTexts: dfl260SysTimerUsage.setDescription('The current number of timers in use.') dfl260SysConnOPS = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 15), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysConnOPS.setStatus('current') if mibBuilder.loadTexts: dfl260SysConnOPS.setDescription('The number of connections opened per second.') dfl260SysConnCPS = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 16), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysConnCPS.setStatus('current') if mibBuilder.loadTexts: dfl260SysConnCPS.setDescription('The number of connections closed per second.') dfl260SysHCForwardedBits = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 1, 17), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SysHCForwardedBits.setStatus('current') if mibBuilder.loadTexts: dfl260SysHCForwardedBits.setDescription('The number of bits forwarded through the gateway.') dfl260VPN = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2)) dfl260IPsec = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1)) dfl260IPsecGlobal = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1)) dfl260IPsecPhaseOneActive = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecPhaseOneActive.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecPhaseOneActive.setDescription('Number of Phase-1 active negotiations') dfl260IPsecPhaseOneAggrModeDone = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecPhaseOneAggrModeDone.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecPhaseOneAggrModeDone.setDescription('Number of Phase-1 aggressive mode negotiations.') dfl260IPsecQuickModeActive = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecQuickModeActive.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecQuickModeActive.setDescription('Number of quick mode active negotiations.') dfl260IPsecPhaseOneDone = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecPhaseOneDone.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecPhaseOneDone.setDescription('Number of Phase-1 negotiations done.') dfl260IPsecPhaseOneFailed = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecPhaseOneFailed.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecPhaseOneFailed.setDescription('Number of Phase-1 negotiations failed.') dfl260IPsecPhaseOneRekeyed = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecPhaseOneRekeyed.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecPhaseOneRekeyed.setDescription('Number of Phase-1 negotiations rekeyed.') dfl260IPsecQuickModeDone = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecQuickModeDone.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecQuickModeDone.setDescription('Number of quick mode negotiations done.') dfl260IPsecQuickModeFailed = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecQuickModeFailed.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecQuickModeFailed.setDescription('Number of quick mode negotiations failed.') dfl260IPsecInfoDone = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecInfoDone.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecInfoDone.setDescription('Number of informational exchanges done. (Not available in IKEv1 implementations)') dfl260IPsecInfoFailed = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecInfoFailed.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecInfoFailed.setDescription('Number of informational exchanges failed. (Not available in IKEv1 implementations)') dfl260IPsecInOctetsComp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 11), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecInOctetsComp.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecInOctetsComp.setDescription('Total octets in before decompression.') dfl260IPsecInOctetsUncomp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 12), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecInOctetsUncomp.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecInOctetsUncomp.setDescription('Total octets in after decompression.') dfl260IPsecOutOctetsComp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 13), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecOutOctetsComp.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecOutOctetsComp.setDescription('Total octets out after compression.') dfl260IPsecOutOctetsUncomp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 14), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecOutOctetsUncomp.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecOutOctetsUncomp.setDescription('Total octets out before compression.') dfl260IPsecForwardedOctetsComp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 15), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecForwardedOctetsComp.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecForwardedOctetsComp.setDescription('Total octets forwarded after compression.') dfl260IPsecForwardedOctetsUcomp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 16), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecForwardedOctetsUcomp.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecForwardedOctetsUcomp.setDescription('Total octets forwarded before compression.') dfl260IPsecInPackets = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 17), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecInPackets.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecInPackets.setDescription('Total packets in.') dfl260IPsecOutPackets = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 18), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecOutPackets.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecOutPackets.setDescription('Total packets Out.') dfl260IPsecForwardedPackets = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 19), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecForwardedPackets.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecForwardedPackets.setDescription('Total packets forwarded.') dfl260IPsecActiveTransforms = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 20), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecActiveTransforms.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecActiveTransforms.setDescription('Number of currently active transforms.') dfl260IPsecTotalTransforms = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 21), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecTotalTransforms.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecTotalTransforms.setDescription('Total number of transform records created.') dfl260IPsecOutOfTransforms = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 22), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecOutOfTransforms.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecOutOfTransforms.setDescription('Number of packets dropped due to no available transform object. (Not available in IKEv1 implementations)') dfl260IPsecTotalRekeys = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 2, 1, 1, 23), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPsecTotalRekeys.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecTotalRekeys.setDescription('Total number of rekeys performed.') dfl260Rules = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 3)) dfl260RuleUseTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 3, 2), ) if mibBuilder.loadTexts: dfl260RuleUseTable.setStatus('current') if mibBuilder.loadTexts: dfl260RuleUseTable.setDescription('A list of general rules usage statistics.') dfl260RuleUseEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 3, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260RuleIndex")) if mibBuilder.loadTexts: dfl260RuleUseEntry.setStatus('current') if mibBuilder.loadTexts: dfl260RuleUseEntry.setDescription('The statistics over a rule usage.') dfl260RuleIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 3, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260RuleIndex.setStatus('current') if mibBuilder.loadTexts: dfl260RuleIndex.setDescription('The rule usage index.') dfl260RuleName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 3, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260RuleName.setStatus('current') if mibBuilder.loadTexts: dfl260RuleName.setDescription('The name of the rule.') dfl260RuleUse = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 3, 2, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260RuleUse.setStatus('current') if mibBuilder.loadTexts: dfl260RuleUse.setDescription('The number of times o rule was used.') dfl260IPPools = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4)) dfl260IPPoolsNumber = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolsNumber.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolsNumber.setDescription('The number of ip pools') dfl260IPPoolTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2), ) if mibBuilder.loadTexts: dfl260IPPoolTable.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolTable.setDescription('A list of IP pools') dfl260IPPoolEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260IPPoolIndex")) if mibBuilder.loadTexts: dfl260IPPoolEntry.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolEntry.setDescription('The attributes of an ip pool') dfl260IPPoolIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260IPPoolIndex.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolIndex.setDescription('The ip pool index') dfl260IPPoolName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolName.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolName.setDescription('The ip pool name') dfl260IPPoolPrepare = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolPrepare.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolPrepare.setDescription('Number of IP pool objects in prepare mode.') dfl260IPPoolFree = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolFree.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolFree.setDescription('Number of available IPs in the pool.') dfl260IPPoolMisses = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolMisses.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolMisses.setDescription('Mumber of missed IP pool negotiations for other reasons than lack of available IP numbers.') dfl260IPPoolClientFails = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolClientFails.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolClientFails.setDescription('Number of failed IP pool transactions.') dfl260IPPoolUsed = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 4, 2, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260IPPoolUsed.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolUsed.setDescription('Number of IP numbers in use from the pool.') dfl260DHCPServer = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5)) dfl260DHCPTotalRejected = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPTotalRejected.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPTotalRejected.setDescription('Total number of rejected packets (all rules).') dfl260DHCPRuleTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2), ) if mibBuilder.loadTexts: dfl260DHCPRuleTable.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRuleTable.setDescription('A list of all DHCP server rules usage statistics.') dfl260DHCPRuleEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260DHCPRuleIndex")) if mibBuilder.loadTexts: dfl260DHCPRuleEntry.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRuleEntry.setDescription('The attributes of a DHCP server rule statistics.') dfl260DHCPRuleIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260DHCPRuleIndex.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRuleIndex.setDescription('The DHCP server rule index') dfl260DHCPRuleName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRuleName.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRuleName.setDescription('The DHCP server rule name.') dfl260DHCPRuleUsage = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRuleUsage.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRuleUsage.setDescription('Number of used IPs in the pool.') dfl260DHCPRuleUsagePercent = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRuleUsagePercent.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRuleUsagePercent.setDescription('The percentage of the used IPs in relation to the IP pool size.') dfl260DHCPActiveClients = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPActiveClients.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPActiveClients.setDescription('Number of currently active clients.') dfl260DHCPActiveClientsPercent = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPActiveClientsPercent.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPActiveClientsPercent.setDescription('The number of currently active clients as a percentage of the pool size.') dfl260DHCPRejectedRequests = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRejectedRequests.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRejectedRequests.setDescription('Number of rejected requests matching the current rule.') dfl260DHCPTotalLeases = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 5, 2, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPTotalLeases.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPTotalLeases.setDescription('Total number of leases in the pool.') dfl260UserAuth = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6)) dfl260UserAuthHTTPUsers = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthHTTPUsers.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthHTTPUsers.setDescription('Number of currently logged in HTTP users.') dfl260UserAuthXAUTHUsers = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthXAUTHUsers.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthXAUTHUsers.setDescription('Number of currently logged in XAUTH users.') dfl260UserAuthHTTPSUsers = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthHTTPSUsers.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthHTTPSUsers.setDescription('Number of currently logged in HTTPS users.') dfl260UserAuthPPPUsers = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthPPPUsers.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthPPPUsers.setDescription('Number of currently logged in PPP users.') dfl260UserAuthEAPUsers = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthEAPUsers.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthEAPUsers.setDescription('Number of currently logged in EAP users.') dfl260UserAuthRuleUseTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 6), ) if mibBuilder.loadTexts: dfl260UserAuthRuleUseTable.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthRuleUseTable.setDescription('Table of user authentication rule usage.') dfl260UserAuthRuleUseEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 6, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260UserAuthRuleIndex")) if mibBuilder.loadTexts: dfl260UserAuthRuleUseEntry.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthRuleUseEntry.setDescription('The attributes of an authentication rule usage statistics.') dfl260UserAuthRuleIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 6, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260UserAuthRuleIndex.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthRuleIndex.setDescription('The rule usage index.') dfl260UserAuthRuleName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 6, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthRuleName.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthRuleName.setDescription('The name of the rule.') dfl260UserAuthRuleUse = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 6, 6, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260UserAuthRuleUse.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthRuleUse.setDescription('The number of times o rule was used.') dfl260LinkMonitor = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7)) dfl260LinkMonGrp = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260LinkMonGrp.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonGrp.setDescription('The number of groups of monitored links') dfl260LinkMonGrpTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 2), ) if mibBuilder.loadTexts: dfl260LinkMonGrpTable.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonGrpTable.setDescription('Table of link monitor groups.') dfl260LinkMonGrpEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260LinkMonGrpIndex")) if mibBuilder.loadTexts: dfl260LinkMonGrpEntry.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonGrpEntry.setDescription('The attributes of a link monitor group') dfl260LinkMonGrpIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260LinkMonGrpIndex.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonGrpIndex.setDescription('The index row in the table of link monitor groups.') dfl260LinkMonGrpName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260LinkMonGrpName.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonGrpName.setDescription('The link monitor group name.') dfl260LinkMonGrpHostsUp = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 2, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260LinkMonGrpHostsUp.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonGrpHostsUp.setDescription('The percentage of monitored hosts available.') dfl260LinkMonHostTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 3), ) if mibBuilder.loadTexts: dfl260LinkMonHostTable.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonHostTable.setDescription('Table of link monitored hosts in a link monnitor group.') dfl260LinkMonHostEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 3, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260LinkMonGrpIndex"), (0, "DFL260-MIB", "dfl260LinkMonHostIndex")) if mibBuilder.loadTexts: dfl260LinkMonHostEntry.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonHostEntry.setDescription('The attributes of a monitored host.') dfl260LinkMonHostIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 3, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260LinkMonHostIndex.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonHostIndex.setDescription('The index an host in the table of link monitor hosts.') dfl260LinkMonHostId = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 3, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260LinkMonHostId.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonHostId.setDescription('The monitored host identifier.') dfl260LinkMonHostShortTermLoss = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 3, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260LinkMonHostShortTermLoss.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonHostShortTermLoss.setDescription('The percentage of short term losst packets.') dfl260LinkMonHostPacketsLost = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 7, 3, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260LinkMonHostPacketsLost.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonHostPacketsLost.setDescription('Total number of lost monitoring packets.') dfl260Pipes = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8)) dfl260PipeUsers = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeUsers.setStatus('current') if mibBuilder.loadTexts: dfl260PipeUsers.setDescription('The current number of users, as defined by the grouping settings of each pipe, being tracked in the pipes system. Note that this value corresponds to the number of users active in each time slice of 1/20th of a second, and not to the number of users having open connections.') dfl260PipeTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2), ) if mibBuilder.loadTexts: dfl260PipeTable.setStatus('current') if mibBuilder.loadTexts: dfl260PipeTable.setDescription('Table of pipes') dfl260PipeEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260PipeIndex")) if mibBuilder.loadTexts: dfl260PipeEntry.setStatus('current') if mibBuilder.loadTexts: dfl260PipeEntry.setDescription('A entry of the pipes table') dfl260PipeIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260PipeIndex.setStatus('current') if mibBuilder.loadTexts: dfl260PipeIndex.setDescription('The pipe index') dfl260PipeName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeName.setStatus('current') if mibBuilder.loadTexts: dfl260PipeName.setDescription('The name of the pipe') dfl260PipeMinPrec = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeMinPrec.setStatus('current') if mibBuilder.loadTexts: dfl260PipeMinPrec.setDescription('The minimum of the range of pipe precedences.') dfl260PipeMaxPrec = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeMaxPrec.setStatus('current') if mibBuilder.loadTexts: dfl260PipeMaxPrec.setDescription('The maximum of the range of pipe precedences.') dfl260PipeDefPrec = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeDefPrec.setStatus('current') if mibBuilder.loadTexts: dfl260PipeDefPrec.setDescription('The precedence assigned to a packet for which has not one allready done by a Pipe Rule.') dfl260PipeNumPrec = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeNumPrec.setStatus('current') if mibBuilder.loadTexts: dfl260PipeNumPrec.setDescription('The number of pipe precedences') dfl260PipeNumUsers = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeNumUsers.setStatus('current') if mibBuilder.loadTexts: dfl260PipeNumUsers.setDescription('The current number of users, as defined by the grouping settings of each pipe, being tracked in the pipes system. This value corresponds to the number of users active in each time slice and not to the number of users having open connections.') dfl260PipeCurrentBps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeCurrentBps.setStatus('current') if mibBuilder.loadTexts: dfl260PipeCurrentBps.setDescription('The current throughput of a pipe, in bits per second, as a sum of the corresponding values for all precedences.') dfl260PipeCurrentPps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeCurrentPps.setStatus('current') if mibBuilder.loadTexts: dfl260PipeCurrentPps.setDescription('The current throughput of a pipe, in packets per second, as a sum of the corresponding values for all precedences.') dfl260PipeDelayedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeDelayedPackets.setStatus('current') if mibBuilder.loadTexts: dfl260PipeDelayedPackets.setDescription('The number of times packets have been delayed as a result of a pipe, or pipe user having used up its allotted bandwidth. Note that one single packet may be delayed several times; if a pipe is really full, this count may exceed the number of packets actually passing through the pipe.') dfl260PipeDropedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 2, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipeDropedPackets.setStatus('current') if mibBuilder.loadTexts: dfl260PipeDropedPackets.setDescription('The number of packets dropped by a pipe. Packets are dropped when CorePlus is running out of packet buffers. This occurs when excessive amounts of packets need to be queued for later delivery. The packet dropped is always the one that has been queued the longest time globally, which means that the connection suffering from packet loss will be the one most overloading the system.') dfl260PipePrecTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3), ) if mibBuilder.loadTexts: dfl260PipePrecTable.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecTable.setDescription('There is a one to many relation between a pipe and its precedences. The number of precedences is a instance attribute of each pipe. This table extends the pipes table in order to express the relation between a pipe and the respective precedences.') dfl260PipePrecEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260PipeIndex"), (0, "DFL260-MIB", "dfl260PipePrecIndex")) if mibBuilder.loadTexts: dfl260PipePrecEntry.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecEntry.setDescription('An entry of the table of pipe pecedences. These table entries are chracterized by been indexed by two values. The first index the same as the pipe index of the corresponding row in table of pipes and the second index is the index of the set of precedences of the corresponding pipe.') dfl260PipePrecIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260PipePrecIndex.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecIndex.setDescription('Index of a precedence of a specific pipe. This is the second index of the entries of pipe precedence table described by object dfl260PipePrecEntry.') dfl260PipePrec = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrec.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrec.setDescription('The precedence value') dfl260PipePrecBps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecBps.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecBps.setDescription('The current throughput of the pipe, in bits per second, with the corresponding precedence.') dfl260PipePrecTotalPps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecTotalPps.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecTotalPps.setDescription('The current throughput of the pipe precedence, in packets per second.') dfl260PipePrecReservedBps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecReservedBps.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecReservedBps.setDescription('The current bandwidth allocated to the precedence.') dfl260PipePrecDynLimBps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecDynLimBps.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecDynLimBps.setDescription('The current bandwidth limit limit applied the precedence.') dfl260PipePrecDynUsrLimBps = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecDynUsrLimBps.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecDynUsrLimBps.setDescription('The current precedence bandwidth limit per user of the pipe.') dfl260PipePrecDelayedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecDelayedPackets.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecDelayedPackets.setDescription('The number of times packets have been delayed as a result of a precedence, or pipe user having used up its allotted bandwidth. Note that one single packet may be delayed several times; if a pipe is really full, this count may exceed the number of packets of this precedence actually passing through the pipe.') dfl260PipePrecDropedPackets = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 8, 3, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260PipePrecDropedPackets.setStatus('current') if mibBuilder.loadTexts: dfl260PipePrecDropedPackets.setDescription('The number of pipe dropped packets with the corresponding precedence.') dfl260ALG = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9)) dfl260AlgSessions = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260AlgSessions.setStatus('current') if mibBuilder.loadTexts: dfl260AlgSessions.setDescription('Total ALG sessions') dfl260AlgConnections = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260AlgConnections.setStatus('current') if mibBuilder.loadTexts: dfl260AlgConnections.setDescription('Total ALG connections') dfl260AlgTCPStreams = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260AlgTCPStreams.setStatus('current') if mibBuilder.loadTexts: dfl260AlgTCPStreams.setDescription('Total ALG TCP streams') dfl260HttpAlg = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4)) dfl260HttpAlgTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1), ) if mibBuilder.loadTexts: dfl260HttpAlgTable.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgTable.setDescription('Table of HTTP ALG objects.') dfl260HttpAlgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260HttpAlgIndex")) if mibBuilder.loadTexts: dfl260HttpAlgEntry.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgEntry.setDescription('A row of the table of HTTP ALG objects.') dfl260HttpAlgIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260HttpAlgIndex.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgIndex.setDescription('The index of an entry of the Table of HTTP ALG objects.') dfl260HttpAlgName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgName.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgName.setDescription('The name of an HTTP ALG object.') dfl260HttpAlgTotalRequested = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgTotalRequested.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgTotalRequested.setDescription('Total number of URL requests.') dfl260HttpAlgTotalAllowed = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgTotalAllowed.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgTotalAllowed.setDescription('Total number of allowed URL requests.') dfl260HttpAlgTotalBlocked = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 1, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgTotalBlocked.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgTotalBlocked.setDescription('Total number of blocked URL requests.') dfl260HttpAlgCntFltTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2), ) if mibBuilder.loadTexts: dfl260HttpAlgCntFltTable.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltTable.setDescription('Table of HTTP ALG content filtering rules.') dfl260HttpAlgCntFltEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260HttpAlgIndex"), (0, "DFL260-MIB", "dfl260HttpAlgCntFltIndex")) if mibBuilder.loadTexts: dfl260HttpAlgCntFltEntry.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltEntry.setDescription('Entry of the table of HTTP ALG content filtering rules.') dfl260HttpAlgCntFltIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260HttpAlgCntFltIndex.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltIndex.setDescription('The index of an entry of the Table of HTTP ALG content filtering objects.') dfl260HttpAlgCntFltName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgCntFltName.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltName.setDescription('The name of the a HTTP ALG content fitering.') dfl260HttpAlgCntFltRequests = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgCntFltRequests.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltRequests.setDescription('Total number of URLs intercepted by a content filtering object.') dfl260HttpAlgCntFltAllowed = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgCntFltAllowed.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltAllowed.setDescription('Total number of URLs intercepted and allowed by a content filtering object.') dfl260HttpAlgCntFltBlocked = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 4, 2, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HttpAlgCntFltBlocked.setStatus('current') if mibBuilder.loadTexts: dfl260HttpAlgCntFltBlocked.setDescription('Total number of URLs intercepted and blocked by a content filtering object.') dfl260SmtpAlg = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5)) dfl260SmtpAlgTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1), ) if mibBuilder.loadTexts: dfl260SmtpAlgTable.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgTable.setDescription('Table of SMTP ALG objects.') dfl260SmtpAlgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260SmtpAlgIndex")) if mibBuilder.loadTexts: dfl260SmtpAlgEntry.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgEntry.setDescription('A row of the table of SMTP ALG objects.') dfl260SmtpAlgIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260SmtpAlgIndex.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgIndex.setDescription('The index of an entry of the Table of SMTP ALG objects.') dfl260SmtpAlgName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgName.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgName.setDescription('The name of an SMTP ALG object.') dfl260SmtpAlgTotCheckedSes = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgTotCheckedSes.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgTotCheckedSes.setDescription('Total sessions checked by the SMTP ALG of corresponding index.') dfl260SmtpAlgTotSpamSes = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgTotSpamSes.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgTotSpamSes.setDescription('Total spam sessions detected by the SMTP ALG of corresponding index.') dfl260SmtpAlgTotDroppedSes = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 1, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgTotDroppedSes.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgTotDroppedSes.setDescription('Total deroped sessions for the SMTP ALG of corresponding index.') dfl260SmtpAlgDnsBlTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2), ) if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlTable.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlTable.setDescription('Table of SMTP ALG DNS balck list objects.') dfl260SmtpAlgDnsBlEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260SmtpAlgIndex"), (0, "DFL260-MIB", "dfl260SmtpAlgDnsBlIndex")) if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlEntry.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlEntry.setDescription('A row of the table of SMTP ALG DNS black list objects.') dfl260SmtpAlgDnsBlIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlIndex.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlIndex.setDescription('The index of an entry of the SMTP ALG DNS black list objects.') dfl260SmtpAlgDnsBlName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlName.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlName.setDescription('The SMTP DNS black list name.') dfl260SmtpAlgDnsBlChecked = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlChecked.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlChecked.setDescription('Total sessions checked againt SMTP ALG DNS black list of corresponding index') dfl260SmtpAlgDnsBlMatched = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlMatched.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlMatched.setDescription('Total sessions that matched SMTP ALG DNS black list of corresponding index') dfl260SmtpAlgDnsBlFailChecks = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 9, 5, 2, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlFailChecks.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgDnsBlFailChecks.setDescription('Total failed checks for the SMTP ALG DNS black list of corresponding index') dfl260DHCPRelay = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11)) dfl260DHCPRelayCurClients = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayCurClients.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayCurClients.setDescription('Total DHCP relay active relayed clients.') dfl260DHCPRelayCurTrans = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayCurTrans.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayCurTrans.setDescription('Ongoing DHCP relay transactions.') dfl260DHCPRelayRejected = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayRejected.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRejected.setDescription('Total DHCP relay packets rejected.') dfl260DHCPRelayRuleTable = MibTable((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4), ) if mibBuilder.loadTexts: dfl260DHCPRelayRuleTable.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleTable.setDescription('Table of DHCP relay rules.') dfl260DHCPRelayRuleEntry = MibTableRow((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1), ).setIndexNames((0, "DFL260-MIB", "dfl260DHCPRelayRuleIndex")) if mibBuilder.loadTexts: dfl260DHCPRelayRuleEntry.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleEntry.setDescription('Entry of the table of DHCP relay rules') dfl260DHCPRelayRuleIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: dfl260DHCPRelayRuleIndex.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleIndex.setDescription('Index of the table of DHCP relay rules.') dfl260DHCPRelayRuleName = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayRuleName.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleName.setDescription('Display name of a DHCP relay rule') dfl260DHCPRelayRuleHits = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayRuleHits.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleHits.setDescription('Number of the times the DHCP relay rule with corresponding index was used.') dfl260DHCPRelayRuleCurClients = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayRuleCurClients.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleCurClients.setDescription('Number of ctive relayed clients by the DHCP relay rule with corresponding index.') dfl260DHCPRelayRuleRejCliPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayRuleRejCliPkts.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleRejCliPkts.setDescription('Number of client packets rejected by a rule.') dfl260DHCPRelayRuleRejSrvPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 11, 4, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260DHCPRelayRuleRejSrvPkts.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayRuleRejSrvPkts.setDescription('Number of DHCP server packets rejected by the DHCP relay rule with the corresponding index.') dfl260HA = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 12)) dfl260HASyncSendQueueLength = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 12, 1), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HASyncSendQueueLength.setStatus('current') if mibBuilder.loadTexts: dfl260HASyncSendQueueLength.setDescription('Size of the queue used for the High Availability sync interface.') dfl260HASyncSendQueueUsagePkt = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 12, 2), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HASyncSendQueueUsagePkt.setStatus('current') if mibBuilder.loadTexts: dfl260HASyncSendQueueUsagePkt.setDescription('High Availability Sync interface queue usage in number of packets.') dfl260HASyncSendQueueUsageOct = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 12, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HASyncSendQueueUsageOct.setStatus('current') if mibBuilder.loadTexts: dfl260HASyncSendQueueUsageOct.setDescription('High Availability Sync interface queue usage in number of octects.') dfl260HASyncSentPackets = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 12, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HASyncSentPackets.setStatus('current') if mibBuilder.loadTexts: dfl260HASyncSentPackets.setDescription('Number High Availability packets sent on Sync.') dfl260HASyncSendResentPackets = MibScalar((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 1, 2, 12, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dfl260HASyncSendResentPackets.setStatus('current') if mibBuilder.loadTexts: dfl260HASyncSendResentPackets.setDescription('Number of High Availability packets resent on Sync.') dfl260StatsConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 2, 1)) dfl260StatsRegGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1)) dfl260SystemObjectGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 1)).setObjects(("DFL260-MIB", "dfl260SysCpuLoad"), ("DFL260-MIB", "dfl260SysForwardedBits"), ("DFL260-MIB", "dfl260SysForwardedPackets"), ("DFL260-MIB", "dfl260SysBuffUse"), ("DFL260-MIB", "dfl260SysConns"), ("DFL260-MIB", "dfl260HWSensorName"), ("DFL260-MIB", "dfl260HWSensorValue"), ("DFL260-MIB", "dfl260HWSensorUnit"), ("DFL260-MIB", "dfl260SysMemUsage"), ("DFL260-MIB", "dfl260SysTimerUsage"), ("DFL260-MIB", "dfl260SysConnOPS"), ("DFL260-MIB", "dfl260SysConnCPS"), ("DFL260-MIB", "dfl260SysHCForwardedBits")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260SystemObjectGroup = dfl260SystemObjectGroup.setStatus('current') if mibBuilder.loadTexts: dfl260SystemObjectGroup.setDescription('System statistics Group') dfl260IPsecObjectGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 2)).setObjects(("DFL260-MIB", "dfl260IPsecPhaseOneActive"), ("DFL260-MIB", "dfl260IPsecPhaseOneAggrModeDone"), ("DFL260-MIB", "dfl260IPsecQuickModeActive"), ("DFL260-MIB", "dfl260IPsecPhaseOneDone"), ("DFL260-MIB", "dfl260IPsecPhaseOneFailed"), ("DFL260-MIB", "dfl260IPsecPhaseOneRekeyed"), ("DFL260-MIB", "dfl260IPsecQuickModeDone"), ("DFL260-MIB", "dfl260IPsecQuickModeFailed"), ("DFL260-MIB", "dfl260IPsecInfoDone"), ("DFL260-MIB", "dfl260IPsecInfoFailed"), ("DFL260-MIB", "dfl260IPsecInOctetsComp"), ("DFL260-MIB", "dfl260IPsecInOctetsUncomp"), ("DFL260-MIB", "dfl260IPsecOutOctetsComp"), ("DFL260-MIB", "dfl260IPsecOutOctetsUncomp"), ("DFL260-MIB", "dfl260IPsecForwardedOctetsComp"), ("DFL260-MIB", "dfl260IPsecForwardedOctetsUcomp"), ("DFL260-MIB", "dfl260IPsecInPackets"), ("DFL260-MIB", "dfl260IPsecOutPackets"), ("DFL260-MIB", "dfl260IPsecForwardedPackets"), ("DFL260-MIB", "dfl260IPsecActiveTransforms"), ("DFL260-MIB", "dfl260IPsecTotalTransforms"), ("DFL260-MIB", "dfl260IPsecOutOfTransforms"), ("DFL260-MIB", "dfl260IPsecTotalRekeys")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260IPsecObjectGroup = dfl260IPsecObjectGroup.setStatus('current') if mibBuilder.loadTexts: dfl260IPsecObjectGroup.setDescription('IPsec Group') dfl260StateCountersGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 3)).setObjects(("DFL260-MIB", "dfl260SysPscTcpSyn"), ("DFL260-MIB", "dfl260SysPscTcpOpen"), ("DFL260-MIB", "dfl260SysPscTcpFin"), ("DFL260-MIB", "dfl260SysPscUdp"), ("DFL260-MIB", "dfl260SysPscIcmp"), ("DFL260-MIB", "dfl260SysPscOther")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260StateCountersGroup = dfl260StateCountersGroup.setStatus('current') if mibBuilder.loadTexts: dfl260StateCountersGroup.setDescription('Per state counters') dfl260IPPoolGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 4)).setObjects(("DFL260-MIB", "dfl260IPPoolsNumber"), ("DFL260-MIB", "dfl260IPPoolName"), ("DFL260-MIB", "dfl260IPPoolPrepare"), ("DFL260-MIB", "dfl260IPPoolFree"), ("DFL260-MIB", "dfl260IPPoolMisses"), ("DFL260-MIB", "dfl260IPPoolClientFails"), ("DFL260-MIB", "dfl260IPPoolUsed")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260IPPoolGroup = dfl260IPPoolGroup.setStatus('current') if mibBuilder.loadTexts: dfl260IPPoolGroup.setDescription('IP pool entry objects group') dfl260DHCPServerGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 5)).setObjects(("DFL260-MIB", "dfl260DHCPTotalRejected"), ("DFL260-MIB", "dfl260DHCPRuleName"), ("DFL260-MIB", "dfl260DHCPRuleUsage"), ("DFL260-MIB", "dfl260DHCPRuleUsagePercent"), ("DFL260-MIB", "dfl260DHCPActiveClients"), ("DFL260-MIB", "dfl260DHCPActiveClientsPercent"), ("DFL260-MIB", "dfl260DHCPRejectedRequests"), ("DFL260-MIB", "dfl260DHCPTotalLeases")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260DHCPServerGroup = dfl260DHCPServerGroup.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPServerGroup.setDescription('DHCP server rules objects.') dfl260RuleUseGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 6)).setObjects(("DFL260-MIB", "dfl260RuleName"), ("DFL260-MIB", "dfl260RuleUse")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260RuleUseGroup = dfl260RuleUseGroup.setStatus('current') if mibBuilder.loadTexts: dfl260RuleUseGroup.setDescription('Rule use objects.') dfl260UserAuthGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 7)).setObjects(("DFL260-MIB", "dfl260UserAuthHTTPUsers"), ("DFL260-MIB", "dfl260UserAuthXAUTHUsers"), ("DFL260-MIB", "dfl260UserAuthHTTPSUsers"), ("DFL260-MIB", "dfl260UserAuthPPPUsers"), ("DFL260-MIB", "dfl260UserAuthEAPUsers"), ("DFL260-MIB", "dfl260UserAuthRuleName"), ("DFL260-MIB", "dfl260UserAuthRuleUse")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260UserAuthGroup = dfl260UserAuthGroup.setStatus('current') if mibBuilder.loadTexts: dfl260UserAuthGroup.setDescription('User auth objects.') dfl260IfStatsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 8)).setObjects(("DFL260-MIB", "dfl260IfName"), ("DFL260-MIB", "dfl260IfFragsIn"), ("DFL260-MIB", "dfl260IfFragReassOk"), ("DFL260-MIB", "dfl260IfFragReassFail"), ("DFL260-MIB", "dfl260IfPktsInCnt"), ("DFL260-MIB", "dfl260IfPktsOutCnt"), ("DFL260-MIB", "dfl260IfBitsInCnt"), ("DFL260-MIB", "dfl260IfBitsOutCnt"), ("DFL260-MIB", "dfl260IfPktsTotCnt"), ("DFL260-MIB", "dfl260IfBitsTotCnt"), ("DFL260-MIB", "dfl260IfHCPktsInCnt"), ("DFL260-MIB", "dfl260IfHCPktsOutCnt"), ("DFL260-MIB", "dfl260IfHCBitsInCnt"), ("DFL260-MIB", "dfl260IfHCBitsOutCnt"), ("DFL260-MIB", "dfl260IfHCPktsTotCnt"), ("DFL260-MIB", "dfl260IfHCBitsTotCnt"), ("DFL260-MIB", "dfl260IfRxRingFifoErrors"), ("DFL260-MIB", "dfl260IfRxDespools"), ("DFL260-MIB", "dfl260IfRxAvgUse"), ("DFL260-MIB", "dfl260IfRxRingSaturation"), ("DFL260-MIB", "dfl260RxRingFlooded"), ("DFL260-MIB", "dfl260IfTxDespools"), ("DFL260-MIB", "dfl260IfTxAvgUse"), ("DFL260-MIB", "dfl260IfTxRingSaturation"), ("DFL260-MIB", "dfl260RxTingFlooded")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260IfStatsGroup = dfl260IfStatsGroup.setStatus('current') if mibBuilder.loadTexts: dfl260IfStatsGroup.setDescription('DFL-260 interface statistics group.') dfl260LinkMonitorGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 9)).setObjects(("DFL260-MIB", "dfl260LinkMonGrp"), ("DFL260-MIB", "dfl260LinkMonGrpName"), ("DFL260-MIB", "dfl260LinkMonGrpHostsUp"), ("DFL260-MIB", "dfl260LinkMonHostId"), ("DFL260-MIB", "dfl260LinkMonHostShortTermLoss"), ("DFL260-MIB", "dfl260LinkMonHostPacketsLost")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260LinkMonitorGroup = dfl260LinkMonitorGroup.setStatus('current') if mibBuilder.loadTexts: dfl260LinkMonitorGroup.setDescription('DFL-260 link monitor statistics group') dfl260PipesObjectGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 10)).setObjects(("DFL260-MIB", "dfl260PipeUsers"), ("DFL260-MIB", "dfl260PipeName"), ("DFL260-MIB", "dfl260PipeMinPrec"), ("DFL260-MIB", "dfl260PipeMaxPrec"), ("DFL260-MIB", "dfl260PipeDefPrec"), ("DFL260-MIB", "dfl260PipeNumPrec"), ("DFL260-MIB", "dfl260PipeNumUsers"), ("DFL260-MIB", "dfl260PipeCurrentBps"), ("DFL260-MIB", "dfl260PipeCurrentPps"), ("DFL260-MIB", "dfl260PipeDelayedPackets"), ("DFL260-MIB", "dfl260PipeDropedPackets"), ("DFL260-MIB", "dfl260PipePrec"), ("DFL260-MIB", "dfl260PipePrecBps"), ("DFL260-MIB", "dfl260PipePrecTotalPps"), ("DFL260-MIB", "dfl260PipePrecReservedBps"), ("DFL260-MIB", "dfl260PipePrecDynLimBps"), ("DFL260-MIB", "dfl260PipePrecDynUsrLimBps"), ("DFL260-MIB", "dfl260PipePrecDelayedPackets"), ("DFL260-MIB", "dfl260PipePrecDropedPackets")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260PipesObjectGroup = dfl260PipesObjectGroup.setStatus('current') if mibBuilder.loadTexts: dfl260PipesObjectGroup.setDescription('DFL-260 pipes statistics group') dfl260DHCPRelayObjectGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 12)).setObjects(("DFL260-MIB", "dfl260DHCPRelayCurClients"), ("DFL260-MIB", "dfl260DHCPRelayCurTrans"), ("DFL260-MIB", "dfl260DHCPRelayRejected"), ("DFL260-MIB", "dfl260DHCPRelayRuleName"), ("DFL260-MIB", "dfl260DHCPRelayRuleHits"), ("DFL260-MIB", "dfl260DHCPRelayRuleCurClients"), ("DFL260-MIB", "dfl260DHCPRelayRuleRejCliPkts"), ("DFL260-MIB", "dfl260DHCPRelayRuleRejSrvPkts")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260DHCPRelayObjectGroup = dfl260DHCPRelayObjectGroup.setStatus('current') if mibBuilder.loadTexts: dfl260DHCPRelayObjectGroup.setDescription('DFL-260 DHCP relay statistics group') dfl260AlgGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 13)).setObjects(("DFL260-MIB", "dfl260AlgSessions"), ("DFL260-MIB", "dfl260AlgConnections"), ("DFL260-MIB", "dfl260AlgTCPStreams"), ("DFL260-MIB", "dfl260HttpAlgName"), ("DFL260-MIB", "dfl260HttpAlgTotalRequested"), ("DFL260-MIB", "dfl260HttpAlgTotalAllowed"), ("DFL260-MIB", "dfl260HttpAlgTotalBlocked"), ("DFL260-MIB", "dfl260HttpAlgCntFltName"), ("DFL260-MIB", "dfl260HttpAlgCntFltRequests"), ("DFL260-MIB", "dfl260HttpAlgCntFltAllowed"), ("DFL260-MIB", "dfl260HttpAlgCntFltBlocked")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260AlgGroup = dfl260AlgGroup.setStatus('current') if mibBuilder.loadTexts: dfl260AlgGroup.setDescription('DFL-260 HTTP ALG statistics group') dfl260HAGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 14)).setObjects(("DFL260-MIB", "dfl260HASyncSendQueueLength"), ("DFL260-MIB", "dfl260HASyncSendQueueUsagePkt"), ("DFL260-MIB", "dfl260HASyncSendQueueUsageOct"), ("DFL260-MIB", "dfl260HASyncSentPackets"), ("DFL260-MIB", "dfl260HASyncSendResentPackets")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260HAGroup = dfl260HAGroup.setStatus('current') if mibBuilder.loadTexts: dfl260HAGroup.setDescription('DFL-260 HA statistics group') dfl260IfVlanGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 15)).setObjects(("DFL260-MIB", "dfl260IfVlanUntaggedInPkts"), ("DFL260-MIB", "dfl260IfVlanUntaggedOutPkts"), ("DFL260-MIB", "dfl260IfVlanUntaggedTotPkts"), ("DFL260-MIB", "dfl260IfVlanUntaggedInOctets"), ("DFL260-MIB", "dfl260IfVlanUntaggedOutOctets"), ("DFL260-MIB", "dfl260IfVlanUntaggedTotOctets")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260IfVlanGroup = dfl260IfVlanGroup.setStatus('current') if mibBuilder.loadTexts: dfl260IfVlanGroup.setDescription('DFL-260 VLAN statistics group') dfl260SmtpAlgGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 16)).setObjects(("DFL260-MIB", "dfl260SmtpAlgName"), ("DFL260-MIB", "dfl260SmtpAlgTotCheckedSes"), ("DFL260-MIB", "dfl260SmtpAlgTotSpamSes"), ("DFL260-MIB", "dfl260SmtpAlgTotDroppedSes"), ("DFL260-MIB", "dfl260SmtpAlgDnsBlName"), ("DFL260-MIB", "dfl260SmtpAlgDnsBlChecked"), ("DFL260-MIB", "dfl260SmtpAlgDnsBlMatched"), ("DFL260-MIB", "dfl260SmtpAlgDnsBlFailChecks")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260SmtpAlgGroup = dfl260SmtpAlgGroup.setStatus('current') if mibBuilder.loadTexts: dfl260SmtpAlgGroup.setDescription('Clavister SMTP ALG objects group') dfl260SysTCPGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 3, 1, 17)).setObjects(("DFL260-MIB", "dfl260SysTCPRecvSmall"), ("DFL260-MIB", "dfl260SysTCPRecvLarge"), ("DFL260-MIB", "dfl260SysTCPSendSmall"), ("DFL260-MIB", "dfl260SysTCPSendLarge")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260SysTCPGroup = dfl260SysTCPGroup.setStatus('current') if mibBuilder.loadTexts: dfl260SysTCPGroup.setDescription('DFL-260 TCP buffer usage group') dfl260StatsCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 171, 20, 2, 1, 2, 2, 1, 1)).setObjects(("DFL260-MIB", "dfl260SystemObjectGroup"), ("DFL260-MIB", "dfl260IPsecObjectGroup"), ("DFL260-MIB", "dfl260StateCountersGroup"), ("DFL260-MIB", "dfl260IPPoolGroup"), ("DFL260-MIB", "dfl260DHCPServerGroup"), ("DFL260-MIB", "dfl260RuleUseGroup"), ("DFL260-MIB", "dfl260UserAuthGroup"), ("DFL260-MIB", "dfl260IfStatsGroup"), ("DFL260-MIB", "dfl260LinkMonitorGroup"), ("DFL260-MIB", "dfl260PipesObjectGroup"), ("DFL260-MIB", "dfl260DHCPRelayObjectGroup"), ("DFL260-MIB", "dfl260AlgGroup"), ("DFL260-MIB", "dfl260HAGroup"), ("DFL260-MIB", "dfl260IfVlanGroup"), ("DFL260-MIB", "dfl260SmtpAlgGroup"), ("DFL260-MIB", "dfl260SysTCPGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dfl260StatsCompliance = dfl260StatsCompliance.setStatus('current') if mibBuilder.loadTexts: dfl260StatsCompliance.setDescription('Module Compliance') mibBuilder.exportSymbols("DFL260-MIB", dfl260PipeName=dfl260PipeName, dfl260StatsConformance=dfl260StatsConformance, dfl260PipePrecDropedPackets=dfl260PipePrecDropedPackets, dfl260IfFragReassFail=dfl260IfFragReassFail, dfl260DHCPRelayObjectGroup=dfl260DHCPRelayObjectGroup, dfl260DHCPRelayRuleIndex=dfl260DHCPRelayRuleIndex, dfl260IfBitsOutCnt=dfl260IfBitsOutCnt, dfl260IPsecForwardedPackets=dfl260IPsecForwardedPackets, dfl260UserAuthEAPUsers=dfl260UserAuthEAPUsers, dfl260SmtpAlgDnsBlEntry=dfl260SmtpAlgDnsBlEntry, dfl260SmtpAlgDnsBlName=dfl260SmtpAlgDnsBlName, dfl260RuleUseEntry=dfl260RuleUseEntry, dfl260LinkMonGrpIndex=dfl260LinkMonGrpIndex, dfl260IPPoolTable=dfl260IPPoolTable, dfl260IPsecOutPackets=dfl260IPsecOutPackets, dfl260IPsecQuickModeDone=dfl260IPsecQuickModeDone, dfl260PipeNumPrec=dfl260PipeNumPrec, dfl260DHCPRelayRuleName=dfl260DHCPRelayRuleName, dfl260SysConns=dfl260SysConns, dfl260PipeEntry=dfl260PipeEntry, dfl260RxTingFlooded=dfl260RxTingFlooded, dfl260SmtpAlgTotDroppedSes=dfl260SmtpAlgTotDroppedSes, dfl260SmtpAlgName=dfl260SmtpAlgName, dfl260DHCPRelayRuleHits=dfl260DHCPRelayRuleHits, dfl260SysForwardedPackets=dfl260SysForwardedPackets, dfl260SysTimerUsage=dfl260SysTimerUsage, dfl260HWSensorTable=dfl260HWSensorTable, dfl260IPsecPhaseOneFailed=dfl260IPsecPhaseOneFailed, utmFirewall=utmFirewall, dfl260DHCPRuleUsage=dfl260DHCPRuleUsage, dfl260LinkMonHostEntry=dfl260LinkMonHostEntry, dfl260IfTxRingTable=dfl260IfTxRingTable, dfl260Rules=dfl260Rules, dfl260PipeCurrentPps=dfl260PipeCurrentPps, dfl260IfVlanUntaggedTotPkts=dfl260IfVlanUntaggedTotPkts, dfl260UserAuthXAUTHUsers=dfl260UserAuthXAUTHUsers, dfl260IfRxDespools=dfl260IfRxDespools, dfl260SmtpAlgDnsBlMatched=dfl260SmtpAlgDnsBlMatched, dfl260RuleUseTable=dfl260RuleUseTable, dfl260PipePrecIndex=dfl260PipePrecIndex, dfl260StatsRegGroups=dfl260StatsRegGroups, dfl260IPsecForwardedOctetsUcomp=dfl260IPsecForwardedOctetsUcomp, dfl260StateCountersGroup=dfl260StateCountersGroup, dfl260IfVlanIndex=dfl260IfVlanIndex, dfl260IfStatsTable=dfl260IfStatsTable, dfl260IPsecInfoDone=dfl260IPsecInfoDone, dfl260HttpAlgEntry=dfl260HttpAlgEntry, dfl260SysHCForwardedBits=dfl260SysHCForwardedBits, dfl260IfVlanUntaggedOutOctets=dfl260IfVlanUntaggedOutOctets, dfl260IPsecPhaseOneRekeyed=dfl260IPsecPhaseOneRekeyed, dfl260SysPscIcmp=dfl260SysPscIcmp, dfl260DHCPRuleIndex=dfl260DHCPRuleIndex, dfl260HASyncSentPackets=dfl260HASyncSentPackets, dfl260UserAuthHTTPSUsers=dfl260UserAuthHTTPSUsers, dfl260PipeDefPrec=dfl260PipeDefPrec, dfl260RuleName=dfl260RuleName, dfl260DHCPRelayRuleTable=dfl260DHCPRelayRuleTable, dfl260IfBitsTotCnt=dfl260IfBitsTotCnt, dfl260PipePrecReservedBps=dfl260PipePrecReservedBps, dfl260DHCPServerGroup=dfl260DHCPServerGroup, dfl260HttpAlgCntFltEntry=dfl260HttpAlgCntFltEntry, dfl260HASyncSendQueueUsagePkt=dfl260HASyncSendQueueUsagePkt, dfl260PipePrecEntry=dfl260PipePrecEntry, dfl260HttpAlgTotalBlocked=dfl260HttpAlgTotalBlocked, dfl260SmtpAlgTotCheckedSes=dfl260SmtpAlgTotCheckedSes, dfl260LinkMonGrp=dfl260LinkMonGrp, dfl260DHCPRuleTable=dfl260DHCPRuleTable, dfl260PipeIndex=dfl260PipeIndex, dfl260IfHCBitsInCnt=dfl260IfHCBitsInCnt, dfl260LinkMonGrpEntry=dfl260LinkMonGrpEntry, dfl260RuleUseGroup=dfl260RuleUseGroup, dfl260DHCPTotalRejected=dfl260DHCPTotalRejected, dfl260IfTxRingSaturation=dfl260IfTxRingSaturation, dfl260DHCPRuleUsagePercent=dfl260DHCPRuleUsagePercent, dfl260IfStatsGroup=dfl260IfStatsGroup, dfl260IPsecTotalRekeys=dfl260IPsecTotalRekeys, dfl260DHCPRejectedRequests=dfl260DHCPRejectedRequests, dfl260LinkMonHostId=dfl260LinkMonHostId, dfl260PipeNumUsers=dfl260PipeNumUsers, dfl260IPsecPhaseOneActive=dfl260IPsecPhaseOneActive, dfl260SmtpAlgTotSpamSes=dfl260SmtpAlgTotSpamSes, dfl260UserAuthRuleIndex=dfl260UserAuthRuleIndex, dfl260IPsecInOctetsUncomp=dfl260IPsecInOctetsUncomp, dfl260SysCpuLoad=dfl260SysCpuLoad, dfl260SysTCPUsage=dfl260SysTCPUsage, dfl260SysTCPSendSmall=dfl260SysTCPSendSmall, dfl260IPsecTotalTransforms=dfl260IPsecTotalTransforms, dfl260HASyncSendResentPackets=dfl260HASyncSendResentPackets, netdefendMgmt=netdefendMgmt, dfl260DHCPActiveClients=dfl260DHCPActiveClients, dfl260IPsecActiveTransforms=dfl260IPsecActiveTransforms, dfl260SmtpAlg=dfl260SmtpAlg, dfl260IfFragReassOk=dfl260IfFragReassOk, dfl260UserAuthGroup=dfl260UserAuthGroup, dfl260PipeMinPrec=dfl260PipeMinPrec, dfl260SysPscTcpFin=dfl260SysPscTcpFin, dfl260IfTxRingEntry=dfl260IfTxRingEntry, dfl260UserAuthRuleUseTable=dfl260UserAuthRuleUseTable, dfl260IPsecInOctetsComp=dfl260IPsecInOctetsComp, dfl260PipePrecDelayedPackets=dfl260PipePrecDelayedPackets, dfl260DHCPRelayCurClients=dfl260DHCPRelayCurClients, dfl260HttpAlgTotalRequested=dfl260HttpAlgTotalRequested, dfl260reg=dfl260reg, dfl260HASyncSendQueueUsageOct=dfl260HASyncSendQueueUsageOct, dfl260AlgConnections=dfl260AlgConnections, dfl260DHCPRelayRuleCurClients=dfl260DHCPRelayRuleCurClients, dfl260UserAuthPPPUsers=dfl260UserAuthPPPUsers, dfl260IPPoolIndex=dfl260IPPoolIndex, dfl260DHCPTotalLeases=dfl260DHCPTotalLeases, dfl260LinkMonGrpName=dfl260LinkMonGrpName, dfl260IPsecQuickModeFailed=dfl260IPsecQuickModeFailed, dfl260PipeMaxPrec=dfl260PipeMaxPrec, dfl260IfVlanStatsEntry=dfl260IfVlanStatsEntry, dfl260HttpAlgTotalAllowed=dfl260HttpAlgTotalAllowed, dlink=dlink, dfl260IPPoolEntry=dfl260IPPoolEntry, dfl260HttpAlgTable=dfl260HttpAlgTable, dfl260IPPoolMisses=dfl260IPPoolMisses, dfl260OS=dfl260OS, dfl260SysMemUsage=dfl260SysMemUsage, dfl260IPsecOutOfTransforms=dfl260IPsecOutOfTransforms, dfl260DHCPRelay=dfl260DHCPRelay, dfl260RuleUse=dfl260RuleUse, dfl260DHCPRelayRejected=dfl260DHCPRelayRejected, dfl260IfVlanStatsTable=dfl260IfVlanStatsTable, dfl260UserAuthRuleName=dfl260UserAuthRuleName, dfl260PipeDropedPackets=dfl260PipeDropedPackets, dfl260UserAuthRuleUse=dfl260UserAuthRuleUse, dfl260IfVlanUntaggedOutPkts=dfl260IfVlanUntaggedOutPkts, dfl260SmtpAlgDnsBlChecked=dfl260SmtpAlgDnsBlChecked, dfl260IfRxRingIndex=dfl260IfRxRingIndex, dfl260PipesObjectGroup=dfl260PipesObjectGroup, dfl260IfRxRingTable=dfl260IfRxRingTable, dfl260LinkMonGrpHostsUp=dfl260LinkMonGrpHostsUp, dfl260SysPscTcpOpen=dfl260SysPscTcpOpen, dfl260LinkMonHostPacketsLost=dfl260LinkMonHostPacketsLost, dfl260SysPscTcpSyn=dfl260SysPscTcpSyn, dfl260HASyncSendQueueLength=dfl260HASyncSendQueueLength, dfl260HttpAlgCntFltAllowed=dfl260HttpAlgCntFltAllowed, dfl260SysForwardedBits=dfl260SysForwardedBits, dfl260UserAuthHTTPUsers=dfl260UserAuthHTTPUsers, dfl260IfVlanGroup=dfl260IfVlanGroup, dfl260IPPools=dfl260IPPools, dfl260HttpAlgCntFltRequests=dfl260HttpAlgCntFltRequests, dfl260RxRingFlooded=dfl260RxRingFlooded, dfl260IfHCPktsInCnt=dfl260IfHCPktsInCnt, dfl260HttpAlg=dfl260HttpAlg, dfl260IPPoolUsed=dfl260IPPoolUsed, dfl260SysTCPGroup=dfl260SysTCPGroup, dfl260IPsecQuickModeActive=dfl260IPsecQuickModeActive, dfl260SmtpAlgIndex=dfl260SmtpAlgIndex, dfl260HAGroup=dfl260HAGroup, dfl260DHCPRelayCurTrans=dfl260DHCPRelayCurTrans, dfl260StatsCompliance=dfl260StatsCompliance, dfl260HWSensorName=dfl260HWSensorName, dfl260PipePrec=dfl260PipePrec, dfl260IPPoolClientFails=dfl260IPPoolClientFails, dfl260SystemObjectGroup=dfl260SystemObjectGroup, dfl260IPPoolName=dfl260IPPoolName, dfl260IPPoolFree=dfl260IPPoolFree, dfl260SysPerStateCounters=dfl260SysPerStateCounters, dfl260IfName=dfl260IfName, dfl260SysTCPRecvLarge=dfl260SysTCPRecvLarge, dfl260ALG=dfl260ALG, dfl260IfHCBitsTotCnt=dfl260IfHCBitsTotCnt, dfl260LinkMonHostTable=dfl260LinkMonHostTable, dfl260HttpAlgCntFltName=dfl260HttpAlgCntFltName, dfl260IfRxRingSaturation=dfl260IfRxRingSaturation, dfl260HWSensorIndex=dfl260HWSensorIndex, dfl260SmtpAlgTable=dfl260SmtpAlgTable, dfl260IfHCPktsTotCnt=dfl260IfHCPktsTotCnt, dfl260HWSensorEntry=dfl260HWSensorEntry, dfl260IPsecGlobal=dfl260IPsecGlobal, dfl260PipePrecBps=dfl260PipePrecBps, dfl260HA=dfl260HA, dfl260Pipes=dfl260Pipes, dfl260IfStatsEntry=dfl260IfStatsEntry, dfl260IfVlanUntaggedTotOctets=dfl260IfVlanUntaggedTotOctets, dfl260IfPktsTotCnt=dfl260IfPktsTotCnt, dfl260DHCPRuleName=dfl260DHCPRuleName, dfl260DHCPRelayRuleEntry=dfl260DHCPRelayRuleEntry, dfl260IPPoolPrepare=dfl260IPPoolPrepare, dfl260SysTCPRecvSmall=dfl260SysTCPRecvSmall, dfl260UserAuthRuleUseEntry=dfl260UserAuthRuleUseEntry, dfl260SmtpAlgDnsBlIndex=dfl260SmtpAlgDnsBlIndex, dfl260IfPktsInCnt=dfl260IfPktsInCnt, dfl260IfFragsIn=dfl260IfFragsIn, dfl260IPPoolsNumber=dfl260IPPoolsNumber, dfl260PipePrecDynLimBps=dfl260PipePrecDynLimBps, dfl260IfStatsIndex=dfl260IfStatsIndex, dfl260IfRxAvgUse=dfl260IfRxAvgUse, dfl260PipeDelayedPackets=dfl260PipeDelayedPackets, dfl260SmtpAlgEntry=dfl260SmtpAlgEntry, dfl260SysConnCPS=dfl260SysConnCPS, dfl260IfTxDespools=dfl260IfTxDespools, dfl260IfRxRingFifoErrors=dfl260IfRxRingFifoErrors, dfl260SmtpAlgDnsBlFailChecks=dfl260SmtpAlgDnsBlFailChecks, dfl260SysPscUdp=dfl260SysPscUdp, dfl260DHCPActiveClientsPercent=dfl260DHCPActiveClientsPercent, dfl260IfVlanUntaggedInPkts=dfl260IfVlanUntaggedInPkts, dfl260PipePrecDynUsrLimBps=dfl260PipePrecDynUsrLimBps, dfl260IfHCPktsOutCnt=dfl260IfHCPktsOutCnt, dfl260IPsecPhaseOneAggrModeDone=dfl260IPsecPhaseOneAggrModeDone, dfl260IfHCBitsOutCnt=dfl260IfHCBitsOutCnt, dfl260IPsecOutOctetsUncomp=dfl260IPsecOutOctetsUncomp, dfl260SysPscOther=dfl260SysPscOther, dfl260HttpAlgCntFltIndex=dfl260HttpAlgCntFltIndex, dfl260IfVlanUntaggedInOctets=dfl260IfVlanUntaggedInOctets, dfl260PipeUsers=dfl260PipeUsers, dfl260IfTxRingIndex=dfl260IfTxRingIndex, dfl260IfTxAvgUse=dfl260IfTxAvgUse, dfl260HttpAlgIndex=dfl260HttpAlgIndex, dfl260AlgSessions=dfl260AlgSessions, dfl260AlgTCPStreams=dfl260AlgTCPStreams, dfl260IPsecOutOctetsComp=dfl260IPsecOutOctetsComp, dfl260SmtpAlgGroup=dfl260SmtpAlgGroup, dfl260HWSensorUnit=dfl260HWSensorUnit, dfl260IPsecInPackets=dfl260IPsecInPackets, dfl260LinkMonitor=dfl260LinkMonitor, dfl260UserAuth=dfl260UserAuth, dfl260_MIB=dfl260_MIB, dfl260OSStats=dfl260OSStats, dfl260MibObjectGroups=dfl260MibObjectGroups, dfl260HWSensorValue=dfl260HWSensorValue, dfl260IPsec=dfl260IPsec, dfl260DHCPRelayRuleRejSrvPkts=dfl260DHCPRelayRuleRejSrvPkts, dfl260SysConnOPS=dfl260SysConnOPS, dfl260LinkMonHostIndex=dfl260LinkMonHostIndex, dfl260IPsecPhaseOneDone=dfl260IPsecPhaseOneDone, dfl260HttpAlgName=dfl260HttpAlgName, dfl260SysBuffUse=dfl260SysBuffUse, dfl260PipeTable=dfl260PipeTable, PYSNMP_MODULE_ID=dfl260_MIB, dfl260AlgGroup=dfl260AlgGroup, dfl260VPN=dfl260VPN, dfl260PipePrecTable=dfl260PipePrecTable, dfl260IPsecObjectGroup=dfl260IPsecObjectGroup, dfl260System=dfl260System, dfl260HttpAlgCntFltTable=dfl260HttpAlgCntFltTable, dfl260PipeCurrentBps=dfl260PipeCurrentBps, dfl260IfPktsOutCnt=dfl260IfPktsOutCnt, dfl260PipePrecTotalPps=dfl260PipePrecTotalPps, dfl260HttpAlgCntFltBlocked=dfl260HttpAlgCntFltBlocked, dfl260=dfl260, dfl260DHCPServer=dfl260DHCPServer, dfl260IfRxRingEntry=dfl260IfRxRingEntry, dfl260IfBitsInCnt=dfl260IfBitsInCnt, dfl260LinkMonGrpTable=dfl260LinkMonGrpTable, dfl260RuleIndex=dfl260RuleIndex, dfl260MibConfs=dfl260MibConfs, dfl260DHCPRuleEntry=dfl260DHCPRuleEntry, dfl260IPsecForwardedOctetsComp=dfl260IPsecForwardedOctetsComp, dfl260IPPoolGroup=dfl260IPPoolGroup, dfl260IPsecInfoFailed=dfl260IPsecInfoFailed) mibBuilder.exportSymbols("DFL260-MIB", dfl260DHCPRelayRuleRejCliPkts=dfl260DHCPRelayRuleRejCliPkts, dfl260LinkMonHostShortTermLoss=dfl260LinkMonHostShortTermLoss, dfl260LinkMonitorGroup=dfl260LinkMonitorGroup, dfl260SmtpAlgDnsBlTable=dfl260SmtpAlgDnsBlTable, dfl260SysTCPSendLarge=dfl260SysTCPSendLarge, dfl260MibModules=dfl260MibModules)
[ "dcwangmit01@gmail.com" ]
dcwangmit01@gmail.com
3d76da29d6541bdb7ca2bb2cb1dd9e631ec40f74
bbe420ca711776140452b5639b935e37feb7d8ea
/Task1/chapter26.py
f2970c154dab1352dd124f107528c2c59dac5de3
[]
no_license
shkhaider2015/artificial_intelligence
9f2f156ab2cadcdc38f2c576f1af66667f21dc86
785e00dac28cec64a4b35068dbef0d1dcfc5ff3c
refs/heads/master
2020-03-28T20:27:33.406289
2018-11-22T09:11:25
2018-11-22T09:11:25
149,072,716
2
0
null
null
null
null
UTF-8
Python
false
false
163
py
Data = { "Name:": "Usama Riaz", "ID:": "1500-2015", "Age:": "21", "DOB:": "29/05/1997", "Location:": "Karachi" } for a,b in Data.items(): print(a,b)
[ "43218437+shkhaider2015@users.noreply.github.com" ]
43218437+shkhaider2015@users.noreply.github.com
df93f65d97755a6b38917bb204e856bbf90a7efd
a0947c2778742aec26b1c0600ceca17df42326cd
/Python/PythonInADay2/CSV-Files-Drill/37of79-119.py
7707852ef6e09fc8a3743fa9851f02ce0b0f3c43
[]
no_license
JohnCDunn/Course-Work-TTA
5758319d4607114914ba9723328658bed8fb2024
8c4f60d51007dac2ac4cceb84b0f9666e143c0d7
refs/heads/master
2021-01-10T16:37:02.609879
2016-02-01T18:05:38
2016-02-01T18:05:38
49,983,248
0
0
null
null
null
null
UTF-8
Python
false
false
5,560
py
import wx, db_program class Frame(wx.Frame): def __init__(self, title): wx.Frame.__init__(self, None,\ title=title, size=(800,600)) panel = wx.Panel(self) # Creating the menu bar menuBar = wx.MenuBar() fileMenu = wx.Menu() exitItem = fileMenu.Append(wx.NewId(), "Exit") menuBar.Append(fileMenu, "File") self.SetMenuBar(menuBar) self.Bind(wx.EVT_MENU, self.exitProgram, exitItem) self.CreateStatusBar() # Setup Add New Character UI # Create static box wx.StaticBox(panel, label='Add a new character', pos=(20,40), size=(280,190)) # Text for name, gender etc wx.StaticText(panel, label='Name:', pos=(30,70)) wx.StaticText(panel, label='Gender:', pos=(30,110)) wx.StaticText(panel, label='Age:', pos=(30,150)) wx.StaticText(panel, label='Occupation:', pos=(30,190)) # Single line text boxes self.sName = wx.TextCtrl(panel, size=(150, -1), pos=(130,70)) self.sGen = wx.TextCtrl(panel, size=(150, -1), pos=(130,110)) self.sAge = wx.SpinCtrl(panel, value='0', pos=(130, 150), size=(70, 25)) self.sOcc = wx.TextCtrl(panel, size=(150, -1), pos=(130,190)) # Save button save = wx.Button(panel, label="Add Character", pos=(100, 230)) save.Bind(wx.EVT_BUTTON, self.addCharacter) # Setup the Table UI # Setup table as listCtrl self.listCtrl = wx.ListCtrl(panel, size=(400,400), pos=(350,40), style=wx.LC_REPORT |wx.BORDER_SUNKEN) # Add columns to listCtrl self.listCtrl.InsertColumn(0, "ID") self.listCtrl.InsertColumn(1, "Name") self.listCtrl.InsertColumn(2, "Gender") self.listCtrl.InsertColumn(3, "Age") self.listCtrl.InsertColumn(4, "Occupation") # Add data to the list control self.fillListCtrl() # Run onSelect function when item is selected self.listCtrl.Bind(wx.EVT_LIST_ITEM_SELECTED, self.onSelect) # Setup a delete button deleteBtn = wx.Button(panel, label="Delete", pos=(640, 450)) # Bind delete button to onDelete function deleteBtn.Bind(wx.EVT_BUTTON, self.onDelete) # Setup Update Character UI # Create static box wx.StaticBox(panel, label='Update a character', pos=(20,340), size=(280,190)) # Text for name, gender etc wx.StaticText(panel, label='Name:', pos=(30,370)) wx.StaticText(panel, label='Gender:', pos=(30,410)) wx.StaticText(panel, label='Age:', pos=(30,450)) wx.StaticText(panel, label='Occupation:', pos=(30,490)) # Single line text boxes self.sNameU = wx.TextCtrl(panel, size=(150, -1), pos=(130,370)) self.sGenU = wx.TextCtrl(panel, size=(150, -1), pos=(130,410)) self.sAgeU = wx.SpinCtrl(panel, value='0', pos=(130, 450), size=(70, 25)) self.sOccU = wx.TextCtrl(panel, size=(150, -1), pos=(130,490)) # Save button saveUpdate = wx.Button(panel, label="Update Character", pos=(100, 530)) saveUpdate.Bind(wx.EVT_BUTTON, self.updateCharacter) def addCharacter(self, event): name = self.sName.GetValue() gen = self.sGen.GetValue() age = self.sAge.GetValue() occ = self.sOcc.GetValue() # Checking if variables have a value if (name == '') or (gen == '') or (age == '') or (occ == ''): # Alert user that a variable is empty dlg = wx.MessageDialog(None, \ 'Some character details are missing. Enter values in each text box.', \ 'Missing Details', wx.OK) dlg.ShowModal() dlg.Destroy() return False # Adding character to database db_program.newCharacter(name, gen, age, occ) print db_program.viewAll() # Empty text boxes when finished. self.sName.Clear() self.sGen.Clear() self.sOcc.Clear() self.sAge.SetValue(0) # Update list control self.fillListCtrl() def exitProgram(self, event): self.Destroy() def fillListCtrl(self): # Get data from the database self.allData = db_program.viewAll() # Delete old data before adding new data self.listCtrl.DeleteAllItems() # Append data to the table for row in self.allData: # Loop though and append data self.listCtrl.Append(row) def onDelete(self, event): # Delete the character db_program.deleteCharacter(self.selectedId) # Refresh the table self.fillListCtrl() def onSelect(self, event): # Get the id of the selected row self.selectedId = event.GetText() # Get index of selected row index = event.GetIndex() # Get character info charInfo = self.allData[index] print charInfo # Set value of update text boxes self.sNameU.SetValue(charInfo[1]) self.sGenU.SetValue(charInfo[2]) self.sAgeU.SetValue(charInfo[3]) self.sOccU.SetValue(charInfo[4]) def updateCharacter(self, event): pass app = wx.App() frame = Frame("Python GUI") frame.Show() app.MainLoop()
[ "JohnClydeDunn@Gmail.com" ]
JohnClydeDunn@Gmail.com
de5eea017c032a61da30c0fc838bd5c7842e7b01
7ad35f591c8ac671022eb02fa0de3f76b767345b
/_static/scripts/part2/helloobject/run_hello.py
dff12d4f74edd27ded2abce5bb1db3c176a9443b
[ "CC-BY-4.0" ]
permissive
mattsinc/learning_gem5
8d68ca4290ef34312d75580c98797fe3ce47f265
702f89f6b657e5d9201978333e56f2882e6f49fe
refs/heads/master
2021-01-23T08:33:19.830467
2018-09-14T05:02:38
2018-09-14T05:05:51
102,510,868
0
0
null
2017-09-05T17:29:40
2017-09-05T17:29:40
null
UTF-8
Python
false
false
2,359
py
# -*- coding: utf-8 -*- # Copyright (c) 2016 Jason Lowe-Power # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Jason Lowe-Power """ Simple config/run script for the HelloObject This is probably the simplest gem5 config file you can possibly create. It creates a Root object and one *very* simple SimObject and simulates the system. Since there are no events, this "simulation" should finish immediately """ # import the m5 (gem5) library created when gem5 is built import m5 # import all of the SimObjects from m5.objects import * # set up the root SimObject and start the simulation root = Root(full_system = False) # Create an instantiation of the simobject you created root.hello = HelloObject() # instantiate all of the objects we've created above m5.instantiate() print "Beginning simulation!" exit_event = m5.simulate() print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())
[ "power.jg@gmail.com" ]
power.jg@gmail.com
db0aaaaee506d0a2bec90b0566b95ef7f862eee9
2dc50cd2aaf094bb4ceafc06d0a32633dc2b0c6b
/imagenet/models_cifar/resnet2.py
bb780ffbcf985c6bf700b75255f586ece5a8acb1
[]
no_license
jaykuo2005/RBNN
3a17b57ad75e9e94a27e36b18d7fdcf7707f7080
f7df8d66bf4b67030fc5a399a37be6df94332e64
refs/heads/master
2023-03-24T09:11:48.088776
2021-03-15T05:15:32
2021-03-15T05:15:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,704
py
'''ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from modules import * __all__ =['resnet18A_1w1a','resnet18B_1w1a','resnet18C_1w1a','resnet18_1w1a'] class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = BinarizeConv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = BinarizeConv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( BinarizeConv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.hardtanh(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.hardtanh(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = BinarizeConv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = BinarizeConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = BinarizeConv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( BinarizeConv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_channel, num_classes=10): super(ResNet, self).__init__() self.in_planes = num_channel[0] self.conv1 = nn.Conv2d(3, num_channel[0], kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(num_channel[0]) self.layer1 = self._make_layer(block, num_channel[0], num_blocks[0], stride=1) self.layer2 = self._make_layer(block, num_channel[1], num_blocks[1], stride=2) self.layer3 = self._make_layer(block, num_channel[2], num_blocks[2], stride=2) self.layer4 = self._make_layer(block, num_channel[3], num_blocks[3], stride=2) self.linear = nn.Linear(num_channel[3]*block.expansion, num_classes) self.bn2 = nn.BatchNorm1d(num_channel[3]*block.expansion) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = self.bn1(self.conv1(x)) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.bn2(out) out = self.linear(out) return out def resnet18A_1w1a(**kwargs): return ResNet(BasicBlock, [2,2,2,2],[32,32,64,128],**kwargs) def resnet18B_1w1a(**kwargs): return ResNet(BasicBlock, [2,2,2,2],[32,64,128,256],**kwargs) def resnet18C_1w1a(**kwargs): return ResNet(BasicBlock, [2,2,2,2],[64,64,128,256],**kwargs) def resnet18_1w1a(**kwargs): return ResNet(BasicBlock, [2,2,2,2],[64,128,256,512],**kwargs) def ResNet34(): return ResNet(BasicBlock, [3,4,6,3]) def ResNet50(): return ResNet(Bottleneck, [3,4,6,3]) def ResNet101(): return ResNet(Bottleneck, [3,4,23,3]) def ResNet152(): return ResNet(Bottleneck, [3,8,36,3]) def test(): net = resnet18_1w1a() y = net(torch.randn(1,3,32,32)) print(y.size()) # test()
[ "791411501@qq.com" ]
791411501@qq.com
41e10feedfe876d5f99cdf53a89cb472419a65d8
1ab04c85e37f1d5fc49dcf8054fd551104a1ad58
/helloworld.py
6ed25b2f85330ac67172666f6458a4af939a189a
[]
no_license
htetphyoaung97/Athina
33a4286d4bf5998fbbad9b0be25d4c13246ffc87
0c55df96604656b5efa05fd65d11c6b0337e7392
refs/heads/master
2022-11-16T17:55:16.234385
2020-07-17T08:50:13
2020-07-17T08:50:13
280,368,853
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
input1 = input("Enter Your First Name:") input2 = input("Enter Your Last Name:") result = input1 + " " + input2 print(result)
[ "dev.htetphyoaung@gmail.com" ]
dev.htetphyoaung@gmail.com
1695a61483d9bea6d281bfd9b4b698c7c37bdbc1
1e1efdc1900ec0242dfb1c7a425f5b7874241054
/NLG_Rap_Bot/CreateIndex_NLG.py
545bd4a7ba00a8d9198e353635bffcc58e0d3007
[]
no_license
liam9/FreeStyle
01bcda77a16ef1b2beacab9840ba521f6dbc09ed
b65a4ac668cb2dc24c689cec20aa3509d472d327
refs/heads/master
2020-03-26T15:57:09.864565
2018-08-17T05:47:32
2018-08-17T05:47:32
145,073,467
1
0
null
null
null
null
UTF-8
Python
false
false
1,006
py
''' This file indexes the lyrics so that the rhymes can be found very quickly ''' import sys,os dir = os.path.dirname(__file__) ''' This function indexes the lyrics. The index acts like a dictionary where the key is the rhyme and the value is the sentence which the rhyme is in. ''' def IndexLyrics_NLG(): index = [] #declare output files lyricsFileCompressed = "LyricsCompressed" + ".txt" lyricsFileCompressed = os.path.join(dir, "Text", lyricsFileCompressed) indexFile = "Index" + ".txt" indexFile = os.path.join(dir,"Text", indexFile) #make a an index for the lyrics with open(indexFile, "w") as file: f=open(lyricsFileCompressed) lines=f.readlines() for x in range(0, len(lines)-1): try: #store the last word in the line in the index word_list = lines[x].split() index.append(word_list[-1]) file.write(word_list[-1]) file.write("\n") except: print("Lyrics skipped because of encoding") return index
[ "noreply@github.com" ]
liam9.noreply@github.com
915d93ebfb350f0981dab2804861e7fe19306cc7
b0ede55e98d454f558e5397369f9265893deedb5
/SWEA/D3/4698_special_prime.py
7e90335df7e3a59a8beb755177ef82b1905f53a7
[]
no_license
YeonggilGo/python_practice
5ff65852900c4c6769d541af16f74a27a67920ec
43082568b5045a8efc1d596074bdca3e66b2fed1
refs/heads/master
2023-06-22T02:09:31.906745
2023-06-17T01:27:22
2023-06-17T01:27:22
280,361,205
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
primes = [] numbers = [True] * 1000001 numbers[0], numbers[1] = False, False for i in range(2, 1000001): if numbers[i]: primes.append(i) for j in range(i, 1000001, i): numbers[j] = False T = int(input()) for tc in range(1, T + 1): D, A, B = map(int, input().split()) ans = 0 for prime in primes: if prime < A: continue elif prime > B: break if str(D) in str(prime): ans += 1 print(f'#{tc} {ans}')
[ "dudrlf1859@naver.com" ]
dudrlf1859@naver.com
ac25687848306c6a9cff59e9ab2267b666d426d9
71f00ed87cd980bb2f92c08b085c5abe40a317fb
/BestOreo/W2V_CNN_robustchecking.py
e2d480f65e769e2d5e81dee662d63187818b0ca9
[]
no_license
factoryofthesun/Rao-NLP
2bd8269a8eed1cb352c14c8fde88e3111ccca088
87f9723f5ee51bd21310d58c3425a2a7271ec3c5
refs/heads/master
2023-04-18T08:54:08.370155
2020-06-09T23:24:07
2020-06-09T23:24:07
248,070,291
0
1
null
2021-04-30T21:13:04
2020-03-17T20:49:03
Python
UTF-8
Python
false
false
9,146
py
# -*- coding: utf-8 -*- """Shuaiqi_train.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/11DfSUkrGQfPsEtfHoJxewiBcqBM8OlfZ """ # Commented out IPython magic to ensure Python compatibility. # %tensorflow_version 1.x import tensorflow as tf import numpy as np import pandas as pd import W2V_Helpers.data_helpers as data_helpers from W2V_Helpers.w2v_kfold import train_word2vec from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Flatten, Input, MaxPooling1D, Convolution1D, Embedding from keras.layers.merge import Concatenate from keras.backend import clear_session from keras.preprocessing import sequence from sklearn.model_selection import KFold import time # ---------------------- Parameters section ------------------- # # Model type. See Kim Yoon's Convolutional Neural Networks for Sentence Classification, Section 3 model_type = "CNN-non-static" # CNN-rand|CNN-non-static|CNN-static t0 = time.time() # Data source from pathlib import Path data_path = str(Path(__file__).parent / "../Data") train_data_path = data_path + "/mturk_train.csv" train_data_x_col = "inputtext" train_data_y_cols = ["rating1", "rating2", "rating3", "rating4", "rating5"] output_dir = "output" #models_dir = "models" # Model Hyperparameters embedding_dim = 50 filter_sizes = (3, 8) num_filters = 8 dropout_prob = (0.7, 0.9) hidden_dims = 70 # Training parameters batch_size = 64 num_epochs = 50 # Prepossessing parameters sequence_length = 400 max_words = 5000 # Word2Vec parameters (see train_word2vec) min_word_count = 1 context = 10 # ration of training dataset train_percent = 0.9 # # ---------------------- Parameters end ----------------------- def format_time(elapsed): ''' Takes a time in seconds and returns a string hh:mm:ss ''' # Round to the nearest second. elapsed_rounded = int(round((elapsed))) # Format as hh:mm:ss return str(datetime.timedelta(seconds=elapsed_rounded)) def load_train_data(kfold = False): x, y, vocabulary, vocabulary_inv_list = data_helpers.load_train_data(train_path=train_data_path, train_x_col=train_data_x_col, train_y_cols=train_data_y_cols, save_path="W2V_Helpers" ) vocabulary_inv = {key: value for key, value in enumerate(vocabulary_inv_list)} y = y.argmax(axis=1) if not kfold: # Shuffle data shuffle_indices = np.random.permutation(np.arange(len(y))) x = x[shuffle_indices] y = y[shuffle_indices] train_len = int(len(x) * train_percent) x_train = x[:train_len] y_train = y[:train_len] x_val = x[train_len:] y_val = y[train_len:] return x_train, y_train, x_val, y_val, vocabulary_inv else: #Create 10 folds for 10% training/validation train_ind_list = [] test_ind_list = [] kf = KFold(n_splits = 10) for train_ind, test_ind in kf.split(x): train_ind_list.append(train_ind) test_ind_list.append(test_ind) return x, y, train_ind_list, test_ind_list, vocabulary_inv def loadModel(x_train, x_val, vocabulary_inv): # Prepare embedding layer weights and convert inputs for static model print("Model type is", model_type) if model_type in ["CNN-non-static", "CNN-static"]: embedding_weights = train_word2vec(np.vstack((x_train, x_val)), vocabulary_inv, num_features=embedding_dim, min_word_count=min_word_count, context=context) if model_type == "CNN-static": x_train = np.stack([np.stack([embedding_weights[word] for word in sentence]) for sentence in x_train]) x_val = np.stack([np.stack([embedding_weights[word] for word in sentence]) for sentence in x_val]) print("x_train static shape:", x_train.shape) print("x_val static shape:", x_val.shape) elif model_type == "CNN-rand": embedding_weights = None else: raise ValueError("Unknown model type") # Build model if model_type == "CNN-static": input_shape = (sequence_length, embedding_dim) else: input_shape = (sequence_length,) model_input = Input(shape=input_shape) # Static model does not have embedding layer if model_type == "CNN-static": z = model_input else: z = Embedding(len(vocabulary_inv), embedding_dim, input_length=sequence_length, name="embedding")(model_input) z = Dropout(dropout_prob[0])(z) # Convolutional block conv_blocks = [] for sz in filter_sizes: conv = Convolution1D(filters=num_filters, kernel_size=sz, padding="valid", activation="relu", strides=1)(z) conv = MaxPooling1D(pool_size=2)(conv) conv = Flatten()(conv) conv_blocks.append(conv) z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] z = Dropout(dropout_prob[1])(z) z = Dense(hidden_dims, activation="relu")(z) model_output = Dense(1, activation="sigmoid")(z) model = Model(model_input, model_output) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) model.summary() # Initialize weights with word2vec if model_type == "CNN-non-static": weights = np.array([v for v in embedding_weights.values()]) print("Initializing embedding layer with word2vec weights, shape", weights.shape) embedding_layer = model.get_layer("embedding") embedding_layer.set_weights([weights]) return model import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt path = str(Path(__file__).parent / "../Plots") def plotHistory(history, i): epoch_count = range(1, len(history.history['loss']) + 1) plt.plot(epoch_count, history.history['loss'], 'r--') plt.plot(epoch_count, history.history['val_loss'], 'b-') plt.legend(['Training Loss', 'Validation Loss']) plt.xlabel('Epoch') plt.ylabel('Loss') plt.savefig(path + "/rep_w2v_cnn_loss_{}.png".format(i)) plt.clf() plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') plt.savefig(path + "/rep_w2v_cnn_accuracy_{}.png".format(i)) plt.clf() # Data Preparation print("Load data...") x_train, y_train, x_val, y_val, vocabulary_inv = load_train_data() #x, y, train_ind_list, test_ind_list, vocabulary_inv = load_train_data(True) loss_list = [] accuracy_list = [] for i in range(5): if sequence_length != x_val.shape[1]: print("Adjusting sequence length for actual size") sequence_length = x_val.shape[1] print("x_train shape:", x_train.shape) print("x_val shape:", x_val.shape) print("Vocabulary Size: {:d}".format(len(vocabulary_inv))) model = loadModel(x_train, x_val, vocabulary_inv) # Train the model from keras.callbacks import EarlyStopping early_stopping = EarlyStopping(min_delta = 0.01, mode = 'max', monitor='val_acc', patience = 2) callback = [early_stopping] history = model.fit(x_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(x_val, y_val), verbose=1) plotHistory(history, i) score = model.evaluate(x_val, y_val, batch_size=64, verbose=1) print('Test loss:', score[0]) print('Test accuracy:', score[1]) loss_list.append(score[0]) accuracy_list.append(score[1]) clear_session() print("Average validation loss: {}".format(sum(loss_list)/len(loss_list))) print("Average validation accuracy: {}".format(sum(accuracy_list)/len(accuracy_list))) print("Total script time: {}".format(format_time(time.time() - t0))) # Create count of the number of epochs # Visualize learning curve. Here learning curve is not ideal. It should be much smoother as it decreases. #As mentioned before, altering different hyper parameters especially learning rate can have a positive impact #on accuracy and learning curve. # # **If validation loss >> training loss you can call it overfitting.** # # If validation loss > training loss you can call it some overfitting. # # If validation loss < training loss you can call it some underfitting. # # If validation loss << training loss you can call it underfitting. # # Just right if training loss ~ validation loss # # ----------------------------------------- # # ### Steps for reducing overfitting: # # 1. Add more data # 2. Use data augmentation # 3. Use architectures that generalize well # 4. Add regularization (mostly dropout, L1/L2 regularization are also possible) # 5. Reduce architecture complexity. # # print test accuracy '''score = model.evaluate(x_val, y_val, batch_size=32, verbose=1) print('Test loss:', score[0]) print('Test accuracy:', score[1])''' #data_helpers.save_model(model, models_dir)
[ "guanzhi97@gmail.com" ]
guanzhi97@gmail.com
0b03d074fa0c57ddbd4539401be24204d3559b54
322df586ef094872d4c4609097bcf3e52c361695
/test/operations/math/test_div.py
c8d4161e541ba3d40cd52468dfb862576e53b667
[ "MIT" ]
permissive
xpenalosa/PyPc
04b19d05d8628d39f9bc8759e3875620cce89c06
fff3ae29b800d127d261492098aecbbf6719bd07
refs/heads/master
2020-12-09T06:22:11.306317
2020-02-16T21:11:30
2020-02-16T21:11:30
233,220,411
0
0
null
null
null
null
UTF-8
Python
false
false
2,282
py
from pypc.memory import MemoryTypes from pypc.operations import Operations from test.operations.operation_test import OperationTestBase class DivTest(OperationTestBase): def test_div_basic(self): memory_type = MemoryTypes.BASIC initial_data = "\n".join([ "DIV 8, 2, 0"]) expected_data = list( [4, 8, 2, 0, Operations.END.value]) result_mem = self.run_pc(memory_type, self.parse_input(initial_data)) self.assertEqual(expected_data, result_mem.data) self.assertEqual(result_mem.address, 4) def test_div_basic_decimal(self): memory_type = MemoryTypes.BASIC initial_data = "\n".join([ "DIV 8, 3, 0"]) expected_data = list( [2, 8, 3, 0, Operations.END.value]) result_mem = self.run_pc(memory_type, self.parse_input(initial_data)) self.assertEqual(expected_data, result_mem.data) self.assertEqual(result_mem.address, 4) def test_div_mod_access_ll(self): memory_type = MemoryTypes.MODIFIED_ACCESS initial_data = "\n".join([ "DIV 8L, 2L, 0"]) expected_data = list( [4, 8, 2, 0, Operations.END.value]) result_mem = self.run_pc(memory_type, self.parse_input(initial_data)) self.assertEqual(expected_data, result_mem.data) self.assertEqual(result_mem.address, 4) def test_div_mod_access_lr(self): memory_type = MemoryTypes.MODIFIED_ACCESS initial_data = "\n".join([ "DIV 8L, 1, 0"]) expected_data = list( [1, 8, 1, 0, Operations.END.value]) result_mem = self.run_pc(memory_type, self.parse_input(initial_data)) self.assertEqual(expected_data, result_mem.data) self.assertEqual(result_mem.address, 4) def test_div_mod_access_rr(self): memory_type = MemoryTypes.MODIFIED_ACCESS initial_data = "\n".join([ "DIV 3, 2, 0"]) expected_data = list( [0, 3, 2, 0, Operations.END.value]) result_mem = self.run_pc(memory_type, self.parse_input(initial_data)) self.assertEqual(expected_data, result_mem.data) self.assertEqual(result_mem.address, 4)
[ "xavier.penalosa.esteller@gmail.com" ]
xavier.penalosa.esteller@gmail.com
cf8ae1bf18dadeb8aa363dc03bb7037db385880c
3747768c664256fe65108b4bc21e6baa7eb7a613
/ex5_2.py
134e8bdceb2cf74704904190393ea28a661a4674
[]
no_license
Ellzud/Python_Hard
c4a41e606620b426c7e16410190598d30049e17c
32c1bb12f18bde9b1d7d7516cd4621ac9416ab8d
refs/heads/master
2020-03-12T15:53:32.439419
2018-04-25T13:54:39
2018-04-25T13:54:39
130,702,309
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
# Learn python the hard way # exercise 5 # more variables and printing # Rafael Serrano 4/23/2018 name = 'Zed A. Shaw' age = 35 # not a lie height = 74 # inches weight = 180 # lbs eyes = 'Blue' teeth = 'White' hair = 'Brown' print "Let's talk about %s." % name print "He's %d inches tall." % height print "he's %d pounds heavy." % weight print "Actually that's not too heavy." print "He's got %s eyes and %s hair." % (eyes, hair) print "His teeth are usually %s depending on the coffee." % teeth #this line is tricky, we will try to get it right print "If I add %d, %d, and %d I get %d." % (age, height, weight, age + height + weight)
[ "serrano.rafael1@gmail.com" ]
serrano.rafael1@gmail.com
a315cc93eb48378a0694c0131b8d1a8bd460e157
432b9b1ba469ef94ffd93065d4fde5d8c89f1a6e
/DM3/src/data.py
22298997aad2e1ff16e001bfe849a1acca56c01a
[]
no_license
NelleV/SVM
0ea9931e2152d6200ef094325a9f1838eed99943
a46cfecb7f5d4361a93d36bdf85c2cc76c72838b
refs/heads/master
2020-06-05T07:31:34.034416
2012-03-06T19:36:40
2012-03-06T19:36:40
3,238,738
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
import csv import numpy as np def libras_movement(): """ Fetches the Libras Movement dataset Returns ------- X, Y """ dataset = csv.reader(open('data/movement_libras.data', 'r')) X = [] Y = [] for element in dataset: X.append(element[:-1]) Y.append(element[-1]) return np.array(X).astype('float'), np.array(Y).astype('float')
[ "nelle.varoquaux@gmail.com" ]
nelle.varoquaux@gmail.com
13cfea6db55dada74d7680481f21ba2ede13b5c4
616024faf0f95aafb76db2f6caa96c5aa2fccbf0
/session.py
a8ae892a5f0b1041e9f8ff87a3aff9387c6a857b
[]
no_license
Shevane12/Chisel
154f0025664f23c0eaf52ebcb64aa3a7c2495115
d3a7e8a5926e5ed9ed6edf0fed6e166387352e8c
refs/heads/master
2022-12-30T05:56:08.033868
2020-10-23T23:27:48
2020-10-23T23:27:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,057
py
from requests import Session from selenium.webdriver import Chrome from selenium.webdriver.chrome.options import Options from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support.expected_conditions import title_is from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains from random import choice from time import sleep from cloudscraper import CloudScraper from http.cookiejar import CookiePolicy from pymongo import MongoClient, DESCENDING from tldextract import TLDExtract from credentials import mongodb from tempfile import TemporaryDirectory from filelock import FileLock from os.path import join from urllib.parse import urlsplit import re from random import random from requests.exceptions import ConnectionError, ReadTimeout import pandas as pd import requests from datetime import datetime from copy import deepcopy import magic class BlockCookies(CookiePolicy): return_ok = set_ok = domain_return_ok = path_return_ok = lambda self, *args, **kwargs: False netscape = True rfc2965 = hide_cookie2 = False class ChiselSession(Session): def __init__(self): super().__init__() self.cookies.set_policy(BlockCookies()) self.options = Options() self.options.headless = True self.options.add_argument('window-size=1920,1080') with Chrome(options=self.options) as browser: user_agent = browser.execute_script('return navigator.userAgent').replace('Headless', '') self.headers['user-agent'] = user_agent self.options.add_argument('user-agent=' + user_agent) self.database = MongoClient(**mongodb)['chisel'] self.database['tokens'].create_index(keys=(('domain', 1), ('ip', 1)), unique=True) self.database['history'].create_index(keys='domain', unique=True) self.database['proxies'].create_index(keys='proxy', unique=True) self.database['proxies'].create_index(keys='works') self.database['proxies'].create_index(keys='inserted') self.locks = TemporaryDirectory() self.IPv4 = requests.get('https://api.ipify.org/').text self.extract = TLDExtract(cache_dir=self.locks.name) def _domain(self, url): extracted = self.extract(url) return '.' + extracted.domain + '.' + extracted.suffix def _ip(self, proxy): if proxy: return urlsplit(proxy).hostname else: return self.IPv4 def save_tokens(self, url, proxy, cookie1, cookie2): if not cookie1 or not cookie2: return domain = self._domain(url) ip = self._ip(proxy) self.database['tokens'].update({ 'domain': domain, 'ip': ip, }, { 'domain': domain, 'ip': ip, 'token1': cookie1['value'], 'token2': cookie2['value'], }, True) def load_tokens(self, url, proxy): document = self.database['tokens'].find_one({'domain': self._domain(url), 'ip': self._ip(proxy)}) if document is None: return {} return {'__cfduid': document['token1'], 'cf_clearance': document['token2']} def save_history(self, url, blocked): domain = urlsplit(url).netloc if not self.database['history'].count({'domain': domain}): self.database['history'].insert({ 'domain': domain, 'visits': 0, 'bans': 0, }) increments = {'visits': 1} if blocked: increments['bans'] = 1 self.database['history'].update({'domain': domain}, {'$inc': increments}) def load_history(self, url): document = self.database['history'].find_one({'domain': urlsplit(url).netloc}) return document and random() < document['bans'] / (document['visits'] + 1) def request(self, method, url, **kwargs): assert urlsplit(url).scheme in ('http', 'https') resp = None retries = 0 cookies = kwargs.pop('cookies', {}) blocked = self.load_history(url) proxy = None tokens = {} while retries < 5: pass if retries == 0 or tokens == self.load_tokens(url, proxy): proxy = self.get_random_proxy(blocked) tokens = self.load_tokens(url, proxy) try: resp = super().request( method=method, url=url, cookies={**cookies, **tokens}, proxies={'http': proxy, 'https': proxy}, timeout=60, **kwargs, ) except (ConnectionError, ReadTimeout): if proxy: self.database['proxies'].update({'proxy': proxy}, {'$set': {'works': False}}) else: retries += 1 print('Retrying "{}" after connection error ...'.format(url)) continue if 'content-type' not in resp.headers: resp.headers['content-type'] = magic.from_buffer(resp.content, True) if 'content-length' not in resp.headers: resp.headers['content-length'] = str(len(resp.content)) if resp.headers['content-type'].startswith('text/html') and re.search(r'<title>\s*BANNED\s*</title>', resp.text): resp.status_code = 403 if not blocked: blocked = resp.status_code in (429, 403) self.save_history(url, blocked) if resp.ok or resp.status_code == 404: return resp if CloudScraper.is_IUAM_Challenge(resp) or CloudScraper.is_New_IUAM_Challenge(resp): with FileLock(join(self.locks.name, self._domain(url) + ' -- ' + self._ip(proxy))): if tokens == self.load_tokens(url, proxy): options = deepcopy(self.options) if proxy: options.add_argument('--proxy-server=' + proxy) with Chrome(options=options) as browser: with open('selenium.js', 'r') as fp: browser.execute_cdp_cmd('Page.addScriptToEvaluateOnNewDocument', {'source': fp.read()}) browser.get(url) actions = ActionChains(browser) for _ in range(30): actions.send_keys(choice((Keys.DOWN, Keys.UP, Keys.LEFT, Keys.RIGHT))).perform() try: WebDriverWait(browser, 30).until_not(title_is('Just a moment...')) except TimeoutException: pass self.save_tokens(url, proxy, browser.get_cookie('__cfduid'), browser.get_cookie('cf_clearance')) print('Retrying "{}" after status code {} ...'.format(url, resp.status_code)) sleep(2 ** retries) retries += 1 return resp def get_random_proxy(self, enabled): if not enabled: return None return self.database['proxies'].aggregate([ {'$match': {'works': True}}, {'$sample': {'size': 1}}, ]).next()['proxy'] def store_proxy_series(self, series): for item in series: if not self.database['proxies'].count({'proxy': item}): self.database['proxies'].insert({ 'proxy': item, 'works': True, 'inserted': datetime.now(), }) def worker(self): while True: pass df = pd.read_html(requests.get('https://www.socks-proxy.net/').text)[0][:-1] df['Port'] = df['Port'].astype(int).astype(str) df['Version'] = df['Version'].str.lower() self.store_proxy_series(df['Version'] + '://' + df['IP Address'] + ':' + df['Port']) df = pd.read_html(requests.get('https://free-proxy-list.net/').text)[0][:-1] df['Port'] = df['Port'].astype(int).astype(str) df['Https'] = df['Https'].map({'yes': 'https', 'no': 'http'}) self.store_proxy_series(df['Https'] + '://' + df['IP Address'] + ':' + df['Port']) for proxy in [doc['proxy'] for doc in self.database['proxies'].find().sort('inserted', DESCENDING)]: try: works = all(requests.head( url=protocol + '://connectivitycheck.gstatic.com/generate_204', proxies={protocol: proxy}, timeout=5, ).status_code == 204 for protocol in ('http', 'https')) except (ConnectionError, ReadTimeout): works = False self.database['proxies'].update({'proxy': proxy}, {'$set': {'works': works}})
[ "deboer.wilco@gmail.com" ]
deboer.wilco@gmail.com
a82beeb3c4f4b2b11632854d1f7251427ba6389b
9d5c9d9373002ab4ed1b493136517e8b4ab160e5
/saas/backend/apps/application/migrations/0009_auto_20200902_1134.py
1040ea6a30228a6fcf4b7f4921d2955e0bf91fbf
[ "MIT" ]
permissive
robert871126/bk-iam-saas
f8299bb632fc853ef0131d445f84c6084fc84aba
33c8f4ffe8697081abcfc5771b98a88c0578059f
refs/heads/master
2023-08-23T19:23:01.987394
2021-10-22T09:45:28
2021-10-22T09:45:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,183
py
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-权限中心(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Generated by Django 2.2.14 on 2020-09-02 03:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('application', '0008_auto_20200803_1157'), ] operations = [ migrations.AlterField( model_name='approvalnode', name='approver', field=models.TextField(help_text='多个以英文逗号分隔', verbose_name='审批人'), ), ]
[ "zhu327@gmail.com" ]
zhu327@gmail.com
5fa380db591b15f03f9b47603efafac84ba50a64
994e60f19bf8cf45317cf48a92bee64ac798eb44
/code/loop.py
b487f1a007b8844e7844a0e86234323c812c3b58
[]
no_license
ozntur/col_oil_prod
ad74e9182d594ca30cda213d8e7648cb8e8e0c4b
15247b2c937a7f5cf6ee64e520f74578fc07ca11
refs/heads/master
2022-11-07T05:52:02.642364
2020-07-02T18:43:27
2020-07-02T18:43:27
276,159,482
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
# USEFUL LOOP TO DOWNLOAD DATA import geopandas as gpd import pandas as pd ds = gpd.read_file('data/WELLS_SHP/Wells.shp') print('asd') #print('done') print(ds.API[ds.Facil_Stat == 'PR']) #print('done') d = {} for x in (ds.API[ds.Facil_Stat =='PR']): a = ds.API_County.loc[ds.API == x].item() b = ds.API_Seq.loc[ds.API == x].item() print('x = ' + x + ' a = ' + a + ' b =' + b) website = 'https://cogcc.state.co.us/production/?&apiCounty='+a+'&apiSequence='+b+'&APIWB=00&Year=All' print(website) dfs = pd.read_html(website) dfs[1]['First of Month'] = pd.to_datetime(dfs[1]['First of Month']) data = { 'Time' : dfs[1]['First of Month'] , 'Oilprod' : dfs[1]['Oil Produced'] } d[x] = pd.DataFrame(data) if b == '08294': break print('finished') for m in list(d): plt.plot(d[m]['Time'], d[m]['Oilprod'], label = m) #plt.legend() plt.xlabel('Date') plt.ylabel('Oil Produced') plt.show()
[ "ozan.turkes@gmail.com" ]
ozan.turkes@gmail.com
92477151719bfd2fe4fb01b879caecf255490283
9fa57500b2f5201048da971d1e5e5cc4af056dc9
/tests/unit/models/reddit/test_inline_media.py
ec5a18607b1761d46a42e6768b73a9a6810a1df5
[ "BSD-2-Clause" ]
permissive
LilSpazJoekp/asyncpraw
7fc95bf88f875010097d601e7f488748392fedf6
afddfb770b31a08f06a1b8ced6af803e499804e7
refs/heads/master
2022-04-01T09:42:42.035001
2022-03-04T21:32:09
2022-03-04T21:32:09
320,988,731
0
0
BSD-2-Clause
2020-12-13T05:19:57
2020-12-13T05:10:34
null
UTF-8
Python
false
false
2,307
py
from asyncpraw.models import InlineGif, InlineImage, InlineMedia, InlineVideo from ... import UnitTest class TestInlineMedia(UnitTest): def test_equality(self): media1 = InlineMedia(path="path1", caption="caption1") media1.media_id = "media_id1" media2 = InlineMedia(path="path1", caption="caption1") media2.media_id = "media_id1" media3 = InlineMedia(path="path2", caption="caption2") media3.media_id = "media_id2" assert media1 == media1 assert media2 == media2 assert media3 == media3 assert media1 == media2 assert media2 != media3 assert media1 != media3 def test_repr(self): media = InlineMedia(path="path1", caption="caption1") no_caption = InlineMedia(path="path1") gif = InlineGif(path="gif_path1", caption="gif_caption1") image = InlineImage(path="image_path1", caption="image_caption1") video = InlineVideo(path="video_path1", caption="video_caption1") assert repr(media) == "<InlineMedia caption='caption1'>" assert repr(no_caption) == "<InlineMedia caption=None>" assert repr(gif) == "<InlineGif caption='gif_caption1'>" assert repr(image) == "<InlineImage caption='image_caption1'>" assert repr(video) == "<InlineVideo caption='video_caption1'>" def test_str(self): media = InlineMedia(path="path1", caption="caption1") no_caption = InlineMedia(path="path1") gif = InlineGif(path="gif_path1", caption="gif_caption1") image = InlineImage(path="image_path1", caption="image_caption1") video = InlineVideo(path="video_path1", caption="video_caption1") media.media_id = "media_media_id" no_caption.media_id = "media_media_id_no_caption" gif.media_id = "gif_media_id" image.media_id = "image_media_id" video.media_id = "video_media_id" assert str(media) == '\n\n![None](media_media_id "caption1")\n\n' assert str(no_caption) == '\n\n![None](media_media_id_no_caption "")\n\n' assert str(gif) == '\n\n![gif](gif_media_id "gif_caption1")\n\n' assert str(image) == '\n\n![img](image_media_id "image_caption1")\n\n' assert str(video) == '\n\n![video](video_media_id "video_caption1")\n\n'
[ "15524072+LilSpazJoekp@users.noreply.github.com" ]
15524072+LilSpazJoekp@users.noreply.github.com
92322e9b068c373a41915258ab7f5d03e802e076
187dfad282778ba66c9fbc410e53a25410b8ad57
/hellosign_python_sdk/tests/functional_tests/test_team.py
cb8dc2198a36e323e5900c81bbf5c88276884f63
[]
no_license
binti-family/hellosign-python-sdk
eaff6f0bd1d1905cc5a0e64d6cd7e9b70adad8b3
5acf8c74c4ae85e6a7be9e850d8d1f2a55c11595
refs/heads/master
2021-01-21T02:41:13.123103
2014-03-26T08:00:22
2014-03-26T08:00:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,489
py
from unittest import TestCase from hellosign_python_sdk.tests.test_helper import api_key from hellosign_python_sdk.hsclient import HSClient from hellosign_python_sdk.resource.team import Team from hellosign_python_sdk.utils.exception import NotFound, HSException, InvalidEmail, Forbidden class TestTeam(TestCase): def setUp(self): self.client = HSClient(api_key=api_key) def test_add_team_member_with_invalid_info(self): try: self.client.add_team_member(email_address="in valid email") except InvalidEmail: pass try: self.client.add_team_member(account_id="in valid account_id") except NotFound: pass def test_team_functions(self): try: # You already in a team # save your old team name -> update new team name -> add member -> # remove member -> restore your old team name team = self.client.get_team_info() old_team_name = team.name team = self.client.update_team_name("New team name") self.assertEquals(isinstance(team, Team), True) try: team = self.client.add_team_member( email_address="not_existed_user@example.com") self.assertEquals(isinstance(team, Team), True) except Forbidden: pass try: self.client.add_team_member() except HSException: pass team = self.client.remove_team_member( email_address="not_existed_user@example.com") self.assertEquals(isinstance(team, Team), True) team = self.client.update_team_name(old_team_name) self.assertEquals(isinstance(team, Team), True) except NotFound: # You do not belong to any teams # create team -> add member, remove member, destroy team team = self.client.create_team("New team") self.assertEquals(team.name, "New team") team = self.client.add_team_member( email_address="not_existed_user@example.com") self.assertEquals(isinstance(team, Team), True) team = self.client.remove_team_member( email_address="not_existed_user@example.com") self.assertEquals(isinstance(team, Team), True) result = self.client.destroy_team() self.assertEquals(result, True)
[ "minhdanh@tgm.vn" ]
minhdanh@tgm.vn
62eaf9858c418fef633ac4d4dff91466518cb03b
c47e4c82a68563dbb5828dae8e9b1a3598297b7c
/NajaParser.py
8f71d0beb5236a2d8f756c33fae40069a7b2d5b8
[]
no_license
MarceloCFSF/Naja
b0f28afc1a1feae7339d916a2b11189e6be0290a
edc38d5bd02afe840ea2ad006491e0d950191818
refs/heads/master
2023-07-11T15:06:06.850798
2021-08-14T05:17:09
2021-08-14T05:17:09
395,882,114
0
0
null
null
null
null
UTF-8
Python
false
false
38,637
py
# Generated from Naja.g4 by ANTLR 4.9 # encoding: utf-8 from antlr4 import * from io import StringIO import sys if sys.version_info[1] > 5: from typing import TextIO else: from typing.io import TextIO def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3\31") buf.write("\u008d\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\3\2\3\2\3\2\3\2\3") buf.write("\3\3\3\3\3\3\3\7\3+\n\3\f\3\16\3.\13\3\3\4\3\4\3\5\6\5") buf.write("\63\n\5\r\5\16\5\64\3\6\3\6\3\6\3\6\3\6\3\6\3\6\5\6>\n") buf.write("\6\3\7\3\7\3\7\3\7\3\7\3\b\3\b\3\b\3\b\3\b\3\t\3\t\3\n") buf.write("\3\n\3\n\3\n\3\13\3\13\3\13\3\13\6\13T\n\13\r\13\16\13") buf.write("U\3\13\3\13\5\13Z\n\13\3\f\3\f\3\f\6\f_\n\f\r\f\16\f`") buf.write("\3\f\3\f\3\r\3\r\3\r\3\r\6\ri\n\r\r\r\16\rj\3\r\3\r\3") buf.write("\16\3\16\3\16\6\16r\n\16\r\16\16\16s\3\16\3\16\3\16\3") buf.write("\16\3\17\3\17\3\17\3\17\3\17\3\17\3\20\3\20\3\20\3\20") buf.write("\7\20\u0084\n\20\f\20\16\20\u0087\13\20\5\20\u0089\n\20") buf.write("\3\21\3\21\3\21\2\2\22\2\4\6\b\n\f\16\20\22\24\26\30\32") buf.write("\34\36 \2\5\3\2\5\6\3\2\26\27\4\2\26\26\30\30\2\u008b") buf.write("\2\"\3\2\2\2\4&\3\2\2\2\6/\3\2\2\2\b\62\3\2\2\2\n=\3\2") buf.write("\2\2\f?\3\2\2\2\16D\3\2\2\2\20I\3\2\2\2\22K\3\2\2\2\24") buf.write("O\3\2\2\2\26[\3\2\2\2\30d\3\2\2\2\32n\3\2\2\2\34y\3\2") buf.write("\2\2\36\u0088\3\2\2\2 \u008a\3\2\2\2\"#\7\3\2\2#$\5\b") buf.write("\5\2$%\7\4\2\2%\3\3\2\2\2&\'\5\6\4\2\',\7\26\2\2()\7\22") buf.write("\2\2)+\7\26\2\2*(\3\2\2\2+.\3\2\2\2,*\3\2\2\2,-\3\2\2") buf.write("\2-\5\3\2\2\2.,\3\2\2\2/\60\t\2\2\2\60\7\3\2\2\2\61\63") buf.write("\5\n\6\2\62\61\3\2\2\2\63\64\3\2\2\2\64\62\3\2\2\2\64") buf.write("\65\3\2\2\2\65\t\3\2\2\2\66>\5\f\7\2\67>\5\4\3\28>\5\16") buf.write("\b\29>\5\22\n\2:>\5\24\13\2;>\5\30\r\2<>\5\32\16\2=\66") buf.write("\3\2\2\2=\67\3\2\2\2=8\3\2\2\2=9\3\2\2\2=:\3\2\2\2=;\3") buf.write("\2\2\2=<\3\2\2\2>\13\3\2\2\2?@\7\7\2\2@A\7\r\2\2AB\7\26") buf.write("\2\2BC\7\16\2\2C\r\3\2\2\2DE\7\b\2\2EF\7\r\2\2FG\5\20") buf.write("\t\2GH\7\16\2\2H\17\3\2\2\2IJ\t\3\2\2J\21\3\2\2\2KL\7") buf.write("\26\2\2LM\7\21\2\2MN\5\36\20\2N\23\3\2\2\2OP\7\t\2\2P") buf.write("Q\5\34\17\2QS\7\23\2\2RT\5\n\6\2SR\3\2\2\2TU\3\2\2\2U") buf.write("S\3\2\2\2UV\3\2\2\2VW\3\2\2\2WY\7\24\2\2XZ\5\26\f\2YX") buf.write("\3\2\2\2YZ\3\2\2\2Z\25\3\2\2\2[\\\7\n\2\2\\^\7\23\2\2") buf.write("]_\5\n\6\2^]\3\2\2\2_`\3\2\2\2`^\3\2\2\2`a\3\2\2\2ab\3") buf.write("\2\2\2bc\7\24\2\2c\27\3\2\2\2de\7\13\2\2ef\5\34\17\2f") buf.write("h\7\23\2\2gi\5\n\6\2hg\3\2\2\2ij\3\2\2\2jh\3\2\2\2jk\3") buf.write("\2\2\2kl\3\2\2\2lm\7\24\2\2m\31\3\2\2\2no\7\f\2\2oq\7") buf.write("\23\2\2pr\5\n\6\2qp\3\2\2\2rs\3\2\2\2sq\3\2\2\2st\3\2") buf.write("\2\2tu\3\2\2\2uv\7\24\2\2vw\7\13\2\2wx\5\34\17\2x\33\3") buf.write("\2\2\2yz\7\r\2\2z{\t\4\2\2{|\7\25\2\2|}\t\4\2\2}~\7\16") buf.write("\2\2~\35\3\2\2\2\177\u0089\7\27\2\2\u0080\u0085\5 \21") buf.write("\2\u0081\u0082\7\20\2\2\u0082\u0084\5 \21\2\u0083\u0081") buf.write("\3\2\2\2\u0084\u0087\3\2\2\2\u0085\u0083\3\2\2\2\u0085") buf.write("\u0086\3\2\2\2\u0086\u0089\3\2\2\2\u0087\u0085\3\2\2\2") buf.write("\u0088\177\3\2\2\2\u0088\u0080\3\2\2\2\u0089\37\3\2\2") buf.write("\2\u008a\u008b\t\4\2\2\u008b!\3\2\2\2\f,\64=UY`js\u0085") buf.write("\u0088") return buf.getvalue() class NajaParser ( Parser ): grammarFileName = "Naja.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ "<INVALID>", "'head'", "'tail'", "'numero'", "'texto'", "'leia'", "'escreva'", "'se'", "'senao'", "'enquanto'", "'execute'", "'('", "')'", "';'", "<INVALID>", "':'", "','", "'{'", "'}'" ] symbolicNames = [ "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "AP", "FP", "SC", "OP", "ATTR", "VIR", "ACH", "FCH", "OPREL", "ID", "TEXTO", "NUMBER", "WS" ] RULE_prog = 0 RULE_declaravar = 1 RULE_tipo = 2 RULE_bloco = 3 RULE_cmd = 4 RULE_cmdleitura = 5 RULE_cmdescrita = 6 RULE_escrita = 7 RULE_cmdattrib = 8 RULE_cmdselecao = 9 RULE_cmdelse = 10 RULE_cmdenquanto = 11 RULE_cmdexecute = 12 RULE_cmdcondicao = 13 RULE_expr = 14 RULE_termo = 15 ruleNames = [ "prog", "declaravar", "tipo", "bloco", "cmd", "cmdleitura", "cmdescrita", "escrita", "cmdattrib", "cmdselecao", "cmdelse", "cmdenquanto", "cmdexecute", "cmdcondicao", "expr", "termo" ] EOF = Token.EOF T__0=1 T__1=2 T__2=3 T__3=4 T__4=5 T__5=6 T__6=7 T__7=8 T__8=9 T__9=10 AP=11 FP=12 SC=13 OP=14 ATTR=15 VIR=16 ACH=17 FCH=18 OPREL=19 ID=20 TEXTO=21 NUMBER=22 WS=23 def __init__(self, input:TokenStream, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.9") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class ProgContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def bloco(self): return self.getTypedRuleContext(NajaParser.BlocoContext,0) def getRuleIndex(self): return NajaParser.RULE_prog def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterProg" ): listener.enterProg(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitProg" ): listener.exitProg(self) def prog(self): localctx = NajaParser.ProgContext(self, self._ctx, self.state) self.enterRule(localctx, 0, self.RULE_prog) try: self.enterOuterAlt(localctx, 1) self.state = 32 self.match(NajaParser.T__0) self.state = 33 self.bloco() self.state = 34 self.match(NajaParser.T__1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class DeclaravarContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def tipo(self): return self.getTypedRuleContext(NajaParser.TipoContext,0) def ID(self, i:int=None): if i is None: return self.getTokens(NajaParser.ID) else: return self.getToken(NajaParser.ID, i) def VIR(self, i:int=None): if i is None: return self.getTokens(NajaParser.VIR) else: return self.getToken(NajaParser.VIR, i) def getRuleIndex(self): return NajaParser.RULE_declaravar def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterDeclaravar" ): listener.enterDeclaravar(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitDeclaravar" ): listener.exitDeclaravar(self) def declaravar(self): localctx = NajaParser.DeclaravarContext(self, self._ctx, self.state) self.enterRule(localctx, 2, self.RULE_declaravar) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 36 self.tipo() self.state = 37 self.match(NajaParser.ID) self.state = 42 self._errHandler.sync(self) _la = self._input.LA(1) while _la==NajaParser.VIR: self.state = 38 self.match(NajaParser.VIR) self.state = 39 self.match(NajaParser.ID) self.state = 44 self._errHandler.sync(self) _la = self._input.LA(1) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class TipoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def getRuleIndex(self): return NajaParser.RULE_tipo def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterTipo" ): listener.enterTipo(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitTipo" ): listener.exitTipo(self) def tipo(self): localctx = NajaParser.TipoContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_tipo) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 45 _la = self._input.LA(1) if not(_la==NajaParser.T__2 or _la==NajaParser.T__3): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BlocoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_bloco def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBloco" ): listener.enterBloco(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBloco" ): listener.exitBloco(self) def bloco(self): localctx = NajaParser.BlocoContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_bloco) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 48 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 47 self.cmd() self.state = 50 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmdleitura(self): return self.getTypedRuleContext(NajaParser.CmdleituraContext,0) def declaravar(self): return self.getTypedRuleContext(NajaParser.DeclaravarContext,0) def cmdescrita(self): return self.getTypedRuleContext(NajaParser.CmdescritaContext,0) def cmdattrib(self): return self.getTypedRuleContext(NajaParser.CmdattribContext,0) def cmdselecao(self): return self.getTypedRuleContext(NajaParser.CmdselecaoContext,0) def cmdenquanto(self): return self.getTypedRuleContext(NajaParser.CmdenquantoContext,0) def cmdexecute(self): return self.getTypedRuleContext(NajaParser.CmdexecuteContext,0) def getRuleIndex(self): return NajaParser.RULE_cmd def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmd" ): listener.enterCmd(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmd" ): listener.exitCmd(self) def cmd(self): localctx = NajaParser.CmdContext(self, self._ctx, self.state) self.enterRule(localctx, 8, self.RULE_cmd) try: self.state = 59 self._errHandler.sync(self) token = self._input.LA(1) if token in [NajaParser.T__4]: self.enterOuterAlt(localctx, 1) self.state = 52 self.cmdleitura() pass elif token in [NajaParser.T__2, NajaParser.T__3]: self.enterOuterAlt(localctx, 2) self.state = 53 self.declaravar() pass elif token in [NajaParser.T__5]: self.enterOuterAlt(localctx, 3) self.state = 54 self.cmdescrita() pass elif token in [NajaParser.ID]: self.enterOuterAlt(localctx, 4) self.state = 55 self.cmdattrib() pass elif token in [NajaParser.T__6]: self.enterOuterAlt(localctx, 5) self.state = 56 self.cmdselecao() pass elif token in [NajaParser.T__8]: self.enterOuterAlt(localctx, 6) self.state = 57 self.cmdenquanto() pass elif token in [NajaParser.T__9]: self.enterOuterAlt(localctx, 7) self.state = 58 self.cmdexecute() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdleituraContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AP(self): return self.getToken(NajaParser.AP, 0) def ID(self): return self.getToken(NajaParser.ID, 0) def FP(self): return self.getToken(NajaParser.FP, 0) def getRuleIndex(self): return NajaParser.RULE_cmdleitura def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdleitura" ): listener.enterCmdleitura(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdleitura" ): listener.exitCmdleitura(self) def cmdleitura(self): localctx = NajaParser.CmdleituraContext(self, self._ctx, self.state) self.enterRule(localctx, 10, self.RULE_cmdleitura) try: self.enterOuterAlt(localctx, 1) self.state = 61 self.match(NajaParser.T__4) self.state = 62 self.match(NajaParser.AP) self.state = 63 self.match(NajaParser.ID) self.state = 64 self.match(NajaParser.FP) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdescritaContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AP(self): return self.getToken(NajaParser.AP, 0) def escrita(self): return self.getTypedRuleContext(NajaParser.EscritaContext,0) def FP(self): return self.getToken(NajaParser.FP, 0) def getRuleIndex(self): return NajaParser.RULE_cmdescrita def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdescrita" ): listener.enterCmdescrita(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdescrita" ): listener.exitCmdescrita(self) def cmdescrita(self): localctx = NajaParser.CmdescritaContext(self, self._ctx, self.state) self.enterRule(localctx, 12, self.RULE_cmdescrita) try: self.enterOuterAlt(localctx, 1) self.state = 66 self.match(NajaParser.T__5) self.state = 67 self.match(NajaParser.AP) self.state = 68 self.escrita() self.state = 69 self.match(NajaParser.FP) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class EscritaContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(NajaParser.ID, 0) def TEXTO(self): return self.getToken(NajaParser.TEXTO, 0) def getRuleIndex(self): return NajaParser.RULE_escrita def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterEscrita" ): listener.enterEscrita(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitEscrita" ): listener.exitEscrita(self) def escrita(self): localctx = NajaParser.EscritaContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_escrita) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 71 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.TEXTO): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdattribContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(NajaParser.ID, 0) def ATTR(self): return self.getToken(NajaParser.ATTR, 0) def expr(self): return self.getTypedRuleContext(NajaParser.ExprContext,0) def getRuleIndex(self): return NajaParser.RULE_cmdattrib def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdattrib" ): listener.enterCmdattrib(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdattrib" ): listener.exitCmdattrib(self) def cmdattrib(self): localctx = NajaParser.CmdattribContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_cmdattrib) try: self.enterOuterAlt(localctx, 1) self.state = 73 self.match(NajaParser.ID) self.state = 74 self.match(NajaParser.ATTR) self.state = 75 self.expr() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdselecaoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmdcondicao(self): return self.getTypedRuleContext(NajaParser.CmdcondicaoContext,0) def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def cmdelse(self): return self.getTypedRuleContext(NajaParser.CmdelseContext,0) def getRuleIndex(self): return NajaParser.RULE_cmdselecao def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdselecao" ): listener.enterCmdselecao(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdselecao" ): listener.exitCmdselecao(self) def cmdselecao(self): localctx = NajaParser.CmdselecaoContext(self, self._ctx, self.state) self.enterRule(localctx, 18, self.RULE_cmdselecao) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 77 self.match(NajaParser.T__6) self.state = 78 self.cmdcondicao() self.state = 79 self.match(NajaParser.ACH) self.state = 81 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 80 self.cmd() self.state = 83 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 85 self.match(NajaParser.FCH) self.state = 87 self._errHandler.sync(self) _la = self._input.LA(1) if _la==NajaParser.T__7: self.state = 86 self.cmdelse() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdelseContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_cmdelse def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdelse" ): listener.enterCmdelse(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdelse" ): listener.exitCmdelse(self) def cmdelse(self): localctx = NajaParser.CmdelseContext(self, self._ctx, self.state) self.enterRule(localctx, 20, self.RULE_cmdelse) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 89 self.match(NajaParser.T__7) self.state = 90 self.match(NajaParser.ACH) self.state = 92 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 91 self.cmd() self.state = 94 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 96 self.match(NajaParser.FCH) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdenquantoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def cmdcondicao(self): return self.getTypedRuleContext(NajaParser.CmdcondicaoContext,0) def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_cmdenquanto def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdenquanto" ): listener.enterCmdenquanto(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdenquanto" ): listener.exitCmdenquanto(self) def cmdenquanto(self): localctx = NajaParser.CmdenquantoContext(self, self._ctx, self.state) self.enterRule(localctx, 22, self.RULE_cmdenquanto) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 98 self.match(NajaParser.T__8) self.state = 99 self.cmdcondicao() self.state = 100 self.match(NajaParser.ACH) self.state = 102 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 101 self.cmd() self.state = 104 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 106 self.match(NajaParser.FCH) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdexecuteContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ACH(self): return self.getToken(NajaParser.ACH, 0) def FCH(self): return self.getToken(NajaParser.FCH, 0) def cmdcondicao(self): return self.getTypedRuleContext(NajaParser.CmdcondicaoContext,0) def cmd(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.CmdContext) else: return self.getTypedRuleContext(NajaParser.CmdContext,i) def getRuleIndex(self): return NajaParser.RULE_cmdexecute def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdexecute" ): listener.enterCmdexecute(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdexecute" ): listener.exitCmdexecute(self) def cmdexecute(self): localctx = NajaParser.CmdexecuteContext(self, self._ctx, self.state) self.enterRule(localctx, 24, self.RULE_cmdexecute) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 108 self.match(NajaParser.T__9) self.state = 109 self.match(NajaParser.ACH) self.state = 111 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 110 self.cmd() self.state = 113 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << NajaParser.T__2) | (1 << NajaParser.T__3) | (1 << NajaParser.T__4) | (1 << NajaParser.T__5) | (1 << NajaParser.T__6) | (1 << NajaParser.T__8) | (1 << NajaParser.T__9) | (1 << NajaParser.ID))) != 0)): break self.state = 115 self.match(NajaParser.FCH) self.state = 116 self.match(NajaParser.T__8) self.state = 117 self.cmdcondicao() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CmdcondicaoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def AP(self): return self.getToken(NajaParser.AP, 0) def OPREL(self): return self.getToken(NajaParser.OPREL, 0) def FP(self): return self.getToken(NajaParser.FP, 0) def ID(self, i:int=None): if i is None: return self.getTokens(NajaParser.ID) else: return self.getToken(NajaParser.ID, i) def NUMBER(self, i:int=None): if i is None: return self.getTokens(NajaParser.NUMBER) else: return self.getToken(NajaParser.NUMBER, i) def getRuleIndex(self): return NajaParser.RULE_cmdcondicao def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCmdcondicao" ): listener.enterCmdcondicao(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCmdcondicao" ): listener.exitCmdcondicao(self) def cmdcondicao(self): localctx = NajaParser.CmdcondicaoContext(self, self._ctx, self.state) self.enterRule(localctx, 26, self.RULE_cmdcondicao) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 119 self.match(NajaParser.AP) self.state = 120 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.NUMBER): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 121 self.match(NajaParser.OPREL) self.state = 122 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.NUMBER): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() self.state = 123 self.match(NajaParser.FP) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExprContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def TEXTO(self): return self.getToken(NajaParser.TEXTO, 0) def termo(self, i:int=None): if i is None: return self.getTypedRuleContexts(NajaParser.TermoContext) else: return self.getTypedRuleContext(NajaParser.TermoContext,i) def OP(self, i:int=None): if i is None: return self.getTokens(NajaParser.OP) else: return self.getToken(NajaParser.OP, i) def getRuleIndex(self): return NajaParser.RULE_expr def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterExpr" ): listener.enterExpr(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitExpr" ): listener.exitExpr(self) def expr(self): localctx = NajaParser.ExprContext(self, self._ctx, self.state) self.enterRule(localctx, 28, self.RULE_expr) self._la = 0 # Token type try: self.state = 134 self._errHandler.sync(self) token = self._input.LA(1) if token in [NajaParser.TEXTO]: self.enterOuterAlt(localctx, 1) self.state = 125 self.match(NajaParser.TEXTO) pass elif token in [NajaParser.ID, NajaParser.NUMBER]: self.enterOuterAlt(localctx, 2) self.state = 126 self.termo() self.state = 131 self._errHandler.sync(self) _la = self._input.LA(1) while _la==NajaParser.OP: self.state = 127 self.match(NajaParser.OP) self.state = 128 self.termo() self.state = 133 self._errHandler.sync(self) _la = self._input.LA(1) pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class TermoContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def ID(self): return self.getToken(NajaParser.ID, 0) def NUMBER(self): return self.getToken(NajaParser.NUMBER, 0) def getRuleIndex(self): return NajaParser.RULE_termo def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterTermo" ): listener.enterTermo(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitTermo" ): listener.exitTermo(self) def termo(self): localctx = NajaParser.TermoContext(self, self._ctx, self.state) self.enterRule(localctx, 30, self.RULE_termo) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 136 _la = self._input.LA(1) if not(_la==NajaParser.ID or _la==NajaParser.NUMBER): self._errHandler.recoverInline(self) else: self._errHandler.reportMatch(self) self.consume() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx
[ "marcelo.cfsf@gmail.com" ]
marcelo.cfsf@gmail.com
63c68801afba7e64361b69647cb7a4ce297ee086
60c71a35efed4321ace93042f822896cd3eb5588
/app/spider/reply/generate_reply_spider.py
85fa1b27a79ea64b8b6bf88904236d8b03d0e1fb
[ "Apache-2.0" ]
permissive
zkguchun/ASoulCnki
b3e21ba3f7c1a5ff4840c73346469418a3d6ec52
e66b8427dac68ed0fd0347447c93f161a04ff785
refs/heads/master
2023-06-30T07:20:03.496162
2021-07-25T02:08:06
2021-07-25T02:08:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,235
py
from app.config import sqla import datetime import app.models as models import tasks def send_low_priority_reply_spider_task(): session = sqla['session'] three_day_ago = int((datetime.datetime.now() - datetime.timedelta(days=3)).timestamp()) low_priority_reply_task = session.query(models.UserDynamic).filter(models.UserDynamic.ctime < three_day_ago).all() for dynamic in low_priority_reply_task: param_tuple = (dynamic.type_id, dynamic.oid, dynamic.status, dynamic.dynamic_id) tasks.get_reply_data_task.apply_async(param_tuple, queue="reply_task_low_priority", routing_key='reply_low') def send_high_priority_reply_spider_task(): session = sqla['session'] three_day_ago = int((datetime.datetime.now() - datetime.timedelta(days=3)).timestamp()) high_priority_reply_task = session.query(models.UserDynamic).filter(models.UserDynamic.ctime >= three_day_ago).all() for dynamic in high_priority_reply_task: param_tuple = (dynamic.type_id, dynamic.oid, dynamic.status, dynamic.dynamic_id) tasks.get_reply_data_task.apply_async(param_tuple, queue="reply_task_high_priority", routing_key='reply_high') if __name__ == '__main__': send_low_priority_reply_spider_task()
[ "stream2000@139.com" ]
stream2000@139.com
0c7002f95919d1deecaa962259fac4be46263738
5dcfef2058f8daae0a6b3436cde9486562943c8c
/2016/Computer Vision Labs/Lab 1/hellocv.py
eb569449a606d236369f864fdd6c99c1044b97d5
[]
no_license
RhysAgombar/CV-Misc-Files
84f8c258edb981885192ab0d1b091c7564244328
8cc98c04a8c0b0fd6a5951f86db132fd4fc58bb0
refs/heads/master
2021-01-20T02:29:21.211280
2017-04-25T23:15:13
2017-04-25T23:15:13
89,414,721
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
from cv2.cv import * img = LoadImage("C:/Users/100515147/Desktop/Computer Vision Labs/Lab 1/test.jpg") NamedWindow("opencv") ShowImage("opencv",img) WaitKey(0)
[ "Rhys.Agombar@uoit.net" ]
Rhys.Agombar@uoit.net
2bc6bf87b8a17707f937427fda6c823672244a56
14303ddae70645ed8beb32c869fa00a9bd7870a1
/orbit_return.py
eb87165ca0c0b88340cbbebe04499046bba9aeb8
[]
no_license
bpmagallon/Diwata1_Orbit
65e292906122005afe58b041376f71147f185d97
d2463233317ab5af126a266920da5c247fd72b78
refs/heads/master
2021-01-10T14:21:22.583284
2016-03-13T20:34:43
2016-03-13T20:34:43
53,806,032
0
2
null
null
null
null
UTF-8
Python
false
false
5,740
py
import numpy as np import math import dateAdd import urllib import geoc_geod import getXY import arcpy import getNearest import ephem import datetime import geod_to_geoc import isAM import groundtrack import get_vector import spherical arcpy.env.overwriteOutput = True celestrak = urllib.urlopen("http://www.celestrak.com/NORAD/elements/stations.txt") tle_data = celestrak.readlines() celestrak.close() iss_tle1 = tle_data[1] iss_tle2 = tle_data[2] now = datetime.datetime.utcnow() + datetime.timedelta(11,2) now1 = datetime.datetime.utcnow() + datetime.timedelta(11,1) iss = ephem.readtle('GOSAT', iss_tle1, iss_tle2) iss.compute(now) lat=math.degrees(iss.sublat) lon=math.degrees(iss.sublong) h=math.degrees(iss.elevation) pos = [lat,lon,0] position = geod_to_geoc.geod_geoc(pos) iss.compute(now1) lat1=math.degrees(iss.sublat) lon1=math.degrees(iss.sublong) h1=(iss.elevation) print h1 pos1 = [lat1,lon1,0] position1 = geod_to_geoc.geod_geoc(pos) #check if sat pos is within the effective radius eff_rad = 41 #nadir = 32.5 ; 5deg = 1759.6248751; 15deg from horizon = 1105.2976329; 45deg from horizon = 377.3453284 60deg = 230.9401 ;75deg = 107.1797; smi_pt = getXY.getCoords(r'C:\Users\Satellite L40D\Documents\philmicrosat_study\path_simulation\gis_files\country_reduceph4.shp') input_pts = r'C:\Users\Satellite L40D\Documents\philmicrosat_study\path_simulation\gis_files\country_reduceph4.shp' track = [] date_pass = [] near = [] duration = 0 ground_track = [] ground_track_pm = [] date_pass_pm = [] track_pm = [] sr = arcpy.SpatialReference(4326) count = 0 factor = 0 while duration<=1209600: near = getNearest.closest(position, smi_pt) print now time = isAM.isMorning(str(now)) if (near[1]<=eff_rad) and (time==True): while (near[1]<=eff_rad) and (time==True): print "time enter:"+str(now) print "pass" param = spherical.getAngles(pos1,pos,fov) geod_near = geoc_geod.geoc_to_geod(near[0]) ground_track_1 = [geod_near[1]+param[0][1],geod_near[0]+param[0][0]] ground_track_2 = [geod_near[1]+param[1][1],geod_near[0]+param[1][0]] ground_track_3 = [geod_near[1]+param[2][1],geod_near[0]+param[2][0]] ground_track_4 = [geod_near[1]+param[3][1],geod_near[0]+param[3][0]] arcpy.CreateFeatureclass_management(r"C:\\Users\\Public\\Documents\\tracks", "groundtrack_"+str(count)+".shp", "Polygon", "", "", "", sr) arcpy.AddField_management("C:\\Users\\Public\\Documents\\tracks\\groundtrack_"+str(count)+".shp", 'TIME', 'TEXT') polygonFC = r"C:\\Users\\Public\\Documents\\tracks\\groundtrack_"+str(count)+".shp" c = arcpy.InsertCursor(polygonFC) id = count + 1 counter=0 array = arcpy.Array([arcpy.Point(ground_track_1[0],ground_track_1[1]),arcpy.Point(ground_track_2[0],ground_track_2[1]), arcpy.Point(ground_track_3[0],ground_track_3[1]),arcpy.Point(ground_track_4[0],ground_track_4[1])]) polygon = arcpy.Polygon(array) row = c.newRow() row.id = id row.Shape = polygon lati = [math.degrees(iss.sublat),math.degrees(iss.sublong),iss.elevation] track.append(lati) ph_time = now + datetime.timedelta(0,28800) date_pass.append(str(ph_time.date())+"-"+str(ph_time.time())) row.TIME = (str(ph_time.date())+"-"+str(ph_time.time())) c.insertRow(row) id+=1 del c, polygon input_pts = input_pts smi_pt = getXY.getCoords(input_pts) count = count + 1 if duration==0: now = now + datetime.timedelta(0,2) else: now = now + datetime.timedelta(0,1) duration = duration + 1 iss.compute(now) lat=math.degrees(iss.sublat) lon=math.degrees(iss.sublong) pos1 = pos pos = [lat,lon,0] position1 = position position = geod_to_geoc.geod_geoc(pos) near = getNearest.closest(position, smi_pt) time = isAM.isMorning(str(now)) else: if duration==0: now = now + datetime.timedelta(0,2) factor=2 else: if near[1]<=100: now = now + datetime.timedelta(0,1) factor=1 else: now = now + datetime.timedelta(0,30) factor =30 duration = duration + factor iss.compute(now) lat=math.degrees(iss.sublat) lon=math.degrees(iss.sublong) pos1 = pos pos = [lat,lon,0] position1 = position position = geod_to_geoc.geod_geoc(pos) time = isAM.isMorning(str(now)) factor = 0 sr = arcpy.SpatialReference(4326) arcpy.CreateFeatureclass_management(r"C:\\Users\\Public\\Documents\\tracks", "track.shp", "Point", "", "", "", sr) arcpy.AddField_management("C:\\Users\\Public\\Documents\\tracks\\track.shp", 'LAT', 'double', '12', '3',) arcpy.AddField_management("C:\\Users\\Public\\Documents\\tracks\\track.shp", 'LON', 'double', '12', '3',) arcpy.AddField_management("C:\\Users\\Public\\Documents\\tracks\\track.shp", 'TIME', 'TEXT') cur = arcpy.InsertCursor("C:\\Users\\Public\\Documents\\tracks\\track.shp") pt = arcpy.Point() id = 1 count=0 for i in track: pt.X = float(i[1]) pt.Y = float(i[0]) row = cur.newRow() row.Shape = pt row.id = id row.LAT = pt.Y row.LON = pt.X row.TIME = str(date_pass[count]) cur.insertRow(row) id+=1 count+=1 del cur, pt
[ "bpmagallon@gmail.com" ]
bpmagallon@gmail.com
22587d55f9f9fab4188c819fa38b8dfd4eef0c1d
d7a88bb64c1b343ebbacf140ba07495c23e1cc3d
/NegStars.py
fa287ce660e4fde3769cb20b5fcf2e39ea6e6b2c
[]
no_license
RubyEye7/Week-1
b485c103b296bec5e0fa6b7f613de3ae22582cc4
ff499338b8e630caeb513e41f58c772227d9f236
refs/heads/master
2020-03-23T00:54:35.559294
2018-07-13T20:54:21
2018-07-13T20:54:21
140,891,609
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
a = int(input("How many lines do you want: ")) count = a while(count > 0): count -= 1 print("**" * count)
[ "40636561+Andrew800@users.noreply.github.com" ]
40636561+Andrew800@users.noreply.github.com
d19988ad33589d48cc57918d518294a2fd6150d7
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/exp-big-490.py
878f7cc3ed471a6dd801ce1f464e12d880342a22
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
3,180
py
# Compute x**y def exp(x: int, y: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp2(x: int, y: int, x2: int, y2: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = $INT a5 = 1 return f(y) def exp3(x: int, y: int, x2: int, y2: int, x3: int, y3: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp4(x: int, y: int, x2: int, y2: int, x3: int, y3: int, x4: int, y4: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp5(x: int, y: int, x2: int, y2: int, x3: int, y3: int, x4: int, y4: int, x5: int, y5: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) # Input parameter n:int = 42 n2:int = 42 n3:int = 42 n4:int = 42 n5:int = 42 # Run [0, n] i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch while i <= n: print(exp(2, i % 31)) i = i + 1
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
b11803d6a0a1957d777cda1dc1d36376308e22ff
00dfa1c55b2c3e6ad98e2e1ceebcdabb65bb3712
/Recursion/tower_of_hanoi.py
f2fe72980f98b55d2fb878c8479f8cd2434956ca
[]
no_license
taddes/algos_python
889f580c296ced1b74fdebbb38ba16df1249306a
b72417e53fe9b45ed12270716fe13cbed6a178d1
refs/heads/master
2023-02-12T00:43:36.414418
2021-01-02T23:15:33
2021-01-02T23:15:33
284,581,471
0
0
null
null
null
null
UTF-8
Python
false
false
1,281
py
""" Three rods and a number of disks of different sizes which can slide on any rod. Puzzle begins with the disks in a neat stack in ascending order of size on the leftmost rod. The smallest disk is at the top, making a conical shape. Rules: Only one disk can be moved at a time Each move consists of taking the upper disk from one stack and placing it on another. No disk may be placed on top of a smaller disk. Minimum No. of moves required to solved is 2^n - 1 O(2^n) - Exponential time complexity Recurring sub-problem: at some point, one will have managed to shift n - 1 plates (for 3 plates, this is 2) to the middle auxiliary rod, at which point the largest disk has to be moved to the final rod. The largest disk is the only one left, so it can be placed on the final rod. """ def hanoi(disk, source='A', middle='B', destination='C'): # base case - 0 is always the smallest plate # We manipulat the smallest plate in the base case (index 0) if disk == 1: # Move disk from source to dest print(f'Disk {disk} moved from {source} to {destination}') return hanoi(disk-1, source, destination, middle) print(f'Disk {disk} moved from {source} to {destination}') hanoi(disk-1, middle, source, destination) hanoi(3, 'a', 'b', 'c')
[ "taddes.korris@gmail.com" ]
taddes.korris@gmail.com
62c33222a67be9a4d9938a2ef8513d7ecd54029e
544356d5eacf67a27b5be7dfb276a919a232f547
/post_test.py
ac6510a661435ee9210a0fa9382cf6dc6454a849
[]
no_license
drellxor/wolf_markov
8967d660bd248d674b47ae65fa1bc9d6a9fa8497
8df4e882464209461bf9f3d4c43ee3888ec747e0
refs/heads/main
2023-04-12T19:52:20.339640
2021-05-03T14:44:42
2021-05-03T14:44:42
322,602,373
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
import vk_api from markov_wolf import MarkovWolf if __name__ == '__main__': # session = vk_api.VkApi(token='c8767213cdfa52be374952b3eb9632c6d4ed4b442b8202ed295efba6520613f8d1eb109a2a302595a6b59') # api = session.get_api() # # uploader = vk_api.upload.VkUpload(api) # result = uploader.photo_wall([pic], group_id=201211851) wolf = MarkovWolf('dataset_wolf', 'pictures_wolf') quote, pic = wolf.make_quote() pass #api.wall.post(owner_id='-201211851', )
[ "tryakinan@gmail.com" ]
tryakinan@gmail.com
2707f52621ecd803872de5c8f53a8a4582b75aef
6814c5b1facf4c5a2a1b35e194a50a67c6e547b8
/classifier.py
2f41d6d38436823ebee17c62f85e90babc9b8e9f
[]
no_license
Sahana012/Model-View-Controller
f9a9916dd78eb336930772174c6c366b8d648109
15fc6b7035635442046f0c0910f6e08d0122795b
refs/heads/main
2023-06-22T21:22:18.644303
2021-07-25T01:30:03
2021-07-25T01:30:03
389,233,222
0
0
null
null
null
null
UTF-8
Python
false
false
1,366
py
import numpy as np import pandas as pd from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from PIL import Image import PIL.ImageOps X = np.load('image.npz')['arr_0'] y = pd.read_csv("labels.csv")["labels"] print(pd.Series(y).value_counts()) classes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] nclasses = len(classes) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=9, train_size=7500, test_size=2500) X_train_scaled = X_train/255.0 X_test_scaled = X_test/255.0 clf = LogisticRegression(solver='saga', multi_class='multinomial').fit(X_train_scaled, y_train) def get_prediction(image): im_pil = Image.open(image) image_bw = im_pil.convert('L') image_bw_resized = image_bw.resize((28,28), Image.ANTIALIAS) pixel_filter = 20 min_pixel = np.percentile(image_bw_resized, pixel_filter) image_bw_resized_inverted_scaled = np.clip(image_bw_resized-min_pixel, 0, 255) max_pixel = np.max(image_bw_resized) image_bw_resized_inverted_scaled = np.asarray(image_bw_resized_inverted_scaled)/max_pixel test_sample = np.array(image_bw_resized_inverted_scaled).reshape(1,784) test_pred = clf.predict(test_sample) return test_pred[0]
[ "noreply@github.com" ]
Sahana012.noreply@github.com
e6a936ccc3de105e36ffef350ea2096d974dc9f0
760e1c14d056dd75958d367242c2a50e829ac4f0
/剑指offer/6_旋转数组最小的数字.py
795e06ad064cd143007a5bdc31ea65296446baea
[]
no_license
lawtech0902/py_imooc_algorithm
8e85265b716f376ff1c53d0afd550470679224fb
74550d68cd3fd2cfcc92e1bf6579ac3b8f31aa75
refs/heads/master
2021-04-26T22:54:42.176596
2018-09-23T15:45:22
2018-09-23T15:45:22
123,894,744
0
0
null
null
null
null
UTF-8
Python
false
false
950
py
# _*_ coding: utf-8 _*_ """ 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。 __author__ = 'lawtech' __date__ = '2018/5/9 下午9:35' """ class Solution: def minNumberInRotateArray(self, rotateArray): # write code here size = len(rotateArray) if size == 0: return 0 low, high = 0, size - 1 while rotateArray[low] >= rotateArray[high]: if high - low == 1: return rotateArray[high] mid = low + (high - low) // 2 if rotateArray[mid] >= rotateArray[low]: low = mid else: high = mid return rotateArray[low]
[ "584563542@qq.com" ]
584563542@qq.com
deb50bc3047abbdefa3468e418745c566c58248e
a985c6024fb0ab2665ed49eb82f01dedb6209531
/logs.py
01e49ca7d71c4e17280d07106ee3fccd0ca64b9e
[]
no_license
JessDF/LogsAnalysisProject
7f4a914bdb64950ea685895492c818bc5ef9dad9
c04aed4b4a53c5e925eccf97c17117aedb4995f6
refs/heads/master
2021-05-16T10:15:37.641460
2018-01-02T21:36:29
2018-01-02T21:36:29
104,678,943
0
0
null
null
null
null
UTF-8
Python
false
false
1,733
py
#!/usr/bin/env python3 # ---------------------- DESCRIPTION --------------------- # logs.py is an example of how to query a Postgresql database # to report data from a news website. The purpose is to obtain # information from the newsdata and ouput it. import psycopg2 DBNAME = 'news' def process_query(user_query): """ Return the result of a given query """ database_object = psycopg2.connect(dbname=DBNAME) cursor = database_object.cursor() cursor.execute(user_query) results = cursor.fetchall() database_object.close() return results def print_heading(heading): """ Print a heading prior to data output """ print("\n\t\t" + heading + "\n") def top_three_articles_alltime(): """ Print the three most popular articles of all time """ top_three = process_query(("select * from top_articles limit 3")) print_heading("TOP 3 ARTICLES OF ALL TIME") for title, views in top_three: print(" \"{}\" -- {} views".format(title, views)) def top_authors_alltime(): """ Print the top authors of all time """ top_authors = process_query(("select * from top_authors")) print_heading("TOP AUTHORS OF ALL TIME") for name, views in top_authors: print(" {} -- {} views".format(name, views)) def error_prone_days(): """ Print the days in which there were more than 1% bad requests """ high_404_days = process_query("select * from high_404_days") print_heading("DAYS WITH GREATER THAN 1% 404 REQUESTS") for day, percentage in high_404_days: print(" {0:%B %d, %Y} -- {1:.2f} % errors".format(day, percentage)) if __name__ == '__main__': top_three_articles_alltime() top_authors_alltime() error_prone_days()
[ "noreply@github.com" ]
JessDF.noreply@github.com
9dbdc9a4865ba9be97a3a163f61fe24566c2591a
8cb3604a6cba69d13ec7ee0c38b8c617daff5d82
/Array/sort012.py
3e1b1633707ceabd5d681f6bccd1e4f0910f5557
[]
no_license
therohitsingh/CODE
6e4ba53f52d939ada183e6d02a4f03f1c0680cde
d803a226d24afc6b7e417be6ef1e51e81da9fe92
refs/heads/master
2023-06-10T09:14:50.703222
2021-07-02T15:52:40
2021-07-02T15:52:40
382,393,947
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
def sortarr(a,n): a = [] n = len(a) count0 = 0 count1 = 0 count2 = 0 for i in range(n): if a[i]==0: count0+=1 elif a[i]==1: count1+=1 elif a[i]==2: count2+=1 i = 0 while(count0>0): a[i] = 0 i+=1 count0-=1 while(count1>0): a[i]=1 i+=1 count1-=1 while(count2>0): a[i]=2 i+=1 count2-=1 def printarr(a,n): for i in range(n): print(a[i]) if __name__ == "__main__": a = [0, 1, 1, 0, 1, 2, 1, 2, 0, 0, 0, 1] n = len(a) sortarr(a,n)
[ "therohitsinghr@gmail.com" ]
therohitsinghr@gmail.com
67a5365443ffe32e04263ef87eabb797f29e9ddf
af0661c89e70c914f9e2f1e5053fae69558b7c71
/Lesson_01/Lesson_01.py
a4c7052cf1214813a906c7ccf1cb269aa7b16662
[]
no_license
kamyninatatyana/DataSearch
ca1021233ed53874dbbca57f70d3eecd722c5b20
dceee3bcdf55a8ad418c69921d2cf77efec0f921
refs/heads/master
2023-04-07T04:11:11.935750
2021-04-17T13:59:50
2021-04-17T13:59:50
358,893,118
0
0
null
null
null
null
UTF-8
Python
false
false
1,746
py
import requests import json # Задание 1 # Посмотреть документацию к API GitHub, разобраться как вывести список репозиториев для конкретного пользователя, # сохранить JSON-вывод в файле *.json. print('Задание 1') print() user_name = 'kamyninatatyana' my_url = 'https://api.github.com' my_request = requests.get(f'{my_url}/users/{user_name}/repos') print(f'Список репозиториев пользователя {user_name}') with open('task_1.json', 'w') as my_file: json.dump(my_request.json(), my_file) counter = 1 for item in my_request.json(): print(counter, item["name"]) counter = counter + 1 # Задание 2 # 2. Изучить список открытых API. Найти среди них любое, требующее авторизацию (любого типа). # Выполнить запросы к нему, пройдя авторизацию. Ответ сервера записать в файл. print() print('Задание 2') my_url = 'https://api.nasa.gov/' api_key = 'Rfnkizox7W8yF2PXVgFxfa4AcmQJqknrkK9h8r2P' params = {'api_key': api_key} my_link = 'https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&format=json' my_request = requests.get('https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=exoplanets&format=json', params=params) with open('task_2.json', 'w') as my_file: json.dump(my_request.json(), my_file) print(f'Названия планет') counter = 1 for item in my_request.json(): while counter < 100: print(counter, item['pl_name']) counter = counter + 1
[ "tatyanak@yandex.ru" ]
tatyanak@yandex.ru
504c177772b52656ec86a57238ff9dc5ffc4b589
172adddeaf9da90f39fbb7e93b59e2369f44d64a
/level_2/next_bignum.py
f43fbbb3e67c5ce6011d2cac06bf65c397728152
[]
no_license
sujin16/studycoding
1e7bae941513e4d65e3df44cbde471764940b7e9
1a394f3fd6851c296dc37fba0d67b01cc665ecce
refs/heads/main
2023-03-14T03:51:14.022481
2021-03-04T12:56:04
2021-03-04T12:56:04
324,210,004
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
def solution(n): num =list(bin(n)).count('1') i =1 while True: n+=1 if list(bin(n)).count('1') ==num:return n n=15 print(solution(n))
[ "tnwls9712@ajou.ac.kr" ]
tnwls9712@ajou.ac.kr
ba59ebba2e068546face3a92c586930dc6c334c9
a45c87da1d573891a6009546b58320e6e9e0a54e
/html_compiler/compiler.py
ca07b433b7198def73b4a5f7ebd278ef26c0fcb4
[ "MIT" ]
permissive
hsuanhauliu/html-compiler
f805254a5b58c3b21a95882d98784f55d63547fb
17f2659b95153690b517f58964f9002426c08c03
refs/heads/master
2020-09-11T12:00:12.677145
2019-12-14T06:10:05
2019-12-14T06:10:05
222,057,278
2
0
null
null
null
null
UTF-8
Python
false
false
1,204
py
""" Compiler module. """ import os from bs4 import BeautifulSoup def compile(path): """ Recursive function for merging components """ soup = "" next_dir, filename = _separate_dir_and_file(path) with cd(next_dir): with open(filename, "r") as rfile: soup = BeautifulSoup(rfile, 'html.parser') component_tags = soup.findAll("div", {"class": "m_component"}) for tag in component_tags: tag_id = tag.get("id") component_file = tag_id + ".html" component = compile(component_file) soup.find(id=tag_id).replaceWith(component) return soup def _separate_dir_and_file(path): """ Helper function for separating file directory and the file """ temp = path.rfind("/") if temp == -1: return ".", path return path[:temp], path[temp + 1:] class cd: """Context manager for changing the current working directory""" def __init__(self, newPath): self.newPath = os.path.expanduser(newPath) def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath)
[ "hsuanhal@usc.edu" ]
hsuanhal@usc.edu
f74f9719deb520d9f4b0f1dbb3b693f5511b8485
2fbf9e271de7889d15fe78696cbb4807f35fcc30
/boards/views.py
2559b77fa121c89158261e694ca58572d3a89057
[]
no_license
xsaints/proj0064
03c990a0fc2be269c079b07399fb651b9fbd7bd2
49c80b3eba89418d5b24f838140bbf2be1d3c242
refs/heads/master
2020-04-03T12:41:09.786367
2018-10-29T18:42:27
2018-10-29T18:42:27
155,259,737
0
0
null
null
null
null
UTF-8
Python
false
false
1,427
py
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponseRedirect from django.urls import reverse from .models import Board, Topic, Post from .forms import NewTopicForm, NewPostForm ''' def home(request): return render(request, 'boards/home.html') ''' def boards(request): ''' displays all boards ''' boards= Board.objects.all() return render(request, 'boards/boards.html', {'boards': boards}) def board_topics(request, board_pk): ''' displays all topics under a particular board ''' board = get_object_or_404(Board, pk= board_pk) return render(request, 'boards/board_topics.html', {'board': board}) def topic_posts(request, board_pk, topic_pk): ''' displays all posts under this particular topic ''' topic= get_object_or_404(Topic, pk= topic_pk) return render(request, 'boards/topic_posts.html', {'topic': topic}) def new_topic(request, board_pk): ''' add a new topic ''' board= get_object_or_404(Board, pk= board_pk) form= NewTopicForm() if request.method== 'POST': form= NewTopicForm(request.POST) if form.is_valid(): #form.save() print(request.POST) return HttpResponseRedirect(reverse('boards:boards')) return render(request, 'boards/new_topic.html', {'form': form}) def new_post(request): ''' add a new topic ''' form= NewPostForm() return render(request, 'boards/new_post.html', {'form': form})
[ "xsaints@yahoo.com" ]
xsaints@yahoo.com
8758ccee5ee57572793f201065aa31b037f2f96a
60e99cec25105719dd25e4c6227ffe2358c3cb98
/ToDo/migrations/0001_initial.py
aed874cd6296207f5a703c36a9016c6776ea8e46
[]
no_license
BrunoSlamek/ToDo_api_drf
350d7bfacc26c037807b2afdb8563cd407c0e630
c9e66747f36f5d2345f3b237992d3f7f72132bf2
refs/heads/main
2023-07-14T17:03:36.655587
2021-08-25T02:49:46
2021-08-25T02:49:46
399,606,257
0
0
null
2021-08-25T02:49:47
2021-08-24T21:13:49
Python
UTF-8
Python
false
false
624
py
# Generated by Django 3.2.6 on 2021-08-24 21:49 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Todo', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('description', models.CharField(max_length=255)), ('created_at', models.DateTimeField(auto_now=True)), ], ), ]
[ "brunoslamek@gmail.com" ]
brunoslamek@gmail.com
8798346e2d05dabe4d21c475211f6096d376a636
a5b3c21b7dc0ebfc7096e877228dbd4740713bab
/Python - learning/Data Structures/copy.py
7c31451ef93b11fb7127d05eadf7cfb705c7f771
[]
no_license
Cameron-Calpin/Code
7dd1ee7d8b83e3d325510ef14a92d36f254bc078
fc32e0ed2464efb64b0ebad7f76270a369e2a829
refs/heads/master
2023-07-07T06:37:54.397181
2023-07-01T23:06:58
2023-07-01T23:06:58
91,615,709
0
0
null
null
null
null
UTF-8
Python
false
false
228
py
mytuple = ('one', 'two', 'three') listcopy = list(mytuple) listcopy.sort() for item in listcopy: print item myDict = {'one': 1, 'two': 2, 'three': 3} keys = myDict.keys() keys.sort() for key in keys: print key, myDict[key]
[ "cameron.calpin.14@cnu.edu" ]
cameron.calpin.14@cnu.edu
12c5fac8d736aaa2b4d1f2cb36d9d2f8cbecc0b1
fac5254bbad63a9abdf77c575b76a86b47f62a29
/fetch_and_prepare/people_dataframe.py
4ea51ae19426d70e5f330182beea0ff74675ffc4
[]
no_license
Nickheythatsme/baseball-ml
91aa1a00ec1472118b6a9da07728b6ec1d08961e
0159695a3a82e1a02a7622384b04cafd8e41df68
refs/heads/master
2020-06-06T06:54:59.134126
2019-06-21T06:24:42
2019-06-21T06:24:42
192,671,070
0
0
null
null
null
null
UTF-8
Python
false
false
629
py
from baseball_dataframe import BaseballDataFrame class PeopleDataFrame(BaseballDataFrame): def __init__(self): super().__init__('people.csv') print(super().memory_usage()) self['birthYear'] = self['birthYear'].fillna(value=0).astype('int') self['birthMonth'] = self['birthMonth'].fillna(value=0).astype('int') self['birthDay'] = self['birthDay'].fillna(value=0).astype('int') self['birthCountry'] = self['birthCountry'].fillna(value='Unknown').astype('category') print(super().memory_usage()) if __name__ == '__main__': p = PeopleDataFrame() print(p.head())
[ "nick_grout@ext.airbnb.com" ]
nick_grout@ext.airbnb.com
72212e31ccf58f2dc7b46b3e6ecd97d710db25ae
db54b1234f2c7e2c1fda0700365cad4937d13089
/musicbrainz/search/urls.py
5b2eae9d6470a58e188065a4c071b3a2ce4d94d8
[]
no_license
manuelmamut/musicbrainz_search
6add73fe1ef9f6786fcefefa7c19fd993979736f
72ce439809cbbf4a0b3b5556363a7eb16b9c8bd4
refs/heads/master
2020-03-26T17:19:21.415485
2018-08-22T02:05:52
2018-08-22T02:05:52
145,154,966
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
from django.conf.urls import url from django.views.generic import RedirectView from search import views from django.views.decorators.cache import cache_page urlpatterns = [ url(r'^$', RedirectView.as_view(url='release-groups/')), url(r'^release-groups/$', cache_page(60 * 15)(views.releaseGroupView.as_view()), name='release-groups'), url(r'^release-groups-nocache/$', views.releaseGroupView.as_view(), name='release-groups-nocache'), ]
[ "manuelj.fuentesg@gmail.com" ]
manuelj.fuentesg@gmail.com
fc9ba580ad9a11c6f67bcea854c79af053e832b4
2a5145f811c0679b35af367d25fce5914c2e0e40
/Algorithm/169_MajorityElement.py
641252ef81bfbf55f340168da7a95c33bb00a40e
[]
no_license
lingtianwan/Leetcode
8f93fc3fc85db289ca8f618143af2a43711425ba
bf2edab87dd96afab1ff411df35d3163c1dfdc55
refs/heads/master
2021-01-12T19:16:31.918703
2017-02-09T01:50:53
2017-02-09T01:50:53
81,396,498
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
# Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times. # # You may assume that the array is non-empty and the majority element always exist in the array. class Solution(object): def majorityElement(self, nums): """ :type nums: List[int] :rtype: int """ for i in set(nums): if nums.count(i) > len(nums) / 2: return i return 0
[ "lingtian.wan@gmail.com" ]
lingtian.wan@gmail.com
cb9fbb26c3919aa6d7f1384ed52081e21a14efb5
b514dce7f2796022bb50792e8fb22265160eb3e7
/experiments/sf-heuristic/make-testbed-exp-testbed-ga.py
53ef07cacf538b50c2985144f297d718ea448b85
[]
no_license
imec-idlab/tsch-slotbonding-ga-simulator
7ac48b12fa8165e01c6f38702f78be31f5081136
7fe670baa7ea5f6319d7f5ad5ab77d590100d0cb
refs/heads/main
2023-02-24T07:13:50.483590
2021-02-02T11:49:07
2021-02-02T11:49:07
335,271,078
0
1
null
null
null
null
UTF-8
Python
false
false
5,018
py
import random import json import os import sys sys.path.insert(1, '../../simulator/SimEngine/') random.seed(100) ITERATIONS = 20 INPUT_DIR = '../input' MAX_SEED = 10000 random_seeds = [] ##### SIMULATOR SPECIFIC SETTINGS ##### expLength = 300 # seconds cooldownLength = 60 # seconds simulator_config = {} simulator_config['numRuns'] = 1 simulator_config['convergeFirst'] = 1 simulator_config['numChans'] = 3 # take only two channels to limit the total number of slots simulator_config['numMotes'] = 13 # number of motes simulator_config['topology'] = 'random' # we only consider a random topology simulator_config[ 'nrMinimalCells'] = 0 # we only want one 1 minimal cell, however it won't really be used in the ILP case simulator_config['trafficGenerator'] = 'ilp' # the ilp setting deals with the correct ILP traffic simulator_config['sporadicTraffic'] = 0 # to be sure, set it to 0. we do not want sporadic traffic. simulator_config['changeParent'] = 0 # we do not change parents simulator_config[ 'backoffMinExp'] = 1 # we do not have SHARED cells anymore (except for the minimal ones), so we do not care simulator_config[ 'backoffMaxExp'] = 1 # we do not have SHARED cells anymore (except for the minimal ones), so we do not care simulator_config['sf'] = 'ilp' # we only want to use the ILP SF. simulator_config['minCellsMSF'] = 1 # is ignored. simulator_config['packetSize'] = 127 # maximum packet size simulator_config['subGHz'] = 1 # yes, go subGHz simulator_config['individualModulations'] = 1 # we have modulations per link simulator_config['pkPeriodVar'] = 0 # important to set to 0 to have a nice equally sent packet distribution simulator_config['modulationConfig'] = 'MCS234s10ms' simulator_config['slotDuration'] = 0.010 # will be replaced simulator_config['slotframeLength'] = 12 # will be replaced simulator_config['numCyclesPerRun'] = int(expLength / float(simulator_config['slotDuration'] * simulator_config['slotframeLength'])) # will be replaced simulator_config['cooldown'] = cooldownLength / float(simulator_config['slotDuration']) # in ASNs simulator_config['noNewInterference'] = 0 # will be replaced simulator_config['noPropagationLoss'] = 0 # will be replaced simulator_config['settlingTime'] = 120 # in seconds simulator_config['maxToConverge'] = 6060 # in seconds simulator_config['stableNeighbors'] = 1 simulator_config['measuredData'] = 1 # TODO SEED STILL HAS TO BE TAKEN FROM THE GLOBAL SETTINGS FILE NOW ##### GA SPECIFIC SETTINGS ##### DEFAULT_SETTINGS = '../final-settings/settings-testbed-makenotfeasible-testbed-ga.json' config = {} with open(DEFAULT_SETTINGS) as json_file: config = json.load(json_file) config["simulator"] = simulator_config config["simulator"]["modulationFile"] = os.path.basename(config["modulations"]["modulations_file"]) ##### CONFIGURATIONS ##### configurations = { 'sfl_153ms_motes_13_top_gaheuristic_delta_005_': { "slotDuration": 0.09, "slotframeLength": 17, "delta": 0.05 }, 'sfl_333ms_motes_13_top_gaheuristic_delta_005_': { "slotDuration": 0.09, "slotframeLength": 37, "delta": 0.05 } } ##### SETTINGS FILE ##### def getUniqueSeed(): seed = random.randint(0, MAX_SEED) while seed in random_seeds: seed = random.randint(0, MAX_SEED) random_seeds.append(seed) return seed if __name__ == "__main__": seeds = [getUniqueSeed() for x in range(ITERATIONS)] NODES = ['nuc9-3', 'nuc9-5', 'nuc9-6', 'nuc9-14', 'nuc9-33', 'nuc9-34', 'nuc9-35', 'nuc9-37', 'nuc10-1', 'nuc10-5', 'nuc10-18', 'nuc10-20', 'nuc10-33', 'nuc10-34', 'nuc10-35'] if not os.path.exists(INPUT_DIR): os.mkdir(INPUT_DIR) for c_name, c in configurations.items(): cnt = 0 # set config config["sf-heuristic"]["delta"] = c['delta'] config["simulator"]['slotDuration'] = c['slotDuration'] config["simulator"]['slotframeLength'] = c['slotframeLength'] config["simulator"]['numCyclesPerRun'] = int(expLength / float(simulator_config['slotDuration'] * config["simulator"]['slotframeLength'])) # will be replaced config["simulator"]['cooldown'] = cooldownLength / float(simulator_config['slotDuration']) # in ASNs while cnt < ITERATIONS: config["seed"] = seeds[cnt] config["name"] = "seed-{0}-exp-{1}".format(config["seed"], c_name) config["sf-heuristic"]["testbed_results"]["root"] = NODES[cnt % len(NODES)] nameFile = '{input_dir}/ga_seed_{seed}_c_{config_modulation}_ss_{slotframe_size}_exp_{file_suffix}.json'.format( input_dir=INPUT_DIR, seed=config["seed"], config_modulation=config['simulator']['modulationConfig'], slotframe_size=int(1000*config['simulator']['slotframeLength']*config['simulator']['slotDuration']), file_suffix=c_name) with open(nameFile, 'w') as outfile: json.dump(config, outfile) cnt += 1
[ "glenn.daneels@uantwerpen.be" ]
glenn.daneels@uantwerpen.be
28ded34c244dfde21440e7b8a4c967128d3118be
b39d72ba5de9d4683041e6b4413f8483c817f821
/GeneVisualization/ass1/Lib/site-packages/itk/itkImageDuplicatorPython.py
feba22d089e1bed3a6240415b04b2f8985228d76
[]
no_license
ssalmaan/DataVisualization
d93a0afe1290e4ea46c3be5718d503c71a6f99a7
eff072f11337f124681ce08742e1a092033680cc
refs/heads/master
2021-03-13T05:40:23.679095
2020-03-11T21:37:45
2020-03-11T21:37:45
246,642,979
0
0
null
null
null
null
UTF-8
Python
false
false
149,049
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.8 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (3, 0, 0): new_instancemethod = lambda func, inst, cls: _itkImageDuplicatorPython.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_itkImageDuplicatorPython', [dirname(__file__)]) except ImportError: import _itkImageDuplicatorPython return _itkImageDuplicatorPython if fp is not None: try: _mod = imp.load_module('_itkImageDuplicatorPython', fp, pathname, description) finally: fp.close() return _mod _itkImageDuplicatorPython = swig_import_helper() del swig_import_helper else: import _itkImageDuplicatorPython del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): object.__setattr__(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self, name, value): if (name == "thisown"): return self.this.own(value) if hasattr(self, name) or (name == "this"): set(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr import itkImagePython import itkSizePython import pyBasePython import itkRGBAPixelPython import itkFixedArrayPython import itkMatrixPython import itkCovariantVectorPython import vnl_vector_refPython import vnl_vectorPython import vnl_matrixPython import stdcomplexPython import itkVectorPython import vnl_matrix_fixedPython import itkPointPython import itkRGBPixelPython import ITKCommonBasePython import itkSymmetricSecondRankTensorPython import itkOffsetPython import itkIndexPython import itkImageRegionPython def itkImageDuplicatorIUL3_New(): return itkImageDuplicatorIUL3.New() def itkImageDuplicatorIUL2_New(): return itkImageDuplicatorIUL2.New() def itkImageDuplicatorISSRTD33_New(): return itkImageDuplicatorISSRTD33.New() def itkImageDuplicatorID3_New(): return itkImageDuplicatorID3.New() def itkImageDuplicatorISSRTD22_New(): return itkImageDuplicatorISSRTD22.New() def itkImageDuplicatorID2_New(): return itkImageDuplicatorID2.New() def itkImageDuplicatorICVF43_New(): return itkImageDuplicatorICVF43.New() def itkImageDuplicatorIVF43_New(): return itkImageDuplicatorIVF43.New() def itkImageDuplicatorICVF33_New(): return itkImageDuplicatorICVF33.New() def itkImageDuplicatorIVF33_New(): return itkImageDuplicatorIVF33.New() def itkImageDuplicatorICVF23_New(): return itkImageDuplicatorICVF23.New() def itkImageDuplicatorIVF23_New(): return itkImageDuplicatorIVF23.New() def itkImageDuplicatorIF3_New(): return itkImageDuplicatorIF3.New() def itkImageDuplicatorICVF42_New(): return itkImageDuplicatorICVF42.New() def itkImageDuplicatorIVF42_New(): return itkImageDuplicatorIVF42.New() def itkImageDuplicatorICVF32_New(): return itkImageDuplicatorICVF32.New() def itkImageDuplicatorIVF32_New(): return itkImageDuplicatorIVF32.New() def itkImageDuplicatorICVF22_New(): return itkImageDuplicatorICVF22.New() def itkImageDuplicatorIVF22_New(): return itkImageDuplicatorIVF22.New() def itkImageDuplicatorIF2_New(): return itkImageDuplicatorIF2.New() def itkImageDuplicatorIUS3_New(): return itkImageDuplicatorIUS3.New() def itkImageDuplicatorIUS2_New(): return itkImageDuplicatorIUS2.New() def itkImageDuplicatorIRGBAUC3_New(): return itkImageDuplicatorIRGBAUC3.New() def itkImageDuplicatorIRGBUC3_New(): return itkImageDuplicatorIRGBUC3.New() def itkImageDuplicatorIUC3_New(): return itkImageDuplicatorIUC3.New() def itkImageDuplicatorIRGBAUC2_New(): return itkImageDuplicatorIRGBAUC2.New() def itkImageDuplicatorIRGBUC2_New(): return itkImageDuplicatorIRGBUC2.New() def itkImageDuplicatorIUC2_New(): return itkImageDuplicatorIUC2.New() def itkImageDuplicatorISS3_New(): return itkImageDuplicatorISS3.New() def itkImageDuplicatorISS2_New(): return itkImageDuplicatorISS2.New() class itkImageDuplicatorICVF22(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorICVF22 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorICVF22_Pointer": """__New_orig__() -> itkImageDuplicatorICVF22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorICVF22_Pointer": """Clone(itkImageDuplicatorICVF22 self) -> itkImageDuplicatorICVF22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_Clone(self) def SetInputImage(self, _arg: 'itkImageCVF22') -> "void": """SetInputImage(itkImageDuplicatorICVF22 self, itkImageCVF22 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageCVF22 *": """ GetOutput(itkImageDuplicatorICVF22 self) -> itkImageCVF22 GetOutput(itkImageDuplicatorICVF22 self) -> itkImageCVF22 """ return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageCVF22 *": """GetModifiableOutput(itkImageDuplicatorICVF22 self) -> itkImageCVF22""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorICVF22 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorICVF22 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF22 *": """cast(itkLightObject obj) -> itkImageDuplicatorICVF22""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorICVF22 Create a new object of the class itkImageDuplicatorICVF22 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorICVF22.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorICVF22.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorICVF22.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorICVF22.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF22_Clone, None, itkImageDuplicatorICVF22) itkImageDuplicatorICVF22.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF22_SetInputImage, None, itkImageDuplicatorICVF22) itkImageDuplicatorICVF22.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF22_GetOutput, None, itkImageDuplicatorICVF22) itkImageDuplicatorICVF22.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF22_GetModifiableOutput, None, itkImageDuplicatorICVF22) itkImageDuplicatorICVF22.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF22_Update, None, itkImageDuplicatorICVF22) itkImageDuplicatorICVF22_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorICVF22_swigregister itkImageDuplicatorICVF22_swigregister(itkImageDuplicatorICVF22) def itkImageDuplicatorICVF22___New_orig__() -> "itkImageDuplicatorICVF22_Pointer": """itkImageDuplicatorICVF22___New_orig__() -> itkImageDuplicatorICVF22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22___New_orig__() def itkImageDuplicatorICVF22_cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF22 *": """itkImageDuplicatorICVF22_cast(itkLightObject obj) -> itkImageDuplicatorICVF22""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF22_cast(obj) class itkImageDuplicatorICVF23(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorICVF23 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorICVF23_Pointer": """__New_orig__() -> itkImageDuplicatorICVF23_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorICVF23_Pointer": """Clone(itkImageDuplicatorICVF23 self) -> itkImageDuplicatorICVF23_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_Clone(self) def SetInputImage(self, _arg: 'itkImageCVF23') -> "void": """SetInputImage(itkImageDuplicatorICVF23 self, itkImageCVF23 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageCVF23 *": """ GetOutput(itkImageDuplicatorICVF23 self) -> itkImageCVF23 GetOutput(itkImageDuplicatorICVF23 self) -> itkImageCVF23 """ return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageCVF23 *": """GetModifiableOutput(itkImageDuplicatorICVF23 self) -> itkImageCVF23""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorICVF23 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorICVF23 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF23 *": """cast(itkLightObject obj) -> itkImageDuplicatorICVF23""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorICVF23 Create a new object of the class itkImageDuplicatorICVF23 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorICVF23.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorICVF23.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorICVF23.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorICVF23.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF23_Clone, None, itkImageDuplicatorICVF23) itkImageDuplicatorICVF23.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF23_SetInputImage, None, itkImageDuplicatorICVF23) itkImageDuplicatorICVF23.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF23_GetOutput, None, itkImageDuplicatorICVF23) itkImageDuplicatorICVF23.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF23_GetModifiableOutput, None, itkImageDuplicatorICVF23) itkImageDuplicatorICVF23.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF23_Update, None, itkImageDuplicatorICVF23) itkImageDuplicatorICVF23_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorICVF23_swigregister itkImageDuplicatorICVF23_swigregister(itkImageDuplicatorICVF23) def itkImageDuplicatorICVF23___New_orig__() -> "itkImageDuplicatorICVF23_Pointer": """itkImageDuplicatorICVF23___New_orig__() -> itkImageDuplicatorICVF23_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23___New_orig__() def itkImageDuplicatorICVF23_cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF23 *": """itkImageDuplicatorICVF23_cast(itkLightObject obj) -> itkImageDuplicatorICVF23""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF23_cast(obj) class itkImageDuplicatorICVF32(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorICVF32 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorICVF32_Pointer": """__New_orig__() -> itkImageDuplicatorICVF32_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorICVF32_Pointer": """Clone(itkImageDuplicatorICVF32 self) -> itkImageDuplicatorICVF32_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_Clone(self) def SetInputImage(self, _arg: 'itkImageCVF32') -> "void": """SetInputImage(itkImageDuplicatorICVF32 self, itkImageCVF32 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageCVF32 *": """ GetOutput(itkImageDuplicatorICVF32 self) -> itkImageCVF32 GetOutput(itkImageDuplicatorICVF32 self) -> itkImageCVF32 """ return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageCVF32 *": """GetModifiableOutput(itkImageDuplicatorICVF32 self) -> itkImageCVF32""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorICVF32 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorICVF32 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF32 *": """cast(itkLightObject obj) -> itkImageDuplicatorICVF32""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorICVF32 Create a new object of the class itkImageDuplicatorICVF32 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorICVF32.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorICVF32.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorICVF32.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorICVF32.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF32_Clone, None, itkImageDuplicatorICVF32) itkImageDuplicatorICVF32.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF32_SetInputImage, None, itkImageDuplicatorICVF32) itkImageDuplicatorICVF32.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF32_GetOutput, None, itkImageDuplicatorICVF32) itkImageDuplicatorICVF32.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF32_GetModifiableOutput, None, itkImageDuplicatorICVF32) itkImageDuplicatorICVF32.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF32_Update, None, itkImageDuplicatorICVF32) itkImageDuplicatorICVF32_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorICVF32_swigregister itkImageDuplicatorICVF32_swigregister(itkImageDuplicatorICVF32) def itkImageDuplicatorICVF32___New_orig__() -> "itkImageDuplicatorICVF32_Pointer": """itkImageDuplicatorICVF32___New_orig__() -> itkImageDuplicatorICVF32_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32___New_orig__() def itkImageDuplicatorICVF32_cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF32 *": """itkImageDuplicatorICVF32_cast(itkLightObject obj) -> itkImageDuplicatorICVF32""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF32_cast(obj) class itkImageDuplicatorICVF33(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorICVF33 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorICVF33_Pointer": """__New_orig__() -> itkImageDuplicatorICVF33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorICVF33_Pointer": """Clone(itkImageDuplicatorICVF33 self) -> itkImageDuplicatorICVF33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_Clone(self) def SetInputImage(self, _arg: 'itkImageCVF33') -> "void": """SetInputImage(itkImageDuplicatorICVF33 self, itkImageCVF33 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageCVF33 *": """ GetOutput(itkImageDuplicatorICVF33 self) -> itkImageCVF33 GetOutput(itkImageDuplicatorICVF33 self) -> itkImageCVF33 """ return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageCVF33 *": """GetModifiableOutput(itkImageDuplicatorICVF33 self) -> itkImageCVF33""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorICVF33 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorICVF33 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF33 *": """cast(itkLightObject obj) -> itkImageDuplicatorICVF33""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorICVF33 Create a new object of the class itkImageDuplicatorICVF33 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorICVF33.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorICVF33.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorICVF33.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorICVF33.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF33_Clone, None, itkImageDuplicatorICVF33) itkImageDuplicatorICVF33.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF33_SetInputImage, None, itkImageDuplicatorICVF33) itkImageDuplicatorICVF33.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF33_GetOutput, None, itkImageDuplicatorICVF33) itkImageDuplicatorICVF33.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF33_GetModifiableOutput, None, itkImageDuplicatorICVF33) itkImageDuplicatorICVF33.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF33_Update, None, itkImageDuplicatorICVF33) itkImageDuplicatorICVF33_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorICVF33_swigregister itkImageDuplicatorICVF33_swigregister(itkImageDuplicatorICVF33) def itkImageDuplicatorICVF33___New_orig__() -> "itkImageDuplicatorICVF33_Pointer": """itkImageDuplicatorICVF33___New_orig__() -> itkImageDuplicatorICVF33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33___New_orig__() def itkImageDuplicatorICVF33_cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF33 *": """itkImageDuplicatorICVF33_cast(itkLightObject obj) -> itkImageDuplicatorICVF33""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF33_cast(obj) class itkImageDuplicatorICVF42(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorICVF42 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorICVF42_Pointer": """__New_orig__() -> itkImageDuplicatorICVF42_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorICVF42_Pointer": """Clone(itkImageDuplicatorICVF42 self) -> itkImageDuplicatorICVF42_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_Clone(self) def SetInputImage(self, _arg: 'itkImageCVF42') -> "void": """SetInputImage(itkImageDuplicatorICVF42 self, itkImageCVF42 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageCVF42 *": """ GetOutput(itkImageDuplicatorICVF42 self) -> itkImageCVF42 GetOutput(itkImageDuplicatorICVF42 self) -> itkImageCVF42 """ return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageCVF42 *": """GetModifiableOutput(itkImageDuplicatorICVF42 self) -> itkImageCVF42""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorICVF42 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorICVF42 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF42 *": """cast(itkLightObject obj) -> itkImageDuplicatorICVF42""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorICVF42 Create a new object of the class itkImageDuplicatorICVF42 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorICVF42.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorICVF42.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorICVF42.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorICVF42.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF42_Clone, None, itkImageDuplicatorICVF42) itkImageDuplicatorICVF42.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF42_SetInputImage, None, itkImageDuplicatorICVF42) itkImageDuplicatorICVF42.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF42_GetOutput, None, itkImageDuplicatorICVF42) itkImageDuplicatorICVF42.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF42_GetModifiableOutput, None, itkImageDuplicatorICVF42) itkImageDuplicatorICVF42.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF42_Update, None, itkImageDuplicatorICVF42) itkImageDuplicatorICVF42_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorICVF42_swigregister itkImageDuplicatorICVF42_swigregister(itkImageDuplicatorICVF42) def itkImageDuplicatorICVF42___New_orig__() -> "itkImageDuplicatorICVF42_Pointer": """itkImageDuplicatorICVF42___New_orig__() -> itkImageDuplicatorICVF42_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42___New_orig__() def itkImageDuplicatorICVF42_cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF42 *": """itkImageDuplicatorICVF42_cast(itkLightObject obj) -> itkImageDuplicatorICVF42""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF42_cast(obj) class itkImageDuplicatorICVF43(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorICVF43 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorICVF43_Pointer": """__New_orig__() -> itkImageDuplicatorICVF43_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorICVF43_Pointer": """Clone(itkImageDuplicatorICVF43 self) -> itkImageDuplicatorICVF43_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_Clone(self) def SetInputImage(self, _arg: 'itkImageCVF43') -> "void": """SetInputImage(itkImageDuplicatorICVF43 self, itkImageCVF43 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageCVF43 *": """ GetOutput(itkImageDuplicatorICVF43 self) -> itkImageCVF43 GetOutput(itkImageDuplicatorICVF43 self) -> itkImageCVF43 """ return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageCVF43 *": """GetModifiableOutput(itkImageDuplicatorICVF43 self) -> itkImageCVF43""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorICVF43 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorICVF43 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF43 *": """cast(itkLightObject obj) -> itkImageDuplicatorICVF43""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorICVF43 Create a new object of the class itkImageDuplicatorICVF43 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorICVF43.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorICVF43.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorICVF43.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorICVF43.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF43_Clone, None, itkImageDuplicatorICVF43) itkImageDuplicatorICVF43.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF43_SetInputImage, None, itkImageDuplicatorICVF43) itkImageDuplicatorICVF43.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF43_GetOutput, None, itkImageDuplicatorICVF43) itkImageDuplicatorICVF43.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF43_GetModifiableOutput, None, itkImageDuplicatorICVF43) itkImageDuplicatorICVF43.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorICVF43_Update, None, itkImageDuplicatorICVF43) itkImageDuplicatorICVF43_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorICVF43_swigregister itkImageDuplicatorICVF43_swigregister(itkImageDuplicatorICVF43) def itkImageDuplicatorICVF43___New_orig__() -> "itkImageDuplicatorICVF43_Pointer": """itkImageDuplicatorICVF43___New_orig__() -> itkImageDuplicatorICVF43_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43___New_orig__() def itkImageDuplicatorICVF43_cast(obj: 'itkLightObject') -> "itkImageDuplicatorICVF43 *": """itkImageDuplicatorICVF43_cast(itkLightObject obj) -> itkImageDuplicatorICVF43""" return _itkImageDuplicatorPython.itkImageDuplicatorICVF43_cast(obj) class itkImageDuplicatorID2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorID2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorID2_Pointer": """__New_orig__() -> itkImageDuplicatorID2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorID2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorID2_Pointer": """Clone(itkImageDuplicatorID2 self) -> itkImageDuplicatorID2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorID2_Clone(self) def SetInputImage(self, _arg: 'itkImageD2') -> "void": """SetInputImage(itkImageDuplicatorID2 self, itkImageD2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorID2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageD2 *": """ GetOutput(itkImageDuplicatorID2 self) -> itkImageD2 GetOutput(itkImageDuplicatorID2 self) -> itkImageD2 """ return _itkImageDuplicatorPython.itkImageDuplicatorID2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageD2 *": """GetModifiableOutput(itkImageDuplicatorID2 self) -> itkImageD2""" return _itkImageDuplicatorPython.itkImageDuplicatorID2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorID2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorID2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorID2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorID2 *": """cast(itkLightObject obj) -> itkImageDuplicatorID2""" return _itkImageDuplicatorPython.itkImageDuplicatorID2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorID2 Create a new object of the class itkImageDuplicatorID2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorID2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorID2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorID2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorID2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID2_Clone, None, itkImageDuplicatorID2) itkImageDuplicatorID2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID2_SetInputImage, None, itkImageDuplicatorID2) itkImageDuplicatorID2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID2_GetOutput, None, itkImageDuplicatorID2) itkImageDuplicatorID2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID2_GetModifiableOutput, None, itkImageDuplicatorID2) itkImageDuplicatorID2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID2_Update, None, itkImageDuplicatorID2) itkImageDuplicatorID2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorID2_swigregister itkImageDuplicatorID2_swigregister(itkImageDuplicatorID2) def itkImageDuplicatorID2___New_orig__() -> "itkImageDuplicatorID2_Pointer": """itkImageDuplicatorID2___New_orig__() -> itkImageDuplicatorID2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorID2___New_orig__() def itkImageDuplicatorID2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorID2 *": """itkImageDuplicatorID2_cast(itkLightObject obj) -> itkImageDuplicatorID2""" return _itkImageDuplicatorPython.itkImageDuplicatorID2_cast(obj) class itkImageDuplicatorID3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorID3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorID3_Pointer": """__New_orig__() -> itkImageDuplicatorID3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorID3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorID3_Pointer": """Clone(itkImageDuplicatorID3 self) -> itkImageDuplicatorID3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorID3_Clone(self) def SetInputImage(self, _arg: 'itkImageD3') -> "void": """SetInputImage(itkImageDuplicatorID3 self, itkImageD3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorID3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageD3 *": """ GetOutput(itkImageDuplicatorID3 self) -> itkImageD3 GetOutput(itkImageDuplicatorID3 self) -> itkImageD3 """ return _itkImageDuplicatorPython.itkImageDuplicatorID3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageD3 *": """GetModifiableOutput(itkImageDuplicatorID3 self) -> itkImageD3""" return _itkImageDuplicatorPython.itkImageDuplicatorID3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorID3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorID3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorID3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorID3 *": """cast(itkLightObject obj) -> itkImageDuplicatorID3""" return _itkImageDuplicatorPython.itkImageDuplicatorID3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorID3 Create a new object of the class itkImageDuplicatorID3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorID3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorID3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorID3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorID3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID3_Clone, None, itkImageDuplicatorID3) itkImageDuplicatorID3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID3_SetInputImage, None, itkImageDuplicatorID3) itkImageDuplicatorID3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID3_GetOutput, None, itkImageDuplicatorID3) itkImageDuplicatorID3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID3_GetModifiableOutput, None, itkImageDuplicatorID3) itkImageDuplicatorID3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorID3_Update, None, itkImageDuplicatorID3) itkImageDuplicatorID3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorID3_swigregister itkImageDuplicatorID3_swigregister(itkImageDuplicatorID3) def itkImageDuplicatorID3___New_orig__() -> "itkImageDuplicatorID3_Pointer": """itkImageDuplicatorID3___New_orig__() -> itkImageDuplicatorID3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorID3___New_orig__() def itkImageDuplicatorID3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorID3 *": """itkImageDuplicatorID3_cast(itkLightObject obj) -> itkImageDuplicatorID3""" return _itkImageDuplicatorPython.itkImageDuplicatorID3_cast(obj) class itkImageDuplicatorIF2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIF2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIF2_Pointer": """__New_orig__() -> itkImageDuplicatorIF2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIF2_Pointer": """Clone(itkImageDuplicatorIF2 self) -> itkImageDuplicatorIF2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2_Clone(self) def SetInputImage(self, _arg: 'itkImageF2') -> "void": """SetInputImage(itkImageDuplicatorIF2 self, itkImageF2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageF2 *": """ GetOutput(itkImageDuplicatorIF2 self) -> itkImageF2 GetOutput(itkImageDuplicatorIF2 self) -> itkImageF2 """ return _itkImageDuplicatorPython.itkImageDuplicatorIF2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageF2 *": """GetModifiableOutput(itkImageDuplicatorIF2 self) -> itkImageF2""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIF2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIF2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIF2 *": """cast(itkLightObject obj) -> itkImageDuplicatorIF2""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIF2 Create a new object of the class itkImageDuplicatorIF2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIF2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIF2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIF2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIF2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF2_Clone, None, itkImageDuplicatorIF2) itkImageDuplicatorIF2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF2_SetInputImage, None, itkImageDuplicatorIF2) itkImageDuplicatorIF2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF2_GetOutput, None, itkImageDuplicatorIF2) itkImageDuplicatorIF2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF2_GetModifiableOutput, None, itkImageDuplicatorIF2) itkImageDuplicatorIF2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF2_Update, None, itkImageDuplicatorIF2) itkImageDuplicatorIF2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIF2_swigregister itkImageDuplicatorIF2_swigregister(itkImageDuplicatorIF2) def itkImageDuplicatorIF2___New_orig__() -> "itkImageDuplicatorIF2_Pointer": """itkImageDuplicatorIF2___New_orig__() -> itkImageDuplicatorIF2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2___New_orig__() def itkImageDuplicatorIF2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIF2 *": """itkImageDuplicatorIF2_cast(itkLightObject obj) -> itkImageDuplicatorIF2""" return _itkImageDuplicatorPython.itkImageDuplicatorIF2_cast(obj) class itkImageDuplicatorIF3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIF3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIF3_Pointer": """__New_orig__() -> itkImageDuplicatorIF3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIF3_Pointer": """Clone(itkImageDuplicatorIF3 self) -> itkImageDuplicatorIF3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3_Clone(self) def SetInputImage(self, _arg: 'itkImageF3') -> "void": """SetInputImage(itkImageDuplicatorIF3 self, itkImageF3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageF3 *": """ GetOutput(itkImageDuplicatorIF3 self) -> itkImageF3 GetOutput(itkImageDuplicatorIF3 self) -> itkImageF3 """ return _itkImageDuplicatorPython.itkImageDuplicatorIF3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageF3 *": """GetModifiableOutput(itkImageDuplicatorIF3 self) -> itkImageF3""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIF3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIF3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIF3 *": """cast(itkLightObject obj) -> itkImageDuplicatorIF3""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIF3 Create a new object of the class itkImageDuplicatorIF3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIF3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIF3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIF3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIF3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF3_Clone, None, itkImageDuplicatorIF3) itkImageDuplicatorIF3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF3_SetInputImage, None, itkImageDuplicatorIF3) itkImageDuplicatorIF3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF3_GetOutput, None, itkImageDuplicatorIF3) itkImageDuplicatorIF3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF3_GetModifiableOutput, None, itkImageDuplicatorIF3) itkImageDuplicatorIF3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIF3_Update, None, itkImageDuplicatorIF3) itkImageDuplicatorIF3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIF3_swigregister itkImageDuplicatorIF3_swigregister(itkImageDuplicatorIF3) def itkImageDuplicatorIF3___New_orig__() -> "itkImageDuplicatorIF3_Pointer": """itkImageDuplicatorIF3___New_orig__() -> itkImageDuplicatorIF3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3___New_orig__() def itkImageDuplicatorIF3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIF3 *": """itkImageDuplicatorIF3_cast(itkLightObject obj) -> itkImageDuplicatorIF3""" return _itkImageDuplicatorPython.itkImageDuplicatorIF3_cast(obj) class itkImageDuplicatorIRGBAUC2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIRGBAUC2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIRGBAUC2_Pointer": """__New_orig__() -> itkImageDuplicatorIRGBAUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIRGBAUC2_Pointer": """Clone(itkImageDuplicatorIRGBAUC2 self) -> itkImageDuplicatorIRGBAUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_Clone(self) def SetInputImage(self, _arg: 'itkImageRGBAUC2') -> "void": """SetInputImage(itkImageDuplicatorIRGBAUC2 self, itkImageRGBAUC2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageRGBAUC2 *": """ GetOutput(itkImageDuplicatorIRGBAUC2 self) -> itkImageRGBAUC2 GetOutput(itkImageDuplicatorIRGBAUC2 self) -> itkImageRGBAUC2 """ return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageRGBAUC2 *": """GetModifiableOutput(itkImageDuplicatorIRGBAUC2 self) -> itkImageRGBAUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIRGBAUC2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIRGBAUC2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBAUC2 *": """cast(itkLightObject obj) -> itkImageDuplicatorIRGBAUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIRGBAUC2 Create a new object of the class itkImageDuplicatorIRGBAUC2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIRGBAUC2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIRGBAUC2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIRGBAUC2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIRGBAUC2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_Clone, None, itkImageDuplicatorIRGBAUC2) itkImageDuplicatorIRGBAUC2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_SetInputImage, None, itkImageDuplicatorIRGBAUC2) itkImageDuplicatorIRGBAUC2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_GetOutput, None, itkImageDuplicatorIRGBAUC2) itkImageDuplicatorIRGBAUC2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_GetModifiableOutput, None, itkImageDuplicatorIRGBAUC2) itkImageDuplicatorIRGBAUC2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_Update, None, itkImageDuplicatorIRGBAUC2) itkImageDuplicatorIRGBAUC2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_swigregister itkImageDuplicatorIRGBAUC2_swigregister(itkImageDuplicatorIRGBAUC2) def itkImageDuplicatorIRGBAUC2___New_orig__() -> "itkImageDuplicatorIRGBAUC2_Pointer": """itkImageDuplicatorIRGBAUC2___New_orig__() -> itkImageDuplicatorIRGBAUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2___New_orig__() def itkImageDuplicatorIRGBAUC2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBAUC2 *": """itkImageDuplicatorIRGBAUC2_cast(itkLightObject obj) -> itkImageDuplicatorIRGBAUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC2_cast(obj) class itkImageDuplicatorIRGBAUC3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIRGBAUC3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIRGBAUC3_Pointer": """__New_orig__() -> itkImageDuplicatorIRGBAUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIRGBAUC3_Pointer": """Clone(itkImageDuplicatorIRGBAUC3 self) -> itkImageDuplicatorIRGBAUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_Clone(self) def SetInputImage(self, _arg: 'itkImageRGBAUC3') -> "void": """SetInputImage(itkImageDuplicatorIRGBAUC3 self, itkImageRGBAUC3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageRGBAUC3 *": """ GetOutput(itkImageDuplicatorIRGBAUC3 self) -> itkImageRGBAUC3 GetOutput(itkImageDuplicatorIRGBAUC3 self) -> itkImageRGBAUC3 """ return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageRGBAUC3 *": """GetModifiableOutput(itkImageDuplicatorIRGBAUC3 self) -> itkImageRGBAUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIRGBAUC3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIRGBAUC3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBAUC3 *": """cast(itkLightObject obj) -> itkImageDuplicatorIRGBAUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIRGBAUC3 Create a new object of the class itkImageDuplicatorIRGBAUC3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIRGBAUC3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIRGBAUC3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIRGBAUC3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIRGBAUC3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_Clone, None, itkImageDuplicatorIRGBAUC3) itkImageDuplicatorIRGBAUC3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_SetInputImage, None, itkImageDuplicatorIRGBAUC3) itkImageDuplicatorIRGBAUC3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_GetOutput, None, itkImageDuplicatorIRGBAUC3) itkImageDuplicatorIRGBAUC3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_GetModifiableOutput, None, itkImageDuplicatorIRGBAUC3) itkImageDuplicatorIRGBAUC3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_Update, None, itkImageDuplicatorIRGBAUC3) itkImageDuplicatorIRGBAUC3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_swigregister itkImageDuplicatorIRGBAUC3_swigregister(itkImageDuplicatorIRGBAUC3) def itkImageDuplicatorIRGBAUC3___New_orig__() -> "itkImageDuplicatorIRGBAUC3_Pointer": """itkImageDuplicatorIRGBAUC3___New_orig__() -> itkImageDuplicatorIRGBAUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3___New_orig__() def itkImageDuplicatorIRGBAUC3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBAUC3 *": """itkImageDuplicatorIRGBAUC3_cast(itkLightObject obj) -> itkImageDuplicatorIRGBAUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBAUC3_cast(obj) class itkImageDuplicatorIRGBUC2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIRGBUC2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIRGBUC2_Pointer": """__New_orig__() -> itkImageDuplicatorIRGBUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIRGBUC2_Pointer": """Clone(itkImageDuplicatorIRGBUC2 self) -> itkImageDuplicatorIRGBUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_Clone(self) def SetInputImage(self, _arg: 'itkImageRGBUC2') -> "void": """SetInputImage(itkImageDuplicatorIRGBUC2 self, itkImageRGBUC2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageRGBUC2 *": """ GetOutput(itkImageDuplicatorIRGBUC2 self) -> itkImageRGBUC2 GetOutput(itkImageDuplicatorIRGBUC2 self) -> itkImageRGBUC2 """ return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageRGBUC2 *": """GetModifiableOutput(itkImageDuplicatorIRGBUC2 self) -> itkImageRGBUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIRGBUC2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIRGBUC2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBUC2 *": """cast(itkLightObject obj) -> itkImageDuplicatorIRGBUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIRGBUC2 Create a new object of the class itkImageDuplicatorIRGBUC2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIRGBUC2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIRGBUC2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIRGBUC2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIRGBUC2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_Clone, None, itkImageDuplicatorIRGBUC2) itkImageDuplicatorIRGBUC2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_SetInputImage, None, itkImageDuplicatorIRGBUC2) itkImageDuplicatorIRGBUC2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_GetOutput, None, itkImageDuplicatorIRGBUC2) itkImageDuplicatorIRGBUC2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_GetModifiableOutput, None, itkImageDuplicatorIRGBUC2) itkImageDuplicatorIRGBUC2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_Update, None, itkImageDuplicatorIRGBUC2) itkImageDuplicatorIRGBUC2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_swigregister itkImageDuplicatorIRGBUC2_swigregister(itkImageDuplicatorIRGBUC2) def itkImageDuplicatorIRGBUC2___New_orig__() -> "itkImageDuplicatorIRGBUC2_Pointer": """itkImageDuplicatorIRGBUC2___New_orig__() -> itkImageDuplicatorIRGBUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2___New_orig__() def itkImageDuplicatorIRGBUC2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBUC2 *": """itkImageDuplicatorIRGBUC2_cast(itkLightObject obj) -> itkImageDuplicatorIRGBUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC2_cast(obj) class itkImageDuplicatorIRGBUC3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIRGBUC3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIRGBUC3_Pointer": """__New_orig__() -> itkImageDuplicatorIRGBUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIRGBUC3_Pointer": """Clone(itkImageDuplicatorIRGBUC3 self) -> itkImageDuplicatorIRGBUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_Clone(self) def SetInputImage(self, _arg: 'itkImageRGBUC3') -> "void": """SetInputImage(itkImageDuplicatorIRGBUC3 self, itkImageRGBUC3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageRGBUC3 *": """ GetOutput(itkImageDuplicatorIRGBUC3 self) -> itkImageRGBUC3 GetOutput(itkImageDuplicatorIRGBUC3 self) -> itkImageRGBUC3 """ return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageRGBUC3 *": """GetModifiableOutput(itkImageDuplicatorIRGBUC3 self) -> itkImageRGBUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIRGBUC3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIRGBUC3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBUC3 *": """cast(itkLightObject obj) -> itkImageDuplicatorIRGBUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIRGBUC3 Create a new object of the class itkImageDuplicatorIRGBUC3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIRGBUC3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIRGBUC3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIRGBUC3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIRGBUC3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_Clone, None, itkImageDuplicatorIRGBUC3) itkImageDuplicatorIRGBUC3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_SetInputImage, None, itkImageDuplicatorIRGBUC3) itkImageDuplicatorIRGBUC3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_GetOutput, None, itkImageDuplicatorIRGBUC3) itkImageDuplicatorIRGBUC3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_GetModifiableOutput, None, itkImageDuplicatorIRGBUC3) itkImageDuplicatorIRGBUC3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_Update, None, itkImageDuplicatorIRGBUC3) itkImageDuplicatorIRGBUC3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_swigregister itkImageDuplicatorIRGBUC3_swigregister(itkImageDuplicatorIRGBUC3) def itkImageDuplicatorIRGBUC3___New_orig__() -> "itkImageDuplicatorIRGBUC3_Pointer": """itkImageDuplicatorIRGBUC3___New_orig__() -> itkImageDuplicatorIRGBUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3___New_orig__() def itkImageDuplicatorIRGBUC3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIRGBUC3 *": """itkImageDuplicatorIRGBUC3_cast(itkLightObject obj) -> itkImageDuplicatorIRGBUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIRGBUC3_cast(obj) class itkImageDuplicatorISS2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorISS2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorISS2_Pointer": """__New_orig__() -> itkImageDuplicatorISS2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorISS2_Pointer": """Clone(itkImageDuplicatorISS2 self) -> itkImageDuplicatorISS2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2_Clone(self) def SetInputImage(self, _arg: 'itkImageSS2') -> "void": """SetInputImage(itkImageDuplicatorISS2 self, itkImageSS2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageSS2 *": """ GetOutput(itkImageDuplicatorISS2 self) -> itkImageSS2 GetOutput(itkImageDuplicatorISS2 self) -> itkImageSS2 """ return _itkImageDuplicatorPython.itkImageDuplicatorISS2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageSS2 *": """GetModifiableOutput(itkImageDuplicatorISS2 self) -> itkImageSS2""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorISS2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorISS2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorISS2 *": """cast(itkLightObject obj) -> itkImageDuplicatorISS2""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorISS2 Create a new object of the class itkImageDuplicatorISS2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorISS2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorISS2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorISS2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorISS2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS2_Clone, None, itkImageDuplicatorISS2) itkImageDuplicatorISS2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS2_SetInputImage, None, itkImageDuplicatorISS2) itkImageDuplicatorISS2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS2_GetOutput, None, itkImageDuplicatorISS2) itkImageDuplicatorISS2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS2_GetModifiableOutput, None, itkImageDuplicatorISS2) itkImageDuplicatorISS2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS2_Update, None, itkImageDuplicatorISS2) itkImageDuplicatorISS2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorISS2_swigregister itkImageDuplicatorISS2_swigregister(itkImageDuplicatorISS2) def itkImageDuplicatorISS2___New_orig__() -> "itkImageDuplicatorISS2_Pointer": """itkImageDuplicatorISS2___New_orig__() -> itkImageDuplicatorISS2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2___New_orig__() def itkImageDuplicatorISS2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorISS2 *": """itkImageDuplicatorISS2_cast(itkLightObject obj) -> itkImageDuplicatorISS2""" return _itkImageDuplicatorPython.itkImageDuplicatorISS2_cast(obj) class itkImageDuplicatorISS3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorISS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorISS3_Pointer": """__New_orig__() -> itkImageDuplicatorISS3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorISS3_Pointer": """Clone(itkImageDuplicatorISS3 self) -> itkImageDuplicatorISS3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3_Clone(self) def SetInputImage(self, _arg: 'itkImageSS3') -> "void": """SetInputImage(itkImageDuplicatorISS3 self, itkImageSS3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageSS3 *": """ GetOutput(itkImageDuplicatorISS3 self) -> itkImageSS3 GetOutput(itkImageDuplicatorISS3 self) -> itkImageSS3 """ return _itkImageDuplicatorPython.itkImageDuplicatorISS3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageSS3 *": """GetModifiableOutput(itkImageDuplicatorISS3 self) -> itkImageSS3""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorISS3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorISS3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorISS3 *": """cast(itkLightObject obj) -> itkImageDuplicatorISS3""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorISS3 Create a new object of the class itkImageDuplicatorISS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorISS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorISS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorISS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorISS3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS3_Clone, None, itkImageDuplicatorISS3) itkImageDuplicatorISS3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS3_SetInputImage, None, itkImageDuplicatorISS3) itkImageDuplicatorISS3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS3_GetOutput, None, itkImageDuplicatorISS3) itkImageDuplicatorISS3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS3_GetModifiableOutput, None, itkImageDuplicatorISS3) itkImageDuplicatorISS3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISS3_Update, None, itkImageDuplicatorISS3) itkImageDuplicatorISS3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorISS3_swigregister itkImageDuplicatorISS3_swigregister(itkImageDuplicatorISS3) def itkImageDuplicatorISS3___New_orig__() -> "itkImageDuplicatorISS3_Pointer": """itkImageDuplicatorISS3___New_orig__() -> itkImageDuplicatorISS3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3___New_orig__() def itkImageDuplicatorISS3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorISS3 *": """itkImageDuplicatorISS3_cast(itkLightObject obj) -> itkImageDuplicatorISS3""" return _itkImageDuplicatorPython.itkImageDuplicatorISS3_cast(obj) class itkImageDuplicatorISSRTD22(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorISSRTD22 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorISSRTD22_Pointer": """__New_orig__() -> itkImageDuplicatorISSRTD22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorISSRTD22_Pointer": """Clone(itkImageDuplicatorISSRTD22 self) -> itkImageDuplicatorISSRTD22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_Clone(self) def SetInputImage(self, _arg: 'itkImageSSRTD22') -> "void": """SetInputImage(itkImageDuplicatorISSRTD22 self, itkImageSSRTD22 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageSSRTD22 *": """ GetOutput(itkImageDuplicatorISSRTD22 self) -> itkImageSSRTD22 GetOutput(itkImageDuplicatorISSRTD22 self) -> itkImageSSRTD22 """ return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageSSRTD22 *": """GetModifiableOutput(itkImageDuplicatorISSRTD22 self) -> itkImageSSRTD22""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorISSRTD22 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorISSRTD22 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorISSRTD22 *": """cast(itkLightObject obj) -> itkImageDuplicatorISSRTD22""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorISSRTD22 Create a new object of the class itkImageDuplicatorISSRTD22 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorISSRTD22.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorISSRTD22.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorISSRTD22.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorISSRTD22.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_Clone, None, itkImageDuplicatorISSRTD22) itkImageDuplicatorISSRTD22.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_SetInputImage, None, itkImageDuplicatorISSRTD22) itkImageDuplicatorISSRTD22.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_GetOutput, None, itkImageDuplicatorISSRTD22) itkImageDuplicatorISSRTD22.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_GetModifiableOutput, None, itkImageDuplicatorISSRTD22) itkImageDuplicatorISSRTD22.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_Update, None, itkImageDuplicatorISSRTD22) itkImageDuplicatorISSRTD22_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_swigregister itkImageDuplicatorISSRTD22_swigregister(itkImageDuplicatorISSRTD22) def itkImageDuplicatorISSRTD22___New_orig__() -> "itkImageDuplicatorISSRTD22_Pointer": """itkImageDuplicatorISSRTD22___New_orig__() -> itkImageDuplicatorISSRTD22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22___New_orig__() def itkImageDuplicatorISSRTD22_cast(obj: 'itkLightObject') -> "itkImageDuplicatorISSRTD22 *": """itkImageDuplicatorISSRTD22_cast(itkLightObject obj) -> itkImageDuplicatorISSRTD22""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD22_cast(obj) class itkImageDuplicatorISSRTD33(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorISSRTD33 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorISSRTD33_Pointer": """__New_orig__() -> itkImageDuplicatorISSRTD33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorISSRTD33_Pointer": """Clone(itkImageDuplicatorISSRTD33 self) -> itkImageDuplicatorISSRTD33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_Clone(self) def SetInputImage(self, _arg: 'itkImageSSRTD33') -> "void": """SetInputImage(itkImageDuplicatorISSRTD33 self, itkImageSSRTD33 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageSSRTD33 *": """ GetOutput(itkImageDuplicatorISSRTD33 self) -> itkImageSSRTD33 GetOutput(itkImageDuplicatorISSRTD33 self) -> itkImageSSRTD33 """ return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageSSRTD33 *": """GetModifiableOutput(itkImageDuplicatorISSRTD33 self) -> itkImageSSRTD33""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorISSRTD33 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorISSRTD33 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorISSRTD33 *": """cast(itkLightObject obj) -> itkImageDuplicatorISSRTD33""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorISSRTD33 Create a new object of the class itkImageDuplicatorISSRTD33 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorISSRTD33.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorISSRTD33.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorISSRTD33.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorISSRTD33.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_Clone, None, itkImageDuplicatorISSRTD33) itkImageDuplicatorISSRTD33.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_SetInputImage, None, itkImageDuplicatorISSRTD33) itkImageDuplicatorISSRTD33.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_GetOutput, None, itkImageDuplicatorISSRTD33) itkImageDuplicatorISSRTD33.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_GetModifiableOutput, None, itkImageDuplicatorISSRTD33) itkImageDuplicatorISSRTD33.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_Update, None, itkImageDuplicatorISSRTD33) itkImageDuplicatorISSRTD33_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_swigregister itkImageDuplicatorISSRTD33_swigregister(itkImageDuplicatorISSRTD33) def itkImageDuplicatorISSRTD33___New_orig__() -> "itkImageDuplicatorISSRTD33_Pointer": """itkImageDuplicatorISSRTD33___New_orig__() -> itkImageDuplicatorISSRTD33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33___New_orig__() def itkImageDuplicatorISSRTD33_cast(obj: 'itkLightObject') -> "itkImageDuplicatorISSRTD33 *": """itkImageDuplicatorISSRTD33_cast(itkLightObject obj) -> itkImageDuplicatorISSRTD33""" return _itkImageDuplicatorPython.itkImageDuplicatorISSRTD33_cast(obj) class itkImageDuplicatorIUC2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIUC2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIUC2_Pointer": """__New_orig__() -> itkImageDuplicatorIUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIUC2_Pointer": """Clone(itkImageDuplicatorIUC2 self) -> itkImageDuplicatorIUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_Clone(self) def SetInputImage(self, _arg: 'itkImageUC2') -> "void": """SetInputImage(itkImageDuplicatorIUC2 self, itkImageUC2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageUC2 *": """ GetOutput(itkImageDuplicatorIUC2 self) -> itkImageUC2 GetOutput(itkImageDuplicatorIUC2 self) -> itkImageUC2 """ return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageUC2 *": """GetModifiableOutput(itkImageDuplicatorIUC2 self) -> itkImageUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIUC2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIUC2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUC2 *": """cast(itkLightObject obj) -> itkImageDuplicatorIUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIUC2 Create a new object of the class itkImageDuplicatorIUC2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIUC2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIUC2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIUC2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIUC2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC2_Clone, None, itkImageDuplicatorIUC2) itkImageDuplicatorIUC2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC2_SetInputImage, None, itkImageDuplicatorIUC2) itkImageDuplicatorIUC2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC2_GetOutput, None, itkImageDuplicatorIUC2) itkImageDuplicatorIUC2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC2_GetModifiableOutput, None, itkImageDuplicatorIUC2) itkImageDuplicatorIUC2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC2_Update, None, itkImageDuplicatorIUC2) itkImageDuplicatorIUC2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIUC2_swigregister itkImageDuplicatorIUC2_swigregister(itkImageDuplicatorIUC2) def itkImageDuplicatorIUC2___New_orig__() -> "itkImageDuplicatorIUC2_Pointer": """itkImageDuplicatorIUC2___New_orig__() -> itkImageDuplicatorIUC2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2___New_orig__() def itkImageDuplicatorIUC2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUC2 *": """itkImageDuplicatorIUC2_cast(itkLightObject obj) -> itkImageDuplicatorIUC2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC2_cast(obj) class itkImageDuplicatorIUC3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIUC3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIUC3_Pointer": """__New_orig__() -> itkImageDuplicatorIUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIUC3_Pointer": """Clone(itkImageDuplicatorIUC3 self) -> itkImageDuplicatorIUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_Clone(self) def SetInputImage(self, _arg: 'itkImageUC3') -> "void": """SetInputImage(itkImageDuplicatorIUC3 self, itkImageUC3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageUC3 *": """ GetOutput(itkImageDuplicatorIUC3 self) -> itkImageUC3 GetOutput(itkImageDuplicatorIUC3 self) -> itkImageUC3 """ return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageUC3 *": """GetModifiableOutput(itkImageDuplicatorIUC3 self) -> itkImageUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIUC3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIUC3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUC3 *": """cast(itkLightObject obj) -> itkImageDuplicatorIUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIUC3 Create a new object of the class itkImageDuplicatorIUC3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIUC3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIUC3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIUC3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIUC3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC3_Clone, None, itkImageDuplicatorIUC3) itkImageDuplicatorIUC3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC3_SetInputImage, None, itkImageDuplicatorIUC3) itkImageDuplicatorIUC3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC3_GetOutput, None, itkImageDuplicatorIUC3) itkImageDuplicatorIUC3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC3_GetModifiableOutput, None, itkImageDuplicatorIUC3) itkImageDuplicatorIUC3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUC3_Update, None, itkImageDuplicatorIUC3) itkImageDuplicatorIUC3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIUC3_swigregister itkImageDuplicatorIUC3_swigregister(itkImageDuplicatorIUC3) def itkImageDuplicatorIUC3___New_orig__() -> "itkImageDuplicatorIUC3_Pointer": """itkImageDuplicatorIUC3___New_orig__() -> itkImageDuplicatorIUC3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3___New_orig__() def itkImageDuplicatorIUC3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUC3 *": """itkImageDuplicatorIUC3_cast(itkLightObject obj) -> itkImageDuplicatorIUC3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUC3_cast(obj) class itkImageDuplicatorIUL2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIUL2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIUL2_Pointer": """__New_orig__() -> itkImageDuplicatorIUL2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIUL2_Pointer": """Clone(itkImageDuplicatorIUL2 self) -> itkImageDuplicatorIUL2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_Clone(self) def SetInputImage(self, _arg: 'itkImageUL2') -> "void": """SetInputImage(itkImageDuplicatorIUL2 self, itkImageUL2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageUL2 *": """ GetOutput(itkImageDuplicatorIUL2 self) -> itkImageUL2 GetOutput(itkImageDuplicatorIUL2 self) -> itkImageUL2 """ return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageUL2 *": """GetModifiableOutput(itkImageDuplicatorIUL2 self) -> itkImageUL2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIUL2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIUL2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUL2 *": """cast(itkLightObject obj) -> itkImageDuplicatorIUL2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIUL2 Create a new object of the class itkImageDuplicatorIUL2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIUL2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIUL2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIUL2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIUL2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL2_Clone, None, itkImageDuplicatorIUL2) itkImageDuplicatorIUL2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL2_SetInputImage, None, itkImageDuplicatorIUL2) itkImageDuplicatorIUL2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL2_GetOutput, None, itkImageDuplicatorIUL2) itkImageDuplicatorIUL2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL2_GetModifiableOutput, None, itkImageDuplicatorIUL2) itkImageDuplicatorIUL2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL2_Update, None, itkImageDuplicatorIUL2) itkImageDuplicatorIUL2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIUL2_swigregister itkImageDuplicatorIUL2_swigregister(itkImageDuplicatorIUL2) def itkImageDuplicatorIUL2___New_orig__() -> "itkImageDuplicatorIUL2_Pointer": """itkImageDuplicatorIUL2___New_orig__() -> itkImageDuplicatorIUL2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2___New_orig__() def itkImageDuplicatorIUL2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUL2 *": """itkImageDuplicatorIUL2_cast(itkLightObject obj) -> itkImageDuplicatorIUL2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL2_cast(obj) class itkImageDuplicatorIUL3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIUL3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIUL3_Pointer": """__New_orig__() -> itkImageDuplicatorIUL3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIUL3_Pointer": """Clone(itkImageDuplicatorIUL3 self) -> itkImageDuplicatorIUL3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_Clone(self) def SetInputImage(self, _arg: 'itkImageUL3') -> "void": """SetInputImage(itkImageDuplicatorIUL3 self, itkImageUL3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageUL3 *": """ GetOutput(itkImageDuplicatorIUL3 self) -> itkImageUL3 GetOutput(itkImageDuplicatorIUL3 self) -> itkImageUL3 """ return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageUL3 *": """GetModifiableOutput(itkImageDuplicatorIUL3 self) -> itkImageUL3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIUL3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIUL3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUL3 *": """cast(itkLightObject obj) -> itkImageDuplicatorIUL3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIUL3 Create a new object of the class itkImageDuplicatorIUL3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIUL3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIUL3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIUL3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIUL3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL3_Clone, None, itkImageDuplicatorIUL3) itkImageDuplicatorIUL3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL3_SetInputImage, None, itkImageDuplicatorIUL3) itkImageDuplicatorIUL3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL3_GetOutput, None, itkImageDuplicatorIUL3) itkImageDuplicatorIUL3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL3_GetModifiableOutput, None, itkImageDuplicatorIUL3) itkImageDuplicatorIUL3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUL3_Update, None, itkImageDuplicatorIUL3) itkImageDuplicatorIUL3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIUL3_swigregister itkImageDuplicatorIUL3_swigregister(itkImageDuplicatorIUL3) def itkImageDuplicatorIUL3___New_orig__() -> "itkImageDuplicatorIUL3_Pointer": """itkImageDuplicatorIUL3___New_orig__() -> itkImageDuplicatorIUL3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3___New_orig__() def itkImageDuplicatorIUL3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUL3 *": """itkImageDuplicatorIUL3_cast(itkLightObject obj) -> itkImageDuplicatorIUL3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUL3_cast(obj) class itkImageDuplicatorIUS2(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIUS2 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIUS2_Pointer": """__New_orig__() -> itkImageDuplicatorIUS2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIUS2_Pointer": """Clone(itkImageDuplicatorIUS2 self) -> itkImageDuplicatorIUS2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_Clone(self) def SetInputImage(self, _arg: 'itkImageUS2') -> "void": """SetInputImage(itkImageDuplicatorIUS2 self, itkImageUS2 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageUS2 *": """ GetOutput(itkImageDuplicatorIUS2 self) -> itkImageUS2 GetOutput(itkImageDuplicatorIUS2 self) -> itkImageUS2 """ return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageUS2 *": """GetModifiableOutput(itkImageDuplicatorIUS2 self) -> itkImageUS2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIUS2 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIUS2 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUS2 *": """cast(itkLightObject obj) -> itkImageDuplicatorIUS2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIUS2 Create a new object of the class itkImageDuplicatorIUS2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIUS2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIUS2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIUS2.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIUS2.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS2_Clone, None, itkImageDuplicatorIUS2) itkImageDuplicatorIUS2.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS2_SetInputImage, None, itkImageDuplicatorIUS2) itkImageDuplicatorIUS2.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS2_GetOutput, None, itkImageDuplicatorIUS2) itkImageDuplicatorIUS2.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS2_GetModifiableOutput, None, itkImageDuplicatorIUS2) itkImageDuplicatorIUS2.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS2_Update, None, itkImageDuplicatorIUS2) itkImageDuplicatorIUS2_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIUS2_swigregister itkImageDuplicatorIUS2_swigregister(itkImageDuplicatorIUS2) def itkImageDuplicatorIUS2___New_orig__() -> "itkImageDuplicatorIUS2_Pointer": """itkImageDuplicatorIUS2___New_orig__() -> itkImageDuplicatorIUS2_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2___New_orig__() def itkImageDuplicatorIUS2_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUS2 *": """itkImageDuplicatorIUS2_cast(itkLightObject obj) -> itkImageDuplicatorIUS2""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS2_cast(obj) class itkImageDuplicatorIUS3(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIUS3 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIUS3_Pointer": """__New_orig__() -> itkImageDuplicatorIUS3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIUS3_Pointer": """Clone(itkImageDuplicatorIUS3 self) -> itkImageDuplicatorIUS3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_Clone(self) def SetInputImage(self, _arg: 'itkImageUS3') -> "void": """SetInputImage(itkImageDuplicatorIUS3 self, itkImageUS3 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageUS3 *": """ GetOutput(itkImageDuplicatorIUS3 self) -> itkImageUS3 GetOutput(itkImageDuplicatorIUS3 self) -> itkImageUS3 """ return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageUS3 *": """GetModifiableOutput(itkImageDuplicatorIUS3 self) -> itkImageUS3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIUS3 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIUS3 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUS3 *": """cast(itkLightObject obj) -> itkImageDuplicatorIUS3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIUS3 Create a new object of the class itkImageDuplicatorIUS3 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIUS3.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIUS3.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIUS3.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIUS3.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS3_Clone, None, itkImageDuplicatorIUS3) itkImageDuplicatorIUS3.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS3_SetInputImage, None, itkImageDuplicatorIUS3) itkImageDuplicatorIUS3.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS3_GetOutput, None, itkImageDuplicatorIUS3) itkImageDuplicatorIUS3.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS3_GetModifiableOutput, None, itkImageDuplicatorIUS3) itkImageDuplicatorIUS3.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIUS3_Update, None, itkImageDuplicatorIUS3) itkImageDuplicatorIUS3_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIUS3_swigregister itkImageDuplicatorIUS3_swigregister(itkImageDuplicatorIUS3) def itkImageDuplicatorIUS3___New_orig__() -> "itkImageDuplicatorIUS3_Pointer": """itkImageDuplicatorIUS3___New_orig__() -> itkImageDuplicatorIUS3_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3___New_orig__() def itkImageDuplicatorIUS3_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIUS3 *": """itkImageDuplicatorIUS3_cast(itkLightObject obj) -> itkImageDuplicatorIUS3""" return _itkImageDuplicatorPython.itkImageDuplicatorIUS3_cast(obj) class itkImageDuplicatorIVF22(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIVF22 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIVF22_Pointer": """__New_orig__() -> itkImageDuplicatorIVF22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIVF22_Pointer": """Clone(itkImageDuplicatorIVF22 self) -> itkImageDuplicatorIVF22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_Clone(self) def SetInputImage(self, _arg: 'itkImageVF22') -> "void": """SetInputImage(itkImageDuplicatorIVF22 self, itkImageVF22 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageVF22 *": """ GetOutput(itkImageDuplicatorIVF22 self) -> itkImageVF22 GetOutput(itkImageDuplicatorIVF22 self) -> itkImageVF22 """ return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageVF22 *": """GetModifiableOutput(itkImageDuplicatorIVF22 self) -> itkImageVF22""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIVF22 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIVF22 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF22 *": """cast(itkLightObject obj) -> itkImageDuplicatorIVF22""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIVF22 Create a new object of the class itkImageDuplicatorIVF22 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIVF22.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIVF22.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIVF22.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIVF22.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF22_Clone, None, itkImageDuplicatorIVF22) itkImageDuplicatorIVF22.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF22_SetInputImage, None, itkImageDuplicatorIVF22) itkImageDuplicatorIVF22.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF22_GetOutput, None, itkImageDuplicatorIVF22) itkImageDuplicatorIVF22.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF22_GetModifiableOutput, None, itkImageDuplicatorIVF22) itkImageDuplicatorIVF22.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF22_Update, None, itkImageDuplicatorIVF22) itkImageDuplicatorIVF22_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIVF22_swigregister itkImageDuplicatorIVF22_swigregister(itkImageDuplicatorIVF22) def itkImageDuplicatorIVF22___New_orig__() -> "itkImageDuplicatorIVF22_Pointer": """itkImageDuplicatorIVF22___New_orig__() -> itkImageDuplicatorIVF22_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22___New_orig__() def itkImageDuplicatorIVF22_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF22 *": """itkImageDuplicatorIVF22_cast(itkLightObject obj) -> itkImageDuplicatorIVF22""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF22_cast(obj) class itkImageDuplicatorIVF23(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIVF23 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIVF23_Pointer": """__New_orig__() -> itkImageDuplicatorIVF23_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIVF23_Pointer": """Clone(itkImageDuplicatorIVF23 self) -> itkImageDuplicatorIVF23_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_Clone(self) def SetInputImage(self, _arg: 'itkImageVF23') -> "void": """SetInputImage(itkImageDuplicatorIVF23 self, itkImageVF23 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageVF23 *": """ GetOutput(itkImageDuplicatorIVF23 self) -> itkImageVF23 GetOutput(itkImageDuplicatorIVF23 self) -> itkImageVF23 """ return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageVF23 *": """GetModifiableOutput(itkImageDuplicatorIVF23 self) -> itkImageVF23""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIVF23 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIVF23 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF23 *": """cast(itkLightObject obj) -> itkImageDuplicatorIVF23""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIVF23 Create a new object of the class itkImageDuplicatorIVF23 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIVF23.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIVF23.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIVF23.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIVF23.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF23_Clone, None, itkImageDuplicatorIVF23) itkImageDuplicatorIVF23.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF23_SetInputImage, None, itkImageDuplicatorIVF23) itkImageDuplicatorIVF23.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF23_GetOutput, None, itkImageDuplicatorIVF23) itkImageDuplicatorIVF23.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF23_GetModifiableOutput, None, itkImageDuplicatorIVF23) itkImageDuplicatorIVF23.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF23_Update, None, itkImageDuplicatorIVF23) itkImageDuplicatorIVF23_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIVF23_swigregister itkImageDuplicatorIVF23_swigregister(itkImageDuplicatorIVF23) def itkImageDuplicatorIVF23___New_orig__() -> "itkImageDuplicatorIVF23_Pointer": """itkImageDuplicatorIVF23___New_orig__() -> itkImageDuplicatorIVF23_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23___New_orig__() def itkImageDuplicatorIVF23_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF23 *": """itkImageDuplicatorIVF23_cast(itkLightObject obj) -> itkImageDuplicatorIVF23""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF23_cast(obj) class itkImageDuplicatorIVF32(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIVF32 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIVF32_Pointer": """__New_orig__() -> itkImageDuplicatorIVF32_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIVF32_Pointer": """Clone(itkImageDuplicatorIVF32 self) -> itkImageDuplicatorIVF32_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_Clone(self) def SetInputImage(self, _arg: 'itkImageVF32') -> "void": """SetInputImage(itkImageDuplicatorIVF32 self, itkImageVF32 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageVF32 *": """ GetOutput(itkImageDuplicatorIVF32 self) -> itkImageVF32 GetOutput(itkImageDuplicatorIVF32 self) -> itkImageVF32 """ return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageVF32 *": """GetModifiableOutput(itkImageDuplicatorIVF32 self) -> itkImageVF32""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIVF32 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIVF32 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF32 *": """cast(itkLightObject obj) -> itkImageDuplicatorIVF32""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIVF32 Create a new object of the class itkImageDuplicatorIVF32 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIVF32.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIVF32.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIVF32.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIVF32.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF32_Clone, None, itkImageDuplicatorIVF32) itkImageDuplicatorIVF32.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF32_SetInputImage, None, itkImageDuplicatorIVF32) itkImageDuplicatorIVF32.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF32_GetOutput, None, itkImageDuplicatorIVF32) itkImageDuplicatorIVF32.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF32_GetModifiableOutput, None, itkImageDuplicatorIVF32) itkImageDuplicatorIVF32.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF32_Update, None, itkImageDuplicatorIVF32) itkImageDuplicatorIVF32_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIVF32_swigregister itkImageDuplicatorIVF32_swigregister(itkImageDuplicatorIVF32) def itkImageDuplicatorIVF32___New_orig__() -> "itkImageDuplicatorIVF32_Pointer": """itkImageDuplicatorIVF32___New_orig__() -> itkImageDuplicatorIVF32_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32___New_orig__() def itkImageDuplicatorIVF32_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF32 *": """itkImageDuplicatorIVF32_cast(itkLightObject obj) -> itkImageDuplicatorIVF32""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF32_cast(obj) class itkImageDuplicatorIVF33(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIVF33 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIVF33_Pointer": """__New_orig__() -> itkImageDuplicatorIVF33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIVF33_Pointer": """Clone(itkImageDuplicatorIVF33 self) -> itkImageDuplicatorIVF33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_Clone(self) def SetInputImage(self, _arg: 'itkImageVF33') -> "void": """SetInputImage(itkImageDuplicatorIVF33 self, itkImageVF33 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageVF33 *": """ GetOutput(itkImageDuplicatorIVF33 self) -> itkImageVF33 GetOutput(itkImageDuplicatorIVF33 self) -> itkImageVF33 """ return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageVF33 *": """GetModifiableOutput(itkImageDuplicatorIVF33 self) -> itkImageVF33""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIVF33 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIVF33 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF33 *": """cast(itkLightObject obj) -> itkImageDuplicatorIVF33""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIVF33 Create a new object of the class itkImageDuplicatorIVF33 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIVF33.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIVF33.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIVF33.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIVF33.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF33_Clone, None, itkImageDuplicatorIVF33) itkImageDuplicatorIVF33.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF33_SetInputImage, None, itkImageDuplicatorIVF33) itkImageDuplicatorIVF33.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF33_GetOutput, None, itkImageDuplicatorIVF33) itkImageDuplicatorIVF33.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF33_GetModifiableOutput, None, itkImageDuplicatorIVF33) itkImageDuplicatorIVF33.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF33_Update, None, itkImageDuplicatorIVF33) itkImageDuplicatorIVF33_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIVF33_swigregister itkImageDuplicatorIVF33_swigregister(itkImageDuplicatorIVF33) def itkImageDuplicatorIVF33___New_orig__() -> "itkImageDuplicatorIVF33_Pointer": """itkImageDuplicatorIVF33___New_orig__() -> itkImageDuplicatorIVF33_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33___New_orig__() def itkImageDuplicatorIVF33_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF33 *": """itkImageDuplicatorIVF33_cast(itkLightObject obj) -> itkImageDuplicatorIVF33""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF33_cast(obj) class itkImageDuplicatorIVF42(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIVF42 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIVF42_Pointer": """__New_orig__() -> itkImageDuplicatorIVF42_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIVF42_Pointer": """Clone(itkImageDuplicatorIVF42 self) -> itkImageDuplicatorIVF42_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_Clone(self) def SetInputImage(self, _arg: 'itkImageVF42') -> "void": """SetInputImage(itkImageDuplicatorIVF42 self, itkImageVF42 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageVF42 *": """ GetOutput(itkImageDuplicatorIVF42 self) -> itkImageVF42 GetOutput(itkImageDuplicatorIVF42 self) -> itkImageVF42 """ return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageVF42 *": """GetModifiableOutput(itkImageDuplicatorIVF42 self) -> itkImageVF42""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIVF42 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIVF42 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF42 *": """cast(itkLightObject obj) -> itkImageDuplicatorIVF42""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIVF42 Create a new object of the class itkImageDuplicatorIVF42 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIVF42.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIVF42.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIVF42.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIVF42.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF42_Clone, None, itkImageDuplicatorIVF42) itkImageDuplicatorIVF42.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF42_SetInputImage, None, itkImageDuplicatorIVF42) itkImageDuplicatorIVF42.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF42_GetOutput, None, itkImageDuplicatorIVF42) itkImageDuplicatorIVF42.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF42_GetModifiableOutput, None, itkImageDuplicatorIVF42) itkImageDuplicatorIVF42.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF42_Update, None, itkImageDuplicatorIVF42) itkImageDuplicatorIVF42_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIVF42_swigregister itkImageDuplicatorIVF42_swigregister(itkImageDuplicatorIVF42) def itkImageDuplicatorIVF42___New_orig__() -> "itkImageDuplicatorIVF42_Pointer": """itkImageDuplicatorIVF42___New_orig__() -> itkImageDuplicatorIVF42_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42___New_orig__() def itkImageDuplicatorIVF42_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF42 *": """itkImageDuplicatorIVF42_cast(itkLightObject obj) -> itkImageDuplicatorIVF42""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF42_cast(obj) class itkImageDuplicatorIVF43(ITKCommonBasePython.itkObject): """Proxy of C++ itkImageDuplicatorIVF43 class.""" thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined") __repr__ = _swig_repr def __New_orig__() -> "itkImageDuplicatorIVF43_Pointer": """__New_orig__() -> itkImageDuplicatorIVF43_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43___New_orig__() __New_orig__ = staticmethod(__New_orig__) def Clone(self) -> "itkImageDuplicatorIVF43_Pointer": """Clone(itkImageDuplicatorIVF43 self) -> itkImageDuplicatorIVF43_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_Clone(self) def SetInputImage(self, _arg: 'itkImageVF43') -> "void": """SetInputImage(itkImageDuplicatorIVF43 self, itkImageVF43 _arg)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_SetInputImage(self, _arg) def GetOutput(self, *args) -> "itkImageVF43 *": """ GetOutput(itkImageDuplicatorIVF43 self) -> itkImageVF43 GetOutput(itkImageDuplicatorIVF43 self) -> itkImageVF43 """ return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_GetOutput(self, *args) def GetModifiableOutput(self) -> "itkImageVF43 *": """GetModifiableOutput(itkImageDuplicatorIVF43 self) -> itkImageVF43""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_GetModifiableOutput(self) def Update(self) -> "void": """Update(itkImageDuplicatorIVF43 self)""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_Update(self) __swig_destroy__ = _itkImageDuplicatorPython.delete_itkImageDuplicatorIVF43 def cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF43 *": """cast(itkLightObject obj) -> itkImageDuplicatorIVF43""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_cast(obj) cast = staticmethod(cast) def New(*args, **kargs): """New() -> itkImageDuplicatorIVF43 Create a new object of the class itkImageDuplicatorIVF43 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkImageDuplicatorIVF43.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkImageDuplicatorIVF43.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 ) """ obj = itkImageDuplicatorIVF43.__New_orig__() import itkTemplate itkTemplate.New(obj, *args, **kargs) return obj New = staticmethod(New) def __internal_call__(self): """Create an object, update with the inputs and attributes, and return the result. The syntax is the same as the one used in New(). Update() is ran once the input are changed, and the current output. """ self.Update() return self.GetOutput() itkImageDuplicatorIVF43.Clone = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF43_Clone, None, itkImageDuplicatorIVF43) itkImageDuplicatorIVF43.SetInputImage = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF43_SetInputImage, None, itkImageDuplicatorIVF43) itkImageDuplicatorIVF43.GetOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF43_GetOutput, None, itkImageDuplicatorIVF43) itkImageDuplicatorIVF43.GetModifiableOutput = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF43_GetModifiableOutput, None, itkImageDuplicatorIVF43) itkImageDuplicatorIVF43.Update = new_instancemethod(_itkImageDuplicatorPython.itkImageDuplicatorIVF43_Update, None, itkImageDuplicatorIVF43) itkImageDuplicatorIVF43_swigregister = _itkImageDuplicatorPython.itkImageDuplicatorIVF43_swigregister itkImageDuplicatorIVF43_swigregister(itkImageDuplicatorIVF43) def itkImageDuplicatorIVF43___New_orig__() -> "itkImageDuplicatorIVF43_Pointer": """itkImageDuplicatorIVF43___New_orig__() -> itkImageDuplicatorIVF43_Pointer""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43___New_orig__() def itkImageDuplicatorIVF43_cast(obj: 'itkLightObject') -> "itkImageDuplicatorIVF43 *": """itkImageDuplicatorIVF43_cast(itkLightObject obj) -> itkImageDuplicatorIVF43""" return _itkImageDuplicatorPython.itkImageDuplicatorIVF43_cast(obj) def image_duplicator(*args, **kwargs): """Procedural interface for ImageDuplicator""" import itk instance = itk.ImageDuplicator.New(*args, **kwargs) return instance.__internal_call__() def image_duplicator_init_docstring(): import itk import itkTemplate if isinstance(itk.ImageDuplicator, itkTemplate.itkTemplate): image_duplicator.__doc__ = itk.ImageDuplicator.values()[0].__doc__ else: image_duplicator.__doc__ = itk.ImageDuplicator.__doc__
[ "44883043+ssalmaan@users.noreply.github.com" ]
44883043+ssalmaan@users.noreply.github.com
a6ddd8d4f9f38b972820df093ba01dd54e608881
d701f0f5027c77fa41b0a9209b8989b9d0316aa8
/brain_games/logic/prime.py
fc01cab602a8fff9789a05a778f877bafe972ecd
[]
no_license
DenisTrukhin/python-project-lvl1
8d4c548bbb2bffed117340b8b480fade01cd044c
a4c6f8286b3e0dc8f0fcbbd848f54a8293cc4a85
refs/heads/main
2023-01-31T20:39:58.337152
2020-12-16T14:21:12
2020-12-16T14:24:31
311,041,345
0
0
null
null
null
null
UTF-8
Python
false
false
447
py
import random def is_prime(n): if n % 2 == 0: return n == 2 d = 3 while d ** 2 <= n and n % d != 0: d += 2 return d ** 2 > n def prime(): positive_answer = 'yes' negative_answer = 'no' number = random.randint(1, 1000) expression = f'{number}' correct_answer = positive_answer if is_prime(number) else negative_answer answer_type = str return expression, correct_answer, answer_type
[ "denis.trukhin@balance-pl.ru" ]
denis.trukhin@balance-pl.ru
d11816bf434a2bc2cc962cfc510a0957f1ccd0a4
04f210ca1ec260a9fd1fa24a55876098a63203ba
/6GetParameters2.py
8cb6b0427ba39fb2c47d6dc8418baca39921a09a
[]
no_license
FocusYangQ/PythonSpider
bc757bf68fbea2c7d8ce8ff3a7500fbbd1a93c9f
e5d349efe4dd894bec688662a773e4756f466cd0
refs/heads/master
2023-08-24T22:27:46.400172
2021-10-15T13:08:09
2021-10-15T13:08:09
415,536,127
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
import requests if __name__ == '__main__' : data = { "name" : "hezhi" , "age" : 20 } response = requests.get ( "http://httpbin.org/get" , params = data ) print ( response.status_code ) print ( response.text )
[ "35205142+FocusYangQ@users.noreply.github.com" ]
35205142+FocusYangQ@users.noreply.github.com
ce7fe6a703bd4648ba39e7da18929b3abdecddae
1cf84b1c4e0bfc3145b758879e5c4648fab8024d
/7.5. Filter out 53 copies of the products to be tested in the table.py
c7504bd073b3b26981a001341db332d037c1d306
[ "Apache-2.0" ]
permissive
zy-yao/Clothes-Matching-on-Taobao
8d8e9c73c8f429748ec89cffec9e1ea8d20e1810
1910c25bd764495021c3a4e2f6a11c5cdb56f15f
refs/heads/master
2023-01-30T15:19:46.948461
2020-12-03T15:07:46
2020-12-03T15:07:46
276,325,917
0
1
null
2020-07-16T09:35:53
2020-07-01T08:49:20
Python
UTF-8
Python
false
false
366
py
import pandas as pd for i in range(0,53): d = pd.read_csv('/Users/YAO/.spyder-py3/ForPython/new method/rule1_weekresult3/result'+str(i+1)+'_3.csv') testItems = pd.read_csv('testItems.csv') predict = pd.merge(testItems,d) predict.to_csv('/Users/YAO/.spyder-py3/ForPython/new method/rule1_weekresult_last/result'+str(i+1)+'last.csv',index = False)
[ "33860709+zy-yao@users.noreply.github.com" ]
33860709+zy-yao@users.noreply.github.com
b8fbc89b00c608ef7d1a47c1ca35b6688318a5ea
2776f806297ae2f05d6c6bcbf2205ed8eb3b9db8
/ico/tests/contracts/test_require_customer_id.py
3dfa23e0d176551f9efd672c9a4c5a07982db7b1
[ "Apache-2.0" ]
permissive
ZOLTbyZENUM/ico
138207db242053ded62ecc9a4f7d273209232a3f
26e4ae717e5f04a3f41f32f5f52f7dddedaac65d
refs/heads/master
2022-12-12T16:01:40.922647
2018-02-28T12:47:33
2018-02-28T12:47:33
123,442,497
0
0
NOASSERTION
2022-12-08T00:42:32
2018-03-01T14:02:07
Python
UTF-8
Python
false
false
2,433
py
"""Customer id tracking.""" import uuid import pytest from ethereum.tester import TransactionFailed from eth_utils import to_wei from ico.tests.utils import time_travel from ico.state import CrowdsaleState from sha3 import keccak_256 from rlp.utils import decode_hex @pytest.fixture def crowdsale(uncapped_flatprice, uncapped_flatprice_finalizer, team_multisig): """Set up a crowdsale with customer id require policy.""" uncapped_flatprice.transact({"from": team_multisig}).setRequireCustomerId(True) return uncapped_flatprice @pytest.fixture def token(uncapped_token): """Token contract we are buying.""" return uncapped_token @pytest.fixture def customer_id(uncapped_flatprice, uncapped_flatprice_finalizer, team_multisig) -> int: """Generate UUID v4 customer id as a hex string.""" customer_id = int(uuid.uuid4().hex, 16) # Customer ids are 128-bit UUID v4 return customer_id def test_only_owner_change_change_policy(crowdsale, customer): """Only owner change change customerId required policy.""" with pytest.raises(TransactionFailed): crowdsale.transact({"from": customer}).setRequireCustomerId(False) def test_participate_with_customer_id(chain, crowdsale, customer, customer_id, token): """Buy tokens with a proper customer id.""" time_travel(chain, crowdsale.call().startsAt() + 1) wei_value = to_wei(1, "ether") assert crowdsale.call().getState() == CrowdsaleState.Funding checksumbyte = keccak_256(decode_hex(format(customer_id, 'x').zfill(32))).digest()[:1] crowdsale.transact({"from": customer, "value": wei_value}).buyWithCustomerIdWithChecksum(customer_id, checksumbyte) # We got credited assert token.call().balanceOf(customer) > 0 # We have tracked the investor id events = crowdsale.pastEvents("Invested").get() assert len(events) == 1 e = events[0] assert e["args"]["investor"] == customer assert e["args"]["weiAmount"] == wei_value assert e["args"]["customerId"] == customer_id def test_participate_missing_customer_id(chain, crowdsale, customer, customer_id, token): """Cannot bypass customer id process.""" time_travel(chain, crowdsale.call().startsAt() + 1) wei_value = to_wei(1, "ether") assert crowdsale.call().getState() == CrowdsaleState.Funding with pytest.raises(TransactionFailed): crowdsale.transact({"from": customer, "value": wei_value}).buy()
[ "mikko@opensourcehacker.com" ]
mikko@opensourcehacker.com
01bed1080979fef67de4c80a741868bc5950a4d9
8ba01e6790ce6d0a3e25b3e05281dd1aa64d2f2f
/classification/lightgbm.py
77fc6f9f85991a596e3440ead795b2810d5ce5af
[]
no_license
weineng-zhou/MachineLearning
4a358026627a693f3297d2b770e699d351bfc15c
30e327154619096fa9dc6aba3142f7d8cc50c4d6
refs/heads/master
2022-06-14T11:33:13.014329
2020-05-04T07:58:07
2020-05-04T07:58:07
261,112,109
4
0
null
null
null
null
UTF-8
Python
false
false
12,130
py
# -*- coding: utf-8 -*- import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False from sklearn.model_selection import train_test_split from lightgbm import LGBMClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report import itertools from sklearn.metrics import confusion_matrix from sklearn.metrics import auc from sklearn.metrics import plot_roc_curve from scipy import interp from sklearn.model_selection import StratifiedKFold import os try: os.mkdir("output") except FileExistsError: pass # global variable date = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') author = 'Weineng Zhou' ML_method = 'Light Gredient Boosting Machine' abbreviate = 'LGBM' dev_data = './data/drug_molecule.xlsx' val_data = './data/validation.xlsx' class_names = ['非有效药物', '有效药物'] t1 = datetime.datetime.now() print('开始时间:', t1.strftime('%Y-%m-%d %H:%M:%S')) ############################################################################### # load the data a = pd.read_excel('{}'.format(dev_data)) a = np.array(a) #get independent variable X = a[:,:-1] #get the dependent variable y = a[:,-1] #split the data at a ratio of 4:1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, \ random_state=0) # y_train = np.ravel(y_train) # default model model = LGBMClassifier() n_estimators = [100, 200, 300] learning_rate = [0.01, 0.1, 1] # Set the parameters by 10-fold cross-validation tuned_parameters = {'n_estimators': n_estimators, 'learning_rate': learning_rate} scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() classifier = GridSearchCV(model, tuned_parameters, cv=10, scoring='%s_macro' % score) classifier.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(classifier.best_params_) print() print("Grid scores on development set:") print() means = classifier.cv_results_['mean_test_score'] stds = classifier.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, classifier.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, classifier.predict(X_test) print(classification_report(y_true, y_pred)) print() # set up the best parameters classifier = LGBMClassifier(n_estimators=300, learning_rate=0.1, num_leaves=31) # fit the model classifier.fit(X_train, y_train) # predic by X_train y_train_pred = classifier.predict(X_train) # predict by X_test y_test_pred = classifier.predict(X_test) #the label of confusion matrix class_names = np.array(class_names) # plot the confusion matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('真实标签') plt.xlabel('预测标签') plt.show() # calculate the training set confusion matrix cnf_matrix = confusion_matrix(y_train, y_train_pred) np.set_printoptions(precision=2) # without normalization confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names,title='训练集') plt.savefig('./output/train_matrix_{}.tiff'.format(abbreviate), dpi=500) plt.show() # calculate the test set confusion matrix cnf_matrix = confusion_matrix(y_test, y_test_pred) np.set_printoptions(precision=2) # without normalization confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names,title='测试集') plt.savefig('./output/test_matrix_{}.tiff'.format(abbreviate), dpi=500) plt.show() ############################################################################### # 10-fold cross validation for accuracy from sklearn.model_selection import cross_val_score import seaborn as sns scores = cross_val_score(model, X, y, cv=10) scores scores.mean() print(scores) print(scores.mean()) scores_df = pd.DataFrame(scores) name = ['LGBM']*10 name_df = pd.DataFrame(name) M = pd.concat([name_df, scores_df], axis=1) #横向拼接数据框 M.columns=['Model', 'Accuracy'] M.to_excel('./output/{}_Accuracy.xlsx'.format(abbreviate), index=False) sns.boxplot(data=M, x = 'Model', y = 'Accuracy', color='#00b8e5') plt.savefig("./output/boxplot.tiff", dpi=600) ############################################################################### # the predicted label of validation b = pd.read_excel('{}'.format(val_data)) #get independent variable b = np.array(b) #get independent variable X_val = b[:,:-1] #get the dependent variable y_val = b[:,-1] #predict the X_val y_val_pred = classifier.predict(X_val) #output the label of validation y_val_pred_df = pd.DataFrame(y_val_pred) y_val_pred_df.to_excel('./output/label_{}.xlsx'.format(abbreviate)) ############################################################################### # plot the confusion matrix #calculate the validation set confusion matrix cnf_matrix = confusion_matrix(y_val, y_val_pred) np.set_printoptions(precision=2) #without normalization confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='验证集') plt.savefig('./output/val_matrix_{}.tiff'.format(abbreviate), dpi=500) ############################################################################### ax = plt.gca() lgbc_disp = plot_roc_curve(classifier, X_train, y_train, ax=ax, color='#00bc57', lw=2, alpha=0.8) #ROC plot of training set ax.plot([0, 1], [0, 1], color='#00bc57', lw=2, linestyle='--') # ax.xlim([0.0, 1.0]) # ax.ylim([0.0, 1.05]) ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], xlabel='False Positive Rate (1-Specificity)', ylabel='Ture Positive Rate (Sensitivity)', title="ROC curve for training set") ax.legend(loc="lower right") ax.legend(loc="lower right") plt.savefig('./output/roc_train_{}.tiff'.format(abbreviate), dpi=500) plt.show() ax = plt.gca() lgbc_disp = plot_roc_curve(classifier, X_test, y_test, ax=ax, color='#00b8e5', lw=2, alpha=0.8) #ROC plot of training set ax.plot([0, 1], [0, 1], color='#00bc57', lw=2, linestyle='--') # ax.xlim([0.0, 1.0]) # ax.ylim([0.0, 1.05]) ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], xlabel='False Positive Rate (1-Specificity)', ylabel='Ture Positive Rate (Sensitivity)', title="ROC curve for test set") ax.legend(loc="lower right") plt.savefig('./output/roc_test_{}.tiff'.format(abbreviate), dpi=500) plt.show() ax = plt.gca() lgbc_disp = plot_roc_curve(classifier, X_val, y_val, ax=ax, color='#ff7f0e', lw=2, alpha=0.8) #ROC plot of training set ax.plot([0, 1], [0, 1], color='#00bc57', lw=2, linestyle='--') # ax.xlim([0.0, 1.0]) # ax.ylim([0.0, 1.05]) ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], xlabel='False Positive Rate (1-Specificity)', ylabel='Ture Positive Rate (Sensitivity)', title="ROC curve for validation set") ax.legend(loc="lower right") plt.savefig('./output/roc_val_{}.tiff'.format(abbreviate), dpi=500) plt.show() ############################################################################### # 10-fold cross validation for ROC #load the data a = pd.read_excel('{}'.format(dev_data)) a = np.array(a) #get independent variable X = a[:,:-1] #get the dependent variable y = a[:,-1] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # ############################################################################# # Classification and ROC analysis cv = StratifiedKFold(n_splits=10) classifier = LGBMClassifier(n_estimators=300, learning_rate=0.1, random_state=0) tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) fig, ax = plt.subplots() for i, (train, test) in enumerate(cv.split(X, y)): classifier.fit(X[train], y[train]) viz = plot_roc_curve(classifier, X[test], y[test], name='ROC fold {}'.format(i), alpha=0.3, lw=1, ax=ax) interp_tpr = interp(mean_fpr, viz.fpr, viz.tpr) interp_tpr[0] = 0.0 tprs.append(interp_tpr) aucs.append(viz.roc_auc) ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05], xlabel='False Positive Rate (1-Specificity)', ylabel='Ture Positive Rate (Sensitivity)', title=''.format(ML_method)) ax.legend(loc="lower right") plt.savefig('./output/roc_crossval_{}.tiff'.format(abbreviate), dpi=500) plt.show() ############################################################################### # 开始时间 print('开始时间:', t1.strftime('%Y-%m-%d %H:%M:%S')) # 结束时间 t2 = datetime.datetime.now() print('结束时间:', t2.strftime('%Y-%m-%d %H:%M:%S')) delta = t2 - t1 if delta.seconds > 3600: if t1.strftime('%Y-%m-%d %H:%M:%S')[-2:] < t2.strftime('%Y-%m-%d %H:%M:%S')[-2:]: print('总共耗时:' + str(int(round(delta.seconds / 3600, 0))) + '时' + str(int(round(delta.seconds / 60, 0) % 60)) + '分' + str(delta.seconds % 60) + '秒') elif t1.strftime('%Y-%m-%d %H:%M:%S')[-2:] == t2.strftime('%Y-%m-%d %H:%M:%S')[-2:]: print('总共耗时:' + str(int(round(delta.seconds / 3600, 0))) + '时' + str(int(round(delta.seconds / 60, 0) % 60)) + '分' + '0秒') elif t1.strftime('%Y-%m-%d %H:%M:%S')[-2:] > t2.strftime('%Y-%m-%d %H:%M:%S')[-2:]: print('总共耗时:' + str(int(round(delta.seconds / 3600, 0))) + '时' + str(int(round(delta.seconds / 60, 0) % 60)-1) + '分' + str(delta.seconds % 60) + '秒') elif delta.seconds > 60: if t1.strftime('%Y-%m-%d %H:%M:%S')[-2:] < t2.strftime('%Y-%m-%d %H:%M:%S')[-2:]: print('总共耗时:' + str(int(round(delta.seconds / 60, 0))) + '分' + str(delta.seconds % 60) + '秒') elif t1.strftime('%Y-%m-%d %H:%M:%S')[-2:] == t2.strftime('%Y-%m-%d %H:%M:%S')[-2:]: print('总共耗时:' + str(int(round(delta.seconds / 60, 0))) + '分' + '0秒') elif t1.strftime('%Y-%m-%d %H:%M:%S')[-2:] > t2.strftime('%Y-%m-%d %H:%M:%S')[-2:]: print('总共耗时:' + str(int(round(delta.seconds / 60, 0))-1) + '分' + str(delta.seconds % 60 +1) + '秒') else: print('总共耗时:' + str(delta.seconds) + '秒')
[ "zwn911208@163.com" ]
zwn911208@163.com
a51f49b8ad549be6578aed13784e031c214b6f48
03f23bb43a8161d4479486db4f0cf4df5ead360c
/search/services.py
74a44bf460b9d45c4c2920333046ff63c6a5bf2a
[]
no_license
nalimhahs/shopnani-backend
6f070440b64d389090da05307f18bec82e32b537
d6ebf193fa1f57b18a5aa7a94f166e18a0fa162f
refs/heads/master
2022-12-11T16:17:24.029075
2019-08-24T07:52:01
2019-08-24T07:52:01
195,423,400
0
0
null
2022-04-22T22:13:08
2019-07-05T14:31:09
Python
UTF-8
Python
false
false
719
py
import os import requests # The function accepts a query and passes it to the flipkart api. # The results are then converted to json and then returned. # The affiliate ID and Token are stored as environment variables to prevent unintentional exposure. def getResultsService(query): affiliateId = os.environ.get('DJANGO_FK_AFFILIATE_ID') affiliateToken = os.environ.get('DJANGO_FK_AFFILIATE_TOKEN') url = 'https://affiliate-api.flipkart.net/affiliate/1.0/search.json' headers = {"Fk-Affiliate-Id": affiliateId, "Fk-Affiliate-Token": affiliateToken} params = {'query': query, 'resultCount': 10} r = requests.get(url=url, headers=headers, params=params) results = r.json() return results
[ "milanshah1@gmail.com" ]
milanshah1@gmail.com
24a0d4647a4f5c7bfff17bb405ead7562f3e47a3
48caf249eaa70e9f71f9b94696316af62284d036
/how bad did you fail your test.py
32c190787aa77a4d25b72cbad2ebc52fcae8a799
[]
no_license
wannabruh/Python2020-08-17-minecraft-coding-
e4d6194fd241277c06ff8ee2a3003c3e7ad45e40
5252bace5b642758d32f8df4dc2160c36c586d8a
refs/heads/master
2022-12-03T10:52:54.774328
2020-08-17T08:52:36
2020-08-17T08:52:36
288,129,982
0
0
null
null
null
null
UTF-8
Python
false
false
483
py
math = int(input("math")) eng = int(input("eng")) if math >=0 and math <=100 and eng >=0 and eng <=100: if math >=90 and eng >=90: print("eeeeeeeee") if math >=80 and eng >=80: print("teeeeeeeee") if math >=70 and eng >=70: print("reeeeeeeee") if math >=60 and eng >=60: print("REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE") else: print("bruh REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE")
[ "noreply@github.com" ]
wannabruh.noreply@github.com
633fdf3de990a8d52a022b237ae5b520e5aea688
ee968d0cb10c6fc57cfc53e45ac9d758e82f7749
/TSA/ABSAPyTorch/temp.py
e228ef4d514b86865b2cadb926f6fab0799c5a9f
[ "MIT" ]
permissive
jakeyap/Stance-Detection
12f86bdfb2078ae32eec9d28201d04e3e421c806
2cb98bf84f7303bc7f436b38084a2b5c32a0ea8e
refs/heads/master
2022-11-19T09:47:19.441536
2020-06-02T17:34:05
2020-06-02T17:34:05
281,282,637
3
1
null
null
null
null
UTF-8
Python
false
false
2,229
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 19 14:00:39 2020 @author: lweiren """ from twitter import * import os import tweepy import datetime import sys import time CONSUMER_KEY="A2FjDYLSKc8tfvGLcexZywK35" CONSUMER_SECRET='kDR9HRGR54otDoAqp7XWFFbRIadUmG9g9li7aaY12qOnKQt2oK' MY_TWITTER_CREDS = "/home/lweiren/TSA/ABSAPyTorch/.my_app_credentials" if not os.path.exists(MY_TWITTER_CREDS): oauth_dance("Semeval sentiment analysis", CONSUMER_KEY, CONSUMER_SECRET, MY_TWITTER_CREDS) oauth_token, oauth_secret = read_token_file(MY_TWITTER_CREDS) tobj = Twitter(auth=OAuth(oauth_token, oauth_secret, CONSUMER_KEY, CONSUMER_SECRET)) # ============================================================================= # auth = tweepy.AppAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) # api = tweepy.API(auth) # # test authentication # for tweet in tweepy.Cursor(api.search, q = "tweepy").items(10): # print(tweet.text) # ============================================================================= l = [] i = 90000 pages = i / 100 max_id = -1 since_id = 0 for n in range(1): try: if(n == 0): searchresult = tobj.search.tweets(q = "Donald Trump lang:en -filter:retweets", count = 100, until = "2019-03-10") #since_id = searchresult["search_metadata"]["since_id"] else: searchresult = tobj.search.tweets(q = "Donald Trump lang:en -filter:retweets", count = 100 , max_id = max_id, until= "2019-03-10") lis = [tweet["id"] for tweet in searchresult["statuses"]] max_id = lis[-1] #max_id = searchresult["search_metadata"]["max_id"] #print(searchresult["search_metadata"]) #print(max_id) l.extend(lis) except: rate = tobj.application.rate_limit_status() reset = rate['resources']['statuses']['/statuses/show/:id']['reset'] now = datetime.datetime.today() future = datetime.datetime.fromtimestamp(reset) seconds = (future-now).seconds+1 if seconds < 10000: sys.stderr.write("Rate limit exceeded, sleeping for %s seconds until %s\n" % (seconds, future)) time.sleep(seconds) length= len(set(l))
[ "lweiren@instance-1.asia-southeast1-b.c.model-augury-245215.internal" ]
lweiren@instance-1.asia-southeast1-b.c.model-augury-245215.internal
ce69a986c534d70a5aa60a0025175768ba380815
52b5773617a1b972a905de4d692540d26ff74926
/.history/clouds_20200703155257.py
611b20c61a4e392632a8177a3ecf3c4d6ae86dde
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
def jumpingClouds(c): i = 0 jumps = 0 while i < len(c)-2: if c[i+2] == 0: print('c------>',i,c[i]) print('here1') jumps +=1 elif c[i+1] == 0: print('here') jumps +=1 i +=1 print(jumps) jumpingClouds([0,0,1,0,0,1,0])
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
e41960c52ed9f1d8f4899297c7aa4df4e18f5413
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/6/og-.py
e881559c8f292114595ae1314a66e46d1d5952e6
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'oG-': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
3ea0bb442577424dd93a06877b4cb480971dc827
d7f4e330f5d803c8cd495729fd86da61b89565f3
/torch/_meta_registrations.py
0511b5188fbea63e9c0427f06428dc9859aa3885
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
awf/pytorch
55ff84549c17579a1f62910ef2ac7b1dcd6fa897
0dceaf07cd1236859953b6f85a61dc4411d10f87
refs/heads/master
2023-02-08T13:19:22.073279
2023-01-29T10:36:40
2023-01-29T10:36:43
239,372,903
0
0
NOASSERTION
2020-02-09T20:55:23
2020-02-09T20:55:22
null
UTF-8
Python
false
false
82,649
py
import math from typing import List, Optional, Union import torch import torch._prims_common as utils from torch import Tensor from torch._decomp import _add_op_to_registry, global_decomposition_table, meta_table from torch._ops import OpOverload from torch._prims import _elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND from torch._prims_common import ( check, corresponding_complex_dtype, corresponding_real_dtype, elementwise_dtypes, ELEMENTWISE_TYPE_PROMOTION_KIND, FloatLike, IntLike, make_contiguous_strides_for, ) from torch._prims_common.wrappers import out_wrapper from torch._refs import _broadcast_shapes from torch._subclasses.fake_tensor import check_no_bool_index_tensors from torch.utils._pytree import tree_map aten = torch.ops.aten _meta_lib_dont_use_me_use_register_meta = torch.library.Library("aten", "IMPL", "Meta") def register_meta(op): def wrapper(fn): def register(op): _add_op_to_registry(meta_table, op, fn) tree_map(register, op) return fn return wrapper def toRealValueType(dtype): from_complex = { torch.complex32: torch.half, torch.cfloat: torch.float, torch.cdouble: torch.double, } return from_complex.get(dtype, dtype) @register_meta([aten._fft_c2c.default, aten._fft_c2c.out]) @out_wrapper() def meta_fft_c2c(self, dim, normalization, forward): assert self.dtype.is_complex return self.new_empty(self.size()) @register_meta([aten._fft_r2c.default, aten._fft_r2c.out]) @out_wrapper() def meta_fft_r2c(self, dim, normalization, onesided): assert self.dtype.is_floating_point output_sizes = list(self.size()) if onesided: last_dim = dim[-1] last_dim_halfsize = (output_sizes[last_dim] // 2) + 1 output_sizes[last_dim] = last_dim_halfsize return self.new_empty( output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype) ) @register_meta(aten.randperm.generator_out) def meta_randperm(n, *, generator=None, out): assert out.ndim == 1 and out.size(0) == n return out @register_meta(aten.randint.default) def meta_randint( high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None ): return torch.empty( size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta(aten.randint.low) def meta_randint_low( low, high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None ): return torch.empty( size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta(aten.rand.default) def meta_rand_default(size, *, dtype=None, layout=None, device=None, pin_memory=None): return torch.empty( size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta([aten._fft_c2r.default, aten._fft_c2r.out]) @out_wrapper() def meta_fft_c2r(self, dim, normalization, lastdim): assert self.dtype.is_complex output_sizes = list(self.size()) output_sizes[dim[-1]] = lastdim return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype)) @register_meta(aten.copy_.default) def meta_copy_(self, src, non_blocking=False): return self def inferUnsqueezeGeometry(tensor, dim): result_sizes = list(tensor.size()) result_strides = list(tensor.stride()) new_stride = 1 if dim >= tensor.dim() else result_sizes[dim] * result_strides[dim] result_sizes.insert(dim, 1) result_strides.insert(dim, new_stride) return result_sizes, result_strides @register_meta(aten.unsqueeze_.default) def meta_unsqueeze_(self, dim): dim = maybe_wrap_dim(dim, self.dim() + 1) g_sizes, g_strides = inferUnsqueezeGeometry(self, dim) self.as_strided_(g_sizes, g_strides) return self # Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py @register_meta(aten.index_select.default) def meta_index_select(self, dim, index): result_size = list(self.size()) if self.dim() > 0: result_size[dim] = index.numel() return self.new_empty(result_size) @register_meta(aten.index_select.out) def meta_index_select_out(self, dim, index, out): torch._resize_output_(out, self.size(), self.device) return out.copy_(torch.index_select(self, dim, index)) @register_meta([aten.max.default, aten.max.unary_out]) @out_wrapper() def meta_max(self): return self.new_empty(()) @register_meta(aten.max.dim) def meta_max_dim(self, dim, keepdim=False): dim = utils.reduction_dims(self.shape, (dim,)) output_shape = _compute_reduction_shape(self, dim, keepdim) return ( self.new_empty(output_shape), self.new_empty(output_shape, dtype=torch.long), ) @register_meta([aten.min.default]) def meta_min(self): return self.new_empty(()) @register_meta(aten.angle.default) def meta_angle(self): if self.is_complex(): result_dtype = corresponding_real_dtype(self.dtype) else: _, result_dtype = elementwise_dtypes( self, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT ) return torch.empty_like(self, dtype=result_dtype) @register_meta(aten.angle.out) def meta_angle_out(self, out): torch._resize_output_(out, self.size(), self.device) return out.copy_(torch.angle(self)) # From aten/src/ATen/native/LinearAlgebraUtils.h def squareCheckInputs(self: Tensor, f_name: str): assert ( self.dim() >= 2 ), f"{f_name}: The input tensor must have at least 2 dimensions." assert self.size(-1) == self.size( -2 ), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices" # From aten/src/ATen/native/LinearAlgebraUtils.h def checkFloatingOrComplex( t: Tensor, f_name: str, allow_low_precision_dtypes: bool = True ): dtype = t.dtype check( t.is_floating_point() or t.is_complex(), lambda: f"{f_name}, : Expected a floating point or complex tensor as input. Got , {dtype}", ) if allow_low_precision_dtypes: check( dtype in (torch.float, torch.double, torch.cfloat, torch.cdouble), lambda: f"{f_name} : Low precision dtypes not supported. Got {dtype}", ) # From aten/src/ATen/native/LinearAlgebraUtils.h def checkIsMatrix(A: Tensor, f_name: str, arg_name: str = "A"): check( A.dim() >= 2, lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.", ) def checkUplo(uplo: str): uplo_uppercase = uplo.upper() assert ( len(uplo) == 1 and uplo_uppercase == "U" or uplo_uppercase == "L" ), f"Expected UPLO argument to be 'L' or 'U', but got {uplo}" # @register_meta(aten.linalg_eigh.default) def meta_linalg_eigh(self, uplo="L"): squareCheckInputs(self, "linalg_eigh") checkUplo(uplo) real_dtype = toRealValueType(self.dtype) assert self.dim() >= 2 values = self.new_empty(self.shape, dtype=real_dtype) values.transpose_(-2, -1) vectors = self.new_empty(self.shape[:-1]) return (values, vectors) # From aten/src/ATen/native/BatchLinearAlgebra.cpp @register_meta(aten.linalg_cholesky_ex.default) def linalg_cholesky_ex(A: Tensor, upper: bool = False, check_errors: bool = False): squareCheckInputs(A, "linalg.cholesky") checkFloatingOrComplex(A, "linalg.cholesky") A_shape = A.shape ndim = len(A_shape) # L L_strides = make_contiguous_strides_for(A_shape, False) L = A.new_empty(A_shape) L.as_strided_(A_shape, L_strides) # infos infos = A.new_empty(A_shape[0 : ndim - 2], dtype=torch.int32) return L, infos # From aten/src/ATen/native/BatchLinearAlgebra.cpp @register_meta(aten.linalg_inv_ex.default) def linalg_inv_ex_meta(A: Tensor, check_errors: bool = False): squareCheckInputs(A, "linalg.inv_ex") checkFloatingOrComplex(A, "linalg.inv_ex", allow_low_precision_dtypes=False) L = A.new_empty(A.shape) L.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) infos = A.new_empty(A.shape[:-2], dtype=torch.int32) return L, infos # From aten/src/ATen/native/BatchLinearAlgebra.cpp # NOTE: matching defaults in aten/src/ATen/native/native_functions.yaml @register_meta(aten._linalg_svd.default) def _linalg_svd_meta( A: Tensor, full_matrices: bool = False, compute_uv: bool = True, driver: str = None ): checkIsMatrix(A, "linalg.svd") checkFloatingOrComplex(A, "linalg.svd") batch_dims = list(A.shape[:-2]) m = A.shape[-2] n = A.shape[-1] k = min(m, n) if compute_uv: U_shape = batch_dims + [m, m if full_matrices else k] U = A.new_empty(U_shape) U.as_strided_(U_shape, make_contiguous_strides_for(U_shape, row_major=False)) V_shape = batch_dims + [n if full_matrices else k, n] V = A.new_empty(V_shape) # TODO: need to distinguish cuSOLVER case? (see original code) V.as_strided_(V_shape, make_contiguous_strides_for(V_shape, row_major=False)) else: # doesn't matter U = A.new_empty([0]) V = A.new_empty([0]) # S is always real, even when A is complex. S = A.new_empty(batch_dims + [k], dtype=toRealValueType(A.dtype)) return U, S, V # From aten/src/ATen/native/LinearAlgebra.cpp @register_meta(aten._linalg_det.default) def _linalg_det_meta(A): squareCheckInputs(A, "linalg.det") checkFloatingOrComplex(A, "linalg.det") det = A.new_empty(A.shape[:-2]) LU = A.new_empty(A.shape) LU.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False)) pivots = A.new_empty(A.shape[:-1], dtype=torch.int32) return det, LU, pivots # From aten/src/ATen/native/ReflectionPad.cpp @register_meta( [aten.reflection_pad2d_backward.default, aten.replication_pad2d_backward.default] ) def meta_pad2d_backward(grad_output, self, padding): dim_w = 2 dim_h = 1 dim_plane = 0 nbatch = 1 self_shape = self.shape if self.dim() == 4: nbatch = self_shape[0] dim_w += 1 dim_h += 1 dim_plane += 1 pad_l = padding[0] pad_r = padding[1] pad_t = padding[2] pad_b = padding[3] nplane = self_shape[dim_plane] input_h = self_shape[dim_h] input_w = self_shape[dim_w] output_h = input_h + pad_t + pad_b output_w = input_w + pad_l + pad_r check( output_w == grad_output.shape[dim_w], lambda: f"gradOutput width unexpected. Expected: {output_w}, Got: {grad_output.shape[dim_w]}", ) check( output_h == grad_output.shape[dim_h], lambda: f"gradOutput height unexpected. Expected: {output_h}, Got: {grad_output.shape[dim_h]}", ) return self.new_empty(self.shape) @register_meta(aten.reflection_pad2d.default) def meta_pad2d(self, padding): valid_dims = self.size(1) != 0 and self.size(2) != 0 check( (self.ndim == 3 and valid_dims) or (self.ndim == 4 and valid_dims and self.size(3) != 0), lambda: f"3D or 4D (batch mode) tensor expected for input, but got: {self}", ) if self.ndim == 4: nbatch, nplane, input_h, input_w = self.shape else: nbatch = 1 nplane, input_h, input_w = self.shape pad_l, pad_r, pad_t, pad_b = padding output_h = input_h + pad_t + pad_b output_w = input_w + pad_l + pad_r if self.ndim == 3: return self.new_empty((nplane, output_h, output_w)) else: return self.new_empty((nbatch, nplane, output_h, output_w)) @register_meta([aten.bernoulli.default, aten.bernoulli.out]) @out_wrapper() def meta_bernoulli(self, *, generator=None): # https://github.com/pytorch/pytorch/issues/88612 return torch.empty_like(self).contiguous() @register_meta(aten.bernoulli_.float) def meta_bernoulli_(self, p=0.5, generator=None): return self @register_meta(aten.bernoulli.p) def meta_bernoulli_p(self, p=0.5, generator=None): # https://github.com/pytorch/pytorch/issues/88612 return torch.empty_like(self).contiguous() @register_meta(aten._fused_moving_avg_obs_fq_helper.default) def meta__fused_moving_avg_obs_fq_helper( self, observer_on, fake_quant_on, running_min, running_max, scale, zero_point, averaging_const, quant_min, quant_max, ch_axis, per_row_fake_quant=False, symmetric_quant=False, ): check( ch_axis < self.dim(), lambda: "Error in fused_moving_avg_obs_fake_quant_cpu: ch_axis must be < self.dim()", ) mask = torch.empty_like(self, dtype=torch.bool) return (torch.empty_like(self), mask) def dot_check(self, other): check( self.dim() == 1 and other.dim() == 1, lambda: f"1D tensors expected, but got {self.dim()}D and {other.dim()}D tensors", ) @register_meta(aten.dot.default) def meta_dot(self, tensor): dot_check(self, tensor) return self.new_empty(()) @register_meta([aten.mm.default]) def meta_mm(a, b): check(a.dim() == 2, lambda: "a must be 2D") check(b.dim() == 2, lambda: "b must be 2D") N, M1 = a.shape M2, P = b.shape check(M1 == M2, lambda: "a and b must have same reduction dim") return a.new_empty(N, P) def _compute_reduction_shape(self, dims, keepdim): if keepdim: return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim)) return utils.compute_reduction_output_shape(self.shape, dims) # FakeTensors (meta tensors with a device) will report device as meta # when running meta kernels. Here, access the "fake device" of FakeTensor if it # exists so meta kernels which have diverge per device will be more # accurate when run with FakeTensors def device_hint(tensor) -> "str": if isinstance(tensor, torch._subclasses.FakeTensor): return tensor.fake_device.type else: return "cuda" # default to cuda def calc_conv_nd_return_shape( input_tensor: torch.Tensor, weight: torch.Tensor, stride: Union[List[int], int], padding: Union[List[int], int], dilation: Union[List[int], int], is_transposed: bool, groups: int, output_padding: Optional[Union[List[int], int]] = None, ): def _formula(ln: int, p: int, d: int, k: int, s: int) -> int: """ Formula to apply to calculate the length of some dimension of the output See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: ln: length of the dimension p: padding in that dim d: dilation in that dim k: kernel size in that dim s: stride in that dim Returns: The output length """ return (ln + 2 * p - d * (k - 1) - 1) // s + 1 def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int: """ Formula to apply to calculate the length of some dimension of the output if transposed convolution is used. See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html Args: ln: length of the dimension p: padding in that dim d: dilation in that dim k: kernel size in that dim s: stride in that dim op: output padding in that dim Returns: The output length """ return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1 kernel_size = weight.shape[2:] dims = input_tensor.shape[2:] if is_transposed: out_channels = groups * weight.shape[1] else: out_channels = weight.shape[0] if weight.shape[1] * groups != input_tensor.shape[1]: raise RuntimeError("Invalid channel dimensions") ret_shape = [input_tensor.shape[0], out_channels] if isinstance(stride, IntLike): stride = [stride] * len(dims) elif len(stride) == 1: stride = [stride[0]] * len(dims) if isinstance(padding, IntLike): padding = [padding] * len(dims) elif len(padding) == 1: padding = [padding[0]] * len(dims) if isinstance(dilation, IntLike): dilation = [dilation] * len(dims) elif len(dilation) == 1: dilation = [dilation[0]] * len(dims) output_padding_list: Optional[List[int]] = None if output_padding: if isinstance(output_padding, IntLike): output_padding_list = [output_padding] * len(dims) elif len(output_padding) == 1: output_padding_list = [output_padding[0]] * len(dims) else: output_padding_list = output_padding for i in range(len(dims)): # If output_padding is present, we are dealing with a transposed convolution if output_padding_list: ret_shape.append( _formula_transposed( dims[i], padding[i], dilation[i], kernel_size[i], stride[i], output_padding_list[i], ) ) else: ret_shape.append( _formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i]) ) return ret_shape def is_channels_last(ten): return torch._prims_common.suggest_memory_format(ten) == torch.channels_last @register_meta(aten.convolution.default) def meta_conv( input_tensor: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, stride: List[int], padding: List[int], dilation: List[int], is_transposed: bool, output_padding: List[int], groups: int, ): def pick_memory_format(): if device_hint(input_tensor) == "cuda": if is_channels_last(input_tensor) or is_channels_last(weight): return torch.channels_last else: if is_channels_last(input_tensor): return torch.channels_last if input_tensor.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif input_tensor.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format shape_out = calc_conv_nd_return_shape( input_tensor, weight, stride, padding, dilation, is_transposed, groups, output_padding if is_transposed else None, ) out = input_tensor.new_empty(shape_out) out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] return out if torch._C.has_mkldnn: _meta_lib_dont_use_me_use_register_meta_for_mkldnn = torch.library.Library( "mkldnn", "IMPL", "Meta" ) def pick_mkldnn_conv_memory_format(input_tensor, weight): if weight.is_mkldnn: return torch.channels_last if is_channels_last(input_tensor) or is_channels_last(weight): return torch.channels_last if input_tensor.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif input_tensor.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format @register_meta(torch.ops.mkldnn._convolution_pointwise.default) def meta_mkldnn_convolution_default( input_tensor, weight, bias, padding, stride, dilation, groups, attr, scalars, algorithm, ): shape_out = calc_conv_nd_return_shape( input_tensor, weight, stride, padding, dilation, False, groups, [] ) out = input_tensor.new_empty(shape_out) out_memory_format = torch.channels_last out = out.to(memory_format=out_memory_format) # type: ignore[call-overload] return out @register_meta(torch.ops.mkldnn._convolution_pointwise.binary) def meta_mkldnn_convolution_binary( input_tensor, other, weight, bias, padding, stride, dilation, groups, binary_attr, alpha, unary_attr, unary_scalars, unary_algorithm, ): out = input_tensor.new_empty(other.size()) out = out.to(memory_format=torch.channels_last) # type: ignore[call-overload] return out @register_meta(torch.ops.mkldnn._convolution_pointwise_.binary) def meta_mkldnn_convolution_binary_inplace( input_tensor, other, weight, bias, padding, stride, dilation, groups, binary_attr, alpha, unary_attr, unary_scalars, unary_algorithm, ): return other @register_meta(torch.ops.mkldnn._linear_pointwise.default) def meta_linear_pointwise_default( input_tensor, weight, bias, attr, scalars, algorithm ): return input_tensor.new_empty((*input_tensor.shape[:-1], weight.shape[0])) @register_meta(torch.ops.mkldnn._linear_pointwise.binary) def meta_linear_pointwise_binary(input_tensor, other, weight, bias, attr): out = input_tensor.new_empty(other.size()) return out if torch._C.has_mkl: _meta_lib_dont_use_me_use_register_meta_for_mkl = torch.library.Library( "mkl", "IMPL", "Meta" ) @register_meta(torch.ops.mkl._mkl_linear) def meta_mkl_linear( input_tensor, packed_weight, orig_weight, bias, batch_size, ): return input_tensor.new_empty( (*input_tensor.shape[:-1], orig_weight.shape[0]) ) # from check_dim_size() in aten/src/ATen/TensorUtils.cpp. def check_dim_size(tensor, dim, dim_size, size): check( tensor.dim() == dim and tensor.shape[dim_size] == size, lambda: f"Expected a tensor of dimension {dim} and tensor.size[{dim_size}] == {size}, " + f"but got : dimension {tensor.dim()} and tensor.size[{dim_size}] = {tensor.shape[dim_size]}", ) @register_meta(aten.avg_pool2d.default) def meta_avg_pool2d( input, kernel_size, stride=(), padding=(0,), ceil_mode=False, count_include_pad=True, divisor_override=None, ): def unpack(name, val): check( len(val) in [1, 2], lambda: f"avg_pool2d: {name} must either be a single int, or a tuple of two ints", ) H = val[0] W = H if len(val) == 1 else val[1] return H, W kH, kW = unpack("kernel_size", kernel_size) check( len(stride) in [0, 1, 2], lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", ) if len(stride) == 0: dH, dW = kH, kW elif len(stride) == 1: dH, dW = stride[0], stride[0] else: dH, dW = unpack("stride", stride) padH, padW = unpack("padding", padding) check( divisor_override is None or divisor_override != 0, lambda: "divisor must be not zero", ) nbatch = input.size(-4) if input.dim() == 4 else 1 nInputPlane = input.size(-3) inputHeight = input.size(-2) inputWidth = input.size(-1) outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) memory_format = utils.suggest_memory_format(input) pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, 1, 1, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format, ) if input.dim() == 3: size = [nInputPlane, outputHeight, outputWidth] else: size = [nbatch, nInputPlane, outputHeight, outputWidth] return torch.empty( size, dtype=input.dtype, device=input.device, memory_format=memory_format ) # from avg_pool2d_backward_shape_check() in aten/src/ATen/native/Pool.h. def avg_pool2d_backward_shape_check( input, gradOutput, nbatch, kH, kW, dH, dW, padH, padW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, mem_format, ): pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, 1, 1, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, mem_format, ) ndim = input.dim() nOutputPlane = nInputPlane check_dim_size(gradOutput, ndim, ndim - 3, nOutputPlane) check_dim_size(gradOutput, ndim, ndim - 2, outputHeight) check_dim_size(gradOutput, ndim, ndim - 1, outputWidth) # Don't override the C++ registration. @register_meta(aten.avg_pool2d_backward.default) def meta_avg_pool2d_backward( gradOutput_, input, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override, ): # From aten/src/ATen/native/AveragePool2d.cpp structured kernel meta func. check( len(kernel_size) == 1 or len(kernel_size) == 2, lambda: "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints", ) kH = kernel_size[0] kW = kH if len(kernel_size) == 1 else kernel_size[1] check( len(stride) == 0 or len(stride) == 1 or len(stride) == 2, lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints", ) dH = kH if len(stride) == 0 else stride[0] dW = kW if len(stride) == 0 else dH if len(stride) == 1 else stride[1] check( len(padding) == 1 or len(padding) == 2, lambda: "avg_pool2d: padding must either be a single int, or a tuple of two ints", ) padH = padding[0] padW = padH if len(padding) == 1 else padding[1] check( divisor_override is None or divisor_override != 0, lambda: "divisor must be not zero", ) input_size = input.shape nbatch = input_size[-4] if input.dim() == 4 else 1 nInputPlane = input_size[-3] inputHeight = input_size[-2] inputWidth = input_size[-1] outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode) outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode) mem_format = utils.suggest_memory_format(input) avg_pool2d_backward_shape_check( input, gradOutput_, nbatch, kH, kW, dH, dW, padH, padW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, mem_format, ) return torch.empty( input_size, dtype=input.dtype, device=input.device, memory_format=mem_format ) @register_meta(aten._adaptive_avg_pool2d.default) def meta_adaptive_avg_pool2d(self, output_size): check( self.ndim == 3 or self.ndim == 4, lambda: f"Expected 3D or 4D tensor, but got {self.shape}", ) output_shape = self.shape[:-2] + tuple(output_size) memory_format = utils.suggest_memory_format(self) # need to set memory_format to preserve the memory format of the input # channel last input should have channel last output return torch.empty( output_shape, dtype=self.dtype, device=self.device, memory_format=memory_format ) @register_meta(aten._adaptive_avg_pool3d.default) def meta_adaptive_avg_pool3d(self, output_size): check( self.ndim == 4 or self.ndim == 5, lambda: f"Expected 4D or 5D tensor, but got {self.shape}", ) return self.new_empty(self.shape[:-3] + tuple(output_size)) @register_meta(aten._adaptive_avg_pool2d_backward.default) def meta__adaptive_avg_pool2d_backward(grad_out, self): ndim = grad_out.ndim for i in range(1, ndim): check( grad_out.size(i) > 0, lambda: f"adaptive_avg_pool2d_backward(): Expected grad_output to have non-zero \ size for non-batch dimensions, {grad_out.shape} with dimension {i} being empty", ) check( ndim == 3 or ndim == 4, lambda: f"adaptive_avg_pool2d_backward(): Expected 3D or 4D tensor, but got {self.shape}", ) check( self.dtype == grad_out.dtype, lambda: f"expected dtype {self.dtype} for `grad_output` but got dtype {grad_out.dtype}", ) return self.new_empty(self.shape) @register_meta(aten.repeat_interleave.Tensor) def meta_repeat_interleave_Tensor(repeats, output_size=None): if output_size is None: raise RuntimeError("cannot repeat_interleave a meta tensor without output_size") return repeats.new_empty(output_size) @register_meta([aten.complex.default, aten.complex.out]) @out_wrapper() def meta_complex(real, imag): assert real.dtype.is_floating_point assert imag.dtype.is_floating_point out_shape = _broadcast_shapes(real.shape, imag.shape) return real.new_empty(out_shape, dtype=corresponding_complex_dtype(real.dtype)) @register_meta(aten.vdot.default) def vdot(self, other): if not self.is_complex: return torch.dot(self, other) if self.is_conj(): if other.is_conj(): return torch.vdot(other.conj(), self.conj()) else: return torch.dot(self.conj(), other) elif other.is_conj(): return torch.dot(self, other.conj()).conj() dot_check(self, other) return self.new_empty(()) # Leaving this function around because a python implementation # of indexing shape inference is useful, # but not registering it to the dispatcher because we already # get shape inference through structured kernels @register_meta(aten.index.Tensor) def meta_index_Tensor(self, indices): check_no_bool_index_tensors(aten.index.Tensor, self, indices) check(indices, lambda: "at least one index must be provided") # aten::index is the internal advanced indexing implementation # checkIndexTensorTypes and expandTensors result: List[Optional[Tensor]] = [] for i, index in enumerate(indices): if index is not None: check( index.dtype in [torch.long, torch.int, torch.int8, torch.bool], lambda: "tensors used as indices must be long, int, byte or bool tensors", ) if index.dtype in [torch.int8, torch.bool]: nonzero = index.nonzero() k = len(result) check( k + index.ndim <= self.ndim, lambda: f"too many indices for tensor of dimension {self.ndim}", IndexError, ) for j in range(index.ndim): check( index.shape[j] == self.shape[k + j], lambda: f"The shape of the mask {index.shape} at index {i} " f"does not match the shape of the indexed tensor {self.shape} at index {k + j}", IndexError, ) result.append(nonzero.select(1, j)) else: result.append(index) else: result.append(index) indices = result check( len(indices) <= self.ndim, lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})", ) # expand_outplace import torch._refs as refs # avoid import cycle in mypy indices = list(refs._maybe_broadcast(*indices)) # add missing null tensors while len(indices) < self.ndim: indices.append(None) # hasContiguousSubspace # true if all non-null tensors are adjacent # See: # https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing # https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency state = 0 has_contiguous_subspace = False for index in indices: if state == 0: if index is not None: state = 1 elif state == 1: if index is None: state = 2 else: if index is not None: break else: has_contiguous_subspace = True # transposeToFront # This is the logic that causes the newly inserted dimensions to show up # at the beginning of the tensor, if they're not contiguous if not has_contiguous_subspace: dims = [] transposed_indices = [] for i, index in enumerate(indices): if index is not None: dims.append(i) transposed_indices.append(index) for i, index in enumerate(indices): if index is None: dims.append(i) transposed_indices.append(index) self = self.permute(dims) indices = transposed_indices # AdvancedIndex::AdvancedIndex # Now we can assume the indices have contiguous subspace # This is simplified from AdvancedIndex which goes to more effort # to put the input and indices in a form so that TensorIterator can # take them. If we write a ref for this, probably that logic should # get implemented before_shape: List[int] = [] after_shape: List[int] = [] replacement_shape: List[int] = [] for dim, index in enumerate(indices): if index is None: if replacement_shape: after_shape.append(self.shape[dim]) else: before_shape.append(self.shape[dim]) else: replacement_shape = list(index.shape) return self.new_empty(before_shape + replacement_shape + after_shape) @register_meta([aten.convolution_backward.default]) def meta_convolution_backward( grad_output_, input_, weight_, bias_sizes_opt, stride, padding, dilation, transposed, output_padding, groups, output_mask, ): # High level logic taken from slow_conv3d_backward_cpu which should # be representative of all convolution_backward impls backend_grad_input = None backend_grad_weight = None backend_grad_bias = None if output_mask[0]: backend_grad_input = grad_output_.new_empty(input_.size()) if output_mask[1]: backend_grad_weight = grad_output_.new_empty(weight_.size()) if output_mask[2]: backend_grad_bias = grad_output_.new_empty(bias_sizes_opt) return (backend_grad_input, backend_grad_weight, backend_grad_bias) @register_meta([aten.addbmm.default, aten.addbmm.out]) @out_wrapper() def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): dim1 = batch1.size(1) dim2 = batch2.size(2) self = self.expand((dim1, dim2)) check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") check( batch1.size(0) == batch2.size(0), lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}", ) check( batch1.size(2) == batch2.size(1), lambda: ( f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} " f"and {batch2.size(1)}x{batch2.size(2)})" ), ) check( self.size(0) == dim1 and self.size(1) == dim2, lambda: "self tensor does not match matmul output shape", ) return self.new_empty(self.size()) @register_meta(aten._cdist_forward.default) def meta_cdist_forward(x1, x2, p, compute_mode): check( x1.dim() >= 2, lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D", ) check( x2.dim() >= 2, lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D", ) check( x1.size(-1) == x2.size(-1), lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}", ) check( utils.is_float_dtype(x1.dtype), lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}", ) check( utils.is_float_dtype(x2.dtype), lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}", ) check(p >= 0, lambda: "cdist only supports non-negative p values") check( compute_mode in (None, 1, 2), lambda: f"possible modes: None, 1, 2, but was: {compute_mode}", ) r1 = x1.size(-2) r2 = x2.size(-2) batch_tensor1 = x1.shape[:-2] batch_tensor2 = x2.shape[:-2] output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2)) output_shape.extend([r1, r2]) return x1.new_empty(output_shape) @register_meta(aten._embedding_bag.default) def meta_embedding_bag( weight, indices, offsets, scale_grad_by_freq=False, mode=0, sparse=False, per_sample_weights=None, include_last_offset=False, padding_idx=-1, ): check( indices.dtype in (torch.long, torch.int), lambda: f"expected indices to be long or int, got {indices.dtype}", ) check( offsets.dtype in (torch.long, torch.int), lambda: f"expected offsets to be long or int, got {offsets.dtype}", ) check( utils.is_float_dtype(weight.dtype), lambda: f"expected weight to be floating point type, got {weight.dtype}", ) num_bags = offsets.size(0) if include_last_offset: check( num_bags >= 1, lambda: "include_last_offset: numBags should be at least 1" ) num_bags -= 1 output = weight.new_empty(num_bags, weight.size(1)) MODE_SUM, MODE_MEAN, MODE_MAX = range(3) if per_sample_weights is not None: check( mode == MODE_SUM, lambda: "embedding_bag: per_sample_weights only supported with mode='sum'", ) check( per_sample_weights.dtype == weight.dtype, lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype", ) check( per_sample_weights.ndim == 1, lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D", ) check( per_sample_weights.numel() == indices.numel(), lambda: ( f"expected per_sample_weights.numel() ({per_sample_weights.numel()} " f"to be the same as indices.numel() ({indices.numel()})" ), ) def is_fast_path_index_select_scale(src, scale, output, padding_idx): return ( is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1 ) def is_fast_path_index_select(src, output, padding_idx): return ( (src.dtype == torch.float or src.dtype == torch.half) and src.stride(1) == 1 and output.stride(1) == 1 and padding_idx < 0 ) def is_fast_path(src, scale, output, padding_idx): if scale is not None: return is_fast_path_index_select_scale(src, scale, output, padding_idx) else: return is_fast_path_index_select(src, output, padding_idx) if device_hint(offsets) != "cpu": offset2bag = indices.new_empty(indices.size(0)) bag_size = indices.new_empty(offsets.size()) if mode == MODE_MAX: max_indices = indices.new_empty(num_bags, weight.size(1)) else: max_indices = indices.new_empty(0) else: fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx) if mode == MODE_MEAN or mode == MODE_MAX or not fast_path_sum: offset2bag = offsets.new_empty(indices.size(0)) else: offset2bag = offsets.new_empty(0) bag_size = offsets.new_empty(num_bags) # This part of the logic comes from make_max_indices_out in EmbeddingBag.cpp numBags = offsets.shape[0] if mode == MODE_MAX: if include_last_offset: check( numBags >= 1, lambda: "include_last_offset: numBags should be at least 1", ) numBags -= 1 max_indices = offsets.new_empty(numBags, weight.shape[1]) else: max_indices = offsets.new_empty(bag_size.size()) return output, offset2bag, bag_size, max_indices @register_meta(aten._embedding_bag_forward_only.default) def meta_embedding_bag_forward_only(weight, indices, offsets, *args): output, offset2bag, bag_size, max_indices = meta_embedding_bag( weight, indices, offsets, *args ) if device_hint(offsets) == "cpu": bag_size = offsets.new_empty(offsets.size()) return output, offset2bag, bag_size, max_indices def _get_reduction_dtype(input, dtype, promote_int_to_long=True): # if specified, dtype takes precedence if dtype: return dtype if input.dtype.is_floating_point or input.dtype.is_complex: return input.dtype elif promote_int_to_long: return torch.long return input.dtype @register_meta([aten.nansum.default, aten.nansum.out]) @out_wrapper() def meta_nansum(input, dims=None, keepdim=False, *, dtype=None): output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True) dims = utils.reduction_dims(input.shape, dims) output_shape = _compute_reduction_shape(input, dims, keepdim) return input.new_empty(output_shape, dtype=output_dtype) @register_meta(aten.nanmedian.default) def meta_nanmedian(input): output_shape = utils.compute_reduction_output_shape( input.shape, tuple(range(input.dim())) ) return input.new_empty(output_shape) @register_meta([aten.nanmedian.dim, aten.nanmedian.dim_values]) @out_wrapper("values", "indices") def meta_nanmedian_dim(input, dim=-1, keepdim=False): dim = utils.reduction_dims(input.shape, (dim,)) output_shape = _compute_reduction_shape(input, dim, keepdim) return ( input.new_empty(output_shape), input.new_empty(output_shape, dtype=torch.long), ) @register_meta(aten.logical_not_.default) def meta_logical_not_(self): return self @register_meta(aten.repeat.default) def meta_repeat(self, repeats): check( len(repeats) >= self.dim(), lambda: "Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor", ) # Add new leading dimensions to the tensor if the # number of target dimensions is larger than the # number of source dimensions. num_new_dimensions = len(repeats) - self.dim() padded_size = (1,) * num_new_dimensions + tuple(self.shape) target_size = [padded_size[i] * repeats[i] for i in range(len(repeats))] return self.new_empty(target_size) @register_meta(aten.zero_.default) def meta_zero_(self): return self @register_meta( [ aten.mul_.Scalar, aten.div_.Scalar, aten.mul_.Tensor, aten.div_.Tensor, aten.logical_and_.default, aten.logical_or_.default, aten.logical_xor_.default, ], ) def meta_binop_inplace(self, other): return self @register_meta( [ aten.add_.Scalar, aten.sub_.Scalar, aten.add_.Tensor, aten.sub_.Tensor, ], ) def meta_binop_inplace_alpha(self, other, alpha=1): return self @register_meta([aten.round.default, aten.round.decimals]) def meta_round(self, **kwargs): return _elementwise_meta( self, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT ) @register_meta(aten.zero.default) def meta_zero(self): return self.new_empty(self.shape) @register_meta([aten.fill_.Tensor, aten.fill_.Scalar]) def meta_fill_(self, val): return self @register_meta([aten.fill.Tensor, aten.fill.Scalar]) def meta_fill(self, val): return torch.empty_like(self) @register_meta(aten.relu_.default) def meta_relu_(self): return self @register_meta(aten.index_put.default) def meta_index_put(self, indices, values, accumulate=False): return torch.empty_like(self) @register_meta(aten.masked_fill_.Scalar) def meta_masked_fill_(self, mask, value): return self @register_meta(aten.index_put_.default) def meta_index_put_(self, indices, values, accumulate=False): return self @register_meta(aten.alias.default) def meta_alias(self): return self.view(self.shape) def common_meta_baddbmm_bmm(batch1, batch2, is_bmm, self_baddbmm=None): check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") batch1_sizes = batch1.size() batch2_sizes = batch2.size() bs = batch1_sizes[0] contraction_size = batch1_sizes[2] res_rows = batch1_sizes[1] res_cols = batch2_sizes[2] output_size = (bs, res_rows, res_cols) check( batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size, lambda: f"Expected size for first two dimensions of batch2 tensor to be: [{bs}" f", {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}].", ) # TODO: handle out output = batch2.new_empty(output_size) if not is_bmm and self_baddbmm is not None: check(self_baddbmm.dim() == 3, lambda: "self must be a 3D tensor") check( self_baddbmm.size() == output_size, lambda: "Expected an input tensor shape with shape {output_size} but got shape: {self.size()}", ) return output @register_meta(aten.bmm.default) def meta_bmm(self, mat2): return common_meta_baddbmm_bmm(self, mat2, True) def div_rtn(x, y): q = x // y r = x % y # WARNING: explicit bool conversion here is necessary; # would be fixed by SymBool if r != 0 and (bool(r < 0) != bool(y < 0)): q -= 1 return q def pooling_output_shape_pad_lr( inputSize, kernelSize, pad_l, pad_r, stride, dilation, ceil_mode ): outputSize = ( div_rtn( inputSize + pad_l + pad_r - dilation * (kernelSize - 1) - 1 + (stride - 1 if ceil_mode else 0), stride, ) + 1 ) if ceil_mode: if (outputSize - 1) * stride >= inputSize + pad_l: outputSize -= 1 return outputSize def pooling_output_shape(inputSize, kernelSize, pad, stride, dilation, ceil_mode): check(stride != 0, lambda: "stride should not be zero") check(pad >= 0, lambda: f"pad must be non-negative, but got pad: {pad}") check( pad <= kernelSize // 2, lambda: f"pad should be at most half of kernel size, but got pad={pad} and kernel_size={kernelSize}", ) return pooling_output_shape_pad_lr( inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode ) def pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, dilationH, dilationW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format, ): ndim = input.dim() nOutputPlane = nInputPlane check( kW > 0 and kH > 0, lambda: "kernel size should be greater than zero, but got kH: {kH}, kW: {kW}", ) check( dW > 0 and dH > 0, lambda: "stride should be greater than zero, but got dH: {dH}, dW: {dW}", ) check( dilationH > 0 and dilationW > 0, lambda: "dilation should be greater than zero, but got dilationH: {dilationH}, dilationW: {dilationW}", ) valid_dims = input.size(1) != 0 and input.size(2) != 0 if memory_format == torch.channels_last: check( ndim == 4 and valid_dims and input.size(3) != 0, lambda: "Expected 4D (batch mode) tensor expected for input with channels_last layout" " with optional 0 dim batch size for input, but got: {input.size()}", ) else: check( (ndim == 3 and input.size(0) != 0 and valid_dims) or (ndim == 4 and valid_dims and input.size(3) != 0), lambda: f"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got: {input.size()}", ) check( kW // 2 >= padW and kH // 2 >= padH, lambda: "pad should be smaller than or equal to half of kernel size, but got " f"padW = {padW}, padH = {padH}, kW = {kW}, kH = {kH}", ) check( outputWidth >= 1 and outputHeight >= 1, lambda: f"Given input size: ({nInputPlane}x{inputHeight}x{inputWidth}). " f"Calculated output size: ({nOutputPlane}x{outputHeight}x{outputWidth}). " "Output size is too small", ) def max_pool2d_checks_and_compute_shape( input, kernel_size, stride, padding, dilation, ceil_mode ): # Reference: aten/src/ATen/native/DilatedMaxPool2d.cpp def unpack(name, val): check( len(val) in [1, 2], lambda: f"max_pool2d: {name} must either be a single int, or a tuple of two ints", ) H = val[0] W = H if len(val) == 1 else val[1] return H, W kH, kW = unpack("kernel_size", kernel_size) check( len(stride) in [0, 1, 2], lambda: "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints", ) if len(stride) == 0: dH, dW = kH, kW else: dH, dW = unpack("stride", stride) padH, padW = unpack("padding", padding) dilationH, dilationW = unpack("dilation", dilation) nInputPlane = input.size(-3) inputHeight = input.size(-2) inputWidth = input.size(-1) memory_format = utils.suggest_memory_format(input) if memory_format == torch.channels_last: check( input.dim() == 4, lambda: "non-empty 4D (batch mode) tensor expected for input with channels_last layout", ) elif memory_format == torch.contiguous_format: check( input.dim() in [3, 4], lambda: "non-empty 3D or 4D (batch mode) tensor expected for input", ) else: check( False, lambda: "Unsupport memory format. Supports only ChannelsLast, Contiguous", ) outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode) outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode) pool2d_shape_check( input, kH, kW, dH, dW, padH, padW, dilationH, dilationW, nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, memory_format, ) return nInputPlane, outputHeight, outputWidth @register_meta(aten.max_pool2d_with_indices_backward.default) def meta_max_pool2d_with_indices_backward( grad_output, self, kernel_size, stride, padding, dilation, ceil_mode, indices ): nInputPlane, outputHeight, outputWidth = max_pool2d_checks_and_compute_shape( self, kernel_size, stride, padding, dilation, ceil_mode ) check( self.dtype == grad_output.dtype, lambda: "expected dtype {self.dtype} for `gradOutput` but got dtype {grad_output.dtype}", ) nOutputPlane = nInputPlane ndim = self.ndim def _check_dim_size(t): check_dim_size(t, ndim, ndim - 3, nOutputPlane) check_dim_size(t, ndim, ndim - 2, outputHeight) check_dim_size(t, ndim, ndim - 1, outputWidth) _check_dim_size(grad_output) _check_dim_size(indices) memory_format = utils.suggest_memory_format(self) return torch.empty( self.shape, dtype=self.dtype, device=self.device, memory_format=memory_format ) @register_meta(aten.max_pool2d_with_indices.default) def meta_max_pool2d_with_indices( input, kernel_size, stride=(), padding=(0,), dilation=(1,), ceil_mode=False ): nInputPlane, outputHeight, outputWidth = max_pool2d_checks_and_compute_shape( input, kernel_size, stride, padding, dilation, ceil_mode ) nbatch = input.size(-4) if input.dim() == 4 else 1 memory_format = utils.suggest_memory_format(input) if input.dim() == 3: size = [nInputPlane, outputHeight, outputWidth] else: size = [nbatch, nInputPlane, outputHeight, outputWidth] return ( torch.empty( size, dtype=input.dtype, device=input.device, memory_format=memory_format ), torch.empty( size, dtype=torch.int64, device=input.device, memory_format=memory_format ), ) @register_meta(aten.grid_sampler_2d_backward.default) def grid_sampler_2d_backward_meta( grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask, ): input_requires_grad = output_mask[0] if input_requires_grad: grad_input = torch.zeros_like(input, memory_format=torch.contiguous_format) else: grad_input = None grad_grid = torch.empty_like(grid, memory_format=torch.contiguous_format) return (grad_input, grad_grid) @register_meta([aten.full.default]) def full(size, fill_value, *args, **kwargs): return torch.empty(size, *args, **kwargs) @register_meta( [ aten.randint_like.default, aten.randint_like.low_dtype, aten.randn_like.default, aten.rand_like.default, aten.full_like.default, aten.ones_like.default, ] ) def meta_like(self, *args, **kwargs): return aten.empty_like.default(self, **kwargs) # zeros_like is special cased to work for sparse @register_meta(aten.zeros_like.default) def zeros_like( self, dtype=None, layout=None, device=None, pin_memory=None, memory_format=None ): if layout == torch.sparse_coo: check( memory_format is None, lambda: "memory format option is only supported by strided tensors", ) res = torch.empty( 0, dtype=self.dtype if dtype is None else dtype, layout=layout, device=self.device if device is None else device, pin_memory=pin_memory, ) if self.is_sparse: res.sparse_resize_and_clear_( self.size(), self.sparse_dim(), self.dense_dim() ) else: res.sparse_resize_and_clear_(self.size(), self.dim(), 0) res._coalesced_(True) return res return aten.empty_like.default( self, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory, memory_format=memory_format, ) # hacky: Please remove after math.ceil works with arange @register_meta(aten.arange.default) def arange(end, **kwargs): if isinstance(end, FloatLike): end = math.ceil(end) # type: ignore[arg-type] def is_integral(x): return isinstance(x, IntLike) or isinstance(x, bool) set_to_integral_dtype = kwargs.get("dtype", None) is None and is_integral(end) if set_to_integral_dtype: kwargs["dtype"] = torch.int64 return aten.empty([end], **kwargs) @register_meta(aten.arange.start) def arange_start(start, end, **kwargs): return aten.arange(end - start, **kwargs) @register_meta(aten.select.int) def meta_select(self, dim, index): ndim = self.dim() check( ndim != 0, lambda: "select() cannot be applied to a 0-dim tensor.", IndexError ) dim = dim if dim >= 0 else dim + ndim size = self.size(dim) check( not (-index > size or index >= size), lambda: f"select(): index {index} out of range for tensor of size " f"{self.size()} at dimension {dim}", IndexError, ) index = index if index >= 0 else index + size new_size = list(self.size()) new_stride = list(self.stride()) new_storage_offset = self.storage_offset() + index * new_stride[dim] del new_size[dim] del new_stride[dim] return self.as_strided(new_size, new_stride, new_storage_offset) @register_meta(aten.select_scatter.default) def meta_select_scatter(self, src, dim, index): return utils.clone_preserve_strides(self) @register_meta(aten.slice_scatter.default) def meta_slice_scatter(self, src, dim=0, start=None, end=None, step=1): return utils.clone_preserve_strides(self) # TODO: Deduplicate this with canonicalize_dim def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True): if dim_post_expr <= 0: assert wrap_scalar dim_post_expr = 1 min = -dim_post_expr max = dim_post_expr - 1 assert not (dim < min or dim > max), f"dim {dim} out of bounds ({min}, {max})" if dim < 0: dim += dim_post_expr return dim def ensure_nonempty_size(t, dim): return 1 if t.dim() == 0 else t.shape[dim] # From aten/src/ATen/native/ScatterGatherChecks.h def gather_shape_check(self, dim, index): self_dims = max(self.dim(), 1) index_dims = max(index.dim(), 1) check( self_dims == index_dims, lambda: "Index tensor must have the same number of dimensions as input tensor", ) for i in range(self_dims): if i != dim: check( ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i), lambda: f"Size does not match at dimension {i} expected index {index.shape}" + f" to be smaller than self {self.shape} apart from dimension {dim}", ) @register_meta(aten.gather.default) def meta_gather(self, dim, index, sparse_grad=False): wrapped_dim = maybe_wrap_dim(dim, self.dim()) is_index_empty = index.numel() == 0 if not is_index_empty: check( index.dtype == torch.long, lambda: f"gather(): Expected dtype int64 for index, but got {index.dtype}", ) gather_shape_check(self, wrapped_dim, index) return self.new_empty(index.shape) # From aten/src/ATen/native/TensorAdvancedIndexing.cpp def get_operator_enum(reduce_, use_new_options=False): if use_new_options: if reduce_ == "sum": return "REDUCE_ADD" elif reduce_ == "prod": return "REDUCE_MULTIPLY" elif reduce_ == "mean": return "REDUCE_MEAN" elif reduce_ == "amax": return "REDUCE_MAXIMUM" elif reduce_ == "amin": return "REDUCE_MINIMUM" check( False, lambda: "reduce argument must be either sum, prod, mean, amax or amin.", ) return else: if reduce_ == "add": return "REDUCE_ADD" elif reduce_ == "multiply": return "REDUCE_MULTIPLY" check(False, lambda: "reduce argument must be either add or multiply.") return # From aten/src/ATen/native/ScatterGatherChecks.h def scatter_gather_dtype_check(method_name, self, index, src_opt=None): if index.numel() != 0: check( index.dtype == torch.long, lambda: f"{method_name}(): Expected dtype int64 for index", ) if src_opt is not None: check( self.dtype == src_opt.dtype, lambda: f"{method_name}(): Expected self.dtype to be equal to src.dtype", ) def ensure_nonempty_dim(dim): return max(dim, 1) # From aten/src/ATen/native/ScatterGatherChecks.h def scatter_shape_check(self, dim, index, src_opt=None): if index.numel() == 0: return check( ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), lambda: "Index tensor must have the same number of dimensions as self tensor", ) is_wrong_shape = False self_dims = ensure_nonempty_dim(self.dim()) # Check: index.size(d) <= self.size(d) for all d != dim for d in range(self_dims): index_d_size = ensure_nonempty_size(index, d) if d == dim: continue if index_d_size > ensure_nonempty_size(self, d): is_wrong_shape = True break # Check: index.size(d) <= src.size(d) for all d if src is Tensor if not is_wrong_shape and src_opt is not None: for d in range(self_dims): index_d_size = ensure_nonempty_size(index, d) if index_d_size > ensure_nonempty_size(src_opt, d): is_wrong_shape = True break if src_opt is not None: check( ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()), lambda: "Index tensor must have the same number of dimensions as self tensor", ) check( not is_wrong_shape, lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" + f" apart from dimension {dim} and to be smaller than src {src_opt.shape}", ) else: check( not is_wrong_shape, lambda: f"Expected index {index.shape} to be smaller than self {self.shape}" + f" apart from dimension {dim}", ) # From aten/src/ATen/native/TensorAdvancedIndexing.cpp def scatter_meta_impl(self, dim, index, src=None, reduce_=None, use_new_options=False): wrapped_dim = maybe_wrap_dim(dim, self.dim()) scatter_gather_dtype_check("scatter", self, index, src) scatter_shape_check(self, wrapped_dim, index, src) if reduce_ is not None: # Check if we have a valid reduce operator. get_operator_enum(reduce_, use_new_options) @register_meta(aten.scatter_add.default) def meta_scatter_add(self, dim, index, src): scatter_meta_impl(self, dim, index, src, "add") return self.new_empty(self.shape) @register_meta(aten.scatter_add_) def meta_scatter_add_(self, dim, index, src): scatter_meta_impl(self, dim, index, src, "add") return self @register_meta( [ aten.scatter.src, aten.scatter.value, aten.scatter.reduce, aten.scatter.value_reduce, ] ) @out_wrapper() def meta_scatter(self, dim, index, src_or_value, reduce=None): src = src_or_value if isinstance(src_or_value, torch.Tensor) else None scatter_meta_impl(self, dim, index, src, reduce) return self.new_empty(self.shape) @register_meta( [ aten.scatter_.src, aten.scatter_.value, aten.scatter_.reduce, aten.scatter_.value_reduce, ] ) def meta_scatter_(self, dim, index, src_or_value, reduce=None): src = src_or_value if isinstance(src_or_value, torch.Tensor) else None scatter_meta_impl(self, dim, index, src, reduce) return self @register_meta( [ aten._scaled_dot_product_flash_attention, ] ) def meta__scaled_dot_product_flash( query: Tensor, key: Tensor, value: Tensor, dropout_p: float = 0.0, is_causal: bool = False, ): batch_size = query.size(0) num_heads = query.size(1) max_seqlen_batch_q = query.size(2) head_dim = query.size(3) max_seqlen_batch_k = key.size(2) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) Nnz_q = batch_size * max_seqlen_batch_q output = torch.empty( (Nnz_q, num_heads, head_dim), dtype=query.dtype, device=query.device ) ouput = output.view(batch_size, max_seqlen_batch_q, num_heads, head_dim).transpose( 1, 2 ) max_seqlen_q = math.ceil(max_seqlen_batch_q / 16) * 16 logsumexp = torch.empty( (batch_size, num_heads, max_seqlen_q), dtype=torch.float, device=query.device, ) is_sm80 = torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0) is_sm75 = torch.cuda.is_available() and torch.cuda.get_device_capability() >= (7, 5) head_size_rounded = 64 if head_dim <= 64 else 128 blocksize_c = ( 128 if (head_size_rounded == 128 and (dropout_p != 0.0 or not is_sm80)) or (is_sm75 and head_size_rounded == 64 and dropout_p != 0.0) else 256 ) max_seqlen_k = math.ceil(max_seqlen_batch_k / blocksize_c) * blocksize_c if max_seqlen_k <= 128: max_seqlen_k = 128 elif max_seqlen_k <= 256: max_seqlen_k = 256 return ouput, logsumexp @register_meta( [ aten._scaled_dot_product_efficient_attention, ] ) def meta__scaled_dot_product_efficient( query: Tensor, key: Tensor, value: Tensor, compute_log_sumexp: bool, is_causal: bool = False, ): query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) B = query.size(0) M = query.size(1) N = key.size(1) num_heads = query.size(-2) K = query.size(-1) Kv = value.size(-1) res = torch.empty(B, M, num_heads, Kv, dtype=query.dtype, device=query.device) logsumexp_dim = math.ceil(M / 32) * 32 if compute_log_sumexp else 0 logsum_exp = torch.empty( (B, num_heads, logsumexp_dim), dtype=torch.float, device=query.device, ) res = res.transpose(1, 2) return res, logsum_exp @register_meta( [ aten._scaled_dot_product_efficient_attention_backward, ] ) def meta__scaled_dot_product_efficient_backward( grad_out: Tensor, query: Tensor, key: Tensor, value: Tensor, out: Tensor, logsumexp: Tensor, is_causal: bool = False, chunk_grad_outputs=False, ): grad_out = grad_out.transpose(1, 2) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) B = query.size(0) M = query.size(1) N = key.size(1) nH = query.size(2) K = query.size(3) grad_kv_needs_init = is_causal and N > M if chunk_grad_outputs: chunk = torch.empty((B, M, 3, nH, K), dtype=query.dtype, device=query.device) grad_q = chunk.select(2, 0) grad_k = chunk.select(2, 1) grad_v = chunk.select(2, 2) else: grad_q = torch.empty(query.shape, dtype=query.dtype, device=query.device) grad_k = ( torch.zeros(key.shape, dtype=key.dtype, device=key.device) if grad_kv_needs_init else torch.empty(key.shape, dtype=key.dtype, device=key.device) ) grad_v = ( torch.zeros(value.shape, dtype=value.dtype, device=value.device) if grad_kv_needs_init else torch.empty(value.shape, dtype=value.dtype, device=value.device) ) return grad_q.transpose(1, 2), grad_k.transpose(1, 2), grad_v.transpose(1, 2) @register_meta([aten.scatter_reduce.two, aten.scatter_reduce.two_out]) @out_wrapper() def meta_scatter_reduce_two(self, dim, index, src, reduce, include_self=True): scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) return self.new_empty(self.shape) @register_meta(aten.scatter_reduce_.two) def meta_scatter_reduce__two(self, dim, index, src, reduce, include_self=True): scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True) return self def multiply_integers(vs): r = 1 for v in vs: r *= v return r def upsample_common_check(input_size, output_size, num_spatial_dims): check( len(output_size) == num_spatial_dims, lambda: f"It is expected output_size equals to {num_spatial_dims}, but got size {len(output_size)}", ) expected_input_dims = num_spatial_dims + 2 # N, C, ... check( len(input_size) == expected_input_dims, lambda: f"It is expected input_size equals to {expected_input_dims}, but got size {len(input_size)}", ) check( all([s > 0 for s in input_size[2:]]) and all([s > 0 for s in output_size]), lambda: f"Input and output sizes should be greater than 0, but got " f"input size {input_size} and output size {output_size}", ) nbatch, channels = input_size[:2] return (nbatch, channels, *output_size) @register_meta(aten.upsample_nearest1d.default) def upsample_nearest1d(input, output_size, scales=None): check( input.numel() != 0 or multiply_integers(input.size()[1:]), lambda: "Non-empty 3D data tensor expected but got a tensor with sizes {input.size()}", ) full_output_size = upsample_common_check( input.size(), output_size, num_spatial_dims=1 ) return input.new_empty(full_output_size).to( memory_format=utils.suggest_memory_format(input) ) @register_meta(aten.upsample_nearest2d.default) def upsample_nearest2d(input, output_size, scales_h=None, scales_w=None): check( input.numel() != 0 or multiply_integers(input.size()[1:]), lambda: "Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}", ) full_output_size = upsample_common_check( input.size(), output_size, num_spatial_dims=2 ) output = input.new_empty(full_output_size) # convert output to correct memory format, if necessary memory_format = utils.suggest_memory_format(input) # following "heuristic: only use channels_last path when it's faster than the contiguous path" _, n_channels, _, _ = input.shape if input.device.type == "cuda" and n_channels < 4: memory_format = torch.contiguous_format output = output.contiguous(memory_format=memory_format) return output @register_meta(aten.upsample_nearest3d.default) def upsample_nearest3d(input, output_size, scales_d=None, scales_h=None, scales_w=None): check( input.numel() != 0 or multiply_integers(input.size()[1:]), lambda: "Non-empty 5D data tensor expected but got a tensor with sizes {input.size()}", ) full_output_size = upsample_common_check( input.size(), output_size, num_spatial_dims=3 ) return input.new_empty(full_output_size).to( memory_format=utils.suggest_memory_format(input) ) @register_meta([aten.sort.default, aten.sort.stable]) def meta_sort(self, stable=None, dim=-1, descending=False): return torch.empty_like(self), torch.empty_like(self, dtype=torch.int64) def rnn_cell_checkSizes( input_gates, hidden_gates, input_bias, hidden_bias, factor, prev_hidden ): check(input_gates.ndim == 2, lambda: f"{input_gates.ndim} != 2") check( input_gates.shape == hidden_gates.shape, lambda: f"{input_gates.shape} != {hidden_gates.shape}", ) gates_size = input_gates.size(1) if input_bias is not None: check(input_bias.ndim == 1, lambda: f"{input_bias.ndim} != 1") check( input_bias.numel() == gates_size, lambda: f"{input_bias.numel()} != {gates_size}", ) check( input_bias.shape == hidden_bias.shape, lambda: f"{input_bias.shape} != {hidden_bias.shape}", ) check(prev_hidden.ndim == 2, lambda: f"{prev_hidden.ndim} != 2") expected_prev_hidden_numel = input_gates.size(0) * gates_size // factor check( prev_hidden.numel() == expected_prev_hidden_numel, lambda: f"{prev_hidden.numel()} != {input_gates.size(0)} * {gates_size} // {factor} (aka {expected_prev_hidden_numel})", ) check( all( x.device == input_gates.device for x in [hidden_gates, input_bias, hidden_bias, prev_hidden] ), lambda: "expected all inputs to be same device", ) @register_meta(aten._thnn_fused_lstm_cell.default) def _thnn_fused_lstm_cell_meta( input_gates, hidden_gates, cx, input_bias=None, hidden_bias=None ): rnn_cell_checkSizes(input_gates, hidden_gates, input_bias, hidden_bias, 4, cx) workspace = torch.empty_like(input_gates, memory_format=torch.contiguous_format) hy = torch.empty_like(cx, memory_format=torch.contiguous_format) cy = torch.empty_like(cx, memory_format=torch.contiguous_format) return (hy, cy, workspace) @register_meta(aten._cudnn_rnn.default) def _cudnn_rnn( input, weight, weight_stride0, weight_buf, hx, cx, mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, ): is_input_packed = len(batch_sizes) != 0 if is_input_packed: seq_length = len(batch_sizes) mini_batch = batch_sizes[0] batch_sizes_sum = input.shape[0] else: seq_length = input.shape[1] if batch_first else input.shape[0] mini_batch = input.shape[0] if batch_first else input.shape[1] batch_sizes_sum = -1 num_directions = 2 if bidirectional else 1 out_size = proj_size if proj_size != 0 else hidden_size if is_input_packed: out_shape = [batch_sizes_sum, out_size * num_directions] else: out_shape = ( [mini_batch, seq_length, out_size * num_directions] if batch_first else [seq_length, mini_batch, out_size * num_directions] ) output = input.new_empty(out_shape) cell_shape = [num_layers * num_directions, mini_batch, hidden_size] if cx is None: cy = torch.empty(0, device=input.device) else: cy = cx.new_empty(cell_shape) hy = hx.new_empty([num_layers * num_directions, mini_batch, out_size]) # TODO: Query cudnnGetRNNTrainingReserveSize (expose to python) reserve_shape = 0 if train else 0 reserve = input.new_empty(reserve_shape, dtype=torch.uint8) return output, hy, cy, reserve, weight_buf @register_meta(aten.mkldnn_rnn_layer.default) def mkldnn_rnn_layer( input, w0, w1, w2, w3, hx_, cx_, reverse, batch_sizes, mode, hidden_size, num_layers, has_biases, bidirectional, batch_first, train, ): seq_length = input.shape[1] if batch_first else input.shape[0] mini_batch = input.shape[0] if batch_first else input.shape[1] output_chanels = hidden_size out_shape = ( [mini_batch, seq_length, output_chanels] if batch_first else [seq_length, mini_batch, output_chanels] ) output = input.new_empty(out_shape) if hx_ is None: hy = torch.empty(0, device=input.device) else: hy = hx_.new_empty(hx_.shape) if cx_ is None: cy = torch.empty(0, device=input.device) else: cy = cx_.new_empty(cx_.shape) workspace = torch.empty(0, device=input.device, dtype=torch.uint8) return output, hy, cy, workspace def zero_numel_check_dims(self, dim, fn_name): if self.ndim == 0: check( dim == 0 or dim == -1, lambda: f"{fn_name}: Expected reduction dim -1 or 0 for scalar but got {dim}", IndexError, ) else: check( self.size(dim) != 0, lambda: f"{fn_name}: Expected reduction dim {dim} to have non-zero size.", IndexError, ) # From aten/src/ATen/native/ReduceOps.cpp def check_argmax_argmin(name, self, dim): if dim is not None: dim = maybe_wrap_dim(dim, self.dim()) zero_numel_check_dims(self, dim, name) else: check( self.numel() != 0, lambda: f"{name}: Expected reduction dim to be specified for input.numel() == 0.", ) @register_meta([aten.argmax.default, aten.argmin.default]) def argmax_argmin_meta(self, dim=None, keepdim=False): check_argmax_argmin("argmax", self, dim) dims = utils.reduction_dims(self.shape, (dim,) if dim is not None else None) shape = _compute_reduction_shape(self, dims, keepdim) return self.new_empty(shape, dtype=torch.int64) @register_meta(aten.scalar_tensor.default) def scalar_tensor(s, dtype=None, layout=None, device=None, pin_memory=None): return torch.empty( (), dtype=dtype, layout=layout, device=device, pin_memory=pin_memory ) @register_meta(aten.topk.default) def topk_meta(self, k, dim=-1, largest=True, sorted=True): # From aten/src/ATen/native/Sorting.cpp dim = maybe_wrap_dim(dim, self.dim(), wrap_scalar=True) check( k >= 0 and k <= (self.size(dim) if self.dim() > 0 else 1), lambda: "selected index k out of range", ) sliceSize = 1 if self.dim() == 0 else self.size(dim) check(k >= 0 and k <= sliceSize, lambda: "k not in range for dimension") topKSize = list(self.shape) if len(topKSize) > 0: topKSize[dim] = k return self.new_empty(topKSize), self.new_empty(topKSize, dtype=torch.int64) legacy_contiguous_memory_format = torch.contiguous_format # From aten/src/ATen/native/cuda/RNN.cu def checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace): defined_grad = grad_hy if grad_hy is not None else grad_cy check(defined_grad.dim() == 2, lambda: "") exp_size = defined_grad.size() if grad_hy is not None: check(grad_hy.size() == exp_size, lambda: "") if grad_cy is not None: check(grad_cy.size() == exp_size, lambda: "") check(cx.size() == exp_size, lambda: "") check(cy.size() == exp_size, lambda: "") check(workspace.dim() == 2, lambda: "") check(workspace.numel() == exp_size[0] * exp_size[1] * 4, lambda: "") # From aten/src/ATen/native/cuda/RNN.cu @register_meta(aten._thnn_fused_lstm_cell_backward_impl.default) def _thnn_fused_lstm_cell_backward_impl(grad_hy, grad_cy, cx, cy, workspace, has_bias): if grad_hy is None and grad_cy is None: return None, None, None checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace) grad_gates = torch.empty_like( workspace, memory_format=legacy_contiguous_memory_format ) grad_cx = torch.empty_like(cx, memory_format=legacy_contiguous_memory_format) grad_bias = grad_gates.sum(0, keepdim=False) if has_bias else None return grad_gates, grad_cx, grad_bias @register_meta(aten.pixel_shuffle.default) def meta_pixel_shuffle(self, upscale_factor): assert ( len(self.shape) > 2 and self.shape[-3] % (upscale_factor * upscale_factor) == 0 ), f"Invalid input shape for pixel_shuffle: {self.shape} with upscale_factor = {upscale_factor}" def is_channels_last(ten): return torch._prims_common.suggest_memory_format(ten) == torch.channels_last def pick_memory_format(): if is_channels_last(self): if device_hint(self) == "cuda": return torch.contiguous_format else: return torch.channels_last elif self.is_contiguous(memory_format=torch.contiguous_format): return torch.contiguous_format elif self.is_contiguous(memory_format=torch.preserve_format): return torch.preserve_format C = self.shape[-3] // (upscale_factor * upscale_factor) Hr = self.shape[-2] * upscale_factor Wr = self.shape[-1] * upscale_factor out_shape = (*self.shape[:-3], C, Hr, Wr) out = self.new_empty(out_shape) out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload] return out @register_meta(aten.mkldnn_rnn_layer_backward.default) def mkldnn_rnn_layer_backward( input, weight0, weight1, weight2, weight3, hx_, cx_tmp, output, hy_, cy_, grad_output_r_opt, grad_hy_r_opt, grad_cy_r_opt, reverse, mode, hidden_size, num_layers, has_biases, train, bidirectional, batch_sizes, batch_first, workspace, ): diff_x = input.new_empty(input.shape) diff_hx = hx_.new_empty(hx_.shape) diff_cx = cx_tmp.new_empty(cx_tmp.shape) diff_w1 = weight0.new_empty(weight0.shape) diff_w2 = weight1.new_empty(weight1.shape) diff_b = weight2.new_empty(weight2.shape) return diff_x, diff_w1, diff_w2, diff_b, diff_b, diff_hx, diff_cx # We must also trigger meta registrations from PrimTorch ref # decompositions import torch._refs import torch._refs.nn.functional import torch._refs.special def activate_meta(): activate_meta_table = {} # For a given op, we pick the most specific decomp function from # global_decomp_table in the precedence order of meta > post_autograd > pre_autograd for type in ["meta", "post_autograd", "pre_autograd"]: registry = global_decomposition_table[type] for opo in registry: if opo not in activate_meta_table: activate_meta_table[opo] = registry[opo] for op_overload, fn in activate_meta_table.items(): assert isinstance(op_overload, OpOverload) op_overload.py_impl(torch._C.DispatchKey.Meta)(fn) if torch._C._dispatch_has_kernel_for_dispatch_key( op_overload.name(), "CompositeImplicitAutograd" ): # Internally, we shouldn't be registering meta kernels for any operators that # have CompositeImplicitAutograd kernels. # Instead, we should be letting those decompositions run, and writing meta kernels # only for the base operators. if op_overload in global_decomposition_table["meta"]: raise RuntimeError( f"{op_overload} is a CompositeImplicitAutograd op, we shouldn't " "register meta function for it. Instead, we should let the decomposition run and write " "meta kernels for the base operators." ) pass elif op_overload.is_view: # Attempting to register a python meta kernel for a view operator. # We shouldn't do this, because the output will report as not having aliased storages. # All view ops have meta kernels in C++ today, so we should use those instead. pass elif op_overload.name() in { "aten::empty_strided", # causing infinite recursion, test_meta.py "aten::clone", # causing infinite recursion "aten::_to_copy", # causing infinite recursion, test_serialization.py -k test_tensor_subclass_getstate_overwrite # noqa: B950 "aten::copy_", # Exception not raised, test_torch.py -k test_storage_meta_errors_cpu_int64 # noqa: B950 "aten::constant_pad_nd", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_amp_istft_cuda_float32 # noqa: B950 "aten::rot90", # requires_grad mismatch! test_ops.py -k test_fake_crossref_backward_amp_rot90_cuda_float32 # noqa: B950 "aten::as_strided_scatter", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_no_amp_as_strided_scatter_cuda_float32 # noqa: B950 }: pass else: if "mkldnn::" in op_overload.name(): _meta_lib_dont_use_me_use_register_meta_for_mkldnn.impl(op_overload, fn) elif "mkl::" in op_overload.name(): _meta_lib_dont_use_me_use_register_meta_for_mkl.impl(op_overload, fn) else: _meta_lib_dont_use_me_use_register_meta.impl(op_overload, fn) activate_meta()
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
3d81722193663c5a56f5fcd5a04e2b8555f01b4e
c8471c09e9bf146a5dcec34a381e5ea4fcf7d1c2
/day1_star2.py
3440901f68795b5c27e1fb7b59a4eb553e45816b
[]
no_license
cmueh/AoC19
dea8456bb814b99efc53ce16fab6f488d7e4f896
2c219e221bddb33616ea5dcaa4824820fdb65598
refs/heads/master
2020-09-23T02:35:22.233081
2019-12-07T16:36:43
2019-12-07T16:36:43
225,380,404
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
f = open('input.txt') def calc(n): s = 0 while True: v = n // 3 - 2 if v <= 0: break s += v n = v return s arr = [calc(int(x.strip())) for x in f.readlines()] print(sum(arr))
[ "noreply@github.com" ]
cmueh.noreply@github.com
eafd957ce79a41486e0e5515ec49bc2b2ecf71e1
7ef991ef5d595ef987eb9ef74d5ed0469bdbb39e
/examples/ensemble/plot_monotonic_constraints.py
8b3f69f1d542e9a891b51bb11f879321501d143a
[ "BSD-3-Clause" ]
permissive
ogrisel/scikit-learn-github-actions
1762eb7961dabfd60c574c54b6b4ed1044ca986f
d88deccde974c70d8d89b9c880a809d53c2e32eb
refs/heads/master
2023-03-05T10:32:07.363536
2020-12-01T12:20:55
2020-12-01T12:20:55
317,551,992
3
3
BSD-3-Clause
2021-02-08T19:28:13
2020-12-01T13:36:07
Python
UTF-8
Python
false
false
2,241
py
""" ===================== Monotonic Constraints ===================== This example illustrates the effect of monotonic constraints on a gradient boosting estimator. We build an artificial dataset where the target value is in general positively correlated with the first feature (with some random and non-random variations), and in general negatively correlated with the second feature. By imposing a positive (increasing) or negative (decreasing) constraint on the features during the learning process, the estimator is able to properly follow the general trend instead of being subject to the variations. This example was inspired by the `XGBoost documentation <https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html>`_. """ from sklearn.experimental import enable_hist_gradient_boosting # noqa from sklearn.ensemble import HistGradientBoostingRegressor from sklearn.inspection import plot_partial_dependence import numpy as np import matplotlib.pyplot as plt print(__doc__) rng = np.random.RandomState(0) n_samples = 5000 f_0 = rng.rand(n_samples) # positive correlation with y f_1 = rng.rand(n_samples) # negative correlation with y X = np.c_[f_0, f_1] noise = rng.normal(loc=0.0, scale=0.01, size=n_samples) y = (5 * f_0 + np.sin(10 * np.pi * f_0) - 5 * f_1 - np.cos(10 * np.pi * f_1) + noise) fig, ax = plt.subplots() # Without any constraint gbdt = HistGradientBoostingRegressor() gbdt.fit(X, y) disp = plot_partial_dependence( gbdt, X, features=[0, 1], line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"}, ax=ax, ) # With positive and negative constraints gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, -1]) gbdt.fit(X, y) plot_partial_dependence( gbdt, X, features=[0, 1], feature_names=( "First feature\nPositive constraint", "Second feature\nNegtive constraint", ), line_kw={"linewidth": 4, "label": "constrained", "color": "tab:orange"}, ax=disp.axes_, ) for f_idx in (0, 1): disp.axes_[0, f_idx].plot( X[:, f_idx], y, "o", alpha=0.3, zorder=-1, color="tab:green" ) disp.axes_[0, f_idx].set_ylim(-6, 6) plt.legend() fig.suptitle("Monotonic constraints illustration") plt.show()
[ "noreply@github.com" ]
ogrisel.noreply@github.com
c96341db1a252c067b17e8947a829457d1b9a95c
81632cda811a3ca43497457dc25c382e53685c01
/week2_algorithmic_warmup/1_fibonacci_number/fibonacci.py
bbf8f4211aae3a7847f0fae6b8d1522ef93ff585
[]
no_license
fernandoyto/algorithmic-toolbox
63511da14801ae3bfabe8da008f6d51a3e2b5572
059a897ad7edadd1d9278f0f87c7f5adb42e49e5
refs/heads/master
2022-09-22T09:45:55.736963
2020-06-01T01:59:58
2020-06-01T01:59:58
262,603,253
0
0
null
null
null
null
UTF-8
Python
false
false
202
py
# Uses python3 def calc_fib(n): if n <= 1: return n arr = [0, 1] while len(arr) <= n: arr.append(arr[-1] + arr[-2]) return arr[-1] n = int(input()) print(calc_fib(n))
[ "fernando.toshioyto@gmail.com" ]
fernando.toshioyto@gmail.com
d935698ed1490a86579c7639a9248a6761ca3fde
0125bbe0ce453e94604ff5834fbc280fe44f3220
/transquest/algo/sentence_level/siamesetransquest/readers/__init__.py
ae4c6526b6069a91c156cfd8a0f55c7f847bb325
[ "Apache-2.0" ]
permissive
mfomicheva/TransQuest
fc51bcb90e386534845841fd75a3860054e76dd7
4225f7195a703414ed13ce597854cc1a59703229
refs/heads/master
2023-06-12T14:52:49.066705
2021-05-07T10:35:21
2021-05-07T10:35:21
263,876,762
6
1
Apache-2.0
2020-05-14T09:52:07
2020-05-14T09:52:06
null
UTF-8
Python
false
false
231
py
# from .input_example import InputExample # from .label_sentence_reader import LabelSentenceReader # from .nli_data_reader import NLIDataReader # from .qe_data_reader import QEDataReader # from .triplet_reader import TripletReader
[ "rhtdranasinghe@gmail.com" ]
rhtdranasinghe@gmail.com
86fcd24ccd2ff7f53cde4be30ecfe987c53c067a
0c823c3975deff4d12edeb2628b0380e9282fb4b
/venv/bin/pew
047ec0aafcc0b94fbada6a1f164fb179627743fe
[]
no_license
shocktrop89/helloworld
a8a69927e35fd1198c30f458a426f5c060bf7bbb
eae76cb2e585e403edaa9e3775e820a646c80574
refs/heads/master
2022-12-14T19:56:46.990044
2018-02-22T15:07:20
2018-02-22T15:07:20
122,350,951
0
0
null
2022-09-16T17:46:27
2018-02-21T15:03:54
Python
UTF-8
Python
false
false
249
#!/Users/mbp13/Documents/GitHub/helloworld/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pew.pew import pew if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(pew())
[ "neo_x2k@hotmail.com" ]
neo_x2k@hotmail.com
fc1654e347aab42f2c8356ba6bf4279a456c1caf
afd7a171d1d75b1f202745ddd355c05b7013aa77
/tensorflow_fix/flags.py
ce5bf191a99ad2f55815d47ebd3d683667429856
[]
no_license
erdnase1902/web-demo-vm
06f9464253bf3110d542e1ef7989325f59fe7693
8d7c16ec4402659e8c6fcbcd1cfbcf1cc292b6de
refs/heads/master
2023-02-27T02:40:43.300761
2021-02-02T00:24:03
2021-02-02T00:24:03
335,121,700
0
0
null
null
null
null
UTF-8
Python
false
false
4,756
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Import router for absl.flags. See https://github.com/abseil/abseil-py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging as _logging import sys as _sys """ Joseph fix for Traceback (most recent call last): File "../model/coreFunc.py", line 7, in <module> from utils import * File "../model/utils.py", line 190, in <module> def writeIndex(filename, index, embLen = FLAGS.hash_code_len): File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/platform/flags.py", line 84, in __getattr__ wrapped(_sys.argv) AttributeError: module 'sys' has no attribute 'argv' """ import sys if not hasattr(sys, 'argv'): sys.argv = [''] # go/tf-wildcard-import from absl.flags import * # pylint: disable=wildcard-import import six as _six from tensorflow.python.util import tf_decorator # Since we wrap absl.flags DEFINE functions, we need to declare this module # does not affect key flags. disclaim_key_flags() # pylint: disable=undefined-variable _RENAMED_ARGUMENTS = { 'flag_name': 'name', 'default_value': 'default', 'docstring': 'help', } def _wrap_define_function(original_function): """Wraps absl.flags's define functions so tf.flags accepts old names.""" def wrapper(*args, **kwargs): """Wrapper function that turns old keyword names to new ones.""" has_old_names = False for old_name, new_name in _six.iteritems(_RENAMED_ARGUMENTS): if old_name in kwargs: has_old_names = True value = kwargs.pop(old_name) kwargs[new_name] = value if has_old_names: _logging.warning( 'Use of the keyword argument names (flag_name, default_value, ' 'docstring) is deprecated, please use (name, default, help) instead.') return original_function(*args, **kwargs) return tf_decorator.make_decorator(original_function, wrapper) class _FlagValuesWrapper(object): """Wrapper class for absl.flags.FLAGS. The difference is that tf.flags.FLAGS implicitly parses flags with sys.argv when accessing the FLAGS values before it's explicitly parsed, while absl.flags.FLAGS raises an exception. """ def __init__(self, flags_object): self.__dict__['__wrapped'] = flags_object def __getattribute__(self, name): if name == '__dict__': return super(_FlagValuesWrapper, self).__getattribute__(name) return self.__dict__['__wrapped'].__getattribute__(name) def __getattr__(self, name): wrapped = self.__dict__['__wrapped'] # To maintain backwards compatibility, implicitly parse flags when reading # a flag. if not wrapped.is_parsed(): wrapped(_sys.argv) return wrapped.__getattr__(name) def __setattr__(self, name, value): return self.__dict__['__wrapped'].__setattr__(name, value) def __delattr__(self, name): return self.__dict__['__wrapped'].__delattr__(name) def __dir__(self): return self.__dict__['__wrapped'].__dir__() def __getitem__(self, name): return self.__dict__['__wrapped'].__getitem__(name) def __setitem__(self, name, flag): return self.__dict__['__wrapped'].__setitem__(name, flag) def __len__(self): return self.__dict__['__wrapped'].__len__() def __iter__(self): return self.__dict__['__wrapped'].__iter__() def __str__(self): return self.__dict__['__wrapped'].__str__() def __call__(self, *args, **kwargs): return self.__dict__['__wrapped'].__call__(*args, **kwargs) # pylint: disable=invalid-name,used-before-assignment # absl.flags APIs use `default` as the name of the default value argument. # Allow the following functions continue to accept `default_value`. DEFINE_string = _wrap_define_function(DEFINE_string) DEFINE_boolean = _wrap_define_function(DEFINE_boolean) DEFINE_bool = DEFINE_boolean DEFINE_float = _wrap_define_function(DEFINE_float) DEFINE_integer = _wrap_define_function(DEFINE_integer) # pylint: enable=invalid-name,used-before-assignment FLAGS = _FlagValuesWrapper(FLAGS) # pylint: disable=used-before-assignment
[ "josephlu85@engineering.ucla.edu" ]
josephlu85@engineering.ucla.edu
a29754c4c378ca8e960133b73f1081e25847597c
a91bea54a2d440f4333d48278ff9d870e5777069
/wxjlibrary/backend/urls.py
0786cc48f287fa09295e5a9e811d5aca2736bcb7
[]
no_license
angelawxj/backend
f22908373b019d0feb1085928e13765e15882b3a
d53c88fde56d4bda039d9a9844ead9ecfeb28354
refs/heads/master
2021-06-30T16:39:24.527606
2019-02-20T09:37:31
2019-02-20T09:37:31
136,135,401
0
1
null
null
null
null
UTF-8
Python
false
false
795
py
"""backend URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('bookList.urls')), ]
[ "2472569272@qq.com" ]
2472569272@qq.com
158c8568933800e1a190e58735a06e07f2d82e6b
21d21402c70d8a95d9a4b492078e3fb36e2c9af1
/shivi_khanuja/django/DojoNinja/apps/dojoninja/apps.py
d4941bb2d14a3111f7bbf5c0ed2410810df42a05
[]
no_license
hmp36/python_aug_2017
df897a1b0aa161300386192d48e3fcac9eb495c8
8747429b91b09349e5b5469d8932593b06f645e1
refs/heads/master
2021-04-29T23:16:50.149226
2017-09-11T20:14:37
2017-09-11T20:14:37
121,552,666
1
0
null
2018-02-14T19:34:54
2018-02-14T19:34:54
null
UTF-8
Python
false
false
166
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.apps import AppConfig class DojoninjaConfig(AppConfig): name = 'dojoninja'
[ "shivalikhanuja.net@gmail.com" ]
shivalikhanuja.net@gmail.com
699b405df3c5154f4dc032a56062766d9dea7aac
501fa9383672b83f0d1f5516c9c4e9971ac37399
/Planar Model/Equilibrium/Analyze.py
e5021c8d67d459f2b78c21a2d7f59b2412ad9ab0
[]
no_license
vsa1920/Monte-Carlo-methods-in-Ising-Model
a42b2a8e8494a5efe15fed9b8c5e56865a97ee7c
426647a63ea121f40799c6e9022c813c925ee580
refs/heads/main
2023-04-10T06:37:35.907962
2023-03-29T03:42:25
2023-03-29T03:42:25
339,046,824
0
0
null
null
null
null
UTF-8
Python
false
false
1,038
py
from matplotlib import pyplot from Metropolis import nearest_neighbours, acceptance_ratio import random from math import e, cos, sin, pi import numpy as np # A function to read states from text files # Constants J = 1 def read_func(file_name): file = open(file_name, 'r') state = [] for i in file.readlines(): row = [] for j in i.split(): row.append(float(j)) state.append(row) return state def evaluate_energy(state): E = 0 n = len(state) for i in range(n): for j in range(n): for pos in nearest_neighbours(i, j, n): E += -J * cos(state[i][j] - state[pos[0]][pos[1]]) return E / 2 def evaluate_magnetization(state): """ Returns Magnetisation per spin of a state. """ M = np.array([0, 0]) n = len(state) for i in range(n): for j in range(n): M = M + np.array([cos(state[i][j]), sin(state[i][j])]) return abs((np.dot(M, M) ** 0.5) / (n * n))
[ "noreply@github.com" ]
vsa1920.noreply@github.com
d8590c08bf2977e339d8f90929d589b87f9ce6f4
54c269be3d6882141fc43fba55fccaafb773cc59
/PythonExercises/desafio32.py
5998f9be211e9845d51b8633de64c32baa68d73b
[]
no_license
ClaudioJrCode/SQLZOOexercises
80fb8eb2500419a52cdde0553eddd1561f3aecab
e4b90823b7309f2f1c7f260db4cee2f56084e0f7
refs/heads/main
2023-04-10T06:11:23.857484
2021-04-22T01:15:04
2021-04-22T01:15:04
360,316,526
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
while 1: ano = int(input('Digite um ano: ')) flag = True if ano % 4 != 0: if ano % 400 != 0: print('O ano não é bissexto') if ano % 4 == 0: if ano % 100 != 0: print('O ano é bissexto')
[ "noreply@github.com" ]
ClaudioJrCode.noreply@github.com
8ddbe698c1c73e311e9b99a820e4b99697b3fd9b
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/576811_Rename_MP3_files_ID3_tags_does_not_require/recipe-576811.py
292eebcc019eb27b01d8285188c18bb6380e649e
[ "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
26,410
py
""" Read ID3 tags from a file. Ned Batchelder, http://nedbatchelder.com/code/modules/id3reader.html http://nedbatchelder.com/code/modules/id3reader.py * original code modified by ccpizza: added code to main method to rename files in current folder from ID3 tags, e.g. 'Track_01.mp3' >> '01 - Chan chan.mp3' * added safe console printing of unicode characters * added indexing for duplicate file names, i.e. '01 - Chan chan.mp3[2]' * fixed indexing for duplicated ID3 tags * added -d option to create "artist\album" directories: e.g. 'Track_01.mp3' >> 'Compay Segundo\Mojito\01 - Chan chan.mp3' * added fallback to 'latin1' in case of non-unicode tag text """ __version__ = '1.53.20070415' # History at the end of the file. # ID3 specs: http://www.id3.org/develop.html import struct, sys, zlib import re MP3=u'mp3' # These are the text encodings, indexed by the first byte of a text value. _encodings = ['iso8859-1', 'utf-16', 'utf-16be', 'utf-8'] # Simple pseudo-id's, mapped to their various representations. # Use these ids with getValue, and you don't need to know what # version of ID3 the file contains. _simpleDataMapping = { 'album': ('TALB', 'TAL', 'v1album', 'TOAL'), 'performer': ('TPE1', 'TP1', 'v1performer', 'TOPE'), 'title': ('TIT2', 'TT2', 'v1title'), 'track': ('TRCK', 'TRK', 'v1track'), 'year': ('TYER', 'TYE', 'v1year'), 'genre': ('TCON', 'TCO', 'v1genre'), 'comment': ('COMM', 'COM', 'v1comment'), } # Provide booleans for older Pythons. try: True, False except NameError: True, False = 1==1, 1==0 # Tracing _t = False def _trace(msg): print msg # Coverage _c = False _features = {} def _coverage(feat): #if _t: _trace('feature '+feat) _features[feat] = _features.setdefault(feat, 0)+1 def _safestr(s): """ Get a good string for printing, that won't throw exceptions, no matter what's in it. """ try: return unicode(s).encode(sys.getdefaultencoding()) except UnicodeError: return '?: '+repr(s) # Can I just say that I think the whole concept of genres is bogus, # since they are so subjective? And the idea of letting someone else pick # one of these things and then have it affect the categorization of my music # is extra bogus. And the list itself is absurd. Polsk Punk? _genres = [ # 0-19 'Blues', 'Classic Rock', 'Country', 'Dance', 'Disco', 'Funk', 'Grunge', 'Hip - Hop', 'Jazz', 'Metal', 'New Age', 'Oldies', 'Other', 'Pop', 'R&B', 'Rap', 'Reggae', 'Rock', 'Techno', 'Industrial', # 20-39 'Alternative', 'Ska', 'Death Metal', 'Pranks', 'Soundtrack', 'Euro - Techno', 'Ambient', 'Trip - Hop', 'Vocal', 'Jazz + Funk', 'Fusion', 'Trance', 'Classical', 'Instrumental', 'Acid', 'House', 'Game', 'Sound Clip', 'Gospel', 'Noise', # 40-59 'Alt Rock', 'Bass', 'Soul', 'Punk', 'Space', 'Meditative', 'Instrumental Pop', 'Instrumental Rock', 'Ethnic', 'Gothic', 'Darkwave', 'Techno - Industrial', 'Electronic', 'Pop - Folk', 'Eurodance', 'Dream', 'Southern Rock', 'Comedy', 'Cult', 'Gangsta Rap', # 60-79 'Top 40', 'Christian Rap', 'Pop / Funk', 'Jungle', 'Native American', 'Cabaret', 'New Wave', 'Psychedelic', 'Rave', 'Showtunes', 'Trailer', 'Lo - Fi', 'Tribal', 'Acid Punk', 'Acid Jazz', 'Polka', 'Retro', 'Musical', 'Rock & Roll', 'Hard Rock', # 80-99 'Folk', 'Folk / Rock', 'National Folk', 'Swing', 'Fast - Fusion', 'Bebob', 'Latin', 'Revival', 'Celtic', 'Bluegrass', 'Avantgarde', 'Gothic Rock', 'Progressive Rock', 'Psychedelic Rock', 'Symphonic Rock', 'Slow Rock', 'Big Band', 'Chorus', 'Easy Listening', 'Acoustic', # 100-119 'Humour', 'Speech', 'Chanson', 'Opera', 'Chamber Music', 'Sonata', 'Symphony', 'Booty Bass', 'Primus', 'Porn Groove', 'Satire', 'Slow Jam', 'Club', 'Tango', 'Samba', 'Folklore', 'Ballad', 'Power Ballad', 'Rhythmic Soul', 'Freestyle', # 120-139 'Duet', 'Punk Rock', 'Drum Solo', 'A Cappella', 'Euro - House', 'Dance Hall', 'Goa', 'Drum & Bass', 'Club - House', 'Hardcore', 'Terror', 'Indie', 'BritPop', 'Negerpunk', 'Polsk Punk', 'Beat', 'Christian Gangsta Rap', 'Heavy Metal', 'Black Metal', 'Crossover', # 140-147 'Contemporary Christian', 'Christian Rock', 'Merengue', 'Salsa', 'Thrash Metal', 'Anime', 'JPop', 'Synthpop' ] class Id3Error(Exception): """ An exception caused by id3reader properly handling a bad ID3 tag. """ pass class _Header: """ Represent the ID3 header in a tag. """ def __init__(self): self.majorVersion = 0 self.revision = 0 self.flags = 0 self.size = 0 self.bUnsynchronized = False self.bExperimental = False self.bFooter = False def __str__(self): return str(self.__dict__) class _Frame: """ Represent an ID3 frame in a tag. """ def __init__(self): self.id = '' self.size = 0 self.flags = 0 self.rawData = '' self.bTagAlterPreserve = False self.bFileAlterPreserve = False self.bReadOnly = False self.bCompressed = False self.bEncrypted = False self.bInGroup = False def __str__(self): return str(self.__dict__) def __repr__(self): return str(self.__dict__) def _interpret(self): """ Examine self.rawData and create a self.value from it. """ if len(self.rawData) == 0: # This is counter to the spec, but seems harmless enough. #if _c: _coverage('zero data') return if self.bCompressed: # Decompress the compressed data. self.rawData = zlib.decompress(self.rawData) if self.id[0] == 'T': # Text fields start with T encoding = ord(self.rawData[0]) if 0 <= encoding < len(_encodings): #if _c: _coverage('encoding%d' % encoding) value = self.rawData[1:].decode(_encodings[encoding]) else: #if _c: _coverage('bad encoding') value = self.rawData[1:] # Don't let trailing zero bytes fool you. if value: value = value.strip('\0') # The value can actually be a list. if '\0' in value: value = value.split('\0') #if _c: _coverage('textlist') self.value = value elif self.id[0] == 'W': # URL fields start with W self.value = self.rawData.strip('\0') if self.id == 'WXXX': self.value = self.value.split('\0') elif self.id == 'CDM': # ID3v2.2.1 Compressed Data Metaframe if self.rawData[0] == 'z': self.rawData = zlib.decompress(self.rawData[5:]) else: #if _c: _coverage('badcdm!') raise Id3Error, 'Unknown CDM compression: %02x' % self.rawData[0] #@TODO: re-interpret the decompressed frame. elif self.id in _simpleDataMapping['comment']: # comment field # In limited testing a typical comment looks like # '\x00XXXID3v1 Comment\x00comment test' so in this # case we need to find the second \x00 to know where # where we start for a comment. In case we only find # one \x00, lets just start at the beginning for the # value s = str(self.rawData) pos = 0 count = 0 while pos < len(s) and count < 2: if ord(s[pos]) == 0: count = count + 1 pos = pos + 1 if count < 2: pos = 1 if pos > 0 and pos < len(s): s = s[pos:] if ord(s[-1]) == 0: s = s[:-1] self.value = s class Reader: """ An ID3 reader. Create one on a file object, and then use getValue('TIT2') (for example) to pull values. """ def __init__(self, file): """ Create a reader from a file or filename. """ self.file = file self.header = None self.frames = {} self.allFrames = [] self.bytesLeft = 0 self.padbytes = '' bCloseFile = False # If self.file is a string of some sort, then open it to get a file. if isinstance(self.file, (type(''), type(u''))): self.file = open(self.file, 'rb') bCloseFile = True self._readId3() if bCloseFile: self.file.close() def _readBytes(self, num, desc=''): """ Read some bytes from the file. This method implements the "unsynchronization" scheme, where 0xFF bytes may have had 0x00 bytes stuffed after them. These zero bytes have to be removed transparently. """ #if _t: _trace("ask %d (%s)" % (num,desc)) if num > self.bytesLeft: #if _c: _coverage('long!') raise Id3Error, 'Long read (%s): (%d > %d)' % (desc, num, self.bytesLeft) bytes = self.file.read(num) self.bytesLeft -= num if len(bytes) < num: #if _t: _trace("short read with %d left, %d total" % (self.bytesLeft, self.header.size)) #if _c: _coverage('short!') raise Id3Error, 'Short read (%s): (%d < %d)' % (desc, len(bytes), num) if self.header.bUnsynchronized: nUnsync = 0 i = 0 while True: i = bytes.find('\xFF\x00', i) if i == -1: break #if _t: _trace("unsync at %d" % (i+1)) #if _c: _coverage('unsyncbyte') nUnsync += 1 # This is a stuffed byte to remove bytes = bytes[:i+1] + bytes[i+2:] # Have to read one more byte from the file to adjust bytes += self.file.read(1) self.bytesLeft -= 1 i += 1 #if _t: _trace("unsync'ed %d" % (nUnsync)) return bytes def _unreadBytes(self, num): self.file.seek(-num, 1) self.bytesLeft += num def _getSyncSafeInt(self, bytes): assert len(bytes) == 4 if type(bytes) == type(''): bytes = [ ord(c) for c in bytes ] return (bytes[0] << 21) + (bytes[1] << 14) + (bytes[2] << 7) + bytes[3] def _getInteger(self, bytes): i = 0; if type(bytes) == type(''): bytes = [ ord(c) for c in bytes ] for b in bytes: i = i*256+b return i def _addV1Frame(self, id, rawData): if id == 'v1genre': assert len(rawData) == 1 nGenre = ord(rawData) try: value = _genres[nGenre] except IndexError: value = "(%d)" % nGenre else: value = rawData.strip(' \t\r\n').split('\0')[0] if value: frame = _Frame() frame.id = id frame.rawData = rawData frame.value = value self.frames[id] = frame self.allFrames.append(frame) def _pass(self): """ Do nothing, for when we need to plug in a no-op function. """ pass def _readId3(self): header = self.file.read(10) if len(header) < 10: return hstuff = struct.unpack('!3sBBBBBBB', header) if hstuff[0] != "ID3": # Doesn't look like an ID3v2 tag, # Try reading an ID3v1 tag. self._readId3v1() return self.header = _Header() self.header.majorVersion = hstuff[1] self.header.revision = hstuff[2] self.header.flags = hstuff[3] self.header.size = self._getSyncSafeInt(hstuff[4:8]) self.bytesLeft = self.header.size self._readExtHeader = self._pass if self.header.majorVersion == 2: #if _c: _coverage('id3v2.2.%d' % self.header.revision) self._readFrame = self._readFrame_rev2 elif self.header.majorVersion == 3: #if _c: _coverage('id3v2.3.%d' % self.header.revision) self._readFrame = self._readFrame_rev3 elif self.header.majorVersion == 4: #if _c: _coverage('id3v2.4.%d' % self.header.revision) self._readFrame = self._readFrame_rev4 else: #if _c: _coverage('badmajor!') raise Id3Error, "Unsupported major version: %d" % self.header.majorVersion # Interpret the flags self._interpretFlags() # Read any extended header self._readExtHeader() # Read the frames while self.bytesLeft > 0: frame = self._readFrame() if frame: frame._interpret() self.frames[frame.id] = frame self.allFrames.append(frame) else: #if _c: _coverage('padding') break def _interpretFlags(self): """ Interpret ID3v2.x flags. """ if self.header.flags & 0x80: self.header.bUnsynchronized = True #if _c: _coverage('unsynctag') if self.header.majorVersion == 2: if self.header.flags & 0x40: #if _c: _coverage('compressed') # "Since no compression scheme has been decided yet, # the ID3 decoder (for now) should just ignore the entire # tag if the compression bit is set." self.header.bCompressed = True if self.header.majorVersion >= 3: if self.header.flags & 0x40: #if _c: _coverage('extheader') if self.header.majorVersion == 3: self._readExtHeader = self._readExtHeader_rev3 else: self._readExtHeader = self._readExtHeader_rev4 if self.header.flags & 0x20: #if _c: _coverage('experimental') self.header.bExperimental = True if self.header.majorVersion >= 4: if self.header.flags & 0x10: #if _c: _coverage('footer') self.header.bFooter = True def _readExtHeader_rev3(self): """ Read the ID3v2.3 extended header. """ # We don't interpret this yet, just eat the bytes. size = self._getInteger(self._readBytes(4, 'rev3ehlen')) self._readBytes(size, 'rev3ehdata') def _readExtHeader_rev4(self): """ Read the ID3v2.4 extended header. """ # We don't interpret this yet, just eat the bytes. size = self._getSyncSafeInt(self._readBytes(4, 'rev4ehlen')) self._readBytes(size-4, 'rev4ehdata') def _readId3v1(self): """ Read the ID3v1 tag. spec: http://www.id3.org/id3v1.html """ self.file.seek(-128, 2) tag = self.file.read(128) if len(tag) != 128: return if tag[0:3] != 'TAG': return self.header = _Header() self.header.majorVersion = 1 self.header.revision = 0 self._addV1Frame('v1title', tag[3:33]) self._addV1Frame('v1performer', tag[33:63]) self._addV1Frame('v1album', tag[63:93]) self._addV1Frame('v1year', tag[93:97]) self._addV1Frame('v1comment', tag[97:127]) self._addV1Frame('v1genre', tag[127]) if tag[125] == '\0' and tag[126] != '\0': #if _c: _coverage('id3v1.1') self.header.revision = 1 self._addV1Frame('v1track', str(ord(tag[126]))) else: #if _c: _coverage('id3v1.0') pass return _validIdChars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' def _isValidId(self, id): """ Determine if the id bytes make a valid ID3 id. """ for c in id: if not c in self._validIdChars: #if _c: _coverage('bad id') return False #if _c: _coverage('id '+id) return True def _readFrame_rev2(self): """ Read a frame for ID3v2.2: three-byte ids and lengths. spec: http://www.id3.org/id3v2-00.txt """ if self.bytesLeft < 6: return None id = self._readBytes(3, 'rev2id') if len(id) < 3 or not self._isValidId(id): self._unreadBytes(len(id)) return None hstuff = struct.unpack('!BBB', self._readBytes(3, 'rev2len')) frame = _Frame() frame.id = id frame.size = self._getInteger(hstuff[0:3]) frame.rawData = self._readBytes(frame.size, 'rev2data') return frame def _readFrame_rev3(self): """ Read a frame for ID3v2.3: four-byte ids and lengths. """ if self.bytesLeft < 10: return None id = self._readBytes(4,'rev3id') if len(id) < 4 or not self._isValidId(id): self._unreadBytes(len(id)) return None hstuff = struct.unpack('!BBBBh', self._readBytes(6,'rev3head')) frame = _Frame() frame.id = id frame.size = self._getInteger(hstuff[0:4]) cbData = frame.size frame.flags = hstuff[4] #if _t: _trace('flags = %x' % frame.flags) frame.bTagAlterPreserve = (frame.flags & 0x8000 != 0) frame.bFileAlterPreserve = (frame.flags & 0x4000 != 0) frame.bReadOnly = (frame.flags & 0x2000 != 0) frame.bCompressed = (frame.flags & 0x0080 != 0) if frame.bCompressed: frame.decompressedSize = self._getInteger(self._readBytes(4, 'decompsize')) cbData -= 4 #if _c: _coverage('compress') frame.bEncrypted = (frame.flags & 0x0040 != 0) if frame.bEncrypted: frame.encryptionMethod = self._readBytes(1, 'encrmethod') cbData -= 1 #if _c: _coverage('encrypt') frame.bInGroup = (frame.flags & 0x0020 != 0) if frame.bInGroup: frame.groupid = self._readBytes(1, 'groupid') cbData -= 1 #if _c: _coverage('groupid') frame.rawData = self._readBytes(cbData, 'rev3data') return frame def _readFrame_rev4(self): """ Read a frame for ID3v2.4: four-byte ids and lengths. """ if self.bytesLeft < 10: return None id = self._readBytes(4,'rev4id') if len(id) < 4 or not self._isValidId(id): self._unreadBytes(len(id)) return None hstuff = struct.unpack('!BBBBh', self._readBytes(6,'rev4head')) frame = _Frame() frame.id = id frame.size = self._getSyncSafeInt(hstuff[0:4]) cbData = frame.size frame.flags = hstuff[4] frame.bTagAlterPreserve = (frame.flags & 0x4000 != 0) frame.bFileAlterPreserve = (frame.flags & 0x2000 != 0) frame.bReadOnly = (frame.flags & 0x1000 != 0) frame.bInGroup = (frame.flags & 0x0040 != 0) if frame.bInGroup: frame.groupid = self._readBytes(1, 'groupid') cbData -= 1 #if _c: _coverage('groupid') frame.bCompressed = (frame.flags & 0x0008 != 0) if frame.bCompressed: #if _c: _coverage('compress') pass frame.bEncrypted = (frame.flags & 0x0004 != 0) if frame.bEncrypted: frame.encryptionMethod = self._readBytes(1, 'encrmethod') cbData -= 1 #if _c: _coverage('encrypt') frame.bUnsynchronized = (frame.flags & 0x0002 != 0) if frame.bUnsynchronized: #if _c: _coverage('unsyncframe') pass if frame.flags & 0x0001: frame.datalen = self._getSyncSafeInt(self._readBytes(4, 'datalen')) cbData -= 4 #if _c: _coverage('datalenindic') frame.rawData = self._readBytes(cbData, 'rev3data') return frame def getValue(self, id): """ Return the value for an ID3 tag id, or for a convenience label ('title', 'performer', ...), or return None if there is no such value. """ if self.frames.has_key(id): if hasattr(self.frames[id], 'value'): return self.frames[id].value if _simpleDataMapping.has_key(id): for id2 in _simpleDataMapping[id]: v = self.getValue(id2) if v: return v return None def getRawData(self, id): if self.frames.has_key(id): return self.frames[id].rawData return None def dump(self): import pprint print "Header:" print self.header print "Frames:" for fr in self.allFrames: if len(fr.rawData) > 30: fr.rawData = fr.rawData[:30] pprint.pprint(self.allFrames) for fr in self.allFrames: if hasattr(fr, 'value'): print '%s: %s' % (fr.id, _safestr(fr.value)) else: print '%s= %s' % (fr.id, _safestr(fr.rawData)) for label in _simpleDataMapping.keys(): v = self.getValue(label) if v: print 'Label %s: %s' % (label, _safestr(v)) def dumpCoverage(self): feats = _features.keys() feats.sort() for feat in feats: print "Feature %-12s: %d" % (feat, _features[feat]) # chars not allowed in filenames illegal_chars = u'/\?=+<>:;"*|!@#$%^&*' # http://code.activestate.com/recipes/65441/ def has_chars(raw, bad_chars): try: for c in bad_chars: if c in raw: return True return False except UnicodeDecodeError: return False def replace_illegal_chars(raw): return ''.join([c in illegal_chars and '_' or c for c in raw]) def asci(*args): for arg in args: print arg.encode('us-ascii','xmlcharrefreplace'), print def is_dupe(oldmp3, newmp3): #return bool(re.search(u'^'+orig+ r'(\[\d+\])?$', new)) old=os.path.splitext(oldmp3)[0] new=os.path.splitext(newmp3)[0] return old.lower().startswith(new.lower()) def parse_index(f): rx = re.compile('(?P<name>.+)\[(?P<index>\d+?)\]$') mo = rx.search(f) if mo: return mo.group('name'), mo.group('index') else: return f, 0 if __name__ == '__main__': import os import optparse dodirs = False parser = optparse.OptionParser() parser.add_option('-l','--list', action="store_true", help='List ID3 tags only with no renaming', default=False ) parser.add_option('-d', '--dirs', action="store_true", help="create album dirs", default=False) (opts, args) = parser.parse_args(sys.argv[1:]) if len(args): mp3dir = unicode(args[0]) else: mp3dir = u'.' print if opts.list: print 'Listing ID3 tags in folder:', asci(os.path.abspath(mp3dir)) else: print 'Renaming MP3 files in folder:', asci(os.path.abspath(mp3dir)) print for fname in os.listdir(mp3dir): # uncomment if you want to process only files with .mp3 extension # if not fname.lower().endswith(MP3): # continue if os.path.isdir(fname): continue absfname = os.path.join(mp3dir, fname) try: id3r = Reader(absfname) except (Id3Error, UnicodeDecodeError), e: print e continue #id3r.dump() album = id3r.getValue('album') track = id3r.getValue('track') artist = id3r.getValue('performer') title = id3r.getValue('title') year = id3r.getValue('year') ### move files to dirs according to artist, album if opts.dirs and artist and album: dodirs = True mp3dir_full = os.path.join(mp3dir, replace_illegal_chars(artist), replace_illegal_chars(album)) if not os.path.exists(mp3dir_full): try: os.makedirs(mp3dir_full) except (IOError,WindowsError), e : print else: mp3dir_full = mp3dir if not title: continue # replace tracks like '2/15' >> '02' if track and u'/' in track: track = track.split('/')[0] if track: track = track.zfill(2) # zero fill, i. e. '1' >> '01' if not track: track = '' if has_chars(title, illegal_chars): title = replace_illegal_chars(title) try: if isinstance(track, unicode) or isinstance(title, unicode): new_fname = track + u' - ' + title + u'.' + MP3 ## try to fix non-unicode strings, only trying 'latin1' if isinstance(track, str) or isinstance(title, str): new_fname = track + ' - ' + title.decode('latin1') + '.' + MP3 except UnicodeDecodeError: print 'Encoding error while processing title/track' continue new_dir = dodirs and mp3dir_full or mp3dir proposed_new_name = os.path.join(new_dir, new_fname) maxwidth = 35 if opts.list: print '>', else: if not is_dupe(absfname, proposed_new_name): if os.path.exists(proposed_new_name): for i in range(1,1000): # max 200 duplicates parsed_name, idx = parse_index(os.path.splitext(proposed_new_name)[0]) new_fname = parsed_name + u'[' + unicode(idx+i) + u'].' + MP3 if not os.path.exists(new_fname): break try: os.rename(absfname, os.path.join(new_dir, new_fname)) except Exception, e: asci( 'Error: ', absfname.ljust(maxwidth), '>>>', proposed_new_name, str(e) ) else: maxwidth -= len('Skipping...') + 1 print 'Skipping...', asci((len(fname) > maxwidth and fname[:maxwidth-3] or fname).ljust(maxwidth), ' >>> ', new_fname)
[ "betty@qburst.com" ]
betty@qburst.com
b6dc0cc56bc60c50f7a85c67bbc5ce45005f3b89
79f2838de509de74350a10abf256ca6c394bce65
/listasevariaveis/exemplomultiplaslistasbusca.py
c75b27df0df7fdc0781614ba70f82989ee962f46
[]
no_license
psanrosa13/pythonEstudo
b520825025219adb1752a2cc71cdfc2693026f42
6a130390750d7783be969de4a8c75122f71f9d32
refs/heads/master
2023-01-18T21:11:00.543839
2020-11-21T00:03:59
2020-11-21T00:03:59
313,464,099
1
0
null
null
null
null
UTF-8
Python
false
false
716
py
equipamentos = [] valores = [] seriais = [] departamentos = [] resposta ='S' while resposta=='S': equipamentos.append(input('Equipamento: ')) valores.append(float(input('Valor: '))) seriais.append(int(input('Número Serial: '))) departamentos.append(input('Departamento: ')) resposta=input('Digite \'S\' para continuar: ').upper() busca = input('/nDigite o nome do equipamento que deseja buscar: ') for indice in range(0, len(equipamentos)): if busca == equipamentos[indice]: print('Nome..........: ',equipamentos[indice]) print('Valor.........: ', valores[indice]) print('Serial........: ', seriais[indice]) print('Departamento..: ', departamentos[indice])
[ "psanrosa13@gmail.com" ]
psanrosa13@gmail.com
12e9c4dcfd45ee85d030c29f1e736d00d2d4d700
ec3e7aed2d85b1ad83500ff6944ac04c3f213b4c
/statinf/data/ProcessData.py
adfe35ae6f12625eebd8e3decdda3a63cf557817
[ "MIT" ]
permissive
vishalbelsare/statinf
2ef58526a93a85709c9177d437979be13d8f6072
c1dd7e0855809f4676845d33e0b9b040169463cb
refs/heads/master
2023-09-04T04:46:03.561451
2023-08-18T17:33:27
2023-08-18T17:33:27
230,207,975
0
0
MIT
2023-08-19T03:20:31
2019-12-26T06:26:23
Python
UTF-8
Python
false
false
27,132
py
import numpy as np import pandas as pd import re import warnings from types import SimpleNamespace # Ranking data def rankdata(x): """Assigns rank to data. This is mainly used for analysis like Spearman's correlation. :param x: Input vector. Format can be :obj:`numpy.array`, :obj:`list` or :obj:`pandas.Series`. :type x: :obj:`numpy.array` :example: >>> rankdata([2., 5.44, 3.93, 3.3, 1.1]) ... array([1, 4, 3, 2, 0]) :return: Vector with ranked values. :rtype: :obj:`numpy.array` """ x_arr = np.asarray(x) sorted_array = sorted(x_arr) rk = [sorted_array.index(i) for i in x_arr] return np.array(rk) ####################################################################################################################### # Parse formula and data transformations def parse_formula(formula, data, check_values=True, return_all=False): """This function is used in regression models in order to apply transformations on the data from a formula. It allows to apply transformations from a :obj:`str` formula. See below for examples. :param formula: Regression formula to be run of the form :obj:`y ~ x1 + x2`. Accepted functions are: * :math:`\\log(x)` \\: :obj:`log(X)` * :math:`\\exp(x)` \\: :obj:`exp(X)` * :math:`\\sqrt{x}` \\: :obj:`sqrt(X)` * :math:`\\cos(x)` \\: :obj:`cos(X)` * :math:`\\sin(x)` \\: :obj:`sin(X)` * :math:`x^{z}` \\: :obj:`X ** Z` * :math:`\\dfrac{x}{z}` \\: :obj:`X/Z` * :math:`x \\times z` \\: :obj:`X*Z` :type formula: :obj:`str` :param data: Data on which to perform the transformations. :type data: :obj:`pandas.DataFrame` :param check_values: For each transformation check whether the data range satisfy the domain definition of the function, defaults to True. :type check_values: bool, optional :param return_all: Returns the transformed data, column :obj:`Y` and columns :obj:`X`, defaults to False. :type return_all: bool, optional :example: >>> from statinf.data import parse_formula >>> print(input_df) ... +-----------+-----------+-----------+ ... | X1 | X2 | Y | ... +-----------+-----------+-----------+ ... | 0.555096 | 0.681083 | -1.383428 | ... | 1.155661 | 0.391129 | -7.780989 | ... | -0.299251 | -0.445602 | -8.146673 | ... | -0.978311 | 1.312146 | 8.653818 | ... | -0.225917 | 0.522016 | -9.684332 | ... +-----------+-----------+-----------+ >>> form = 'Y ~ X1 + X2 + exp(X2) + X1*X2' >>> new_df = parse_formula(form, data=input_df) >>> print(new_df) ... +-----------+-----------+-----------+-----------+-----------+ ... | X1 | X2 | Y | exp(X2) | X1*X2 | ... +-----------+-----------+-----------+-----------+-----------+ ... | 0.555096 | 0.681083 | -1.383428 | 1.976017 | 0.378066 | ... | 1.155661 | 0.391129 | -7.780989 | 1.478649 | 0.452012 | ... | -0.299251 | -0.445602 | -8.146673 | 0.640438 | 0.133347 | ... | -0.978311 | 1.312146 | 8.653818 | 3.714134 | -1.283687 | ... | -0.225917 | 0.522016 | -9.684332 | 1.685422 | -0.117932 | ... +-----------+-----------+-----------+-----------+-----------+ :raises ValueError: Returns an error when the data cannot satisfy the domain definition for the required transformation. :return: Transformed data set :rtype: :obj:`pandas.DataFrame` """ warnings.filterwarnings('ignore') # Parse formula no_space_formula = formula.replace(' ', '') Y_col = no_space_formula.split('~')[0] X_col = no_space_formula.split('~')[1].split('+') # Non-linear transformations log_cols = [re.search('(?<=log\\().*?(?=\\))', x).group(0) for x in X_col if re.findall('log\\(', x)] # log exp_cols = [re.search('(?<=exp\\().*?(?=\\))', x).group(0) for x in X_col if re.findall('exp\\(', x)] # exp sqrt_cols = [re.search('(?<=sqrt\\().*?(?=\\))', x).group(0) for x in X_col if re.findall('sqrt\\(', x)] # sqrt cos_cols = [re.search('(?<=cos\\().*?(?=\\))', x).group(0) for x in X_col if re.findall('cos\\(', x)] # cos sin_cols = [re.search('(?<=sin\\().*?(?=\\))', x).group(0) for x in X_col if re.findall('sin\\(', x)] # sin # Transformation functions transformations_functional = {'log': {'func': np.log, 'cols': log_cols}, 'exp': {'func': np.exp, 'cols': exp_cols}, 'cos': {'func': np.cos, 'cols': cos_cols}, 'sin': {'func': np.sin, 'cols': sin_cols}, 'sqrt': {'func': np.sqrt, 'cols': sqrt_cols}, } # Apply transformations for key, transformation in transformations_functional.items(): for c in transformation['cols']: col_to_transform = c # .split('(')[1].split(')')[0] # Transform data.loc[:, f'{key}({col_to_transform})'] = transformation['func'](data[col_to_transform]) # Multiplications, power and ration functions pow_cols = [x for x in X_col if re.findall('[a-zA-Z0-9\\(\\)][*][*][a-zA-Z0-9]', x)] # X1 ** x inter_cols = [x for x in X_col if re.findall('[a-zA-Z0-9\\(\\)][*][a-zA-Z0-9]', x)] # X1 * X2 div_cols = [x for x in X_col if re.findall('[a-zA-Z0-9\\(\\)][/][a-zA-Z0-9]', x)] # X1 / X2 # Exponents for c in pow_cols: c_left = c.split('**')[0] c_power = c.split('**')[1] # Get components as number or column from data left = data[c_left].values if c_left in data.columns else float(c_left) power = data[c_power].values if c_power in data.columns else float(c_power) # Transform data.loc[:, c] = left ** power # Multiplications for c in inter_cols: c_left = c.split('*')[0] c_right = c.split('*')[1] # Get components as number or column from data try: left = data[c_left].values if c_left in list(data.columns) + X_col else float(c_left) right = data[c_right].values if c_right in list(data.columns) + X_col else float(c_right) except Exception: raise ValueError(f'Columns {c_left} or {c_right} not found in data.') # Transform data.loc[:, c] = left * right # Divide for c in div_cols: c_num = c.split('/')[0] c_denom = c.split('/')[1] # Get components as number or column from data num = data[c_num].values if c_num in list(data.columns) + X_col else float(c_num) denom = data[c_denom].values if c_denom in list(data.columns) + X_col else float(c_denom) if check_values: assert (denom == 0.).sum() == 0, f'Column {col_to_transform} contains null values.' # Transform data.loc[:, c] = num / denom if '1' in X_col: data['1'] = 1 # Putting pandas' warning message back warnings.filterwarnings('default') if return_all: return data, X_col, Y_col else: return data ####################################################################################################################### # Adding One Hot Encoding def OneHotEncoding(data, columns, drop=True, verbose=False): """Performs One Hot Encoding (OHE) usally used in Machine Learning. :param data: Data Frame on which we apply One Hot Encoding. :type data: :obj:`pandas.DataFrame` :param columns: Column to be converted to dummy variables. :type columns: :obj:`list` :param drop: Drop the column for one attribute (first value that appears in the dataset). This helps avoid multicolinearity issues in subsequent models, defaults to True. :type drop: :obj:`bool`, optional :param verbose: Display progression, defaults to False. :type verbose: :obj:`bool`, optional :example: >>> from statinf.data import OneHotEncoding >>> print(df) ... +----+--------+----------+-----+ ... | Id | Gender | Category | Age | ... +----+--------+----------+-----+ ... | 1 | Male | A | 23 | ... | 2 | Female | B | 21 | ... | 3 | Female | A | 31 | ... | 4 | Male | C | 22 | ... | 5 | Female | A | 26 | ... +----+--------+----------+-----+ >>> # Encoding columns "Gender" and "Category" >>> new_df = OneHotEncoding(df, columns=["Gender", "Category"]) >>> print(new_df) ... +----+---------------+------------+------------+-----+ ... | Id | Gender_Female | Category_B | Category_C | Age | ... +----+---------------+------------+------------+-----+ ... | 1 | 0 | 0 | 0 | 23 | ... | 2 | 1 | 1 | 0 | 21 | ... | 3 | 1 | 0 | 0 | 31 | ... | 4 | 0 | 0 | 1 | 22 | ... | 5 | 1 | 0 | 0 | 26 | ... +----+---------------+------------+------------+-----+ >>> # Listing the newly created columns >>> print(new_df.meta._ohe) ... {'Gender': ['Gender_Female'], ... 'Category': ['Category_A', 'Category_B']} >>> # Get the aggregated list of encoded columns >>> print(new_df.meta._ohe_all_columns) ... ['Gender_Female', 'Category_B', 'Category_C'] :return: Transformed data with One Hot Encoded variables. New attributes are added to the data frame: * :obj:`df.meta._ohe`: contains the encoded columns and the created columns. * :obj:`df.meta._ohe_all_columns`: aggregates the newly created columns in one list. This list can directly be passed or appended to the input columns argument of subsequent models. :rtype: :obj:`pandas.DataFrame` """ dataset = data.copy() try: if dataset.meta._ohe_exists: dataset.meta._ohe_exists = True except Exception: dataset.meta = SimpleNamespace() dataset.meta._ohe_exists = True dataset.meta._ohe = {} dataset.meta._ohe_all_columns = [] cols = [columns] if type(columns) == str else columns # Start encoding column by column for column in cols: # Get all values from the column all_values = dataset[column].unique() all_values = all_values[1:] if drop else all_values new_cols = [f'{column}_{val}' for val in all_values] # Add column metadata dataset.meta._ohe.update({column: new_cols}) dataset.meta._ohe_all_columns += new_cols # Encode values for val in all_values: if verbose: print('Encoding for value: ' + str(val)) colname = column + '_' + str(val) dataset.loc[:, colname] = 0 dataset.loc[dataset[column] == val, colname] = 1 # Drop the original categorical column dataset.drop(columns=[column], inplace=True) return(dataset) ####################################################################################################################### # Convert an array of values into a dataset matrix: used for LSTM data pre-processing def create_dataset(data, n_in=1, n_out=1, dropnan=True): """Function to convert a DataFrame into into multivariate time series format readable by Keras LSTM. :param data: DataFrame on which to aply the transformation. :type data: :obj:`pandas.DataFrame` :param n_in: Input dimension also known as look back or size of the window, defaults to 1 :type n_in: :obj:`int`, optional :param n_out: Output dimension, defaults to 1 :type n_out: :obj:`int`, optional :param dropnan: Remove empty values in the series, defaults to True :type dropnan: :obj:`bool`, optional :return: Features converted for Keras LSTM. :rtype: :obj:`pandas.DataFrame` """ n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg def split_sequences(data, look_back=1): """Split a multivariate time series from :py:meth:`statinf.data.ProcessData.multivariate_time_series` into a Keras' friendly format for LSTM. :param data: Data in the format of sequences to transform. :type data: :obj:`numpy.ndarray` :param look_back: Size of the trailing window, number of time steps to consider, defaults to 1. :type look_back: :obj:`int` :exemple: >>> from statinf.data import multivariate_time_series, split_sequences >>> train_to_split = multivariate_time_series(train) >>> X, y = split_sequences(train_to_split, look_back=7) :return: * :obj:`x`: Input data converted for Keras LSTM. * :obj:`y`: Target series converted for Keras LSTM. :rtype: * :obj:`numpy.ndarray` * :obj:`numpy.ndarray` """ X, y = list(), list() for i in range(len(data)): # find the end of this pattern end_ix = i + look_back # check if we are beyond the dataset if end_ix > len(data) - 1: break # gather input and output parts of the pattern seq_x, seq_y = data[i:end_ix, :], data[end_ix, :] X.append(seq_x) y.append(seq_y) return np.array(X), np.array(y) def multivariate_time_series(data): """Convert a dataframe into numpy array multivariate time series. :param data: Input data to transform. :type data: :obj:`pandas.DataFrame` :exemple: >>> from statinf.data import multivariate_time_series, split_sequences >>> train_to_split = multivariate_time_series(train) >>> X, y = split_sequences(train_to_split, look_back=7) :return: Transformed multivariate time series data. :rtype: :obj:`numpy.ndarray` """ to_stack = () for _c in data.columns: series = data[_c].to_numpy() to_stack += (series.reshape((len(series), 1)), ) return np.hstack(to_stack) ####################################################################################################################### # Scale dataset class Scaler: def __init__(self, data, columns): """Data scaler. :param data: Data set to scale. :type data: :obj:`pandas.DataFrame` :param columns: Columns to scale. :type columns: :obj:`list` :example: >>> from statinf.data import Scaler, generate_dataset >>> coeffs = [1.2556, -0.465, 1.665414, 2.5444, -7.56445] >>> data = generate_dataset(coeffs, n=10, std_dev=2.6) >>> # Original dataset >>> print(data) ... +-----------+-----------+-----------+-----------+-----------+-----------+ ... | X0 | X1 | X2 | X3 | X4 | Y | ... +-----------+-----------+-----------+-----------+-----------+-----------+ ... | 0.977594 | 1.669510 | -1.385569 | 0.696975 | -1.207098 | 8.501692 | ... | -0.953802 | 1.025392 | -0.639291 | 0.658251 | 0.746814 | -7.186085 | ... | -0.148140 | -0.972473 | 0.843746 | 1.306845 | 0.269834 | 1.939924 | ... | 0.499385 | -1.081926 | 2.646441 | 0.910503 | 0.857189 | 0.389257 | ... | -0.563977 | -0.511933 | -0.726744 | -0.630345 | -0.486822 | -0.125787 | ... | -0.434994 | -0.396210 | 1.101739 | -0.660236 | -1.197566 | 7.735832 | ... | 0.032478 | -0.114952 | -0.097337 | 1.794769 | 1.239423 | -5.510332 | ... | 0.085569 | -0.600019 | 0.224186 | 0.301771 | 1.278387 | -8.648084 | ... | -0.028844 | -0.329940 | -0.301762 | 0.946077 | -0.359133 | 5.099971 | ... | -0.665312 | 0.270254 | -1.263288 | 0.545625 | 0.499162 | -6.126528 | ... +-----------+-----------+-----------+-----------+-----------+-----------+ >>> # Load scaler class >>> scaler = Scaler(data=data, columns=['X1', 'X2']) >>> # Scale our dataset with MinMax method >>> scaled_df = scaler.MinMax() >>> print(scaled_df) ... +-----------+-----------+-----------+-----------+-----------+-----------+ ... | X0 | X1 | X2 | X3 | X4 | Y | ... +-----------+-----------+-----------+-----------+-----------+-----------+ ... | 0.977594 | 1.000000 | 0.000000 | 0.696975 | -1.207098 | 8.501692 | ... | -0.953802 | 0.765898 | 0.185088 | 0.658251 | 0.746814 | -7.186085 | ... | -0.148140 | 0.039781 | 0.552904 | 1.306845 | 0.269834 | 1.939924 | ... | 0.499385 | 0.000000 | 1.000000 | 0.910503 | 0.857189 | 0.389257 | ... | -0.563977 | 0.207162 | 0.163399 | -0.630345 | -0.486822 | -0.125787 | ... | -0.434994 | 0.249221 | 0.616890 | -0.660236 | -1.197566 | 7.735832 | ... | 0.032478 | 0.351444 | 0.319501 | 1.794769 | 1.239423 | -5.510332 | ... | 0.085569 | 0.175148 | 0.399244 | 0.301771 | 1.278387 | -8.648084 | ... | -0.028844 | 0.273307 | 0.268801 | 0.946077 | -0.359133 | 5.099971 | ... | -0.665312 | 0.491445 | 0.030328 | 0.545625 | 0.499162 | -6.126528 | ... +-----------+-----------+-----------+-----------+-----------+-----------+ >>> # Unscale the new dataset to retreive previous data scale >>> unscaled_df = scaler.unscaleMinMax(scaled_df) >>> print(unscaled_df) ... +-----------+-----------+-----------+-----------+-----------+-----------+ ... | X0 | X1 | X2 | X3 | X4 | Y | ... +-----------+-----------+-----------+-----------+-----------+-----------+ ... | 0.977594 | 1.669510 | -1.385569 | 0.696975 | -1.207098 | 8.501692 | ... | -0.953802 | 1.025392 | -0.639291 | 0.658251 | 0.746814 | -7.186085 | ... | -0.148140 | -0.972473 | 0.843746 | 1.306845 | 0.269834 | 1.939924 | ... | 0.499385 | -1.081926 | 2.646441 | 0.910503 | 0.857189 | 0.389257 | ... | -0.563977 | -0.511933 | -0.726744 | -0.630345 | -0.486822 | -0.125787 | ... | -0.434994 | -0.396210 | 1.101739 | -0.660236 | -1.197566 | 7.735832 | ... | 0.032478 | -0.114952 | -0.097337 | 1.794769 | 1.239423 | -5.510332 | ... | 0.085569 | -0.600019 | 0.224186 | 0.301771 | 1.278387 | -8.648084 | ... | -0.028844 | -0.329940 | -0.301762 | 0.946077 | -0.359133 | 5.099971 | ... | -0.665312 | 0.270254 | -1.263288 | 0.545625 | 0.499162 | -6.126528 | ... +-----------+-----------+-----------+-----------+-----------+-----------+ """ super(Scaler, self).__init__() self.data = data.copy() self.scalers = {} self.columns = list(columns) for c in columns: _min = self.data[c].min() _max = self.data[c].max() _mean = self.data[c].mean() _std = self.data[c].std() _scale_temp = {'min': float(_min), 'max': float(_max), 'mean': float(_mean), 'std': float(_std), } self.scalers.update({c: _scale_temp}) def _col_to_list(self, columns): """Transforms column names to be scaled as list. :param columns: Column names to be scaled. :type columns: :obj:`list` or :obj:`str` :return: Column name(s) as a list :rtype: :obj:`list` """ if columns is None: cols = self.columns elif type(columns) == str: cols = [columns] else: cols = columns return cols def MinMax(self, data=None, columns=None, feature_range=(0, 1), col_suffix=''): """Min-max scaler. Data we range between 0 and 1. :param data: Data set to scale, defaults to None, takes data provided in :py:meth:`__init__`, defaults to None. :type data: :obj:`pandas.DataFrame`, optional :param columns: Columns to be scaled, defaults to None, takes the list provided in :py:meth:`__init__`, defaults to None. :type columns: :obj:`list`, optional :param feature_range: Expected value range of the scaled data, defaults to (0, 1). :type feature_range: :obj:`tuple`, optional :param col_suffix: Suffix to add to colum names, defaults to '', overrides the existing columns. :type col_suffix: :obj:`str`, optional :formula: .. math:: x_{\\text{scaled}} = \\dfrac{x - \\min(x)}{\\max(x) - \\min(x)} \\cdot (f\\_max - f\\_min) + f\\_min where :math:`(f\\_min, f\\_max)` defaults to :math:`(0, 1)` and corresponds to the expected data range of the scaled data from argument :obj:`feature_range`. :return: Data set with scaled features. :rtype: :obj:`pandas.DataFrame` """ self._minmax_suffix = col_suffix self._minmax_feature_range = feature_range f_min, f_max = self._minmax_feature_range cols = self._col_to_list(columns) df = self.data if data is None else data.copy() for c in cols: # Retreive min and max _min = self.scalers[c]['min'] _max = self.scalers[c]['max'] tmp = (df[c] - _min) / (_max - _min) df[c + col_suffix] = tmp * (f_max - f_min) + f_min return df def unscaleMinMax(self, data=None, columns=None, columns_mapping={}): """Unscale from min-max. Retreives data from the same range as the original features. :param data: Data set to unscale, defaults to None, takes data provided in :py:meth:`__init__`. :type data: :obj:`pandas.DataFrame`, optional :param columns: Columns to be unscaled, defaults to None, takes the list provided in :py:meth:`__init__`. :type columns: :obj:`list`, optional :param columns_mapping: Mapping between eventual renamed columns and original scaled column. :type columns_mapping: :obj:`dict`, optional :formula: .. math:: x_{\\text{unscaled}} = x_{\\text{scaled}} \\cdot \\left(\\max(x) - \\min(x) \\right) + \\min(x) :return: Unscaled data set. :rtype: :obj:`pandas.DataFrame` """ cols = self._col_to_list(columns) df = self.data if data is None else data.copy() unscale_suffix = '_unscaled' if self._minmax_suffix != '' else '' f_min, f_max = self._minmax_feature_range for c in cols: # Apply eventual column name mapping _c = c if columns_mapping.get(c) is None else columns_mapping.get(c) # Retreive min and max _min = self.scalers[_c]['min'] _max = self.scalers[_c]['max'] tmp = (df[c + self._minmax_suffix] - f_min) / (f_max - f_min) df[c + unscale_suffix] = (tmp * (_max - _min)) + _min return df def Normalize(self, center=True, reduce=True, data=None, columns=None, col_suffix=''): """Data normalizer. Centers and reduces features (from mean and standard deviation). :param center: Center the variable, i.e. substract the mean, defaults to True. :type center: :obj:`bool`, optional :param reduce: Reduce the variable, i.e. devide by standard deviation, defaults to True. :type reduce: :obj:`bool`, optional :param data: Data set to normalize, defaults to None, takes data provided in :py:meth:`__init__`. :type data: :obj:`pandas.DataFrame`, optional :param columns: Columns to be normalize, defaults to None, takes the list provided in :py:meth:`__init__`. :type columns: :obj:`list`, optional :param col_suffix: [description], defaults to '' :type col_suffix: :obj:`str`, optional :formula: .. math:: x_{\\text{scaled}} = \\dfrac{x - \\bar{x}}{\\sqrt{\\mathbb{V}(x)}} :return: Data set with normalized features. :rtype: :obj:`pandas.DataFrame` """ self._standard_suffix = col_suffix cols = self._col_to_list(columns) df = self.data if data is None else data.copy() for c in cols: # Retreive mean if center: _mean = self.scalers[c]['mean'] self.scalers[c].update({'center': True}) else: _mean = 0. self.scalers[c].update({'center': False}) # Retreive std if reduce: _std = self.scalers[c]['std'] self.scalers[c].update({'reduce': True}) else: _std = 1. self.scalers[c].update({'reduce': False}) df[c + col_suffix] = (df[c] - _mean) / _std return df def unscaleNormalize(self, data=None, columns=None, columns_mapping={}): """Denormalize data to retreive the same range as the original data set. :param data: Data set to unscale, defaults to None, takes data provided in :py:meth:`__init__`. :type data: :obj:`pandas.DataFrame`, optional :param columns: Columns to be unscaled, defaults to None, takes the list provided in :py:meth:`__init__`. :type columns: :obj:`list`, optional :param columns_mapping: Mapping between eventual renamed columns and original scaled column. :type columns_mapping: :obj:`dict`, optional :formula: .. math:: x_{\\text{unscaled}} = x_{\\text{scaled}} \\cdot \\sqrt{\\mathbb{V}(x)} + \\bar{x} :return: De-normalized data set. :rtype: :obj:`pandas.DataFrame` """ cols = self._col_to_list(columns) df = self.data if data is None else data.copy() unscale_suffix = '_unscaled' if self._standard_suffix != '' else '' for c in cols: # Apply eventual column name mapping _c = c if columns_mapping.get(c) is None else columns_mapping.get(c) # Retreive min and max _mean = self.scalers[_c]['mean'] if self.scalers[_c]['center'] else 0. _std = self.scalers[_c]['std'] if self.scalers[_c]['reduce'] else 1. df[c + unscale_suffix] = (df[c + self._standard_suffix] * _std) + _mean return df
[ "florian.website.mail@gmail.com" ]
florian.website.mail@gmail.com
397bd82f3974cc589904835d4c50f7e3f60e39a9
8cb6b6b233be0f53d86230e7be7fe2c12e04d3ad
/Titanic/code.py
f8fdce6d968749c2356532056f03dd6f3281448e
[]
no_license
benignavesh/kaggle
09a6b9f0773962f22efdc042d776110712d4cf41
c5a3f4722d2baf63dbe678e5817a651fb30da967
refs/heads/master
2020-03-20T02:26:37.284051
2018-06-12T18:39:45
2018-06-12T18:39:45
137,113,278
0
0
null
null
null
null
UTF-8
Python
false
false
1,432
py
import pandas as pd dataset_train = pd.read_csv('train.csv') dataset_test = pd.read_csv('test.csv') labels_train = dataset_train.iloc[:,[1]].values features_train = dataset_train.iloc[:,[2,4,5,6,7]].values features_test = dataset_test.iloc[:,[1,3,4,5,6]].values #Missing data analysis for age from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN',strategy = 'median',axis = 0) imputer = imputer.fit(features_train[:,[2]]) features_train[:,[2]] = imputer.transform(features_train[:,[2]]) imputer = imputer.fit(features_test[:,[2]]) features_test[:,[2]] = imputer.transform(features_test[:,[2]]) # Converting Male/ female to 1/0 from sklearn.preprocessing import LabelEncoder labelencoder= LabelEncoder() features_train[:,1] = labelencoder.fit_transform (features_train[:,1]) features_test[:,1] = labelencoder.fit_transform (features_test[:,1]) #OneHotEncoding Pclass from sklearn.preprocessing import OneHotEncoder onehotencoder = OneHotEncoder(categorical_features = [0]) features_train = onehotencoder.fit_transform(features_train).toarray() features_test = onehotencoder.fit_transform(features_test).toarray() from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(features_train, labels_train) labels_pred = classifier.predict(features_test) df = pd.DataFrame(labels_pred) df.to_csv("submission.csv")
[ "noreply@github.com" ]
benignavesh.noreply@github.com
cc7e2f7e8d161493bd6b230d519996a73308c768
7b6377050fba4d30f00e9fb5d56dfacb22d388e1
/brownies/bin/lev-vis.py
f897e5f5de2f2be76fa12584493985dffe688620
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
LLNL/fudge
0a4fe8e3a68b66d58e42d1f4d209ea3f713c6370
6ba80855ae47cb32c37f635d065b228fadb03412
refs/heads/master
2023-08-16T21:05:31.111098
2023-08-01T22:09:32
2023-08-01T22:09:32
203,678,373
21
4
NOASSERTION
2023-06-28T20:51:02
2019-08-21T23:22:20
Python
UTF-8
Python
false
false
7,520
py
#! /usr/bin/env python import sys import os import argparse import brownies.BNL.RIPL.level_density as LD import brownies.BNL.RIPL.level_scheme as LS from PoPs.chemicalElements .misc import symbolFromZ as elementSymbolFromZ import numpy as np import matplotlib.pyplot as plt HOME=os.environ['HOME'] DESKTOP=HOME+'/Desktop' ATLAS=DESKTOP+"/atlas/" RIPL=DESKTOP+"/empire.trunk/RIPL/" # -------------------------------------------------------------------- # Command line # -------------------------------------------------------------------- def parse_args(): parser = argparse.ArgumentParser(description="Plot ENTIRE level schemes, as determined from RIPL and the Atlas") parser.add_argument('Z', type=int, help='Nucleus charge') parser.add_argument('A', type=int, help="Nuclear atomic number") parser.add_argument('-v', dest='verbose', default=False, action='store_true', help='Run verbosely') parser.add_argument('-q', dest='verbose', action='store_false', help='Run quietly') parser.add_argument('--RIPL', default=RIPL, help="Path to RIPL files") parser.add_argument('--ATLAS', default=ATLAS, help="Path to atlas project") parser.add_argument('--dEmax', type=float, default=2.0, help="Plot from Emin=0 to Emax=Esep+dEmax, dEmax in MeV") return parser.parse_args() # ----------------------------------------------------------------------- # Set defaults # ----------------------------------------------------------------------- args = parse_args() Z, A=args.Z, args.A elem=elementSymbolFromZ[Z] sym='%s%i'%(elem, A) symTarget='%s%i'%(elem, A-1) # for n+target = isotope of interest ld, D, levs=None, None, None sys.path.append(args.ATLAS) import atlas.io as aio # ----------------------------------------------------------------------- # Get data # ----------------------------------------------------------------------- # Get the level scheme for Z,A. From RIPL-3. fname=args.RIPL+"/levels/z%s.dat"%str(Z).zfill(3) with open(fname, mode='r') as f: levMap=LS.readRIPLLevelScheme(f.read(), verbose=False) levs=levMap[sym] spinTarget = levMap[symTarget].levels[0].spin parityTarget = levMap[symTarget].levels[0].parity spin0=levMap[sym].levels[0].spin parity0=levMap[sym].levels[0].parity if args.verbose: print('target:', symTarget, spinTarget, parityTarget) print('compound:', sym, spin0, parity0) print(levs.name, levs.Sn) print(levs.levelReport()) # Get the HFB level density for Z,A. From RIPL-3. fname=args.RIPL+"/densities/total/level-densities-hfb/z%s.tab"%str(Z).zfill(3) with open(fname, mode='r') as f: ld=LD.readHFBMLevelDensityTable(f.read(), Z, A, verbose=True) # Get the mean level spacing for the resonance region for Z,A-1. # The compound nucleus # for neutron + Z,A-1 is Z,A. From RIPL-3. # FIXME # Get the resonances for Z,A-1. The compound nucleus for neutron + Z,A-1 is Z,A. # From the Atlas of Neutron Resonances, 6th edition. try: res = aio.read_atlas(isotope=None, element=None, Z=Z, A=A-1, ZA=None, verbose=False) except KeyError: res = None if args.verbose and res is not None: for r in res.resonance_parameters: print('\t'.join([str(x) for x in r])) icut = levs.lastLevelInCompleteScheme Ecut = levs.levels[icut].energy.value Esep = levs.Sn.value Emin = 0.0 Emax = Esep+args.dEmax # ----------------------------------------------------------------------- # Hi! # ----------------------------------------------------------------------- for NAME in ["Angie", 'Nathaniel', "Mami"]: print('hi '+NAME) # ----------------------------------------------------------------------- # Make plot # ----------------------------------------------------------------------- # Set up axes and title plt.title(levs.name) plt.xlabel("$\Pi*J$") plt.ylabel("$E^*$ (MeV)") # Widget to get J & Pi, a common theme def get_J_and_Pi(__lev, useNone=True): if __lev.spin is None: if useNone: J = None else: J = -11.33333 else: J = float(lev.spin) if lev.parity is None: if useNone: Pi = None else: Pi = 1.0 else: Pi = float(str(lev.parity)) return J, Pi # Plot discrete levels with complete information if True: x, y, xerr = [], [], [] # for completely know levels for lev in levs.levels: J, Pi=get_J_and_Pi(lev, True) if J is None or Pi is None: pass else: if lev.energy.value > Emax: continue y.append(lev.energy.value) x.append(J*Pi) xerr.append(0.25) plt.errorbar(x=x, y=y, xerr=xerr, linewidth=0, elinewidth=2, color='k') # Highlight ground state if True: plt.errorbar(x=[float(spin0)*int(parity0)], y=[0.0], xerr=[0.25], linewidth=0, elinewidth=2, color='g') # Highlight gamma transitions if False: raise NotImplementedError("Highlight gamma transitions") # Plot discrete levels missing either J or Pi if True: x, y, xerr = [], [], [] # for completely know levels for lev in levs.levels: J, Pi=get_J_and_Pi(lev, True) if J is None or Pi is None: J, Pi=get_J_and_Pi(lev, False) if lev.energy.value > Emax: continue y.append(lev.energy.value) x.append(J*Pi) xerr.append(0.25) else: pass plt.errorbar(x=x, y=y, xerr=xerr, linewidth=0, elinewidth=2, color='blue') # Highlight rotational bands if False: raise NotImplementedError("Highlight rotational bands") # Highlight vibrational "bands" if False: raise NotImplementedError('Highlight vibrational "bands"') # Plot Ecut if True: plt.axhline(y=Ecut, color='black', alpha=0.25, linestyle=':') plt.text(11, Ecut+0.1, r'$E_{cut}$') # Plot level density contour plot if True: JPigrid = [] for Pi in ld.spin_dep_level_density: for twoJ in ld.spin_dep_level_density[Pi].keys(): if twoJ > 30: continue JPigrid.append(Pi*twoJ/2.0) JPigrid.sort() JPigrid = np.array(JPigrid) Exgrid = np.arange(Emin, Emax, 0.1) # np.arange(Ecut, 5.0+Esep, 0.1) X, Y = np.meshgrid(JPigrid, Exgrid) vevaluate = np.vectorize(ld.evaluate) Z = vevaluate(Y, np.abs(X), np.sign(X)) CS = plt.contour(X, Y, Z, levels=[0, 1, 5]+[int(x) for x in np.logspace(1,3,14)]) plt.clabel(CS, fontsize=9, inline=1) # Plot Esep if True: plt.axhline(y=Esep, color='black', alpha=0.25) plt.text(11, Esep+0.1, r'$E_{sep}$') # Plot box of levels that can be excited by n+target reactions if False: raise NotImplementedError("Plot box of levels that can be excited by n+target reactions") # Plot resonances with known J if True and res is not None: x, y, xerr, yerr = [], [], [], [] # for completely know levels for r in res.resonance_parameters: Er=r[0].value*1e-6 if Er < 0.0: continue Er += Esep J, L = r[1].spin, r[2].spin if J is None or L is None: continue Pi = pow(-1, int(L)) * int(parityTarget) # FIXME: check math! y.append(Er) x.append(float(J)*Pi) # FIXME: fuzzy band from width xerr.append(0.25) yerr.append(0.0) plt.errorbar(x=x, y=y, xerr=xerr, linewidth=0, elinewidth=2, color='red') # Highlight primary gammas if False: raise NotImplementedError("Highlight primary gammas") # Plot resonances with unknown J if False: raise NotImplementedError("Plot resonances with unknown J") plt.show()
[ "mattoon1@llnl.gov" ]
mattoon1@llnl.gov
ead54b3adea54e5e8b36d168ada47fa6b99b2957
513b9bd0fca9e219a8d33cd9352f45f401a6b533
/python/test/test_actions.py
e0d04fe5a6a610a1fa991f18417870ef0b07e9ce
[]
no_license
EdginAround/edgin_around_api
a50b3cd03b992b68f2f42b3616c86534a9ad1b8f
0c97610385c409b1c4ceb3472d977bbb8d2dd45e
refs/heads/main
2023-06-01T00:13:23.219528
2021-06-27T19:21:20
2021-06-30T14:14:26
354,341,869
0
0
null
2021-06-30T14:14:27
2021-04-03T16:36:39
Python
UTF-8
Python
false
false
1,949
py
import unittest from typing import Any, Dict from . import common from edgin_around_api import actions class ActionsTest(common.SerdeTest): def test_serde_actor_deletion(self) -> None: """Test serialisation and deserialisation of DeleteActorsAction.""" original: Dict[str, Any] = { "type": "actor_deletion", "actor_ids": [1, 4, 2], } self.assert_serde(original, actions.ActionSchema(), actions.ActorDeletionAction) def test_serde_damage(self) -> None: """Test serialisation and deserialisation of DamageAction.""" original: Dict[str, Any] = { "type": "damage", "dealer_id": 3, "receiver_id": 8, "variant": "CHOP", "hand": "RIGHT", } self.assert_serde(original, actions.ActionSchema(), actions.DamageAction) def test_serde_stat_update(self) -> None: """Test serialisation and deserialisation of StatUpdateAction.""" original: Dict[str, Any] = { "type": "stat_update", "actor_id": 3, "stats": { "hunger": 40.0, "max_hunger": 100.0, }, } self.assert_serde(original, actions.ActionSchema(), actions.StatUpdateAction) d = '{"actor_id": 0, "stats": {"hunger": 0.0, "max_hunger": 100.0}, "type": "stat_update"}' def test_serde_to_string(self) -> None: """Test if `Action.to_string` works correctly.""" action = actions.MotionAction( actor_id=0, speed=7.0, bearing=30.0, duration=1.0, ) string = action.to_string() self.assertTrue('"actor_id": 0' in string) self.assertTrue('"bearing": 30.0' in string) self.assertTrue('"duration": 1.0' in string) self.assertTrue('"speed": 7.0' in string) self.assertTrue('"type": "motion"' in string)
[ "wojciech.kluczka@gmail.com" ]
wojciech.kluczka@gmail.com
2f0309d995be662395d1be6753bdcb2d17c2133e
7c1a0ee337c4407768c343518ebee7f8a1b540ef
/env/lib/python3.6/sre_parse.py
19de139eab2af7ff41ea9fcb49c30ccd7c952d3b
[]
no_license
spmarisa/flask_demo
8dcce02b43664da0b6afe97975e70a675425e22f
e5be66cfe1ebddc130875fb9fddc294d81085a0e
refs/heads/master
2020-03-23T19:58:39.017626
2018-07-23T12:51:14
2018-07-23T12:51:14
142,013,715
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
/home/phaneendra/anaconda3/lib/python3.6/sre_parse.py
[ "phaneendra.marisa@gmail.com" ]
phaneendra.marisa@gmail.com
83518dea03fcf81599d027eab229b0560c3ccfbe
7de280a2cb54bdec1eaa3b683097974b7a2c0964
/main.py
6bb5ae1f4496ffa7314e3a9a4a160bc53285b558
[]
no_license
kpiaskowski/DL_hand_gestures
f1d2e748a9587d07e9593380f6a9ce01171d073c
3d65b18821208195b89b5ce1f63e002da03f315e
refs/heads/master
2021-09-10T06:48:20.220804
2018-03-21T20:44:22
2018-03-21T20:44:22
125,994,782
0
1
null
null
null
null
UTF-8
Python
false
false
3,811
py
import os import tensorflow as tf from architectures.decoder import decoder_model from architectures.latent_space import latent_space from architectures.pretrained_encoder import encoder_model from vae_dataprovider import DataProvider epochs = 50 batch_size = 20 latent_units = 200 l_rate = 0.00001 label_w = 64 label_h = 48 model_name = 'model' saver_checkpoint = 2000 # data data_provider = DataProvider(batch_size, root_folder='../data', label_w=label_w, label_h=label_h) train_num_batches, val_num_batches = data_provider.get_num_batches() training_dataset_init, val_dataset_init, images, labels = data_provider.get_data() # model encoder = encoder_model(images) latent_vector, mean, stddev = latent_space(encoder, latent_units) predictions = decoder_model(latent_vector) # losses generative_loss = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(predictions, labels), axis=1), axis=1) latent_loss = -0.5 * tf.reduce_mean(1.0 + 2.0 * stddev - tf.square(mean) - tf.exp(2.0 * stddev), 1) loss = tf.reduce_mean(generative_loss + latent_loss) # summaries preview_images = tf.reshape(images, [-1, 240, 320, 3]) preview_predictions = tf.expand_dims(predictions, -1) preview_predictions = tf.image.grayscale_to_rgb(preview_predictions) preview_predictions = tf.image.resize_images(preview_predictions, [240, 320]) preview_labels = tf.reshape(labels, [-1, label_h, label_w]) preview_labels = tf.expand_dims(preview_labels, -1) preview_labels = tf.image.grayscale_to_rgb(preview_labels) preview_labels = tf.image.resize_images(preview_labels, [240, 320]) concat_preview = tf.concat([preview_images, preview_labels, preview_predictions], 2) tf.summary.image('predictions', concat_preview, max_outputs=5) tf.summary.scalar('loss', loss) train_op = tf.train.AdamOptimizer(l_rate).minimize(loss) merged = tf.summary.merge_all() pretrained_loader = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='yolo')) saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2) with tf.Session() as sess: train_writer = tf.summary.FileWriter('summaries/train/' + model_name, flush_secs=60) val_writer = tf.summary.FileWriter('summaries/val/' + model_name, flush_secs=60) sess.run(tf.global_variables_initializer()) if any([model_name in os.listdir('saved_model')]): saver.restore(sess, 'saved_model/' + model_name + '.ckpt') print('Continuing training') else: pretrained_loader.restore(sess, '../pretrained_imagenet/pretrained_imagenet.ckpt') # load encoder pretrained on imagenet print('Training from scratch') for epoch in range(epochs): # training sess.run(training_dataset_init) i = 0 while True: try: _, cost, summary = sess.run([train_op, loss, merged]) train_writer.add_summary(summary, epoch * train_num_batches + i) train_writer.flush() print('Training epoch: {} of {}, batch: {} of {}, cost: {}'.format(epoch, epochs, i, train_num_batches, cost)) i += 1 if i % saver_checkpoint == 0: saver.save(sess, 'saved_model/' + model_name + '.ckpt', global_step=epoch * train_num_batches + i) except tf.errors.OutOfRangeError: break # validation sess.run(val_dataset_init) i = 0 while True: try: cost, summary = sess.run([loss, merged]) val_writer.add_summary(summary, epoch * val_num_batches + i) val_writer.flush() print('Validation epoch: {} of {}, batch: {} of {}, cost: {}'.format(epoch, epochs, i, val_num_batches, cost)) i += 1 except tf.errors.OutOfRangeError: break
[ "kar.piaskowski@gmail.com" ]
kar.piaskowski@gmail.com
56c82dd9a2f16f67ef47c7062fa1ce5db1ae45cf
029948b3fd0e41d80d66c84d808abff4fcb24ac8
/test/test_path_response_result_response_egress_physical_interface.py
b1100af354156581698006d61033889305c3445f
[]
no_license
yijxiang/dnac-api-client
842d1da9e156820942656b8f34342d52c96d3c37
256d016e2df8fc1b3fdad6e28f441c6005b43b07
refs/heads/master
2021-09-25T21:10:09.502447
2018-10-25T14:39:57
2018-10-25T14:39:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
# coding: utf-8 """ Cisco DNA Center Platform v. 1.2.x (EFT) REST API (EFT) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import dnac_api_client from dnac_api_client.models.path_response_result_response_egress_physical_interface import PathResponseResultResponseEgressPhysicalInterface # noqa: E501 from dnac_api_client.rest import ApiException class TestPathResponseResultResponseEgressPhysicalInterface(unittest.TestCase): """PathResponseResultResponseEgressPhysicalInterface unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPathResponseResultResponseEgressPhysicalInterface(self): """Test PathResponseResultResponseEgressPhysicalInterface""" # FIXME: construct object with mandatory attributes with example values # model = dnac_api_client.models.path_response_result_response_egress_physical_interface.PathResponseResultResponseEgressPhysicalInterface() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "cunningr@cisco.com" ]
cunningr@cisco.com