blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
1bc2faa9d32323f38e27fe0dd5fc27f43aae4909
0acfb421ed222d1e9f2b9eaebec589ccf44a19cf
/base_example/products/products/dependencies.py
58517a6f97a4c85c9b5866cb0fdb67fcd3c38618
[]
no_license
pap/simplebank
bd155a9d74996428613cbc028e7edcc6f0554489
0b0e8a9def25d2a8b466e0eb149567fd6e7b2de8
refs/heads/master
2020-12-02T08:13:01.311836
2017-07-10T13:59:50
2017-07-10T15:26:05
96,788,715
3
3
null
null
null
null
UTF-8
Python
false
false
1,960
py
from nameko.extensions import DependencyProvider import redis from products.exceptions import NotFound REDIS_URI_KEY = 'REDIS_URI' class StorageWrapper: """ Product storage A very simple example of a custom Nameko dependency. Simplified implementation of products database based on Redis key value store. Handling the product ID increments or keeping sorted sets of product names for ordering the products is out of the scope of this example. """ NotFound = NotFound def __init__(self, client): self.client = client def _format_key(self, product_id): return 'products:{}'.format(product_id) def _from_hash(self, document): return { 'id': document[b'id'].decode('utf-8'), 'title': document[b'title'].decode('utf-8'), 'passenger_capacity': int(document[b'passenger_capacity']), 'maximum_speed': int(document[b'maximum_speed']), 'in_stock': int(document[b'in_stock']) } def get(self, product_id): product = self.client.hgetall(self._format_key(product_id)) if not product: raise NotFound('Product ID {} does not exist'.format(product_id)) else: return self._from_hash(product) def list(self): keys = self.client.keys(self._format_key('*')) for key in keys: yield self._from_hash(self.client.hgetall(key)) def create(self, product): self.client.hmset( self._format_key(product['id']), product) def decrement_stock(self, product_id, amount): return self.client.hincrby( self._format_key(product_id), 'in_stock', -amount) class Storage(DependencyProvider): def setup(self): self.client = redis.StrictRedis.from_url( self.container.config.get(REDIS_URI_KEY)) def get_dependency(self, worker_ctx): return StorageWrapper(self.client)
[ "odesassossegado@gmail.com" ]
odesassossegado@gmail.com
c10fc81b2955f4a8bf4b961258893fbe33897bee
0cb075ce26f4b1562347f04fe8612e2acf726863
/calendars/views/occurrences.py
a52e6640b9394399f8fa43698fc3b0f13cdfdc51
[ "BSD-2-Clause" ]
permissive
wkrause13/django-calendar
84c1d05f721025ff8ebc11da3f6590709d1750e6
5cec7f8ac49637a02e331064d470255d1cbaf096
refs/heads/master
2020-12-25T17:37:54.881236
2013-01-03T10:44:56
2013-01-03T10:44:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,941
py
# -*- coding: utf-8 -*- ''' Created on Mar 20, 2011 @author: Mourad Mourafiq @copyright: Copyright © 2011 other contributers: ''' from django.shortcuts import get_object_or_404, render_to_response from django.template import RequestContext, Context, loader from django.http import Http404, HttpResponse, HttpResponseRedirect, HttpResponseServerError, HttpResponseForbidden, HttpResponseNotAllowed from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.decorators import login_required from django.db.models import Q from django.views.decorators.csrf import csrf_exempt, requires_csrf_token from django.utils import simplejson from calendars.utilis import fetch_from_url_occ, errors_as_json from calendars.forms.occurrence import OccurrenceForm from calendars.models.cals import Occurrence @login_required def view_occ_date(request, event_slug): """ view an occurrence by date (for non persisted occurrences) """ (event, err, occurrence) = fetch_from_url_occ(request, event_slug) if err: return err if not occurrence.cancelled: c = RequestContext(request, {'occurrence': occurrence, }) return render_to_response('calendars/occurrence_view.html', c) @csrf_exempt @requires_csrf_token @login_required def cancel_occ_date(request, event_slug): """ cancel a non persisted occurrence """ (event, err, occurrence) = fetch_from_url_occ(request, event_slug) if err: return err if not occurrence.cancelled: next = event.get_absolute_url() occurrence.cancel() return HttpResponseRedirect(next) @login_required def edit_occ_date(request, event_slug): """ edit an unpersisted occurrence """ (event, err, occurrence) = fetch_from_url_occ(request, event_slug) if err: return err if not occurrence.cancelled: form = OccurrenceForm(data=request.POST or None, instance=occurrence) if request.method == 'POST': if form.is_valid(): occurrence = form.save(commit=False) occurrence.event = event occurrence.save() if not request.is_ajax(): return HttpResponseRedirect(occurrence.get_absolute_url()) response = ({'success':'True'}) else: response = errors_as_json(form) if request.is_ajax(): json = simplejson.dumps(response, ensure_ascii=False) return HttpResponse(json, mimetype="application/json") return render_to_response('calendars/occurrence_edit.html', { 'occ_form': form, 'occurrence': occurrence, 'action' : occurrence.get_edit_url(), 'event' : occurrence.event, }, context_instance=RequestContext(request)) @login_required def view_occ(request, occurrence_id): """ view an occurrence with its id (for persisted occurrences) """ occurrence = get_object_or_404(Occurrence, id=occurrence_id) if not occurrence.cancelled: c = RequestContext(request, {'occurrence': occurrence, }) return render_to_response('calendars/occurrence_view.html', c) @csrf_exempt @requires_csrf_token @login_required def cancel_occ(request, occurrence_id): """ cancel a persisted occurrence """ occurrence = get_object_or_404(Occurrence, id=occurrence_id) next = occurrence.event.get_absolute_url() occurrence.cancel() return HttpResponseRedirect(next) @login_required def reactivate_occ(request, occurrence_id): """ reactivate an occurrence """ occurrence = get_object_or_404(Occurrence, id=occurrence_id) occurrence.uncancel() return HttpResponseRedirect(occurrence.get_absolute_url()) @login_required def edit_occ(request, occurrence_id): """ edit a persisted occurrence """ occurrence = get_object_or_404(Occurrence, id=occurrence_id) if not occurrence.cancelled: form = OccurrenceForm(data=request.POST or None, instance=occurrence) if request.method == 'POST': if form.is_valid(): occurrence = form.save() if not request.is_ajax(): return HttpResponseRedirect(occurrence.get_absolute_url()) response = ({'success':'True'}) else: response = errors_as_json(form) if request.is_ajax(): json = simplejson.dumps(response, ensure_ascii=False) return HttpResponse(json, mimetype="application/json") return render_to_response('calendars/occurrence_edit.html', { 'occ_form': form, 'occurrence': occurrence, 'action' : occurrence.get_edit_url(), 'event' : occurrence.event, }, context_instance=RequestContext(request))
[ "pipado@pipado" ]
pipado@pipado
7f9f289a51777d3b315128656891fedee5087005
47fa5e7d9ebd04d3c9fe1a7a4c4fb1bd62050f5e
/geothmetic_meandian.py
35220f896931ff0b05ecf6f4037230e388aabd3b
[]
no_license
setalyas/odd-means
438c1826d669f48100017c5014af8d3475c85d8e
db53c535e1e52ef7e70123d11860eef56dd183b1
refs/heads/master
2023-03-21T23:02:22.483373
2021-03-11T03:39:46
2021-03-11T03:39:46
235,227,364
0
0
null
null
null
null
UTF-8
Python
false
false
1,751
py
# -*- coding: utf-8 -*- """ Created on Thu Mar 11 03:10:11 2021 @author: setat Geothmetic meandian: calculate the arithmetic mean, median, and geometric mean for a list of numbers, until they converge. From https://xkcd.com/2435/ """ from scipy.stats import gmean import numpy as np trial = np.array([1, 1, 2, 3, 5]) print(np.mean(trial)) print(np.median(trial)) print(gmean(trial)) def gmdn_step(a_list): """Take a list one step towards the geothmetic meandian. Parameters ---------- a_list : list A list of positive numbers. Returns ------- g_mean : float Geometric mean of the list a_mean : float Arithmetic mean of the list medn : float Median of the list gmdned : list A list of g_mean, a_mean, and medn""" if sum(np.array(a_list) > 0) != len(a_list): raise Exception("Sorry, only positive number lists allowed.") a_mean = np.mean(a_list) g_mean = gmean(a_list) medn = np.median(a_list) gmdned = np.array([g_mean, a_mean, medn]) return sorted(gmdned) print(gmdn_step(trial)) print(gmdn_step(gmdn_step(trial))) def gmdn(a_list, places): """Take a list to its geothmethic meandian. Parameters ---------- a_list : list A list of numbers. places : int Desired precision for how many decimal places the averages should match to. Returns ------- geothmetic_meandian : float The convergence of the averages""" counter = 0 gmdned = a_list while max(gmdned) - min(gmdned) > 10 ** (-places): gmdned = gmdn_step(gmdned) counter += 1 print("Converged within {} steps.".format(counter)) return gmdned gmdn(trial, 3)
[ "setatimmi@gmail.com" ]
setatimmi@gmail.com
9fbddab470ce95d6a31bb446fcd8a7ee812aa1d0
5399dd4580ea3f528753bc8b52a981743d62f8bb
/keras/keras26_LSTM_hamsu.py
10977c12c7ffbf0c14ef67ef7f6d8b6f2e3211d9
[]
no_license
iwillbeaprogramer/Study
3ac7c118ffe3981d78b4ad263cb62432eae13970
3bfe571da5bbfc545b994e5878e217f9306bde14
refs/heads/main
2023-05-07T16:31:05.564973
2021-05-27T14:50:00
2021-05-27T14:50:00
324,044,441
8
1
null
null
null
null
UTF-8
Python
false
false
1,598
py
# keras 23 _LSTM3_scale을 함수형으로 코딩 import numpy as np x = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6],[5,6,7],[6,7,8],[7,8,9],[8,9,10],[9,10,11],[10,11,12],[20,30,40],[30,40,50],[40,50,60]]) y = np.array([4,5,6,7,8,9,10,11,12,13,50,60,70]) x_pred = np.array([50,60,70]).reshape(1,3,1) from tensorflow.keras.models import Sequential,Model from tensorflow.keras.layers import Dense,LSTM,Input from sklearn.metrics import r2_score x = x.reshape(13,3,1) inputs = Input(shape = (3,1)) lstm = LSTM(1024,activation='relu')(inputs) dense1 = Dense(512,activation='relu')(lstm) dense2 = Dense(256,activation='relu')(dense1) dense3 = Dense(128,activation='relu')(dense2) dense4 = Dense(64,activation='relu')(dense3) dense5 = Dense(32,activation='relu')(dense4) dense6 = Dense(8,activation='relu')(dense5) dense7 = Dense(4,activation='relu')(dense6) outputs = Dense(1)(dense7) model = Model(inputs,outputs) # model = Sequential() # model.add(LSTM(1024,input_shape=(3,1),activation='relu')) # model.add(Dense(512,activation='relu')) # model.add(Dense(256,activation='relu')) # model.add(Dense(128,activation='relu')) # model.add(Dense(64,activation='relu')) # model.add(Dense(32,activation='relu')) # model.add(Dense(16,activation='relu')) # model.add(Dense(8,activation='relu')) # model.add(Dense(4,activation='relu')) # model.add(Dense(1)) model.compile(loss='mse',optimizer='adam') model.fit(x,y,epochs=500,batch_size=1) loss = model.evaluate(x,y,batch_size=1) y_pred = model.predict(x_pred) print(y_pred) print('loss : ',loss) ''' [[81.13962]] [[80.14889]] loss : 0.05985087901353836 '''
[ "wisixicidi@gmail.com" ]
wisixicidi@gmail.com
bc34826491a3f48e8a8c9762836e87d8d850ba07
da87574f78a9e8151747a5e55359ca71e1c19470
/pyramid_google_login/exceptions.py
a49184ddf174061ea6df30dc32eb21750ecd2ff8
[]
no_license
mtlpy/pyramid_google_login
2bfc1adaaa76a60a1b26f433479a0a85893314c0
d71444a701d7a6cb82dc2a277d41f637c86a4d83
refs/heads/master
2021-09-28T03:23:07.326642
2018-11-13T21:32:48
2018-11-13T21:32:48
42,904,496
1
3
null
null
null
null
UTF-8
Python
false
false
101
py
class Base(Exception): pass class AuthFailed(Base): pass class ApiError(Base): pass
[ "hadrien@ectobal.com" ]
hadrien@ectobal.com
2a46cba90659a56d1af070ee76242a046edd72a9
ff12b271c7538f0621b88e567b315d5bb44166af
/ambari_monitor/hbase_monitor/hbase_monitor_v2/conn_db.py
d483eee20dceb6a566d0b5d5b49a331740dd2f1d
[]
no_license
witnesslq/big_data_operation
23ca6afd2f69fbe2b4f9debea4bd2f49f6d4a1c8
829422bfd3c52fbd99e0b54e3da7b9ac7ec4f3cd
refs/heads/main
2023-06-06T22:17:15.572951
2021-07-13T14:34:18
2021-07-13T14:34:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,630
py
#!/usr/bin/env python # -*-coding:utf-8 -*- # *************************************************************************** # 文件名称:conn_db.py # 功能描述:迁移Hive表 # 输 入 表: # 输 出 表: # 创 建 者:hyn # 创建日期:20200808 # 修改日志: # 修改日期: # *************************************************************************** # 程序调用格式:python conn_db.py # *************************************************************************** import os import sys from datetime import datetime import datetime as date_time import pymysql mysql_sh = "mysql -h 172.19.168.22 -P 3308 -u zhao -pzhao zhao -e ' " # 连接 def conn_db(): conn = pymysql.connect(host="192.168.195.233", port=20031, user="csapdmcfg", passwd="iEXIMt3w!TFL9vkO", db="csapdmcfg", charset="utf8") return conn # 查询数据 def select(sql): conn = conn_db() cursor = conn.cursor() cursor.execute(sql) result = cursor.fetchall() cursor.close() conn.close() # print result return result # 插入及更新数据 def insert(sql): conn = conn_db() cursor = conn.cursor() cursor.execute(sql) result = cursor.fetchall() conn.commit() cursor.close() conn.close() # print type(result) # print result return result # 批量插入及更新数据 def insert_batch(sql_list): conn = conn_db() cursor = conn.cursor() for sql in sql_list: cursor.execute(sql) conn.commit() cursor.close() conn.close() # result = cursor.fetchall() # print type(result) # print result return
[ "1342831695@qq.com" ]
1342831695@qq.com
f0eefe22562432df713f9a164d1362e2892d2ea0
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03495/s527457667.py
af89959a94f603b8e66e9c604d4ff5d4f266dce7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
n, k = map(int, input().split()) a = list(map(int, input().split())) ball = {} for i in a: if i in ball: ball[i] += 1 else: ball[i] = 1 ball = sorted(ball.items(), key=lambda x: -x[1]) ans = 0 if len(ball) > k: for i in range(k): ans += ball[i][1] ans = n - ans print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
b072a1621c0b87142854230caf8d9c62cc21b634
64de13c52b6ac0643bfd8a6c9d4edefc48ea763d
/Modules/logparser.py
1197a28b0798f947eb2005dfc8d9d95e6e53a76c
[]
no_license
AhmedAyman1196/PenHelper
35671330aa6dbfd2f7427aedd2148bd3cdc8dd8d
e46efe9dd9ce2a74082e3ccd9c35560bedb957b9
refs/heads/master
2020-12-13T21:02:47.299460
2020-03-26T13:06:59
2020-03-26T13:06:59
234,529,628
0
0
null
null
null
null
UTF-8
Python
false
false
1,031
py
import re class parser: def __init__(self, file): self.file = file f = open(file, "r") self.content = f.read().split("\n") # split log file by line # urlRe = re.compile(r'(http://|https).+') --> extracting urls (work in progress) ipRe = re.compile(r'\d?\d?\d\.\d?\d?\d\.\d?\d?\d\.\d?\d?\d') ipDict = dict() # this will map the ip to the number of appearences for i in self.content: try : ip = ipRe.search(i).group(0) if ip in ipDict: ipDict[ip] += 1 else : ipDict[ip] = 1 except : x = 1 # just ingore # print("la2 , no ip hena noooo") self.ipDict = ipDict def printFile(self): print("file is " + self.file) def printIps(self): res = "" print("2y 7aga") for i in self.ipDict : res += "IP : " + i +"\nAppearences : " + str(self.ipDict[i]) +"\n" return res
[ "ahmed_ayman1196@yahoo.com" ]
ahmed_ayman1196@yahoo.com
e989dc83551e2ec60c25bdbda0740cea8c246b3a
9a5ba94d5b5742030e2bd94d303c8b528515ff32
/python_scripts/blueRapidTest.py
e683682ec9e7397f1a2c8a542ebdf86b635da3ba
[]
no_license
locknono/twitter-sampling
8b0167585ac34a5f5413cd72c57a091269dbbd72
41b4122386345bce90179c2867519f8e50784efc
refs/heads/master
2023-01-24T07:27:26.408360
2022-12-20T10:09:41
2022-12-20T10:09:41
172,686,848
2
0
null
null
null
null
UTF-8
Python
false
false
1,640
py
import g import json from blueRapid import blueRapid, Point import logging import numpy as np from blueRapidEstimate import getRalationshipList, compareRelationshipList if __name__ == '__main__': logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) idLdaDict = {} estimates = [] disks = [] with open(g.ldaDir + 'idLdaDict.json', 'r', encoding='utf-8') as f: idLdaDict = json.loads(f.read()) with open(g.dataPath + 'blueNoise/samplePoints-500-2485-0.12732489624429985.json', 'r', encoding='utf-8') as f: points = json.loads(f.read()) disks = [] for p in points: disk = [] disk.append(Point(p['id'], idLdaDict[p['id']])) for p2 in p['pointsInDisk']: disk.append(Point(p2['id'], idLdaDict[p2['id']])) disks.append(disk) originalValues = np.full(g.topicNumber, 0).tolist() for k in idLdaDict: for i in range(len(idLdaDict[k])): originalValues[i] = idLdaDict[k][i] l1 = getRalationshipList(originalValues) ratioList = [] for i in range(0, 10): estimates = blueRapid(disks, dimension=g.topicNumber, delta=0.05, c=1) if estimates != None: l2 = getRalationshipList(estimates) ratio = compareRelationshipList(l1, l2) ratioList.append(ratio) else: ratioList.append(None) sum = 0 count = 0 for v in ratioList: if v != None: sum += v count += 1 try: print('same ratio:' + str(sum / count)) except Exception as e: print(e)
[ "guozy0103@outlook.com" ]
guozy0103@outlook.com
1e4ec69660f5980e00461dbe5783a03c23174204
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4131/codes/1758_1580.py
c80833ecede95654db5b447bb5eb5803ca08197f
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
423
py
from numpy import* v=array(eval(input("notas:")))*1.0 n=array(eval(input("alunos:"))) i=0 faltas=0 aprovados=0 reprovados=0 soma=0 while(i<size(v)): if(v[i]==-1.0): faltas+=1 if(v[i]>=6): aprovados+=1 soma+=v[i] if(v[i]<6.0 and v[i]!=-1.0): reprovados+=1 soma+=v[i] if(v[i]==max(v)): nome = n[i] i=i+1 print(faltas) print(aprovados) print(reprovados) print(round(soma/(aprovados+reprovados),2)) print(nome)
[ "jvlo@icomp.ufam.edu.br" ]
jvlo@icomp.ufam.edu.br
4a9a1969193c0c950911bbba6aaef225095e8732
5cbf1d3b17d04931d6e90ad2e79fbb8c668cca21
/page/setting_page.py
1d867934592a9f772a8ed4abf96c57befb268eb0
[]
no_license
zqx7629487/test_bnhl_login
b1d91aeb7bd61e7a851e65fc6190de3092cbb5e7
4ad320369d614cd3f1c917866b6eb9bd6b7c6588
refs/heads/master
2020-05-29T20:42:31.879683
2019-05-30T10:54:36
2019-05-30T10:54:36
189,360,546
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
from Base.base import Base from page.page_element import Elements class SettingPage(Base): def __init__(self, driver): Base.__init__(self, driver) def go_to_logout(self, tag=1): # 滑动 self.slide_page() # 点退出登录按钮 self.click_element(Elements.setting_logout_btn_id) if int(tag) == 1: # 点击确认退出 self.click_element(Elements.setting_acc_quit_btn_id) else: # 点击取消退出 self.click_element(Elements.setting_dis_quit_btn_id)
[ "wtfqxl0@qq.com" ]
wtfqxl0@qq.com
087a2ceba2542308335379769432cd401ccaefea
7c3fc7c125961d931b773691890812ee2af7f4d8
/entries/request.py
d04deb926e6e0723b767b94071c9ffe5b980b369
[]
no_license
jamalbrowning/daily_journal_server
67397683184bc69daaeeb71bd2553a2a5aeba1e7
c6eb42ffebe9e7c033d13fbfa48b61568d36c940
refs/heads/main
2023-01-06T09:47:51.371369
2020-10-30T00:37:40
2020-10-30T00:37:40
303,887,764
0
0
null
2020-10-30T00:37:41
2020-10-14T03:02:29
Python
UTF-8
Python
false
false
3,762
py
import sqlite3 import json from models.entry import Entry from models.mood import Mood def get_all_entries(): with sqlite3.connect("./dailyjournal.db") as conn: conn.row_factory = sqlite3.Row db_cursor = conn.cursor() db_cursor.execute(""" SELECT a.id, a.concept, a.entry, a.date, a.moodId, m.label mood_label FROM entries a JOIN moods m ON m.id = a.moodId """) entries = [] dataset = db_cursor.fetchall() for row in dataset: entry = Entry(row['id'], row['concept'], row['entry'], row['date'], row['moodId']) mood = Mood(row['moodId'], row['mood_label']) entry.mood = mood.__dict__ entries.append(entry.__dict__) return json.dumps(entries) def get_single_entry(id): with sqlite3.connect("./dailyjournal.db") as conn: conn.row_factory = sqlite3.Row db_cursor = conn.cursor() # Use a ? parameter to inject a variable's value # into the SQL statement. db_cursor.execute(""" SELECT a.id, a.concept, a.entry, a.date, a.moodId FROM entries a WHERE a.id = ? """, ( id, )) data = db_cursor.fetchone() entry = Entry(data['id'], data['concept'], data['entry'], data['date'], data['moodId']) return json.dumps(entry.__dict__) def search_for_entry(search_term): with sqlite3.connect("./dailyjournal.db") as conn: conn.row_factory = sqlite3.Row db_cursor = conn.cursor() db_cursor.execute(""" SELECT a.id, a.concept, a.entry, a.date, a.moodId FROM entries a WHERE a.entry LIKE ? """, ( '%'+search_term+'%', )) entries = [] dataset = db_cursor.fetchall() for row in dataset: entry = Entry(row['id'], row['concept'], row['entry'], row['date'], row['moodId']) entries.append(entry.__dict__) return json.dumps(entries) def delete_entry(id): with sqlite3.connect("./dailyjournal.db") as conn: db_cursor = conn.cursor() db_cursor.execute(""" DELETE FROM entries WHERE id = ? """, (id, )) def new_journal_entry(new_entry): with sqlite3.connect("./dailyjournal.db") as conn: db_cursor = conn.cursor() db_cursor.execute(""" INSERT INTO entries ( concept, entry, date, moodId ) VALUES ( ?, ?, ?, ?); """, (new_entry['concept'],new_entry['entry'], new_entry['date'],new_entry['moodId'], )) # The `lastrowid` property on the cursor will return # the primary key of the last thing that got added to # the database. id = db_cursor.lastrowid # Add the `id` property to the entry dictionary that # was sent by the client so that the client sees the # primary key in the response. new_entry['id'] = id return json.dumps(new_entry) def update_entry(id, new_entry): with sqlite3.connect("./dailyjournal.db") as conn: db_cursor = conn.cursor() db_cursor.execute(""" UPDATE entries SET concept = ?, entry = ?, date = ?, moodId = ? WHERE id = ? """, (new_entry['concept'], new_entry['entry'], new_entry['date'], new_entry['moodId'], id, )) rows_affected = db_cursor.rowcount if rows_affected == 0: return False else: return True
[ "jamalebrowning@gmail.com" ]
jamalebrowning@gmail.com
8497b6a892e539cd478c1a918d43d95089605987
20343e8a8435b3f839d5abd0c4063cf735f43341
/Experiment/ConfigDialog/StudentInfoGridTable.py
e5f398f3666aef303c0be98cf270feb4f0160c84
[]
no_license
alading241/MoDeng
948f2099e2f7e4548d6e477b6e06b833bdf4f9bb
01819e58943d7d1a414714d64aa531c0e99dfe22
refs/heads/master
2021-05-23T11:39:41.326804
2020-04-05T06:06:01
2020-04-05T06:06:01
253,269,397
1
0
null
2020-04-05T15:38:33
2020-04-05T15:38:33
null
UTF-8
Python
false
false
3,910
py
# coding=utf-8 import wx.grid as grid import wx class StudentInfoGridTable(grid.PyGridTableBase): def __init__(self, datas): grid.GridTableBase.__init__(self) self.datas = datas self.colLabels = [u'姓名', u'性别', u'学校', u'专业', u'年级'] self.isModified = False self.odd = grid.GridCellAttr() self.odd.SetReadOnly(False) self.odd.SetBackgroundColour('yellow') self.even = grid.GridCellAttr() self.even.SetReadOnly(False) def SetValue(self, row, col, value): print(str(row) + ";" + str(col) + ";" + value) def innerSetValue(row, col, value): try: self.datas[row][col] = value except IndexError: # add a new row self.datas.append([''] * self.GetNumberCols()) innerSetValue(row, col, value) # tell the grid we've added a row msg = grid.GridTableMessage(self, # The table grid.GRIDTABLE_NOTIFY_ROWS_APPENDED, # what we did to it 1 # how many ) self.GetView().ProcessTableMessage(msg) innerSetValue(row, col, value) def GetAttr(self, row, col, kind): attr = [self.even, self.odd][row % 2] attr.IncRef() return attr def GetNumberRows(self): return len(self.datas) def GetNumberCols(self): return len(self.colLabels) def GetColLabelValue(self, col): return self.colLabels[col] def GetRowLabelValue(self, row): return str(row) def GetValue(self, row, col): return self.datas[row][col] def IsModified(self): return self.isModified def InsertRows(self, pos=1, newData=None): if newData is None: newData = [u'', u'', u'', u'', u''] self.datas.insert(pos, newData) self.isModified = True gridView = self.GetView() gridView.BeginBatch() insertMsg = wx.grid.GridTableMessage(self, wx.grid.GRIDTABLE_NOTIFY_ROWS_INSERTED, pos, 1) gridView.ProcessTableMessage(insertMsg) gridView.EndBatch() getValueMsg = wx.grid.GridTableMessage(self, wx.grid.GRIDTABLE_REQUEST_VIEW_GET_VALUES) gridView.ProcessTableMessage(getValueMsg) # if self.onGridValueChanged: # self.onGridValueChanged() return True def AppendRows(self, newData=None): if newData is None: newData = [u'居里夫人1', u'女', u'WUST', u'化学', u'研3'] self.datas.append(newData) self.isModified = True gridView = self.GetView() gridView.BeginBatch() appendMsg = wx.grid.GridTableMessage(self, wx.grid.GRIDTABLE_NOTIFY_ROWS_APPENDED, 1) gridView.ProcessTableMessage(appendMsg) gridView.EndBatch() getValueMsg = wx.grid.GridTableMessage(self, wx.grid.GRIDTABLE_REQUEST_VIEW_GET_VALUES) gridView.ProcessTableMessage(getValueMsg) # if self.onGridValueChanged: # self.onGridValueChanged() return True def DeleteRows(self, pos=0, numRows=1): if self.datas is None or len(self.datas) == 0: return False for rowNum in range(0, numRows): self.datas.remove(self.datas[pos + rowNum]) gridView = self.GetView() gridView.BeginBatch() deleteMsg = wx.grid.GridTableMessage(self, wx.grid.GRIDTABLE_NOTIFY_ROWS_DELETED, pos, numRows) gridView.ProcessTableMessage(deleteMsg) gridView.EndBatch() getValueMsg = wx.grid.GridTableMessage(self, wx.grid.GRIDTABLE_REQUEST_VIEW_GET_VALUES) gridView.ProcessTableMessage(getValueMsg) # if self.onGridValueChanged: # self.onGridValueChanged() return True
[ "189916591@qq.com" ]
189916591@qq.com
ade4e9790cde04ce39668c5e9228287df47dccf4
b7ea1c6fd5e83c045f21ffb3157c782bba01f9fc
/example.py
4a81ef5ab11d1fd3243b13b18166dda8fd59ed9c
[]
no_license
aditya803/Coursera-Github-Course
fe0a94942d8137bbfbff905b028e1656c513c352
53f3926de052d77942b27cf1a75424551ea9b205
refs/heads/master
2022-11-13T02:18:16.312247
2020-07-02T18:13:21
2020-07-02T18:13:21
276,713,982
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
def git_operation(): print("yeet") git_operation()
[ "adityapan25@gmail.com" ]
adityapan25@gmail.com
884b08fd9998783a567a073b0aa6b2f9398141c2
d819727b9a9864f4c8ff1010f0a322b4fe878252
/Practice/a3Variable Reassignment.py
94a678b4e729a022c82c475c5813ddc36a47d708
[]
no_license
KostaPapa/Python_Works
e32f40db163cc4fc6851f19c07cd7e002342f12e
03ae6a3e6b5430a4971b04ed9402eac2359b959b
refs/heads/master
2021-01-21T01:59:39.363518
2014-10-12T00:23:23
2014-10-12T00:23:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
377
py
import os def variable_reassignment (): ''' This function will reassing a new value to a variable. ''' dollar = 3000 # Initial value of the variable dollar print "I had $" , dollar , "in my account." dollar = 1000000 # New value of the variable dollar print "Now I have $", dollar, "in my account." variable_reassignment () os.system ("pause")
[ "kp967@nyu.edu" ]
kp967@nyu.edu
ded5374c01de41b2b14b1533154547bb1ed7d5d2
d5df2e08a1d4064d0c34db7e1e23823b44fa62fa
/demo/person/tests/project/infrastructure/environments/test_loader.py
3e0f1747196f2c412ae2068a729eb24865c627ee
[ "MIT" ]
permissive
sharof2000/ms-fastapi-template
42c1f68f3260e8facad6984abada9f3d56363e05
5bbd6903305db07cc18330ec86fb04ca518e9dab
refs/heads/main
2023-07-06T21:28:13.558790
2021-08-13T13:52:12
2021-08-13T13:52:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
515
py
import pytest from project.infrastructure.environments.loader import Configs def test_loader_success(): configs = Configs() assert configs.get_by_key("redis") def test_loader_error_file(): configs = Configs() assert pytest.raises(FileNotFoundError, configs.get_by_key, "security_token", "unknow_path") def test_loader_error_config(): path = "./project/infrastructure/__init__.py" configs = Configs() assert pytest.raises(Exception, configs.get_by_key, "security_token", path)
[ "farlley@live.com" ]
farlley@live.com
3778a108dab9ee7a1c7d4da33e2ebcc070b23d85
d2384f082395812f58c1f4611db9f6032b661b6f
/word_count.py
3d7ec1e76f0b9f7ac6730af7c5648e1dfcfd2b85
[]
no_license
JudePark96/2020-datascience-kmu-wordcount
2c5208a17cc5c3f9332a46577a57aa24676c9a70
044d6a0b43469159f9c32ff5f65a8874d0d7fbc4
refs/heads/master
2022-12-17T06:54:40.287244
2020-09-20T14:49:02
2020-09-20T14:49:02
295,360,282
0
0
null
null
null
null
UTF-8
Python
false
false
1,460
py
# -*- coding: utf-8 -*- # 문제 1. 문서를 입력받아 자주 등장하는 단어 1000개를 자주 등장하는 순서대로 출력하는 python 프로그램 작성하기 __author__ = 'JudePark' __email__ = 'judepark@kookmin.ac.kr' __repository__ = 'https://github.com/JudePark96/2020-datascience-kmu-wordcount' import logging import re import sys from collections import defaultdict logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) vocab = defaultdict(int) for idx, line in enumerate(sys.stdin): # 영어 및 일부 특수 문자만 존재하도록 line = re.sub(r'[^\x00-\x7F]+', '', line.strip().lower()) # 길동 is one of Tom’s best friends. -> [‘is’, ‘one’, ‘of’, ‘tom’, ‘s’, ‘best’, ‘friends’] 로 . 이 빠져있다. # . 을 지우도록... line = re.sub(r'[_<>,\(\)\.\'%]', '', line).split(' ') for word in line: # defaultdict 이기 때문에 exception 생각안해도 됨. if word in vocab: vocab[word] += 1 else: vocab[word] = 1 if idx % 1000 == 0: logger.info(f'loop index: {idx}') logger.info(f'vocabulary size: {len(vocab)}') k = 1000 top_k = sorted(vocab, key=vocab.get, reverse=True)[:k] for item in top_k: print(f'{item}\t{vocab[item]}')
[ "judepark@kookmin.ac.kr" ]
judepark@kookmin.ac.kr
61d23996c3389a4f24122fb099018555888ddc99
f5cebd54885635081aae848a75f332f326a80fad
/nets/vgg.py
2c1ca145761c20ece4dc07d150182f207ad31576
[]
no_license
maomingyang/Siamese-pytorch
11ac86365cac88f2b727c5799f700146aa4b4c5e
63779013a21cd14c9117c13f11737b55aa957757
refs/heads/master
2022-12-10T17:25:11.856575
2020-09-07T05:32:31
2020-09-07T05:32:31
293,669,321
2
0
null
2020-09-08T01:26:12
2020-09-08T01:26:12
null
UTF-8
Python
false
false
2,366
py
import torch import torch.nn as nn from torchvision.models.utils import load_state_dict_from_url class VGG(nn.Module): def __init__(self, features, num_classes=1000): super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) self._initialize_weights() def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(cfg, batch_norm=False, in_channels = 3): layers = [] for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs = { 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'] } def VGG16(pretrained, in_channels, **kwargs): model = VGG(make_layers(cfgs["D"], batch_norm = False, in_channels = in_channels), **kwargs) if pretrained: state_dict = load_state_dict_from_url("https://download.pytorch.org/models/vgg16-397923af.pth", model_dir="./model_data") model.load_state_dict(state_dict) return model
[ "noreply@github.com" ]
maomingyang.noreply@github.com
2689ebd6f20aa132cad611d4ab5f248f9fdf380d
55868885e97a08b21a98f3dc8e2f81939ec6761d
/BadgePy/subscriber.py
7f0f8b06c0b81e1b716273223f0220626eff1184
[ "MIT" ]
permissive
orrinjelo/OpenWest2018
a1c6305a429c86806a098fff1e91920db240b348
13503465c0c2cf74c3bbf77d476b2ab5e69085bf
refs/heads/master
2020-03-19T12:40:43.449446
2018-06-08T15:42:27
2018-06-08T15:42:27
136,533,151
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
import paho.mqtt.client as mqtt # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("feeds/color1") client.subscribe("feeds/color2") client.subscribe("feeds/effect") client.subscribe("feeds/effectspeed") # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("10.155.0.214", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever()
[ "orrin.jelo@gmail.com" ]
orrin.jelo@gmail.com
b8430e364b3b0c9d528b71bbfe6536dd57a0cb27
d275949ee4c551b7a513e6bd0af048d8aad8b26e
/user/api/serializers.py
611d7eabe1287302056339cc18bfdf7c4648375d
[]
no_license
djwesleyborges/apiPaintBall
e6a429adbf1e5dde0e901b987751317aa2489dda
a57f7325b69d5c339f276026e30791267bd0c0b1
refs/heads/master
2022-12-12T02:03:26.879059
2019-12-05T18:13:51
2019-12-05T18:13:51
172,746,032
0
0
null
2022-04-22T22:51:41
2019-02-26T16:14:57
Python
UTF-8
Python
false
false
2,575
py
from user.models import User from perfil.models import Perfil from rest_framework import serializers from rest_framework.serializers import ModelSerializer from perfil.api.serializers import PerfilSerializer class UserListSerializer(ModelSerializer): perfil = PerfilSerializer() class Meta: model = User fields = ('id', 'first_name', 'last_name', 'email', 'perfil') # read_only_fields = ('email',) def update(self, instance, validated_data): if validated_data.get('perfil').get('phone') is not None: instance.perfil.phone = validated_data.get('perfil').get('phone') if validated_data.get('perfil').get('city') is not None: instance.perfil.city = validated_data.get('perfil').get('city') instance.perfil.save() return instance class UserRegistrationSerializer(serializers.ModelSerializer): perfil = PerfilSerializer() """Serializers registration requests and creates a new user.""" # Ensure passwords are at least 8 characters long, no longer than 128 # characters, and can not be read by the client. password = serializers.CharField( max_length=128, min_length=8, write_only=True ) # The client should not be able to send a token along with a registration # request. Making `token` read-only handles that for us. token = serializers.CharField(max_length=255, read_only=True) class Meta: model = User # List all of the fields that could possibly be included in a request # or response, including fields specified explicitly above. fields = ['email', 'token', 'password', 'first_name', 'last_name', 'perfil'] def create(self, validated_data): # Use the `create_user` method we wrote earlier to create a new user. perfil = validated_data['perfil'] del validated_data['perfil'] per = Perfil.objects.create(**perfil) user = User.objects.create_user(**validated_data) user.perfil = per user.save() return user # return User.objects.create_user(**validated_data) def update(self, instance, validated_data): if instance.perfil.phone is not None: instance.perfil.phone = validated_data.get('perfil').get('phone') if instance.perfil.state is not None: instance.perfil.state = validated_data.get('perfil').get('state') if instance.perfil.city is not None: instance.perfil.city = validated_data.get('perfil').get('city') return instance
[ "djwesleyborges@gmail.com" ]
djwesleyborges@gmail.com
593b64e70ff28f81f0068b7138ba2e9ba482f7f3
38d48857ffadf7917465036ae56d2e48a7b709ac
/plots.py
33c64a9309dcb012c720fab6acaa26d6c6f9bfe3
[]
no_license
tlaure/PopModel2
b13ea0c52c9b26739644d9734c010ced6cafa1c5
d08ecf865d12494d900d020d04365ee7596cb7c1
refs/heads/master
2020-04-10T08:18:28.771995
2018-12-12T06:02:01
2018-12-12T06:02:01
160,902,582
0
0
null
null
null
null
UTF-8
Python
false
false
1,897
py
def plotPyramid(x1,y1) : import matplotlib.pyplot as plt import numpy as np y = np.arange(x1.size) fig, axes = plt.subplots(ncols=2, sharey=True) axes[0].barh(y, x1/1000, align='center', color='xkcd:steel blue') axes[0].set(title='Number of Male') axes[1].barh(y, y1/1000, align='center', color='xkcd:purplish') axes[1].set(title='Number of Female') axes[0].invert_xaxis() axes[0].yaxis.tick_right() plt.show() def plot2Pyramid(x1,x2,y1,y2) : import matplotlib.pyplot as plt import numpy as np y = np.arange(x1.size) fig, axes = plt.subplots(ncols=2, sharey=True) axes[0].barh(y, x2/1000, align='center', alpha=0.8, edgecolor='grey', facecolor='white') axes[0].barh(y, x1/1000, align='center', alpha=0.3, edgecolor='white', facecolor='blue') axes[0].set(title='Number of Male') axes[1].barh(y, y2/1000, align='center', alpha=0.8, edgecolor='grey', facecolor='white') axes[1].barh(y, y1/1000, align='center', alpha=0.3, edgecolor='white', facecolor='red') axes[1].set(title='Number of Female') axes[0].invert_xaxis() axes[0].yaxis.tick_right() plt.show() def plotFun(y): import matplotlib.pyplot as plt plt.plot(y) plt.show() def plotFunL(y,x): import matplotlib.pyplot as plt plt.plot(y,x) plt.show() def plotNhor(array,step): import matplotlib.pyplot as plt for i in range(0,array[:,0].size,step): plt.plot(array[i,:],label=str(i)) plt.show() def plotNvert(array,step): import matplotlib.pyplot as plt import numpy as np for i in range(0,array[0,:].size,step): plt.plot(array[:,i],label=str(i)) plt.legend([np.arange(array[0,:].size,step)]) plt.show() def scatterPlot(Array): import matplotlib.pyplot as plt plt.scatter(Array[:,0], Array[:,1]) plt.show
[ "thomas.laure@me.com" ]
thomas.laure@me.com
27662a4fcf03d06563de81b5403cb694f76230a8
420aeef7c5408ceced77ad5d26d2b3ae7bcb1dcf
/Semiprime.py
9a3dc5bd6cb91bdf0481787253140cb5eefb61f3
[]
no_license
Sagarmk079/Python-programs
bb629c8ecbbd6af3220b97cd68d577fa5cc14bdf
f8c80de10d44ccf82a7c6758465b07be2d3b62fe
refs/heads/master
2021-07-22T23:11:58.614385
2021-07-22T05:20:06
2021-07-22T05:20:06
207,059,942
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
import math def checkSemiprime(num): cnt = 0 for i in range(2, int(math.sqrt(num)) + 1): while num % i == 0: num /= i cnt += 1 # Increment count # of prime number # If count is greater than 2, # break loop if cnt >= 2: break # If number is greater than 1, add it to # the count variable as it indicates the # number remain is prime number if(num > 1): cnt += 1 # Return '1' if count is equal to '2' else # return '0' return cnt == 2 c=0 n=int(input()) l=int((n/2)+1) for i in range(2,l): value1=checkSemiprime(i) value2=checkSemiprime(n-i) if(value1==True and value2==True): print("Yes") c=1 break; if(c==0): print("No")
[ "sagarmk079@gmail.com" ]
sagarmk079@gmail.com
573e195a6ee0cf64d44548b0b3cf38f0233749b1
7c843f80a08db6725fd8d2e85099d9e6c13f6426
/lib/yllibInterface.py
ec7a24ba3216459a602d8f2be161df434745f8a3
[]
no_license
wanfade/scaffolding_Seg
e983c1d1cdd60efcd7d381728c277993a1cf4721
12ba8892eb44d3ce47fa2609973b0510904c4753
refs/heads/master
2023-03-16T05:57:28.808341
2017-11-25T13:53:11
2017-11-25T13:53:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
# -*- coding: utf-8 -*- import sys from os.path import abspath,join,dirname yllibPath = abspath(join(dirname(abspath(__file__)),'./yl')) if yllibPath not in sys.path: sys.path = [yllibPath] + sys.path import tool import ylimg as imglib import ylml as mllib import ylnp as nplib from tool import * from ylimg import * from ylml import * from ylnp import * if __name__ == '__main__': pass
[ "ylxx@live.com" ]
ylxx@live.com
f256f72a4fd3aca0163f277da7fc1482de8abfd9
a14862ce7c4b0adfffe2c136ccd93205e6b4c8a9
/getElementsByID.py
d698baa4813a92abff2b93bcb5c220ab09bd79f7
[]
no_license
Ahmadaj84/GetElementByID-
ab99accdf95fbf3cc43ef39b5319860c210f9f76
e7aa5bea19e2a231d828d70e2a74d04960dfe0aa
refs/heads/main
2023-05-07T03:22:16.798586
2021-05-31T11:13:57
2021-05-31T11:13:57
372,476,766
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
import csv #open the html file as txt f = open ('html.txt', 'r') lst = [] #loop over the html text to get all the element which has and id for l in f: if "id" in l: lst.append(l) #open a new file to write in the ids of the elments with open('out.csv' , 'w', newline = '')as file: writer = csv.writer(file) for i in lst: if "input " in i: #if the line has the word input it will split by " and will the the 5th element as it usualy can be the id print (i.split('"')[5]) #it will write it in the csv file writer.writerow([i.split('"')[5]])
[ "noreply@github.com" ]
Ahmadaj84.noreply@github.com
b6b30a5211de514ccc29a84165549898bf818ab2
080c13cd91a073457bd9eddc2a3d13fc2e0e56ae
/GIT-USERS/TOM2/cs41long_lambda_mud_server/adv_project/settings.py
262f1bf5e8db671d85bf94889ff91cb1a1be8b13
[]
no_license
Portfolio-Projects42/UsefulResourceRepo2.0
1dccc8961a09347f124d3ed7c27c6d73b9806189
75b1e23c757845b5f1894ebe53551a1cf759c6a3
refs/heads/master
2023-08-04T12:23:48.862451
2021-09-15T12:51:35
2021-09-15T12:51:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,698
py
""" Django settings for adv_project project. Generated by 'django-admin startproject' using Django 2.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os from decouple import config # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', cast=bool) ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'adventure', 'api', 'corsheaders', 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'django.contrib.sites', 'allauth', 'allauth.account', 'rest_auth.registration', ] EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' SITE_ID = 1 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', ] ROOT_URLCONF = 'adv_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'adv_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } # DATABASES = {} import dj_database_url # DATABASES['default'] = dj_database_url.config(default=config('DATABASE_URL'), conn_max_age=600) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } db_from_env = dj_database_url.config(conn_max_age=500) # DATABASES['default'].update(db_from_env) # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } # DATABASES['default'] = dj_database_url.config(default=config('DATABASE_URL')) # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] from rest_framework.authentication import SessionAuthentication, BasicAuthentication, TokenAuthentication REST_FRAMEWORK = { # 'DEFAULT_PERMISSION_CLASSES': [ # 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly', # ], 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), } CORS_ORIGIN_ALLOW_ALL=True # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' import django_heroku django_heroku.settings(locals())
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
1ae4875a6b7dfa4a2bd80d10ab50d019aef43b4b
63eee042ccdb29c1959fa81e958efe974d14105b
/demo/app.py
cce7b5a882895551644334d3225196d4d64ab8ea
[]
no_license
pycaret/pycaret-demo-td
487a5c5c93204ba06b76a6e7039e8a0a6cbab165
da64d3f62002f702a4f7a200de3995a02e4a3023
refs/heads/master
2022-11-30T02:04:30.320190
2020-07-29T13:46:35
2020-07-29T13:46:35
283,319,671
1
1
null
null
null
null
UTF-8
Python
false
false
1,216
py
from flask import Flask,request, url_for, redirect, render_template, jsonify from pycaret.regression import * import pandas as pd import pickle import numpy as np app = Flask(__name__) model=load_model('deployment_28042020') @app.route('/') def home(): return render_template("home.html") @app.route('/predict',methods=['POST']) def predict(): int_features=[x for x in request.form.values()] final=np.array(int_features) col = ['age', 'sex', 'bmi', 'children', 'smoker', 'region'] data_unseen = pd.DataFrame([final], columns = col) print(int_features) print(final) prediction=predict_model(model, data=data_unseen, round = 0) prediction=int(prediction.Label[0]) return render_template('home.html',pred='Expected Bill will be {}'.format(prediction)) @app.route('/predict_api',methods=['POST']) def predict_api(): ''' For direct API calls trought request ''' data = request.get_json(force=True) data_unseen = pd.DataFrame([data]) prediction = predict_model(model, data=data_unseen) output = prediction.Label[0] return jsonify(output) if __name__ == '__main__': app.run(host='0.0.0.0', debug = True)
[ "noreply@github.com" ]
pycaret.noreply@github.com
8ff3ceae1eb8d3bc91dc5680fc75b817371da33d
e1269d7a1722a2c8900c9459554827759f0817e7
/solution/std_deviation.py
ba7692f4393170a7a27dc4f38f2a237d9d39e64f
[ "MIT" ]
permissive
1701Payal/AsmiClass
e7c108fd6c165c484b0974d28969718e361240e9
024b55bdbc4e9e2d3f15438c5124cff98f63124c
refs/heads/master
2023-04-29T16:28:28.147434
2021-05-22T15:21:00
2021-05-22T15:21:00
369,841,238
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
import math # list of elements to calculate mean import csv with open('data.csv', newline='') as f: reader = csv.reader(f) file_data = list(reader) data = file_data[0] #Step1 # finding mean def mean(data): n= len(data) total =0 for x in data: total += int(x) mean = total / n return mean #Step2& Step3 squared_list= [] for number in data: print(int(number)) a = int(number) - mean(data) a= a**2 squared_list.append(a) #Step4 sum =0 for i in squared_list: sum =sum + i #dividing the sum by the total values #Step5 result = sum/ (len(data)-1) #Step6 # getting the deviation by taking square root of the result std_deviation = math.sqrt(result) print(std_deviation) # print("derived using predefined function ",statistics.stdev(data))
[ "freelance2020project@gmail.com" ]
freelance2020project@gmail.com
dace69fb2b01d9af69f69069555401deba70980e
f32f5e0d4c9523febcf8fed370e583cb18a22fe1
/day_26/coding exercises/exercise 4/main.py
0cabd33a98008270e4053e10c7e0ec3433405be0
[]
no_license
guptaraghav01/100DaysOfCode
3b1cd4aa3e38a787096a705dba4bd1732184fc3b
f6b2e611c02f980116af7107070e6c88267a2ed4
refs/heads/master
2023-04-12T17:49:33.688269
2021-05-11T18:38:31
2021-05-11T18:38:31
345,348,770
1
0
null
null
null
null
UTF-8
Python
false
false
196
py
sentence = "What is the Airspeed Velocity of an Unladen Swallow?" # Don't change code above 👆 # Write your code below: result = {word: len(word) for word in sentence.split()} print(result)
[ "raghavgupta0112@gmail.com" ]
raghavgupta0112@gmail.com
6c60dd674feb3ae9f0e96aa74a816af5e89af811
d66155cd936eb2cc88962756c6acb45a94ed09bc
/_bili_caicai/05特征选择02嵌入法.py
864e6f35ae4183048d4ce8b368a10225732fdd7f
[]
no_license
wangyaochong/learn-python
fdf6b163095bc9fb8701e8414f0b1c02d47aedfb
2d5ee4c01ea01244c9996c938af1e6e9ed69ea03
refs/heads/master
2022-09-09T17:26:54.040111
2020-05-29T11:04:48
2020-05-29T11:04:48
265,125,972
2
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier as RFC from zipfile import ZipFile import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import cross_val_score # 一般优先使用过滤法,嵌入法运行速度比较慢 file = ZipFile('./digit recognizor.zip') f = file.open('digit recognizor.csv') df = pd.read_csv(f) f.close() file.close() df.info() x = df.iloc[:, 1:] y = df.iloc[:, 0] rfc = RFC(n_estimators=10, random_state=0) x_result = SelectFromModel(rfc, threshold=0.005).fit_transform(x, y) print(x_result.shape) # 学习曲线找到最佳的阈值 # threshold = np.linspace(0, rfc.fit(x, y).feature_importances_.max(), 10) #第一次可以直接跑, threshold = np.linspace(0, 0.001, 10) # 然后设置具体参数 score = [] for i in threshold: x_result = SelectFromModel(rfc, threshold=i).fit_transform(x, y) score.append(cross_val_score(rfc, x_result, y, cv=5).mean()) plt.plot(threshold, score) plt.show()
[ "1162025261@qq.com" ]
1162025261@qq.com
c05e4d3a81d0f595ef5688ff14ccf5bbe8773e2b
816fb0dc384216f9bdfcebe59f15f175f1c70e03
/blog/migrations/0001_initial.py
f488b2d76d2ea4c455ca703834adb039ea787b94
[]
no_license
Arton-o/myfirst_project
24414ae359f2cac2a05980eeb5037be27d7c1d1b
4782eb980e1e397ff979f0c79caa0a70a5fb8d39
refs/heads/master
2020-12-13T19:22:19.425509
2020-01-17T08:27:58
2020-01-17T08:27:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
986
py
# Generated by Django 3.0.2 on 2020-01-14 02:05 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "atsumi.19@iamas.ac.jp" ]
atsumi.19@iamas.ac.jp
3d3689106688934bb73954a5bffcf59896666ec8
fd63e5cfc880432d7bdb7c36481266d681539f76
/mix-list/mixlist01.py
49b73e895bda9394f7cbfd5d1b742f37891b73e4
[]
no_license
MasterOlaga/mycode
de8425e5f32affcd803ecb44cb6bdba1f327f774
69f6b8747f1dbc5ae4762a39fb5aaa0b4650ab63
refs/heads/main
2023-04-10T18:57:48.585811
2021-05-04T12:05:11
2021-05-04T12:05:11
361,783,394
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
#!/usr/bin/env python3 my_list = [ "192.168.0.5", 5060, "UP" ] iplist = [ 5060, "80", 55, "10.0.0.1", "10.20.30.1", "ssh" ] print("The first item in the list (IP): " + my_list[0] ) print("The second item in the list (port): " + str(my_list[1]) ) print("The last item in the list (state): " + my_list[2] ) print("IP addresses: " + iplist[3] + ", and " + iplist[4]) print("IP addresses:", iplist[3], ", and", iplist[4]) print(f"IP addresses: {iplist[3]}, and {iplist[4]}")
[ "xcurl2009@hotmail.com" ]
xcurl2009@hotmail.com
93bdceb56925c84adec55189bbf50fec88fccbe7
94d218e6b4cd6a4a426442fd98fc905e9acf5f6e
/myrecommendationsystem/pages/models.py
11fa98f89f6a34cee0a75c7141afd657d6c907f0
[ "MIT" ]
permissive
rukesh-shrestha/Book-Recommendation-System
777c9bf12162b105345ed065bc66fcd162f4f27d
64c9cfafcff978d54abb15ba16001ec18c75e4b8
refs/heads/master
2023-07-21T13:43:48.883356
2023-07-13T07:28:03
2023-07-13T07:28:03
375,590,438
2
0
null
null
null
null
UTF-8
Python
false
false
3,075
py
from django.db import models from django.contrib.auth.models import Permission, User from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models from django.urls import reverse class Book(models.Model): name = models.CharField(blank=False,max_length=100) author = models.CharField(blank=False,max_length=100,default="Mr.Rukesh Shrestha") descriptions = models.TextField(null=False,default="Four teenagers in detention discover an old video game console with a game they’ve never heard of. When they decide to play, they are immediately sucked into the jungle world of Jumanji in the bodies of their avatars (Dwayne Johnson, Jack Black, Kevin Hart, and Karen Gillan). They’ll have to complete the adventure of their lives filled with fun, thrills and danger or be stuck in the game forever!",max_length=500) genre = models.CharField(max_length=50,default="Biography and Memoirs") image = models.ImageField(upload_to='') num_visits = models.IntegerField(default=0) last_visits = models.DateTimeField(blank=True,null=True) def __str__(self): return self.name def get_absolute_url(self): return reverse('detailhome',args=[str(self.id)]) class Myrating(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE) places = models.ForeignKey(Book,on_delete=models.CASCADE) rating = models.IntegerField(default=1,validators=[MaxValueValidator(5),MinValueValidator(0)]) def __str__(self): return str(self.user) # Create your models here. class Contactus(models.Model): name = models.CharField(max_length=50,null=True,blank=False) emails = models.EmailField(max_length=200,null=True,blank=False) subjects = models.CharField(max_length=100,null=True,blank=False) descriptions = models.TextField(max_length=400,null=True,blank=False) class Aboutus(models.Model): descriptions_page = models.TextField(null=False,default="This is the amazing book. You must read it.") descriptions_person = models.TextField(null=False,default="People vary in terms of their physical appearance and personalities, and the words that are used to describe them are just as varied. Some words are better suited to describing the physical appearance of someone, some are best used to describe the person’s style, and others are ideal for describing the person’s character traits.") footerdetail = models.TextField(null=False,default="Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.") quotes = models.TextField(default="Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.") facebook = models.URLField(max_length=500,default="https://www.facebook.com/rukesh.shrestha.94651/") linkedin = models.URLField(max_length=500,default="https://www.linkedin.com/in/rukesh-shrestha-07914b1a3/") instragram = models.URLField(max_length=500,default="https://www.instagram.com/____rukesh____/") image = models.ImageField(upload_to='')
[ "rukesh.shrestha11@gmail.com" ]
rukesh.shrestha11@gmail.com
e2959bbf4b73f8f6af1087ddbe37c105d3ea8bf5
9b066b7c2bc2f59fca3415e867c46a8949f42867
/cci_partner/__openerp__.py
24407d7f005eb6f0df6bfae77e93dd796d9d9948
[]
no_license
OdooPython/OpenERPOdoo
ccaa48666e0ca9690e0a07b2d05728200614136c
85c0936d17854f184b761c03f3b085e4c95566a1
refs/heads/master
2021-05-05T21:30:24.146839
2018-08-17T09:26:11
2018-08-17T09:26:11
115,533,848
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
# -*- coding: utf-8 -*- { 'name': "CCI PARTENAIRE", 'description': """ CCI PARTENAIRE. ======================== Ce module gère les partenaires selon un workflow bien déterminé (brouillon, en attente de validation, validé, refusé). De tel sorte, que l'administrateur a le droit de valider l'ajout des partenaires. """, 'author': "Marwa BEN MESSAOUD & Salwa KSILA & Houssem ABID I-way", "website": "http://www.i-way.tn.com", # Categories can be used to filter modules in modules listing # Check https://github.com/odoo/odoo/blob/master/openerp/addons/base/module/module_data.xml # for the full list 'category': 'Partner', 'version': '0.1', # any module necessary for this one to work correctly 'depends': ['base','sale','mail'], # always loaded 'data': [ 'security/ir.model.access.csv', 'views/res_partner_view.xml', #'secteur_data.xml', 'views/res_partner_workflow.xml', 'views/res_partner_operateur_view.xml', 'views/res_partner_contact_view.xml', #'views/product_view.xml', ], # only loaded in demonstration mode 'demo': [ ], } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ "marwa.benmessaoud@iway-tn.com" ]
marwa.benmessaoud@iway-tn.com
f0201724254415022c8ee3d82158e0094dabfdad
a36a3f4e41cbbe111529921c30b2d75442c7ed64
/TIPS_Data_Analysis/TIPS_Data_Analysis/Leak_Analysis.py
c2433ba0314b59d0062bbe145c5639042009a88d
[ "MIT" ]
permissive
rnsheehan/TIPS_Data_Analysis
47b5f8bf1bb8a945ed702a7ac5e52abc9b1d1862
8909fe9306a1ba57fa42cf2f41b5ed6ecbb60dda
refs/heads/master
2022-08-02T05:14:06.140928
2020-05-25T14:18:06
2020-05-25T14:18:06
266,798,110
0
0
null
null
null
null
UTF-8
Python
false
false
29,087
py
import os import glob import re import sys # access system routines import math import scipy import numpy as np import matplotlib.pyplot as plt import Common import Plotting # variables that tell you what data is in each column CURR_VAL = 0; # column containing current data DFB_VAL = 1; SOA_VAL = 3; EAM_VAL = 5; PWR_VAL = 7; # columns containing measured data DFB_ERR = 2; SOA_ERR = 4; EAM_ERR = 6; PWR_ERR = 8; # columns containing errors in measured data # This module should include methods for reading the leakage analysis data # and plotting the leakage data for various plots # R. Sheehan 7 - 11 - 2017 class sweep_params(object): # class that contains parameters for a sweep # temperature = temperature of device during sweep # EAM_bias = voltage across EAM during sweep # current = current across section of device during sweep, section may be DFB or SOA # sweep_type tells you if sweep is over DFB or SOA section # if sweep_device == DFB: current is SOA current # if sweep_device == SOA: current is DFB current # constructor # define default arguments inside def __init__(self): try: self.temperature = 20.0 # device temperature self.EAM_bias = 0.0 # EAM bias self.static_device_current = 0.0 # current in other section of device self.sweep_device = "" # string that tells you if sweep is over DFB section or SOA section. self.static_device = "" # string that tells you if sweep is over DFB section or SOA section. except TypeError: print("Type Error in Leak_Analysis.sweep_params(object) instantiation") # return a string the describes the class def __str__(self): return self.sweep_device + ", " + self.static_device + " Current = " + str(self.static_device_current) + " (mA), EAM bias = " + str(self.EAM_bias) + " (V)" def read_Leak_data(leak_file, correct_power = True, loud = False): # read the measured leakage data from the file # Data is stored in columns of the form # 0. Current (mA) # 1. V_{DFB} (V) # 2. \DeltaV_{DFB} (V) # 3. V_{SOA} (V) # 4. \Delta V_{SOA} (V) # 5. I_{EAM} (mA) # 6. \Delta I_{EAM} (mA) # 7. P_{out} (dBm) # 8. \Delta P_{out} (dBm) # correct_power decides whether or not to correct the power being read from the file # Due to an oversight the optical power was measured through the 10% arm of the power splitter after it had passed through the VOA # While this will not affect the behaviour of the device it will mean that the measured power is less than it should be. # When plotting the measured power remember to convert it to the 90% value and add 1 dB due to the IL of the VOA. # R. Sheehan 7 - 11 - 2017 try: if glob.glob(leak_file): numbers = Common.extract_values_from_string(leak_file) parameters = sweep_params() parameters.temperature = float(numbers[1]) parameters.EAM_bias = float(numbers[3]) if leak_file.find("DFB") > 0: parameters.static_device_current = float(numbers[2]) # current across DFB section parameters.sweep_device = "SOA"; parameters.static_device = "DFB"; elif leak_file.find("SOA") > 0: parameters.static_device_current = float(numbers[2]) # current across SOA section parameters.sweep_device = "DFB"; parameters.static_device = "SOA"; else: raise Exception delim = '\t' data = Common.read_matrix(leak_file, delim) data = Common.transpose_multi_col(data) if correct_power == True: # adjust the power reading to the 90% value # add insertion loss due to the VOA slope = 1.0038; intercept = 9.4697; # values obtained from fit insertion_loss = 0.8 # insertion loss due to VOA in dB power_column = 7 for i in range(0, len(data[power_column]), 1): data[power_column][i] = insertion_loss + intercept + slope*data[power_column][i] return [parameters, data] else: raise Exception except Exception: print("Error: Leak_Analysis.read_Leak_data") def get_Leak_label(quantity): # return a string to serve as a label on a plot based on the value of quantity # R. Sheehan 8 - 11 - 2017 try: c2 = True if quantity > 0 and quantity < 9 else False if c2: if quantity == 1: return 'DFB Voltage $V_{DFB}$ (V)' elif quantity == 2: return 'DFB Voltage Variation $\Delta V_{DFB}$ (V)' elif quantity == 3: return 'SOA Voltage $V_{SOA}$ (V)' elif quantity == 4: return 'SOA Voltage Variation $\Delta V_{SOA}$ (V)' elif quantity == 5: return 'EAM Current $I_{EAM}$ (mA)' elif quantity == 6: return 'EAM Current Variation $\Delta I_{EAM}$ (mA)' elif quantity == 7: return 'Optical Power $P_{out}$ (dBm)' elif quantity == 8: return 'Optical Power Variation $\Delta P_{out}$ (dBm)' else: raise Exception else: raise Exception except Exception: print("Error: Leak_Analysis.get_Leak_label()") def get_Leak_name(quantity): # return a string to serve as a name for a file containing a plot based on the value of quantity # R. Sheehan 9 - 11 - 2017 try: c2 = True if quantity > 0 and quantity < 9 else False if c2: if quantity == 1: return 'DFB_Voltage' elif quantity == 2: return 'Delta_DFB_Voltage' elif quantity == 3: return 'SOA_Voltage' elif quantity == 4: return 'Delta_SOA_Voltage' elif quantity == 5: return 'EAM_Current' elif quantity == 6: return 'Delta_EAM_Current' elif quantity == 7: return 'Optical_Power' elif quantity == 8: return 'Delta_Optical_Power' else: raise Exception else: raise Exception except Exception: print("Error: Leak_Analysis.get_Leak_label()") def get_Leak_plot_range(quantity): # return a list to serve as a plot range for a plot based on the value of quantity # R. Sheehan 9 - 11 - 2017 try: c2 = True if quantity > 0 and quantity < 9 else False if c2: if quantity == 1: return [0, 180, 0, 2.1] elif quantity == 2: return [0, 180, 1.0e-4, 1.0] elif quantity == 3: return [0, 180, 0, 2.6] elif quantity == 4: return [0, 180, 1.0e-4, 1.0] elif quantity == 5: return [0, 180, -4, 0.0] elif quantity == 6: return [0, 180, 1.0e-6, 1.0] elif quantity == 7: return [0, 180, -90, 0.0] elif quantity == 8: return [0, 180, 0, 0.01] else: raise Exception else: raise Exception except Exception: print("Error: Leak_Analysis.get_Leak_label()") def plot_Leak_quantity(leak_data_1, leak_data_2, quantity, loud = False): # plot a measured quantity from the leakage analysis # sweep_type of each data set has to be the same # R. Sheehan 8 - 11 - 2017 try: c1 = True if leak_data_1[0].sweep_device == leak_data_1[0].sweep_device else False c2 = True if quantity > 0 and quantity < 9 else False c3 = True if leak_data_1[0].static_device_current == leak_data_1[0].static_device_current else False if c1 and c2 and c3: hv_data = []; labels = []; marks = []; hv_data.append([ leak_data_1[1][CURR_VAL], leak_data_1[1][quantity] ] ); marks.append(Plotting.labs_lins[0]); labels.append('$V_{EAM}$ = %(v1)0.2f V'%{ "v1":leak_data_1[0].EAM_bias } ) hv_data.append([leak_data_2[1][CURR_VAL], leak_data_2[1][quantity] ]); marks.append(Plotting.labs_lins[1]); labels.append('$V_{EAM}$ = %(v1)0.2f V'%{"v1":leak_data_2[0].EAM_bias}) arguments = Plotting.plot_arg_multiple() arguments.loud = loud arguments.crv_lab_list = labels arguments.mrk_list = marks arguments.x_label = leak_data_1[0].sweep_device + ' Current (mA)' arguments.y_label = get_Leak_label(quantity) arguments.plt_range = get_Leak_plot_range(quantity) arguments.plt_title = leak_data_1[0].static_device + ' Current = ' + str(leak_data_1[0].static_device_current) + ' (mA)' arguments.fig_name = get_Leak_name(quantity) + '_I' + leak_data_1[0].static_device + '_' + str(leak_data_1[0].static_device_current).replace('.0','') if quantity%2 == 0 and quantity < PWR_ERR: arguments.log_y = True Plotting.plot_multiple_curves(hv_data, arguments) # error in this case is very small, best to do separate analysis on error data #Plotting.plot_multiple_curves_with_errors(hv_data, arguments) del hv_data; del labels; del marks; del arguments; else: raise Exception except Exception: print("Error: Leak_Analysis.plot_Leak_quantity") def SOA_Sweep_Plots(DFB_Current, plot_errors = False, loud = False): # make plots of the data for the SOA Sweep # R. Sheehan 8 - 11 - 2017 try: files = glob.glob("TIPS_1_EAM_Lk_T_20_IDFB_%(v)d_VEAM*"%{"v":DFB_Current}) if files: the_data = [] for f in files: the_data.append( read_Leak_data(f) ) if plot_errors: plot_Leak_quantity(the_data[1], the_data[0], DFB_ERR, loud) plot_Leak_quantity(the_data[1], the_data[0], EAM_ERR, loud) plot_Leak_quantity(the_data[1], the_data[0], PWR_ERR, loud) else: plot_Leak_quantity(the_data[1], the_data[0], DFB_VAL, loud) plot_Leak_quantity(the_data[1], the_data[0], EAM_VAL, loud) plot_Leak_quantity(the_data[1], the_data[0], PWR_VAL, loud) else: raise Exception except Exception: print("Error: Leak_Analysis.SOA_Sweep_Plots") def DFB_Sweep_Plots(SOA_Current, plot_errors = False, loud = False): # make plots of the data for the DFB Sweep # R. Sheehan 8 - 11 - 2017 try: files = glob.glob("TIPS_1_EAM_PC_T_20_ISOA_%(v)d_VEAM*"%{"v":SOA_Current}) if files: the_data = [] for f in files: the_data.append( read_Leak_data(f) ) if plot_errors: plot_Leak_quantity(the_data[1], the_data[0], SOA_ERR, loud) plot_Leak_quantity(the_data[1], the_data[0], EAM_ERR, loud) plot_Leak_quantity(the_data[1], the_data[0], PWR_ERR, loud) else: plot_Leak_quantity(the_data[1], the_data[0], SOA_VAL, loud) plot_Leak_quantity(the_data[1], the_data[0], EAM_VAL, loud) plot_Leak_quantity(the_data[1], the_data[0], PWR_VAL, loud) else: raise Exception except Exception: print("Error: Leak_Analysis.DFB_Sweep_Plots") def Error_Statistics(error_data, drop_terms = 1, neglect_zeroes = False, scale = True, scale_factor = 1000.0): # compute the average value and standard deviation of a set of measured error values # error_data should be input as numpy array # use np.asarray(input) # R. Sheehan 9 - 11 - 2017 # if you want to drop the first element use error_data[1:] # In certain situtations error data may be dominated by zero values, too many zeroes will give an incorrect estimate of mean and std. dev # if neglect_zeroes == True compute mean and std. dev of non-zero error_data only try: if error_data is not None: if neglect_zeroes == False: # compute mean and std. dev using all data in the array average = np.mean(error_data[drop_terms:]) std_dev = np.std(error_data[drop_terms:], ddof = 1) #std_dev = np.max(error_data[drop_terms:]) - np.min(error_data[drop_terms:]) else: # compute mean and std. dev neglecting zero values # use the corrected two-pass formula given in NRinC, sect. 14.1 #first step is to ensure that there are more than one non-zero terms count = 0 for j in range(0, len(error_data), 1): if math.fabs(error_data[j]) > 0.0: count += 1 if count > 1: count1 = count2 = 0 average = std_dev = ep = 0.0; # first pass compute the average for j in range(0, len(error_data), 1): if math.fabs(error_data[j]) > 0.0: average += error_data[j] count1 += 1 average = average/count1 # second pass compute the variance for j in range(0, len(error_data), 1): if math.fabs(error_data[j]) > 0.0: s = error_data[j] - average ep += s std_dev += s**2 # variance is stored in std_dev for now count2 += 1 std_dev = (std_dev - (ep**2/count2))/(count2-1) std_dev = math.sqrt(std_dev) else: # revert to whatever numpy wants to do if there's not enough data points # in fact numpy will just return zero values under the same circumstances so may as well not bother with the numpy call #print("Not enough data points to use corrected two-pass formula\nreverting to numpy" #average = np.mean(error_data[drop_terms:]) #std_dev = np.std(error_data[drop_terms:], ddof = 1) average = std_dev = 0.0 if scale == True: average = scale_factor*average; std_dev = scale_factor*std_dev; return [ average, std_dev ] else: raise Exception except Exception: print("Error: Leak_Analysis.Error_Statistics()") def Print_Error_Analysis(static_device_name, static_device_current): # go through the measured errors for each data set and determine the average measured error # along with std. deviation. # Make a plot of the results # R. Sheehan 9 - 11 - 2017 DATA_HOME = "C:/Users/Robert/Research/EU_TIPS/Data/Exp-2/Leak_SWP/" try: if os.path.isdir(DATA_HOME): os.chdir(DATA_HOME) files = glob.glob("TIPS_1_EAM_*_T_20_I%(v1)s_%(v2)d_VEAM*"%{"v1":static_device_name, "v2":static_device_current}) if files: drop_vals = 1 scale_data = False neglect_zeroes = False scale_factor = 1.0 volt_units = " (uV)" if scale_factor == 1.0e+6 else " (V)" current_units = " (nA)" if scale_factor == 1.0e+6 else " (mA)" for f in files: data = read_Leak_data(f) print(data[0]) print("DFB voltage error: ",Error_Statistics( np.asarray(data[1][2]), drop_vals, neglect_zeroes, scale_data, scale_factor )[0],volt_units) print("SOA voltage error: ",Error_Statistics( np.asarray(data[1][4]), drop_vals, neglect_zeroes, scale_data, scale_factor )[0],volt_units) print("EAM current error: ",Error_Statistics( np.asarray(data[1][6]), drop_vals, neglect_zeroes, scale_data, scale_factor )[0],current_units) print("Optical power error: ",Error_Statistics( np.asarray(data[1][8]), drop_vals, neglect_zeroes, False )[0]," (dBm)\n") del data; else: raise Exception except Exception: print("Error: Leak_Analysis.Print_Error_Analysis()") def Get_Error_Analysis_Data(static_device_name, static_device_current, eam_bias, quantity, remove_zeroes = False, loud = False): # go through the measured errors for each data set and determine the average measured error # along with std. deviation versus the applied current # Make a plot of the results # R. Sheehan 9 - 11 - 2017 DATA_HOME = "C:/Users/Robert/Research/EU_TIPS/Data/Exp-2/Leak_SWP/" try: if os.path.isdir(DATA_HOME): os.chdir(DATA_HOME) c1 = True if quantity > 1 and quantity < 9 else False files = glob.glob("TIPS_1_EAM_*_T_20_I%(v1)s_%(v2)d_VEAM_%(v3)0.2f.txt"%{"v1":static_device_name, "v2":static_device_current, "v3":eam_bias}) if files and c1: drop_vals = 0 ret_data = [] for f in files: data = read_Leak_data(f) dfb_err = Error_Statistics( np.asarray(data[1][quantity]), drop_vals, remove_zeroes, False) # no scaling is being applied when error statistics are computed ret_data.append(data[0].static_device_current); ret_data.append(data[0].temperature); ret_data.append( math.fabs(dfb_err[0]) ); ret_data.append( math.fabs(dfb_err[1]) ); if loud: scale_factor = 1.0e+3 volt_units = " (uV)" if scale_factor == 1.0e+6 else " (mV)" current_units = " (nA)" if scale_factor == 1.0e+6 else " (uA)" print(data[0]) print("DFB voltage error: ",Error_Statistics( np.asarray(data[1][2]), drop_vals, remove_zeroes, True, scale_factor),volt_units) print("SOA voltage error: ",Error_Statistics( np.asarray(data[1][4]), drop_vals, remove_zeroes, True, scale_factor),volt_units) print("EAM current error: ",Error_Statistics( np.asarray(data[1][6]), drop_vals, remove_zeroes, True, scale_factor),current_units) print("Optical power error: ",Error_Statistics( np.asarray(data[1][8]), drop_vals, remove_zeroes, False)," (dBm)\n") del data; return ret_data else: raise Exception except Exception: print("Error: Leak_Analysis.Get_Error_Analysis_Data()") def Gather_Error_Analysis_Data(static_dev_name, eam_bias, quantity, remove_zeroes = False): # gather together all the error analysis data in a format suitable for plotting # this function returns the average error for each static device current # value being computed is the average error over the swept current # R. Sheehan 9 - 11 - 2017 DATA_HOME = "C:/Users/Robert/Research/EU_TIPS/Data/Exp-2/Leak_SWP/" try: if os.path.isdir(DATA_HOME): os.chdir(DATA_HOME) dev_current = [0, 50, 100, 140, 150, 160, 170, 180] error_data = [] for ii in dev_current: data = Get_Error_Analysis_Data(static_dev_name, ii, eam_bias, quantity, remove_zeroes) error_data.append(data); del data; del dev_current; error_data = Common.transpose_multi_col(error_data) return error_data else: raise Exception except Exception: print("Error: Leak_Analysis.Gather_Error_Analysis_Data()") def plot_Error_Analysis_data(swept_device_name, static_device_name, quantity, remove_zeroes = False, loud = False): # make plots of the gathered error analysis data # the error is averaged over all static_device_current values # what is the scaling being applied when the plot is being made? try: VEAM = 0.0 ds1 = Gather_Error_Analysis_Data(static_device_name, VEAM, quantity, remove_zeroes) VEAM = -0.5 ds2 = Gather_Error_Analysis_Data(static_device_name, VEAM, quantity, remove_zeroes) if ds1 is not None and ds2 is not None: hv_data = []; labels = []; marks = []; hv_data.append([ds1[0], ds1[2]]); labels.append('$V_{EAM}$ = 0 (V)'); marks.append(Plotting.labs_pts[0]) hv_data.append([ds2[0], ds2[2]]); labels.append('$V_{EAM}$ = -0.5 (V)'); marks.append(Plotting.labs_pts[1]) arguments = Plotting.plot_arg_multiple() arguments.loud = loud arguments.crv_lab_list = labels; arguments.mrk_list = marks; arguments.x_label = static_device_name + ' Current (mA)' arguments.y_label = get_Leak_label(quantity) #arguments.plt_range = get_Leak_plot_range(quantity) if quantity < PWR_ERR else None arguments.plt_range = get_Leak_plot_range(quantity) arguments.plt_title = 'Average Error while current sweeps across ' + swept_device_name if quantity < PWR_ERR: arguments.log_y = True arguments.fig_name = get_Leak_name(quantity-1) + '_' + swept_device_name + '_Sweep_Error' Plotting.plot_multiple_curves(hv_data, arguments) del ds1; del ds2; del hv_data; del marks; del labels; else: raise Exception except Exception: print("Error: Leak_Analysis.plot_Error_Analysis_data()") def SOA_Sweep_Error_Plots(remove_zeroes = False, loud = False): # Make a plot of the averaged measured error for each measurement # R. Sheehan 15 - 11 - 2017 try: swept_device_name = 'SOA'; static_device_name = 'DFB'; plot_Error_Analysis_data(swept_device_name, static_device_name, DFB_ERR, remove_zeroes, loud) plot_Error_Analysis_data(swept_device_name, static_device_name, SOA_ERR, remove_zeroes, loud) plot_Error_Analysis_data(swept_device_name, static_device_name, EAM_ERR, remove_zeroes, loud) plot_Error_Analysis_data(swept_device_name, static_device_name, PWR_ERR, remove_zeroes, loud) except Exception: print("Error: Leak_Analysis.SOA_Sweep_Error_Plots()") def DFB_Sweep_Error_Plots(remove_zeroes = False, loud = False): # Make a plot of the averaged measured error for each measurement # R. Sheehan 15 - 11 - 2017 try: swept_device_name = 'DFB'; static_device_name = 'SOA'; plot_Error_Analysis_data(swept_device_name,static_device_name, DFB_ERR, remove_zeroes, loud) plot_Error_Analysis_data(swept_device_name,static_device_name, SOA_ERR, remove_zeroes, loud) plot_Error_Analysis_data(swept_device_name,static_device_name, EAM_ERR, remove_zeroes, loud) plot_Error_Analysis_data(swept_device_name,static_device_name, PWR_ERR, remove_zeroes, loud) except Exception: print("Error: Leak_Analysis.SOA_Sweep_Error_Plots()") def run_Leak_sweep_plots_all(error_plots = False): # short script for plotting all measured data Ival = [0, 50, 100, 140, 150, 160, 170, 180] for ii in Ival: SOA_Sweep_Plots(ii,error_plots) DFB_Sweep_Plots(ii,error_plots) def Compare_Higher_Bias(static_device, quantity, loud = False): # compare data measured at higher bias DATA_HOME = "C:/Users/Robert/Research/EU_TIPS/Data/Exp-2/Leak_SWP/Higher_Bias/" try: if os.path.isdir(DATA_HOME): os.chdir(DATA_HOME) files = glob.glob("TIPS_1_EAM*T_20_I%(v1)s*VEAM*"%{"v1":static_device}) if files: for f in files: print(f) else: raise Exception else: raise EnvironmentError except EnvironmentError: print("Error: Leak_Analysis.Compare_Higher_Bias()") print("Cannot find",DATA_HOME) except Exception: print("Error: Leak_Analysis.Compare_Higher_Bias()") def Compare_Higher_Temperature(static_device, eam_bias, loud = False): # compare data measured over higher temperatures # read in data # loop over quantity to make all the necessary plots # power data at T = 25, 30 was collected without the need for correction # R. Sheehan 16 - 11 - 2017 DATA_HOME = "C:/Users/Robert/Research/EU_TIPS/Data/Exp-2/Leak_SWP/Higher_Temperature/" try: if os.path.isdir(DATA_HOME): os.chdir(DATA_HOME) files = glob.glob("TIPS_1_EAM*T*I%(v1)s*VEAM_%(v2)0.2f.txt"%{"v1":static_device, "v2":eam_bias}) if files: # read in all data the_data = [] for i in range(0, len(files), 1): numbers = Common.extract_values_from_string(files[i]) if int(numbers[1]) == 20: correct_power = True else: correct_power = False the_data.append( read_Leak_data(files[i], correct_power) ) del numbers # loop over quantity to make the necessary plots quantity = [DFB_VAL, SOA_VAL, EAM_VAL, PWR_VAL] #eam_str = "%(v2)0.2f"%{"v2":eam_bias} for q in quantity: hv_data = []; labels = []; marks = []; for i in range(0, len(the_data), 1): hv_data.append( [ the_data[i][1][CURR_VAL], the_data[i][1][q] ] ); marks.append(Plotting.labs_lins[i]) labels.append('T = %(v1)0.0f C'%{"v1":the_data[i][0].temperature}) arguments = Plotting.plot_arg_multiple() arguments.loud = loud arguments.crv_lab_list = labels arguments.mrk_list = marks arguments.x_label = the_data[0][0].sweep_device + ' Current (mA)' arguments.y_label = get_Leak_label(q) #arguments.plt_range = get_Leak_plot_range(q) arguments.plt_title = the_data[0][0].static_device + ' Current = ' + str(the_data[0][0].static_device_current) + ' (mA)' arguments.fig_name = get_Leak_name(q) + '_I' + the_data[0][0].static_device + '_' + str(the_data[0][0].static_device_current).replace('.0','') + '_VEAM_' + '%(v2)0.2f'%{"v2":eam_bias} + '.png' #if q%2 == 0 and q < PWR_ERR: arguments.log_y = True Plotting.plot_multiple_curves(hv_data, arguments) del hv_data; del labels; del marks; del the_data; del files; else: raise Exception else: raise EnvironmentError except EnvironmentError: print("Error: Leak_Analysis.Compare_Higher_Temperature()") print("Cannot find",DATA_HOME) except Exception: print("Error: Leak_Analysis.Compare_Higher_Temperature()") def Make_Leak_plots(): # call the functions needed to generate the plots for TIPS Exp 2 # R. Sheehan 30 - 8 - 2017 DATA_HOME = "C:/Users/Robert/Research/EU_TIPS/Data/Exp-2/Leak_SWP/" try: if os.path.isdir(DATA_HOME): os.chdir(DATA_HOME) #ii = 170 #SOA_Sweep_Plots(ii, True, True) #run_Leak_sweep_plots_all(error_plots = False) #static_device_name = 'DFB' #static_device_current = 180 #eam_bias = 0 #quantity = DFB_ERR #loud = True #remove_zeroes = False #Get_Error_Analysis_Data(static_device_name, static_device_current, eam_bias, quantity, remove_zeroes, loud) #remove_zeroes = True #Get_Error_Analysis_Data(static_device_name, static_device_current, eam_bias, quantity, remove_zeroes, loud) #remove_zeroes = True; loud = False #SOA_Sweep_Error_Plots(remove_zeroes, loud) #DFB_Sweep_Error_Plots(remove_zeroes, loud) static_device = 'DFB' quantity = DFB_VAL loud = False #Compare_Higher_Bias(static_device, DFB_VAL, loud) eam_bias = -0.5 Compare_Higher_Temperature(static_device, eam_bias, loud) else: raise EnvironmentError except EnvironmentError: print("Error: Leak_Analysis.Make_Leak_plots()") print("Cannot find",DATA_HOME) except Exception: print("Error: Leak_Analysis.Make_Leak_plots()")
[ "robertnsheehan@gmail.com" ]
robertnsheehan@gmail.com
a1d7168df36367a6a9de58b2eef43b6e2a6c0481
14a58f0c6d0bcfeeb308a8a8719d0e9e728ee48e
/tests/test_custom.py
13238835eb34053c78b53794b33cf1e7e3e11830
[ "MIT" ]
permissive
wesselb/lab
262da5a30c1b3a78e576014d9b752aae52959774
275d041bdd47bbbad1fce5a10bbce0d7beceefdb
refs/heads/master
2023-06-08T11:04:03.523207
2023-05-27T10:15:07
2023-05-27T10:15:07
127,299,861
62
6
MIT
2023-09-01T09:53:02
2018-03-29T14:02:14
Python
UTF-8
Python
false
false
4,677
py
import jax import jax.numpy as jnp import lab as B import numpy as np import pytest import tensorflow as tf import torch from autograd import grad from fdm import check_sensitivity, gradient from lab.custom import ( toeplitz_solve, s_toeplitz_solve, bvn_cdf, s_bvn_cdf, expm, s_expm, logm, s_logm, ) from lab.tensorflow.custom import as_tf from lab.torch.custom import as_torch from plum import isinstance # noinspection PyUnresolvedReferences from .util import approx, check_lazy_shapes, check_function, PSD def test_as_tf(check_lazy_shapes): assert isinstance(as_tf(B.randn()), B.TFNumeric) assert isinstance(as_tf((B.randn(),))[0], B.TFNumeric) def test_as_torch(check_lazy_shapes): assert isinstance(as_torch(B.randn()), B.TorchNumeric) assert isinstance(as_torch((B.randn(),))[0], B.TorchNumeric) def check_grad(f, args, kw_args=None, rtol=1e-8): """Check the gradients of a function. Args: f (function): Function to check gradients of. args (tuple): Arguments to check `f` at. kw_args (tuple, optional): Keyword arguments to check `f` at. Defaults to no keyword arguments. rtol (float, optional): Relative tolerance. Defaults to `1e-8`. """ # Default to no keyword arguments. if kw_args is None: kw_args = {} # Get the associated function in LAB. lab_f = getattr(B, f.__name__) def create_f_i(i, args_): # Create a function that only varies the `i`th argument. def f_i(x): return B.mean(lab_f(*(args_[:i] + (x,) + args_[i + 1 :]), **kw_args)) return f_i # Walk through the arguments. for i in range(len(args)): # Numerically compute gradient. f_i = create_f_i(i, args) numerical_grad = gradient(f_i)(args[i]) # Check AutoGrad gradient. autograd_grad = grad(f_i)(args[i]) approx(numerical_grad, autograd_grad, rtol=rtol) # Check TensorFlow gradient. tf_args = tuple([as_tf(arg) for arg in args]) f_i = tf.function(create_f_i(i, tf_args), autograph=False) with tf.GradientTape() as t: t.watch(tf_args[i]) tf_grad = t.gradient(f_i(tf_args[i]), tf_args[i]).numpy() approx(numerical_grad, tf_grad, rtol=rtol) # Check PyTorch gradient. torch_args = tuple([as_torch(arg, grad=False) for arg in args]) f_i = torch.jit.trace(create_f_i(i, torch_args), torch_args[i]) arg = torch_args[i].requires_grad_(True) f_i(arg).backward() approx(numerical_grad, arg.grad, rtol=rtol) # Check JAX gradient. jax_args = tuple([jnp.asarray(arg) for arg in args]) f_i = create_f_i(i, jax_args) jax_grad = jax.jit(jax.grad(f_i))(jax_args[i]) approx(numerical_grad, jax_grad, rtol=rtol) def test_toeplitz_solve(check_lazy_shapes): check_sensitivity( toeplitz_solve, s_toeplitz_solve, (B.randn(3), B.randn(2), B.randn(3)) ) check_sensitivity( toeplitz_solve, s_toeplitz_solve, (B.randn(3), B.randn(2), B.randn(3, 4)) ) check_grad(toeplitz_solve, (B.randn(3), B.randn(2), B.randn(3))) check_grad(toeplitz_solve, (B.randn(3), B.randn(2), B.randn(3, 4))) def test_bvn_cdf(check_lazy_shapes): check_sensitivity(bvn_cdf, s_bvn_cdf, (B.rand(3), B.rand(3), B.rand(3))) check_grad(bvn_cdf, (B.rand(3), B.rand(3), B.rand(3))) # Check that function runs on both `float32`s and `float64`s. a, b, c = B.rand(3), B.rand(3), B.rand(3) approx( B.bvn_cdf(a, b, c), B.bvn_cdf(B.cast(np.float32, a), B.cast(np.float32, b), B.cast(np.float32, c)), ) # Check that, in JAX, the function check the shape of the inputs. with pytest.raises(ValueError): B.bvn_cdf( B.rand(jnp.float32, 2), B.rand(jnp.float32, 3), B.rand(jnp.float32, 3) ) with pytest.raises(ValueError): B.bvn_cdf( B.rand(jnp.float32, 3), B.rand(jnp.float32, 2), B.rand(jnp.float32, 3) ) with pytest.raises(ValueError): B.bvn_cdf( B.rand(jnp.float32, 3), B.rand(jnp.float32, 3), B.rand(jnp.float32, 2) ) def test_expm(check_lazy_shapes): check_sensitivity(expm, s_expm, (B.randn(3, 3),)) check_grad(expm, (B.randn(3, 3),)) def test_logm_forward(check_lazy_shapes): # This test can be removed once the gradient is implemented and the below test # passes. check_function(B.logm, (PSD(3),)) @pytest.mark.xfail def test_logm(check_lazy_shapes): mat = B.eye(3) + 0.1 * B.randn(3, 3) check_sensitivity(logm, s_logm, (mat,)) check_grad(logm, (mat,))
[ "wessel.p.bruinsma@gmail.com" ]
wessel.p.bruinsma@gmail.com
dec25661ceb49ad799ce51d961b2b3a7d6f6b199
757366e7b025066d04775436c7d3115dc1d95bd2
/modeller/factors/factor_percentage_consecutive_requests.py
6322c0f2a366687b4ec347b01236ebe361d34c77
[]
no_license
ryanchin18/heimdall
1f0ae927dc3fa44074395df0c31f84c461e58f8b
053548da33cd3997101229e0c0a4cd652f60e46b
refs/heads/master
2021-01-23T12:38:00.120467
2016-09-11T04:37:24
2016-09-11T04:37:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,333
py
from modeller.factors import BaseFactor class FactorPercentageConsecutiveRequests(BaseFactor): """ To further elucidate the requester's interaction with a given site we additionally consider how many of the requests made were consecutive as another window onto frequency. """ def __init__(self, session, session_graph, traffic_record): BaseFactor.__init__(self, session, session_graph, traffic_record) self._FACTOR_INDEX = 4 self._FACTOR_KEY = "PercentageConsecutiveRequests" pass def compute(self): """ Compute the Percentage Consecutive Requests Variables Required: * Total number of requests (TR) (Number of edges) * Number of consecutive requests (CR) Calculation: Percentage Consecutive Requests (PCR) = (CR / TR) * 100 Possible Analysis: If the calculated value is close to 100, that implies the requester consecutively requested for a specific resource. """ tr = self._session_graph.graph.num_edges() cr = self._session_graph.get_graph_property('consecutive_requests') pcr = float(cr) / float(tr) * 100 self.append_graph_factor('float', pcr) print "Percentage Consecutive Requests : ", pcr pass pass
[ "ivone.perera@gmail.com" ]
ivone.perera@gmail.com
e0741c9d552f0336469f31757144187784c60621
16bf89ec6848c78f4aad3e87b5e386bb86f92815
/Mypython-code-master/class.py
c128c49809f24aef457bfe26cb8af46defc888df
[]
no_license
95ankitmishra/Program-data_structure
bae865e72800ade5ed99feb516015820ac876805
fc2e9a09c5e382a718b44d9e1ee03cad3442f2f7
refs/heads/master
2020-06-17T22:18:02.785493
2019-07-09T21:00:53
2019-07-09T21:00:53
196,077,979
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
y=10 print("outside function",y) def f1(): global y y=5 ; print("inside function",y) f1() print("outside function",y)
[ "noreply@github.com" ]
95ankitmishra.noreply@github.com
c98cff74e222c45dd648fc96417716977a4dd826
24773154047043586c002d35195b2d5fb345fe02
/oktaduosync/__init__.py
173dc1db4cfd09c3496521ab045922bb4d0bb7f6
[]
no_license
sargun/oktaduosync
2494fd84f7562da1995807874e1fc6eb69c31d61
1ea2408c3a5469e46fd49c3fd9ef2e106090f3b6
refs/heads/master
2018-12-29T22:03:49.851402
2014-11-20T00:54:39
2014-11-20T00:54:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,146
py
import logging import duo, okta logger = logging.getLogger(__name__) class OktaDuoSync(object): def __init__(self, config): self.config = config self.okta = okta.Okta(self.config['okta']['token']) self.duo = duo.Duo(self.config['duo']) def sync(self): logger.info('Beginning user sync') okta_group = self.get_okta_group() okta_users = okta_group.users duo_users = self.get_duo_users() self.sync_users(okta_users, duo_users) def sync_users(self, okta_users, duo_users): okta_user_dict = {} duo_user_dict = {} for i in okta_users: okta_user_dict[i.email] = i for i in duo_users: duo_user_dict[i.email] = i #Users that exist in okta, that don't exist in duo users_to_add = set(okta_user_dict.keys()) - set(duo_user_dict.keys()) #Users to delete users_to_del = set(duo_user_dict.keys()) - set(okta_user_dict.keys()) for key in users_to_add: self.add_user(okta_user_dict[key]) for key in users_to_del: self.del_user(duo_user_dict[key]) def del_user(self, duo_user): logger.info('Deleting user from Duo : %s', duo_user) self.duo.duo.delete_user(duo_user.user_id) logger.info('Success') def add_user(self, okta_user): logger.info('Adding user to Duo: %s', okta_user) user = self.duo.duo.add_user(okta_user.prefix, realname = okta_user.realname, email = okta_user.email) params = {'username': user['username'], 'email': user['email']} self.duo.duo.json_api_call('POST', '/admin/v1/users/enroll', params) logger.info('Success') def get_duo_users(self): return self.duo.get_users() def get_okta_group(self): sync_group = self.config['okta']['group'] groups = self.okta.get_group(q = sync_group) groups = filter((lambda x: x.name == sync_group), groups) if len(groups) == 0: raise Exception('Group: {0} for synchronization not found'.format(sync_group)) elif len(groups) > 1: raise Exception('Too many synchronization groups found') return groups[0]
[ "sargun@sargun.me" ]
sargun@sargun.me
e92b8e4b15c288eff358cd8ca006e1290b4b5e34
36b04c5d9ae181a780d44764dd85bcc784e72101
/cifar10_resnet/ensemble/saved_models/load_model.py
5334b291c6071e015285bbce9ab03b85e6023c65
[]
no_license
chengning-zhang/Ensemble-Method-in-Image-Classification
9783b6b30f3e174fad1504a44cca57093f8c8730
a7c4176334f8e7701fe9cae77fc31b3b6ed0704d
refs/heads/master
2022-12-30T09:07:30.546966
2020-10-21T20:03:51
2020-10-21T20:03:51
112,964,609
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
from keras.models import load_model from resnet import * if __name__ == "__main__": # Training parameters batch_size = 64 epochs = 2 data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy n = 3 # Model version # Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2) version = 1 substract_pixel_mean = True (x_train, y_train), (x_test, y_test), input_shape = prepare_data_for_resnet(substract_pixel_mean) filename = "cifar10_resnet_model.01.h5" model = load_model(filename)
[ "zhang623@wisc.edu" ]
zhang623@wisc.edu
7f4727eec13919575df59195f7ce6f62cde82742
1973098bfe8f7251702ba7b9b922152ee50a3f40
/mysite/mysite/settings.py
c6e9f7c06409ba4ddc23d259c89f0429d9bc9ecf
[]
no_license
eunsong8784/my-first-blog
3e0dd043bfc58b9534b6d67f9e450ab2c821c8c1
3af4621d719d57e3ca52279efa111dbfeb348792
refs/heads/master
2023-04-08T20:32:52.516410
2021-04-22T07:20:47
2021-04-22T07:20:47
359,710,129
0
0
null
null
null
null
UTF-8
Python
false
false
3,433
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-bz%*fccij7l1b+#q1$dnl^=(j&3k&2wrc$ppn^e2sf(!8-m@^g' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'blog.apps.BlogConfig', 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': str(BASE_DIR / 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'ko' TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR / "static", ] STATIC_ROOT = str(BASE_DIR / 'db.sqlite3') # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "sh1997@snu.ac.kr" ]
sh1997@snu.ac.kr
3fabae89d8e5b8b4ba507cdc9d0fcfd6a3198290
a6d966f362b5add0faabc0aaab1b6b6464307338
/ResNet/resnet.py
8298b08e18b8877e6b9f027b68f4022da0dabe03
[]
no_license
jusepv/paper_implementation
772ed1d6e8353bd72c3abc3a0d13aee298dffe64
edd9b686866bde71be77786bff2f2e11f66603a2
refs/heads/main
2023-03-29T18:01:25.825261
2021-03-26T11:00:52
2021-03-26T11:00:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,495
py
import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import argparse import numpy as np from . import block class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False): super(ResNet, self).__init__() self.inplanes = 64 #inputs = 64x224x224 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) #outputs.shape = 64x112x112 self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) #inputs = 64x112x112 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) #outputs = 64x56x56 self.layer1 = self._make_layer(block, 64, layer[0]) self.layer2 = self._make_layer(block, 128, layer[1], stride=2) self.layer3 = self._make_layer(block, 256, layer[2], stride=2) self.layer4 = self._make_layer(block, 512, layer[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.fc = nn.Linear(512*block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, BottleNeck): nn.init.constant_(m.bn3.weight,0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) #self._make_layer(bottleneck, 64,3) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), #conv1x1(64,256,1) nn.BatchNorm2d(planes * block.expansion) #batchnorm2d(256) ) #downsample -> channel을 맞추기 위해 layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): #for _ in range(1, 3): layers.append(block(self.inplanes, planes)) #2번 return nn.Sequential(*layers) #self.layer1 = [ # Bottleneck(64,64,1,downsample) # Bottleneck(256,64) #Bottlenect(256,64) ] def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(pretrained=False, **kwargs): model = ResNet(BasicBlock, [2,2,2,2], **kwargs) # 2*(2+2+2+2) + 1(conv1) + 1(fc) = 16+ 2 return model def resnet50(pretrained=False, **kwargs): model = ResNet(BottleNeck, [3,4,6,3], **kwargs) # 3 * (3+4+6+3) + 1(conv1) + 1(fc) = 50 return model def resnet152(pretrained=False, **kwargs): model ResNet(BottleNeck, [3,8,36,3], **kwargs) # 3 * (3+8+36+3) + 2 = 152
[ "jinju4948@naver.com" ]
jinju4948@naver.com
290390532c65f675cb7a528a1cbd51f63a642701
a0c50f2da1fb49dc69337dbc059e0ed6d0a49ef7
/server/dataserver.py
ec818d7e0d72ce884959a40bab1c801583439fbf
[ "MIT" ]
permissive
adminlove520/product-recommend
4d4cf87ace9261bfec741a60f59f3c3fb61d5ad2
4ac0c855c960ce7f9b8dbc316f184a3810297a84
refs/heads/master
2022-04-08T12:41:38.852850
2020-03-13T10:49:24
2020-03-13T10:49:24
256,377,399
1
0
MIT
2020-04-17T02:08:16
2020-04-17T02:08:16
null
UTF-8
Python
false
false
1,121
py
from aliyun.log import LogClient from aliyun.log import GetLogsRequest import pymysql class ossdataserver: def __init__(self,endpoint,accessKeyId,accessKey,basename,tablename): self.endpoint = endpoint #http://oss-cn-hangzhou.aliyuncs.com # 用户访问秘钥对中的 AccessKeyId。 self.accessKeyId = accessKeyId # 用户访问秘钥对中的 AccessKeySecret。 self.accessKey = accessKey self.basename = basename self.tablename = tablename self.client = LogClient(self.endpoint, self.accessKeyId, self.accessKey) def close(self): #self.client.shutdown() pass # def database(self,basename,tablename): # self.basename=basename # self.tablename=tablename class mysqlserver: def __init__(self,host,port,user,passwd,db): self.host=host self.port=port self.user=user self.passwd=passwd self.db=db self.conn = pymysql.connect(self.host,port=self.port,user=self.user,passwd=self.passwd,db=self.db) def close(self): self.conn.close()
[ "2282420654@qq.com" ]
2282420654@qq.com
41af35eaeb4c92034c8a2580cbad30a47d7bb7ec
689fcced10cc920c263e4d85bed5a51f85c76abb
/aragwas_server/gwasdb/migrations/0001_initial.py
4899285d5b7e268d3c50007dfc43290786692c94
[ "MIT" ]
permissive
1001genomes/AraGWAS
ddb10ea3e476c8cee31e75f9db6dc2bd79f7f487
be02c0480bf18228b07853740e63f249fe31d7e5
refs/heads/master
2022-12-29T00:12:59.936918
2020-08-31T16:32:04
2020-08-31T16:32:04
82,693,787
13
9
MIT
2022-12-06T20:20:08
2017-02-21T15:11:31
Vue
UTF-8
Python
false
false
3,971
py
# -*- coding: utf-8 -*- # Generated by Django 1.11b1 on 2017-02-27 15:30 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Association', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('maf', models.FloatField()), ('pvalue', models.FloatField()), ('beta', models.FloatField(blank=True, null=True)), ('odds_ratio', models.FloatField(blank=True, null=True)), ('confidence_interval', models.CharField(blank=True, max_length=255, null=True)), ], ), migrations.CreateModel( name='Gene', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('chromosome', models.IntegerField()), ('start_position', models.IntegerField()), ('end_position', models.IntegerField()), ('description', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Genotype', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('version', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='Phenotype', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('date', models.DateTimeField(blank=True, null=True)), ('arapheno_link', models.URLField(blank=True, null=True)), ], ), migrations.CreateModel( name='SNP', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('chromosome', models.IntegerField()), ('position', models.IntegerField()), ('annotation', models.CharField(max_length=255)), ('gene', models.ManyToManyField(to='gwasdb.Gene')), ('genotype', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='gwasdb.Genotype')), ], ), migrations.CreateModel( name='Study', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('transformation', models.CharField(max_length=255)), ('method', models.CharField(max_length=255)), ('publications', models.URLField(blank=True, null=True)), ('easygwas_link', models.URLField(blank=True, null=True)), ('genotype', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='gwasdb.Genotype')), ], ), migrations.AddField( model_name='association', name='snp', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='gwasdb.SNP'), ), migrations.AddField( model_name='association', name='study', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='gwasdb.Study'), ), ]
[ "timeu@users.noreply.github.com" ]
timeu@users.noreply.github.com
bab3187381fd4b1c1d2fdf5633a0a4cd53bd72b3
ad2a685b28cd62b4ecb807f5eef1bd048d2c1821
/test/model/test_demo.py
5b0620da882de1a2e46bdd015438f614d732a798
[]
no_license
InternetDataMiningLaboratory/qianfu
1657e5f721d74767bbef7ac84e9f54ba3ff5d762
9b4e653cfa7b1da98e8ffb5c76a0496dc75c6ef0
refs/heads/master
2021-01-10T17:55:20.147478
2016-03-22T09:34:54
2016-03-22T09:34:54
52,708,996
0
2
null
2016-03-22T09:34:54
2016-02-28T06:54:33
Python
UTF-8
Python
false
false
651
py
# -*- coding: utf-8 -*- # # Author: jimin.huang # ''' The test of ``DemoObject`` ''' from test.test_database import TestModel from nose.tools import assert_equal class TestDemoObject(TestModel): ''' The test class of ``DemoObject`` which inherits from ``TestModel`` ''' def test_get_object_by_id(self): ''' The test of ``DemoObject.get_object_by_id`` ''' from model.demo_action import DemoObject # Mock the return value of ``connection.get`` self.mock_db.get.return_value = 'test' # Assert the result assert_equal(DemoObject.get_object_by_id(1), 'test')
[ "windworship2@163.com" ]
windworship2@163.com
15bbb9337422a280ee086239d4255805318811aa
fc6bc070063c19298d0406d6d850345be6c373e8
/source.py
462841c4fa6cd44b1baca93dbf17408efa6be0c2
[]
no_license
malarjeyanthi/python-programming
f46808aa27f72d1cd59ee636cf5cfc0389395f8b
61c2bb227121eda9842e0c5b0320beb47c88ef1f
refs/heads/master
2020-07-12T00:27:26.162568
2019-12-09T18:27:31
2019-12-09T18:27:31
204,675,032
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
print("user details") a=input("enter name:") b=int(input("enter phone:")) source=int(input("enter the source:")) destination=int(input("enter the destination")) if source<0 or destination<0: print("give valid number") exit() elif source==0 or destination==0: print("source and destination are not valid") exit() else: dis=abs(destination-source) print("1.car\n 2.bike\n 3.bus\n") select=input() if select=="1.car": x=dis*4 print(x) elif select=="2.bike": x=dis*3 print(x) elif select=="3.bus": x=dis*4 print(x) else: print("invalid") print(a,'\n',b,'\n',source,'\n',des,'\n',dis,'\n',x)
[ "noreply@github.com" ]
malarjeyanthi.noreply@github.com
2d73c2e24886dc741ce1d0a7e7c2efb1f6f6cda2
0e383ccac5fdf21dc5059502b9aae26412fd6a88
/shared_lib/readers.py
3ce6f7460240524ae740f15057482645e5bbafea
[ "MIT" ]
permissive
jimsrc/seatos
63c8ad99f2b5d4ae5f203cdc8f8e061948f257f4
e775dba1a2a96ff44b837cf8d85101ccfef302b1
refs/heads/master
2021-01-02T08:38:51.349670
2017-09-01T01:59:35
2017-09-01T01:59:35
99,040,968
0
1
null
2017-09-01T01:59:36
2017-08-01T20:33:55
Python
UTF-8
Python
false
false
23,271
py
#!/usr/bin/env ipython # -*- coding: utf-8 -*- from scipy.io.netcdf import netcdf_file import numpy as np from numpy.linalg import norm from datetime import datetime, timedelta from h5py import File as h5 import os, sys, h5py, argparse #--- shared libs from shared.ShiftTimes import ShiftCorrection, ShiftDts import shared.console_colors as ccl from shared.shared_funcs import nans, My2DArray, selecc_window_ii import shared.shared_funcs as sf #+++++++++++++++++++++++++++++++++++++ #---- auxiliary functions for the #---- data-handlers below #+++++++++++++++++++++++++++++++++++++ def calc_beta(Temp, Pcc, B): """ Agarramos la definicion de OMNI, de: http://omniweb.gsfc.nasa.gov/ftpbrowser/magnetopause/Reference.html http://pamela.roma2.infn.it/index.php Beta = [(4.16*10**-5 * Tp) + 5.34] * Np/B**2 (B in nT) """ beta = ((4.16*10**-5 * Temp) + 5.34) * Pcc/B**2 return beta def dates_from_omni(t): time = [] n = len(t) for i in range(n): yyyy = t[i][0] mm = t[i][1] dd = t[i][2] HH = t[i][3] MM = t[i][4] SS = t[i][5] uSS = t[i][6] time += [datetime(yyyy, mm, dd, HH, MM, SS, uSS)] return time def date_to_utc(fecha): utc = datetime(1970, 1, 1, 0, 0, 0, 0) sec_utc = (fecha - utc).total_seconds() return sec_utc def utc_from_omni(file): t = np.array(file.variables['time'].data) dates = dates_from_omni(t) n = len(dates) time = np.zeros(n) for i in range(n): time[i] = date_to_utc(dates[i]) return time def read_hsts_data(fname, typic, ch_Eds): """ code adapted from ...ch_Eds_smoo2.py """ f = h5(fname, 'r') # initial date datestr = f['date_ini'].value yyyy, mm, dd = map(int, datestr.split('-')) INI_DATE = datetime(yyyy, mm, dd) # final date datestr = f['date_end'].value yyyy, mm, dd = map(int, datestr.split('-')) END_DATE = datetime(yyyy, mm, dd) date = INI_DATE tt, rr = [], [] ntot, nt = 0, 0 while date < END_DATE: yyyy, mm, dd = date.year, date.month, date.day path = '%04d/%02d/%02d' % (yyyy, mm, dd) try: dummy = f[path] # test if this exists! except: date += timedelta(days=1) # next day... continue ntanks = f['%s/tanks'%path][...] cc = ntanks>150. ncc = cc.nonzero()[0].size if ncc>1: #mas de un dato tiene >150 tanques time = f['%s/t_utc'%path][...] # utc secs cts, typ = np.zeros(96, dtype=np.float64), 0.0 for i in ch_Eds: Ed = i*20.+10. cts += f['%s/cts_temp-corr_%04dMeV'%(path,Ed)][...] typ += typic[i] # escalar cts_norm = cts/typ #aux = np.nanmean(cts_norm[cc]) tt += [ time[cc] ] rr += [ cts_norm[cc] ] ntot += 1 # files read ok nt += ncc # total nmbr ok elements date += timedelta(days=1) # next day... #--- converting tt, rr to 1D-numpy.arrays t, r = nans(nt), nans(nt) ini, end = 0, 0 for i in range(ntot): ni = len(tt[i]) t[ini:ini+ni] = tt[i] r[ini:ini+ni] = rr[i] ini += ni f.close() return t, r class _read_auger_scals(object): """ reads different versions of corrected-scalers """ def __init__(self, fname_inp, data_name): self.fname_inp = fname_inp self.data_name = data_name def read(self): with h5py.File(self.fname_inp,'r') as f: if 'auger' in f.keys(): return self.read_i() elif 't_utc' in f.keys(): return self.read_ii() else: raise SystemExit('\ ---> no reader setup for this version scaler file!\ ') def read_i(self): """ read first version of processed corrected-scalers. """ f5 = h5py.File(self.fname_inp, 'r') t_utc = f5['auger/time_seg_utc'][...].copy() #data_murdo[:,0] CRs = f5['auger/sc_wAoP_wPres'][...].copy() #data_murdo[:,1] print " -------> variables leidas!" VARS = { 'CRs.'+self.data_name : { 'value' : CRs, 'lims' : [-1.0, 1.0], 'label' : 'Auger Scaler rate [%]', }, } return t_utc, VARS def _pair_yyyymm(self, f, kname): years = map(int, f[kname].keys()) ly, lm = [], [] for year in years: months = map(int, f[kname+'/%04d'%year].keys()) nm = len(months) ly += [year]*nm lm += months return zip(ly,lm) def read_ii(self): """ read 2nd version of processed correctd-scalers. We do NOT read the geop-height-corrected scalers, because seems unphysical (i.e. geop height is not a parameter for scalers correction!). So just use pressure-corrected ones. """ f = h5py.File(self.fname_inp,'r') years_and_months = self._pair_yyyymm(f, 't_utc') t_utc = My2DArray((3,), dtype=np.float32) CRs = My2DArray((3,), dtype=np.float32) n = 0 for yyyy, mm in years_and_months: nt = f['t_utc/%04d/%02d'%(yyyy,mm)].size t_utc[n:n+nt] = f['t_utc/%04d/%02d'%(yyyy,mm)][...] CRs[n:n+nt] = f['wAoP_wPrs/%04d/%02d'%(yyyy,mm)][...] n += nt print " --> Auger scalers leidos!" VARS = { 'CRs.'+self.data_name : { 'value' : CRs[:n], 'lims' : [-1.0, 1.0], 'label' : 'Auger Scaler rate [%]', }, } return t_utc[:n], VARS def get_all_bartels(): dates = {} ok2read = False i = 0 for line in open('./bartels.txt','r').readlines(): if line in ('','\n'): continue if line.startswith('Post L1 Insertion'): # cut here ok2read = True continue if line.startswith(' *-Seconds'): ok2read = False continue if ok2read: #print line.split() mm,dd,yyyy = map(int,line.split()[1].split('/')) dates[i] = { 'bartel' : int(line.split()[0]), # Bartels rotation number 'date' : datetime(yyyy, mm, dd), 'ACEepoch' : float(line.split()[4]), } #print yyyy,mm,dd, dates[i]['ACEepoch'] i += 1 return dates def deduce_fnms(bartels, ini, end, subdir=''): fnms = [] n = len(bartels) for i in range(n-1): date = bartels[i]['date'] date_next = bartels[i+1]['date'] if date_next>=ini: #and date<end: bart = bartels[i]['bartel'] # bartel rotation number fnms += [subdir+'/mag_data_1sec_{bart}.hdf'.format(**locals())] if date_next>end: break ## FINISHED! return fnms def calc_rmsB(t_inp, B, width=3600., fgap=0.2, res_o=60): """ * t time in seconds (be UTC-sec, GPS-sec, ACEepoch-sec, etc, doesn't matter). * B vector such that, Bx=B[:,0], By=B[:,1], and Bz=B[:,2]. * width: time size in seconds, of the width on which we'll calculate the rmsB. * fgap: fraction of gaps that we'll tolerate. * res_o: output time resolution. Note that processing 1sec data one by one, y VERY expensive; so an alternative approach that we are using here, is to process one data point every 60 points (i.e. with 1min cadence). NOTE: the `width` must be INTEGER!! """ # to convert numpy warnings to errors #np.seterr(all='raise') t = t_inp.copy() # don't touch input data! c1 = t<t[0] + 0.5*width c2 = t>t[-1] - 0.5*width # initial/final indexes on which we'll work ini, end = c1.nonzero()[0][-1], c2.nonzero()[0][0] # index list t_indexes = np.arange(ini+1, end, res_o) # outputs rmsB = np.zeros(t_indexes.size, dtype=B.dtype) rmsB_para = np.zeros(t_indexes.size, dtype=B.dtype) rmsB_perp = np.zeros(t_indexes.size, dtype=B.dtype) tnew = np.zeros(t_indexes.size, dtype=np.float64) # half the size of width in number of index units w2 = int(0.5*width) for i, i_ in zip(t_indexes, range(t_indexes.size)): tnew[i_] = t[i] ts_ = slice(i-w2,i+w2+1) # time slice ccg = ~np.isnan(B[ts_,0]) # False for gap values # time indexes having good data, in our `ts_` window ti = ts_.start + ccg.nonzero()[0] # {numpy.array} one-dimensional # too many gaps if (~ccg).nonzero()[0].size > (fgap*2*w2): rmsB[i_] = np.nan continue #NOTE: a.std() is equivalent to np.sqrt(((a - a.mean())**2).sum()/a.size) Bo = np.mean(B[ti,:], axis=0) # local Bo in the window `width` dB = B[ti,:] - Bo # deviation of `B` from `Bo` # parallel component of `dB` on `Bo` dB_para = np.dot(dB, Bo/norm(Bo)) # perp component is `dB` minus the parallel part """ NOTE: np.outer() is the "outer product" of two vectors, so that dB_para[0]*Bo/norm(Bo) is the parallel component of `dB` in vector form (recall that `Bo` has a (3,) shape). Then: >>> dB[j,:] - np.outer(dB_para, Bo/norm(Bo))[j,:] is the perpendicular component of `dB` for the time index `j`. """ # rmsB dB_perp = dB - np.outer(dB_para, Bo/norm(Bo)) ms = (np.square(dB)).sum() ms /= 1.*ti.size rmsB[i_] = np.sqrt(ms) # rmsB (parallel) ms = np.square(dB_para).sum()/(1.*ti.size) rmsB_para[i_] = np.sqrt(ms) # rmsB (perpendicular) ms = np.square(dB_perp).sum()/(1.*ti.size) rmsB_perp[i_] = np.sqrt(ms) return tnew, rmsB, rmsB_para, rmsB_perp #+++++++++++++++++++++++++++++++++++++ #----------- data handlers ----------- #+++++++++++++++++++++++++++++++++++++ class _data_ACE(object): """ to read the .nc file of ACE data, built from ASCII versions """ def __init__(self, **kws): self.fname_inp = kws['input'] def load(self, data_name, **kws): f_sc = netcdf_file(self.fname_inp, 'r') print " leyendo tiempo..." t_utc = utc_from_omni(f_sc) print " Ready." tb = kws['tb'] # datetimes of borders of all structures bd = kws['bd'] # borders of the structures we will use #+++++++++++++++++++++++++++++++++++++++++++ B = f_sc.variables['Bmag'].data.copy() Vsw = f_sc.variables['Vp'].data.copy() Temp = f_sc.variables['Tp'].data.copy() Pcc = f_sc.variables['Np'].data.copy() rmsB = f_sc.variables['dBrms'].data.copy() alphar = f_sc.variables['Alpha_ratio'].data.copy() beta = calc_beta(Temp, Pcc, B) rmsBoB = rmsB/B print " -------> variables leidas!" #------------------------------------ VARIABLES VARS = {} # variable, nombre archivo, limite vertical, ylabel VARS['B.'+data_name] = { 'value' : B, 'lims' : [5., 18.], 'label' : 'B [nT]' } VARS['V.'+data_name] = { 'value' : Vsw, 'lims' : [300., 650.], 'label' : 'Vsw [km/s]' } VARS['rmsBoB.'+data_name] = { 'value' : rmsBoB, 'lims' : [0.01, 0.2], 'label' : 'rms($\hat B$/|B|) [1]' } VARS['rmsB.'+data_name] = { 'value' : rmsB, 'lims' : [0.05, 2.0], 'label' : 'rms($\hat B$) [nT]' } VARS['beta.'+data_name] = { 'value' : beta, 'lims' : [0.001, 5.], 'label' : '$\\beta$ [1]' } VARS['Pcc.'+data_name] = { 'value' : Pcc, 'lims' : [2, 17.], 'label' : 'proton density [#/cc]' } VARS['Temp.'+data_name] = { 'value' : Temp, 'lims' : [1e4, 4e5], 'label' : 'Temp [K]' } VARS['AlphaRatio.'+data_name] = { 'value' : alphar, 'lims' : [1e-3, 0.1], 'label' : 'alpha ratio [1]' } #self.nvars = len(VARS.keys()) #--------- #self.aux = aux = {} #aux['SELECC'] = self.SELECC """ NOTE: `bd` and `tb` have been shifted if `self.FITLER['CorrShift']`==True in the events_mgr() class. """ return { 't_utc' : t_utc, 'VARS' : VARS, } def grab_block(self, vname=None, **kws): return selecc_window_ii(**kws) class _data_Auger_BandMuons(object): """ for muon band of Auger charge histograms """ def __init__(self, **kws): self.fname_inp = kws['input'] def load(self, data_name, **kws): """ para leer la data de histogramas Auger """ f5 = h5(self.fname_inp, 'r') ch_Eds = (10, 11, 12, 13) # get the global-average histogram nEd = 50 typic = np.zeros(nEd, dtype=np.float32) for i in range(nEd): Ed = i*20.+10. typic[i] = f5['mean/corr_%04dMeV'%Ed].value t_utc, CRs = read_hsts_data(self.fname_inp, typic, ch_Eds) print " -------> variables leidas!" VARS = {} #[] VARS['CRs.'+data_name] = { 'value' : CRs, 'lims' : [-1.0, 1.0], 'label' : 'Auger (muon band) [%]' } return { 't_utc' : t_utc, 'VARS' : VARS, } def grab_block(self, vname=None, **kws): return selecc_window_ii(**kws) class _data_Auger_BandScals(object): """ for muon band of Auger charge histograms """ def __init__(self, **kws): self.fname_inp = kws['input'] def load(self, data_name, **kws): """ para leer la data de histogramas Auger """ f5 = h5(self.fname_inp, 'r') ch_Eds = (3, 4, 5) # get the global-average histogram nEd = 50 typic = np.zeros(nEd, dtype=np.float32) for i in range(nEd): Ed = i*20.+10. typic[i] = f5['mean/corr_%04dMeV'%Ed].value t_utc, CRs = read_hsts_data(self.fname_inp, typic, ch_Eds) print " -------> variables leidas!" VARS = {} #[] VARS['CRs.'+data_name] = { 'value' : CRs, 'lims' : [-1.0, 1.0], 'label' : 'Auger (muon band) [%]' } return { 't_utc' : t_utc, 'VARS' : VARS, } def grab_block(self, vname=None, **kws): return selecc_window_ii(**kws) class _data_ACE_o7o6(object): def __init__(self, **kws): self.fname_inp = kws['input'] def load(self, data_name, **kws): tb = self.tb nBin = self.nBin bd = self.bd day = 86400. self.f_sc = netcdf_file(self.fname_inp, 'r') print " leyendo tiempo..." t_utc = utc_from_omni(self.f_sc) print " Ready." #++++++++++++++++++++++++++++++++++++++++++++++++ o7o6 = self.f_sc.variables['O7toO6'].data.copy() print " -------> variables leidas!" #----------------------- VARIABLES self.t_utc = t_utc self.VARS = VARS = {} # variable, nombre archivo, limite vertical, ylabel VARS['o7o6'] = { 'value' : o7o6, 'lims' : [0.0, 1.5], 'label' : 'O7/O6 [1]' } return { 't_utc' : t_utc, 'VARS' : VARS, } def grab_block(self, vname=None, **kws): return selecc_window_ii(**kws) class _data_Auger_scals(object): def __init__(self, **kws): self.fname_inp = kws['input'] def load(self, data_name, **kws): """ solo cargamos Auger Scalers """ opt = { 'fname_inp' : self.fname_inp, 'data_name' : data_name, } """ the class `_read_auger_scals` reads both versions of scalers (old & new). """ sc = _read_auger_scals(**opt) t_utc, VARS = sc.read() return { 't_utc' : t_utc, 'VARS' : VARS, } def grab_block(self, vname=None, **kws): return selecc_window_ii(**kws) class _data_McMurdo(object): def __init__(self, **kws): self.fname_inp = kws['input'] def load(self, data_name, **kws): fname_inp = self.fname_inp data_murdo = np.loadtxt(fname_inp) t_utc = t_utc = data_murdo[:,0] CRs = data_murdo[:,1] print " -------> variables leidas!" VARS = {} VARS['CRs.'+data_name] = { 'value' : CRs, 'lims' : [-8.0, 1.0], 'label' : 'mcmurdo rate [%]' } return { 't_utc' : t_utc, 'VARS' : VARS, } def grab_block(self, vname=None, **kws): return selecc_window_ii(**kws) #--- reader for ACE 1seg MAG data class _data_ACE1sec(object): """ the parameters below are for the processing of deduced observables, such as "rmsB". They are used in `self.grab_block()`. """ width = 3600. # [sec] time width of rmsB-calculation fgap = 0.2 # [1] gap-fraction to tolerate res_o = 60 # [sec] output resolution def __init__(self, **kws): self.dir_inp = kws['input'] self.now = None #@profile def load(self, **kws): import cython_wrapper self.cw = cython_wrapper # contains: bartels rotation numbers, ACEepochs, adn datetimes. self.bartels = get_all_bartels() # {dict} self.nbartels = len(self.bartels) self.dname = dname = kws['data_name'] VARS = {} """ the keys if `VARS` will be used to iterate on the possible values of `vname` in `self.grab_block()`. """ VARS['Bmag.'+dname] = { 'value' : None, 'lims' : [5., 18.], 'label' : 'B [nT]', } VARS['rmsB.'+dname] = { 'value' : None, 'lims' : [0.5, 11.], 'label' : 'rms($\hat B$) [nT]', } VARS['rmsB_ratio.'+dname] = { 'value' : None, 'lims' : [0.5, 50.], 'label' : '$\delta B^2_{{\perp}} / \delta B^2_{{\parallel}}$'+\ ' ($\Delta t:$ {dt:2.1f} hr)'.format(dt=self.width/3600.), } return { # this is the period for available data in our input directory #'t_utc' : [883180800, 1468713600], # [utc sec] 't_utc' : [sf.date2utc(self.bartels[0]['date']), sf.date2utc(self.bartels[self.nbartels-1]['date'])], # [utc sec] 'VARS' : VARS, } #@profile def grab_block(self, vname=None, **kws): # alias OneDay = timedelta(days=1) # {timedelta} # time extent of queried data, in terms of the # size of the structure nbef, naft = kws['nwndw'] # range of requested data tini = kws['tini'] - nbef*OneDay # {datetime} tend = kws['tend'] + naft*OneDay # {datetime} # if the bounds of the events are out of the # boundaries of the available data, return error assert self.bartels[0]['date']<=tini and \ self.bartels[self.nbartels-1]['date']>=tend,\ """ [-] ERROR: # no data for this `vname` in # this time window!! --- window of available data: ini: {d_ini} end: {d_end} --- window of requested data: ini: {r_ini} end: {r_end} """.format( r_ini = tini, r_end = tend, d_ini = self.bartels[0]['date'], d_end = self.bartels[self.nbartels-1]['date'], ) # -- deduce fnm_ls subdir = '/media/hdd_extern_hegea/data_ace/mag_data_1sec'.format(**os.environ) fnm_ls = deduce_fnms(self.bartels, tini, tend, subdir) for fnm in fnm_ls: print fnm assert os.path.isfile(fnm) # -- deduce ace_ini, ace_end ace_ini = sf.date2ACEepoch(tini) ace_end = sf.date2ACEepoch(tend) m = self.cw.mag_l2(fnm_ls) # cython function m.indexes_for_period(ace_ini, ace_end) #NOTE: make `copy()` to avoid memory overlapping? (maybe # some weird numpy implementation) t_ace = m.return_var('ACEepoch').copy() # [ACE epoch seconds] varname = vname.replace('.'+self.dname,'') # remove '.ACE1sec' if varname.startswith('rmsB') and self.now!=(tini,tend): """ only do the rms calculation if we didn't for this period (tini,tend) already! """ # deduced quantity Bx = m.return_var('Bgse_x').copy() By = m.return_var('Bgse_y').copy() Bz = m.return_var('Bgse_z').copy() cc = Bx<-900. # True for gaps # fill gaps with NaNs Bx[cc], By[cc], Bz[cc] = np.nan, np.nan, np.nan self.t_out, self.rmsB, self.rmsB_para, self.rmsB_perp = calc_rmsB( t_inp = t_ace, B = np.array([Bx,By,Bz]).T, width = self.width, fgap = self.fgap, res_o = self.res_o, ) """ NOTE: `t_out` is supposed to have a time resolution of `res_o`. This can be tested by printing: >>> print np.unique(t_out[1:]-t_out[:-1]) """ # to avoid doing the calculation for the # next rms quantity, in this same period (tini,tend). self.now = (tini, tend) if varname=='rmsB': t_out = self.t_out var = self.rmsB elif varname=='rmsB_ratio': t_out = self.t_out var = np.square(self.rmsB_perp/self.rmsB_para) else: var = m.return_var(varname).copy() t_out = t_ace #assert len(var)!=1 and var!=-1, ' ## wrong varname!' if type(var)==int: assert var!=-1, " ## error: wrong varname " cc = var<-100. var[cc] = np.nan # put NaN in flags t_utc = t_out + 820454400.0 # [utc sec] ACEepoch -> UTC-sec kws.pop('data') # because its 'data' does not make sense here, and # therefore we can replace it below. return selecc_window_ii( data=[t_utc, var], **kws ) #+++++++++++++++++++++++++++++++++++++ #------------ testing -------------- #+++++++++++++++++++++++++++++++++++++ def main(): ini, end = datetime(2005,1,1), datetime(2005,6,1) bartels = get_all_bartels() if __name__=='__main__': main() #EOF
[ "jimmy.ilws@gmail.com" ]
jimmy.ilws@gmail.com
5155217b001f024d04577a620ef84c24673c7f6a
aac55459f0aa63942c7304a5324f3b7f6fe9874e
/removefiles.py
60c26887603ea894bfbc9dac33148062e5800804
[]
no_license
RkTm100/Remove-files-project
d52b78193a95240cdf8e9a8dbcb631dd45796228
de8d23bb6f3e1a2c5e9a81b9f7f1b5793f553196
refs/heads/main
2023-06-23T02:11:27.466118
2021-07-15T01:56:09
2021-07-15T01:56:09
386,130,243
0
0
null
null
null
null
UTF-8
Python
false
false
1,315
py
import os import shutil import time def main(): deleted_files=0 deleted_folders=0 path="C:\Users\asish\OneDrive\Desktop\backup files for class\backfiles removing folder testing" days=30 seconds=time.time(-days*24*60*60) if os.path.exists(path): for root_folder, folders, files in os.walk(path): if seconds >= get_file_or_folder_age(root_folder): remove_folder(root_folder) deleted_folders+=1 break else: for folder in folders: folder_path=os.path.join(root_folder,folder) if seconds >= get_file_or_folder_age(folder_path): remove_folder(folder_path) deleted_folders+=1 for file in files: file_path=os.path.join(root_folder,file) if seconds >= get_file_or_folder_age(file_path): remove_file(file_path) deleted_files+=1 else: print("there is no files or folders") print(f"total folders deleted: + {deleted_folders}") print(f"total files deleted: + {deleted_files}") main()
[ "noreply@github.com" ]
RkTm100.noreply@github.com
46465500fcd64b9c80c677b23f3c2d5ec50ef1f0
b7e0ea14903ac611413e490c741f5b7e4ffb29df
/MySQL数据库命令.py
d4c6c66dc2a7bd74f2e64fba37b1caaab13b8d63
[]
no_license
pointworld/python
c729d6fc029edf28a3b331adf7de888af0216646
06bee716f2615526757a67dcd35be59abc31ff41
refs/heads/master
2021-07-13T13:14:55.540038
2017-10-09T14:45:50
2017-10-09T14:45:50
103,842,172
0
0
null
null
null
null
UTF-8
Python
false
false
6,636
py
编程常见命令集合 MySQL数据库命令 登录到MySQL mysql -h localhost -u root -p localhost:IP地址; root:用户名; database:数据库名(可以省略,如果有,跟在-p面) 删除数据库: mysqladmin -u root -pwrf956750621 drop awesome 初始化数据库: mysql –u root –p密码 <D:\computer_learning\backup\schema.sql mysql -u root -p 2.mysql -h localhost -u root -p database_name 列出数据库: show databases; 选择数据库: use databases_name; 列出数据表: show tables; 显示表格列的属性: show columns from table_name; describe table_name; 导出整个数据库: mysqldump -u user_name -p database_name > path_file_name 例如:mysqldump -u root -p test_db > d:/test_db.sql 导出一个表: mysqldump -u user_name -p database_name table_name > /tmp/file_name 例如:mysqldump -u root -p test_db table1 > d:/table1.sql 导出一个数据库结构: mysqldump -u user_name -p -d --add-drop-table database_name > file_name 例如:mysqldump -u root -p -d --add-drop-table test_db > test_db.sql 导入数据库: source file_name; 或 mysql -u user_name -p database_name < file_name 例如: source /tmp/bbs.sql; source d:/bbs.sql; mysql -u root -p bbs < "d:/bbs.sql" mysql -u root -p bbs < "/tmp/bbs.sql" 将文本文件导入数据表中(excel与之相同) load data infile "tables.txt" into table table_name; 例如: load data infile "/tmp/bbs.txt" into table bbs; load data infile "/tmp/bbs.xls" into table bbs; load data infile "d:/bbs.txt" into table bbs; load data infile "d:/bbs.xls" into table bbs; 将数据表导出为文本文件(excel与之相同) select * into outfile "path_file_name" from table_name; 例如: select * into outfile "/tmp/bbs.txt" from bbs; select * into outfile "/tmp/bbs.xls" from bbs where id=1; select * into outfile "d:/bbs.txt" from bbs; select * into outfile "d:/bbs.xls" from bbs where id=1; 创建数据库时先判断数据库是否存在: create database if not exists database_name; 例如:create database if not exists bbs 创建数据库: create database database_name; 例如:create database bbs; 删除数据库: 1.drop database database_name; 例如:drop database bbs; 创建数据表: 1.mysql> create table <table_name> ( <column 1 name> <col. 1 type> <col. 1 details>,<column 2 name> <col. 2 type> <col. 2 details>, ...); 例如:create table (id int not null auto_increment primary key,name char(16) not null default "jack",date_year date not null); 删除数据表中数据: delete from table_name; 例如: delete from bbs; delete from bbs where id=2; 删除数据库中的数据表: drop table table_name; 例如: drop table test_db; rm -f database_name/table_name.* (linux下) 例如: rm -rf bbs/accp.* 向数据库中添加数据: insert into table_name set column_name1=value1,column_name2=value2; 例如:insert into bbs set name="jack",date_year="1993-10-01"; insert into table_name values (column1,column2,...); 例如:insert into bbs ("2","jack","1993-10-02") insert into table_name (column_name1,column_name2,...) values (value1,value2); 例如:insert into bbs (name,data_year) values ("jack","1993-10-01"); 查询数据表中的数据: select * from table_name; 例如:select * from bbs where id=1; 修改数据表中的数据: update table_name set col_name=new_value where id=1; 例如:update bbs set name="tom" where name="jack"; 增加一个字段: alter table table_name add column field_name datatype not null default "1"; 例如:alter table bbs add column tel char(16) not null; 增加多个字段:(column可省略不写) alter table table_name add column filed_name1 datatype,add column filed_name2 datatype; 例如:alter table bbs add column tel char(16) not null,add column address text; 删除一个字段: alter table table_name drop field_name; 例如:alter table bbs drop tel; 修改字段的数据类型: alter table table_name modify id int unsigned;//修改列id的类型为int unsigned alter table table_name change id sid int unsigned;//修改列id的名字为sid,而且把属性修改为int unsigned 修改一个字段的默认值: alter table table_name modify column_name datatype not null default ""; 例如:alter table test_db modify name char(16) default not null "yourname"; 对表重新命名: alter table table_name rename as new_table_name; 例如:alter table bbs rename as bbs_table; rename table old_table_name to new_table_name; 例如:rename table test_db to accp; 从已经有的表中复制表的结构: create table table2 select * from table1 where 1<>1; 例如:create table test_db select * from accp where 1<>1; 查询时间: select now(); 查询当前用户: select user(); 查询数据库版本: select version(); 创建索引: alter table table1 add index ind_id(id); create index ind_id on table1(id); create unique index ind_id on table1(id);//建立唯一性索引 删除索引: drop index idx_id on table1; alter table table1 drop index ind_id; 联合字符或者多个列(将id与":"和列name和"="连接) select concat(id,':',name,'=') from table; limit(选出10到20条) select * from bbs order by id limit 9,10; (从查询结果中列出第几到几条的记录) 增加一个管理员账号: grant all on *.* to user@localhost identified by "password"; 创建表是先判断表是否存在 create table if not exists students(……); 复制表: create table table2 select * from table1; 例如:create table test_db select * from accp; 授于用户远程访问mysql的权限 grant all privileges on *.* to "root"@"%" identified by "password" with grant option; 或者是修改mysql数据库中的user表中的host字段 use mysql; select user,host from user; update user set host="%" where user="user_name"; 查看当前状态 show status; 查看当前连接的用户 show processlist; (如果是root用户,则查看全部的线程,得到的用户连接数同show status;里的 Threads_connected值是相同的) qq邮箱授权密码: xgyphxmyyntjbfbg
[ "onerf@sina.com" ]
onerf@sina.com
515ba7852c21cbbd7571153357208c1a9f99f9b1
e82eeedeb4a90ab6faf368da2eb3d9d579b72e2a
/video_uploader/video/migrations/0002_remove_video_name.py
ddda84b01ea94d51244f006bafc32b7955bac575
[]
no_license
anuragregmi/video-uploader-backend
75c69202ad6c3dc4c0552d2414996e0ef1b28964
5d746837a7234c6720e04e46c3ec807fa5fe150d
refs/heads/master
2023-07-05T10:40:13.174805
2021-08-10T07:57:41
2021-08-10T07:57:41
393,454,803
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
# Generated by Django 3.2.5 on 2021-08-06 16:45 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('video', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='video', name='name', ), ]
[ "anuragregmi@protonmail.com" ]
anuragregmi@protonmail.com
2ee77d79324b60b7b8ff9fb60468d0490a613e67
be328c1bc9e185ef378518d3e5a72ca354761235
/rast.py
8526e15b9f5c7c47c82f62c8ad81b4917609e0ef
[]
no_license
gdmike/gdtest
9e38a6461621aa546d7d44bf324f74644b26d1da
40bff4b46092c8df5bfb1e88a1b68288232344ad
refs/heads/master
2020-04-01T12:39:02.226655
2013-08-09T18:44:57
2013-08-09T18:44:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
import sys from math import cos, pi args = sys.argv[1:20] x = [float(i) for i in args] s0 = 0.0 for i in xrange(len(x)): t = x[i] s0 += t*t - 10*cos(2.0 * pi * x[i]) print s0 + len(x)*10
[ "engineering@mikevargas.com" ]
engineering@mikevargas.com
d4cb207b0b113e1652f2c36c3180ac1111e4a42e
5fc359e00cf5e4d4f7aaf8500e3277ee761ed95b
/task1.py
18ad829254c34cba99cc004b930a7c0f465bd980
[]
no_license
sattwik21/spectrum-task-2
753c9923fe7bd2376c258f8d50c28369a3fa7895
abae659d7d6f98271b1e6ad74eed32498efee0ed
refs/heads/master
2022-12-24T04:54:18.468270
2020-10-01T05:14:09
2020-10-01T05:14:09
265,745,250
1
1
null
2020-10-01T05:14:10
2020-05-21T03:27:46
Python
UTF-8
Python
false
false
187
py
def fun1(a,b): def fun2(): s = a+b return s c = fun2() return c + 5 a = int(input("enter value of a:")) b = int(input("enter value of b:")) result = fun1(a,b) print(result)
[ "sattwikpalai21@gmail.com" ]
sattwikpalai21@gmail.com
97b5f0ef79377fda71bc581d5362b3ce878e0112
38ee3fcf01955180881c9b16f2c04bd3367a19f9
/Examples/life.py
ad6c2b7e3d43292c9336a52a03ad90fe15f69c41
[]
no_license
DriesDD/python-workshop
bb0566cb9e89d5e97c4d860e0174653c230fadef
3b62f237838c421da85923ef286fe2cf840a661b
refs/heads/main
2023-01-16T01:50:20.331434
2020-11-24T21:09:30
2020-11-24T21:09:30
315,424,182
0
0
null
null
null
null
UTF-8
Python
false
false
2,068
py
"""Game of Life simulation. Conway's game of life is a classic cellular automation created in 1970 by John Conway. https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life Exercises 1. Can you identify any Still Lifes, Oscillators, or Spaceships? 2. How can you make the simulation faster? Or bigger? 3. How would you modify the initial state? 4. Try changing the rules of life :) 5. Try making it interactive! Make it possible to draw more cells, or pause or speed up the game. """ from random import choice from turtle import * cells = {} def square(x, y, size, name): """Draw square at `(x, y)` with side length `size` and fill color `name`. The square is oriented so the bottom left corner is at (x, y). """ import turtle turtle.up() turtle.goto(x, y) turtle.down() turtle.color(name) turtle.begin_fill() for count in range(4): turtle.forward(size) turtle.left(90) turtle.end_fill() def initialize(): "Randomly initialize the cells." for x in range(-200, 200, 10): for y in range(-200, 200, 10): cells[x, y] = False for x in range(-50, 50, 10): for y in range(-50, 50, 10): cells[x, y] = choice([True, False]) def step(): "Compute one step in the Game of Life." neighbors = {} for x in range(-190, 190, 10): for y in range(-190, 190, 10): count = -cells[x, y] for h in [-10, 0, 10]: for v in [-10, 0, 10]: count += cells[x+h, y+v] neighbors[x, y] = count for cell, count in neighbors.items(): if cells[cell]: if count < 2 or count > 3: cells[cell] = False elif count == 3: cells[cell] = True def draw(): "Draw all the squares." step() clear() for (x, y), alive in cells.items(): color = 'green' if alive else 'black' square(x, y, 10, color) update() ontimer(draw, 100) setup(420, 420, 370, 0) hideturtle() tracer(False) initialize() draw() done()
[ "driesdedecker@gmail.com" ]
driesdedecker@gmail.com
a517580985bfc806ff4b6ef05aadef44df036c49
823ee0f0a4d9902b31d9d5846f6ed0e95126708c
/models.py
d1d67db2408d03d658f95ebf3f421ba16a6aa3a5
[]
no_license
z-cabric/blogz
e10486255b273bf04eae4f280cc6fa0f02343ac4
ab3f167494aefb6a8b4a7e09c15325867a2b2643
refs/heads/master
2023-01-11T14:31:48.714831
2018-02-05T03:50:03
2018-02-05T03:50:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
670
py
from app import db class Blog(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(40)) body = db.Column(db.String(500)) owner_id = db.Column(db.Integer, db.ForeignKey("user.id")) def __init__(self, title, body, owner): self.title = title self.body = body self.owner_id = owner class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(32)) password = db.Column(db.String(32)) blogs = db.relationship("Blog", backref="owner") def __init__(self, username, password): self.username = username self.password = password
[ "cabricz@gmail.com" ]
cabricz@gmail.com
ac96698f9e823501b4e9678648199c29f14f8d32
236c6d7f53d61dfbddefa3b6574f181ccef72e60
/lessons/lesson18/demo/migrations/0001_initial.py
5c3a99d8634bbc9b10b49ec5bf5f502928440c92
[]
no_license
maxchv/LearnPython
94193c9770dc7b788099076316a1dbd6a5112cf4
561f74f39644cd6694ef36869beb7ddb6ff006dc
refs/heads/master
2022-07-07T18:31:02.274159
2022-06-15T15:10:40
2022-06-15T15:10:40
65,457,162
1
7
null
2019-10-23T05:42:30
2016-08-11T09:30:53
Python
UTF-8
Python
false
false
677
py
# Generated by Django 4.0.4 on 2022-05-11 18:48 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Task', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50)), ('description', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ], ), ]
[ "maxshaptala@gmail.com" ]
maxshaptala@gmail.com
36f5343ff6a33617ffdbabae7e6f01da48966d40
a199d70c94ab465da2b4ca504f6fb6d69cf5eba0
/Python/ex9/ex9.py
4b90547461172385bff7ba86a82e48be4413cffa
[]
no_license
robgoyal/LearnCodeTheHardWay
abd4f8665a618589c6bed41eb083d65904b1a857
b67f35060d72abc1b8ca1b258c4962f6c3530d4d
refs/heads/master
2021-01-20T20:21:32.106441
2016-08-08T20:07:02
2016-08-08T20:07:02
61,711,815
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
#!/bin/python2 # Printing, Printing, Printing # Here's some new strange stuff, remember type it exactly. days = "Mon Tue Wed Thu Fri Sat Sun" months = "Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug" print "Here are the days: ", days print "Here are the months: ", months print """ There's something going on here. With the three double-quotes. We'll be able to type as much as we like. Even 4 lines if we want, or 5, or 6. """
[ "robin_goyal@hotmail.com" ]
robin_goyal@hotmail.com
52336540f344c0aeb41dc50f505dcc622075cca4
94ec56a9c81085e04f15382a6d3ba0e8944fe589
/chapter1/month_name.py
65bbacda11490141e8ac4a885f7a3ed5975c5b70
[]
no_license
indraputra147/pythonworkbook
39ccd4bb6b8ee24debed13938c88f119819603b0
af2ed0879234085ef3e2b6fc747f84dee703bc97
refs/heads/master
2022-08-28T18:31:46.151942
2020-05-25T12:04:06
2020-05-25T12:04:06
262,615,066
0
0
null
null
null
null
UTF-8
Python
false
false
547
py
def mn(x): if x == 1: return "January" elif x == 2: return "February" elif x == 3: return "March" elif x == 4: return "April" elif x == 5: return "May" elif x == 6: return "June" elif x == 7: return "July" elif x == 8: return "August" elif x == 9: return "September" elif x == 10: return "October" elif x == 11: return "November" elif x == 12: return "December" else: return "Wrong input!"
[ "indraputra785@gmail.com" ]
indraputra785@gmail.com
eb9c6c4846c223dc0bc16732c3ae5abb061b94d9
e84242b4e00b2afdcda6d9b68292631c3c86d9f1
/hangar_2019/vinogradov.py
bfe7181d8335edf9fb5ed44ce09f9ddd4b9a056b
[]
no_license
Gleb-bit/astrobox-project
ac12b92255febafd196cf2ba717ecd4aa3771fb5
de6a74db001a4d4e9456d8946a741164190b32ae
refs/heads/main
2023-03-18T18:19:32.730946
2021-02-27T15:49:07
2021-03-03T16:06:31
346,435,875
0
0
null
null
null
null
UTF-8
Python
false
false
2,016
py
from astrobox.core import Drone ASTEROIDS_DRONES = {} class VinogradovDrone(Drone): def on_born(self): if len(ASTEROIDS_DRONES) == 0: self._fill_holder() asteroid = self.choose_asteroid() self.move_at(asteroid) def on_stop_at_asteroid(self, asteroid): if not self.mothership.is_full: self.load_from(asteroid) def on_load_complete(self): asteroid = self.choose_asteroid() if not self.is_full and asteroid is not None: self.move_at(asteroid) else: self.move_at(self.my_mothership) def on_stop_at_mothership(self, mothership): self.unload_to(mothership) def on_unload_complete(self): asteroid = self.choose_asteroid() if asteroid is not None: self.move_at(asteroid) def _fill_holder(self): for asteroid in self.asteroids: if asteroid.payload > 0: if asteroid not in ASTEROIDS_DRONES: ASTEROIDS_DRONES[asteroid] = [] def choose_asteroid(self): for aster, drone in ASTEROIDS_DRONES.items(): if drone is self: if aster.is_empty: ASTEROIDS_DRONES.pop(aster) asteroids_params = [asteroid for asteroid in self.asteroids if not asteroid.is_empty] asteroids_params.sort(key=lambda ast: self.distance_to(ast)/ast.payload) if len(asteroids_params) > 0: for sorted_asteroid in asteroids_params: asteroid_drones = ASTEROIDS_DRONES[sorted_asteroid] free_space = [drone.free_space for drone in asteroid_drones if drone != self] free_space.append(self.free_space) free_space_sum = sum(free_space) if sorted_asteroid.payload >= free_space_sum*.8: ASTEROIDS_DRONES[sorted_asteroid].append(self) return sorted_asteroid return asteroids_params[0] drone_class = VinogradovDrone
[ "suguby@gmail.com" ]
suguby@gmail.com
1d75cf8dfda5387bbd92d44b25bf36a51f150889
6dd01979146e130c94cab4326baab54eeb3f3f68
/hangman.py
d65f3b0a1a733b07042e1276e78a61e6940351e7
[]
no_license
harshitanand/6.00.1x-Computer-Programming-Using-Python
0f884ac13ac9e1b1eb2fed2ff125493ad3bfba4f
792c1d4dc7703d25e760dcb47e9004857779ed96
refs/heads/master
2016-09-15T14:32:26.016967
2014-10-29T19:17:27
2014-10-29T19:17:27
25,719,583
1
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
def hangman(secretWord): print 'Welcome to the game, Hangman!', '\nI am thinking of a word that is ' + str(len(secretWord)) + ' letters long.' lettersGuessed = [] win = False miss = 8 while True: print '-------------' if miss == 0: print 'Sorry, you ran out of guesses. The word was ' + secretWord + '.' break; win = isWordGuessed(secretWord, lettersGuessed) if win == True: print 'Congratulations, you won!' break; print 'You have ' + str(miss) + ' guesses left.', '\nAvailable letters: ' + getAvailableLetters(lettersGuessed) guess = raw_input('Please guess a letter: ').lower() if guess in lettersGuessed: print 'Oops! You\'ve already guessed that letter: ', getGuessedWord(secretWord, lettersGuessed) else: lettersGuessed.append(guess) lettersGuessed.sort() if guess not in secretWord: print 'Oops! That letter is not in my word: ', miss -= 1 else: print 'Good guess: ', print getGuessedWord(secretWord, lettersGuessed)
[ "harshitanand94@gmail.com" ]
harshitanand94@gmail.com
0a9b94032f274d1b3137ec9c09acdaf1e39f6998
70a9233ceddcbabe7dcce5484606401e567f6ba9
/message_board/posts/forms.py
a4bc741e35d125f682f3526b1d9fe2622ce38f9f
[ "MIT" ]
permissive
robalford/message_board
e736ef6a4c2a3381ca83d712d62982b1f5a7f60e
744f1f524ee8a60c5b799fc7a9d911818a519bf1
refs/heads/master
2021-08-23T22:04:13.100410
2017-12-06T19:30:02
2017-12-06T19:30:02
111,590,468
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
from django import forms from .models import Post class PostForm(forms.ModelForm): class Meta: model = Post fields = ['post', ] widgets = {'post': forms.TextInput} class LoatheForm(forms.Form): post_id = forms.CharField(widget=forms.HiddenInput)
[ "robertsalford@gmail.com" ]
robertsalford@gmail.com
f7d6c4be894a80d920335e88119b8b8f5cb8e7ba
325bee18d3a8b5de183118d02c480e562f6acba8
/germany/germany_l/germany/ScriptDir/Move_2_Nas.py
ad52465414998306bcd3649c403736db8a51f842
[]
no_license
waynecanfly/spiderItem
fc07af6921493fcfc21437c464c6433d247abad3
1960efaad0d995e83e8cf85e58e1db029e49fa56
refs/heads/master
2022-11-14T16:35:42.855901
2019-10-25T03:43:57
2019-10-25T03:43:57
193,424,274
4
0
null
2022-11-04T19:16:15
2019-06-24T03:00:51
Python
UTF-8
Python
false
false
1,962
py
# -*- coding: utf-8 -*- import pymysql from ftplib import FTP import os class Move2Nas(object): num = 0 def __init__(self): self.conn = pymysql.connect(host="10.100.4.99", port=3306, db="opd_common", user="root", passwd="OPDATA", charset="utf8") self.cursor = self.conn.cursor() def get_fiscal_year(self, file_name): """获取财年""" sql = "select fiscal_year from non_financial_statement_index where report_id=%s" self.cursor.execute(sql, file_name.split(".")[0]) result = self.cursor.fetchone() if result: return str(result[0]) else: sql = "select fiscal_year from financial_statement_index where report_id=%s" self.cursor.execute(sql, file_name.split(".")[0]) result = self.cursor.fetchone() if result: return str(result[0]) else: return "0000" def ftpconnect(self, host, username, password): """建立连接""" ftp = FTP() ftp.connect(host, 21) ftp.login(username, password) print(ftp.getwelcome()) return ftp def uploadfile(self, ftp, remotepath, localpath): """从本地上传文件到FTP""" bufsize = 1024 fp = open(localpath, 'rb') ftp.storbinary('STOR ' + remotepath, fp, bufsize) ftp.set_debuglevel(0) fp.close() def Move2NasMain(self, LocalDir, NasDir): ftp = self.ftpconnect("10.100.4.102", "admin", "originp123") dir_list = os.listdir(LocalDir) for temp in dir_list: fiscal_year = self.get_fiscal_year(temp) try: ftp.mkd(NasDir + fiscal_year) except: pass self.num += 1 self.uploadfile(ftp, NasDir + fiscal_year + "/" + temp, LocalDir + "/" + temp) print("已上传%s个文件到NAS服务器" % self.num) ftp.quit()
[ "1370153124@qq.com" ]
1370153124@qq.com
73e68b63e46a4312ffdc6922e6c83c88b9c0bc31
f9b9b12b8dbe853b9a201cb95cd780916c67901e
/Backend/splitpay/splitpay/asgi.py
edfdbdcbe1f908a3896c4f31208e996264286fee
[ "MIT" ]
permissive
tanmayb104/SplitPay-HCI
d83c5215ddd0e815ee0c40f7166551ac2defcc11
b7a22639670706fb7b173c25a7ebbb84e929cecb
refs/heads/main
2023-07-04T06:03:55.961814
2021-08-05T07:18:49
2021-08-05T07:18:49
373,949,358
3
0
MIT
2021-06-04T20:10:38
2021-06-04T20:10:38
null
UTF-8
Python
false
false
393
py
""" ASGI config for splitpay project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'splitpay.settings') application = get_asgi_application()
[ "tanmaybansal104@gmail.com" ]
tanmaybansal104@gmail.com
dc417bf09f73d438048aee47429084185e48c7c6
68e05d3644962fbde0d5aac4ba0037589da4be8d
/parsr.py
d3b050d630763fa82d554dc332141a0c07318455
[]
no_license
shubhamchdhary/ExampleLanguage
89a00fded24fe01dd4409e153a3834dd5ae67ac6
6281a553ea712968cb8efce0431041588148676d
refs/heads/master
2023-02-02T08:29:43.552479
2020-12-20T07:15:48
2020-12-20T07:15:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,348
py
# This is a parser file. import lexr as lx #Function for addition. def ADD(*args): t = 0 for ii in args: t += ii return t #Function for subtraction. def SUB(*args): t = args[0] for ii in args[1:]: t -= ii return t #Function for division. def DIV(*args): t = args[0] for ii in args[1:]: t /= ii return t #Function for multiplication. def MUL(*args): t = 1 for ii in args: t *= ii return t #Function for defining integer. def INT(args): op = args.replace(' ','') equal_sign = op.find('=') aftr_equal = int(op[equal_sign+1:]) op[0:equal_sign] = aftr_equal #This is Parser. func_vars = ["INT","STR","ADD","SUB","MUL","DIV","PRINT"] t_list = [] #tempVar = [0,1,2,3,4,5,6,7,8,9] def parser(args): tokens = lx.lexer(args) # print(values) if tokens[0] in func_vars: if tokens[0] == 'PRINT': print(tokens[1]) elif tokens[0] != 'PRINT': for ii in tokens[1]: if ii in [str(i) for i in range(0,10)]: operand = int(ii) #t_list = [] t_list.append(operand) # print(t_list) if tokens[0] == 'ADD': print(ADD(*t_list)) t_list.clear() if tokens[0] == 'SUB': print(SUB(*t_list)) t_list.clear() if tokens[0] == 'MUL': print(MUL(*t_list)) t_list.clear() if tokens[0] == 'DIV': print(DIV(*t_list)) t_list.clear() else: print('CommandError : Invalid command.')
[ "shubhamchaudharybrg@gmail.com" ]
shubhamchaudharybrg@gmail.com
89cf0d50fb6e2df3124bee8b77421b3fd186c0fb
3940b4a507789e1fbbaffeb200149aee215f655a
/lc/primes.py
c910b9b14a132ba9a5b1670d224af1c8c2d70824
[]
no_license
akimi-yano/algorithm-practice
15f52022ec79542d218c6f901a54396a62080445
1abc28919abb55b93d3879860ac9c1297d493d09
refs/heads/master
2023-06-11T13:17:56.971791
2023-06-10T05:17:56
2023-06-10T05:17:56
239,395,822
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
def setup(): primes = [] for num in range(2,100000+1): is_prime = True for p in primes: if num%p == 0: is_prime = False break if is_prime: primes.append(num) return primes primes = setup() def prime_factors(num): ans = [] for prime in primes: if num % prime == 0: ans.append(prime) if prime > num ** 0.5: break if len(ans) < 1: return [num] return ans print(prime_factors(4)) print(prime_factors(6)) print(prime_factors(15)) print(prime_factors(35)) print(prime_factors(3*13*29*43*111))
[ "akimi.mimi.yano@gmail.com" ]
akimi.mimi.yano@gmail.com
fc2e147737ded9347e22939f14736a0c9337dd6a
10f29942422d7f3b9899952d446a48069f70b631
/gitpull/apps.py
cb96b7c0cfa4f286774eb0f33f4fd32ef59d1b6f
[]
no_license
manish-eng/pms
dd52a92e29b94fa8044183c8efdc3d7bda4aab0e
741f813f69a2f88699b20b7ec5983accf163e42a
refs/heads/master
2020-09-03T09:45:21.281844
2019-11-15T08:55:40
2019-11-15T08:55:40
219,437,903
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
from django.apps import AppConfig class GitpullConfig(AppConfig): name = 'gitpull'
[ "manish.kumar@digivalet.com" ]
manish.kumar@digivalet.com
10f210817797689493a8e304960d8b07abdc6eb0
7df7952dfb484d8c629a49f89cac181da833bb76
/Ejercicios/TercTrim/Ejercicio7/Colecciones.py
d3f68aaf6d08750b6fc896bed785cd4f776cd540
[ "Apache-2.0" ]
permissive
IhToN/DAW1-PRG
491d7111943116ee5c0e8f00b4017dd28b5fe17f
0fd7943b972a4e2e6293fdd5c539b168a19c0ea5
refs/heads/master
2020-05-30T08:43:20.188261
2017-05-25T07:49:31
2017-05-25T07:49:31
68,364,100
0
1
null
null
null
null
UTF-8
Python
false
false
959
py
from Ejercicios.TercTrim.Ejercicio7 import Clases from Ejercicios.TercTrim.Ejercicio7.ControlBD import ControlBD class ColeccionClientes: def __init__(self): self.cbd = ControlBD() self.clientes = dict() self.cargar_clientes() def obtener_cliente(self, dni): return self.clientes[dni] def cargar_clientes(self): for cliente in self.cbd.obtener_clientes(): ncliente, nombre, telefono, direccion, ciudad = cliente self.clientes[cliente[0]] = Clases.Cliente(ncliente, nombre, telefono, direccion, ciudad) self.cbd.descoenctar() def nuevo_cliente(self, ncliente, nombre, telefono, direccion, ciudad): cliente = Clases.Cliente(ncliente, nombre, telefono, direccion, ciudad) if ncliente not in self.clientes: self.clientes[ncliente] = cliente self.cbd.insertar_cliente(cliente) self.cbd.descoenctar() return cliente
[ "atalgaba@gmail.com" ]
atalgaba@gmail.com
72c760eb56c3884eafcc21d150e1f4c00bf88b25
285e8a59b01b1eed7f647f1c2947ab07d50f1c2e
/mpact/mpact/export_to_CSV.py
116a29ea863056b856c3dd20d8f986bfabac8bb2
[]
no_license
willchenko/mpact
2fb6586b0fefde735fdd03c5052f1027f85d032b
12ad2cc55fe72f111d36106f1f49422168cf2c29
refs/heads/main
2023-04-13T12:29:31.131556
2021-04-26T19:01:47
2021-04-26T19:01:47
360,989,332
0
0
null
null
null
null
UTF-8
Python
false
false
2,649
py
# export dict's as a csv import csv import os def create_new_problem(problem_name,mmdb_path): problem_path = os.path.join(mmdb_path,r"problems",problem_name) os.mkdir(problem_path) os.chdir(problem_path) create_pathway_csv_table() create_reaction_csv_table() create_metabolite_csv_table() return def create_pathway_csv_table(): with open('pathway_table.csv','w',newline='') as file: writer = csv.writer(file) writer.writerow(['id','name','rxns','product_id','product_tags','precursor_ids','litref','notes']) return def create_reaction_csv_table(): with open('reaction_table.csv','w',newline='') as file: writer = csv.writer(file) writer.writerow(['id','name','rxn_str','kegg_id','bigg_id','ec_number','notes']) return def create_metabolite_csv_table(): with open('metabolite_table.csv','w',newline='') as file: writer = csv.writer(file) writer.writerow(['id','name','formula','charge','kegg_id','bigg_id','notes']) return def add_to_pathway_csv_table(problem_name,pathway_dict, mmdb_path): problem_path = os.path.join(mmdb_path,r"problems",problem_name) os.chdir(problem_path) for path in pathway_dict['pathways']: with open('pathway_table.csv','a',newline='') as file: writer = csv.writer(file) writer.writerow([pathway_dict[path]['id'],pathway_dict[path]['name'],pathway_dict[path]['rxns'],pathway_dict[path]['product_id'][:-2],'',pathway_dict[path]['precursor_ids'][:-2],'','']) return def add_to_reaction_csv_table(problem_name,reaction_dict, mmdb_path): problem_path = os.path.join(mmdb_path,r"problems",problem_name) os.chdir(problem_path) for rxn in reaction_dict['reactions']: with open('reaction_table.csv','a',newline='') as file: writer = csv.writer(file) writer.writerow([reaction_dict[rxn]['bigg_rxn'],reaction_dict[rxn]['bigg_name'],reaction_dict[rxn]['bigg_string'],reaction_dict[rxn]['kegg_rxn'],reaction_dict[rxn]['bigg_rxn'],'','']) return def add_to_metabolite_csv_table(problem_name,metabolite_dict, mmdb_path): problem_path = os.path.join(mmdb_path,r"problems",problem_name) os.chdir(problem_path) with open('metabolite_table.csv','a',newline='') as file: writer = csv.writer(file) for met in metabolite_dict['metabolites']: writer.writerow([metabolite_dict[met]['bigg_id'][:-2],met,metabolite_dict[met]['formula'],metabolite_dict[met]['charge'],metabolite_dict[met]['kegg_id'],metabolite_dict[met]['bigg_id'],'']) return
[ "noreply@github.com" ]
willchenko.noreply@github.com
bb8fa43a7bfe9505237f700a8ee96895d2c4759d
fdd82539504bef18dac31be6cc5ac4c322a54e53
/Validating_Postal_Codes.py
a87c2f0b52b1cdd693769ebb3250a3d80f941b00
[]
no_license
the-preeti-singh/PythonWithHackerrank
0c8521b7a091e1aba12c33412e5ef15727209887
fb606ffd712eefde69669eec38289ab0741f1e8b
refs/heads/master
2018-10-21T04:12:52.262321
2018-08-03T17:07:10
2018-08-03T17:07:10
119,407,106
0
0
null
null
null
null
UTF-8
Python
false
false
112
py
import re P = raw_input() print len(re.findall(r'(?=(\d)\d\1)',P)) < 2 and bool(re.match(r'^[1-9][0-9]{5}$',P))
[ "noreply@github.com" ]
the-preeti-singh.noreply@github.com
63a59f8b9288d2e727ad38525c0981576555d3a4
0779a098cbd060a35143390afa171225f2974fef
/bin/hateno-update
1d57d71adcb3121a80df70bf6c631c6b6f4de0fa
[ "MIT" ]
permissive
JeremyHeleine/Hateno
14943d9d5017bedd05c057b1e08975e8f08ed912
0a5e4068b69b871df6069a7737fb15d670ff37de
refs/heads/master
2022-11-08T09:31:14.324035
2021-08-22T20:47:26
2021-08-22T20:47:26
249,705,288
0
1
MIT
2022-10-17T09:35:06
2020-03-24T12:42:28
Python
UTF-8
Python
false
false
977
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' This script uses the Manager class to update a simulations folder. ''' import argparse from hateno.folder import Folder from hateno.manager import Manager from hateno.ui import UI from hateno.utils import utils def addArguments(parser): pass def main(args): folder = utils.findFolder() if folder is None: print('No Hateno folder found') return with Manager(folder) as manager: n_simulations = manager.getSimulationsNumber() if n_simulations == 0: print('This folder is empty.') return ui = UI() infos_line = ui.addTextLine('Updating the simulations list…') progress_bar = ui.addProgressBar(n_simulations) manager.update(callback = progress_bar.update) ui.removeItem(progress_bar) infos_line.text = 'Simulations list updated' if __name__ == '__main__': parser = argparse.ArgumentParser(description = 'Update a simulations folder.') addArguments(parser) main(parser.parse_args())
[ "jeremy.heleine@gmail.com" ]
jeremy.heleine@gmail.com
0f049c3cb4578e72deb75294061f8abf410f3f3c
879f4ef926cbcc7dc8ee6625b63fd9a4635539fb
/models/helper.py
c83b717f71d6b4a7cc108e05b18bde472add5345
[]
no_license
KrakenCode/PyMarket
758138e18a65b5f043557e2cce9b28cd4f6b305f
572d4fa59e5c593eea333e9be35acd76a34dc749
refs/heads/master
2020-03-17T15:42:37.858615
2018-05-03T00:07:49
2018-05-03T00:07:49
133,721,008
1
0
null
null
null
null
UTF-8
Python
false
false
896
py
from models.user import User from models.product import Product from models.customer import Customer from models.address import Address from models.creditcard import CreditCard from models.shoppingcart import ShoppingCart from models.cartitem import CartItem from models.product import Product from models.productbatch import ProductBatch from models.purchaseorder import PurchaseOrder from models.incomingtransaction import IncomingTransaction from models.outgoingtransaction import OutgoingTransaction model_classes = { 'User': User, 'Product': Product, 'Customer': Customer, 'Address': Address, 'CreditCard': CreditCard, 'ShoppingCart': ShoppingCart, 'CartItem': CartItem, 'Product': Product, 'ProductBatch': ProductBatch, 'PurchaseOrder': PurchaseOrder, 'IncomingTransaction': IncomingTransaction, 'OutgoingTransaction': OutgoingTransaction }
[ "daltonsumrall@gmail.com" ]
daltonsumrall@gmail.com
a4469bce9b75969f349a26f3a6ebba64c8c31cb8
deeeeb5f90a99bd3c071b42e9b87a78e526fe837
/demo_test/demo_test/settings.py
a9eac1c3b9509a91104fb972b4009c4f1915a663
[]
no_license
Rounak21/Demo_serializer_test
c4e48adc6db602c6353fe50a735283ff0062fd38
bb389d2ec947333ba9ae0f6863d1dd9f6648f121
refs/heads/master
2022-11-10T06:41:21.892828
2020-06-21T10:39:11
2020-06-21T10:39:11
273,846,880
0
0
null
null
null
null
UTF-8
Python
false
false
3,142
py
""" Django settings for demo_test project. Generated by 'django-admin startproject' using Django 3.0.7. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '+zhh%*3#l&su=g_0s^um3dg3gsokpa@e2h1rv*)khb+tq81z94' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'demo_serializer', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'demo_test.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'demo_test.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
[ "babisantos34@gmail.com" ]
babisantos34@gmail.com
300adea8e18706917d08603580493fab395ee6f5
2e29b5855d427d701ad1b613529fe613a16bbca9
/pinax/stripe/migrations/0018_subscriptionitem.py
208202628202d810d010af379faf82a99169335e
[ "MIT" ]
permissive
baseup/pinax-stripe
dacd3d62adc38ac40e9ef10769e4fb425ea9d018
6ac7053a1bb67f0c254eeb3b87441335df59a8e2
refs/heads/master
2022-05-22T06:57:10.793400
2022-03-09T07:40:53
2022-03-09T07:40:53
145,524,522
0
0
null
2018-08-21T07:30:59
2018-08-21T07:30:59
null
UTF-8
Python
false
false
1,311
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2018-10-23 06:32 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import jsonfield.fields class Migration(migrations.Migration): dependencies = [ ('pinax_stripe', '0017_auto_20181004_0801'), ] operations = [ migrations.CreateModel( name='SubscriptionItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('stripe_id', models.CharField(max_length=191, unique=True)), ('created_at', models.DateTimeField(default=django.utils.timezone.now)), ('created', models.DateTimeField(blank=True, null=True)), ('metadata', jsonfield.fields.JSONField(blank=True, null=True)), ('quantity', models.IntegerField()), ('plan', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pinax_stripe.Plan')), ('subscription', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pinax_stripe.Subscription')), ], options={ 'abstract': False, }, ), ]
[ "w.jbarreraact@gmail.com" ]
w.jbarreraact@gmail.com
e93607e3f8cedbe714f6544a3fc4138ec54f8498
24cbfefc98c5c34dc2d29021889c06d40734108d
/LeetCodeEasy/findUnsortedSubarray.py
02a1f546fdc37d7863df130127a14b855d934427
[]
no_license
surmayi/CodePython
6bbf5967de9b72aa6e8915725fda53d6c3d82fc5
c0dd25471e34a2c7ce2d1ce6a10dbd6e0f7042f1
refs/heads/master
2022-05-16T11:59:39.289329
2022-05-02T19:33:48
2022-05-02T19:33:48
234,530,224
0
0
null
2020-06-05T18:48:33
2020-01-17T10:55:34
Python
UTF-8
Python
false
false
975
py
class Solution(object): def findUnsortedSubarray(self, nums): if nums[0]> nums[-1]: return len(nums) if len(nums) in[0,1]: return 0 l=len(nums) frontind =0 backind =l-1 i=0 frontdone =False backdone = False while(i<l-1): if(frontdone is False and nums[i]<=nums[i+1]): frontind+=1 else: frontdone=True if(backdone is False and nums[l-i-1]>=nums[l-i-2]): backind-=1 else: backdone =True i+=1 if frontind>=backind: return 0 temp = nums[frontind:backind+1] tmin = min(temp) tmax = max(temp) while frontind>0 and nums[frontind-1]>tmin: frontind-=1 while backind<l-1 and nums[backind+1]<tmax: print(backind) backind+=1 return backind-frontind+1
[ "surmayi7@gmail.com" ]
surmayi7@gmail.com
dcfba9a7338513aac165adb376398954d32bedf7
6cd0e360aef530b47dacbf2468f3dab44cd5ed0d
/atlatlTest/settings.py
42c2c29f08f08b0fd473135348ce7de465ff14d7
[]
no_license
hughybarra/atlatlTest
16e0f943d8692f4d0c8642a8aad963148b9e02d2
42a2ffff6534e464e3685bfa4458bfd208d163a2
refs/heads/master
2021-01-22T09:16:40.145504
2014-07-06T01:43:30
2014-07-06T01:43:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,996
py
""" Django settings for atlatlTest project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=#($&ca1&5(t=_dos#vkslysa5en7k%vf5-#m*gkn5o=8h)zu!' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'myApp', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'atlatlTest.urls' WSGI_APPLICATION = 'atlatlTest.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/'
[ "hugh.ybarra@gmaillcom" ]
hugh.ybarra@gmaillcom
2a79ebc762ce1b21a171102de8c4921db995312e
afc8d5a9b1c2dd476ea59a7211b455732806fdfd
/Configurations/ggH_SF/Full2018/DNN/configuration_2018.py
b9aa3c9058017e04aa91fb0713b0804969ea1ced
[]
no_license
latinos/PlotsConfigurations
6d88a5ad828dde4a7f45c68765081ed182fcda21
02417839021e2112e740607b0fb78e09b58c930f
refs/heads/master
2023-08-18T20:39:31.954943
2023-08-18T09:23:34
2023-08-18T09:23:34
39,819,875
10
63
null
2023-08-10T14:08:04
2015-07-28T07:36:50
Python
UTF-8
Python
false
false
917
py
# example of configuration file treeName= 'Events' tag = 'ggH_SF_split2' # used by mkShape to define output directory for root files outputDir = 'rootFile' # file with TTree aliases aliasesFile = 'aliases.py' # file with list of variables variablesFile = 'variables.py' # file with list of cuts cutsFile = 'cuts_all.py' # file with list of samples samplesFile = 'samples.py' # file with list of samples plotFile = 'plot.py' # luminosity to normalize to (in 1/fb) lumi = 35.867 # used by mkPlot to define output directory for plots # different from "outputDir" to do things more tidy # outputDirPlots = '~/www/plotCR' outputDirPlots = 'plot_'+tag+'_DNN_signal' # used by mkDatacards to define output directory for datacards outputDirDatacard = 'datacards' # structure file for datacard structureFile = 'structure.py' # nuisances file for mkDatacards and for mkShape nuisancesFile = 'nuisances.py'
[ "davide.di.croce@cern.ch" ]
davide.di.croce@cern.ch
9817974e6268ed72a04ce521f186f689f4307d49
0de3a3e453f49edadf9ecc9aebb04981394a05af
/day10-OO/exo01.py
9e3b25a8e8e71e59114a0c418e936b6b1dd56b0e
[]
no_license
LU-Jingyu/aid-month01-updated
17e0ae31d3a38944544693a2b1eb3138714337a9
8df88bbf29d4cb07c10cf5accd5172b56e96d75a
refs/heads/main
2023-07-03T04:25:12.653062
2021-08-11T08:51:13
2021-08-11T08:51:13
393,339,392
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
""" """ import Student """ 用学生类来循环录入学生信息 """ # dict_prod = {} # while True: # nom = input("请输入商品信息: ") # if nom == "": # break # prix = input("请输入商品单价: ") # dict_prod[nom] = prix # for k, v in dict_prod.items(): # print("商品名:" + k, "单价:" + v) list_stud = [] while True: name = input("请输入学生姓名: ") if name == "": break sex = input("请输入性别: ") age = input("请输入年龄: ") list_stud.append(Student.Student(name, sex, age)) for item in list_stud: item.print() list_stud[0].print()
[ "724027461@qq.com" ]
724027461@qq.com
57b410d649fbf712a2dc614d4c684ae1b830064c
46900ffadf08b92f656ff5d0a0b71a7717e4415c
/old_trash/renthop_src/stacking/stacking_no_mngr_medians.py
0813eec07659754692009389b16c91cbee03e00e
[]
no_license
ubbikk/kaggle
9765ca9530d139525752b4286c20e971b0a97be7
cc7ea173ad8215a42108a973abe2cf0095517588
refs/heads/master
2021-01-19T10:32:44.615755
2017-11-11T19:28:42
2017-11-11T19:28:42
82,200,964
0
0
null
null
null
null
UTF-8
Python
false
false
36,496
py
import json import os import traceback from time import time, sleep import seaborn as sns import pandas as pd from collections import OrderedDict import sys from matplotlib import pyplot from scipy.sparse import coo_matrix from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.model_selection import StratifiedKFold import numpy as np import xgboost as xgb from sklearn.metrics import log_loss from xgboost import plot_importance from sklearn.model_selection import train_test_split from scipy.stats import boxcox from scipy.spatial import KDTree import math from pymongo import MongoClient TARGET = u'interest_level' TARGET_VALUES = ['low', 'medium', 'high'] MANAGER_ID = 'manager_id' BUILDING_ID = 'building_id' LATITUDE = 'latitude' LONGITUDE = 'longitude' PRICE = 'price' BATHROOMS = 'bathrooms' BEDROOMS = 'bedrooms' DESCRIPTION = 'description' DISPLAY_ADDRESS = 'display_address' STREET_ADDRESS = 'street_address' LISTING_ID = 'listing_id' PRICE_PER_BEDROOM = 'price_per_bedroom' F_COL = u'features' CREATED_MONTH = "created_month" CREATED_DAY = "created_day" CREATED_MINUTE = 'created_minute' CREATED_HOUR = 'created_hour' DAY_OF_WEEK = 'dayOfWeek' CREATED = 'created' LABEL = 'lbl' BED_NORMALIZED = 'bed_norm' BATH_NORMALIZED = 'bath_norm' COL = 'normalized_features' NEI_1 = 'nei1' NEI_2 = 'nei2' NEI_3 = 'nei3' NEI = 'neighbourhood' BORO = 'boro' INDEX_COPY = 'index_copy' FEATURES = [u'bathrooms', u'bedrooms', u'building_id', u'created', u'description', u'display_address', u'features', u'latitude', u'listing_id', u'longitude', MANAGER_ID, u'photos', u'price', u'street_address'] sns.set(color_codes=True) sns.set(style="whitegrid", color_codes=True) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.max_rows', 5000) train_file = '../../data/redhoop/train.json' test_file = '../../data/redhoop/test.json' train_geo_file = '../../data/redhoop/with_geo/train_geo.json' test_geo_file = '../../data/redhoop/with_geo/test_geo.json' rent_file = '../../data/neis_from_renthop_lower.json' seeds_fp = '../../seeds.json' splits_big_fp='../../splits_big.json' splits_small_fp='../../splits_small.json' magic_file = '../../data/redhoop/listing_image_time.csv' # train_file = '../data/redhoop/train.json' # test_file = '../data/redhoop/test.json' # train_geo_file = '../data/redhoop/with_geo/train_geo.json' # test_geo_file = '../data/redhoop/with_geo/test_geo.json' # rent_file = 'with_geo/data/neis_from_renthop_lower.json' # seeds_fp = '../../seeds.json' # splits_big_fp='../../splits_big.json' # splits_small_fp='../../splits_small.json' ######################################################################################### # Mongo Control ######################################################################################### SEEDS = json.load(open(seeds_fp)) SPLITS_BIG=json.load(open(splits_big_fp)) SPLITS_SMALL=json.load(open(splits_small_fp)) def getN(mongo_host, name, experiment_max_time): client = MongoClient(mongo_host, 27017) db = client[name] collection = db['splits_control'.format(name)] res = [x for x in collection.find()] res.sort(key=lambda s: s['N']) for con in res: if (not con['finished']) and (time()-con['time'] > experiment_max_time): N = con['N'] collection.replace_one({'N': N}, {'N': N, 'time': time(), 'finished': False}) return N N = len(res) collection.insert_one({'N': N, 'time': time(), 'finished': False}) return N def split_from_N(df, N): N=N%5 return df.loc[SPLITS_BIG[N],:], df.loc[SPLITS_SMALL[N], :] def complete_split_mongo(N, name, mongo_host, probs, test_indexes, losses, importance, f_names): client = MongoClient(mongo_host, 27017) db = client[name] collection = db['probs'] collection.insert_one({'N': N, 'val': probs, 'index':test_indexes}) collection = db['losses'] collection.insert_one({'N': N, 'val': losses}) collection = db['importance'] collection.insert_one({'N': N, 'val': importance}) collection = db['features'] collection.insert_one({'N': N, 'val': f_names}) collection = db['splits_control'.format(name)] collection.replace_one({'N': N}, {'N': N, 'time': time(), 'finished': True}) def get_probs_from_est(estimator, proba, test_df): classes = [x for x in estimator.classes_] res = {} for cl in classes: p=proba[:, classes.index(cl)] res[cl] = [a.item() for a in p] return res, [x for x in test_df.index.values] def complete_split_file(ii, l, name): fp = name + '_results.json' ii_fp = name + '_importance.json' with open(fp, 'w+') as f: json.dump(l, f) with open(ii_fp, 'w+') as f: json.dump(ii, f) ######################################################################################### # Mongo Control ######################################################################################### ######################################################################################### # Writing Results ######################################################################################### def write_results(N, name, mongo_host, probs, test_indexes, l_results, ii_importance, f_names): losses = l_results[len(l_results) - 1] importance = ii_importance[len(ii_importance) - 1] retries = 5 while retries >= 0: try: complete_split_mongo(N, name, mongo_host, probs, test_indexes, losses, importance, f_names) break except: traceback.print_exc() retries -= 1 sleep(30) try: complete_split_file(ii_importance, l_results, name) except: traceback.print_exc() def out(l, loss, l_1K, loss1K, num, t): print '\n\n' print '#{}'.format(num) if loss1K is not None: print 'loss1K {}'.format(loss1K) print 'avg_loss1K {}'.format(np.mean(l_1K)) print get_3s_confidence_for_mean(l_1K) print print 'loss {}'.format(loss) print 'avg_loss {}'.format(np.mean(l)) print get_3s_confidence_for_mean(l) print 'std {}'.format(np.std(l)) print 'time {}'.format(t) def get_3s_confidence_for_mean(l): std = np.std(l) / math.sqrt(len(l)) m = np.mean(l) start = m - 3 * std end = m + 3 * std return '3s_confidence: [{}, {}]'.format(start, end) ######################################################################################### # Writing Results ######################################################################################### ######################################################################################### # loading data ######################################################################################### def load_df(file, geo_file): df = pd.read_json(file) geo = pd.read_json(geo_file) df[NEI] = geo[NEI] df['tmp'] = df[NEI].apply(transform_geo_to_rent) df[NEI_1] = df['tmp'].apply(lambda s: None if s is None else s[0]) df[NEI_2] = df['tmp'].apply(lambda s: None if s is None else s[1]) df[NEI_3] = df['tmp'].apply(lambda s: None if s is None else s[2]) normalize_bed_bath(df) return basic_preprocess(df) def load_train(): df = load_df(train_file, train_geo_file) df[LABEL] = 'train' return df def load_test(): df = load_df(test_file, test_geo_file) df[LABEL] = 'test' return df def load_rent(): m = json.load(open(rent_file)) res = {} for boro, boro_m in m.iteritems(): for sub_boro, neis in boro_m.iteritems(): for n in neis: res[n] = [n, sub_boro, boro] return res def basic_preprocess(df): df['num_features'] = df[u'features'].apply(len) df['num_photos'] = df['photos'].apply(len) df['word_num_in_descr'] = df['description'].apply(lambda x: len(x.split(' '))) df["created"] = pd.to_datetime(df["created"]) # df["created_year"] = df["created"].dt.year df[CREATED_MONTH] = df["created"].dt.month df[CREATED_DAY] = df["created"].dt.day df[CREATED_HOUR] = df["created"].dt.hour df[CREATED_MINUTE] = df["created"].dt.minute df[DAY_OF_WEEK] = df['created'].dt.dayofweek bc_price, tmp = boxcox(df['price']) df['bc_price'] = bc_price df[INDEX_COPY] = df.index.values return df def fix_index(df): df.index = df[INDEX_COPY] ######################################################################################### # loading data ######################################################################################### ######################################################################################### # Creating Neis ######################################################################################### def normalize_bed_bath(df): df['bed_bath']=df[[BEDROOMS, BATHROOMS]].apply(lambda s: (s[BEDROOMS], s[BATHROOMS]), axis=1) def norm(s): bed=s[0] bath=s[1] if bed==0: if bath>=1.5: return [0,2.0] elif bed==1: if bath>=2.5: return [1,2.0] elif bed==2: if bath>=3.0: return [2,3.0] elif bed==3: if bath>=4.0: return [3,4.0] elif bed==4: if bath==0: return [4,1] elif bath>=4.5: return [4,4.5] elif bed>=5: if bath <=1.5: return [5,1.5] elif bath <=2.5: return [5,2.5] elif bath <=3.5: return [5,3] else: return [5,4] return [bed, bath] df['bed_bath']=df['bed_bath'].apply(norm) df[BED_NORMALIZED]=df['bed_bath'].apply(lambda s:s[0]) df[BATH_NORMALIZED]=df['bed_bath'].apply(lambda s:s[1]) EXACT_MAP = { 'gramercy': 'gramercy park', 'clinton': "hell's kitchen", 'turtle bay': 'midtown east', 'tudor city': 'midtown east', 'sutton place': 'midtown east', 'hamilton heights': 'west harlem', 'bedford stuyvesant': 'bedford-stuyvesant', 'hunters point': 'long island city', 'battery park': 'battery park city', 'manhattanville': 'west harlem', 'carnegie hill': 'upper east side', 'stuyvesant town': 'stuyvesant town - peter cooper village', 'downtown': 'downtown brooklyn', 'morningside heights': 'west harlem', 'spuyten duyvil': 'riverdale', 'prospect lefferts gardens': 'flatbush', 'greenwood': 'greenwood heights', 'fort hamilton': 'bay ridge', 'high bridge': 'highbridge', 'columbia street waterfront district': 'carroll gardens', 'ocean parkway': 'midwood', 'north riverdale': 'riverdale', 'astoria heights': 'astoria', 'tremont': 'mount hope', 'homecrest': 'sheepshead bay', 'new utrecht': 'borough park', 'fieldston': 'riverdale', 'georgetown': 'upper east side', 'tottenville': 'washington heights', 'hillcrest': 'kew gardens hills', 'oakland gardens': 'forest hills', 'pomonok': 'washington heights', 'wingate': 'east flatbush', 'fordham': 'fordham manor', 'forest hills gardens': 'forest hills', 'columbus circle': "hell's kitchen" } SPECIAL = { 'midtown': ('midtown', 'midtown manhattan', 'manhattan'), 'harlem': ('harlem', 'upper manhattan', 'manhattan') } ONLY_SECOND = { 'castle hill': ('2nd', 'east bronx', 'bronx'), 'throggs neck': ('2nd', 'east bronx', 'bronx'), 'soundview': ('2nd', 'east bronx', 'bronx'), 'port morris': ('2nd', 'east bronx', 'bronx'), } ONLY_THIRD = { 'queens village': ('3rd', '3rd', 'queens'), 'laurelton': ('3rd', '3rd', 'queens') } def transform_geo_to_rent(s): if s is None: return s s = s.lower() rent = load_rent() if s in rent: return rent[s] if s in EXACT_MAP: return rent[EXACT_MAP[s]] if s in SPECIAL: return SPECIAL[s] return ('not_mapped_yet', 'not_mapped_yet', 'not_mapped_yet') ######################################################################################### # Creating Neis ######################################################################################### ######################################################################################### # MNGR HCC ######################################################################################### def hcc_encode(train_df, test_df, variable, binary_target, k=5, f=1, g=1, r_k=0.01, folds=5): """ See "A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems" by Daniele Micci-Barreca """ prior_prob = train_df[binary_target].mean() hcc_name = "_".join(["hcc", variable, binary_target]) seed = int(time()) print 'seed hcc {}'.format(seed) skf = StratifiedKFold(n_splits=folds, shuffle=True, random_state=seed) for big_ind, small_ind in skf.split(np.zeros(len(train_df)), train_df['interest_level']): big = train_df.iloc[big_ind] small = train_df.iloc[small_ind] grouped = big.groupby(variable)[binary_target].agg({"size": "size", "mean": "mean"}) grouped["lambda"] = 1 / (g + np.exp((k - grouped["size"]) / f)) grouped[hcc_name] = grouped["lambda"] * grouped["mean"] + (1 - grouped["lambda"]) * prior_prob if hcc_name in small.columns: del small[hcc_name] small = pd.merge(small, grouped[[hcc_name]], left_on=variable, right_index=True, how='left') small.loc[small[hcc_name].isnull(), hcc_name] = prior_prob small[hcc_name] = small[hcc_name] * np.random.uniform(1 - r_k, 1 + r_k, len(small)) train_df.loc[small.index, hcc_name] = small[hcc_name] grouped = train_df.groupby(variable)[binary_target].agg({"size": "size", "mean": "mean"}) grouped["lambda"] = 1 / (g + np.exp((k - grouped["size"]) / f)) grouped[hcc_name] = grouped["lambda"] * grouped["mean"] + (1 - grouped["lambda"]) * prior_prob test_df = pd.merge(test_df, grouped[[hcc_name]], left_on=variable, right_index=True, how='left') test_df.loc[test_df[hcc_name].isnull(), hcc_name] = prior_prob return train_df, test_df, hcc_name def process_mngr_categ_preprocessing(train_df, test_df): col = MANAGER_ID new_cols = [] for df in [train_df, test_df]: df['target_high'] = df[TARGET].apply(lambda s: 1 if s == 'high' else 0) df['target_medium'] = df[TARGET].apply(lambda s: 1 if s == 'medium' else 0) for binary_col in ['target_high', 'target_medium']: train_df, test_df, new_col = hcc_encode(train_df, test_df, col, binary_col) new_cols.append(new_col) return train_df, test_df, new_cols ######################################################################################### # MNGR HCC ######################################################################################### ######################################################################################### # MNGR NUM ######################################################################################### def process_manager_num(train_df, test_df): mngr_num_col = 'manager_num' df = train_df.groupby(MANAGER_ID)[MANAGER_ID].count() # df[df<=1]=-1 df = df.apply(float) df = df.to_frame(mngr_num_col) train_df = pd.merge(train_df, df, left_on=MANAGER_ID, right_index=True) test_df = pd.merge(test_df, df, left_on=MANAGER_ID, right_index=True, how='left') return train_df, test_df, [mngr_num_col] ######################################################################################### # MNGR NUM ######################################################################################### ######################################################################################### # BID HCC ######################################################################################### def process_bid_categ_preprocessing(train_df, test_df): col = BUILDING_ID new_cols = [] for df in [train_df, test_df]: df['target_high'] = df[TARGET].apply(lambda s: 1 if s == 'high' else 0) df['target_medium'] = df[TARGET].apply(lambda s: 1 if s == 'medium' else 0) for binary_col in ['target_high', 'target_medium']: train_df, test_df, new_col = hcc_encode(train_df, test_df, col, binary_col) new_cols.append(new_col) return train_df, test_df, new_cols ######################################################################################### # BID HCC ######################################################################################### ######################################################################################### # BID NUM ######################################################################################### def process_bid_num(train_df, test_df): bid_num_col = 'bid_num' df = train_df.groupby(BUILDING_ID)[BUILDING_ID].count() # df[df<=1]=-1 df = df.apply(float) df = df.to_frame(bid_num_col) train_df = pd.merge(train_df, df, left_on=BUILDING_ID, right_index=True) test_df = pd.merge(test_df, df, left_on=BUILDING_ID, right_index=True, how='left') return train_df, test_df, [bid_num_col] ######################################################################################### # BID NUM ######################################################################################### ######################################################################################### # Listing id ######################################################################################### def process_listing_id(train_df, test_df): return train_df, test_df, [LISTING_ID] ######################################################################################### # Listing id ######################################################################################### ######################################################################################### # NEI 123 ######################################################################################### def dummy_col(col_name, val): return '{}_{}'.format(col_name, val) def get_dummy_cols(col_name, col_values): return ['{}_{}'.format(col_name, val) for val in col_values] def process_nei123(train_df, test_df): df = pd.concat([train_df, test_df]) normalize_bed_bath(df) sz = float(len(df)) # neis_cols = [NEI_1, NEI_2, NEI_3] new_cols = [] for col in [NEI_1, NEI_2]: new_col = 'freq_of_{}'.format(col) df[new_col] = df.groupby(col)[PRICE].transform('count') df[new_col] = df[new_col] / sz new_cols.append(new_col) beds_vals = [0, 1, 2, 3] for col in [NEI_1, NEI_2, NEI_3]: for bed in beds_vals: new_col = 'freq_of_{}, with bed={}'.format(col, bed) df[new_col] = df.groupby([col, BED_NORMALIZED])[PRICE].transform('count') df[new_col] = df[new_col] / sz new_cols.append(new_col) for col in [NEI_1, NEI_2]: new_col = 'median_ratio_of_{}'.format(col) df['tmp'] = df.groupby([col, BEDROOMS])[PRICE].transform('median') df[new_col] = df[PRICE] - df['tmp'] df[new_col] = df[new_col] / df['tmp'] new_cols.append(new_col) for col in [NEI_1, NEI_2, NEI_3]: vals = set(df[col]) if None in vals: vals.remove(None) df = pd.get_dummies(df, columns=[col]) dummies = get_dummy_cols(col, vals) new_cols += dummies df_to_merge = df[[LISTING_ID] + new_cols] train_df = pd.merge(train_df, df_to_merge, on=LISTING_ID) test_df = pd.merge(test_df, df_to_merge, on=LISTING_ID) return train_df, test_df, new_cols ######################################################################################### # NEI 123 ######################################################################################### ######################################################################################### # MNGR AVG PRICE ######################################################################################### def process_mngr_avg_median_price(train_df, test_df): df = pd.concat([train_df, test_df]) bed_bath_median = 'bed_bath_median' df[bed_bath_median] = df.groupby([BED_NORMALIZED, BATH_NORMALIZED])[PRICE].transform('median') bed_bath_diff = 'bed_bath_diff' df[bed_bath_diff]=df[PRICE]-df[bed_bath_median] bed_bath_raio = 'bed_bath_ratio' df[bed_bath_raio]=df[bed_bath_diff]/df['bed_bath_median'] group_by = df.groupby(MANAGER_ID)[bed_bath_diff] df['gr_by_mngr_bed_bath_diff_median']= group_by.transform('median') df['gr_by_mngr_bed_bath_diff_quantile_0.25']= group_by.transform('quantile', 0.25) df['gr_by_mngr_bed_bath_diff_quantile_0.75']= group_by.transform('quantile', 0.75) df['gr_by_mngr_bed_bath_diff_mean']= group_by.transform('mean') group_by = df.groupby(MANAGER_ID)[bed_bath_raio] df['gr_by_mngr_bed_bath_ratio_median']= group_by.transform('median') df['gr_by_mngr_bed_bath_ratio_quantile_0.25']= group_by.transform('quantile', 0.25) df['gr_by_mngr_bed_bath_ratio_quantile_0.75']= group_by.transform('quantile', 0.75) df['gr_by_mngr_bed_bath_ratio_mean']= group_by.transform('mean') new_cols= ['bed_bath_diff','bed_bath_ratio','bed_bath_median', 'gr_by_mngr_bed_bath_diff_median','gr_by_mngr_bed_bath_diff_mean', 'gr_by_mngr_bed_bath_diff_quantile_0.25','gr_by_mngr_bed_bath_diff_quantile_0.75', 'gr_by_mngr_bed_bath_ratio_median', 'gr_by_mngr_bed_bath_ratio_mean' , 'gr_by_mngr_bed_bath_ratio_quantile_0.25', 'gr_by_mngr_bed_bath_ratio_quantile_0.75' ] df_to_merge = df[[LISTING_ID] + new_cols] train_df = pd.merge(train_df, df_to_merge, on=LISTING_ID) test_df = pd.merge(test_df, df_to_merge, on=LISTING_ID) return train_df, test_df, new_cols ######################################################################################### # MNGR AVG PRICE ######################################################################################### ######################################################################################### # OTHER MEDIANS ######################################################################################### def process_other_mngr_medians(train_df, test_df): features = ['num_features', 'num_photos', 'word_num_in_descr', BED_NORMALIZED, BATH_NORMALIZED] df = pd.concat([train_df, test_df]) new_cols = [] for f in features: col = 'get_by_mngr_{}_mean'.format(f) df[col] = df.groupby(MANAGER_ID)[f].transform('mean') new_cols.append(col) if f in [BATH_NORMALIZED, BED_NORMALIZED]: continue col = 'get_by_mngr_{}_median'.format(f) new_cols.append(col) df[col] = df.groupby(MANAGER_ID)[f].transform('median') df_to_merge = df[[LISTING_ID] + new_cols] train_df = pd.merge(train_df, df_to_merge, on=LISTING_ID) test_df = pd.merge(test_df, df_to_merge, on=LISTING_ID) return train_df, test_df, new_cols ######################################################################################### # OTHER MEDIANS ######################################################################################### ######################################################################################### # OTHER MEDIANS nEW ######################################################################################### def get_main_value(s): n = int(0.66*len(s)) vals = {k:0 for k in set(s)} for x in s: vals[x]+=1 for k,v in vals.iteritems(): if v>=n: return k def process_other_mngr_medians_new(train_df, test_df): df = pd.concat([train_df, test_df]) total_minutes_col='total_minutes' df[total_minutes_col] = df[CREATED_MINUTE]+24*df[CREATED_HOUR] features = [PRICE, LATITUDE, LONGITUDE, total_minutes_col] new_cols = [] for f in features: col = 'get_by_mngr_{}_mean'.format(f) df[col] = df.groupby(MANAGER_ID)[f].transform('mean') new_cols.append(col) col = 'get_by_mngr_{}_median'.format(f) new_cols.append(col) df[col] = df.groupby(MANAGER_ID)[f].transform('median') main_hour='main_hour' bl = df.groupby(MANAGER_ID)[CREATED_HOUR].apply(get_main_value).to_frame(main_hour) df = pd.merge(df, bl, left_on=MANAGER_ID, right_index=True) new_cols.append(main_hour) df_to_merge = df[[LISTING_ID] + new_cols] train_df = pd.merge(train_df, df_to_merge, on=LISTING_ID) test_df = pd.merge(test_df, df_to_merge, on=LISTING_ID) return train_df, test_df, new_cols ######################################################################################### # OTHER MEDIANS NEW ######################################################################################### ######################################################################################### # FEATURES ######################################################################################### GROUPING_MAP = OrderedDict( [('elevator', {'vals': ['elevator'], 'type': 'in'}), ('hardwood floors', {'vals': ['hardwood'], 'type': 'in'}), ('cats allowed', {'vals': ['cats'], 'type': 'in'}), ('dogs allowed', {'vals': ['dogs'], 'type': 'in'}), ('doorman', {'vals': ['doorman', 'concierge'], 'type': 'in'}), ('dishwasher', {'vals': ['dishwasher'], 'type': 'in'}), ('laundry in building', {'vals': ['laundry'], 'type': 'in'}), ('no fee', {'vals': ['no fee', 'no broker fee', 'no realtor fee'], 'type': 'in'}), ('reduced fee', {'vals': ['reduced fee', 'reduced-fee', 'reducedfee'], 'type': 'in'}), ('fitness center', {'vals': ['fitness'], 'type': 'in'}), ('pre-war', {'vals': ['pre-war', 'prewar'], 'type': 'in'}), ('roof deck', {'vals': ['roof'], 'type': 'in'}), ('outdoor space', {'vals': ['outdoor space', 'outdoor-space', 'outdoor areas', 'outdoor entertainment'], 'type': 'in'}), ('common outdoor space', {'vals': ['common outdoor', 'publicoutdoor', 'public-outdoor', 'common-outdoor'], 'type': 'in'}), ('private outdoor space', {'vals': ['private outdoor', 'private-outdoor', 'privateoutdoor'], 'type': 'in'}), ('dining room', {'vals': ['dining'], 'type': 'in'}), ('high speed internet', {'vals': ['internet'], 'type': 'in'}), ('balcony', {'vals': ['balcony'], 'type': 'in'}), ('swimming pool', {'vals': ['swimming', 'pool'], 'type': 'in'}), ('new construction', {'vals': ['new construction'], 'type': 'in'}), ('terrace', {'vals': ['terrace'], 'type': 'in'}), ('exclusive', {'vals': ['exclusive'], 'type': 'equal'}), ('loft', {'vals': ['loft'], 'type': 'in'}), ('garden/patio', {'vals': ['garden'], 'type': 'in'}), ('wheelchair access', {'vals': ['wheelchair'], 'type': 'in'}), ('fireplace', {'vals': ['fireplace'], 'type': 'in'}), ('simplex', {'vals': ['simplex'], 'type': 'in'}), ('lowrise', {'vals': ['lowrise', 'low-rise'], 'type': 'in'}), ('garage', {'vals': ['garage'], 'type': 'in'}), ('furnished', {'vals': ['furnished'], 'type': 'equal'}), ('multi-level', {'vals': ['multi-level', 'multi level', 'multilevel'], 'type': 'in'}), ('high ceilings', {'vals': ['high ceilings', 'highceilings', 'high-ceilings'], 'type': 'in'}), ('parking space', {'vals': ['parking'], 'type': 'in'}), ('live in super', {'vals': ['super'], 'vals2': ['live', 'site'], 'type': 'two'}), ('renovated', {'vals': ['renovated'], 'type': 'in'}), ('green building', {'vals': ['green building'], 'type': 'in'}), ('storage', {'vals': ['storage'], 'type': 'in'}), ('washer', {'vals': ['washer'], 'type': 'in'}), ('stainless steel appliances', {'vals': ['stainless'], 'type': 'in'})]) def normalize_df(df): df[COL] = df[F_COL].apply(lambda l: [x.lower() for x in l]) def lambda_in(in_arr): def is_in(l): for f in l: for t in in_arr: if t in f: return 1 return 0 return is_in def lambda_equal(val): def is_equal(l): for f in l: if f.strip() == val: return 1 return 0 return is_equal def lambda_two_arr(arr1, arr2): def is_in(l): for f in l: for x in arr1: for y in arr2: if x in f and y in f: return 1 return 0 return is_in def process_features(df): normalize_df(df) new_cols = [] for col, m in GROUPING_MAP.iteritems(): new_cols.append(col) tp = m['type'] if tp == 'in': df[col] = df[COL].apply(lambda_in(m['vals'])) elif tp == 'equal': df[col] = df[COL].apply(lambda_equal(m['vals'][0])) elif tp == 'two': df[col] = df[COL].apply(lambda_two_arr(m['vals'], m['vals2'])) else: raise Exception() return df, new_cols ######################################################################################### # FEATURES ######################################################################################### #################################################### #MAGIC ####################################################### def process_magic(train_df, test_df): image_date = pd.read_csv(magic_file) image_date.loc[80240,"time_stamp"] = 1478129766 # image_date.loc[image_date['Listing_Id']==7119094, "time_stamp"] = 1478129766 image_date["img_date"] = pd.to_datetime(image_date["time_stamp"], unit="s") image_date["img_days_passed"] = (image_date["img_date"].max() - image_date["img_date"]).astype( "timedelta64[D]").astype(int) image_date["img_date_month"] = image_date["img_date"].dt.month image_date["img_date_week"] = image_date["img_date"].dt.week image_date["img_date_day"] = image_date["img_date"].dt.day image_date["img_date_dayofweek"] = image_date["img_date"].dt.dayofweek image_date["img_date_dayofyear"] = image_date["img_date"].dt.dayofyear image_date["img_date_hour"] = image_date["img_date"].dt.hour image_date["img_date_minute"] = image_date["img_date"].dt.minute image_date["img_date_second"] = image_date["img_date"].dt.second image_date["img_date_monthBeginMidEnd"] = image_date["img_date_day"].apply( lambda x: 1 if x < 10 else 2 if x < 20 else 3) df = pd.concat([train_df, test_df]) df = pd.merge(df, image_date, left_on=LISTING_ID, right_on='Listing_Id') new_cols = ["img_days_passed","img_date_month","img_date_week", "img_date_day","img_date_dayofweek","img_date_dayofyear", "img_date_hour", "img_date_monthBeginMidEnd", "img_date_minute", "img_date_second"]#+["img_date", "time_stamp"] df_to_merge = df[[LISTING_ID] + new_cols] train_df = pd.merge(train_df, df_to_merge, on=LISTING_ID) test_df = pd.merge(test_df, df_to_merge, on=LISTING_ID) return train_df, test_df, new_cols #################################################### #MAGIC ####################################################### def shuffle_df(df): return df.iloc[np.random.permutation(len(df))] def get_loss_at1K(estimator): results_on_test = estimator.evals_result()['validation_1']['mlogloss'] return results_on_test[999] def loss_with_per_tree_stats(train_df, test_df, new_cols): features, test_df, train_df = process_split(train_df, test_df, new_cols) train_target, test_target = train_df[TARGET].values, test_df[TARGET].values del train_df[TARGET] del test_df[TARGET] train_df = train_df[features] test_df = test_df[features] train_arr, test_arr = train_df.values, test_df.values print features seed = int(time()) print 'XGB seed {}'.format(seed) estimator = xgb.XGBClassifier(n_estimators=1000, objective='mlogloss', subsample=0.8, colsample_bytree=0.8, seed=seed) eval_set = [(train_arr, train_target), (test_arr, test_target)] estimator.fit(train_arr, train_target, eval_set=eval_set, eval_metric='mlogloss', verbose=False) proba = estimator.predict_proba(test_arr) loss = log_loss(test_target, proba) loss1K = get_loss_at1K(estimator) return loss, loss1K, xgboost_per_tree_results(estimator), \ estimator.feature_importances_, get_probs_from_est(estimator, proba, test_df), features def process_split(train_df, test_df, new_cols): features = [] features += new_cols train_df, test_df, new_cols = process_mngr_categ_preprocessing(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols train_df, test_df, new_cols = process_bid_categ_preprocessing(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols return features, test_df, train_df def process_all_name(train_df, test_df): features = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price', 'num_features', 'num_photos', 'word_num_in_descr', "created_month", "created_day", CREATED_HOUR, CREATED_MINUTE, DAY_OF_WEEK] train_df, test_df, new_cols = process_manager_num(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols train_df, test_df, new_cols = process_bid_num(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols train_df, test_df, new_cols = process_listing_id(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols train_df, test_df, new_cols = process_nei123(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols train_df, new_cols = process_features(train_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features+=new_cols # train_df, test_df, new_cols = process_mngr_avg_median_price(train_df, test_df) # train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) # features += new_cols # # # train_df, test_df, new_cols = process_other_mngr_medians(train_df, test_df) # train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) # features += new_cols # # # train_df, test_df, new_cols = process_other_mngr_medians_new(train_df, test_df) # train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) # features += new_cols train_df, test_df, new_cols = process_magic(train_df, test_df) train_df, test_df = shuffle_df(train_df), shuffle_df(test_df) features += new_cols return train_df, test_df, features def xgboost_per_tree_results(estimator): results_on_test = estimator.evals_result()['validation_1']['mlogloss'] results_on_train = estimator.evals_result()['validation_0']['mlogloss'] return { 'train': results_on_train, 'test': results_on_test } def do_test_xgboost(name, mongo_host, experiment_max_time=15*60): all_losses = [] l_results_per_tree = [] losses_at_1K = [] train_df = load_train() test_df = load_test() train_df, test_df, features = process_all_name(train_df, test_df) fix_index(train_df) fix_index(test_df) ii_importance = [] for counter in range(15): cur_time = time() N = getN(mongo_host, name, experiment_max_time) train, test = split_from_N(train_df.copy(), N) loss, loss1K, losses_per_tree, importance, probs_data, f_names = \ loss_with_per_tree_stats(train, test, features) probs, test_indexes = probs_data ii_importance.append(importance.tolist()) cur_time = time() - cur_time all_losses.append(loss) losses_at_1K.append(loss1K) l_results_per_tree.append(losses_per_tree) out(all_losses, loss, losses_at_1K, loss1K, counter, cur_time) write_results(N, name, mongo_host, probs,test_indexes, l_results_per_tree, ii_importance, f_names) do_test_xgboost('stacking_no_mngr_medians', sys.argv[1])
[ "dd.petrovskiy@gmail.com" ]
dd.petrovskiy@gmail.com
ee8c553e504a4d6bea4de956dab956ce19d12a5f
7f77a1e5b005bb57a43276ce65e18743776aa4e6
/user/wechat.py
1ae74343f0dab9dc0251118b62bb94624b1907bd
[]
no_license
lihuigang/python
aba3944e5f9ea4bae5a98a4fff1e87a0ed8723b1
e71c80782b1398ce0dcdaf8c572ac33811d843bd
refs/heads/master
2021-04-27T13:40:37.740391
2018-03-23T08:25:04
2018-03-23T08:25:04
116,439,425
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
#微信登录 import itchat itchat.login()
[ "lihuigang0104@lihuigang.com" ]
lihuigang0104@lihuigang.com
2f5c2879a35b47476100a62654cda58a38c71639
fa16e1d0ed18fd6f9e25bc57f83eec3a4b559e28
/sotaai/rl/gym_wrapper.py
29d26980a2f9d529b2f34c63ab88d1bc33b4f2a2
[]
no_license
stateoftheartai/sotaai-beta
83d2d9d01b9321d20ba36f66c6160daa8883adc3
0013716ca644cc0434774f1ebc16106dfdd6d100
refs/heads/master
2023-03-31T04:51:48.009977
2021-03-30T22:08:39
2021-03-30T22:08:39
353,137,512
2
0
null
null
null
null
UTF-8
Python
false
false
191
py
# -*- coding: utf-8 -*- # Author: Tonio Teran <tonio@stateoftheart.ai> # Copyright: Stateoftheart AI PBC 2021. '''OpenAI's Gym library wrapper.''' import gym # pylint: disable=unused-import
[ "noreply@github.com" ]
stateoftheartai.noreply@github.com
89fd42deb21f848164c189a464567bc999be8cb9
b37b4d39a205ef8229742c4c5c6a96a227557b32
/cycleGAN/generator.py
182c6ccafb4ff2f9307a213ac9a91d3d456be59c
[]
no_license
aedismorah/cycleGAN
89c03767ed5f4c0873ef5e5a8904b72b335b5d2d
b77d32815123b6535bf26748ff18fd8d4678a99a
refs/heads/main
2023-03-02T12:20:03.883130
2021-02-14T11:35:54
2021-02-14T11:35:54
336,785,952
0
0
null
null
null
null
UTF-8
Python
false
false
2,368
py
import torch.nn as nn def c7s1(in_channels, out_channels): return nn.Sequential( nn.ReflectionPad2d(2), nn.Conv2d(in_channels, out_channels, kernel_size=7, stride=1), nn.InstanceNorm2d(out_channels), nn.ReLU(True) ) def dk(in_channels, out_channels): return nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2), nn.InstanceNorm2d(out_channels), nn.ReLU(True) ) def Rk(in_channels, out_channels): return nn.Sequential( nn.ReflectionPad2d(1), nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1), nn.ReflectionPad2d(1), nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1), nn.InstanceNorm2d(out_channels) ) def uk(in_channels, out_channels): return nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=2), nn.InstanceNorm2d(out_channels), nn.ReLU(True) ) class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.first = nn.Sequential( c7s1(3, 64), dk(64, 128), dk(128, 256) ) self.R1 = Rk(256, 256) self.R2 = Rk(256, 256) self.R3 = Rk(256, 256) self.R4 = Rk(256, 256) self.R5 = Rk(256, 256) self.R6 = Rk(256, 256) self.R7 = Rk(256, 256) self.R8 = Rk(256, 256) self.R9 = Rk(256, 256) self.last = nn.Sequential( uk(256, 128), uk(128, 64), c7s1(64, 3), nn.Conv2d(3, 3, kernel_size=2, stride=1) ) self.tanh=nn.Tanh() self.relu=nn.ReLU() def forward(self, input): x1 = self.first(input) x2 = self.relu(x1 + self.R1(x1)) x3 = self.relu(x2 + self.R2(x2)) x4 = self.relu(x3 + self.R3(x3)) x5 = self.relu(x2 + x4 + self.R4(x4)) x6 = self.relu(x5 + self.R5(x5)) x7 = self.relu(x6 + self.R6(x6)) x8 = self.relu(x3 + x5 + x7 + self.R7(x7)) x9 = self.relu(x8 + self.R8(x8)) x10 = self.relu(x2 + x6 + x9 + self.R9(x9)) x = self.last(x10) + input return self.tanh(x)
[ "noreply@github.com" ]
aedismorah.noreply@github.com
5bcca5b2ff7d223ee53b29f2949498ac1dfe992c
06c2d172b28cfa3705e76ee53cb002c256b895ce
/goodBoyBigHands.py
074621c4f92bb68439089655ca0a03e983043898
[]
no_license
charss/algolympics2021
2288de652f9e4d0705d6271e6fdbf5112a2eb7ba
527557d88bbcbbb2c78989bea1b6b58861d40843
refs/heads/main
2023-03-05T21:10:04.243770
2021-02-13T13:37:36
2021-02-13T13:37:36
338,304,801
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
import re fin = [] temp1 = [] l = int(input()) text = '' for i in range(l): # for i in range(32, 127): # text += chr(i) text = input().lower().split() for s in text: x = re.sub("[^a-zA-Z]","", s) if x != '': fin.append(x) print(fin) n = int(input()) for i in range(n): l = int(input()) for i in range(l): temp1 = [] text = input().lower().split() for s in text: x = re.sub("[^a-zA-Z]","", s) if x != '': temp1.append(x) print(temp1) temp = [x for x in temp1 if x in fin] print(temp) if len(temp) >= len(temp1) / 2: print("GOOD BOY!") else: print("BIG HANDS!")
[ "charleskylereyes16@gmail.com" ]
charleskylereyes16@gmail.com
9d0d06450dae426bb8132ab21d7681e52090a89b
dc59a18b105dc12a951416b9f72c92b8960e612b
/tSimMicrometer.py
9027788df0b883f31fed15a938e119e48a525460
[]
no_license
DanMailman/SCADAVIS
539b122890720fc0d998511e53956e54ac01d589
59c9b1da396131fca9f05fc6879f99ab5f52f419
refs/heads/main
2023-06-15T12:56:35.310516
2021-07-02T00:58:34
2021-07-02T00:58:34
377,230,138
0
0
null
null
null
null
UTF-8
Python
false
false
1,070
py
from sys import dont_write_bytecode from Utilities import LimitVal class tSimMicrometer: dictDefaultConfig = { 'Min': 0, 'Max': 100, 'Units': 'mm'} def __init__(self, oDevToMeasure, dictConfig = dictDefaultConfig): # TODO: What if Min != 0 print(f'tSimMicrometer(): INIT!') self.oDev = oDevToMeasure self.dictConfig = dictConfig self.dictSCADA = { 'pos': { 'get': self.GetMeas }} def GetMeas(self): return LimitVal(self.oDev.dictSCADA['pos']['get'](), self.dictConfig['Min'], self.dictConfig['Max']) def GetUnits(self): return self.sUnits if __name__ == "__main__": class tMMDevice: dictDefaultConfig = { 'Min': 0, 'Max': 10, 'Units': 'mm'} def __init__(self,dictConfig = dictDefaultConfig): self.dictConfig = dictConfig self.nVal = 0 self.dictSCADA = { 'pos': { 'get': self.GetMeas } } def GetMeas(self): self.nVal +=1 return self.nVal def demo(): oMMeter = tSimMicrometer(tMMDevice()) for i in range(10): print(f"oMMeter: {oMMeter.dictSCADA['pos']['get']()} {oMMeter.dictConfig['Units']}") demo()
[ "dmailman@gmail.com" ]
dmailman@gmail.com
d374f557f75fbfa71084b996ee9029ef19b9f982
fa7e0fd1013762eac8d878b70582544a5598600d
/django_3_2_18/users/views.py
748e20b3538248543b14b3b7547299dacb80c910
[]
no_license
gy0109/django_2.18
b8c48005027720ab46e7e050ff139b57437ff5f6
0c9971fae249a4f1932b3fc20d29fc7232b244ab
refs/heads/master
2020-04-24T01:41:05.553801
2019-02-21T12:37:36
2019-02-21T12:37:36
171,608,336
0
0
null
null
null
null
UTF-8
Python
false
false
1,666
py
import json from django.http import HttpResponse, JsonResponse from django.shortcuts import render # Create your views here. 视图 # /user/index/ def index(request): """ index视图部分 :param request: 接收到的请求对象 :return: 响应对象 """ return HttpResponse('hello world!') def weather(request, city, year): print('city=%s' % city) print('year=%s' % year) return HttpResponse('ok!') def weather1(request, city, year): print('city=%s' % city) print('year=%s' % year) return HttpResponse('ok! weather1! ') def weather2(request, city, year): print('city=%s' % city) print('year=%s' % year) a = request.GET.get('a') b = request.GET.get('b') a_list = request.GET.getlist('a') print(a, b, a_list) return HttpResponse('ok! weather1! ') def get_post_params(request): # POST请求获取表单数据 a = request.POST.get('a') b = request.POST.get('b') a_list = request.POST.getlist('a') print(a, b, a_list) return HttpResponse('get_post') def get_body_json(request): json_str = request.body.decode() req_data = json.loads(json_str) print(request.META['CONTENT_TYPE']) print(request.META['SERVER_NAME']) print(request.method) print(request.user) print(request.encoding) print(request.path) print(request.files) print(req_data['a']) print(req_data['b']) return HttpResponse('OK get_body') # 自定义响应体 def response_json(request): json_dict = {'name': 'gy', 'age': 12} # return HttpResponse('OK', content_type='text/html', status=200) return JsonResponse(json_dict)
[ "1974326896@qq.com" ]
1974326896@qq.com
7f0bca736406ad4c6513c80772cdfc7f57e1b426
bc9f60ecf1d3faff2fb893a015eee1a002512dd3
/newLstm/lstm.py
0e16680f877218b44bba7fa100a2981ea6abbae4
[]
no_license
syahmifouzi/Lessons
933e93004e90f65ff1cecc18b1987700d21ead28
6777026d20ddbd3a583d5084aac7acb36ca7da32
refs/heads/master
2020-04-11T00:00:53.764217
2019-06-04T07:00:37
2019-06-04T07:00:37
161,372,386
0
0
null
null
null
null
UTF-8
Python
false
false
10,391
py
import random import numpy as np import math import sys import json class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj) def sigmoid(x): return 1. / (1 + np.exp(-x)) def sigmoid_derivative(values): return values*(1-values) def tanh_derivative(values): return 1. - values ** 2 # createst uniform random array w/ values in [a,b) and shape args def rand_arr(a, b, *args): np.random.seed(0) return np.random.rand(*args) * (b - a) + a #fp = 0 #fc = 0 class LstmParam: def __init__(self, mem_cell_ct, x_dim): self.mem_cell_ct = mem_cell_ct # print("self.mem_cell_ct", self.mem_cell_ct) self.x_dim = x_dim # print("self.x_dim", self.x_dim) concat_len = x_dim + mem_cell_ct # print("concat_len", concat_len) # weight matrices self.wg = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) self.wi = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) self.wf = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) self.wo = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len) # print("self.wg", self.wg) # print("self.wi", self.wi) # print("self.wf", self.wf) # print("self.wo", self.wo) # print("self.wo", np.shape(self.wo)) # bias terms self.bg = rand_arr(-0.1, 0.1, mem_cell_ct) self.bi = rand_arr(-0.1, 0.1, mem_cell_ct) self.bf = rand_arr(-0.1, 0.1, mem_cell_ct) self.bo = rand_arr(-0.1, 0.1, mem_cell_ct) # print("self.bo", self.bo) # print("self.bo", np.shape(self.bo)) # diffs (derivative of loss function w.r.t. all parameters) self.wg_diff = np.zeros((mem_cell_ct, concat_len)) self.wi_diff = np.zeros((mem_cell_ct, concat_len)) self.wf_diff = np.zeros((mem_cell_ct, concat_len)) self.wo_diff = np.zeros((mem_cell_ct, concat_len)) self.bg_diff = np.zeros(mem_cell_ct) self.bi_diff = np.zeros(mem_cell_ct) self.bf_diff = np.zeros(mem_cell_ct) self.bo_diff = np.zeros(mem_cell_ct) # print("self.wo_diff", np.shape(self.wo_diff)) #json_dump = json.dumps({'bg': self.bg}, cls=NumpyEncoder) #f = open('wg.txt', 'w') #json.dump(json_dump, f) #f.close() def apply_diff(self, lr = 1): #if self.wg_diff[0] == 0: # print("its zero") # print("self.wg B4", self.wg) # print("lr", lr) # print("self.wg_diff", self.wg_diff) self.wg -= lr * self.wg_diff # print("self.wg AFTER", self.wg) self.wi -= lr * self.wi_diff self.wf -= lr * self.wf_diff self.wo -= lr * self.wo_diff self.bg -= lr * self.bg_diff self.bi -= lr * self.bi_diff self.bf -= lr * self.bf_diff self.bo -= lr * self.bo_diff # reset diffs to zero self.wg_diff = np.zeros_like(self.wg) self.wi_diff = np.zeros_like(self.wi) self.wf_diff = np.zeros_like(self.wf) self.wo_diff = np.zeros_like(self.wo) self.bg_diff = np.zeros_like(self.bg) self.bi_diff = np.zeros_like(self.bi) self.bf_diff = np.zeros_like(self.bf) self.bo_diff = np.zeros_like(self.bo) #print("self.wg_diff", self.wg_diff) class LstmState: def __init__(self, mem_cell_ct, x_dim): self.g = np.zeros(mem_cell_ct) # print("self.g", self.g) self.i = np.zeros(mem_cell_ct) self.f = np.zeros(mem_cell_ct) self.o = np.zeros(mem_cell_ct) self.s = np.zeros(mem_cell_ct) self.h = np.zeros(mem_cell_ct) self.bottom_diff_h = np.zeros_like(self.h) self.bottom_diff_s = np.zeros_like(self.s) class LstmNode: def __init__(self, lstm_param, lstm_state): # store reference to parameters and to activations self.state = lstm_state # print("self.state", self.state) self.param = lstm_param # print("self.param", self.param) # non-recurrent input concatenated with recurrent input self.xc = None # print("self.param", self.param) def bottom_data_is(self, x, s_prev = None, h_prev = None): # if this is the first lstm node in the network if s_prev is None: s_prev = np.zeros_like(self.state.s) if h_prev is None: h_prev = np.zeros_like(self.state.h) # save data for use in backprop self.s_prev = s_prev self.h_prev = h_prev # print("self.s_prev", self.s_prev) # print("self.h_prev", self.h_prev) # concatenate x(t) and h(t-1) xc = np.hstack((x, h_prev)) # print("x", x) # print("h_prev", h_prev) # print("xc", xc) self.state.g = np.tanh(np.dot(self.param.wg, xc) + self.param.bg) self.state.i = sigmoid(np.dot(self.param.wi, xc) + self.param.bi) self.state.f = sigmoid(np.dot(self.param.wf, xc) + self.param.bf) self.state.o = sigmoid(np.dot(self.param.wo, xc) + self.param.bo) self.state.s = self.state.g * self.state.i + s_prev * self.state.f self.state.h = self.state.s * self.state.o self.xc = xc def top_diff_is(self, top_diff_h, top_diff_s): #global fp #global fc #fc += 1 #print("calling", fc) # notice that top_diff_s is carried along the constant error carousel # print("top_diff_h", top_diff_h) ds = self.state.o * top_diff_h + top_diff_s do = self.state.s * top_diff_h di = self.state.g * ds dg = self.state.i * ds df = self.s_prev * ds # diffs w.r.t. vector inside sigma / tanh function di_input = sigmoid_derivative(self.state.i) * di df_input = sigmoid_derivative(self.state.f) * df do_input = sigmoid_derivative(self.state.o) * do dg_input = tanh_derivative(self.state.g) * dg # diffs w.r.t. inputs #if fp == 0: #print("self.param.wg_diff B4", self.param.wg_diff) #print("di_input", dg_input) #print("self.xc", self.xc) #print("OUTER",np.outer(dg_input, self.xc)) # print("OUTER SHAPE", np.shape(np.outer(di_input, self.xc))) #print("self.param.wg_diff B4", self.param.wg_diff[0][0]) # print("di_input", np.shape(di_input)) # print("self.xc", np.shape(self.xc)) # sys.exit() self.param.wi_diff += np.outer(di_input, self.xc) # print("self.param.wi_diff AFTER", self.param.wi_diff) self.param.wf_diff += np.outer(df_input, self.xc) self.param.wo_diff += np.outer(do_input, self.xc) self.param.wg_diff += np.outer(dg_input, self.xc) self.param.bi_diff += di_input self.param.bf_diff += df_input self.param.bo_diff += do_input self.param.bg_diff += dg_input #if fp == 0: #print("self.param.wg_diff AFTER", self.param.wg_diff) # fp = fp + 1 #if fp == 0: # fp = fp + 1 # compute bottom diff dxc = np.zeros_like(self.xc) dxc += np.dot(self.param.wi.T, di_input) dxc += np.dot(self.param.wf.T, df_input) dxc += np.dot(self.param.wo.T, do_input) dxc += np.dot(self.param.wg.T, dg_input) # save bottom diffs self.state.bottom_diff_s = ds * self.state.f self.state.bottom_diff_h = dxc[self.param.x_dim:] # print("dxc", dxc) # print("self.param.x_dim", self.param.x_dim) # print("self.state.bottom_diff_h", self.state.bottom_diff_h) class LstmNetwork(): def __init__(self, lstm_param): self.lstm_param = lstm_param self.lstm_node_list = [] # input sequence self.x_list = [] def y_list_is(self, y_list, loss_layer): """ Updates diffs by setting target sequence with corresponding loss layer. Will *NOT* update parameters. To update parameters, call self.lstm_param.apply_diff() """ assert len(y_list) == len(self.x_list) # print("self.x_list", self.x_list) idx = len(self.x_list) - 1 # print("idx", idx) # first node only gets diffs from label ... loss = loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx]) # print("state_h", self.lstm_node_list[idx].state.h) # print("y_list", y_list) diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx]) # here s is not affecting loss due to h(t+1), hence we set equal to zero diff_s = np.zeros(self.lstm_param.mem_cell_ct) # print("diff_h", diff_h) # print("loss", loss) self.lstm_node_list[idx].top_diff_is(diff_h, diff_s) idx -= 1 ### ... following nodes also get diffs from next nodes, hence we add diffs to diff_h ### we also propagate error along constant error carousel using diff_s while idx >= 0: loss += loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx]) diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx]) diff_h += self.lstm_node_list[idx + 1].state.bottom_diff_h diff_s = self.lstm_node_list[idx + 1].state.bottom_diff_s self.lstm_node_list[idx].top_diff_is(diff_h, diff_s) idx -= 1 #global fp #fp = 0 return loss def x_list_clear(self): self.x_list = [] def x_list_add(self, x): self.x_list.append(x) if len(self.x_list) > len(self.lstm_node_list): # need to add new lstm node, create new state mem lstm_state = LstmState(self.lstm_param.mem_cell_ct, self.lstm_param.x_dim) self.lstm_node_list.append(LstmNode(self.lstm_param, lstm_state)) # get index of most recent x input idx = len(self.x_list) - 1 if idx == 0: # no recurrent inputs yet self.lstm_node_list[idx].bottom_data_is(x) else: s_prev = self.lstm_node_list[idx - 1].state.s h_prev = self.lstm_node_list[idx - 1].state.h # print("h_prev", h_prev) self.lstm_node_list[idx].bottom_data_is(x, s_prev, h_prev)
[ "syahmi.fouzi@gmail.com" ]
syahmi.fouzi@gmail.com
b2155da0b6053ea84fa3ba2291e9437337804439
17a2201de4ea55752b3707ec416278934eb1785f
/src/authentication/admin.py
859cf6016e8e17a1829a9492a0bfe87dd3e8062f
[]
no_license
thepsalmist/role_based_access_control
134eb4022c8e6ebefe209e09e14978925de6cc49
8b0f28fe555ee2f8e4a43c0c14735e43082da495
refs/heads/master
2023-03-05T00:49:45.210097
2021-02-14T19:15:53
2021-02-14T19:15:53
338,590,802
0
0
null
null
null
null
UTF-8
Python
false
false
809
py
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import CustomUser class CustomUserAdmin(UserAdmin): model = CustomUser list_display = ( "email", "is_staff", "is_active", ) list_filter = ( "email", "is_staff", "is_active", ) fieldsets = ( (None, {"fields": ("email", "password")}), ("Permissions", {"fields": ("is_staff", "is_active")}), ) add_fieldsets = ( ( None, { "classes": ("wide",), "fields": ("email", "password1", "password2", "is_staff", "is_active"), }, ), ) search_fields = ("email",) ordering = ("email",) admin.site.register(CustomUser, CustomUserAdmin)
[ "76.thealchemist@gmail.com" ]
76.thealchemist@gmail.com
d8d8b3a049def033de5d8a9e4ba1045238c02c95
2c649895227ac385897c6103df57d65f5381cea1
/Faq/views.py
367c773395a3052279f742d3779815598d31f9cc
[]
no_license
ifekeyz/KendraGroup
59b71773da37287fec16d1da513d834df6572f3d
885e54af6aeb6a576368b3bd745ce0a791f4ee2b
refs/heads/master
2023-07-16T13:56:12.447060
2021-09-06T02:16:39
2021-09-06T02:16:39
403,452,560
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
from django.shortcuts import render, redirect from .models import FAQs, Message from django.contrib import messages # Create your views here. def index(request): faqs = FAQs.objects.all() context = { 'faqs':faqs } return render(request, 'faq/faq.html',context) def message(request): if request.method == 'POST': name = request.POST['name'] email = request.POST['email'] subject = request.POST['subject'] message = request.POST['message'] message = Message(name=name, email=email,subject=subject, message=message) message.save() messages.success(request, 'Your request has been recieved, a team member will get back') return redirect ('about')
[ "feranmi.micheal@gmail.com" ]
feranmi.micheal@gmail.com
609a202b9806a22d3f07180acfcc1ea99da4b3d4
ab8714c73f34a21ae3756e3e8f90a673e6ffd4d5
/env/src/orders/admin.py
f53b75532f73ae8fcdf31503dc9375668f96bac3
[]
no_license
ambaresthete/AnybodyCook
f89b858f9a2a02d68c6c8ddf0dfa9fb92c1f1451
94af7320e3a6ed32822c5f288d8ba18e12cf6fa7
refs/heads/master
2020-03-20T21:53:22.014763
2018-11-19T17:24:29
2018-11-19T17:24:29
137,766,205
1
1
null
null
null
null
UTF-8
Python
false
false
117
py
from django.contrib import admin from .models import Order # Register your models here. admin.site.register(Order)
[ "t.ambareesh@github.com" ]
t.ambareesh@github.com
3115dba334b96fae367bec65fe0d65a2afd69de0
c9fbb498e0077d69069a8ca122ef30f76b7576f8
/pyesm/components/pism/time_bounds.py
c145901cc5c5e10e68432e9f88ed71e2122730ae
[]
no_license
pgierz/pyesm
f465e526b5ccb46248a02d80a94283dc9f644d20
de479a5337dae1e377807318792db559ef7e542a
refs/heads/master
2021-06-06T06:16:34.316245
2019-11-11T07:52:33
2019-11-11T07:52:33
164,526,660
0
0
null
2021-06-01T23:18:06
2019-01-08T01:18:47
Python
UTF-8
Python
false
false
759
py
import numpy as np from pyesm.core.time_control.esm_calendar import Date time_array = np.empty((24, 1)) time_bounds_array = np.empty((24, 2)) date1 = Date("1850-01-01") date2 = Date("1851-01-01") end_day = 0 for year_number, date in enumerate([date1, date2]): for index, month in enumerate(date._calendar.monthnames): index += year_number * 12 length_of_this_month = date._calendar.day_in_month(date.year, month) end_day += length_of_this_month middle_day = end_day - (length_of_this_month / 2) start_day = 1 + end_day - length_of_this_month time_array[index] = middle_day time_bounds_array[index, 0], time_bounds_array[index, 1] = start_day, end_day print(time_array) print(time_bounds_array)
[ "pgierz@awi.de" ]
pgierz@awi.de
f65d7f4ed9bbaf5c442a94a94788f83ebbb04726
8e0cf61eb6d7b68077be2d6676bed8444e105a07
/P3/multiagent/multiAgentsNoSabe.py
3c2b786dc1d0446fa67b8bb5b19eaf891c21b564
[]
no_license
marcrabat/AI
487e623c1d3919c2defe7b3daf98fb434d5203a8
8e4254342107835e9d4133ee7f32f5e1aac4215e
refs/heads/master
2021-09-10T11:17:50.642321
2018-03-25T12:36:19
2018-03-25T12:36:19
118,330,539
0
0
null
null
null
null
UTF-8
Python
false
false
7,975
py
# multiAgents.py # -------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). from util import manhattanDistance from game import Directions import random, util, sys from game import Agent class ReflexAgent(Agent): """ A reflex agent chooses an action at each choice point by examining its alternatives via a state evaluation function. The code below is provided as a guide. You are welcome to change it in any way you see fit, so long as you don't touch our method headers. """ def getAction(self, gameState): """ You do not need to change this method, but you're welcome to. getAction chooses among the best options according to the evaluation function. Just like in the previous project, getAction takes a GameState and returns some Directions.X for some X in the set {North, South, West, East, Stop} """ # Collect legal moves and successor states legalMoves = gameState.getLegalActions() # Choose one of the best actions scores = [self.evaluationFunction(gameState, action) for action in legalMoves] bestScore = max(scores) bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore] chosenIndex = random.choice(bestIndices) # Pick randomly among the best "Add more of your code here if you want to" return legalMoves[chosenIndex] def evaluationFunction(self, currentGameState, action): """ Design a better evaluation function here. The evaluation function takes in the current and proposed successor GameStates (pacman.py) and returns a number, where higher numbers are better. The code below extracts some useful information from the state, like the remaining food (newFood) and Pacman position after moving (newPos). newScaredTimes holds the number of moves that each ghost will remain scared because of Pacman having eaten a power pellet. Print out these variables to see what you're getting, then combine them to create a masterful evaluation function. """ # Useful information you can extract from a GameState (pacman.py) successorGameState = currentGameState.generatePacmanSuccessor(action) newPos = successorGameState.getPacmanPosition() newFood = successorGameState.getFood() newGhostStates = successorGameState.getGhostStates() newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] ''' python pacman.py -p ReflexAgent -l testClassic Try out your reflex agent on the default mediumClassic layout with one ghost or two (and animation off to speed up the display): python pacman.py --frameTime 0 -p ReflexAgent -k 1 python pacman.py --frameTime 0 -p ReflexAgent -k 2 ''' "*** YOUR CODE HERE ***" remainingFood = newFood.asList() maxScore = sys.maxint if len(remainingFood) == 0: return maxScore closer_food = min([util.manhattanDistance(newPos, food) for food in remainingFood]) for ghost in newGhostStates: ghostPos = ghost.getPosition() closer_ghost = min([util.manhattanDistance(newPos, ghostPos) for ghost in newGhostStates]) score = successorGameState.getScore() + (closer_ghost-closer_food) return score def scoreEvaluationFunction(currentGameState): """ This default evaluation function just returns the score of the state. The score is the same one displayed in the Pacman GUI. This evaluation function is meant for use with adversarial search agents (not reflex agents). """ return currentGameState.getScore() class MultiAgentSearchAgent(Agent): """ This class provides some common elements to all of your multi-agent searchers. Any methods defined here will be available to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent. You *do not* need to make any changes here, but you can if you want to add functionality to all your adversarial search agents. Please do not remove anything, however. Note: this is an abstract class: one that should not be instantiated. It's only partially specified, and designed to be extended. Agent (game.py) is another abstract class. """ def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'): self.index = 0 # Pacman is always agent index 0 self.evaluationFunction = util.lookup(evalFn, globals()) self.depth = int(depth) class MinimaxAgent(MultiAgentSearchAgent): """ Your minimax agent (question 2) """ def minimax(self, gameState, depth, agent): best_action = None if depth == 0 or (gameState.isWon() or gameState.isLose()): return self.evaluationFunction if agent%3 == 0: best_score = float('-inf') for action in gameState.getLegalActions(agent): score = minimax(gameState.generateSuccessor(action), depth+1, agent) best_score = max(best_score, score) return best_score else: best_score = float('inf') for action in gameState.getLegalActions(agent): score = minimax(gameState.generateSuccessor(action), depth, agent+1) best_score = min(best_score, score) return best_score def getAction(self, gameState): """ Returns the minimax action from the current gameState using self.depth and self.evaluationFunction. Here are some method calls that might be useful when implementing minimax. gameState.getLegalActions(agentIndex): Returns a list of legal actions for an agent agentIndex=0 means Pacman, ghosts are >= 1 gameState.generateSuccessor(agentIndex, action): Returns the successor game state after an agent takes an action gameState.getNumAgents(): Returns the total number of agents in the game """ "*** YOUR CODE HERE ***" pacman = 0 return self.minimax(gameState, 0, self.index) util.raiseNotDefined() class AlphaBetaAgent(MultiAgentSearchAgent): """ Your minimax agent with alpha-beta pruning (question 3) """ def getAction(self, gameState): """ Returns the minimax action using self.depth and self.evaluationFunction """ "*** YOUR CODE HERE ***" util.raiseNotDefined() class ExpectimaxAgent(MultiAgentSearchAgent): """ Your expectimax agent (question 4) """ def getAction(self, gameState): """ Returns the expectimax action using self.depth and self.evaluationFunction All ghosts should be modeled as choosing uniformly at random from their legal moves. """ "*** YOUR CODE HERE ***" util.raiseNotDefined() def betterEvaluationFunction(currentGameState): """ Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable evaluation function (question 5). DESCRIPTION: <write something here so we know what you did> """ "*** YOUR CODE HERE ***" util.raiseNotDefined() # Abbreviation better = betterEvaluationFunction
[ "marc.rabat01@estudiant.upf.edu" ]
marc.rabat01@estudiant.upf.edu
9d5a6ba6446140a91ac8195ae11cdf52026435c4
ec0b8bfe19b03e9c3bb13d9cfa9bd328fb9ca3f1
/res/packages/scripts/scripts/client/tutorial/control/quests/__init__.py
e0557fa51737e0fce1a443bfd0b2043093d7aa71
[]
no_license
webiumsk/WOT-0.9.20.0
de3d7441c5d442f085c47a89fa58a83f1cd783f2
811cb4e1bca271372a1d837a268b6e0e915368bc
refs/heads/master
2021-01-20T22:11:45.505844
2017-08-29T20:11:38
2017-08-29T20:11:38
101,803,045
0
1
null
null
null
null
WINDOWS-1250
Python
false
false
3,036
py
# 2017.08.29 21:51:51 Střední Evropa (letní čas) # Embedded file name: scripts/client/tutorial/control/quests/__init__.py from tutorial.control.lobby.context import LobbyBonusesRequester from tutorial.control.quests import queries from tutorial.data.effects import EFFECT_TYPE from tutorial.control import ControlsFactory from tutorial.control import context as core_ctx from tutorial.control import functional as core_func from tutorial.control.chains import functional as chains_func from tutorial.control.lobby import functional as lobby_func from tutorial.control.quests import functional as quests_func class QuestsControlsFactory(ControlsFactory): def __init__(self): effects = {EFFECT_TYPE.ACTIVATE: core_func.FunctionalActivateEffect, EFFECT_TYPE.DEACTIVATE: core_func.FunctionalDeactivateEffect, EFFECT_TYPE.GLOBAL_ACTIVATE: core_func.FunctionalGlobalActivateEffect, EFFECT_TYPE.GLOBAL_DEACTIVATE: core_func.FunctionalGlobalDeactivateEffect, EFFECT_TYPE.SET_GUI_ITEM_CRITERIA: core_func.FunctionalSetGuiItemCriteria, EFFECT_TYPE.SET_ACTION: core_func.FunctionalSetAction, EFFECT_TYPE.REMOVE_ACTION: core_func.FunctionalRemoveAction, EFFECT_TYPE.REFUSE_TRAINING: core_func.FunctionalRefuseTrainingEffect, EFFECT_TYPE.REQUEST_BONUS: core_func.FunctionalRequestBonusEffect, EFFECT_TYPE.NEXT_CHAPTER: core_func.FunctionalNextChapterEffect, EFFECT_TYPE.CLEAR_SCENE: core_func.FunctionalClearScene, EFFECT_TYPE.GO_SCENE: core_func.GoToSceneEffect, EFFECT_TYPE.SHOW_HINT: chains_func.FunctionalShowHint, EFFECT_TYPE.CLOSE_HINT: chains_func.FunctionalCloseHint, EFFECT_TYPE.SHOW_WINDOW: quests_func.ShowSharedWindowEffect, EFFECT_TYPE.SELECT_VEHICLE_IN_HANGAR: quests_func.SelectVehicleInHangar, EFFECT_TYPE.SAVE_TUTORIAL_SETTING: quests_func.SaveTutorialSettingEffect, EFFECT_TYPE.SAVE_ACCOUNT_SETTING: quests_func.SaveAccountSettingEffect, EFFECT_TYPE.RUN_TRIGGER: quests_func.QuestsFunctionalRunTriggerEffect, EFFECT_TYPE.SHOW_UNLOCKED_CHAPTER: chains_func.FunctionalShowUnlockedChapter, EFFECT_TYPE.SHOW_AWARD_WINDOW: chains_func.FunctionalShowAwardWindow, EFFECT_TYPE.ENTER_QUEUE: chains_func.FunctionalSwitchToRandom} _queries = {'awardWindow': queries.AwardWindowContentQuery} ControlsFactory.__init__(self, effects, _queries) def createBonuses(self, completed): return LobbyBonusesRequester(completed) def createSoundPlayer(self): return core_ctx.NoSound() def createFuncScene(self, sceneModel): return core_func.FunctionalScene(sceneModel) def createFuncInfo(self): return lobby_func.FunctionalLobbyChapterInfo() # okay decompyling c:\Users\PC\wotmods\files\originals\res\packages\scripts\scripts\client\tutorial\control\quests\__init__.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2017.08.29 21:51:51 Střední Evropa (letní čas)
[ "info@webium.sk" ]
info@webium.sk
b24be479fbc1e14fe1264446b6a3b99c4514a9f2
2dd30033a83d8684b304eda9b2d535bdffea2cc6
/src/motor.py
012e9b29003a03ad679c543c6647b5d8c8bd9e71
[ "MIT" ]
permissive
dmaicher/rpi-quadcopter
e83ff8610a3c99244706a9f7f660727a3d1d196e
096572ba27bc1dd5ca5db17ddefae35ce859eba9
refs/heads/master
2020-04-18T22:12:11.205896
2014-05-03T12:31:42
2014-05-03T12:31:42
19,201,046
1
1
null
null
null
null
UTF-8
Python
false
false
668
py
class Motor: MIN_TICK = 150 MAX_TICK = 600 DIFF_TICK = MAX_TICK - MIN_TICK def __init__(self, id, pwm, channel): self.id = id self.power = 0 #percent 0-100 self.pwm = pwm self.channel = channel self.pwm_set_power() def change_power(self, diff): self.set_power(self.power + diff) def set_power(self, power): self.power = max(0, min(100, power)) self.pwm_set_power() def __str__(self): return "motor #" + self.id + ", " + str(self.power) def pwm_set_power(self): self.pwm.setPWM(self.channel, 0, int(self.MIN_TICK + self.power/100.0 * self.DIFF_TICK))
[ "mail@dmaicher.de" ]
mail@dmaicher.de
400bd9c3f0c6ff4b9ec361588aa8bc0ee3f82070
31c738876a8037d106a767f0761505282de842c1
/django_ical/feedgenerator.py
232fb705e415df63b05957ca3d7b9f253bb587ab
[]
no_license
mick88/django-ical
e8ddc84e2ac5b3922915393f0fefc638c6371559
94558a542ce2baa687cf50ab2f989537caa4b0ed
refs/heads/master
2021-01-10T06:37:34.786239
2015-02-15T17:41:45
2015-02-15T17:41:45
43,001,011
0
0
null
null
null
null
UTF-8
Python
false
false
2,939
py
#:coding=utf-8: """ iCalendar feed generation library -- used for generating iCalendar feeds. Sample usage: >>> from django_ical import feedgenerator >>> from datetime import datetime >>> feed = feedgenerator.ICal20Feed( ... title=u"My Events", ... link=u"http://www.example.com/events.ical", ... description=u"A iCalendar feed of my events.", ... language=u"en", ... ) >>> feed.add_item( ... title="Hello", ... link=u"http://www.example.com/test/", ... description="Testing." ... start_datetime=datetime(2012, 5, 6, 10, 00), ... end_datetime=datetime(2012, 5, 6, 12, 00), ... ) >>> fp = open('test.ical', 'w') >>> feed.write(fp, 'utf-8') >>> fp.close() For definitions of the iCalendar format see: http://www.ietf.org/rfc/rfc2445.txt """ from icalendar import Calendar, Event from django.utils.feedgenerator import SyndicationFeed __all__ = ( 'ICal20Feed', 'DefaultFeed', ) FEED_FIELD_MAP = ( ('product_id', 'prodid'), ('method', 'method'), ('title', 'x-wr-calname'), ('description', 'x-wr-caldesc'), ('timezone', 'x-wr-timezone'), ) ITEM_EVENT_FIELD_MAP = ( # 'item_guid' becomes 'unique_id' when passed to the SyndicationFeed ('unique_id', 'uid'), ('title', 'summary'), ('description', 'description'), ('start_datetime', 'dtstart'), ('end_datetime', 'dtend'), ('updated', 'last-modified'), ('created', 'created'), ('timestamp', 'dtstamp'), ('transparency', 'transp'), ('location', 'location'), ('geolocation', 'geo'), ('link', 'url'), ('organizer', 'organizer'), ('rrule', 'rrule'), ) class ICal20Feed(SyndicationFeed): u""" iCalendar 2.0 Feed implementation. """ mime_type = 'text/calendar; charset=utf8' def write(self, outfile, encoding): u""" Writes the feed to the specified file in the specified encoding. """ cal = Calendar() cal.add('version', '2.0') cal.add('calscale', 'GREGORIAN') for ifield, efield in FEED_FIELD_MAP: val = self.feed.get(ifield) if val is not None: cal.add(efield, val) self.write_items(cal) to_ical = getattr(cal, 'as_string', None) if not to_ical: to_ical = cal.to_ical outfile.write(to_ical()) def write_items(self, calendar): """ Write all events to the calendar """ for item in self.items: event = Event() for ifield, efield in ITEM_EVENT_FIELD_MAP: val = item.get(ifield) if val is not None: event.add(efield, val) calendar.add_component(event) DefaultFeed = ICal20Feed
[ "Michal@Michal-pc" ]
Michal@Michal-pc
ae8959b431a7168d2ad9a743c5bb013247a0bc6a
96956ec099a1213047e067b70773ca9f642ef7b7
/item/migrations/0003_item_owner.py
3a7007c5df8fefb59f6e803044fa0c3e52c9eeb8
[]
no_license
svyatoslavgalas/mp_vision
107701e3c703b733d8d8768115f07cce9837ea66
3db17fb28cb4630c72e8db40f4fe64bb68e36b6a
refs/heads/main
2023-08-17T04:09:25.884660
2021-09-27T09:09:33
2021-09-27T09:09:33
410,812,906
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
# Generated by Django 3.2.7 on 2021-09-26 19:55 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('item', '0002_alter_item_category'), ] operations = [ migrations.AddField( model_name='item', name='owner', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='items', to=settings.AUTH_USER_MODEL, verbose_name='Владелец'), ), ]
[ "v*?%4=463pyU[d*" ]
v*?%4=463pyU[d*
0a5ffbe378c430de0e47891dad38a24150a9bbf2
67c6db3455463a00b30fafc83240de3fbe1fb7d6
/Topik10_HIMPUNAN (DATA SET)/Tugas1.py
a8adc0cbb31570d7c05951d2e640e9a11c5eb259
[]
no_license
rbnset/Teknik_Pemrogaman
fe5e2439b9af27696154af9b2c108f7b7e29edb0
36ecfd494804363d3a6d61011480be508e378325
refs/heads/main
2023-08-19T01:04:10.327289
2021-07-19T03:14:31
2021-07-19T03:14:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,214
py
# Program himpunan makanan favorit Nasgor = {'Robin', 'Taufiq', 'Iqbal', 'Bayu', 'Dwi'} Bakso = {'Galih', 'Taufiq', 'Niken', 'Anggie', 'Dwi'} Mie = {'Robin', 'Dwi', 'Bayu', 'Nimas'} Nasgor.add('Argo') Bakso.remove('Taufiq') print('Daftar yang menyukai Nasgor : ', Nasgor) print('Daftar yang menyukai Bakso : ', Bakso) print('Daftar yang menyukai Mie : ', Mie) print() print('Daftar yang menyukai Nasgor dan Bakso : ', (Nasgor & Bakso)) print('Jumlah yang menyukai Nasgor dan Bakso : ', len(Nasgor & Bakso)) print('Daftar yang tidak menyukai Nasgor dan Bakso : ', (Nasgor ^ Bakso)) print('Jumlah yang menyukai Nasgor dan Bakso : ', len(Nasgor ^ Bakso)) print() print('Daftar yang menyukai Nasgor dan Mie : ', (Nasgor & Mie)) print('Jumlah yang menyukai Nasgor dan Mie : ', len(Nasgor & Mie)) print('Daftar yang tidak menyukai Nasgor dan Mie : ', (Nasgor ^ Mie)) print('Jumlah yang tidak menyukai Nasgor dan Mie : ', len(Nasgor ^ Mie)) print() print('Daftar yang menyukai Bakso dan Mie : ', (Bakso & Mie)) print('Jumlah yang menyukai Bakso dan Mie : ', len(Bakso & Mie)) print('Daftar yang tidak menyukai Bakso dan Mie : ', (Bakso ^ Mie)) print('Jumlah yang tidak menyukai Bakso dan Mie : ', len(Bakso ^ Mie))
[ "rbn.setiyawan@gmail.com" ]
rbn.setiyawan@gmail.com
5ba7f81e1658fabbaf3412669f7616ed03993089
0d4885832213478e621d6b58a894d1d3fbf10e89
/catkin_ws/src/testing/src/test_import.py
3a90e40fc7eec7c31e5895366519fea9fdc44a6c
[]
no_license
dtbinh/ros_basic
38be51e0cc157a2a7a69065f771a3cb5dea6cd31
5c9b2de1d01b84924a75f5e7f725f43d09033e33
refs/heads/master
2022-07-28T13:35:37.192202
2020-05-27T15:45:41
2020-05-27T15:45:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
#! /usr/bin/env python import rospy import time from common_dir.common_things import cool, CmdVelPub if __name__ == '__main__': cool('TheConstruct') stop_time = 1 move_time = 3 rospy.init_node('test_import', log_level=rospy.INFO) move_object = CmdVelPub() rospy.loginfo("Starting...") move_object.move_robot(direction="stop") time.sleep(stop_time) rospy.loginfo("Forwards...") move_object.move_robot(direction="forwards") time.sleep(move_time) rospy.loginfo("Stopping...") move_object.move_robot(direction="stop") time.sleep(stop_time) rospy.loginfo("Forwards...") move_object.move_robot(direction="backwards") time.sleep(move_time) rospy.loginfo("Stopping...") move_object.move_robot(direction="stop")
[ "osong@ucsd.edu" ]
osong@ucsd.edu
0af08865ace2e4eed3d32921381267d797d9d853
411b56e76febcf809e85505bb38387a8e5518ab3
/django_date_picker/wsgi.py
61b1acc38e71532d4a9b693c29586a71e9e445dd
[]
no_license
Ngahu/Django-Date-picker-
865835ee674c0f65d4deab2ca21f48d2b88d2254
ec32ce697bb4778eb563741ac3a7f4de26edf825
refs/heads/master
2020-05-23T23:24:38.445389
2019-05-16T10:15:05
2019-05-16T10:15:05
186,993,806
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
""" WSGI config for django_date_picker project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_date_picker.settings") application = get_wsgi_application()
[ "ngahu@joels-MacBook-Pro.local" ]
ngahu@joels-MacBook-Pro.local
35bf39dd863f6c5d6245f5da78ea0fdf09490e02
161a765674b837cf4a2f48879a987dce3f40d15f
/api_dev/conftest.py
b2d36162d3cf30037f9f43e1065cff26c17a45e0
[ "MIT" ]
permissive
ManhTai01/api
19662cae94f9182dabb183a37bf7715be04254d9
09d7a8dd0a11c1552c34cd9006c5afae94897afc
refs/heads/master
2023-05-23T17:09:36.339576
2021-06-14T12:19:13
2021-06-14T12:19:13
376,811,903
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
import pytest from api_dev.users.models import User from api_dev.users.tests.factories import UserFactory @pytest.fixture(autouse=True) def media_storage(settings, tmpdir): settings.MEDIA_ROOT = tmpdir.strpath @pytest.fixture def user() -> User: return UserFactory()
[ "lemanhtaictbp@gmail.com" ]
lemanhtaictbp@gmail.com
d1e5895ff33ca6ce5a15f6feacdd7059200c09c0
a94941c225c3029755efe3bb56eb13e1c8bcfde5
/examples/batch_compute_LiNaMgAl_rvd+neq.py
942d239904b9fd2b7eadcee0d4aa00c4fcff8861
[]
no_license
shuhebing/cavd
80d3d48ec19cfde727d67ecb8d74deac084c19a1
e5146e89a0cfdf35bcc5677808c9cc4ea96dae95
refs/heads/master
2022-11-12T06:51:32.110927
2019-12-14T14:47:17
2019-12-14T14:47:24
276,862,815
1
0
null
null
null
null
UTF-8
Python
false
false
4,001
py
import os import cavd #数据挖掘获取的标准值 std_surf_list = [0.8018, 1.1705, 0.8435, 0.6119] std_list = [2.0562, 2.4439, 2.0644, 1.8552] ions = ["Li", "Na", "Mg", "Al"] for i in range(len(ions)): filenames=[] path = "../../Li_Na_Mg_Al_cifs_order_revise/" + ions[i] + "/" if not os.path.exists(path+"results"): os.mkdir(path+"results") print("create results directory successful!") else: print(path+"results already exit!") output_path = path+"results/" com_status = open(output_path+"channel_channel_com_status_" + ions[i] + ".csv","w") com_status.write('filename,status\n') results = open(output_path+"com_results_" + ions[i] + ".csv","w") results.write('filename\tradii\tsymmSymbolInCif\tsymmNumInCif\tsymprec\tvoids_num\tsym_opt_num\tuni_voids_num\tnei_dises\tRT_a\tRT_b\tRT_c\tR_j\talpha\tmigrate_rad\ta\tb\tc\tdimofNetwork\tdimofChannels\trecover_rate\trecover_state\tmigrate_mindis\tCoordinates\n') for j in os.listdir(path): if ".cif" in j: filenames.append(j) for filename in filenames: filename = path+filename print(filename) try: radii,symm_sybol,symm_number,symprec,voids_num,sym_opt_num,uni_voids_num,minRad,migrant_alpha,nei_dises,migrant_radius,conn_val,connect,dim_network,dims_channel,recover_rate,recover_state,migrate_mindis,coordination_list = cavd.AllCom8(filename,std_surf_list[i],ions[i],True,True,None) results.write(filename) results.write('\t') results.write(str(radii)) results.write('\t') results.write(symm_sybol) results.write('\t') results.write(str(symm_number)) results.write('\t') results.write(str(symprec)) results.write('\t') results.write(str(voids_num)) results.write('\t') results.write(str(sym_opt_num)) results.write('\t') results.write(str(uni_voids_num)) results.write('\t') results.write(str(nei_dises)) results.write('\t') results.write(str(conn_val[0])) results.write('\t') results.write(str(conn_val[1])) results.write('\t') results.write(str(conn_val[2])) results.write('\t') results.write(str(minRad)) results.write('\t') results.write(str(migrant_alpha)) results.write('\t') results.write(str(migrant_radius)) results.write('\t') results.write(str(connect[0])) results.write('\t') results.write(str(connect[1])) results.write('\t') results.write(str(connect[2])) results.write('\t') results.write(str(dim_network)) results.write('\t') results.write(str(dims_channel)) results.write('\t') results.write(str(recover_rate)) results.write('\t') results.write(str(recover_state)) results.write('\t') results.write(str(migrate_mindis)) results.write('\t') whole_coords = [] for coord in coordination_list: nei_list = [] for nei in coord["coord_nei"]: near_tmp = (nei[0].species_string,nei[1]) nei_list.append(near_tmp) tmp = (coord["label"],nei_list) whole_coords.append(tmp) results.write(str(whole_coords)) results.write("\n") print(filename+" compute complete!") out = filename+','+'compute complete!'+'\n' com_status.write(out) except Exception as e: print(filename,str(e)) com_status.write(filename+','+str(e)+'\n') continue print(ions[i]+" contained file compute completed!") print() print("All File compute completed!")
[ "yeanjiang11@qq.com" ]
yeanjiang11@qq.com
37d97636dfa963b89a41c572f266ecd760ddab16
f6670ecfba1471f4ebb12f3bf63a4d5c7fcfda83
/Search.py
50a1b42aec225d9298364f9fc48c66885012b368
[]
no_license
wfyhz/alfred-pkmanager
b4d3eebd1ce5412b06c1829f14670a27f14e2454
c0e08f49855c75ede1f4439598d2c455424071a5
refs/heads/master
2022-12-30T06:53:27.260156
2020-10-25T16:31:57
2020-10-25T16:31:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,771
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # -------------------------------------- # Created by Konfido on 2020-07-16 # -------------------------------------- import re import Config from Items import Items, Display from Utils import Utils as U C = Config.Config().configs class File(): def __init__(self): self.path = "" self.file_name = "" self.yaml = "" self.content = "" self.title = "" @staticmethod def get_yaml_item(item, content): match = re.search( r'^---.*?\b{}s?: (.*?)\n.*?---'.format(item), content, re.I | re.S) return match.group(1) if match is not None else None def get_file_title(self, path): """ yaml_title > level_one_title > file_name """ self.path = path self.file_name = U.get_file_name(self.path) all_text = U.get_file_content(self.path) match = re.search(r'(---.*?---)([\s\S]+)', all_text, re.I | re.S) if match and len(match.groups()) == 2: self.yaml = match.group(1) self.content = match.group(2).strip() else: U.log(self.file_name) self.yaml, self.content = "", all_text yaml_title = self.get_yaml_item("title", self.yaml) level_one_title = re.search(r'^# (\s+)', self.content) self.title = yaml_title or level_one_title or self.file_name or "" return self.title @classmethod def get_file_info(cls, path): """ get file's info in a dict """ cls.get_file_title(cls, path) folder = path.split("/")[-2] if len(path.split('/'))>2 else "<root>" size = U.get_file_meta(cls.path, "st_size") ctime_float = U.get_file_meta(cls.path, "st_birthtime") mtime_float = U.get_file_meta(cls.path, "st_mtime") cdate_string = U.format_date(ctime_float, "%Y-%m-%d") mdate_string = U.format_date(mtime_float, "%Y-%m-%d") file_infos = { 'path': cls.path, 'file_name': cls.file_name, 'yaml': cls.yaml, 'content': cls.content, 'title': cls.title, 'folder': folder, 'cdate': cdate_string, 'mdate': mdate_string, 'ctime': ctime_float, 'mtime': mtime_float, 'size': size, 'synonyms': cls.get_yaml_item('synonyms', cls.yaml), 'hidden': cls.get_yaml_item('hidden', cls.yaml) } return file_infos class Search(): """ Handle all search problems""" @classmethod def get_sorted_files(cls, paths, reverse=True): """Get info_list of all files sorted by modification time in reserve """ all_paths = U.get_all_files_path(paths) if not all_paths: return None else: matched_list = list() for path in all_paths: info = File.get_file_info(path) if not info["hidden"] == 'True': matched_list.append(info) sorted_files = sorted( matched_list, key=lambda k: k['mtime'], reverse=reverse) return sorted_files @classmethod def title_search(cls, search_terms, dicted_files): """Only refer to the first word of search terms""" def _synonyms_search(search_terms): # Return a list of matched notes' title synonyms = U.json_load(U.path_join(Config.CONFIG_DIR, 'synonyms.json')) key = [] for k in list(synonyms.keys()): for s in synonyms[k]: if search_terms[0].lower() in s.lower(): key.append(k) return key matched_list = [] for f in dicted_files: if f['title'].lower() in [t.lower() for t in _synonyms_search(search_terms)]: matched_list.append(f) elif search_terms[0].lower() in f['title'].lower(): matched_list.append(f) return matched_list @classmethod def and_search(cls, search_terms, dicted_files): def _matched(terms, string): for term in terms: if not re.search(term, string, re.I): return False return True matched_list = [] for f in dicted_files: if _matched(search_terms, f['content']): matched_list.append(f) return matched_list @classmethod def or_search(cls, search_terms, dicted_files): def _matched(terms, file): for term in terms: if re.search(term, file, re.I): return True return False matched_list = [] for f in dicted_files: if _matched(search_terms, f['content']): matched_list.append(f) return matched_list @classmethod def metric_search(cls, metric, keys, dicted_files): # Search notes by keys of specific metrics (tag, snippet ...) matched_notes = [] for f in dicted_files: has_keys = [] # Check YAML frontier to get note's assigned metrics match = File.get_yaml_item(metric, f["content"]) if match: has_keys.extend(match.strip('[]').split(', ')) # Check content to get note's specific metrics if metric in ["tag","tags"] and not C["search_tag_yaml_only"]: has_keys.extend(re.findall(r'\b#(.*?)\b', f['content'], re.I)) elif metric == "language" and not C["search_snippet_yaml_only"]: has_keys.extend(re.findall(r'```(\S+)', f['content'], re.I)) if not has_keys: continue else: for k in keys: if k in has_keys: matched_notes.append(f) return matched_notes @staticmethod def markdown_links_search(path, filename=False): "Get a list of Markdown links which contained in the file (by given path/filename)" abs_path = path if not filename else U.get_abspath(path, query_dict=True) content = U.get_file_content(abs_path) # exclude images link: ![]() and url: [](https://) links_info = re.findall( r'(?<!!)(\[(.*?)\]\(((?!http).*?md)\))', content) link_list = [l[2] for l in links_info] return link_list @staticmethod def backlinks_search(filename): "Query dict with path/filename to get a backlink list" filename = U.get_file_name(filename, with_ext=True) backlinks = U.json_load(U.path_join(Config.CONFIG_DIR, 'backlinks.json')) matched_list = backlinks[filename] if backlinks.__contains__(filename) else [] return matched_list
[ "konfido.du@outlook.com" ]
konfido.du@outlook.com
9f7d68ae346094a658eaf03f008763831f5e1c0d
230a41bc0f05a4e2a02a4d671f0d48e517833b1f
/youtube_api.py
d2891f5c18d5f7150f8cfcc21e3dc053507288f2
[]
no_license
FuckBrains/autoTube
7c9288d6ba09799b91592e2950aa96ff75c0526c
4bbd6e319f7b6143f64f43e13c8ef66d04b03781
refs/heads/master
2023-04-18T05:48:31.653287
2021-04-30T07:56:09
2021-04-30T07:56:09
363,264,201
1
0
null
null
null
null
UTF-8
Python
false
false
7,887
py
import httplib2 import http.client as httplib import os import sys import time import logging import settings import game_config from googleapiclient.discovery import build from googleapiclient.errors import HttpError from googleapiclient.http import MediaFileUpload from google_auth_oauthlib.flow import InstalledAppFlow from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import argparser, run_flow # Explicitly tell the underlying HTTP transport library not to retry, since # we are handling retry logic ourselves. httplib2.RETRIES = 1 # Maximum number of times to retry before giving up. MAX_RETRIES = 10 # Always retry when these exceptions are raised. RETRIABLE_EXCEPTIONS = (httplib2.HttpLib2Error, IOError, httplib.NotConnected, httplib.IncompleteRead, httplib.ImproperConnectionState, httplib.CannotSendRequest, httplib.CannotSendHeader, httplib.ResponseNotReady, httplib.BadStatusLine) # Always retry when an apiclient.errors.HttpError with one of these status # codes is raised. RETRIABLE_STATUS_CODES = [500, 502, 503, 504] # The CLIENT_SECRETS_FILE variable specifies the name of a file that contains # the OAuth 2.0 information for this application, including its client_id and # client_secret. You can acquire an OAuth 2.0 client ID and client secret from # the Google Developers Console at # https://console.developers.google.com/. # Please ensure that you have enabled the YouTube Data API for your project. # For more information about using OAuth2 to access the YouTube Data API, see: # https://developers.google.com/youtube/v3/guides/authentication # For more information about the client_secrets.json file format, see: # https://developers.google.com/api-client-library/python/guide/aaa_client_secrets # This OAuth 2.0 access scope allows an application to upload files to the # authenticated user's YouTube channel, but doesn't allow other types of access. YOUTUBE_UPLOAD_SCOPE = "https://www.googleapis.com/auth/youtube.upload" YOUTUBE_API_SERVICE_NAME = "youtube" YOUTUBE_API_VERSION = "v3" # This variable defines a message to display if the CLIENT_SECRETS_FILE is # missing. MISSING_CLIENT_SECRETS_MESSAGE = """ WARNING: Please configure OAuth 2.0 To make this sample run you will need to populate the client_secrets.json file found at: with information from the Developers Console https://console.developers.google.com/ For more information about the client_secrets.json file format, please visit: https://developers.google.com/api-client-library/python/guide/aaa_client_secrets """ VALID_PRIVACY_STATUSES = ("public", "private", "unlisted") SCOPES = ['https://www.googleapis.com/auth/youtube'] scopes = ['https://www.googleapis.com/auth/youtube.readonly', 'https://www.googleapis.com/auth/youtube.upload'] API_SERVICE_NAME = 'youtube' API_VERSION = 'v3' def get_authenticated_service(game): # flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRETS_FILE, SCOPES) # credentials = flow.run_console() # return build(API_SERVICE_NAME, API_VERSION, credentials=credentials) flow = flow_from_clientsecrets(settings.RESULT_DIRECTORY + game['client_secrets_file'], scopes, message=MISSING_CLIENT_SECRETS_MESSAGE) storage = Storage(settings.RESULT_DIRECTORY + game['credentials']) credentials = storage.get() if credentials is None or credentials.invalid: args = argparser.parse_args() args.noauth_local_webserver = True credentials = run_flow(flow, storage, args) return build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, http=credentials.authorize(httplib2.Http())) def initialize_upload(youtube, file_path, title, description, category, tags, language): body = dict( snippet=dict( title=title, description=description, tags=tags, categoryId=category, defaultLanguage=language, defaultAudioLanguage=language ), status=dict( privacyStatus="public" ) ) # Call the API's videos.insert method to create and upload the video. insert_request = youtube.videos().insert( part=",".join(body.keys()), body=body, media_body=MediaFileUpload(file_path, chunksize=1024*1024, resumable=True) ) video_id = resumable_upload(insert_request) return video_id # This method implements an exponential backoff strategy to resume a # failed upload. def resumable_upload(insert_request): response = None error = None retry = 0 while response is None: try: logging.info("Uploading file...") status, response = insert_request.next_chunk() if 'id' in response: logging.info("Video id '%s' was successfully uploaded." % response['id']) return response['id'] else: exit("The upload failed with an unexpected response: %s" % response) except HttpError as e: if e.resp.status in RETRIABLE_STATUS_CODES: error = "A retriable HTTP error %d occurred:\n%s" % (e.resp.status, e.content) else: raise except RETRIABLE_EXCEPTIONS as e: error = "A retriable error occurred: %s" % e except Exception as e: if error is not None: logging.error(e) if error is not None: logging.error(error) retry += 1 if retry > MAX_RETRIES: exit("No longer attempting to retry.") max_sleep = 2 ** retry sleep_seconds = random.random() * max_sleep logging.info("Sleeping %f seconds and then retrying..." % sleep_seconds) time.sleep(sleep_seconds) def upload_video(game, title, file_path, description, category, tags, fallback_title): logging.info('Starting youtube auth service') youtube = get_authenticated_service(game) language = game['language'] try: logging.info('Starting upload process') video_id = initialize_upload(youtube, file_path, title, description, category, tags, language) logging.info('video uploaded') return video_id except HttpError as e: logging.error("An HTTP error %d occurred:\n%s" % (e.resp.status, e.content)) if str(e.content).find('invalidTitle'): video_id = initialize_upload(youtube, file_path, fallback_title, description, category, tags, language) logging.info('video uploaded with fallback title') return video_id def upload_thumbnail(game, video_id, file): try: youtube = get_authenticated_service(game) youtube.thumbnails().set( videoId=video_id, media_body=file ).execute() logging.info('Thumbnail uploaded') except HttpError as e: logging.warning("An HTTP error %d occurred:\n%s" % (e.resp.status, e.content)) def get_video_thumbnail(video_id): thumbnails_game_credentials = game_config.GAMES['marbella_vice'] #marbella_vice credentials are the ones with read videos scope access try: youtube = get_authenticated_service(thumbnails_game_credentials) request = youtube.videos().list(part="snippet", id=video_id ) response = request.execute() thumbnail_url = response['items'][0]['snippet']['thumbnails']['maxres']['url'] return thumbnail_url except HttpError as e: logging.warning("An HTTP error %d occurred:\n%s" % (e.resp.status, e.content))
[ "chuski1212@gmail.com" ]
chuski1212@gmail.com
1d5855b109ac9744bb8b5e63efff59fe7fbe918a
8a8d24cbd349ab9d590dd8de5b82f6b664131a37
/dangdangwang/spiders/dangdang.py
d8cd4716af842cf91e8afcac2140a386f200ad86
[]
no_license
gaoxiaofan0530/dangdang-redis
2a06d54a58207b7ce222e2a0a052d308cb734b9c
8e0b8496d27d79d1e0705698f3a196491b111359
refs/heads/master
2020-06-22T23:31:19.649543
2019-07-23T13:06:49
2019-07-23T13:06:49
198,431,153
1
0
null
null
null
null
UTF-8
Python
false
false
11,959
py
# -*- coding: utf-8 -*- import re import requests import scrapy from ..items import DangdangwangItem from scrapy_redis.spiders import RedisCrawlSpider class DangdangSpider(RedisCrawlSpider): name = 'dangdang' redis_key = 'dangdang:start_urls' allowed_domains = ['dangdang.com'] # start_urls = ['http://search.dangdang.com/?key=python'] def parse(self, response): url_list = response.xpath('//p[@class="name"]/a/@href').extract() for url in url_list: print(url) yield scrapy.Request(url=url,callback=self.parse_item) next_url = response.xpath('//li[@class="next"]/a/@href').extract_first() next_url = 'http://search.dangdang.com'+next_url print('详情页:' + next_url) if next_url != '': yield scrapy.Request(url=next_url,callback=self.parse) def parse_item(self, response): urls = str(response) m = re.search('http://product.dangdang.com/\d+.html', urls) # 使用正则匹配地址,判断是不是电子书 # 不是电子书 if m: item = DangdangwangItem() # 获取书名 book_name = response.xpath('//div[@class="name_info"]/h1/@title').extract_first() item['book_name'] = book_name # 获取书的价钱 book_price = response.xpath('//p[@id="dd-price"]/text()')[1].extract().strip() item['book_price'] = book_price # # 获取书的标题 # book_introduction = response.xpath('//div[@id="product_info"]//h2/span/text()').extract_first().strip() # # book_introduction = ''.join(response.xpath('//div[@id="content"]/div[@class="descrip"]/text()').extract()) # if book_introduction == '': # item['book_introduction'] = '该书没有标明标题' # else: # item['book_introduction'] = re.sub('\s', '', book_introduction) # 将其中的所有空白字符删除 # 获取到作者,出版社,出版时间的父标签 spans = response.xpath('//div[@class="messbox_info"]/span') count = 0 book_authors = '' # 作者 book_publishinghouse = '' # 出版社 book_publisheddate = '' # 出版时间 for span in spans: # 遍历span标签,获取子节点,因为有三个子节点,分别包含作者、出版社以及出版时间 if count == 0: # 获取作者 ass = span.css('a') for a in ass: # 作者可能有多个,需要遍历 book_authors += a.css('::text').extract_first() + ',' if count == 1: # 获取出版社 ass = span.css('a') if ass is None: pass book_publishinghouse = "没有标明出版社" else: book_publishinghouse = str(span.css('a::text').extract_first()) if count == 2: # 获取出版时间 book_publisheddate = str(span.css('::text').extract_first()) count += 1 item['book_authors'] = book_authors # 判断作者是否为空 if item['book_authors'] == '': item['book_authors'] = '暂无作者信息' else: item['book_authors'] = book_authors[:-1] # 使用切片删除字符串的最后一个字符,因为最后一个字符是逗号 # item['book_publishinghouse'] = book_publishinghouse # 判断出版社是否为空 book_publishinghouse = re.sub(' ', '', book_publishinghouse) # 使用正则表达式爸空格字符转换成空字符,因为有的出版社信息是字符串 item['book_publishinghouse'] = book_publishinghouse if item['book_publishinghouse'] == '': # 判断出版社是否是空值 item['book_publishinghouse'] = '没有标明出版社' elif item['book_publishinghouse'] == 'None': # 判断出版社信息是否等于None,注意:这里的None是字符串.而不是关键字 if item['book_authors'] == '': # 如果出版社等于None就说明没有获取到数据,这里判断作者是否为空,因为有的书没有标明作者 item['book_publishinghouse'] = response.xpath( '//div[@class="messbox_info"]/span/a/text').extract_first().strip() # item['book_publishinghouse'] = book_publishinghouse # item['book_publishinghouse'] = '没有标明出版社' if item['book_publishinghouse'] == '': item['book_publishinghouse'] = '没有标明出版社' else: item['book_publishinghouse'] = book_publishinghouse item['book_publisheddate'] = book_publisheddate # 判断出版时间是否为空 book_publisheddate = re.sub(' ', '', book_publisheddate) item['book_publisheddate'] = book_publisheddate if item['book_publisheddate'] is None: item['book_publisheddate'] = '没有标明出版时间' elif item['book_authors'] != '' and item['book_publishinghouse'] == 'None' or item[ 'book_publishinghouse'] == '': # 判断作者是否不等于空,并且出版社等于空 item['book_publisheddate'] = response.xpath('//div[@class="messbox_info"]/span/a/text')[1].extract().strip() elif item['book_authors'] == '' and item['book_publishinghouse'] == '' and item['book_publisheddate'] == '': item['book_authors'] = '' item['book_publishinghouse'] = '' item['book_publisheddate'] = '' elif item['book_authors'] == '' and item['book_publishinghouse'] == '': # 判断作者和出版社是否都为空 # 测试 item['book_publisheddate'] = response.xpath( '//div[@class="messbox_info"]/span/a/text').extract_first().strip() elif item['book_authors'] == '': # 判断作者是否为空 item['book_publisheddate'] = response.xpath('//div[@class="messbox_info"]/span/a/text')[ 1].extract().strip() else: item['book_publisheddate'] = book_publisheddate # 获取评论数 item['book_commentsnumbers'] = ''.join(response.xpath('//a[@id="comm_num_down"]/text()').extract()) # 获取书的网址 item['book_url'] = response.url if item['book_publisheddate'] == '': item['book_publisheddate'] = '没有标明出版时间' else: item['book_publisheddate'] = book_publisheddate item['book_commentsnumbers'] = ''.join(response.xpath('//a[@id="comm_num_down"]/text()').extract()) # 获取书的网址 item['book_url'] = response.url yield item else: # 电子书 item = DangdangdemoWangItem() # 获取书名 book_name = response.xpath('//div[@id="productBookDetail"]/h1/span/@title').extract_first() item['book_name'] = book_name # 获取书的价钱 urls = response.url # 获取json接口 num = ''.join(re.findall('\d', urls)) url = 'http://e.dangdang.com/media/api.go?action=getMedia&deviceSerialNo=html5&macAddr=' \ 'html5&channelType=html5&permanentId=20190513102517003402311866144833876&returnType=j' \ 'son&channelId=70000&clientVersionNo=6.8.0&platformSource=DDDS-P&fromPlatform=106&device' \ 'Type=pconline&token=&refAction=browse&saleId=' + num + '&promotionType=1' print(url) price = requests.get(url) # 想浏览器发送请求 info = price.json() # 解析json price1 = info['data']['mediaSale'] price2 = dict(price1['mediaList'][0]) # 找到json中的数据 price3 = price2['salePrice'] # 获取到价格 book_price = price3 # 把价格赋值给book_price item['book_price'] = book_price # # 获取书的简介 # book_introduction = price2['descs'] # item['book_introduction'] = book_introduction # if book_introduction == '': # item['book_introduction'] = '该书没有标明简介' # else: # # item['book_introduction'] = re.sub('\s', '', book_introduction) # 将其中的所有空白字符删除 # book_introduction = ''.join(book_introduction) # item['book_introduction'] = re.sub('\s', '', book_introduction) # 获取到作者,出版社,出版时间的父标签 spans = response.xpath('//div[@class="explain_box"]') count = 0 book_authors = '' # 作者 for span in spans: # 遍历span标签,获取子节点 if count == 0: # 获取作者 ass = span.css('p#author') for a in ass: # 作者可能有多个,需要遍历 book_authors += a.css('span a::text').extract_first() + ',' count += 1 # 判断作者是否为空 if book_authors == '': item['book_authors'] = '没有标明作者' else: item['book_authors'] = book_authors[:-1] # 使用切片删除字符串的最后一个字符,因为最后一个字符是逗号 # 获取出版社 book_publishinghouse = response.xpath('//p[@id="publisher"]/span/a/text()').extract_first() # 出版社 # 判断出版社是否为空 if book_publishinghouse == '': item['book_publishinghouse'] = '该书没有标明出版社' elif book_publishinghouse is None: item['book_publishinghouse'] = '该书没有标明出版社' else: book_publishinghouse = response.xpath( '//p[@id="publisher"]/span/a/text()').extract_first().strip() # 出版社 item['book_publishinghouse'] = book_publishinghouse # 判断出版社是否为空 if item['book_publishinghouse'] == '': item['book_publishinghouse'] = '没有标明出版社' else: item['book_publishinghouse'] = book_publishinghouse # 获取出版时间 book_publisheddate = response.xpath('//div[@class="explain_box"]/p/text()')[2].extract() # 出版时间 # 判断出版时间是否为空 if book_publisheddate == '': item['book_publisheddate'] = '没有标明出版时间' # 判断出版时间是否为空 elif book_publisheddate == '': item['book_publisheddate'] = '没有标明出版时间' else: nian = book_publisheddate[5:9] # 获取出版时间中的年 yue = book_publisheddate[10:12] # 获取出版时间中的月 # ri = book_publisheddate[13:15] # 获取出版时间中的日 book_publisheddate = '出版时间:' + nian + '年' + yue + '月' item['book_publisheddate'] = book_publisheddate # 获取评论数 book_commentsnumber = response.xpath('//div[@class="count_per"]/em/text()')[0].extract() # item['book_commentsnumbers'] = book_commentsnumbers[0:1] book_commentsnumbers = re.sub('人评论', '', book_commentsnumber) # 使用正则去空格 item['book_commentsnumbers'] = book_commentsnumbers # 获取书的网址 item['book_url'] = response.url yield item
[ "gaoxiaofan0419@gmail.com" ]
gaoxiaofan0419@gmail.com