blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
46efb78a2acbcd58008ea1bc5f50998401a4a474
557c9d016edc56c72dac6a0b3093d195b10b1a6c
/examples/ex33_common.py
cd535acf255a5de421d64d16d452c5e8f5303ca4
[ "BSD-3-Clause" ]
permissive
mfem/PyMFEM
dae79fb8aa9ca983780c789b2b6e70e894644573
37084af6798ea8bb8f03b2648863befabee829bb
refs/heads/master
2023-08-31T07:04:28.522945
2023-07-18T02:21:57
2023-07-18T02:21:57
83,574,932
154
54
BSD-3-Clause
2023-08-15T01:40:47
2017-03-01T16:16:48
SWIG
UTF-8
Python
false
false
8,356
py
''' Ex33_common.py This is a translation of MFEM ex33.hpp. LAPACK call, mfem.Vector, mfem.DenseMatrix are replaced using numpy (Implementation of the AAA algorithm) Here, we implement the triple-A algorithm [1] for the rational approximation of complex-valued functions, p(z)/q(z) ≈ f(z). In this file, we always assume f(z) = z^{-α}. The triple-A algorithm provides a robust, accurate approximation in rational barycentric form. This representation must be transformed into a partial fraction representation in order to be used to solve a spectral FPDE. More specifically, we first expand the numerator in terms of the zeros of the rational approximation, p(z) ∝ Π_i (z - z_i), and expand the denominator in terms of the poles of the rational approximation, q(z) ∝ Π_i (z - p_i). We then use these zeros and poles to derive the partial fraction expansion f(z) ≈ p(z)/q(z) = Σ_i c_i / (z - p_i). [1] Nakatsukasa, Y., Sète, O., & Trefethen, L. N. (2018). The AAA algorithm for rational approximation. SIAM Journal on Scientific Computing, 40(3), A1494-A1522. ''' import numpy as np import scipy from scipy.linalg import eig import mfem if mfem.mfem_mode == 'parallel': import mfem.par as mfem from mfem.par import intArray, doubleArray else: import mfem.ser as mfem from mfem.ser import intArray, doubleArray from sys import float_info eps = float_info.min def RationalApproximation_AAA(val, pt, tol, max_order): ''' RationalApproximation_AAA: compute the rational approximation (RA) of data val at the set of points pt in: val Vector of data values pt Vector of sample points tol Relative tolerance max_order Maximum number of terms (order) of the RA out: z Support points of the RA in rational barycentric form f Data values at support points at z w Weights of the RA in rational barycentric form See pg. A1501 of Nakatsukasa et al. [1]. ''' # number of sample points size = len(val) # .Size() assert len(pt) == size, "size mismatch" # Initializations J = list(range(size)) c_i = [] # mean of the value vector mean_val = np.mean(val) R = np.array([mean_val]*size) z = [] f = [] w = [] for k in range(max_order): # select next support point idx = 0 tmp_max = 0 idx = np.argmax(np.abs(val-R)) # Append support points and data values z.append(pt[idx]) f.append(val[idx]) # Update index vector J.remove(idx) # next column in Cauchy matrix C_tmp = [(1.0/(pp-pt[idx]) if pp != pt[idx] else np.inf) for pp in pt] c_i = np.hstack((c_i, C_tmp)) h_C = len(C_tmp) w_C = k+1 # note: tranpose is necessary due to the difference of column-major # and raw-major of matrix C = c_i.reshape(w_C, h_C).transpose() Ctemp = C.copy() Ctemp = Ctemp*(np.atleast_2d(1/val)).transpose() # InvLeftScaling Ctemp = Ctemp*f # RgithScaling A = C - Ctemp A = A*(np.atleast_2d(val)).transpose() # LeftScaling h_Am = len(J) w_Am = A.shape[1] Am = np.zeros((h_Am, w_Am)) for i in range(h_Am): ii = J[i] for j in range(w_Am): Am[i, j] = A[ii, j] u, s, vh = np.linalg.svd(Am) w = vh[k, :] N = C.dot(w*np.array(f)) D = C.dot(w) R = val.copy() for i, ii in enumerate(J): R[ii] = N[ii]/D[ii] verr = val - R if np.max(verr) <= tol*max(val): break return z, f, w def ComputePolesAndZeros(z, f, w): ''' ComputePolesAndZeros: compute the poles and zeros of the rational function f(z) = C p(z)/q(z) from its ration barycentric form. in: z Support points in rational barycentric form f Data values at support points @a z w Weights in rational barycentric form out: poles Array of poles (roots of p(z)) zeros Array of zeros (roots of q(z)) scale Scaling constant in f(z) = C p(z)/q(z) See pg. A1501 of Nakatsukasa et al. [1]. ''' # Initialization poles = [] zeros = [] # Compute the poles m = len(w) B = np.zeros((m+1, m+1)) E = np.zeros((m+1, m+1)) for i in range(m+1): if i == 0: continue B[i, i] = 1. E[0, i] = w[i-1] E[i, 0] = 1. E[i, i] = z[i-1] # real part of eigen value evalues = eig(E, B, left=False, right=False).real new_poles = evalues[np.isfinite(evalues)] poles.extend(new_poles) B = np.zeros((m+1, m+1)) E = np.zeros((m+1, m+1)) for i in range(m+1): if i == 0: continue B[i, i] = 1. E[0, i] = w[i-1] * f[i-1] E[i, 0] = 1. E[i, i] = z[i-1] # real part of eigen value evalues = eig(E, B, left=False, right=False).real new_zeros = evalues[np.isfinite(evalues)] zeros.extend(new_zeros) scale = np.dot(w, f)/np.sum(w) return poles, zeros, scale def PartialFractionExpansion(scale, poles, zeros): ''' PartialFractionExpansion: compute the partial fraction expansion of the rational function f(z) = Σ_i c_i / (z - p_i) from its poles and zeros @a zeros [in]. in: poles Array of poles (same as p_i above) zeros Array of zeros scale Scaling constant out: coeffs Coefficients c_i ''' # Note: C p(z)/q(z) = Σ_i c_i / (z - p_i) results in an system of equations # where the N unknowns are the coefficients c_i. After multiplying the # system with q(z), the coefficients c_i can be computed analytically by # choosing N values for z. Choosing z_j = = p_j diagonalizes the system and # one can obtain an analytic form for the c_i coefficients. The result is # implemented in the code block below. psize = len(poles) zsize = len(zeros) coeffs = [scale] * psize for i in range(psize): tmp_numer = 1.0 for j in range(zsize): tmp_numer *= poles[i]-zeros[j] tmp_denom = 1.0 for k in range(psize): if k != i: tmp_denom *= poles[i]-poles[k] coeffs[i] *= tmp_numer / tmp_denom return coeffs def ComputePartialFractionApproximation(alpha, lmax=1000., tol=1e-10, npoints=1000, max_order=100): ''' ComputePartialFractionApproximation: compute a rational approximation (RA) in partial fraction form, e.g., f(z) ≈ Σ_i c_i / (z - p_i), from sampled values of the function f(z) = z^{-a}, 0 < a < 1. in: alpha Exponent a in f(z) = z^-a lmax,npoints f(z) is uniformly sampled @a npoints times in the interval [ 0, @a lmax ] tol Relative tolerance max_order Maximum number of terms (order) of the RA out: coeffs Coefficients c_i poles Poles p_i ''' assert alpha < 1., "alpha must be less than 1" assert alpha > 0., "alpha must be greater than 0" assert npoints > 2, "npoints must be greater than 2" assert lmax > 0, "lmin must be greater than 0" assert tol > 0, "tol must be greater than 0" dx = lmax / (npoints-1) x = np.arange(npoints)*dx val = x**(1-alpha) # Apply triple-A algorithm to f(x) = x^{1-a} z, f, w = RationalApproximation_AAA(val, # mfem.Vector(val), x, # mfem.Vector(x), tol, max_order) # Compute poles and zeros for RA of f(x) = x^{1-a} poles, zeros, scale = ComputePolesAndZeros(z, f, w) # Remove the zero at x=0, thus, delivering a RA for f(x) = x^{-a} zeros.remove(0.0) # Compute partial fraction approximation of f(x) = x^{-a} coeffs = PartialFractionExpansion(scale, poles, zeros) return poles, coeffs
[ "shiraiwa@princeton.edu" ]
shiraiwa@princeton.edu
c4e3d2c0198df15fcb9635b190ff937c0a238289
5c35be01a7f659bb080544c5e62faa22307f01da
/pr412-my-charity-change-backend-python/migrations/versions/28f74cb10e35_add_send_tax_reciept_flasg_to_customer.py
383f316a63eb39b17dddf20b2043b814522640bd
[]
no_license
dragonmaster-alpha/Charity-App
3b3932c0a05cc21b9d36bd2952673028cc56a11a
b66e2bc74fc15ca2a9c70f5261d05f5b9d17b451
refs/heads/master
2023-08-24T02:21:15.406784
2021-10-29T06:18:20
2021-10-29T06:18:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
701
py
"""Add send_tax_reciept flasg to customer Revision ID: 28f74cb10e35 Revises: f3bdf790db9b Create Date: 2020-08-10 14:53:05.732193 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '28f74cb10e35' down_revision = 'f3bdf790db9b' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('Customer', sa.Column('send_tax_reciept', sa.Boolean(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('Customer', 'send_tax_reciept') # ### end Alembic commands ###
[ "78602151+dragonmaster-alpha@users.noreply.github.com" ]
78602151+dragonmaster-alpha@users.noreply.github.com
ed80bc16dfb22d80024c3f7ec27c4aa5882763ad
9a8746628978eb368da0c4aea7da9ad0818b0c75
/StreamLitLibrary.py
1f14d7959d1c59d1779fd1855080ec70de2cf10a
[]
no_license
jayreds73/Heroku-Deployment
67999469165f4f9bee91252aef34a54de518b51b
bfa893a19004c1418e8a0ac72d1e522b03ae790f
refs/heads/master
2022-12-15T03:17:28.359818
2020-09-09T20:10:53
2020-09-09T20:10:53
294,200,010
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
#from flask import Flask,request import pandas as pd import pickle as pkl import streamlit as st # Run this - "streamlit run filename" in command prompt # load the model at the start of the app pickle_in = open('model.pkl','rb') model_iris = pkl.load(pickle_in) def get_description(int_code): if (int_code==0): desc = 'Setosa' elif (int_code == 1): desc = 'Versicolour' else: desc = 'Virginica' return desc def Welcome(): return "Hello world, Jayanth" def iris_predict(sl,sw,pl,pw): prediction = model_iris.predict([[sl,sw,pl,pw]]) return "The prediction is: " + get_description(int(prediction[0])) def main(): #Gives Title st.title("Iris Data Set Prediction") # Creates look and feel -- see more for html html_temp = """ <div style="background-color:tomato;padding:10px"> <h2 style="color:white;text-align:center;">Streamlit Rendered App for IRIS prediction </h2> </div> """ # Executes HTML st.markdown(html_temp, unsafe_allow_html=True) sl = float(st.text_input('Sepal Length','1.25')) sw = float(st.text_input('Sepal Width','2.25')) pl = float(st.text_input('Petal Length','3.25')) pw = float(st.text_input('Petal Width','4.8')) prediction = "" # create button if st.button("Predict"): prediction = iris_predict(sl,sw,pl,pw) st.success(prediction) # prediction_t = "" # if st.button("Test"): # prediction_t = 'Pass' # st.success(prediction_t) # if st.button("About"): # st.text("Lets LEarn") # st.text("Built with Streamlit") if(__name__=='__main__'): main()
[ "noreply@github.com" ]
jayreds73.noreply@github.com
fa831199505226547d9cfa53b8caf0ccbd1afd58
fa7e75212e9f536eed7a78237a5fa9a4021a206b
/OLD_ROOT/Backend/SMQTK_Backend/utils/jsmin/test.py
7aba6993dc941efa2e6ea9557fd99d5a9b43b720
[]
no_license
kod3r/SMQTK
3d40730c956220a3d9bb02aef65edc8493bbf527
c128e8ca38c679ee37901551f4cc021cc43d00e6
refs/heads/master
2020-12-03T09:12:41.163643
2015-10-19T14:56:55
2015-10-19T14:56:55
44,916,678
1
0
null
2015-10-25T15:47:35
2015-10-25T15:47:35
null
UTF-8
Python
false
false
8,702
py
import unittest import sys # modified path since this is now being embeded in another project. from SMQTK_Backend.utils import jsmin class JsTests(unittest.TestCase): def _minify(self, js): return jsmin.jsmin(js) def assertEqual(self, thing1, thing2): if thing1 != thing2: print(repr(thing1), repr(thing2)) raise AssertionError return True def assertMinified(self, js_input, expected): minified = jsmin.jsmin(js_input) assert minified == expected, "%r != %r" % (minified, expected) def testQuoted(self): js = r''' Object.extend(String, { interpret: function(value) { return value == null ? '' : String(value); }, specialChar: { '\b': '\\b', '\t': '\\t', '\n': '\\n', '\f': '\\f', '\r': '\\r', '\\': '\\\\' } }); ''' expected = r"""Object.extend(String,{interpret:function(value){return value==null?'':String(value);},specialChar:{'\b':'\\b','\t':'\\t','\n':'\\n','\f':'\\f','\r':'\\r','\\':'\\\\'}});""" self.assertMinified(js, expected) def testSingleComment(self): js = r'''// use native browser JS 1.6 implementation if available if (Object.isFunction(Array.prototype.forEach)) Array.prototype._each = Array.prototype.forEach; if (!Array.prototype.indexOf) Array.prototype.indexOf = function(item, i) { // hey there function() {// testing comment foo; //something something location = 'http://foo.com;'; // goodbye } //bye ''' expected = r""" if(Object.isFunction(Array.prototype.forEach)) Array.prototype._each=Array.prototype.forEach;if(!Array.prototype.indexOf)Array.prototype.indexOf=function(item,i){ function(){ foo; location='http://foo.com;';}""" # print expected self.assertMinified(js, expected) def testEmpty(self): self.assertMinified('', '') self.assertMinified(' ', '') self.assertMinified('\n', '') self.assertMinified('\r\n', '') self.assertMinified('\t', '') def testMultiComment(self): js = r""" function foo() { print('hey'); } /* if(this.options.zindex) { this.originalZ = parseInt(Element.getStyle(this.element,'z-index') || 0); this.element.style.zIndex = this.options.zindex; } */ another thing; """ expected = r"""function foo(){print('hey');} another thing;""" self.assertMinified(js, expected) def testLeadingComment(self): js = r"""/* here is a comment at the top it ends here */ function foo() { alert('crud'); } """ expected = r"""function foo(){alert('crud');}""" self.assertMinified(js, expected) def testJustAComment(self): self.assertMinified(' // a comment', '') def testRe(self): js = r''' var str = this.replace(/\\./g, '@').replace(/"[^"\\\n\r]*"/g, ''); return (/^[,:{}\[\]0-9.\-+Eaeflnr-u \n\r\t]*$/).test(str); });''' expected = r"""var str=this.replace(/\\./g,'@').replace(/"[^"\\\n\r]*"/g,'');return(/^[,:{}\[\]0-9.\-+Eaeflnr-u \n\r\t]*$/).test(str);});""" self.assertMinified(js, expected) def testIgnoreComment(self): js = r""" var options_for_droppable = { overlap: options.overlap, containment: options.containment, tree: options.tree, hoverclass: options.hoverclass, onHover: Sortable.onHover } var options_for_tree = { onHover: Sortable.onEmptyHover, overlap: options.overlap, containment: options.containment, hoverclass: options.hoverclass } // fix for gecko engine Element.cleanWhitespace(element); """ expected = r"""var options_for_droppable={overlap:options.overlap,containment:options.containment,tree:options.tree,hoverclass:options.hoverclass,onHover:Sortable.onHover} var options_for_tree={onHover:Sortable.onEmptyHover,overlap:options.overlap,containment:options.containment,hoverclass:options.hoverclass} Element.cleanWhitespace(element);""" self.assertMinified(js, expected) def testHairyRe(self): js = r""" inspect: function(useDoubleQuotes) { var escapedString = this.gsub(/[\x00-\x1f\\]/, function(match) { var character = String.specialChar[match[0]]; return character ? character : '\\u00' + match[0].charCodeAt().toPaddedString(2, 16); }); if (useDoubleQuotes) return '"' + escapedString.replace(/"/g, '\\"') + '"'; return "'" + escapedString.replace(/'/g, '\\\'') + "'"; }, toJSON: function() { return this.inspect(true); }, unfilterJSON: function(filter) { return this.sub(filter || Prototype.JSONFilter, '#{1}'); }, """ expected = r"""inspect:function(useDoubleQuotes){var escapedString=this.gsub(/[\x00-\x1f\\]/,function(match){var character=String.specialChar[match[0]];return character?character:'\\u00'+match[0].charCodeAt().toPaddedString(2,16);});if(useDoubleQuotes)return'"'+escapedString.replace(/"/g,'\\"')+'"';return"'"+escapedString.replace(/'/g,'\\\'')+"'";},toJSON:function(){return this.inspect(true);},unfilterJSON:function(filter){return this.sub(filter||Prototype.JSONFilter,'#{1}');},""" self.assertMinified(js, expected) def testNoBracesWithComment(self): js = r""" onSuccess: function(transport) { var js = transport.responseText.strip(); if (!/^\[.*\]$/.test(js)) // TODO: improve sanity check throw 'Server returned an invalid collection representation.'; this._collection = eval(js); this.checkForExternalText(); }.bind(this), onFailure: this.onFailure }); """ expected = r"""onSuccess:function(transport){var js=transport.responseText.strip();if(!/^\[.*\]$/.test(js)) throw'Server returned an invalid collection representation.';this._collection=eval(js);this.checkForExternalText();}.bind(this),onFailure:this.onFailure});""" self.assertMinified(js, expected) def testSpaceInRe(self): js = r""" num = num.replace(/ /g,''); """ self.assertMinified(js, "num=num.replace(/ /g,'');") def testEmptyString(self): js = r''' function foo('') { } ''' self.assertMinified(js, "function foo(''){}") def testDoubleSpace(self): js = r''' var foo = "hey"; ''' self.assertMinified(js, 'var foo="hey";') def testLeadingRegex(self): js = r'/[d]+/g ' self.assertMinified(js, js.strip()) def testLeadingString(self): js = r"'a string in the middle of nowhere'; // and a comment" self.assertMinified(js, "'a string in the middle of nowhere';") def testSingleCommentEnd(self): js = r'// a comment\n' self.assertMinified(js, '') def testInputStream(self): try: from StringIO import StringIO except ImportError: from io import StringIO ins = StringIO(r''' function foo('') { } ''') outs = StringIO() m = jsmin.JavascriptMinify() m.minify(ins, outs) output = outs.getvalue() assert output == "function foo(''){}" def testUnicode(self): instr = u'\u4000 //foo' expected = u'\u4000' output = jsmin.jsmin(instr) self.assertEqual(output, expected) def testCommentBeforeEOF(self): self.assertMinified("//test\r\n", "") def testCommentInObj(self): self.assertMinified("""{ a: 1,//comment }""", "{a:1,}") def testCommentInObj2(self): self.assertMinified("{a: 1//comment\r\n}", "{a:1\n}") def testImplicitSemicolon(self): # return \n 1 is equivalent with return; 1 # so best make sure jsmin retains the newline self.assertMinified("return;//comment\r\na", "return;a") def testImplicitSemicolon2(self): self.assertMinified("return//comment...\r\na", "return\na") def testSingleComment2(self): self.assertMinified('x.replace(/\//, "_")// slash to underscore', 'x.replace(/\//,"_")') if __name__ == '__main__': unittest.main()
[ "paul.tunison@kitware.com" ]
paul.tunison@kitware.com
4b06fc12b6a9688a025351ad8cbe58b26b21f7c5
754b824173f3e5b1cef69890deaea71c2ad0b84d
/Linear Regression.py
3d28b9e8ff31b546708213c7417bde49d549cbcf
[]
no_license
yanivmm/python
5a8e5c8a59c27a280a92cc7b8617e73b9d1c9a6e
e27f4d0716525e9c4ee6c8541cdb048670f5db22
refs/heads/master
2023-02-03T11:49:35.837406
2020-12-24T10:53:10
2020-12-24T10:53:10
257,415,163
0
0
null
null
null
null
UTF-8
Python
false
false
2,241
py
#import import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import seaborn as sns # read file path = r'C:\Users\97250\Desktop\studied\R ,python\ניתוח מידע\Ecommerce Customers.csv' cust = pd.read_csv(path) # explore data # A try to search the most affecting column on the Yearly Amount Spent and other sns.jointplot(x='Time on Website',y='Yearly Amount Spent',data=cust) sns.jointplot(x='Time on App',y='Yearly Amount Spent',data=cust) sns.lmplot(x='Length of Membership',y='Yearly Amount Spent',data = cust) #pairplot sns.pairplot(cust) ### Training and Testing Data from sklearn.model_selection import train_test_split X=cust[['Avg. Session Length', 'Time on App','Time on Website', 'Length of Membership']] y=cust['Yearly Amount Spent'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101) # model from sklearn.linear_model import LinearRegression lm =LinearRegression().fit(X_train,y_train) lm.coef_ prediction = lm.predict(X_test) # visual plot of the differences between y_test and prediction sns.scatterplot(x = y_test,y = prediction, hue =(abs(prediction-y_test))) # numerical evaluation MAE = np.mean(abs(prediction-y_test)) MSE = np.mean((prediction-y_test)**2) RMSE= np.sqrt(np.mean((prediction-y_test)**2)) print('\n') print('MAE: '+str(MAE),'MSE: '+str(MSE),'RMSE: '+str(RMSE),sep = '\n') # plot of the residuals of the y_test and prediction residuals = (y_test-prediction) plt.figure(figsize=(12,8)) sns.distplot(residuals,bins = 60,color='red') # it's a normal distribution therefore it's a fine model.! #creating a dataframe of the coefficients and its values coefficient = lm.coef_ col = ['Avg. Session Length', 'Time on App','Time on Website', 'Length of Membership'] coefficient_data = pd.DataFrame(coefficient,col,columns = ['coefficient']) coefficient_data = coefficient_data.sort_values('coefficient',ascending=False) # visual affect coefficient_data.plot(kind ='bar',figsize=(12,8),color='gold',fontsize = 18) plt.title('\n Coefficients and its values\n',fontsize=34) # only two most affecting coefficients print('\n') for i in range(2): print(coefficient_data.index[i])
[ "noreply@github.com" ]
yanivmm.noreply@github.com
207ca51d306160bcb1b64211690cf57342453446
2f43dd9eae7c3a290a50599305fac5106b2dd7cf
/webempresa/services/models.py
0277ee4a4986340cfebae70d45014dd4b5affc40
[]
no_license
FernandoHer/maderamandala
2f4a1713ea4e067198f74ca00ae7197a606f3524
eec89b421337b36840ec5fe4ff65d773bba0d870
refs/heads/master
2022-11-25T16:37:08.917485
2020-04-07T20:54:15
2020-04-07T20:54:15
253,895,809
0
0
null
2022-11-22T02:25:07
2020-04-07T19:45:24
Python
UTF-8
Python
false
false
723
py
from django.db import models # Create your models here. class Service(models.Model): title = models.CharField(max_length=200, verbose_name = "Titulo") subtitle = models.CharField(max_length=200, verbose_name = "Subtitulo") content = models.TextField(verbose_name = "Contenido") image = models.ImageField(verbose_name = "Imagen", upload_to="services") created = models.DateTimeField(auto_now_add=True, verbose_name = "Fecha de Creacion") updated = models.DateTimeField(auto_now=True, verbose_name = "Fecha de actualizacion") class Meta: verbose_name = "servicio" verbose_name_plural = "servicios" ordering = ["-created"] def __str__(self): return self.title
[ "juanherdoiza@iMac-de-Juan.local" ]
juanherdoiza@iMac-de-Juan.local
eca0f1c99ec492e8b3c6a27b02d6557f8aa3ae1b
84c2fa4aed9094b5ec3cc612d28980afe5d42d34
/leetcode/day11_24.py
a6e997a5b64e66b53c1eb8fab9ec554c45fcd371
[]
no_license
cyg2695249540/generatewework
186831a1b5c788e9b99e90d1a08bf6a8638131ce
cd01b0fc4a69cc2f2ed4c109afdf8771bee3bffd
refs/heads/master
2023-01-20T17:13:13.186034
2020-12-01T12:05:01
2020-12-01T12:05:01
310,201,995
0
0
null
null
null
null
UTF-8
Python
false
false
925
py
# !/usr/bin/env Python3 # -*- coding: utf-8 -*- # @FILE : day11_24.py # @Author : Pluto. # @Time : 2020/11/24 16:06 """ exp:66. 加一 给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外,这个整数不会以零开头。 示例1: 输入:digits = [1,2,3] 输出:[1,2,4] 解释:输入数组表示数字 123。 示例2: 输入:digits = [4,3,2,1] 输出:[4,3,2,2] 解释:输入数组表示数字 4321。 示例 3: 输入:digits = [0] 输出:[1] 提示: 1 <= digits.length <= 100 0 <= digits[i] <= 9 """ def plusOne(): s="".join(str(x) for x in digits) ss=str(int(s)+1) r=[int(x) for x in ss] return [0]*(len(digits)-len(r))+r if __name__ == '__main__': digits = [0, 0, 0] print(plusOne())
[ "2695249540@qq.com" ]
2695249540@qq.com
6d233bd2ae30ac3ff55e44e216f83f7ca5974969
887d21782f2741d8a273807642346ab7cd0dac6e
/list_files.py
4cbc2e8e2b36f40a7c36ec26d8d15585aba26e85
[]
no_license
TheRealTimCameron/Sandbox
c375ff356710fe4a1935ddd86603731240c7283e
4778376c0a018065b50f6ba4abcd6cfac344d538
refs/heads/master
2020-04-30T13:37:00.562336
2019-03-21T03:46:29
2019-03-21T03:46:29
176,863,481
0
1
null
null
null
null
UTF-8
Python
false
false
131
py
import os print("The files and folders in {} are:".format(os.getcwd())) items = os.listdir('.') for item in items: print(item)
[ "TimCameron56@gmail.com" ]
TimCameron56@gmail.com
f75a10dc0ef05561c5371a193810ff7eefcf5c22
b76aa6044aa0971bc7842cd4c3faa281c9c0e5cd
/1044_multiplos.py
f0455f370926483d5f3d396afe4542b00c05b844
[]
no_license
Miguelsantos101/algoritmos1-2021-1
8496233f6d37bd70e47949c7e23b34e6c2181bd1
fe03097d870e4f47796e69c97020f9c0bdba0cab
refs/heads/main
2023-05-03T23:08:53.669522
2021-05-27T02:33:12
2021-05-27T02:33:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
#a, b = input().split() #a = int(a) #b = int(b) a, b = map(int, input().split()) if a < b: temp = b b = a a = temp if a % b == 0: print("Sao Multiplos") else: print("Nao sao Multiplos")
[ "carloshiga@alumni.usp.br" ]
carloshiga@alumni.usp.br
c596b6a116427c9d0e40510a7bac545c5ed464a6
f98f6746851790aabeb996fafe74a24236bb580d
/is_prime_number.py
373c717dc73f6683a6918d54130d6e0b43452f31
[]
no_license
licheeee/PythonProject
b8c619cfbbe2f0e70284ffc2c0e9283c41d6f58c
9c114f32b51e6f8dc275cb36cb8b0e05e1c42548
refs/heads/master
2020-04-23T06:12:04.958043
2019-10-17T15:15:58
2019-10-17T15:15:58
170,965,853
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
# -*- coding: UTF-8 -*- # 判断一个数字是否是质数 num = int(input("Please input a number :")) primeFlag = True sqrt = int(num ** 0.5) for i in range(2, sqrt + 1): if (num % i) == 0: print("{0} is not a prime number.".format(num)) break else: print("{0} is a prime number.".format(num))
[ "qiaoxw@outlook.com" ]
qiaoxw@outlook.com
edbfd9f211f972906a7be68a3b1de4ba080d1d03
4e2a22470c983bc6f8463b4d0bd2563e2b4fadba
/manage.py
91afffd0eea54135379279692eb3ab4988697b8b
[]
no_license
payush/ayush-crowdbotics-375
8537f9a86fcdcda7418a0c10a5f258bafc07dd9c
c11bdd721d91e765bcb04379dac476279e6ca599
refs/heads/master
2020-03-23T22:34:09.700234
2018-07-24T16:09:19
2018-07-24T16:09:19
142,182,994
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ayush_crowdbotics_375.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "ayushpuroheet@gmail.com" ]
ayushpuroheet@gmail.com
c6119fca8e49b7cc3081a8d3441946e564c44017
24a3645595fb5aa6f4e0484c8b9e6fbcf31ae5a5
/rl_loop/train_and_validate.py
3be4f997d7bb5dc358cc305377386e12b7305276
[ "Apache-2.0" ]
permissive
2series/minigo
dcec298021e714fb8e203b847dd2d7a9d9451823
fda1487dff94a710e9359f80c28d08d99d6c3e3c
refs/heads/master
2020-04-05T20:35:18.809871
2018-11-12T09:18:53
2018-11-12T09:18:53
157,187,163
1
0
null
2018-11-12T09:20:43
2018-11-12T09:20:42
null
UTF-8
Python
false
false
3,698
py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Run train and validate in a loop, as subprocesses. We run as subprocesses because it gives us some isolation. """ import itertools import os import sys import time sys.path.insert(0, '.') from absl import app, flags from tensorflow import gfile from rl_loop import fsdb import mask_flags from rl_loop import shipname import utils flags.DEFINE_string('pro_dataset', None, 'Location of preprocessed pro dataset for validation') # From fsdb.py - must pass one of the two. flags.declare_key_flag('base_dir') flags.declare_key_flag('bucket_name') FLAGS = flags.FLAGS try: TPU_NAME = os.environ['TPU_NAME'] except KeyError: raise Exception("Must have $TPU_NAME configured") def train(): model_num, model_name = fsdb.get_latest_model() print("Training on gathered game data, initializing from {}".format( model_name)) new_model_num = model_num + 1 new_model_name = shipname.generate(new_model_num) print("New model will be {}".format(new_model_name)) training_file = os.path.join( fsdb.golden_chunk_dir(), str(new_model_num) + '.tfrecord.zz') while not gfile.Exists(training_file): print("Waiting for", training_file) time.sleep(1 * 60) save_file = os.path.join(fsdb.models_dir(), new_model_name) cmd = ['python3', 'train.py', training_file, '--use_tpu', '--tpu_name={}'.format(TPU_NAME), '--flagfile=rl_loop/distributed_flags', '--export_path={}'.format(save_file)] return mask_flags.run(cmd) def validate_holdout_selfplay(): """Validate on held-out selfplay data.""" holdout_dirs = (os.path.join(fsdb.holdout_dir(), d) for d in reversed(gfile.ListDirectory(fsdb.holdout_dir())) if gfile.IsDirectory(os.path.join(fsdb.holdout_dir(), d)) for f in gfile.ListDirectory(os.path.join(fsdb.holdout_dir(), d))) # This is a roundabout way of computing how many hourly directories we need # to read in order to encompass 20,000 holdout games. holdout_dirs = set(itertools.islice(holdout_dirs), 20000) cmd = ['python3', 'validate.py'] + list(holdout_dirs) + [ '--use_tpu', '--tpu_name={}'.format(TPU_NAME), '--flagfile=rl_loop/distributed_flags', '--expand_validation_dirs'] mask_flags.run(cmd) def validate_pro(): """Validate on professional data.""" cmd = ['python3', 'validate.py', FLAGS.pro_dataset, '--use_tpu', '--tpu_name={}'.format(TPU_NAME), '--flagfile=rl_loop/distributed_flags', '--validate_name=pro'] mask_flags.run(cmd) def loop(unused_argv): while True: print("=" * 40) with utils.timer("Train"): completed_process = train() if completed_process.returncode > 0: print("Training failed! Skipping validation...") continue with utils.timer("Validate"): validate_pro() validate_holdout_selfplay() if __name__ == '__main__': flags.mark_flag_as_required('pro_dataset') app.run(loop)
[ "brian.kihoon.lee@gmail.com" ]
brian.kihoon.lee@gmail.com
f03e0bd25b2839aff153fea90abc924e46a6584e
1bdc56d1f66501bada19b277a47655dc99f44f2e
/const.py
c6f26b24ff8369d500a57235ad9d6e874677e6b2
[]
no_license
antista/pacman
682811715b930db0c8765d5da9340f91d8f4e8b7
adb51eb219c6758dc553671ddc68db700a6df358
refs/heads/master
2020-04-17T07:56:49.953567
2019-01-18T11:02:31
2019-01-18T11:02:31
166,391,144
0
0
null
null
null
null
UTF-8
Python
false
false
4,379
py
import pyganim from pygame import * from pyganim import * SOUNDS = dict( wakka='sounds/wakka.wav', energizer='sounds/energizer.wav', eat_ghost='sounds/eating_ghost.wav', death='sounds/death.wav' ) SIZE = 16 BACK_COLOR = "#00FFFF" ANIMATION_DELAY = 50 # скорость смены кадров ANIMATION = dict() ANIMATION['right'] = [('images/moving/m1.ico'), ('images/moving/m2.ico'), ('images/moving/m3.ico'), ('images/moving/m4.ico'), ('images/moving/m5.ico'), ('images/moving/m6.ico'), ('images/moving/m6.ico'), ('images/moving/m5.ico'), ('images/moving/m4.ico'), ('images/moving/m3.ico'), ('images/moving/m2.ico'), ('images/moving/m1.ico')] ANIMATION['left'] = [pygame.transform.rotate(image.load('images/moving/m1.ico'), 180), pygame.transform.rotate(image.load('images/moving/m2.ico'), 180), pygame.transform.rotate(image.load('images/moving/m3.ico'), 180), pygame.transform.rotate(image.load('images/moving/m4.ico'), 180), pygame.transform.rotate(image.load('images/moving/m5.ico'), 180), pygame.transform.rotate(image.load('images/moving/m6.ico'), 180), pygame.transform.rotate(image.load('images/moving/m6.ico'), 180), pygame.transform.rotate(image.load('images/moving/m5.ico'), 180), pygame.transform.rotate(image.load('images/moving/m4.ico'), 180), pygame.transform.rotate(image.load('images/moving/m3.ico'), 180), pygame.transform.rotate(image.load('images/moving/m2.ico'), 180), pygame.transform.rotate(image.load('images/moving/m1.ico'), 180)] ANIMATION['up'] = [pygame.transform.rotate(image.load('images/moving/m1.ico'), 90), pygame.transform.rotate(image.load('images/moving/m2.ico'), 90), pygame.transform.rotate(image.load('images/moving/m3.ico'), 90), pygame.transform.rotate(image.load('images/moving/m4.ico'), 90), pygame.transform.rotate(image.load('images/moving/m5.ico'), 90), pygame.transform.rotate(image.load('images/moving/m6.ico'), 90), pygame.transform.rotate(image.load('images/moving/m6.ico'), 90), pygame.transform.rotate(image.load('images/moving/m5.ico'), 90), pygame.transform.rotate(image.load('images/moving/m4.ico'), 90), pygame.transform.rotate(image.load('images/moving/m3.ico'), 90), pygame.transform.rotate(image.load('images/moving/m2.ico'), 90), pygame.transform.rotate(image.load('images/moving/m1.ico'), 90)] ANIMATION['down'] = [pygame.transform.rotate(image.load('images/moving/m1.ico'), -90), pygame.transform.rotate(image.load('images/moving/m2.ico'), -90), pygame.transform.rotate(image.load('images/moving/m3.ico'), -90), pygame.transform.rotate(image.load('images/moving/m4.ico'), -90), pygame.transform.rotate(image.load('images/moving/m5.ico'), -90), pygame.transform.rotate(image.load('images/moving/m6.ico'), -90), pygame.transform.rotate(image.load('images/moving/m6.ico'), -90), pygame.transform.rotate(image.load('images/moving/m5.ico'), -90), pygame.transform.rotate(image.load('images/moving/m4.ico'), -90), pygame.transform.rotate(image.load('images/moving/m3.ico'), -90), pygame.transform.rotate(image.load('images/moving/m2.ico'), -90), pygame.transform.rotate(image.load('images/moving/m1.ico'), -90)] ANIMATION_STAY = dict() ANIMATION_STAY['left'] = [(pygame.transform.rotate(image.load('images/moving/m6.ico'), 180), 1)] ANIMATION_STAY['right'] = [('images/moving/m6.ico', 1)] ANIMATION_STAY['up'] = [(pygame.transform.rotate(image.load('images/moving/m6.ico'), 90), 1)] ANIMATION_STAY['down'] = [(pygame.transform.rotate(image.load('images/moving/m6.ico'), -90), 1)]
[ "anti2100@yandex.ru" ]
anti2100@yandex.ru
1cb69e60aa615509cf524ab1fb086168647ae432
7dc80048f72e106f977b49ea882c63cc9623e3ef
/notebooks/other/Y2017M07D28_RH_python27setup_v01.py
250e214bbfc2fd21afe44797cb7e69bbeb700a16
[]
no_license
YanCheng-go/Aqueduct30Docker
8400fdea23bfd788f9c6de71901e6f61530bde38
6606fa03d145338d48101fc53ab4a5fccf3ebab2
refs/heads/master
2022-12-16T03:36:25.704103
2020-09-09T14:38:28
2020-09-09T14:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
742
py
# coding: utf-8 # # Test Python 27 setup # # * Purpose of script: test python 27 environement against several libraries # * Author: Rutger Hofste # * Kernel used: python27 # * Date created: 20170728 # # # In[3]: packages = {"earth engine":-1,"gdal":-1,"geopandas":-1,"arcgis":-1} # In[6]: try: import ee packages["earth engine"]=1 except: packages["earth engine"]=0 # In[4]: try: from osgeo import gdal packages["gdal"]=1 except: packages["gdal"]=0 # In[10]: try: import geopandas packages["geopandas"]=1 except: packages["geopandas"]=0 # In[11]: try: import arcgis.gis packages["arcgis"]=1 except: packages["arcgis"]=0 # In[12]: print(packages) # In[ ]:
[ "rutgerhofste@gmail.com" ]
rutgerhofste@gmail.com
a083a001d9f5a9559169c82b7ac70022a8d131c7
c534fba89ff0462334cc724ff4010cbed829e294
/web/myadmin/migrations/0012_auto_20191019_1638.py
8bbaa46d7e85d15be38f10c54609829eb800d7f6
[]
no_license
victorfengming/python_bookshop
974f5f8ff3b53b024b573f0f256409204116e114
c0a4757fc2031a015d4b198ba889be69a2a4a3c5
refs/heads/master
2020-09-02T18:02:07.547345
2019-11-04T15:10:44
2019-11-04T15:10:44
219,275,403
1
1
null
null
null
null
UTF-8
Python
false
false
366
py
# Generated by Django 2.2.3 on 2019-10-19 16:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('myadmin', '0011_auto_20191018_2225'), ] operations = [ migrations.DeleteModel( name='Booktype', ), migrations.DeleteModel( name='Users', ), ]
[ "fengming19981221@163.com" ]
fengming19981221@163.com
5fa8134299debad3891dee51566474f0fd8a89e0
e8411c4506c106ce0a378f8a1a86c7b83363867c
/src/kmeans.py
b4a8131cc89b91160836751d37a336cc6d1d59a9
[]
no_license
rdyzakya/UnsupervisedLearning
d833d49feed7ebe41ef8fa855704ec56ed830de2
0a0e6a9f9d0b9cc03816384307556d217f3ac70e
refs/heads/main
2023-06-26T01:19:09.690564
2021-07-25T11:08:13
2021-07-25T11:08:13
382,757,126
0
0
null
null
null
null
UTF-8
Python
false
false
2,165
py
import numpy as np import time class DistanceMethodNotValidError(Exception): pass class NotSameLength(Exception): pass class KMeansClustering: def __init__(self): self.centroids = None self.x_columns = None self.how = None self.df = None def euclidean_distance(self,this_row,other): res = 0 for cols in self.x_columns: delta = this_row[cols] - other[cols] delta_sqr = delta**2 res += delta_sqr return np.sqrt(res) def manhattan_distance(self,this_row,other): res = 0 for cols in self.x_columns: delta = this_row[cols] - other[cols] delta_abs = np.abs(delta) res += delta_abs return res def calculate_nearest(self,row,how='euclidean'): dist = [0 for i in range(len(self.centroids))] dist = np.array(dist) for i in range(len(self.centroids)): if how == 'euclidean': dist[i] = self.euclidean_distance(row,self.centroids.loc[i]) elif how == 'manhattan': dist[i] = self.manhattan_distance(row,self.centroids.loc[i]) else: raise DistanceMethodNotValidError() min_idx = np.where(dist == dist.min())[0][0] return min_idx def fit(self,df_,x_columns,k,how='euclidean'): df = df_.copy() self.x_columns = [df.columns[i] for i in x_columns] self.centroids = df.sample(k).copy() self.centroids = self.centroids.reset_index() self.centroids = self.centroids[self.x_columns] self.how = how df['Label'] = np.nan df['New Label'] = np.nan while False in (df['Label'] == df['New Label']).unique(): df['Label'] = df.apply(lambda row: self.calculate_nearest(row[self.x_columns],self.how),axis=1) for i in range(len(self.centroids)): df_i = df[df['Label'] == i] means = df_i.mean() for col in self.x_columns: self.centroids.loc[i,col] = means[col] df['New Label'] = df.apply(lambda row: self.calculate_nearest(row[self.x_columns],self.how),axis=1) df['Label'] = df['New Label'] del df['New Label'] self.df = df def predict(self,data): if len(self.x_columns) != len(data): raise NotSameLength() temp = data data = {} for i in range(len(self.x_columns)): data[self.x_columns[i]] = temp[i] return self.calculate_nearest(data,self.how)
[ "impper1@gmail.com" ]
impper1@gmail.com
ff90cd1f1161c0d09ab2942b7f313e655ef548a0
a6bd898302ffebe9066595b264f9e5e38e6fa8e6
/settings_template.py
069b2d192200ef4343a3508486203a989c2cb909
[]
no_license
symroe/teamprime_retweets
65e8ec57095b138be45496eb115fb4da1d1e1af0
08e817da6191a8058b3606b076ba9de6bd253b12
refs/heads/master
2021-01-10T22:04:16.968867
2013-09-20T13:32:03
2013-09-20T13:32:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
CONSUMER_KEY = "" CONSUMER_SECRET = "" ACCESS_TOKEN_KEY = "" ACCESS_TOKEN_SECRET = "" username = "TeamPrimeLtd" TWEET_PATH = "tweets"
[ "sym.roe@talusdesign.co.uk" ]
sym.roe@talusdesign.co.uk
7f19e8afa6fdab3a0d7af9f55578ca1ba59afa65
81061f903318fceac254b60cd955c41769855857
/server/paiements/migrations/0003_auto__chg_field_transaction_extra_data.py
b059e9dea63be589ea180dbfe9a60bdc411cea7a
[ "BSD-2-Clause" ]
permissive
agepoly/polybanking
1e253e9f98ba152d9c841e7a72b7ee7cb9d9ce89
f8f19399585293ed41abdab53609ecb8899542a2
refs/heads/master
2020-04-24T06:15:16.606580
2015-10-26T19:52:03
2015-10-26T19:52:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,133
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Transaction.extra_data' db.alter_column(u'paiements_transaction', 'extra_data', self.gf('django.db.models.fields.TextField')(null=True)) def backwards(self, orm): # Changing field 'Transaction.extra_data' db.alter_column(u'paiements_transaction', 'extra_data', self.gf('django.db.models.fields.TextField')(default='')) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'configs.config': { 'Meta': {'object_name': 'Config'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'admin_enable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'allowed_users': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key_api': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'key_ipn': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'key_request': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'test_mode': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'url_back_err': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'url_back_ok': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'url_ipn': ('django.db.models.fields.URLField', [], {'max_length': '200'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'paiements.transaction': { 'Meta': {'object_name': 'Transaction'}, 'amount': ('django.db.models.fields.IntegerField', [], {}), 'config': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['configs.Config']"}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'extra_data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'internal_status': ('django.db.models.fields.CharField', [], {'default': "'cr'", 'max_length': '2'}), 'ipn_needed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_ipn_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_postfinance_ipn_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_user_back_from_postfinance_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_userforwarded_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'postfinance_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'postfinance_status': ('django.db.models.fields.CharField', [], {'default': "'??'", 'max_length': '2'}), 'reference': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, u'paiements.transctionlog': { 'Meta': {'object_name': 'TransctionLog'}, 'extra_data': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'log_type': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'transaction': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['paiements.Transaction']"}), 'when': ('django.db.models.fields.DateTimeField', [], {}) } } complete_apps = ['paiements']
[ "maximilien@theglu.org" ]
maximilien@theglu.org
c7fe334fcb246d191e7db56465b77abd86f98947
83412c7effe6a47e423fb55541d768d1bb308de0
/HW1/code/src/titanic.py
90f303852d55635b43e5ce3301f6e9b3daf995ab
[]
no_license
atibhav21/CSM146
7be041ae972ebd3a78c01e2a98075f66f875e9f4
ab806ec5fe23a7b36e503b304445b0efe83f12d5
refs/heads/master
2021-09-09T05:52:27.155543
2018-03-14T02:52:46
2018-03-14T02:52:46
117,149,527
0
0
null
null
null
null
UTF-8
Python
false
false
16,174
py
""" Author : Yi-Chieh Wu, Sriram Sankararaman Description : Titanic """ # Use only the provided packages! import math import csv from util import * from collections import Counter from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.cross_validation import cross_val_score from sklearn.cross_validation import train_test_split from sklearn import metrics import operator ###################################################################### # classes ###################################################################### class Classifier(object) : """ Classifier interface. """ def fit(self, X, y): raise NotImplementedError() def predict(self, X): raise NotImplementedError() class MajorityVoteClassifier(Classifier) : def __init__(self) : """ A classifier that always predicts the majority class. Attributes -------------------- prediction_ -- majority class """ self.prediction_ = None def fit(self, X, y) : """ Build a majority vote classifier from the training set (X, y). Parameters -------------------- X -- numpy array of shape (n,d), samples y -- numpy array of shape (n,), target classes Returns -------------------- self -- an instance of self """ majority_val = Counter(y).most_common(1)[0][0] self.prediction_ = majority_val return self def predict(self, X) : """ Predict class values. Parameters -------------------- X -- numpy array of shape (n,d), samples Returns -------------------- y -- numpy array of shape (n,), predicted classes """ if self.prediction_ is None : raise Exception("Classifier not initialized. Perform a fit first.") n,d = X.shape y = [self.prediction_] * n return y class RandomClassifier(Classifier) : def __init__(self) : """ A classifier that predicts according to the distribution of the classes. Attributes -------------------- probabilities_ -- class distribution dict (key = class, val = probability of class) """ self.probabilities_ = None def fit(self, X, y) : """ Build a random classifier from the training set (X, y). Parameters -------------------- X -- numpy array of shape (n,d), samples y -- numpy array of shape (n,), target classes Returns -------------------- self -- an instance of self """ ### ========== TODO : START ========== ### # part b: set self.probabilities_ according to the training set classes = np.unique(y); self.probabilities_ = {}; total_number = y.shape[0] for i in classes: self.probabilities_[int(i)] = len(np.where(y == i)[0])/float(total_number) ### ========== TODO : END ========== ### return self def predict(self, X, seed=1234) : """ Predict class values. Parameters -------------------- X -- numpy array of shape (n,d), samples seed -- integer, random seed Returns -------------------- y -- numpy array of shape (n,), predicted classes """ if self.probabilities_ is None : raise Exception("Classifier not initialized. Perform a fit first.") np.random.seed(seed) ### ========== TODO : START ========== ### # part b: predict the class for each test example # hint: use np.random.choice (be careful of the parameters) #print(self.probabilities_) n = X.shape[0] y = np.random.choice(2, n, p=[self.probabilities_[0], self.probabilities_[1]]) ### ========== TODO : END ========== ### return y ###################################################################### # functions ###################################################################### def plot_histograms(X, y, Xnames, yname) : n,d = X.shape # n = number of examples, d = number of features fig = plt.figure(figsize=(20,15)) nrow = 3; ncol = 3 for i in range(d) : fig.add_subplot (3,3,i) data, bins, align, labels = plot_histogram(X[:,i], y, Xname=Xnames[i], yname=yname, show = False) n, bins, patches = plt.hist(data, bins=bins, align=align, alpha=0.5, label=labels) plt.xlabel(Xnames[i]) plt.ylabel('Frequency') plt.legend() #plt.legend(loc='upper left') plt.savefig ('histograms.pdf') def plot_histogram(X, y, Xname, yname, show = True) : """ Plots histogram of values in X grouped by y. Parameters -------------------- X -- numpy array of shape (n,d), feature values y -- numpy array of shape (n,), target classes Xname -- string, name of feature yname -- string, name of target """ # set up data for plotting targets = sorted(set(y)) data = []; labels = [] for target in targets : features = [X[i] for i in range(len(y)) if y[i] == target] data.append(features) labels.append('%s = %s' % (yname, target)) # set up histogram bins features = set(X) nfeatures = len(features) test_range = list(range(int(math.floor(min(features))), int(math.ceil(max(features)))+1)) if nfeatures < 10 and sorted(features) == test_range: bins = test_range + [test_range[-1] + 1] # add last bin align = 'left' else : bins = 10 align = 'mid' # plot if show == True: plt.figure() n, bins, patches = plt.hist(data, bins=bins, align=align, alpha=0.5, label=labels) plt.xlabel(Xname) plt.ylabel('Frequency') plt.legend() #plt.legend(loc='upper left') #plt.show() return data, bins, align, labels def error(clf, X, y, ntrials=100, test_size=0.2) : """ Computes the classifier error over a random split of the data, averaged over ntrials runs. Parameters -------------------- clf -- classifier X -- numpy array of shape (n,d), features values y -- numpy array of shape (n,), target classes ntrials -- integer, number of trials Returns -------------------- train_error -- float, training error test_error -- float, test error """ ### ========== TODO : START ========== ### # compute cross-validation error over ntrials # hint: use train_test_split (be careful of the parameters) train_error = 0 test_error = 0 for i in range(1, ntrials+1): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, train_size=0.8, random_state=i) clf.fit(X_train, y_train) y_pred = clf.predict(X_train) # compute the training error train_error += 1 - metrics.accuracy_score(y_train, y_pred, normalize=True) y_pred = clf.predict(X_test) # compute the test error test_error += 1 - metrics.accuracy_score(y_test, y_pred, normalize=True) train_error = float(train_error) / ntrials test_error = float(test_error) / ntrials # average the errors out ### ========== TODO : END ========== ### return train_error, test_error def write_predictions(y_pred, filename, yname=None) : """Write out predictions to csv file.""" out = open(filename, 'wb') f = csv.writer(out) if yname : f.writerow([yname]) f.writerows(list(zip(y_pred))) out.close() ###################################################################### # main ###################################################################### def main(): # load Titanic dataset titanic = load_data("titanic_train.csv", header=1, predict_col=0) X = titanic.X; Xnames = titanic.Xnames y = titanic.y; yname = titanic.yname n,d = X.shape # n = number of examples, d = number of features #======================================== # part a: plot histograms of each feature print('Plotting...') for i in range(d) : plot_histogram(X[:,i], y, Xname=Xnames[i], yname=yname) plt.close('all') #======================================== # train Majority Vote classifier on data print('Classifying using Majority Vote...') clf = MajorityVoteClassifier() # create MajorityVote classifier, which includes all model parameters clf.fit(X, y) # fit training data using the classifier y_pred = clf.predict(X) # take the classifier and run it on the training data train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error: %.3f' % train_error) majority_vote_error = train_error ### ========== TODO : START ========== ### # part b: evaluate training error of Random classifier print('Classifying using Random...') rand_clf = RandomClassifier() rand_clf.fit(X, y) y_pred = rand_clf.predict(X) train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error: %.3f' % train_error) random_clf_error = train_error; ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part c: evaluate training error of Decision Tree classifier # use criterion of "entropy" for Information gain print('Classifying using Decision Tree...') decision_tree_clf = DecisionTreeClassifier(criterion="entropy") decision_tree_clf.fit(X, y) y_pred = decision_tree_clf.predict(X) train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error: %.3f' % train_error) ### ========== TODO : END ========== ### # note: uncomment out the following lines to output the Decision Tree graph """ # save the classifier -- requires GraphViz and pydot import StringIO, pydot from sklearn import tree dot_data = StringIO.StringIO() tree.export_graphviz(clf, out_file=dot_data, feature_names=Xnames) graph = pydot.graph_from_dot_data(dot_data.getvalue()) graph.write_pdf("dtree.pdf") """ ### ========== TODO : START ========== ### # part d: evaluate training error of k-Nearest Neighbors classifier # use k = 3, 5, 7 for n_neighbors print('Classifying using k-Nearest Neighbors...') for k in (3, 5, 7): k_Nearest_clf = KNeighborsClassifier(n_neighbors=k) k_Nearest_clf.fit(X, y) y_pred = k_Nearest_clf.predict(X) train_error = 1 - metrics.accuracy_score(y, y_pred, normalize=True) print('\t-- training error (k = %d): %.3f' % (k, train_error)) # Redeclare it for part e k_Nearest_clf = KNeighborsClassifier(n_neighbors=5) ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part e: use cross-validation to compute average training and test error of classifiers print('Investigating various classifiers...') for classifier in (clf, rand_clf, decision_tree_clf, k_Nearest_clf): train_error, test_error = error(classifier, X, y) print('\t--Train Error:%.3f Test Error%.3f Classifier: %s' % (train_error, test_error, classifier.__class__.__name__ )) ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part f: use 10-fold cross-validation to find the best value of k for k-Nearest Neighbors classifier print('Finding the best k for KNeighbors classifier...') x_points = [] y_points = [] for k in range(1, 50, 2): x_points.append(k) k_Nearest_clf = KNeighborsClassifier(n_neighbors=k) k_y = 1 - cross_val_score(k_Nearest_clf, X, y, scoring='accuracy', cv=10) y_points.append(sum(k_y) / len(k_y)) plt.plot(x_points, y_points) plt.xlabel('Number of neighbors') plt.ylabel('Average Error') plt.show() ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part g: investigate decision tree classifier with various depths print('Investigating depths...') x_points = [] y_test_points = [] y_train_points = [] for k in range(1, 21): decision_tree_clf = DecisionTreeClassifier(criterion='entropy', max_depth=k) train_error, test_error = error(decision_tree_clf, X, y) x_points.append(k) y_test_points.append(test_error) y_train_points.append(train_error) plt.plot(x_points, y_train_points, label='Training Error') plt.plot(x_points, y_test_points, label='Test Error') plt.plot(x_points, [majority_vote_error] * len(x_points), label='Majority Vote Classifier error') plt.plot(x_points, [random_clf_error] * len(x_points), label='Random Classifier error') plt.legend(loc='upper right') plt.xlabel('Depth') plt.ylabel('Average Error') plt.ylim(ymax=0.7) plt.show() #plt.close('all') ### ========== TODO : END ========== ### ### ========== TODO : START ========== ### # part h: investigate Decision Tree and k-Nearest Neighbors classifier with various training set sizes print('Investigating training set sizes...') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, train_size=0.9, random_state=42) fraction_percentages = [x / 10.0 for x in range(1, 11)] fraction_indices = [int(i * X_train.shape[0]) for i in fraction_percentages] k_Nearest_clf = KNeighborsClassifier(n_neighbors=7) decision_tree_clf = DecisionTreeClassifier(criterion='entropy', max_depth=6) x_points = fraction_percentages[:] y_points_decision_train = [] y_points_knn_train = [] y_points_decision_test =[] y_points_knn_test = [] for end_index in fraction_indices: X_train_set = X_train[:end_index+1] y_train_set = y_train[:end_index+1] k_Nearest_clf.fit(X_train_set, y_train_set) decision_tree_clf.fit(X_train_set, y_train_set) y_pred_knn_train = k_Nearest_clf.predict(X_train_set) y_pred_decision_train = decision_tree_clf.predict(X_train_set) y_pred_knn_test = k_Nearest_clf.predict(X_test) y_pred_decision_test = decision_tree_clf.predict(X_test) train_error_knn = 1 - metrics.accuracy_score(y_train_set, y_pred_knn_train, normalize=True) test_error_knn = 1 - metrics.accuracy_score(y_test, y_pred_knn_test, normalize=True) train_error_decision = 1 - metrics.accuracy_score(y_train_set, y_pred_decision_train, normalize=True) test_error_decision = 1 - metrics.accuracy_score(y_test, y_pred_decision_test, normalize=True) y_points_decision_train.append(train_error_decision) y_points_decision_test.append(test_error_decision) y_points_knn_train.append(train_error_knn) y_points_knn_test.append(test_error_knn) plt.plot(x_points, y_points_decision_train, label="Decision Tree Training Error") plt.plot(x_points, y_points_decision_test, label="Decision Tree Test Error") plt.plot(x_points, y_points_knn_train, label="KNearest Training Error") plt.plot(x_points, y_points_knn_test, label="KNearest Test Error") plt.plot(x_points, [majority_vote_error] * len(x_points), label='Majority Vote Classifier error') plt.plot(x_points, [random_clf_error] * len(x_points), label='Random Classifier error') plt.ylim(ymax=0.8) plt.legend(loc='upper right') plt.xlabel('Fraction of Training Data') plt.ylabel('Error') plt.show() ### ========== TODO : END ========== ### print('Done') if __name__ == "__main__": main()
[ "atibhav.mittal6@gmail.com" ]
atibhav.mittal6@gmail.com
6aa6cad3f09fd39c8de6b26302daf10e485cedb5
27ece9ab880a0bdba4b2c053eccda94602c716d5
/.history/save_20181129231105.py
50671059975cdfa4cf895b943b529349ae4d201e
[]
no_license
Symfomany/keras
85e3ad0530837c00f63e14cee044b6a7d85c37b2
6cdb6e93dee86014346515a2017652c615bf9804
refs/heads/master
2020-04-08T20:21:35.991753
2018-11-30T08:23:36
2018-11-30T08:23:36
159,695,807
0
0
null
null
null
null
UTF-8
Python
false
false
2,777
py
import os, argparse import tensorflow as tf # The original freeze_graph function # from tensorflow.python.tools.freeze_graph import freeze_graph dir = os.path.dirname(os.path.realpath(__file__)) def freeze_graph(model_dir, output_node_names): """Extract the sub graph defined by the output nodes and convert all its variables into constant Args: model_dir: the root folder containing the checkpoint state file output_node_names: a string, containing all the output node's names, comma separated """ if not tf.gfile.Exists(model_dir): raise AssertionError( "Export directory doesn't exists. Please specify an export " "directory: %s" % model_dir) if not output_node_names: print("You need to supply the name of a node to --output_node_names.") return -1 # We retrieve our checkpoint fullpath checkpoint = tf.train.get_checkpoint_state(model_dir) input_checkpoint = checkpoint.model_checkpoint_path # We precise the file fullname of our freezed graph absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1]) output_graph = absolute_model_dir + "/frozen_model.pb" # We clear devices to allow TensorFlow to control on which device it will load operations clear_devices = True # We start a session using a temporary fresh Graph with tf.Session(graph=tf.Graph()) as sess: # We import the meta graph in the current default Graph saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) # We restore the weights saver.restore(sess, input_checkpoint) # We use a built-in TF helper to export variables to constants output_graph_def = tf.graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes output_node_names.split(",") # The output node names are used to select the usefull nodes ) # Finally we serialize and dump the output graph to the filesystem with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString()) print("%d ops in the final graph." % len(output_graph_def.node)) return output_graph_def if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--model_dir", type=str, default="models", help="Model folder to export") parser.add_argument("--output_node_names", type=str, default="", help="The name of the output nodes, comma separated.") args = parser.parse_args() freeze_graph(args.model_dir, args.output_node_names)
[ "julien@meetserious.com" ]
julien@meetserious.com
5854285ac06cf19046ef130cc5b0824d88f1507f
86e42c9f8576b9d4cda02aebf60b7820fe7e9bef
/version.py
a3220818626214d55f0e8543ad9c2875366cd45e
[ "MIT" ]
permissive
ryansturmer/gitmake
4a5c25f8073ed07a5af25b4ffa093c47013548d8
8d6a2917af602f71dcdae0b142defaf529e9ee8c
refs/heads/master
2020-05-20T11:16:26.591662
2013-12-15T16:32:02
2013-12-15T16:32:02
11,926,238
1
0
null
null
null
null
UTF-8
Python
false
false
62
py
major = 0 minor=0 patch=0 branch="dev" timestamp=1376801630.58
[ "ryansturmer@gmail.com" ]
ryansturmer@gmail.com
6cd666cf9ad2d4f9fbbfd2c624ff106e65444172
7c70f3cbaecfa4d77928c784ae12f232c273112e
/api_client/test_helper.py
92caf6ea0aa0d2d82ca5d95fe1af6896fce47376
[ "MIT" ]
permissive
uktrade/lite-tests-common
d029298d9144a447404d38899ab35ff8e54bf53d
8ae386e55f899d0ffd61cc0a9156cd4db340d6d1
refs/heads/master
2020-08-03T19:20:39.673522
2020-07-21T09:59:01
2020-07-21T09:59:01
211,858,651
1
0
MIT
2020-07-21T09:59:03
2019-09-30T12:49:33
Python
UTF-8
Python
false
false
2,474
py
from .sub_helpers.documents import Documents from .sub_helpers.applications import Applications from .sub_helpers.cases import Cases from .sub_helpers.document_templates import DocumentTemplates from .sub_helpers.ecju_queries import EcjuQueries from .sub_helpers.flags import Flags from .sub_helpers.goods import Goods from .sub_helpers.goods_queries import GoodsQueries from .sub_helpers.organisations import Organisations from .sub_helpers.ogel import Ogel from .sub_helpers.parties import Parties from .sub_helpers.picklists import Picklists from .sub_helpers.queues import Queues from .sub_helpers.users import Users class TestHelper: """ Contains a collection of test helper classes, grouped by functional area, with each class containing required logic wrapping calls to various LITE API endpoints. """ def __init__(self, api): self.api_client = api self.context = self.api_client.context request_data = self.api_client.request_data self.documents = Documents(api_client=self.api_client, request_data=request_data) self.users = Users(api_client=self.api_client, request_data=request_data) self.organisations = Organisations(api_client=self.api_client, request_data=request_data) self.goods = Goods(api_client=self.api_client, documents=self.documents, request_data=request_data) self.goods_queries = GoodsQueries(api_client=self.api_client, request_data=request_data) self.parties = Parties(api_client=self.api_client, documents=self.documents, request_data=request_data) self.ecju_queries = EcjuQueries(api_client=self.api_client, request_data=request_data) self.picklists = Picklists(api_client=self.api_client, request_data=request_data) self.ogel = Ogel(api_client=self.api_client, request_data=request_data) self.cases = Cases(api_client=self.api_client, request_data=request_data) self.flags = Flags(api_client=self.api_client, request_data=request_data) self.queues = Queues(api_client=self.api_client, request_data=request_data) self.document_templates = DocumentTemplates(api_client=self.api_client, request_data=request_data) self.applications = Applications( parties=self.parties, goods=self.goods, api_client=self.api_client, documents=self.documents, request_data=request_data, organisations=self.organisations, )
[ "noreply@github.com" ]
uktrade.noreply@github.com
ace75a11edfb9adc326e867b401cc79979f5c7b9
991c3f7acbec5511441e62cb464bd77f9169c70c
/products/views.py
99fb6da645e9f42eddd0922ac853e550381a0e31
[]
no_license
anshika-1999/ecommerce_project
44e78cf7b22ab0ac92fd673a9069b870c4ab3175
c9842516a80887205e7ce677f2c78d2608887670
refs/heads/master
2022-12-16T10:07:09.990805
2020-09-17T15:07:41
2020-09-17T15:07:41
296,339,336
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
from django.shortcuts import render from django.http import HttpResponse from .models import Product def productsHome(request): allProds = [] catprods = Product.objects.values('category', 'product_id') cats = {item['category'] for item in catprods} for cat in cats: prod = Product.objects.filter(category=cat) allProds.append(prod) params = {'allProds':allProds} return render(request, 'products/productHome.html',params) def home(request): products = Product.objects.all() params={'product':products} return render(request, 'products/home.html',params) def checkout(request): return render(request, 'products/checkout.html')
[ "anshikag.1999@gmail.com" ]
anshikag.1999@gmail.com
5aa68c22244a5396ea453095dedc1d96aba4aa72
d9b53673b899a9b842a42060740b734bf0c63a31
/leetcode/python/easy/p645_findErrorNums.py
0b9b378910292d7af736c77ca60c91c415bce9a7
[ "Apache-2.0" ]
permissive
kefirzhang/algorithms
a8d656774b576295625dd663154d264cd6a6a802
549e68731d4c05002e35f0499d4f7744f5c63979
refs/heads/master
2021-06-13T13:05:40.851704
2021-04-02T07:37:59
2021-04-02T07:37:59
173,903,408
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
class Solution: def findErrorNums(self, nums): helper = [0] * len(nums) for i in nums: helper[i - 1] += 1 for i, n in enumerate(helper): print(i, n) if n == 0: lack = i + 1 elif n == 2: more = i + 1 return [more, lack] slu = Solution() print(slu.findErrorNums([1, 2, 2, 4]))
[ "8390671@qq.com" ]
8390671@qq.com
b41e10890c9ac9413fe046efde3866bcd757844a
5b19f8512f3f8716f7e7b9b45380d3d9eb92565e
/app/app/settings.py
59760d31a9202a974de5e40adc3bffd206d90a84
[]
no_license
raiatul14/taxi-app
a1daf11649b1de2e0f9942aa40dd193617641c50
37cf15ab77bb808494551300a25c8da8ed85645b
refs/heads/main
2023-06-26T15:54:49.244535
2021-07-24T14:34:24
2021-07-24T14:34:24
382,535,810
0
0
null
null
null
null
UTF-8
Python
false
false
4,226
py
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.2.5. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path import datetime # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ.get('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = bool(int(os.environ.get('DEBUG', 0))) ALLOWED_HOSTS = [] ALLOWED_HOSTS.extend( filter( None, os.environ.get('ALLOWED_HOSTS', '').split(','), ) ) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' ASGI_APPLICATION = 'taxi.routing.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS') } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' AUTH_USER_MODEL = 'core.User' #REDIS REDIS_URL = os.environ.get('REDIS_URL', 'redis://localhost:6379') #DJANGO CHANNELS CHANNEL_LAYERS = { 'default': { 'BACKEND': 'channels_redis.core.RedisChannelLayer', 'CONFIG': { 'hosts': [REDIS_URL], }, }, } #REST FRAMEWORK REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_simplejwt.authentication.JWTAuthentication', 'rest_framework.authentication.SessionAuthentication' ) } SIMPLE_JWT = { 'ACCESS_TOKEN_LIFETIME': datetime.timedelta(minutes=5), 'REFRESH_TOKEN_LIFETIME': datetime.timedelta(days=1), 'USER_ID_CLAIM': 'id', }
[ "atul.rai@ajackus.com" ]
atul.rai@ajackus.com
07d3ff9572b4b5f0580105d33e1d8ada290fd157
d69fc0b185b045489d48ae8aa4caa4e33d01eb55
/hyperf-skeleton/h5/node_modules/utf-8-validate/build/config.gypi
e8575bc70334680c69c495bb08cb4e12499ce236
[ "MIT" ]
permissive
4yop/miscellaneous
7993f2f314147019fc3e36f8b31ae6b7867a2f4f
3adee58f86c139f20926c80b1fb8c025127eef17
refs/heads/master
2023-04-26T11:18:23.755520
2022-08-25T15:55:13
2022-08-25T15:55:13
229,232,972
0
0
null
2023-04-19T20:05:15
2019-12-20T09:26:24
PHP
UTF-8
Python
false
false
3,345
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [], "msbuild_toolset": "v141", "msvs_windows_target_platform_version": "10.0.17763.0" }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "debug_nghttp2": "false", "debug_node": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_in": "..\\..\\deps/icu-small\\source/data/in\\icudt65l.dat", "icu_default_data": "", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "65", "is_debug": 0, "napi_build_version": "5", "nasm_version": "2.14", "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_install_npm": "true", "node_module_version": 72, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_report": "true", "node_shared": "false", "node_shared_brotli": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "true", "node_use_large_pages": "false", "node_use_large_pages_script_lld": "false", "node_use_node_code_cache": "true", "node_use_node_snapshot": "true", "node_use_openssl": "true", "node_use_v8_platform": "true", "node_with_ltcg": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_is_fips": "false", "shlib_suffix": "so.72", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 1, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_siphash": 1, "v8_use_snapshot": 1, "want_separate_host_toolset": 0, "nodedir": "C:\\Users\\Administrator\\AppData\\Local\\node-gyp\\Cache\\12.16.2", "standalone_static_library": 1, "msbuild_path": "D:\\Program Files (x86)\\Microsoft Visual Studio\\2017\\Community\\MSBuild\\15.0\\Bin\\MSBuild.exe", "cache": "C:\\Users\\Administrator\\AppData\\Local\\npm-cache", "globalconfig": "C:\\Users\\Administrator\\AppData\\Roaming\\npm\\etc\\npmrc", "init_module": "C:\\Users\\Administrator\\.npm-init.js", "metrics_registry": "https://registry.npm.taobao.org/", "node_gyp": "C:\\Users\\Administrator\\AppData\\Roaming\\npm\\node_modules\\npm\\node_modules\\node-gyp\\bin\\node-gyp.js", "prefix": "C:\\Users\\Administrator\\AppData\\Roaming\\npm", "registry": "https://registry.npm.taobao.org/", "userconfig": "C:\\Users\\Administrator\\.npmrc", "user_agent": "npm/7.7.6 node/v12.16.2 win32 x64" } }
[ "1131559748@qq.com" ]
1131559748@qq.com
249fd231624cd29de11204da14210b15135a09c1
9fa68d4b3332e557ac51ba4f9ed4b0e37e3011c8
/config_sz32_alpha1_5.py
489b0f46ccc029d35864f187efd38f6f659d3ef2
[]
no_license
aizvorski/ndsb17
e545f2b82383e6f826cb31959b0dbefce25c9161
50322131a0cca20c24956b34eb787b65e044e23a
refs/heads/master
2021-06-13T20:16:22.928167
2017-04-12T10:46:01
2017-04-12T10:46:01
83,652,568
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
num_epochs = 500 samples_per_epoch = 10000 lr = 0.001 feature_sz = 32 feature_alpha = 1.5
[ "aizvorski@gmail.com" ]
aizvorski@gmail.com
36d6fbac09d283afec24203a8c80c252d0e04c93
d7016f69993570a1c55974582cda899ff70907ec
/sdk/recoveryservices/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/activestamp/aio/operations/_backup_protection_containers_operations.py
977185266eeefe7c362fb3931a8a7fd029b3b0e0
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
6,974
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._backup_protection_containers_operations import build_list_request from .._vendor import RecoveryServicesBackupClientMixinABC if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class BackupProtectionContainersOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.recoveryservicesbackup.activestamp.aio.RecoveryServicesBackupClient`'s :attr:`backup_protection_containers` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list( self, vault_name: str, resource_group_name: str, filter: Optional[str] = None, **kwargs: Any ) -> AsyncIterable["_models.ProtectionContainerResource"]: """Lists the containers registered to Recovery Services Vault. :param vault_name: The name of the recovery services vault. Required. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. Required. :type resource_group_name: str :param filter: OData filter options. Default value is None. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ProtectionContainerResource or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.recoveryservicesbackup.activestamp.models.ProtectionContainerResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2023-01-01"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.ProtectionContainerResourceList] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( vault_name=vault_name, resource_group_name=resource_group_name, subscription_id=self._config.subscription_id, filter=filter, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("ProtectionContainerResourceList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupProtectionContainers" }
[ "noreply@github.com" ]
kurtzeborn.noreply@github.com
c571164d09a9dfe8ee2571e96a5c3e2bb982d580
44064ed79f173ddca96174913910c1610992b7cb
/Second_Processing_app/temboo/Library/Google/Drive/Revisions/Delete.py
21b2277599036d6311d9fc5895330b8646d5bce5
[]
no_license
dattasaurabh82/Final_thesis
440fb5e29ebc28dd64fe59ecd87f01494ed6d4e5
8edaea62f5987db026adfffb6b52b59b119f6375
refs/heads/master
2021-01-20T22:25:48.999100
2014-10-14T18:58:00
2014-10-14T18:58:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,974
py
# -*- coding: utf-8 -*- ############################################################################### # # Delete # Removes a revision. # # Python version 2.6 # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class Delete(Choreography): def __init__(self, temboo_session): """ Create a new instance of the Delete Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ Choreography.__init__(self, temboo_session, '/Library/Google/Drive/Revisions/Delete') def new_input_set(self): return DeleteInputSet() def _make_result_set(self, result, path): return DeleteResultSet(result, path) def _make_execution(self, session, exec_id, path): return DeleteChoreographyExecution(session, exec_id, path) class DeleteInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the Delete Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_AccessToken(self, value): """ Set the value of the AccessToken input for this Choreo. ((optional, string) A valid access token retrieved during the OAuth2 process. This is required unless you provide the ClientID, ClientSecret, and RefreshToken to generate a new access token.) """ InputSet._set_input(self, 'AccessToken', value) def set_ClientID(self, value): """ Set the value of the ClientID input for this Choreo. ((conditional, string) The Client ID provided by Google. Required unless providing a valid AccessToken.) """ InputSet._set_input(self, 'ClientID', value) def set_ClientSecret(self, value): """ Set the value of the ClientSecret input for this Choreo. ((conditional, string) The Client Secret provided by Google. Required unless providing a valid AccessToken.) """ InputSet._set_input(self, 'ClientSecret', value) def set_FileID(self, value): """ Set the value of the FileID input for this Choreo. ((required, string) The ID of the file.) """ InputSet._set_input(self, 'FileID', value) def set_RefreshToken(self, value): """ Set the value of the RefreshToken input for this Choreo. ((conditional, string) An OAuth refresh token used to generate a new access token when the original token is expired. Required unless providing a valid AccessToken.) """ InputSet._set_input(self, 'RefreshToken', value) def set_RevisionID(self, value): """ Set the value of the RevisionID input for this Choreo. ((required, string) The ID of the revision.) """ InputSet._set_input(self, 'RevisionID', value) class DeleteResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the Delete Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. ((json) The response from Google.) """ return self._output.get('Response', None) def get_NewAccessToken(self): """ Retrieve the value for the "NewAccessToken" output from this Choreo execution. ((string) Contains a new AccessToken when the RefreshToken is provided.) """ return self._output.get('NewAccessToken', None) class DeleteChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return DeleteResultSet(response, path)
[ "dattasaurabh82@gmail.com" ]
dattasaurabh82@gmail.com
037e407294716acc0cfc28a662b89b093dfe6d3b
b96edd0ba0a9f2a73a8ef8ed011714798fa72303
/test_all.py
b9cf4978ba413cb3c30ad1ea4439ec2cdc20a863
[]
no_license
lijiahaoAA/lijiahao_cpsc_12lead
9401d9679d530183afba5a15f6efef9a96f2f154
663264920ead07493c0d8fe9987b9ab9a60d35fd
refs/heads/master
2023-03-14T07:11:28.996901
2021-03-09T07:08:50
2021-03-09T07:08:50
345,533,709
0
0
null
null
null
null
UTF-8
Python
false
false
6,924
py
import time import numpy as np np.set_printoptions(threshold=np.inf) import scipy.io as sio import os import config from keras.preprocessing import sequence import QRSDetectorOffline import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 # os.environ["TF_CPP_MIN_LOG_LEVEL"] = '0' # config = config.Config() # a = os.listdir(config.train_mat_path) # train_mat = [] # 存储所有6877个样本数据 # for i in range(len(a)): # if a[i].endswith('.mat'): # train_mat.append(config.train_mat_path + a[i]) # # b = os.listdir(config.test_mat_path) # test_mat = [] # 存储最终的测试数据 # for i in range(len(b)): # if b[i].endswith('.mat'): # test_mat.append(config.test_mat_path + b[i]) # # def data_process(all_mat): # ECG_1 = [] # ECG_2 = [] # ECG_3 = [] # #for recordpath in range(len(all_mat)): # for recordpath in range(1): # # load ECG # mat = sio.loadmat(all_mat[recordpath]) # mat = np.array(mat['ECG']['data'][0, 0]) # mat = np.transpose(mat) # 做转置 # signal = mat # ECG_1.append(signal) # #print(signal.shape) # # qrsdetector = QRSDetectorOffline.QRSDetectorOffline(signal, config.sample_frequency, verbose=False, # plot_data=False, show_plot=False) # # denoise ECG 对每一导联进行去噪 滤波 # for i in range(signal.shape[1]): # signal[:, i] = qrsdetector.bandpass_filter(signal[:, i], lowcut=0.5, highcut=49.0, # signal_freq=config.sample_frequency, filter_order=1) # # ECG_2.append(signal) # # print(ECG[0].shape) # # print(ECG[0]) # # print(signal) # # 将所有导联的长度填充为一样的,尾部补0 # # ECG_1 = sequence.pad_sequences(ECG_1, maxlen=3600, dtype='float32', truncating='post') # ECG_2 = sequence.pad_sequences(ECG_2, maxlen=3600, dtype='float32', truncating='post') # print(len(ECG_1)) # print(len(ECG_2)) # # plot_wave(ECG_1[0][:,0],ECG_2[0][:,0]) # calculate_max_min(ECG_2,ECG_1[0][:,0],ECG_2[0][:,0]) # # #np.save('ECG_train_data_process_no_wave.npy', ECG) # # np.save('ECG_train_data_process_3600QRS.npy', ECG) # #np.save('ECG_test_data_process_no_wave.npy', ECG) # # np.save('ECG_test_data_process_3600QRS.npy', ECG) # return ECG_1, ECG_2 # # def calculate_max_min(ECG,ECG_1,ECG_2): # data = [] # tic = time.time() # for i in range(len(ECG)): # data.append(max(ECG[i][:, 0])) # data.append(min(ECG[i][:, 0])) # # data.append(max(ECG[i][:, 1])) # data.append(min(ECG[i][:, 1])) # # data.append(max(ECG[i][:, 2])) # data.append(min(ECG[i][:, 2])) # # data.append(max(ECG[i][:, 3])) # data.append(min(ECG[i][:, 3])) # # data.append(max(ECG[i][:, 4])) # data.append(min(ECG[i][:, 4])) # # data.append(max(ECG[i][:, 5])) # data.append(min(ECG[i][:, 5])) # # data.append(max(ECG[i][:, 6])) # data.append(min(ECG[i][:, 6])) # # data.append(max(ECG[i][:, 7])) # data.append(min(ECG[i][:, 7])) # # data.append(max(ECG[i][:, 8])) # data.append(min(ECG[i][:, 8])) # # data.append(max(ECG[i][:, 9])) # data.append(min(ECG[i][:, 9])) # # data.append(max(ECG[i][:, 10])) # data.append(min(ECG[i][:, 10])) # # data.append(max(ECG[i][:, 11])) # data.append(min(ECG[i][:, 11])) # # # print(len(data)) # with open("2.txt", 'w') as file: # data1 = str(data) # file.write(data1) # file.close() # max_data = max(data) # 训练集和测试集中在归一化到某个范围内时需要保证这个max_data和min_data是一致的 # min_data = min(data) # normalization(ECG, config.max_data, config.min_data, ECG_1, ECG_2) # print(max(data)) # print(min(data)) # toc = time.time() # print("data normalization takes time:", toc - tic) # return max_data,min_data # # # 数据归一化到指定区间 # def normalization(ECG, max_data, min_data, ECG_1, ECG_2): # if(max_data - min_data == 0): # print("分母为零,请检查") # return # k = (config.normalization_max - config.normalization_min)/((max_data - min_data) * 1.0) # 比例系数 # for i in range(len(ECG)): # ECG[i][:, 0] = config.normalization_min + k * (ECG[i][:, 0] - min_data) # ECG[i][:, 1] = config.normalization_min + k * (ECG[i][:, 1] - min_data) # ECG[i][:, 2] = config.normalization_min + k * (ECG[i][:, 2] - min_data) # ECG[i][:, 3] = config.normalization_min + k * (ECG[i][:, 3] - min_data) # ECG[i][:, 4] = config.normalization_min + k * (ECG[i][:, 4] - min_data) # ECG[i][:, 5] = config.normalization_min + k * (ECG[i][:, 5] - min_data) # ECG[i][:, 6] = config.normalization_min + k * (ECG[i][:, 6] - min_data) # ECG[i][:, 7] = config.normalization_min + k * (ECG[i][:, 7] - min_data) # ECG[i][:, 8] = config.normalization_min + k * (ECG[i][:, 8] - min_data) # ECG[i][:, 9] = config.normalization_min + k * (ECG[i][:, 9] - min_data) # ECG[i][:, 10] = config.normalization_min + k * (ECG[i][:, 10] - min_data) # ECG[i][:, 11] = config.normalization_min + k * (ECG[i][:, 11] - min_data) # # # np.save('ECG_train_data_normal.npy', ECG) # # np.save('ECG_test_data_normal_500record.npy', ECG) # plot_wave(ECG_1,ECG_2,ECG[0][:,0]) # return ECG # # def plot_wave(ECG_qrs, ECG_noqrs, ECG_3): # plt.figure() # print(len(ECG_qrs.shape)) # print(len(ECG_noqrs.shape)) # print(len(ECG_3.shape)) # # plt.plot(range(3600), ECG_qrs[0:3600], color="red",label="去噪数据") # # .plot(range(3600), ECG_noqrs, color="blue") # # plt.plot(range(3600), ECG_3, color="blue", label="归一化数据") # plt.title("去噪数据波形对比归一化到[-3,3]数据波形") # plt.xlabel("Time") # plt.ylabel("Voltage") # plt.legend(loc="best") # plt.show() # # #data_process(train_mat) # data_process(test_mat) # from keras import backend as K # from keras.layers import Lambda # import tensorflow as tf # def zeropad(x): # y = K.zeros_like(x) # print(y) # return K.concatenate([x, y], axis=2) # def zeropad_output_shape(input_shape): print(input_shape) shape = list(input_shape) shape[1] *= 2 print(shape) return tuple(shape) input = np.array([[1,2,3],[4,5,6]]) y = np.zeros_like(input) new = np.concatenate([input, y], axis=1) print(new) zeropad_output_shape(input.shape) # input = tf.convert_to_tensor(input) # shortcut = Lambda(zeropad, output_shape=zeropad_output_shape)(input) # print(shortcut)
[ "1301840357@qq.com" ]
1301840357@qq.com
6028e1a80acb4dba764ef24342f833eb677eea1b
95a60a8fd8a21fcc3bcdcecfd4b6a3a3a3ff35b6
/backend/api.py
e175256a127f6184aa05edf3d108889e4af44c2b
[]
no_license
AkshithBellare/maljpeg-web-app
f59cae2eff7f6446876b4a96b3143c2c38078927
ca83f1ef5bf95e73143aaa0e29b5c8f6f010936d
refs/heads/master
2023-03-29T12:37:29.864849
2021-04-05T13:16:43
2021-04-05T13:16:43
354,757,948
0
0
null
null
null
null
UTF-8
Python
false
false
5,824
py
import os import pickle from flask import Flask from flask_restful import Resource, Api, reqparse from flask_cors import CORS from flask import request, Response import numpy as np import json import PIL.Image as Image import io import base64 from struct import unpack import pandas as pd import sys import glob marker_mapping = { 0xffc0: "SOF0", 0xffc1: "SOF1", 0xffc2: "SOF2", 0xffc3: "SOF3", 0xffc4: "DHT", 0xffc5: "SOF5", 0xffc6: "SOF6", 0xffc7: "SOF7", 0xffc8: "JPG", 0xffc9: "SOF9", 0xffca: "SOF10", 0xffcb: "SOF11", 0xffcc: "DAC", 0xffcd: "SOF13", 0xffce: "SOF14", 0xffcf: "SOF15", 0xffd0: "RST0", 0xffd1: "RST1", 0xffd2: "RST2", 0xffd3: "RST3", 0xffd4: "RST4", 0xffd5: "RST5", 0xffd6: "RST6", 0xffd7: "RST7", 0xffd8: "SOI", 0xffd9: "EOI", 0xffda: "SOS", 0xffdb: "DQT", 0xffdc: "DNL", 0xffdd: "DRI", 0xffde: "DHP", 0xffdf: "EXP", 0xffe0: "APP0", 0xffe1: "APP1", 0xffe2: "APP2", 0xffe3: "APP3", 0xffe4: "APP4", 0xffe5: "APP5", 0xffe6: "APP6", 0xffe7: "APP7", 0xffe8: "APP8", 0xffe9: "APP9", 0xffea: "APP10", 0xffeb: "APP11", 0xffec: "APP12", 0xffed: "APP13", 0xffee: "APP14", 0xffef: "APP15", 0xfff0: "JPG0", 0xfff1: "JPG1", 0xfff2: "JPG2", 0xfff3: "JPG3", 0xfff4: "JPG4", 0xfff5: "JPG5", 0xfff6: "JPG6", 0xfff7: "JPG7", 0xfff8: "JPG8", 0xfff9: "JPG9", 0xfffa: "JPG10", 0xfffb: "JPG11", 0xfffc: "JPG12", 0xfffd: "JPG13", 0xfffe: "COM", 0xff01: "TEM", } class JPEG: def __init__(self, image_file): with open(image_file, 'rb') as f: self.img_data = f.read() def decode(self): data = self.img_data marker_DQT_num = 0 marker_DQT_size_max = 0 marker_DHT_num = 0 marker_DHT_size_max = 0 file_markers_num = 0 marker_EOI_content_after_num = 0 marker_APP12_size_max = 0 marker_APP1_size_max = 0 marker_COM_size_max = 0 file_size = len(data) print(f"file_size = {file_size}") while(True): try: marker, = unpack(">H", data[0:2]) except: print("error") marker_map = marker_mapping.get(marker) if marker_map != None: file_markers_num += 1 if marker_map == "DQT": marker_DQT_num += 1 lenchunk, = unpack(">H", data[2:4]) if lenchunk > marker_DQT_size_max: marker_DQT_size_max = lenchunk data = data[2+lenchunk:] elif marker_map == "SOI": data = data[2:] elif marker_map == "DHT": marker_DHT_num += 1 lenchunk, = unpack(">H", data[2:4]) if lenchunk > marker_DHT_size_max: marker_DHT_size_max = lenchunk data = data[2+lenchunk:] elif marker_map == "EOI": rem = data[2:] if len(rem) > marker_EOI_content_after_num: marker_EOI_content_after_num = len(rem) data = rem elif marker_map == "SOS": data = data[-2:] elif marker_map == "APP12": lenchunk, = unpack(">H", data[2:4]) if lenchunk > marker_APP12_size_max: marker_APP12_size_max = lenchunk data = data[2+lenchunk:] elif marker_map == "APP1": lenchunk, = unpack(">H", data[2:4]) if lenchunk > marker_APP1_size_max: marker_APP1_size_max = lenchunk data = data[2+lenchunk:] elif marker_map == "COM": lenchunk, = unpack(">H", data[2:4]) if lenchunk > marker_COM_size_max: marker_COM_size_max = lenchunk data = data[2+lenchunk:] elif marker_map == "TEM": data = data[2:] elif marker <= 0xffd9 and marker >= 0xffd0: data = data[2:] elif marker <= 0xffbf and marker >= 0xff02: lenchunk, = unpack(">H", data[2:4]) data = data[2+lenchunk:] else: lenchunk, = unpack(">H", data[2:4]) data = data[2+lenchunk:] else: data = data[1:] if (len(data) == 0): data_list = [marker_EOI_content_after_num,marker_DQT_num,marker_DHT_num,file_markers_num, marker_DQT_size_max, marker_DHT_size_max,file_size, marker_COM_size_max,marker_APP1_size_max,marker_APP12_size_max,0] return data_list def extract_features(): img = JPEG("./server_files/saveimg.jpeg") data_list = img.decode() df = pd.DataFrame(data_list) df = df.T df.to_csv("test.csv") app = Flask(__name__) CORS(app) api = Api(app) parser = reqparse.RequestParser() parser.add_argument("image") class Predict(Resource): def post(self): args = parser.parse_args() #request_data = json.loads(request.get_data()) #data = request_data['data'] #decodeit = open('saveimg.jpeg', 'wb') #decodeit.write(base64.b64decode((data))) #decodeit.close() #print(type(data)) decodeit = open('./server_files/saveimg.jpeg', 'wb') decodeit.write(base64.b64decode(bytes(args["image"], 'utf-8'))) decodeit.close() extract_features() return {"class" : "bening"} api.add_resource(Predict, "/predict") if __name__ == "__main__": app.run(debug=True)
[ "akshithnm@gmail.com" ]
akshithnm@gmail.com
58cd01e6622fd1b0f19af5cb10edacbcb384ce28
07e80d4b41d0db79bfc031b65894e28322d24e19
/zygoat/components/__init__.py
d0b864370a8ff64fa0bf89e99e2a898e0348e10e
[ "MIT" ]
permissive
swang192/zygoat
0b021ad6cd8d286d265e22c5b27f1a8c4f18de6e
d00b6b1cc3a384b61e38845ff35dcbcc74a562d9
refs/heads/master
2021-02-05T21:47:14.089625
2020-02-28T04:03:16
2020-02-28T04:03:16
243,837,678
0
0
MIT
2020-02-28T19:19:33
2020-02-28T19:19:33
null
UTF-8
Python
false
false
320
py
from .base import Component # noqa from .settings_component import SettingsComponent # noqa from .editorconfig import editorconfig from .docker_compose import docker_compose from .backend import backend from .frontend import frontend components = [ editorconfig, docker_compose, backend, frontend, ]
[ "markrawls96@gmail.com" ]
markrawls96@gmail.com
a5a2a4b129d766a01b983be9cdcbdf3471ac18cb
f55eea6e52408c1400d8570b2a55ee8b9efb1a9e
/Python-Programming-Intermediate/Regular Expressions-164.py
f9d4e1a6d0ed4f1453780805d5c3d68ee17f3af1
[]
no_license
CloudChaoszero/Data-Analyst-Track-Dataquest.io-Projects
a8b20c169fde8224c57bb85a845059072651e0e9
3b5be57489f960963a62b385177f13f25de452c3
refs/heads/master
2021-01-21T08:20:25.746106
2017-05-22T21:50:42
2017-05-22T21:50:42
91,623,309
2
3
null
null
null
null
UTF-8
Python
false
false
2,873
py
## 1. Introduction ## strings = ["data science", "big data", "metadata"] regex = "data" ## 2. Wildcards in Regular Expressions ## strings = ["bat", "robotics", "megabyte"] regex = "..t" ## 3. Searching the Beginnings And Endings Of Strings ## strings = ["better not put too much", "butter in the", "batter"] bad_string = "We also wouldn't want it to be bitter" regex = "" regex = "^b.tter" ## 5. Reading and Printing the Data Set ## import csv #Open and read file. Therafter, convert to list file = csv.reader(open("askreddit_2015.csv",'r')) post_with_header = list(file) posts = post_with_header[1:] for val in posts[:10]: print(val) ## 6. Counting Simple Matches in the Data Set with re() ## import re #Initialize Counter of_reddit_count = 0 #Counting loop that counts for "of Reddit" in first element of every row for val in posts: if re.search("of Reddit", val[0]): of_reddit_count +=1 else: pass ## 7. Using Square Brackets to Match Multiple Characters ## import re of_reddit_count = 0 for row in posts: if re.search("of [Rr]eddit", row[0]) is not None: of_reddit_count += 1 ## 8. Escaping Special Characters ## import re serious_count = 0 for row in posts: if re.search("\[Serious]",row[0]) is not None: serious_count +=1 print(row[0]) ## 9. Combining Escaped Characters and Multiple Matches ## import re serious_count = 0 for row in posts: if re.search("\[[sS]erious\]", row[0]) is not None: serious_count += 1 ## 10. Adding More Complexity to Your Regular Expression ## import re serious_count = 0 for row in posts: if re.search("[\[\(][Ss]erious[\]\)]", row[0]) is not None: serious_count += 1 ## 11. Combining Multiple Regular Expressions ## import re serious_start_count = 0 serious_end_count = 0 serious_count_final = 0 for row in posts: if re.search("^[\[\(][Ss]erious[\]\)]",row[0]) is not None: serious_start_count += 1 if re.search("[\[\(][Ss]erious[\]\)]$", row[0]) is not None: serious_end_count += 1 if re.search("^[\[\(][Ss]erious[\]\)]|[\[\(][Ss]erious[\]\)]$", row[0]) is not None: serious_count_final += 1 ## 12. Using Regular Expressions to Substitute Strings ## import re posts_new = [] for row in posts: row[0] = re.sub("[\[\(][Ss]erious[\]\)]", "[Serious]", row[0]) posts_new.append(row) ## 13. Matching Years with Regular Expressions ## import re year_strings = [] for string in strings: if re.search("[1-2][0-9][0-9][0-9]", string) is not None: year_strings.append(string) ## 14. Repeating Characters in Regular Expressions ## import re year_strings = [] for y in strings: if re.search("[0-2][0-9]{3}",y) is not None: year_strings.append(y) ## 15. Challenge: Extracting all Years ## import re years = re.findall("[0-2][0-9]{3}", years_string)
[ "noreply@github.com" ]
CloudChaoszero.noreply@github.com
dbd6c32ba34d3fe4be7a38d40e085d64dc1c2ffc
efa2de2e0ca886a22be34c40cb4b4d397aa05015
/AGE/link_pred_ddi.py
47fa5e9d4c3f629a78f1356612226821a403eb4d
[]
no_license
chuanqichen/cs224w
34c522d95c37089298a03ff2fd113c5b613036cd
aeebce6810221bf04a9a14d8d4369be76691b608
refs/heads/main
2023-03-18T18:03:16.468040
2021-03-21T18:55:48
2021-03-21T18:55:56
345,116,683
4
0
null
null
null
null
UTF-8
Python
false
false
11,490
py
from __future__ import division from __future__ import print_function import os, sys import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=RuntimeWarning) warnings.simplefilter(action='ignore', category=UserWarning) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir)) # For replicating the experiments SEED = 42 import argparse import time import random import numpy as np import scipy.sparse as sp import torch np.random.seed(SEED) torch.manual_seed(SEED) from torch import optim import torch.nn.functional as F from model import LinTrans, LogReg from optimizer import loss_function from utils import * from sklearn.cluster import SpectralClustering, KMeans from clustering_metric import clustering_metrics from tqdm import tqdm from sklearn.preprocessing import normalize, MinMaxScaler from sklearn import metrics import matplotlib.pyplot as plt from ogb.linkproppred import PygLinkPropPredDataset, Evaluator import torch_geometric.transforms as T parser = argparse.ArgumentParser() parser.add_argument('--gnnlayers', type=int, default=1, help="Number of gnn layers") parser.add_argument('--linlayers', type=int, default=1, help="Number of hidden layers") parser.add_argument('--epochs', type=int, default=400, help='Number of epochs to train.') parser.add_argument('--dims', type=int, default=[500], help='Number of units in hidden layer 1.') parser.add_argument('--lr', type=float, default=0.001, help='Initial learning rate.') parser.add_argument('--upth_st', type=float, default=0.0011, help='Upper Threshold start.') parser.add_argument('--lowth_st', type=float, default=0.1, help='Lower Threshold start.') parser.add_argument('--upth_ed', type=float, default=0.001, help='Upper Threshold end.') parser.add_argument('--lowth_ed', type=float, default=0.5, help='Lower Threshold end.') parser.add_argument('--upd', type=int, default=10, help='Update epoch.') parser.add_argument('--bs', type=int, default=10000, help='Batchsize.') parser.add_argument('--dataset', type=str, default='wiki', help='type of dataset.') parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda is True: print('Using GPU') torch.cuda.manual_seed(SEED) os.environ["CUDA_VISIBLE_DEVICES"] = "5" def clustering(Cluster, feature, true_labels): f_adj = np.matmul(feature, np.transpose(feature)) predict_labels = Cluster.fit_predict(f_adj) cm = clustering_metrics(true_labels, predict_labels) db = -metrics.davies_bouldin_score(f_adj, predict_labels) acc, nmi, adj = cm.evaluationClusterModelFromLabel(tqdm) return db, acc, nmi, adj def update_similarity(z, upper_threshold, lower_treshold, pos_num, neg_num): f_adj = np.matmul(z, np.transpose(z)) cosine = f_adj cosine = cosine.reshape([-1,]) pos_num = round(upper_threshold * len(cosine)) neg_num = round((1-lower_treshold) * len(cosine)) pos_inds = np.argpartition(-cosine, pos_num)[:pos_num] neg_inds = np.argpartition(cosine, neg_num)[:neg_num] return np.array(pos_inds), np.array(neg_inds) def update_threshold(upper_threshold, lower_treshold, up_eta, low_eta): upth = upper_threshold + up_eta lowth = lower_treshold + low_eta return upth, lowth def get_preds(emb, adj_orig, edges): def sigmoid(x): return 1 / (1 + np.exp(-x)) adj_rec = np.dot(emb, emb.T) preds = [] for e in edges: preds.append(sigmoid(adj_rec[e[0], e[1]])) return torch.FloatTensor(preds) def gae_for(args): print("Using {} dataset".format(args.dataset)) dataset = PygLinkPropPredDataset(name='ogbl-ddi', transform=T.ToDense()) data = dataset[0] adj = data.adj.numpy() adj = sp.csr_matrix(adj) n = adj.shape[0] features = np.ones((n, 1)) #split_edge = dataset.get_edge_split() n_nodes, feat_dim = features.shape dims = [feat_dim] + args.dims print("Model dims", dims) layers = args.linlayers # Store original adjacency matrix (without diagonal entries) for later print('adjacency shape', adj.shape) adj = adj - sp.dia_matrix((adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape) adj.eliminate_zeros() adj_orig = adj split_edge = dataset.get_edge_split() val_edges = split_edge['valid']['edge'] val_edges_false = split_edge['valid']['edge_neg'] test_edges = split_edge['test']['edge'] test_edges_false = split_edge['test']['edge_neg'] train_edges = split_edge['train']['edge'] adj_train = mask_test_edges_ddi(adj, train_edges) adj = adj_train n = adj.shape[0] print('feature shape', features.shape) adj_norm_s = preprocess_graph(adj, args.gnnlayers, norm='sym', renorm=True) sm_fea_s = sp.csr_matrix(features).toarray() print('Laplacian Smoothing...') for a in adj_norm_s: sm_fea_s = a.dot(sm_fea_s) adj_1st = (adj + sp.eye(n)).toarray() adj_label = torch.FloatTensor(adj_1st) model = LinTrans(layers, dims) optimizer = optim.Adam(model.parameters(), lr=args.lr) sm_fea_s = torch.FloatTensor(sm_fea_s) adj_label = adj_label.reshape([-1,]) print("sm_fea_s shape", sm_fea_s.shape) print("adj_label shape", adj_label.shape) if args.cuda: model.cuda() inx = sm_fea_s.cuda() adj_label = adj_label.cuda() else: inx = sm_fea_s pos_num = len(adj.indices) neg_num = n_nodes*n_nodes-pos_num print("Num Pos Samples", pos_num) print("Num Neg Samples", neg_num) up_eta = (args.upth_ed - args.upth_st) / (args.epochs/args.upd) low_eta = (args.lowth_ed - args.lowth_st) / (args.epochs/args.upd) pos_inds, neg_inds = update_similarity(normalize(sm_fea_s.numpy()), args.upth_st, args.lowth_st, pos_num, neg_num) print("pos_inds shape", pos_inds.shape) print("neg_inds shape", neg_inds.shape) upth, lowth = update_threshold(args.upth_st, args.lowth_st, up_eta, low_eta) bs = min(args.bs, len(pos_inds)) length = len(pos_inds) if args.cuda: pos_inds_cuda = torch.LongTensor(pos_inds).cuda() else: pos_inds_cuda = torch.LongTensor(pos_inds) evaluator = Evaluator(name='ogbl-ddi') best_lp = 0. print("Batch Size", bs) print('Start Training...') for epoch in tqdm(range(args.epochs)): st, ed = 0, bs batch_num = 0 model.train() length = len(pos_inds) while ( ed <= length ): if args.cuda: sampled_neg = torch.LongTensor(np.random.choice(neg_inds, size=ed-st)).cuda() else: sampled_neg = torch.LongTensor(np.random.choice(neg_inds, size=ed-st)) print("sampled neg shape", sampled_neg.shape) print("--------pos inds shape", pos_inds_cuda.shape) sampled_inds = torch.cat((pos_inds_cuda[st:ed], sampled_neg), 0) print("sampled inds shape", sampled_inds.shape) t = time.time() optimizer.zero_grad() xind = sampled_inds // n_nodes yind = sampled_inds % n_nodes print("xind shape", xind.shape) print("yind shape", yind.shape) x = torch.index_select(inx, 0, xind) y = torch.index_select(inx, 0, yind) print("some x", x[:5]) print("some y", y[:5]) print("x shape", x.shape) print("y shape", y.shape) zx = model(x) zy = model(y) print("zx shape", zx.shape) print("zy shape", zy.shape) if args.cuda: batch_label = torch.cat((torch.ones(ed-st), torch.zeros(ed-st))).cuda() else: batch_label = torch.cat((torch.ones(ed-st), torch.zeros(ed-st))) batch_pred = model.dcs(zx, zy) print("Batch label shape", batch_label.shape) print("Batch pred shape", batch_pred.shape) loss = loss_function(adj_preds=batch_pred, adj_labels=batch_label, n_nodes=ed-st) loss.backward() cur_loss = loss.item() optimizer.step() st = ed batch_num += 1 if ed < length and ed + bs >= length: ed += length - ed else: ed += bs if (epoch + 1) % args.upd == 0: model.eval() mu = model(inx) hidden_emb = mu.cpu().data.numpy() upth, lowth = update_threshold(upth, lowth, up_eta, low_eta) pos_inds, neg_inds = update_similarity(hidden_emb, upth, lowth, pos_num, neg_num) bs = min(args.bs, len(pos_inds)) if args.cuda: pos_inds_cuda = torch.LongTensor(pos_inds).cuda() else: pos_inds_cuda = torch.LongTensor(pos_inds) val_auc, val_ap = get_roc_score(hidden_emb, adj_orig, val_edges, val_edges_false) if val_auc + val_ap >= best_lp: best_lp = val_auc + val_ap best_emb = hidden_emb tqdm.write("Epoch: {}, train_loss_gae={:.5f}, time={:.5f}".format( epoch + 1, cur_loss, time.time() - t)) pos_train_edge = train_edges pos_valid_edge = val_edges neg_valid_edge = val_edges_false pos_test_edge = test_edges neg_test_edge = test_edges_false pos_train_pred = get_preds(hidden_emb, adj_orig, pos_train_edge) pos_valid_pred = get_preds(hidden_emb, adj_orig, pos_valid_edge) neg_valid_pred = get_preds(hidden_emb, adj_orig, neg_valid_edge) pos_test_pred = get_preds(hidden_emb, adj_orig, pos_test_edge) neg_test_pred = get_preds(hidden_emb, adj_orig, neg_test_edge) results = {} for K in [10, 20, 30]: evaluator.K = K train_hits = evaluator.eval({ 'y_pred_pos': pos_train_pred, 'y_pred_neg': neg_valid_pred, })[f'hits@{K}'] valid_hits = evaluator.eval({ 'y_pred_pos': pos_valid_pred, 'y_pred_neg': neg_valid_pred, })[f'hits@{K}'] test_hits = evaluator.eval({ 'y_pred_pos': pos_test_pred, 'y_pred_neg': neg_test_pred, })[f'hits@{K}'] results[f'Hits@{K}'] = (train_hits, valid_hits, test_hits) for key, result in results.items(): train_hits, valid_hits, test_hits = result print(key) print(f'Epoch: {epoch:02d}, ' f'Loss: {cur_loss:.4f}, ' f'Train: {100 * train_hits:.2f}%, ' f'Valid: {100 * valid_hits:.2f}%, ' f'Test: {100 * test_hits:.2f}%') print('---') tqdm.write("Optimization Finished!") auc_score, ap_score = get_roc_score(best_emb, adj_orig, test_edges, test_edges_false) tqdm.write('Test AUC score: ' + str(auc_score)) tqdm.write('Test AP score: ' + str(ap_score)) if __name__ == '__main__': gae_for(args)
[ "owhsu@stanford.edu" ]
owhsu@stanford.edu
1339b5e2da73351b90d8bbc7a8b70a395472d3c0
fe6c7ddbd2ce513105346c3e9ecd858ee0240237
/inheritance.py
b057cdbb0dc94576693e9bf6f1d8884c58e9835e
[]
no_license
adilreza/basic_python_practice
bfb4d5fc08c360f3b6808b74c431a75e09a09207
c712f47bdde081c305344ec396f9a146d4dad369
refs/heads/master
2020-08-07T00:45:08.938270
2019-10-11T13:29:18
2019-10-11T13:29:18
213,225,377
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
class parent_class: a=4; b=3; def parent_fuction(self): print("this is from parent function") return 0; class child_class(parent_class):#this way inherited def child_function(self): print("this is me from child function") def make_sum(self): sum = self.a+ self.b; return sum; if __name__=="__main__": myobj = child_class() print(myobj.a) print(myobj.parent_fuction()) print(myobj.make_sum())
[ "adilreza043@gmail.com" ]
adilreza043@gmail.com
9091f732ae972983486dcf8406038d70e2399992
1f7c9b7113985f17ad2e8d27e92bdfe0505c1e19
/com/drabarz/karolina/dominating_set.py
9152994aab5fa5af9f8d99001e42ac542edd057a
[]
no_license
Szop-Kradziej/GIS_Dominating_Set
02891d0dd1eb839809601edf758ea84947ddb46c
ab16c6c8a1bb67446200aa195102c103938ed1b2
refs/heads/master
2016-08-12T11:46:23.628833
2016-01-15T18:21:48
2016-01-15T18:21:48
45,829,125
0
0
null
null
null
null
UTF-8
Python
false
false
5,419
py
import networkx as nx import sys import getopt import csv import time from com.drabarz.karolina.DominatingSetAlgorithm import DominatingSetAlgorithm from com.drabarz.karolina.NetworkXAlgorithm import NetworkXAlgorithm from com.drabarz.karolina.GreedyAlgorithm import GreedyAlgorithm from com.drabarz.karolina.DispersedGreedyAlgorithm import DispersedGreedyAlgorithm from com.drabarz.karolina.ClassicalSetCoverageAlgorithm import ClassicalSetCoverageAlgorithm from com.drabarz.karolina.ModifiedGreedyAlgorithm import ModifiedGreedyAlgorithm from com.drabarz.karolina.FastGreedyAlgorithm import FastGreedyAlgorithm def getCommandLineArguments(): argv = sys.argv[1:] graphFile = '' setFile = '' action = 'none' try: opts, args = getopt.getopt(argv,"hfcg:s:",["graphFile=","setFile="]) except getopt.GetoptError: print 'test.py -g <graphFile> -s <setFile>' sys.exit(2) for opt, arg in opts: if opt == '-h': print 'To find the smallest dominating set:' print '\ttest.py -f -g <graphFile> -s <setFile>' print 'To check if set is dominating:' print '\ttest.py -c -g <graphFile> -s <setFile>' sys.exit() elif opt == '-f' : action = "findDominatingSet" elif opt == '-c' : action = "checkIfSetIsDominating" elif opt in ("-g", "--graphFile"): graphFile = arg elif opt in ("-s", "--setFile"): setFile = arg print 'Graph file is: ', graphFile print 'Set file is: ', setFile return [graphFile, setFile, action]; def createGraphFromFile(graphFile): graph = nx.Graph(); try: with open(graphFile, "rb") as inputfile: reader = csv.reader(inputfile); for i, line in enumerate(reader): if i < 4: continue edge = line[0].split('\t') graph.add_edge(edge[0], edge[1]); except IOError: print 'There is a incorrect name of graph file' sys.exit() except IndexError: print 'Incorrect input file structure' sys.exit() return graph; def findAndShowDominatingSet(graph, setFile): algorithm = chooseAlgorithm(); printGraphParamiters(graph); start_time = time.time() dominatingSet = algorithm.findDominatingSet(graph); stop_time = time.time() - start_time print "Algorithm execution time = ", stop_time printDominatingSet(dominatingSet); saveDominatingSet(dominatingSet, setFile); return; def chooseAlgorithm(): while 1 : showMainMenu(); answer = raw_input(); if answer == '1' : return GreedyAlgorithm(); elif answer == '2' : return DispersedGreedyAlgorithm(); elif answer == '3' : return ClassicalSetCoverageAlgorithm(); elif answer == '4' : return ModifiedGreedyAlgorithm(); elif answer == '5' : return FastGreedyAlgorithm(); elif answer == '6' : return NetworkXAlgorithm(); sys.exc_clear(); def showMainMenu(): print "Choose algorithm to calculate the smallest dominating set: " print "\t1) greedy algorithm" print "\t2) dispersed greedy algorithm" print "\t3) classical set coverage algorithm" print "\t4) modified greedy algorithm" print "\t5) fast greedy algorithm" print "\t6) use algorithm implemented in NetworkX library" return; def printGraphParamiters(graph): print "Graph description: " print "Number of nodes: ", nx.number_of_nodes(graph); print "Number of edges: ", nx.number_of_edges(graph), "\n"; return; def printDominatingSet(dominatingSet): print "Number of nodes in dominating set: ", len(dominatingSet); for node in dominatingSet: print node; return; def saveDominatingSet(dominatingSet, setFile): try: with open(setFile, 'wb') as outputFile: writer = csv.writer(outputFile); outputFile.write("#Number of nodes in dominating set: " + str(len(dominatingSet)) + "\n"); for i in range(0, len(dominatingSet)): outputFile.write(str(dominatingSet[i])+ '\n') except IOError: print 'There is no set file name selected' return; def checkIfSetIsDominating(graph, setFile): inputSet = createSetFromFile(setFile); isDominatingSet = checkIfIsDominatingSet(graph, inputSet); print "Is set dominating: ", isDominatingSet; return; def createSetFromFile(setFile): inputSet = set(); try: with open(setFile, "rb") as inputfile: reader = csv.reader(inputfile); for i, line in enumerate(reader): if i < 1: continue node = line[0]; inputSet.add(node); except IOError: print 'There is a wrong name of set file' sys.exit() except IndexError: print 'Incorrect input file structure' sys.exit() return inputSet; def checkIfIsDominatingSet(graph, dominatingSet): return nx.is_dominating_set(graph, dominatingSet); [graphFile, setFile, action] = getCommandLineArguments(); graph = createGraphFromFile(graphFile); if action == "findDominatingSet" : findAndShowDominatingSet(graph, setFile); elif action == "checkIfSetIsDominating" : checkIfSetIsDominating(graph, setFile); else : sys.exit();
[ "karolina.drabarz@gmail.com" ]
karolina.drabarz@gmail.com
2871fd432a366e045045dbb0053737b299a418e7
0a61fc847043d677dae701a70b90f119dd7ab8fb
/credentials_replacer/__main__.py
e8a05c1313fa14bcc3d2585e6c960c70585d4e1e
[ "MIT" ]
permissive
MELODYAPP/aws-credential-replacer
4e286def8ab513557ad296ccf444d29537357708
fa645e5613aee242bd2ed670bc7bbc2ba797bb09
refs/heads/master
2021-01-01T20:39:22.871330
2017-08-01T14:47:04
2017-08-01T14:47:04
98,907,993
0
0
null
2017-07-31T16:12:15
2017-07-31T16:12:15
null
UTF-8
Python
false
false
66
py
from .replacer import main if __name__ == '__main__': main()
[ "prokhorov@saritasa.com" ]
prokhorov@saritasa.com
9a817067b8f27c331d6af99100b2914f84c06935
91d8e969facfc4fd7f6002448890d3b5a65fe380
/api/openAccountAPI.py
3e72f9b26ca14d3c281cc11b74bf130b03a9510a
[]
no_license
1105814583/P2P_python
4c2f5c20a7514d35d7820835ea88f812bbdb4db3
bb3da29f877703d884c6b74cea3fb5e232ed1f65
refs/heads/master
2023-09-06T02:15:02.376197
2021-09-16T10:35:58
2021-09-16T10:35:58
407,118,848
0
0
null
null
null
null
UTF-8
Python
false
false
246
py
import app class openAccountAPI: def __init__(self): self.open_account_url = app.BASE_URL + "/trust/trust/register" def openAccount(self, session): response = session.post(self.open_account_url) return response
[ "1105814583@qq.com" ]
1105814583@qq.com
7f3e63f22434cad4df3c5f31228f840cee385144
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/all-gists/5259522/snippet.py
530896846672f9f888ff87c34b403125582a7bbd
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
1,252
py
#!/usr/bin/env python import sys files = [] if len(sys.argv) > 2: for file in sys.argv[1:]: files.append(str(file)) else: print "Usage: Wordcount.py file1 file2 file3 ..." words_to_ignore = ["that","what","with","this","would","from","your","which","while","these"] things_to_strip = [".",",","?",")","(","\"",":",";","'s"] words_min_size = 4 print_in_html = True text = "" for file in files: f = open(file,"rU") for line in f: text += line words = text.lower().split() wordcount = {} for word in words: for thing in things_to_strip: if thing in word: word = word.replace(thing,"") if word not in words_to_ignore and len(word) >= words_min_size: if word in wordcount: wordcount[word] += 1 else: wordcount[word] = 1 sortedbyfrequency = sorted(wordcount,key=wordcount.get,reverse=True) def print_txt(sortedbyfrequency): for word in sortedbyfrequency: print word, wordcount[word] def print_html(sortedbyfrequency): print "<html><head><title>Wordcount.py Output</title></head><body><table>" for word in sortedbyfrequency: print "<tr><td>%s</td><td>%s</td></tr>" % (word,wordcount[word]) print "</table></body></html>" if print_in_html == True: print_html(sortedbyfrequency) else: print_txt(sortedbyfrequency)
[ "gistshub@gmail.com" ]
gistshub@gmail.com
ea0a54fdc36a8a8a37ace27442c6675bd11d2208
8facec89b1fded458cf3c40dfe4ed2a6b7af87aa
/advanced/class_attributes_management/comparation_with_4_methods_simple/descriptor_implement_improved.py
bbe4764040fdbd62f2644e8e08dbff6c19657902
[]
no_license
tianwei1992/Python_oop_leaning
72bf4c4c0c71cf736bc14912c4aef28642755c80
7e0f4e95c0d9bf7aa9fd95fcf37fc86f90ea8db7
refs/heads/master
2020-03-28T16:55:18.592234
2018-12-12T03:06:22
2018-12-12T03:06:22
148,740,603
0
0
null
null
null
null
UTF-8
Python
false
false
1,194
py
class Powers(): def __init__(self, square_base, cube_base): self._square_base = square_base self._cube_base = cube_base class SquareDescriptor(): def __get__(self, instance, owner): if instance is None: """类.attr - > Descriptor,没毛病""" return self return instance._square_base ** 2 def __set__(self, instance, value): instance._square_base = value class CubeDescriptor(): def __get__(self, instance, owner): if instance is None: return self return instance._cube_base ** 3 square = SquareDescriptor() cube = CubeDescriptor() X = Powers(3, 4) """Powers.square = 5不会触发SquareDescriptor.__get__方法,而是直接更改Powers.square为一个普通的属性,值为5,这也会影响到所以示例 所以结论:对标识符产生的属性,不要试图从类上面赋值。""" print(Powers.square) print() print(X.square) # 3 ** 2 = 9 print(X.cube) # 4 ** 3 = 64 X.square = 5 print(X.square) # 5 ** 2 = 25 """描述符定义的属性在类中定义,是类属性,但是get和set一般对实例用。 直接对类用set相当于覆盖原有属性为普通属性,偶尔对类用get,是类似Powers.square.__doc__的时候"""
[ "879983690@qq,com" ]
879983690@qq,com
632a0ef0ecdbdc4a907c6df0aa1e539704695ae4
429a416abc7def45f7f6dc186ef46554081e5dee
/tensormorph/zzz/affix_test_old.py
80fb7bc009319ed8f672eb13ec1bbee20979c1e1
[]
no_license
colincwilson/tensormorph
9de8c1f0e6639c974d5b799e0712bca79ce639ad
c3a6fc9dac643e7600f2a177366a4c405c8013f2
refs/heads/main
2022-02-14T03:34:04.577317
2021-10-01T13:35:58
2021-10-01T13:35:58
147,841,723
1
0
null
null
null
null
UTF-8
Python
false
false
4,386
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse, re, sys from tensormorphy import environ, evaluator, phon_features from tensormorphy.segment_embedder import SegmentEmbedder from tensormorphy.form_embedder import FormEmbedder from tensormorphy.dataset import DataSet from tensormorphy.affixer import Affixer from tensormorphy.trainer import Trainer from affix_test_cases import import_data import pandas as pd import numpy as np # parse commandline arguments argparser = argparse.ArgumentParser() argparser.add_argument('--nbatch',\ help='Number of <input,output> pairs in each batch') argparser.add_argument('--nepoch',\ help='Number of training epochs') args, residue = argparser.parse_known_args() # select dataset (xxx make commandline argument) data_select = ['english_ing', 'english_ness', 'english_un',\ 'english_shm', 'chamorro_um', 'hungarian_dat',\ 'hebrew_paal', 'hindi_nouns', 'maltese', 'conll'][4] data = import_data(data_select) data_set = DataSet( data['dat'], data['held_in_stems'], data['held_out_stems'], data['vowels'] ) feature_file = '~/Dropbox/TensorProductStringToStringMapping/00features/' +\ ['hayes_features.csv', 'panphon_ipa_bases.csv'][0] feature_matrix = phon_features.import_features(feature_file, data_set.segments) symbol_params = {'feature_matrix': feature_matrix, } role_params = {'nrole': data_set.max_len+4, } form_embedder = FormEmbedder(symbol_params, role_params) environ.init(form_embedder) # makes dummy morphosyn_embedder data_set.split_and_embed(test_size=0.25) model = Affixer() trainer = Trainer(model) environ.config.nepoch = 1500 trainer.train(data_set) train_pred, test_pred =\ evaluator.evaluate(model, data_set) sys.exit(0) # # # # # OLD CODE # # # # # seq_embedder, morph_embedder, train, test = import_data(data_select) tpr.init(seq_embedder, morph_embedder) print('filler dimensionality:', tpr.dfill) print('role dimensionality:', tpr.drole) print('distributed roles?', tpr.random_roles) print('train/test split:') print('\t', len(train), 'training examples') print('\t', len(test), 'testing examples') # run trainer tpr.save_dir = '/Users/colin/Desktop/tmorph_output' nbatch = min(40,len(train)) if args.nbatch is None else int(args.nbatch) nepoch = 1000 if args.nepoch is None else int(args.nepoch) trainer = trainer.Trainer( redup=False, lr=1.0e-1, dc=0.0, verbosity=1 ) affixer, decoder = trainer.train_and_test( train, test, nbatch=nbatch, max_epochs=nepoch ) if False: tpr.trace = True train = train.iloc[0:2].reset_index() test = test.iloc[0:2].reset_index() train.stem, train.output = u't r i s t i', u't r u m i s t i' trainer.train_and_test1(train, test, nbatch=len(train)) print(tpr.traces) for x in tpr.traces: f = '/Users/colin/Desktop/dump/'+ x +'.txt' y = tpr.traces[x] print(y.__class__.__name__) if type(y) is np.ndarray: np.savetxt(f, y, delimiter=',') else: print(x, y) if False: # test by hand trainer.affixer.morph_attender.tau.data[:] = 5.0 trainer.affixer.posn_attender.tau.data[:] = 5.0 Stems = string2tpr(u'q a f a ts').unsqueeze(0) Affix = string2tpr(u't i o ⋉', False).unsqueeze(0) copy = torch.ones(tpr.nrole).unsqueeze(0) pivot = torch.zeros(tpr.nrole).unsqueeze(0) unpivot = torch.zeros(tpr.nrole).unsqueeze(0) copy[0,2] = copy[0,4] = 0.0 pivot[0,0] = pivot[0,3] = 1.0 unpivot[0,1] = unpivot[0,2] = 1.0 test = {\ 'affix': Affix,\ 'copy': copy,\ 'pivot': pivot,\ 'unpivot': unpivot\ } output, traces = trainer.affixer(Stems, 10, True, test) stem = trainer.decoder.decode(Stems)[0] affix = trainer.decoder.decode(Affix)[0] stem = [x+' _' if pivot[0,i]==1.0 else x for i,x in enumerate(stem.split(' '))] stem = [x+'/' if copy[0,i]==0.0 else x for i,x in enumerate(stem)] affix = [x+' _' if i<25 and unpivot[0,i]==1.0 else x for i,x in enumerate(affix.split(' '))] stem = ' '.join(stem) affix = ' '.join(affix) output = ' '.join(trainer.decoder.decode(output)) print('stem:', stem) print('affix:', affix) print(' -> ') print('output: ', output) for trace in traces: print(trace, np.round(traces[trace], 2)) sys.exit(0)
[ "colin.chris.wilson@gmail.com" ]
colin.chris.wilson@gmail.com
36c925efa563932cdec64b3abb5f6ee5eacb4c01
829af66682d29e0c2dd70651d034fc28883a40ab
/Coursera_Capstone.py
fca8d3e509269d8baa0b8b370c0c6dd193201d0c
[]
no_license
jschuler04/Coursera_Capstone
d8e39b5532f262ea2ff16c38085c8dafbf97e95b
f89af9b27b1c184fe7ead50a756ea400bdb0b33f
refs/heads/main
2023-06-03T06:08:06.984789
2021-06-18T20:53:02
2021-06-18T20:53:02
375,830,469
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
#!/usr/bin/env python # coding: utf-8 # In[1]: #/this notebook will be mainly used for the Coursera Capstone project. import pandas as pd import numpy as np print("Hello Capstone Project Course!")
[ "noreply@github.com" ]
jschuler04.noreply@github.com
794969aef4445885500cfd5a79f01106d63b753c
12a522cadf20a38f5fd2ad2eb758d40f7bc50f3a
/CIS_024C_Python/homeWork/Exercise9/main1.py
1737c779ac14ea834b8d03ce97842e8edde3b668
[]
no_license
Ry-Mu/cis024c_python
f25012ce0e1e58dff05abacda9299083ca63e2ad
0b0cd5fc5b425b251bb9ac316e420403a7dfda10
refs/heads/master
2021-09-02T13:48:54.820508
2018-01-03T01:43:08
2018-01-03T01:43:08
103,226,159
2
0
null
null
null
null
UTF-8
Python
false
false
164
py
import sys def add(n1,n2): return n1 + n2 number1 = int(raw_input("Enter a number:")) number2 = int(raw_input("Enter a number:")) print add(number1,number2)
[ "ryan.munguia92@gmail.com" ]
ryan.munguia92@gmail.com
f49a5e37d0b4279902872dcc74a5ea78ab2137a3
6f5c0db7b845cb62c951b2467957ffe3cb0aad35
/stats.py
2616a77c878bbfb064e02cbecd9ad98b5958f460
[]
no_license
baydarich/infohash-searcher
300056c8255656b049e8aa4c6cc46df7e7f9500f
7fad6763c099934586bb286f160f3e52063420ff
refs/heads/master
2021-06-14T06:49:35.439588
2017-03-05T11:38:17
2017-03-05T11:38:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
#!/usr/env/python from bencode import bdecode, bencode import os b = 1024 * 1024 ranges = [{1: (1, 1024 * 1024)}] t = 1 for j in range(18): t = 1024 * 1024 ranges.append({j + 2: (t * 2 ** j + 1, t * 2 ** (j + 1))}) bs = {} # bs = {piece_length:[{ran:count}, {ran:count}]} base_path = "/home/horn/Documents/SNE/CCF/proj/test-torrents/" files = os.listdir(base_path) stat = [] r = 0 for i in files: length = 0 with open("%s%s" % (base_path, i)) as _file: info_orig = bdecode(_file.read())['info'] piece_length = info_orig['piece length'] try: length = info_orig['length'] except KeyError: for j in info_orig['files']: length += j['length'] finally: for j, k in enumerate(ranges): if k[j + 1][0] <= length <= k[j + 1][1]: r = j + 1 break try: bs[piece_length][r] += 1 except KeyError: try: bs[piece_length][r] = 1 except KeyError: bs[piece_length] = {r: 1} for k, v in bs.iteritems(): print k, sorted(v, reverse=True) print bs
[ "a@bakhtin.net" ]
a@bakhtin.net
4077ee7230fdd5fcb8bf27ad4eec1e47ecf60567
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/J/JasonSanford/great_american_beer_festival.py
ccc57650e41049eee111fa8bbfab0a4bd1f01ccf
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,020
py
import scraperwiki import lxml.html html = scraperwiki.scrape("http://www.greatamericanbeerfestival.com/at-the-festival/breweries-at-the-2012-festival") root = lxml.html.fromstring(html) i = 1 for tr in root.cssselect("#brewery_table tbody tr"): tds = tr.cssselect("td") data = { 'id' : i, 'name' : tds[0].text_content(), 'city' : tds[1].text_content(), 'state' : tds[2].text_content(), } scraperwiki.sqlite.save(unique_keys=['id'], data=data) i += 1import scraperwiki import lxml.html html = scraperwiki.scrape("http://www.greatamericanbeerfestival.com/at-the-festival/breweries-at-the-2012-festival") root = lxml.html.fromstring(html) i = 1 for tr in root.cssselect("#brewery_table tbody tr"): tds = tr.cssselect("td") data = { 'id' : i, 'name' : tds[0].text_content(), 'city' : tds[1].text_content(), 'state' : tds[2].text_content(), } scraperwiki.sqlite.save(unique_keys=['id'], data=data) i += 1
[ "pallih@kaninka.net" ]
pallih@kaninka.net
2740845c8dea1c81052693b87ed8201e5e26e8c6
7b7ca1ab3f5364756ea67d8c2e39b68a58ab8f06
/First_improved ws model.py
83daded0d204aadd0b0af3ffd89e43d18fca0168
[]
no_license
Isabellahu/Complex-Network
6a1f065ec12ab4eb86b390205b8f343eb95204eb
511683750636fd198d12963771ca61255b789641
refs/heads/master
2020-04-01T17:49:55.732821
2018-10-17T14:09:22
2018-10-17T14:09:22
153,453,532
2
0
null
null
null
null
UTF-8
Python
false
false
8,343
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 28 15:32:55 2017 @author: 90662 """ #WS小世界模型构建 import random from numpy import * import networkx as nx import matplotlib.pyplot as plt #假设参加聚会,每个人只认识一个主角 def CreateNetwork(n,k,p,matrix): i = 1 for j in range(n): matrix[1][j] = 1 matrix[j][1] = 1 def SmallWorld(n,k,p,matrix): #随机产生一个概率p_change,如果p_change < p, 重新连接边 p_change = 0.0 edge_change = 0 for i in range(n): #t = int(k/2) for j in range( k // 2 + 1): #需要重新连接的边 p_change = (random.randint(0,n-1)) / (double)(n) #重新连接 if p_change < p: #随机选择一个节点,排除自身连接和重边两种情况 while(1): node_NewConnect = (random.randint(0,n-1)) + 1 if matrix[i][node_NewConnect] == 0 and node_NewConnect != i: break if (i+j) <= (n-1): matrix[i][i+j] = matrix[i+j][i] = 0 else: matrix[i][i+j-(n-1)] = matrix[i+j-(n-1)][i] = 0 matrix[i][node_NewConnect] = matrix[node_NewConnect][i] = 1 edge_change += 1 else: print("no change\n",i+j) #test print("small world network\n") for i in range(n): for j in range(n): print(matrix[i][j]) print("\n") print("edge_change = ",edge_change) print("ratio = ",(double)(edge_change)/(n*k/2)) #将matrix写入文件 def DataFile(n,k,p,matrix): # 打开一个文件 f = open("C:/0network/data.txt", "w") #matrix[[[1 for i in range(n)] [1 for j in range(n)]] for i in range(n): for j in range(n): netdata = ','.join(str(matrix[i][j])) f.write(netdata) f.write('\n') #f.write("true") # 关闭打开的文件 f.close() #print(netdata) print('end') # 画图 def Drawmap(n,matrix,G): #添加n个节点 for i in range(n): G.add_node(i) #添加边,if = 1 then return [(i,j)] for i in range(n): for j in range(n): if matrix[i][j] == 1: G.add_edge(i,j) #定义一个布局,采用circular布局方式 pos = nx.circular_layout(G) #绘制图形 nx.draw(G,pos,with_labels=False,node_size = 30) #输出方式1: 将图像存为一个png格式的图片文件 plt.savefig("WS-Network-change1-2.png") #输出方式2: 在窗口中显示这幅图像 plt.show() #平均群聚系数 def average_clustering(n,matrix): #三元组 number_three_tuple = 0.0 #三角形 Triangle = 0.0 #聚类系数 clustering_coefficient = 0.0 for i in range(n): three_tuple = 0.0 sum_edge = 0 for j in range(n): if matrix[i][j] == 1 or matrix[j][i] == 1: sum_edge += 1 float(sum_edge) #计算每个节点的三元组个数 three_tuple = int((sum_edge*(sum_edge-1.0))/2.0) #节点i的边组成列表mylist,并且每次循环之前初始为空值 myList = [] for j in range(i,n): if matrix[i][j] == 1 or matrix[j][i] == 1: myList.append(j) #如果myList中的边(i,j)等于1,则形成三角形 for k in range(len(myList)): for q in range(k,len(myList)): if matrix[myList[k]][myList[q]] == 1 or matrix[myList[q]][myList[k]] == 1: Triangle += 1 if three_tuple != 0: clustering_coefficient += (Triangle/three_tuple) clustering_coefficient = clustering_coefficient/n print('clustering_coefficient = ',clustering_coefficient) #Floyd算法求最短路径 def Ford(n,matrix): #出发点v #到达点w #中转点K #初始化新的邻接矩阵new_m,路径矩阵dis dis = zeros((n,n),int) new_m = zeros((n,n),int) for v in range(n): for w in range(n): dis[v][w] = w if matrix[v][w] == 0: new_m[v][w] = 6666666 elif matrix[v][w] == 1: new_m[v][w] = 1 dis[v][w] = 1 for k in range(n): for v in range(n): for w in range(n): #如果经过中转点的路径比两点路径短 if (new_m[v][k] + new_m[k][w]) < new_m[v][w]: new_m[v][w] = new_m[v][k] + new_m[k][w] #dis[v][w] = dis[v][k] dis[v][w] = 2 #打印节点 sum = 0.0 for v in range(n): for w in range(v+1,n): #print('v= ,',v,'w = ',w) #print('dis[v][w] = ',dis[v][w]) sum = sum + dis[v][w] float(n) average_shortest_path_length = sum/(n*(n-1.0)/2) print('average_shortest_path_length = ',average_shortest_path_length) #节点度分布 def node_degree_distribution(n,matrix): #求节点的度 degree = [] for i in range(n): sum = 0 for j in range(n): sum += matrix[i][j] #print(sum) degree.append(sum) #print(degree) degree.sort() print('degree = ',degree) sum_degree= 0.0 for i in range(n): sum_degree += degree[i] #print(sum_degree) #生成x轴序列,从1到最大度 x = range(len(degree)) #将频次转换为频率,这用到Python的一个小技巧:列表内涵 y = [z/sum_degree for z in degree] #在双对数坐标轴上绘制度分布曲线 plt.loglog(x,y,color="blue",linewidth=2) #显示图表 plt.show() #动态行为 #抗故意攻击 robustness against intentional attack def node_robustness(n): #node_degree_distribution(n,matrix) #求出度最大的点 degree = [] for i in range(n): sum = 0 for j in range(n): sum += matrix[i][j] degree.append(sum) #将度最大的点删除边 node_flag = degree.index(max(degree)) for i in range(n): matrix[node_flag][i] = 0 matrix[i][node_flag] = 0 #随机攻击 random attack def node_random(n): #产生一个随机数:0到n-1 node_flag = random.randint(0,n-1) print(node_flag) for i in range(n): matrix[node_flag][i] = 0 matrix[i][node_flag] = 0 if __name__=="__main__": print("main") #输入三个参数:节点数N,参数K,概率P n = input("请输入节点数 n = ",) k = input("请输入参数(偶数) k = ",) p = input("请输入概率 p = ",) n=int(n) k=int(k) p=float(p) matrix = zeros((n,n),int) #matrix = zeros((n,n)) #print(matrix) G = nx.Graph() value = [n,k,p] #print("\n") CreateNetwork(n,k,p,matrix) SmallWorld(n,k,p,matrix) #print(matrix) #导出到一个文件中 #DataFile(n,k,p,matrix) #画图 Drawmap(n,matrix,G) #被攻击前的网络特性 #群聚系数 average_clustering(n,matrix) #平均最短路径 Ford(n,matrix) #节点度分布 node_degree_distribution(n,matrix) #抗故意攻击 robustness against intentional attack #重新定义图 #node_robustness(n) #G = nx.Graph() #Drawmap(n,matrix,G) #随机攻击 random attack node_random(n) #重新定义图 G = nx.Graph() Drawmap(n,matrix,G) #被攻击后的网络特性 #群聚系数 average_clustering(n,matrix) #平均最短路径 Ford(n,matrix) #节点度分布 node_degree_distribution(n,matrix)
[ "noreply@github.com" ]
Isabellahu.noreply@github.com
3a327e8deeee0893aff957cfbbfef88f202634b2
76c0ed303ddf6f3afa3fe08592e70f497ab87e59
/ml3d/tf/models/point_rcnn.py
01491599862703ac453096c09419fc1ee0fc95da
[ "MIT" ]
permissive
kukuruza/Open3D-ML
e4a044dbb56141a2df6b4a5218b7d01aa0250893
412746326836f7e1e153485ed1d4939046355c94
refs/heads/master
2023-07-16T22:09:01.797548
2021-07-29T15:05:59
2021-07-29T15:05:59
394,699,342
0
0
NOASSERTION
2021-08-10T15:13:02
2021-08-10T15:13:00
null
UTF-8
Python
false
false
73,879
py
import tensorflow as tf import numpy as np import os import pickle from .base_model_objdet import BaseModel from ..modules.losses.smooth_L1 import SmoothL1Loss from ..modules.losses.focal_loss import FocalLoss from ..modules.losses.cross_entropy import CrossEntropyLoss from ..modules.pointnet import Pointnet2MSG, PointnetSAModule from ..utils.objdet_helper import xywhr_to_xyxyr from open3d.ml.tf.ops import nms from ..utils.tf_utils import gen_CNN from ...datasets.utils import BEVBox3D, DataProcessing, ObjdetAugmentation from ...datasets.utils.operations import filter_by_min_points, points_in_box from ...utils import MODEL from ..modules.schedulers import OneCycleScheduler from ..utils.roipool3d import roipool3d_utils from ...metrics import iou_3d class PointRCNN(BaseModel): """Object detection model. Based on the PoinRCNN architecture https://github.com/sshaoshuai/PointRCNN. The network is not trainable end-to-end, it requires pre-training of the RPN module, followed by training of the RCNN module. For this the mode must be set to 'RPN', with this, the network only outputs intermediate results. If the RPN module is trained, the mode can be set to 'RCNN' (default), with this, the second module can be trained and the output are the final predictions. For inference use the 'RCNN' mode. Args: name (string): Name of model. Default to "PointRCNN". device (string): 'cuda' or 'cpu'. Default to 'cuda'. classes (string[]): List of classes used for object detection: Default to ['Car']. score_thres (float): Min confindence score for prediction. Default to 0.3. npoints (int): Number of processed input points. Default to 16384. rpn (dict): Config of RPN module. Default to {}. rcnn (dict): Config of RCNN module. Default to {}. mode (string): Execution mode, 'RPN' or 'RCNN'. Default to 'RCNN'. """ def __init__(self, name="PointRCNN", classes=['Car'], score_thres=0.3, npoints=16384, rpn={}, rcnn={}, mode="RCNN", **kwargs): super().__init__(name=name, **kwargs) assert mode == "RPN" or mode == "RCNN" self.mode = mode self.npoints = npoints self.classes = classes self.name2lbl = {n: i for i, n in enumerate(classes)} self.lbl2name = {i: n for i, n in enumerate(classes)} self.score_thres = score_thres self.rpn = RPN(**rpn) self.rcnn = RCNN(num_classes=len(self.classes), **rcnn) if self.mode == "RCNN": self.rpn.trainable = False else: self.rcnn.trainable = False def call(self, inputs, training=True): cls_score, reg_score, backbone_xyz, backbone_features = self.rpn( inputs[0], training=self.mode == "RPN" and training) if self.mode != "RPN": cls_score = tf.stop_gradient(cls_score) reg_score = tf.stop_gradient(reg_score) backbone_xyz = tf.stop_gradient(backbone_xyz) backbone_features = tf.stop_gradient(backbone_features) rpn_scores_raw = tf.stop_gradient(cls_score[:, :, 0]) rois, _ = self.rpn.proposal_layer(rpn_scores_raw, reg_score, backbone_xyz, training=training) # (B, M, 7) rois = tf.stop_gradient(rois) output = {"rois": rois, "cls": cls_score, "reg": reg_score} if self.mode == "RCNN": rpn_scores_norm = tf.sigmoid(rpn_scores_raw) seg_mask = tf.cast((rpn_scores_norm > self.score_thres), tf.float32) pts_depth = tf.norm(backbone_xyz, ord=2, axis=2) seg_mask = tf.stop_gradient(seg_mask) pts_depth = tf.stop_gradient(pts_depth) gt_boxes = None if training or self.mode == "RPN": gt_boxes = inputs[1] output = self.rcnn(rois, gt_boxes, backbone_xyz, tf.transpose(backbone_features, (0, 2, 1)), seg_mask, pts_depth, training=training) return output def get_optimizer(self, cfg): beta1, beta2 = cfg.get('betas', [0.9, 0.99]) lr_scheduler = OneCycleScheduler(40800, cfg.lr, cfg.div_factor) optimizer = tf.optimizers.Adam(learning_rate=lr_scheduler, beta_1=beta1, beta_2=beta2) return optimizer def load_gt_database(self, pickle_path, min_points_dict, sample_dict): """Load ground truth object database. Args: pickle_path: Path of pickle file generated using `scripts/collect_bbox.py`. min_points_dict: A dictionary to filter objects based on number of points inside. sample_dict: A dictionary to decide number of objects to sample. """ db_boxes = pickle.load(open(pickle_path, 'rb')) if min_points_dict is not None: db_boxes = filter_by_min_points(db_boxes, min_points_dict) db_boxes_dict = {} for key in sample_dict.keys(): db_boxes_dict[key] = [] for db_box in db_boxes: if db_box.label_class in sample_dict.keys(): db_boxes_dict[db_box.label_class].append(db_box) self.db_boxes_dict = db_boxes_dict def augment_data(self, data, attr): """Augment object detection data. Available augmentations are: `ObjectSample`: Insert objects from ground truth database. `ObjectRangeFilter`: Filter pointcloud from given bounds. `PointShuffle`: Shuffle the pointcloud. Args: data: A dictionary object returned from the dataset class. attr: Attributes for current pointcloud. Returns: Augmented `data` dictionary. """ cfg = self.cfg.augment if 'ObjectSample' in cfg.keys(): if not hasattr(self, 'db_boxes_dict'): data_path = attr['path'] # remove tail of path to get root data path for _ in range(3): data_path = os.path.split(data_path)[0] pickle_path = os.path.join(data_path, 'bboxes.pkl') self.load_gt_database(pickle_path, **cfg['ObjectSample']) data = ObjdetAugmentation.ObjectSample( data, db_boxes_dict=self.db_boxes_dict, sample_dict=cfg['ObjectSample']['sample_dict']) if cfg.get('ObjectRangeFilter', False): data = ObjdetAugmentation.ObjectRangeFilter( data, self.cfg.point_cloud_range) if cfg.get('PointShuffle', False): data = ObjdetAugmentation.PointShuffle(data) return data def loss(self, results, inputs, training=True): if self.mode == "RPN": return self.rpn.loss(results, inputs) else: if not training: return {"loss": tf.constant(0.0)} return self.rcnn.loss(results, inputs) def filter_objects(self, bbox_objs): """Filter objects based on classes to train. Args: bbox_objs: Bounding box objects from dataset class. Returns: Filtered bounding box objects. """ filtered = [] for bb in bbox_objs: if bb.label_class in self.classes: filtered.append(bb) return filtered def preprocess(self, data, attr): if attr['split'] in ['train', 'training']: data = self.augment_data(data, attr) data['bounding_boxes'] = self.filter_objects(data['bounding_boxes']) # remove intensity points = np.array(data['point'][..., :3], dtype=np.float32) calib = data['calib'] # transform in cam space points = DataProcessing.world2cam(points, calib['world_cam']) new_data = {'point': points, 'calib': calib} # bounding_boxes are objects of type BEVBox3D. It is renamed to # bbox_objs to clarify them as objects and not matrix of type [N, 7]. if attr['split'] not in ['test', 'testing']: new_data['bbox_objs'] = data['bounding_boxes'] return new_data @staticmethod def generate_rpn_training_labels(points, bboxes, bboxes_world, calib=None): """Generates labels for RPN network. Classifies each point as foreground/background based on points inside bbox. We don't train on ambigious points which are just outside bounding boxes(calculated by `extended_boxes`). Also computes regression labels for bounding box proposals(in bounding box frame). Args: points: Input pointcloud. bboxes: bounding boxes in camera frame. bboxes_world: bounding boxes in world frame. calib: Calibration file for cam_to_world matrix. Returns: Classification and Regression labels. """ cls_label = np.zeros((points.shape[0]), dtype=np.int32) reg_label = np.zeros((points.shape[0], 7), dtype=np.float32) # dx, dy, dz, ry, h, w, l if len(bboxes) == 0: return cls_label, reg_label pts_idx = points_in_box(points.copy(), bboxes_world, camera_frame=True, cam_world=DataProcessing.invT( calib['world_cam'])) # enlarge the bbox3d, ignore nearby points extended_boxes = bboxes_world.copy() # Enlarge box by 0.4m (from PointRCNN paper). extended_boxes[3:6] += 0.4 # Decrease z coordinate, as z_center is at bottom face of box. extended_boxes[:, 2] -= 0.2 pts_idx_ext = points_in_box(points.copy(), extended_boxes, camera_frame=True, cam_world=DataProcessing.invT( calib['world_cam'])) for k in range(bboxes.shape[0]): fg_pt_flag = pts_idx[:, k] fg_pts_rect = points[fg_pt_flag] cls_label[fg_pt_flag] = 1 fg_enlarge_flag = pts_idx_ext[:, k] ignore_flag = np.logical_xor(fg_pt_flag, fg_enlarge_flag) cls_label[ignore_flag] = -1 # pixel offset of object center center3d = bboxes[k][0:3].copy() # (x, y, z) center3d[1] -= bboxes[k][3] / 2 reg_label[fg_pt_flag, 0:3] = center3d - fg_pts_rect # size and angle encoding reg_label[fg_pt_flag, 3] = bboxes[k][3] # h reg_label[fg_pt_flag, 4] = bboxes[k][4] # w reg_label[fg_pt_flag, 5] = bboxes[k][5] # l reg_label[fg_pt_flag, 6] = bboxes[k][6] # ry return cls_label, reg_label def transform(self, data, attr): points = data['point'] if attr['split'] not in ['test', 'testing']: #, 'val', 'validation']: if self.npoints < len(points): pts_depth = points[:, 2] pts_near_flag = pts_depth < 40.0 far_idxs_choice = np.where(pts_near_flag == 0)[0] near_idxs = np.where(pts_near_flag == 1)[0] near_idxs_choice = np.random.choice(near_idxs, self.npoints - len(far_idxs_choice), replace=False) choice = np.concatenate((near_idxs_choice, far_idxs_choice), axis=0) \ if len(far_idxs_choice) > 0 else near_idxs_choice np.random.shuffle(choice) else: choice = np.arange(0, len(points), dtype=np.int32) if self.npoints > len(points): extra_choice = np.random.choice(choice, self.npoints - len(points), replace=False) choice = np.concatenate((choice, extra_choice), axis=0) np.random.shuffle(choice) points = points[choice, :] t_data = {'point': points, 'calib': data['calib']} if attr['split'] not in ['test', 'testing']: labels = [] bboxes = [] bboxes_world = [] if len(data['bbox_objs']) != 0: labels = np.stack([ self.name2lbl.get(bb.label_class, len(self.classes)) for bb in data['bbox_objs'] ]) bboxes = np.stack([bb.to_camera() for bb in data['bbox_objs'] ]) # Camera frame. bboxes_world = np.stack( [bb.to_xyzwhlr() for bb in data['bbox_objs']]) if self.mode == "RPN": labels, bboxes = PointRCNN.generate_rpn_training_labels( points, bboxes, bboxes_world, data['calib']) t_data['labels'] = np.array(labels) t_data['bbox_objs'] = data['bbox_objs'] # Objects of type BEVBox3D. if attr['split'] in ['train', 'training'] or self.mode == "RPN": t_data['bboxes'] = bboxes return t_data def inference_end(self, results, inputs): if self.mode == 'RPN': return [[]] roi_boxes3d = results['rois'] # (B, M, 7) batch_size = roi_boxes3d.shape[0] rcnn_cls = tf.reshape(results['cls'], (batch_size, -1, results['cls'].shape[1])) rcnn_reg = tf.reshape(results['reg'], (batch_size, -1, results['reg'].shape[1])) pred_boxes3d, rcnn_cls = self.rcnn.proposal_layer(rcnn_cls, rcnn_reg, roi_boxes3d, training=False) inference_result = [] for calib, bboxes, scores in zip(inputs[3], pred_boxes3d, rcnn_cls): # scoring if scores.shape[-1] == 1: scores = tf.sigmoid(scores) labels = tf.cast(scores < self.score_thres, tf.int64) else: labels = tf.argmax(scores) scores = tf.nn.softmax(scores, axis=0) scores = scores[labels] fltr = tf.reshape(scores > self.score_thres, (-1)) bboxes = bboxes[fltr] labels = labels[fltr] scores = scores[fltr] bboxes = bboxes.numpy() scores = scores.numpy() labels = labels.numpy() inference_result.append([]) world_cam, cam_img = calib.numpy() for bbox, score, label in zip(bboxes, scores, labels): pos = bbox[:3] dim = bbox[[4, 3, 5]] # transform into world space pos = DataProcessing.cam2world(pos.reshape((1, -1)), world_cam).flatten() pos = pos + [0, 0, dim[1] / 2] yaw = bbox[-1] name = self.lbl2name.get(label[0], "ignore") inference_result[-1].append( BEVBox3D(pos, dim, yaw, name, score, world_cam, cam_img)) return inference_result def get_batch_gen(self, dataset, steps_per_epoch=None, batch_size=1): def batcher(): count = len(dataset) if steps_per_epoch is None else steps_per_epoch for i in np.arange(0, count, batch_size): batch = [dataset[i + bi]['data'] for bi in range(batch_size)] points = tf.stack([b['point'] for b in batch], axis=0) bboxes = [ b.get('bboxes', tf.zeros((0, 7), dtype=tf.float32)) for b in batch ] max_gt = 0 for bbox in bboxes: max_gt = max(max_gt, bbox.shape[0]) pad_bboxes = np.zeros((len(bboxes), max_gt, 7), dtype=np.float32) for j in range(len(bboxes)): pad_bboxes[j, :bboxes[j].shape[0], :] = bboxes[j] bboxes = tf.constant(pad_bboxes) labels = [ b.get('labels', tf.zeros((0,), dtype=tf.int32)) for b in batch ] max_lab = 0 for lab in labels: max_lab = max(max_lab, lab.shape[0]) if 'labels' in batch[ 0] and labels[0].shape[0] != points.shape[1]: pad_labels = np.ones( (len(labels), max_lab), dtype=np.int32) * (-1) for j in range(len(labels)): pad_labels[j, :labels[j].shape[0]] = labels[j] labels = tf.constant(pad_labels) else: labels = tf.stack(labels, axis=0) calib = [ tf.constant([ b.get('calib', {}).get('world_cam', np.eye(4)), b.get('calib', {}).get('cam_img', np.eye(4)) ]) for b in batch ] yield (points, bboxes, labels, calib) gen_func = batcher gen_types = (tf.float32, tf.float32, tf.int32, tf.float32) gen_shapes = ([batch_size, None, 3], [batch_size, None, 7], [batch_size, None], [batch_size, 2, 4, 4]) return gen_func, gen_types, gen_shapes MODEL._register_module(PointRCNN, 'tf') def get_reg_loss(pred_reg, reg_label, loc_scope, loc_bin_size, num_head_bin, anchor_size, get_xz_fine=True, get_y_by_bin=False, loc_y_scope=0.5, loc_y_bin_size=0.25, get_ry_fine=False): """Bin-based 3D bounding boxes regression loss. See https://arxiv.org/abs/1812.04244 for more details. Args: pred_reg: (N, C) reg_label: (N, 7) [dx, dy, dz, h, w, l, ry] loc_scope: Constant loc_bin_size: Constant num_head_bin: Constant anchor_size: (N, 3) or (3) get_xz_fine: Whether to get fine xz loss. get_y_by_bin: Whether to divide y coordinate into bin. loc_y_scope: Scope length for y coordinate. loc_y_bin_size: Bin size for classifying y coordinate. get_ry_fine: Whether to use fine yaw loss. """ per_loc_bin_num = int(loc_scope / loc_bin_size) * 2 loc_y_bin_num = int(loc_y_scope / loc_y_bin_size) * 2 reg_loss_dict = {} loc_loss = 0 # xz localization loss x_offset_label, y_offset_label, z_offset_label = reg_label[:, 0], reg_label[:, 1], reg_label[:, 2] x_shift = tf.clip_by_value(x_offset_label + loc_scope, 0, loc_scope * 2 - 1e-3) z_shift = tf.clip_by_value(z_offset_label + loc_scope, 0, loc_scope * 2 - 1e-3) x_bin_label = tf.cast(tf.floor(x_shift / loc_bin_size), tf.int64) z_bin_label = tf.cast(tf.floor(z_shift / loc_bin_size), tf.int64) x_bin_l, x_bin_r = 0, per_loc_bin_num z_bin_l, z_bin_r = per_loc_bin_num, per_loc_bin_num * 2 start_offset = z_bin_r loss_x_bin = CrossEntropyLoss()(pred_reg[:, x_bin_l:x_bin_r], x_bin_label) loss_z_bin = CrossEntropyLoss()(pred_reg[:, z_bin_l:z_bin_r], z_bin_label) reg_loss_dict['loss_x_bin'] = loss_x_bin.numpy() reg_loss_dict['loss_z_bin'] = loss_z_bin.numpy() loc_loss += loss_x_bin + loss_z_bin if get_xz_fine: x_res_l, x_res_r = per_loc_bin_num * 2, per_loc_bin_num * 3 z_res_l, z_res_r = per_loc_bin_num * 3, per_loc_bin_num * 4 start_offset = z_res_r x_res_label = x_shift - ( tf.cast(x_bin_label, tf.float32) * loc_bin_size + loc_bin_size / 2) z_res_label = z_shift - ( tf.cast(z_bin_label, tf.float32) * loc_bin_size + loc_bin_size / 2) x_res_norm_label = x_res_label / loc_bin_size z_res_norm_label = z_res_label / loc_bin_size x_bin_onehot = tf.one_hot(x_bin_label, per_loc_bin_num) z_bin_onehot = tf.one_hot(z_bin_label, per_loc_bin_num) loss_x_res = SmoothL1Loss()(tf.reduce_sum(pred_reg[:, x_res_l:x_res_r] * x_bin_onehot, axis=1), x_res_norm_label) loss_z_res = SmoothL1Loss()(tf.reduce_sum(pred_reg[:, z_res_l:z_res_r] * z_bin_onehot, axis=1), z_res_norm_label) reg_loss_dict['loss_x_res'] = loss_x_res.numpy() reg_loss_dict['loss_z_res'] = loss_z_res.numpy() loc_loss += loss_x_res + loss_z_res # y localization loss if get_y_by_bin: y_bin_l, y_bin_r = start_offset, start_offset + loc_y_bin_num y_res_l, y_res_r = y_bin_r, y_bin_r + loc_y_bin_num start_offset = y_res_r y_shift = tf.clip_by_value(y_offset_label + loc_y_scope, 0, loc_y_scope * 2 - 1e-3) y_bin_label = tf.cast(tf.floor(y_shift / loc_y_bin_size), tf.int64) y_res_label = y_shift - (tf.cast(y_bin_label, tf.float32) * loc_y_bin_size + loc_y_bin_size / 2) y_res_norm_label = y_res_label / loc_y_bin_size y_bin_onehot = tf.one_hot(y_bin_label, loc_y_bin_num) loss_y_bin = CrossEntropyLoss()(pred_reg[:, y_bin_l:y_bin_r], y_bin_label) loss_y_res = SmoothL1Loss()(tf.reduce_sum(pred_reg[:, y_res_l:y_res_r] * y_bin_onehot, axis=1), y_res_norm_label) reg_loss_dict['loss_y_bin'] = loss_y_bin.numpy() reg_loss_dict['loss_y_res'] = loss_y_res.numpy() loc_loss += loss_y_bin + loss_y_res else: y_offset_l, y_offset_r = start_offset, start_offset + 1 start_offset = y_offset_r loss_y_offset = SmoothL1Loss()(tf.reduce_sum( pred_reg[:, y_offset_l:y_offset_r], axis=1), y_offset_label) reg_loss_dict['loss_y_offset'] = loss_y_offset.numpy() loc_loss += loss_y_offset # angle loss ry_bin_l, ry_bin_r = start_offset, start_offset + num_head_bin ry_res_l, ry_res_r = ry_bin_r, ry_bin_r + num_head_bin ry_label = reg_label[:, 6] if get_ry_fine: # divide pi/2 into several bins angle_per_class = (np.pi / 2) / num_head_bin ry_label = ry_label % (2 * np.pi) # 0 ~ 2pi ry_label = tf.where((ry_label > np.pi * 0.5) & (ry_label < np.pi * 1.5), (ry_label + np.pi) % (2 * np.pi), ry_label) # (0 ~ pi/2, 3pi/2 ~ 2pi) shift_angle = (ry_label + np.pi * 0.5) % (2 * np.pi) # (0 ~ pi) shift_angle = tf.clip_by_value(shift_angle - np.pi * 0.25, 1e-3, np.pi * 0.5 - 1e-3) # (0, pi/2) # bin center is (5, 10, 15, ..., 85) ry_bin_label = tf.cast(tf.floor(shift_angle / angle_per_class), tf.int64) ry_res_label = shift_angle - (tf.cast(ry_bin_label, tf.float32) * angle_per_class + angle_per_class / 2) ry_res_norm_label = ry_res_label / (angle_per_class / 2) else: # divide 2pi into several bins angle_per_class = (2 * np.pi) / num_head_bin heading_angle = ry_label % (2 * np.pi) # 0 ~ 2pi shift_angle = (heading_angle + angle_per_class / 2) % (2 * np.pi) ry_bin_label = tf.cast(tf.floor(shift_angle / angle_per_class), tf.int64) ry_res_label = shift_angle - (tf.cast(ry_bin_label, tf.float32) * angle_per_class + angle_per_class / 2) ry_res_norm_label = ry_res_label / (angle_per_class / 2) ry_bin_onehot = tf.one_hot(ry_bin_label, num_head_bin) loss_ry_bin = CrossEntropyLoss()(pred_reg[:, ry_bin_l:ry_bin_r], ry_bin_label) loss_ry_res = SmoothL1Loss()(tf.reduce_sum(pred_reg[:, ry_res_l:ry_res_r] * ry_bin_onehot, axis=1), ry_res_norm_label) reg_loss_dict['loss_ry_bin'] = loss_ry_bin.numpy() reg_loss_dict['loss_ry_res'] = loss_ry_res.numpy() angle_loss = loss_ry_bin + loss_ry_res # size loss size_res_l, size_res_r = ry_res_r, ry_res_r + 3 assert pred_reg.shape[1] == size_res_r, '%d vs %d' % (pred_reg.shape[1], size_res_r) size_res_norm_label = (reg_label[:, 3:6] - anchor_size) / anchor_size size_res_norm = pred_reg[:, size_res_l:size_res_r] size_loss = SmoothL1Loss()(size_res_norm, size_res_norm_label) # Total regression loss reg_loss_dict['loss_loc'] = loc_loss reg_loss_dict['loss_angle'] = angle_loss reg_loss_dict['loss_size'] = size_loss return loc_loss, angle_loss, size_loss, reg_loss_dict class RPN(tf.keras.layers.Layer): def __init__(self, backbone={}, cls_in_ch=128, cls_out_ch=[128], reg_in_ch=128, reg_out_ch=[128], db_ratio=0.5, head={}, focal_loss={}, loss_weight=[1.0, 1.0], **kwargs): super().__init__() # backbone self.backbone = Pointnet2MSG(**backbone) self.proposal_layer = ProposalLayer(**head) # classification branch layers = [] for i in range(len(cls_out_ch)): layers.extend([ tf.keras.layers.Conv1D(cls_out_ch[i], 1, use_bias=False, data_format="channels_first"), tf.keras.layers.BatchNormalization(axis=1, momentum=0.9, epsilon=1e-05), tf.keras.layers.ReLU(), tf.keras.layers.Dropout(db_ratio) ]) layers.append( tf.keras.layers.Conv1D( 1, 1, use_bias=True, bias_initializer=tf.keras.initializers.Constant(-np.log( (1 - 0.01) / 0.01)), data_format="channels_first")) self.cls_blocks = tf.keras.Sequential(layers) # regression branch per_loc_bin_num = int(self.proposal_layer.loc_scope / self.proposal_layer.loc_bin_size) * 2 if self.proposal_layer.loc_xz_fine: reg_channel = per_loc_bin_num * 4 + self.proposal_layer.num_head_bin * 2 + 3 else: reg_channel = per_loc_bin_num * 2 + self.proposal_layer.num_head_bin * 2 + 3 reg_channel = reg_channel + 1 # reg y layers = [] for i in range(len(reg_out_ch)): layers.extend([ tf.keras.layers.Conv1D(reg_out_ch[i], 1, use_bias=False, data_format="channels_first"), tf.keras.layers.BatchNormalization(axis=1, momentum=0.9, epsilon=1e-05), tf.keras.layers.ReLU(), tf.keras.layers.Dropout(db_ratio) ]) layers.append( tf.keras.layers.Conv1D( reg_channel, 1, use_bias=True, kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.001), data_format="channels_first")) self.reg_blocks = tf.keras.Sequential(layers) self.loss_cls = FocalLoss(**focal_loss) self.loss_weight = loss_weight def call(self, x, training=True): backbone_xyz, backbone_features = self.backbone( x, training=training) # (B, N, 3), (B, C, N) rpn_cls = tf.transpose( self.cls_blocks(backbone_features, training=training), (0, 2, 1)) # (B, N, 1) rpn_reg = tf.transpose( self.reg_blocks(backbone_features, training=training), (0, 2, 1)) # (B, N, C) return rpn_cls, rpn_reg, backbone_xyz, backbone_features def loss(self, results, inputs): rpn_cls = results['cls'] rpn_reg = results['reg'] rpn_reg_label = inputs[1] rpn_cls_label = inputs[2] rpn_cls_label_flat = tf.reshape(rpn_cls_label, (-1)) rpn_cls_flat = tf.reshape(rpn_cls, (-1)) fg_mask = (rpn_cls_label_flat > 0) # focal loss rpn_cls_target = tf.cast((rpn_cls_label_flat > 0), tf.int32) pos = tf.cast((rpn_cls_label_flat > 0), tf.float32) neg = tf.cast((rpn_cls_label_flat == 0), tf.float32) cls_weights = pos + neg pos_normalizer = tf.reduce_sum(pos) cls_weights = cls_weights / tf.maximum(pos_normalizer, 1.0) rpn_loss_cls = self.loss_cls(rpn_cls_flat, rpn_cls_target, cls_weights, avg_factor=1.0) # RPN regression loss point_num = rpn_reg.shape[0] * rpn_reg.shape[1] fg_sum = tf.reduce_sum(tf.cast(fg_mask, tf.int64)).numpy() if fg_sum != 0: loss_loc, loss_angle, loss_size, reg_loss_dict = \ get_reg_loss(tf.reshape(rpn_reg, (point_num, -1))[fg_mask], tf.reshape(rpn_reg_label, (point_num, 7))[fg_mask], loc_scope=self.proposal_layer.loc_scope, loc_bin_size=self.proposal_layer.loc_bin_size, num_head_bin=self.proposal_layer.num_head_bin, anchor_size=self.proposal_layer.mean_size, get_xz_fine=self.proposal_layer.loc_xz_fine, get_y_by_bin=False, get_ry_fine=False) loss_size = 3 * loss_size rpn_loss_reg = loss_loc + loss_angle + loss_size else: rpn_loss_reg = tf.reduce_mean(rpn_reg * 0) return { "cls": rpn_loss_cls * self.loss_weight[0], "reg": rpn_loss_reg * self.loss_weight[1] } class RCNN(tf.keras.layers.Layer): def __init__( self, num_classes, in_channels=128, SA_config={ "npoints": [128, 32, -1], "radius": [0.2, 0.4, 100], "nsample": [64, 64, 64], "mlps": [[128, 128, 128], [128, 128, 256], [256, 256, 512]] }, cls_out_ch=[256, 256], reg_out_ch=[256, 256], db_ratio=0.5, use_xyz=True, xyz_up_layer=[128, 128], head={}, target_head={}, loss={}): super().__init__() self.rcnn_input_channel = 5 self.pool_extra_width = target_head.get("pool_extra_width", 1.0) self.num_points = target_head.get("num_points", 512) self.proposal_layer = ProposalLayer(**head) self.SA_modules = [] for i in range(len(SA_config["npoints"])): mlps = [in_channels] + SA_config["mlps"][i] npoint = SA_config["npoints"][ i] if SA_config["npoints"][i] != -1 else None self.SA_modules.append( PointnetSAModule(npoint=npoint, radius=SA_config["radius"][i], nsample=SA_config["nsample"][i], mlp=mlps, use_xyz=use_xyz, use_bias=True)) in_channels = mlps[-1] self.xyz_up_layer = gen_CNN([self.rcnn_input_channel] + xyz_up_layer, conv=tf.keras.layers.Conv2D) c_out = xyz_up_layer[-1] self.merge_down_layer = gen_CNN([c_out * 2, c_out], conv=tf.keras.layers.Conv2D) # classification layer cls_channel = 1 if num_classes == 2 else num_classes layers = [] for i in range(len(cls_out_ch)): layers.extend([ tf.keras.layers.Conv1D( cls_out_ch[i], 1, use_bias=True, data_format="channels_first", kernel_initializer=tf.keras.initializers.GlorotNormal(), bias_initializer=tf.keras.initializers.Constant(0.0)), tf.keras.layers.ReLU() ]) layers.append( tf.keras.layers.Conv1D( cls_channel, 1, use_bias=True, data_format="channels_first", kernel_initializer=tf.keras.initializers.GlorotNormal(), bias_initializer=tf.keras.initializers.Constant(0.0))) self.cls_blocks = tf.keras.Sequential(layers) self.loss_cls = tf.keras.losses.BinaryCrossentropy() # regression branch per_loc_bin_num = int(self.proposal_layer.loc_scope / self.proposal_layer.loc_bin_size) * 2 loc_y_bin_num = int(self.proposal_layer.loc_y_scope / self.proposal_layer.loc_y_bin_size) * 2 reg_channel = per_loc_bin_num * 4 + self.proposal_layer.num_head_bin * 2 + 3 reg_channel += (1 if not self.proposal_layer.get_y_by_bin else loc_y_bin_num * 2) layers = [] for i in range(len(reg_out_ch)): layers.extend([ tf.keras.layers.Conv1D( reg_out_ch[i], 1, use_bias=True, data_format="channels_first", kernel_initializer=tf.keras.initializers.GlorotNormal(), bias_initializer=tf.keras.initializers.Constant(0.0)), tf.keras.layers.ReLU() ]) layers.append( tf.keras.layers.Conv1D( reg_channel, 1, use_bias=True, data_format="channels_first", kernel_initializer=tf.keras.initializers.RandomNormal( stddev=0.001), bias_initializer=tf.keras.initializers.Constant(0.0))) self.reg_blocks = tf.keras.Sequential(layers) self.proposal_target_layer = ProposalTargetLayer(**target_head) def _break_up_pc(self, pc): xyz = pc[..., 0:3] features = (tf.transpose(pc[..., 3:], (0, 2, 1)) if pc.shape[-1] > 3 else None) return xyz, features def call(self, roi_boxes3d, gt_boxes3d, rpn_xyz, rpn_features, seg_mask, pts_depth, training=True): pts_extra_input_list = [tf.expand_dims(seg_mask, axis=2)] pts_extra_input_list.append( tf.expand_dims(pts_depth / 70.0 - 0.5, axis=2)) pts_extra_input = tf.concat(pts_extra_input_list, axis=2) pts_feature = tf.concat((pts_extra_input, rpn_features), axis=2) if gt_boxes3d is not None: target = self.proposal_target_layer( [roi_boxes3d, gt_boxes3d, rpn_xyz, pts_feature]) for k in target: target[k] = tf.stop_gradient(target[k]) pts_input = tf.concat( (target['sampled_pts'], target['pts_feature']), axis=2) target['pts_input'] = pts_input else: pooled_features, pooled_empty_flag = roipool3d_utils.roipool3d_gpu( rpn_xyz, pts_feature, roi_boxes3d, self.pool_extra_width, sampled_pt_num=self.num_points) # canonical transformation batch_size = roi_boxes3d.shape[0] roi_center = roi_boxes3d[:, :, 0:3] poss = [] for k in range(batch_size): pos = pooled_features[k, :, :, :3] - tf.expand_dims( roi_center[k], axis=1) pos = rotate_pc_along_y_tf(pos, roi_boxes3d[k, :, 6]) poss.append(pos) pooled_features = tf.concat( [tf.stack(poss), pooled_features[:, :, :, 3:]], axis=3) pts_input = tf.reshape( pooled_features, (-1, pooled_features.shape[2], pooled_features.shape[3])) xyz, features = self._break_up_pc(pts_input) xyz_input = tf.expand_dims(tf.transpose( pts_input[..., 0:self.rcnn_input_channel], (0, 2, 1)), axis=3) xyz_feature = self.xyz_up_layer(xyz_input, training=training) rpn_feature = tf.expand_dims(tf.transpose( pts_input[..., self.rcnn_input_channel:], (0, 2, 1)), axis=3) merged_feature = tf.concat((xyz_feature, rpn_feature), axis=1) merged_feature = self.merge_down_layer(merged_feature, training=training) l_xyz, l_features = [xyz], [tf.squeeze(merged_feature, axis=3)] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i], training=training) l_xyz.append(li_xyz) l_features.append(li_features) rcnn_cls = tf.squeeze(tf.transpose( self.cls_blocks(l_features[-1], training=training), (0, 2, 1)), axis=1) # (B, 1 or 2) rcnn_reg = tf.squeeze(tf.transpose( self.reg_blocks(l_features[-1], training=training), (0, 2, 1)), axis=1) # (B, C) ret_dict = {'rois': roi_boxes3d, 'cls': rcnn_cls, 'reg': rcnn_reg} if gt_boxes3d is not None: ret_dict.update(target) return ret_dict def loss(self, results, inputs): rcnn_cls = results['cls'] rcnn_reg = results['reg'] cls_label = tf.cast(results['cls_label'], tf.float32) reg_valid_mask = results['reg_valid_mask'] gt_boxes3d_ct = results['gt_of_rois'] pts_input = results['pts_input'] cls_label_flat = tf.reshape(cls_label, (-1)) # binary cross entropy rcnn_cls_flat = tf.reshape(rcnn_cls, (-1)) batch_loss_cls = tf.keras.losses.BinaryCrossentropy(reduction="none")( tf.sigmoid(rcnn_cls_flat), cls_label) cls_valid_mask = tf.cast((cls_label_flat >= 0), tf.float32) rcnn_loss_cls = tf.reduce_sum( batch_loss_cls * cls_valid_mask) / tf.maximum( tf.reduce_sum(cls_valid_mask), 1.0) # rcnn regression loss batch_size = pts_input.shape[0] fg_mask = (reg_valid_mask > 0) fg_sum = tf.reduce_sum(tf.cast(fg_mask, tf.int64)).numpy() if fg_sum != 0: anchor_size = self.proposal_layer.mean_size loss_loc, loss_angle, loss_size, reg_loss_dict = \ get_reg_loss(tf.reshape(rcnn_reg, (batch_size, -1))[fg_mask], tf.reshape(gt_boxes3d_ct, (batch_size, 7))[fg_mask], loc_scope=self.proposal_layer.loc_scope, loc_bin_size=self.proposal_layer.loc_bin_size, num_head_bin=self.proposal_layer.num_head_bin, anchor_size=anchor_size, get_xz_fine=True, get_y_by_bin=self.proposal_layer.get_y_by_bin, loc_y_scope=self.proposal_layer.loc_y_scope, loc_y_bin_size=self.proposal_layer.loc_y_bin_size, get_ry_fine=True) loss_size = 3 * loss_size # consistent with old codes rcnn_loss_reg = loss_loc + loss_angle + loss_size else: # Regression loss is zero when no point is classified as foreground. rcnn_loss_reg = tf.reduce_mean(rcnn_reg * 0) return {"cls": rcnn_loss_cls, "reg": rcnn_loss_reg} def rotate_pc_along_y(pc, rot_angle): """ Args: pc: (N, 3+C), (N, 3) is in the rectified camera coordinate. rot_angle: rad scalar Returns: pc: updated pc with XYZ rotated. """ cosval = np.cos(rot_angle) sinval = np.sin(rot_angle) rotmat = np.array([[cosval, -sinval], [sinval, cosval]]) pc[:, [0, 2]] = np.dot(pc[:, [0, 2]], np.transpose(rotmat)) return pc class ProposalLayer(tf.keras.layers.Layer): def __init__(self, nms_pre=9000, nms_post=512, nms_thres=0.85, nms_post_val=None, nms_thres_val=None, mean_size=[1.0], loc_xz_fine=True, loc_scope=3.0, loc_bin_size=0.5, num_head_bin=12, get_y_by_bin=False, get_ry_fine=False, loc_y_scope=0.5, loc_y_bin_size=0.25, post_process=True): super().__init__() self.nms_pre = nms_pre self.nms_post = nms_post self.nms_thres = nms_thres self.nms_post_val = nms_post_val self.nms_thres_val = nms_thres_val self.mean_size = tf.constant(mean_size) self.loc_scope = loc_scope self.loc_bin_size = loc_bin_size self.num_head_bin = num_head_bin self.loc_xz_fine = loc_xz_fine self.get_y_by_bin = get_y_by_bin self.get_ry_fine = get_ry_fine self.loc_y_scope = loc_y_scope self.loc_y_bin_size = loc_y_bin_size self.post_process = post_process def call(self, rpn_scores, rpn_reg, xyz, training=True): batch_size = xyz.shape[0] proposals = decode_bbox_target( tf.reshape(xyz, (-1, xyz.shape[-1])), tf.reshape(rpn_reg, (-1, rpn_reg.shape[-1])), anchor_size=self.mean_size, loc_scope=self.loc_scope, loc_bin_size=self.loc_bin_size, num_head_bin=self.num_head_bin, get_xz_fine=self.loc_xz_fine, get_y_by_bin=self.get_y_by_bin, get_ry_fine=self.get_ry_fine, loc_y_scope=self.loc_y_scope, loc_y_bin_size=self.loc_y_bin_size) # (N, 7) proposals = tf.reshape(proposals, (batch_size, -1, 7)) nms_post = self.nms_post nms_thres = self.nms_thres if not training: if self.nms_post_val is not None: nms_post = self.nms_post_val if self.nms_thres_val is not None: nms_thres = self.nms_thres_val if self.post_process: proposals = tf.concat([ proposals[..., :1], proposals[..., 1:2] + proposals[..., 3:4] / 2, proposals[..., 2:] ], axis=-1) # set y as the center of bottom scores = rpn_scores sorted_idxs = tf.argsort(scores, axis=1, direction="DESCENDING") batch_size = scores.shape[0] ret_bbox3d = [] ret_scores = [] for k in range(batch_size): scores_single = scores[k] proposals_single = proposals[k] order_single = sorted_idxs[k] scores_single, proposals_single = self.distance_based_proposal( scores_single, proposals_single, order_single, training) proposals_tot = proposals_single.shape[0] ret_bbox3d.append( tf.concat([ proposals_single, tf.zeros((nms_post - proposals_tot, 7)) ], axis=0)) ret_scores.append( tf.concat( [scores_single, tf.zeros((nms_post - proposals_tot,))], axis=0)) ret_bbox3d = tf.stack(ret_bbox3d) ret_scores = tf.stack(ret_scores) else: batch_size = rpn_scores.shape[0] ret_bbox3d = [] ret_scores = [] for k in range(batch_size): bev = xywhr_to_xyxyr( tf.stack([proposals[k, :, i] for i in [0, 2, 3, 5, 6]], axis=-1)) keep_idx = nms(bev, rpn_scores[k, :, 0], nms_thres) ret_bbox3d.append(tf.gather(proposals[k], keep_idx)) ret_scores.append(tf.gather(rpn_scores[k], keep_idx)) return ret_bbox3d, ret_scores def distance_based_proposal(self, scores, proposals, order, training=True): """Propose ROIs in two area based on the distance. Args: scores: (N) proposals: (N, 7) order: (N) training (bool): Whether we are training? """ nms_post = self.nms_post nms_thres = self.nms_thres if not training: if self.nms_post_val is not None: nms_post = self.nms_post_val if self.nms_thres_val is not None: nms_thres = self.nms_thres_val nms_range_list = [0, 40.0, 80.0] pre_top_n_list = [ 0, int(self.nms_pre * 0.7), self.nms_pre - int(self.nms_pre * 0.7) ] post_top_n_list = [ 0, int(nms_post * 0.7), nms_post - int(nms_post * 0.7) ] scores_single_list, proposals_single_list = [], [] # sort by score scores_ordered = tf.gather(scores, order) proposals_ordered = tf.gather(proposals, order) dist = proposals_ordered[:, 2] first_mask = (dist > nms_range_list[0]) & (dist <= nms_range_list[1]) for i in range(1, len(nms_range_list)): # get proposal distance mask dist_mask = ((dist > nms_range_list[i - 1]) & (dist <= nms_range_list[i])) if tf.reduce_any(dist_mask): # this area has points # reduce by mask cur_scores = scores_ordered[dist_mask] cur_proposals = proposals_ordered[dist_mask] # fetch pre nms top K cur_scores = cur_scores[:pre_top_n_list[i]] cur_proposals = cur_proposals[:pre_top_n_list[i]] else: assert i == 2, '%d' % i # this area doesn't have any points, so use rois of first area cur_scores = scores_ordered[first_mask] cur_proposals = proposals_ordered[first_mask] # fetch top K of first area cur_scores = cur_scores[pre_top_n_list[i - 1]:][:pre_top_n_list[i]] cur_proposals = cur_proposals[ pre_top_n_list[i - 1]:][:pre_top_n_list[i]] # oriented nms bev = xywhr_to_xyxyr( tf.gather(cur_proposals, [0, 2, 3, 5, 6], axis=1)) keep_idx = nms(bev, cur_scores, nms_thres) # Fetch post nms top k keep_idx = keep_idx[:post_top_n_list[i]] scores_single_list.append(tf.gather(cur_scores, keep_idx)) proposals_single_list.append(tf.gather(cur_proposals, keep_idx)) scores_single = tf.concat(scores_single_list, axis=0) proposals_single = tf.concat(proposals_single_list, axis=0) return scores_single, proposals_single def decode_bbox_target(roi_box3d, pred_reg, loc_scope, loc_bin_size, num_head_bin, anchor_size, get_xz_fine=True, get_y_by_bin=False, loc_y_scope=0.5, loc_y_bin_size=0.25, get_ry_fine=False): """ Args: roi_box3d: (N, 7) pred_reg: (N, C) loc_scope: loc_bin_size: num_head_bin: anchor_size: get_xz_fine: get_y_by_bin: loc_y_scope: loc_y_bin_size: get_ry_fine: """ per_loc_bin_num = int(loc_scope / loc_bin_size) * 2 loc_y_bin_num = int(loc_y_scope / loc_y_bin_size) * 2 # recover xz localization x_bin_l, x_bin_r = 0, per_loc_bin_num z_bin_l, z_bin_r = per_loc_bin_num, per_loc_bin_num * 2 start_offset = z_bin_r x_bin = tf.argmax(pred_reg[:, x_bin_l:x_bin_r], axis=1) z_bin = tf.argmax(pred_reg[:, z_bin_l:z_bin_r], axis=1) pos_x = tf.cast(x_bin, tf.float32) * loc_bin_size + loc_bin_size / 2 - loc_scope pos_z = tf.cast(z_bin, tf.float32) * loc_bin_size + loc_bin_size / 2 - loc_scope if get_xz_fine: x_res_l, x_res_r = per_loc_bin_num * 2, per_loc_bin_num * 3 z_res_l, z_res_r = per_loc_bin_num * 3, per_loc_bin_num * 4 start_offset = z_res_r x_res_norm = tf.gather(pred_reg[:, x_res_l:x_res_r], x_bin, batch_dims=1) z_res_norm = tf.gather(pred_reg[:, z_res_l:z_res_r], z_bin, batch_dims=1) x_res = x_res_norm * loc_bin_size z_res = z_res_norm * loc_bin_size pos_x += x_res pos_z += z_res # recover y localization if get_y_by_bin: y_bin_l, y_bin_r = start_offset, start_offset + loc_y_bin_num y_res_l, y_res_r = y_bin_r, y_bin_r + loc_y_bin_num start_offset = y_res_r y_bin = tf.argmax(pred_reg[:, y_bin_l:y_bin_r], axis=1) y_res_norm = tf.gather(pred_reg[:, y_res_l:y_res_r], y_bin, batch_dims=1) y_res = y_res_norm * loc_y_bin_size pos_y = tf.cast( y_bin, tf.float32 ) * loc_y_bin_size + loc_y_bin_size / 2 - loc_y_scope + y_res pos_y = pos_y + roi_box3d[:, 1] else: y_offset_l, y_offset_r = start_offset, start_offset + 1 start_offset = y_offset_r pos_y = roi_box3d[:, 1] + pred_reg[:, y_offset_l] # recover ry rotation ry_bin_l, ry_bin_r = start_offset, start_offset + num_head_bin ry_res_l, ry_res_r = ry_bin_r, ry_bin_r + num_head_bin ry_bin = tf.argmax(pred_reg[:, ry_bin_l:ry_bin_r], axis=1) ry_res_norm = tf.gather(pred_reg[:, ry_res_l:ry_res_r], ry_bin, batch_dims=1) if get_ry_fine: # divide pi/2 into several bins angle_per_class = (np.pi / 2) / num_head_bin ry_res = ry_res_norm * (angle_per_class / 2) ry = (tf.cast(ry_bin, tf.float32) * angle_per_class + angle_per_class / 2) + ry_res - np.pi / 4 else: angle_per_class = (2 * np.pi) / num_head_bin ry_res = ry_res_norm * (angle_per_class / 2) # bin_center is (0, 30, 60, 90, 120, ..., 270, 300, 330) ry = (tf.cast(ry_bin, tf.float32) * angle_per_class + ry_res) % (2 * np.pi) ry = tf.where(ry > np.pi, ry - 2 * np.pi, ry) # recover size size_res_l, size_res_r = ry_res_r, ry_res_r + 3 assert size_res_r == pred_reg.shape[1] size_res_norm = pred_reg[:, size_res_l:size_res_r] hwl = size_res_norm * anchor_size + anchor_size # shift to original coords roi_center = roi_box3d[:, 0:3] shift_ret_box3d = tf.concat( (tf.reshape(pos_x, (-1, 1)), tf.reshape( pos_y, (-1, 1)), tf.reshape(pos_z, (-1, 1)), hwl, tf.reshape(ry, (-1, 1))), axis=1) ret_box3d = shift_ret_box3d if roi_box3d.shape[1] == 7: roi_ry = roi_box3d[:, 6:7] ret_box3d = rotate_pc_along_y_tf(shift_ret_box3d, -roi_ry) ret_box3d = tf.concat([ret_box3d[:, :6], ret_box3d[:, 6:7] + roi_ry], axis=1) ret_box3d = tf.concat([ ret_box3d[:, :1] + roi_center[:, :1], ret_box3d[:, 1:2], ret_box3d[:, 2:3] + roi_center[:, 2:3], ret_box3d[:, 3:] ], axis=1) return ret_box3d def rotate_pc_along_y_tf(pc, rot_angle): """ :param pc: (N, 3 + C) :param rot_angle: (N) :return: """ cosa = tf.reshape(tf.cos(rot_angle), (-1, 1)) # (N, 1) sina = tf.reshape(tf.sin(rot_angle), (-1, 1)) # (N, 1) raw_1 = tf.concat([cosa, -sina], axis=1) # (N, 2) raw_2 = tf.concat([sina, cosa], axis=1) # (N, 2) R = tf.concat( (tf.expand_dims(raw_1, axis=1), tf.expand_dims(raw_2, axis=1)), axis=1) # (N, 2, 2) pc_temp = tf.reshape(tf.stack([pc[..., 0], pc[..., 2]], axis=-1), ((pc.shape[0], -1, 2))) # (N, 512, 2) pc_temp = tf.matmul(pc_temp, tf.transpose(R, (0, 2, 1))) pc_temp = tf.reshape(pc_temp, (pc.shape[:-1] + (2,))) # (N, 512, 2) pc = tf.concat( [pc_temp[..., :1], pc[..., 1:2], pc_temp[..., 1:2], pc[..., 3:]], axis=-1) return pc class ProposalTargetLayer(tf.keras.layers.Layer): def __init__(self, pool_extra_width=1.0, num_points=512, reg_fg_thresh=0.55, cls_fg_thresh=0.6, cls_bg_thresh=0.45, cls_bg_thresh_lo=0.05, fg_ratio=0.5, roi_per_image=64, aug_rot_range=18, hard_bg_ratio=0.8, roi_fg_aug_times=10): super().__init__() self.pool_extra_width = pool_extra_width self.num_points = num_points self.reg_fg_thresh = reg_fg_thresh self.cls_fg_thresh = cls_fg_thresh self.cls_bg_thresh = cls_bg_thresh self.cls_bg_thresh_lo = cls_bg_thresh_lo self.fg_ratio = fg_ratio self.roi_per_image = roi_per_image self.aug_rot_range = aug_rot_range self.hard_bg_ratio = hard_bg_ratio self.roi_fg_aug_times = roi_fg_aug_times def call(self, x): roi_boxes3d, gt_boxes3d, rpn_xyz, pts_feature = x batch_rois, batch_gt_of_rois, batch_roi_iou = self.sample_rois_for_rcnn( roi_boxes3d, gt_boxes3d) # point cloud pooling pooled_features, pooled_empty_flag = \ roipool3d_utils.roipool3d_gpu(rpn_xyz, pts_feature, batch_rois, self.pool_extra_width, sampled_pt_num=self.num_points) sampled_pts, sampled_features = pooled_features[:, :, :, 0: 3], pooled_features[:, :, :, 3:] # data augmentation sampled_pts, batch_rois, batch_gt_of_rois = \ self.data_augmentation(sampled_pts, batch_rois, batch_gt_of_rois) # canonical transformation batch_size = batch_rois.shape[0] roi_ry = batch_rois[:, :, 6:7] % (2 * np.pi) roi_center = batch_rois[:, :, 0:3] sampled_pts = sampled_pts - tf.expand_dims(roi_center, axis=2) # (B, M, 512, 3) batch_gt_of_rois = tf.concat([ batch_gt_of_rois[:, :, :3] - roi_center, batch_gt_of_rois[:, :, 3:6], batch_gt_of_rois[:, :, 6:] - roi_ry ], axis=2) sampled_pts = tf.unstack(sampled_pts) batch_gt_of_rois = tf.unstack(batch_gt_of_rois) for k in range(batch_size): sampled_pts[k] = rotate_pc_along_y_tf(sampled_pts[k], batch_rois[k, :, 6]) batch_gt_of_rois[k] = tf.squeeze(rotate_pc_along_y_tf( tf.expand_dims(batch_gt_of_rois[k], axis=1), roi_ry[k]), axis=1) sampled_pts = tf.stack(sampled_pts) batch_gt_of_rois = tf.stack(batch_gt_of_rois) # regression valid mask valid_mask = (pooled_empty_flag == 0) reg_valid_mask = tf.cast( ((batch_roi_iou > self.reg_fg_thresh) & valid_mask), tf.int64) # classification label batch_cls_label = tf.cast((batch_roi_iou > self.cls_fg_thresh), tf.int64) invalid_mask = (batch_roi_iou > self.cls_bg_thresh) & ( batch_roi_iou < self.cls_fg_thresh) batch_cls_label = tf.where( tf.reduce_any([tf.logical_not(valid_mask), invalid_mask], axis=0), -1, batch_cls_label) output_dict = { 'sampled_pts': tf.reshape(sampled_pts, (-1, self.num_points, 3)), 'pts_feature': tf.reshape(sampled_features, (-1, self.num_points, sampled_features.shape[3])), 'cls_label': tf.reshape(batch_cls_label, (-1)), 'reg_valid_mask': tf.reshape(reg_valid_mask, (-1)), 'gt_of_rois': tf.reshape(batch_gt_of_rois, (-1, 7)), 'gt_iou': tf.reshape(batch_roi_iou, (-1)), 'roi_boxes3d': tf.reshape(batch_rois, (-1, 7)) } return output_dict def sample_rois_for_rcnn(self, roi_boxes3d, gt_boxes3d): """ Args: roi_boxes3d: (B, M, 7) gt_boxes3d: (B, N, 8) [x, y, z, h, w, l, ry, cls] Returns: batch_rois: (B, N, 7) batch_gt_of_rois: (B, N, 8) batch_roi_iou: (B, N) """ batch_size = roi_boxes3d.shape[0] fg_rois_per_image = int(np.round(self.fg_ratio * self.roi_per_image)) batch_rois, batch_gt_of_rois, batch_roi_iou = [], [], [] for idx in range(batch_size): cur_roi, cur_gt = roi_boxes3d[idx], gt_boxes3d[idx] k = cur_gt.__len__() - 1 while tf.reduce_sum(cur_gt[k]) == 0: k -= 1 cur_gt = cur_gt[:k + 1] # include gt boxes in the candidate rois iou3d = iou_3d(cur_roi.numpy()[:, [0, 1, 2, 5, 3, 4, 6]], cur_gt[:, 0:7].numpy()[:, [0, 1, 2, 5, 3, 4, 6]]) # (M, N) iou3d = tf.constant(iou3d) gt_assignment = tf.argmax(iou3d, axis=1) max_overlaps = tf.gather(iou3d, gt_assignment, batch_dims=1) # sample fg, easy_bg, hard_bg fg_thresh = min(self.reg_fg_thresh, self.cls_fg_thresh) fg_inds = tf.reshape(tf.where((max_overlaps >= fg_thresh)), (-1)) # TODO: this will mix the fg and bg when CLS_BG_THRESH_LO < iou < CLS_BG_THRESH # fg_inds = tf.concat((fg_inds, roi_assignment), axis=0) # consider the roi which has max_iou with gt as fg easy_bg_inds = tf.reshape( tf.where((max_overlaps < self.cls_bg_thresh_lo)), (-1)) hard_bg_inds = tf.reshape( tf.where((max_overlaps < self.cls_bg_thresh) & (max_overlaps >= self.cls_bg_thresh_lo)), (-1)) fg_num_rois = len(fg_inds.shape) bg_num_rois = len(hard_bg_inds.shape) + len(easy_bg_inds.shape) if fg_num_rois > 0 and bg_num_rois > 0: # sampling fg fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois) rand_num = tf.constant(np.random.permutation(fg_num_rois), dtype=tf.int64) fg_inds = tf.gather(fg_inds, rand_num[:fg_rois_per_this_image]) # sampling bg bg_rois_per_this_image = self.roi_per_image - fg_rois_per_this_image bg_inds = self.sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image) elif fg_num_rois > 0 and bg_num_rois == 0: # sampling fg rand_num = np.floor( np.random.rand(self.roi_per_image) * fg_num_rois) rand_num = tf.constant(rand_num, dtype=tf.int64) fg_inds = fg_inds[rand_num] fg_rois_per_this_image = self.roi_per_image bg_rois_per_this_image = 0 elif bg_num_rois > 0 and fg_num_rois == 0: # sampling bg bg_rois_per_this_image = self.roi_per_image bg_inds = self.sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image) fg_rois_per_this_image = 0 else: import pdb pdb.set_trace() raise NotImplementedError # augment the rois by noise roi_list, roi_iou_list, roi_gt_list = [], [], [] if fg_rois_per_this_image > 0: fg_rois_src = tf.gather(cur_roi, fg_inds) gt_of_fg_rois = tf.gather(cur_gt, tf.gather(gt_assignment, fg_inds)) iou3d_src = tf.gather(max_overlaps, fg_inds) fg_rois, fg_iou3d = self.aug_roi_by_noise_torch( fg_rois_src, gt_of_fg_rois, iou3d_src, aug_times=self.roi_fg_aug_times) roi_list.append(fg_rois) roi_iou_list.append(fg_iou3d) roi_gt_list.append(gt_of_fg_rois) if bg_rois_per_this_image > 0: bg_rois_src = tf.gather(cur_roi, bg_inds) gt_of_bg_rois = tf.gather(cur_gt, tf.gather(gt_assignment, bg_inds)) iou3d_src = tf.gather(max_overlaps, bg_inds) aug_times = 1 if self.roi_fg_aug_times > 0 else 0 bg_rois, bg_iou3d = self.aug_roi_by_noise_torch( bg_rois_src, gt_of_bg_rois, iou3d_src, aug_times=aug_times) roi_list.append(bg_rois) roi_iou_list.append(bg_iou3d) roi_gt_list.append(gt_of_bg_rois) rois = tf.concat(roi_list, axis=0) iou_of_rois = tf.concat(roi_iou_list, axis=0) gt_of_rois = tf.concat(roi_gt_list, axis=0) batch_rois.append(rois) batch_gt_of_rois.append(gt_of_rois) batch_roi_iou.append(iou_of_rois) return tf.stack(batch_rois), tf.stack(batch_gt_of_rois), tf.stack( batch_roi_iou) def sample_bg_inds(self, hard_bg_inds, easy_bg_inds, bg_rois_per_this_image): if len(hard_bg_inds.shape) > 0 and len(easy_bg_inds.shape) > 0: hard_bg_rois_num = int(bg_rois_per_this_image * self.hard_bg_ratio) easy_bg_rois_num = bg_rois_per_this_image - hard_bg_rois_num # sampling hard bg rand_idx = tf.constant(np.random.randint(low=0, high=len( hard_bg_inds.shape), size=(hard_bg_rois_num,)), dtype=tf.int64) hard_bg_inds = tf.gather(hard_bg_inds, rand_idx) # sampling easy bg rand_idx = tf.constant(np.random.randint(low=0, high=len( easy_bg_inds.shape), size=(easy_bg_rois_num,)), dtype=tf.int64) easy_bg_inds = tf.gather(easy_bg_inds, rand_idx) bg_inds = tf.concat([hard_bg_inds, easy_bg_inds], axis=0) elif len(hard_bg_inds.shape) > 0 and len(easy_bg_inds.shape) == 0: hard_bg_rois_num = bg_rois_per_this_image # sampling hard bg rand_idx = tf.constant(np.random.randint(low=0, high=len( hard_bg_inds.shape), size=(hard_bg_rois_num,)), dtype=tf.int64) bg_inds = tf.gather(hard_bg_inds, rand_idx) elif len(hard_bg_inds.shape) == 0 and len(easy_bg_inds.shape) > 0: easy_bg_rois_num = bg_rois_per_this_image # sampling easy bg rand_idx = tf.constant(np.random.randint(low=0, high=len( easy_bg_inds.shape), size=(easy_bg_rois_num,)), dtype=tf.int64) bg_inds = tf.gather(easy_bg_inds, rand_idx) else: raise NotImplementedError return bg_inds def aug_roi_by_noise_torch(self, roi_boxes3d, gt_boxes3d, iou3d_src, aug_times=10): pos_thresh = min(self.reg_fg_thresh, self.cls_fg_thresh) aug_boxes = [] iou_of_rois = [] for k in range(roi_boxes3d.shape[0]): temp_iou = cnt = 0 roi_box3d = roi_boxes3d[k] gt_box3d = tf.reshape(gt_boxes3d[k], (1, 7)) aug_box3d = roi_box3d keep = True while temp_iou < pos_thresh and cnt < aug_times: if np.random.rand() < 0.2: aug_box3d = roi_box3d # p=0.2 to keep the original roi box keep = True else: aug_box3d = self.random_aug_box3d(roi_box3d) keep = False aug_box3d = tf.reshape(aug_box3d, ((1, 7))) iou3d = iou_3d(aug_box3d.numpy()[:, [0, 1, 2, 5, 3, 4, 6]], gt_box3d.numpy()[:, [0, 1, 2, 5, 3, 4, 6]]) iou3d = tf.constant(iou3d) temp_iou = iou3d[0][0] cnt += 1 aug_boxes.append(tf.reshape(aug_box3d, (-1))) if cnt == 0 or keep: iou_of_rois.append(iou3d_src[k]) else: iou_of_rois.append(temp_iou) return tf.stack(aug_boxes), tf.stack(iou_of_rois) @staticmethod def random_aug_box3d(box3d): """ Random shift, scale, orientation. Args: box3d: (7) [x, y, z, h, w, l, ry] """ # pos_range, hwl_range, angle_range, mean_iou range_config = [[0.2, 0.1, np.pi / 12, 0.7], [0.3, 0.15, np.pi / 12, 0.6], [0.5, 0.15, np.pi / 9, 0.5], [0.8, 0.15, np.pi / 6, 0.3], [1.0, 0.15, np.pi / 3, 0.2]] idx = tf.constant(np.random.randint(low=0, high=len(range_config), size=(1,))[0], dtype=tf.int64) pos_shift = ((tf.random.uniform( (3,)) - 0.5) / 0.5) * range_config[idx][0] hwl_scale = ((tf.random.uniform( (3,)) - 0.5) / 0.5) * range_config[idx][1] + 1.0 angle_rot = ((tf.random.uniform( (1,)) - 0.5) / 0.5) * range_config[idx][2] aug_box3d = tf.concat([ box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot ], axis=0) return aug_box3d def data_augmentation(self, pts, rois, gt_of_rois): """ Args: pts: (B, M, 512, 3) rois: (B, M. 7) gt_of_rois: (B, M, 7) """ batch_size, boxes_num = pts.shape[0], pts.shape[1] # rotation augmentation angles = (tf.random.uniform( (batch_size, boxes_num)) - 0.5 / 0.5) * (np.pi / self.aug_rot_range) # calculate gt alpha from gt_of_rois temp_x, temp_z, temp_ry = gt_of_rois[:, :, 0], gt_of_rois[:, :, 2], gt_of_rois[:, :, 6] temp_beta = tf.atan2(temp_z, temp_x) gt_alpha = -tf.sign( temp_beta) * np.pi / 2 + temp_beta + temp_ry # (B, M) temp_x, temp_z, temp_ry = rois[:, :, 0], rois[:, :, 2], rois[:, :, 6] temp_beta = tf.atan2(temp_z, temp_x) roi_alpha = -tf.sign( temp_beta) * np.pi / 2 + temp_beta + temp_ry # (B, M) pts = tf.unstack(pts) gt_of_rois = tf.unstack(gt_of_rois) rois = tf.unstack(rois) for k in range(batch_size): pts[k] = rotate_pc_along_y_tf(pts[k], angles[k]) gt_of_rois[k] = tf.squeeze(rotate_pc_along_y_tf( tf.expand_dims(gt_of_rois[k], axis=1), angles[k]), axis=1) rois[k] = tf.squeeze(rotate_pc_along_y_tf( tf.expand_dims(rois[k], axis=1), angles[k]), axis=1) pts = tf.stack(pts) gt_of_rois = tf.stack(gt_of_rois) rois = tf.stack(rois) # calculate the ry after rotation temp_x, temp_z = gt_of_rois[:, :, :1], gt_of_rois[:, :, 2:3] temp_beta = tf.atan2(temp_z, temp_x) gt_of_rois = tf.concat([ gt_of_rois[:, :, :6], tf.sign(temp_beta) * np.pi / 2 + tf.expand_dims(gt_alpha, axis=-1) - temp_beta ], axis=2) temp_x, temp_z = rois[:, :, :1], rois[:, :, 2:3] temp_beta = tf.atan2(temp_z, temp_x) rois = tf.concat([ rois[:, :, :6], tf.sign(temp_beta) * np.pi / 2 + tf.expand_dims(roi_alpha, axis=-1) - temp_beta ], axis=2) # scaling augmentation scales = 1 + ((tf.random.uniform( (batch_size, boxes_num)) - 0.5) / 0.5) * 0.05 pts = pts * tf.expand_dims(tf.expand_dims(scales, axis=2), axis=3) gt_of_rois = tf.concat([ gt_of_rois[:, :, :6] * tf.expand_dims(scales, axis=2), gt_of_rois[:, :, 6:] ], axis=2) rois = tf.concat( [rois[:, :, :6] * tf.expand_dims(scales, axis=2), rois[:, :, 6:]], axis=2) # flip augmentation flip_flag = tf.sign(tf.random.uniform((batch_size, boxes_num, 1)) - 0.5) pts = tf.concat([ pts[:, :, :, :1] * tf.expand_dims(flip_flag, axis=3), pts[:, :, :, 1:] ], axis=3) gt_of_rois = tf.concat( [gt_of_rois[:, :, :1] * flip_flag, gt_of_rois[:, :, 1:]], axis=2) # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry src_ry = gt_of_rois[:, :, 6:7] ry = tf.cast((flip_flag == 1), tf.float32) * src_ry + tf.cast( (flip_flag == -1), tf.float32) * (tf.sign(src_ry) * np.pi - src_ry) gt_of_rois = tf.concat([gt_of_rois[:, :, :6], ry], axis=2) rois = tf.concat([rois[:, :, :1] * flip_flag, rois[:, :, 1:]], axis=2) # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry src_ry = rois[:, :, 6:7] ry = tf.cast((flip_flag == 1), tf.float32) * src_ry + tf.cast( (flip_flag == -1), tf.float32) * (tf.sign(src_ry) * np.pi - src_ry) rois = tf.concat([rois[:, :, :6], ry], axis=2) return pts, rois, gt_of_rois
[ "noreply@github.com" ]
kukuruza.noreply@github.com
d97160120fe344b6a36a79e9f1c2c576b060b8b9
45623eab5e69c0f2a3d7f0a141d112d0d35790f9
/ssbench/ordered_dict.py
d5f0aca7471d01e9cc56f2c1f2d1beb144d2e2df
[ "Apache-2.0" ]
permissive
peteryj/ssbench
e73c2a77d597152877c7b3a022ce3fa77363beef
4a1766f8e3287cb0dafa559d24f6a51d64950efc
refs/heads/master
2020-12-03T03:47:13.510496
2016-03-23T06:37:39
2016-03-23T06:37:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,058
py
# {{{ http://code.activestate.com/recipes/576693/ (r9) # Backport of OrderedDict() class that runs on Python 2.4, 2.5, 2.6, 2.7 and # pypy. # Passes Python2.7's test suite and incorporates all the latest updates. try: from thread import get_ident as _get_ident except ImportError: from dummy_thread import get_ident as _get_ident try: from _abcoll import KeysView, ValuesView, ItemsView except ImportError: pass class OrderedDict(dict): 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as for regular # dictionaries. # The internal self.__map dictionary maps keys to links in a doubly linked # list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # Each link is stored as a list of length three: [PREV, NEXT, KEY]. def __init__(self, *args, **kwds): '''Initialize an ordered dictionary. Signature is the same as for regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__root = root = [] # sentinel node root[:] = [root, root, None] self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link which goes at the end of the # linked list, and the inherited dictionary is updated with the new # key/value pair. if key not in self: root = self.__root last = root[0] last[1] = root[0] = self.__map[key] = [last, root, key] dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which is # then removed by updating the links in the predecessor and successor # nodes. dict_delitem(self, key) link_prev, link_next, key = self.__map.pop(key) link_prev[1] = link_next link_next[0] = link_prev def __iter__(self): 'od.__iter__() <==> iter(od)' root = self.__root curr = root[1] while curr is not root: yield curr[2] curr = curr[1] def __reversed__(self): 'od.__reversed__() <==> reversed(od)' root = self.__root curr = root[0] while curr is not root: yield curr[2] curr = curr[0] def clear(self): 'od.clear() -> None. Remove all items from od.' try: for node in self.__map.itervalues(): del node[:] root = self.__root root[:] = [root, root, None] self.__map.clear() except AttributeError: pass dict.clear(self) def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') root = self.__root if last: link = root[0] link_prev = link[0] link_prev[1] = root root[0] = link_prev else: link = root[1] link_next = link[1] root[1] = link_next link_next[0] = root key = link[2] del self.__map[key] value = dict.pop(self, key) return key, value # -- the following methods do not depend on the internal structure -- def keys(self): 'od.keys() -> list of keys in od' return list(self) def values(self): 'od.values() -> list of values in od' return [self[key] for key in self] def items(self): 'od.items() -> list of (key, value) pairs in od' return [(key, self[key]) for key in self] def iterkeys(self): 'od.iterkeys() -> an iterator over the keys in od' return iter(self) def itervalues(self): 'od.itervalues -> an iterator over the values in od' for k in self: yield self[k] def iteritems(self): 'od.iteritems -> an iterator over the (key, value) items in od' for k in self: yield (k, self[k]) def update(*args, **kwds): '''od.update(E, **F) -> None. Update od from dict/iterable E and F. If E is a dict instance, does: for k in E: od[k] = E[k] If E has a .keys() method, does: for k in E.keys(): od[k] = E[k] Or if E is an iterable of items, does: for k, v in E: od[k] = v In either case, this is followed by: for k, v in F.items(): od[k] = v ''' if len(args) > 2: raise TypeError('update() takes at most 2 positional ' 'arguments (%d given)' % (len(args),)) elif not args: raise TypeError('update() takes at least 1 argument (0 given)') self = args[0] # Make progressively weaker assumptions about "other" other = () if len(args) == 2: other = args[1] if isinstance(other, dict): for key in other: self[key] = other[key] elif hasattr(other, 'keys'): for key in other.keys(): self[key] = other[key] else: for key, value in other: self[key] = value for key, value in kwds.items(): self[key] = value __update = update # let subclasses override update w/o breaking __init__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default def __repr__(self, _repr_running=None): 'od.__repr__() <==> repr(od)' call_key = id(self), _get_ident() if _repr_running is None: _repr_running = {} if call_key in _repr_running: return '...' _repr_running[call_key] = 1 try: if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.items()) finally: del _repr_running[call_key] def __reduce__(self): 'Return state information for pickling' items = [[k, self[k]] for k in self] inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S and values equal to v (which defaults to None). ''' d = cls() for key in iterable: d[key] = value return d def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return len(self) == len(other) and self.items() == other.items() return dict.__eq__(self, other) def __ne__(self, other): return not self == other # -- the following methods are only used in Python 2.7 -- def viewkeys(self): "od.viewkeys() -> a set-like object providing a view on od's keys" return KeysView(self) def viewvalues(self): "od.viewvalues() -> an object providing a view on od's values" return ValuesView(self) def viewitems(self): "od.viewitems() -> a set-like object providing a view on od's items" return ItemsView(self) # end of http://code.activestate.com/recipes/576693/ }}}
[ "darrell@swiftstack.com" ]
darrell@swiftstack.com
03d4807bf6ae79a977ee60b6b4de35c94aeb6e7f
88a5dae03f0304d3fb7add71855d2ddc6d8e28e3
/main/ext/__init__.py
362e9cace53732e41d9341d5e951472eba630fbc
[ "Apache-2.0" ]
permissive
huangpd/Shape
eabb59781ac6a055f7b7036fef926023cbcd4882
fddbbb765e353584752066f7c839293ebd10c4df
refs/heads/master
2020-03-26T13:04:22.224367
2018-05-10T09:06:10
2018-05-10T09:06:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
#-*-coding:utf-8-*- from flask_bcrypt import Bcrypt bcrypt = Bcrypt() from flask_bootstrap import Bootstrap bootstrap = Bootstrap() from flask_mail import Mail mail=Mail() from flask_login import LoginManager login_manager = LoginManager() login_manager.login_view="auth.login_index" login_manager.session_protection="strong" login_manager.login_message="登录以获得更多功能" login_manager.login_message_category="info"
[ "root@localhost.localdomain" ]
root@localhost.localdomain
fec5927f671f48d0494d8758f058e97cbe129c94
0353782639974c650fa042e44d75e92bf7be6fc1
/instagram/insta/instafeed/views.py
cccd2cf5f41d8e68ff52bb8847187c85cb8c062f
[]
no_license
jersobh/DigitalMarketing
2d31b5c18f0764c4f352947aa34506d63216feeb
6fa679bb964e6ad656415e38227e007db2ae0fda
refs/heads/master
2021-10-23T15:24:01.939739
2019-03-18T12:27:21
2019-03-18T12:27:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
455
py
from django.shortcuts import render from django.http import HttpResponse # import InstagramAPI from InstagramAPI.InstagramAPI import InstagramAPI from django.http import JsonResponse def index(request): api = InstagramAPI("jayabal.al", "jayabal9890@insta") if(api.login()): api.getSelfUserFeed() return JsonResponse(api.LastJson) return JsonResponse({}) # return HttpResponse("Hello, world. You're at the polls index.")
[ "noreply@github.com" ]
jersobh.noreply@github.com
17b24db22bb599a33ad96d9be8572468f4ea1b60
42c67fdb3b373e0bf677e9d9d1cf770646c75ba6
/tests/test_tutorial/test_using_click/test_tutorial003.py
eadd93ee9ea77c644c295b94cd9155c13c10334d
[ "MIT" ]
permissive
marcosfelt/typer
b8ecc8e65c82044076880105d3ecb2ca0d158c25
61a0616ea9b7904c2379c464d0f72d5b7bde270e
refs/heads/master
2023-08-01T03:25:42.417233
2021-09-14T11:11:12
2021-09-14T11:11:12
406,322,395
0
0
MIT
2021-09-14T10:43:32
2021-09-14T10:29:20
null
UTF-8
Python
false
false
868
py
import subprocess from click.testing import CliRunner from docs_src.using_click import tutorial003 as mod runner = CliRunner() def test_cli(): result = runner.invoke(mod.typer_click_object, []) # TODO: when deprecating Click 7, remove second option assert "Error: Missing command" in result.stdout or "Usage" in result.stdout def test_typer(): result = runner.invoke(mod.typer_click_object, ["top"]) assert "The Typer app is at the top level" in result.stdout def test_click(): result = runner.invoke(mod.typer_click_object, ["hello", "--name", "Camila"]) assert "Hello Camila!" in result.stdout def test_script(): result = subprocess.run( ["coverage", "run", mod.__file__, "--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", ) assert "Usage" in result.stdout
[ "noreply@github.com" ]
marcosfelt.noreply@github.com
b1dc61b9b0266ed2642cd5bf9517f09540601de5
7abb3d309a011a36247e0b4dcda3759537c45b2c
/utils/vb-meta-to-json-topology.py
031f8c9a3763b172b8281d83709ffc18311a4b0b
[ "BSD-3-Clause" ]
permissive
TomPlano/varbench
7937a8a7221117e2d817549eb8ba22746c324869
83933380e1876da388dd07a78e554e65f388861b
refs/heads/master
2020-04-02T14:34:11.376400
2018-10-27T19:10:09
2018-10-27T19:10:09
154,529,766
0
0
BSD-3-Clause
2018-10-24T16:01:55
2018-10-24T16:01:54
null
UTF-8
Python
false
false
2,486
py
#!/usr/bin/env python import os import sys import getopt import json def usage(argv, exit=None): print "Usage: %s [OPTIONS] <VB metadata file> <VB JSON topology file (output)>" % argv[0] print " -h (--help) : print help and exit" print " -v (--vbs-path=) : path to VB Stats python module" if exit is not None: sys.exit(exit) def parse_cmd_line(argc, argv): opts = [] args = [] cur_path = os.path.dirname(os.path.realpath(__file__)) vb_path = cur_path + "/../vb-stats/" try: opts, args = getopt.getopt( argv[1:], "hv:", ["help", "vb-path="] ) except getopt.GetoptError, err: print >> sys.stderr, err usage(argv, exit=1) for o, a in opts: if o in ("-h", "--help"): usage(argv, exit=0) elif o in ("-v", "--vb-path"): vb_path = a else: usage(argv, exit=1) if len(args) != 2: usage(argv, exit=1) return vb_path, args[0], args[1] def main(argc, argv, envp): vb_path, meta, json_file = parse_cmd_line(argc, argv) procs = [] # Try to import vb-path try: sys.path.insert(0, vb_path) from vb_stats import VB_Stats as vbs except ImportError: print >> sys.stderr, "Could not import VB_Stats. Please specify path to VB_Stats with '--vbs-path'" usage(argv, exit=2) with vbs(meta, load_data=False) as vb: with open(json_file, "w") as f: num_processors = vb.num_sockets_per_node * vb.num_cores_per_socket * vb.num_hw_threads_per_core json.dump({ "processor_info" : { "num_processors" : num_processors, "num_sockets" : vb.num_sockets_per_node, "cores_per_socket" : vb.num_cores_per_socket, "hw_threads_per_core" : vb.num_hw_threads_per_core }, # The format of p: [socket, core, hw_thread, os_core] "processor_list" : [ { "os_core" : p[3], "socket" : p[0], "core" : p[1], "hw_thread" : p[2] } for p in vb.processor_map ] }, f, indent=4) if __name__ == "__main__": argv = sys.argv argc = len(argv) envp = os.environ sys.exit(main(argc, argv, envp))
[ "brian.kocoloski@wustl.edu" ]
brian.kocoloski@wustl.edu
70eca39c9c9fb18923b83761478de0f263f2fd31
fa6caa2382c1f35931153ba0c74ff6555c41c745
/backend/base/migrations/0003_product_image.py
7be4d74d30250643ca2e68b0d7c8b84ed019b757
[]
no_license
devckrishna/Django-React-Ecommerce
89c341d0de469ed80939fec9544f56418a09ad90
ded75edbff25cfb2bca56c92ae5fce7fcf8afcb6
refs/heads/main
2023-04-21T22:36:28.720240
2021-05-08T17:44:22
2021-05-08T17:44:22
363,849,001
1
0
null
null
null
null
UTF-8
Python
false
false
422
py
# Generated by Django 3.2 on 2021-05-04 14:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base', '0002_order_orderitem_review_shippingaddress'), ] operations = [ migrations.AddField( model_name='product', name='image', field=models.ImageField(blank=True, null=True, upload_to=''), ), ]
[ "dev.c.krishna.123@gmail.com" ]
dev.c.krishna.123@gmail.com
150aa7fcfcf1929a708e94bb4cf3c21158724349
99e25489e0e504a6e49da4d9398dbfb8c4fe86a4
/Leetcode/二叉树/654-最大二叉树-m.py
2c6bc91855e00adb4cedcdeb219ef233ec75e6b9
[ "Apache-2.0" ]
permissive
JackeyGuo/Algorithms
08e5c5a1067c1bf2642241ad635c683c68dff6d3
27185d382a891f4667f67701a60c796fa3a6c1ac
refs/heads/main
2023-03-27T15:26:28.383100
2021-03-18T06:27:05
2021-03-18T06:27:05
326,852,774
1
0
null
null
null
null
UTF-8
Python
false
false
1,017
py
from typing import List # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode: """ 先明确根节点做什么?对于构造二叉树的问题,根节点要做的就是把想办法把自己构造出来 """ # base case if len(nums) == 0: return None if len(nums) == 1: return TreeNode(nums[0]) # 第一步:先找数组中的最大值和索引 max_value = max(nums) index = nums.index(max_value) # 创建根节点 root = TreeNode(max_value) # 递归调用构造左右子树 root.left = self.constructMaximumBinaryTree(nums[:index]) root.right = self.constructMaximumBinaryTree(nums[index + 1:]) return root print(Solution().constructMaximumBinaryTree([3, 2, 1, 6, 0, 5]))
[ "1051347391@qq.com" ]
1051347391@qq.com
4dc75a5c5ad9b9adc0eee92205b2a3ec96120685
1a220abd21c56728aa3368534506bfc9ced8ad46
/프로그래머스/lv0/120862. 최댓값 만들기 (2)/최댓값 만들기 (2).py
2150e823f28bad1d9f1692f23f12517ff6e88e54
[]
no_license
JeonJe/Algorithm
0ff0cbf47900e7877be077e1ffeee0c1cd50639a
6f8da6dbeef350f71b7c297502a37f87eb7d0823
refs/heads/main
2023-08-23T11:08:17.781953
2023-08-23T08:31:41
2023-08-23T08:31:41
197,085,186
0
0
null
2023-02-21T03:26:41
2019-07-15T23:22:55
Python
UTF-8
Python
false
false
630
py
def solution(numbers): answer = 0 negative = [] positive = [] for i in numbers: if i < 0: negative.append(i) else: positive.append(i) negative.sort() positive.sort() max_positive, max_negative, mix = -1e9, -1e9, -1e9 if len(positive) == 1 and len(negative) == 1: mix = positive[-1] * negative[0] if len(positive) >= 2: max_positive = positive[-1] * positive[-2] if len(negative) >= 2: max_negative = negative[0] * negative[1] answer = max(max_positive, max_negative, mix) return answer
[ "43032391+JeonJe@users.noreply.github.com" ]
43032391+JeonJe@users.noreply.github.com
16f6244485e0802abe75dcdcc1068f2bde02f77f
70da894645a6f3fe362a60de843b1998e2d619eb
/Questao7.py
839a87331b7746d5e1badb8dbfcb0b2368f9e6e3
[]
no_license
marcelorvergara/AT_python
2ed9ff3a782ec7b13f1f05909870d7a9013fb20b
77cfc84e9e1b624e45a2e3f45e0bb99b32170f68
refs/heads/main
2023-08-05T00:45:27.688566
2021-09-20T16:27:51
2021-09-20T16:27:51
408,164,732
0
0
null
null
null
null
UTF-8
Python
false
false
3,329
py
import threading import requests class Questao7(threading.Thread): def __init__(self): super().__init__() url = 'https://sites.google.com/site/dr2fundamentospython/arquivos/Winter_Olympics_Medals.csv' requisicao = requests.get(url, timeout=5) if requisicao.status_code != 200: requisicao.raise_for_status() else: print("Conectado") csv = requisicao.text linhas = csv.splitlines() # SWE suecia = 0 sue_medalhas = [] # DEN dinamarca = 0 den_medalhas = [] # NOR nor_medalhas = [] noruega = 0 for ln in range(1, len(linhas)): colunas = linhas[ln].split(',') # somente séc. XXI if int(colunas[0]) > 2000: # somente modalidades 'curling', 'skating', 'skiing', 'ice hockey' if colunas[2] == 'Curling' or colunas[2] == 'Skating' or colunas[2] == 'Skiing' or colunas[2] == 'Ice Hockey': # se ouro if colunas[7] == 'Gold': gen = '' if colunas[6] == 'M': gen = 'masculino' else: gen = 'feminino' if colunas[4] == 'SWE': suecia += 1 sue_medalhas.append('Esporte: ' + colunas[2] + ' Ano: ' + colunas[0] + ' Cidade: ' + colunas[ 1] + ' Gênero: ' + gen) elif colunas[4] == 'DEN': dinamarca += 1 den_medalhas.append('Esporte: ' + colunas[2] + ' Ano: ' + colunas[0] + ' Cidade: ' + colunas[ 1] + ' Gênero: ' + gen) elif colunas[4] == 'NOR': noruega += 1 nor_medalhas.append('Esporte: ' + colunas[2] + ' Ano: ' + colunas[0] + ' Cidade: ' + colunas[ 1] + ' Gênero: ' + gen) maior = '' num_medalhas = 0 if suecia > dinamarca or suecia > noruega: maior = 'Suecia' num_medalhas = suecia if dinamarca > suecia or dinamarca > noruega: maior = 'Dinamarca' num_medalhas = dinamarca else: maior = 'Noruega' num_medalhas = noruega print('\nO país com o maior número de medalhas ouro nas modalidades especificadas é a', maior, 'com', num_medalhas, 'medalhas') print('\nRelatório dos países Suécia, Dinamarca e Noruega referente as medalhas ouro nos esportes Curling, Patinação no gelo, Esqui e Hóquei sobre o gelo no século XXI') print('\nSuécia:\n') if sue_medalhas: for ln in sue_medalhas: print(ln) else: print('Não obteve medalhas de ouro') print('\nDinamarca:\n') if den_medalhas: for ln in den_medalhas: print(ln) else: print('Não obteve medalhas de ouro') print('\nNoruega:\n') if nor_medalhas: for ln in nor_medalhas: print(ln) else: print('Não obteve medalhas de ouro')
[ "marcelorv@gmail.com" ]
marcelorv@gmail.com
816b87e9a417a4578c92d360b24184834f8c149f
1ee27186cf26b646fb231b6e23a28f00959f3ae2
/part1_WebScraping.py
a1c31a4f1c1f7d0aa1a0f008f9e8268a41460138
[]
no_license
A-Yaghoubian/Web-scraping-in-markets-with-predict
714dc5da72dc87354867d305ff330380312f0fef
aa0c43595b1f2dc9c6920edeea8e94b8bbb0f0ea
refs/heads/main
2023-07-06T14:03:41.857711
2021-04-07T12:22:44
2021-04-07T12:22:44
355,533,381
1
0
null
null
null
null
UTF-8
Python
false
false
1,364
py
import requests from bs4 import BeautifulSoup import mysql.connector print('Zakhire kardan Brand-Name-Price az site DIGISTYLE dakhel database') print() print('INFORMATION YOUR DATABASE') u = input('Please enter your user of database : ') p = input('Please enter your pass of database : ') h = input('Please enter your host of database : ') cnx = mysql.connector.connect(user=u, password=p, host=h, database='DigiStyle') # print ('connected to db :)') cursor = cnx.cursor() newBrand = list() newName = list() newPrice = list() for i in range(1, 63): #WARNING FOR 2 OR 63 r = requests.get('https://www.digistyle.com/category-men-tee-shirts-and-polos/?pageno=%s&sortby=4' %i) soup = BeautifulSoup(r.text, 'html.parser') brand = soup.find_all('span', attrs={'class': 'c-product-item__brand'}) name = soup.find_all('span', attrs={'class': 'c-product-item__name'}) price = soup.find_all('span', attrs={'class': 'c-product-item__price-value'}) for i in range(0, 36): b = brand[i] b = str(b) b = b[36:-7] n = name[i] n = str(n) n = n[35:-7] p = price[i] p = str(p) p = p[42:-7] sql = 'INSERT INTO Digistyle (brand_of_product, name_of_product, price_of_product) VALUES (%s, %s, %s)' val = (b, n, p) cursor.execute(sql, val) cnx.commit() cnx.close()
[ "noreply@github.com" ]
A-Yaghoubian.noreply@github.com
1c43edf94a27aa6141c51da6fce81d5fda5a3967
49c137c3df08de22759879b9aaf61318a073b997
/vacancy/migrations/0003_auto_20190404_0502.py
98f0f4cbaeb1b1003546462fe38e4127899c1030
[]
no_license
ayush024/hrms
c7da0068a3df57340f82457e20d4d769d15aba4e
31c8f85e4ab5730191334561cdbddf386aafa0a7
refs/heads/master
2020-05-05T13:34:29.954270
2019-04-25T18:11:07
2019-04-25T18:11:07
180,083,977
0
0
null
null
null
null
UTF-8
Python
false
false
686
py
# Generated by Django 2.2 on 2019-04-04 05:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vacancy', '0002_auto_20190331_1938'), ] operations = [ migrations.AlterField( model_name='jobs', name='fooding', field=models.BooleanField(default=0), ), migrations.AlterField( model_name='jobs', name='insurance', field=models.BooleanField(default=0), ), migrations.AlterField( model_name='jobs', name='lodging', field=models.BooleanField(default=0), ), ]
[ "aayushdhakal360@gmail.com" ]
aayushdhakal360@gmail.com
cde113aea88eac4418c8c3aebe85bd0a376b8a61
4ac3789c709d1b68a506f183a5b053b1137f02db
/src/pilot/transition_probs.py
916c70bcd1396194212b0a8b24ca39d5a85b7f26
[]
no_license
bdyetton/PSleep
5c52d3ddf1ecb5b3caf5fd6abd562007b5a8dc1d
9b02cf76f4c63923d1acfbaf32c62fe70ccb42b8
refs/heads/master
2020-12-01T15:28:23.267808
2019-12-29T00:06:18
2019-12-29T00:06:18
230,681,688
0
0
null
null
null
null
UTF-8
Python
false
false
4,895
py
from mednickdb_pyapi.mednickdb_pyapi import MednickAPI from mednickdb_pysleep import defaults import os import matplotlib.pyplot as plt import seaborn as sns import bootstrapped.bootstrap as bs import bootstrapped.compare_functions as bs_compare import bootstrapped.stats_functions as bs_stats import numpy as np import pandas as pd sleep_stages = { 0:'wake', 1:'stage1', 2:'stage2', 3:'sws', 4:'rem' } def compare_dists(data, y_var, by_var, y_level=None, by_levels=None, ax=None): levels = data[by_var].unique() if by_levels is not None: levels = [lev for lev in levels if lev in by_levels] levels_data = [] for lev in levels: level_data = data.loc[data[by_var] == lev, y_var].dropna() if y_level is not None: level_data = level_data.apply(lambda x: x[y_level]).dropna() levels_data.append(level_data.astype(float).values) #Runs boostrapped stats test is_diff = False if len(levels) == 2: diff = bs.bootstrap_ab(*levels_data, stat_func=bs_stats.mean, compare_func=bs_compare.percent_change) is_diff = (diff.lower_bound > 0 or diff.upper_bound < 0) if is_diff: sns.set_style("dark") else: sns.set_style("white") diff_msg = 'Difference: \nZero not in CI' if is_diff else 'No Difference: \nZero in CI' print(diff, '\n', diff_msg) # Plotting for lev in levels_data: sns.distplot(a=lev, ax=ax) ax.text(0.3, 0.5, diff_msg, transform=ax.transAxes, size=16, color='r' if is_diff else 'k') plt.title(y_var.split('.')[-1]+' to '+sleep_stages[y_level]+' for the Cleveland Family Study by '+by_var.split('.')[-1]) plt.ylabel('Probability Density') plt.legend(levels) def investigate_trans_probs_by_demographics(data, sleep_stages_to_consider=defaults.stages_to_consider): data = data.drop(['_id', 'sleep_scoring.sourceid', 'visitid', 'datemodified', 'expired'], axis=1) data['demographics.age_cat'] = (data['demographics.age'] > 55).map({True: 'Older', False: 'Younger'}) data['demographics.ethnicity'] = data['demographics.ethnicity'].map({'white ': 'white', 'black ': 'black'}) #anything else will get nan demo_cols = ['subjectid', 'demographics.age_cat', 'demographics.ethnicity', 'demographics.sex'] trans_probs_cols = ['sleep_scoring.trans_prob_from_' + s for s in sleep_stages_to_consider] cols_we_care_about = demo_cols + trans_probs_cols data = data.loc[:, cols_we_care_about] data = data.set_index(demo_cols) from_and_to_data_cont = [] for trans_probs_col in trans_probs_cols: from_data = data.loc[:, trans_probs_col] # keep index from_data = from_data.dropna() from_and_to_data_np = np.array(from_data.tolist()).astype(float) #not sure why need to conver from_and_to_data = pd.DataFrame(from_and_to_data_np, columns=sleep_stages_to_consider) from_and_to_data['from_stage'] = trans_probs_col.split('_')[-1] from_and_to_data.index = from_data.index from_and_to_data = from_and_to_data.reset_index() from_and_to_data = from_and_to_data.melt(id_vars=demo_cols+['from_stage'], value_vars=sleep_stages_to_consider, var_name='to_stage', value_name='prob') from_and_to_data_cont.append(from_and_to_data) all_trans_data = pd.concat(from_and_to_data_cont).reset_index(drop=True) # Plot some data for by_var in ['demographics.sex', 'demographics.ethnicity', 'demographics.age_cat']: data_to_plot = all_trans_data.drop(set(demo_cols)-set([by_var]), axis=1).dropna().reset_index(drop=True) sns.catplot(x='to_stage', y='prob', hue=by_var, row="from_stage", data=data_to_plot, kind="violin", split=True, height=1.5, aspect=2.5, legend=False) plt.legend(loc='lower right') plt.ylim((0, 1)) for to_and_from_stage, data in data_to_plot.groupby(['from_stage', 'to_stage']): from_stage, to_stage = to_and_from_stage[0], to_and_from_stage[1] by_data = list(data.groupby(by_var)) diff = bs.bootstrap_ab(by_data[0][1]['prob'].values, by_data[1][1]['prob'].values, stat_func=bs_stats.mean, compare_func=bs_compare.percent_change) is_diff = (diff.lower_bound > 0 or diff.upper_bound < 0) if is_diff: plt.gcf().axes[sleep_stages_to_consider.index(from_stage)].text(y=0, x=sleep_stages_to_consider.index(to_stage) - 0.1, s='*', color='r', fontsize=18) plt.show() if __name__ == '__main__': med_api = MednickAPI(username=os.environ['mednickapi_username'], password=os.environ['mednickapi_password']) #Get the data, so easy :) data = med_api.get_data('studyid=NSRR_CFS', format_as='dataframe_single_index') print('Got', data.shape[0], 'records') investigate_trans_probs_by_demographics(data)
[ "bdyetton@gmail.com" ]
bdyetton@gmail.com
58e9f0902786c9d6ba075f971c789cd992c620a6
9334f5334f2da1283f32b08ef99866202b60ae68
/learning_logs/models.py
2f576215edee0f56da9ac08ece5ee99ed5365952
[]
no_license
ArXaHGeL/Learning-Log
e033b9b0471185b7bedaa6e3ad2b367e1e7da64f
3b43a173b60b624d9c5615804658151c52127577
refs/heads/master
2023-02-26T15:21:09.499555
2021-02-03T12:09:12
2021-02-03T12:09:12
335,559,775
0
0
null
null
null
null
UTF-8
Python
false
false
939
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Topic(models.Model): """A topic that the user is learning.""" text = models.CharField(max_length=200) date_added = models.DateTimeField(auto_now_add=True) owner = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): """Return a string representation of the model.""" return self.text class Entry(models.Model): """Information learned by the user.""" topic = models.ForeignKey(Topic, on_delete=models.CASCADE) text = models.TextField() date_added = models.DateTimeField(auto_now_add=True) class Meta: verbose_name_plural = 'entries' def __str__(self): """Return a string representation of the model.""" if self.text <= self.text[0:50]: return self.text else: return self.text[0:50] + "..."
[ "zenit_dimka@mail.ru" ]
zenit_dimka@mail.ru
54b0885bfde6ed3aa0813d94f067a252a79a5d94
56ce881112d04617795c00b7e6270efc732894e0
/adserver/partner/models.py
c09c40e2335b7e103b58f3e6540c608e1c4b2af5
[]
no_license
kontinuity/papps
0fb515d5ee4300e250a03dfbc326b06f5745613c
f40315b5106c7f9c24cab3dff3bd1199081dc617
refs/heads/master
2020-05-03T11:32:07.456114
2010-09-03T09:50:40
2010-09-03T09:50:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,113
py
from django.db import models from adserver.partner.settings import * from django.contrib.auth.models import User from django.db.models.signals import post_save class Partner(models.Model): company_name = models.CharField(max_length=255) company_type = models.PositiveIntegerField(choices=COMPANY_TYPE_CHOICES, default=COMPANY_TYPE_DEFAULT) company_type_other = models.CharField(max_length=255, blank=True, null=True) number_of_domains = models.PositiveIntegerField(blank=True, null=True) hosting_control_panel = models.PositiveIntegerField(choices=HOSTING_CONTROL_PANEL_CHOICES, default=HOSTING_CONTROL_PANEL_DEFAULT) hosting_control_panel_other = models.CharField(max_length=255, blank=True, null=True) webmail = models.PositiveIntegerField(choices=WEBMAIL_CHOICES, default=WEBMAIL_DEFAULT) number_of_users = models.PositiveIntegerField(blank=True, null=True) user = models.OneToOneField(User) #def create_partner(sender, instance, created, **kwargs): # if created: # profile, created = Partner.objects.get_or_create(user=instance) # #post_save.connect(create_partner, sender=User)
[ "arif.a@directi.com" ]
arif.a@directi.com
30a56aa3ea447d0f6e641cf2b1c120ab673bb144
fe81c95988122057f030cc6c57681e215093c9ba
/比赛分享/调参/tiaocan1.py
3413b37f817c71bf81d552fb4f4f5e1c94ca54e1
[]
no_license
xiexiaoyang/Big-Data-Challenge
fbe2bbfa92a603460479e6cf7ff4a6f197af239f
2fc6ae26037a98d46cb0735a0e4c744b74ec9fb0
refs/heads/master
2021-07-19T02:37:58.980208
2017-10-22T07:18:24
2017-10-22T07:18:24
107,832,382
0
1
null
null
null
null
UTF-8
Python
false
false
6,637
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 19 19:28:57 2017 @author: Yang """ '''调参 1. 理解模型 2. 列出所有的参数 3. 选择对模型提升大的参数 代码错误: 1. kstep = len(randidx) / nfold 改为 kstep = len(randidx) // nfold 2. 'Disbursed' 改为 target 3, Parameter values should be a list. 改为 param_test1 = {'max_depth':list(range(3,10,2)),'min_child_weight':list(range(1,6,2))} ''' #Import libraries: import pandas as pd import numpy as np import xgboost as xgb from xgboost.sklearn import XGBClassifier from sklearn import cross_validation, metrics #Additional scklearn functions from sklearn.grid_search import GridSearchCV #Perforing grid search import matplotlib.pylab as plt from matplotlib.pylab import rcParams rcParams['figure.figsize'] = 12, 4 train = pd.read_csv(r"G:\比赛分享\data\alltrain.csv") test= pd.read_csv(r"G:\比赛分享\data\alltest.csv") target = 'label' IDcol = 'id' def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50): if useTrainCV: xgb_param = alg.get_xgb_params() xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values) cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds, metrics=['auc'], early_stopping_rounds=early_stopping_rounds, show_progress=True) alg.set_params(n_estimators=cvresult.shape[0]) #Fit the algorithm on the data alg.fit(dtrain[predictors], dtrain[target],eval_metric='auc') #Predict training set: dtrain_predictions = alg.predict(dtrain[predictors]) dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1] #Print model report: print ("\nModel Report") print (("Accuracy : %.4g") % metrics.accuracy_score(dtrain[target].values, dtrain_predictions)) print (("AUC Score (Train): %f" )% metrics.roc_auc_score(dtrain[target], dtrain_predprob)) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind='bar', title='xgb Feature Importances') plt.ylabel('Feature Importance Score') ''' 一 修正用于调整基于树的参数的学习速率和估计量数 也就是 learning_rate n_estimators 学习速率和树的数量 ''' ##Choose all predictors except target & IDcols predictors = [x for x in train.columns if x not in [target, IDcol]] xgb1 = XGBClassifier( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27) modelfit(xgb1, train, predictors) ###Step 2: Tune max_depth and min_child_weight #param_test1 = { # 'max_depth':list(range(3,10,2)), # 'min_child_weight':list(range(1,6,2)) #} #gsearch1 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=5, # min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, # objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27), # param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=2 ) # #print(gsearch1.fit(train[predictors],train[target])) #print(gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_) # #param_test2 = { # 'max_depth':[4,5,6], # 'min_child_weight':[4,5,6] #} #gsearch2 = GridSearchCV(estimator = XGBClassifier( learning_rate=0.1, n_estimators=140, max_depth=5, # min_child_weight=2, gamma=0, subsample=0.8, colsample_bytree=0.8, # objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), # param_grid = param_test2, scoring='roc_auc',n_jobs=4,iid=False, cv=5) #print(gsearch2.fit(train[predictors],train[target])) #print(gsearch2.grid_scores_, gsearch2.best_params_, gsearch2.best_score_) ###Step 3: Tune gamma #param_test3 = { # 'gamma':[i/10.0 for i in range(0,5)] #} #gsearch3 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=4, # min_child_weight=6, gamma=0, subsample=0.8, colsample_bytree=0.8, # objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), # param_grid = param_test3, scoring='roc_auc',n_jobs=4,iid=False, cv=5) #print(gsearch3.fit(train[predictors],train[target])) #print(gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_) ## #xgb2 = XGBClassifier( # learning_rate =0.1, # n_estimators=1000, # max_depth=4, # min_child_weight=6, # gamma=0, # subsample=0.8, # colsample_bytree=0.8, # objective= 'binary:logistic', # nthread=4, # scale_pos_weight=1, # seed=27) #modelfit(xgb2, train, predictors) # ###Step 4: Tune subsample and colsample_bytree #param_test4 = { # 'subsample':[i/10.0 for i in range(6,10)], # 'colsample_bytree':[i/10.0 for i in range(6,10)] #} #gsearch4 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=177, max_depth=4, # min_child_weight=6, gamma=0, subsample=0.8, colsample_bytree=0.8, # objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), # param_grid = param_test4, scoring='roc_auc',n_jobs=4,iid=False, cv=5) #print(gsearch4.fit(train[predictors],train[target])) #print(gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_) # #param_test5 = { # 'subsample':[i/100.0 for i in range(75,90,5)], # 'colsample_bytree':[i/100.0 for i in range(75,90,5)] #} #gsearch5 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=177, max_depth=4, # min_child_weight=6, gamma=0, subsample=0.8, colsample_bytree=0.8, # objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), # param_grid = param_test5, scoring='roc_auc',n_jobs=4,iid=False, cv=5) #gsearch5.fit(train[predictors],train[target]) ###Step 5: Tuning Regularization Parameters #param_test6 = { # 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100] #} #gsearch6 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=177, max_depth=4, # min_child_weight=6, gamma=0.1, subsample=0.8, colsample_bytree=0.8, # objective= 'binary:logistic', nthread=4, scale_pos_weight=1,seed=27), # param_grid = param_test6, scoring='roc_auc',n_jobs=4,iid=False, cv=5) #print(gsearch6.fit(train[predictors],train[target])) #print(gsearch6.grid_scores_, gsearch6.best_params_, gsearch6.best_score_) ###Step 6: Reducing Learning Rate #xgb4 = XGBClassifier( # learning_rate =0.01, # n_estimators=5000, # max_depth=4, # min_child_weight=6, # gamma=0, # subsample=0.8, # colsample_bytree=0.8, # reg_alpha=0.005, # objective= 'binary:logistic', # nthread=4, # scale_pos_weight=1, # seed=27) #modelfit(xgb4, train, predictors)
[ "2509039243@qq.com" ]
2509039243@qq.com
6c99d787a87a797b6e5c6afcd4673e6a93bcfa66
c1fe9f7093c68d26eed55ceee4769878e8aa6c05
/reverse-string.py
bc9af688c40e4d38a1949faf89d903cdf39069e6
[]
no_license
aadilzbhatti/Small-Challenges
781e7b04614d734c176f2d14a61663304316bda5
0768974c3c3e5b683e92f7a9cd723dc0456ee55c
refs/heads/master
2021-11-23T17:24:46.222842
2015-02-07T02:21:55
2015-02-07T02:21:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
#reverse a string s = "" str = input("Enter the string to be reversed: "); for i in range (0, len(str)): s += str[len(str) - i-1] print(s)
[ "aadilzbhatti@gmail.com" ]
aadilzbhatti@gmail.com
e7c14001f2ea7bf7b866830cf28b3ffddb0acf8f
2f1c9bba6ba14a46f04a861e70dbf6d50d96535b
/Map-CS61aBerkeley/tests/08.py
c6f01f55e6158ebdbaf8b695866c2ec2a09fb31a
[]
no_license
leovcunha/CS_learning_projects
8a3ed5ba76ad81a22c7162835b39734726028953
4cbd45192738c2850b308b35ee9b0c95de798748
refs/heads/master
2021-01-20T01:23:02.738739
2019-07-02T02:11:07
2019-07-02T02:11:07
89,267,880
0
0
null
null
null
null
UTF-8
Python
false
false
10,929
py
test = { 'name': 'Problem 8', 'points': 2, 'suites': [ { 'cases': [ { 'answer': '18f4b8f373a149983a060187fb945841', 'choices': [ 'a list of restaurants reviewed by the user', 'a list of all possible restaurants', 'a list of ratings for restaurants reviewed by the user' ], 'hidden': False, 'locked': True, 'question': 'In best_predictor, what does the variable reviewed represent?' }, { 'answer': '6e952a03cc93ab2e76cc6e9be1f58c8e', 'choices': [ 'a predictor function, and its r_squared value', 'a predictor function', 'an r_squared value', 'a restaurant' ], 'hidden': False, 'locked': True, 'question': r""" Given a user, a list of restaurants, and a feature function, what does find_predictor from Problem 7 return? """ }, { 'answer': '6290d50f08bc68e242b1124b49a5e8db', 'choices': [ 'the predictor with the highest r_squared', 'the predictor with the lowest r_squared', 'the first predictor in the list', 'an arbitrary predictor' ], 'hidden': False, 'locked': True, 'question': r""" After getting a list of [predictor, r_squared] pairs, which predictor should we select? """ } ], 'scored': False, 'type': 'concept' }, { 'cases': [ { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... make_restaurant('D', [4, 2], [], 2, [ ... make_review('D', 3), ... make_review('D', 4) ... ]), ... ] >>> fns = [restaurant_price, restaurant_mean_rating] >>> pred = best_predictor(user, cluster, fns) >>> [round(pred(r), 5) for r in cluster] # should be a list of decimals [2.0, 5.0, 2.0, 5.0] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... ] >>> fns = [restaurant_price, restaurant_mean_rating] >>> pred = best_predictor(user, cluster, fns) >>> [round(pred(r), 5) for r in cluster] [2.0, 5.0, 2.0] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... ] >>> fns = [restaurant_mean_rating, restaurant_price] >>> pred = best_predictor(user, cluster, fns) >>> [round(pred(r), 5) for r in cluster] # Make sure you're iterating through feature_fns! [2.0, 5.0, 2.0] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... make_restaurant('E', [1, 2], [], 4, [ ... make_review('E', 4) ... ]), ... ] >>> fns = [restaurant_mean_rating, restaurant_price] >>> pred = best_predictor(user, cluster, fns) # Make sure you're only using user-reviewed restaurants! >>> [round(pred(r), 5) for r in cluster] [2.0, 5.0, 2.0, 2.0] """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> import tests.test_functions as test >>> from recommend import * """, 'teardown': '', 'type': 'doctest' }, { 'cases': [ { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... make_restaurant('D', [4, 2], [], 2, [ ... make_review('D', 3), ... make_review('D', 4) ... ]), ... ] >>> fns = [restaurant_price, restaurant_mean_rating] >>> pred = best_predictor(user, cluster, fns) >>> # Hint: Price is a perfect predictor of this user's ratings, >>> # so the predicted ratings should equal the user's ratings >>> [round(pred(r), 5) for r in cluster] # should be a list of decimals [2.0, 5.0, 2.0, 5.0] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... ] >>> fns = [restaurant_price, restaurant_mean_rating] >>> pred = best_predictor(user, cluster, fns) >>> [round(pred(r), 5) for r in cluster] [2.0, 5.0, 2.0] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... ] >>> fns = [restaurant_mean_rating, restaurant_price] >>> pred = best_predictor(user, cluster, fns) >>> [round(pred(r), 5) for r in cluster] # Make sure you're iterating through feature_fns! [2.0, 5.0, 2.0] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> user = make_user('Cheapskate', [ ... make_review('A', 2), ... make_review('B', 5), ... make_review('C', 2), ... make_review('D', 5), ... ]) >>> cluster = [ ... make_restaurant('A', [5, 2], [], 4, [ ... make_review('A', 5) ... ]), ... make_restaurant('B', [3, 2], [], 2, [ ... make_review('B', 5) ... ]), ... make_restaurant('C', [-2, 6], [], 4, [ ... make_review('C', 4) ... ]), ... make_restaurant('E', [1, 2], [], 4, [ ... make_review('E', 4) ... ]), ... ] >>> fns = [restaurant_mean_rating, restaurant_price] >>> pred = best_predictor(user, cluster, fns) # Make sure you're only using user-reviewed restaurants! >>> [round(pred(r), 5) for r in cluster] [2.0, 5.0, 2.0, 2.0] """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> import tests.test_functions as test >>> import recommend >>> test.swap_implementations(recommend) >>> from recommend import * """, 'teardown': r""" >>> test.restore_implementations(recommend) """, 'type': 'doctest' } ] }
[ "lvcunha@gmail.com" ]
lvcunha@gmail.com
af4da04242f2f06729d65a60df595b64a56f4355
ba2c77f62e7c9ddc074606cbca94062941dfc760
/small_methods.py
e2a95b7f1d18121fe30f08b1b169cac48fdcb01f
[]
no_license
scaars10/Lazy-Crawler
5608888f1ed60bdc951b2b4ba2a17ca7ab173bea
4088514571f096531076f4c551eac2ce4912530d
refs/heads/master
2021-08-09T00:25:45.546129
2017-11-11T18:29:06
2017-11-11T18:29:06
110,369,278
0
0
null
null
null
null
UTF-8
Python
false
false
1,890
py
import os from stemming.porter2 import stem # omnipresent_words = ['www.', 'http:', 'https:', '.com', '.in'] def directory_manage(relative_location): # checks if a directory exists or not if not then it creates it itself base_path = os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(os.path.join(base_path, relative_location)): os.makedirs(os.path.join(base_path, relative_location)) f = open('Processing_Data\\keywords.txt', 'r') keywords = [] values = [] line_count = 0 for each_line in f: line_count += 1 line = each_line.split() try: values.append(int(line[1])) keywords.append(stem(line[0])) except: directory_manage('Output\\Errors') f = open('Output\\Errors\\Keyword_Error.txt','a') f.write('Check Line No. '+str(line_count)+' in Output\\Errors\\keywords.txt for formatting error\n') f.close() f.close() def sort_links_wrt_importance(links, links_text): link_importance = [] iterate = 0 while iterate < len(links): link = stem(links[iterate]) if isinstance(links_text[iterate], str): link_text = stem(links_text[iterate]) else: link_text = 'ignore' # divided_link = link.split('/') i = 0 strength = 0 while i < len(keywords): if keywords[i] in link: strength += values[i] if isinstance(link_text, str): if keywords[i] in link_text: strength += values[i] i += 1 link_importance.append(strength) iterate += 1 i = 0 while i < len(links): j = i # print('sorting') while j > 0: if link_importance[j] > link_importance[j-1]: temp_link = links[j] links[j] = links[j-1] links[j-1] = temp_link # temp_link_text = links_text[j] # links_text[j] = links_text[j-1] # links_text[j-1] = temp_link_text temp_imp = link_importance[j] link_importance[j] = link_importance[j-1] link_importance[j-1] = temp_imp j -= 1 else: break i += 1 return links
[ "scaars10@gmail.com" ]
scaars10@gmail.com
b11b5949d9aeb93728df91302c1df74b605ff07c
e8dc0309de1dd4d9e4a25bcffdd6f9e9022c153c
/Code/wink_detection.py
b7c01c51a904d3cc8467f119b3ce1a2f15184b79
[]
no_license
FelixFelicis555/Blinking-Keyboard
04947fe0b8efacd158d4a698b360233947ee8ef9
cd2dd51bfed205780cd46a1f17287015790186d3
refs/heads/master
2022-02-27T18:35:50.149206
2019-11-08T09:52:16
2019-11-08T09:52:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,512
py
import numpy as np import cv2 import dlib from scipy.spatial import distance as dist from gtts import gTTS import os language = 'en' import pyttsx3 engine = pyttsx3.init() characterdict = {'0':'a','00':'d','000':'j','0000':'n','1':'s','01':'f','001':'k','0001':'y','10':'g','010':'l','0010':'t'} characterdict['0011']='v' characterdict['011']='m' characterdict['11']='h' characterdict['0100']='b' characterdict['100']='u' characterdict['0101']='r' characterdict['101']='i' characterdict['0110']='e' characterdict['110']='o' characterdict['0111']='c' characterdict['111']='p' characterdict['1000']='x' characterdict['1001']='w' characterdict['1010']='q' characterdict['1011']='z' characterdict['1100']=',' characterdict['1101']='.' characterdict['1110']='?' characterdict['1111']=" " print("Enter a choice whether you want blink keyboard or wink keyboard \n 1.) Blink Keyboard \n 2.) Wink keyboard") n = int(input()) if n==2: while True: print("You have choosen wink keyboard\n") print("Way of using wink keyboard\n") print("1.) You will be shown the keyboard structure in front of you\n") print("2.) will move the pointer to left side\n") print("3.) Right wink will move the pointer to right side\n") print("4.) Blink detected when you here beep sound once will fix your character that you want to choose it\n") print("5.) When you hear the beep sound twice while blinking you will be back to the starting position \n") print("6.) On the starting node if you blink that means backspace\n") print("If you understand the rules press 'y' else 'press 'n' \n") check = input() if check =='y': break text = "" PREDICTOR_PATH = "./shape_predictor_68_face_landmarks.dat" stop_flag = 0 FULL_POINTS = list(range(0, 68)) FACE_POINTS = list(range(17, 68)) JAWLINE_POINTS = list(range(0, 17)) RIGHT_EYEBROW_POINTS = list(range(17, 22)) LEFT_EYEBROW_POINTS = list(range(22, 27)) NOSE_POINTS = list(range(27, 36)) RIGHT_EYE_POINTS = list(range(36, 42)) LEFT_EYE_POINTS = list(range(42, 48)) MOUTH_OUTLINE_POINTS = list(range(48, 61)) MOUTH_INNER_POINTS = list(range(61, 68)) EYE_AR_THRESH = 0.23 EYE_AR_CONSEC_FRAMES = 5 counter_left = 0 total_left = 0 counter_right = 0 total_right = 0 counter_blink = 0 total_blink = 0 flag_left,flag_right,flag_blink = 0,0,0 def eye_aspect_ratio(eye): A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) C = dist.euclidean(eye[0], eye[3]) ear = (A + B) / (2.0 * C) return ear detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(PREDICTOR_PATH) video_capture = cv2.VideoCapture(0) image = "base" text = "" while True: ret, frame = video_capture.read() if ret: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) rects = detector(gray, 0) for rect in rects: x = rect.left() y = rect.top() x1 = rect.right() y1 = rect.bottom() landmarks = np.matrix([[p.x, p.y] for p in predictor(frame, rect).parts()]) left_eye = landmarks[LEFT_EYE_POINTS] right_eye = landmarks[RIGHT_EYE_POINTS] left_eye_hull = cv2.convexHull(left_eye) right_eye_hull = cv2.convexHull(right_eye) cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1) ear_left = eye_aspect_ratio(left_eye) ear_right = eye_aspect_ratio(right_eye) if ear_left >= EYE_AR_THRESH and ear_right >= EYE_AR_THRESH: counter_blink = 0 counter_left = 0 counter_right = 0 # print("****************************************") # print("Counter Blink : " , counter_blink) # print("Counter LEFT : ", counter_left) # print("Counter Right : ", counter_right) # print("****************************************") if counter_blink >= 10: if counter_blink == 10: flag_blink = 1 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) if counter_blink == 20: stop_flag = 1 flag_blink = 0 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) else: if flag_blink == 1: total_blink += 1 # print("Blink Occured") counter_blink = 0 flag_blink = 0 if stop_flag == 1: image = "base" counter_blink = 0 flag_blink = 0 if ear_left < EYE_AR_THRESH: if ear_right < EYE_AR_THRESH : counter_blink += 1 counter_left = 0 else: counter_blink = 0 counter_left += 1 counter_right = 0 if counter_left == EYE_AR_CONSEC_FRAMES: flag_left = 1 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) else: if flag_left ==1: total_left += 1 # print("Left eye winked") counter_left = 0 counter_blink = 0 flag_left = 0 counter_right = 0 else: if counter_left >= EYE_AR_CONSEC_FRAMES: flag_left = 1 if ear_right < EYE_AR_THRESH: if ear_left < EYE_AR_THRESH: counter_right = 0 pass else: counter_blink = 0 counter_right += 1 counter_left = 0 if counter_right == EYE_AR_CONSEC_FRAMES: flag_right = 1 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) else: if flag_right == 1: total_right += 1 # print("Right eye winked") counter_right = 0 flag_right = 0 counter_blink = 0 counter_left = 0 else: if counter_right >= EYE_AR_CONSEC_FRAMES: flag_right = 1 # if ear_left >= EYE_AR_THRESH : # counter_left = 0 # counter_blink = 0 # if ear_right >= EYE_AR_THRESH: # counter_right = 0 # counter_blink = 0 cv2.putText(frame, "Wink Left : {}".format(total_left), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) cv2.putText(frame, "Wink Right: {}".format(total_right), (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) cv2.putText(frame, "Blink Occured: {}".format(total_blink), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) if total_left == 1: if image == "base": image = "" image+='0' total_left = 0 total_right = 0 total_blink = 0 flag_left = 0 flag_right = 0 flag_blink = 0 stop_flag = 0 if total_right == 1: if image =="base": image = "" image+='1' total_right = 0 total_left = 0 total_blink = 0 flag_left = 0 flag_right = 0 flag_blink = 0 stop_flag = 0 if total_blink == 1: # print("image is "+image+".jpg") if image!='base': text += characterdict[image] else: if len(text)!=0: text = text[:len(text)-1] # do the required action image = "base" total_blink = 0 total_left = 0 total_right = 0 flag_left = 0 flag_right = 0 flag_blink = 0 stop_flag = 0 if len(image)>4: image=image[:4] cv2.namedWindow("KeyBoard", cv2.WINDOW_NORMAL) cv2.moveWindow("KeyBoard",850,20) ia = cv2.imread(image+".jpg") ims = cv2.resizeWindow("KeyBoard",550, 400) # Resize image cv2.imshow("KeyBoard" , ia) cv2.namedWindow("Faces", cv2.WINDOW_NORMAL) cv2.moveWindow("Faces",0,20) ims = cv2.resizeWindow("Faces",800, 700) # Resize image cv2.imshow("Faces", frame) cv2.namedWindow("Typed_Text", cv2.WINDOW_NORMAL) cv2.moveWindow("Typed_Text",850,500) draw = cv2.imread("draw.jpg") cv2.resizeWindow("Typed_Text",550,270) cv2.putText(draw, "Typed Text: {}".format(text), (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 0, 0), 5) cv2.imshow("Typed_Text" , draw) ch = 0xFF & cv2.waitKey(1) if ch == ord('q'): break cv2.destroyAllWindows() elif n==1: while True: print("You have choosen Blink keyboard") print("Way of using Blink keyboard\n") print("1.) You will be shown the keyboard structure in front of you\n") print("2.) Shorter blink: When you hear a beep sound first time, will move the pointer to left side\n") print("3.) Longer blink: When you hear a beep sound second time, will move the pointer to right side\n") print("4.) Longest Blink: When you hear a beep sound third time, will fix your character that you want to choose it\n") print("5.) Back to start: When you hear the beep sound 4th time with writing character\n") print("6.) On the starting node if you blink that means backspace\n") print("If you understand the rules press 'y' else 'press 'n' \n") check = input() if check =='y': break text = "" PREDICTOR_PATH = "./shape_predictor_68_face_landmarks.dat" FULL_POINTS = list(range(0, 68)) FACE_POINTS = list(range(17, 68)) JAWLINE_POINTS = list(range(0, 17)) RIGHT_EYEBROW_POINTS = list(range(17, 22)) LEFT_EYEBROW_POINTS = list(range(22, 27)) NOSE_POINTS = list(range(27, 36)) RIGHT_EYE_POINTS = list(range(36, 42)) LEFT_EYE_POINTS = list(range(42, 48)) MOUTH_OUTLINE_POINTS = list(range(48, 61)) MOUTH_INNER_POINTS = list(range(61, 68)) EYE_AR_THRESH = 0.25 EYE_AR_CONSEC_FRAMES = 5 counter_blink = 0 total_blink = 0 ''' There are three types of blink one blink --- Left blink two blink --- Right blink three blink --- Select the letter four blink --- Revert to start ''' flag_blink_one,flag_blink_two,flag_blink_three,stopflag = 0,0,0,0 count_left,count_right,count_stop = 0,0,0 def eye_aspect_ratio(eye): A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) C = dist.euclidean(eye[0], eye[3]) ear = (A + B) / (2.0 * C) return ear detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(PREDICTOR_PATH) video_capture = cv2.VideoCapture(-1) image = "base" text = "" while True: ret, frame = video_capture.read() if ret: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) rects = detector(gray, 0) for rect in rects: x = rect.left() y = rect.top() x1 = rect.right() y1 = rect.bottom() landmarks = np.matrix([[p.x, p.y] for p in predictor(frame, rect).parts()]) left_eye = landmarks[LEFT_EYE_POINTS] right_eye = landmarks[RIGHT_EYE_POINTS] left_eye_hull = cv2.convexHull(left_eye) right_eye_hull = cv2.convexHull(right_eye) cv2.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1) ear_left = eye_aspect_ratio(left_eye) ear_right = eye_aspect_ratio(right_eye) # print("****************************************") # print("Counter Blink : " , counter_blink) # print("****************************************") if counter_blink >= 10: if counter_blink == 10: flag_blink_one,flag_blink_two,flag_blink_three = 1,0,0 stopflag = 0 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) if counter_blink == 20: flag_blink_two,flag_blink_one,flag_blink_three = 1,0,0 stopflag = 0 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) if counter_blink == 30: flag_blink_three,flag_blink_one,flag_blink_two = 1,0,0 stopflag = 0 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) if counter_blink==50: stopflag = 1 flag_blink_three,flag_blink_one,flag_blink_two = 0,0,0 duration = 0.05 # seconds freq = 440 # Hz os.system('play -nq -t alsa synth {} sine {}'.format(duration, freq)) else: if flag_blink_three == 1: total_blink += 1 # print("Stop Blink Occured") counter_blink = 0 count_stop = 1 flag_blink_one,flag_blink_two,flag_blink_three = 0,0,0 count_left = 0 count_right = 0 elif flag_blink_one == 1: total_blink += 1 # print("Left side blink occured") counter_blink = 0 flag_blink_one,flag_blink_two,flag_blink_three = 0,0,0 count_left = 1 count_right = 0 count_stop = 0 elif flag_blink_two == 1: total_blink += 1 # print("Right side blink occured") counter_blink = 0 flag_blink_one,flag_blink_two,flag_blink_three = 0,0,0 count_left = 0 count_right = 1 count_stop = 0 elif stopflag == 1: count_left,count_right,count_stop=0,0,0 stopflag = 0 image = 'base' if ear_left < EYE_AR_THRESH and ear_right < EYE_AR_THRESH: counter_blink += 1 else: counter_blink = 0 cv2.putText(frame, "Blink Occured: {}".format(total_blink), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 2) if count_left == 1: if image == "base": image = "" image+='0' count_left = 0 if count_right == 1: if image =="base": image = "" image+='1' count_right = 0 if count_stop == 1: if image == "base": if len(text)!=0: text = text[:len(text)-1] # myobj = gTTS(text="backspace", lang=language, slow=False) # myobj.save("text.mp3") engine.say("Backspace") engine.runAndWait() else: text += characterdict[image] # myobj = gTTS(text=characterdict[image], lang=language, slow=False) # myobj.save("text.mp3") engine.say(characterdict[image]) engine.runAndWait() # print("image is "+image+".jpg") # do the required action # os.system("mpg321 text.mp3") image = "base" count_stop,count_left,count_right = 0,0,0 if len(image)>4: image=image[:4] cv2.namedWindow("KeyBoard", cv2.WINDOW_NORMAL) cv2.moveWindow("KeyBoard",850,20) ia = cv2.imread(image+".jpg") ims = cv2.resizeWindow("KeyBoard",550, 400) # Resize image cv2.imshow("KeyBoard" , ia) cv2.namedWindow("Faces", cv2.WINDOW_NORMAL) cv2.moveWindow("Faces",0,20) ims = cv2.resizeWindow("Faces",800, 700) # Resize image cv2.imshow("Faces", frame) cv2.namedWindow("Typed_Text", cv2.WINDOW_NORMAL) cv2.moveWindow("Typed_Text",850,500) draw = cv2.imread("draw.jpg") cv2.resizeWindow("Typed_Text",550,270) cv2.putText(draw, "Typed Text: {}".format(text), (20, 90), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 0, 0), 5) cv2.imshow("Typed_Text" , draw) ch = 0xFF & cv2.waitKey(1) if ch == ord('q'): break cv2.destroyAllWindows() else: print("You entered wrong choice ") exit(0)
[ "bhavyabordia@gmail.com" ]
bhavyabordia@gmail.com
d09ca8a14c8cab0258c427bada63637982b2c608
ac0844cbd6258ffc1b15cdde7136a07ef28cb8c1
/7_2.py
3985ebb570a4ff97b10a6dd4aba43c6eb312940e
[]
no_license
nikita1998ivanov/Lab-rabota
42948394a6cdb4eaffb8b6f5e801225ba7b8ef80
0bb6c283465b11218a5ec24de7645bcbe454754f
refs/heads/master
2022-06-18T03:03:09.949139
2020-05-06T08:55:25
2020-05-06T08:55:25
261,668,414
0
0
null
null
null
null
UTF-8
Python
false
false
213
py
d = {} with open("students.csv") as f: next(f) for line in f: h, nm, a, db = line.split(";") d.setdefault(int(h), []).append((nm, int(a), db)) l = d.values() l = list(l) l.sort() print(l)
[ "noreply@github.com" ]
nikita1998ivanov.noreply@github.com
c22d3551c3f4ba3d14a4cd5bfa8e93641fd47bd6
abca8650e1469641fbfd12cc7c1d33eaffc45c4a
/lib/db/format_column_names.py
065f11055771b623d570eec195d8030504ac2607
[ "MIT" ]
permissive
tunityy/Neon8-Bot
2549f2b5fad56b25511289c619bead49cf6be90d
3cea7a05356ae5dadd2d7adabbf932bebfb849d8
refs/heads/main
2023-05-01T07:27:40.644937
2021-05-22T23:46:06
2021-05-22T23:46:06
357,702,062
0
0
null
null
null
null
UTF-8
Python
false
false
4,880
py
from string import capwords def column_to_text(column_name): if type(column_name) == str: return capwords(column_name.replace('_', ' ')) else: results = [capwords(y.replace('_', ' ')) for y in column_name] return results def stat_name_ifs(stat): st = str(stat).lower() st = st.replace(' ', '') st = st.replace('_', '') # column_name = ['hunger', 'humanity', 'stains', 'current_willpower', 'total_willpower', 'superficial_damage', 'aggravated_damage', 'health'] column_name = ['hunger', 'humanity', 'stains', 'health'] if st in column_name: return st else: # some of these include common or possible typos and misspellings hung_synonyms = ['currenthunger', 'currenthung', 'hung', 'hun', 'hungry', 'hungerdice', 'hungdice', 'hd', 'bp', 'bloodpool', 'blooddice', 'bd', 'hugn', 'hugner', 'hungre', 'curenthunger', 'curenthung', 'bloop', 'blooppool', 'bloopool'] hum_synonyms = ['hum', 'huemanatee', 'humane', 'human', 'humanty', 'humanit', 'humantiy', 'humanaty'] stains_synonyms = ['stain', 'stian', 'st', 'stians', 'stans'] cwp_synonyms = ['currentwillpower', 'willpower', 'wp', 'currentwp', 'will', 'currentwill', 'currentwp', 'cwill', 'cwp', 'cw', 'willp', 'currentwillp', 'cwillp', 'wilpower', 'curentwillpower', 'current', 'curentwill', 'wil', 'currentwilpower', 'curentwilpower', 'wpwr', 'willpwr', 'wllpwr', 'wlpwr'] twp_synonyms = ['totalwillpower', 'totalwp', 'twp', 'total', 'tot', 'totalwill', 'willpowertotal', 'wptotal', 'willtotal', 'twill', 'tw', 'twillp', 'twillpower', 'totalwilpower', 'totalwil', 'tote', 'totlewillpower', 'totlwillpower', 'totwill', 't', 'totwil', 'totwp', 'to', 'twil'] spr_dmg_synonyms = ['superficialdamage', 'superficial', 'superficialdmg', 'sdmg', 'sdamage', 'sdmg', 'super', 'superdmg', 'supre', 'superficaldamage', 'superficaldmg', 'superfical', 'superfishul', 'superfishuldamage', 'superfishuldmg'] agg_dmg_synonyms = ['aggravateddamage', 'agg', 'aggravated', 'aggr', 'aggdmg', 'aggrdmg', 'aggravateddmg', 'aggra', 'aggdamage', 'admg', 'adamage', 'aggro', 'aggrivated', 'aggrivateddamage', 'aggrivateddmg', 'aggrevated', 'aggrevateddamage', 'aggrevateddmg', 'aggrovated', 'aggrovateddamage', 'aggrovateddmg', 'aggrovateddmg'] health_synonyms = ['hp', 'hitpoints', 'healthpoints', 'healthbar', 'life', 'heal' 'heath', 'healh', 'helth'] if st in hung_synonyms: return 'hunger' elif st in hum_synonyms: return 'humanity' elif st in stains_synonyms: return 'stains' elif st in cwp_synonyms: return 'current_willpower' elif st in twp_synonyms: return 'total_willpower' elif st in spr_dmg_synonyms: return 'superficial_damage' elif st in agg_dmg_synonyms: return 'aggravated_damage' elif st in health_synonyms: return 'health' else: return 'Invalid' #### ---------------------------------------------------------- ### TODO: when it's just a list of one word it actually just comes out as a string. Need to change it to a list? def stat_names_listifier(stats, words_and_numbs=False): """`words_and_numbs` is to differentiate when stats is just numbers, or contains words and numbers.""" if words_and_numbs == False: list_stats = ' '.join(stats).split(', ') if int(len(list_stats)) == 1: column_name = [stat_name_ifs(list_stats[0])] return column_name else: list_of_columns = [stat_name_ifs(term) for term in list_stats] if 'Invalid' in list_of_columns: return 'Invalid' else: return list_of_columns elif words_and_numbs == True: items_to_assess = ' '.join(stats).split(', ') list_stats = [item.rsplit(' ', 1)[0] for item in items_to_assess] values_list = [item.split(' ')[-1] for item in items_to_assess] for item in values_list: try: int(item) except: return 'Invalid' if int(len(list_stats)) == 1: column_name = [stat_name_ifs(list_stats[0])] if column_name == 'Invalid': return 'Invalid' else: return column_name, values_list else: list_of_columns = [stat_name_ifs(term) for term in list_stats] if 'Invalid' in list_of_columns: return 'Invalid' else: return list_of_columns, values_list #### ----------------------------------------------------------
[ "80991664+tunityy@users.noreply.github.com" ]
80991664+tunityy@users.noreply.github.com
8426f5e2a7f3115533abb324288bc031ba59ff53
a6e4a6f0a73d24a6ba957277899adbd9b84bd594
/sdk/python/pulumi_azure_native/guestconfiguration/outputs.py
b1d2bbd2207b1aaffbc05852618b9e218ea32400
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
MisinformedDNA/pulumi-azure-native
9cbd75306e9c8f92abc25be3f73c113cb93865e9
de974fd984f7e98649951dbe80b4fc0603d03356
refs/heads/master
2023-03-24T22:02:03.842935
2021-03-08T21:16:19
2021-03-08T21:16:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,362
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._enums import * __all__ = [ 'AssignmentInfoResponse', 'AssignmentReportResourceComplianceReasonResponse', 'AssignmentReportResourceResponse', 'AssignmentReportResponse', 'ConfigurationInfoResponse', 'ConfigurationParameterResponse', 'ConfigurationSettingResponse', 'GuestConfigurationAssignmentPropertiesResponse', 'GuestConfigurationNavigationResponse', 'VMInfoResponse', ] @pulumi.output_type class AssignmentInfoResponse(dict): """ Information about the guest configuration assignment. """ def __init__(__self__, *, name: str, configuration: Optional['outputs.ConfigurationInfoResponse'] = None): """ Information about the guest configuration assignment. :param str name: Name of the guest configuration assignment. :param 'ConfigurationInfoResponseArgs' configuration: Information about the configuration. """ pulumi.set(__self__, "name", name) if configuration is not None: pulumi.set(__self__, "configuration", configuration) @property @pulumi.getter def name(self) -> str: """ Name of the guest configuration assignment. """ return pulumi.get(self, "name") @property @pulumi.getter def configuration(self) -> Optional['outputs.ConfigurationInfoResponse']: """ Information about the configuration. """ return pulumi.get(self, "configuration") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class AssignmentReportResourceComplianceReasonResponse(dict): """ Reason and code for the compliance of the guest configuration assignment resource. """ def __init__(__self__, *, code: str, phrase: str): """ Reason and code for the compliance of the guest configuration assignment resource. :param str code: Code for the compliance of the guest configuration assignment resource. :param str phrase: Reason for the compliance of the guest configuration assignment resource. """ pulumi.set(__self__, "code", code) pulumi.set(__self__, "phrase", phrase) @property @pulumi.getter def code(self) -> str: """ Code for the compliance of the guest configuration assignment resource. """ return pulumi.get(self, "code") @property @pulumi.getter def phrase(self) -> str: """ Reason for the compliance of the guest configuration assignment resource. """ return pulumi.get(self, "phrase") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class AssignmentReportResourceResponse(dict): """ The guest configuration assignment resource. """ def __init__(__self__, *, compliance_status: str, properties: Any, resource_id: str, reasons: Optional[Sequence['outputs.AssignmentReportResourceComplianceReasonResponse']] = None): """ The guest configuration assignment resource. :param str compliance_status: A value indicating compliance status of the machine for the assigned guest configuration. :param Any properties: Properties of a guest configuration assignment resource. :param str resource_id: Name of the guest configuration assignment resource setting. :param Sequence['AssignmentReportResourceComplianceReasonResponseArgs'] reasons: Compliance reason and reason code for a resource. """ pulumi.set(__self__, "compliance_status", compliance_status) pulumi.set(__self__, "properties", properties) pulumi.set(__self__, "resource_id", resource_id) if reasons is not None: pulumi.set(__self__, "reasons", reasons) @property @pulumi.getter(name="complianceStatus") def compliance_status(self) -> str: """ A value indicating compliance status of the machine for the assigned guest configuration. """ return pulumi.get(self, "compliance_status") @property @pulumi.getter def properties(self) -> Any: """ Properties of a guest configuration assignment resource. """ return pulumi.get(self, "properties") @property @pulumi.getter(name="resourceId") def resource_id(self) -> str: """ Name of the guest configuration assignment resource setting. """ return pulumi.get(self, "resource_id") @property @pulumi.getter def reasons(self) -> Optional[Sequence['outputs.AssignmentReportResourceComplianceReasonResponse']]: """ Compliance reason and reason code for a resource. """ return pulumi.get(self, "reasons") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class AssignmentReportResponse(dict): def __init__(__self__, *, compliance_status: str, end_time: str, id: str, operation_type: str, report_id: str, start_time: str, assignment: Optional['outputs.AssignmentInfoResponse'] = None, resources: Optional[Sequence['outputs.AssignmentReportResourceResponse']] = None, vm: Optional['outputs.VMInfoResponse'] = None): """ :param str compliance_status: A value indicating compliance status of the machine for the assigned guest configuration. :param str end_time: End date and time of the guest configuration assignment compliance status check. :param str id: ARM resource id of the report for the guest configuration assignment. :param str operation_type: Type of report, Consistency or Initial :param str report_id: GUID that identifies the guest configuration assignment report under a subscription, resource group. :param str start_time: Start date and time of the guest configuration assignment compliance status check. :param 'AssignmentInfoResponseArgs' assignment: Configuration details of the guest configuration assignment. :param Sequence['AssignmentReportResourceResponseArgs'] resources: The list of resources for which guest configuration assignment compliance is checked. :param 'VMInfoResponseArgs' vm: Information about the VM. """ pulumi.set(__self__, "compliance_status", compliance_status) pulumi.set(__self__, "end_time", end_time) pulumi.set(__self__, "id", id) pulumi.set(__self__, "operation_type", operation_type) pulumi.set(__self__, "report_id", report_id) pulumi.set(__self__, "start_time", start_time) if assignment is not None: pulumi.set(__self__, "assignment", assignment) if resources is not None: pulumi.set(__self__, "resources", resources) if vm is not None: pulumi.set(__self__, "vm", vm) @property @pulumi.getter(name="complianceStatus") def compliance_status(self) -> str: """ A value indicating compliance status of the machine for the assigned guest configuration. """ return pulumi.get(self, "compliance_status") @property @pulumi.getter(name="endTime") def end_time(self) -> str: """ End date and time of the guest configuration assignment compliance status check. """ return pulumi.get(self, "end_time") @property @pulumi.getter def id(self) -> str: """ ARM resource id of the report for the guest configuration assignment. """ return pulumi.get(self, "id") @property @pulumi.getter(name="operationType") def operation_type(self) -> str: """ Type of report, Consistency or Initial """ return pulumi.get(self, "operation_type") @property @pulumi.getter(name="reportId") def report_id(self) -> str: """ GUID that identifies the guest configuration assignment report under a subscription, resource group. """ return pulumi.get(self, "report_id") @property @pulumi.getter(name="startTime") def start_time(self) -> str: """ Start date and time of the guest configuration assignment compliance status check. """ return pulumi.get(self, "start_time") @property @pulumi.getter def assignment(self) -> Optional['outputs.AssignmentInfoResponse']: """ Configuration details of the guest configuration assignment. """ return pulumi.get(self, "assignment") @property @pulumi.getter def resources(self) -> Optional[Sequence['outputs.AssignmentReportResourceResponse']]: """ The list of resources for which guest configuration assignment compliance is checked. """ return pulumi.get(self, "resources") @property @pulumi.getter def vm(self) -> Optional['outputs.VMInfoResponse']: """ Information about the VM. """ return pulumi.get(self, "vm") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ConfigurationInfoResponse(dict): """ Information about the configuration. """ def __init__(__self__, *, name: str, version: str): """ Information about the configuration. :param str name: Name of the configuration. :param str version: Version of the configuration. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "version", version) @property @pulumi.getter def name(self) -> str: """ Name of the configuration. """ return pulumi.get(self, "name") @property @pulumi.getter def version(self) -> str: """ Version of the configuration. """ return pulumi.get(self, "version") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ConfigurationParameterResponse(dict): """ Represents a configuration parameter. """ def __init__(__self__, *, name: Optional[str] = None, value: Optional[str] = None): """ Represents a configuration parameter. :param str name: Name of the configuration parameter. :param str value: Value of the configuration parameter. """ if name is not None: pulumi.set(__self__, "name", name) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the configuration parameter. """ return pulumi.get(self, "name") @property @pulumi.getter def value(self) -> Optional[str]: """ Value of the configuration parameter. """ return pulumi.get(self, "value") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ConfigurationSettingResponse(dict): """ Configuration setting of LCM (Local Configuration Manager). """ def __init__(__self__, *, action_after_reboot: Optional[str] = None, allow_module_overwrite: Optional[str] = None, configuration_mode: Optional[str] = None, configuration_mode_frequency_mins: Optional[float] = None, reboot_if_needed: Optional[str] = None, refresh_frequency_mins: Optional[float] = None): """ Configuration setting of LCM (Local Configuration Manager). :param str action_after_reboot: Specifies what happens after a reboot during the application of a configuration. The possible values are ContinueConfiguration and StopConfiguration :param str allow_module_overwrite: If true - new configurations downloaded from the pull service are allowed to overwrite the old ones on the target node. Otherwise, false :param str configuration_mode: Specifies how the LCM(Local Configuration Manager) actually applies the configuration to the target nodes. Possible values are ApplyOnly, ApplyAndMonitor, and ApplyAndAutoCorrect. :param float configuration_mode_frequency_mins: How often, in minutes, the current configuration is checked and applied. This property is ignored if the ConfigurationMode property is set to ApplyOnly. The default value is 15. :param str reboot_if_needed: Set this to true to automatically reboot the node after a configuration that requires reboot is applied. Otherwise, you will have to manually reboot the node for any configuration that requires it. The default value is false. To use this setting when a reboot condition is enacted by something other than DSC (such as Windows Installer), combine this setting with the xPendingReboot module. :param float refresh_frequency_mins: The time interval, in minutes, at which the LCM checks a pull service to get updated configurations. This value is ignored if the LCM is not configured in pull mode. The default value is 30. """ if action_after_reboot is not None: pulumi.set(__self__, "action_after_reboot", action_after_reboot) if allow_module_overwrite is not None: pulumi.set(__self__, "allow_module_overwrite", allow_module_overwrite) if configuration_mode is not None: pulumi.set(__self__, "configuration_mode", configuration_mode) if configuration_mode_frequency_mins is None: configuration_mode_frequency_mins = 15 if configuration_mode_frequency_mins is not None: pulumi.set(__self__, "configuration_mode_frequency_mins", configuration_mode_frequency_mins) if reboot_if_needed is None: reboot_if_needed = 'False' if reboot_if_needed is not None: pulumi.set(__self__, "reboot_if_needed", reboot_if_needed) if refresh_frequency_mins is None: refresh_frequency_mins = 30 if refresh_frequency_mins is not None: pulumi.set(__self__, "refresh_frequency_mins", refresh_frequency_mins) @property @pulumi.getter(name="actionAfterReboot") def action_after_reboot(self) -> Optional[str]: """ Specifies what happens after a reboot during the application of a configuration. The possible values are ContinueConfiguration and StopConfiguration """ return pulumi.get(self, "action_after_reboot") @property @pulumi.getter(name="allowModuleOverwrite") def allow_module_overwrite(self) -> Optional[str]: """ If true - new configurations downloaded from the pull service are allowed to overwrite the old ones on the target node. Otherwise, false """ return pulumi.get(self, "allow_module_overwrite") @property @pulumi.getter(name="configurationMode") def configuration_mode(self) -> Optional[str]: """ Specifies how the LCM(Local Configuration Manager) actually applies the configuration to the target nodes. Possible values are ApplyOnly, ApplyAndMonitor, and ApplyAndAutoCorrect. """ return pulumi.get(self, "configuration_mode") @property @pulumi.getter(name="configurationModeFrequencyMins") def configuration_mode_frequency_mins(self) -> Optional[float]: """ How often, in minutes, the current configuration is checked and applied. This property is ignored if the ConfigurationMode property is set to ApplyOnly. The default value is 15. """ return pulumi.get(self, "configuration_mode_frequency_mins") @property @pulumi.getter(name="rebootIfNeeded") def reboot_if_needed(self) -> Optional[str]: """ Set this to true to automatically reboot the node after a configuration that requires reboot is applied. Otherwise, you will have to manually reboot the node for any configuration that requires it. The default value is false. To use this setting when a reboot condition is enacted by something other than DSC (such as Windows Installer), combine this setting with the xPendingReboot module. """ return pulumi.get(self, "reboot_if_needed") @property @pulumi.getter(name="refreshFrequencyMins") def refresh_frequency_mins(self) -> Optional[float]: """ The time interval, in minutes, at which the LCM checks a pull service to get updated configurations. This value is ignored if the LCM is not configured in pull mode. The default value is 30. """ return pulumi.get(self, "refresh_frequency_mins") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class GuestConfigurationAssignmentPropertiesResponse(dict): """ Guest configuration assignment properties. """ def __init__(__self__, *, assignment_hash: str, compliance_status: str, last_compliance_status_checked: str, latest_report_id: str, provisioning_state: str, target_resource_id: str, context: Optional[str] = None, guest_configuration: Optional['outputs.GuestConfigurationNavigationResponse'] = None, latest_assignment_report: Optional['outputs.AssignmentReportResponse'] = None): """ Guest configuration assignment properties. :param str assignment_hash: Combined hash of the configuration package and parameters. :param str compliance_status: A value indicating compliance status of the machine for the assigned guest configuration. :param str last_compliance_status_checked: Date and time when last compliance status was checked. :param str latest_report_id: Id of the latest report for the guest configuration assignment. :param str provisioning_state: The provisioning state, which only appears in the response. :param str target_resource_id: VM resource Id. :param str context: The source which initiated the guest configuration assignment. Ex: Azure Policy :param 'GuestConfigurationNavigationResponseArgs' guest_configuration: The guest configuration to assign. :param 'AssignmentReportResponseArgs' latest_assignment_report: Last reported guest configuration assignment report. """ pulumi.set(__self__, "assignment_hash", assignment_hash) pulumi.set(__self__, "compliance_status", compliance_status) pulumi.set(__self__, "last_compliance_status_checked", last_compliance_status_checked) pulumi.set(__self__, "latest_report_id", latest_report_id) pulumi.set(__self__, "provisioning_state", provisioning_state) pulumi.set(__self__, "target_resource_id", target_resource_id) if context is not None: pulumi.set(__self__, "context", context) if guest_configuration is not None: pulumi.set(__self__, "guest_configuration", guest_configuration) if latest_assignment_report is not None: pulumi.set(__self__, "latest_assignment_report", latest_assignment_report) @property @pulumi.getter(name="assignmentHash") def assignment_hash(self) -> str: """ Combined hash of the configuration package and parameters. """ return pulumi.get(self, "assignment_hash") @property @pulumi.getter(name="complianceStatus") def compliance_status(self) -> str: """ A value indicating compliance status of the machine for the assigned guest configuration. """ return pulumi.get(self, "compliance_status") @property @pulumi.getter(name="lastComplianceStatusChecked") def last_compliance_status_checked(self) -> str: """ Date and time when last compliance status was checked. """ return pulumi.get(self, "last_compliance_status_checked") @property @pulumi.getter(name="latestReportId") def latest_report_id(self) -> str: """ Id of the latest report for the guest configuration assignment. """ return pulumi.get(self, "latest_report_id") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state, which only appears in the response. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="targetResourceId") def target_resource_id(self) -> str: """ VM resource Id. """ return pulumi.get(self, "target_resource_id") @property @pulumi.getter def context(self) -> Optional[str]: """ The source which initiated the guest configuration assignment. Ex: Azure Policy """ return pulumi.get(self, "context") @property @pulumi.getter(name="guestConfiguration") def guest_configuration(self) -> Optional['outputs.GuestConfigurationNavigationResponse']: """ The guest configuration to assign. """ return pulumi.get(self, "guest_configuration") @property @pulumi.getter(name="latestAssignmentReport") def latest_assignment_report(self) -> Optional['outputs.AssignmentReportResponse']: """ Last reported guest configuration assignment report. """ return pulumi.get(self, "latest_assignment_report") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class GuestConfigurationNavigationResponse(dict): """ Guest configuration is an artifact that encapsulates DSC configuration and its dependencies. The artifact is a zip file containing DSC configuration (as MOF) and dependent resources and other dependencies like modules. """ def __init__(__self__, *, content_hash: str, content_uri: str, configuration_parameter: Optional[Sequence['outputs.ConfigurationParameterResponse']] = None, configuration_setting: Optional['outputs.ConfigurationSettingResponse'] = None, kind: Optional[str] = None, name: Optional[str] = None, version: Optional[str] = None): """ Guest configuration is an artifact that encapsulates DSC configuration and its dependencies. The artifact is a zip file containing DSC configuration (as MOF) and dependent resources and other dependencies like modules. :param str content_hash: Combined hash of the guest configuration package and configuration parameters. :param str content_uri: Uri of the storage where guest configuration package is uploaded. :param Sequence['ConfigurationParameterResponseArgs'] configuration_parameter: The configuration parameters for the guest configuration. :param 'ConfigurationSettingResponseArgs' configuration_setting: The configuration setting for the guest configuration. :param str kind: Kind of the guest configuration. For example:DSC :param str name: Name of the guest configuration. :param str version: Version of the guest configuration. """ pulumi.set(__self__, "content_hash", content_hash) pulumi.set(__self__, "content_uri", content_uri) if configuration_parameter is not None: pulumi.set(__self__, "configuration_parameter", configuration_parameter) if configuration_setting is not None: pulumi.set(__self__, "configuration_setting", configuration_setting) if kind is not None: pulumi.set(__self__, "kind", kind) if name is not None: pulumi.set(__self__, "name", name) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter(name="contentHash") def content_hash(self) -> str: """ Combined hash of the guest configuration package and configuration parameters. """ return pulumi.get(self, "content_hash") @property @pulumi.getter(name="contentUri") def content_uri(self) -> str: """ Uri of the storage where guest configuration package is uploaded. """ return pulumi.get(self, "content_uri") @property @pulumi.getter(name="configurationParameter") def configuration_parameter(self) -> Optional[Sequence['outputs.ConfigurationParameterResponse']]: """ The configuration parameters for the guest configuration. """ return pulumi.get(self, "configuration_parameter") @property @pulumi.getter(name="configurationSetting") def configuration_setting(self) -> Optional['outputs.ConfigurationSettingResponse']: """ The configuration setting for the guest configuration. """ return pulumi.get(self, "configuration_setting") @property @pulumi.getter def kind(self) -> Optional[str]: """ Kind of the guest configuration. For example:DSC """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> Optional[str]: """ Name of the guest configuration. """ return pulumi.get(self, "name") @property @pulumi.getter def version(self) -> Optional[str]: """ Version of the guest configuration. """ return pulumi.get(self, "version") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class VMInfoResponse(dict): """ Information about the VM. """ def __init__(__self__, *, id: str, uuid: str): """ Information about the VM. :param str id: Azure resource Id of the VM. :param str uuid: UUID(Universally Unique Identifier) of the VM. """ pulumi.set(__self__, "id", id) pulumi.set(__self__, "uuid", uuid) @property @pulumi.getter def id(self) -> str: """ Azure resource Id of the VM. """ return pulumi.get(self, "id") @property @pulumi.getter def uuid(self) -> str: """ UUID(Universally Unique Identifier) of the VM. """ return pulumi.get(self, "uuid") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop
[ "noreply@github.com" ]
MisinformedDNA.noreply@github.com
4608f8b477a4827ab546757c5cdf0cf175bfa969
841e32970a080c8beb4ccc94d2afc5f264483a45
/api/app/migrations/0001_initial.py
d227e2d9a19eee4bb8de17faada02127cabe7b35
[]
no_license
semprajapat/automation_pytest
3249fec117186ee9984674585b79fe0d75a15a6c
05fb58c5cece1043317bf444e8636fd49564fccc
refs/heads/master
2021-01-14T19:18:53.865204
2020-02-24T12:22:16
2020-02-24T12:22:16
242,727,715
0
0
null
null
null
null
UTF-8
Python
false
false
547
py
# Generated by Django 3.0.3 on 2020-02-24 11:42 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Datamodel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('last', models.CharField(max_length=50)), ], ), ]
[ "aaa@Aaas-MacBook-Pro.local" ]
aaa@Aaas-MacBook-Pro.local
6ff0d59f4790561ec2ce92b3a868755af76b678b
3225f11370c581f95e4a5d123ab03eb7de53c6b3
/Face-Recognition/face_reco_video.py
f174fa3c4a616303402acdefed3781ca94f2554f
[]
no_license
jaseem61/python_practice
5684ae2f3925c54b2d34666f2531cb99acc96609
7bd8ca1b72acb5e78e2c0a451ef8e339417fcff7
refs/heads/master
2022-04-22T04:15:15.140748
2020-04-18T07:10:04
2020-04-18T07:10:04
231,757,850
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
import face_recognition import os import cv2 import keyboard known_faces_dir="known_faces" count=1 tolerance=0.6 frame_thickness=3 font_thickness=2 model="hog" print("loading known faces") known_faces=[] known_names=[] for name in os.listdir(known_faces_dir): for filename in os.listdir(f"{known_faces_dir}/{name}"): image=face_recognition.load_image_file(f"{known_faces_dir}/{name}/{filename}") encoding=face_recognition.face_encodings(image) if encoding: known_faces.append(encoding) known_names.append(name) print("processing unknown faces") cap=cv2.VideoCapture(0) while True: ret,image=cap.read() locations=face_recognition.face_locations(image,model=model) encodings=face_recognition.face_encodings(image,locations) for face_encoding, face_location in zip(encodings,locations): count=count+1 results=face_recognition.compare_faces(known_faces,face_encoding,tolerance=0.3) match=None if bool(results): print(count) match= known_names[0] print(f"Match found:{match}") top_left=(face_location[3],face_location[0]) bottom_right=(face_location[1],face_location[2]) color=[0,255,0] cv2.rectangle(image,top_left,bottom_right,color,frame_thickness) top_left=(face_location[3],face_location[2]) bottom_right=(face_location[1],face_location[2]+22) cv2.rectangle(image,top_left,bottom_right,color,cv2.FILLED) cv2.putText(image,match,(face_location[3]+10,face_location[2]+15),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),font_thickness) cv2.imshow(filename,image) cv2.waitKey(1) if(keyboard.is_pressed('q')): break
[ "noreply@github.com" ]
jaseem61.noreply@github.com
cc132717c790921bdf671f8150bb2f9d868ad2fe
6ee3daaec8559287b6e9f07ae93e49ab0cbd3a89
/Edabit/Edabit_6306022610113_ch7.py
b823274d734c905f545a8666458f89e5e1f6a666
[]
no_license
6306022610113/INE_Problem
9a43c42d71faa4ed7c4da8b83a53bad0a67ac7a2
99f3215aafecc486d81fb2d26aeb962d90970768
refs/heads/main
2023-04-21T11:03:07.471197
2021-05-06T04:56:07
2021-05-06T04:56:07
328,900,853
0
0
null
null
null
null
UTF-8
Python
false
false
684
py
def shared_letters(a, b): #รับค่าตัวเเปร a และ b lst = [] #สร้างตัวแปรรับค่า for i in a.lower(): #ถ้า i มีค่าใน a เป็นตัวพิมพ์เล็ก if i in b.lower(): #และ i มีค่าน b lst.append(i) #ให้เพิ่ม i ในตัวแปร lst return ''.join(sorted(set(lst))) #ส่งตัวข้อมูลใน lst ออก print(shared_letters("house", "home")) print(shared_letters("Micky", "mouse")) print(shared_letters("house", "villa"))
[ "68582327+6306022610113@users.noreply.github.com" ]
68582327+6306022610113@users.noreply.github.com
49b63a0524f032834d51833a9cee91640d52b635
06933e4550c4d647ecedab639c1fa9748d7aa155
/tvshows/tvshows_app/models.py
8cdbce4772b4f7f1552184f5fac82bb38761ab97
[]
no_license
leoalicastro/tv_shows
ce4bb052c64ed6aba34194104f6f31462c1a61c5
890122a4a7eda81cb24f10f88cc217c132e7850b
refs/heads/main
2023-07-16T15:00:03.292785
2021-08-19T18:50:09
2021-08-19T18:50:09
390,782,646
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
from django.db import models from datetime import datetime class ShowManager(models.Manager): def basic_validator(self, post_data): errors = {} if len(post_data['title']) < 2: errors['title'] = "Title must be atleast 2 characters" if len(post_data['network']) < 3: errors['network'] = "Network must be atleast 2 characters" if post_data['desc'] != '' and len(post_data['desc']) < 10: errors['desc'] = "Description must be atleast 10 characters" if datetime.strptime(post_data['release'], '%Y-%m-%d') > datetime.now(): errors['release'] = 'Release Date should be in the past' return errors class Show(models.Model): title = models.CharField(max_length=255) network = models.CharField(max_length=255) release = models.DateField() desc = models.CharField(max_length=255) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) objects = ShowManager()
[ "leoalicastro957@gmail.com" ]
leoalicastro957@gmail.com
b4e76b67a52d7e11e271463c76c756cd39c39301
f09978f2a0850278255bd198222cd3990cb0c687
/gear/schema.py
9e678012c38374b5baee61fdf28ff22143a7874c
[]
no_license
szpone/climbing-gear
0e4e53b99a0b550c0e172af21c2c9e08e2c3f1ba
78ab13b97b4b66464859b95ba6e5ed8587d5e60c
refs/heads/master
2022-12-12T11:08:57.277056
2019-06-05T16:06:02
2019-06-05T16:06:02
185,016,538
1
0
null
2022-11-22T03:49:28
2019-05-05T10:30:11
Python
UTF-8
Python
false
false
514
py
import graphene from graphene_django.types import DjangoObjectType, ObjectType from .models import Gear class GearType(DjangoObjectType): class Meta: model = Gear class Query(ObjectType): gear = graphene.Field(GearType, id=graphene.Int()) gears = graphene.List(GearType) def resolve_gear(self, info, gear_id): return Gear.objects.filter(id=gear_id).first() def resolve_gears(self, info, **kwargs): return Gear.objects.all() schema = graphene.Schema(query=Query)
[ "nikola.adamus@gmail.com" ]
nikola.adamus@gmail.com
4eee374d40da98978fa6eead0dbd109ebd17f59e
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2449/60657/249828.py
b6f2e07860c983d2311d854da47037a89843a79d
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
152
py
import math A=input().split(',') B=input() def judge(A,B): if A.count(B)!=0: return A.index(B) else: return -1 print(judge(A,B))
[ "1069583789@qq.com" ]
1069583789@qq.com
0e9776198e43fe8ba697233bc1a7c1c9c3496279
bef71d057048b93ef784892d911e7c2f7ffaee14
/framework_autotest/testsuites/test_wirenetwork.py
91fb3dbad2201ce112d8c4fcf0e8e7290c8c7e12
[]
no_license
leaf2maple/python-selenium-unittest
2379403e98508000276bb5d0c89866efc5450d90
50bf514144c6cd6e8d0f51164731bbad367e9356
refs/heads/master
2020-09-01T00:26:30.307410
2019-10-31T17:52:09
2019-10-31T17:52:09
218,826,698
0
0
null
null
null
null
UTF-8
Python
false
false
2,572
py
import unittest import time from framework.browser_engine import BrowserEngine from pageobject.wb01_wirenetworkpage import WireNetWorkPage from framework.login import Login from pageobject.wb01_homepage import HomePage class TestWireNetWork(unittest.TestCase): @classmethod def setUpClass(cls): browser = BrowserEngine(cls) cls.driver = browser.open_browser(cls) login = Login(cls.driver) login.skip_or_login() homepage = HomePage(cls.driver) homepage.wireNetwork_click() time.sleep(5) @classmethod def tearDownClass(cls): cls.driver.quit() def test_011_wirenetwork_switch(self): wirenetwork = WireNetWorkPage(self.driver) # 关闭 wirenetwork.wirenetwork_switch_click() time.sleep(1) try: el = self.driver.find_element_by_xpath("//div[@class='wireNetwork']") assert "IP设置" not in el.text print("test_011 pass") wirenetwork.get_screenshot_as_file() except Exception as e: print("test_011 fail", format(e)) # 打开 wirenetwork.wirenetwork_switch_click() time.sleep(1) try: el = self.driver.find_element_by_xpath("//span[@class='title' and text()='IP设置']") assert "IP设置" in el.text print("test_011 pass") wirenetwork.get_screenshot_as_file() except Exception as e: print("test_011 fail", format(e)) def test_012_ip_manual_set(self): wirenetwork = WireNetWorkPage(self.driver) wirenetwork.ip_ul_click() wirenetwork.ip_manual_set_click() try: el = "//span[@class='address-input-title' and text()='IP地址']/following-sibling::span[1]" assert self.driver.find_element_by_xpath(el) is True print("test_012 pass") wirenetwork.get_screenshot_as_file() except Exception as e: print("test_012 fail", format(e)) def test_013_ip_auto_set(self): wirenetwork = WireNetWorkPage(self.driver) wirenetwork.ip_ul_click() wirenetwork.ip_auto_set_click() try: el = "//span[@class='address-input-title' and text()='IP地址']/following-sibling::span[1]" assert self.driver.find_element_by_xpath(el) is True print("test_013 pass") wirenetwork.get_screenshot_as_file() except Exception as e: print("test_013 fail", format(e)) if __name__ == '__main__': unittest.main()
[ "421757223@qq.com" ]
421757223@qq.com
a5db37c7dc9f8509adffc6dc45b2b5386d2c55a7
f3a3228c1afa0e252fa041553e450b3b53e273ec
/zetcode/tetris.py
88a6ac7bbcdf3616296a1f89d250cfc2f9c15cbf
[]
no_license
dugbang/pyqt_prj
9395d25202d43fcadc577c9ff8606f649a575c9a
ed4fae66496e57258cdb22360273462a1ac59ea0
refs/heads/master
2020-04-13T07:04:41.980757
2019-01-29T00:41:17
2019-01-29T00:41:17
163,039,698
0
0
null
null
null
null
UTF-8
Python
false
false
12,455
py
""" ZetCode PyQt5 tutorial This is a Tetris game clone. Author: Jan Bodnar Website: zetcode.com Last edited: August 2017 """ from PyQt5.QtWidgets import QMainWindow, QFrame, QDesktopWidget, QApplication from PyQt5.QtCore import Qt, QBasicTimer, pyqtSignal from PyQt5.QtGui import QPainter, QColor import sys, random class Tetris(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): '''initiates application UI''' self.tboard = Board(self) self.setCentralWidget(self.tboard) self.statusbar = self.statusBar() self.tboard.msg2Statusbar[str].connect(self.statusbar.showMessage) self.tboard.start() self.resize(180, 380) self.center() self.setWindowTitle('Tetris') self.show() def center(self): '''centers the window on the screen''' screen = QDesktopWidget().screenGeometry() # screen = QDesktopWidget().availableGeometry() size = self.geometry() self.move((screen.width() - size.width()) / 2, (screen.height() - size.height()) / 2) def center_(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) class Board(QFrame): msg2Statusbar = pyqtSignal(str) BoardWidth = 10 BoardHeight = 22 Speed = 300 def __init__(self, parent): super().__init__(parent) self.initBoard() def initBoard(self): '''initiates board''' self.timer = QBasicTimer() self.isWaitingAfterLine = False self.curX = 0 self.curY = 0 self.numLinesRemoved = 0 self.board = [] self.setFocusPolicy(Qt.StrongFocus) self.isStarted = False self.isPaused = False self.clearBoard() def shapeAt(self, x, y): '''determines shape at the board position''' return self.board[(y * Board.BoardWidth) + x] def setShapeAt(self, x, y, shape): '''sets a shape at the board''' self.board[(y * Board.BoardWidth) + x] = shape def squareWidth(self): '''returns the width of one square''' return self.contentsRect().width() // Board.BoardWidth def squareHeight(self): '''returns the height of one square''' return self.contentsRect().height() // Board.BoardHeight def start(self): '''starts game''' if self.isPaused: return self.isStarted = True self.isWaitingAfterLine = False self.numLinesRemoved = 0 self.clearBoard() self.msg2Statusbar.emit(str(self.numLinesRemoved)) self.newPiece() self.timer.start(Board.Speed, self) def pause(self): '''pauses game''' if not self.isStarted: return self.isPaused = not self.isPaused if self.isPaused: self.timer.stop() self.msg2Statusbar.emit("paused") else: self.timer.start(Board.Speed, self) self.msg2Statusbar.emit(str(self.numLinesRemoved)) self.update() def paintEvent(self, event): '''paints all shapes of the game''' painter = QPainter(self) rect = self.contentsRect() boardTop = rect.bottom() - Board.BoardHeight * self.squareHeight() for i in range(Board.BoardHeight): for j in range(Board.BoardWidth): shape = self.shapeAt(j, Board.BoardHeight - i - 1) if shape != Tetrominoe.NoShape: self.drawSquare(painter, rect.left() + j * self.squareWidth(), boardTop + i * self.squareHeight(), shape) if self.curPiece.shape() != Tetrominoe.NoShape: for i in range(4): x = self.curX + self.curPiece.x(i) y = self.curY - self.curPiece.y(i) self.drawSquare(painter, rect.left() + x * self.squareWidth(), boardTop + (Board.BoardHeight - y - 1) * self.squareHeight(), self.curPiece.shape()) def keyPressEvent(self, event): '''processes key press events''' if not self.isStarted or self.curPiece.shape() == Tetrominoe.NoShape: super(Board, self).keyPressEvent(event) return key = event.key() if key == Qt.Key_P: self.pause() return if self.isPaused: return elif key == Qt.Key_Left: self.tryMove(self.curPiece, self.curX - 1, self.curY) elif key == Qt.Key_Right: self.tryMove(self.curPiece, self.curX + 1, self.curY) elif key == Qt.Key_Down: self.tryMove(self.curPiece.rotateRight(), self.curX, self.curY) elif key == Qt.Key_Up: self.tryMove(self.curPiece.rotateLeft(), self.curX, self.curY) elif key == Qt.Key_Space: self.dropDown() elif key == Qt.Key_D: self.oneLineDown() else: super(Board, self).keyPressEvent(event) def timerEvent(self, event): '''handles timer event''' if event.timerId() == self.timer.timerId(): if self.isWaitingAfterLine: self.isWaitingAfterLine = False self.newPiece() else: self.oneLineDown() else: super(Board, self).timerEvent(event) def clearBoard(self): '''clears shapes from the board''' for i in range(Board.BoardHeight * Board.BoardWidth): self.board.append(Tetrominoe.NoShape) def dropDown(self): '''drops down a shape''' newY = self.curY while newY > 0: if not self.tryMove(self.curPiece, self.curX, newY - 1): break newY -= 1 self.pieceDropped() def oneLineDown(self): '''goes one line down with a shape''' if not self.tryMove(self.curPiece, self.curX, self.curY - 1): self.pieceDropped() def pieceDropped(self): '''after dropping shape, remove full lines and create new shape''' for i in range(4): x = self.curX + self.curPiece.x(i) y = self.curY - self.curPiece.y(i) self.setShapeAt(x, y, self.curPiece.shape()) self.removeFullLines() if not self.isWaitingAfterLine: self.newPiece() def removeFullLines(self): '''removes all full lines from the board''' numFullLines = 0 rowsToRemove = [] for i in range(Board.BoardHeight): n = 0 for j in range(Board.BoardWidth): if not self.shapeAt(j, i) == Tetrominoe.NoShape: n = n + 1 if n == 10: rowsToRemove.append(i) rowsToRemove.reverse() for m in rowsToRemove: for k in range(m, Board.BoardHeight): for l in range(Board.BoardWidth): self.setShapeAt(l, k, self.shapeAt(l, k + 1)) numFullLines = numFullLines + len(rowsToRemove) if numFullLines > 0: self.numLinesRemoved = self.numLinesRemoved + numFullLines self.msg2Statusbar.emit(str(self.numLinesRemoved)) self.isWaitingAfterLine = True self.curPiece.setShape(Tetrominoe.NoShape) self.update() def newPiece(self): '''creates a new shape''' self.curPiece = Shape() self.curPiece.setRandomShape() self.curX = Board.BoardWidth // 2 + 1 self.curY = Board.BoardHeight - 1 + self.curPiece.minY() if not self.tryMove(self.curPiece, self.curX, self.curY): self.curPiece.setShape(Tetrominoe.NoShape) self.timer.stop() self.isStarted = False self.msg2Statusbar.emit("Game over") def tryMove(self, newPiece, newX, newY): '''tries to move a shape''' for i in range(4): x = newX + newPiece.x(i) y = newY - newPiece.y(i) if x < 0 or x >= Board.BoardWidth or y < 0 or y >= Board.BoardHeight: return False if self.shapeAt(x, y) != Tetrominoe.NoShape: return False self.curPiece = newPiece self.curX = newX self.curY = newY self.update() return True def drawSquare(self, painter, x, y, shape): '''draws a square of a shape''' colorTable = [0x000000, 0xCC6666, 0x66CC66, 0x6666CC, 0xCCCC66, 0xCC66CC, 0x66CCCC, 0xDAAA00] color = QColor(colorTable[shape]) painter.fillRect(x + 1, y + 1, self.squareWidth() - 2, self.squareHeight() - 2, color) painter.setPen(color.lighter()) painter.drawLine(x, y + self.squareHeight() - 1, x, y) painter.drawLine(x, y, x + self.squareWidth() - 1, y) painter.setPen(color.darker()) painter.drawLine(x + 1, y + self.squareHeight() - 1, x + self.squareWidth() - 1, y + self.squareHeight() - 1) painter.drawLine(x + self.squareWidth() - 1, y + self.squareHeight() - 1, x + self.squareWidth() - 1, y + 1) class Tetrominoe(object): NoShape = 0 ZShape = 1 SShape = 2 LineShape = 3 TShape = 4 SquareShape = 5 LShape = 6 MirroredLShape = 7 class Shape(object): coordsTable = ( ((0, 0), (0, 0), (0, 0), (0, 0)), ((0, -1), (0, 0), (-1, 0), (-1, 1)), ((0, -1), (0, 0), (1, 0), (1, 1)), ((0, -1), (0, 0), (0, 1), (0, 2)), ((-1, 0), (0, 0), (1, 0), (0, 1)), ((0, 0), (1, 0), (0, 1), (1, 1)), ((-1, -1), (0, -1), (0, 0), (0, 1)), ((1, -1), (0, -1), (0, 0), (0, 1)) ) def __init__(self): self.coords = [[0, 0] for i in range(4)] self.pieceShape = Tetrominoe.NoShape self.setShape(Tetrominoe.NoShape) def shape(self): '''returns shape''' return self.pieceShape def setShape(self, shape): '''sets a shape''' table = Shape.coordsTable[shape] for i in range(4): for j in range(2): self.coords[i][j] = table[i][j] self.pieceShape = shape def setRandomShape(self): '''chooses a random shape''' self.setShape(random.randint(1, 7)) def x(self, index): '''returns x coordinate''' return self.coords[index][0] def y(self, index): '''returns y coordinate''' return self.coords[index][1] def setX(self, index, x): '''sets x coordinate''' self.coords[index][0] = x def setY(self, index, y): '''sets y coordinate''' self.coords[index][1] = y def minX(self): '''returns min x value''' m = self.coords[0][0] for i in range(4): m = min(m, self.coords[i][0]) return m def maxX(self): '''returns max x value''' m = self.coords[0][0] for i in range(4): m = max(m, self.coords[i][0]) return m def minY(self): '''returns min y value''' m = self.coords[0][1] for i in range(4): m = min(m, self.coords[i][1]) return m def maxY(self): '''returns max y value''' m = self.coords[0][1] for i in range(4): m = max(m, self.coords[i][1]) return m def rotateLeft(self): '''rotates shape to the left''' if self.pieceShape == Tetrominoe.SquareShape: return self result = Shape() result.pieceShape = self.pieceShape for i in range(4): result.setX(i, self.y(i)) result.setY(i, -self.x(i)) return result def rotateRight(self): '''rotates shape to the right''' if self.pieceShape == Tetrominoe.SquareShape: return self result = Shape() result.pieceShape = self.pieceShape for i in range(4): result.setX(i, -self.y(i)) result.setY(i, self.x(i)) return result if __name__ == '__main__': app = QApplication([]) tetris = Tetris() sys.exit(app.exec_())
[ "dugbang@gmail.com" ]
dugbang@gmail.com
f4d9d13be2187390413090795c88670b3fbc20fd
36644ad31dc42a91cae5200559d3f591b90c3d83
/server3/test.py
d6f20f35763db67f220d6b7a0d4cfaca6d000768
[ "MIT" ]
permissive
kenken64/docker-microservices
77070f6a782407e52d45bd5a546efc8758c000a0
1923f935de40afda3af5529fadc0b3747b3b3e56
refs/heads/master
2023-01-22T17:25:44.566427
2019-11-22T08:05:44
2019-11-22T08:05:44
222,846,340
1
4
MIT
2023-01-07T11:56:43
2019-11-20T03:52:25
TypeScript
UTF-8
Python
false
false
287
py
from pymongo import MongoClient import os from bson import json_util client = MongoClient('mongodb://localhost:27017') print(client) db = client['testdb'] collection = db.movie.find() print(collection) y = list(collection) print(y) #x = json_util.dumps({'data': collection }) #print(x)
[ "bunnyppl@gmail.com" ]
bunnyppl@gmail.com
5c5a54f0963e8d6bd055050c7770fbf455661208
12a62bbca8065dcb6d835144368f6ad4cf46f219
/random_proj.py
e15f439ab7201a601e168512de11ffb755e3dcbf
[]
no_license
daemonmaker/biglittle
c2371b198a43273275144036e3971c8035efd588
feadb55aa68f5b54f52084e0a12368783c93dd78
refs/heads/master
2021-01-11T11:03:25.318130
2014-11-25T23:56:42
2014-11-25T23:56:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
26,591
py
#! /usr/bin/env python import time from datetime import datetime import numpy as np import sys import os import os.path as op import cPickle as pkl from itertools import product import gc import theano from theano import function from theano import tensor as T from theano import config from theano import shared from theano.tensor.shared_randomstreams import RandomStreams from utils import * from experiments import Experiments from layer import HiddenLayer, HiddenBlockLayer, HiddenRandomBlockLayer from timing_stats import TimingStats as TS from models import ( EqualParametersModel, EqualComputationsModel, SparseBlockModel, all_same ) def simple_train( model, train_model, test_model, validate_model, learning_rate, shared_learning_rate, timing_stats, n_epochs=1000 ): timing_stats.add(['epoch', 'train']) epoch = 0 minibatch_avg_cost_accum = 0 while(epoch < n_epochs): print "Epoch %d" % epoch timing_stats.start('epoch') for minibatch_index in xrange(model.data.n_train_batches): if minibatch_index % 10 == 0: print '... minibatch_index: %d/%d\r' \ % (minibatch_index, model.data.n_train_batches), # Note the magic comma on the previous line prevents new lines timing_stats.start('train') minibatch_avg_cost = train_model(minibatch_index) timing_stats.end('train') minibatch_avg_cost_accum += minibatch_avg_cost[0] print '... minibatch_avg_cost_accum: %f' \ % (minibatch_avg_cost_accum/float(model.data.n_train_batches)) timing_stats.end('epoch') epoch += 1 def train( model, train_model, test_model, validate_model, learning_rate, shared_learning_rate, timing_stats, n_epochs=1000 ): def summarize_rates(): print "Learning rate: ", learning_rate.rate # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 100 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(data.n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None this_validation_loss = 0 best_validation_loss = np.inf best_iter = 0 test_score = 0. accum = 0 epoch = 0 done_looping = False timing_stats.add(['train', 'epoch', 'valid']) summarize_rates() timing_stats.start() while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 timing_stats.start('epoch') for minibatch_index in xrange(data.n_train_batches): timing_stats.start('train') minibatch_avg_cost = train_model(minibatch_index) timing_stats.end('train') #print "0: ", model.layers[-5].in_idxs.get_value() #print "1: ", model.layers[-4].in_idxs.get_value() #print "2: ", model.layers[-3].in_idxs.get_value() #print "3: ", model.layers[-2].in_idxs.get_value() #print "4: ", model.layers[-1].in_idxs.get_value() minibatch_avg_cost = minibatch_avg_cost[0] accum = accum + minibatch_avg_cost # print ( # "minibatch_avg_cost: " + str(minibatch_avg_cost) # + " minibatch_avg_cost: " + str(minibatch_avg_cost) # ) # print ( # l_layers[0].W.get_value().sum() # + ' ' + l_layers[1].W.get_value().sum() # + ' ' # + layers[0].W.get_value().sum() # + ' ' + layers[1].W.get_value().sum() # ) # print ( # "A: " + np.max(np.abs(layers[0].W.get_value())) # + ' ' + np.max(np.abs(layers[0].b.get_value())) # + ' ' + np.max(np.abs(layers[1].W.get_value())) # + ' ' + np.max(np.abs(layers[1].b.get_value())) # ) # print ( # "B: " + np.abs(layers[0].W.get_value()).sum() # + ' ' + np.abs(layers[0].b.get_value()).sum() # + ' ' + np.abs(layers[1].W.get_value()).sum() # + ' ' + np.abs(layers[1].b.get_value()).sum() # ) # print ( # "C: " + np.abs(np.array(minibatch_avg_cost[1])).sum() # + ' ' + np.abs(np.array(minibatch_avg_cost[2])).sum() # + ' ' + np.abs(np.array(minibatch_avg_cost[3])).sum() # + ' ' + np.abs(np.array(minibatch_avg_cost[4])).sum() # ) # iteration number iter = (epoch - 1) * data.n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: timing_stats.end('epoch') timing_stats.reset('epoch') timing_stats.reset('train') accum = accum / validation_frequency summary = ("minibatch_avg_cost: %f, time: %f" % (accum, timing_stats.accumed['train'][-1][1])) accum = 0 print "%s" % (summary) # compute zero-one loss on validation set summary = ( 'epoch %i, minibatch %i/%i' % ( epoch, minibatch_index + 1, data.n_train_batches ) ) validation_losses = [validate_model(i) for i in xrange(data.n_valid_batches)] this_validation_loss = np.mean(validation_losses) #this_validation_loss = 0 summary = ('validation error %f %% ' % (this_validation_loss * 100.)) print ("%s" % (summary)) # if we got the best validation score until now this_validation_loss = this_validation_loss if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in xrange(data.n_test_batches)] test_score = np.mean(test_losses) #test_score = 0 summary = 'test_score: %f' % (test_score * 100.) print (' epoch %i, minibatch %i/%i,' ' test error of best model %s' % (epoch, minibatch_index + 1, data.n_train_batches, summary)) learning_rate.update() shared_learning_rate.set_value(learning_rate.rate) summarize_rates() if patience <= iter: done_looping = True break timing_stats.end() print('Optimization complete. Best validation score of %f %% ' 'obtained at iteration %i, with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %s' % timing_stats) def run_experiments(exps, models, rng=None): if rng is None: rng = np.random.RandomState() data = None model = None timings = None for idx, model_class in product(exps, models): print 'Experiment: %d, Model class: %s' % (idx, model_class) parameters = exps.get_parameters_by_exp_idx(idx) print 'Batch size: %d' % parameters['batch_size'] if ( data is None or data.batch_size != parameters['batch_size'] or data.reshape_data != model_class.reshape_data ): print 'Loading Data' print '... MNIST' data = MNIST(parameters['batch_size'], model_class.reshape_data) gc.collect() try: shared_learning_rate = shared( np.array( parameters['learning_rate'].rate, dtype=config.floatX ), name='learning_rate' ) timings = TS(['build_model', 'build_functions', 'full_train']) print 'Building model: %s' % str(model_class) timings.start('build_model') layer_definitions = exps.get_layers_definition(idx) model = model_class( data=data, layer_descriptions=layer_definitions, batch_size=parameters['batch_size'], learning_rate=shared_learning_rate, L1_reg=parameters['L1_reg'], L2_reg=parameters['L2_reg'], ) print '... time: %f' % timings.end('build_model') print 'Building functions' timings.start('build_functions') functions = model.build_functions() print '... time: %f' % timings.end('build_functions') print 'Training' timings.start('full_train') simple_train( model, learning_rate=parameters['learning_rate'], shared_learning_rate=shared_learning_rate, n_epochs=parameters['n_epochs'], timing_stats=timings, **functions ) print 'Training time: %d' % timings.end('full_train') model = None except MemoryError: epoch_time = -1 if timings is not None: print 'Timings: %s' % timings exps.save(idx, model_class.__name__, 'timings', timings) timings = None gc.collect() pkl.dump(exps, open('random_proj_experiments.pkl', 'wb')) def plot_times_by_batch(database): import matplotlib.pyplot as plt # Load the database exps = pkl.load(open(database, 'rb')) # Find experiments that have results exp_idxs = exps.get_idxs('experiments', has_results=True) # Plot results for each experiment grouped by the layers_description layers_description_idxs = exps.get_table_idxs_by_exp_idxs( 'layers_description', exp_idxs ) for layers_description_idx in layers_description_idxs: result_idxs = exps.get_result_idxs_by_table_idx( 'layers_description', layers_description_idx ) batch_sizes = [exps.get_parameters_by_exp_idx(idx)['batch_size'] for idx in result_idxs] timings = {model_name: np.zeros(len(batch_sizes)) for model_name in exps.results[result_idxs[0]].keys()} for i, idx in enumerate(result_idxs): for model_name, stats in exps.results[idx].iteritems(): timings[model_name][i] = stats[ 'timings' ].mean_difference('train')/batch_sizes[i] for model_name, timings in timings.iteritems(): plt.plot(batch_sizes, timings, marker='o', label=model_name,) plt.title('Train time per sample', fontsize=12) layers_description = exps.get_layers_description( layers_description_idx ) plt.suptitle( 'layers_description_idx: %d, n_units: %s, n_hids: %s,\n' 'k_pers: %s, all same: %r' % ( layers_description_idx, layers_description['n_hids'], layers_description['n_units_per'], layers_description['k_pers'], 'index_selection_funcs' in layers_description.keys() ), y=0.99, fontsize=10 ) plt.xlabel('Batch Size') plt.ylabel('Time (s)') plt.legend() plt.xticks(batch_sizes) figs_dir = 'figs' if not op.exists(figs_dir): os.mkdir(figs_dir) plt.savefig( op.join( figs_dir, 'layers_description_%d.png' % layers_description_idx ), format='png' ) plt.show() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Run random_proj experiments and plot results' ) parser.add_argument( '-m', '--use_layers', type=int, default=[], nargs='+', help='Identifier for which models to use in the experiments.' ) parser.add_argument( '-c', '--layer_class', default='HiddenRandomBlockLayer', help='The type of layer to use in the block sparse model.' ) parser.add_argument( '-b', '--batch_sizes', type=int, default=[32], nargs='+', help='Range of batch sizes to test.' ) parser.add_argument( '-n', '--number_of_epochs', type=int, default=1, help='Number of epochs to execute for each experiment.' ) parser.add_argument( '-u', '--units_per_block', type=int, default=32, help='Number of units per block in the sparse block models.' ) parser.add_argument( '-d', '--database', default='random_proj_experiments.pkl', help='Which database to use.' ) parser.add_argument( '-l', '--load_database', default=False, action='store_true', help='Whether to load an existing database.' ) parser.add_argument( '-p', '--plot', default=False, action='store_true', help='Plot results instaed of execute experiments.' ) args = parser.parse_args() if args.plot: plot_times_by_batch(args.database) else: if args.load_database: exps = pkl.load(open(args.database)) else: ## Determine the type of sparsity layer to use if args.layer_class == 'HiddenRandomBlockLayer': layer_class = HiddenRandomBlockLayer else: layer_class = HiddenBlockLayer ## Create experiments exps = Experiments( input_dim=784, # data.train_set_x.shape[-1].eval(), num_classes=10 ) # Add descriptions of models exps.add_layers_description( 0, { 'n_hids': (25,), 'n_units_per': args.units_per_block, 'k_pers': (1, 1), 'activations': (T.tanh, None), 'layer_classes': [ HiddenBlockLayer, HiddenBlockLayer, ], } ) exps.add_layers_description( 1, { 'n_hids': (25, 25), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.5, 1), 'activations': (T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, HiddenBlockLayer, ], } ) exps.add_layers_description( 2, { 'n_hids': (25, 100, 25), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.25, 0.25, 1), 'activations': (T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, HiddenBlockLayer, ], } ) exps.add_layers_description( 3, { 'n_hids': (25, 100, 25), 'n_units_per': args.units_per_block, 'k_pers': (1., 0.25, 0.25, 1), 'activations': (T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, HiddenBlockLayer, ], 'index_selection_funcs': ( None, all_same, all_same, None ) } ) exps.add_layers_description( 4, { 'n_hids': (50, 100, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.05, 0.2, 1), 'activations': (T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, HiddenBlockLayer, ], }, ) exps.add_layers_description( 5, { 'n_hids': (50, 100, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.05, 0.05, 1), 'activations': (T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, HiddenBlockLayer, ], 'index_selection_funcs': ( None, all_same, all_same, None ) }, ) exps.add_layers_description( 6, { 'n_hids': (25, 100, 100, 25), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.05, 0.05, 1, 1), 'activations': (T.tanh, T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, HiddenBlockLayer, ], } ) exps.add_layers_description( 7, { 'n_hids': (25, 100, 100, 25), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.05, 0.05, 1, 1), 'activations': (T.tanh, T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, HiddenBlockLayer, ], 'index_selection_funcs': ( None, all_same, all_same, all_same, None ) } ) exps.add_layers_description( 8, { 'n_hids': (50, 200, 500, 200, 50), 'n_units_per': args.units_per_block, 'k_pers': (1., 0.1, 0.02, 0.02, 0.1, 1), 'activations': ( None, T.tanh, T.tanh, T.tanh, T.tanh, None ), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, layer_class, HiddenBlockLayer, ], } ) exps.add_layers_description( 9, { 'n_hids': (50, 75, 200, 75, 50), 'n_units_per': args.units_per_block, 'k_pers': (1., 0.1, 0.05, 0.05, 0.1, 1), 'activations': ( T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, None ), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, layer_class, HiddenBlockLayer, ], 'index_selection_funcs': ( None, all_same, all_same, all_same, all_same, None ) } ) exps.add_layers_description( 10, { 'n_hids': (50, 500, 500, 500, 500, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.07, 0.03, 0.02, 0.01, 0.15, 1), 'activations': ( T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, None ), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, layer_class, layer_class, HiddenBlockLayer, ], }, ) exps.add_layers_description( 11, { 'n_hids': (50, 500, 500, 500, 500, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.07, 0.03, 0.02, 0.01, 0.15, 1), 'activations': ( T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, None ), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, layer_class, layer_class, HiddenBlockLayer, ], 'index_selection_funcs': ( None, all_same, all_same, all_same, all_same, all_same, None ) } ) exps.add_layers_description( 12, { 'n_hids': (50, 100, 500, 500, 500, 500, 500, 100, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.1, 0.05, 0.01, 0.01, 0.01, 0.01, 0.05, 0.1, 1), 'activations': ( None, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, None ), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, layer_class, layer_class, layer_class, layer_class, layer_class, HiddenBlockLayer, ], }, ) exps.add_layers_description( 13, { 'n_hids': (50, 100, 500, 500, 500, 500, 500, 100, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.1, 0.05, 0.01, 0.01, 0.01, 0.1, 0.5, 0.1, 1), 'activations': ( None, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, T.tanh, None ), 'layer_classes': [ HiddenBlockLayer, layer_class, layer_class, layer_class, layer_class, layer_class, layer_class, layer_class, layer_class, HiddenBlockLayer, ], 'index_selection_funcs': ( None, all_same, all_same, all_same, all_same, all_same, None ) } ) exps.add_layers_description( 14, { 'n_hids': (50, 100, 20), 'n_units_per': args.units_per_block, 'k_pers': (1, 0.05, 0.05, 1), 'activations': (T.tanh, T.tanh, T.tanh, None), 'layer_classes': [ layer_class, layer_class, layer_class, layer_class, ], }, ) # Add parameter combinations for idx, batch_size in enumerate(args.batch_sizes): exps.add_parameters( idx, { 'n_epochs': args.number_of_epochs, 'batch_size': batch_size, 'learning_rate': LinearChangeRate( 0.21, -0.01, 0.2, 'learning_rate' ), 'L1_reg': 0.0, 'L2_reg': 0.0001 } ) if len(args.use_layers) > 0: print 'Executing experiments for layers %s' % args.use_layers exps.create_experiments(args.use_layers) else: exps.create_experiments() run_experiments( exps, models=[ EqualParametersModel, EqualComputationsModel, SparseBlockModel ] )
[ "daemonmaker@gmail.com" ]
daemonmaker@gmail.com
64923cbcfed9624b6b8c664e8deaf3ad28ade468
a756e26160502b49dea686baa4f8d8480895ab85
/PartB_LBC_CorrespondingStates.py
128522479dc943e764d6b24b93be59a28c826581
[]
no_license
Aitous/ENE251
adeb715ad24094765e23d03a481e309ab2dd3f8c
e7770c469f63683c4c3ea7916d8bcad64ad16593
refs/heads/master
2022-12-04T18:01:57.908783
2020-08-19T21:16:54
2020-08-19T21:16:54
288,349,026
0
0
null
null
null
null
UTF-8
Python
false
false
25,765
py
#!/usr/bin/env python # coding: utf-8 # In[38]: import time import numpy as np import matplotlib.pyplot as plt import math from sklearn.linear_model import LinearRegression from scipy import interpolate # Solving RachfordRice def SolveRachfordRice(l, Nc, z, K): F = lambda l: sum([(1 - K[i]) * z[i]/(K[i] + (1 - K[i]) * l) for i in range(Nc)]) dF = lambda l: sum([-z[i] * (1 - K[i])**2/((K[i] + (1 - K[i]) * l)**2) for i in range(Nc)]) F0 = F(0) F1 = F(1) if(F0 > 0 and F1 < 0): lmin = 0 lmax = 1 elif(F0 > 0 and F1 > 0): lmin = 1 lmax = np.max([(K[i]*z[i] - K[i])/(1 - K[i]) for i in range(Nc)]) else: lmax = 0 lmin = np.min([(z[i] - K[i])/(1 - K[i]) for i in range(Nc)]) useNewton = True #Change to false for bisection only error = [] #error array i = 0 tol = 1.e-5 while abs(F(l)) > tol: if(F(l) > 0): lmin = l else: lmax = l delta_l = - F(l) / dF(l) if(l + delta_l > lmin and l + delta_l < lmax and useNewton): l = l + delta_l else: l = 0.5 * (lmin + lmax) error.append(F(l)) #print('error = ', error[i]) #reporting error for each step i += 1 return l #Calculating the a's and b's of the vapor and liquid phases. The function kij loads the interaction coefficients based on the EOS of interest def kij(EOS): if EOS is 'PR': return np.zeros((19,19)) elif EOS is 'SRK': return np.array([[0 , 0.1, 0.1257, 0.0942], [0.1, 0, 0.027, 0.042], [0.1257, 0.027, 0, 0.008], [0.0942, 0.042, 0.008, 0]]) return Kij elif EOS is 'RK': return np.zeros([3,3]) def calc_a(EOS, T, Tc, Pc, omega): '''calculates ai for each component for the EOS of interest EOS: Equation of state (PR, SRK, or RK) T, Tc: temperature and critical temperature of the component Pc: critical pressure of the component omega: accentric factor for the component''' R = 8.314 if EOS is 'PR': fw = 0.37464 + 1.54226*omega - 0.26992*omega**2 a1 = np.divide(0.45724*R**2*Tc**2 , Pc) a2 = (1 + np.multiply(fw, (1 - np.sqrt(np.divide(T, Tc)))))**2 a = np.multiply(a1, a2) elif EOS is 'SRK': fw = 0.48 + 1.574*omega - 0.176*omega**2 a1 = np.divide((0.42748*R**2*Tc**2), Pc) a2 = (1 + np.multiply(fw, (1 - np.sqrt(np.divide(T, Tc)))))**2 a = np.multiply(a1, a2) elif EOS is 'RK': a = np.divide(0.42748*R**2*Tc**(5/2), (Pc*T**0.5)) else: print('parameters for his EOS is not defined') return a def calc_b(EOS, Tc, Pc): '''calculates bi for each component for the EOS of interest EOS: Equation of state (PR, SRK, or RK) Tc: critical temperature of the component Pc: critical pressure of the component ''' R = 8.314 # gas constant # The below if statement computes b for each # componenet based on the EOS of # interest (Table 5.1 in the course reader) if EOS is 'PR': b = np.divide(0.07780*R*Tc, Pc) elif EOS is 'SRK': b = np.divide(0.08664*R*Tc, Pc) elif EOS is 'RK': b = np.divide(0.08664*R*Tc ,Pc) return b def find_am(EOS, y, T, Tc, Pc, omega): ''' calculates the a parameter for the EOS of interest EOS: equation of state of interest (PR, SRK, RK) y: vapor or liquid compositions T, Tc: temperature value and critical temperature array Pc: critical pressure array omega: accentric factors array ''' kijs = kij(EOS) am = np.sum(y[i]*y[j]*np.sqrt(calc_a(EOS, T, Tc[i], Pc[i], omega[i]) *calc_a(EOS, T, Tc[j], Pc[j], omega[j]))*(1-kijs[i,j]) for i in range(len(y)) for j in range(len(y))) return am def find_bm(EOS, y, Tc, Pc): '''This function computes the b for the mixture for the EOS of interest EOS: Equation of state (PR, SRK, or RK) y: liquid or vapor compositions array Tc and Pc: critical temperature and pressure array ''' bm = np.sum(np.multiply(y, calc_b(EOS, Tc, Pc))) return bm def Z_factor(EOS, P, T, a, b): '''This function computes the Z factor for the cubic EOS of interest EOS: equation of state (PR, SRK, or RK) P, T: pressure and temperature a, b: the vapor or liquid parameters of equation of state ''' R = 8.314 # gas constant if EOS == 'PR': u = 2 w = -1 elif EOS == 'SRK': u = 1 w = 0 elif EOS == 'RK': u = 1 w = 0 A = np.divide(a*P, R**2*T**2) B = np.divide(b*P, R*T) Coeffs = list() Coeffs.append(1) Coeffs.append(-(1 + B - u*B)) Coeffs.append(A + w*B**2 - u*B - u*B**2) Coeffs.append(-np.multiply(A, B) - w*B**2 - w*B**3) Z = np.roots(Coeffs) # remove the roots with imaginary parts Z = np.real(Z[np.imag(Z) == 0]) Zv = max(Z) Zl = min(Z) return Zv, Zl def get_fug(EOS, y, Z, Tc, Pc, P, T, omega, a, b): '''This function computes the liquid or vapor fugacity of all components using Eq. 6.8 in course reader parameters needed: EOS: equation of state (PR, SRK, or RK) y: liquid or vapor compositions Z: z-factors for vapor or liquid Tc and Pc: critical temperature and pressure for all individual comp.s P, T: pressure and temperature of the system omega: accentric factors for all individual components a and b: EOS parameters as computed in another function ''' R = 8.314 # gas constant if EOS is 'PR': u = 2 w = -1 kijs = kij(EOS) elif EOS is 'SRK': u = 1 w = 0 kijs = kij(EOS) elif EOS is 'RK': u = 1 w = 0 kijs = kij(EOS) fug = np.zeros(y.shape) A = np.divide(a*P, R**2*T**2) B = np.divide(b*P, R*T) delta_i = list() a_i = list() for i in range(len(y)): a_i.append(calc_a(EOS, T, Tc[i], Pc[i], omega[i])) for i in range(len(y)): xa = 0 for j in range(len(y)): xa += y[j] * math.sqrt(a_i[j]) * (1 - kijs[i][j]) delta_i.append(2 * math.sqrt(a_i[i]) / a * xa) for i in range(len(fug)): bi = calc_b(EOS, Tc, Pc)[i] ln_Phi = bi/b * (Z - 1) - math.log(Z - B) + A / (B * math.sqrt(u**2 - 4*w)) * (bi/b - delta_i[i]) * math.log((2 * Z + B *(u + math.sqrt(u**2 - 4*w))) /(2 * Z + B *(u - math.sqrt(u**2 - 4*w)))) fug[i] = y[i] * P * math.exp(ln_Phi) return fug def Ki_guess(Pc, Tc, P, T, omega, Nc): Ki = np.array([Pc[i]/P * np.exp(5.37 * (1 + omega[i]) * (1 - Tc[i]/T)) for i in range(Nc)]) return Ki def flash(EOS, l, Nc, zi, Tc, Pc, P, T, omega): Ki = Ki_guess(Pc, Tc, P, T, omega, Nc) tol = 1e-5 R = 8.314 # gas constant l = SolveRachfordRice(l, Nc, zi, Ki) xi = np.divide(zi, l+(1-l)*Ki) yi = np.divide(np.multiply(Ki, zi), (l+(1-l)*Ki)) av = find_am(EOS,yi,T,Tc,Pc,omega) al = find_am(EOS,xi,T,Tc,Pc,omega) bv = find_bm(EOS,yi,Tc,Pc) bl = find_bm(EOS,xi,Tc,Pc) #Z and fugacity determination for the vapor phase based on minimising Gibbs Free Energy Zv = Z_factor(EOS,P,T,av,bv) #containing the max and min roots fugV_v = get_fug(EOS, yi, Zv[0], Tc, Pc, P, T, omega, av, bv) fugV_l = get_fug(EOS, yi, Zv[1], Tc, Pc, P, T, omega, av, bv) deltaGV = np.sum(yi * np.log(fugV_l / fugV_v)) if deltaGV <= 0: Zv = Zv[1] fug_v = fugV_l else: Zv = Zv[0] fug_v = fugV_v #Z and fugacity determination for the liquid phase based on minimising Gibbs Free Energy Zl = Z_factor(EOS,P,T,al,bl) #containing the max and min roots fugL_v = get_fug(EOS, xi, Zl[0], Tc, Pc, P, T, omega, al, bl) fugL_l = get_fug(EOS, xi, Zl[1], Tc, Pc, P, T, omega, al, bl) deltaGL = np.sum(xi * np.log(fugL_l / fugL_v)) if deltaGL <= 0: Zl = Zl[1] fug_l = fugL_l else: Zl = Zl[0] fug_l = fugL_v while np.max(abs(np.divide(fug_v, fug_l) - 1)) > tol: Ki = Ki * np.divide(fug_l, fug_v) l = SolveRachfordRice(l, Nc, zi, Ki) xi = np.divide(zi, l+(1-l)*Ki) yi = np.divide(np.multiply(Ki, zi), (l+(1-l)*Ki)) av = find_am(EOS,yi,T,Tc,Pc,omega) al = find_am(EOS,xi,T,Tc,Pc,omega) bv = find_bm(EOS,yi,Tc,Pc) bl = find_bm(EOS,xi,Tc,Pc) #Z and fugacity determination for the vapor phase based on minimising Gibbs Free Energy Zv = Z_factor(EOS,P,T,av,bv) #containing the max and min roots fugV_v = get_fug(EOS, yi, Zv[0], Tc, Pc, P, T, omega, av, bv) fugV_l = get_fug(EOS, yi, Zv[1], Tc, Pc, P, T, omega, av, bv) deltaGV = np.sum(yi * np.log(fugV_l / fugV_v)) if deltaGV <= 0: Zv = Zv[1] fug_v = fugV_l else: Zv = Zv[0] fug_v = fugV_v #Z and fugacity determination for the liquid phase based on minimising Gibbs Free Energy Zl = Z_factor(EOS,P,T,al,bl) #containing the max and min roots fugL_v = get_fug(EOS, xi, Zl[0], Tc, Pc, P, T, omega, al, bl) fugL_l = get_fug(EOS, xi, Zl[1], Tc, Pc, P, T, omega, al, bl) deltaGL = np.sum(xi * np.log(fugL_l / fugL_v)) if deltaGL <= 0: Zl = Zl[1] fug_l = fugL_l else: Zl = Zl[0] fug_l = fugL_v Vv = np.divide(Zv*R*T, P) Vl = np.divide(Zl*R*T, P) return (fug_v, fug_l, l, xi, yi) def volumeCorrection(EOS, V, zi, Pc, Tc): Mw = np.array([44.01, 28.013, 16.043, 30.07, 44.097, 58.123, 58.123, 72.15, 72.15, 84, 96, 107, 121, 134, 163.5, 205.4, 253.6, 326.7, 504.4]) if EOS == "PR": #Si from the reader page 129 S = [-0.1540, 0.1002, -0.08501, -0.07935, -0.06413, -0.04350, -0.04183, -0.01478] c = [3.7, 0] #CO2 and N2 #For the heavy components for i in range(10, len(Pc)): S.append(1 - 2.258/Mw[i]**0.1823) #values correlated for heavier components (+C7) for i in range(0, len(Pc)-2): c.append(S[i] * calc_b(EOS, Tc[i+2], Pc[i+2])) V = V - np.sum([zi[i] * c[i] for i in range(len(Pc))]) return V def volume(EOS, P, T, Pc, Tc, omega, zi = np.array([1]), mixture = False): R = 8.314 if not mixture: a = calc_a(EOS, T, Tc, Pc, omega) b = calc_b(EOS, Tc, Pc) Z = Z_factor(EOS,P,T,a,b) fug_v = get_fug(EOS, zi, Z[0], Tc, Pc, P, T, omega, a, b) fug_l = get_fug(EOS, zi, Z[1], Tc, Pc, P, T, omega, a, b) deltaG = np.sum(zi * np.log(fug_l / fug_v)) if deltaG <= 0: Z = Z[1] fug = fug_l else: Z = Z[0] fug = fug_v V = np.divide(Z*R*T, P) else: bm = find_bm(EOS, zi, Tc, Pc) am = find_am(EOS, zi, T, Tc, Pc, omega) Z = Z_factor(EOS,P,T,am,bm) fug_v = get_fug(EOS, zi, Z[0], Tc, Pc, P, T, omega, am, bm) fug_l = get_fug(EOS, zi, Z[1], Tc, Pc, P, T, omega, am, bm) deltaG = np.sum(zi * np.log(fug_v / fug_l)) if deltaG <= 0: Z = Z[1] fug = fug_l else: Z = Z[0] fug = fug_v V = np.divide(Z*R*T, P) #V = volumeCorrection(EOS, V, zi, Pc, Tc) return V # Computes reference viscosity of methane using the correlation of Hanley et al. Cyrogenics, July 1975 # To be used for corresponding states computation of mixture viscosity # A. R. Kovscek # 20 November 2018 # Tref is the reference temperature in K (viscosity computed at this temperature) # rho_ref is the reference density in g/cm3 (viscosity computed at this temperature and density) # mu_C1 is the viscosity from correlation in mPa-s (identical to cP) def ViscMethane(Tref,rho_ref): import math #Local variables #critical density of methane (g/cm^3) rho_c=16.043/99.2 #parameters for the dilute gas coefficient GV=[-209097.5,264726.9,-147281.8,47167.40,-9491.872,1219.979,-96.27993,4.274152,-0.08141531] #parameters for the first density correction term Avisc1 = 1.696985927 Bvisc1 = -0.133372346 Cvisc1 = 1.4 Fvisc1 = 168.0 #parameters for the viscosity remainder j1 = -10.35060586 j2 = 17.571599671 j3 = -3019.3918656 j4 = 188.73011594 j5 = 0.042903609488 j6 = 145.29023444 j7 = 6127.6818706 #compute dilute gas coefficient visc0 = 0. exp1 = 0. for i in range(0,len(GV)): exp1 = -1. + (i)*1./3. visc0 = visc0 + GV[i]*math.pow(Tref,exp1) #first density coefficient visc1 = Avisc1+Bvisc1*math.pow((Cvisc1-math.log(Tref/Fvisc1)),2.) #viscosity remainder theta=(rho_ref-rho_c)/rho_c visc2 = math.pow(rho_ref,0.1) visc2 = visc2*(j2+j3/math.pow(Tref,1.5))+theta*math.sqrt(rho_ref)*(j5+j6/Tref+j7/math.pow(Tref,2.)) visc2 = math.exp(visc2) visc2 = visc2 - 1. visc2 = math.exp(j1+j4/Tref)*visc2 #methane viscosity at T and density (Tref,rho_ref) #multiply by 10-4 to convert to mPa-s(cP) mu_C1 = (visc0+visc1+visc2)*0.0001 return (mu_C1) def get_interp_density(p, T): ''' @param p: pressure in Pa @param T: temperature in K @return : methane density in kg/m3 ''' data_p = [0.1e6, 1e6, 3e6, 5e6, 10e6, 20e6, 50e6] data_T = [90.7, 94, 98, 100, 105, 110, 120, 140, 170] if p < data_p[0] or p > data_p[-1] or T < data_T[0] or T > data_T[-1]: raise Exception('Input parameter out of range') data_den = [[451.5, 447.11, 441.68, 438.94, 431.95, 424.79, 409.9, 1.403, 1.1467], [451.79, 447.73, 442.34, 439.62, 432.7, 425.61, 410.9, 377.7, 14.247], [453, 449.08, 443.78, 441.11, 434.32, 427.38, 413.05, 381.12, 314.99], [454, 450.4, 445.19, 442.55, 435.89, 429.09, 415.1, 384.28, 324.32], [456, 453.57, 448.55, 446.02, 439.63, 433.13, 419.9, 391.35, 340.6], [460, 458, 454.74, 452.37, 446.43, 440.43, 428.32, 402.99, 361.57], [477, 473, 470, 468, 463.2, 458.14, 448.08, 427.88, 397.48]] f = interpolate.interp2d(data_T, data_p, data_den) return f(T, p) # In[39]: def LBC_viscosity(P, T, zi, Tc, Pc, omega, Mw, Vci): coef = [0.10230, 0.023364, 0.058533, -0.040758, 0.0093324] Nc = len(zi) EOS = 'PR' Pmax = 3000 * 6894.76 Pressure = [] visc = [] while P < Pmax: #flash fug_v, fug_l, l, xi, yi = flash(EOS, 0.5, Nc, zi, Tc, Pc, P, T, omega) if l>1: xi = zi #Computing Ksi Ksi = 5.4402 * 399.54 * np.sum(xi * Tc)**(1/6)/np.multiply(np.sum(xi * Mw)**(0.5),np.sum(xi * Pc)**(2/3)) Ksi_i = 5.4402 * 399.54 * Tc**(1/6) * Mw**(-0.5) * Pc**(-2/3) #Ksi_i = Tc**(1/6) * Mw**(-0.5) * Pc**(-2/3) eta_star_i = np.zeros(xi.shape) for i in range(Nc): Tr = T/Tc[i] if Tr < 1.5: eta_star_i[i] = 34e-5 * (Tr**0.94)/Ksi_i[i] else: eta_star_i[i] = 17.78 * 1e-5 * ((4.58*Tr - 1.67)**0.625)/ Ksi_i[i] eta_star = np.divide(np.sum(xi * eta_star_i * Mw**0.5), np.sum(xi * Mw**0.5)) MC7_plus = np.sum(xi[i] * Mw[i] for i in range(10, Nc)) / np.sum(xi[i] for i in range(10, Nc)) denC7_plus = 0.895 Vc_plus = (21.573 + 0.015122*MC7_plus - 27.656*denC7_plus + 0.070615*denC7_plus*MC7_plus) * 6.2372*1e-5 V_mixture = volume(EOS, P, T, Pc, Tc, omega, xi, True) xC7_plus = np.sum(xi[i] for i in range(10, Nc)) Vc_mixture = np.sum(xi[i] * Vci[i] for i in range(10))*1e-6 + xC7_plus * Vc_plus rho_r = Vc_mixture/V_mixture viscosity = ((coef[0] + coef[1] * rho_r + coef[2] * rho_r**2 + coef[3] * rho_r**3 + coef[4] * rho_r**4)**4 - 0.0001)/Ksi + eta_star visc.append(viscosity) Pressure.append(P) P = 1.1 * P plt.plot(Pressure, visc) plt.xlabel("Pressure (Pa)") plt.ylabel("Viscosity (cP)") plt.title("Viscosity vs pressure") plt.show() # In[40]: P = 1500 * 6894.76 T = 106 + 273.15 Names = {'CO2' 'N2' 'C1' 'C2' 'C3' 'iC4' 'n-C4' 'i-C5' 'n-C5' 'C6' 'C7' 'C8' 'C9' 'C10' 'PS1' 'PS2' 'PS3' 'PS4' 'PS5'} zi = np.array([0.0044, 0.0017, 0.3463, 0.0263, 0.0335, 0.092, 0.0175, 0.0089, 0.0101, 0.0152, 0.05, 0.0602, 0.0399, 0.0355, 0.1153, 0.0764, 0.0633, 0.0533, 0.0330])#oil composition Tc = np.array([304.2, 126.2, 190.6, 305.4, 369.8, 408.1, 425.2, 460.4, 469.6, 507.4, 548, 575, 603, 626, 633.1803, 675.9365, 721.3435, 785.0532, 923.8101]) # in Kelvin Pc = np.array([72.9, 33.6, 45.4, 48.2, 41.9, 36.0, 37.5, 33.4, 33.3, 29.3, 30.7, 28.4, 26, 23.9, 21.6722, 19.0339, 16.9562, 14.9613, 12.6979])*101325 # in Pa omega = np.array([0.228, 0.04, 0.008, 0.098, 0.152, 0.176, 0.193, 0.227, 0.251, 0.296, 0.28, 0.312, 0.348, 0.385, 0.6254, 0.7964, 0.9805, 1.2222, 1.4000]) # accentric factors Mw = np.array([44.01, 28.013, 16.043, 30.07, 44.097, 58.123, 58.123, 72.15, 72.15, 84, 96, 107, 121, 134, 163.5, 205.4, 253.6, 326.7, 504.4]) Vci = np.array([91.9, 84, 99.2, 147, 200, 259, 255, 311, 311, 368]) # cm3/mol LBC_viscosity(P, T, zi, Tc, Pc, omega, Mw, Vci) # In[41]: def corresponding_state_Visco(P, T ,zi, Tc, Pc, omega, Mw): R = 8.314 # gas constant Names = {'CO2' 'N2' 'C1' 'C2' 'C3' 'iC4' 'n-C4' 'i-C5' 'n-C5' 'C6' 'C7' 'C8' 'C9' 'C10' 'PS1' 'PS2' 'PS3' 'PS4' 'PS5'} Nc = len(zi) EOS = 'PR' tol = 1e-5 Pmax = 3000 * 6894.76 visc = [] Pressure = [] while P < Pmax: fug_v, fug_l, l, xi, yi = flash(EOS, 0.5, Nc, zi, Tc, Pc, P, T, omega) if l>1: xi = zi #Initiliazing Tc_mix = 0 Mmix = 0 Mn = 0 M = 0 denominator = 0 for i in range(Nc): Mn += xi[i] * Mw[i] M += xi[i] * Mw[i]**2 for j in range(Nc): Tc_mix += xi[i]*xi[j]*(Tc[i] * Tc[j])**(0.5)*((Tc[i]/Pc[i])**(1/3) + (Tc[j]/Pc[j])**(1/3))**3 denominator += xi[i]*xi[j]*((Tc[i]/Pc[i])**(1/3) + (Tc[j]/Pc[j])**(1/3))**3 Tc_mix = Tc_mix / denominator Pc_mix = 8 * Tc_mix / denominator M /= Mn Mmix = 1.304 * 1e-4 * (M**2.303 - Mn**2.303) + Mn Tr = (T * Tc[2])/Tc_mix Pr = (P * Pc[2])/Pc_mix rho_c = 162.84 #kg/m3 #volume correction S = -0.154 b = calc_b(EOS, Tc[2], Pc[2]) Vc = volume(EOS, Pr, Tr, np.array([Pc[2]]), np.array([Tc[2]]), np.array([omega[2]])) volume_cor = Vc - b * S rho_r = Mw[2] * 1e-3 / volume_cor / rho_c alpha_mix = 1 + 7.378 * 10**(-3) * rho_r ** 1.847 * Mmix**0.5173 alpha_0 = 1 + 0.031*rho_r**1.847 Tref = Tr * alpha_0 / alpha_mix Pref = Pr * alpha_0 / alpha_mix S = -0.085 Vc_ref = volume(EOS, Pref, Tref, np.array([Pc[2]]), np.array([Tc[2]]), np.array([omega[2]])) volume_cor = Vc_ref - b * S rho_ref = Mw[2]/volume_cor/ 1e6 visc_methane = ViscMethane(Tref, rho_ref) visc_mix = (Tc_mix/Tc[2])**(-1/6) * (Pc_mix/Pc[2])**(2/3) * (Mmix/Mw[2])**(1/2) * alpha_mix / alpha_0 * visc_methane visc.append(visc_mix) Pressure.append(P) #print(P, visc_mix) P = 1.1 * P plt.plot(Pressure, visc) plt.xlabel("Pressure (Pa)") plt.ylabel("Viscosity (cP)") plt.title("Viscosity vs compositions") plt.show() # In[42]: zi = np.array([0.0044, 0.0017, 0.3463, 0.0263, 0.0335, 0.092, 0.0175, 0.0089, 0.0101, 0.0152, 0.05, 0.0602, 0.0399, 0.0355, 0.1153, 0.0764, 0.0633, 0.0533, 0.0330])#oil composition Tc = np.array([304.2, 126.2, 190.6, 305.4, 369.8, 408.1, 425.2, 460.4, 469.6, 507.4, 548, 575, 603, 626, 633.1803, 675.9365, 721.3435, 785.0532, 923.8101]) # in Kelvin Pc = np.array([72.9, 33.6, 45.4, 48.2, 41.9, 36.0, 37.5, 33.4, 33.3, 29.3, 30.7, 28.4, 26, 23.9, 21.6722, 19.0339, 16.9562, 14.9613, 12.6979])*101325 # in Pa omega = np.array([0.228, 0.04, 0.008, 0.098, 0.152, 0.176, 0.193, 0.227, 0.251, 0.296, 0.28, 0.312, 0.348, 0.385, 0.6254, 0.7964, 0.9805, 1.2222, 1.4000]) # accentric factors Mw = np.array([44.01, 28.013, 16.043, 30.07, 44.097, 58.123, 58.123, 72.15, 72.15, 84, 96, 107, 121, 134, 163.5, 205.4, 253.6, 326.7, 504.4]) P = 1500 * 6894.76 T = 106 + 273.15 corresponding_state_Visco(P, T, zi, Tc, Pc, omega, Mw) # In[43]: def viscosity(Oilcomp, Injcomp, P, T, Pc, Tc, omega, Mw, Vci): coef = [0.10230, 0.023364, 0.058533, -0.040758, 0.0093324] EOS = 'PR' Nc = len(Oilcomp) alpha = 0.5 l = 0.5 tol = 1e-5 zi = Oilcomp + alpha * (Injcomp - Oilcomp) fug_v, fug_l, l, xi, yi = flash(EOS, 0.5, Nc, zi, Tc, Pc, P, T, omega) Ksi = 5.4402 * 399.54 * np.sum(xi * Tc)**(1/6)/np.multiply(np.sum(xi * Mw)**(0.5),np.sum(xi * Pc)**(2/3)) Ksi_i = 5.4402 * 399.54 * Tc**(1/6) * Mw**(-0.5) * Pc**(-2/3) eta_star_i = np.zeros(xi.shape) for i in range(Nc): Tr = T/Tc[i] if Tr < 1.5: eta_star_i[i] = 34e-5 * (Tr**0.94)/Ksi_i[i] else: eta_star_i[i] = 17.78 * 1e-5 * ((4.58*Tr - 1.67)**0.625)/ Ksi_i[i] eta_star = np.divide(np.sum(xi * eta_star_i * Mw**0.5), np.sum(xi * Mw**0.5)) MC7_plus = np.sum(xi[i] * Mw[i] for i in range(10, Nc)) / np.sum(xi[i] for i in range(10, Nc)) denC7_plus = 0.895 Vc_plus = (21.573 + 0.015122*MC7_plus - 27.656*denC7_plus + 0.070615*denC7_plus*MC7_plus) * 6.2372*1e-5 V_mixture = volume(EOS, P, T, Pc, Tc, omega, xi, True) xC7_plus = np.sum(xi[i] for i in range(10, Nc)) Vc_mixture = np.sum(xi[i] * Vci[i] for i in range(10))*1e-6 + xC7_plus * Vc_plus rho_r = Vc_mixture/V_mixture viscosity = ((coef[0] + coef[1] * rho_r + coef[2] * rho_r**2 + coef[3] * rho_r**3 + coef[4] * rho_r**4)**4 - 0.0001)/Ksi + eta_star return viscosity # In[44]: def vicosity_vs_composition(LPG_CO2_comb, Oilcomp, P, T, Pc, Tc, omega, Mw, Vci, makePlot = False): '''This function computes the MMP for the different compositions of the LPG and CO2 and returns a plot of the MMP versus gas injectant composition. LPG_CO2_comb contains the porcentage of LPG in the mixte. an array of the form [0.7, 0.55, 0.4, 0.2, 0.1, 0.] means that for the first mixture we have 70% LPG and 30% CO2 and for the second 55% LPG and 45% CO2 and so on... The LPG composition is: C2: 0.01, C3: 0.38, iC4: 0.19, nC4: 0.42. ''' #reservoir Oil components. Names = {'CO2' 'N2' 'C1' 'C2' 'C3' 'i-C4' 'n-C4' 'i-C5' 'n-C5' 'C6' 'C7' 'C8' 'C9' 'C10' 'PS1' 'PS2' 'PS3' 'PS4' 'PS5'} LPG = np.array([0, 0, 0, 0.01, 0.38, 0.19, 0.42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); CO2 = np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) numMixtures = len(LPG_CO2_comb) Viscosity = [] composition = [] for i in range(numMixtures): Injcomp = np.array(LPG_CO2_comb[i] * LPG + (1 - LPG_CO2_comb[i]) * CO2) Viscosity.append(viscosity(Oilcomp, Injcomp, P, T, Pc, Tc, omega, Mw, Vci)) composition.append(LPG_CO2_comb[i]) if makePlot: plt.plot(composition, Viscosity) plt.xlabel('Composition (mole fraction of the LPG)') plt.ylabel('Viscosity (cP)') plt.title('Viscosty vs Injectant composition') plt.show() # In[45]: P = 28e6 T = 106 + 273.15 Names = {'CO2' 'N2' 'C1' 'C2' 'C3' 'iC4' 'n-C4' 'i-C5' 'n-C5' 'C6' 'C7' 'C8' 'C9' 'C10' 'PS1' 'PS2' 'PS3' 'PS4' 'PS5'} zi = np.array([0.0044, 0.0017, 0.3463, 0.0263, 0.0335, 0.092, 0.0175, 0.0089, 0.0101, 0.0152, 0.05, 0.0602, 0.0399, 0.0355, 0.1153, 0.0764, 0.0633, 0.0533, 0.0330])#oil composition Tc = np.array([304.2, 126.2, 190.6, 305.4, 369.8, 408.1, 425.2, 460.4, 469.6, 507.4, 548, 575, 603, 626, 633.1803, 675.9365, 721.3435, 785.0532, 923.8101]) # in Kelvin Pc = np.array([72.9, 33.6, 45.4, 48.2, 41.9, 36.0, 37.5, 33.4, 33.3, 29.3, 30.7, 28.4, 26, 23.9, 21.6722, 19.0339, 16.9562, 14.9613, 12.6979])*101325 # in Pa omega = np.array([0.228, 0.04, 0.008, 0.098, 0.152, 0.176, 0.193, 0.227, 0.251, 0.296, 0.28, 0.312, 0.348, 0.385, 0.6254, 0.7964, 0.9805, 1.2222, 1.4000]) # accentric factors Mw = np.array([44.01, 28.013, 16.043, 30.07, 44.097, 58.123, 58.123, 72.15, 72.15, 84, 96, 107, 121, 134, 163.5, 205.4, 253.6, 326.7, 504.4]) Vci = np.array([91.9, 84, 99.2, 147, 200, 259, 255, 311, 311, 368]) # cm3/mol vicosity_vs_composition(np.array([0.7, 0.55, 0.4, 0.2, 0.1, 0.]), zi, P, T, Pc, Tc, omega, Mw, Vci, True) # In[47]: #Plotting the experimental CCE curve of pressure against relative volume. x = np.array([ 20096156.97 ,19406680.97 ,18717204.97 ,16834935.49 ,15476667.77 ,15312158.8 ,13890872.97 ,10443492.97 ]) y = np.array([ 0.622 ,0.6162 ,0.611 ,0.597 ,0.5869 ,0.5857 ,0.6341 ,0.708 ]) plt.plot(x, y, 'r') plt.xlabel("Pressure (Pa)") plt.ylabel("Viscosity (cP)") plt.title("Experimental evolution of viscosity") plt.legend(loc='best') plt.show() # In[ ]:
[ "youssef.aitousarrah@gmail.com" ]
youssef.aitousarrah@gmail.com
1dfee621f2c8bf35b8a73f7fbbb1a64d238e125a
bbb21bb79c8c3efbad3dd34ac53fbd6f4590e697
/week3/TODO/TODO/settings.py
947cd11c197d9ed2bf30a09cd9c4016007788b22
[]
no_license
Nusmailov/BFDjango
b14c70c42da9cfcb68eec6930519da1d0b1f53b6
cab7f0da9b03e9094c21efffc7ab07e99e629b61
refs/heads/master
2020-03-28T21:11:50.706778
2019-01-21T07:19:19
2019-01-21T07:19:19
149,136,999
0
0
null
null
null
null
UTF-8
Python
false
false
3,094
py
""" Django settings for TODO project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'mitb8&^*0ibt!u_xqe1!tjzumo65hy@cnxt-z#+9+p@m$u8qnn' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'main', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'TODO.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'TODO.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "nusmailov@gmail.com" ]
nusmailov@gmail.com
398f138bde398c4dea87e5a99707f52b0581bd66
6cabff723ad404c3883037d9fa1d32298c27b23e
/练习/实战8.py
0275a7e71db5efc7a6797d06ef684f6bb633958c
[]
no_license
Brandyzwz/practice
300c128947e59b209098c60131ed3750e982b28a
661f74851af6208b5c6880b41ba5d7bc9da6bf5c
refs/heads/master
2020-03-25T02:25:51.136558
2018-08-02T12:06:44
2018-08-02T12:06:44
143,289,146
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
a = int(input('输入直角边a:\n')) b = int(input('输入直角边b:\n')) c = (a**2+b**2)**0.5 print('斜边c的长为:%d'%c)
[ "brandyzwz@outlook.com" ]
brandyzwz@outlook.com
7b91e3b074f85271a746505ec2100144aaa01af3
d7641647d67d110e08997767e85bbea081c2537b
/bitmovin_api_sdk/models/filter.py
6836a5d837fc6e5d357ec0e2fa2c5884394e48d2
[ "MIT" ]
permissive
aachenmax/bitmovin-api-sdk-python
d3ded77c459852cbea4927ff28c2a4ad39e6026a
931bcd8c4695a7eb224a7f4aa5a189ba2430e639
refs/heads/master
2022-11-16T08:59:06.830567
2020-07-06T07:16:51
2020-07-06T07:16:51
267,538,689
0
1
MIT
2020-07-06T07:16:52
2020-05-28T08:44:44
Python
UTF-8
Python
false
false
1,781
py
# coding: utf-8 from six import string_types, iteritems from bitmovin_api_sdk.common.poscheck import poscheck_model from bitmovin_api_sdk.models.bitmovin_resource import BitmovinResource import pprint class Filter(BitmovinResource): discriminator_value_class_map = { 'CROP': 'CropFilter', 'CONFORM': 'ConformFilter', 'WATERMARK': 'WatermarkFilter', 'ENHANCED_WATERMARK': 'EnhancedWatermarkFilter', 'ROTATE': 'RotateFilter', 'DEINTERLACE': 'DeinterlaceFilter', 'AUDIO_MIX': 'AudioMixFilter', 'DENOISE_HQDN3D': 'DenoiseHqdn3dFilter', 'TEXT': 'TextFilter', 'UNSHARP': 'UnsharpFilter', 'SCALE': 'ScaleFilter', 'INTERLACE': 'InterlaceFilter', 'AUDIO_VOLUME': 'AudioVolumeFilter', 'EBU_R128_SINGLE_PASS': 'EbuR128SinglePassFilter' } def to_dict(self): """Returns the model properties as a dict""" result = {} if hasattr(super(Filter, self), "to_dict"): result = super(Filter, self).to_dict() for k, v in iteritems(self.discriminator_value_class_map): if v == type(self).__name__: result['type'] = k break return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Filter): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "openapi@bitmovin.com" ]
openapi@bitmovin.com
931cf513935db910bfd70b2fad4b1ab03410eaa3
6fc9e67094d60cb192dcd4e3370e41aae00e73b2
/rotate.py
cba2a8d2d2d33fa924b5fc5ad00ad3908e89c346
[]
no_license
Nusha97/IRIS-Project
4c287ac87c482d1dea220a79e9fad5546a954bf5
670f66afb7ace4d8e65e2071d28f479b8573972f
refs/heads/master
2021-08-07T10:58:02.602248
2020-04-21T10:59:43
2020-04-21T10:59:43
158,009,001
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
# -*- coding: utf-8 -*- """ Automatically detect rotation and line spacing of an image of text using Radon transform If image is rotated by the inverse of the output, the lines will be horizontal (though they may be upside-down depending on the original image) It doesn't work with black borders """ from __future__ import division, print_function from skimage.transform import radon from PIL import Image from numpy import asarray, mean, array, blackman import numpy from numpy.fft import rfft import matplotlib.pyplot as plt from matplotlib.mlab import rms_flat try: # More accurate peak finding from # https://gist.github.com/endolith/255291#file-parabolic-py from parabolic import parabolic def argmax(x): return parabolic(x, numpy.argmax(x))[0] except ImportError: from numpy import argmax filename = '2Drotate.png' # Load file, converting to grayscale I = asarray(Image.open(filename).convert('L')) I = I - mean(I) # Demean; make the brightness extend above and below zero # Do the radon transform and display the result sinogram = radon(I) plt.gray() # Find the RMS value of each row and find "busiest" rotation, # where the transform is lined up perfectly with the alternating dark # text and white lines r = array([rms_flat(line) for line in sinogram.transpose()]) rotation = argmax(r) print('Rotation: {:.2f} degrees'.format(90 - rotation)) import argparse import cv2 import numpy as np img = cv2.imread('2Drotate.png', 0) rows,cols = img.shape M = cv2.getRotationMatrix2D((cols/2,rows/2),90 - rotation,1) dst = cv2.warpAffine(img,M,(cols,rows)) plt.plot(121),plt.imshow(dst),plt.title('Output') plt.savefig('hello.png') plt.show()
[ "noreply@github.com" ]
Nusha97.noreply@github.com
1f0f45aa77603540df78c0dde6159ce16e10364a
873b6d338e696b200d1a6ca74bef85deaa8d8088
/manage.py
b4f28f3c7627588f205a3b43b083e42d7990486f
[]
no_license
Craiglal/ChudoSkrynia
9720c8360f1589b97c15c5cfa48ba15bf2c6d0e7
ef2ca9ca356666628f2c8e4d1df8e97e0d0f72eb
refs/heads/master
2020-08-15T09:23:57.076445
2019-10-15T14:28:26
2019-10-15T14:28:26
215,316,335
1
0
null
null
null
null
UTF-8
Python
false
false
544
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ChudoSkrynia.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "asleep.alex@gmail.com" ]
asleep.alex@gmail.com
d82cf9e821ecf30bd91d020d422728952809a303
597ed154876611a3d65ca346574f4696259d6e27
/dbaas/workflow/steps/tests/test_vm_step.py
1f05feed7c79364c570f0ed132f5da3578825a91
[]
permissive
soitun/database-as-a-service
41984d6d2177734b57d726cd3cca7cf0d8c5f5d6
1282a46a9437ba6d47c467f315b5b6a3ac0af4fa
refs/heads/master
2023-06-24T17:04:49.523596
2018-03-15T19:35:10
2018-03-15T19:35:10
128,066,738
0
0
BSD-3-Clause
2022-05-10T22:39:58
2018-04-04T13:33:42
Python
UTF-8
Python
false
false
1,661
py
from mock import patch from physical.tests.factory import HostFactory, EnvironmentFactory from ..util.vm import VmStep, MigrationWaitingBeReady from . import TestBaseStep @patch('workflow.steps.util.vm.get_credentials_for', return_value=True) @patch('workflow.steps.util.vm.CloudStackProvider', return_value=object) class VMStepTests(TestBaseStep): def setUp(self): super(VMStepTests, self).setUp() self.host = self.instance.hostname def test_environment(self, *args, **kwargs): vm_step = VmStep(self.instance) self.assertEqual(vm_step.environment, self.environment) def test_host(self, *args, **kwargs): vm_step = VmStep(self.instance) self.assertEqual(vm_step.host, self.host) @patch('workflow.steps.util.vm.get_credentials_for', return_value=True) @patch('workflow.steps.util.vm.CloudStackProvider', return_value=object) class VMStepTestsMigration(TestBaseStep): def setUp(self): super(VMStepTestsMigration, self).setUp() self.host = self.instance.hostname self.future_host = HostFactory() self.host.future_host = self.future_host self.host.save() self.environment_migrate = EnvironmentFactory() self.environment.migrate_environment = self.environment_migrate self.environment.save() def test_environment(self, *args, **kwargs): vm_step = MigrationWaitingBeReady(self.instance) self.assertEqual(vm_step.environment, self.environment_migrate) def test_host(self, *args, **kwargs): vm_step = MigrationWaitingBeReady(self.instance) self.assertEqual(vm_step.host, self.future_host)
[ "mauro_murari@hotmail.com" ]
mauro_murari@hotmail.com
4f9b6137e32d293b24b9b687905de81bb99a0239
e28a89a1d79ab7b8ebf579a451b922b357206bb0
/leecode/1190. 反转每对括号间的子串.py
1d711d65956622209748a7ea68aac81cccb27e98
[]
no_license
bobobyu/leecode-
67dfcf9f9891a39d68e9c610e896c7151809d529
015d42bb58c19869658d3f6405435134ac5444df
refs/heads/master
2023-01-30T23:35:00.882463
2020-12-18T02:20:28
2020-12-18T02:20:28
308,018,638
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
from typing import * from collections import * class Solution: def reverseParentheses(self, s: str) -> str: string_stack: Deque = deque() s = list(s) while s: if (op := s.pop(0)) == '(': string_stack.append('(') elif op == ')': temp: str = '' while string_stack[-1] != '(': temp = string_stack.pop() + temp string_stack[-1] = temp[::-1] else: string_stack.append(op) return ''.join(string_stack) s = Solution() print(s.reverseParentheses("a(bcdefghijkl(mno)p)q"))
[ "676158322@qq.com" ]
676158322@qq.com
b61bba4f1a3cafc372508b61c5bc9307207181e7
7cc4b082d0af7622cd77204a1eef2311c24445de
/my-venv/bin/wheel
e1988530207fb5198672a49ecda9425ec3401572
[]
no_license
aasthakumar/ChatClient
cbfc18ba4cec6c20280680c659214a458cef5688
32c959488eda73caa81c8643957dbf1e6f79c77a
refs/heads/master
2020-03-15T01:50:46.755513
2018-05-02T20:38:43
2018-05-02T20:38:43
131,903,332
0
0
null
null
null
null
UTF-8
Python
false
false
268
#!/Users/aastha/Documents/GitHub/CMPE-273-quizzes/lab3/my-venv/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "aastha.kumar@sjsu.edu" ]
aastha.kumar@sjsu.edu
16eb3d8ca61b71e4472dd9dbccbad3c0497e2eb6
9f59572095262bb77b1069154dd70f52a2743582
/utils/.history/helper_20210303152111.py
db03f12b94ec4773cd7b73e126c98158e374fa06
[]
no_license
zhang199609/diagnose_fault_by_vibration
ef089807fd3ae6e0fab71a50863c78ea163ad689
7b32426f3debbe9f98a59fe78acdec3ad6a186fd
refs/heads/master
2023-04-15T15:35:59.000854
2021-04-23T06:53:40
2021-04-23T06:53:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
868
py
""" 提高代码简洁性和可交互性的代码 """ import time def get_running_time(fun): """ 代码运行时间装饰器 参数 ----- fun:要测试运行时间的函数 返回 ----- 返回装饰器wrapper 例子 ----- >>> @get_running_time def hello(name): print("hello %s"%name) time.sleep(3) >>> hello("Tony") """ def wrapper(*args, **kwargs): start_time = time.time() # 调用需要计算运行时间的函数 fun(*args, **kwargs) end_time = time.time() running_time = end_time - start_time h = int(running_time//3600) m = int((running_time - h*3600)//60) s = int(running_time%60) print("time cost: {0}:{1}:{2}".format(h, m, s)) return running_time # -> 可以省略 return wrapper
[ "18036834556@163.com" ]
18036834556@163.com
8bf31f37886bfff9512c59b2d24b2699e2383f4b
559d7428cba525ddff43a4b03f495c070f382075
/Final/FinalExam/Q1/lazy.py
0ecd5c3d8b15acde96bbd4735217dc6431ee8534
[]
no_license
kwokwill/comp3522-object-oriented-programming
9c222ad4d1a2c2420a5eb509f80ba792e94991f6
6e2347b70c07cfc3ca83af29c2bd5c4696c55bb6
refs/heads/master
2023-04-13T19:16:25.546865
2021-04-27T21:20:48
2021-04-27T21:20:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,260
py
import time """ (4 marks total) This program simulates loading screens in a game. One of the screens is entered and resources need to be loaded, the other does not The code below takes about 1 second (on my machine) to complete. Requirements Speed up the code using the LAZY INITIALIZATION design pattern. Do NOT change any code in the main function Hints: The code should run in about half the time after implementing Lazy Initialization There is no need to use any multithreading/multiprocessing """ class Resources: def __init__(self): print("Creating resources") time.sleep(0.5) def __str__(self): return "resources available" class Screen: def __init__(self, name): self._name = name self._resources = None def enter_screen(self): if not self._resources: self._resources = Resources() return self._resources def __str__(self): return self._name def main(): start_time = time.time() game_over = Screen("Game over") print(game_over) main_menu = Screen("Main menu") print(main_menu) print(main_menu.enter_screen()) end_time = time.time() print("duration:", end_time - start_time) if __name__ == '__main__': main()
[ "donglmin@icloud.com" ]
donglmin@icloud.com
482c33547adb2af1e66c780d7a9cc833b6182f11
c5da0ec1004fcb4283c62f3b2700a5b78dfa1fda
/Code/neuro.py
02386f5800c9c181a7ba7d26f5b8926616d5cca2
[]
no_license
akshayadiga/Optical-Character-Recognition-of-English-Alphabets-using-Neural-Networks
78cd63c9d5d5f38bb0fd6de6e003a307712920fe
8c040655a72c0fd4dacfa7b358def99d339755d9
refs/heads/master
2021-01-25T13:07:13.730875
2018-03-02T04:58:14
2018-03-02T04:58:14
123,532,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,930
py
import neurolab as nl def toProb(letter): l=[] int_letter=ord(letter); pos=int_letter-97 for i in range(26): if(i==pos): l.append(1) else: l.append(0) return l def main(): # X = matrix of m input examples and n features f=open("letter.data","r") X=[] Y=[] count=0 for line in f: vector=line.strip().split() in_vec=vector[6:] out_vec=vector[1] in_vec=[int(i) for i in in_vec] #out_vec=[int(i) for i in out_vec] X.append(in_vec) Y.append(out_vec) count=count+1 if(count==800): break #X=numpy.matrix(X) f.close() # Y = matrix of m output vectors, where each output vector has k output units #Y=numpy.matrix(Y) #print X #print Y Y=[toProb(i) for i in Y] net = nl.net.newff([[0, 1]]*128, [20, 26],transf=[nl.trans.TanSig(),nl.trans.SoftMax()]) net.train(X, Y, epochs=20, show=1, goal=0.02) #z=net.sim([X[1]]) #print z f=open("letter.data","r") X=[] Y=[] count=0 for line in f: if(count<800): count=count+1 continue vector=line.strip().split() in_vec=vector[6:] out_vec=vector[1] in_vec=[int(i) for i in in_vec] #out_vec=[int(i) for i in out_vec] X.append(in_vec) Y.append(out_vec) count=count+1 if(count==1000): break z=net.sim(X) bit_let_pair=zip(X,Y) b=[i for p,i in bit_let_pair] correct=0 incorrect=0 let_predict=[] ###change each index to appropriate letter##### for i in z: probs =i prob_letter=max(probs) for j in range(26): if(probs[j]==prob_letter): prob_pos=j prob_pos+=97 let_predict.append(chr(prob_pos)) #print(let_predict) #print(b) ################################ for i in range(len(let_predict)): if(let_predict[i]==bit_let_pair[i][1]): correct+=1 else: incorrect+=1 efficiency=correct/(float(correct+incorrect)) print (efficiency*100),"%" #e = net.train(input, output, show=1, epochs=100, goal=0.0001) main()
[ "akshayadiga@Akshays-MacBook-Pro.local" ]
akshayadiga@Akshays-MacBook-Pro.local
b8572b08870ce01777c59a851f52f3cd3d40ed69
ed6dd94781e3022f230050284d2ddd3554cc0772
/multithreading/multiprocessing_pipes_conttest.py
379999612d2531d37797406abcedc405c450bf1c
[]
no_license
Mantabit/python_examples
602d4f4237dbc2044d30dc5482e3e2dee4d90fb6
516dbb9cc63c7de5bfe7d0e79477dff9ff340a5d
refs/heads/master
2021-07-04T08:26:38.007606
2020-08-17T10:09:04
2020-08-17T10:09:04
153,170,298
0
0
null
null
null
null
UTF-8
Python
false
false
1,224
py
import multiprocessing as mp import time class testClass(object): def __init__(self,name): self.name=name def doSomething(self): print("Object %s reporting!"%(self.name)) #function receives objects def receiverFunction(receive_end): while True: #receive object from the pipe try: obj=receive_end.recv() except EOFError as err: print("nothing left in the queue, aborting receiver thread") break #use the received object obj.doSomething() #function generates objects def producerFunction(send_end): start=time.time() i=0 #produce data every 50ms for 5s while time.time()-start<1: i+=1 send_end.send(testClass("Object%d"%(i))) time.sleep(50e-3) print("Closing the send_end in producer process...") send_end.close() if __name__=="__main__": (receive_end,send_end)=mp.Pipe() p_recv=mp.Process(target=receiverFunction,args=[receive_end]) p_send=mp.Process(target=producerFunction,args=[send_end]) p_recv.start() p_send.start() p_send.join() send_end.close() print("Closing send_end in parent process") p_recv.join()
[ "dvarx@gmx.ch" ]
dvarx@gmx.ch
3100c28087a8a7b53bc1fb5f666abd9059c4956a
4fec8ef57c150b088c09a4753e1e9fdb3a2ddabd
/yadjangoblog/yaaccounts/apps.py
700c03e127494b503dcbc9c698fcf5f424059f4d
[]
no_license
ValDon/YaDjangoBlog
629c124eb6475a2b1947d4b224b6cdd9473a0490
4e6b6453c73470b8f05d062a460962ce118954c3
refs/heads/master
2020-04-10T22:53:10.000582
2019-05-04T15:06:35
2019-05-04T15:06:35
161,334,986
0
0
null
2018-12-11T13:05:01
2018-12-11T13:05:00
null
UTF-8
Python
false
false
149
py
from django.apps import AppConfig class YaAccountsAppConfig(AppConfig): name = 'yadjangoblog.yaaccounts' verbose_name = 'YaAccounts模块'
[ "twocucao@gmail.com" ]
twocucao@gmail.com
cee0f8705da747a739d9a3dcea926258152f7f22
e8ac7df7a1e067ce002ed12e295e6e1a0908cc8c
/Python/ThinkFlask/home/views/index.py
9606b3fed92dca1ef2bbb1509bf9f8f1c929cbeb
[]
no_license
919858271/MyCode
fc9a9e3479843f933582f1030d504d6f5eb94dcb
5940b045207376c4c679260a660ca402b5b4751c
refs/heads/master
2021-06-21T13:59:00.754383
2019-07-21T13:28:48
2019-07-21T13:28:48
53,465,398
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
#------------------------------------------------------------------------------- # !/usr/bin/env python # -*- coding: utf-8 -*- # Author: jianwen # Email: npujianwenxu@163.com #------------------------------------------------------------------------------- from flask import render_template from app.models import Model from home.model.models import User from home import home_router @home_router.route('/') def index(): return 'Think Flask. This is Home' @home_router.route('/add/<username>/<password>/') def add_user(username, password): user = User(username=username, password=password) User.insert(user) return 'success' @home_router.route('/delete/<int:key>/') def delete_user(key): user = User.query.get(key) Model.delete(user) return 'success' @home_router.route('/test/<username>/') def test(username): return render_template('home/index.html', username=username)
[ "npujianwenxu@163.com" ]
npujianwenxu@163.com
63b17a08ac2f4745e14601141a43ae06dd3014d8
e4dfc1402839f277e1e9ff8686dc6b67f1eb0bf0
/api_example/languages/urls.py
289d6f6c2218819b00280ffb8242142ac2eacf15
[]
no_license
punitchauhan771/Sample-Rest-API
32ee7a16270a978ac4d82a161fe4fb677c029d36
8372982507fa2ee301d3a9de1e6fe9d4b66028ed
refs/heads/main
2023-02-24T00:49:57.831224
2021-01-23T08:23:35
2021-01-23T08:23:35
331,853,402
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
from django.urls import path, include from . import views from rest_framework import routers router = routers.DefaultRouter() router.register('languages', views.LanguageView) router.register('Paradigm', views.ParadigmView) router.register('Programmer',views.ProgrammerView) urlpatterns = [ path('', include(router.urls)) ]
[ "chauhanbhupendra980@gmail.com" ]
chauhanbhupendra980@gmail.com
6df0a8249cc984e79381ba0ffcddd3d27403a62b
0c72282d601ccf840dd4e41b675c0675de7bc916
/students/Jean-Baptiste/lessons/lesson03/assignment03_solution_JB/create_customers.py
45516c4640f57281eda038e5e82484c20727fe20
[]
no_license
zconn/PythonCert220Assign
c7fedd9ffae4f9e74e5e4dfc59bc6c511c7900ab
99271cd60485bd2e54f8d133c9057a2ccd6c91c2
refs/heads/master
2020-04-15T14:42:08.765699
2019-03-14T09:13:36
2019-03-14T09:13:36
164,763,504
2
0
null
2019-01-09T01:34:40
2019-01-09T01:34:40
null
UTF-8
Python
false
false
360
py
""" This is to create database using the Peewee ORM, sqlite and Python """ from customers_model import * import customers_model as cm import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) logger.info('Let us build the classes from the model in the database') cm.database.create_tables([cm.Customer]) cm.database.close()
[ "jbyamindi@yahoo.fr" ]
jbyamindi@yahoo.fr
3129d119bb1773e4909ac9e1ecf759cef0cad06e
539789516d0d946e8086444bf4dc6f44d62758c7
/inference/python/inference.py
7fc210e7978a31556f20ba12d8a1baa22d2ff6c4
[]
no_license
hoangcuong2011/etagger
ad05ca0c54f007f54f73d39dc539c3737d5acacf
611da685d72da207870ddb3dc403b530c859d603
refs/heads/master
2020-05-03T15:15:33.395186
2019-03-28T01:40:21
2019-03-28T01:40:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,683
py
from __future__ import print_function import sys import os path = os.path.dirname(os.path.abspath(__file__)) + '/../..' sys.path.append(path) import time import argparse import tensorflow as tf import numpy as np # for LSTMBlockFusedCell(), https://github.com/tensorflow/tensorflow/issues/23369 tf.contrib.rnn # for QRNN try: import qrnn except: sys.stderr.write('import qrnn, failed\n') from embvec import EmbVec from config import Config from token_eval import TokenEval from chunk_eval import ChunkEval from input import Input def load_frozen_graph(frozen_graph_filename, prefix='prefix'): with tf.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def( graph_def, input_map=None, return_elements=None, op_dict=None, producer_op_list=None, name=prefix, ) return graph def inference(config, frozen_pb_path): """Inference for bucket """ # load graph graph = load_frozen_graph(frozen_pb_path) for op in graph.get_operations(): sys.stderr.write(op.name + '\n') # create session with graph # if graph is optimized by tensorRT, then # from tensorflow.contrib import tensorrt as trt # gpu_ops = tf.GPUOptions(per_process_gpu_memory_fraction = 0.50) gpu_ops = tf.GPUOptions() ''' session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_ops) ''' session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_ops, inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) sess = tf.Session(graph=graph, config=session_conf) # mapping placeholders and tensors p_is_train = graph.get_tensor_by_name('prefix/is_train:0') p_sentence_length = graph.get_tensor_by_name('prefix/sentence_length:0') p_input_data_pos_ids = graph.get_tensor_by_name('prefix/input_data_pos_ids:0') p_input_data_chk_ids = graph.get_tensor_by_name('prefix/input_data_chk_ids:0') p_input_data_word_ids = graph.get_tensor_by_name('prefix/input_data_word_ids:0') p_input_data_wordchr_ids = graph.get_tensor_by_name('prefix/input_data_wordchr_ids:0') t_logits_indices = graph.get_tensor_by_name('prefix/logits_indices:0') t_sentence_lengths = graph.get_tensor_by_name('prefix/sentence_lengths:0') num_buckets = 0 total_duration_time = 0.0 bucket = [] while 1: try: line = sys.stdin.readline() except KeyboardInterrupt: break if not line: break line = line.strip() if not line and len(bucket) >= 1: start_time = time.time() # Build input data inp = Input(bucket, config, build_output=False) feed_dict = {p_input_data_pos_ids: inp.example['pos_ids'], p_input_data_chk_ids: inp.example['chk_ids'], p_is_train: False, p_sentence_length: inp.max_sentence_length} feed_dict[p_input_data_word_ids] = inp.example['word_ids'] feed_dict[p_input_data_wordchr_ids] = inp.example['wordchr_ids'] if 'elmo' in config.emb_class: feed_dict[p_elmo_input_data_wordchr_ids] = inp.example['elmo_wordchr_ids'] if 'bert' in config.emb_class: feed_dict[p_bert_input_data_token_ids] = inp.example['bert_token_ids'] feed_dict[p_bert_input_data_token_masks] = inp.example['bert_token_masks'] feed_dict[p_bert_input_data_segment_ids] = inp.example['bert_segment_ids'] if 'elmo' in config.emb_class: feed_dict[p_bert_input_data_elmo_indices] = inp.example['bert_elmo_indices'] logits_indices, sentence_lengths = sess.run([t_logits_indices, t_sentence_lengths], feed_dict=feed_dict) tags = config.logit_indices_to_tags(logits_indices[0], sentence_lengths[0]) for i in range(len(bucket)): if 'bert' in config.emb_class: j = inp.example['bert_wordidx2tokenidx'][0][i] out = bucket[i] + ' ' + tags[j] else: out = bucket[i] + ' ' + tags[i] sys.stdout.write(out + '\n') sys.stdout.write('\n') bucket = [] duration_time = time.time() - start_time out = 'duration_time : ' + str(duration_time) + ' sec' sys.stderr.write(out + '\n') num_buckets += 1 total_duration_time += duration_time if line : bucket.append(line) if len(bucket) != 0: start_time = time.time() # Build input data inp = Input(bucket, config, build_output=False) feed_dict = {model.input_data_pos_ids: inp.example['pos_ids'], model.input_data_chk_ids: inp.example['chk_ids'], model.is_train: False, model.sentence_length: inp.max_sentence_length} feed_dict[model.input_data_word_ids] = inp.example['word_ids'] feed_dict[model.input_data_wordchr_ids] = inp.example['wordchr_ids'] if 'elmo' in config.emb_class: feed_dict[model.elmo_input_data_wordchr_ids] = inp.example['elmo_wordchr_ids'] if 'bert' in config.emb_class: feed_dict[model.bert_input_data_token_ids] = inp.example['bert_token_ids'] feed_dict[model.bert_input_data_token_masks] = inp.example['bert_token_masks'] feed_dict[model.bert_input_data_segment_ids] = inp.example['bert_segment_ids'] if 'elmo' in config.emb_class: feed_dict[model.bert_input_data_elmo_indices] = inp.example['bert_elmo_indices'] logits_indices, sentence_lengths = sess.run([t_logits_indices, t_sentence_lengths], feed_dict=feed_dict) tags = config.logit_indices_to_tags(logits_indices[0], sentence_lengths[0]) for i in range(len(bucket)): if 'bert' in config.emb_class: j = inp.example['bert_wordidx2tokenidx'][0][i] out = bucket[i] + ' ' + tags[j] else: out = bucket[i] + ' ' + tags[i] sys.stdout.write(out + '\n') sys.stdout.write('\n') duration_time = time.time() - start_time out = 'duration_time : ' + str(duration_time) + ' sec' tf.logging.info(out) num_buckets += 1 total_duration_time += duration_time out = 'total_duration_time : ' + str(total_duration_time) + ' sec' + '\n' out += 'average processing time / bucket : ' + str(total_duration_time / num_buckets) + ' sec' tf.logging.info(out) sess.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--emb_path', type=str, help='path to word embedding vector + vocab(.pkl)', required=True) parser.add_argument('--wrd_dim', type=int, help='dimension of word embedding vector', required=True) parser.add_argument('--word_length', type=int, default=15, help='max word length') parser.add_argument('--frozen_path', type=str, help='path to frozen model(ex, ./exported/ner_frozen.pb)', required=True) args = parser.parse_args() tf.logging.set_verbosity(tf.logging.INFO) args.restore = None config = Config(args, is_training=False, emb_class='glove', use_crf=True) inference(config, args.frozen_path)
[ "hazzling@gmail.com" ]
hazzling@gmail.com
8dba5286a903756c1d25fcc25d34a5e543f90741
ac42160440b161365c6f863bd1c89ce8a09570cb
/array.py
2eeeea45eeabb94107eafd1e45dbd55b677be5d0
[]
no_license
vikask1640/Demogit
7f12b141af535f95373379a5469573d9c69ad461
ad35dcab54b56afbc75578711dac78204ad008b0
refs/heads/master
2020-04-13T23:32:33.126507
2019-01-03T11:00:56
2019-01-03T11:00:56
163,509,341
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
import array as a def ace(): vals = a.array("i", [10, 8, 14, 55, 4]) print(vals) x=list(vals) x.sort() print(x) ace() # factorilas numbers y=5 fact=1 for j in range(1,y+1): # 1 to 5 fact=fact*j print(fact)
[ "noreply@github.com" ]
vikask1640.noreply@github.com
3921c679f0f414668848b1d37b5d076edec45b8d
5d1441cc173e06fb24c389eb812067a3fc355587
/workflow/templatetags/custom.py
c9f466a6cebfba8a0db9f818d8958efed3756c15
[]
no_license
Johums/ProjectManage
2860eb12134d9b522c5a5f2fa4e4054533d9175a
22d662e089adab447f247d078c89c670384e78ff
refs/heads/master
2021-01-10T16:36:47.412675
2016-02-27T15:24:13
2016-02-27T15:24:13
52,213,655
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
# -*- coding: utf-8 -*- from django import template from django.utils import safestring register = template.Library() @register.filter def multi_menu(menu, move=0): html_content = """ <ul class="nav nav-pills nav-stacked" style="margin-left: %spx" > """ % move for k, v in menu.items(): html_content += """ <li data-toggle="collapse" data-target=".demo"> <a href="{1}"><small>{2}</small></a> </li> """.format(*k) if v: html_content += multi_menu(v, move + 20) html_content += """ </ul> """ return safestring.mark_safe(html_content)
[ "13276915582@163.com" ]
13276915582@163.com
7048a4f70ae9aad9393bb2928bb43fcb1d64edb8
8c0bf198a6e0be4128a8615a6944f0a167fc9c79
/options.py
0cc3ba14fb313fce757adb11cbbf48670d4e23ef
[]
no_license
amietn/anna
73c43d3a2a9d7f465784ec7adc54f9494b07a178
e6e24d2c8252085e8ed69df8da976360b0f43baf
refs/heads/master
2021-05-03T06:12:09.783335
2018-02-07T09:09:18
2018-02-07T09:09:18
120,590,225
0
0
null
null
null
null
UTF-8
Python
false
false
436
py
#!/usr/bin/env python3 import os import json irc_credentials_path = os.path.expanduser("~/.config/anna/irc_credentials.json") def get_irc_credentials(): return get_irc_credentials_path(irc_credentials_path) def get_irc_credentials_path(path): with open(path, 'r') as f: j = json.load(f) return j if __name__ == '__main__': creds = get_irc_credentials_path("irc_credentials.json.template") print(creds)
[ "amietn@foobar" ]
amietn@foobar