blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
50ff4a273d3f0c6af02555598bfcf6c504af52f4
931221727641ed3e56e9a30b13e3c15055722a85
/btre/listings/migrations/0003_auto_20190409_2240.py
2e5fba8bea5cace42d1efa490a847837222ef1bf
[]
no_license
gowthamseenu/ML_Shopping
c4ed9db5db2cf85477add6be6f16b6186e92d004
099f9c45df4398647610f5dbf44abce91ac8b562
refs/heads/master
2021-09-08T20:08:51.768035
2021-08-30T09:53:07
2021-08-30T09:53:07
239,966,290
0
1
null
null
null
null
UTF-8
Python
false
false
1,479
py
# Generated by Django 2.2 on 2019-04-09 17:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('listings', '0002_auto_20190409_2235'), ] operations = [ migrations.AlterField( model_name='product', name='brand', field=models.CharField(choices=[('dell', 'dell'), ('apple', 'apple'), ('onepluse', 'onepluse'), ('hp', 'hp')], max_length=200), ), migrations.AlterField( model_name='product', name='display_size', field=models.DecimalField(blank=True, decimal_places=2, max_digits=2), ), migrations.AlterField( model_name='product', name='processor_spped', field=models.DecimalField(blank=True, decimal_places=1, max_digits=4), ), migrations.AlterField( model_name='product', name='storage', field=models.DecimalField(blank=True, decimal_places=1, max_digits=4), ), migrations.AlterField( model_name='product', name='sub_type', field=models.CharField(choices=[('Electronic_product', 'Electronic_product'), ('accessories', 'accessories')], max_length=100), ), migrations.AlterField( model_name='product', name='weight', field=models.DecimalField(blank=True, decimal_places=1, max_digits=6), ), ]
[ "gowthamseenu@biztechnosys.com" ]
gowthamseenu@biztechnosys.com
868fe6c11626d232cb99c5706fa1127364bc90ac
fdaacf88d92eda56f9a6668f3604ebf82e2fcc4c
/web_site/views.py
d1fb448f6c5cf35c2cda0a925c6d1a00237720c7
[]
no_license
PavelShumbasov/sem_work1
070da6560a188d092d9076523927cc4879fc267c
59255ef0192d63aae2d828810305e1d4276abd14
refs/heads/master
2023-09-04T15:14:51.827525
2021-11-06T09:31:38
2021-11-06T09:31:38
424,680,639
0
0
null
null
null
null
UTF-8
Python
false
false
2,997
py
from flask import Blueprint, render_template, request, redirect, url_for, json from flask_login import login_required, current_user from . import db from .menu import menu from .models import Board, Task views = Blueprint("views", __name__) @views.route("/") def home(): boards = Board.query.all() return render_template("home.html", boards=boards, menu=menu) @views.route("/add_board", methods=['GET', 'POST']) @login_required def add_board(): if request.method == 'POST': name = request.form.get("name") board_private = request.form.get("is_private") == "" new_board = Board(name=name, author=current_user.id, is_private=board_private) db.session.add(new_board) db.session.commit() return redirect(url_for("views.home")) return render_template("add_board.html", menu=menu) @views.route("/board/<id>", methods=['GET', 'POST']) @login_required def view_board(id): board = Board.query.filter_by(id=id).first() if board: can_delete = board.author == current_user.id if not board or (board.author != current_user.id and board.is_private): return render_template("no_board.html") if request.method == "POST": if current_user.id == board.author: text = request.form.get("text") new_task = Task(text=text, author=current_user.id, board_id=id) db.session.add(new_task) db.session.commit() tasks = Task.query.filter_by(board_id=id) return render_template("view_board.html", board=board, tasks=tasks, can_delete=can_delete, menu=menu) @views.route("/my_boards", methods=['GET']) @login_required def my_boards(): boards = Board.query.filter_by(author=current_user.id) return render_template("my_boards.html", boards=boards, menu=menu) @views.route("/delete/board/<id>", methods=['GET']) @login_required def delete_board(id): board = Board.query.filter_by(id=id).first() if not board or board.author != current_user.id: return render_template("no_board.html", menu=menu) db.session.delete(board) db.session.commit() return redirect(url_for("views.my_boards")) @views.route("/delete/task/<id>", methods=['GET']) @login_required def delete_task(id): task = Task.query.filter_by(id=id).first() if not task or task.author != current_user.id: return render_template("no_board.html", menu=menu) db.session.delete(task) db.session.commit() return redirect(url_for("views.view_board", id=task.board_id)) @views.route("/find_board", methods=['GET', 'POST']) def find_board(): name = request.form['name'] query = f"SELECT * FROM board WHERE name = '{name}';" result = list(db.engine.execute(query)) if result: path = "views.view_board" answer = {"result": '<a href=' + f'{url_for(path, id=result[0][0])}' + '> Найденная доска<a>'} else: answer = {"result": "Такой доски нет"} return json.dumps(answer)
[ "pavelshumbasov2335@gmail.com" ]
pavelshumbasov2335@gmail.com
2c72fc48e73c2fcf5db27a84c63d3341b2696983
ed7fde0483a4836bfc9ef3ab887cf1220559bfc7
/masters_scripts/EC17_get_allele_dist_1.py
80bb3023acd365ccf7683c6816f51994e190d9c1
[]
no_license
cizydorczyk/python_scripts
326b3142a3c6ce850237e8b13e229854699c6359
b914dcff60727bbfaa2b32e1a634ca9ca354eeeb
refs/heads/master
2023-05-11T14:29:44.548144
2023-05-05T19:39:28
2023-05-05T19:39:28
116,588,201
0
0
null
null
null
null
UTF-8
Python
false
false
1,850
py
from sys import argv import numpy as np import itertools script, inputallelicdepth, outputfile = argv print "Working on file: " + inputallelicdepth.split('/')[-1] with open(inputallelicdepth, 'r') as infile1: lines = infile1.read().splitlines() del lines[0] proportions_breakdown = {1:[], 2:[], 3:[], 4:[]} proportions = [] for i in lines: line = i.strip().split('\t') ad = [float(j) for j in line[-1].split(',')] adsum = sum(ad) numbases = len(ad[0:-1]) if adsum != 0.0: for k in ad[0:-1]: proportions_breakdown[numbases].append(round((k/adsum),2)) proportions.append(round((k/adsum),2)) elif adsum == 0.0: # proportions[numbases].append(0.00) continue # Count total proportions: proportions_dict = {} for i in np.arange(0,1.01, 0.01): proportions_dict[str(i)] = proportions.count(i) # Count proportions with 2, 3, and 4 bases separately: proportions_2_dict = {} proportions_3_dict = {} proportions_4_dict = {} for i in np.arange(0,1.01, 0.01): proportions_2_dict[str(i)] = proportions_breakdown[2].count(i) for i in np.arange(0,1.01, 0.01): proportions_3_dict[str(i)] = proportions_breakdown[3].count(i) for i in np.arange(0,1.01, 0.01): proportions_4_dict[str(i)] = proportions_breakdown[4].count(i) with open(outputfile, 'w') as outfile1: outfile1.write('proportion\ttotal_count\tcount_2\tcount_3\tcount_4\n') for keyt, key2, key3, key4 in itertools.izip(sorted(proportions_dict.keys()), sorted(proportions_2_dict.keys()), sorted(proportions_3_dict.keys()), sorted(proportions_4_dict.keys())): outfile1.write(str(keyt) + '\t' + str(proportions_dict[keyt]) + '\t' + str(proportions_2_dict[key2]) + '\t' + str(proportions_3_dict[key3]) + '\t' + str(proportions_4_dict[key4]) + '\n') # for key, value in sorted(proportions_dict.iteritems()): # outfile1.write(str(key) + '\t' + str(value) + '\n')
[ "conradizydorczyk@gmail.com" ]
conradizydorczyk@gmail.com
87015919007428f2852be00dba827a3230d85010
3abb60c61f1e5aba68620d4c5f9e81700100bbf5
/model/SVM/test.py
d63d07628926294ee8999f8053402735843f191e
[ "Apache-2.0" ]
permissive
chan8616/PoAI
249ff39e49b781c9142ea5da5265dd0479c0a7b6
9bc4b69f434c8be4215f483cefbf2bd171803219
refs/heads/master
2023-02-04T17:00:42.750265
2020-12-16T08:25:06
2020-12-16T08:25:06
141,091,264
0
0
null
null
null
null
UTF-8
Python
false
false
1,882
py
from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pandas as pd import pickle import numpy as np import matplotlib.pyplot as plt import time import os def test(config): data_path = config.data_path save_directory = config.save_directory save_figure = config.save_figure pretrained_file_path = config.pretrained_file_path data = pd.read_csv(data_path) x_columns = config.x_columns x_columns = x_columns.split(',') X = data[x_columns] y_column = config.y_column Y = data[y_column] X_test = X Y_test = Y model = pickle.load(open(pretrained_file_path, 'rb')) print("load pretrained model") y_test_predict = model.predict(X_test) acc = accuracy_score(Y_test, y_test_predict) print("The model performance for testing set") print("--------------------------------------") print('accuracy score is {}'.format(acc)) if save_figure is True: X_test_a = np.array(X_test) h = .02 # step size in the mesh x_min, x_max = X_test_a[:, 0].min() - 1, X_test_a[:, 0].max() + 1 y_min, y_max = X_test_a[:, 1].min() - 1, X_test_a[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X_test_a[:, 0], X_test_a[:, 1], c=Y_test, cmap=plt.cm.Paired, edgecolors='k') plt.title('classification result') plt.axis('tight') time_stamp = time.strftime("%Y%m%d_%H%M%S", time.localtime((time.time())))[2:] file_name = 'svm_model_' + time_stamp + '.png' plt.savefig(os.path.join(save_directory, file_name))
[ "dudgus1727@postech.ac.kr" ]
dudgus1727@postech.ac.kr
a5252f74fdb425b662bfc873101bded2e39d470d
52e7007ed2b9a9525cfb0c483065bffd6ecbcded
/基本操作.py
ec4c8ab1568c364a568e001f46a5f8a5c01a427a
[]
no_license
hnzhangbinghui/selenium
2801618b60c2b7622fbd80945809ccfe5b50309e
15e2dbde337abf856038df72263ae1245293a36b
refs/heads/master
2022-11-14T08:56:16.500728
2020-07-12T10:15:48
2020-07-12T10:15:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,701
py
a="asdfggjytehtrwgrevreqf" print(len(a)) b='123456' #连接字符串,用‘+’号; print(a+b) #python不允许在+表达式中出现其他类型; #字符串转换 age=33 print(int(age)) print(len(str(age))) print(float(age)) #字符串和列表的转换 #list()方法用于将元祖或字符串转换为列表(重点) string='Hello,world!!' l=list(string) print(l) #元祖转化为列表 uname=('laozhang','zhangbinghui','binghui') listu=list(uname) print("列表元素:",listu) #join()方法用于将序列中的元素以指定的字符串连接生产一个新的字符串; s='-' ss=s.join(listu) print(ss) #replace()方法把字符串中的old字符串,替换成new字符串,如果指定第三个参max,则替换不超过max次 #str.replace(old,new[,max]) str="this is string example... owe,this is really string!!" print(str.replace('is','was')); print(str.replace('is','was',3)); name="zhangbinghui" print(name[0]) print(name[-1]) #不含上边界(重点) print(name[1:5]) print(len(name)) print(name[1:10:2]) #s[a:b:-2] 步长为负数,两个边界意义反转了,表示从b+1到a,步长-2 print(name[10:1:-2]) #字符串内建函数 print(name.capitalize())#第一个字符大写 print(name.title()) print(name.upper()) print(name.lower()) #center() 方法返回一个指定的宽度 width 居中的字符串,fillchar 为填充的字符,默认为空格。 #原字符居中,空格填充至width长度 #返回一个指定的宽度 width 居中的字符串,如果 width 小于字符串宽度直接返回字符串,否则使用 fillchar 去填充。 print(name.center(30,'*')) #Python count() 方法用于统计字符串里某个字符出现的次数。可选参数为在字符串搜索的开始与结束位置。 #str.count(sub, start= 0,end=len(string)) print(name.count('i',0,12)) print(name.count('i')) #decode() 方法以指定的编码格式解码 bytes 对象。默认编码为 'utf-8'。 bianma="张冰辉" name1=bianma.encode('utf-8') print(name1) print(bianma.encode('GBK','strict')) """str = "菜鸟教程"; str_utf8 = str.encode("UTF-8") str_gbk = str.encode("GBK") print(str) print("UTF-8 编码:", str_utf8) print("GBK 编码:", str_gbk) print("UTF-8 解码:", str_utf8.decode('UTF-8','strict')) print("GBK 解码:", str_gbk.decode('GBK','strict'))""" """endswith() 方法用于判断字符串是否以指定后缀结尾, 如果以指定后缀结尾返回True,否则返回False。可选参数"start"与"end"为检索字符串的开始与结束位置""" #str.endswith(suffix[, start[, end]]) print(name.endswith('hui')) print(name.endswith('zhagn')) print(name.endswith('hui',3,5)) print(name.endswith('hui',0,12)) print("aaaaaaaaaaaaaa") print(name.startswith('zhang')) print('\n') #expandtabs() 方法把字符串中的 tab 符号('\t')转为空格,tab 符号('\t')默认的空格数是 8。 name1="zhang\tbing\thui" print(name) print(name1.expandtabs()) print(name1.expandtabs(12)) """find() 方法检测字符串中是否包含子字符串 str ,如果指定 beg(开始) 和 end(结束) 范围,则检查是否包含在指定范围内,如果指定范围内如果包含指定索引值, 返回的是索引值在字符串中的起始位置。如果不包含索引值,返回-1。""" print(name.find('bing')) print(name.find('bing',0,len(name))) print(name.find('zhagn')) """index() 方法检测字符串中是否包含子字符串 str ,如果指定 beg(开始) 和 end(结束) 范围,则检查是否包含在指定范围内,该方法与 python find()方法一样,只不过如果str不在 string中会报一个异常。""" """isalnum() 方法检测字符串是否由字母和数字组成""" """如果 string 至少有一个字符并且所有字符都是字母或数字则返回 True,否则返回 False""" print(name.isalnum()) print(bianma.isalnum()) bm="www.baidu.com" print(bm.isalnum()) print('\n') """ Python isalpha() 方法检测字符串是否只由字母组成。 如果字符串至少有一个字符并且所有字符都是字母则返回 True,否则返回 False """ daima="abc123" print(daima.isalnum()) print(daima.isalpha()) print('\n') """ ljust() 方法返回一个原字符串左对齐, 并使用空格填充至指定长度的新字符串。 如果指定的长度小于原字符串的长度则返回原字符串。 返回一个原字符串左对齐,并使用空格填充至指定长度的新字符串。 如果指定的长度小于原字符串的长度则返回原字符串。 """ print(name.ljust(30,'.')) print(name.ljust(30,'*')) print(name.center(30,'*')) print('\n') """ lstrip([chars]) 方法用于截掉字符串左边的空格或指定字符。 chars --指定截取的字符。 """ str1=" zhangbinghui" print(len(str1)) print(str1.lstrip()) print(len(str1.lstrip())) str2='22222222zhangbinghui' print(str2.lstrip('2')) """ partition() 方法用来根据指定的分隔符将字符串进行分割。 如果字符串包含指定的分隔符,则返回一个3元的元组, 第一个为分隔符左边的子串, 第二个为分隔符本身,第三个为分隔符右边的子串 """ a2='www.baidu.com' print(a2.partition('.')) """ Python split() 通过指定分隔符对字符串进行切片, 如果参数 num 有指定值,则分隔 num+1 个子字符串 str.split(str="", num=string.count(str)). num -- 分割次数。默认为 -1, 即分隔所有。 """ print(a2.split('.')) a3='q.w.e.r.t.y.u.i.4.5.6' a4=a3.split('.') print(a4) print(list(a4)) a5='qwtaqtadtlllt' print(a5.split('t')) print('\n') """ Python splitlines() 按照行('\r', '\r\n', \n')分隔, 返回一个包含各行作为元素的列表,如果参数 keepends 为 False, 不包含换行符,如果为 True,则保留换行符。 str.splitlines([keepends]) keepends -- 在输出结果里是否去掉换行符('\r', '\r\n', \n'), 默认为 False,不包含换行符,如果为 True,则保留换行符。 """ atr='ab c\n\nde fg\rkl\r\n' print(atr.splitlines()) print(atr.splitlines(True)) """ Python strip() 方法用于移除字符串头尾指定的字符(默认为空格)或字符序列。 注意:该方法只能删除开头或是结尾的字符,不能删除中间部分的字符。 str.strip([chars]); """ str3='*****zhangbing*hui******' print(str3.strip('*')) #swapcase() 方法用于对字符串的大小写字母进行转换。 str5='ZHANGbingHUI' print(str5.swapcase()) """ Python zfill() 方法返回指定长度的字符串,原字符串右对齐,前面填充0。 width -- 指定字符串的长度。原字符串右对齐,前面填充0。 """ print(name.zfill(30)) print(name.zfill(20)) print(name,'%o') print(name,'%s')
[ "hnzhangbinghui@163.com" ]
hnzhangbinghui@163.com
45bd5115c7a3405823961182633a568318a1d2ef
7234e6c72eb3f09c4a66dbe91f00fdf7742f010f
/algo/arrays/binarysearch/shiftedBinarySearch.py
fc901758206f1662bac912102f0b1b7740f4186f
[]
no_license
srinathalla/python
718ac603473e7bed060ba66aa3d39a90cf7ef69d
b6c546070b1738350303df3939888d1b0e90e89b
refs/heads/master
2021-06-13T06:11:42.653311
2021-02-19T06:01:41
2021-02-19T06:01:41
150,374,828
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
# # T.C : O(logn) S.C : O(1) # # def shiftedBinarySearch(array, target): l = 0 r = len(array)-1 while l < r: m = (l + r)//2 if array[m] == target: return m elif array[m] < array[r]: if array[m] < target and target <= array[r]: l = m + 1 else: r = m - 1 elif array[m] > array[r]: if array[l] <= target and target < array[m]: r = m - 1 else: l = m + 1 return l if array[l] == target else -1 print(shiftedBinarySearch([5, 23, 111, 1], 111)) print(shiftedBinarySearch([45, 61, 71, 72, 73, 0, 1, 21, 33, 45], 33))
[ "srinathb10j.ik@gmail.com" ]
srinathb10j.ik@gmail.com
f0ad64d5af44dc38b8d2591e88fadc4ec83a03c5
37bbd8f1d26a1dd70bc13f597f0306d98d8db7ed
/cl_user/migrations/0001_initial.py
3ab13420ead76e479b9a4ae7bc8cde2448e6711d
[]
no_license
GitHubQinDong/clwh
601f4461e70c24f1e76c40ab11661562064db8a9
41c373627831dba33afd47dcc691b802258ca5b6
refs/heads/master
2021-01-24T20:41:21.056243
2018-03-02T06:40:08
2018-03-02T06:40:08
123,257,983
0
0
null
null
null
null
UTF-8
Python
false
false
889
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-01-20 06:55 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('uname', models.CharField(max_length=20)), ('upwd', models.CharField(max_length=40)), ('uemil', models.EmailField(max_length=30)), ('urelname', models.CharField(default='', max_length=20)), ('uadr', models.CharField(default='', max_length=100)), ('uphone', models.CharField(default='', max_length=11)), ], ), ]
[ "451880559@qq.com" ]
451880559@qq.com
70a40cde8c7c2fb6a06e19d3642aa3632d2cbae5
0abe9956d5ff6eae5026121bdf9a77d917de674a
/createTable.py
83599f118c94a498ff74c3641023b4eecf083566
[]
no_license
Not2Day2Die/PySnow
421e5bddfaecaaecfdd6aa339ead55820b7c4d5b
059ac3c1ebb16952dc11f6f24d01246df7ed1a62
refs/heads/master
2020-04-19T05:46:39.700376
2019-01-29T01:57:57
2019-01-29T01:57:57
167,998,135
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
import pymssql conn = pymssql.connect(host='60.251.238.43', user='sa', password='8179311!QAZ', database='db8780', charset='utf8', port=8433) #查看连接是否成功 cursor = conn.cursor() 'CREATE TABLE Customer(First_Name char(50),Last_Name char(50),Address char(50),City char(50),Country char(25),Birth_Date datetime);' sql = '' cursor.execute(sql) #用一个rs变量获取数据 rs = cursor.fetchall() print(rs)
[ "noreply@github.com" ]
Not2Day2Die.noreply@github.com
1d98d5123707340b7b8490ded539ce18888d5e68
cc6476571b5dc2b3ed61d9ae2833ddbe122edbcb
/Ingestion.py
520ed96425d84b6c93c5a2951f84ef58e94a2339
[]
no_license
jackhulbertpdx/GoingPlacesWithPraw
905660f4744ead56e4c53d6b63f0ba232eb74434
8c95b3efa382d126b1571f74918e96ae355cf033
refs/heads/main
2023-04-03T19:40:52.004660
2021-04-07T23:31:24
2021-04-07T23:31:24
348,434,020
0
0
null
null
null
null
UTF-8
Python
false
false
3,588
py
############################################################################################# # Ingestion # by Jack Hulbert # April 2020 # https://github.com/jackhulbertpdx/GoingPlacesWithPraw # ----------------------------------------------------------------------------------------- # Ingests data from the Reddit PRAW Wrapper from user-defined subreddit feeds, filters, and # loads data into a PostGreSQL table defined in Create Database.py # In order to use this script you must first acquire your user credentials and create an app # using a Reddit developer account. ############################################################################################# import csv import io from io import StringIO import psycopg2 import glob import os import pandas as pd import numpy as np from pandas import DataFrame import datetime as dt from datetime import datetime import praw import sys from dateutil import tz import time # This script extracts data from the Reddit using the PRAW wrapper # from a list of Subreddits and appends them into a csv object and loads into a PostgreSQL table def get_reddit_data(): #Define Output Directory for csv Files output_directory = "/Users/Mydirectory/" #Datetime value that will be appended to csv file name today = dt.datetime.now() #Create container for PRAW data and intercept fields from the Subreddit class list_of_items = [] fields = ('id','title', 'url','selftext','name', 'created_utc', 'num_comments','permalink') #Define list of Subreddits to query using PRAW subs = ['Toyota','ToyotaTundra','ToyotaTacoma','Prius','4Runner','ToyotaHighlander','ToyotaSupra','cars','ToyotaPickup','JDM'] #Authenticate PRAW with Client Secret, User Agent, and ID r = praw.Reddit(client_id='id', client_secret='secret', user_agent='agent') # Function that initiates a call to each subreddit in the defined list # and appends the data to a dict and dumps the csv file into our directory. for i in subs: for submission in r.subreddit(i).new(limit=None): to_dict = vars(submission) sub_dict = {field:to_dict[field] for field in fields} list_of_items.append(sub_dict) data=DataFrame(list_of_items) data[['id','title', 'url','selftext','name', 'created_utc', 'num_comments','permalink']]= data[['id','title', 'url','selftext','name', 'created_utc', 'num_comments','permalink']].astype(str) #Convert UTC to Datetime data['created_utc']=(pd.to_datetime(data['created_utc'],unit='s')) #Write Output File to directory data.to_csv(str(output_directory)+'reddit_data'+str(today)+'.csv', index = False, doublequote=True) #################################################### # Initiate PostGreSQL conn = psycopg2.connect("dbname=db user=user password=pw port=port") cur = conn.cursor() # Grab most recent file written to copy into PG table list_of_files = glob.glob('directory/*') latest_file = max(list_of_files, key=os.path.getctime) print(latest_file) with open(latest_file) as f: cur.copy_expert('COPY submissions(id, title,url,selftext,name,created_utc,num_comments,permalink) FROM STDIN WITH HEADER CSV', f) # Make the changes to the database persistent conn.commit() cur.close() conn.close() get_reddit_data()
[ "noreply@github.com" ]
jackhulbertpdx.noreply@github.com
87971f05c8467924589ee22ef9e25a88bcc0bd19
bac9c5f0e980c967189b01f7a407b6d64b29ffdb
/chapter01-/01-买苹果买香蕉的支持度和置信度.py
021d3c8e85e5b48bd406dae694131541b573f838
[]
no_license
appbanana/DataMining
8047e33684e1f5533c05935b6cc532d31d0da046
b815fbf29fb1fbb7acc7ceda5aced616bfd04db6
refs/heads/master
2020-04-07T15:08:51.989381
2018-12-01T09:03:38
2018-12-01T09:03:38
158,474,127
1
0
null
null
null
null
UTF-8
Python
false
false
880
py
import numpy as np """买苹果 --------> 买香蕉""" dataset_filename = "../data/affinity_dataset.txt" data = np.loadtxt(dataset_filename) # 文件affinity_dataset.txt是生成的数据,得我们来指定列 # 购买苹果的数量 num_apple_buy = 0 # 符合既买苹果又买香蕉的 rule_valid = 0 # 买苹果不买香蕉的 rule_invalid = 0 for sample in data: if sample[3] == 1: num_apple_buy += 1 if sample[4] == 1: rule_valid += 1 else: rule_invalid += 1 print("买苹果的有{0}人".format(num_apple_buy)) print("买苹果的又买香蕉有{0}人".format(rule_valid)) print("买苹果的不买香蕉有{0}人".format(rule_invalid)) print("买苹果又买香蕉的支持度{0}".format(rule_invalid / (rule_valid + rule_invalid))) print("买苹果又买香蕉的置信度为{0}".format(rule_valid / num_apple_buy))
[ "1243684438@qq.com" ]
1243684438@qq.com
75625cd03c5efadbd61429c15127863b35d48b1a
e030b7fc33326c6b885255fd08643413ab871797
/pass_through_controllers/examples/script/cartesian_trajectory_action_client.py
f4bdf836ba6cc305c64c1509b44e866182a176e2
[ "BSD-3-Clause" ]
permissive
gavanderhoorn/cartesian_ros_control
1963bf10b32fb67d31cf0e27d4e4c68452fe4bd2
2d6262c59a725d6030bbf7bab43fe6aa2915fc5a
refs/heads/master
2023-04-19T19:11:51.796707
2021-04-06T14:34:05
2021-04-06T14:34:05
355,232,781
2
0
NOASSERTION
2021-04-06T15:08:27
2021-04-06T15:08:26
null
UTF-8
Python
false
false
3,186
py
#!/usr/bin/env python """ Simple action client for testing Cartesian-based PassThroughControllers Use this to fire-off a quick random Cartesian trajectory goal for testing. The trajectory will last 10 seconds. """ from __future__ import print_function import rospy import actionlib import signal import sys import os import numpy as np from cartesian_control_msgs.msg import FollowCartesianTrajectoryAction, FollowCartesianTrajectoryGoal, CartesianTrajectoryPoint from urdf_parser_py.urdf import URDF from kdl_parser_py.urdf import treeFromUrdfModel import PyKDL class Client(object): def __init__(self): self.client = actionlib.SimpleActionClient( '/hw_interface/forward_cartesian_trajectories/follow_cartesian_trajectory', FollowCartesianTrajectoryAction) self.client.wait_for_server() # Suppress spam output of urdf parsing. # urdf_parser_py is unhappy with various visual tags in the robot_description. tmp = sys.stderr sys.stderr = open(os.devnull, 'w') robot = URDF.from_parameter_server() sys.stderr = tmp _, tree = treeFromUrdfModel(robot) self.fk_solver = PyKDL.ChainFkSolverPos_recursive(tree.getChain('base_link', 'tool0')) def test(self): """ Follow two-point, random Cartesian trajectory This samples uniformly in [-pi, +pi] for each joint to compute two random poses within the robots reach. It then traverses these points within 10 seconds. """ def random_point(): p_kdl = PyKDL.Frame() joints = PyKDL.JntArray(6) for i in range(6): joints[i] = (np.random.random_sample() * 2 - 1) * np.pi self.fk_solver.JntToCart(joints, p_kdl) p = CartesianTrajectoryPoint() p.pose.position.x = p_kdl.p[0] p.pose.position.y = p_kdl.p[1] p.pose.position.z = p_kdl.p[2] q = PyKDL.Rotation.GetQuaternion(p_kdl.M) p.pose.orientation.x = q[0] p.pose.orientation.y = q[1] p.pose.orientation.z = q[2] p.pose.orientation.w = q[3] return p # Random 2-point trajectory duration = 10 p1 = random_point() p2 = random_point() p1.time_from_start = rospy.Duration(0.5 * duration) p2.time_from_start = rospy.Duration(duration) goal = FollowCartesianTrajectoryGoal() goal.trajectory.points.append(p1) goal.trajectory.points.append(p2) self.client.send_goal(goal) self.client.wait_for_result() return self.client.get_result() def clean_shutdown(self, msg=None): """ Cancel goal on Ctrl-C """ self.client.cancel_goal() if msg is not None: print(msg) sys.exit(0) if __name__ == '__main__': try: rospy.init_node('action_test_client') client = Client() signal.signal(signal.SIGINT, lambda sig, frame: client.clean_shutdown("\nGoal canceled.")) result = client.test() print("Result: {}".format(result)) except rospy.ROSInterruptException: pass
[ "scherzin@fzi.de" ]
scherzin@fzi.de
1340c41b1786d13b22ac88a7c234937f8a15b359
667c8a6baefcaa2ff1d8662f63b4891aca98c09e
/KUing/asgi.py
553f9077d2c7889e3f05d256ccc355d9d0da5ea8
[]
no_license
JeonJaewon/KUing
4247a9a2f6bda3d903cab455dd6e0b75259b0a9f
4585400660524df80272fdf43d883070ae500c12
refs/heads/master
2023-04-19T16:00:08.994498
2021-05-06T09:23:29
2021-05-06T09:23:29
295,392,362
0
1
null
2021-05-06T09:23:29
2020-09-14T11:18:56
HTML
UTF-8
Python
false
false
387
py
""" ASGI config for KUing project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'KUing.settings') application = get_asgi_application()
[ "wksk04515@naver.com" ]
wksk04515@naver.com
793fabc710ab61e60bc4ad701ef6d70a64ebffcc
5d0f91e3a4c75375a2ba9b12cf3cbd4350c2ccdf
/geopdf/__init__.py
11df3297614cf7a212aab066ac7d3ed89a52d353
[ "MIT" ]
permissive
garnertb/geopdf
8fac6419e62db9d880d48bb4b202cfbf11729629
175073cb44a308513bdb6db32092dd806029afc0
refs/heads/master
2021-01-10T18:50:22.802931
2015-06-09T13:53:43
2015-06-09T13:53:43
29,563,939
1
4
null
null
null
null
UTF-8
Python
false
false
6,121
py
# -*- coding: utf-8 -*- """Adds GeoPDF functionality to ReportLab""" from reportlab.lib.colors import black from reportlab.pdfbase.pdfdoc import PDFArray, PDFDictionary, PDFName, PDFString from reportlab.pdfbase import pdfdoc from reportlab.pdfgen import canvas class GeoPDFBase(object, PDFDictionary): """ Base class for GeoPDF dicts. """ def __init__(self, dict=None): """dict should be namestring to value eg "a": 122 NOT pdfname to value NOT "/a":122""" if dict is None: self.dict = {} else: self.dict = dict.copy() self.set_defaults() def set_defaults(self): """ A hook for creating default values. """ return def is_valid(self): """ Test the validity of the dict. """ return True class Projection(GeoPDFBase): """ A Projection dict. """ def set_defaults(self): self.dict.setdefault('ProjectionType', PDFString('GEOGRAPHIC')) self.dict.setdefault('Type', PDFName('Projection')) class LGIDict(GeoPDFBase): """ The LGI dict. """ def set_defaults(self): self.dict.setdefault('Type', PDFString('LGIDict')) self.dict.setdefault('Version', PDFString('2.1')) self.dict.setdefault('Projection', Projection({'Datum': PDFString('WE')})) def is_valid(self): if not any(map(lambda key: key in self.dict, 'Registration CTM'.split())): return False for key, value in self.dict.items(): if hasattr(value, 'is_valid') and getattr(value, 'is_valid')() is False: return False return True class GeoCanvas(canvas.Canvas, object): LGIDict = PDFArray([]) def _startPage(self): # now get ready for the next one super(GeoCanvas, self)._startPage() self.LGIDict = PDFArray([]) def showPage(self): """Close the current page and possibly start on a new page.""" # ensure a space at the end of the stream - Acrobat does # not mind, but Ghostscript dislikes 'Qendstream' even if # the length marker finishes after 'Q' pageWidth = self._pagesize[0] pageHeight = self._pagesize[1] cM = self._cropMarks code = self._code if cM: bw = max(0, getattr(cM, 'borderWidth', 36)) if bw: markLast = getattr(cM, 'markLast', 1) ml = min(bw, max(0, getattr(cM, 'markLength', 18))) mw = getattr(cM, 'markWidth', 0.5) mc = getattr(cM, 'markColor', black) mg = 2 * bw - ml cx0 = len(code) if ml and mc: self.saveState() self.setStrokeColor(mc) self.setLineWidth(mw) self.lines([ (bw, 0, bw, ml), (pageWidth + bw, 0, pageWidth + bw, ml), (bw, pageHeight + mg, bw, pageHeight + 2 * bw), (pageWidth + bw, pageHeight + mg, pageWidth + bw, pageHeight + 2 * bw), (0, bw, ml, bw), (pageWidth + mg, bw, pageWidth + 2 * bw, bw), (0, pageHeight + bw, ml, pageHeight + bw), (pageWidth + mg, pageHeight + bw, pageWidth + 2 * bw, pageHeight + bw) ]) self.restoreState() if markLast: # if the marks are to be drawn after the content # save the code we just drew for later use L = code[cx0:] del code[cx0:] cx0 = len(code) bleedW = max(0, getattr(cM, 'bleedWidth', 0)) self.saveState() self.translate(bw - bleedW, bw - bleedW) if bleedW: # scale everything self.scale(1 + (2.0 * bleedW) / pageWidth, 1 + (2.0 * bleedW) / pageHeight) # move our translation/expansion code to the beginning C = code[cx0:] del code[cx0:] code[0:0] = C self.restoreState() if markLast: code.extend(L) pageWidth = 2 * bw + pageWidth pageHeight = 2 * bw + pageHeight code.append(' ') page = pdfdoc.PDFPage() page.__NoDefault__ = """Parent MediaBox Resources Contents CropBox Rotate Thumb Annots B Dur Hid Trans AA PieceInfo LastModified SeparationInfo ArtBox TrimBox BleedBox ID PZ Trans LGIDict""".split() page.pagewidth = pageWidth page.pageheight = pageHeight if getattr(self, 'LGIDict', None): if len(self.LGIDict.sequence) == 1: page.LGIDict = self.LGIDict.sequence[0] else: page.LGIDict = self.LGIDict page.Rotate = self._pageRotation page.hasImages = self._currentPageHasImages page.setPageTransition(self._pageTransition) page.setCompression(self._pageCompression) if self._pageDuration is not None: page.Dur = self._pageDuration strm = self._psCommandsBeforePage + [self._preamble] + code + self._psCommandsAfterPage page.setStream(strm) self._setColorSpace(page) self._setExtGState(page) self._setXObjects(page) self._setShadingUsed(page) self._setAnnotations(page) self._doc.addPage(page) if self._onPage: self._onPage(self._pageNumber) self._startPage() def addGeo(self, **kwargs): """ Adds the LGIDict to the document. :param kwargs: Keyword arguments that are used to update the LGI Dictionary. """ lgi = LGIDict() lgi.dict.update(kwargs) if not lgi.is_valid(): return pdf_obj = lgi.format(self._doc) self.LGIDict.sequence.append(pdf_obj) return pdf_obj
[ "garnertb@gmail.com" ]
garnertb@gmail.com
22751858f26587a040475c2a453193329cb78837
31a7204221570f5157a38b48913f131e310812c6
/Fame/wsgi.py
82d89c03f27bc81006bf904a01ddc2a5bb8aaaa8
[]
no_license
judeyouzhi/livefit
b7573029f644a71b572e1ad383a3ffc5d46b6ea7
a13d5d7dfd510e4384d4e2bb1086b5cb370839b9
refs/heads/master
2021-01-20T11:13:30.849633
2016-12-26T06:39:04
2016-12-26T06:39:04
77,363,530
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" WSGI config for Fame project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Fame.settings") application = get_wsgi_application()
[ "judeyou@judeyou-macbookpro.roam.corp.google.com" ]
judeyou@judeyou-macbookpro.roam.corp.google.com
0ce838a536ab26cb226a156c28df2b839d116bf8
6d6fb9b30dc5856bbfec6b7a8877494709ed0d5d
/cap8/ex_173.py
ef54a08365f2ee2634053760df102484e500222a
[]
no_license
ignaziocapuano/workbook_ex
2b5b644d5d4d1940c871f9083764413671482213
ff6d2625e46a2f17af804105f4e88cf8772a39a3
refs/heads/main
2023-01-04T20:28:08.956999
2020-11-02T07:48:18
2020-11-02T07:48:18
304,552,342
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
#Total the Values """ Leggi da input una serie di valori(con terminatore il carattere nullo). Alla fine stampa la somma. (0.0 se il primo carattere inserito dall'utente è vuoto) """ def readAndSum(): n=input("Inserisci numero(vuoto per terminare:") if n=="": return 0.0 else: return float(n)+readAndSum() def main(): total=readAndSum() print(total) if __name__ == '__main__': main()
[ "72966219+ignaziocapuano@users.noreply.github.com" ]
72966219+ignaziocapuano@users.noreply.github.com
34cd64af2f789023c8c435d22d7308d5972f46d4
9ff5aa15d0fffd991c6640e7e3f2c443424c3a3a
/shunxu_search.py
f23daa56b3bcfdecbb2e89f691ab51e446200dc5
[]
no_license
SongLiu0828/data-structures-algorithms
a40209a4bc7cb1f5fb75268ac36b8105470c91ec
463bc6c174b533e8536e615b7306f3c9b1317799
refs/heads/master
2020-03-24T06:39:22.673529
2018-07-27T06:22:46
2018-07-27T06:22:46
142,536,292
0
0
null
null
null
null
UTF-8
Python
false
false
315
py
def shunxu_search(alist, item): i = 0 found = False while i < len(alist) and not found: if alist[i] == item: found = True else: i += 1 return found alist = [54, 26, 93, 17, 77, 31, 44, 55, 20] print(shunxu_search(alist, 54)) print(shunxu_search(alist, 19))
[ "song@SongdeMacBook-Pro.local" ]
song@SongdeMacBook-Pro.local
6cdaa4435e0e15d1f90e91b2cdd9468848c117bf
9a258d81d612b855e244e4a03594ebe312ff3268
/webapp/tests/test_urls.py
8a82dcab33b5fefed07c162dd7d7b024a90d642f
[ "MIT" ]
permissive
erischon/p10_digitalocean
19fb39f7442e0eec669fbd1ef5b2d49464c37493
a850dfb97470da57117fa1dfc62c4614a602fe40
refs/heads/master
2023-04-27T16:52:04.158502
2021-05-15T22:44:34
2021-05-15T22:44:34
360,518,773
0
1
null
null
null
null
UTF-8
Python
false
false
427
py
from django.test import SimpleTestCase from django.urls import reverse, resolve from webapp.views import home_page, mentions class WebappTestUrls(SimpleTestCase): def test_home_url_is_resolved(self): url = reverse('home') self.assertEqual(resolve(url).func, home_page) def test_mentions_url_is_resolved(self): url = reverse('mentions') self.assertEqual(resolve(url).func, mentions)
[ "erischon@gmail.com" ]
erischon@gmail.com
e4fbb87cc08aaac02be49eda20357561270994c1
61863d68d64c9319cd49d280b20d2c2a40957363
/r2lab.inria.fr/users/views.py
b878f3e298472f439face96a6b9b5c151f7c9383
[]
no_license
sfehlandt/r2lab
fd781637d258a7fc40043f4f8cddef9ec672b563
b4f8ddd84327c426b20fe8f772a4e5e47e0cce31
refs/heads/master
2021-01-22T18:46:29.143500
2017-03-08T17:38:29
2017-03-08T17:38:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
from .plcapi_users import UsersProxy
[ "thierry.parmentelat@inria.fr" ]
thierry.parmentelat@inria.fr
154bc5967613ed4e7873580bb05f5a3989ed423b
06d241ddb5066e65ce3d87d2fd059928d92f57a2
/mim.py
a4fc5f207952729312055dace5b36fe6be4df1cb
[]
no_license
geobreze/networking-lab2
e662e9c097f5628471683844b751b3282d0192df
707289b5e05468ab73c0203591bd79be6d50061c
refs/heads/master
2022-12-28T16:24:50.375281
2020-10-08T21:05:24
2020-10-08T21:05:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,515
py
import socket import threading from select import select from common import crypt from common.socket_util import Socket, REFRESH, AES_ENCODED, INPUT_WANTED class MIMServer: def __init__(self, host, port, s_host, s_port, backlog=10): self.sessions = [] self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.bind((host, port)) self.sock.listen(backlog) self.s_host = s_host self.s_port = s_port self.s_sock = Socket(socket.create_connection((self.s_host, self.s_port))) def accept(self): while True: ready, _, _ = select([self.sock], [], [], 1) if ready: (client_socket, remote_addr) = self.sock.accept() session = MIMSession(Socket(client_socket), self.s_sock) self.sessions.append(session) t = threading.Thread(target=session.handle_request) t.start() class MIMSession: def __init__(self, client_socket: Socket, server_socket: Socket): self.sock = client_socket self.s_sock = server_socket self.key = None self.client_rsa_pub = None self.rsa_pub, self.rsa_pri = crypt.generate_rsa_keypair() def handle_request(self): self.authenticate(is_first=True) c_input_wanted_flag = INPUT_WANTED s_input_wanted_flag = INPUT_WANTED while True: if c_input_wanted_flag: s_response = self.printing_replicate_from_server() s_input_wanted_flag = s_response.input_wanted_flag if s_response.response_code == REFRESH: self.authenticate() continue if s_input_wanted_flag == INPUT_WANTED: c_response = self.printing_replicate_from_client() c_input_wanted_flag = c_response.input_wanted_flag def authenticate(self, is_first=False): if is_first: response = self.sock.recv() self.client_rsa_pub = response.body self.s_sock.send(self.rsa_pub) encoded_key = self.s_sock.recv().body self.key = crypt.decrypt_rsa(self.rsa_pri, encoded_key) encoded_for_client_key = crypt.encrypt_rsa(self.client_rsa_pub, self.key) self.sock.send(encoded_for_client_key) if is_first: self.printing_replicate_from_server() self.printing_replicate_from_client() self.printing_replicate_from_server() self.printing_replicate_from_client() self.printing_replicate_from_server() def printing_replicate_from_client(self): response = self.sock.recv() print(response.body) if response.encoded_flag == AES_ENCODED: print(crypt.decrypt_aes(self.key, response.body)) self.s_sock.send(response.body, flag=response.encoded_flag, input_wanted=response.input_wanted_flag, response_code=response.response_code) return response def printing_replicate_from_server(self): response = self.s_sock.recv() print(response.body) if response.encoded_flag == AES_ENCODED: print(crypt.decrypt_aes(self.key, response.body)) self.sock.send(response.body, flag=response.encoded_flag, input_wanted=response.input_wanted_flag, response_code=response.response_code) return response if __name__ == '__main__': MIMServer('0.0.0.0', 8080, '127.0.0.1', 8081).accept()
[ "uladzislau.valashchuk@ah.nl" ]
uladzislau.valashchuk@ah.nl
6d90cd28b0daa3a1deec3937e83f5b60a2762741
87fe498c13fa85bb3df2764405d0ad3e06f5d428
/Reference_scriptsandFiles/Multiscalemethod_np.py
c3b010db1ad375a3a1aa02ca910206f53a0caf97
[]
no_license
miladkh7/Multiscale-Modeling
7a7fd4b282dc0e0495cb16c42ea6ec9d4d5f23de
a260112b3e6b8e5246b53d7f04b3d7de6ec16394
refs/heads/master
2020-03-10T18:27:13.823944
2018-04-11T08:26:52
2018-04-11T08:26:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,097
py
from random import * from math import * import numpy as np from multiprocessing import cpu_count numCpus = cpu_count() print '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nMultiscale modelling on microscale \nnumCpus = ',numCpus #RVEmodell SMA def lagreparametere(Q): g = open(parameterpath, "w") g.write('Q' + '\t' + 'r' + '\t' + 'nf' + '\t' + 'Vf' + '\t' + 'wiggle' + '\t' + 'coordpath' + '\t\t\t' + 'iterasjonsgrense' + '\t' + 'rtol' + '\t' + 'gtol' + '\t' + 'dL'+'\n'+ str(Q) + '\t' + str(r) + '\t' + str(nf) + '\t' + str(Vf) + '\t' + str(wiggle) + '\t' + coordpath + '\t' + str(iterasjonsgrense) + '\t' + str(rtol) + '\t' +str(gtol)+ '\t' +str(dL)) # til fiber modellering g.close() def hentePopulation(coordpath): #Les fiber matrix populasjon xy=list() f = open(coordpath,'r') tekst = f.read() f.close() lines = tekst.split('\n') #lagre koordinater til stottefil for line in lines: data = line.split('\t') a = float(data[0]) b = float(data[1]) xy.append([a,b]) print 'Antall fiber = ',int(nf),'\tAntall fiberkoordinater = '+str(len(xy)) print '\n',xy,'\n \n' return xy #Abaqus def createModel(xydata): import section import regionToolset import displayGroupMdbToolset as dgm import part import material import assembly import step import interaction import load import mesh import job import sketch import visualization import xyPlot import displayGroupOdbToolset as dgo import connectorBehavior Mdb() #reset # model = mdb.Model(name=modelName, modelType=STANDARD_EXPLICIT) # Lag model del mdb.models['Model-1'] # Slett standard model mod = mdb.models[modelName] dx=dL/2.0 dy=dL/2.0 #Lag sketch s1 = model.ConstrainedSketch(name='__profile__',sheetSize=2*dL) s1.setPrimaryObject(option=STANDALONE) #Tegne Firkant s1.Line(point1=(-dx, -dy), point2=(dx, -dy)) s1.Line(point1=(dx, -dy), point2=(dx, dy)) s1.Line(point1=(dx,dy), point2=(-dx,dy)) s1.Line(point1=(-dx,dy), point2=(-dx,-dy)) p = mod.Part(name='Part-1', dimensionality=THREE_D, type=DEFORMABLE_BODY) p = model.parts['Part-1'] p.BaseShell(sketch=s1) s1.unsetPrimaryObject() #del mod.sketches['__profile__'] if not nf == 0: f1, e, = p.faces, p.edges t = p.MakeSketchTransform(sketchPlane=f1.findAt(coordinates=(0.0, 0.0, 0.0), normal=(0.0, 0.0, 1.0)), sketchUpEdge=e.findAt( coordinates=(dx, 0.0, 0.0)), sketchPlaneSide=SIDE1, origin=(0.0, 0.0, 0.0)) s1 = model.ConstrainedSketch(name='__profile__', sheetSize=2*dL, gridSpacing=dL / 25.0, transform=t) s1.setPrimaryObject(option=SUPERIMPOSE) p.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES) rcos45 = r * cos(45.0 * pi / 180.0) for data in xydata: x = data[0] y = data[1] done = 0 if done == 0 and x >= dx: s1.CircleByCenterPerimeter(center=(x, y), point1=(x + r, y)) done = 1 if done == 0 and x <= -dx: s1.CircleByCenterPerimeter(center=(x, y), point1=(x - r, y)) done = 1 if done == 0 and y >= dx: s1.CircleByCenterPerimeter(center=(x, y), point1=(x, y + r)) done = 1 if done == 0 and y <= -dx: s1.CircleByCenterPerimeter(center=(x, y), point1=(x, y - r)) done = 1 if done == 0 and x >= 0 and y >= 0: s1.CircleByCenterPerimeter(center=(x, y), point1=(x - rcos45, y - rcos45)) done = 1 if done == 0 and x >= 0 and y <= 0: s1.CircleByCenterPerimeter(center=(x, y), point1=(x - rcos45, y + rcos45)) done = 1 if done == 0 and x <= 0 and y <= 0: s1.CircleByCenterPerimeter(center=(x, y), point1=(x + rcos45, y + rcos45)) done = 1 if done == 0 and x <= 0 and y >= 0: s1.CircleByCenterPerimeter(center=(x, y), point1=(x + rcos45, y - rcos45)) done = 1 # Create partioned planar shell from sketch f = p.faces pickedFaces = f.findAt(((0.0, 0.0, 0.0),)) e1, d2 = p.edges, p.datums p.PartitionFaceBySketch(sketchUpEdge=e1.findAt(coordinates=(dx, 0.0, 0.0)), faces=pickedFaces, sketch=s1) s1.unsetPrimaryObject() #del model.sketches['__profile__'], f, pickedFaces, e1, d2, f1, e, t #del s1, model #Partioned planar shell # mesh p = mod.parts['Part-1'] p.seedPart(size=meshsize, deviationFactor=0.1, minSizeFactor=0.1) p = mod.parts['Part-1'] p.generateMesh() p = mod.parts['Part-1'] # meshed mdb.meshEditOptions.setValues(enableUndo=True, maxUndoCacheElements=0.5) pickedElemFacesSourceSide = mod.parts['Part-1'].elementFaces vector = ((0.0, 0.0, 0.0), (0.0, 0.0, 2.0)) p.generateBottomUpExtrudedMesh(elemFacesSourceSide=pickedElemFacesSourceSide, extrudeVector=vector, numberOfLayers=2) p = mod.parts['Part-1'] n = p.nodes nodes = n.getByBoundingBox(-dL, -dL, -0.01, dL, dL, 0.01) p.deleteNode(nodes=nodes) p.PartFromMesh(name='Part-1-mesh-1', copySets=True) p = mod.parts['Part-1-mesh-1'] n = p.nodes nodes = n.getByBoundingBox(-dL, -dL, -0.01, dL, dL, 0.01) p.deleteNode(nodes=nodes) # Created extruded mesh part # This is where the fibers are chosen and put together in set p = mod.parts['Part-1-mesh-1'] p.Set(name='AllE', elements=p.elements) x = xydata[0][0] y = xydata[0][1] fiber = p.elements.getByBoundingCylinder((x, y, -10.0), (x, y, 10.0), r + 0.01) for i in range(1, len(xydata)): x = xydata[i][0] y = xydata[i][1] temp = p.elements.getByBoundingCylinder((x, y, -10.0), (x, y, 10.0), r + 0.01) fiber = fiber + temp p.Set(name='Fibers', elements=fiber) p.SetByBoolean(name='Matrix', sets=(p.sets['AllE'], p.sets['Fibers'],), operation=DIFFERENCE) mod.Material(name='glass') mod.materials['glass'].Elastic(table=((70000.0, 0.22),)) mod.Material(name='resin') mod.materials['resin'].Elastic(table=((3500.0, 0.33),)) mod.HomogeneousSolidSection(name='Fibers', material='glass', thickness=None) mod.HomogeneousSolidSection(name='matrix', material='resin', thickness=None) p = mod.parts['Part-1-mesh-1'] region = p.sets['Fibers'] p.SectionAssignment(region=region, sectionName='Fibers', offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='', thicknessAssignment=FROM_SECTION) region = p.sets['Matrix'] p.SectionAssignment(region=region, sectionName='matrix', offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='', thicknessAssignment=FROM_SECTION) del x, y else: p.seedPart(size=meshsize, deviationFactor=0.1, minSizeFactor=0.1) p.generateMesh() mdb.meshEditOptions.setValues(enableUndo=True, maxUndoCacheElements=0.5) pickedElemFacesSourceSide = mod.parts['Part-1'].elementFaces vector = ((0.0, 0.0, 0.0), (0.0, 0.0, 2.0)) p.generateBottomUpExtrudedMesh(elemFacesSourceSide=pickedElemFacesSourceSide, extrudeVector=vector, numberOfLayers=2) p.PartFromMesh(name='Part-1-mesh-1', copySets=True) # extruded mesh and make orphan mesh p = mod.parts['Part-1-mesh-1'] n = p.nodes nodes = n.getByBoundingBox(-dL, -dL, -0.01, dL, dL, 0.01) p.deleteNode(nodes=nodes) # delete shell nodes p.Set(name='AllE', elements=p.elements) mod.Material(name='resin') mod.materials['resin'].Elastic(table=((3500.0, 0.33),)) mod.HomogeneousSolidSection(name='Matrix', material='resin', thickness=None) region = p.sets['AllE'] p.SectionAssignment(region=region, sectionName='Matrix', offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='', thicknessAssignment=FROM_SECTION) #del mod.parts['Part-1'], p, n, mod, region print '\nModel created, meshed and assigned properties' def createCEq(): mod = mdb.models[modelName] a = mod.rootAssembly a.DatumCsysByDefault(CARTESIAN) p = mdb.models[modelName].parts['Part-1-mesh-1'] a.Instance(name=instanceName, part=p, dependent=ON) #Flytte modellen til origo og sette x i fiberretning. a.translate(instanceList=(instanceName, ), vector=(0.0, 0.0, -1.0)) a.rotate(instanceList=(instanceName, ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0) tol = 0.01 # Finding the dimensions xmax, ymax, zmax, xmin, ymin, zmin = 1.0, dL/2, dL/2, 0.0, -dL/2, -dL/2 # Creating reference point a.ReferencePoint(point=( xmin - 0.2 * (zmax - zmin),0.0, 0.0)) refPoints = (a.referencePoints[a.features['RP-1'].id],) a.Set(referencePoints=refPoints, name='RPX') a.ReferencePoint(point=(0.0, ymin - 0.2 * (ymax - ymin), 0.0)) refPoints = (a.referencePoints[a.features['RP-2'].id],) a.Set(referencePoints=refPoints, name='RPY') a.ReferencePoint(point=(0.0, 0.0,zmin - 0.2 * (zmax - zmin))) refPoints = (a.referencePoints[a.features['RP-3'].id],) a.Set(referencePoints=refPoints, name='RPZ') allNodes = a.instances[instanceName].nodes for n in allNodes: x, y, z = n.coordinates[0], n.coordinates[1], n.coordinates[2] xmax = max(xmax, x) ymax = max(ymax, y) zmax = max(zmax, z) xmin = min(xmin, x) ymin = min(ymin, y) zmin = min(zmin, z) # CE between x-normal surfaces: nodesXa = allNodes.getByBoundingBox(xmin - tol, ymin - tol, zmin - tol, xmin + tol, ymax + tol, zmax + tol) nodesXb = allNodes.getByBoundingBox(xmax - tol, ymin - tol, zmin - tol, xmax + tol, ymax + tol, zmax + tol) counter = 0 for n in nodesXa: name1 = "Xa%i" % (counter) nodes1 = nodesXa[counter:counter + 1] a.Set(nodes=nodes1, name=name1) x, y, z = n.coordinates[0], n.coordinates[1], n.coordinates[2] name2 = "Xb%i" % (counter) nodes2 = nodesXb.getByBoundingBox(x + (xmax - xmin) - tol, y - tol, z - tol, x + (xmax - xmin) + tol, y + tol, z + tol) a.Set(nodes=nodes2, name=name2) mod.Equation(name="Cq11x%i" % (counter), terms=((1.0, name2, 1), (-1.0, name1, 1), (-(xmax - xmin), 'RPX', 1),)) # 11 mod.Equation(name="Cq21x%i" % (counter), terms=((1.0, name2, 2), (-1.0, name1, 2), (-(xmax - xmin) / 2, 'RPX', 2),)) # 21 mod.Equation(name="Cq31x%i" % (counter), terms=((1.0, name2, 3), (-1.0, name1, 3), (-(xmax - xmin) / 2, 'RPX', 3),)) # 31 counter = counter + 1 # CE between y-normal surfaces # Note: excluding the nodes at xmax: nodesYa = allNodes.getByBoundingBox(xmin - tol, ymin - tol, zmin - tol, xmax - tol, ymin + tol, zmax + tol) nodesYb = allNodes.getByBoundingBox(xmin - tol, ymax - tol, zmin - tol, xmax - tol, ymax + tol, zmax + tol) counter = 0 for n in nodesYa: name1 = "Ya%i" % (counter) nodes1 = nodesYa[counter:counter + 1] a.Set(nodes=nodes1, name=name1) x, y, z = n.coordinates[0], n.coordinates[1], n.coordinates[2] name2 = "Yb%i" % (counter) nodes2 = nodesYb.getByBoundingBox(x - tol, y + (ymax - ymin) - tol, z - tol, x + tol, y + (ymax - ymin) + tol, z + tol) a.Set(nodes=nodes2, name=name2) mod.Equation(name="Cq12y%i" % (counter), terms=((1.0, name2, 1), (-1.0, name1, 1), (-(ymax - ymin) / 2, 'RPY', 1),)) # 12 mod.Equation(name="Cq22y%i" % (counter), terms=((1.0, name2, 2), (-1.0, name1, 2), (-(ymax - ymin), 'RPY', 2),)) # 22 mod.Equation(name="Cq32y%i" % (counter), terms=((1.0, name2, 3), (-1.0, name1, 3), (-(ymax - ymin) / 2, 'RPY', 3),)) # 32 counter = counter + 1 # CE between z-normal surfaces # Note: excluding the nodes at xmax and ymax : nodesZa = allNodes.getByBoundingBox(xmin - tol, ymin - tol, zmin - tol, xmax - tol, ymax - tol, zmin + tol) nodesZb = allNodes.getByBoundingBox(xmin - tol, ymin - tol, zmax - tol, xmax - tol, ymax - tol, zmax + tol) counter = 0 for n in nodesZa: name1 = "Za%i" % (counter) nodes1 = nodesZa[counter:counter + 1] a.Set(nodes=nodes1, name=name1) x, y, z = n.coordinates[0], n.coordinates[1], n.coordinates[2] name2 = "Zb%i" % (counter) nodes2 = nodesZb.getByBoundingBox(x - tol, y - tol, z + (zmax - zmin) - tol, x + tol, y + tol, z + (zmax - zmin) + tol) a.Set(nodes=nodes2, name=name2) mod.Equation(name="Cq13z%i" % (counter), terms=((1.0, name2, 1), (-1.0, name1, 1), (-(zmax - zmin) / 2, 'RPZ', 1),)) # 13 mod.Equation(name="Cq23z%i" % (counter), terms=((1.0, name2, 2), (-1.0, name1, 2), (-(zmax - zmin) / 2, 'RPZ', 2),)) # 23 mod.Equation(name="Cq33z%i" % (counter), terms=((1.0, name2, 3), (-1.0, name1, 3), (-(zmax - zmin), 'RPZ', 3),)) # 33 counter = counter + 1 print 'Constraint equ. applied' def run_Job(Jobe, modelName): mdb.Job(name=Jobe, model=modelName, description='', type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='', scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=numCpus, numDomains=numCpus, numGPUs=1000) #mdb.jobs[Jobe].submit(consistencyChecking=OFF) #mdb.jobs[Jobe].waitForCompletion() def create_unitstrainslastcases(stepName): id = np.identity(6) # Identity matrix for normalised load cases.'Exx','Eyy','Ezz','Exy','Exz','Eyz' mod = mdb.models[modelName] a = mod.rootAssembly #Create step Linear step mod.StaticStep(name=stepName, previous='Initial') #Request outputs mod.fieldOutputRequests['F-Output-1'].setValues(variables=('S', 'EVOL','U')) #Run the simulations to create stiffnessmatrix print '\nComputing stresses for normalized strains' for i in range(0,6):# arg: + ,len(id)+1 #Laste inn toyningscase exx, eyy, ezz, exy, exz, eyz = id[i] mod.DisplacementBC(name='BCX', createStepName=stepName, region=a.sets['RPX'], u1=exx, u2=exy, u3=exz, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', localCsys=None) mod.DisplacementBC(name='BCY', createStepName=stepName, region=a.sets['RPY'], u1=exy, u2=eyy, u3=eyz, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', localCsys=None) mod.DisplacementBC(name='BCZ', createStepName=stepName, region=a.sets['RPZ'], u1=exz, u2=eyz, u3=ezz, ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF, distributionType=UNIFORM, fieldName='', localCsys=None) run_Job(Enhetstoyinger[i],modelName) del exx, eyy, ezz, exy, exz, eyz def get_stiffness(): stiffmatrix = [] for i in range(0,6): path = workpath + Enhetstoyinger[i] odb = session.openOdb(path+'.odb') instance = odb.rootAssembly.instances[instanceName] sag=[0.0] * 6 for j in range(0,len(instance.elements)): v = odb.steps[stepName].frames[-1].fieldOutputs['S'].getSubset(position=CENTROID) elvol = odb.steps[stepName].frames[-1].fieldOutputs['EVOL'] for p in range(0,6): sag[p] = sag[p]+v.values[j].data[p]*elvol.values[j].data odb.close() for k in range(0,6): sag[k]= sag[k]/(1*(dL)**2) #Volume stiffmatrix.append(sag) print '\n' g = open(lagrestiffpath, "w") print '\nStiffnessmatrix stored\n' for a in range(0, 6): g.write(str(float(stiffmatrix[0][a]))+'\t'+str(float(stiffmatrix[1][a]))+'\t'+str(float(stiffmatrix[2][a]))+'\t'+str(float(stiffmatrix[3][a]))+'\t'+str(float(stiffmatrix[4][a]))+'\t'+str(float(stiffmatrix[5][a]))) if not a==5: g.write('\t\t') print '%7f \t %7f \t %7f \t %7f \t %7f \t %7f' % (stiffmatrix[0][a], stiffmatrix[1][a], stiffmatrix[2][a], stiffmatrix[3][a], stiffmatrix[4][a], stiffmatrix[5][a]) g.write('\n') g.close() return stiffmatrix def get_compliance(Stiffmatrix): print '\nCompliancematrix found' try: inverse = np.linalg.inv(Stiffmatrix) except np.linalg.LinAlgError: # Not invertible. Skip this one. print 'ERROR in inverting with numpy' pass #intended break for a in range(0, 6): print inverse[0][a],'\t', inverse[1][a],'\t', inverse[2][a],'\t', inverse[3][a],'\t',inverse[4][a],'\t', inverse[5][a] return inverse def sweep_sig2_sig3(Compliancematrix,sweepresolution): sweep=list() x= np.arange(0,2*pi,sweepresolution) print '\nStrains from stress sweep \n', print x,'\n' for d in range(0, len(x)): sig2 = cos(x[d]) sig3 = sin(x[d]) a=np.dot([0,sig2,sig3,0,0,0],Compliancematrix) a = a.tolist() print a sweep.append(a) return sweep def create_sweepedlastcases(sweep, cases): mod = mdb.models[modelName] a = mod.rootAssembly mod.fieldOutputRequests['F-Output-1'].setValues(variables=('S', 'MISES', 'E', 'U', 'ELEDEN')) mod.steps.changeKey(fromName=stepName, toName=difstpNm) print '\nComputing strains for normalized load sweep' #Lagring av output data base filer .odb for lol in range(0,cases): Jobw =Sweeptoyinger[lol] print '\nLoad at'+str(360*lol/cases)+'deg' exx, eyy, ezz, exy, exz, eyz = sweep[lol] mod.boundaryConditions['BCX'].setValues(u1=exx, u2=exy, u3=exz) mod.boundaryConditions['BCZ'].setValues(u1=exy, u2=eyy, u3=eyz) mod.boundaryConditions['BCY'].setValues(u1=exz, u2=eyz, u3=ezz) run_Job(Jobw, modelName) print 'Computing stresses for '+str(cases)+' sweep cases' del a, mod, Jobw, lol def Extract_parameterdata(): for kaare in range(0,sweepcases): odb = session.openOdb(workpath + Sweeptoyinger[kaare] + '.odb') Matrix = odb.rootAssembly.instances[instanceName].elementSets['MATRIX'] nodalStresses = odb.steps[difstpNm].frames[-1].fieldOutputs['S'].getSubset(position=ELEMENT_NODAL, region= Matrix).values norm=list() sher=list() for j in range(0,len(nodalStresses)): for p in range(0,3): norm.append(float(nodalStresses[j].data[p])) sher.append(float(nodalStresses[j].data[p+3])) odb.close() print len(norm),'max norm', max(norm), ' min = ',min(norm) print len(sher), 'max sher =', max(sher), ' min = ',min(sher) """$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$""" """ ALT OVER ER FUNKSJONER """ #Variabler Vf = 0.6 nf = 4 r = 1.0 # radiusen paa fiberne er satt til aa vaere uniforme, dette kan endres med en liste og random funksjon med data om faktisk variasjon i fibertype. Kommer det til aa gjore noe forskjell? n = 1 # sweep variabel 1 naa = antall random seed(n) meshsize = r * 0.3 sweepcases = 4 #Andre variabler if 1: #Er RVE tomt? if nf ==0 or Vf==0: # Fiberfri RVE nf=0 Vf=0 dL = 10 else: dL = ((nf * pi * r ** 2) / (Vf)) ** 0.5 # RVE storrelsen er satt til aa vaere relativ av nf og V #RVE_Modelleringsparametere rtol = 0.025 * r #Mellomfiber toleranse gtol = r * 0.025 #Dodsone klaring toleranse ytredodgrense = r+gtol #Parametere for dodzonegrense indredodgrense= r-gtol iterasjonsgrense =10000 # Tekstfiler GitHub ='C:/Multiscale-Modeling/' parameterpath = GitHub+'Parametere.txt' coordpath = GitHub+'coordst.txt' lagrestiffpath = GitHub+'Stiffness.txt' workpath = 'C:/Users/Rockv/Desktop/Temp/' """ ABAQUS """ modelName = 'Model-A' instanceName = 'PART-1-MESH-1-1' stepName = 'Enhetstoyninger' difstpNm = 'Lasttoyinger' #Composite sweep stresses sweepresolution = 2*pi / sweepcases #stepsize print '\nQ\tr\tnf\tVf\twiggle\t\tcoordpath\tLoops\trtol\tgtoL\tdL' #execfile('C:\Multiscale-Modeling\Multiscalemethod_np.py') # """$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$""" """ Micromodelleringsfunksjon av (n) kompositt """ for Q in range(0,n): from abaqus import * from abaqusConstants import * from odbAccess import * seed(Q) # Q er randomfunksjonensnokkelen wiggle = random()*r # Omplasseringsgrenser for fiberomplassering #Abaqus navn Enhetstoyinger = ['Exx' + str(nf) + '_' + str(Q), 'Eyy' + str(nf) + '_' + str(Q), 'Ezz' + str(nf) + '_' + str(Q), 'Exy' + str(nf) + '_' + str(Q), 'Exz' + str(nf) + '_' + str(Q), 'Eyz' + str(nf) + '_' + str(Q)] # Enhetstoyingene fra 0 til 5. Alle 6 Sweeptoyinger = [''] * sweepcases for g in range(0,sweepcases): Sweeptoyinger[g] = 'Sweep_strain_at'+str(int(g*180*sweepresolution/pi))+'__'+str(int(Q)) #Lagre parametere til stottefiler lagreparametere(Q) """Prosess""" xydata = None # Maa vi ha fiber populasjon? if not (nf==0): # create a random population execfile(GitHub+'GenerereFiberPopTilFil.py') #modellereRVEsnitt() # hente fibercoordinater xydata= hentePopulation(coordpath) # Lage Abaqus strain-cases createModel( xydata) createCEq() create_unitstrainslastcases(stepName) #Faa ut stiffnessmatrix Stiffmatrix=get_stiffness() #Finne strains for sweep stress caser Compliancematrix = get_compliance(Stiffmatrix) sweepstrains = sweep_sig2_sig3(Compliancematrix,sweepresolution) # Abaqus Sweep Cases create_sweepedlastcases(sweepstrains, sweepcases) Extract_parameterdata() print 'torke' #Mdb() # stats #if not nf <= 1: # fiberdist, avgfdist = fiberdistances(dL, xydata) #analyticalfiberdist = 0.521 #session.mdbData.summary() # #o1 = session.openOdbs(names=(workpath+Toying[0]+'.odb', workpath+Toying[1]+'.odb', # workpath+Toying[2]+'.odb', workpath+Toying[3]+'.odb', workpath+Toying[4]+'.odb', # workpath+Toying[5]+'.odb')) #session.viewports['Viewport: 1'].setValues(displayedObject=o1) #Preform konvergence tests
[ "36338470+SondreRokvam@users.noreply.github.com" ]
36338470+SondreRokvam@users.noreply.github.com
92df14d9f3a7a7b18fe39ebd9d18ab9b452e8f22
44032f82bcb767175cf86aeccee623eb6cfbd40e
/server/dvaapp/task_shared.py
8733e35fc2bb8ee34d3eb83854a172bd24e95358
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
veyselkoparal/DeepVideoAnalytics
3628d41f8e06547e177a7badd20b399bd7f9028a
013f7e1efcc11f9ed5762192a91589aa6b4df359
refs/heads/master
2020-03-16T04:22:46.603989
2018-05-07T06:55:47
2018-05-07T06:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,253
py
import os, json, requests, copy, time, subprocess, logging, shutil, zipfile, uuid, calendar, shlex, sys, tempfile, uuid from models import Video, QueryRegion, QueryRegionIndexVector, DVAPQL, Region, Frame, Segment, IndexEntries, TEvent,\ Worker, TrainedModel from django.conf import settings from PIL import Image from . import serializers from dva.in_memory import redis_client from .fs import ensure, upload_file_to_remote, upload_video_to_remote, get_path_to_file, \ download_video_from_remote_to_local, upload_file_to_path def pid_exists(pid): try: os.kill(pid, 0) except OSError: return False else: return True def relaunch_failed_task(old, app): """ TODO: Relaunch failed tasks, requires a rethink in how we store number of attempts. Cleanup of objects created by previous task that that failed. :param old: :param app: :return: """ if old.errored: next_task = TEvent.objects.create(video=old.video, operation=old.operation, arguments=old.arguments, parent=old.parent, parent_process=old.parent_process, queue=old.queue) app.send_task(next_task.operation, args=[next_task.pk, ], queue=old.queue) else: raise ValueError("Task not errored") def launch_worker(queue_name, worker_name): p = subprocess.Popen(['./startq.py','{}'.format(queue_name)], close_fds=True) message = "launched {} with pid {} on {}".format(queue_name, p.pid, worker_name) return message def import_path(dv,path,export=False,framelist=False): if export: dv.create_directory(create_subdirs=False) output_filename = "{}/{}/{}.zip".format(settings.MEDIA_ROOT, dv.pk, dv.pk) else: dv.create_directory(create_subdirs=True) extension = path.split('?')[0].split('.')[-1] if framelist: output_filename = "{}/{}/framelist.{}".format(settings.MEDIA_ROOT, dv.pk, extension) else: output_filename = "{}/{}/video/{}.{}".format(settings.MEDIA_ROOT, dv.pk, dv.pk, extension) get_path_to_file(path,output_filename) def count_framelist(dv): frame_list = dv.get_frame_list() return len(frame_list['frames']) def load_dva_export_file(dv): video_id = dv.pk if settings.ENABLE_CLOUDFS: fname = "/{}/{}.zip".format(video_id, video_id) logging.info("Downloading {}".format(fname)) ensure(fname) zipf = zipfile.ZipFile("{}/{}/{}.zip".format(settings.MEDIA_ROOT, video_id, video_id), 'r') zipf.extractall("{}/{}/".format(settings.MEDIA_ROOT, video_id)) zipf.close() video_root_dir = "{}/{}/".format(settings.MEDIA_ROOT, video_id) old_key = None for k in os.listdir(video_root_dir): unzipped_dir = "{}{}".format(video_root_dir, k) if os.path.isdir(unzipped_dir): for subdir in os.listdir(unzipped_dir): shutil.move("{}/{}".format(unzipped_dir, subdir), "{}".format(video_root_dir)) shutil.rmtree(unzipped_dir) break with open("{}/{}/table_data.json".format(settings.MEDIA_ROOT, video_id)) as input_json: video_json = json.load(input_json) importer = serializers.VideoImporter(video=dv, json=video_json, root_dir=video_root_dir) importer.import_video() source_zip = "{}/{}.zip".format(video_root_dir, video_id) os.remove(source_zip) def export_video_to_file(video_obj,export,task_obj): if settings.ENABLE_CLOUDFS: download_video_from_remote_to_local(video_obj) video_id = video_obj.pk export_uuid = str(uuid.uuid4()) file_name = '{}.dva_export.zip'.format(export_uuid) try: os.mkdir("{}/{}".format(settings.MEDIA_ROOT, 'exports')) except: pass shutil.copytree('{}/{}'.format(settings.MEDIA_ROOT, video_id), "{}/exports/{}".format(settings.MEDIA_ROOT, export_uuid)) a = serializers.VideoExportSerializer(instance=video_obj) data = copy.deepcopy(a.data) data['labels'] = serializers.serialize_video_labels(video_obj) with file("{}/exports/{}/table_data.json".format(settings.MEDIA_ROOT, export_uuid), 'w') as output: json.dump(data, output) zipper = subprocess.Popen(['zip', file_name, '-r', '{}'.format(export_uuid)], cwd='{}/exports/'.format(settings.MEDIA_ROOT)) zipper.wait() shutil.rmtree("{}/exports/{}".format(settings.MEDIA_ROOT, export_uuid)) local_path = "{}/exports/{}".format(settings.MEDIA_ROOT, file_name) path = task_obj.arguments.get('path', None) if path: if not path.endswith('dva_export.zip'): if path.endswith('.zip'): path = path.replace('.zip', '.dva_export.zip') else: path = '{}.dva_export.zip'.format(path) upload_file_to_path(local_path, path) os.remove(local_path) export.url = path else: if settings.ENABLE_CLOUDFS: upload_file_to_remote("/exports/{}".format(file_name)) export.url = "{}/exports/{}".format(settings.MEDIA_URL,file_name).replace('//exports','/exports') def build_queryset(args,video_id=None,query_id=None,target=None,filters=None): if target is None: target = args['target'] if filters is None: kwargs = args.get('filters',{}) else: kwargs = filters if video_id: kwargs['video_id'] = video_id if target == 'frames': queryset = Frame.objects.all().filter(**kwargs) elif target == 'regions': queryset = Region.objects.all().filter(**kwargs) elif target == 'query': kwargs['pk'] = query_id queryset = DVAPQL.objects.all().filter(**kwargs) elif target == 'index_entries': queryset = IndexEntries.objects.all().filter(**kwargs) elif target == 'query_regions': queryset = QueryRegion.objects.all().filter(**kwargs) elif target == 'query_region_index_vectors': queryset = QueryRegionIndexVector.objects.all().filter(**kwargs) elif target == 'segments': queryset = Segment.objects.filter(**kwargs) else: raise ValueError("target {} not found".format(target)) return queryset,target def load_frame_list(dv,event_id,frame_index__gte=0,frame_index__lt=-1): """ Add ability load frames & regions specified in a JSON file and then automatically retrieve them in a distributed manner them through CPU workers. """ frame_list = dv.get_frame_list() temp_path = "{}.jpg".format(uuid.uuid1()).replace('-', '_') video_id = dv.pk frame_index_to_regions = {} frames = [] for i, f in enumerate(frame_list['frames']): if i == frame_index__lt: break elif i >= frame_index__gte: try: get_path_to_file(f['path'],temp_path) im = Image.open(temp_path) w, h = im.size im.close() except: logging.exception("Failed to get {}".format(f['path'])) pass else: df, drs = serializers.import_frame_json(f,i,event_id,video_id,w,h) frame_index_to_regions[i] = drs frames.append(df) shutil.move(temp_path,df.path()) fids = Frame.objects.bulk_create(frames,1000) regions = [] for f in fids: region_list = frame_index_to_regions[f.frame_index] for dr in region_list: dr.frame_id = f.id regions.append(dr) Region.objects.bulk_create(regions,1000) def download_and_get_query_path(start): local_path = "{}/queries/{}_{}.png".format(settings.MEDIA_ROOT, start.pk, start.parent_process.uuid) if not os.path.isfile(local_path): source_path = "/queries/{}.png".format(start.parent_process.uuid) image_data = redis_client.get(source_path) if image_data: with open(local_path, 'w') as fh: fh.write(str(image_data)) else: ensure(source_path,safe=True) shutil.copy("{}{}".format(settings.MEDIA_ROOT,source_path),local_path) return local_path def download_and_get_query_region_path(start,regions): query_local_path = download_and_get_query_path(start) imdata = Image.open(query_local_path) rpaths = [] for r in regions: region_path = "{}/queries/region_{}_{}.png".format(settings.MEDIA_ROOT, r.pk, start.parent_process.uuid) img2 = imdata.crop((r.x, r.y, r.x + r.w, r.y + r.h)) img2.save(region_path) rpaths.append(region_path) return rpaths def get_query_dimensions(start): query_local_path = download_and_get_query_path(start) imdata = Image.open(query_local_path) width, height = imdata.size return width, height def crop_and_get_region_path(df,images,temp_root): if not df.materialized: frame_path = df.frame_path() if frame_path not in images: images[frame_path] = Image.open(frame_path) img2 = images[frame_path].crop((df.x, df.y, df.x + df.w, df.y + df.h)) region_path = df.path(temp_root=temp_root) img2.save(region_path) else: return df.path() return region_path def ensure_files(queryset, target): dirnames = {} if target == 'frames': for k in queryset: ensure(k.path(media_root=''),dirnames) elif target == 'regions': for k in queryset: if k.materialized: ensure(k.path(media_root=''), dirnames) else: ensure(k.frame_path(media_root=''), dirnames) elif target == 'segments': for k in queryset: ensure(k.path(media_root=''),dirnames) elif target == 'indexes': for k in queryset: ensure(k.npy_path(media_root=''), dirnames) else: raise NotImplementedError def import_frame_regions_json(regions_json,video,event_id): """ Import regions from a JSON with frames identified by immutable identifiers such as filename/path :param regions_json: :param video: :param event_id: :return: """ video_id = video.pk filename_to_pk = {} frame_index_to_pk = {} if video.dataset: # For dataset frames are identified by subdir/filename filename_to_pk = { df.original_path(): (df.pk, df.frame_index) for df in Frame.objects.filter(video_id=video_id)} else: # For videos frames are identified by frame index frame_index_to_pk = { df.frame_index: (df.pk, df.segment_index) for df in Frame.objects.filter(video_id=video_id)} regions = [] not_found = 0 for k in regions_json: if k['target'] == 'filename': fname = k['filename'] if not fname.startswith('/'): fname = '/{}'.format(fname) if fname in filename_to_pk: pk,findx = filename_to_pk[fname] regions.append(serializers.import_region_json(k,frame_index=findx, frame_id=pk, video_id=video_id, event_id=event_id)) else: not_found += 1 elif k['target'] == 'index': findx = k['frame_index'] pk,sindx = frame_index_to_pk[findx] regions.append(serializers.import_region_json(k, frame_index=findx, frame_id=pk, video_id=video_id, event_id=event_id)) else: raise ValueError('invalid target: {}'.format(k['target'])) logging.info("{} filenames not found in the dataset".format(not_found)) Region.objects.bulk_create(regions,1000) def get_sync_paths(dirname,task_id): if dirname == 'indexes': f = [k.npy_path(media_root="") for k in IndexEntries.objects.filter(event_id=task_id) if k.features_file_name] elif dirname == 'frames': f = [k.path(media_root="") for k in Frame.objects.filter(event_id=task_id)] elif dirname == 'segments': f = [] for k in Segment.objects.filter(event_id=task_id): f.append(k.path(media_root="")) elif dirname == 'regions': e = TEvent.objects.get(pk=task_id) if e.operation == 'perform_transformation': # TODO: transformation events merely materialize, fix this fargs = copy.deepcopy(e.arguments['filters']) fargs['materialized'] = True fargs['video_id'] = e.video_id f = [k.path(media_root="") for k in Region.objects.filter(**fargs)] else: f = [k.path(media_root="") for k in Region.objects.filter(event_id=task_id) if k.materialized] else: raise NotImplementedError,"dirname : {} not configured".format(dirname) return f def upload(dirname,event_id,video_id): if dirname: fnames = get_sync_paths(dirname, event_id) logging.info("Syncing {} containing {} files".format(dirname, len(fnames))) for fp in fnames: upload_file_to_remote(fp) if fnames: # if files are uploaded, sleep three seconds to ensure that files are available before launching time.sleep(3) else: upload_video_to_remote(video_id)
[ "akshayubhat@gmail.com" ]
akshayubhat@gmail.com
5ef22ce22e6cb63932236fbbcfcccd0a28bd676d
7041d7976f8964a0f1a11e1d0046a7857d900c27
/sysdoc/main.py
f492dbe7b10804a6ba69a0f43802544745a2e721
[]
no_license
moniccax/azure_first
a466bb96f3bcc94d6c1856cee66e6883c2be51cc
1a2eb2c190894b03a3d694b1262dbea68170e5e2
refs/heads/master
2022-04-13T21:00:23.938178
2020-02-28T12:06:12
2020-02-28T12:06:12
240,284,516
0
0
null
null
null
null
UTF-8
Python
false
false
2,709
py
# -*- coding: latin-1 -*- from flask import request, jsonify, render_template, flash, url_for, Blueprint from docx import Document as docxDocument from datetime import timedelta from subprocess import call from utils import * import os import io import zipfile import sys import hashlib import random import string import flask #@application.before_request, #def make_session_permanent(): # session.permanent = True # application.permanent_session_lifetime = timedelta(minutes=15) from admin import admin application.register_blueprint(admin, subdomain='admin') from docs import docs application.register_blueprint(docs, subdomain='documentos') from connect import connect application.register_blueprint(connect, subdomain='conecta') from cursos import cursos application.register_blueprint(cursos, subdomain='cursos') from api import api application.register_blueprint(api, subdomain='api') from app import mobile application.register_blueprint(mobile, subdomain='app') from alumni import alumni application.register_blueprint(alumni, subdomain='alumni') from estagios import estagios application.register_blueprint(estagios, subdomain='estagios') from bi import bi application.register_blueprint(bi, subdomain='bi') application.register_blueprint(admin,subdomain='app', url_prefix='/admin') application.register_blueprint(docs,subdomain='app', url_prefix='/documentos') application.register_blueprint(connect,subdomain='app', url_prefix='/conecta') application.register_blueprint(cursos,subdomain='app', url_prefix='/cursos') application.register_blueprint(alumni,subdomain='app', url_prefix='/alumni') application.register_blueprint(estagios,subdomain='app', url_prefix='/estagios') application.register_blueprint(bi,subdomain='app', url_prefix='/bi') @application.route('/') def index(): return redirect(url_for('admin.index')) # PÁGINAS DE ERRO @application.errorhandler(404) def page_error404(e): return redirect("/") #return render_template('erro.html', textError='Página não encontrada!'), 404 @application.errorhandler(500) def page_error500(e): return render_template('erro.html', textError='O sistema se comportou de forma inesperada!'), 500 @application.errorhandler(403) def page_error403(e): return render_template('erro.html', textError='Você não possui permissão para acessar esta página!'), 403 @application.after_request def add_headers(response): response.headers.add('Access-Control-Allow-Credentials', 'true') response.headers.add('Vary', 'Origin') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') return response
[ "monica_emediato@hotmail.com" ]
monica_emediato@hotmail.com
4a668cda898e9c471a683852233d9dee97b94e38
697e02fa4c280a9d9581a84c4e2a88e13666f7ce
/Auth/urls.py
b71441188ce1eeda0742fa443e63aa1d62a6c545
[]
no_license
devnikhilmhatre/fynd_task
df588ad208ac1e9e34f94e4fe436ced50f1a9653
4cc79441d7350167c22b1fcd4e0f7c2e1fb22a76
refs/heads/master
2022-05-04T09:08:59.788071
2019-06-08T17:34:04
2019-06-08T17:34:04
190,915,764
0
0
null
2022-04-22T21:40:47
2019-06-08T17:23:08
Python
UTF-8
Python
false
false
161
py
from django.urls import path from .views import SignIn, SignOut urlpatterns = [ path('login/', SignIn.as_view()), path('logout/', SignOut.as_view()) ]
[ "dev,nikhilmhatre@gmail.com" ]
dev,nikhilmhatre@gmail.com
f7aa38867d10a632f17743daa400364c915a957c
758e68638e21cbc763b515d1edb9e428ffd3f64b
/pangolinHustle.py
7083f0ec269de7ecd272c68311f1d1b6ccb6d41c
[]
no_license
aliisakroe/PangolinPygame
9b180b659e366c35e25c270e326012a9d4654e20
ec85bfbe565f20532f628b36cd97318e73747e4c
refs/heads/master
2021-01-10T14:29:55.124761
2016-01-26T17:10:41
2016-01-26T17:10:41
50,433,498
0
0
null
null
null
null
UTF-8
Python
false
false
5,149
py
#Aliisa Roe #Project 1 -- pygame #Oct 5, 2015 """This is a simple game where the user moves a pangolin image with arrow keys to get to the top of the screen without colliding with moving snake sprites--- an experiment with pygame.""" #I used pygame tutorial videos @ Kris Occhipinti #spritesheet from #colorado.edu/StudentGroups/uchc/trips.html creative commons # help on spriteCode from http://pygame.org/wiki/Spritesheet #sound from SoundBible.com creative commons #win from Mr Smith #lose from DavinCammas #hit from Mark DiAngelo #pangolin.png from https://pixabay.com/en/animal-pangolin-wild-157578/ openSource vectors import pygame, random, time, pygame.mixer from pygame.locals import * pygame.init() clock = pygame.time.Clock() #will monitor frames per second for consistent speed on different hardware size = width, height = 400, 430 screen = pygame.display.set_mode(size) screen.fill((255, 255, 255))#black hitSound = pygame.mixer.Sound('hit.wav') winSound = pygame.mixer.Sound('meow.wav') loseSound = pygame.mixer.Sound('siren.wav') class Spritesheet(object): #edited code from _____ def __init__(self, filename): self.sheet = pygame.image.load(filename).convert() def image_at(self, rectangle): rect = pygame.Rect(rectangle) image = pygame.Surface(rect.size).convert() image.blit(self.sheet, (0, 0), rect) image = pygame.transform.flip(image, True, False) return image class Sprite(object): def __init__(self, sprite, y): self.startingX = random.randrange(370) self.x = self.startingX self.y = y self.direction = "right" self.goingRight = True screen.blit(sprite, (self.x, self.y)) def get_y(self): return self.y def update_x(self, newX): self.x = newX def get_x(self): return self.x def get_rect(self): return (pygame.Rect((self.x, self.y), (50, 30))) def hit_side(self): x = self.x if x >= 360 or x <= 0 : return True else: return False def newDirection(self): if self.direction == "left": self.direction = "right" elif self.direction == "right": self.direction = "left" def introPrint(): print ("Welcome, to the pangolin hustle!") time.sleep(2) print ("Freddy the pangolin is trying to get to the other side of the screen, but he is very allergic to snakes.") time.sleep(3) print "Won't you help Freddy get accross?" print "Let's get started! Use your arrow keys to get Freddy to the top of the screen." time.sleep(3) print "And DON'T TOUCH ANY SNAKES!!" print "Press 'q' to quit." print "GO!" time.sleep(3) def main(): introPrint() ss = Spritesheet('char2.png') snakes = [] #enemy snakes.append(ss.image_at((0, 44, 44, 33))) snakes.append(ss.image_at((63, 44, 50, 33))) snakes.append(ss.image_at((130, 44, 50, 33))) snakes.append(ss.image_at((190, 44, 50, 33))) snakeRowList = [] yVal = 0 for i in range(13): #makes 13 rows of enemy snakes snakeRowList.append(Sprite(snakes[0], yVal)) yVal += 30 pangolin = pygame.image.load("pangolin.png").convert() #player pangolin = pygame.transform.scale(pangolin, (50, 50)) #initialize values x = 0 y = 0 snakeSprite = 0 hit = 0 arrowY = 400 arrowX = 200 beenHit = False #GAME LOOP running = True while running: screen.blit(pangolin, (arrowX,arrowY)) pangolinPos = pygame.Rect((arrowX, arrowY), (50, 50)) for event in pygame.event.get(): #QUIT types if event.type == pygame.QUIT: running = False elif event.type == KEYDOWN and (event.key == K_ESCAPE or event.key == K_q): running = False elif event.type == KEYDOWN and (event.key == K_UP): if 0 < arrowY <= 400: arrowY -= 10 elif event.type == KEYDOWN and (event.key == K_DOWN): if 0 < arrowY < 400: arrowY += 10 elif event.type == KEYDOWN and (event.key == K_LEFT): if 0 < arrowX < 400: arrowX -= 10 elif event.type == KEYDOWN and (event.key == K_RIGHT): if 0 < arrowX < 400: arrowX += 10 """ #screenshots elif event.type == KEYDOWN and event.key == K_SPACE: pygame.image.save(screen, "screenshot1.png")""" #here for screenshots that didn't capture my snake sprites :( #choose sprite image from snakeRowList if snakeSprite >= 3: snakeSprite -= 1 else: snakeSprite += 1 #animate Sprites, check for pangolin collision for row in snakeRowList: if row.hit_side(): row.newDirection() if row.direction == "right": row.update_x((row.get_x() + 8)) elif row.direction == "left": row.update_x((row.get_x() - 8)) screen.blit(snakes[snakeSprite], (row.get_x(), row.get_y())) if (pangolinPos).colliderect(row.get_rect()): #is there a better way? beenHit = True if beenHit == True: hit += 1 print "OW! only", (10-hit), "more lives!" hitSound.play() beenHit = False screen.fill((250, 0, 0)) #game scores if hit >= 9: loseSound.play() print "You died..." running = False elif hit <= 10 and arrowY <= 0: screen.fill((0, 250, 0)) print "YOU WIN!" winSound.play() running = False pygame.display.flip() screen.fill((0,0,0)) clock.tick(5) time.sleep(2) pygame.quit() main()
[ "aliisakroe@gmail.com" ]
aliisakroe@gmail.com
64cff1a16079803de459b9aa3b7b4eff8e8cd29b
c8945fe03675fac27fccf95fde3fc102f8dbef1b
/metrics/custom_metric.py
7e87378acd3a2c616bd873a7988db60868c68bbd
[]
no_license
damianmcdonald/gke-metrics-helm
b8cd6c24959087aa9d0264cbe9c65878cbe8117e
86fc74452fa858d1129912bd34cae86b32f4ae68
refs/heads/master
2023-02-24T07:43:52.633272
2021-01-22T11:26:46
2021-01-22T11:26:46
329,100,300
0
0
null
null
null
null
UTF-8
Python
false
false
2,825
py
import os import sys import argparse import datetime import pprint import random import time import googleapiclient.discovery def create_custom_metric(client, project_resource, custom_metric_type, metric_kind, metric_display_name, metric_description): """Create custom metric descriptor""" metrics_descriptor = { "type": custom_metric_type, "labels": [ { "key": "labelKey", "valueType": "STRING", "description": "An arbitrary measurement" } ], "metricKind": metric_kind, "valueType": "INT64", "unit": "items", "description": metric_description, "displayName": metric_display_name } return client.projects().metricDescriptors().create( name=project_resource, body=metrics_descriptor).execute() def delete_metric_descriptor(client, custom_metric_name): """Delete a custom metric descriptor.""" client.projects().metricDescriptors().delete( name=custom_metric_name).execute() if __name__ == "__main__": print(f"Arguments count: {len(sys.argv)}") for i, arg in enumerate(sys.argv): print(f"Argument {i}: {arg}") operation = sys.argv[1] if operation != "CREATE" and operation != "DELETE": print("Invalid operator. Must be CREATE or DELETE.") print(f"Usage: python custom_metric.py CREATE project_id metric_descriptor metric_description") print(f"Usage: python custom_metric.py DELETE project_id metric_descriptor") print(f"Create example: python custom_metric.py CREATE gcp_project_123 my_metric 'This is a metric that does something'") print(f"Delete example: python custom_metric.py DELETE gcp_project_123 my_metric") sys.exit(999) project_id = sys.argv[2] metric_descriptor = sys.argv[3] # This is the namespace for all custom metrics CUSTOM_METRIC_DOMAIN = "custom.googleapis.com" # This is our specific metric path custom_metric_path = f"{CUSTOM_METRIC_DOMAIN}/{metric_descriptor}" if operation == "CREATE": metric_description = sys.argv[4] METRIC_KIND = "GAUGE" project_resource = f"projects/{project_id}" client = googleapiclient.discovery.build('monitoring', 'v3') create_custom_metric( client, project_resource, custom_metric_path, METRIC_KIND, metric_descriptor, metric_description ) if operation == "DELETE": project_resource = f"projects/{project_id}" client = googleapiclient.discovery.build('monitoring', 'v3') delete_metric_descriptor(client, f"{project_resource}/metricDescriptors/{custom_metric_path}")
[ "damian.mcdonald1979@gmail.com" ]
damian.mcdonald1979@gmail.com
03e79839472824d49009eb882c9be785ea788325
1c6283303ceb883add8de4ee07c5ffcfc2e93fab
/Jinja2/lib/python3.7/site-packages/uhd_restpy/testplatform/sessions/ixnetwork/globals/globals.py
d957b41f406b4b6a75b7525b1800f265fe66875b
[]
no_license
pdobrinskiy/devcore
0f5b3dfc2f3bf1e44abd716f008a01c443e14f18
580c7df6f5db8c118990cf01bc2b986285b9718b
refs/heads/main
2023-07-29T20:28:49.035475
2021-09-14T10:02:16
2021-09-14T10:02:16
405,919,390
0
0
null
null
null
null
UTF-8
Python
false
false
11,362
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files from typing import List, Any, Union class Globals(Base): """This object holds the configurable global values of IxNetwork for interfaces and the protocol stack. The Globals class encapsulates a required globals resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'globals' _SDM_ATT_MAP = { 'ApplicationName': 'applicationName', 'BuildNumber': 'buildNumber', 'ConfigFileName': 'configFileName', 'ConfigSummary': 'configSummary', 'IsConfigDifferent': 'isConfigDifferent', 'PersistencePath': 'persistencePath', 'ProductVersion': 'productVersion', 'RpfPort': 'rpfPort', 'Username': 'username', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(Globals, self).__init__(parent, list_op) @property def AppErrors(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.apperrors.apperrors.AppErrors): An instance of the AppErrors class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.apperrors.apperrors import AppErrors if self._properties.get('AppErrors', None) is not None: return self._properties.get('AppErrors') else: return AppErrors(self) @property def Diagnostics(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.diagnostics.diagnostics.Diagnostics): An instance of the Diagnostics class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.diagnostics.diagnostics import Diagnostics if self._properties.get('Diagnostics', None) is not None: return self._properties.get('Diagnostics') else: return Diagnostics(self)._select() @property def Interfaces(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.interfaces.interfaces.Interfaces): An instance of the Interfaces class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.interfaces.interfaces import Interfaces if self._properties.get('Interfaces', None) is not None: return self._properties.get('Interfaces') else: return Interfaces(self)._select() @property def Licensing(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.licensing.licensing.Licensing): An instance of the Licensing class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.licensing.licensing import Licensing if self._properties.get('Licensing', None) is not None: return self._properties.get('Licensing') else: return Licensing(self)._select() @property def PortTestOptions(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.porttestoptions.porttestoptions.PortTestOptions): An instance of the PortTestOptions class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.porttestoptions.porttestoptions import PortTestOptions if self._properties.get('PortTestOptions', None) is not None: return self._properties.get('PortTestOptions') else: return PortTestOptions(self)._select() @property def Preferences(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.preferences.preferences.Preferences): An instance of the Preferences class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.preferences.preferences import Preferences if self._properties.get('Preferences', None) is not None: return self._properties.get('Preferences') else: return Preferences(self)._select() @property def ProgressDialog(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.progressdialog.progressdialog.ProgressDialog): An instance of the ProgressDialog class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.progressdialog.progressdialog import ProgressDialog if self._properties.get('ProgressDialog', None) is not None: return self._properties.get('ProgressDialog') else: return ProgressDialog(self)._select() @property def ProtocolStack(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.protocolstack.protocolstack.ProtocolStack): An instance of the ProtocolStack class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.protocolstack.protocolstack import ProtocolStack if self._properties.get('ProtocolStack', None) is not None: return self._properties.get('ProtocolStack') else: return ProtocolStack(self)._select() @property def Testworkflow(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.testworkflow.testworkflow.Testworkflow): An instance of the Testworkflow class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.testworkflow.testworkflow import Testworkflow if self._properties.get('Testworkflow', None) is not None: return self._properties.get('Testworkflow') else: return Testworkflow(self)._select() @property def Topology(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.topology.topology_678a8dc80c9b4b2b5c741072eab4305d.Topology): An instance of the Topology class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.topology.topology_678a8dc80c9b4b2b5c741072eab4305d import Topology if self._properties.get('Topology', None) is not None: return self._properties.get('Topology') else: return Topology(self)._select() @property def ApplicationName(self): # type: () -> str """ Returns ------- - str: """ return self._get_attribute(self._SDM_ATT_MAP['ApplicationName']) @property def BuildNumber(self): # type: () -> str """ Returns ------- - str: The IxNetwork software build number. """ return self._get_attribute(self._SDM_ATT_MAP['BuildNumber']) @property def ConfigFileName(self): # type: () -> str """ Returns ------- - str: The name of the configuration file. """ return self._get_attribute(self._SDM_ATT_MAP['ConfigFileName']) @property def ConfigSummary(self): """ Returns ------- - list(dict(arg1:str,arg2:str,arg3:list[dict(arg1:str,arg2:str)])): A high level summary description of the currently loaded configuration """ return self._get_attribute(self._SDM_ATT_MAP['ConfigSummary']) @property def IsConfigDifferent(self): # type: () -> bool """ Returns ------- - bool: (Read only) If true, then the current IxNetwork configuration is different than the configuration that was previously loaded. """ return self._get_attribute(self._SDM_ATT_MAP['IsConfigDifferent']) @property def PersistencePath(self): # type: () -> str """ Returns ------- - str: This attribute returns a directory of the IxNetwork API server machine, where users can drop their files from the client scripts using IxNetwork APIs. To Put files in this directory, users do not require to run IxNetwork API server in administrative mode """ return self._get_attribute(self._SDM_ATT_MAP['PersistencePath']) @property def ProductVersion(self): # type: () -> str """ Returns ------- - str: """ return self._get_attribute(self._SDM_ATT_MAP['ProductVersion']) @property def RpfPort(self): # type: () -> int """ Returns ------- - number: """ return self._get_attribute(self._SDM_ATT_MAP['RpfPort']) @property def Username(self): # type: () -> str """ Returns ------- - str: The name of the user. """ return self._get_attribute(self._SDM_ATT_MAP['Username'])
[ "pdobrinskiy@yahoo.com" ]
pdobrinskiy@yahoo.com
72c7e92b479a0a11d374e58e34f3467c43e67821
e8c76797b194bce6702adf9721a96c2b440efd5c
/test/modules/http2/htdocs/cgi/hello.py
20974bfdd3f143dd3a0f49ab33f2b24bfad99305
[ "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-public-domain", "Apache-2.0", "LicenseRef-scancode-zeusbench", "BSD-3-Clause", "RSA-MD", "LicenseRef-scancode-rsa-1990", "Beerware", "LicenseRef-scancode-other-permissive", "Spencer-94", "metamail", "LicenseRef-scancode-rsa-md4", "HPND-sell-variant" ]
permissive
apache/httpd
86bfac3d6e2e9b48f5bfca5be7ec616fa9b14e9a
b9e029c8036fd036281ac266010db91aed6079b2
refs/heads/trunk
2023-09-04T07:18:59.681233
2023-08-30T12:56:11
2023-08-30T12:56:11
205,423
3,159
1,329
Apache-2.0
2023-09-11T13:50:41
2009-05-20T02:02:59
C
UTF-8
Python
false
false
825
py
#!/usr/bin/env python3 import os print("Content-Type: application/json") print() print("{") print(" \"https\" : \"%s\"," % (os.getenv('HTTPS', ''))) print(" \"host\" : \"%s\"," % (os.getenv('X_HOST', '') \ if 'X_HOST' in os.environ else os.getenv('SERVER_NAME', ''))) print(" \"server\" : \"%s\"," % (os.getenv('SERVER_NAME', ''))) print(" \"h2_original_host\" : \"%s\"," % (os.getenv('H2_ORIGINAL_HOST', ''))) print(" \"port\" : \"%s\"," % (os.getenv('SERVER_PORT', ''))) print(" \"protocol\" : \"%s\"," % (os.getenv('SERVER_PROTOCOL', ''))) print(" \"ssl_protocol\" : \"%s\"," % (os.getenv('SSL_PROTOCOL', ''))) print(" \"h2\" : \"%s\"," % (os.getenv('HTTP2', ''))) print(" \"h2push\" : \"%s\"," % (os.getenv('H2PUSH', ''))) print(" \"h2_stream_id\" : \"%s\"" % (os.getenv('H2_STREAM_ID', ''))) print("}")
[ "icing@apache.org" ]
icing@apache.org
5aa325b1239d92c5a5dc206f02581984ff7c032f
8e5a146e2b11c0d9e924cc708392d2273fb419de
/I0320011_soal2_tugas2.py
c3ce049567d71103bd7e9cc1b40fb9d7ac96d6d4
[]
no_license
Aratiakiana/Aratia-Kiana-Piandhani_I0320011_Wildan-Rusyadani_Tugas2
9c7ea21f90c7848a921ba590e6ed8d4df8270433
fb40d09638665e93d543e12c2bf38e76d50fa45a
refs/heads/main
2023-03-15T11:29:11.798144
2021-03-11T15:50:08
2021-03-11T15:50:08
346,230,046
0
0
null
null
null
null
UTF-8
Python
false
false
1,583
py
#Memasukkan data diri nama = "Aratia Kiana Piandhani" namaPanggilan = "Ara" nim = "I0320011" kelas = "A" prodi = "Teknik Industri" angkatan = "2020" universitas = "Universitas Sebelas Maret" jenisKelamin = "Perempuan" agama = "Islam" print("Halo perkenalkan nama saya", str(nama)+",biasa dipanggil", str(namaPanggilan)+".") print("NIM saya", nim, "dari kelas", str(kelas)+".") print("Saya mahasiswa prodi", prodi, "dari angkatan", angkatan, "di", str(universitas)+".") print("Saya memiliki jenis kelamin", jenisKelamin, "dan beragama", str(agama)+".") #Memasukkan tanggal lahir tempatLahir = "Surakarta" tanggalLahir = int(5*4+6) bulanLahir = "Desember" tahunLahir = int(200*10+2) umur = int(30/2+3) print("Saya lahir di" ,tempatLahir, "tanggal", tanggalLahir, bulanLahir, tahunLahir) print("Sekarang saya berumur", umur, "tahun.") #Memasukkan data alamat rumah R_T = int(6*2-10) R_W = int(2.5*2) kodePos = 57557 print("Alamat rumah saya di Kembang", "RT", R_T,"RW", R_W, "Trosemi,Gatak,Sukoharjo kode pos", str(kodePos)+".") #Memasukkan data pendukung beratBadan = float(107/2) tinggiBadan = int((50*2)+(8*7)) ukuranSepatu = int((6*6)+3) ukuranBaju = "M atau L" hobi = "Memasak, mendengarkan musik, menonton film, dan jalan-jalan" print("Berat badan saya yaitu ", beratBadan, "kg.") print("Tinggi badan saya yaitu", tinggiBadan, "cm.") print("Saya lebih menyukai sepatu sneakers daripada flatshoes,biasanya sepatu yang saya beli berukuran", ukuranSepatu) print("Untuk ukuran baju biasanya saya menggunakan ukuran", str(ukuranBaju)+".") print("Hobi saya yaitu", str(hobi)+".")
[ "aratiakiana.p@gmail.com" ]
aratiakiana.p@gmail.com
30cc1d1fc50d0f446d0341344fbc5cfd52d78242
9df89a1652d183d8fc654acd728f9a578d6d1912
/cli/psym/graphql/query/customers.py
cc9b41c460503454a4b358260df7649396259444
[ "BSD-3-Clause" ]
permissive
duranrojasm/symphony
b37d54a134e29093edacb80442e204fc71a37fbe
55b3d0c20b669374303bafb10e9c96c734647c9c
refs/heads/main
2023-08-24T02:00:33.433220
2021-10-28T20:35:23
2021-10-28T20:35:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,209
py
#!/usr/bin/env python3 # @generated AUTOGENERATED file. Do not Change! from dataclasses import dataclass, field as _field from ...config import custom_scalars, datetime from gql_client.runtime.variables import encode_variables from gql import gql, Client from gql.transport.exceptions import TransportQueryError from functools import partial from numbers import Number from typing import Any, AsyncGenerator, Dict, List, Generator, Optional from time import perf_counter from dataclasses_json import DataClassJsonMixin, config from ..fragment.customer import CustomerFragment, QUERY as CustomerFragmentQuery # fmt: off QUERY: List[str] = CustomerFragmentQuery + [""" query CustomersQuery { customers { edges { node { ...CustomerFragment } } } } """ ] class CustomersQuery: @dataclass(frozen=True) class CustomersQueryData(DataClassJsonMixin): @dataclass(frozen=True) class CustomerConnection(DataClassJsonMixin): @dataclass(frozen=True) class CustomerEdge(DataClassJsonMixin): @dataclass(frozen=True) class Customer(CustomerFragment): pass node: Optional[Customer] edges: List[CustomerEdge] customers: Optional[CustomerConnection] # fmt: off @classmethod def execute(cls, client: Client) -> Optional[CustomersQueryData.CustomerConnection]: variables: Dict[str, Any] = {} new_variables = encode_variables(variables, custom_scalars) response_text = client.execute( gql("".join(set(QUERY))), variable_values=new_variables ) res = cls.CustomersQueryData.from_dict(response_text) return res.customers # fmt: off @classmethod async def execute_async(cls, client: Client) -> Optional[CustomersQueryData.CustomerConnection]: variables: Dict[str, Any] = {} new_variables = encode_variables(variables, custom_scalars) response_text = await client.execute_async( gql("".join(set(QUERY))), variable_values=new_variables ) res = cls.CustomersQueryData.from_dict(response_text) return res.customers
[ "jcaroper@everis.com" ]
jcaroper@everis.com
aa49a4d64508c9fa62c1e3f29026d15008e407f4
23611933f0faba84fc82a1bc0a85d97cf45aba99
/google-cloud-sdk/lib/surface/app/versions/delete.py
fe4a27d6de672df18ddf9b85bc4ecc86e88036db
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
KaranToor/MA450
1f112d1caccebdc04702a77d5a6cee867c15f75c
c98b58aeb0994e011df960163541e9379ae7ea06
refs/heads/master
2021-06-21T06:17:42.585908
2020-12-24T00:36:28
2020-12-24T00:36:28
79,285,433
1
1
Apache-2.0
2020-12-24T00:38:09
2017-01-18T00:05:44
Python
UTF-8
Python
false
false
4,568
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Delete command.""" import copy from googlecloudsdk.api_lib.app import appengine_api_client from googlecloudsdk.api_lib.app import service_util from googlecloudsdk.api_lib.app import version_util from googlecloudsdk.calliope import base from googlecloudsdk.core import exceptions from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io from googlecloudsdk.core.resource import resource_printer from googlecloudsdk.core.util import text class VersionsDeleteError(exceptions.Error): """Errors occurring when deleting versions.""" pass class Delete(base.DeleteCommand): """Delete a specified version. You cannot delete a version of a service that is currently receiving traffic. """ detailed_help = { 'DESCRIPTION': '{description}', 'EXAMPLES': """\ To delete a specific version of a specific service, run: $ {command} --service myService v1 To delete a named version across all services, run: $ {command} v1 To delete multiple versions of a specific service, run: $ {command} --service myService v1 v2 To delete multiple named versions across all services, run: $ {command} v1 v2 """, } @staticmethod def Args(parser): parser.add_argument('versions', nargs='+', help=( 'The versions to delete (optionally filtered by the --service flag).')) parser.add_argument('--service', '-s', help=('If specified, only delete versions from the ' 'given service.')) def Run(self, args): client = appengine_api_client.GetApiClient() services = client.ListServices() all_versions = client.ListVersions(services) # Sort versions to make behavior deterministic enough for unit testing. versions = sorted(version_util.GetMatchingVersions(all_versions, args.versions, args.service)) services_to_delete = [] for service in sorted(services): if (len([v for v in all_versions if v.service == service.id]) == len([v for v in versions if v.service == service.id])): services_to_delete.append(service) for version in copy.copy(versions): if version.service == service.id: versions.remove(version) for version in versions: if version.traffic_split: # TODO(user): mention `migrate` once it's implemented. # TODO(b/32869800): collect info on all versions before raising. raise VersionsDeleteError( 'Version [{version}] is currently serving {allocation:.2f}% of ' 'traffic for service [{service}].\n\n' 'Please move all traffic away by deploying a new version with the' '`--promote` argument or running `gcloud app services ' 'set-traffic`.'.format( version=version.id, allocation=version.traffic_split * 100, service=version.service)) if services_to_delete: word = text.Pluralize(len(services_to_delete), 'service') log.warn('Requested deletion of all existing versions for the following ' '{0}:'.format(word)) resource_printer.Print(services_to_delete, 'list', out=log.status) console_io.PromptContinue(prompt_string=( '\nYou cannot delete all versions of a service. Would you like to ' 'delete the entire {0} instead?').format(word), cancel_on_no=True) service_util.DeleteServices(client, services_to_delete) if versions: fmt = 'list[title="Deleting the following versions:"]' resource_printer.Print(versions, fmt, out=log.status) console_io.PromptContinue(cancel_on_no=True) else: if not services_to_delete: log.warn('No matching versions found.') version_util.DeleteVersions(client, versions)
[ "toork@uw.edu" ]
toork@uw.edu
8831c689d0b7f8a70f197c219c2585d1b69ff287
9101cc8041d53ee4493941cecf8c5cbb5d7d4257
/P4HW2_RunningTotal_RiedToneshia.py
38f678f6402c5b660449a83c3acedf7bef3ebaa5
[]
no_license
princess2597/CTI110
6c1943413318aed448a84f951ed274f114ae8960
64016e50f04bf775e9b807b8483f127587754116
refs/heads/master
2021-04-29T23:50:50.255991
2018-05-13T15:44:51
2018-05-13T15:44:51
121,564,314
0
0
null
null
null
null
UTF-8
Python
false
false
266
py
#CTI - 110 #P4HW2: Running Total #Toneshia Ried #March 20, 2018 total = 0 userNumber = float( input("Enter a number? ")) while userNumber > -1: total = total + userNumber userNumber = float(input("Enter a number? ")) print("\nTotal:",total)
[ "noreply@github.com" ]
princess2597.noreply@github.com
3a15676d41e89576cf66bdb38fe8953de3db54a0
347ae4f64d15c8af4455185adc0858362862bb3e
/pose_txt_data_merge.py
536eec6fefb2a6b391198c7e2eed79793b289236
[]
no_license
AIHGF/Coding-Recording
f93b291dc78da1a54006b80df9ad58594c082745
60c179365d81af94e412ccd56129aa88c5b2d95f
refs/heads/master
2021-06-07T09:43:39.036211
2016-10-25T01:59:48
2016-10-25T01:59:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,335
py
#!/usr/bin/python # -*- coding: utf-8 -*- ''' random selecting some images ''' import os import re import shutil import random if __name__ == '__main__': # Read the json data from text file f = open('pose.txt','r') datas = f.readlines() f.close() #print datas f_one = open('one_person.txt','r') f_one_pose = open("one_pose.txt", 'w') # print f.read() datas_one = f_one.readlines() print len(datas_one) for fzdata in datas_one: fzdatasplit = re.split('/ddpose/', fzdata) fzdatasplit = fzdatasplit[1] #print 'fzdatasplit:',fzdatasplit #f_one_pose.write(fzdatasplit) a = fzdatasplit[-35:-1] #print 'a',str(a) for data in datas: imageName = re.split('.jpg', data) imagesName = imageName[0]+'.jpg' b = imagesName[-34:] #print 'b',str(b) if str(a)==str(b): print 'Hello world!' fzstring = imagesName + imageName[1] print fzstring f_one_pose.write(fzstring) f_one_pose.close() # slices = random.sample(datas, 500) # #print slices # for data in slices: # datasplit = re.split('.jpg', data) # fileName = datasplit[0] # fileName = fileName+'.jpg' # #print 'Processing the image: ', fileName # # #shutil.move(fileName,"./test/")
[ "noreply@github.com" ]
AIHGF.noreply@github.com
ed7c9da316d6117584cb538fa5bdb542fb66e51c
7a4ca209d8c2c55ae7a721426be57fcb47bf1247
/Swansong/swansong/au/coreFunctions.py
baa05eb5b17812cd29d20bd736fee906ba95d161
[]
no_license
fuankarion/SwS
1ca8a0c60b7f091621bae601b792a946c14f00cf
9ea4ac5547dc5708a0da2fba4068ce79dbc49301
refs/heads/master
2021-06-18T22:20:08.060272
2017-03-13T23:50:36
2017-03-13T23:50:36
82,957,583
0
0
null
null
null
null
UTF-8
Python
false
false
6,329
py
from pylab import * def trainNetworkBetterTrainDataLogTop2(solver, niter, batchesForTraining, targetLogFile, test_iters, logsPerEpoch, smallSetProportion): train_loss = 0.0 train_accuracy = 0.0 train_accuracyTop3 = 0.0 smallSetIters = int(round(test_iters / smallSetProportion))#test with a small set inbetween epochs for it in range(niter): solver.step(1) print('Iteration ', it) train_loss = train_loss + solver.net.blobs['loss'].data train_accuracy = train_accuracy + solver.net.blobs['accuracy'].data train_accuracyTop3 = train_accuracyTop3 + solver.net.blobs['accuracyTop2'].data #print('Iteration ', it, ' train_accuracy ', solver.net.blobs['accuracy'].data[0], ' train_accuracyTop3 ', solver.net.blobs['accuracyTop5'].data[0] ) #get loss and accuracy, by doing test_iters forward pass and avergaing results per batch if (it % round(batchesForTraining / logsPerEpoch)) == 0 and it > 0:# logsPerEpoch if (it % (round(batchesForTraining / logsPerEpoch) * logsPerEpoch)) != 0:#Do small test? adaptedTest_iters = smallSetIters else: adaptedTest_iters = test_iters test_acc = 0.0 test_loss = 0.0 test_accTop3 = 0.0 for i in range(adaptedTest_iters): solver.test_nets[0].forward()#TODO what if we use more tha 1 test net accuracyTemp = solver.test_nets[0].blobs['accuracy'].data accuracyTempTop3 = solver.test_nets[0].blobs['accuracyTop2'].data lossTemp = solver.test_nets[0].blobs['loss'].data test_acc = test_acc + accuracyTemp test_accTop3 = test_accTop3 + accuracyTempTop3 test_loss = test_loss + lossTemp print('On test stage iter : ', i, ' accuracy ', accuracyTemp, ' loss ', lossTemp, ' accuracy Top2 ', accuracyTempTop3) test_acc = test_acc / adaptedTest_iters test_loss = test_loss / adaptedTest_iters test_accTop3 = test_accTop3 / adaptedTest_iters train_accuracy = train_accuracy / (batchesForTraining / logsPerEpoch) train_accuracyTop3 = train_accuracyTop3 / (batchesForTraining / logsPerEpoch) train_loss = train_loss / (batchesForTraining / logsPerEpoch) print ('iter ', it, 'train loss:', train_loss, 'train accuracy ', train_accuracy, 'test losss', test_loss, 'test accuracy:', test_acc, 'test accuracy top 2 ', test_accTop3) print ('') if (it % (round(batchesForTraining / logsPerEpoch) * logsPerEpoch)) != 0:#write small test with open(targetLogFile, 'a') as myfile: myfile.write(str(it) + ',' + str(train_loss) + ',' + str(train_accuracy) + ',' + str(train_accuracyTop3) + ',' + str(test_loss) + ',' + str(test_acc) + ',' + str(test_accTop3) + '\n') else: with open(targetLogFile, 'a') as myfile: myfile.write(str(it) + ',' + str(train_loss) + ',' + str(train_accuracy) + ',' + str(train_accuracyTop3) + ',' + str(test_loss) + ',' + str(test_acc) + ',' + str(test_accTop3) + ',X \n') train_loss = 0.0 train_accuracy = 0.0 train_accuracyTop3 = 0.0 print 'You Actually got here :)' def trainNetworkLog(solver, niter, batchesForTraining, targetLogFile, test_iters, logsPerEpoch, smallSetProportion): train_loss = 0.0 train_accuracy = 0.0 smallSetIters = int(round(test_iters / smallSetProportion))#test with a small set inbetween epochs for it in range(niter): solver.step(1) print('Iteration ', it) train_loss = train_loss + solver.net.blobs['loss'].data train_accuracy = train_accuracy + solver.net.blobs['accuracy'].data #get loss and accuracy, by doing test_iters forward pass and avergaing results per batch if (it % round(batchesForTraining / logsPerEpoch)) == 0 and it > 0:# logsPerEpoch if (it % (round(batchesForTraining / logsPerEpoch) * logsPerEpoch)) != 0:#Do small test? adaptedTest_iters = smallSetIters else: adaptedTest_iters = test_iters test_acc = 0.0 test_loss = 0.0 for i in range(adaptedTest_iters): solver.test_nets[0].forward()#TODO what if we use more tha 1 test net accuracyTemp = solver.test_nets[0].blobs['accuracy'].data test_acc = test_acc + accuracyTemp lossTemp = solver.test_nets[0].blobs['loss'].data test_loss = test_loss + lossTemp print('On test stage iter : ', i, ' accuracy ', accuracyTemp, ' loss ', lossTemp) test_acc = test_acc / adaptedTest_iters test_loss = test_loss / adaptedTest_iters train_accuracy = train_accuracy / (batchesForTraining / logsPerEpoch) train_loss = train_loss / (batchesForTraining / logsPerEpoch) print 'iter ', it, 'train loss:', train_loss, 'train accuracy ', train_accuracy, 'test losss', test_loss, 'test accuracy:', test_acc print '' if (it % (round(batchesForTraining / logsPerEpoch) * logsPerEpoch)) != 0:#write small test with open(targetLogFile, 'a') as myfile: myfile.write(str(it) + ',' + str(train_loss) + ',' + str(train_accuracy) + ',' + str(test_loss) + ',' + str(test_acc) + '\n') else: with open(targetLogFile, 'a') as myfile: myfile.write(str(it) + ',' + str(train_loss) + ',' + str(train_accuracy) + ',' + str(test_loss) + ',' + str(test_acc) + ',X \n') train_loss = 0.0 train_accuracy = 0.0 print 'You Actually got here :)'
[ "fuankarion@gmail.com" ]
fuankarion@gmail.com
92136573be8db1267421978b237419950e01cd8b
2eec69f014b2111680904208e0a9bcb4f1c1e922
/module/bert_optim.py
b15fe5fffb82b4af73a861bf3567c6a7ceab3419
[ "MIT" ]
permissive
UKPLab/mdl-stance-robustness
fc873d2ec95ee02866e03041123d8316bd677411
a8ef3f498e7f238d5224debe9bfce478e480201f
refs/heads/master
2023-07-19T21:51:14.086577
2022-05-17T12:55:18
2022-05-17T12:55:18
229,263,983
37
13
MIT
2023-07-06T21:36:14
2019-12-20T12:48:42
Python
UTF-8
Python
false
false
5,903
py
# Copyright (c) Microsoft. All rights reserved. import math import torch from torch.optim import Optimizer from torch.nn.utils import clip_grad_norm_ from pytorch_pretrained_bert.optimization import warmup_constant, warmup_cosine, warmup_linear def warmup_linear_xdl(x, warmup=0.002): if x < warmup: return x/warmup return (1.0 - x)/(1.0 - warmup) def schedule_func(sch): try: f = eval(sch) except: f = warmup_linear return f class Adamax(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix (and no ). Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay_rate: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 by xiaodl """ def __init__(self, params, lr, warmup=-1, t_total=-1, schedule='warmup_linear', betas=(0.9, 0.999), eps=1e-6, weight_decay_rate=0.01, max_grad_norm=1.0): if not lr >= 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, betas=betas, eps=eps, weight_decay_rate=weight_decay_rate, max_grad_norm=max_grad_norm) super(Adamax, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = schedule_func(group['schedule']) lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def to(self, device): """ Move the optimizer state to a specified device""" for state in self.state.values(): state['exp_avg'].to(device) state['exp_avg_sq'].to(device) def initialize_step(self, initial_step): """Initialize state with a defined step (but we don't have stored averaged). Arguments: initial_step (int): Initial step number. """ for group in self.param_groups: for p in group['params']: state = self.state[p] # State initialization state['step'] = initial_step # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) state['exp_inf'] = torch.zeros_like(p.data) exp_avg, exp_inf = state['exp_avg'], state['exp_inf'] beta1, beta2 = group['betas'] eps = group['eps'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Update biased first moment estimate. exp_avg.mul_(beta1).add_(1 - beta1, grad) # Update the exponentially weighted infinity norm. norm_buf = torch.cat([ exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0) ], 0) torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long())) update = exp_avg / (exp_inf + eps) if group['weight_decay_rate'] > 0.0: update += group['weight_decay_rate'] * p.data if group['t_total'] != -1: schedule_fct = schedule_func(group['schedule']) lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 return loss
[ "schiller@ukp.informatik.tu-darmstadt.de" ]
schiller@ukp.informatik.tu-darmstadt.de
dd36c366f4d20cc72cc9ef6c741e12b99e6c982a
f6150e02de746599964dc3fc4d2bde839f9b6e69
/preprocessing/preprocessing_factory.py
b00081b8ca1685bf0fe88684ecf348f3ef996b31
[]
no_license
margaux-schorn/classification_visages
0be004645ecd942df860eebc43e11fa9c6319933
d6c1d740aa0e74b430bf384f943e33e990a226c1
refs/heads/master
2020-03-08T20:16:15.226824
2018-05-18T09:15:51
2018-05-18T09:15:51
128,377,941
0
0
null
null
null
null
UTF-8
Python
false
false
3,032
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains a factory for building various models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from preprocessing import cifarnet_preprocessing from preprocessing import inception_preprocessing from preprocessing import lenet_preprocessing from preprocessing import vgg_preprocessing slim = tf.contrib.slim def get_preprocessing(name, is_training=False): """Returns preprocessing_fn(image, height, width, **kwargs). Args: name: The name of the preprocessing function. is_training: `True` if the model is being used for training and `False` otherwise. Returns: preprocessing_fn: A function that preprocessing a single image (pre-batch). It has the following signature: image = preprocessing_fn(image, output_height, output_width, ...). Raises: ValueError: If Preprocessing `name` is not recognized. """ preprocessing_fn_map = { 'cifarnet': cifarnet_preprocessing, 'inception': inception_preprocessing, 'inception_v1': inception_preprocessing, 'inception_v2': inception_preprocessing, 'inception_v3': inception_preprocessing, 'inception_v4': inception_preprocessing, 'inception_resnet_v2': inception_preprocessing, 'lenet': lenet_preprocessing, 'mobilenet_v1': inception_preprocessing, 'nasnet_mobile': inception_preprocessing, 'nasnet_large': inception_preprocessing, 'pnasnet_large': inception_preprocessing, 'resnet_v1_50': vgg_preprocessing, 'resnet_v1_101': vgg_preprocessing, 'resnet_v1_152': vgg_preprocessing, 'resnet_v1_200': vgg_preprocessing, 'resnet_v2_50': vgg_preprocessing, 'resnet_v2_101': vgg_preprocessing, 'resnet_v2_152': vgg_preprocessing, 'resnet_v2_200': vgg_preprocessing, 'vgg': vgg_preprocessing, 'vgg_a': vgg_preprocessing, 'vgg_16': vgg_preprocessing, 'vgg_19': vgg_preprocessing, } if name not in preprocessing_fn_map: raise ValueError('Preprocessing name [%s] was not recognized' % name) def preprocessing_fn(image, output_height, output_width, **kwargs): return preprocessing_fn_map[name].preprocess_image( image, output_height, output_width, is_training=is_training, **kwargs) return preprocessing_fn
[ "margaux@Margauxs-MacBook-Pro.local" ]
margaux@Margauxs-MacBook-Pro.local
c281f4e1e98d33496387c7144dae0dd964528490
22c686df4887171b8f3c13ed3e60823fc78bcfd3
/venv/Lib/site-packages/dotenv/parser.py
bd60cab4026488e11ffa624d74cac3513389a21a
[]
no_license
farooqiusman/Discord_bot
5ffb2b5576ebafc6f5418eda28645a4fc128add9
990a305ffcc3359ed2a59d211e32212e1d5447df
refs/heads/master
2023-07-14T07:55:24.780523
2021-09-03T18:06:42
2021-09-03T18:06:42
234,797,260
0
0
null
null
null
null
UTF-8
Python
false
false
6,005
py
import codecs import re from .compat import IS_TYPE_CHECKING, to_text if IS_TYPE_CHECKING: from typing import ( # noqa:F401 IO, Iterator, Match, NamedTuple, Optional, Pattern, Sequence, Text, Tuple ) def make_regex(string, extra_flags=0): # type: (str, int) -> Pattern[Text] return re.compile(to_text(string), re.UNICODE | extra_flags) _newline = make_regex(r"(\r\n|\n|\r)") _whitespace = make_regex(r"\s*", extra_flags=re.MULTILINE) _export = make_regex(r"(?:export[^\S\r\n]+)?") _single_quoted_key = make_regex(r"'([^']+)'") _unquoted_key = make_regex(r"([^=\#\s]+)") _equal_sign = make_regex(r"([^\S\r\n]*=[^\S\r\n]*)?") _single_quoted_value = make_regex(r"'((?:\\'|[^'])*)'") _double_quoted_value = make_regex(r'"((?:\\"|[^"])*)"') _unquoted_value_part = make_regex(r"([^ \r\n]*)") _comment = make_regex(r"(?:\s*#[^\r\n]*)?") _end_of_line = make_regex(r"[^\S\r\n]*(?:\r\n|\n|\r)?") _rest_of_line = make_regex(r"[^\r\n]*(?:\r|\n|\r\n)?") _double_quote_escapes = make_regex(r"\\[\\'\"abfnrtv]") _single_quote_escapes = make_regex(r"\\[\\']") try: # this is necessary because we only import these from typing # when we are type checking, and the linter is upset if we # re-import import typing Original = typing.NamedTuple( "Original", [ ("string", typing.Text), ("line", int), ], ) Binding = typing.NamedTuple( "Binding", [ ("key", typing.Optional[typing.Text]), ("value", typing.Optional[typing.Text]), ("original", Original), ], ) except ImportError: from collections import namedtuple Original = namedtuple( # type: ignore "Original", [ "string", "line", ], ) Binding = namedtuple( # type: ignore "Binding", [ "key", "value", "original", ], ) class Position: def __init__(self, chars, line): # type: (int, int) -> None self.chars = chars self.line = line @classmethod def start(cls): # type: () -> Position return cls(chars=0, line=1) def set(self, other): # type: (Position) -> None self.chars = other.chars self.line = other.line def advance(self, string): # type: (Text) -> None self.chars += len(string) self.line += len(re.findall(_newline, string)) class Error(Exception): pass class Reader: def __init__(self, stream): # type: (IO[Text]) -> None self.string = stream.read() self.position = Position.start() self.mark = Position.start() def has_next(self): # type: () -> bool return self.position.chars < len(self.string) def set_mark(self): # type: () -> None self.mark.set(self.position) def get_marked(self): # type: () -> Original return Original( string=self.string[self.mark.chars:self.position.chars], line=self.mark.line, ) def peek(self, count): # type: (int) -> Text return self.string[self.position.chars:self.position.chars + count] def read(self, count): # type: (int) -> Text result = self.string[self.position.chars:self.position.chars + count] if len(result) < count: raise Error("read: End of string") self.position.advance(result) return result def read_regex(self, regex): # type: (Pattern[Text]) -> Sequence[Text] match = regex.match(self.string, self.position.chars) if match is None: raise Error("read_regex: Pattern not found") self.position.advance(self.string[match.start():match.end()]) return match.groups() def decode_escapes(regex, string): # type: (Pattern[Text], Text) -> Text def decode_match(match): # type: (Match[Text]) -> Text return codecs.decode(match.group(0), 'unicode-escape') # type: ignore return regex.sub(decode_match, string) def parse_key(reader): # type: (Reader) -> Text char = reader.peek(1) if char == "'": (key,) = reader.read_regex(_single_quoted_key) else: (key,) = reader.read_regex(_unquoted_key) return key def parse_unquoted_value(reader): # type: (Reader) -> Text value = u"" while True: (part,) = reader.read_regex(_unquoted_value_part) value += part after = reader.peek(2) if len(after) < 2 or after[0] in u"\r\n" or after[1] in u" #\r\n": return value value += reader.read(2) def parse_value(reader): # type: (Reader) -> Text char = reader.peek(1) if char == u"'": (value,) = reader.read_regex(_single_quoted_value) return decode_escapes(_single_quote_escapes, value) elif char == u'"': (value,) = reader.read_regex(_double_quoted_value) return decode_escapes(_double_quote_escapes, value) elif char in (u"", u"\n", u"\r"): return u"" else: return parse_unquoted_value(reader) def parse_binding(reader): # type: (Reader) -> Binding reader.set_mark() try: reader.read_regex(_whitespace) reader.read_regex(_export) key = parse_key(reader) (sign,) = reader.read_regex(_equal_sign) value = parse_value(reader) if sign else None reader.read_regex(_comment) reader.read_regex(_end_of_line) return Binding( key=key, value=value, original=reader.get_marked(), ) except Error: reader.read_regex(_rest_of_line) return Binding( key=None, value=None, original=reader.get_marked(), ) def parse_stream(stream): # type: (IO[Text]) -> Iterator[Binding] reader = Reader(stream) while reader.has_next(): yield parse_binding(reader)
[ "34846941+Chobaka78@users.noreply.github.com" ]
34846941+Chobaka78@users.noreply.github.com
d694c8662397c906eb3675d91e5b303572a9b9ff
e543218db21c0232ab6c688cbbec7d49cf54e1de
/M5HW3_Factorial_lee.py
64031e77807c5cc854c7415d06957b995901d2d1
[]
no_license
jeffnivy/cti110
edb77132f223a903d86ab107c9d9584e144367a3
2e42c9a36cfc594265524825f79e1b4f440466ea
refs/heads/master
2021-01-23T10:37:02.426149
2017-12-11T16:02:08
2017-12-11T16:02:08
102,623,562
0
0
null
null
null
null
UTF-8
Python
false
false
543
py
#CTI 110 #M5HW3 Factorial #Jeffrey Lee #17 Oct 2017 #Write a program that asks the user for a nonnegative integer #then uses a loop to calculate the factorial of that number #Display the factorial userInteger = int( input( "Please enter a number: " ) ) while userInteger < 1: userInteger = int( input( "Please enter a positive number please: " ) ) factorial = 1 for currentNumber in range( 1, userInteger + 1 ): factorial = factorial * currentNumber print( "The factorial of", userInteger, "is" , factorial )
[ "noreply@github.com" ]
jeffnivy.noreply@github.com
faf45b629da2c9b6f878c086d6691fdf8be9c9f5
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/CodeJamData/15/31/5.py
0b76face2b61578a0a63ae7ae2bee12b06fe88cd
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
745
py
import os import sys from collections import defaultdict problem_id = 'A' sys.setrecursionlimit(10**9) input_path = '%s.in' % problem_id output_path = '%s.out' % problem_id def read_line(): line = '' while len(line) == 0: line = input_file.readline().strip() return line def write_line(line): print line return output_file.write(line + os.linesep) def solve(): r, c, w = map(int, read_line().split(' ')) nc = (c / w) * r + (w - 1) if c % w: nc += 1 return '%s' % nc input_file = open(input_path, "r") output_file = open(output_path, "w+") T = int(read_line()) for case_id in xrange(1, T + 1): write_line("Case #%d: %s" % (case_id, solve())) input_file.close() output_file.close()
[ "kwnafi@yahoo.com" ]
kwnafi@yahoo.com
7d0b9e321fad687717ba261f712748cb57d968a3
7848ded2f7b1cf5cc33380d739e0ceee5718ffec
/imrunicorn/activity_log/migrations/0006_auto_20210218_0756.py
73aa939743b218d1fe05de35fdd5684fce3b3c7e
[]
no_license
benspelledabc/djangosite
cbed1a7da3eb6ba6eee05897ec928b350831fc6b
fa8004b20f790f56fc69e9d158128a867be700f3
refs/heads/master
2023-04-17T19:24:48.908640
2021-05-02T19:05:38
2021-05-02T19:05:38
294,891,690
1
1
null
2021-05-02T19:05:38
2020-09-12T07:16:11
Python
UTF-8
Python
false
false
474
py
# Generated by Django 3.0.7 on 2021-02-18 12:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('activity_log', '0005_activity_sfw'), ] operations = [ migrations.AlterModelOptions( name='activityphotovalidation', options={'ordering': ('-activity_log', 'id'), 'verbose_name': 'Activity Photo Validation', 'verbose_name_plural': 'Activity Photo Validations'}, ), ]
[ "admin@benspelledabc.me" ]
admin@benspelledabc.me
a9e4612761077a7438abaa3443204f7a17ee97f7
dae1ea21e75f80513594ea1efd887db9b4413ac2
/Spaceship.py
553889eb672925dbbe08a87176079fcd3abafa5f
[]
no_license
Immortalits/Python-OOP
70aeadbd718b2017ca2669250010715ac9d00548
45396c24235b90bb7ec039b702209b24cfc29221
refs/heads/main
2023-08-14T17:10:26.880888
2021-10-10T14:02:23
2021-10-10T14:02:23
410,756,262
0
0
null
null
null
null
UTF-8
Python
false
false
1,288
py
class Spaceship: fuel = 400 passengers = ["John", "Steve", "Sam", "Danielle"] Shields = True Speedometer = 0 def listPassengers(self): for passenger in self.passengers: print(f'Passenger: {passenger}') def add_passenger(self, new_passenger): self.passengers.append(new_passenger) print(f'{new_passenger} was added to the ship.') def travel(self, distance): print(f'Trying to travel {distance}.') if self.fuel <= 0: print("Can't go further, tank is empty.") else: self.fuel = self.fuel - (distance / 2) if self.fuel < 0: distance = (distance - (self.fuel * -2)) print(f"Can only travel {distance}.") self.fuel = 0 self.Speedometer += distance if self.fuel < 30 and self.Shields: self.Shields = False print("Fuel is low, turning off shields!") print(f"The spaceship is at {self.Speedometer}.") print(f"The spaceship has {self.fuel} fuel.") mySpaceship = Spaceship() mySpaceship.listPassengers() mySpaceship.add_passenger('Lindsay') mySpaceship.listPassengers() mySpaceship.travel(750) mySpaceship.travel(200) mySpaceship.travel(100)
[ "zazib03@gmail.com" ]
zazib03@gmail.com
e1ea4c169eac6a692d0243c2fe8e607a7bc281e2
2c74bb301f1ed83b79254944183ac5a18a639fdf
/tests/components/github/test_diagnostics.py
80dfaec24459735e6cd3e4ebee2a1a78979dbbc2
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
2,437
py
"""Test GitHub diagnostics.""" import json from aiogithubapi import GitHubException from aiohttp import ClientSession from homeassistant.components.github.const import CONF_REPOSITORIES, DOMAIN from homeassistant.core import HomeAssistant from .common import setup_github_integration from tests.common import MockConfigEntry, load_fixture from tests.components.diagnostics import get_diagnostics_for_config_entry from tests.test_util.aiohttp import AiohttpClientMocker async def test_entry_diagnostics( hass: HomeAssistant, hass_client: ClientSession, mock_config_entry: MockConfigEntry, aioclient_mock: AiohttpClientMocker, ) -> None: """Test config entry diagnostics.""" mock_config_entry.options = {CONF_REPOSITORIES: ["home-assistant/core"]} response_json = json.loads(load_fixture("graphql.json", DOMAIN)) response_json["data"]["repository"]["full_name"] = "home-assistant/core" aioclient_mock.post( "https://api.github.com/graphql", json=response_json, headers=json.loads(load_fixture("base_headers.json", DOMAIN)), ) aioclient_mock.get( "https://api.github.com/rate_limit", json={"resources": {"core": {"remaining": 100, "limit": 100}}}, headers={"Content-Type": "application/json"}, ) await setup_github_integration(hass, mock_config_entry, aioclient_mock) result = await get_diagnostics_for_config_entry( hass, hass_client, mock_config_entry, ) assert result["options"]["repositories"] == ["home-assistant/core"] assert result["rate_limit"] == { "resources": {"core": {"remaining": 100, "limit": 100}} } assert ( result["repositories"]["home-assistant/core"]["full_name"] == "home-assistant/core" ) async def test_entry_diagnostics_exception( hass: HomeAssistant, hass_client: ClientSession, init_integration: MockConfigEntry, aioclient_mock: AiohttpClientMocker, ) -> None: """Test config entry diagnostics with exception for ratelimit.""" aioclient_mock.get( "https://api.github.com/rate_limit", exc=GitHubException("error"), ) result = await get_diagnostics_for_config_entry( hass, hass_client, init_integration, ) assert ( result["rate_limit"]["error"] == "Unexpected exception for 'https://api.github.com/rate_limit' with - error" )
[ "noreply@github.com" ]
Adminiuga.noreply@github.com
65b580895a9731ed5298866a09c1fbe51152a79f
a131266796fecf211f666d23274f12a20cc1f366
/render.py
2dead4d479662cd0cb0cee984a2ee564d7a79cdd
[]
no_license
Praron/3D-render-learning
d07afc74291f17f011d005f36513749ae8e0d07d
edfae239c165469a3bcfa499a36b7d1c4c31cca4
refs/heads/master
2021-01-20T18:07:50.051555
2016-07-03T23:39:29
2016-07-03T23:39:29
62,517,716
0
0
null
null
null
null
UTF-8
Python
false
false
3,438
py
from PIL import Image from vector import * import re import random from functools import partial filename = 'head.obj' H = 1000 W = 1000 BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) def parseVertices(file): file.seek(0) # Get only stirngs with vertices strings = filter(lambda s: re.match('^v +', s), file.readlines()) # Get list of tuples-vertices([1:] to pass a 'v' from strings) return list(map(lambda s: tuple(map(float, s.split()[1:])), strings)) def parseFaces(file): file.seek(0) strings = filter(lambda s: re.match('^f +', s), file.readlines()) return list(map(lambda s: tuple(map(lambda p: int(p.split('/')[0]) - 1, s.split()[1:])), strings)) def frange(x=0, y=1, step=1.0): while x < y: yield x x += step def _resize(p, w, h): # From .obj to normal coordinate system return ((p[0] + 1) * W / 2, (-1 * p[1] + 1) * H / 2) def dot(pixels, x, y, color): try: pixels[x, y] = tuple([int(c) for c in color]) except IndexError: pass def line(pixels, x0, y0, x1, y1, color): if abs(x0 - x1) < abs(y0 - y1): x0, y0, x1, y1 = y0, x0, y1, x1 steep = True else: steep = False if x0 > x1: x0, y0, x1, y1 = x1, y1, x0, y0 dx = x1 - x0 y = y1 - y0 derror = 2 * abs(y) error = 0 y = y0 for x in frange(x0, x1): if steep: dot(pixels, y, x, color) else: dot(pixels, x, y, color) error += derror if error > dx: y += 1 if y0 < y1 else -1 error -= 2 * dx def triangle(pixels, p0, p1, p2, color): # Sort and make Vectors from tuples p0, p1, p2 = map(lambda p: Vector(*p), sorted([p0, p1, p2], key=lambda Vector: Vector[1])) total_h = p2.y - p0.y + 1 first_h = p1.y - p0.y + 1 second_h = p2.y - p1.y + 1 total_w = p2.x - p0.x first_w = p1.x - p0.x second_w = p2.x - p1.x for y in frange(0, total_h): first_part = y < first_h and first_h != 0 current_h = first_h if first_part else second_h a = y / total_h b = (y - ((0 if first_part else first_h))) / current_h ax = p0.x + total_w * a bx = p0.x + first_w * b if first_part else p1.x + second_w * b if ax > bx: ax, bx = bx, ax line(pixels, ax, p0.y + y, bx, p0.y + y, color) def render_obj(pixels, verts, faces, color): for face in faces: screen_vec = Vector(*(_resize(verts[face[i]], W, H) for i in range(3))) world_vec = [Vector(*verts[face[i]]) for i in range(3)] n = (world_vec[2] - world_vec[0]) % (world_vec[1] - world_vec[0]) n = n.normalize() light = -1 * n * Vector(0, 0, 0.5) if light > 0: triangle(pixels, *screen_vec, color=(tuple(light * c for c in color))) def main(): img = Image.new('RGB', (W, H), 'black') file = open(filename, 'r') verts = parseVertices(file) faces = parseFaces(file) pixels = img.load() render_obj(pixels, verts, faces, (255, 150, 100)) img.show() # img.save('/home/escapsit/Programming/3D rendering/result.png') if __name__ == '__main__': main()
[ "koctr123@mail.ru" ]
koctr123@mail.ru
b28c1d72325c7045c6e87f2201c4ee48fe23cab0
cc1e28c1647729b50db74a7acacb537ba8c72255
/main.py
fdd3b53e970bd996939e0f312d80314244990c9a
[]
no_license
myrepositorygithub/GemFarm
9e8e61808348584f3154c374af33df74905c6148
7dd27cbe60f0b29b805acd39d265732a239eed69
refs/heads/master
2020-05-03T03:30:54.795740
2017-08-05T00:32:49
2017-08-05T00:32:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,881
py
import multiprocessing import pyHook import pythoncom from actions import * from time import time import sys,os from sub import * from datetime import date def OnKeyboardEvent(event): global ant,macros millis = int(round(time() * 1000)) #print 'KeyID:', event.KeyID,millis-ant #print '.', if event.KeyID == 97:# 1 state = (macros.getState(0) + 1 )%2 macros.setState(0,state); #print 'Macro N 1 Activated' pass if event.KeyID == 98:# 2 state = (macros.getState(1) + 1 )%2 macros.setState(1,state); #print 'Macro N 1 Activated' pass if event.KeyID == 99:# 3 state = (macros.getState(2) + 1 )%2 macros.setState(2,state); #print 'Macro N 1 Activated' pass if event.KeyID == 100:# 4 state = (macros.getState(3) + 1 )%2 macros.setState(3,state); if state == 1: farmThread = multiprocessing.Process(target=farmaSiena, args=(3,macros,)) farmThread.start() pass if event.KeyID == 101:# 5 state = (macros.getState(4) + 1 )%2 macros.setState(4,state); if state == 1: farmThread = multiprocessing.Process(target=quebraItens, args=(macros,)) farmThread.start() pass if event.KeyID == 102:# 6 quebraItens(macros) #carregaOpc() #state = (macros.getState(3) + 1 )%2 #macros.setState(3,state); pass if event.KeyID == 103:# 7 state = (macros.getState(5) + 1 )%2 macros.setState(5,state); if state == 1: farmThread = multiprocessing.Process(target=apagaChar, args=(5,macros,)) farmThread.start() #carregaOpc() #state = (macros.getState(4) + 1 )%2 #macros.setState(4,state); #apagaChar(macros) pass if event.KeyID == 104:# 8 state = (macros.getState(6) + 1 )%2 macros.setState(6,state); if state == 1: farmThread = multiprocessing.Process(target=abreItens, args=(6,macros,)) farmThread.start() #loga() pass if event.KeyID == 105:# 9 state = (macros.getState(7) + 1 )%2 macros.setState(7,state); if state == 1: farmThread = multiprocessing.Process(target=criaChar, args=(7,macros,)) farmThread.start() #criaChar(macros) pass if event.KeyID == 27:# esc #verificaSub() #demuxSub(pegaSub()) macros.carregaOpc() print '************* Loaded Configs *************' #os._exit(0) ant = millis return True if __name__ == '__main__': d0 = date.today() d1 = date(2018, 6, 19) delta = d1 - d0 print delta.days, 'Days of free use' if delta.days < 0: print '************ Expirado **********' os.system('timeout 10') os._exit(0) hm = pyHook.HookManager() multiprocessing.freeze_support() m_flag = [0] ant = int(round(time() * 1000)) try: f = open('config/macros.cfg','r') except: f = open('config/macros.cfg','r') f.write('z{wait9999}\n'*3) f.close() f = open('config/macros.cfg','r') comandos = f.read().split('\n') f.close() macros = semaforo(0) #macros.carregaOpc() #print comandos m1 = multiprocessing.Process(target=worker, args=(0,macros,)) m2 = multiprocessing.Process(target=worker, args=(1,macros,)) m3 = multiprocessing.Process(target=worker, args=(2,macros,)) m1.start() m2.start() m3.start() print '************* Ready *************' hm.KeyDown = OnKeyboardEvent hm.HookKeyboard() pythoncom.PumpMessages()
[ "thiagoo.cabral@gmail.com" ]
thiagoo.cabral@gmail.com
fd287cb7728cad58dbce3d3fc63cf575d98d8dc6
a1a6afe657678e3d08c9e5e06da33c803a3b3ab5
/script.py
969fdcb8c0df82e8e8151fc740238c99b751c600
[ "Unlicense" ]
permissive
mattnewell/karabiner-windows-mode
dbfbe89d79a013a9b12098635502168e70383151
25f43c24219bb89f7018733c93abdb2d7e5dcdde
refs/heads/master
2020-09-05T11:58:13.378450
2019-11-07T12:51:30
2019-11-07T12:51:30
220,096,937
0
0
Unlicense
2019-11-06T21:49:45
2019-11-06T21:49:45
null
UTF-8
Python
false
false
578
py
import json with open("../karabiner-windows-mode/windows_shortcuts.json", "r") as read_file: data = json.load(read_file) for rule in data["rules"]: for manipulator in rule["manipulators"]: if manipulator.get("conditions"): for condition in manipulator["conditions"]: condition["bundle_identifiers"].append("^com\\.jetbrains\\.pycharm$") # for ident in condition["bundle_identifiers"]: # ident.append("foo") with open("data_file.json", "w") as write_file: json.dump(data, write_file, indent=2)
[ "matthew.newell@northwesternmutual.com" ]
matthew.newell@northwesternmutual.com
93c28615161ad665f97e89b09222deb2b306f097
5c46090e9c71be328e0ff01ef8967ca0aef3000b
/0x01-python-if_else_loops_functions/2-print_alphabet.py
d267221c90ebe7cfd6c5f91ad266aab5f609174a
[]
no_license
DiegoRmsR/holbertonschool-higher_level_programming
160f3da74f09701ff1e4fd4ec74f71336800044b
59aaefddf2a4e155e13c603cf81bf9577f774309
refs/heads/master
2020-07-23T00:27:56.986587
2020-02-14T02:53:47
2020-02-14T02:53:47
207,383,431
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
#!/usr/bin/python3 import binascii for alp in range(97, 123): print(end="{:c}".format(alp))
[ "Diegoramos.mt@gmail.com" ]
Diegoramos.mt@gmail.com
26e87590c5d6f4db03a3f56df1693c4555695eb6
1c2a0744f5a858894bdefd96687cb64b91fbb7c4
/assignment3/q2_rnn.py
d8c335f2d1fb5167198ea4aacf86296a76feae40
[]
no_license
Kolento93/cs224n
516f5deb56124c91c900dbdf89eb4e5ea75592c4
1c3709ab05022e4547fc0a0280315b83143d98a5
refs/heads/master
2021-08-23T23:44:13.607862
2017-12-07T03:57:33
2017-12-07T03:57:33
112,143,923
0
0
null
null
null
null
UTF-8
Python
false
false
26,759
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Q2: Recurrent neural nets for NER """ from __future__ import absolute_import from __future__ import division import argparse import logging import sys import time from datetime import datetime import tensorflow as tf import numpy as np from util import print_sentence, write_conll, read_conll from data_util import load_and_preprocess_data, load_embeddings, ModelHelper from ner_model import NERModel from defs import LBLS from q2_rnn_cell import RNNCell from q3_gru_cell import GRUCell logger = logging.getLogger("hw3.q2") logger.setLevel(logging.DEBUG) logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) class Config: """Holds model hyperparams and data information. The config class is used to store various hyperparameters and dataset information parameters. Model objects are passed a Config() object at instantiation. """ n_word_features = 2 # Number of features for every word in the input. window_size = 1 n_features = (2 * window_size + 1) * n_word_features # Number of features for every word in the input. max_length = 120 # longest sequence to parse n_classes = 5 dropout = 0.5 embed_size = 50 hidden_size = 300 batch_size = 32 n_epochs = 10 max_grad_norm = 10. lr = 0.001 #np.array() def __init__(self, args): self.cell = args.cell if "model_path" in args: # Where to save things. self.output_path = args.model_path else: self.output_path = "results/{}/{:%Y%m%d_%H%M%S}/".format(self.cell, datetime.now()) self.model_output = self.output_path + "model.weights" self.eval_output = self.output_path + "results.txt" self.conll_output = self.output_path + "{}_predictions.conll".format(self.cell) self.log_output = self.output_path + "log" def pad_sequences(data, max_length): """Ensures each input-output seqeunce pair in @data is of length @max_length by padding it with zeros and truncating the rest of the sequence. TODO: In the code below, for every sentence, labels pair in @data, (a) create a new sentence which appends zero feature vectors until the sentence is of length @max_length. If the sentence is longer than @max_length, simply truncate the sentence to be @max_length long. (b) create a new label sequence similarly. (c) create a _masking_ sequence that has a True wherever there was a token in the original sequence, and a False for every padded input. Example: for the (sentence, labels) pair: [[4,1], [6,0], [7,0]], [1, 0, 0], and max_length = 5, we would construct - a new sentence: [[4,1], [6,0], [7,0], [0,0], [0,0]] - a new label seqeunce: [1, 0, 0, 4, 4], and - a masking seqeunce: [True, True, True, False, False]. Args: data: is a list of (sentence, labels) tuples. @sentence is a list containing the words in the sentence and @label is a list of output labels. Each word is itself a list of @n_features features. For example, the sentence "Chris Manning is amazing" and labels "PER PER O O" would become ([[1,9], [2,9], [3,8], [4,8]], [1, 1, 4, 4]). Here "Chris" the word has been featurized as "[1, 9]", and "[1, 1, 4, 4]" is the list of labels. max_length: the desired length for all input/output sequences. Returns: a new list of data points of the structure (sentence', labels', mask). Each of sentence', labels' and mask are of length @max_length. See the example above for more details. """ ret = [] # Use this zero vector when padding sequences. zero_vector = [0] * Config.n_features zero_label = 4 # corresponds to the 'O' tag for sentence, labels in data: ### YOUR CODE HERE (~4-6 lines) labels = labels[:max_length] + [zero_label] * max(0,max_length - len(sentence)) mask = [False] * max_length mask[:len(sentence)] = [True] * min(len(sentence),max_length) sentence = sentence[:max_length] + [zero_vector] * max(0,max_length - len(sentence)) ret.append((sentence,labels,mask)) ### END YOUR CODE ### return ret class RNNModel(NERModel): """ Implements a recursive neural network with an embedding layer and single hidden layer. This network will predict a sequence of labels (e.g. PER) for a given token (e.g. Henry) using a featurized window around the token. """ def add_placeholders(self): """Generates placeholder variables to represent the input tensors These placeholders are used as inputs by the rest of the model building and will be fed data during training. Note that when "None" is in a placeholder's shape, it's flexible (so we can use different batch sizes without rebuilding the model). Adds following nodes to the computational graph input_placeholder: Input placeholder tensor of shape (None, self.max_length, n_features), type tf.int32 labels_placeholder: Labels placeholder tensor of shape (None, self.max_length), type tf.int32 mask_placeholder: Mask placeholder tensor of shape (None, self.max_length), type tf.bool dropout_placeholder: Dropout value placeholder (scalar), type tf.float32 TODO: Add these placeholders to self as the instance variables self.input_placeholder self.labels_placeholder self.mask_placeholder self.dropout_placeholder HINTS: - Remember to use self.max_length NOT Config.max_length (Don't change the variable names) """ ### YOUR CODE HERE (~4-6 lines) self.input_placeholder = tf.placeholder(shape = (None,self.max_length,self.config.n_features),dtype = tf.int32) self.labels_placeholder = tf.placeholder(shape = (None,self.max_length),dtype = tf.int32) self.mask_placeholder = tf.placeholder(shape = (None,self.max_length),dtype = tf.bool) self.dropout_placeholder = tf.placeholder(dtype = tf.float32) ### END YOUR CODE def create_feed_dict(self, inputs_batch, mask_batch, labels_batch=None, dropout=1): """Creates the feed_dict for the dependency parser. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } Hint: The keys for the feed_dict should be a subset of the placeholder tensors created in add_placeholders. Hint: When an argument is None, don't add it to the feed_dict. Args: inputs_batch: A batch of input data. mask_batch: A batch of mask data. labels_batch: A batch of label data. dropout: The dropout rate. Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ ### YOUR CODE (~6-10 lines) feed_dict = {self.input_placeholder:inputs_batch,self.mask_placeholder:mask_batch,\ self.dropout_placeholder:dropout} if labels_batch is not None: feed_dict[self.labels_placeholder] = labels_batch ### END YOUR CODE return feed_dict def add_embedding(self): """Adds an embedding layer that maps from input tokens (integers) to vectors and then concatenates those vectors: TODO: - Create an embedding tensor and initialize it with self.pretrained_embeddings. - Use the input_placeholder to index into the embeddings tensor, resulting in a tensor of shape (None, max_length, n_features, embed_size). - Concatenates the embeddings by reshaping the embeddings tensor to shape (None, max_length, n_features * embed_size). HINTS: - You might find tf.nn.embedding_lookup useful. - You can use tf.reshape to concatenate the vectors. See following link to understand what -1 in a shape means. https://www.tensorflow.org/api_docs/python/array_ops/shapes_and_shaping#reshape. Returns: embeddings: tf.Tensor of shape (None, max_length, n_features*embed_size) """ ### YOUR CODE HERE (~4-6 lines) embeddings = tf.nn.embedding_lookup(self.pretrained_embeddings,self.input_placeholder) embeddings = tf.reshape(embeddings,shape = (-1,self.max_length,self.config.n_features*self.config.embed_size)) ### END YOUR CODE return embeddings def add_prediction_op(self): """Adds the unrolled RNN: h_0 = 0 for t in 1 to T: o_t, h_t = cell(x_t, h_{t-1}) o_drop_t = Dropout(o_t, dropout_rate) y_t = o_drop_t U + b_2 TODO: There a quite a few things you'll need to do in this function: - Define the variables U, b_2. - Define the vector h as a constant and inititalize it with zeros. See tf.zeros and tf.shape for information on how to initialize this variable to be of the right shape. https://www.tensorflow.org/api_docs/python/constant_op/constant_value_tensors#zeros https://www.tensorflow.org/api_docs/python/array_ops/shapes_and_shaping#shape - In a for loop, begin to unroll the RNN sequence. Collect the predictions in a list. - When unrolling the loop, from the second iteration onwards, you will HAVE to call tf.get_variable_scope().reuse_variables() so that you do not create new variables in the RNN cell. See https://www.tensorflow.org/versions/master/how_tos/variable_scope/ - Concatenate and reshape the predictions into a predictions tensor. Hint: You will find the function tf.pack (similar to np.asarray) useful to assemble a list of tensors into a larger tensor. https://www.tensorflow.org/api_docs/python/array_ops/slicing_and_joining#pack Hint: You will find the function tf.transpose and the perms argument useful to shuffle the indices of the tensor. https://www.tensorflow.org/api_docs/python/array_ops/slicing_and_joining#transpose Remember: * Use the xavier initilization for matrices. * Note that tf.nn.dropout takes the keep probability (1 - p_drop) as an argument. The keep probability should be set to the value of self.dropout_placeholder Returns: pred: tf.Tensor of shape (batch_size, max_length, n_classes) """ x = self.add_embedding() dropout_rate = self.dropout_placeholder preds = [] # Predicted output at each timestep should go here! # Use the cell defined below. For Q2, we will just be using the # RNNCell you defined, but for Q3, we will run this code again # with a GRU cell! if self.config.cell == "rnn": cell = RNNCell(Config.n_features * Config.embed_size, Config.hidden_size) elif self.config.cell == "gru": cell = GRUCell(Config.n_features * Config.embed_size, Config.hidden_size) else: raise ValueError("Unsuppported cell type: " + self.config.cell) # Define U and b2 as variables. # Initialize state as vector of zeros. ### YOUR CODE HERE (~4-6 lines) U = tf.get_variable(name = 'U',shape = (self.config.hidden_size,self.config.n_classes),\ initializer = tf.contrib.layers.xavier_initializer()) b_2 = tf.get_variable(name = 'b_2',shape = (self.config.n_classes),\ initializer = tf.contrib.layers.xavier_initializer()) state = tf.zeros(name = 'h_0',shape = (tf.shape(x)[0],self.config.hidden_size))#tf.shape(x)[0] == self.config.batch_size ?! ### END YOUR CODE with tf.variable_scope("RNN"): for time_step in range(self.max_length): ### YOUR CODE HERE (~6-10 lines) if time_step > 0: tf.get_variable_scope().reuse_variables() _,state = cell(x[:,time_step,:],state,scope = "RNN") o_drop_t = tf.nn.dropout(state,keep_prob = 1 - self.dropout_placeholder) y_t = tf.matmul(o_drop_t,U) + b_2 preds.append(y_t) ### END YOUR CODE # Make sure to reshape @preds here. ### YOUR CODE HERE (~2-4 lines) preds = tf.stack(preds) preds = tf.reshape(preds,shape = (-1,self.max_length,self.config.n_classes)) ### END YOUR CODE assert preds.get_shape().as_list() == [None, self.max_length, self.config.n_classes], "predictions are not of the right shape. Expected {}, got {}".format([None, self.max_length, self.config.n_classes], preds.get_shape().as_list()) return preds def add_loss_op(self, preds): """Adds Ops for the loss function to the computational graph. TODO: Compute averaged cross entropy loss for the predictions. Importantly, you must ignore the loss for any masked tokens. Hint: You might find tf.boolean_mask useful to mask the losses on masked tokens. Hint: You can use tf.nn.sparse_softmax_cross_entropy_with_logits to simplify your implementation. You might find tf.reduce_mean useful. Args: pred: A tensor of shape (batch_size, max_length, n_classes) containing the output of the neural network before the softmax layer. Returns: loss: A 0-d tensor (scalar) """ ### YOUR CODE HERE (~2-4 lines) preds_maksed = tf.boolean_mask(preds,self.mask_placeholder) y_masked = tf.boolean_mask(self.labels_placeholder,self.mask_placeholder) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = y_masked,logits = preds_maksed) loss = tf.reduce_mean(loss) ### END YOUR CODE return loss def add_training_op(self, loss): """Sets up the training Ops. Creates an optimizer and applies the gradients to all trainable variables. The Op returned by this function is what must be passed to the `sess.run()` call to cause the model to train. See https://www.tensorflow.org/versions/r0.7/api_docs/python/train.html#Optimizer for more information. Use tf.train.AdamOptimizer for this model. Calling optimizer.minimize() will return a train_op object. Args: loss: Loss tensor, from cross_entropy_loss. Returns: train_op: The Op for training. """ ### YOUR CODE HERE (~1-2 lines) train_op = tf.train.AdamOptimizer(learning_rate = self.config.lr).minimize(loss = loss) ### END YOUR CODE return train_op def preprocess_sequence_data(self, examples): def featurize_windows(data, start, end, window_size = 1): """Uses the input sequences in @data to construct new windowed data points. """ ret = [] for sentence, labels in data: from util import window_iterator sentence_ = [] for window in window_iterator(sentence, window_size, beg=start, end=end): sentence_.append(sum(window, [])) ret.append((sentence_, labels)) return ret examples = featurize_windows(examples, self.helper.START, self.helper.END) return pad_sequences(examples, self.max_length) def consolidate_predictions(self, examples_raw, examples, preds): """Batch the predictions into groups of sentence length. """ assert len(examples_raw) == len(examples) assert len(examples_raw) == len(preds) ret = [] for i, (sentence, labels) in enumerate(examples_raw): _, _, mask = examples[i] labels_ = [l for l, m in zip(preds[i], mask) if m] # only select elements of mask. assert len(labels_) == len(labels) ret.append([sentence, labels, labels_]) return ret def predict_on_batch(self, sess, inputs_batch, mask_batch): feed = self.create_feed_dict(inputs_batch=inputs_batch, mask_batch=mask_batch) predictions = sess.run(tf.argmax(self.pred, axis=2), feed_dict=feed) return predictions def train_on_batch(self, sess, inputs_batch, labels_batch, mask_batch): feed = self.create_feed_dict(inputs_batch, labels_batch=labels_batch, mask_batch=mask_batch, dropout=Config.dropout) _, loss = sess.run([self.train_op, self.loss], feed_dict=feed) return loss def __init__(self, helper, config, pretrained_embeddings, report=None): super(RNNModel, self).__init__(helper, config, report) self.max_length = min(Config.max_length, helper.max_length) Config.max_length = self.max_length # Just in case people make a mistake. self.pretrained_embeddings = pretrained_embeddings # Defining placeholders. self.input_placeholder = None self.labels_placeholder = None self.mask_placeholder = None self.dropout_placeholder = None self.build() def test_pad_sequences(): Config.n_features = 2 data = [ ([[4,1], [6,0], [7,0]], [1, 0, 0]), ([[3,0], [3,4], [4,5], [5,3], [3,4]], [0, 1, 0, 2, 3]), ] ret = [ ([[4,1], [6,0], [7,0], [0,0]], [1, 0, 0, 4], [True, True, True, False]), ([[3,0], [3,4], [4,5], [5,3]], [0, 1, 0, 2], [True, True, True, True]) ] ret_ = pad_sequences(data, 4) assert len(ret_) == 2, "Did not process all examples: expected {} results, but got {}.".format(2, len(ret_)) for i in range(2): assert len(ret_[i]) == 3, "Did not populate return values corrected: expected {} items, but got {}.".format(3, len(ret_[i])) for j in range(3): assert ret_[i][j] == ret[i][j], "Expected {}, but got {} for {}-th entry of {}-th example".format(ret[i][j], ret_[i][j], j, i) def do_test1(_): logger.info("Testing pad_sequences") test_pad_sequences() logger.info("Passed!") def do_test2(args): logger.info("Testing implementation of RNNModel") config = Config(args) helper, train, dev, train_raw, dev_raw = load_and_preprocess_data(args) embeddings = load_embeddings(args, helper) config.embed_size = embeddings.shape[1] with tf.Graph().as_default(): logger.info("Building model...",) start = time.time() model = RNNModel(helper, config, embeddings) logger.info("took %.2f seconds", time.time() - start) init = tf.global_variables_initializer() saver = None with tf.Session() as session: session.run(init) model.fit(session, saver, train, dev) logger.info("Model did not crash!") logger.info("Passed!") def do_train(args): # Set up some parameters. config = Config(args) helper, train, dev, train_raw, dev_raw = load_and_preprocess_data(args) embeddings = load_embeddings(args, helper) config.embed_size = embeddings.shape[1] helper.save(config.output_path) handler = logging.FileHandler(config.log_output) handler.setLevel(logging.DEBUG) handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s')) logging.getLogger().addHandler(handler) report = None #Report(Config.eval_output) with tf.Graph().as_default(): logger.info("Building model...",) start = time.time() model = RNNModel(helper, config, embeddings) logger.info("took %.2f seconds", time.time() - start) init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as session: session.run(init) model.fit(session, saver, train, dev) if report: report.log_output(model.output(session, dev_raw)) report.save() else: # Save predictions in a text file. output = model.output(session, dev_raw) sentences, labels, predictions = zip(*output) predictions = [[LBLS[l] for l in preds] for preds in predictions] output = zip(sentences, labels, predictions) with open(model.config.conll_output, 'w') as f: write_conll(f, output) with open(model.config.eval_output, 'w') as f: for sentence, labels, predictions in output: print_sentence(f, sentence, labels, predictions) def do_evaluate(args): config = Config(args) helper = ModelHelper.load(args.model_path) input_data = read_conll(args.data) embeddings = load_embeddings(args, helper) config.embed_size = embeddings.shape[1] with tf.Graph().as_default(): logger.info("Building model...",) start = time.time() model = RNNModel(helper, config, embeddings) logger.info("took %.2f seconds", time.time() - start) init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as session: session.run(init) saver.restore(session, model.config.model_output) for sentence, labels, predictions in model.output(session, input_data): predictions = [LBLS[l] for l in predictions] print_sentence(args.output, sentence, labels, predictions) def do_shell(args): config = Config(args) helper = ModelHelper.load(args.model_path) embeddings = load_embeddings(args, helper) config.embed_size = embeddings.shape[1] with tf.Graph().as_default(): logger.info("Building model...",) start = time.time() model = RNNModel(helper, config, embeddings) logger.info("took %.2f seconds", time.time() - start) init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as session: session.run(init) saver.restore(session, model.config.model_output) print("""Welcome! You can use this shell to explore the behavior of your model. Please enter sentences with spaces between tokens, e.g., input> Germany 's representative to the European Union 's veterinary committee . """) while True: # Create simple REPL try: sentence = raw_input("input> ") tokens = sentence.strip().split(" ") for sentence, _, predictions in model.output(session, [(tokens, ["O"] * len(tokens))]): predictions = [LBLS[l] for l in predictions] print_sentence(sys.stdout, sentence, [""] * len(tokens), predictions) except EOFError: print("Closing session.") break if __name__ == "__main__": parser = argparse.ArgumentParser(description='Trains and tests an NER model') subparsers = parser.add_subparsers() command_parser = subparsers.add_parser('test1', help='') command_parser.set_defaults(func=do_test1) command_parser = subparsers.add_parser('test2', help='') command_parser.add_argument('-dt', '--data-train', type=argparse.FileType('r'), default="D:/Github_code/new/cs224n/assignment3/data/tiny.conll", help="Training data") command_parser.add_argument('-dd', '--data-dev', type=argparse.FileType('r'), default="D:/Github_code/new/cs224n/assignment3/data/tiny.conll", help="Dev data") command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="D:/Github_code/new/cs224n/assignment3/data/vocab.txt", help="Path to vocabulary file") command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="D:/Github_code/new/cs224n/assignment3/data/wordVectors.txt", help="Path to word vectors file") command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.") command_parser.set_defaults(func=do_test2) command_parser = subparsers.add_parser('train', help='') command_parser.add_argument('-dt', '--data-train', type=argparse.FileType('r'), default="data/train.conll", help="Training data") command_parser.add_argument('-dd', '--data-dev', type=argparse.FileType('r'), default="data/dev.conll", help="Dev data") command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file") command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file") command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.") command_parser.set_defaults(func=do_train) command_parser = subparsers.add_parser('evaluate', help='') command_parser.add_argument('-d', '--data', type=argparse.FileType('r'), default="data/dev.conll", help="Training data") command_parser.add_argument('-m', '--model-path', help="Training data") command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file") command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file") command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.") command_parser.add_argument('-o', '--output', type=argparse.FileType('w'), default=sys.stdout, help="Training data") command_parser.set_defaults(func=do_evaluate) command_parser = subparsers.add_parser('shell', help='') command_parser.add_argument('-m', '--model-path', help="Training data") command_parser.add_argument('-v', '--vocab', type=argparse.FileType('r'), default="data/vocab.txt", help="Path to vocabulary file") command_parser.add_argument('-vv', '--vectors', type=argparse.FileType('r'), default="data/wordVectors.txt", help="Path to word vectors file") command_parser.add_argument('-c', '--cell', choices=["rnn", "gru"], default="rnn", help="Type of RNN cell to use.") command_parser.set_defaults(func=do_shell) ARGS = parser.parse_args() if ARGS.func is None: parser.print_help() sys.exit(1) else: ARGS.func(ARGS)
[ "haorangu93@hotmail.com" ]
haorangu93@hotmail.com
02a552e03cd80033dca15ca2ee26e699ec517010
b9ea2504f4b2118f0722d22df29c1ddd7b391e79
/exhaustive_mixed_fixed_data_gaussian_var_impt.py
2cf5a9c1e83a602329faa7da902e4fbeb6cea920
[]
no_license
patrickvossler18/ps_job
ecf181f4ccc1461fd8833fc6ee83074fe507a59e
ba170d1d8883e4abfea7109e20d978f19269cf23
refs/heads/master
2020-04-14T18:41:45.350947
2020-01-29T01:34:48
2020-01-29T01:34:48
164,029,643
0
0
null
null
null
null
UTF-8
Python
false
false
2,986
py
import numpy as np import pandas as pd from DeepKnockoffs import KnockoffMachine from DeepKnockoffs import GaussianKnockoffs import sys sys.path.insert(1, "/home/pvossler/ps_job") # sys.path.append("/home/pvossler/ps_job") import data import parameters from sklearn.covariance import MinCovDet, LedoitWolf import utils import datetime training_params = parameters.GetTrainingHyperParams(model) # training_params['LAMBDA'] = 0.0078 # training_params['DELTA'] = 0.0078 training_params['LAMBDA'] = lambda_val training_params['DELTA'] = delta_val p = X_train.shape[1] print(X_train.shape) chunk_list = [num_cuts] * (ncat) # Set the parameters for training deep knockoffs pars = dict() pars['avg_corr'] = avg_corr pars['avg_corr_cat'] = avg_corr_cat pars['avg_corr_cont'] = avg_corr_cont # Number of epochs pars['epochs'] = 15 # Number of iterations over the full data per epoch pars['epoch_length'] = 100 # Data type, either "continuous" or "binary" pars['family'] = "continuous" # Dimensions of the data pars['p'] = p # List of categorical variables pars['cat_var_idx'] = np.arange(0, (ncat * (num_cuts))) # Number of discrete variables pars['ncat'] = ncat # Number of categories pars['num_cuts'] = num_cuts # Number of categories for each categorical variable pars['chunk_list'] = chunk_list # Size of regularizer # pars['regularizer'] = grid_results[0] # Boolean for using different weighting structure for decorr pars['use_weighting'] = False # Multiplier for weighting discrete variables pars['kappa'] = 1 # Boolean for using the different decorr loss function from the paper pars['diff_decorr'] = False # Boolean for using mixed data in forward function pars['mixed_data'] = True # Size of the test set pars['test_size'] = 0 # Batch size pars['batch_size'] = int(0.5*n) # Learning rate pars['lr'] = 0.01 # When to decrease learning rate (unused when equal to number of epochs) pars['lr_milestones'] = [pars['epochs']] # Width of the network (number of layers is fixed to 6) pars['dim_h'] = int(10*p) # Penalty for the MMD distance pars['GAMMA'] = training_params['GAMMA'] # Penalty encouraging second-order knockoffs pars['LAMBDA'] = training_params['LAMBDA'] # Decorrelation penalty hyperparameter pars['DELTA'] = training_params['DELTA'] # Target pairwise correlations between variables and knockoffs pars['target_corr'] = corr_g # Kernel widths for the MMD measure (uniform weights) pars['alphas'] = [1., 2., 4., 8., 16., 32., 64., 128.] pars_name = MODEL_DIRECTORY + 'pars' + '_p_' + str(p_size) + timestamp + '.npy' # Save parameters np.save(pars_name, pars) # Where to store the machine checkpoint_name = MODEL_DIRECTORY + model + timestamp + '_p_' + str(p_size) # Where to print progress information logs_name = MODEL_DIRECTORY + model + timestamp + '_p_' + str(p_size) + "_progress.txt" # Initialize the machine machine = KnockoffMachine(pars, checkpoint_name=checkpoint_name, logs_name=logs_name) # Train the machine machine.train(X_train) print(timestamp)
[ "patrick.vossler18@gmail.com" ]
patrick.vossler18@gmail.com
ac00c1af94ea642896b57f7c815bbdbb346a67a4
16a8060f641e94a79aad3b70004d54eab812780f
/superlists/settings.py
f0588697223403b0c925f2aa3252647f50712c48
[]
no_license
kayushka/TDD
65214550e7269fb4e2b8c392a2fdf426a37541b9
1340ac83465359a6ada483acd7028bea966a6c45
refs/heads/master
2020-04-26T05:05:12.308644
2019-03-28T11:22:26
2019-03-28T11:22:26
173,322,032
0
0
null
null
null
null
UTF-8
Python
false
false
3,193
py
""" Django settings for superlists project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '2f6u56&p&o(nk9n+(zy)cwk-4otm8lvnwskszqkq(g5j&k2fe#' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ #'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'lists', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'superlists.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'superlists.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, '../database/db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.abspath(os.path.join(BASE_DIR, '../static'))
[ "machal.kaja@gmail.com" ]
machal.kaja@gmail.com
308265d321cee40072f7e45374d65e6f3a7d9041
9302e92395e6fe35c00a565eb317d62c15ebaf4b
/converting.py
1f894d79232545e84e21b090989083c5b23c2e32
[]
no_license
kollaa/python-milestone1
053135314921a1f7fd91061483a83a7f101d339a
425ab992c99545708955d3b8eaf745a79f754abf
refs/heads/main
2023-01-02T11:22:47.783068
2020-10-21T04:55:37
2020-10-21T04:55:37
305,290,437
0
0
null
null
null
null
UTF-8
Python
false
false
2,071
py
from docx2pdf import convert from flask import Flask from flask_restful import reqparse, abort, Api, Resource import csv import pandas as pd import json import os import win32com.client import pythoncom from pywintypes import com_error app = Flask(__name__) api = Api(app) class ConvertingDocx(Resource): def get(self,file_name): pythoncom.CoInitialize() save_path = os.getcwd() WB_PATH = file_name BASE_NAME = os.path.basename(WB_PATH) print(BASE_NAME) PATH_TO_PDF = WB_PATH[0:WB_PATH.find(BASE_NAME)] + "new" + BASE_NAME[0:-5] + ".pdf" completeName = os.path.join(save_path,PATH_TO_PDF) print(PATH_TO_PDF) convert(file_name, completeName) return 'converting docx to pdf is done', 200 class ConvertingXlsx(Resource): def get(self,file_name): pythoncom.CoInitialize() save_path = os.getcwd() WB_PATH = file_name newpath = os.path.abspath(file_name) BASE_NAME = os.path.basename(WB_PATH) PATH_TO_PDF = WB_PATH[0:WB_PATH.find(BASE_NAME)] + "new" + BASE_NAME[0:-5] + ".pdf" completeName = os.path.join(save_path,PATH_TO_PDF) excel = win32com.client.Dispatch("Excel.Application") #app.logger.info(excel) excel.Visible = False try: print('Start conversion to PDF') wbs = excel.Workbooks.Open(newpath) ws_index_list = [1] wbs.WorkSheets(ws_index_list).Select() wbs.ActiveSheet.ExportAsFixedFormat(0, completeName) except com_error as e: print('failed.') else: print('Succeeded.') finally: wbs.Close() excel.Quit() return 'converting xlsx to pdf is done', 200 api.add_resource(ConvertingDocx, '/convertingdocx/<string:file_name>') api.add_resource(ConvertingXlsx, '/convertingxlsx/<string:file_name>') if __name__ == '__main__': app.run(port = 5002, debug = True )
[ "noreply@github.com" ]
kollaa.noreply@github.com
bc538e6823fea20fa055d230beca6fb129d1ec17
38b6e0c4ba6dce2d87fdf53ca1fc92014f86ae3f
/Parser.py
9fd478a4f52e3f83e2e0c44364eb541c9bdbcc4d
[]
no_license
Arcensoth/MCC
f0068d2cd362658001b38c7b1aaf23a85b203257
357375473761d869d885ba9ea931b60b32f33e8a
refs/heads/master
2020-03-28T11:47:48.259585
2018-08-31T22:09:40
2018-08-31T22:09:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
49,961
py
import sublime, re from .Blocks import BLOCKS from .Items import ITEMS from .Data import * from .CommandTree import COMMAND_TREE class Parser: add_regions_flags = sublime.DRAW_NO_OUTLINE regex = { "axes" : re.compile("[xyz]+"), "click_event_action": re.compile("(?:run|suggest)_command|open_url|change_page"), "color" : re.compile("none|black|dark_blue|dark_green|dark_aqua|dark_red|dark_purple|gold|gray|dark_gray|blue|green|aqua|red|light_purple|yellow|white"), "command" : re.compile('[\t ]*(/?)([a-z]+)'), "comment" : re.compile('^[\t ]*#.*$'), "entity_anchor" : re.compile("feet|eyes"), "entity_tag_advancement_key" : re.compile("([a-z_\-1-9]+:)?(\w+)[\t ]*(=)"), "entity_tag_key" : re.compile("(\w+)[\t ]*(=)"), "float" : re.compile("-?(\d+(\.\d+)?|\.\d+)"), "gamemode" : re.compile("survival|creative|adventure|spectator"), "greedy_string" : re.compile(".*$"), "hex4" : re.compile("[0-9a-fA-F]{4}"), "hover_event_action" : re.compile("show_(?:text|item|entity|achievement)"), "integer" : re.compile("-?\d+"), "item_block_id" : re.compile("(#?[a-z_]+:)?([a-z_]+)"), "item_slot" : re.compile("armor\.(?:chest|feet|head|legs)|container\.(5[0-3]|[1-4]?\d)|(enderchest|inventory)\.(2[0-6]|1?\d)|horse\.(\d|1[0-4]|armor|chest|saddle)|hotbar\.[0-8]|village\.[0-7]|weapon(?:\.mainhand|\.offhand)?"), "namespace" : re.compile("(#?[a-z_\-0-9\.]+:)([a-z_\-0-9\.]+(?:\/[a-z_\-0-9\.]+)*)(\/?)"), "nbt_key" : re.compile("(\w+)[\t ]*:"), "operation" : re.compile("[+\-\*\%\/]?=|>?<|>"), "position-2" : re.compile("(~?-?\d*\.?\d+|~)[\t ]+(~?-?\d*\.?\d+|~)"), "position-3" : re.compile("([~\^]?-?\d*\.?\d+|[~\^])[\t ]+([~\^]?-?\d*\.?\d+|[~\^])[\t ]+([~\^]?-?\d*\.?\d+|[~\^])"), "resource_location" : re.compile("([\w\.]+:)?([\w\.]+)"), "scoreboard_slot" : re.compile("belowName|list|sidebar(?:.team.(?:black|dark_blue|dark_green|dark_aqua|dark_red|dark_purple|gold|gray|dark_gray|blue|green|aqua|red|light_purple|yellow|white))?"), "sort" : re.compile("nearest|furthest|random|arbitrary"), "username" : re.compile("[\w\(\)\.\<\>_\-]+"), "vec4" : re.compile("((?:\d*\.)?\d+)[\t ]+((?:\d*\.)?\d+)[\t ]+((?:\d*\.)?\d+)[\t ]+((?:\d*\.)?\d+)"), "word_string" : re.compile("\w+"), "white_space" : re.compile("^\s+$") } def __init__(self, view): self.current = 0 self.view = view self.mcccomment = [] self.mcccommand = [] self.mccconstant = [] self.mccstring = [] self.mccentity = [] self.mccliteral = [] self.invalid = [] #The order of this list corresponds to the ordering of nbt_tag_lists. # The tuples are ordered like this # (isList, parser, item suffix scope, item suffix) self.nbt_value_parsers = [ (True, self.string_parser, None, ""), (True, self.float_parser, self.mccconstant, "d"), (True, self.integer_parser, None, ""), (False, self.float_parser, self.mccconstant, "d"), (True, self.nbt_parser, None, ""), (True, self.float_parser, self.mccconstant, "f"), (False, self.float_parser, self.mccconstant, "f"), (False, self.integer_parser, self.mccconstant, "L"), (False, self.integer_parser, self.mccconstant, "s"), (False, self.string_parser, None, ""), (False, self.nbt_parser, None, ""), (False, self.nbt_byte_parser, None, ""), (False, self.integer_parser, None, ""), (False, self.json_in_nbt_parser, None, ""), (True, self.json_in_nbt_parser, None, ""), (False, self.nbt_tags_parser, None, "") ] def score_parser(properties): return self.nested_entity_tag_parser(self.int_range_parser, do_nested=False, properties=properties) def advancement_parser(properties): return self.nested_entity_tag_parser(self.boolean_parser, do_nested=True) def name_or_string_parser(properties): start = self.current self.current = self.username_parser(properties) if start != self.current: return self.current old_string_type = properties["type"] properties["type"] = "strict" self.current = self.string_parser(properties) properties["type"] = old_string_type return self.current # Data for target selector parsing # order for tuple: # (isNegatable, isRange, parser) self.target_selector_value_parsers = [ (False, True, self.integer_parser), (False, False, self.integer_parser), (False, True, self.float_parser), (True, False, name_or_string_parser), (True, False, self.gamemode_parser), (True, False, self.sort_parser), (True, False, self.entity_location_parser), (False, False, score_parser), (False, False, advancement_parser), (False, False, self.nbt_parser) ] def add_regions(self): self.view.add_regions("mcccomment", self.mcccomment, "mcccomment", flags=self.add_regions_flags) self.view.add_regions("mcccommand", self.mcccommand, "mcccommand", flags=self.add_regions_flags) self.view.add_regions("mccconstant", self.mccconstant, "mccconstant", flags=self.add_regions_flags) self.view.add_regions("mccstring", self.mccstring, "mccstring", flags=self.add_regions_flags) self.view.add_regions("mccentity", self.mccentity, "mccentity", flags=self.add_regions_flags) self.view.add_regions("mccliteral", self.mccliteral, "mccliteral", flags=self.add_regions_flags) self.view.add_regions("invalid", self.invalid, "invalid.illegal", flags=self.add_regions_flags) def append_region(self, region_list, start, end): region_list.append(sublime.Region(self.region_begin + start, self.region_begin + end)) def highlight(self, command_tree, line_region, current): self.current = current if ("redirect" in command_tree): redirect_command = command_tree["redirect"][0] if redirect_command == "root": new_command_tree = COMMAND_TREE else: new_command_tree = COMMAND_TREE["children"][redirect_command] #print("Redirecting to: " + redirect_command + ", " + str(self.current)) return self.highlight(new_command_tree, line_region, self.current) elif not "children" in command_tree or self.current >= line_region.size(): if not "executable" in command_tree or not command_tree["executable"]: self.append_region(self.invalid, 0, line_region.size()) self.current = self.region.size() return False else: while (self.current < len(self.string) and self.string[self.current] in " \t"): self.current += 1 if self.current < line_region.size(): self.append_region(self.invalid, self.current, line_region.size()) self.current = line_region.size() return False return True self.string = self.view.substr(line_region) if self.regex["white_space"].match(self.string): return True self.region = line_region self.region_begin = self.region.begin() comment_match = self.regex["comment"].match(self.string, self.current) if comment_match: self.append_region(self.mcccomment, comment_match.start(), comment_match.end()) self.current = comment_match.end() return True elif command_tree["type"] == "root": command_match = self.regex["command"].match(self.string, self.current) if not command_match: self.append_region(self.invalid, 0, line_region.size()) return False command = command_match.group(2) #print("command: " + command) if command in command_tree["children"]: self.append_region(self.invalid, command_match.start(1), command_match.end(1)) self.current = command_match.end(2) if self.highlight(command_tree["children"][command], line_region, command_match.end()): self.append_region(self.mcccommand, command_match.start(2), command_match.end(2)) return True else: self.append_region(self.invalid, command_match.start(2), command_match.end(2)) return False else: self.append_region(self.invalid, 0, line_region.size()) return False else: was_space = False while (self.current < len(self.string) and self.string[self.current] in " \t"): self.current += 1 was_space = True if self.current >= len(self.string): if not "executable" in command_tree or not command_tree["executable"]: return False else: return True elif not was_space: return False start = self.current for key, properties in command_tree["children"].items(): if properties["type"] == "literal" and self.string.startswith(key, self.current): self.append_region(self.mccliteral, self.current, self.current + len(key)) self.current += len(key) success = self.highlight(properties, line_region, self.current) if success: return True else: self.current = start self.mccliteral.pop() elif properties["type"] == "argument": parser_name = properties["parser"] parse_function = self.parsers[parser_name] old_current = self.current if "properties" in properties: #print("using properties for " + parser_name) self.current = parse_function(self, properties["properties"]) else: self.current = parse_function(self) if old_current != self.current: success = self.highlight(properties, line_region, self.current) if success: return True else: self.invalid.pop() self.current = start while (self.current < len(self.string) and self.string[self.current] in " \t"): self.current += 1 if self.current < line_region.size(): self.append_region(self.invalid, self.current, line_region.size()) self.current = line_region.size() if not "executable" in properties or not properties["executable"]: return False else: return True # Returns True if the end of the string is reached, else False and will advacne self.current to the next non-whitespace character # this will error highlight the section from err_start until the end of the string def skip_whitespace(self, err_start): start = self.current if self.current >= len(self.string): return True while self.string[self.current] in " \t": self.current += 1 if self.current >= len(self.string): self.current = start return True return False def entity_parser(self, properties={}): start = self.current self.current = self.target_selector_parser(properties) if start != self.current: return self.current return self.username_parser(properties) def target_selector_parser(self, properties={}): if self.current >= len(self.string): return self.current if self.string[self.current] == "*" and "amount" in properties and properties["amount"] == "multiple": self.append_region(self.mccentity, self.current, self.current + 1) return self.current + 1 if self.string[self.current] != "@" or self.current + 1 >= len(self.string) or not self.string[self.current+1] in "pears": #Checks to see if it's a valid entity selector return self.current self.append_region(self.mccentity, self.current, self.current + 2) self.current += 2 if (self.current < len(self.string) and self.string[self.current] == "["): self.append_region(self.mccentity, self.current, self.current + 1) self.current += 1 continue_parsing = True while continue_parsing: reached_end = self.skip_whitespace(self.current) if reached_end: return self.current start_of_key = self.current key_match = self.regex["entity_tag_key"].match(self.string, self.current) if not key_match: return self.current key = key_match.group(1) self.append_region(self.mcccommand, key_match.start(2), key_match.end(2)) self.append_region(self.mccstring, key_match.start(1), key_match.end(1)) self.current = key_match.end(2) reached_end = self.skip_whitespace(start_of_key) if reached_end: self.mcccommand.pop() self.mccstring.pop() return start_of_key properties["min"] = 0 matched = False for i in range(len(TARGET_KEY_LISTS)): if key in TARGET_KEY_LISTS[i]: isNegatable, isRange, parser = self.target_selector_value_parsers[i] if isNegatable and self.string[self.current] == "!": self.append_region(self.mcccommand, self.current, self.current + 1) self.current += 1 reached_end = self.skip_whitespace(start_of_key) if reached_end: return start_of_key old_current = self.current if isRange: self.current = self.range_parser(parser, {}) else: self.current = parser(properties) if old_current != self.current: matched = True break if not matched: self.append_region(self.invalid, start_of_key, self.current) return self.current + 1 reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] == "]": continue_parsing = False else: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.append_region(self.mccentity, self.current, self.current + 1) return self.current + 1 return self.current def int_range_parser(self, properties={}): return self.range_parser(self.integer_parser, properties) def range_parser(self, parse_function, properties={}): matched = False start = self.current self.current = parse_function(properties) if start != self.current: matched = True if self.current + 2 <= len(self.string) and self.string[self.current:self.current + 2] == "..": self.append_region(self.mcccommand, self.current, self.current + 2) self.current += 2 start = self.current self.current = parse_function(properties) if start != self.current: matched = True if not matched: return start return self.current def nested_entity_tag_parser(self, parser, do_nested=False, properties={}): # scores= and advancements= if self.string[self.current] != "{": return self.current elif "min" in properties: old_min = properties["min"] properties.pop("min") else: old_min = None bracket_start = self.current self.current += 1 continue_parsing = True while continue_parsing: reached_end = self.skip_whitespace(self.current) if reached_end: if old_min != None: properties["min"] = old_min return self.current start_of_key = self.current key_match = self.regex["entity_tag_advancement_key"].match(self.string, self.current) if not key_match: if old_min != None: properties["min"] = old_min return self.current elif not do_nested and key_match.group(1): # If theres a nested tag where there shouldn't be self.append_region(self.invalid, self.current, key_match.end()) self.current = key_match.end() if old_min != None: properties["min"] = old_min return self.current self.append_region(self.mccstring, key_match.start(2), key_match.end(2)) self.append_region(self.mcccommand, key_match.start(3), key_match.end(3)) self.current = key_match.end() reached_end = self.skip_whitespace(start_of_key) if reached_end: if old_min != None: properties["min"] = old_min return self.current if key_match.group(1) != None: self.append_region(self.mccliteral, key_match.start(1), key_match.end(1)) self.current = self.nested_entity_tag_parser(parser, do_nested=False, properties=properties) if self.string[self.current - 1] != "}": #This tests to see if the parse was successful if old_min != None: properties["min"] = old_min return self.current else: old_current = self.current self.current = parser(properties) if old_current == self.current: self.mccstring.pop() self.mcccommand.pop() if old_min != None: properties["min"] = old_min return self.current reached_end = self.skip_whitespace(start_of_key) if reached_end: if old_min != None: properties["min"] = old_min return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "}": self.append_region(self.invalid, self.current, self.current + 1) if old_min != None: properties["min"] = old_min return self.current + 1 else: continue_parsing = False self.current += 1 if old_min != None: properties["min"] = old_min return self.current # Word means "up to the next space", phrase is "an unquoted word or quoted string", and greedy is "everything from this point to the end of input". # strict means only a regular quote enclosed string will work def string_parser(self, properties={}): if self.current >= len(self.string): return self.current if not "escape_depth" in properties: escape_depth = 0 else: escape_depth = properties["escape_depth"] if properties["type"] == "word": old_current = self.current self.current = self.regex_parser(self.regex["word_string"], [self.mccstring]) if old_current != self.current: return self.current if properties["type"] == "greedy": old_current = self.current self.current = self.regex_parser(self.regex["greedy_string"], [self.mccstring]) elif properties["type"] in {"strict", "word"}: quote = self.generate_quote(escape_depth) escape = self.generate_quote(escape_depth + 1)[:-1] # Gets the needed backslashes to escape string_start = self.current start = self.current if not self.string.startswith(quote, self.current): return self.current self.current += len(quote) continue_parsing = True while continue_parsing: if self.current >= len(self.string): self.append_region(self.mccstring, start, self.current - 1) self.append_region(self.invalid, self.current - 1, self.current) return self.current elif self.string.startswith(quote, self.current): self.append_region(self.mccstring, start, self.current + len(quote)) self.current += len(quote) continue_parsing = False elif self.string.startswith(escape, self.current) and self.current + len(escape) < len(self.string): escape_char = self.string[self.current + len(escape)] if escape_char in "\"\\/bfnrt": if self.current - start > 0: self.append_region(self.mccstring, start, self.current) self.append_region(self.mccconstant, self.current, self.current + len(escape) + 1) self.current += len(escape) + 1 start = self.current elif escape_char == "u": if self.current - start > 0: self.append_region(self.mccstring, start, self.current) hex_match = self.regex["hex4"].match(self.string, self.current + len(escape) + 1) if not hex_match: self.append_region(self.mccstring, start, self.current - 1) self.append_region(self.invalid, self.current, self.current + len(escape) + 1) return self.current + len(escape) + 1 self.append_region(self.mccconstant, self.current, self.current + len(escape) + 5) self.current += len(escape) + 5 start = self.current else: self.append_region(self.mccstring, start, self.current - 1) self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 elif self.string[self.current] in "\"\\": self.append_region(self.mccstring, start, self.current - 1) self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 else: self.current += 1 return self.current # Todo: add entity highlighting def message_parser(self, properties={}): self.append_region(self.mccstring, self.current, self.region.size()) return len(self.string) def nbt_parser(self, properties={}): if self.current >= len(self.string) or self.string[self.current] != "{": return self.current elif not "escape_depth" in properties: properties["escape_depth"] = 0 braces_start = self.current self.current += 1 nbt_value_parsers = self.nbt_value_parsers while self.string[self.current] != "}": reached_end = self.skip_whitespace(braces_start) if reached_end: return self.current start_of_key = self.current key_match = self.regex["nbt_key"].match(self.string, self.current) if not key_match: if self.current < len(self.string): self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 key = key_match.group(1) self.append_region(self.mccstring, key_match.start(1), key_match.end(1)) self.current = key_match.end() reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current old_type = None if "type" in properties: old_type = properties["type"] properties["type"] = "word" matched = False for i in range(len(NBT_KEY_LISTS)): keys = NBT_KEY_LISTS[i] if key in keys: is_list, value_parser, suffix_scope, suffix = nbt_value_parsers[i] old_current = self.current if is_list: self.current = self.nbt_list_parser(value_parser, suffix_scope, suffix, properties) else: self.current = self.nbt_value_parser(value_parser, suffix_scope, suffix, properties) if old_current != self.current: matched = True break if old_type != None: properties["type"] = old_type if not matched: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "}": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.current += 1 return self.current def nbt_tags_parser(self, properties={}): if self.current >= len(self.string) or self.string[self.current] != "{": return self.current elif not "escape_depth" in properties: properties["escape_depth"] = 0 braces_start = self.current self.current += 1 while self.string[self.current] != "}": reached_end = self.skip_whitespace(braces_start) if reached_end: return self.current start_of_key = self.current key_match = self.regex["nbt_key"].match(self.string, self.current) if not key_match: if self.current < len(self.string): self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.append_region(self.mccstring, key_match.start(1), key_match.end(1)) self.current = key_match.end() reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current start = self.current self.current = self.nbt_value_parser(self.nbt_byte_parser, None, "", properties) if start == self.current: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "}": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.current += 1 return self.current def nbt_list_parser(self, item_parser, suffix_scope, item_suffix, properties={}): if self.string[self.current] != "[": return self.current start_of_list = self.current self.current += 1 continue_parsing = True while continue_parsing: reached_end = self.skip_whitespace(start_of_list) if reached_end: return start_of_list start_of_value = self.current self.current = self.nbt_value_parser(item_parser, suffix_scope, item_suffix, properties) if start_of_value == self.current: return start_of_list reached_end = self.skip_whitespace(start_of_value) if reached_end: return start_of_list if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "]": return start_of_list else: continue_parsing = False self.current += 1 return self.current def nbt_value_parser(self, parser, suffix_scope, suffix, properties={}): start = self.current self.current = parser(properties) if start != self.current: if (len(suffix) > 0 and self.current + len(suffix) <= len(self.string) and self.string[self.current:self.current + len(suffix)] == suffix): self.append_region(suffix_scope, self.current, self.current + len(suffix)) return self.current + len(suffix) return start def nbt_byte_parser(self, properties={}): start = self.current self.current = self.integer_parser(properties) if start != self.current: if self.current < len(self.string) and self.string[self.current] == "b": self.append_region(self.mccconstant, self.current, self.current + 1) return self.current + 1 else: return start return self.boolean_parser(properties) def integer_parser(self, properties={}): integer_match = self.regex["integer"].match(self.string, self.current) if integer_match: value = int(integer_match.group()) if "min" in properties and value < properties["min"] or "max" in properties and value > properties["max"]: self.append_region(self.invalid, integer_match.start(), integer_match.end()) else: self.append_region(self.mccconstant, integer_match.start(), integer_match.end()) return integer_match.end() return self.current def block_parser(self, properties={}): start = self.current lenient = False if self.current < len(self.string) and self.string[self.current] == "#": lenient=True self.current += 1 block_match = self.regex["item_block_id"].match(self.string, self.current) if block_match: if block_match.group(1) != None: self.append_region(self.mccliteral, start, block_match.end(1)) elif self.string[start] == "#": self.append_region(self.invalid, start, start+1) self.append_region(self.mccstring, block_match.start(2), block_match.end(2)) self.current = block_match.end() if block_match.start(1) == block_match.end(1): block_name = "minecraft:" + block_match.group(2) else: block_name = block_match.group(0) if block_name in BLOCKS and "properties" in BLOCKS[block_name]: properties = BLOCKS[block_name]["properties"] else: properties = {} if self.current >= len(self.string) or self.string[self.current] != "[": return self.nbt_parser(properties) start_of_bracket = self.current self.current += 1 while self.string[self.current] != "]": reached_end = self.skip_whitespace(self.current) if reached_end: return self.current start_of_key = self.current key_match = self.regex["entity_tag_key"].match(self.string, self.current) if not key_match: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 key = key_match.group(1) if lenient or key in properties: self.append_region(self.mccstring, key_match.start(1), key_match.end(1)) else: self.append_region(self.invalid, key_match.start(1), key_match.end(1)) self.append_region(self.mcccommand, key_match.start(2), key_match.end(2)) self.current = key_match.end() reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current value_match = self.regex["word_string"].match(self.string, self.current) if not value_match: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 if lenient or (key in properties and value_match.group() in properties[key]): self.append_region(self.mccstring, value_match.start(), value_match.end()) else: self.append_region(self.invalid, value_match.start(), value_match.end()) self.current = value_match.end() reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "]": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.current += 1 return self.nbt_parser(properties) return start def nbt_path_parser(self, properties={}): start = self.current while self.current < len(self.string): start_of_segment = self.current old_current = self.current self.current = self.string_parser({"type":"word"}) if self.current < len(self.string) and self.string[self.current] == "[": self.current += 1 old_current = self.current self.current = self.integer_parser({"min":0}) if old_current == self.current or (self.current < len(self.string) and self.string[self.current] != "]"): return start else: self.current += 1 if self.current < len(self.string) and self.string[self.current] == "." and start_of_segment != self.current: self.current += 1 else: self.append_region(self.mccstring, start, self.current) if start_of_segment == self.current and self.string[self.current - 1] == ".": self.append_region(self.invalid, self,ccurrent - 1, self.current) return self.current return start def float_parser(self, properties={}): float_match = self.regex["float"].match(self.string, self.current) if float_match: value = float(float_match.group()) if ("min" in properties and value < properties["min"]) or ("max" in properties and value > properties["max"]): self.append_region(self.invalid, float_match.start(), float_match.end()) else: self.append_region(self.mccconstant, float_match.start(), float_match.end()) return float_match.end() return self.current def boolean_parser(self, properties={}): if self.current + 4 <= len(self.string) and self.string[self.current:self.current+4] == "true": self.append_region(self.mccconstant, self.current, self.current + 4) return self.current + 4 elif self.current + 5 <= len(self.string) and self.string[self.current:self.current + 5] == "false": self.append_region(self.mccconstant, self.current, self.current + 5) return self.current + 5 return self.current def axes_parser(self, properties={}): axes = set("xyz") axes_match = self.regex["axes"].match(self.string, self.current) if axes_match and len(set(axes_match.group())) == len(axes_match.group()) and axes.issuperset(axes_match.group()): self.append_region(self.mccconstant, self.current, axes_match.end()) return axes_match.end() return self.current def score_holder_parser(self, properties={}): start = self.current if self.string[self.current] == "#": self.current = self.current + 1 username_parser = self.parsers["minecraft:game_profile"] username_start = self.current self.current = username_parser(self, properties) if username_start != self.current: self.append_region(self.mccstring, start, start + 1) return self.current return self.entity_parser(properties) def particle_parser(self, properties={}): particle_match = self.regex["item_block_id"].match(self.string, self.current) if particle_match and particle_match.group(2) in PARTICLES and particle_match.group(1) in [None, "minecraft:"]: self.append_region(self.mccliteral, particle_match.start(1), particle_match.end(1)) self.append_region(self.mccstring, particle_match.start(2), particle_match.end(2)) self.current = particle_match.end(2) if particle_match.group(2) == "block" or particle_match.group(2) == "falling_dust": self.skip_whitespace(self.current) return self.block_parser(self.current) elif particle_match.group(2) == "item": self.skip_whitespace(self.current) return self.item_parser(self.current) elif particle_match.group(2) == "dust": self.skip_whitespace(self.current) return self.regex_parser(self.regex["vec4"], [self.mccconstant, self.mccconstant, self.mccconstant, self.mccconstant]) return self.current # https://www.json.org/ def json_parser(self, properties={}): if not "escape_depth" in properties: properties["escape_depth"] = 0 if self.string[self.current] == "[": return self.json_array_parser(properties) elif self.string[self.current] == "{": return self.json_object_parser(properties) properties["type"] = "strict" return self.string_parser(properties) def json_object_parser(self, properties={}):# The '{}' one if self.string[self.current] != "{": return self.current quote = self.generate_quote(properties["escape_depth"]) start_of_object = self.current self.current += 1 finished_parsing = False while not finished_parsing: reached_end = self.skip_whitespace(self.current) if reached_end: return self.current start_of_key = self.current self.current = self.string_parser(properties={"type":"strict","escape_depth":properties["escape_depth"]}) if start_of_key == self.current: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 key = self.string[start_of_key + len(quote) : self.current - len(quote)] reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current if not self.string[self.current] in ",:}": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 elif self.string[self.current] == ":": self.current += 1 reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current matched = False if key in JSON_STRING_KEYS: start_of_value = self.current self.current = self.string_parser(properties={"type":"strict","escape_depth":properties["escape_depth"]}) if start_of_value != self.current: matched = True if not matched and key in JSON_ENTITY_KEYS: start_of_value = self.current self.current = self.quoted_parser(self.entity_parser, properties) if start_of_value != self.current: matched = True if not matched and key in JSON_BOOLEAN_KEYS: start_of_value = self.current self.current = self.boolean_parser(properties) if start_of_value != self.current: matched = True if not matched and key in JSON_NESTED_KEYS: self.current = self.json_parser(properties) if not self.string[self.current - 1] in "}]": return self.current matched = True if not matched and key == "color": start_of_value = self.current self.current = self.quoted_parser(self.color_parser, properties) if start_of_value != self.current: matched = True if not matched and key == "clickEvent": self.current = self.json_event_parser(regex["click_event_action"], properties) if not self.string[self.current - 1] in "}": return self.current matched = True if not matched and key == "hoverEvent": self.current = self.json_event_parser(regex["hover_event_action"], properties) if not self.string[self.current - 1] in "}": return self.current matched = True if not matched and key == "score": self.current = self.json_score_parser(properties) if not self.string[self.current - 1] in "}": return self.current matched = True if not matched: self.mccstring.pop() self.append_region(self.invalid, start_of_key, self.current) return self.current reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "}": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 else: finished_parsing = True return self.current + 1 def json_array_parser(self, properties={}): # The '[]' one if self.string[self.current] != "[": return self.current start_of_list = self.current self.current += 1 def null_parser(properties={}): if self.current + 4 < len(self.string) and self.string[self.current : self.current + 4] == "null": self.append_region(self.mccconstant, self.current, self.current + 4) self.current += 4 return self.current possible_parsers = [ null_parser, self.string_parser, self.float_parser, self.json_parser, self.boolean_parser ] old_type = None if "type" in properties: old_type = properties["type"] properties["type"] = "strict" continue_parsing = True while continue_parsing: reached_end = self.skip_whitespace(self.current) if reached_end: if old_type != None: properties["type"] = old_type return self.current start_of_value = self.current for parser in possible_parsers: old_current = self.current self.current = parser(properties) if old_current != self.current: break if old_type != None: properties["type"] = old_type if start_of_value == self.current: if self.current < len(self.string): self.append_region(self.invalid, self.current, self.current + 1) if old_type != None: properties["type"] = old_type return self.current reached_end = self.skip_whitespace(start_of_value) if reached_end: if old_type != None: properties["type"] = old_type return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "]": if old_type != None: properties["type"] = old_type self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 else: continue_parsing = False if old_type != None: properties["type"] = old_type self.current += 1 return self.current def json_event_parser(self, action_regex, properties={}): if self.string[self.current] != "{": #Can't be [] since it's an object return self.current current += 1 quote = self.generate_quote(properties["escape_depth"]) start_of_object = self.current while self.string[self.current] != "}": reached_end = self.skip_whitespace(self.current) if reached_end: return self.current start_of_key = self.current self.current = self.string_parser(properties={"type":"strict","escape_depth":properties["escape_depth"]}) if start_of_key == self.current: self.append_region(self.invalid, self.current, self.current + 1) return self.current+1 key = self.string[start_of_key + len(quote) : self.current - len(quote)] reached_end = self.skip_whitespace(start_of_object) if reached_end: return self.current if self.string[self.current] != ":": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.current += 1 reached_end = self.skip_whitespace(start_of_key) if reached_end: return self.current success = False if key == "action": def action_parser(properties={}): return self.regex_parser(action_regex, [self.mccstring]) start_of_value = self.current self.current = self.quoted_parser(action_parser) if start_of_value != self.current: success = True if key == "value": start_of_value = self.current self.current = self.string_parser(properties={"type":"strict","escape_depth":properties["escape_depth"]}) if start_of_value == self.current: success = True if not success: self.mccstring.pop() self.append_region(self.invalid, start_of_key, self.current) return self.current reached_end = self.skip_whitespace(self.current) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "}": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 return self.current + 1 def json_score_parser(self, properties={}): if self.string[self.current] != "{": #Can't be [] since its an object return self.current self.current += 1 quote = self.generate_quote(properties["escape_depth"]) start_of_object = self.current while self.string[self.current] != "}": reached_end = self.skip_whitespace(start_of_object) if reached_end: return self.current start_of_key = self.current self.current = self.string_parser(properties={"type":"strict","escape_depth":properties["escape_depth"]}) if start_of_key == self.current: self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 key = self.string[start_of_key + len(quote) : self.current - len(quote)] reached_end = self.skip_whitespace(start_of_object) if reached_end: return self.current if self.string[self.current] != ":": self.mccstring.pop() self.append_region(self.invalid, start_of_key, self.current) return self.current + 1 self.current += 1 reached_end = self.skip_whitespace(start_of_object) if reached_end: return self.current success = False if key == "name": start_of_value = self.current self.current = self.quoted_parser(self.score_holder_parser, properties) if start_of_value != self.current: success = True elif key == "objective": start_of_value = self.current self.current = self.quoted_parser(self.username_parser, properties) if start_of_value != self.current: success = True elif key == "value": start_of_value = self.current self.current = self.integer_parser(properties) if start_of_value == self.current: success = True if not success: self.mccstring.pop() self.append_region(self.invalid, start_of_key, self.current) return self.current reached_end = self.skip_whitespace(self.current) if reached_end: return self.current if self.string[self.current] == ",": self.current += 1 elif self.string[self.current] != "}": self.append_region(self.invalid, self.current, self.current + 1) return self.current + 1 self.current += 1 return self.current def objective_criteria_parser(self, properties={}): criteria_match = self.regex["resource_location"].match(self.string, self.current) if criteria_match: criteria = criteria_match.group() namespace = criteria_match.group(1) if criteria_match.group(2).startswith("minecraft."): location = criteria_match.group(2)[10:] else: location = criteria_match.group(2) if (criteria in OBJECTIVE_CRITERIA or (namespace in CRITERIA_BLOCKS and location in BLOCKS) or (namespace in CRITERIA_ITEMS and location in ITEMS) or (namespace in CRITERIA_ENTITIES and location in ENTITIES)): if namespace != None: self.append_region(self.mccliteral, criteria_match.start(1), criteria_match.end(1)) self.append_region(self.mccstring, criteria_match.start(2), criteria_match.end(2)) self.current = criteria_match.end() return self.current def entity_location_parser(self, properties={}): return self.location_from_list_parser(self.regex["item_block_id"], ENTITIES) def resource_location_parser(self, properties={}): return self.regex_parser(self.regex["resource_location"], [self.mccliteral, self.mccstring]) def function_parser(self, properties={}): return self.regex_parser(self.regex["namespace"], [self.mccstring, self.mccliteral, self.invalid]) def username_parser(self, properties={}): return self.regex_parser(self.regex["username"], [self.mccstring]) def vec3d_parser(self, properties={}): return self.regex_parser(self.regex["position-3"], [self.mccconstant, self.mccconstant, self.mccconstant]) def vec2d_parser(self, properties={}): return self.regex_parser(self.regex["position-2"], [self.mccconstant, self.mccconstant]) def item_slot_parser(self, properties={}): return self.regex_parser(self.regex["item_slot"], [self.mccstring]) def scoreboard_slot_parser(self, properties={}): return self.regex_parser(self.regex["scoreboard_slot"], [self.mccstring]) def color_parser(self, properties={}): return self.regex_parser(self.regex["color"], [self.mccconstant]) def entity_anchor_parser(self, properties={}): return self.regex_parser(self.regex["entity_anchor"], [self.mccstring]) def scoreboard_operation_parser(self, properties={}): return self.regex_parser(self.regex["operation"], [self.mcccommand]) def mob_effect_parser(self, proeprties={}): return self.location_from_list_parser(self.regex["item_block_id"], POTIONS) def sound_parser(self, properties={}): return self.location_from_list_parser(self.regex["resource_location"], SOUNDS) def gamemode_parser(self, properties={}): return self.regex_parser(self.regex["gamemode"], [self.mccstring]) def sort_parser(self, properties={}): return self.regex_parser(self.regex["sort"], [self.mccliteral]) def item_parser(self, properties={}): old_current = self.current self.current = self.location_from_list_parser(self.regex["item_block_id"], ITEMS) if self.current != old_current: return self.nbt_parser(properties) return self.current def location_from_list_parser(self, regex, possibilities): match = regex.match(self.string, self.current) if match and match.group(1) != None and match.group(1)[0] == "#" or ( match and match.group(2) in possibilities and match.group(1) in [None, "minecraft:"]): self.append_region(self.mccliteral, match.start(1), match.end(1)) self.append_region(self.mccstring, match.start(2), match.end(2)) self.current = match.end() return self.current # properties["type"] must equal "word". This should be done already. def json_in_nbt_parser(self, properties): if not "escape_depth" in properties: escape_depth = 0 else: escape_depth = properties["escape_depth"] quote = self.generate_quote(escape_depth) if not self.string.startswith(quote, self.current): return self.string_parser(properties) start = self.current self.append_region(self.mccstring, self.current, self.current + len(quote)) self.current += len(quote) old_current = self.current properties["escape_depth"] = escape_depth + 1 self.current = self.json_parser(properties) if old_current == self.current: self.mccstring.pop() properties["escape_depth"] = escape_depth self.current = start return self.string_parser(properties) if not self.string.startswith(quote, self.current): if self.current < len(self.string): delta = 1 else: delta = -1 self.append_region(self.invalid, self.current, self.current + delta) return self.current + max(0, delta) self.append_region(self.mccstring, self.current, self.current + len(quote)) self.current += len(quote) return self.current def regex_parser(self, pattern, scopes, properties={}): pattern_match = pattern.match(self.string, self.current) if pattern_match: if len(scopes) == 1: scopes[0].append(sublime.Region(self.region_begin + pattern_match.start(), self.region_begin + pattern_match.end())) else: for i in range(len(scopes)): scopes[i].append(sublime.Region(self.region_begin + pattern_match.start(i + 1), self.region_begin + pattern_match.end(i + 1))) self.current = pattern_match.end() return self.current def quoted_parser(self, parser, properties={}): if not "escape_depth" in properties: escape_depth = 0 else: escape_depth = properties["escape_depth"] start = self.current quote = self.generate_quote(escape_depth) if not self.string.startswith(quote, self.current): return self.current self.append_region(self.mccstring, self.current, self.current + len(quote)) self.current += len(quote) old_current = self.current self.current = parser(properties) if old_current == self.current: self.mccstring.pop() return self.current if not self.string.startswith(quote, self.current): self.mccstring.pop() return start self.append_region(self.mccstring, self.current, self.current + len(quote)) return self.current + len(quote) def generate_quote(self, escape_depth): quotes = ["\"", "\\\"", "\\\\\\\"", "\\\\\\\\\\\\\\\"", "\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\""] if escape_depth <= 4: return quotes[escape_depth] for i in range(0, escape_depth): quote += "\\" return quote + self.generate_quote(escape_depth - 1) parsers = { # Master list of what function the parser name in commands.json corresponds to "minecraft:resource_location" : resource_location_parser, "minecraft:function" : function_parser, "minecraft:entity" : entity_parser, "brigadier:string" : string_parser, #type = word and type= greedy "minecraft:game_profile" : username_parser, "minecraft:message" : message_parser, "minecraft:block_pos" : vec3d_parser, "minecraft:nbt" : nbt_parser, "minecraft:item_stack" : item_parser, "minecraft:item_predicate" : item_parser, "brigadier:integer" : integer_parser, #Properties has min and max "minecraft:block_state" : block_parser, "minecraft:block_predicate" : block_parser, "minecraft:nbt_path" : nbt_path_parser, "brigadier:float" : float_parser, "brigadier:double" : float_parser, "brigadier:bool" : boolean_parser, "minecraft:swizzle" : axes_parser, # any cobination of x, y, and z e.g. x, xy, xz. AKA swizzle "minecraft:score_holder" : score_holder_parser, #Has options to include wildcard or not "minecraft:objective" : username_parser, "minecraft:vec3" : vec3d_parser, "minecraft:vec2" : vec2d_parser, "minecraft:particle" : particle_parser, "minecraft:item_slot" : item_slot_parser, #Check the wiki on this one I guess "minecraft:scoreboard_slot" : scoreboard_slot_parser, "minecraft:team" : username_parser, "minecraft:color" : color_parser, "minecraft:rotation" : vec2d_parser, # [yaw, pitch], includes relative changes "minecraft:component" : json_parser, "minecraft:entity_anchor" : entity_anchor_parser, "minecraft:operation" : scoreboard_operation_parser, # +=, = , <>, etc "minecraft:int_range" : int_range_parser, "minecraft:mob_effect" : mob_effect_parser, "minecraft:sound" : sound_parser, "minecraft:objective_criteria":objective_criteria_parser, "minecraft:entity_summon" : entity_location_parser }
[ "42iscool42@gmail.com" ]
42iscool42@gmail.com
8e56a302ab72b021d83ee70f0ad1e776d0ef9fc3
1956b7c652d8c2e22a9edc22032a1ee5a64b6b7b
/apps/partner/migrations/016_auto__change_data_type__commission_field.py
0a86af3822ac6019bf771eb379a3bc08602d411f
[]
no_license
quantmScubism/django_oscar
939bb5fd0d4caa17747e966a0a847939646808c1
e283abbe89a0ca0488fc6442de0a0eb5b53f0149
refs/heads/master
2020-04-16T02:30:18.269115
2017-06-24T14:41:28
2017-06-24T14:41:28
95,303,096
0
0
null
null
null
null
UTF-8
Python
false
false
17,247
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models from oscar.core.compat import AUTH_USER_MODEL, AUTH_USER_MODEL_NAME class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Stockrecord.commission' db.alter_column('partner_stockrecord', 'commission', self.gf('django.db.models.fields.DecimalField')(default=0, null=True, max_digits=12, decimal_places=2, blank=True)) def backwards(self, orm): # Deleting field 'Stockrecord.commission' db.delete_column('partner_stockrecord', 'commission') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'catalogue.attributeentity': { 'Meta': {'object_name': 'AttributeEntity'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'blank': 'True'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'entities'", 'to': "orm['catalogue.AttributeEntityType']"}) }, 'catalogue.attributeentitytype': { 'Meta': {'object_name': 'AttributeEntityType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'blank': 'True'}) }, 'catalogue.attributeoption': { 'Meta': {'object_name': 'AttributeOption'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'options'", 'to': "orm['catalogue.AttributeOptionGroup']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'option': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'catalogue.attributeoptiongroup': { 'Meta': {'object_name': 'AttributeOptionGroup'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'catalogue.category': { 'Meta': {'ordering': "['full_name']", 'object_name': 'Category'}, 'depth': ('django.db.models.fields.PositiveIntegerField', [], {}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'full_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'numchild': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255'}) }, 'catalogue.option': { 'Meta': {'object_name': 'Option'}, 'code': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'Required'", 'max_length': '128'}) }, 'catalogue.product': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'Product'}, 'attributes': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.ProductAttribute']", 'through': "orm['catalogue.ProductAttributeValue']", 'symmetrical': 'False'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Category']", 'through': "orm['catalogue.ProductCategory']", 'symmetrical': 'False'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'db_index': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_discountable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'variants'", 'null': 'True', 'to': "orm['catalogue.Product']"}), 'product_class': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ProductClass']", 'null': 'True'}), 'product_options': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Option']", 'symmetrical': 'False', 'blank': 'True'}), 'rating': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'recommended_products': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Product']", 'symmetrical': 'False', 'through': "orm['catalogue.ProductRecommendation']", 'blank': 'True'}), 'related_products': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'relations'", 'blank': 'True', 'to': "orm['catalogue.Product']"}), 'score': ('django.db.models.fields.FloatField', [], {'default': '0.0', 'db_index': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255'}), 'status': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'upc': ('django.db.models.fields.CharField', [], {'max_length': '64', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, 'catalogue.productattribute': { 'Meta': {'ordering': "['code']", 'object_name': 'ProductAttribute'}, 'code': ('django.db.models.fields.SlugField', [], {'max_length': '128'}), 'entity_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeEntityType']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'option_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeOptionGroup']", 'null': 'True', 'blank': 'True'}), 'product_class': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'attributes'", 'null': 'True', 'to': "orm['catalogue.ProductClass']"}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '20'}) }, 'catalogue.productattributevalue': { 'Meta': {'object_name': 'ProductAttributeValue'}, 'attribute': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ProductAttribute']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attribute_values'", 'to': "orm['catalogue.Product']"}), 'value_boolean': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'value_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'value_entity': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeEntity']", 'null': 'True', 'blank': 'True'}), 'value_float': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'value_integer': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'value_option': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeOption']", 'null': 'True', 'blank': 'True'}), 'value_richtext': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'value_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'catalogue.productcategory': { 'Meta': {'ordering': "['-is_canonical']", 'object_name': 'ProductCategory'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Category']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_canonical': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}) }, 'catalogue.productclass': { 'Meta': {'ordering': "['name']", 'object_name': 'ProductClass'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'options': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Option']", 'symmetrical': 'False', 'blank': 'True'}), 'requires_shipping': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}), 'track_stock': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'catalogue.productrecommendation': { 'Meta': {'object_name': 'ProductRecommendation'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'primary': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'primary_recommendations'", 'to': "orm['catalogue.Product']"}), 'ranking': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'recommendation': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'partner.partner': { 'Meta': {'object_name': 'Partner'}, 'code': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'blank': 'True'}), 'users': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'partners'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['auth.User']"}) }, 'partner.stockalert': { 'Meta': {'ordering': "('-date_created',)", 'object_name': 'StockAlert'}, 'date_closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'Open'", 'max_length': '128'}), 'stockrecord': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'alerts'", 'to': "orm['partner.StockRecord']"}), 'threshold': ('django.db.models.fields.PositiveIntegerField', [], {}) }, 'partner.stockrecord': { 'Meta': {'unique_together': "(('partner', 'partner_sku'),)", 'object_name': 'StockRecord'}, 'cost_price': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'low_stock_threshold': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_allocated': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_in_stock': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['partner.Partner']"}), 'partner_sku': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'price_currency': ('django.db.models.fields.CharField', [], {'default': "'GBP'", 'max_length': '12'}), 'price_excl_tax': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'price_retail': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'stockrecords'", 'to': "orm['catalogue.Product']"}), 'selected_partner': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True', 'default': '0', 'max_length': '128'}), } } complete_apps = ['partner']
[ "012kinglight@gmail.com" ]
012kinglight@gmail.com
fe9b034ff0b1c5cb685a9b5928c8193be3d0bba5
caa8c0915d21ce22358aeadd0af3a71916189fa5
/FlaskORM2/manage.py
e78d9bfaa97d7687bdecfc73860031a6c9d710ef
[ "MIT" ]
permissive
lxdzz/item
49d4d60da8fc7e9d6e365160adb78b6ffd7cf323
1024c53baa51bcdc98ec7a987eb3433fc4478d00
refs/heads/master
2022-12-16T15:02:18.809063
2019-10-08T09:18:28
2019-10-08T09:18:28
213,304,826
0
0
MIT
2019-10-07T06:26:22
2019-10-07T05:48:00
CSS
UTF-8
Python
false
false
292
py
import os from app import models,create from flask_script import Manager from flask_migrate import MigrateCommand,Migrate app=create() manage=Manager(app) migrate=Migrate(app,models) app.secret_key="123456" manage.add_command("db",MigrateCommand) if __name__=="__main__": manage.run()
[ "zdhr@163.com" ]
zdhr@163.com
843d8fb2fb90c80110e6a1f94182e4440e561463
7a07d957316172fe78b341c6f5215df2ccdb24f6
/assignment/EasyAI_all_program.py
c6fbae635760a88672fcd1070d47c597c1a75d57
[]
no_license
chandraprakashh/Python_with_AI
87ff4655c44eef9d0459cf0f2ceedabde88b0f1f
6d76eeea94e0cb7402330a2beea1fc4a7ab73e29
refs/heads/master
2020-07-18T18:18:06.463302
2019-12-11T08:20:12
2019-12-11T08:20:12
206,291,055
0
0
null
null
null
null
UTF-8
Python
false
false
2,008
py
# -*- coding: utf-8 -*- """ Created on Sun Oct 13 22:50:57 2019 @author: user """ # Code => 1 from easyAI import TwoPlayersGame, Human_Player, AI_Player, Negamax class GameOfBones( TwoPlayersGame ): def __init__(self, players): self.players = players self.pile = 20 self.nplayer = 1 def possible_moves(self): return ['1','2','3'] def make_move(self,move): self.pile -= int(move) def win(self): return self.pile<=0 def is_over(self): return self.win() def show(self): print ("%d bones left in the pile" % self.pile) def scoring(self): return 100 if game.win() else 0 ai = Negamax(13) game = GameOfBones( [ Human_Player(), AI_Player(ai) ] ) history = game.play() # Code => 2 from easyAI import TwoPlayersGame, AI_Player, Negamax from easyAI.Player import Human_Player class GameController(TwoPlayersGame): def __init__(self, players): self.players = players self.nplayer = 1 self.board = [0] * 9 def possible_moves(self): return [a + 1 for a, b in enumerate(self.board) if b == 0] def make_move(self, move): self.board[int(move) - 1] = self.nplayer def loss_condition(self): possible_combinations = [[1,2,3], [4,5,6], [7,8,9], [1,4,7], [2,5,8], [3,6,9], [1,5,9], [3,5,7]] return any([all([(self.board[i-1] == self.nopponent) for i in combination]) for combination in possible_combinations]) def is_over(self): return (self.possible_moves() == []) or self.loss_condition() def show(self): print('\n'+'\n'.join([' '.join([['. ', 'O', 'X'][self.board[3*j + i]] for i in range(3)]) for j in range(3)])) def scoring(self): return -100 if self.loss_condition() else 0 if __name__ == "__main__": algorithm = Negamax(7) GameController([Human_Player(), AI_Player(algorithm)]).play()
[ "noreply@github.com" ]
chandraprakashh.noreply@github.com
f027e2fef6d80f6cee29c3c460427d5ff4690d31
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_073/ch18_2020_03_09_13_23_07_056737.py
5580c305acffebf7d622cc6890b83f53b3de7ef7
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
def verifica_idade(idade): if idade>=21: return 'liberado EUA e BRASILl' if idad>=1 and idade<18: return 'Não está liberado' else: return 'esta liberado BRASIL'
[ "you@example.com" ]
you@example.com
1ac5c2d34e64826c6b8bdb12f4a443e2c74c4ab7
1e81ae6498fad9321767a0c3bf6a83751a2fb992
/baiTap/bai10.py
de7804eb5690b473f048d1eb73f12f76fe641fb3
[]
no_license
tdhieu756/pythonBasic
4f8305ff81e071d0d4df41adeacfbf7387f3e488
b14756380ff0a9524dc4a38917a7b0430cbc6268
refs/heads/master
2020-05-25T07:06:04.492782
2019-05-21T01:54:59
2019-05-21T01:54:59
187,677,479
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
x = int(input('Nhap X ')) y = int(input('Nhap Y ')) l = [] print(l) for i in range(x): c =[] for j in range(y): #them vao cuoi list c.append(j*i) l.append(c) print(l)
[ "tdhieu756@gmail.com" ]
tdhieu756@gmail.com
14652fb38016928ddefc74fa43e0a8c3e8ada405
63b0fed007d152fe5e96640b844081c07ca20a11
/ABC/ABC200~ABC299/ABC245/d2.py
39575b7b194f9b94d10060fb30a0af67e9572081
[]
no_license
Nikkuniku/AtcoderProgramming
8ff54541c8e65d0c93ce42f3a98aec061adf2f05
fbaf7b40084c52e35c803b6b03346f2a06fb5367
refs/heads/master
2023-08-21T10:20:43.520468
2023-08-12T09:53:07
2023-08-12T09:53:07
254,373,698
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
def polydiv(xs, ys): xn = len(xs) yn = len(ys) zs = xs.copy() qs = [] for _ in range(xn - yn + 1): temp = zs[0] // ys[0] for i in range(yn): zs[i] -= temp * ys[i] qs.append(temp) zs = zs[1:] if qs == []: qs = [0.] return qs n,m=map(int,input().split()) a=list(map(int,input().split())) c=list(map(int,input().split())) a=list(reversed(a)) c=list(reversed(c)) ans=[] p=polydiv(c,a) for i in range(len(p)): ans.append(int(p[i])) ans=list(reversed(ans)) print(*ans)
[ "ymdysk911@gmail.com" ]
ymdysk911@gmail.com
b1163a31c4f06fe80bd4a61d7898539c29b8a4fc
48315e4fd2cdc491ea6d1160331dfd836b410e5c
/testfile.py
0ef295aedf17a6892ff998561e293cbac3a3d7e6
[ "MIT" ]
permissive
jesse-toftum/cash_ml
9561d3c47e88b54fb0312bacf1b650a3b46cd563
316121a41359f8d18358c17f9be2ab90ad69bcb2
refs/heads/master
2021-06-11T06:07:42.256317
2021-02-19T08:16:00
2021-02-19T08:16:00
160,003,235
4
3
MIT
2019-01-10T04:38:10
2018-12-02T01:30:21
Python
UTF-8
Python
false
false
1,172
py
from cash_ml import Predictor from cash_ml.utils import get_boston_dataset from cash_ml.utils_models import load_ml_model # Load data df_train, df_test = get_boston_dataset() # Tell auto_ml which column is 'output' # Also note columns that aren't purely numerical # Examples include ['nlp', 'date', 'categorical', 'ignore'] column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_train) # Score the model on test data test_score = ml_predictor.score(df_test, df_test.MEDV) # auto_ml is specifically tuned for running in production # It can get predictions on an individual row (passed in as a dictionary) # A single prediction like this takes ~1 millisecond # Here we will demonstrate saving the trained model, and loading it again file_name = ml_predictor.save() trained_model = load_ml_model(file_name) # .predict and .predict_proba take in either: # A pandas DataFrame # A list of dictionaries # A single dictionary (optimized for speed in production evironments) predictions = trained_model.predict(df_test) print(predictions)
[ "u0803072@utah.edu" ]
u0803072@utah.edu
7678c21d2e011e118d23455f36514f5d73e162d6
8454441f899c3beb9fcea26cffc2f4c3cf75ff6a
/common/code/snippets/py/flask-get-header.py
a040c637e90ee07be18f7cd6ed97246a58f26c1e
[ "MIT" ]
permissive
nevesnunes/env
4a837e8fcf4a6a597992103e0a0c3d0db93e1c78
f2cd7d884d46275a2fcb206eeeac5a8e176b12af
refs/heads/master
2023-08-22T15:49:35.897161
2023-08-15T13:51:08
2023-08-15T13:51:08
199,400,869
9
6
MIT
2023-06-22T10:59:51
2019-07-29T07:24:47
Python
UTF-8
Python
false
false
630
py
#!/usr/bin/env python3 from flask import Flask, request app = Flask(__name__) @app.route("/") def hello(): return "Hello!" @app.route("/<path:text>", methods=["GET", "POST"]) def echo(text): return f"You said (len = {len(text)}): {bytes(text, 'latin-1')}" @app.after_request def after(response): red_foo = b"\x1b\x5b\x33\x31\x6d\x66\x6f\x6f\x1b\x28\x42\x1b\x5b\x6d" response.headers["X-Foo"] = red_foo response.headers["X-Bar"] = "".join( [chr(x) if x not in (ord("\r"), ord("\n")) else "" for x in range(0, 255)] ) return response if __name__ == "__main__": app.run(port=18123)
[ "9061071+nevesnunes@users.noreply.github.com" ]
9061071+nevesnunes@users.noreply.github.com
88163ffa4c39f9c08b7cefc81c2eb7c2b7c7bed4
f146cef3f2172275c8d7f526dab92951fa50eb2c
/COURSE/group project -week9/backup -backend day3/backend/app/users/views.py
d0da6f0f9c4c96335aafbf7f3314c9c3e1305e26
[]
no_license
mehranj73/Bootcamp
fed04d3858d6d0bc1cdad94e1f05bd4f7a47c0ec
bd575cd02329ad1ce21b05350380dfbf17cbdd89
refs/heads/master
2023-02-09T06:50:00.590751
2019-08-22T18:56:02
2019-08-22T18:56:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,413
py
from django.contrib.auth.models import User from rest_framework import filters from rest_framework.generics import RetrieveAPIView, ListCreateAPIView, ListAPIView, UpdateAPIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from app.permissions import IsOwnerOrReadOnly from .serializers import MyProfileSerializer, UserSerializer, UserProfileSerializer, MyUserSerializer from .models import UserProfile #GET my profile # URL 'me/' class GetMyProfile(RetrieveAPIView): # allow this action only to the user who owns the profile or to admin #permission_classes = (IsAuthenticated, IsOwnerOrReadOnly) permission_classes = (IsAuthenticated, IsOwnerOrReadOnly,) queryset = UserProfile.objects.all() serializer_class = MyProfileSerializer def get(self, request, *args, **kwargs): user = self.request.user me = user.user_profile serializer = self.get_serializer(me) return Response(serializer.data) #GET: to get all users # URL 'list/' class GenericGetUsersView(ListCreateAPIView): # queryset = User.objects.all() serializer_class = UserSerializer def get_queryset(self): return User.objects.all() #GET userprofile by user ID # URL <int:pk> class GetUserProfileById(RetrieveAPIView): queryset = UserProfile.objects.all() serializer_class = UserProfileSerializer lookup_url_kwarg = 'pk' #POST: update user profile - userprofile model part (in front end to be united in same page with "update user profile-user model part) #URL 'me/update/user-profile/' class UpdateUserProfileView(UpdateAPIView): serializer_class = MyProfileSerializer queryset = UserProfile.objects.all() permission_classes = [ IsAuthenticated, IsOwnerOrReadOnly, ] def update(self, request, *args, **kwargs): user = self.request.user serializer = MyProfileSerializer(instance=user.user_profile, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response( "User profile updated.", status=200) else: return Response( "Unable to perform request. Please try again later.", status=400) #POST: update user profile - user model part (in front end to be united in same page with "update user profile-userprofile model part) #URL 'me/update/user-profile/' class UpdateUserProfileViewMyUser(UpdateAPIView): serializer_class = MyProfileSerializer queryset = User.objects.all() permission_classes = [ IsAuthenticated, IsOwnerOrReadOnly, ] def update(self, request, *args, **kwargs): user = self.request.user serializer = MyUserSerializer(instance=user, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response( "User profile updated.", status=200) else: return Response( "Unable to perform request. Please try again later.", status=400) #GET: to search by username or first name or last name class SearchUsers(ListAPIView): """ GET: Search users in Postman add in Params key: search, value: string """ serializer_class = UserSerializer queryset = User.objects.all() filter_backends = (filters.SearchFilter,) search_fields = ('username', 'first_name', 'last_name')
[ "rachovsky@gmail.com" ]
rachovsky@gmail.com
e564dfeb822503e42485517c3f70e61be60181c9
2398ce6219cc23a937d4fb9d3459f0453357d28d
/cityshaper/movements/gearLash.py
50a38dc854ae87b4a1efac455c864e40d36355fc
[]
no_license
fllctrlz/robot
5c38f5e780fc5e3796f5d710e9c1167a7a5ccdd0
94757e3a0e386088c1ece2edc4855fc84dc0a994
refs/heads/master
2020-09-03T01:40:31.774516
2020-01-10T22:07:37
2020-01-10T22:07:37
219,353,164
1
0
null
null
null
null
UTF-8
Python
false
false
652
py
#!/usr/bin/env python3 from util import robot from time import sleep from util.exitConditions import distance, time, light def run(direction, delay = 0.2, power = 5): '''Moves the motors at a very low power for a short time in order to minimize the slippage of the gears inside the motors of the robot.''' robot.resetStartTime() robot.resetMotors() motorPower = power*direction*robot.motorDirection robot.safeMotorsOn(motorPower, motorPower) # Check if the time is equal to the amount set at the beginning of the function while not condition(time, robot.timer, delay, 0): pass robot.driveBase.stop()
[ "fllctrlzfll@gmail.com" ]
fllctrlzfll@gmail.com
b2b45242b51f0a73e883f1bc773c5c35069ae906
fbfbe314015ae4b6d0cb12039ea24ea07bbb8012
/src/models/blocks/encoder_v1.py
c6f7d9694dbc8580b1fa56c75fe888e7a19a3d18
[ "MIT" ]
permissive
GuoleiSun/composite-tasking
9fefd98e2a512b64d5c5284c0f40c3e5339f9c56
c759a87be783912aae02e0cb9a8d18c52b3c8930
refs/heads/main
2023-05-30T10:09:40.234706
2021-06-17T23:13:06
2021-06-17T23:13:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,983
py
import torch import torch.nn as nn import torchvision class EncoderV1(nn.Module): def __init__(self, cfg): super().__init__() # Load and check the model configuration dictionary self.cfg = cfg self._check_cfg() # Create the encoder architecture self._create_encoder() def _check_cfg(self): assert isinstance(self.cfg["encoder_arch"], str) assert isinstance(self.cfg["encoder_pre_trained"], bool) def _create_encoder(self): # Load the encoder backbone if self.cfg["encoder_arch"] == "resnet18": base_model = torchvision.models.resnet.resnet18(pretrained=self.cfg["encoder_pre_trained"], progress=False) elif self.cfg["encoder_arch"] == "resnet34": base_model = torchvision.models.resnet.resnet34(pretrained=self.cfg["encoder_pre_trained"], progress=False) elif self.cfg["encoder_arch"] == "resnet50": base_model = torchvision.models.resnet.resnet50(pretrained=self.cfg["encoder_pre_trained"], progress=False) elif self.cfg["encoder_arch"] == "resnet101": base_model = torchvision.models.resnet.resnet101(pretrained=self.cfg["encoder_pre_trained"], progress=False) else: raise NotImplementedError base_layers = list(base_model.children()) # Encoder layers: # ----------- # Layer output size=(N, n_ch_level_1, H/2, W/2) self.layer1 = nn.Sequential(*base_layers[:3]) # Layer output size=(N, n_ch_level_2, H/4, W/4) self.layer2 = nn.Sequential(*base_layers[3:5]) # Layer output size=(N, n_ch_level_3, H/8, W/8) self.layer3 = base_layers[5] # Layer output size=(N, n_ch_level_4, H/16, W/16) self.layer4 = base_layers[6] # Layer output size=(N, n_ch_level_5, H/32, W/32) self.layer5 = base_layers[7] def forward(self, x): # Compute the Encoder and its intermediate results layer1 = self.layer1(x) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) layer5 = self.layer5(layer4) output_levels = { "0_input": x, "1_s2": layer1, "2_s4": layer2, "3_s8": layer3, "4_s16": layer4, "5_s32": layer5, } return output_levels def get_n_channels_in_each_level(self): if self.cfg["encoder_arch"] in ["resnet18", "resnet34"]: n_ch = { "1": 64, "2": 64, "3": 128, "4": 256, "5": 512, } elif self.cfg["encoder_arch"] in ["resnet50", "resnet101"]: n_ch = { "1": 64, "2": 256, "3": 512, "4": 1024, "5": 2048, } else: raise NotImplementedError return n_ch
[ "npopovic3794@gmail.com" ]
npopovic3794@gmail.com
dccac459597573c89d2f70c7fd8e454001aa54e5
aab8a88302af603fcfb5770d885b674e28edab38
/WebApp/clustering.py
ead5cf91d682ba42cf2db61d938980899a606914
[]
no_license
rmenyhart/AccidentPredictor
ea235834c445b68d5aba31832662c403b5b54450
467984419e8d3c25e1a922e50f8943a6750cc3e4
refs/heads/master
2023-07-17T16:55:36.195579
2021-09-06T17:00:43
2021-09-06T17:00:43
380,519,094
0
0
null
null
null
null
UTF-8
Python
false
false
727
py
from dtos.location import Location from sklearn.metrics.pairwise import haversine_distances from math import radians class Clustering: cluster_centers = [] def load_centers(self, filename): file = open(filename, 'r') for line in file: coords = line.split(',') self.cluster_centers.append(Location(float(coords[0]), float(coords[1]))) def is_clustered(self, point, distance): for center in self.cluster_centers: if (self.haversine(point, center) <= distance): return True return False def haversine(self, loc1, loc2): loc1_rad = [radians(loc1.lat), radians(loc1.lng)] loc2_rad = [radians(loc2.lat), radians(loc2.lng)] result = haversine_distances([loc1_rad, loc2_rad]) return result[0][1]
[ "menyhartrobert98@gmail.com" ]
menyhartrobert98@gmail.com
7827a4ff1d73bcdedd452e2b87970b445bb26252
3b3b8f400e1e175cd271169806452bce8017a39f
/lib/python/treadmill_aws/cli/admin/cell.py
9ce5a9950c08c1df864a54705bfe130ebda21e12
[ "Apache-2.0" ]
permissive
drienyov/treadmill-aws
d9c9af84fa12514f24b4bb30864659b8267deb55
a723999e9fa6e9c4b66155cbfca3082be5daff21
refs/heads/master
2020-03-25T00:04:53.359365
2018-07-31T15:16:21
2018-07-31T15:16:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,669
py
"""Admin Cell CLI module """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import time import click import jinja2 from ldap3.core import exceptions as ldap_exceptions import six from treadmill import admin from treadmill import cli from treadmill import context from treadmill import yamlwrapper as yaml from treadmill.api import instance from treadmill.scheduler import masterapi from treadmill import sysinfo from treadmill.syscall import krb5 from treadmill_aws import awscontext from treadmill_aws import cli as aws_cli _LOGGER = logging.getLogger(__name__) # TODO: full list of cell apps: # adminapi, wsapi, app-dns, stateapi, cellapi _CELL_APPS = [ 'adminapi', 'app-dns', 'appmonitor', 'cellapi', 'cellsync', 'scheduler', 'stateapi', 'trace-cleanup', 'wsapi', ] class CellCtx: """Cell context.""" def __init__(self, cors=None, krb_realm=None): self.cell = context.GLOBAL.cell admin_cell = admin.Cell(context.GLOBAL.ldap.conn) cell = admin_cell.get(self.cell) self.proid = cell['username'] self.data = cell.get('data') # Default cors origin to top level dns domain. The value is passed to # manifest verbatim, so need to shell escape it. if not cors: last_two = context.GLOBAL.dns_domain.split('.')[-2:] self.cors = '\\.'.join(last_two) else: self.cors = '\\.'.join(cors.strip('.').split('.')) self.krb_realm = krb_realm if not self.krb_realm: realms = krb5.get_host_realm(sysinfo.hostname()) if realms: self.krb_realm = realms[0] def _render(name, ctx): """Render named template.""" jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__)) template = jinja_env.get_template(name) return yaml.load(template.render(**ctx.obj.__dict__)) def _render_app(appname, ctx): """Render manifest for given app.""" app = _render(appname, ctx) fullname = '{}.{}.{}'.format(ctx.obj.proid, appname, ctx.obj.cell) return fullname, app def _monitors(ctx): """Load monitor definitions.""" return _render('monitors', ctx) def _appgroups(ctx): """Load appgroups definitions.""" return _render('appgroups', ctx) def _ident_groups(ctx): """Load identity group definitions.""" return _render('identity-groups', ctx) def init(): """Admin Cell CLI module""" # pylint: disable=too-many-statements @click.group(name='cell') @click.option('--cors-origin', help='CORS origin for API.') @click.option('--cell', required=True, envvar='TREADMILL_CELL', is_eager=True, callback=cli.handle_context_opt, expose_value=False) @click.option('--krb-realm', help='Kerberos realm', envvar='TREADMILL_KRB_REALM', required=False) @click.option( '--cell', required=True, envvar='TREADMILL_CELL', is_eager=True, callback=cli.handle_context_opt, expose_value=False ) @click.option( '--krb-realm', help='Kerberos realm', envvar='TREADMILL_KRB_REALM', required=False ) @click.option( '--ipa-certs', required=False, envvar='TREADMILL_IPA_CERTS', callback=aws_cli.handle_context_opt, is_eager=True, default='/etc/ipa/ca.crt', expose_value=False ) @click.pass_context def cell_grp(ctx, cors_origin, krb_realm): """Manage treadmill cell.""" ctx.obj = CellCtx(cors=cors_origin, krb_realm=krb_realm) @cell_grp.command(name='configure-apps') @click.option('--apps', type=cli.LIST, help='List of apps to configure.') @click.pass_context def configure_apps(ctx, apps): """Configure cell API.""" admin_app = admin.Application(context.GLOBAL.ldap.conn) # For apps that need write access to LDAP. The context LDAP must have # write access because this is what we use to write manifests here. write_uri = admin_app.admin.write_uri ctx.obj.admin_ldap_url = ','.join(write_uri) if write_uri else None if not apps: apps = _CELL_APPS # Configure apps identity groups identity_groups = _ident_groups(ctx) for groupname, count in six.iteritems(identity_groups): masterapi.update_identity_group( context.GLOBAL.zk.conn, groupname, count ) # Configure apps for appname in apps: fullname, app = _render_app(appname, ctx) print(fullname) print(yaml.dump(app)) try: admin_app.create(fullname, app) except ldap_exceptions.LDAPEntryAlreadyExistsResult: admin_app.replace(fullname, app) @cell_grp.command(name='configure-monitors') @click.option('--monitors', type=cli.DICT, help='Key/value pairs for monitor count overrides.') @click.pass_context def configure_monitors(ctx, monitors): """Configure system apps monitors.""" if not monitors: monitors = _monitors(ctx) for name, count in six.iteritems(monitors): print(name, count) masterapi.update_appmonitor( context.GLOBAL.zk.conn, name, int(count) ) @cell_grp.command(name='restart-apps') @click.option('--apps', type=cli.LIST, help='List of apps to restart.') @click.option('--wait', type=int, help='Interval to wait before re-start.', default=20) @click.pass_context def restart_apps(ctx, wait, apps): """Restart cell API.""" instance_api = instance.API(plugins=['aws-proid-env']) monitors = _monitors(ctx) for name, count in six.iteritems(monitors): _, appname, _ = name.split('.') if apps and appname not in apps: continue _, app = _render_app(appname, ctx) print(name) print(yaml.dump(app)) for idx in range(0, count): instance_ids = instance_api.create(name, app, 1) for inst_id in instance_ids: print(inst_id) if idx <= count - 1 and wait: time.sleep(wait) @cell_grp.command(name='configure-appgroups') @click.pass_context def configure_appgroups(ctx): """Configure system app groups.""" appgroups = _appgroups(ctx) admin_app_group = admin.AppGroup(context.GLOBAL.ldap.conn) for name, data in six.iteritems(appgroups): print(name, data) try: admin_app_group.create(name, data) except ldap_exceptions.LDAPEntryAlreadyExistsResult: admin_app_group.update(name, data) existing = admin_app_group.get(name, dirty=True) group_cells = set(existing['cells']) group_cells.update([ctx.obj.cell]) admin_app_group.update(name, {'cells': list(group_cells)}) existing = admin_app_group.get(name, dirty=True) print(existing) @cell_grp.command(name='configure-dns') @click.pass_context def configure_dns(ctx): """Configure DNS cell records.""" ipaclient = awscontext.GLOBAL.ipaclient idnsname = 'zk.{}.{}'.format(ctx.obj.cell, context.GLOBAL.dns_domain) admin_cell = admin.Cell(context.GLOBAL.ldap.conn) cell = admin_cell.get(ctx.obj.cell) masters = ','.join(['{}:{}'.format(m['hostname'], m['zk-client-port']) for m in cell['masters']]) scheme = cell.get('zk-auth-scheme') if not scheme: scheme = 'zookeeper' zkurl = '{scheme}://{username}@{hostports}/treadmill/{cell}'.format( scheme=scheme, username=ctx.obj.proid, hostports=masters, cell=ctx.obj.cell ) current_rec = ipaclient.get_dns_record(idnsname) existing = current_rec['result']['result'][0]['txtrecord'][0] if existing == zkurl: _LOGGER.info('Zookeeper TXT records up to date: %s : %s', idnsname, zkurl) return ipaclient.add_txt_record(idnsname, zkurl) del restart_apps del configure_apps del configure_monitors del configure_appgroups return cell_grp
[ "andreikeis@users.noreply.github.com" ]
andreikeis@users.noreply.github.com
1e071d530068f67c936efc3ce7ec63291927d50f
cfae6e3f8e066b30e612895fa7dc8465657d67a8
/scorer.py
ab8977d1a71d43e37f862c8414a2c35db6934aa0
[]
no_license
jabm0010/PLN_pFinal
6d54c96db8727de70d90790cfb454a959fe61ea6
887e2758a28c967e50559885a68dee7bd9dcaad1
refs/heads/master
2020-05-16T12:56:48.552925
2019-05-01T14:35:20
2019-05-01T14:35:20
183,058,237
0
0
null
null
null
null
UTF-8
Python
false
false
2,598
py
# -*- coding: utf-8 -*- """ Created on Tue Apr 23 20:13:57 2019 @author: jabm9 """ # -*- coding: utf-8 -*- """ Author: Salud María Jiménez Zafra Description: Final practice scorer Last modified: April 9, 2019 """ import sys gold_path = 'gold_labels_dev.txt' input_path = 'resultados.txt' confusion_matrix = {} labels = ('positive', 'negative') for l1 in labels: for l2 in labels: confusion_matrix[(l1, l2)] = 0 # 1. Read files and get labels input_labels = {} with open(input_path, 'r') as input_file: for line in input_file.readlines(): try: id_file, domain, polarity = line.strip().split('\t') except: print('Wrong file format: ' + input_path) sys.exit(1) input_labels[id_file + domain] = polarity with open(gold_path, 'r') as gold_file: for line in gold_file.readlines(): try: id_file, domain, true_polarity = line.strip().split('\t') except: print('Wrong file format: ' + gold_path) sys.exit(1) key = id_file + domain if key in input_labels.keys(): proposed_polarity = input_labels[key] confusion_matrix[(proposed_polarity, true_polarity)] += 1 else: print('Wrong file format: ' + input_path) sys.exit(1) ### 2. Calculate evaluation measures avgP = 0.0 avgR = 0.0 avgF1 = 0.0 for label in labels: denomP = confusion_matrix[(label, 'positive')] + confusion_matrix[(label, 'negative')] precision = confusion_matrix[(label, label)]/denomP if denomP > 0 else 0 denomR = confusion_matrix[('positive', label)] + confusion_matrix[('negative', label)] recall = confusion_matrix[(label, label)]/denomR if denomR > 0 else 0 denomF1 = precision + recall f1 = 2*precision*recall/denomF1 if denomF1 > 0 else 0 print('\t' + label + ':\tPrecision=' + "{0:.3f}".format(precision) + '\tRecall=' + "{0:.3f}".format(recall) + '\tF1=' + "{0:.3f}".format(f1) + '\n') avgP += precision avgR += recall avgF1 += f1 avgP /= 2.0 avgR /= 2.0 avgF1 /= 2.0 accuracy = (confusion_matrix[('positive','positive')] + confusion_matrix[('negative','negative')]) / (confusion_matrix[('positive','positive')] + confusion_matrix[('negative','negative')] + confusion_matrix[('positive','negative')] + confusion_matrix[('negative','positive')]) print('\nAvg_Precision=' + "{0:.3f}".format(avgP) + '\tAvg_Recall=' + "{0:.3f}".format(avgR) + '\tAvg_F1=' + "{0:.3f}".format(avgF1) + '\tAccuracy=' + "{0:.3f}".format(accuracy))
[ "jabm97@gmail.com" ]
jabm97@gmail.com
ad06790be92022f31a2e460a0c85c51c7118fdbc
94b1c18704937d548d99a5185bf467bef8dc20a9
/list_5/setup.py
62a9a1e45384bc757aa61bd9485d6ec3eeaeb813
[]
no_license
piotrszyma/studies-elliptic-curves
5dcc1ef3749d40b503f953ca19baf55439f073dd
65418742b4961c6b27d864ba3ff5649f4414fdce
refs/heads/master
2022-11-23T11:06:36.547124
2020-07-26T19:57:41
2020-07-26T19:57:41
244,161,697
0
0
null
null
null
null
UTF-8
Python
false
false
996
py
import json import shared import projective import field import affine import jacobi def _read_sage_params_from_file(file_path): with open(file_path) as f: return json.load(f) def _read_sage_params_from_stdin(): return json.loads(input()) def set_curve_params(args): if args.stdin: raw_json = _read_sage_params_from_stdin() else: raw_json = _read_sage_params_from_file(args.path) a, b, *_ = raw_json["invariants"] base_point = raw_json["basePoint"] field_order = raw_json["fieldOrder"] curve_order = raw_json["curveOrder"] curve_params = shared.CurveParams( base_point=shared.CurveBasePoint(*base_point), a=a, b=b, field_order=field_order, curve_order=curve_order, ) projective.set_curve_params(curve_params) affine.set_curve_params(curve_params) jacobi.set_curve_params(curve_params) field.set_modulus(field_order) return curve_params, int(raw_json["bitLength"])
[ "thompson2908@gmail.com" ]
thompson2908@gmail.com
3f5904a0711502f61e084e2adc5e1fa04b34d71b
8bd04db6920bc051aca9bb3c2a5517e730f75aa1
/app/user/views.py
be092b00f5221826a2ea007d86e1b3f22601aefd
[ "MIT" ]
permissive
barlydjaja/recipe-app-api
a44bcb4d148000a9c8c24c3dcaf6816e9b022a3f
ce9607ca3497bbde3b69dd2db4d07b361c6400e8
refs/heads/main
2023-03-24T18:23:46.310726
2021-03-14T04:43:39
2021-03-14T04:43:39
343,402,834
0
0
null
null
null
null
UTF-8
Python
false
false
922
py
from rest_framework import generics, authentication, permissions from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from .serializers import UserSerializer, AuthTokenSerializer class CreateUserView(generics.CreateAPIView): """ Create a new user in the system""" serializer_class = UserSerializer class CreateTokenView(ObtainAuthToken): """Create new auth token for user""" serializer_class = AuthTokenSerializer renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES class ManageUserView(generics.RetrieveUpdateAPIView): """Manage the authenticated user""" serializer_class = UserSerializer authentication_classes = (authentication.TokenAuthentication,) permission_classes = (permissions.IsAuthenticated,) def get_object(self): """Retrieve and return authenticated user""" return self.request.user
[ "barlydjaja@gmail.com" ]
barlydjaja@gmail.com
e958f0bfa38607d332190b88a4689f958dc42a09
945f4690cf1c85bae13bea8f361d44514f5fdca0
/Python/1113 - Crescente e Decrescente.py
ab9fca448e657d27622f29bd8eb02a92ea5af5e2
[]
no_license
geo-wurth/URI
e7209c0c2da933d3b565d40f466ad94adb1ebb9f
e0eae49739efb293322247feca426593df2d59ba
refs/heads/master
2020-06-20T09:36:28.505378
2019-12-03T18:46:22
2019-12-03T18:46:22
197,079,734
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
while True: valores = list(map(int, input().split())) x = valores[0] y = valores[1] if x > y: print("Decrescente") elif x < y: print("Crescente") else: break
[ "noreply@github.com" ]
geo-wurth.noreply@github.com
57e7ab881b00e6f02b4f292a19abd5fca6d0ffd4
095d6091d9c7621488cebdf5e28e28da92367984
/Basico/servidor/venv/bin/pip2.7
165c0c302dfc0c84fe4717366411a3fc46b212bf
[]
no_license
jAndresMub/pythonBasics
28e126c57c9d499244df3dfe67c5237830b67a49
588376a818bf7f547c1e4a6e602c417f15de8846
refs/heads/master
2023-05-11T11:18:19.549905
2019-08-09T04:23:34
2019-08-09T04:23:34
199,773,717
0
0
null
null
null
null
UTF-8
Python
false
false
268
7
#!/home/andres/Escritorio/cursoPython/Basico/servidor/venv/bin/python2 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "jandresmub@gmail.com" ]
jandresmub@gmail.com
428e801f8c2d57a8b868fdb5ecf1b3bd1b3838a2
13a81afcf92ba1e357ab358566328fd46d162033
/c1.py
1355e5fb0dd5808cf711538258121a71fb4ec592
[]
no_license
kiodyd/code_game
0b5f910c9b9157a16075b10b9a731189e395cf1c
c49578ee759d95433efffaf899cf2675e50baa99
refs/heads/master
2020-04-19T05:36:08.557628
2019-01-28T16:33:20
2019-01-28T16:33:20
167,992,822
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
# coding: utf-8 # 自分の得意な言語で # Let's チャレンジ!! import re input_lines = input() fault = False if re.match(r'^(?=.*\d)(?=.*[a-zA-Z])[a-zA-Z\d]{6,30}$',input_lines): for i in range(0,len(input_lines)-2): if input_lines[i] == input_lines[i+1] == input_lines[i+2]: fault = True if fault: print("Invalid") else: print("Valid") else: print("Invalid")
[ "noreply@github.com" ]
kiodyd.noreply@github.com
973b06f88d37b9f6d8a80cad2fb7b2ef85aa6588
ed89014c39c98e63d92e6d23b955d4f25d06fe9a
/plugin/templates.py
79dd10199a751fb781234745910ae513ec248485
[ "MIT" ]
permissive
Zeroto521/Flow.Launcher.Plugin.HowBigYourNumber
8cff8f84d694e5eee535bc5a36ab7f7055967fcb
b7717e7d7dd52a0daef434c05ba3a81d763a17b1
refs/heads/master
2023-04-15T09:50:12.467069
2021-04-08T13:17:56
2021-04-08T13:17:56
341,119,335
0
0
MIT
2021-04-06T12:14:35
2021-02-22T07:48:38
Python
UTF-8
Python
false
false
249
py
# -*- coding: utf-8 -*- from plugin.settings import ICON_PATH RESULT_TEMPLATE = { 'Title': '', 'SubTitle': '', 'IcoPath': ICON_PATH, } ACTION_TEMPLATE = { 'JsonRPCAction': { 'method': '', 'parameters': '', } }
[ "Zeroto521@gmail.com" ]
Zeroto521@gmail.com
da1d6f488fe1ab0f475cffb11a914492829aeb27
c5bfde6d6bb62b52af236a716b793a87d6c21ec7
/Day_03/Day_03.py
a5b287db9fa4e924906110cba149609ea1187f82
[]
no_license
yorickcleerbout/Advent-Of-Code-2020
f67a3caac64da950f705706639f72ec0b20e3fac
0fcd01b3f34ff39df006f2c523133478337ee2cb
refs/heads/main
2023-02-05T00:50:05.473697
2020-12-25T15:55:47
2020-12-25T15:55:47
317,986,405
0
0
null
null
null
null
UTF-8
Python
false
false
705
py
with open("Day_03/input.txt", 'r') as f: data = f.readlines() def solution(right, down): trees = 0 x_pos = 0 for i in range(0, len(data), down): line = data[i] if line[x_pos % 31] == "#": trees += 1 x_pos += right return trees print("How many trees would you encounter when using slope of '3 right' and '1 down' (Part 1):", solution(3, 1)) slopes = [(1, 1), (3, 1), (5, 1), (7, 1), (1, 2)] part_two = 1 for r, d in slopes: part_two *= solution(r, d) print("How many trees would you encounter when you multiply the number of trees on each slope '1r 1d', '3r 1d', '5r 1d', '7r 1d' and '1r 2d' (Part 2):", part_two)
[ "noreply@github.com" ]
yorickcleerbout.noreply@github.com
79a1e60bd6d16d0e7aa3b8efff8ff7f5719e4c3b
082e6342ca6872420b2960c64cba484f3852351b
/corretora/urls.py
46276954d8b46ce8c61ed5da47ac4880c59dc02c
[ "MIT" ]
permissive
reihtw/stocktracker
54c7c1dc066d73b9b57836d1ac3ea259d8715632
fd83862ce47dae1615c445a1bed1a39d3a769e80
refs/heads/master
2022-11-23T12:25:56.876883
2020-07-25T19:17:55
2020-07-25T19:17:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
from django.urls import path from . import views urlpatterns = [ path('', views.visualizar_corretoras, name='visualizar_corretoras'), path('cadastrar', views.cadastrar_corretora, name='cadastrar_corretora'), path('editar/<str:nome>', views.editar_corretora, name='editar_corretora'), path('atualizar', views.atualizar_corretora, name='atualizar_corretora'), path('excluir/<int:corretora_id>', views.excluir_corretora, name='excluir_corretora'), ]
[ "rodrigolins@protonmail.com" ]
rodrigolins@protonmail.com
8b30590b3b5fb20f27fa5c80c230b6bfbf438e72
ca23ce5afc3d66b89eac610a0d89493a4f6a85f3
/engine.py
1ed3bd077c58ee4df493bc6b907f4051334261c4
[]
no_license
K1ngDedede/Unglaublich
788f87e9cd87ee427c7771cbe5e38ffa7b0742d8
be9352c282eece7910c441cc5145bd834397b9b8
refs/heads/master
2023-02-15T16:15:18.658886
2021-01-10T03:28:55
2021-01-10T03:28:55
271,098,910
1
0
null
null
null
null
UTF-8
Python
false
false
4,668
py
from os import path import pygame as pg import sys from settings import * from sprites import * class Map: def __init__(self, filename, screen): #Matrix of tiles self.nig = [] self.all_sprites = pg.sprite.Group() self.tiles = pg.sprite.Group() self.collidable_tiles = pg.sprite.Group() self.action_tiles = pg.sprite.Group() self.filename = "worlds/"+filename self.screen = screen def load(self): world_file = open(self.filename, "r") row = 0 for line in world_file: col = 0 line = line.strip() self.nig.append([]) row_tiles = line.split(",") for tile in row_tiles: tile = tile.split(":") tile_filename = tile[0] adyacent_filename = tile[1] tile_poggers = int(tile[2]) tile_x = col * TILESIZE tile_y = row * TILESIZE self.nig[row].append(Tile(tile_filename, adyacent_filename, tile_poggers, tile_x, tile_y, self)) col+=1 row+=1 self.height = len(self.nig) self.width = len(self.nig[0]) self.height_px = self.height * TILESIZE self.width_px = self.width * TILESIZE world_file.close() self.camera = Camera(self.width_px, self.height_px) def draw(self): for tile in self.tiles: self.screen.blit(tile.image, self.camera.apply(tile)) class Tile(pg.sprite.Sprite): def __init__(self, image_filename, adyacent_map_filename, poggers, x, y, map): if not poggers: self.groups = map.tiles, map.all_sprites, map.collidable_tiles else: self.groups = map.tiles, map.all_sprites pg.sprite.Sprite.__init__(self, self.groups) self.map = map self.x_spawn = "" self.y_spawn = "" self.image_filename = "imgs/"+image_filename if adyacent_map_filename != "": self.adyacent_map_filename = adyacent_map_filename.split("-")[0] self.x_spawn = int(adyacent_map_filename.split("-")[1]) self.y_spawn = int(adyacent_map_filename.split("-")[2]) else: self.adyacent_map_filename = "" #poggers indicates whether a tile is walkable or not self.poggers = poggers self.x = x self.y = y self.image = pg.image.load(self.image_filename).convert() self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Camera: def __init__(self, width, height): self.camera = pg.Rect(0, 0, width, height) self.width = width self.height = height def apply(self, entity): return entity.rect.move(self.camera.topleft) def update(self, target): x = -target.rect.x + int(WIDTH / 2) y = -target.rect.y + int(HEIGHT / 2) # limit scrolling to map size x = min(0, x) # left y = min(0, y) # top x = max(-(self.width - WIDTH), x) # right y = max(-(self.height - HEIGHT), y) # bottom self.camera = pg.Rect(x, y, self.width, self.height) class Party: def __init__(self, sprites, screen): self.size = len(sprites) self.sprites = sprites self.leader = self.sprites[0] self.screen = screen def update(self): self.leader.update() for i in range(1, self.size): self.sprites[i].current_direction = self.sprites[i-1].current_direction self.sprites[i].update() self.sprites[i].x = self.sprites[i - 1].past_x self.sprites[i].y = self.sprites[i - 1].past_y self.leader.map.camera.update(self.leader) self.maurisio() def draw(self): self.leader.map.draw() for sprite in self.sprites: self.screen.blit(sprite.image, sprite.map.camera.apply(sprite)) #Verifies if there is a map transition and if there is, the map changes accordingly def maurisio(self): currentTile = self.leader.get_current_tile() if currentTile.adyacent_map_filename != "": #load map new_map = Map(currentTile.adyacent_map_filename, self.screen) for sprite in self.sprites: sprite.map = new_map sprite.groups = sprite.map.all_sprites self.leader.map.load() self.leader.x = currentTile.x_spawn * 64 self.leader.y = currentTile.y_spawn * 64 self.leader.vel = vec(0, 0) def get_opposite_direction(direction: int)->str: return directions[(direction+2)%4]
[ "af.daza@uniandes.edu.co" ]
af.daza@uniandes.edu.co
7558ef959f61600b932cafd5903c0c94216c4bc3
daf1df62c33739637c6c120e499d3e87340b243a
/TSClusteringLayer.py
4e8e18ebbbd728fdd665364129dac2e6decbac5c
[]
no_license
joseph8923/DeepTemporalClustering
914ef38231ff15b0df2feac188152e6263f696a3
79eb2c1dcc4ac5d9bc909ed1e449815a27ff2e4d
refs/heads/master
2021-02-14T02:58:56.084772
2019-07-29T15:05:54
2019-07-29T15:05:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,718
py
""" Implementation of the Deep Temporal Clustering model Time Series Clustering layer @author Florent Forest (FlorentF9) """ from keras.engine.topology import Layer, InputSpec import keras.backend as K class TSClusteringLayer(Layer): """ Clustering layer converts input sample (feature) to soft label, i.e. a vector that represents the probability of the sample belonging to each cluster. The probability is calculated with student's t-distribution. # Arguments n_clusters: number of clusters. weights: list of Numpy array with shape `(n_clusters, timesteps, n_features)` witch represents the initial cluster centers. alpha: parameter in Student's t-distribution. Default to 1.0. dist_metric: distance metric between sequences used in similarity kernel ('eucl', 'cir', 'cor' or 'acf'). # Input shape 3D tensor with shape: `(n_samples, timesteps, n_features)`. # Output shape 2D tensor with shape: `(n_samples, n_clusters)`. """ def __init__(self, n_clusters, weights=None, alpha=1.0, dist_metric='eucl', **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) super(TSClusteringLayer, self).__init__(**kwargs) self.n_clusters = n_clusters self.alpha = alpha self.dist_metric = dist_metric self.initial_weights = weights self.input_spec = InputSpec(ndim=3) self.clusters = None self.built = False def build(self, input_shape): assert len(input_shape) == 3 input_dim = input_shape[2] input_steps = input_shape[1] self.input_spec = InputSpec(dtype=K.floatx(), shape=(None, input_steps, input_dim)) self.clusters = self.add_weight((self.n_clusters, input_steps, input_dim), initializer='glorot_uniform', name='cluster_centers') if self.initial_weights is not None: self.set_weights(self.initial_weights) del self.initial_weights self.built = True def call(self, inputs, **kwargs): """ Student t-distribution kernel, probability of assigning encoded sequence i to cluster k. q_{ik} = (1 + dist(z_i, m_k)^2)^{-1} / normalization. Arguments: inputs: encoded input sequences, shape=(n_samples, timesteps, n_features) Return: q: soft labels for each sample. shape=(n_samples, n_clusters) """ if self.dist_metric == 'eucl': distance = K.sum(K.sqrt(K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2)), axis=-1) elif self.dist_metric == 'cid': ce_x = K.sqrt(K.sum(K.square(inputs[:, 1:, :] - inputs[:, :-1, :]), axis=1)) # shape (n_samples, n_features) ce_w = K.sqrt(K.sum(K.square(self.clusters[:, 1:, :] - self.clusters[:, :-1, :]), axis=1)) # shape (n_clusters, n_features) ce = K.maximum(K.expand_dims(ce_x, axis=1), ce_w) / K.minimum(K.expand_dims(ce_x, axis=1), ce_w) # shape (n_samples, n_clusters, n_features) ed = K.sqrt(K.sum(K.square(K.expand_dims(inputs, axis=1) - self.clusters), axis=2)) # shape (n_samples, n_clusters, n_features) distance = K.sum(ed * ce, axis=-1) # shape (n_samples, n_clusters) elif self.dist_metric == 'cor': inputs_norm = (inputs - K.expand_dims(K.mean(inputs, axis=1), axis=1)) / K.expand_dims(K.std(inputs, axis=1), axis=1) # shape (n_samples, timesteps, n_features) clusters_norm = (self.clusters - K.expand_dims(K.mean(self.clusters, axis=1), axis=1)) / K.expand_dims(K.std(self.clusters, axis=1), axis=1) # shape (n_clusters, timesteps, n_features) pcc = K.mean(K.expand_dims(inputs_norm, axis=1) * clusters_norm, axis=2) # Pearson correlation coefficients distance = K.sum(K.sqrt(2.0 * (1.0 - pcc)), axis=-1) # correlation-based similarities, shape (n_samples, n_clusters) elif self.dist_metric == 'acf': raise NotImplementedError else: raise ValueError('Available distances are eucl, cid, cor and acf!') q = 1.0 / (1.0 + K.square(distance) / self.alpha) q **= (self.alpha + 1.0) / 2.0 q = K.transpose(K.transpose(q) / K.sum(q, axis=1)) return q def compute_output_shape(self, input_shape): assert input_shape and len(input_shape) == 3 return input_shape[0], self.n_clusters def get_config(self): config = {'n_clusters': self.n_clusters, 'dist_metric': self.dist_metric} base_config = super(TSClusteringLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
[ "florent.forest9@gmail.com" ]
florent.forest9@gmail.com
f26e6ea16424c76d1d01b02bc4bee4a3dcb98b47
de7c455d780be5e1d637b1728522e854fbacc99c
/hello.py
467d319cf903ce886d03e11f2349b28b0c4c009e
[]
no_license
aniruddhapalekar/first
68653c1f270de4d26ee8c28e542c3730e80010d3
76da9fe8fb3879ff8855c46f1cf4114ae26d2150
refs/heads/master
2022-11-30T20:16:14.353538
2020-08-07T06:33:03
2020-08-07T06:33:03
285,497,064
0
0
null
2020-08-07T06:33:05
2020-08-06T06:55:48
Python
UTF-8
Python
false
false
47
py
print("hiii") print("hello") print("welcome")
[ "noreply@github.com" ]
aniruddhapalekar.noreply@github.com
66e8990305011b7f2ab0877a826fec6744e91be4
fc6d3281164303abc89dde8f1554622e233ac906
/programs/migrations/0031_auto_20191206_1459.py
09c40c37210572089bc9e41ae24e842c8b55b250
[]
no_license
UCF/Search-Service-Django
46b65fb2ecfa0721f24e2785991b0976fe0f8353
5f2efbff2aae9579ff1a78216ed948f158daa4e4
refs/heads/master
2023-09-02T07:58:16.658821
2023-08-25T15:17:40
2023-08-25T15:17:40
128,795,665
0
0
null
2023-08-04T15:08:48
2018-04-09T15:44:01
Python
UTF-8
Python
false
false
1,089
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.23 on 2019-12-06 14:59 from django.db import migrations, models import django.db.models.deletion from programs.models import ProgramOutcomeStat class Migration(migrations.Migration): dependencies = [ ('programs', '0030_auto_20191205_1727'), ] operations = [ migrations.RunSQL( 'TRUNCATE TABLE `programs_programoutcomestat`', 'TRUNCATE TABLE `programs_programoutcomestat`' ), migrations.RemoveField( model_name='programoutcomestat', name='program', ), migrations.AddField( model_name='program', name='outcomes', field=models.ManyToManyField(related_name='programs', to='programs.ProgramOutcomeStat'), ), migrations.AddField( model_name='programoutcomestat', name='cip', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='outcomes', to='programs.CIP'), preserve_default=False, ), ]
[ "jimbarnesdeveloper@gmail.com" ]
jimbarnesdeveloper@gmail.com
2ddaa2d8860b7299c64a636af17c11fbc5ebfa46
c04acaa6ee9c6a7c365e217bc78039fa9c77833e
/cuzquena/urls.py
785b7ed1280475deaaa389f28b11b64b4deafb40
[]
no_license
danielhuamani/django-la-cuzquena
0386800d640b224d94b0fac2d83f999b60d7da85
a6f4aaf44775b27328d073a65f1d0f50eff51fad
refs/heads/master
2020-12-05T04:51:01.077860
2016-09-17T13:56:58
2016-09-17T13:56:58
67,900,351
0
0
null
null
null
null
UTF-8
Python
false
false
1,190
py
"""cconline URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls import url, include from django.conf.urls.static import static from django.contrib import admin from filebrowser.sites import site urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^summernote/', include('django_summernote.urls')), url(r'^admin/filebrowser/', include(site.urls)), url(r'', include('my_apps.web.urls', namespace='web')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "danielhuamani15@gmail.com" ]
danielhuamani15@gmail.com
8349477f2dc38370be2a6048b4ca40ce366e75e2
f3a4b4c7c39d2ed2959b410367e8abc66493772e
/laplacianFlux/r2_1_0/__init__.py
c64bf8efa3593dcacfa71e4abd9edc4f9e87754b
[]
no_license
asimurzin/laplacianFlux
6800bc5aba29968f7784ce91a5a1503318fad246
83977d5ce967b87ed0203a143d19d88c9a5d7ed7
refs/heads/master
2020-03-29T20:22:44.143734
2012-07-01T19:36:36
2012-07-01T19:36:36
1,613,806
0
0
null
null
null
null
UTF-8
Python
false
false
5,376
py
#!/usr/bin/env python #-------------------------------------------------------------------------------------- ## pythonFlu - Python wrapping for OpenFOAM C++ API ## Copyright (C) 2010- Alexey Petrov ## Copyright (C) 2009-2010 Pebble Bed Modular Reactor (Pty) Limited (PBMR) ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## ## See http://sourceforge.net/projects/pythonflu ## ## Author : Alexey PETROV ## #---------------------------------------------------------------------------- from Foam import ref, man #---------------------------------------------------------------------------- def _createFields( runTime, mesh ): ref.ext_Info() << "Reading field T\n" << ref.nl T = man.volScalarField( man.IOobject( ref.word( "T" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE ), mesh ) ref.ext_Info() << "Reading transportProperties\n" << ref.nl transportProperties = man.IOdictionary( man.IOobject( ref.word( "transportProperties" ), ref.fileName( runTime.constant() ), mesh, ref.IOobject.MUST_READ, ref.IOobject.NO_WRITE ) ) ref.ext_Info() << "Reading diffusivity DT\n" << ref.nl DT = ref.dimensionedScalar( transportProperties.lookup( ref.word( "DT" ) ) ) return T, transportProperties, DT #-------------------------------------------------------------------------------------- def write( runTime, mesh, T ): if runTime.outputTime(): gradT = ref.fvc.grad(T) gradTx = ref.volScalarField( ref.IOobject( ref.word( "gradTx" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE ), gradT.component( ref.vector.X ) ) gradTy = ref.volScalarField( ref.IOobject( ref.word( "gradTy" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE ), gradT.component( ref.vector.Y ) ) gradTz = ref.volScalarField( ref.IOobject( ref.word( "gradTz" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE ), gradT.component( ref.vector.Z ) ) runTime.write() pass #-------------------------------------------------------------------------------------- def main_standalone( argc, argv ): args = ref.setRootCase( argc, argv ) runTime = man.createTime( args ) mesh = man.createMesh( runTime ) T, transportProperties, DT = _createFields( runTime, mesh ) simple = man.simpleControl( mesh ) ref.ext_Info() << "\nCalculating temperature distribution\n" << ref.nl while runTime.loop() : ref.ext_Info() << "Time = " << runTime.timeName() << ref.nl << ref.nl while simple.correctNonOrthogonal(): ref.solve( ref.fvm.ddt( T ) - ref.fvm.laplacian( DT, T ) ) pass write( runTime, mesh, T ) ref.ext_Info() << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << \ " ClockTime = " << runTime.elapsedClockTime() << " s" << ref.nl << ref.nl pass ref.ext_Info() << "End\n" << ref.nl import os return os.EX_OK #-------------------------------------------------------------------------------------- import sys, os from Foam import FOAM_VERSION if FOAM_VERSION( ">=", "020100" ): if __name__ == "__main__" : argv = sys.argv os._exit( main_standalone( len( argv ), argv ) ) pass else: from Foam.OpenFOAM import ext_Info ref.ext_Info()<< "\nTo use this solver, It is necessary to SWIG OpenFoam2.1.0 or higher \n " pass #--------------------------------------------------------------------------------------
[ "asimurzin@gmail.com" ]
asimurzin@gmail.com
5d745f9fd64c2b44a2dd7a0b7c45e43d247a4cc2
1c0509a06cec726735048f00f63d2529f5e43ce6
/code_supermarkets_france/analysis/analysis_qlmc_prices_2007_2012/stats_des/price_frequencies_by_chain.py
b951142551efcfccf3721c6c7e0bf28f2e1fe55d
[]
no_license
etiennecha/master_code
e99c62e93aa052a66d4cdd3f3e3aa25a3aec4880
48821f6c854a1c6aa05cf81b653b3b757212b6f8
refs/heads/master
2021-01-23T14:35:45.904595
2018-03-11T18:57:38
2018-03-11T18:57:38
16,312,906
2
0
null
null
null
null
UTF-8
Python
false
false
9,391
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import add_to_path from add_to_path import path_data from functions_generic_qlmc import * import numpy as np import pandas as pd import statsmodels.api as sm import statsmodels.formula.api as smf pd.set_option('float_format', '{:,.2f}'.format) path_built_csv = os.path.join(path_data, 'data_supermarkets', 'data_built', 'data_qlmc_2007_2012', 'data_csv') # ####################### # LOAD DATA # ####################### # LOAD DF QLMC df_qlmc = pd.read_csv(os.path.join(path_built_csv, 'df_qlmc.csv'), parse_dates = ['date'], dayfirst = True, infer_datetime_format = True, encoding = 'utf-8') # Fix Store_Chain for prelim stats des ls_sc_drop = ['CARREFOUR CITY', 'CARREFOUR CONTACT', 'CARREFOUR PLANET', 'GEANT DISCOUNT', 'HYPER CHAMPION', 'INTERMARCHE HYPER', 'LECLERC EXPRESS', 'MARCHE U', 'U EXPRESS'] df_qlmc = df_qlmc[~df_qlmc['store_chain'].isin(ls_sc_drop)] ls_sc_replace = [('CENTRE E. LECLERC', 'LECLERC'), ('CENTRE LECLERC', 'LECLERC'), ('E. LECLERC', 'LECLERC'), ('E.LECLERC', 'LECLERC'), ('SYSTEME U', 'SUPER U'), ('GEANT', 'GEANT CASINO'), ('CHAMPION', 'CARREFOUR MARKET'), ('INTERMARCHE SUPER', 'INTERMARCHE'), ('HYPER U', 'SUPER U')] for sc_old, sc_new in ls_sc_replace: df_qlmc.loc[df_qlmc['store_chain'] == sc_old, 'store_chain'] = sc_new # ############################################# # PRICE DISTRIBUTION PER CHAIN FOR TOP PRODUCTS # ############################################# PD = PriceDispersion() ls_prod_cols = ['section', 'family', 'product'] store_chain = 'CARREFOUR' # 'CENTRE E.LECLERC' nb_obs_min = 20 # Product must be observed at X stores at least pct_min = 0.33 ls_loop_scs = ['AUCHAN', 'CARREFOUR', 'CARREFOUR MARKET', 'GEANT CASINO', # no CASINO 'CORA', 'INTERMARCHE', 'LECLERC', 'SUPER U'] ls_dict_df_desc = [] ls_dict_df_chain_product_stats = [] ls_dict_df_chain_store_desc = [] for per in range(13): df_qlmc_per = df_qlmc[df_qlmc['period'] == per] dict_ls_se_desc = {'nb_stores_by_prod' : [], 'freq_prods' : [], 'nb_prods_by_store' : [], 'no_ref' : [], 'freq_stores' : []} dict_df_chain_product_stats = {} dict_df_chain_store_desc = {} print() print(u'-'*80) print('Stats on chain prices for period:', per) for store_chain in ls_loop_scs: print() print(u'-'*60) print(store_chain) # Build df with product most common prices df_sub = df_qlmc_per[df_qlmc_per['store_chain'] == store_chain] # Make sure no duplicates at store level ls_sub_dup_cols = ls_prod_cols + ['id_lsa'] df_sub_dup = df_sub[(df_sub.duplicated(ls_sub_dup_cols, take_last = True)) |\ (df_sub.duplicated(ls_sub_dup_cols, take_last = False))] df_sub = df_sub.drop_duplicates(ls_sub_dup_cols) # Build df with product most common prices df_sub_products = df_sub[ls_prod_cols + ['price']]\ .groupby(ls_prod_cols)\ .agg([len, 'mean', PD.kurtosis, PD.skew, PD.price_1, PD.price_1_fq, PD.price_2, PD.price_2_fq])['price'] df_sub_products.columns = [col.replace('PD.', '') for col in df_sub_products.columns] df_sub_products.rename(columns = {'len': 'nb_obs'}, inplace = True) df_sub_products['price_12_fq'] =\ df_sub_products[['price_1_fq', 'price_2_fq']].sum(axis = 1) # Pbm with kurtosis and skew: div by 0 (only one price) # fix (a priori highly degenerate hence not normal) df_sub_products.loc[df_sub_products['kurtosis'].abs() >= 1000, 'kurtosis'] = np.nan df_sub_products.loc[df_sub_products['skew'].abs() >= 1000, 'skew'] = np.nan df_sub_products.reset_index(drop = False, inplace = True) # Keep only products observed at enough stores df_enough_obs = df_sub_products[(df_sub_products['nb_obs'] >= nb_obs_min)] df_ref_price = df_sub_products[(df_sub_products['nb_obs'] >= nb_obs_min) &\ (df_sub_products['price_1_fq'] >= pct_min)] # Save chain product stats dict_df_chain_product_stats[store_chain] = df_enough_obs # Define ref prices and get stats from store viewpoint if len(df_enough_obs) >= 100: print() print(u'Overview at product level') print(df_enough_obs.describe().to_string()) df_enough_obs_desc = df_enough_obs.describe() dict_ls_se_desc['nb_stores_by_prod'].append(df_enough_obs_desc['nb_obs']) dict_ls_se_desc['freq_prods'].append(df_enough_obs_desc['price_1_fq']) print() print(u'Nb prod w/ >= {:d} obs: {:d}'.format(\ nb_obs_min, len(df_enough_obs))) print(u'Nb prod w/ >= {:d} obs and ref price (33%+): {:d} ({:.0f}%)'.format(\ nb_obs_min, len(df_ref_price), len(df_ref_price) / float(len(df_enough_obs)) * 100)) df_sub = pd.merge(df_sub, df_enough_obs, on = ls_prod_cols, how = 'left') # Build df stores accounting for match with ref prices df_sub['ref_price'] = 'diff' df_sub.loc[df_sub['price'] == df_sub['price_1'], 'ref_price'] = 'price_1' df_sub.loc[(df_sub['price'] != df_sub['price_1']) &\ (df_sub['price'] == df_sub['price_2']), 'ref_price'] = 'price_2' df_sub.loc[(df_sub['price_1_fq'] <= pct_min), 'ref_price'] = 'no_ref' df_ref = pd.pivot_table(data = df_sub[['store', 'ref_price']], index = 'store', columns = 'ref_price', aggfunc = len, fill_value = 0).astype(int) try: df_ref_pct = df_ref.apply(lambda x: x / x.sum(), axis = 1) df_ref_pct['nb_obs'] = df_ref.sum(axis = 1).astype(int) if 'no_ref' not in df_ref_pct.columns: df_ref_pct['no_ref'] = 0 # keep only stores with enough procucts df_ref_pct = df_ref_pct[df_ref_pct['nb_obs'] >= 100] print() print(u'Overview at store level:') print(df_ref_pct[['nb_obs', 'no_ref', 'diff', 'price_1', 'price_2']].describe()) df_ref_pct_desc = df_ref_pct.describe() dict_ls_se_desc['nb_prods_by_store'].append(df_ref_pct_desc['nb_obs']) dict_ls_se_desc['no_ref'].append(df_ref_pct_desc['no_ref']) dict_ls_se_desc['freq_stores'].append(df_ref_pct_desc['price_1']) # also save store stats for each chain df_ref_pct.sort('price_1', ascending = False, inplace = True) dict_df_chain_store_desc[store_chain] = df_ref_pct except: print() print(u'Not enough data to display store ref prices') for col in ['nb_prods_by_store', 'no_ref', 'freq_stores']: dict_ls_se_desc[col].append(None) else: for col in ['nb_stores_by_prod', 'freq_prods', 'nb_prods_by_store', 'no_ref', 'freq_stores']: dict_ls_se_desc[col].append(None) dict_df_desc = {k: pd.concat(v, axis = 1, keys = ls_loop_scs)\ for k, v in dict_ls_se_desc.items()} dict_ens_alt_replace = {'CENTRE E.LECLERC' : 'LECLERC', 'INTERMARCHE SUPER' : 'ITM SUP', 'INTERMARCHE HYPER' : 'ITM HYP', 'CARREFOUR MARKET' : 'CAR. MARKET', 'SIMPLY MARKET' : 'SIMPLY'} dict_df_desc = {k: v.rename(columns = dict_ens_alt_replace)\ for k,v in dict_df_desc.items()} ls_dict_df_desc.append(dict_df_desc) ls_dict_df_chain_product_stats.append(dict_df_chain_product_stats) ls_dict_df_chain_store_desc.append(dict_df_chain_store_desc) ls_loop_scs[2] = 'CAR. MARKET' # adhoc fix.. # Freq prods across period for one chain dict_su_chains = {} for var in ['freq_prods', 'freq_stores']: dict_su_chains[var] = {} for store_chain in ls_loop_scs: ls_se_temp = [] for per, dict_df_desc_per in enumerate(ls_dict_df_desc): ls_se_temp.append(dict_df_desc_per[var].get(store_chain)) df_chain_temp = pd.concat(ls_se_temp, axis = 1, keys = range(13)) dict_su_chains[var][store_chain] = df_chain_temp for var in ['freq_prods', 'freq_stores']: print() print(var) for k,v in dict_su_chains[var].items(): print() print(k) print(v.to_string())
[ "echamayou@gmail.com" ]
echamayou@gmail.com
5831ab56e5392aefd10441aafc00ae1ee126998f
0dff864a5ba850fbabde5dba0e84a13babf5681f
/202004/20200407_3.py
e1d7b3a9d6172cb16a68c87eb557b2f34ac748df
[]
no_license
lvwencheng95/PythonProject
3c1d12bd95d55c2c7b9b8d6f6c0f60e5183df3e4
c5ce9a8efb4c8e612c87618fd62a714e73b0997d
refs/heads/master
2020-06-18T08:01:00.471654
2020-04-07T08:22:56
2020-04-07T08:22:56
196,224,528
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
# -*- coding: utf-8 -*- # @Time : 2020/4/7 15:26 # @Author : 52595 # @File : 20200407_3.py # @Python Version : 3.7.4 # @Software: PyCharm from matplotlib import pyplot import matplotlib.pyplot as plt # names = range(8, 21) # names = [str(x) for x in list(names)] names = ['201907', '201908', '201909', '201910', '201911', '201912', '202001', '202002', '202003'] x = range(len(names)) # 残影美食 y_food_drink = [350.68, 1124.1, 560.24, 355.8, 1011.14, 886.57, 611.39, 1000, 192.3] # 日常消费 y_daily_consumption = [772.38, 738.4, 215.53, 1199.85, 509.67, 1185.64, 50.5, 72.52, 221.89] plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签 plt.rcParams['axes.unicode_minus'] = False plt.plot(x, y_food_drink, marker='o', mec='r', mfc='w', label='餐饮美食') plt.plot(x, y_daily_consumption, marker='*', ms=10, label='日常消费') plt.legend() # 让图例生效 plt.xticks(x, names, rotation=1) plt.margins(0) plt.subplots_adjust(bottom=0.10) plt.title("支出情况一览表", fontsize=24, color='black') # 折线图绘制描述描述信息 plt.xlabel('年月') # X轴标签 plt.ylabel("金额") # Y轴标签 plt.show()
[ "525955465@qq.com" ]
525955465@qq.com
6897c6c368b85b0c4c7f74aea9a8d653a4b44983
1895135986a371820c53f75057be6e807a1eb4a4
/com/qa/selenium/Screen.py
53b1303dff26d3ce89cda1abb25af7704e07191d
[]
no_license
zakiya113/Python_Selenium1
f2b81892ca833daf1ce42125fd7ce7cc457a244a
3d19ccab63101dba00b405de02b8e1d682894dbe
refs/heads/master
2020-04-30T06:34:36.535767
2019-03-20T04:55:39
2019-03-20T04:55:39
176,656,049
0
0
null
null
null
null
UTF-8
Python
false
false
574
py
from selenium import webdriver driver = webdriver.Chrome("C:\\Users\\minds9\\PycharmProjects\\Python_Selenium\\drivers\\chromedriver.exe") driver.set_page_load_timeout(30) driver.get("http://www.facebook.com") driver.maximize_window() driver.implicitly_wait(20) driver.get_screenshot_as_file(".\\Screenshots\Facebook.png") driver.find_element_by_id("email").send_keys("Selenium Webdriver") driver.find_element_by_name("pass").send_keys("Python") driver.find_element_by_id("loginbutton").click() driver.get_screenshot_as_file(".\\Screenshots\\Facebook1.png") driver.quit()
[ "zakiya113dodo@gmail.com" ]
zakiya113dodo@gmail.com
6e0518b445b524e1d5be88b9cea4ee3fc99ba89c
21a351e7c8f63cbe5e4745474973673c3b6fd7de
/vast/environments/battle_rendering.py
9dc4a86fdaedc1985bcba880144fad50ed0c92a0
[ "MIT" ]
permissive
yuanleirl/scalable-marl
f4b0dabb8dd669a3bf5bcd3d3e87878a369b3c0f
4fc89472807c9f96e61a152532fd8f5c0d566a55
refs/heads/main
2023-08-31T05:00:34.642822
2021-10-09T23:51:26
2021-10-09T23:51:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,914
py
import pygame WHITE = (255, 255, 255) RED = (255, 0, 0) BLUE = (0, 0, 255) class BattleViewer: def __init__(self, width, height, cell_size=20, fps=30): pygame.init() self.cell_size = cell_size self.width = cell_size*height self.height = cell_size*width self.clock = pygame.time.Clock() self.fps = fps pygame.display.set_caption("Battle Environment") self.screen = pygame.display.set_mode((self.width, self.height)) pygame.event.set_blocked(pygame.MOUSEMOTION) # we do not need mouse movement events def draw_state(self, env): self.screen.fill(WHITE) global_state_array = env.global_state().view(env.global_state_space.shape).detach().numpy() self.draw_matrix(global_state_array[0], RED) self.draw_matrix(global_state_array[1], BLUE) pygame.display.flip() self.clock.tick(self.fps) return self.check_for_interrupt() def draw_matrix(self, matrix, color): for y, row in enumerate(matrix): for x, val in enumerate(row): if val: pygame.draw.rect( self.screen, color, pygame.Rect( y * self.cell_size, x * self.cell_size, self.cell_size, self.cell_size), 0) def check_for_interrupt(self): key_state = pygame.key.get_pressed() for event in pygame.event.get(): if event.type == pygame.QUIT or key_state[pygame.K_ESCAPE]: return True return False def close(self): pygame.quit() def render(env, viewer): if viewer is None: viewer = BattleViewer(env.width, env.height) viewer.draw_state(env) return viewer
[ "thomy.phan@ifi.lmu.de" ]
thomy.phan@ifi.lmu.de
0f58171011c50cb9886c0f3b4139b15515c89952
f7669db87becadb8d995250878cab30a98bfd08d
/airhead/config.py
9f5249ab996cf0157949d56da08a651040b0e3b1
[]
no_license
rand338/airhead
62eadfc65b08361226059c592cd3998923f483b3
deb81bcb1bd21ac1a422e6a3be975e1eb4b8d41a
refs/heads/master
2020-03-21T00:24:44.658982
2017-09-16T11:48:30
2017-09-16T11:48:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
613
py
import os.path from configparser import ConfigParser CONFIG_PATHS = ['.', 'conf/', '~/.config/airhead', '/usr/local/etc/airhead', '/etc/airhead'] def get_config(): for p in CONFIG_PATHS: path = os.path.join(p, 'airhead.ini') if os.path.isfile(path): c = ConfigParser() c.read(path) return c else: raise Exception("Config file 'airhead.ini' not found in any of {}." .format(', '.join(CONFIG_PATHS))) idle_media = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'media', 'idle.ogg')
[ "tancredi.orlando@gmail.com" ]
tancredi.orlando@gmail.com
b35f33b1c5fa59c7037eb5ee5244aac3c84b8d05
51972de0831c0a5ff6c91c8db0e2432709faa187
/trial.py
41eb157d0f5c515ea98d9c875b6fca952309f45b
[]
no_license
zdharmawan/anomaly_detection
9372e13c3f4a3e2922dd3037c68fc059b7cc9d6f
eadec8c851f526a9a7cab09bac03898b6dfe2b8b
refs/heads/master
2016-08-04T10:08:30.512526
2015-04-29T14:55:14
2015-04-29T14:55:14
34,800,118
2
1
null
null
null
null
UTF-8
Python
false
false
283
py
__author__ = '310176470' import lsanomaly import numpy as np X_train = np.array([[1.1],[1.3],[1.2],[1.05]]) X_test = np.array([[1.15],[3.6],[1.25]]) anomalymodel = lsanomaly.LSAnomaly() anomalymodel.fit(X_train) anomalymodel.predict(X_test) # anomalymodel.predict_proba(X_test)
[ "zulfikar.dharmawan@philips.com" ]
zulfikar.dharmawan@philips.com
c704dc8239367ec34f87e6ed7a1b9b4cab9f82cf
99c32a9df1e0e8c980b5235395eb957aaa898270
/insert-sort.py
abaa1e2393793c2acd834e64bfffec992aa297b7
[]
no_license
syswipe/IntroToAlgorithms
3df7b5ba032df461ac01a76956b9c723f7f6dec7
f1465d33d93d82812093218bb28b6d2b5e2df5bc
refs/heads/master
2021-01-10T03:15:20.548139
2016-03-05T12:06:31
2016-03-05T12:06:31
53,199,518
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
import random; import time; A = [random.randint(0,1000) for r in range(5000)] start = time.time() for j in range(1,len(A)): key = A[j] i = j-1 while i >= 0 and A[i] > key: A[i+1] = A[i] i = i-1 A[i+1] = key print(time.time()-start)
[ "Andriy.Tovstik@sibis.com.ua" ]
Andriy.Tovstik@sibis.com.ua
2adedf278e328a544301becf3a184d5bb2ccbfa4
8d0651b62a23e110d2e6f27706e965bfe6526629
/email_service/apps/api/urls.py
a88c97b3812bb84b94d273341043a8fa0e5ed1dc
[]
no_license
pavitrabhalla/GoMail
4ae5c850c824910b7fbe99f61e8a2683d90f5fa3
847d1d1859d94c727ecc45e65e71f459a11facec
refs/heads/master
2020-05-16T21:50:13.911849
2014-12-03T20:25:25
2014-12-03T20:25:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
from django.conf.urls import patterns, url, include from tastypie.api import Api from api import resources v1_api = Api(api_name='v1') v1_api.register(resources.EmailResource()) urlpatterns = patterns( '', url(r'', include(v1_api.urls)), )
[ "pavitrabhalla@gmail.com" ]
pavitrabhalla@gmail.com
2f2795d2f4ef0b35986e39c56b616b06e48b7a83
ca26f30fd3943571667fe867303257023ae792e5
/backend/config/settings/prod.py
18b38b4c270d57c76a384b7ffd4039885cc2fb5f
[ "MIT" ]
permissive
yegorLitvinov/costcontrol
d6ad2cadf662980feacbb50a9e532b8c73a9198a
f3c9316ea0c9e7f2509087dabdbe7f1cf5fe2d80
refs/heads/master
2021-06-25T07:05:41.866976
2018-11-11T16:36:14
2018-11-11T16:36:14
107,854,768
0
0
MIT
2020-02-11T21:47:00
2017-10-22T10:01:53
Python
UTF-8
Python
false
false
175
py
from .base import * # noqa DEBUG = False ALLOWED_HOSTS = [".tvgun.ga"] REST_FRAMEWORK["DEFAULT_RENDERER_CLASSES"] = ( # noqa "rest_framework.renderers.JSONRenderer", )
[ "yegor.litvinov@yandex.ru" ]
yegor.litvinov@yandex.ru
4c3c4653d161070cd11d9e357edc491a3cccf5d3
6149d8235e8017d7ed80ed4c6efad2d6dc872fa6
/core/teacher.py
0a352da3aa9c8ad897ddbeeb1b40fdfa87c0d93e
[]
no_license
MrChenxb/CourseSystems
5d76a2e1439d2a16fdc63565445261df3395fa03
3f94032ea32b1aa1aa3d1781fdc437c51026088c
refs/heads/master
2022-12-26T14:24:36.179881
2020-09-26T14:55:34
2020-09-26T14:55:34
200,806,010
0
0
null
null
null
null
UTF-8
Python
false
false
6,283
py
# coding:utf-8 """ 教师视图 """ from lib import common from interface import common_interface from interface import teacher_interface teacher_info = { 'user': None } # 1.教师登录 def login(): while True: username = input('请输入用户名==>').strip() password = input('请输入密码==>').strip() flag,msg = common_interface.login_interface(username,password,user_type='teacher') if flag: print(msg) teacher_info['user'] = username break else: print(msg) # 2.教师查看教授课程 @common.auth('teacher') def check_course(): flag,course_list = teacher_interface.check_course_interface(teacher_info['user']) if flag: print(course_list) else: print(course_list) # 3.教师选择教授课程 @common.auth('teacher') def choice_course(): while True: flag,school_list = common_interface.get_all_school_interface() if not flag: print(school_list) break for index,school_name in enumerate(school_list): print(f'学校编号为:[{index}], 学校名称为:[{school_name}]') choice = input('请输入选择的学校编号==>').strip() if not choice.isdigit(): print('输入有误!') continue choice = int(choice) if choice not in range(len(school_list)): print('输入有误!') continue school_name = school_list[choice] flag2,course_list = common_interface.get_course_in_school_interface(school_name) if not flag2: print(course_list) break for index2,course_name in enumerate(course_list): print(f'课程编号为:[{index2}], 课程名称为:[{course_name}]') choice2 = input('请输入选择的课程编号==>').strip() if not choice2.isdigit(): print('输入有误!') continue choice2 = int(choice2) if choice2 not in range(len(course_list)): print('输入课程编号有误!') continue course_name = course_list[choice2] flag3,msg = teacher_interface.add_course_interface(course_name,teacher_info['user']) if flag3: print(msg) break else: print(msg) # 4.教师查看课程下学生 @common.auth('teacher') def check_stu_from_course(): while True: flag,course_list = teacher_interface.check_course_interface(teacher_info['user']) if not flag: print(course_list) break for index,course_name in enumerate(course_list): print(f'课程编号为:[{index}], 课程名称为:[{course_name}]') choice = input('请输入选择的课程编号==>').strip() if not choice.isdigit(): print('输入有误!') continue choice = int(choice) if choice not in range(len(course_list)): print('输入课程编号有误!') continue course_name = course_list[choice] flag, student_list = teacher_interface.get_student_interface(course_name, teacher_info['user']) if flag: print(student_list) break else: print(student_list) break # 5.教师修改学生分数 @common.auth('teacher') def change_score_from_student(): """ # 1.先获取老师下所有的课程并选择 # 2.获取课程下所有的学生,并选择修改的学生 # 3.调用修改学生分数接口 """ while True: flag,course_list = teacher_interface.check_course_interface(teacher_info['user']) if not flag: print(course_list) break for index,course_name in enumerate(course_list): print(f'课程编号为:[{index}], 课程名称为:[{course_name}]') choice = input('请输入选择的课程编号==>').strip() if not choice.isdigit(): print('输入有误!') continue choice = int(choice) if choice not in range(len(course_list)): print('输入课程编号有误!') continue course_name = course_list[choice] flag2, student_list = teacher_interface.get_student_interface(course_name,teacher_info['user']) if not flag2: print(student_list) break for index,stu_name in enumerate(student_list): print(f'学生编号为:[{index}], 学校姓名为:[{stu_name}]') choice_stu = input('请输入学生编号==>').strip() if not choice_stu.isdigit(): print('输入有误!') continue choice_stu = int(choice_stu) if choice_stu not in range(len(student_list)): print('输入学生编号有误!') continue stu_name = student_list[choice_stu] score = input('请输入修改的成绩==>').strip() if not score.isdigit(): print('输入成绩有误!') continue score = int(score) flag3,msg = teacher_interface.change_score_interface( course_name, stu_name, score, teacher_info['user'] ) if flag3: print(msg) break pass teacher_func = { '0': ['退出', None], '1': ['登录', login], '2': ['查看教授课程', check_course], '3': ['选择教授课程', choice_course], '4': ['查看课程下学生', check_stu_from_course], '5': ['修改学生分数', change_score_from_student], } def teacher_view(): while True: print(' 欢迎来到教师视图 '.center(30,'=')) for index,func in teacher_func.items(): print('[%s] %s' %(index,func[0])) print(' end '.center(30,'=')) choice = input('请输入功能编号==>').strip() if choice not in teacher_func: print('请输入正确的功能编号') continue if choice == '0': break teacher_func[choice][1]()
[ "noreply@github.com" ]
MrChenxb.noreply@github.com
65cfea757b79f26ab21b2421104ae09aafaad1b2
cc552092965db97a3e8167983e835394c5605290
/models/user.py
d6b15e6b08776aae4713f6f2a6cf898f246cb9c6
[]
no_license
dinkdinkdink/bbs_server
709ec2609a1df6abd39b45bf627cc88557be0895
0e4454a27296e9d4bfbe658c4c0560dfa3b65ab7
refs/heads/master
2020-07-21T08:54:31.965376
2020-03-06T02:17:57
2020-03-06T02:17:57
206,784,847
0
0
null
null
null
null
UTF-8
Python
false
false
1,537
py
import hashlib from sqlalchemy import Column, String, Text import config import secret from models.base_model import SQLMixin, db class User(SQLMixin, db.Model): __tablename__ = 'User' """ User 是一个保存用户数据的 model 现在只有两个属性 username 和 password """ username = Column(String(50), nullable=False) password = Column(String(100), nullable=False) image = Column(String(100), nullable=False, default='/images/3.jpg') email = Column(String(50), nullable=False, default=config.test_mail) @staticmethod def salted_password(password, salt='$!@><?>HUI&DWQa`'): salted = hashlib.sha256((password + salt).encode('ascii')).hexdigest() return salted @classmethod def register(cls, form): name = form.get('username', '') print('register', form) if len(name) > 2 and User.one(username=name) is None: # 错误,只应该 commit 一次 # u = User.new(form) # u.password = u.salted_password(pwd) # User.session.add(u) # User.session.commit() form['password'] = User.salted_password(form['password']) u = User.new(form) return u else: return None @classmethod def validate_login(cls, form): query = dict( username=form['username'], password=User.salted_password(form['password']), ) print('validate_login', form, query) return User.one(**query)
[ "361046367@qq.com" ]
361046367@qq.com
05039b0c5332b0128f70966e5b307b310bc1377b
c36b9b30dc31b0008580f18dd6ec9fa76d92d8eb
/Data_Science_Python/Applied_Text_Mining_in_Python/Assignment4.py
945f8a082cb6422f303bcf37b4214f43e82d013d
[ "MIT" ]
permissive
SebastVR/test
027f81320c309eb6e30c5d7098d95cacf9d755b9
b86bd5457347a200d0920213c6a2eccbc3915696
refs/heads/master
2022-11-08T23:18:57.770282
2020-06-29T22:31:17
2020-06-29T22:31:17
264,340,257
1
0
null
null
null
null
UTF-8
Python
false
false
14,635
py
'''Assignment 4 - Document Similarity & Topic Modelling Part 1 - Document Similarity For the first part of this assignment, you will complete the functions doc_to_synsets and similarity_score which will be used by document_path_similarity to find the path similarity between two documents. The following functions are provided: convert_tag: converts the tag given by nltk.pos_tag to a tag used by wordnet.synsets. You will need to use this function in doc_to_synsets. document_path_similarity: computes the symmetrical path similarity between two documents by finding the synsets in each document using doc_to_synsets, then computing similarities using similarity_score. You will need to finish writing the following functions: doc_to_synsets: returns a list of synsets in document. This function should first tokenize and part of speech tag the document using nltk.word_tokenize and nltk.pos_tag. Then it should find each tokens corresponding synset using wn.synsets(token, wordnet_tag). The first synset match should be used. If there is no match, that token is skipped. similarity_score: returns the normalized similarity score of a list of synsets (s1) onto a second list of synsets (s2). For each synset in s1, find the synset in s2 with the largest similarity value. Sum all of the largest similarity values together and normalize this value by dividing it by the number of largest similarity values found. Be careful with data types, which should be floats. Missing values should be ignored. Once doc_to_synsets and similarity_score have been completed, submit to the autograder which will run test_document_path_similarity to test that these functions are running correctly. Do not modify the functions convert_tag, document_path_similarity, and test_document_path_similarity.''' import numpy as np import nltk from nltk.corpus import wordnet as wn import pandas as pd def convert_tag(tag): """Convert the tag given by nltk.pos_tag to the tag used by wordnet.synsets""" tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'} try: return tag_dict[tag[0]] except KeyError: return None def doc_to_synsets(doc): """ Returns a list of synsets in document. Tokenizes and tags the words in the document doc. Then finds the first synset for each word/tag combination. If a synset is not found for that combination it is skipped. Args: doc: string to be converted Returns: list of synsets Example: doc_to_synsets('Fish are nvqjp friends.') Out: [Synset('fish.n.01'), Synset('be.v.01'), Synset('friend.n.01')] """ token = nltk.word_tokenize(doc) word_tag = nltk.pos_tag(token) synsets = [] for word, tag in word_tag: tag = convert_tag(tag) synset = wn.synsets(word, pos=tag) if len(synset) != 0: synsets.append(synset[0]) else: continue return synsets def similarity_score(s1, s2): """ Calculate the normalized similarity score of s1 onto s2 For each synset in s1, finds the synset in s2 with the largest similarity value. Sum of all of the largest similarity values and normalize this value by dividing it by the number of largest similarity values found. Args: s1, s2: list of synsets from doc_to_synsets Returns: normalized similarity score of s1 onto s2 Example: synsets1 = doc_to_synsets('I like cats') synsets2 = doc_to_synsets('I like dogs') similarity_score(synsets1, synsets2) Out: 0.73333333333333339 """ largest_similarity_values = [] for syn1 in s1: similarity_values =[] for syn2 in s2: sim_val = wn.path_similarity(syn1, syn2) if sim_val is not None: similarity_values.append(sim_val) if len(similarity_values) != 0: largest_similarity_values.append(max(similarity_values)) return sum(largest_similarity_values) / len(largest_similarity_values) def document_path_similarity(doc1, doc2): """Finds the symmetrical similarity between doc1 and doc2""" synsets1 = doc_to_synsets(doc1) synsets2 = doc_to_synsets(doc2) return (similarity_score(synsets1, synsets2) + similarity_score(synsets2, synsets1)) / 2 #----------------------------------------------------------------------- '''test_document_path_similarity Use this function to check if doc_to_synsets and similarity_score are correct. This function should return the similarity score as a float.''' #---------- ANSWER CODE ---------- def test_document_path_similarity(): doc1 = 'This is a function to test document_path_similarity.' doc2 = 'Use this function to see if your code in doc_to_synsets \ and similarity_score is correct!' return document_path_similarity(doc1, doc2) test_document_path_similarity() #---------- ANSWER ---------- 0.554265873015873 #----------------------------------------------------------------------- '''paraphrases is a DataFrame which contains the following columns: Quality, D1, and D2. Quality is an indicator variable which indicates if the two documents D1 and D2 are paraphrases of one another (1 for paraphrase, 0 for not paraphrase).''' # Use this dataframe for questions most_similar_docs and label_accuracy paraphrases = pd.read_csv('paraphrases.csv') paraphrases.head() Quality D1 D2 0 1 Ms Stewart, the chief executive, was not expec... Ms Stewart, 61, its chief executive officer an... 1 1 After more than two years' detention under the... After more than two years in detention by the ... 2 1 "It still remains to be seen whether the reven... "It remains to be seen whether the revenue rec... 3 0 And it's going to be a wild ride," said Allan ... Now the rest is just mechanical," said Allan H... 4 1 The cards are issued by Mexico's consulates to... The card is issued by Mexico's consulates to i... '''most_similar_docs Using document_path_similarity, find the pair of documents in paraphrases which has the maximum similarity score. This function should return a tuple (D1, D2, similarity_score)''' #---------- ANSWER CODE ---------- def most_similar_docs(): # true_paraphrases = paraphrases.loc[paraphrases['Quality'] == 1] temp = paraphrases.copy() temp['similarity'] = temp.apply(lambda row: document_path_similarity(row['D1'], row['D2']), axis=1) result = temp.loc[temp['similarity'] == temp['similarity'].max()].squeeze().values return result[1], result[2], result[3] most_similar_docs() #---------- ANSWER ---------- ('"Indeed, Iran should be put on notice that efforts to try to remake Iraq in their image will be aggressively put down," he said.', '"Iran should be on notice that attempts to remake Iraq in Iran\'s image will be aggressively put down," he said.\n', 0.9753086419753086) #----------------------------------------------------------------------- '''label_accuracy Provide labels for the twenty pairs of documents by computing the similarity for each pair using document_path_similarity. Let the classifier rule be that if the score is greater than 0.75, label is paraphrase (1), else label is not paraphrase (0). Report accuracy of the classifier using scikit-learn's accuracy_score. This function should return a float.''' #---------- ANSWER CODE ---------- def label_accuracy(): from sklearn.metrics import accuracy_score def get_label(row): if row['similarity'] > 0.75: row['label'] = 1 else: row['label'] = 0 return row temp = paraphrases.copy() temp['similarity'] = temp.apply(lambda row: document_path_similarity(row['D1'], row['D2']), axis=1) temp = temp.apply(get_label, axis=1) score = accuracy_score(temp['Quality'], temp['label']) return score label_accuracy() #---------- ANSWER ---------- 0.8 #----------------------------------------------------------------------- '''Part 2 - Topic Modelling For the second part of this assignment, you will use Gensim's LDA (Latent Dirichlet Allocation) model to model topics in newsgroup_data. You will first need to finish the code in the cell below by using gensim.models.ldamodel.LdaModel constructor to estimate LDA model parameters on the corpus, and save to the variable ldamodel. Extract 10 topics using corpus and id_map, and with passes=25 and random_state=34.''' import pickle import gensim from sklearn.feature_extraction.text import CountVectorizer #from gensim import corpora, models, similatities # Load the list of documents with open('newsgroups', 'rb') as f: newsgroup_data = pickle.load(f) # Use CountVectorizor to find three letter tokens, remove stop_words, # remove tokens that don't appear in at least 20 documents, # remove tokens that appear in more than 20% of the documents vect = CountVectorizer(min_df=20, max_df=0.2, stop_words='english', token_pattern='(?u)\\b\\w\\w\\w+\\b') # Fit and transform X = vect.fit_transform(newsgroup_data) # Convert sparse matrix to gensim corpus. corpus = gensim.matutils.Sparse2Corpus(X, documents_columns=False) # Mapping from word IDs to words (To be used in LdaModel's id2word parameter) id_map = dict((v, k) for k, v in vect.vocabulary_.items()) #----------------------------------------------------------------------- # Use the gensim.models.ldamodel.LdaModel constructor to estimate # LDA model parameters on the corpus, and save to the variable `ldamodel` # Your code here: ldamodel = gensim.models.ldamodel.LdaModel(corpus=corpus, num_topics=10, id2word=id_map, passes=25, random_state=34) lda_topics Using ldamodel, find a list of the 10 topics and the most significant 10 words in each topic. This should be structured as a list of 10 tuples where each tuple takes on the form: (9, '0.068*"space" + 0.036*"nasa" + 0.021*"science" + 0.020*"edu" + 0.019*"data" + 0.017*"shuttle" + 0.015*"launch" + 0.015*"available" + 0.014*"center" + 0.014*"sci"') for example. This function should return a list of tuples. #---------- ANSWER CODE ---------- def lda_topics(): return ldamodel.print_topics() lda_topics() #---------- ANSWER ---------- ''' [(0, '0.056*"edu" + 0.043*"com" + 0.033*"thanks" + 0.022*"mail" + 0.021*"know" + 0.020*"does" + 0.014*"info" + 0.012*"monitor" + 0.010*"looking" + 0.010*"don"'), (1, '0.024*"ground" + 0.018*"current" + 0.018*"just" + 0.013*"want" + 0.013*"use" + 0.011*"using" + 0.011*"used" + 0.010*"power" + 0.010*"speed" + 0.010*"output"'), (2, '0.061*"drive" + 0.042*"disk" + 0.033*"scsi" + 0.030*"drives" + 0.028*"hard" + 0.028*"controller" + 0.027*"card" + 0.020*"rom" + 0.018*"floppy" + 0.017*"bus"'), (3, '0.023*"time" + 0.015*"atheism" + 0.014*"list" + 0.013*"left" + 0.012*"alt" + 0.012*"faq" + 0.012*"probably" + 0.011*"know" + 0.011*"send" + 0.010*"months"'), (4, '0.025*"car" + 0.016*"just" + 0.014*"don" + 0.014*"bike" + 0.012*"good" + 0.011*"new" + 0.011*"think" + 0.010*"year" + 0.010*"cars" + 0.010*"time"'), (5, '0.030*"game" + 0.027*"team" + 0.023*"year" + 0.017*"games" + 0.016*"play" + 0.012*"season" + 0.012*"players" + 0.012*"win" + 0.011*"hockey" + 0.011*"good"'), (6, '0.017*"information" + 0.014*"help" + 0.014*"medical" + 0.012*"new" + 0.012*"use" + 0.012*"000" + 0.012*"research" + 0.011*"university" + 0.010*"number" + 0.010*"program"'), (7, '0.022*"don" + 0.021*"people" + 0.018*"think" + 0.017*"just" + 0.012*"say" + 0.011*"know" + 0.011*"does" + 0.011*"good" + 0.010*"god" + 0.009*"way"'), (8, '0.034*"use" + 0.023*"apple" + 0.020*"power" + 0.016*"time" + 0.015*"data" + 0.015*"software" + 0.012*"pin" + 0.012*"memory" + 0.012*"simms" + 0.011*"port"'), (9, '0.068*"space" + 0.036*"nasa" + 0.021*"science" + 0.020*"edu" + 0.019*"data" + 0.017*"shuttle" + 0.015*"launch" + 0.015*"available" + 0.014*"center" + 0.014*"sci"')]''' #----------------------------------------------------------------------- '''topic_distribution For the new document new_doc, find the topic distribution. Remember to use vect.transform on the the new doc, and Sparse2Corpus to convert the sparse matrix to gensim corpus. This function should return a list of tuples, where each tuple is (#topic, probability)''' new_doc = ["\n\nIt's my understanding that the freezing will start to occur because \ of the\ngrowing distance of Pluto and Charon from the Sun, due to it's\nelliptical orbit. \ It is not due to shadowing effects. \n\n\nPluto can shadow Charon, and vice-versa.\n\nGeorge \ Krumins\n-- "] #---------- ANSWER CODE ---------- def topic_distribution(): new_doc_vectorized = vect.transform(new_doc) doc2corpus = gensim.matutils.Sparse2Corpus(new_doc_vectorized, documents_columns=False) return list(ldamodel.get_document_topics(doc2corpus))[0] topic_distribution() #---------- ANSWER ---------- ''' [(0, 0.020003108), (1, 0.020003324), (2, 0.020001281), (3, 0.49674758), (4, 0.020004038), (5, 0.020004129), (6, 0.020002972), (7, 0.020002645), (8, 0.020003129), (9, 0.34322783)]''' #----------------------------------------------------------------------- '''topic_names From the list of the following given topics, assign topic names to the topics you found. If none of these names best matches the topics you found, create a new 1-3 word "title" for the topic. Topics: Health, Science, Automobiles, Politics, Government, Travel, Computers & IT, Sports, Business, Society & Lifestyle, Religion, Education. This function should return a list of 10 strings.''' #---------- ANSWER CODE ---------- def topic_names(): topic_names = ['Health', 'Automobiles', 'Government', 'Travel', 'Computers & IT', 'Sports', 'Business', 'Society & Lifestyle', 'Region', 'Education'] topics = lda_topics() results = [] for _, dis in topics: print(dis) similarity = [] for topic in topic_names: similarity.append(document_path_similarity(dis, topic)) best_topic = sorted(zip(similarity, topic_names))[-1][1] results.append(best_topic) return ['Education', 'Business', 'Automobiles', 'Religion', 'Travel', 'Sports', 'Health', 'Society & Lifestyle', 'Computers & IT', 'Science'] topic_names() #---------- ANSWER ---------- ['Education', 'Business', 'Automobiles', 'Religion', 'Travel', 'Sports', 'Health', 'Society & Lifestyle', 'Computers & IT', 'Science'] #-----------------------------------------------------------------------
[ "sebastianvr92@hotmail.com" ]
sebastianvr92@hotmail.com
6c6be5bb613ab1ba748008cf64ecb99a72b2ea86
814fd0bea5bc063a4e34ebdd0a5597c9ff67532b
/build/android/pylib/utils/mock_calls_test.py
1b474afd1ea1707910b1716170ec0f65c1c87e17
[ "BSD-3-Clause" ]
permissive
rzr/chromium-crosswalk
1b22208ff556d69c009ad292bc17dca3fe15c493
d391344809adf7b4f39764ac0e15c378169b805f
refs/heads/master
2021-01-21T09:11:07.316526
2015-02-16T11:52:21
2015-02-16T11:52:21
38,887,985
0
0
NOASSERTION
2019-08-07T21:59:20
2015-07-10T15:35:50
C++
UTF-8
Python
false
false
5,078
py
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Unit tests for the contents of mock_calls.py. """ import logging import os import sys import unittest from pylib import constants from pylib.utils import mock_calls sys.path.append(os.path.join( constants.DIR_SOURCE_ROOT, 'third_party', 'pymock')) import mock # pylint: disable=F0401 class _DummyAdb(object): def __str__(self): return '0123456789abcdef' def Push(self, host_path, device_path): logging.debug('(device %s) pushing %r to %r', self, host_path, device_path) def IsOnline(self): logging.debug('(device %s) checking device online', self) return True def Shell(self, cmd): logging.debug('(device %s) running command %r', self, cmd) return "nice output\n" def Reboot(self): logging.debug('(device %s) rebooted!', self) class TestCaseWithAssertCallsTest(mock_calls.TestCase): def setUp(self): self.adb = _DummyAdb() def ShellError(self): def action(cmd): raise ValueError('(device %s) command %r is not nice' % (self.adb, cmd)) return action def get_answer(self): logging.debug("called 'get_answer' of %r object", self) return 42 def echo(self, thing): logging.debug("called 'echo' of %r object", self) return thing def testCallTarget_succeds(self): self.assertEquals(self.adb.Shell, self.call_target(self.call.adb.Shell)) def testCallTarget_failsExternal(self): with self.assertRaises(ValueError): self.call_target(mock.call.sys.getcwd) def testCallTarget_failsUnknownAttribute(self): with self.assertRaises(AttributeError): self.call_target(self.call.adb.Run) def testCallTarget_failsIntermediateCalls(self): with self.assertRaises(AttributeError): self.call_target(self.call.adb.RunShell('cmd').append) def testPatchCall_method(self): self.assertEquals(42, self.get_answer()) with self.patch_call(self.call.get_answer, return_value=123): self.assertEquals(123, self.get_answer()) self.assertEquals(42, self.get_answer()) def testPatchCall_attribute_method(self): with self.patch_call(self.call.adb.Shell, return_value='hello'): self.assertEquals('hello', self.adb.Shell('echo hello')) def testPatchCall_global(self): with self.patch_call(mock.call.os.getcwd, return_value='/some/path'): self.assertEquals('/some/path', os.getcwd()) def testPatchCall_withSideEffect(self): with self.patch_call(self.call.adb.Shell, side_effect=ValueError): with self.assertRaises(ValueError): self.adb.Shell('echo hello') def testAssertCalls_succeeds_simple(self): self.assertEquals(42, self.get_answer()) with self.assertCall(self.call.get_answer(), 123): self.assertEquals(123, self.get_answer()) self.assertEquals(42, self.get_answer()) def testAssertCalls_succeeds_multiple(self): with self.assertCalls( (mock.call.os.getcwd(), '/some/path'), (self.call.echo('hello'), 'hello'), (self.call.get_answer(), 11), self.call.adb.Push('this_file', 'that_file'), (self.call.get_answer(), 12)): self.assertEquals(os.getcwd(), '/some/path') self.assertEquals('hello', self.echo('hello')) self.assertEquals(11, self.get_answer()) self.adb.Push('this_file', 'that_file') self.assertEquals(12, self.get_answer()) def testAsserCalls_succeeds_withAction(self): with self.assertCall( self.call.adb.Shell('echo hello'), self.ShellError()): with self.assertRaises(ValueError): self.adb.Shell('echo hello') def testAssertCalls_fails_tooManyCalls(self): with self.assertRaises(AssertionError): with self.assertCalls(self.call.adb.IsOnline()): self.adb.IsOnline() self.adb.IsOnline() def testAssertCalls_fails_tooFewCalls(self): with self.assertRaises(AssertionError): with self.assertCalls(self.call.adb.IsOnline()): pass def testAssertCalls_succeeds_extraCalls(self): # we are not watching Reboot, so the assertion succeeds with self.assertCalls(self.call.adb.IsOnline()): self.adb.IsOnline() self.adb.Reboot() def testAssertCalls_fails_extraCalls(self): self.watchCalls([self.call.adb.Reboot]) # this time we are also watching Reboot, so the assertion fails with self.assertRaises(AssertionError): with self.assertCalls(self.call.adb.IsOnline()): self.adb.IsOnline() self.adb.Reboot() def testAssertCalls_succeeds_NoCalls(self): self.watchMethodCalls(self.call.adb) # we are watching all adb methods with self.assertCalls(): pass def testAssertCalls_fails_NoCalls(self): self.watchMethodCalls(self.call.adb) with self.assertRaises(AssertionError): with self.assertCalls(): self.adb.IsOnline() if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) unittest.main(verbosity=2)
[ "commit-bot@chromium.org" ]
commit-bot@chromium.org
178ebfab22130821e12bb8c9157a0436f54acf48
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/109/usersdata/172/63370/submittedfiles/av2_p3_civil.py
4c68528d682769ee8dc9310c3e74e069e24ca4aa
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
# -*- coding: utf-8 -*- import numpy as np def somal(l,i): soma=0 for j in range(0,l.shape[1],1): soma=soma+l[i,j] return (soma) def somac(l,j): soma=0 for i in range(0,l.shape[0],1): soma=soma+l[i,j] return (soma) n=int(input('Tamanho: ')) g=int(input('Pl: ')) h=int(input('Pc: ')) l=np.zeros((n,n)) for i in range(0,l.shape[0],1): for j in range(0,l.shape[1],1): l[i,j]= int(input(' peso: ')) fim=somal(l,g)+somac(l,h)-(2*(l[g,h])) print(fim)
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
ed4429de5fa5b3ff588985d9a1e290aecd09db58
94e5a9e157d3520374d95c43fe6fec97f1fc3c9b
/Codeforces/645-2/D.py
1cdb17b8cded5242da9e41bde63c9668ab30c4c2
[ "MIT" ]
permissive
dipta007/Competitive-Programming
0127c550ad523884a84eb3ea333d08de8b4ba528
998d47f08984703c5b415b98365ddbc84ad289c4
refs/heads/master
2021-01-21T14:06:40.082553
2020-07-06T17:40:46
2020-07-06T17:40:46
54,851,014
8
4
null
2020-05-02T13:14:41
2016-03-27T22:30:02
C++
UTF-8
Python
false
false
3,459
py
""" Python 3 compatibility tools. """ from __future__ import division, print_function import itertools import sys import os from io import BytesIO, IOBase if sys.version_info[0] < 3: input = raw_input range = xrange filter = itertools.ifilter map = itertools.imap zip = itertools.izip def is_it_local(): script_dir = str(os.getcwd()).split('/') username = "dipta007" return username in script_dir def READ(fileName): if is_it_local(): sys.stdin = open(f'./{fileName}', 'r') # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") if not is_it_local(): sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion def input1(type=int): return type(input()) def input2(type=int): [a, b] = list(map(type, input().split())) return a, b def input3(type=int): [a, b, c] = list(map(type, input().split())) return a, b, c def input_array(type=int): return list(map(type, input().split())) def input_string(): s = input() return list(s) ############################################################## n, m, ar = 0, 0, [] month_day = [] cum_month_day = [] cum_days = [] def end_here(ind): low = 0 high = ind while low <= high: mid = (low + high) // 2 if cum_days[ind] - cum_days[mid] >= m: res = mid low = mid + 1 else: high = mid - 1 now = cum_days[ind] - cum_days[res] besi = now - m # print(ind, res, now, besi) return (cum_month_day[ind] - cum_month_day[res] - (besi * (besi + 1)) // 2) def main(): global n, m, ar, month_day, cum_days, cum_month_day n, m = input2() ar = input_array() month_day = [(n * (n+1)) // 2 for n in ar] month_day += month_day ar += ar cum_month_day = [0] cum_days = [0] for i in range(n+n): cum_month_day.append(cum_month_day[-1] + month_day[i]) cum_days.append(cum_days[-1] + ar[i]) # print(ar, month_day, cum_month_day, cum_days) res = 0 for i in range(n+1, n+n+1): res = max(res, end_here(i)) print(res) pass if __name__ == '__main__': READ('in.txt') main()
[ "iamdipta@gmail.com" ]
iamdipta@gmail.com
2ac2f93f67aa2523a54140f3d629ab0f15276ab4
7df8f84828213b7bdada74f512a123cd08bf4a1c
/gui_basic/12_frame.py
64a28146781c689f3031f5b69a6e7005e01105c9
[]
no_license
Every-J/Python
87fd4eb7aeb0389edbbfa4012c64d248d0aff11c
cfdc591c67764dd128797f9d7ba644b1ea53e1cb
refs/heads/main
2023-08-25T03:50:25.501524
2021-10-27T01:20:07
2021-10-27T01:20:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
from tkinter import * root = Tk() root.title("Nado GUI") root.geometry("640x480") # 가로 * 세로 Label(root, text="메뉴를 선택해 주세요").pack(side="top") Button(root, text="주문하기").pack(side="bottom") # 메뉴 프레임 frame_burger = Frame(root, relief="solid", bd=1) frame_burger.pack(side="left", fill="both", expand=True) Button(frame_burger, text="햄버거").pack() Button(frame_burger, text="치즈버거").pack() Button(frame_burger, text="치킨버거").pack() # 음료 프레임 frame_drink = LabelFrame(root, text="음료") frame_drink.pack(side="right", fill="both", expand=True) Button(frame_drink, text="콜라").pack() Button(frame_drink, text="사이다").pack() root.mainloop()
[ "noreply@github.com" ]
Every-J.noreply@github.com
4a5f20033b2ce926b8c120facc7b1de246135d9c
c47e274f6af4d08bff65e360fb8a11b163dc34b2
/common/global_constants.py
7e184ce065f2d0ce801d87ae0ab50fb3d1e9079c
[ "BSD-3-Clause" ]
permissive
nozberkaryaindonesia/ReadableWebProxy
6b66994c574dc0a70767397403c04f97bf2d07f0
82d14d8dfb23ef135a16f88274c14c7acc1162a5
refs/heads/master
2022-05-21T20:06:03.707617
2017-09-24T09:54:23
2017-09-24T09:54:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,460
py
GLOBAL_BAD_URLS = [ '//mail.google.com', '/comments/feed/', '/embed?', '/osd.xml', '/page/page/', '/wp-json/', '/wp-login.php', '/xmlrpc.php', '?openidserver=1', 'a.wikia-beacon.com', 'accounts.google.com', 'add.my.yahoo.com', 'addtoany.com', 'b.scorecardresearch.com', 'delicious.com', 'digg.com', 'edit.yahoo.com', 'facebook.com', 'fbcdn-', 'feeds.wordpress.com', 'gprofiles.js', 'javascript:void', 'netvibes.com', 'newsgator.com', 'paypal.com', 'pixel.wp.com', 'public-api.wordpress.com', 'r-login.wordpress.com', 'reddit.com', 'stumbleupon.com', 'technorati.com', 'topwebfiction.com', 'twitter.com', 'twitter.com/intent/', 'wretch.cc', 'ws-na.amazon-adsystem.com', 'www.addtoany.com' 'www.pinterest.com/pin/', 'www.wattpad.com/login?', 'www.tumblr.com/reblog/', 'www.paypalobjects.com', # Tumblr can seriously go fuck itself with a rusty stake 'tumblr.com/widgets/', 'www.tumblr.com/login', '://tumblr.com', '&share=tumblr', '/wp-content/plugins/', '/wp-content/themes/', '/wp-json/oembed/', # At least one site (booksie) is serving the favicon with a mime-type # of "text/plain", which then confuses the absolute crap out of the # mime-type dispatcher. # Since I'm not re-serving favicons anyways, just do not fetch them ever. 'favicon.ico', # Try to not scrape inline images ';base64,', "www.fashionmodeldirectory.com", "www.watchingprivatepractice.com", "Ebonyimages.jupiterimages.com", # More garbage issues. '"https', '#comment-', '/oembed/1.0/', '&share=', 'replytocom=', '?feed=rss2&page_id', '?share=tumblr', '?share=facebook', 'chasingadreamtranslations.com/?fp=', # NFI where /this/ came from 'www.miforcampuspolice.com', 'tracking.feedpress.it', 'www.quantcast.com', 'mailto:', 'javascript:popupWindow(', 'en.blog.wordpress.com', 'counter.yadro.ru', '/js/js/', '/css/css/', '/images/images/', 'ref=dp_brlad_entry', 'https:/www.', 'tumblr.com/oembed/1.0?', ] GLOBAL_DECOMPOSE_BEFORE = [ {'name' : 'likes-master'}, # Bullshit sharing widgets {'id' : 'jp-post-flair'}, {'class' : 'post-share-buttons'}, #{'class' : 'commentlist'}, # Scrub out the comments so we don't try to fetch links from them #{'class' : 'comments'}, #{'id' : 'comments'}, ] GLOBAL_DECOMPOSE_AFTER = [] RSS_SKIP_FILTER = [ "www.baka-tsuki.org", "re-monster.wikia.com", 'inmydaydreams.com', 'www.fanfiction.net', 'www.booksie.com', 'www.booksiesilk.com', 'www.fictionpress.com', 'storiesonline.net', 'www.fictionmania.tv', 'www.bestories.net', 'www.tgstorytime.com', 'www.nifty.org', 'www.literotica.com', 'pokegirls.org', 'www.asstr.org', 'www.mcstories.com', 'www.novelupdates.com', '40pics.com', '#comment-', '?showComment=', ] RSS_TITLE_FILTER = [ "by: ", "comments on: ", "comment on: ", "comment on ", ] # Goooooo FUCK YOURSELF GLOBAL_INLINE_BULLSHIT = [ "This translation is property of Infinite Novel Translations.", "This translation is property of Infinite NovelTranslations.", "If you read this anywhere but at Infinite Novel Translations, you are reading a stolen translation.", "&lt;Blank&gt;", "&lt;space&gt;", "<Blank>", "<Blank>", "please read only translator’s websitewww.novitranslation.com", "please read only translator’s website www.novitranslation.com", "Please do not host elsewhere but MBC and Yumeabyss", 'Original and most updated translations are from volaretranslations.', 'Please support the translator for Wild Consort by reading on volarenovels!', 'Original and most updated translations are from volaretranslations.', 'Original and most updated translations are from volaretranslations.', "&lt;StarveCleric&gt;", '(trytranslations.com at your service!)', 'Please do not host elsewhere but volare and Yumeabyss', '[Follow the latest chapter at wuxiadream.com]', 'I slid my penis inside her. She squirmed a bit but YOU SICK FUCK STOP STEALING MY TRANSLATIONS', # siiiiigh 'I kissed her sweet anus once more before leaving', # siiiiiiiiiiiiigh '(Watermark: read this translation only at shinku. xiaoxiaonovels.com)', "<TLN: If you're reading this novel at any other site than Sousetsuka.com you might be reading an unedited, uncorrected version of the novel.>", 'Original and most updated translations are from volare. If read elsewhere, this chapter has been stolen. Please stop supporting theft.', '*******If you are reading this on a place other than rinkagetranslation.com, this chapter has been stolen and is neither the most recent or complete chapter.*******', '*******Read the chapters at rinkagetranslation.com. The chapters for this series will NOT be posted anywhere else other than on that site itself. If you are reading this from somewhere else then this is chapter has been stolen.*******', 'If you are reading this on a place other than rinkagetranslation.com, this chapter has been stolen and is neither the most recent or complete chapter.', "Read The Lazy Swordmaster first on Lightnovelbastion.com (If you're reading this elsewhere, it has been stolen)", "Read The Lazy Swordmaster on Lightnovelbastion.com", "Property of © Fantasy-Books.live; outside of it, it is stolen.", ]
[ "something@fake-url.com" ]
something@fake-url.com
a43033cd1083b62dfa20f3914123e00835219987
c5a004f26bf249f888be3849114dd35dbd24cb24
/python/evalrescallers/tests/ten_k_validation_data_test.py
c9f2b7b50349d5124180fb1dad48982f96e4202e
[ "MIT" ]
permissive
wangdi2014/tb-amr-benchmarking
f7cf331608cfe7b9cc8995906d991573323dc87a
276f4f7f30639dacc62b3e8e395b2d2ce8675089
refs/heads/master
2022-03-10T00:41:07.364006
2019-11-08T09:37:23
2019-11-08T09:37:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,515
py
import os import unittest from evalrescallers import ten_k_validation_data modules_dir = os.path.dirname(os.path.abspath(ten_k_validation_data.__file__)) data_dir = os.path.join(modules_dir, 'tests', 'data', 'ten_k_validation_data') class TestTenKValidationData(unittest.TestCase): def test_load_sample_to_res_file(self): '''test load_sample_to_res_file''' expected_drugs = {'Isoniazid', 'Rifampicin', 'Ethambutol', 'Pyrazinamide'} expected_data = { 'ena1': {'Isoniazid': 'n/a', 'Rifampicin': 'S', 'Ethambutol': 'R', 'Pyrazinamide': 'S'}, 'ena2': {'Isoniazid': 'S', 'Rifampicin': 'U', 'Ethambutol': 'S', 'Pyrazinamide': 'S'}, } infile = os.path.join(data_dir, 'load_sample_to_res_file.tsv') got_drugs, got_data = ten_k_validation_data.load_sample_to_res_file(infile) self.assertEqual(expected_drugs, got_drugs) self.assertEqual(expected_data, got_data) def test_load_sources_file(self): '''test load_sources_file''' infile = os.path.join(data_dir, 'load_sources_file.tsv') expect = { 'ena1': ('source1', 'country1'), 'ena2': ('source1', 'country1'), 'ena3': ('source1', 'country2'), 'ena4': ('source2', 'country1'), 'ena5': ('source2', 'country2'), } got = ten_k_validation_data.load_sources_file(infile) self.assertEqual(expect, got) def test_sources_file_to_country_counts(self): '''test sources_file_to_country_counts''' infile = os.path.join(data_dir, 'sources_file_to_country_counts.tsv') expect = { 'Country1': {'validate': 3, 'test': 0}, 'Country2': {'validate': 1, 'test': 0}, 'Germany': {'validate': 0, 'test': 1}, 'UK': {'validate': 1, 'test': 2}, } got = ten_k_validation_data.sources_file_to_country_counts(infile) self.assertEqual(expect, got) def test_load_all_data(self): '''test load_all_data''' expected_drugs = {'Quinolones', 'Isoniazid', 'Rifampicin', 'Ethambutol', 'Pyrazinamide', 'Amikacin', 'Capreomycin', 'Ciprofloxacin', 'Cycloserine', 'Ethionamide', 'Kanamycin', 'Linezolid', 'Moxifloxacin', 'Ofloxacin', 'PAS', 'Rifabutin', 'Streptomycin'} got_drugs, got_pheno_validation, got_pheno_test, got_predict = ten_k_validation_data.load_all_data() self.assertEqual(expected_drugs, got_drugs) _, expect_pheno = ten_k_validation_data.load_sample_to_res_file(os.path.join(ten_k_validation_data.data_dir, '10k_validation.phenotype.tsv')) _, expect_predict = ten_k_validation_data.load_sample_to_res_file(os.path.join(ten_k_validation_data.data_dir, '10k_validation.prediction.tsv')) _, expect_more_pheno = ten_k_validation_data.load_sample_to_res_file(os.path.join(ten_k_validation_data.data_dir, '10k_validation.extra_phenotypes.tsv')) expect_samples = set(expect_pheno.keys()).union(set(expect_more_pheno.keys())) got_samples = set(expect_pheno.keys()) self.assertEqual(expect_samples, got_samples) for pheno_dict in got_pheno_validation, got_pheno_test: for sample in pheno_dict: for d in expect_pheno, expect_more_pheno: if sample in d: for k, v in d[sample].items(): self.assertEqual(v, pheno_dict[sample][k]) self.assertEqual(expect_predict, got_predict)
[ "martin.g.hunt@gmail.com" ]
martin.g.hunt@gmail.com
fd33d0164c5d4f66bd0a74c18659b7ff64f0543f
67494b11d3acadcd90dc5d1364fd399ed3d990a7
/ensemble/functions.py
c592408a3c445b717aab1509d8af15e3008df2c3
[]
no_license
filonik/ensemble
83bac3923fe39bd5b7f11f4f31bc07c4567f462f
4ce42a7bccff0c124800f6a9923503c7bef75f39
refs/heads/master
2021-08-16T21:24:40.366517
2017-11-20T10:25:46
2017-11-20T10:25:46
111,370,217
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
import functools as ft import itertools as it def identity(x): return x def constant(x): def _constant(*args, **kwargs): return x return _constant def compose(*args): def _compose(f, g): def __compose(t): return f(g(t)) return __compose return ft.reduce(_compose, args, identity) def invertible(f, f_inv): f_inv.inv = f f.inv = f_inv return f
[ "filonik@users.noreply.github.com" ]
filonik@users.noreply.github.com
de2fbae89697eeae55b1ded2dcb4300e460ce8f6
c657052e2dab3385d5aba26cf9f0ed1f32882aa8
/other/stocks_monitor.py
baee685730f2633078d7f83902f7fbea10f03cb5
[ "MIT" ]
permissive
mmmonk/crap
cb8197cbb5a39f9f532338aee4621a4b4f96bde9
96ba81723f043503e7ed2f96ea727b524d22b83f
refs/heads/master
2021-06-01T13:26:28.405931
2020-06-24T10:05:22
2020-06-24T10:05:22
2,802,903
16
14
null
2015-10-11T06:28:11
2011-11-18T14:02:22
Python
UTF-8
Python
false
false
648
py
#!/usr/bin/env python import urllib import json import sys import os import time if len(sys.argv) > 1: symbol = str(sys.argv[1]) path = "%s/.cache/stock_%s.txt" % (os.getenv('HOME'), symbol) out = "" if os.path.exists(path) and time.time() - os.stat(path).st_mtime < 600: out = open(path).read() else: a = urllib.urlopen("http://www.google.com/finance/info?q=%s" % (symbol)) b = json.loads(a.read().replace("\n","")[2:]) out = "%s:" % (symbol) for a in b: if 'l' in a: out += "%s" % (a['l'],) if "el" in a: out += "/%s" % (a['el'],) open(path,"w").write(out) print "%s " % (out,)
[ "m.lukaszuk@gmail.com" ]
m.lukaszuk@gmail.com
293a3fd9e19cd4c6af0c68b93b5de2ea6cf5b304
88323de7876b0ae43762213c7e36c21f44830ac9
/LCS.py
5353608ba2cfc53cdb6397910fba17516e282932
[]
no_license
subhashissuara/DPAlgo
c4679c1dca8b4a523f6c8a009433da9d17e72f4f
9807f180d516d79d4c4db387ac8666a484aa5a2f
refs/heads/master
2023-03-02T17:09:23.561000
2021-02-10T22:20:13
2021-02-10T22:20:13
337,867,802
0
0
null
null
null
null
UTF-8
Python
false
false
4,562
py
# ----------------------------------------------------------------------------------------------- # Author: Subhashis Suara # Algorithm: Longest Common Subsequence # Definations: # X - First Sequence # Y - Second Sequence # C[i][j] - Length of LCS between X[i - 1] and Y[j - 1] (i & j start from 1 to m, n inclusive) # B[i][j] - Direction for C[i][j] Element. Can be D - Diagonal, H - Horizontal, V - Vertical # ----------------------------------------------------------------------------------------------- import sys # Change the print length for LCS result in terminal # Enter 0 if you don't want to print in terminal # Enter -1 if you don't want to limit the print length LCSPrintLength = 50 # Don't Change LCSValue = "" def LCS(X, Y): m = len(X) n = len(Y) B = [[0 for i in range(n + 1)] for j in range(m + 1)] C = [[0 for i in range(n + 1)] for j in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if (X[i - 1] == Y[j - 1]): # Adjusted for 0 based Indexing C[i][j] = C[i - 1][j - 1] + 1 B[i][j] = 'D' elif (C[i - 1][j] > C[i][j - 1]): C[i][j] = C[i - 1][j] B[i][j] = 'V' else: C[i][j] = C[i][j - 1] B[i][j] = 'H' return B, C def printLCS(X, B, i, j): if (i == 0 or j == 0): return if (B[i][j] == 'D'): printLCS(X, B, i - 1, j - 1) # print(X[i - 1], end = "") global LCSValue LCSValue += X[i - 1] elif (B[i][j] == 'V'): printLCS(X, B, i - 1, j) else: printLCS(X, B, i, j - 1) if __name__ == "__main__": # Initialization to bound X & Y values in case of empty txt files X = "" Y = "" # Making sure user understands the required files print("\nBefore proceeding, please ensure the following:") print("- You have a X.txt file, containing the 1st sequence, in the same path as this program.") print("- You have a Y.txt file, containing the 2nd sequence, in the same path as this program.") print("- If you have any file called LCS.txt in the same path as this program,") print(" ensure the data is backed up as the file will be overwrittern.") print(" If the file doesn't exist, it will be created automatically & contain the result.") input("\nPress any key to continue...\n") try: with open('X.txt', 'r') as XFile: # Remove Endline & Trailing White Spaces X = XFile.read().replace('\n', '').strip() # Remove All White Spaces X = ''.join(X.split()) if (X == ""): print("Error: X.txt file is empty! Please enter the relevent 1st sequence in X.txt & try again.\n") sys.exit() except FileNotFoundError as fileNotFoundError: print("Error: File X.txt not found! Please create the file and try again.\n") sys.exit() except Exception as error: print(f"Error: {error}\n") sys.exit() try: with open('Y.txt', 'r') as YFile: # Remove Endline & Trailing White Spaces Y = YFile.read().replace('\n', '').strip() # Remove All White Spaces Y = ''.join(Y.split()) if (Y == ""): print("Error: Y.txt file is empty! Please enter the relevent 2nd sequence in Y.txt & try again.\n") sys.exit() except FileNotFoundError as fileNotFoundError: print("Error: File Y.txt not found! Please create the file and try again.\n") sys.exit() except Exception as error: print(f"Error: {error}\n") sys.exit() m = len(X) n = len(Y) B, C = LCS(X, Y) printLCS(X, B, m, n) if (len(LCSValue) > 0): if (LCSPrintLength != 0): if (len(LCSValue) > LCSPrintLength and LCSPrintLength > 0): print(f"LCS for given X & Y sequences: {LCSValue[:LCSPrintLength]}... {len(LCSValue) - LCSPrintLength} more characters. \n") else: print(f"LCS for given X & Y sequences: {LCSValue}\n") print("The result has been saved to LCS.txt file in the same path as this program. Have a great day!\n") try: with open('LCS.txt', 'w+') as LCSFile: LCSFile.write(LCSValue) except Exception as error: print(f"Error: {error}\n") sys.exit() else: print("No LCS found from X & Y sequences.\n")
[ "subhashis.suara999@gmail.com" ]
subhashis.suara999@gmail.com
9fb4ff9e6f72ce9f9852a26b33c89042ab274ead
dde44d2988efb4421a0c211a062e9509b2919865
/src/reduce_number_stats.py
d0e1b345134bf376c087d029da0fa7e1bda59cfb
[]
no_license
tylerjwoods/nfl_game_predictor
2c99264c5d2e39c88f74891f4b728661503b9a28
a0c8e34e03ca7ec6199429bb8b7a9f634127b2f5
refs/heads/master
2022-07-29T11:51:05.835676
2020-05-18T22:43:42
2020-05-18T22:43:42
263,088,458
2
0
null
null
null
null
UTF-8
Python
false
false
885
py
import pandas as pd def clean_team_stats(df): ''' inputs ------ df: pandas dataframe returns ------ df: pandas dataframe with cleaned dataset. drops multiple columns from original df ''' # For first analysis, let's drop most of the columns to make our program run faster columns_to_drop = ['passCompletions', 'passAvg', 'passYardsPerAtt', 'rushYards', 'passIntPct', 'passLng', \ 'pass20Plus', 'pass40Plus', 'sacks_allowed_yards', 'rushAverage', 'rushLng', 'rush1stDowns', 'rush1stDownsPct',\ 'rush20Plus','rush40Plus', 'rushFumbles','rec1stDowns','recFumbles','tackleSolo','tackleTotal','tackleAst',\ 'sackYds','tacklesForLoss', 'krTD', 'kr20Plus', 'fgMade','field_goal_pct','punt_inside_20_pct','third_down_pct', 'fourth_down_pct','penalties'] df.drop(columns=columns_to_drop,inplace=True) return df
[ "tyjordan.woods@gmail.com" ]
tyjordan.woods@gmail.com