blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
ed7bdce889e461553bb10bad06747aae9bc3bee8
22ee2c0b35393e31c0bf9d715ad0cd4c884c0615
/day2/buggy/dicegame/die.py
148544efaa4d61e92a6f89f8c8738d7598ed69ee
[]
no_license
wwa-vanekeren/aspp2021_solutions
de051bdf3571affdcb17cf8d876218f870d3db13
eac2ff0e3f0d2c60aca5b9115dd3039608aaacf9
refs/heads/main
2023-03-17T17:51:00.019986
2021-02-26T10:50:23
2021-02-26T10:50:23
340,689,036
0
0
null
2021-02-21T08:08:48
2021-02-20T15:38:14
null
UTF-8
Python
false
false
1,112
py
# Just count the stupid dice import random def roll(dice): for die in dice: # XXX: I don't even know what this function does continue class Die: """ This is always correct. Seriously, look away. """ def __init__(self): self.roll() def roll(self): self.value = int(random.random() * 6 + 1) def show(self): if self.value == 1: return("---------\n| |\n| * |\n| |\n---------") elif self.value == 2: return("---------\n|* |\n| |\n| *|\n---------") elif self.value == 3: return("---------\n|* |\n| * |\n| *|\n---------") elif self.value == 4: return("---------\n|* *|\n| |\n|* *|\n---------") elif self.value == 5: return("---------\n|* *|\n| * |\n|* *|\n---------") else: return("---------\n|* *|\n|* *|\n|* *|\n---------") @classmethod def create_dice(cls, n): return [cls() for _ in range(n)]
[ "noreply@github.com" ]
wwa-vanekeren.noreply@github.com
e0974cb3b18e1e63399d4a31048a7e7a76a9a09e
1f7bc6ee69209f91b96b258def5e75e0e5fde3c2
/listbox.py
9835cddc447b5f919f097cbf07b725884dbf8a46
[]
no_license
kaurjassi/GUI
d82a93be9ec9be0fea95f22059d374fbe72ccfcb
d30a24bd5ece7641cda976c4eec594f442bc6a82
refs/heads/master
2022-11-09T06:43:04.145684
2020-06-25T14:39:01
2020-06-25T14:39:01
274,936,680
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
from tkinter import * def add(): global i lbs.insert(ACTIVE,f"{i}") i+=1 i=0 #intial value root = Tk() root.title("Listbox") root.geometry("500x400") # list box = list box is a widget which displays the alternate list.. # blank list box and insert the items in it lbs = Listbox(root) lbs.pack() lbs.insert(END,"First item in list box") Button(root,text="Add item",command=add).pack() root.mainloop()
[ "noreply@github.com" ]
kaurjassi.noreply@github.com
5242129ffbb2e23f80babe8513a9e8272fd25dcf
75f5eab9a026c3076972690519fb90489d60de16
/discord/helpers/utils.py
d3be7004d3052ffbd757620634dfbac138befd28
[ "Apache-2.0" ]
permissive
yogurtcpu/RPANBot
72f507bd346d9c6370d4210fccb580da0988c061
0515e3dbac31735a0f936365919e46851a91dc36
refs/heads/master
2023-02-27T06:36:54.156607
2021-02-02T18:50:45
2021-02-02T18:50:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,642
py
""" Copyright 2020 RPANBot Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from re import sub from datetime import datetime, timezone def is_rpan_broadcast(link: str) -> bool: if "reddit.com/rpan/" in link: return True else: return False def parse_link(link: str) -> str: """ Parse the stream id from a provided link. :return: The parsed stream id. """ id = ( sub("http(s)?://", "", link) .replace("www.reddit.com/", "") .replace("old.reddit.com/", "") .replace("reddit.com/", "") .replace("redd.it/", "") ) return sub("(rpan/r|r)/(.*?)/(comments/)?", "", id).split("/")[0].split("?")[0] def escape_username(name: str) -> str: """ Escapes markdown in a username. :return: The username with prevented italics. """ return name.replace("_", "\\_") def format_timestamp(timestamp: float) -> str: """ Formats a timestamp. :param timestamp: The timestamp to format. :return: Returns a time in a set format. """ time = datetime.fromtimestamp(int(timestamp), tz=timezone.utc) return time.strftime("%d/%m/%Y at %H:%M UTC")
[ "56532639+OneUpPotato@users.noreply.github.com" ]
56532639+OneUpPotato@users.noreply.github.com
432af564f54f219a36399d60ff01262383c310b7
bd359061d94167f624db31e1b583a0b19a0bcff6
/src/Test_DiGraph.py
bbb4aa93d4caee386a3a8680301cd1ba41a41f7c
[]
no_license
rinatGrinberg/Ex3-python
b69bfb4571b75b17e1be999ffa20e976ecda5f56
4945e7ba872543410efd452bbb45f156f89162ab
refs/heads/main
2023-02-14T19:15:31.617860
2021-01-13T18:35:30
2021-01-13T18:35:30
329,116,249
0
0
null
null
null
null
UTF-8
Python
false
false
2,697
py
import unittest from DiGraph import DiGraph from src import GraphInterface import calc class MyTestCase(unittest.TestCase): def test_nodesize_and_addnnode_and_removenode(self): g = DiGraph() for i in range(3): g.add_node(i) g.remove_node(0) g.remove_node(1) g.remove_node(1) self.assertEqual(g.node_size,1) def test_edgesize_and_connect_and_remove_edge(self): g = DiGraph() for i in range(3): g.add_node(i) g.remove_node(0) g.remove_node(1) g.remove_node(1) g.add_node(25) g.add_node(27) g.add_edge(25,2,1) g.add_edge(27,2,78) g.add_edge(2,25,3) g.add_node(7) g.add_node(8) g.add_node(9) g.add_edge(7,25,6) g.add_edge(8,25,16) g.add_edge(8,7,3) g.add_edge(9,2,11) g.add_edge(9,8,111) g.remove_edge(9,8) print(g.edge_size) self.assertEqual(g.edge_size,7) def test_get_v(self): g = DiGraph() for i in range(3): g.add_node(i) g.remove_node(0) g.remove_node(1) g.remove_node(1) g.add_node(25) g.add_node(27) g.add_edge(25, 2, 1) g.add_edge(27, 2, 78) g.add_edge(2, 25, 3) g.add_node(7) g.add_node(8) g.add_node(9) g.add_edge(7, 25, 6) g.add_edge(8, 25, 16) g.add_edge(8, 7, 3) g.add_edge(9, 2, 11) g.add_edge(9, 8, 111) g.remove_edge(9, 8) nodes=g.get_all_v() self.assertIn(25,nodes) self.assertIn(7,nodes) self.assertIn(8,nodes) self.assertIn(9,nodes) self.assertIn(27,nodes) self.assertNotIn(1,nodes) def test_get_nodes_in_and_outs(self): g = DiGraph() for i in range(3): g.add_node(i) g.remove_node(0) g.remove_node(1) g.remove_node(1) g.add_node(25) g.add_node(27) g.add_edge(25, 2, 1) g.add_edge(27, 2, 78) g.add_edge(2, 25, 3) g.add_node(7) g.add_node(8) g.add_node(9) g.add_edge(7, 25, 6) g.add_edge(8, 25, 16) g.add_edge(8, 7, 3) g.add_edge(9, 2, 11) g.add_edge(9, 8, 111) g.remove_edge(9, 8) out = g.all_out_edges_of_node(2) inn = g.all_in_edges_of_node(2) self.assertIn(25, out) self.assertIn(27, inn) self.assertIn(25, inn) self.assertIn(9, inn) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
rinatGrinberg.noreply@github.com
b636530dff51028fbe0a7fbb20a468126863860f
3b9d763180410bf0abf5b9c37391a64319efe839
/toontown/building/DistributedHQInteriorAI.py
d7c12fec12fec9b0432c0e998ae1a9b352eb808e
[]
no_license
qphoton/Reverse_Engineering_Project_ToonTown
442f15d484324be749f6f0e5e4e74fc6436e4e30
11468ab449060169191366bc14ff8113ee3beffb
refs/heads/master
2021-05-08T00:07:09.720166
2017-10-21T02:37:22
2017-10-21T02:37:22
107,617,661
0
1
null
null
null
null
UTF-8
Python
false
false
938
py
from direct.directnotify import DirectNotifyGlobal from direct.distributed.DistributedObjectAI import DistributedObjectAI import cPickle class DistributedHQInteriorAI(DistributedObjectAI): notify = DirectNotifyGlobal.directNotify.newCategory("DistributedHQInteriorAI") def __init__(self, air): DistributedObjectAI.__init__(self, air) self.isTutorial = False self.zoneId = 0 self.block = 0 self.leaderData = cPickle.dumps(([], [], [])) def setZoneIdAndBlock(self, zoneId, block): self.zoneId = zoneId self.block = block def setLeaderBoard(self, leaderData): self.leaderData = leaderData def setTutorial(self, isTutorial): self.isTutorial = False def getZoneIdAndBlock(self): return (self.zoneId, self.block) def getLeaderBoard(self): return self.leaderData def getTutorial(self): return self.isTutorial
[ "Infinitywilee@rocketmail.com" ]
Infinitywilee@rocketmail.com
2466113f0da79b2244862448de9eb3746c0d33d1
8fd255fc3498ec970d7202d3f70a671b7aa4c64b
/pmsal/blog/views.py
d5b704545317b790379154f070dad0ca73a0eb84
[ "MIT" ]
permissive
klebercode/pmsal
afda05fe29bb67db70fc7dcb8dfc577f4a3f0c9c
d78477f7cd1a5d1ed9973e13be5758c71a2ce2db
refs/heads/master
2016-09-06T05:42:34.468341
2015-04-04T17:24:07
2015-04-04T17:24:07
33,409,667
0
0
null
null
null
null
UTF-8
Python
false
false
3,212
py
# coding: utf-8 from django.db.models import Q from django.views import generic from django.views.generic.dates import (YearArchiveView, MonthArchiveView, DayArchiveView) from pmsal.context_processors import EnterpriseExtraContext from pmsal.blog.models import Entry from pmsal.core.models import Category class EntryYearArchiveView(YearArchiveView): queryset = Entry.published.all() date_field = 'created' make_object_list = True allow_future = True # TODO: mudar a paginacao paginate_by = 10 class EntryMonthArchiveView(MonthArchiveView): queryset = Entry.published.all() date_field = 'created' make_object_list = True allow_future = True class EntryDayArchiveView(DayArchiveView): queryset = Entry.published.all() date_field = 'created' make_object_list = True allow_future = True class EntryListView(EnterpriseExtraContext, generic.ListView): # model = Entry queryset = Entry.published.all() template_name = 'blog/entry_home.html' # TODO: mudar a paginacao paginate_by = 6 def get_queryset(self, **kwargs): search = self.request.GET.get('search', '') if search: obj_lst = Entry.published.filter(Q(title__icontains=search) | Q(created__icontains=search) | Q(body__icontains=search)) else: obj_lst = Entry.published.all() return obj_lst def get_context_data(self, **kwargs): context = super(EntryListView, self).get_context_data(**kwargs) search = self.request.GET.get('search', '') context['search'] = search context['tag_list'] = Entry.tags.most_common() # TODO: mudar a forma de carregamento das categorias context['category_list'] = Category.objects.filter(area=3 ).order_by('?')[:10] return context class EntryDateDetailView(EnterpriseExtraContext, generic.DateDetailView): # model = Entry queryset = Entry.published.all() date_field = 'created' make_object_list = True allow_future = True def get_context_data(self, **kwargs): context = super(EntryDateDetailView, self).get_context_data(**kwargs) context['tag_list'] = Entry.tags.most_common() # TODO: mudar a forma de carregamento das categorias context['category_list'] = Category.objects.all().order_by('?')[:10] return context class EntryTagListView(EntryListView): """ Herda de EntryListView mudando o filtro para tag selecionada """ def get_queryset(self): """ Incluir apenas as Entries marcadas com a tag selecionada """ return Entry.published.filter(tags__slug=self.kwargs['tag_slug']) class EntryCategoryListView(EntryListView): """ Herda de EntryListView mudando o filtro para categoria selecionada """ def get_queryset(self, **kwargs): """ Inclui apenas as Entries marcadas com a categoria selecionada """ return Entry.published.filter(categories__slug=self.kwargs['cat_slug'])
[ "kleberr@msn.com" ]
kleberr@msn.com
980959abb37db81339bd74bddf75e0f1e7839b61
f4b77a4bac8acdf550a13e04661765f0eab4509d
/contenta/manager.py
ec84b4863d2e655bc5dc1fb26e6a8a446f14342a
[]
no_license
k1000/contenta
b6d083c2c78e8fc8bd27481c4e94e8c0ef841909
a3d11ac71a1bba82320daa2be6a7b322aa76b6b9
refs/heads/master
2021-01-18T22:59:14.022598
2016-06-22T08:25:22
2016-06-22T08:25:22
7,433,369
2
0
null
null
null
null
UTF-8
Python
false
false
429
py
from django.db import models class PageManager(models.Manager): def active(self, **filters): return super(PageManager, self).get_query_set().filter(state=2, **filters) def siblings(self, page): # TODO if page.parent: return self.active().filter(parent__pk=page.parent.pk) def same_template(self, template_name): return self.active().filter(template_name__exact=template_name)
[ "selwak@gmail.com" ]
selwak@gmail.com
7b46bd89e96c7e6548ef6f816becf00ba0d630ee
a56a74b362b9263289aad96098bd0f7d798570a2
/venv/lib/python3.8/site-packages/matplotlib/backends/backend_agg.py
67e80611ef10e78892a747eb9f010880cb4577dc
[ "MIT" ]
permissive
yoonkt200/ml-theory-python
5812d06841d30e1068f6592b5730a40e87801313
7643136230fd4f291b6e3dbf9fa562c3737901a2
refs/heads/master
2022-12-21T14:53:21.624453
2021-02-02T09:33:07
2021-02-02T09:33:07
132,319,537
13
14
MIT
2022-12-19T17:23:57
2018-05-06T08:17:45
Python
UTF-8
Python
false
false
22,347
py
""" An agg http://antigrain.com/ backend Features that are implemented * capstyles and join styles * dashes * linewidth * lines, rectangles, ellipses * clipping to a rectangle * output to RGBA and PNG, optionally JPEG and TIFF * alpha blending * DPI scaling properly - everything scales properly (dashes, linewidths, etc) * draw polygon * freetype2 w/ ft2font TODO: * integrate screen dpi w/ ppi and text """ try: import threading except ImportError: import dummy_threading as threading try: from contextlib import nullcontext except ImportError: from contextlib import ExitStack as nullcontext # Py 3.6. from math import radians, cos, sin import numpy as np from matplotlib import cbook, rcParams, __version__ from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, RendererBase) from matplotlib.font_manager import findfont, get_font from matplotlib.ft2font import (LOAD_FORCE_AUTOHINT, LOAD_NO_HINTING, LOAD_DEFAULT, LOAD_NO_AUTOHINT) from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox, BboxBase from matplotlib import colors as mcolors from matplotlib.backends._backend_agg import RendererAgg as _RendererAgg from matplotlib.backend_bases import _has_pil if _has_pil: from PIL import Image backend_version = 'v2.2' def get_hinting_flag(): mapping = { True: LOAD_FORCE_AUTOHINT, False: LOAD_NO_HINTING, 'either': LOAD_DEFAULT, 'native': LOAD_NO_AUTOHINT, 'auto': LOAD_FORCE_AUTOHINT, 'none': LOAD_NO_HINTING } return mapping[rcParams['text.hinting']] class RendererAgg(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles """ # we want to cache the fonts at the class level so that when # multiple figures are created we can reuse them. This helps with # a bug on windows where the creation of too many figures leads to # too many open file handles. However, storing them at the class # level is not thread safe. The solution here is to let the # FigureCanvas acquire a lock on the fontd at the start of the # draw, and release it when it is done. This allows multiple # renderers to share the cached fonts, but only one figure can # draw at time and so the font cache is used by only one # renderer at a time. lock = threading.RLock() def __init__(self, width, height, dpi): RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height self._renderer = _RendererAgg(int(width), int(height), dpi) self._filter_renderers = [] self._update_methods() self.mathtext_parser = MathTextParser('Agg') self.bbox = Bbox.from_bounds(0, 0, self.width, self.height) def __getstate__(self): # We only want to preserve the init keywords of the Renderer. # Anything else can be re-created. return {'width': self.width, 'height': self.height, 'dpi': self.dpi} def __setstate__(self, state): self.__init__(state['width'], state['height'], state['dpi']) def _update_methods(self): self.draw_gouraud_triangle = self._renderer.draw_gouraud_triangle self.draw_gouraud_triangles = self._renderer.draw_gouraud_triangles self.draw_image = self._renderer.draw_image self.draw_markers = self._renderer.draw_markers self.draw_path_collection = self._renderer.draw_path_collection self.draw_quad_mesh = self._renderer.draw_quad_mesh self.copy_from_bbox = self._renderer.copy_from_bbox self.get_content_extents = self._renderer.get_content_extents def tostring_rgba_minimized(self): extents = self.get_content_extents() bbox = [[extents[0], self.height - (extents[1] + extents[3])], [extents[0] + extents[2], self.height - extents[1]]] region = self.copy_from_bbox(bbox) return np.array(region), extents def draw_path(self, gc, path, transform, rgbFace=None): # docstring inherited nmax = rcParams['agg.path.chunksize'] # here at least for testing npts = path.vertices.shape[0] if (nmax > 100 and npts > nmax and path.should_simplify and rgbFace is None and gc.get_hatch() is None): nch = np.ceil(npts / nmax) chsize = int(np.ceil(npts / nch)) i0 = np.arange(0, npts, chsize) i1 = np.zeros_like(i0) i1[:-1] = i0[1:] - 1 i1[-1] = npts for ii0, ii1 in zip(i0, i1): v = path.vertices[ii0:ii1, :] c = path.codes if c is not None: c = c[ii0:ii1] c[0] = Path.MOVETO # move to end of last chunk p = Path(v, c) try: self._renderer.draw_path(gc, p, transform, rgbFace) except OverflowError: raise OverflowError("Exceeded cell block limit (set " "'agg.path.chunksize' rcparam)") else: try: self._renderer.draw_path(gc, path, transform, rgbFace) except OverflowError: raise OverflowError("Exceeded cell block limit (set " "'agg.path.chunksize' rcparam)") def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) xd = descent * sin(radians(angle)) yd = descent * cos(radians(angle)) x = round(x + ox + xd) y = round(y - oy + yd) self._renderer.draw_text_image(font_image, x, y + 1, angle, gc) def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): # docstring inherited if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) flags = get_hinting_flag() font = self._get_agg_font(prop) if font is None: return None # We pass '0' for angle here, since it will be rotated (in raster # space) in the following call to draw_text_image). font.set_text(s, 0, flags=flags) font.draw_glyphs_to_bitmap(antialiased=rcParams['text.antialiased']) d = font.get_descent() / 64.0 # The descent needs to be adjusted for the angle. xo, yo = font.get_bitmap_offset() xo /= 64.0 yo /= 64.0 xd = d * sin(radians(angle)) yd = d * cos(radians(angle)) x = round(x + xo + xd) y = round(y + yo + yd) self._renderer.draw_text_image(font, x, y + 1, angle, gc) def get_text_width_height_descent(self, s, prop, ismath): # docstring inherited if ismath in ["TeX", "TeX!"]: # todo: handle props texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent( s, fontsize, renderer=self) return w, h, d if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent flags = get_hinting_flag() font = self._get_agg_font(prop) font.set_text(s, 0.0, flags=flags) w, h = font.get_width_height() # width and height of unrotated string d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): # docstring inherited # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) Z = np.array(Z * 255.0, np.uint8) w, h, d = self.get_text_width_height_descent(s, prop, ismath) xd = d * sin(radians(angle)) yd = d * cos(radians(angle)) x = round(x + xd) y = round(y + yd) self._renderer.draw_text_image(Z, x, y, angle, gc) def get_canvas_width_height(self): # docstring inherited return self.width, self.height def _get_agg_font(self, prop): """ Get the font for text instance t, caching for efficiency """ fname = findfont(prop) font = get_font(fname) font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def points_to_pixels(self, points): # docstring inherited return points * self.dpi / 72 def buffer_rgba(self): return memoryview(self._renderer) def tostring_argb(self): return np.asarray(self._renderer).take([3, 0, 1, 2], axis=2).tobytes() def tostring_rgb(self): return np.asarray(self._renderer).take([0, 1, 2], axis=2).tobytes() def clear(self): self._renderer.clear() def option_image_nocomposite(self): # docstring inherited # It is generally faster to composite each image directly to # the Figure, and there's no file size benefit to compositing # with the Agg backend return True def option_scale_image(self): # docstring inherited return False def restore_region(self, region, bbox=None, xy=None): """ Restore the saved region. If bbox (instance of BboxBase, or its extents) is given, only the region specified by the bbox will be restored. *xy* (a pair of floats) optionally specifies the new position (the LLC of the original region, not the LLC of the bbox) where the region will be restored. >>> region = renderer.copy_from_bbox() >>> x1, y1, x2, y2 = region.get_extents() >>> renderer.restore_region(region, bbox=(x1+dx, y1, x2, y2), ... xy=(x1-dx, y1)) """ if bbox is not None or xy is not None: if bbox is None: x1, y1, x2, y2 = region.get_extents() elif isinstance(bbox, BboxBase): x1, y1, x2, y2 = bbox.extents else: x1, y1, x2, y2 = bbox if xy is None: ox, oy = x1, y1 else: ox, oy = xy # The incoming data is float, but the _renderer type-checking wants # to see integers. self._renderer.restore_region(region, int(x1), int(y1), int(x2), int(y2), int(ox), int(oy)) else: self._renderer.restore_region(region) def start_filter(self): """ Start filtering. It simply create a new canvas (the old one is saved). """ self._filter_renderers.append(self._renderer) self._renderer = _RendererAgg(int(self.width), int(self.height), self.dpi) self._update_methods() def stop_filter(self, post_processing): """ Save the plot in the current canvas as a image and apply the *post_processing* function. def post_processing(image, dpi): # ny, nx, depth = image.shape # image (numpy array) has RGBA channels and has a depth of 4. ... # create a new_image (numpy array of 4 channels, size can be # different). The resulting image may have offsets from # lower-left corner of the original image return new_image, offset_x, offset_y The saved renderer is restored and the returned image from post_processing is plotted (using draw_image) on it. """ width, height = int(self.width), int(self.height) buffer, (l, b, w, h) = self.tostring_rgba_minimized() self._renderer = self._filter_renderers.pop() self._update_methods() if w > 0 and h > 0: img = np.frombuffer(buffer, np.uint8) img, ox, oy = post_processing(img.reshape((h, w, 4)) / 255., self.dpi) gc = self.new_gc() if img.dtype.kind == 'f': img = np.asarray(img * 255., np.uint8) img = img[::-1] self._renderer.draw_image(gc, l + ox, height - b - h + oy, img) class FigureCanvasAgg(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ def copy_from_bbox(self, bbox): renderer = self.get_renderer() return renderer.copy_from_bbox(bbox) def restore_region(self, region, bbox=None, xy=None): renderer = self.get_renderer() return renderer.restore_region(region, bbox, xy) def draw(self): """ Draw the figure using the renderer. """ self.renderer = self.get_renderer(cleared=True) # Acquire a lock on the shared font cache. with RendererAgg.lock, \ (self.toolbar._wait_cursor_for_draw_cm() if self.toolbar else nullcontext()): self.figure.draw(self.renderer) # A GUI class may be need to update a window using this draw, so # don't forget to call the superclass. super().draw() def get_renderer(self, cleared=False): l, b, w, h = self.figure.bbox.bounds key = w, h, self.figure.dpi reuse_renderer = (hasattr(self, "renderer") and getattr(self, "_lastKey", None) == key) if not reuse_renderer: self.renderer = RendererAgg(w, h, self.figure.dpi) self._lastKey = key elif cleared: self.renderer.clear() return self.renderer def tostring_rgb(self): """Get the image as an RGB byte string. `draw` must be called at least once before this function will work and to update the renderer for any subsequent changes to the Figure. Returns ------- bytes """ return self.renderer.tostring_rgb() def tostring_argb(self): """Get the image as an ARGB byte string. `draw` must be called at least once before this function will work and to update the renderer for any subsequent changes to the Figure. Returns ------- bytes """ return self.renderer.tostring_argb() def buffer_rgba(self): """Get the image as a memoryview to the renderer's buffer. `draw` must be called at least once before this function will work and to update the renderer for any subsequent changes to the Figure. Returns ------- memoryview """ return self.renderer.buffer_rgba() def print_raw(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() with cbook.open_file_cm(filename_or_obj, "wb") as fh: fh.write(renderer.buffer_rgba()) print_rgba = print_raw def print_png(self, filename_or_obj, *args, metadata=None, pil_kwargs=None, **kwargs): """ Write the figure to a PNG file. Parameters ---------- filename_or_obj : str or PathLike or file-like object The file to write to. metadata : dict, optional Metadata in the PNG file as key-value pairs of bytes or latin-1 encodable strings. According to the PNG specification, keys must be shorter than 79 chars. The `PNG specification`_ defines some common keywords that may be used as appropriate: - Title: Short (one line) title or caption for image. - Author: Name of image's creator. - Description: Description of image (possibly long). - Copyright: Copyright notice. - Creation Time: Time of original image creation (usually RFC 1123 format). - Software: Software used to create the image. - Disclaimer: Legal disclaimer. - Warning: Warning of nature of content. - Source: Device used to create the image. - Comment: Miscellaneous comment; conversion from other image format. Other keywords may be invented for other purposes. If 'Software' is not given, an autogenerated value for matplotlib will be used. For more details see the `PNG specification`_. .. _PNG specification: \ https://www.w3.org/TR/2003/REC-PNG-20031110/#11keywords pil_kwargs : dict, optional If set to a non-None value, use Pillow to save the figure instead of Matplotlib's builtin PNG support, and pass these keyword arguments to `PIL.Image.save`. If the 'pnginfo' key is present, it completely overrides *metadata*, including the default 'Software' key. """ from matplotlib import _png if metadata is None: metadata = {} default_metadata = { "Software": f"matplotlib version{__version__}, http://matplotlib.org/", } FigureCanvasAgg.draw(self) if pil_kwargs is not None: from PIL import Image from PIL.PngImagePlugin import PngInfo # Only use the metadata kwarg if pnginfo is not set, because the # semantics of duplicate keys in pnginfo is unclear. if "pnginfo" in pil_kwargs: if metadata: cbook._warn_external("'metadata' is overridden by the " "'pnginfo' entry in 'pil_kwargs'.") else: pnginfo = PngInfo() for k, v in {**default_metadata, **metadata}.items(): pnginfo.add_text(k, v) pil_kwargs["pnginfo"] = pnginfo pil_kwargs.setdefault("dpi", (self.figure.dpi, self.figure.dpi)) (Image.fromarray(np.asarray(self.buffer_rgba())) .save(filename_or_obj, format="png", **pil_kwargs)) else: renderer = self.get_renderer() with cbook.open_file_cm(filename_or_obj, "wb") as fh: _png.write_png(renderer._renderer, fh, self.figure.dpi, metadata={**default_metadata, **metadata}) def print_to_buffer(self): FigureCanvasAgg.draw(self) renderer = self.get_renderer() return (bytes(renderer.buffer_rgba()), (int(renderer.width), int(renderer.height))) if _has_pil: # Note that these methods should typically be called via savefig() and # print_figure(), and the latter ensures that `self.figure.dpi` already # matches the dpi kwarg (if any). @cbook._delete_parameter("3.2", "dryrun") def print_jpg(self, filename_or_obj, *args, dryrun=False, pil_kwargs=None, **kwargs): """ Write the figure to a JPEG file. Parameters ---------- filename_or_obj : str or PathLike or file-like object The file to write to. Other Parameters ---------------- quality : int The image quality, on a scale from 1 (worst) to 100 (best). The default is :rc:`savefig.jpeg_quality`. Values above 95 should be avoided; 100 completely disables the JPEG quantization stage. optimize : bool If present, indicates that the encoder should make an extra pass over the image in order to select optimal encoder settings. progressive : bool If present, indicates that this image should be stored as a progressive JPEG file. pil_kwargs : dict, optional Additional keyword arguments that are passed to `PIL.Image.save` when saving the figure. These take precedence over *quality*, *optimize* and *progressive*. """ FigureCanvasAgg.draw(self) if dryrun: return # The image is pasted onto a white background image to handle # transparency. image = Image.fromarray(np.asarray(self.buffer_rgba())) background = Image.new('RGB', image.size, "white") background.paste(image, image) if pil_kwargs is None: pil_kwargs = {} for k in ["quality", "optimize", "progressive"]: if k in kwargs: pil_kwargs.setdefault(k, kwargs[k]) pil_kwargs.setdefault("quality", rcParams["savefig.jpeg_quality"]) pil_kwargs.setdefault("dpi", (self.figure.dpi, self.figure.dpi)) return background.save( filename_or_obj, format='jpeg', **pil_kwargs) print_jpeg = print_jpg @cbook._delete_parameter("3.2", "dryrun") def print_tif(self, filename_or_obj, *args, dryrun=False, pil_kwargs=None, **kwargs): FigureCanvasAgg.draw(self) if dryrun: return if pil_kwargs is None: pil_kwargs = {} pil_kwargs.setdefault("dpi", (self.figure.dpi, self.figure.dpi)) return (Image.fromarray(np.asarray(self.buffer_rgba())) .save(filename_or_obj, format='tiff', **pil_kwargs)) print_tiff = print_tif @_Backend.export class _BackendAgg(_Backend): FigureCanvas = FigureCanvasAgg FigureManager = FigureManagerBase
[ "kitae.yoon@deliveryhero.co.kr" ]
kitae.yoon@deliveryhero.co.kr
583466431748d71c10e4768b2295e9e980422200
10d77a1bca1358738179185081906956faf3963a
/venv/Lib/site-packages/django/core/mail/backends/filebased.py
f01e1497dbcc6dc15a7cf45416368b8606f613a2
[]
no_license
ekansh18/WE_Care_NGO_WEBSITE
3eb6b12ae798da26aec75d409b0b92f7accd6c55
7c1eaa78d966d13893c38e7157744fbf8f377e71
refs/heads/master
2023-07-16T07:22:48.920429
2021-08-31T04:11:19
2021-08-31T04:11:19
401,563,669
0
0
null
null
null
null
UTF-8
Python
false
false
2,727
py
"""Email backend that writes messages to a file.""" import datetime import os from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.mail.backends.console import ( EmailBackend """Email backend that writes messages to a file.""" import datetime import os from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.mail.backends.console import ( EmailBackend as ConsoleEmailBackend, ) class EmailBackend(ConsoleEmailBackend): def __init__(self, *args, file_path=None, **kwargs): self._fname = None if file_path is not None: self.file_path = file_path else: self.file_path = getattr(settings, 'EMAIL_FILE_PATH', None) # Make sure self.file_path is a string. if not isinstance(self.file_path, str): raise ImproperlyConfigured('Path for saving emails is invalid: %r' % self.file_path) self.file_path = os.path.abspath(self.file_path) try: os.makedirs(self.file_path, exist_ok=True) except FileExistsError: raise ImproperlyConfigured( 'Path for saving email messages exists, but is not a directory: %s' % self.file_path ) except OSError as err: raise ImproperlyConfigured( 'Could not create directory for saving email messages: %s (%s)' % (self.file_path, err) ) # Make sure that self.file_path is writable. if not os.access(self.file_path, os.W_OK): raise ImproperlyConfigured('Could not write to directory: %s' % self.file_path) # Finally, call super(). # Since we're using the console-based backend as a base, # force the stream to be None, so we don't default to stdout kwargs['stream'] = None super().__init__(*args, **kwargs) def write_message(self, message): self.stream.write(message.message().as_bytes() + b'\n') self.stream.write(b'-' * 79) self.stream.write(b'\n') def _get_filename(self): """Return a unique file name.""" if self._fname is None: timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") fname = "%s-%s.log" % (timestamp, abs(id(self))) self._fname = os.path.join(self.file_path, fname) return self._fname def open(self): if self.stream is None: self.stream = open(self._get_filename(), 'ab') return True return False def close(self): try: if self.stream is not None: self.stream.close() finally: self.stream = None
[ "ekansh00@gmail.com" ]
ekansh00@gmail.com
b77167d258ce02e04bdda1ea6a83707259bbe0f7
80e701c5b9c03ef288848d8b368360e0940d9b67
/sleyeball/files.py
51db5f0a7dda0c4166dceea14a6d3bc400d4b819
[]
no_license
esheldon/sleyeball
a4917300b041747e0600186f0e596c6d83a95ff4
9eee500119d2bc07c942350a67c8777257e92a3d
refs/heads/master
2020-06-20T05:22:59.921610
2019-07-17T18:38:29
2019-07-17T18:38:29
197,008,586
0
0
null
null
null
null
UTF-8
Python
false
false
1,756
py
import os def get_base_dir(): """ base directory """ return os.environ['SLDIR'] def get_cand_dir(): """ we keep lists here """ return os.path.join(get_base_dir(), 'candidates') def get_cand_file_orig(): """ holds paths to coadds """ d = get_cand_dir() return os.path.join(d, 'z4ErinSheldon.fits') def get_cand_file(): """ holds paths to coadds """ d = get_cand_dir() return os.path.join(d, 'z4ErinSheldon-clean.fits') def get_badreg_dir(): """ we keep lists here """ return os.path.join(get_base_dir(), 'badregions') def get_badreg_file(): """ holds paths to coadds """ d = get_badreg_dir() return os.path.join(d, 'y3a2_foreground_mask_v2.1.fits.gz') def get_stamp_dir(tilename): """ location for the image and temp files """ return os.path.join( get_base_dir(), 'stamps', tilename, ) def get_temp_dir(): """ location for the image and temp files """ return os.environ['TMPDIR'] def get_stamp_file(tilename, number): """ location of a output file """ odir = get_stamp_dir(tilename) fname = '%s-%06d.jpg' % (tilename, number) return os.path.join(odir, fname) # # batch processing # def get_script_dir(): """ location for scripts """ return os.path.join(get_base_dir(), 'scripts') def get_script_file(tilename): """ location for scripts """ d = get_script_dir() fname = '%s.sh' % tilename return os.path.join(d, fname) def get_wq_file(tilename, missing=False): """ location for scripts """ fname = '%s.yaml' % tilename d = get_script_dir() return os.path.join(d, fname)
[ "erin.sheldon@gmail.com" ]
erin.sheldon@gmail.com
3d0f5f9fa5889a3b0c4e7e33c56710be4c790b92
03f82e74d54399eff2282e853ffacf4a29722ca4
/2.py
323c7ed69b8ae0730cb39c2e08f0ee9a39167d3a
[]
no_license
SerdarKuliev/proj1
d7eff875ca7788e7e391b417bcab5ba7ed9975b1
07c3a3f9069b512378e78db5caedd0c73c39e2df
refs/heads/dev
2022-12-19T06:50:26.810610
2020-09-29T12:34:45
2020-09-29T12:34:45
265,944,603
0
0
null
2020-06-13T00:53:17
2020-05-21T20:25:21
Python
UTF-8
Python
false
false
1,644
py
m1 = int(input("Введите выручку за январь 20 года.")) m2 = int(input("Введите выручку за февраль 20 года.")) m3 = int(input("Введите выручку за март 20 года.")) n1 = int(input("Введите расходы за январь 20 года.")) n2 = int(input("Введите расходы за февраль 20 года.")) n3 = int(input("Введите расходы за март 20 года.")) C1 = int(input("Введите среднее колчество сотрудников, с января по март")) R1 = int(m1-n1) R2 = int(m2-n2) R3 = int(m3-n3) S1 = int(m1/n1*100) S2 = int(m2/n2*100) S3 = int(m3/n3*100) X1 = int(R1/C1) X2 = int(R2/C1) X3 = int(R3/C1) R1 = str(R1) R2 = str(R2) R3 = str(R3) X1 = str(X1) X2 = str(X2) X3 = str(X3) print("Теперь пойдем по порядку.") if (m1>n1): print("Заработали в январе " + (R1) + " руб." + ("%.2f" % S1) + "%") else: print("Янваь принес убытки, " +(R1)+ " руб." ) if (m2>n2): print("Заработали в феврале " +(R2)+ " руб." +("%.2f" %S2)+ "%") else: print("Февраль принес убытки, " +(R2)+ " руб." ) if (m3>n3): print("Заработали в марте " +(R3)+ " руб." +("%.2f" %S3)+ "%") else: print("Март принес убытки, " +(R3)+ " руб." ) print("В среднем, доход на одного оструднка составил: " +(X1)+ "руб. в январе." +(X2)+ "руб. в феврале." +(X3)+ "руб. в марте.") print("Ок?")
[ "“Serdarkuliev@gmail.com”" ]
“Serdarkuliev@gmail.com”
b3effc169e3db184f1082b87601f29458d399353
38952ab2dd82309b7ef2b510a69084f9e0945921
/shuake/venv/bin/easy_install
eb458e8af0336cd3e6c931240e2437b961f90561
[]
no_license
zicarb/YorkCoursebro
6c88fdf66c852defbd7e26e204c7715f8384e16d
ac5d4aba8320d7c73c6bd2bdc9d8dbbb4e1c8dea
refs/heads/master
2020-03-19T19:47:56.649018
2019-02-13T04:53:50
2019-02-13T04:53:50
136,874,107
0
0
null
null
null
null
UTF-8
Python
false
false
440
#!/Users/zombie/PycharmProjects/shuake/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
[ "zicarb09@gmail.com" ]
zicarb09@gmail.com
a67af589f2fcef2b0ce235cad9572f2f6497b238
e96434fd49285d66cf926730f3b5c8ae2e51ee77
/org/cyy/fw/piedis/Client.py
b07f56a2fd4a05c6239d0a59031c2d9fb1a55889
[]
no_license
chenyihan/piedis
2d213f2b06ef151803b7b8a9d9c253429fbf41c4
2649d71c5e6d599fa33864e5ca82bdce23fede6f
refs/heads/master
2021-01-20T12:37:28.735144
2015-12-17T15:42:16
2015-12-17T15:42:16
39,572,341
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
23,872
py
# -*- coding: GBK -*- ''' Created on 2015Äê7ÔÂ8ÈÕ @author: yunyun ''' import socket from org.cyy.fw.piedis import RedisProtocol, Command, RedisKeyword, Response from org.cyy.fw.piedis.Command import BinaryCommand from org.cyy.fw.piedis.Server import ServerNode from _sha1 import sha1 class PiedisClient: def __init__(self): self.isConnect = False self.sock = None self.serverNode = ServerNode() self.connectTimeout = 0 def setHost(self, host): self.serverNode.setHost(host) return self def setPort(self, port): self.serverNode.setPort(port) return self def setConnectTimeout(self, timeout): self.connectTimeout = timeout def dump(self, key): resp = self.sendCommand(Command.DUMP, key) return resp def expire(self, key, seconds): resp = self.sendCommand(Command.EXPIRE, key, str(seconds)) return Response.toInt(resp) == 1 def expireAt(self, key, ts): resp = self.sendCommand(Command.EXPIREAT, key, str(ts)) return Response.toInt(resp) == 1 def migrate(self, key, destHost, destPort, destDb, timeout): resp = self.sendCommand(Command.MIGRATE, key, str(destHost), str(destPort), str(destDb), str(timeout)) return Response.toStr(resp) def move(self, key, destDb): resp = self.sendCommand(Command.MOVE, key, str(destDb)) return Response.toInt(resp) == 1 def objectRefcount(self, key): resp = self.sendCommand(Command.OBJECT, RedisKeyword.REFCOUNT, key) return Response.toInt(resp) def objectIdletime(self, key): resp = self.sendCommand(Command.OBJECT, RedisKeyword.IDLETIME, key) return Response.toInt(resp) def objectEncoding(self, key): resp = self.sendCommand(Command.OBJECT, RedisKeyword.ENCODING, key) return Response.toStr(resp) def persist(self, key): resp = self.sendCommand(Command.PERSIST, key) return Response.toInt(resp) == 1 def pExpire(self, key, millSeconds): resp = self.sendCommand(Command.PEXPIRE, key, str(millSeconds)) return Response.toInt(resp) == 1 def pExpireAt(self, key, millTs): resp = self.sendCommand(Command.PEXPIREAT, key, str(millTs)) return Response.toInt(resp) == 1 def pTTL(self, key): resp = self.sendCommand(Command.PTTL, key) return Response.toInt(resp) def randomKey(self): resp = self.sendCommand(Command.RANDOMKEY) return Response.toStr(resp) def rename(self, key, newKey): resp = self.sendCommand(Command.RENAME, key, newKey) return Response.toStr(resp) def renameNX(self, key, newKey): resp = self.sendCommand(Command.RENAMENX, key, newKey) return Response.toInt(resp) == 1 def restore(self, key, serialValue, millTTL, replace): if replace : resp = self.sendCommand(Command.RESTORE, key, str(millTTL), serialValue, RedisKeyword.REPLACE) return Response.toStr(resp) else: resp = self.sendCommand(Command.RESTORE, key, str(millTTL), serialValue) return Response.toStr(resp) def sort(self, key, params, destKey): args = [] args.append(key) if params != None: args += params.getParams() if destKey != None: args.append(RedisKeyword.STORE) args.append(destKey) resp = self.sendCommand(Command.SORT, *tuple(args)) return Response.toTuple(resp) def ttl(self, key): resp = self.sendCommand(Command.TTL, key) return Response.toInt(resp) def type(self, key): resp = self.sendCommand(Command.TYPE, key) return Response.toStr(resp) def scan(self, cursor, params): args = (str(cursor),) if params != None: args = args + params.getParams() resp = self.sendCommand(Command.SCAN, *args) return Response.toScanResult(resp) def set(self, key, value): resp = self.sendCommand(Command.SET, key, str(value)) return Response.toStr(resp) def get(self, key): resp = self.sendCommand(Command.GET, key) return Response.toStr(resp) def Del(self, key, *moreKeys): resp = self.sendCommand(Command.DEL, key, *moreKeys) return Response.toInt(resp) def keys(self, pattern): resp = self.sendCommand(Command.KEYS, pattern) return Response.toTuple(resp) def exists(self, key): resp = self.sendCommand(Command.EXISTS, key) return Response.toInt(resp) == 1 def append(self, key, value): resp = self.sendCommand(Command.APPEND, key, value) return Response.toInt(resp) def setBit(self, key, offset, value): resp = self.sendCommand(Command.SETBIT, key, str(offset), value) return Response.toInt(resp) def getBit(self, key, offset): resp = self.sendCommand(Command.GETBIT, key, str(offset)) return Response.toInt(resp) def bitCount(self, key, start, end): args = [key] if start != None: args.append(str(start)) if end != None: args.append(str(end)) resp = self.sendCommand(Command.BITCOUNT, *tuple(args)) return Response.toInt(resp) def bitop(self, bitOP, destKey, srcKey, *moreSrcKeys): resp = self.sendCommand(Command.BITOP, bitOP, destKey, srcKey, *moreSrcKeys) return Response.toInt(resp) def incr(self, key): resp = self.sendCommand(Command.INCR, key) return Response.toInt(resp) def incrBy(self, key, increment): resp = self.sendCommand(Command.INCRBY, key, str(increment)) return Response.toInt(resp) def incrByFloat(self, key, increment): resp = self.sendCommand(Command.INCRBYFLOAT, key, str(increment)) return Response.toFloat(resp) def decr(self, key): resp = self.sendCommand(Command.DECR, key) return Response.toInt(resp) def decrBy(self, key, increment): resp = self.sendCommand(Command.DECRBY, key, str(increment)) return Response.toInt(resp) def getRange(self, key, start, end): resp = self.sendCommand(Command.GETRANGE, key, str(start), str(end)) return Response.toStr(resp) def getSet(self, key, value): resp = self.sendCommand(Command.GETSET, key, value) return Response.toStr(resp) def mSet(self, keyValuePair, *moreKeyValuePair): args = Command.combineArgs(keyValuePair, *moreKeyValuePair) resp = self.sendCommand(Command.MSET, *args) return Response.toStr(resp) def mGet(self, key, *moreKeys): resp = self.sendCommand(Command.MGET, key, *moreKeys) return Response.toTuple(resp) def mSetNX(self, keyValuePair, *moreKeyValuePair): args = Command.combineArgs(keyValuePair, *moreKeyValuePair) resp = self.sendCommand(Command.MSETNX, *args) return Response.toInt(resp) == 1 def setNX(self, key, value): resp = self.sendCommand(Command.SETNX, key, value) return Response.toInt(resp) == 1 def setEX(self, key, seconds, value): resp = self.sendCommand(Command.SETEX, key, str(seconds), value) return Response.toStr(resp) def pSetEX(self, key, millSeconds, value): resp = self.sendCommand(Command.PSETEX, key, str(millSeconds), value) return Response.toStr(resp) def setRange(self, key, offset, value): resp = self.sendCommand(Command.SETRANGE, key, str(offset), value) return Response.toInt(resp) def strLen(self, key): resp = self.sendCommand(Command.STRLEN, key) return Response.toInt(resp) def hSet(self, key, field, value): resp = self.sendCommand(Command.HSET, key, field, value) return Response.toInt(resp) == 1 def hSetNX(self, key, field, value): resp = self.sendCommand(Command.HSETNX, key, field, value) return Response.toInt(resp) == 1 def hGet(self, key, field): resp = self.sendCommand(Command.HGET, key, field) return Response.toStr(resp) def hGetAll(self, key): resp = self.sendCommand(Command.HGETALL, key) return Response.toDict(resp) def hDel(self, key, field): resp = self.sendCommand(Command.HDEL, key, field) return Response.toInt(resp) def hExist(self, key, field): resp = self.sendCommand(Command.HEXISTS, key, field) return Response.toInt(resp) == 1 def hIncrBy(self, key, field, increment): resp = self.sendCommand(Command.HINCRBY, key, field, str(increment)) return Response.toInt(resp) def hIncrByFloat(self, key, field, increment): resp = self.sendCommand(Command.HINCRBYFLOAT, key, field, str(increment)) return Response.toFloat(resp) def hKeys(self, key): resp = self.sendCommand(Command.HKEYS, key) return Response.toTuple(resp) def hVals(self, key): resp = self.sendCommand(Command.HVALS, key) return Response.toTuple(resp) def hLen(self, key): resp = self.sendCommand(Command.HLEN, key) return Response.toInt(resp) def hMSet(self, key, keyValuePair, *moreKeyValuePairs): args = Command.combineArgs(keyValuePair, *moreKeyValuePairs) resp = self.sendCommand(Command.HMSET, key, *args) return Response.toStr(resp) def hMGet(self, key, field, *moreFields): resp = self.sendCommand(Command.HMGET, key, field, *moreFields) return Response.toTuple(resp) ''' The hscan command seem to be a bug ''' def hScan(self, key, cursor, scanParams): args = (key, cursor) if scanParams != None: args += scanParams.getParams() resp = self.sendCommand(Command.HSCAN, *args) return Response.toHashScanResult(resp) def lPush(self, key, value, *moreValues): resp = self.sendCommand(Command.LPUSH, key, value, *moreValues) return Response.toInt(resp) def lPushX(self, key, value): resp = self.sendCommand(Command.LPUSHX, key, value) return Response.toInt(resp) def lPop(self, key): resp = self.sendCommand(Command.LPOP, key) return Response.toStr(resp) def rPush(self, key, value, *moreValues): resp = self.sendCommand(Command.RPUSH, key, value, *moreValues) return Response.toInt(resp) def rPushX(self, key, value): resp = self.sendCommand(Command.RPUSHX, key, value) return Response.toInt(resp) def rPop(self, key): resp = self.sendCommand(Command.RPOP, key) return Response.toStr(resp) def blPop(self, timeout, key, *morekeys): args = (key,) args += morekeys args += (timeout,) resp = self.sendCommand(Command.BLPOP, *args) return Response.toTuple(resp) def brPop(self, timeout, key, *morekeys): args = (key,) args += morekeys args += (timeout,) resp = self.sendCommand(Command.BRPOP, *args) return Response.toTuple(resp) def lRange(self, key, start, end): resp = self.sendCommand(Command.LRANGE, key, str(start), str(end)) return Response.toTuple(resp) def rPopLPush(self, sourceKey, destKey): resp = self.sendCommand(Command.RPOPLPUSH, sourceKey, destKey) return Response.toStr(resp) def bRPopLPush(self, sourceKey, destKey, timeout): resp = self.sendCommand(Command.BRPOPLPUSH, sourceKey, destKey, str(timeout)) return Response.toStr(resp) def lIndex(self, key, index): resp = self.sendCommand(Command.LINDEX, key, str(index)) return Response.toStr(resp) def lInsert(self, key, value, pivot, isBefore): extraParam = RedisKeyword.BEFORE if not isBefore: extraParam = RedisKeyword.AFTER resp = self.sendCommand(Command.LINSERT, key, extraParam, pivot, value) return Response.toInt(resp) def lLen(self, key): resp = self.sendCommand(Command.LLEN, key) return Response.toInt(resp) def lREM(self, key, value, count): resp = self.sendCommand(Command.LREM, key, count, value) return Response.toInt(resp) def lSet(self, key, index, value): resp = self.sendCommand(Command.LSET, key, index, value) return Response.toStr(resp) def lTrim(self, key, start, end): resp = self.sendCommand(Command.LTRIM, key, str(start), str(end)) return Response.toStr(resp) def sAdd(self, key, member, *moreMember): resp = self.sendCommand(Command.SADD, key, member, *moreMember) return Response.toInt(resp) def sCard(self, key): resp = self.sendCommand(Command.SCARD, key) return Response.toInt(resp) def sPop(self, key): resp = self.sendCommand(Command.SPOP, key) return Response.toStr(resp) def sRandMember(self, key, count): resp = self.sendCommand(Command.SRANDMEMBER, key, str(count)) return Response.toTuple(resp) def sMembers(self, key): resp = self.sendCommand(Command.SMEMBERS, key) return Response.toTuple(resp) def sDiff(self, key, *moreKeys): resp = self.sendCommand(Command.SDIFF, key, *moreKeys) return Response.toTuple(resp) def sDiffStore(self, destKey, key, *moreKeys): resp = self.sendCommand(Command.SDIFFSTORE, destKey, key, *moreKeys) return Response.toInt(resp) def sInter(self, key, *moreKeys): resp = self.sendCommand(Command.SINTER, key, *moreKeys) return Response.toTuple(resp) def sInterStore(self, destKey, key, *moreKeys): resp = self.sendCommand(Command.SINTERSTORE, destKey, key, *moreKeys) return Response.toInt(resp) def sisMember(self, key, member): resp = self.sendCommand(Command.SISMEMBER, key, member) return Response.toInt(resp) == 1 def sRem(self, key, member, *moreMembers): resp = self.sendCommand(Command.SREM, key, member, *moreMembers) return Response.toInt(resp) def sMove(self, source, destination, member): resp = self.sendCommand(Command.SMOVE, source, destination, member) return Response.toInt(resp) == 1 def sUnion(self, key, *moreKeys): resp = self.sendCommand(Command.SUNION, key, *moreKeys) return Response.toTuple(resp) def sUnionStore(self, destKey, key, *moreKeys): resp = self.sendCommand(Command.SUNIONSTORE, destKey, key, *moreKeys) return Response.toInt(resp) def sScan(self, key, cursor, scanParams): args = (key, cursor) if scanParams != None: args = args + scanParams.getParams() resp = self.sendCommand(Command.SSCAN, *args) return Response.toStringScanResult(resp) def zAdd(self, key, scoreMember, *moreScoreMember): args = Command.combineArgsByScoreMember(scoreMember, *moreScoreMember) resp = self.sendCommand(Command.ZADD, key, *args) return Response.toInt(resp) def zCard(self, key): resp = self.sendCommand(Command.ZCARD, key) return Response.toInt(resp) def zCount(self, key, Min, Max): resp = self.sendCommand(Command.ZCOUNT, key, str(Min), str(Max)) return Response.toInt(resp) def zIncrBy(self, key, member, increment): resp = self.sendCommand(Command.ZINCRBY, key, increment, member) return Response.toFloat(resp) def zRange(self, key, start, end): resp = self.sendCommand(Command.ZRANGE, key, str(start), str(end)) return Response.toTuple(resp) def zRangeWithScores(self, key, start, end): resp = self.sendCommand(Command.ZRANGE, key, str(start), str(end), RedisKeyword.WITHSCORES) return Response.toScoreMember(resp) def zRangeByScore(self, key, Min, Max): resp = self.sendCommand(Command.ZRANGEBYSCORE, key, str(Min), str(Max)) return Response.toTuple(resp) def zRangeByScoreWithOffset(self, key, Min, Max, offset, count): resp = self.sendCommand(Command.ZRANGEBYSCORE, key, str(Min), str(Max), RedisKeyword.LIMIT, str(offset), str(count)) return Response.toTuple(resp) def zRangeByScoreWithScores(self, key, Min, Max): resp = self.sendCommand(Command.ZRANGEBYSCORE, key, str(Min), str(Max), RedisKeyword.WITHSCORES) return Response.toScoreMember(resp) def zRangeByScoreWithScoresByOffset(self, key, Min, Max, offset, count): resp = self.sendCommand(Command.ZRANGEBYSCORE, key, str(Min), str(Max), RedisKeyword.WITHSCORES, RedisKeyword.LIMIT, str(offset), str(count)) return Response.toScoreMember(resp) def zRank(self, key, member): resp = self.sendCommand(Command.ZRANK, key, member) return Response.toInt(resp) def zRem(self, key, member, *moreMembers): resp = self.sendCommand(Command.ZREM, key, member, *moreMembers) return Response.toInt(resp) def zRemRangeByRank(self, key, start, end): resp = self.sendCommand(Command.ZREMRANGEBYRANK, key, str(start), str(end)) return Response.toInt(resp) def zRemRangeByScore(self, key, Min, Max): resp = self.sendCommand(Command.ZREMRANGEBYSCORE, key, str(Min), str(Max)) return Response.toInt(resp) def zRevRange(self, key, start, end): resp = self.sendCommand(Command.ZREVRANGE, key, str(start), str(end)) return Response.toTuple(resp) def zRevRangeWithScores(self, key, start, end): resp = self.sendCommand(Command.ZREVRANGE, key, str(start), str(end), RedisKeyword.WITHSCORES) return Response.toScoreMember(resp) def zRevRangeByScore(self, key, Max, Min): resp = self.sendCommand(Command.ZREVRANGEBYSCORE, key, str(Max), str(Min)) return Response.toTuple(resp) def zRevRangeByScoreByOffset(self, key, Max, Min, offset, count): resp = self.sendCommand(Command.ZREVRANGEBYSCORE, key, str(Max), str(Min), RedisKeyword.LIMIT, str(offset), str(count)) return Response.toTuple(resp) def zRevRangeByScoreWithScores(self, key, Max, Min): resp = self.sendCommand(Command.ZREVRANGEBYSCORE, key, str(Max), str(Min), RedisKeyword.WITHSCORES) return Response.toScoreMember(resp) def zRevRangeByScoreWithScoresByOffset(self, key, Max, Min, offset, count): resp = self.sendCommand(Command.ZREVRANGEBYSCORE, key, str(Max), str(Min), RedisKeyword.WITHSCORES, RedisKeyword.LIMIT, str(offset), str(count)) return Response.toScoreMember(resp) def zRevRank(self, key, member): resp = self.sendCommand(Command.ZREVRANK, key, member) return Response.toInt(resp) def zScore(self, key, member): resp = self.sendCommand(Command.ZSCORE, key, member) return Response.toFloat(resp) def zUnionStore(self, destKey, params, key, *moreKeys): args = (destKey,) numberKeys = 1 + len(moreKeys) args += (numberKeys, key) args += moreKeys if params != None: args += params.getParams() resp = self.sendCommand(Command.ZUNIONSTORE, *args) return Response.toInt(resp) def zInterStore(self, destKey, params, key, *moreKeys): args = (destKey,) numberKeys = 1 + len(moreKeys) args += (numberKeys, key) args += moreKeys if params != None: args += params.getParams() resp = self.sendCommand(Command.ZINTERSTORE, *args) return Response.toInt(resp) ''' The zscan command seem to be a bug ''' def zScan(self, key, cursor, scanParams): args = (key, cursor) if scanParams != None: args += scanParams.getParams() resp = self.sendCommand(Command.ZSCAN, *args) return Response.toScoreMemberScanResult(resp) def select(self, index): resp = self.sendCommand(Command.SELECT, str(index)) return Response.toStr(resp) def auth(self, password): resp = self.sendCommand(Command.AUTH, password) return Response.toStr(resp) def echo(self, message): resp = self.sendCommand(Command.ECHO, message) return Response.toStr(resp) def ping(self): resp = self.sendCommand(Command.PING) return Response.toStr(resp) def quit(self): resp = self.sendCommand(Command.QUIT) return Response.toStr(resp) def flushAll(self): resp = self.sendCommand(Command.FLUSHALL) return Response.toStr(resp) def flushDB(self): resp = self.sendCommand(Command.FLUSHDB) return Response.toStr(resp) def eval(self, script, keyCount, *params): resp = self.sendCommand(Command.EVAL, script, keyCount, *params) return Response.toTuple(resp) def evalSha(self, sha, keyCount, *params): resp = self.sendCommand(Command.EVALSHA, sha, keyCount, *params) return Response.toTuple(resp) def scriptLoad(self, script): resp = self.sendCommand(Command.SCRIPT, RedisKeyword.LOAD, script) return Response.toStr(resp) def scriptExist(self, script, *moreScripts): resp = self.sendCommand(Command.SCRIPT, RedisKeyword.EXISTS, script, *moreScripts) return Response.toTuple(resp) def scriptFlush(self): resp = self.sendCommand(Command.SCRIPT, RedisKeyword.FLUSH) return Response.toStr(resp) def scriptKill(self): resp = self.sendCommand(Command.SCRIPT, RedisKeyword.KILL) return Response.toStr(resp) def sendCommand(self, command, *args): message = BinaryCommand(command, *args) data = RedisProtocol.generateRequestData(message) self.connect() # print('send command:') # print(Decoder.decodeData(data)) try: self.sock.send(data) except: self.isConnect = False self.sendCommand(command, *args) resp = RedisProtocol.parseResponse(self.sock) print('response:', resp) return resp def connect(self): if self.isConnect: return; self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if self.connectTimeout > 0: self.sock.settimeout(self.connectTimeout) self.sock.connect((self.serverNode.getHost(), self.serverNode.getPort())) self.isConnect = True def close(self): if not self.isConnect: return; self.isConnect = False self.sock.close()
[ "348800349@qq.com" ]
348800349@qq.com
58f90438673edd09c98d1e6d02b198892e98435b
62633b4b273cdd264d9669b69d54a06064d656e1
/backend_app/migrations/0001_initial.py
01365a9f5775a5af33e052007b855e6299833dfc
[]
no_license
mrsamharuna/django_project
53784755e503c746315ccb7c12b98869de1e8953
bcd64474cc48689dd8330ac0f7754130092a7dda
refs/heads/master
2020-11-23T23:29:32.396272
2019-12-13T15:10:45
2019-12-13T15:10:45
227,864,111
0
0
null
null
null
null
UTF-8
Python
false
false
2,743
py
# Generated by Django 2.1 on 2019-11-18 17:20 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=250)), ('slug', models.SlugField(max_length=250, unique=True)), ], options={ 'verbose_name': 'category', 'verbose_name_plural': 'categories', 'ordering': ('name',), }, ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('post_title', models.CharField(max_length=50, verbose_name='Post Title')), ('content', models.TextField(blank=True, null=True, verbose_name='Content')), ('post_img', models.ImageField(blank=True, null=True, upload_to='uploads/post_img', verbose_name='Post Image')), ('published_date', models.DateTimeField(blank=True, default=django.utils.timezone.now, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Author')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend_app.Category')), ], ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(default='', max_length=250)), ('first_name', models.CharField(default='', max_length=100)), ('last_name', models.CharField(default='', max_length=100)), ('image', models.ImageField(blank=True, upload_to='uploads/profile_image')), ('sex', models.CharField(choices=[('M', 'Male'), ('F', 'Female')], max_length=1)), ('role', models.CharField(choices=[('S', 'Super'), ('R', 'Regular')], max_length=1)), ('active', models.BooleanField(default=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "samsonharuna@yahoo.com" ]
samsonharuna@yahoo.com
83884b6bc0bdd63b534e896ac4c6c081dac4c117
307a9a94091981325c6fcd0cfce5f1c1f12d5530
/basics.py
5aecef9d960db1559ff950b472048ee2fce2b4c9
[]
no_license
88aleksandra88/python
a6b14eebef0d2848ce4ae32bd101cac6f816130e
1060f02e59d151e6bb1cff7fbc199df80c598e75
refs/heads/master
2022-12-29T07:17:45.106336
2020-10-09T14:14:57
2020-10-09T14:14:57
302,300,830
0
0
null
null
null
null
UTF-8
Python
false
false
823
py
glass_1="water" glass_2="soda" temp=glass_1 glass_1=glass_2 glass_2=temp print('glass_1='+str(glass_1)) #glass_1=soda print('glass_2='+str(glass_2)) #glass_2=water number_of_steps=70 print("You're on step:") print("number_of_steps +1") #kilometer convert miles=500 kilometers=miles * 1.609344 print(kilometers) #804.674 #switch light is_day = False lights_on = not is_day print('Daytime?') print(is_day) print('Lights on ?') print(lights_on) #checking numbers equality print(10==10) #numbers inequality print(1 != 10) result = 1 != 2 print(result) #tarck sales data stock = 600 kitten_sold = 500 target =500 target_hit = kitten_sold == target print('Hit kitten sale target: ') print(target_hit) current_stock = stock - kitten_sold in_stock = current_stock != 0 print('Kitten in stock') print(in_stock)
[ "aleksandra.slowik88@gmail.com" ]
aleksandra.slowik88@gmail.com
fedce837ffffa9807fa1d941d6e9277cdd7c1908
7484e6e9bdf9fc8181d986fe7ff301937352c962
/preparation.py
33bc9fe244e340fff4948b524966340a87b75efc
[]
no_license
Avagr/JBReactGraph
1323b93424b3c4521598d88560767f533267c7e8
90873b47f094e6104423caa677578bd62ed43114
refs/heads/master
2023-04-15T07:14:26.869449
2021-04-11T16:51:19
2021-04-11T16:51:19
356,913,252
0
0
null
null
null
null
UTF-8
Python
false
false
2,140
py
import requests import json from requests.models import HTTPError url = "https://api.github.com/repos/facebook/react/stats/contributors" # Function for encoding sets into json as lists def set_default(obj): if isinstance(obj, set): return list(obj) raise TypeError # Prepares data and writes it to the disk def prepare_data(token=None): header = {} if token: header = {'Authorization': 'token %s' % token} contributors = requests.get(url, headers=header) if contributors.status_code != 200: raise HTTPError(contributors.json()) authors = {} # A dictionary for storing all the relevant information for cont in sorted(contributors.json(), key=lambda x: -x['total'])[:50]: name_req = requests.get(cont['author']['url'], headers=header) if name_req.status_code != 200: raise HTTPError(name_req.json()) name = name_req.json()['name'] if not name: # If there is no name in github, use their login name = name_req.json()['login'] if name == 'marocchino': # Cross-referenced this person using commit hashes name = 'Shim Won' authors[name] = {'total': cont['total'], 'files': set(), 'maxdate': -1, # this unix time is in the far far future 'mindate': 99999999999} with open('git_log.txt', 'r') as log: for line in log: if line.strip() == '': continue if line[0] == '$': _, date, name = line.strip().split(maxsplit=2) if name in authors: # Searching for the earliest and the latest commit date authors[name]['mindate'] = min(authors[name]['mindate'], int(date)) authors[name]['maxdate'] = max(authors[name]['maxdate'], int(date)) else: if name in authors: authors[name]['files'].add(line.strip()) with open('authors.json', 'w') as output: json.dump(authors, output, default=set_default)
[ "avagroskin@edu.hse.ru" ]
avagroskin@edu.hse.ru
c73127e8739fa2e754892d7131be696a9376fc51
90803c3d5db398d357e63c782231bbf57d135a77
/arrview/tools/paintbrush.py
27a7b9629c4fc4bd069ab8296df31c5a455350a6
[ "MIT" ]
permissive
jthacker/arrview
08b70c948689c6998f53bd3ebc32dffac32226f4
93d5d0a17a33dbbc7098eb4e5eac92d84d9ba04c
refs/heads/master
2021-04-15T15:23:47.073725
2016-08-02T22:11:58
2016-08-02T22:16:11
63,819,285
1
0
null
null
null
null
UTF-8
Python
false
false
3,097
py
from PySide.QtCore import Qt, QRectF, QPoint, QPointF from PySide.QtGui import (QColor, QGraphicsItem, QGraphicsPixmapItem, QPixmap, QPainter) import logging import math import skimage as ski import skimage.draw log = logging.getLogger(__name__) class PaintBrushItem(QGraphicsItem): """PaintBrushItem is a QGraphicsItem that anchors to pixel locations.""" def __init__(self, radius=0, color=QColor(Qt.transparent)): super(PaintBrushItem, self).__init__() self._color = color self._points = [] self._connect_points = True self.set_radius(radius) def set_color(self, color): self._color = color self._update_cursor() @property def diameter(self): return 2 * self._radius + 1 def set_radius(self, r): self.prepareGeometryChange() self._radius = r if r == 0: pts = [(0, 0)] else: pts = zip(*ski.draw.circle_perimeter(r, r, r)) pts += zip(*ski.draw.circle(r, r, r)) self._points = [QPointF(x, y) for x, y in pts] self._update_cursor() def _update_cursor(self): x = self.diameter w, h = x, x pixmap = QPixmap(w, h) pixmap.fill(Qt.transparent) p = QPainter(pixmap) p.drawPoints(self._points) p.end() self._cursor_pixmap = pixmap.createMaskFromColor(Qt.transparent) def _paint_cursor(self, p): p.save() p.setPen(self._color) p.translate(-self._radius, -self._radius) w, h = self._cursor_pixmap.width(), self._cursor_pixmap.height() rect = QRectF(0, 0, w, h) p.drawPixmap(rect, self._cursor_pixmap, rect) p.restore() self.update() def snap_pos(self, pos): f = lambda a: int(math.floor(a)) return QPoint(f(pos.x()), f(pos.y())) def setPos(self, pos): super(PaintBrushItem, self).setPos(self.snap_pos(pos)) def paint(self, p, option, widget): r = self._radius self._paint_cursor(p) p.drawEllipse(-r, -r, self.diameter, self.diameter) def boundingRect(self): r = self._radius return QRectF(0, 0, self.diameter, self.diameter) def fill_pixmap(self, pixmap, origin, position): origin = self.snap_pos(origin) pos = self.snap_pos(position) ox, oy = origin.x(), origin.y() cx, cy = pos.x(), pos.y() p = QPainter(pixmap) p.setCompositionMode(QPainter.CompositionMode_Source) if self._connect_points: ## This method of extending a line between points works quite well ## but it is very slow when the radius of the circle is large, which ## essential results in a lot of duplicate drawing. p.translate(ox, oy) px, py = 0, 0 for x, y in zip(*ski.draw.line(0, 0, cx-ox, cy-oy)): p.translate(x-px, y-py) px, py = x, y self._paint_cursor(p) else: p.translate(cx, cy) self._paint_cursor(p) p.end()
[ "thacker.jon@gmail.com" ]
thacker.jon@gmail.com
fb2f50056d7b8095e873a122bd1b1f9cedf06047
355e280100fd321584a153e9ace6426df7181deb
/examples/get_all_jobs.py
6306f38b7cd534dac2bc765c1f5b177ec8235ecb
[ "Apache-2.0" ]
permissive
kimiwangjm/drmaa2-python
11d3563955d8468a3fb60afc7234b10e7972a09b
1df04191ae22aea3bd86f9d110e347a76bc6039d
refs/heads/master
2020-08-29T21:55:08.656600
2019-10-03T15:11:22
2019-10-03T15:22:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,486
py
#!/usr/bin/env python # ___INFO__MARK_BEGIN__ ########################################################################## # Copyright 2016-2019 Univa Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################### # ___INFO__MARK_END__ import random from drmaa2 import JobSession from drmaa2 import JobInfo from drmaa2 import MonitoringSession if __name__ == '__main__': js = JobSession('js-01') print('Created job session: %s' % js.name) j_name = 'job-%s' % int(random.uniform(0, 1000)) j = js.run_job({'remote_command': '/bin/sleep', 'args': ['10'], 'job_name': j_name}) print('Submitted job: %s' % j) # ji = j.get_info() ji = JobInfo({'job_name': j_name}) ms = MonitoringSession('ms-01') print('Opened monitoring session: %s' % ms.name) print('Retrieving jobs matching job info %s' % ji) j_list = ms.get_all_jobs(ji) print('Got all jobs: %s' % j_list)
[ "aalefeld@univa.com" ]
aalefeld@univa.com
9c1e1b031fb6ac5960c2e6a08b7e5fc4683cd159
b775ef7ae427d3199eb2015c08a6468f3b5cc8ad
/ant.py
6bd9855bc9bd129dbc29c68d89e14f44931c5d83
[]
no_license
j3camero/Ant-Combat
ae671ae5c9ffe02d9429be524156898da34ccb34
3a3a86303cf316a56a19582369b7503962ece60a
refs/heads/master
2020-12-30T10:50:12.860917
2011-01-12T00:47:58
2011-01-12T00:47:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
class Ant: def __init__(self, x, y, owner): self.x = x self.y = y self.owner = owner
[ "cameron.jp@gmail.com" ]
cameron.jp@gmail.com
941f4dbc2fbf6e26a024c61793156ca108517cfe
8d5acda7549d3625340d785698b521ed1583c6d6
/review.py
537c6c78f8ab35deabc9b6d399c2e9e94270ed17
[]
no_license
jerry-sjtu/flask_demo
db7f5ac1dd332dd47f491b45f68a0e4838447ff7
c0bc7f80f89c5cff52b3c7ea284e3aae7f1d5cf0
refs/heads/master
2021-01-23T12:17:30.437414
2015-04-13T03:22:43
2015-04-13T03:22:43
29,714,406
0
0
null
null
null
null
UTF-8
Python
false
false
5,448
py
# -*- coding: utf-8 -*- from flask import Flask import urllib2 from flask import render_template import json import sys reload(sys) sys.setdefaultencoding('utf-8') app = Flask(__name__) BASE_URL = 'http://www.dianping.com/shop/%s/review_all' BIZER_HOST = "192.168.220.235" BIZER_ABSTRACT_URL = "http://%s:4153/search/shopreview?query=term(shopid,%s)&sort=desc(abstract)&stat=count(reviewtagsentiment)&limit=0,0" BIZER_REVIEW_URL = "http://%s:4153/search/shopreview?query=term(shopid,%s)&sort=desc(addtime)&fl=*&limit=%s,%s" BIZER_TAGRANK_URL = "http://%s:4153/search/shopreview?query=term(shopid,%s),term(reviewtagsentiment,%s)&sort=desc(tagrank)&fl=*&limit=%s,%s" PAGE_SIZE = 20 @app.route("/") def default(): return view_by_shop('1945402') @app.route('/<shopid>') def view_by_shop(shopid): return view_by_shop_page(shopid, 1) @app.route('/<shopid>/<pageno>') def view_by_shop_page(shopid, pageno): abstract = request_abstract(shopid) page_dict = review_list_page(shopid, pageno) return render_template('review.html', val=page_dict, abstract=abstract, shopname=page_dict['shopname'], shopid=page_dict['shopid'], tag='') @app.route('/<shopid>/tag/<tag>') def view_by_shop_tag(shopid, tag): return view_by_shop_tag_page(shopid, tag, 1) @app.route('/<shopid>/<pageno>/tag/<tag>') def view_by_shop_tag_page(shopid, tag, pageno): abstract = request_abstract(shopid) page_dict = review_search_page(shopid, tag, pageno) return render_template('review.html', val=page_dict, abstract=abstract, shopname=page_dict['shopname'], shopid=page_dict['shopid'], tag=tag) def request_abstract(shopid): url = BIZER_ABSTRACT_URL % (BIZER_HOST, shopid) i_headers = dict() request = urllib2.Request(url, headers=i_headers) response = urllib2.urlopen(request) decodejson = json.loads(response.read()) for x in decodejson['records']: if x['tag'].endswith('-1'): x['sent'] = '-1' else: x['sent'] = '1' return decodejson def request_review(shopid, start, pagesize): url = BIZER_REVIEW_URL % (BIZER_HOST, shopid, start, pagesize) i_headers = dict() request = urllib2.Request(url, headers=i_headers) response = urllib2.urlopen(request) decodejson = json.loads(response.read()) return decodejson def request_tgrank(shopid, tag, start, pagesize): url = BIZER_TAGRANK_URL % (BIZER_HOST, shopid, tag, start, pagesize) i_headers = dict() request = urllib2.Request(url, headers=i_headers) response = urllib2.urlopen(request) decodejson = json.loads(response.read()) return decodejson def review_list_page(shopid, pageno): start = (int(pageno) - 1) * PAGE_SIZE review_json = request_review(shopid, start, PAGE_SIZE) r_dict = dict() r_dict['review'] = list() r_dict['shopid'] = shopid r_dict['curr_page'] = pageno if len(review_json['records']) == 0: return r_dict for r in review_json['records']: r_dict['shopname'] = r['shopname'] time = r['addtime'] score1 = r['score1'] score2 = r['score2'] score3 = r['score3'] review_id = r['reviewid'] match_list = r['reviewmatch'].split() tag_list = r['reviewtagsentiment'].split() review_body = r['reviewbody'] review_body = highlight(review_body, match_list) r_dict['review'].append((review_id, time, review_body, tag_list, score1, score2, score3)) total_hit = int(review_json['totalhits']) r_dict['pno_list'] = pageno_list(int(pageno), total_hit) return r_dict def review_search_page(shopid, tag, pageno): start = (int(pageno) - 1) * PAGE_SIZE review_json = request_tgrank(shopid, tag, start, PAGE_SIZE) r_dict = dict() r_dict['review'] = list() r_dict['shopid'] = shopid r_dict['curr_page'] = pageno if len(review_json['records']) == 0: return r_dict for r in review_json['records']: r_dict['shopname'] = r['shopname'] time = r['addtime'] score1 = r['score1'] score2 = r['score2'] score3 = r['score3'] review_id = r['reviewid'] match_list = list() match_list.append(r['highlight']) tag_list = r['reviewtagsentiment'].split() review_body = r['reviewbody'] review_body = highlight(review_body, match_list) r_dict['review'].append((review_id, time, review_body, tag_list, score1, score2, score3)) total_hit = int(review_json['totalhits']) #r_dict['pno_list'] = range(1, total_hit / PAGE_SIZE + 2) r_dict['pno_list'] = pageno_list(int(pageno), total_hit) return r_dict def pageno_list(curr_page, total_hit): max_page = total_hit / PAGE_SIZE + 1 no_list = list() no_list.append('1') if curr_page > 2: no_list.append('...') for i in range(curr_page, curr_page + 20): if i < max_page and i > 1: no_list.append(str(i)) if curr_page + 20 < max_page: no_list.append('...') no_list.append(str(max_page)) return no_list def highlight(review_content, match_list): for m in match_list: review_content = review_content.replace(m, '<font color="red">%s</font>' % (m)) return review_content if __name__ == "__main__": app.run(host='0.0.0.0', debug=True) #app.run(host='0.0.0.0', port=80, debug=False) #demo host: 10.1.107.103/ #bizer host: search-bizer-shopreview01.nh
[ "qiang.wang@dianping.com" ]
qiang.wang@dianping.com
07f7480b8204fdcc16a56564512124c02be477e2
f3050b7f84e584dcde54ca1690944bfccc6f5d9c
/demo/other/demo_fomat.py
767ea789d7dee62f3161cff0034d57438ab22024
[]
no_license
azhenglianxi/api_Project
0c8444c2bad7464fd57911be4fdcd131a63c46b2
2ae87b87e41f522d4ef20f63bad6adcaec1f9874
refs/heads/master
2020-09-14T12:08:07.080748
2019-12-12T09:08:22
2019-12-12T09:08:22
223,124,370
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
name="tom" age=20 #1. 输出:你好,tom先生,今晚吃鸡! print(f"你好,{name}先生,今晚吃鸡!") print("你好,{}先生,今晚吃鸡!".format(name)) #2. 输出:你好,tom先生,今晚{吃鸡}! print(f"你好,{name}先生,今晚{{吃鸡}}!") print("你好,{}先生,今晚{{吃鸡}}!".format(name)) #3. 输出:你好,{tom}先生,今晚吃鸡! print(f"你好,{{{name}}}先生,今晚吃鸡!") print("你好,{{{}}}先生,今晚吃鸡!".format(name)) print("姓名和年龄分别是:{}、{}".format(name, age)) # 不带编号,顺序填坑 print("姓名和年龄分别是:{1}、{0}".format(age, name)) # 带数字编号、可以变换顺序 print("姓名和年龄分别是:{x}、{y}".format(x='小明', y=age)) # 带关键字
[ "azhenglianxi@163.com" ]
azhenglianxi@163.com
b7227548c832af5339342dcb56efb5c69c872ea2
1e4ddb07b9ab386d49036bae631508ca99d1375d
/django_jquery_bootstrap/mysite_jquery/basic_site/migrations/0001_initial.py
43737f97b2e118aa7ecae3adebbf11236a8c8861
[]
no_license
air2637/django-ajax
ce55c22c11dd703db04faf65b71d6dc67c27d899
f791dedbf568a99dcaba614329f761071978023a
refs/heads/master
2021-05-14T01:52:15.487867
2018-01-07T16:15:27
2018-01-07T16:15:27
116,578,710
0
0
null
null
null
null
UTF-8
Python
false
false
821
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-01-07 02:55 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Module', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=50)), ('num_of_student', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Teacher', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=50)), ], ), ]
[ "weizheng@WeitekiMacBook-Pro.local" ]
weizheng@WeitekiMacBook-Pro.local
0821f14666c075ca5ef4644670d667a41ce5450f
ce6c8e0e3a986af3fe3c347a4af16f1ca337f82c
/630.course-schedule-iii.py
c6f16e25c08edfd0eebd9959c9ace96be3683d8b
[]
no_license
chenjienan/python-leetcode
dc098373ae7f73dd502d7747888a37a3bd0820cb
90c000c3be70727cde4f7494fbbb1c425bfd3da4
refs/heads/master
2020-04-28T20:46:50.395260
2020-02-12T18:48:01
2020-02-12T18:48:01
175,556,339
16
3
null
null
null
null
UTF-8
Python
false
false
656
py
# # @lc app=leetcode id=630 lang=python3 # # [630] Course Schedule III # import heapq class Solution: def scheduleCourse(self, courses: List[List[int]]): courses.sort(key=lambda x: x[1]) day = 0 heap = [] for i in range(len(courses)): if day + courses[i][0] <= courses[i][1]: day += courses[i][0] heapq.heappush(heap, -courses[i][0]) else: # has overlap heapq.heappush(heap, -courses[i][0]) day += courses[i][0] + heap[0] heapq.heappop(heap) return len(heap)
[ "chenjienan2009@gmail.com" ]
chenjienan2009@gmail.com
83f1f40c0a3f881f189f6a378cd661fcde67e432
962d42197c56346d348d334dd7435224d4aed99d
/Inventationery/apps/Customer/forms.py
5897817c4d2509271a3fce09f250f0156eed676d
[ "BSD-3-Clause" ]
permissive
huarmenta/Inventationery
e5750274c0b281208fa1f33590f0402349f7e8da
1bf9ee2c56492ab66947886590b7ec17fa3a6195
refs/heads/master
2021-05-30T08:31:15.368712
2016-01-06T03:23:45
2016-01-06T03:23:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,106
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: Alex # @Date: 2015-11-16 19:22:39 # @Last Modified by: Alex # @Last Modified time: 2015-12-28 19:32:30 from django import forms from .models import CustomerModel from Inventationery.apps.DirParty.models import DirPartyModel from Inventationery.apps.LogisticsPostalAddress.models import ( LogisticsPostalAddressModel) from Inventationery.apps.LogisticsElectronicAddress.models import ( LogisticsElectronicAddressModel) # Class: Form for CustomerModel # ---------------------------------------------------------------------------- class CustomerForm(forms.ModelForm): class Meta: model = CustomerModel fields = '__all__' def __init__(self, *args, **kwargs): super(CustomerForm, self).__init__(*args, **kwargs) self.fields['AccountNum'].widget.attrs['readonly'] = True instance = getattr(self, 'instance', None) if instance and instance.pk: self.fields['AccountType'].widget.attrs['readonly'] = True def clean_sku(self): instance = getattr(self, 'instance', None) if instance and instance.pk: return instance.AccountNum else: return self.cleaned_data['AccountNum'] # Class: Form for DirPartyModel # ---------------------------------------------------------------------------- class PartyForm(forms.ModelForm): class Meta: model = DirPartyModel fields = '__all__' def __init__(self, *args, **kwargs): super(PartyForm, self).__init__(*args, **kwargs) # Class: Form for LogisticsPostalAddressModel # ---------------------------------------------------------------------------- class LogisticsPostalForm(forms.ModelForm): class Meta: model = LogisticsPostalAddressModel fields = '__all__' # Class: Form for LogisticsElectronicAddressModel # ---------------------------------------------------------------------------- class LogisticsElectronicForm(forms.ModelForm): class Meta: model = LogisticsElectronicAddressModel fields = '__all__'
[ "h.alexarmenta@gmail.com" ]
h.alexarmenta@gmail.com
d618c52095145ad11dea0dcaef997f4e40d3ab6d
505456805c026f2e6e2421ebaf745a3bc72c3dfb
/run.py
923c7644672cf855177e2d3a8c004c7d6cd78512
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
www10177/fbcrawl
1029f9fedea68d82e3c894fe0f60a841aa86a3d7
bcd79d8292c4016f31767b2c50ab6ff1e69efa73
refs/heads/master
2020-04-26T08:49:45.766583
2019-03-22T17:02:18
2019-03-22T17:02:18
173,435,725
1
0
null
2019-03-02T10:44:49
2019-03-02T10:44:49
null
UTF-8
Python
false
false
2,212
py
from subprocess import call from tqdm import tqdm import pandas as pd import sqlite3 import os # Config email= 'www10177@gmail.com' password= 'u9Vd53SCX5' year= 2008 lang= 'it' def crawl_pages(): l=pd.read_csv('./update.csv') for name,url in tqdm(l.values): print('crawling %s'%name) print(url) call(['python3', '-m', 'scrapy', 'crawl', 'fb', '-a', '-a','email=%s'%email,'-a','password=%s'%password,'-a', 'page=%s'%url, '-a', 'year=%d'%year, '-a', 'lang=%s'%lang, '-o', './result/%s.csv'%name]) def crawl_comments(): db = pd.read_sql('select * from posts ', sqlite3.connect('./fb.db')) print(db.columns) for index,name,url_temp in tqdm(db[['index','crawl_from','url']].values): print('crawling %d,%s'%(index,name)) url= 'https://mbasic.facebook.com' + url_temp print(url) call(['python3', '-m', 'scrapy', 'crawl', 'comments', '-a', 'email=%s'%email, '-a' ,'password=%s'%password, '-a', 'page=%s'%url,'-a','lang=%s'%lang,'-o', './comments/%s.csv'%index]) def crawl_batch_pages(): url ='./pagelist' name ='test' call(['python3', '-m', 'scrapy', 'crawl', 'fb', '-a', '-a','email=%s'%email,'-a','password=%s'%password,'-a', 'page=%s'%url, '-a', 'year=%d' %year, '-a', 'lang=%s'%lang, '-o', './result/%s.csv'%name]) def crawl_batch_comments(): post_list_dir= './comment_urls/' for url_filename in tqdm([i for i in os.listdir(post_list_dir) if i.endswith('.txt')]): url = post_list_dir +url_filename name =url_filename call(['python3', '-m', 'scrapy', 'crawl', 'comments', '-a', 'email=%s'%email, '-a' ,'password=%s'%password, '-a', 'pagelist=%s'%url,'-a','lang=%s'%lang,'-o', './comments/%s.csv'%name]) def crawl_batch_reactions(): post_list_dir= './reactions_urls/' for url_filename in tqdm([i for i in os.listdir(post_list_dir) if i.endswith('.txt')]): url = post_list_dir +url_filename name =url_filename call(['python3', '-m', 'scrapy', 'crawl', 'reactions', '-a', 'email=%s'%email, '-a' ,'password=%s'%password, '-a', 'pagelist=%s'%url,'-a','lang=%s'%lang,'-o', './reactions/%s.csv'%name]) if __name__ == '__main__': crawl_batch_reactions()
[ "www10177@gmail.com" ]
www10177@gmail.com
924703d92cf2b60786d5198e1fdf455dfd379162
3a86fef1551d97141d3a192abe7cf5c826106377
/python_problems/union.py
a0d9f768de9c103c4e01b6e34838b7267ac658af
[]
no_license
andrayantelo/hackerrank
bbaee4f3eb7fac1b60fce8a5dfb3f4368d7c48db
11589bc2858028ddbcdc7ab87285f3d16e3773b9
refs/heads/master
2020-03-29T20:55:15.543255
2018-11-06T21:46:03
2018-11-06T21:46:03
150,336,916
0
0
null
null
null
null
UTF-8
Python
false
false
1,408
py
# Task # The students of District College have subscriptions to English and French # newspapers. Some students have subscribed only to English, some have # subscribed to only French and some have subscribed to both newspapers. # You are given two sets of student roll numbers. One set has subscribed # to the English newspaper, and the other set is subscribed to the French # newspaper. The same student could be in both sets. Your task is to find # the total number of students who have subscribed to at least one newspaper. # Input Format # The first line contains an integer, n, the number of students who have subscribed to the English newspaper. # The second line contains n space separated roll numbers of those students. # The third line contains b, the number of students who have subscribed to the French newspaper. # The fourth line contains b space separated roll numbers of those students. # Constraints # 0 < Total number of students in college < 1000 # Output Format # Output the total number of students who have at least one subscription if __name__ == "__main__": # number of students subscribed to English newspaper n = int(input()) eng_students = set(map(int, input().rsplit())) # number of students subscribed to French newspaper b = int(input()) fr_students = set(map(int, input().rsplit())) print(len(eng_students.union(fr_students)))
[ "andrayantelo@gmail.com" ]
andrayantelo@gmail.com
4930f53fa7f6aae3b12d5558dc8e8d6aa7468c13
2161bf5488654aa2c2919f7839820c46bd9db0c4
/keyboards/inline/__init__.py
709d059e906a63e8a5362e98523b884c15eb7743
[]
no_license
Asqarov-Fayzullo/antirobot_aiogram
c50f9ae451a575e434d8c664f8ee8a1ab30c4e92
02c85bcad6975473b5d264ed90d10515ad4b3625
refs/heads/master
2023-07-10T07:45:50.056757
2020-12-01T16:42:10
2020-12-01T16:42:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
from .guardian_keyboard import generate_confirm_markup, confirming_callback
[ "kostyajog@mail.ru" ]
kostyajog@mail.ru
89a31706b3313829d16e3ef3246f1c8408518820
4c8df11e3d2c5065afb67e6d6a975a8afc678526
/Text Mining/Workshops/week2/generateDTM.py
c035812ebd4ca123459592c781ee69b88181543e
[]
no_license
shenshutao/machine_learning
da8d866f95e8021044823f4b5b3d48596477db67
185532ffda1e3994ceca9c0ebf0f9cbe232222a1
refs/heads/master
2021-09-14T09:33:24.597332
2018-05-11T09:20:59
2018-05-11T09:20:59
89,137,160
3
1
null
null
null
null
UTF-8
Python
false
false
4,001
py
# -*- coding: utf-8 -*- """ Workshop: Text Preparation (TDM) Created on Wed Sep 6 16:19:52 2017 @author: Fan Zhenzhen """ from nltk.corpus import reuters from nltk import FreqDist import string from nltk.corpus import stopwords # We'll use the reuters corpus in NLTK. # The same steps of preprocessing can be done on documents read in from external files. # How many files are there in the corpus? # What are their categories? Single or multiple categories for one file? len(reuters.fileids()) cats = [ reuters.categories(f) for f in reuters.fileids() ] #cats[0] #cats[:10] cat_num = [ len(c) for c in cats ] fd_num = FreqDist(cat_num) fd_num.plot() # How many documents are there in each category? # FreqDist() can be used to find the answer, but we need to flatten the list of categories first. cats_flat = [ c for l in cats for c in l ] fd_cat = FreqDist(cats_flat) fd_cat fd_cat.most_common(20) # Let's pick two categories and visualize the articles in each category using word cloud grain = reuters.fileids('grain') trade = reuters.fileids('trade') grain_tok = [ reuters.words(f) for f in grain ] #! retrive all the tokens trade_tok = [ reuters.words(f) for f in trade ] #grain_tok[:3] #trade_tok[:3] #Let's define a function preprocess() to perform the preprocessing steps given a file (token list): # punctuation removal, case lowering, stopword removal, # stemming/lemmatization, further cleaning stop = stopwords.words('english') snowball = nltk.SnowballStemmer('english') #wnl = nltk.WordNetLemmatizer() def preprocess(toks): toks = [ t.lower() for t in toks if t not in string.punctuation ] toks = [t for t in toks if t not in stop ] toks = [ snowball.stem(t) for t in toks ] # toks = [ wnl.lemmatize(t) for t in toks ] toks_clean = [ t for t in toks if len(t) >= 3 ] return toks_clean # Preprocess each file in each category grain_clean = [ preprocess(f) for f in grain_tok ] trade_clean = [ preprocess(f) for f in trade_tok ] # Flatten the list of lists for FreqDist grain_flat = [ c for l in grain_clean for c in l ] trade_flat = [ c for l in trade_clean for c in l ] fd_grain = FreqDist(grain_flat) fd_trade = FreqDist(trade_flat) # Generate word clouds for the two categories. from wordcloud import WordCloud import matplotlib.pyplot as plt wc_grain = WordCloud(background_color="white").generate_from_frequencies(fd_grain) plt.imshow(wc_grain, interpolation='bilinear') plt.axis("off") plt.show() wc_trade = WordCloud(background_color="white").generate_from_frequencies(fd_trade) plt.imshow(wc_trade, interpolation='bilinear') plt.axis("off") plt.show() # Finally, how to generate TDM from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer # sklearn requires the input to be text string grain_text = [ ' '.join(f) for f in grain_clean ] # Create a matrix using term frequency first using CountVectorizer # The result is in sparse matrix format vec_tf = CountVectorizer() grain_tf = vec_tf.fit_transform(grain_text) grain_tf # Where are the columns and rows then? vec_tf.get_feature_names() grain_tf_m = grain_tf.toarray() vec_tf_2 = CountVectorizer(min_df = 2) grain_tf_2 = vec_tf_2.fit_transform(grain_text) grain_tf_2 # To have binary indexing, set "binary=True" vec_bin = CountVectorizer(binary=True) grain_bin = vec_bin.fit_transform(grain_text) grain_bin.toarray()[:10] # And tfidf indexing vec_tfidf = TfidfVectorizer(min_df = 2) grain_tfidf = vec_tfidf.fit_transform(grain_text) grain_tfidf grain_tfidf.toarray()[:10] # To save the vectorized results for future use (save time) import pickle pickle.dump(grain_tfidf, open("tfidf.pkl", "wb")) pickle.dump(vec_tfidf.vocabulary_, open("feature.pkl","wb")) #load the content loaded_vec = TfidfVectorizer(decode_error="replace",vocabulary=pickle.load(open("feature.pkl", "rb"))) tfidf = pickle.load(open("tfidf.pkl", "rb" ) ) tfidf
[ "sstwood@gmail.com" ]
sstwood@gmail.com
cfffb928dd17b54c411a485b5ae009481e2a32e6
b24c500dfdbbe56229031d7bdc02ba22dd055a41
/image_stitch.py
0921be28ef8d9265185f6d637c295ea16797da6a
[]
no_license
Trimax69/Python_random
5c147c9fbb04082d3b204f31a50bd9d2dab6469f
a969c19ca7198909e128bf4496811657f6498ed4
refs/heads/master
2022-12-27T14:15:51.289238
2020-10-04T15:44:50
2020-10-04T15:44:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,054
py
import time import string from os import listdir from os.path import abspath, dirname, isfile, join from PIL import Image VALID_FORMATS = ('jpg', 'jpeg', 'png', 'gif', 'bmp', 'tiff', 'webp') VALID_CHARS = set("-_.() %s%s" % (string.ascii_letters, string.digits)) DIRECTORY = dirname(abspath(__file__)) OFFSET = 5 def names_to_image(file_names): return [Image.open(name) for name in file_names] def hstack(images): widths, heights = zip(*(i.size for i in images)) total_width = sum(widths) + OFFSET * len(images) max_height = max(heights) stitched = Image.new('RGBA', (total_width, max_height)) x_offset = 0 for im in images: stitched.paste(im, (x_offset, 0)) x_offset += im.size[0] + OFFSET return stitched def vstack(images): widths, heights = zip(*(i.size for i in images)) total_height = sum(heights) + OFFSET * len(images) max_width = max(widths) stitched = Image.new('RGBA', (max_width, total_height)) y_offset = 0 for im in images: x_offset = (max_width - im.size[0]) // 2 stitched.paste(im, (x_offset, y_offset)) y_offset += im.size[1] + OFFSET return stitched def stitch(file_names, x): global directroy total_files = len(file_names) sections = [names_to_image(file_names[n:n + x]) if n + x <= total_files else names_to_image(file_names[n: total_files]) for n in range(0, total_files, x)] stitched = [hstack(images) for images in sections] name = input("\nEnter the Image name to be Saved As, Existing File Name will be overwritten > ") if not (name and set(name) & VALID_CHARS): name = 'result' vstack(stitched).save(join(DIRECTORY, f'{name}.png')) return name def main(): print(""" Enter Max horizonatal Stitch Limit , i.e 2 or 5 , Images will stacked vertically if more. > Example | [ LIMIT = 3 ] and [ No of Images = 8 ] < | X X X | | X X X | | X X | """) x = -1 while True: try: x = int(input('Stitch limit > ')) assert x >= 1 except (KeyError, AssertionError): print("\nERROR: Invalid Input, Limit must greater than or equal to 1.\n") else: break file_names = [join(DIRECTORY, f) for f in listdir(DIRECTORY) if isfile(join(DIRECTORY, f)) and f.endswith(VALID_FORMATS)] if not file_names: print(f"\nERROR: No Images Found in the Current Directory: {DIRECTORY}\n") else: start = time.perf_counter() name = stitch(file_names, x) duration = time.perf_counter() - start print(f"\nResult Image Saved as '{name}.png' | Stitch Time : {duration:.2f}s") input() return main()
[ "noreply@github.com" ]
Trimax69.noreply@github.com
cfe183779f01a5fbe1379f11d1cc62902be02994
9079a555d1fd22ad9701227c58151ae1ca3595d3
/CSES/1097.py
85e2d0f2b48353028d34faa5b5a999c8a74da857
[]
no_license
DebRC/My-Competitve-Programming-Solutions
c2a03b18f15cebd3793ce1c288dbb51fc0a33ef4
fe956eed619a21bd24a5fd647791d4c56cd1b021
refs/heads/main
2023-02-04T08:28:13.915967
2020-12-28T09:11:29
2020-12-28T09:11:29
324,591,343
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
def removal_game_tab(a, n): dp=[[0 for i in range(n)] for i in range(n)] for i in range(n-1,-1,-1): for j in range(i,n): if i==j: dp[i][i]=a[i] else: dp[i][j] = max(a[i]-dp[i+1][j],a[j]-dp[i][j-1]) return dp[0][n-1] n = int(input()) a = list(map(int, input().split())) print((sum(a)+removal_game_tab(a,n))//2)
[ "noreply@github.com" ]
DebRC.noreply@github.com
ca1de3b0d14a8422dee3935ae2801d6ac3503037
f725df1a1a494f13d9f179e5981a30d3a843f8b7
/piEstimate.py
76659ac84ae4f282602f1cd6ac28e3eb65c8804b
[]
no_license
aaronscode/piEstimate
f8fadeefdb0e3a7f49b94f1f490c96608ff91dc6
cb7d18e726399c5c482796e16e66b2ecd1b80579
refs/heads/master
2021-01-22T13:23:25.780468
2018-07-04T03:19:44
2018-07-04T03:19:44
100,665,792
0
1
null
null
null
null
UTF-8
Python
false
false
525
py
import math as m import random as r def main(): numSamples = int(input("Number of Samples: ")) numWithinRadius = 0 for i in range(0, numSamples): x = r.uniform(0,1) y = r.uniform(0,1) if m.sqrt(x * x + y * y) < 1: numWithinRadius += 1 ratio = numWithinRadius / numSamples piEstimate = 4 * ratio print("Number of samples within radius: {0}".format(numWithinRadius)) print("Estimate for pi: {0}".format(piEstimate)) if __name__ == "__main__": main()
[ "agross@temple.edu" ]
agross@temple.edu
b3f1c0052489cfc59ab9c29a478a91935c971633
27c1053165bad4d93b375c92a458504a27ed2628
/app/forms/create_client_form.py
7557f29cb94ed4d59dbcc078b9649e92fb4814ae
[]
no_license
ransonk/trainer-hub
d13068e1b8d2f37604cd1e92b37fd043c50228a9
463b78147f7d6f2330346025cb3c14e8254febf4
refs/heads/master
2023-04-09T15:29:11.539943
2021-04-19T01:16:10
2021-04-19T01:16:10
318,020,072
0
0
null
2021-04-09T19:05:18
2020-12-02T23:34:22
Python
UTF-8
Python
false
false
1,328
py
from flask_wtf import FlaskForm from wtforms import StringField, IntegerField, BooleanField from wtforms.validators import DataRequired, Email, ValidationError, Optional from app.models import Trainer, Client # from app.models import User def client_exists(form, field): print("Checking if client exists", field.data) email = field.data client = Client.query.filter(Client.email == email).first() if client: raise ValidationError("User is already registered.") class CreateClientForm(FlaskForm): firstName = StringField('first name', validators=[DataRequired()]) lastName = StringField('last name', validators=[DataRequired()]) email = StringField('email', validators=[client_exists]) phone = StringField('phone', validators=[Optional()]) weight = StringField('weight', validators=[Optional()]) age = IntegerField('age', validators=[Optional()]) duedate = StringField('duedate', validators=[Optional()]) amount = StringField('amount', validators=[Optional()]) paid = BooleanField('paid', validators=[Optional()]) noshows = IntegerField('No Shows', validators=[Optional()]) cancellations = IntegerField('Cancellations', validators=[Optional()]) password = StringField('password', validators=[DataRequired()]) trainer_id = IntegerField('trainer_id')
[ "ransonknorr@gmail.com" ]
ransonknorr@gmail.com
6e46d41d4d26e0cd32bd2ca55fb3fe92590599e8
080c78a077796d06e80aa6b02c220099c6fa41dc
/helpers.py
08ec00a63ed9617041444e5a504ce61d400c03c9
[]
no_license
nikita-mishunyayev/Kaggle-Aptos-Blindness-Detection-2019-solution
a44081259db095ed97c2cac4bbd866fed649a6eb
e3c6479c99570339775f28e8c42462193a4cf9a5
refs/heads/master
2022-03-09T11:13:36.886285
2019-11-19T02:17:32
2019-11-19T02:17:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,901
py
import re import math import collections from functools import partial from collections import Counter import json import imageio import os import re from tqdm import tqdm import numpy as np import pandas as pd import cv2 import collections import torch import torch.nn as nn from torch.nn import functional as F from torch.utils.data import Dataset from albumentations import ( Compose, Resize, Normalize, Flip ) from albumentations.torch import ToTensor # Parameters for the entire model (stem, all blocks, and head) GlobalParams = collections.namedtuple('GlobalParams', [ 'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes', 'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size']) # Parameters for an individual model block BlockArgs = collections.namedtuple('BlockArgs', [ 'kernel_size', 'num_repeat', 'input_filters', 'output_filters', 'expand_ratio', 'id_skip', 'stride', 'se_ratio']) # Change namedtuple defaults GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) sigmoid = torch.nn.Sigmoid() class Swish(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_variables[0] sigmoid_i = sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) swish = Swish.apply class Swish_module(nn.Module): def forward(self, x): return swish(x) swish_layer = Swish_module() def relu_fn(x): """ Swish activation function """ # return x * torch.sigmoid(x) return swish_layer(x) def round_filters(filters, global_params): """ Calculate and round number of filters based on depth multiplier. """ multiplier = global_params.width_coefficient if not multiplier: return filters divisor = global_params.depth_divisor min_depth = global_params.min_depth filters *= multiplier min_depth = min_depth or divisor new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) if new_filters < 0.9 * filters: # prevent rounding by more than 10% new_filters += divisor return int(new_filters) def round_repeats(repeats, global_params): """ Round number of filters based on depth multiplier. """ multiplier = global_params.depth_coefficient if not multiplier: return repeats return int(math.ceil(multiplier * repeats)) def drop_connect(inputs, p, training): """ Drop connect. """ if not training: return inputs batch_size = inputs.shape[0] keep_prob = 1 - p random_tensor = keep_prob random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) binary_tensor = torch.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output def get_same_padding_conv2d(image_size=None): """ Chooses static padding if you have specified an image size, and dynamic padding otherwise. Static padding is necessary for ONNX exporting of models. """ if image_size is None: return Conv2dDynamicSamePadding else: return partial(Conv2dStaticSamePadding, image_size=image_size) class Conv2dDynamicSamePadding(nn.Conv2d): """ 2D Convolutions like TensorFlow, for a dynamic image size """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]]*2 def forward(self, x): ih, iw = x.size()[-2:] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w//2, pad_w - pad_w//2, pad_h//2, pad_h - pad_h//2]) return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class Conv2dStaticSamePadding(nn.Conv2d): """ 2D Convolutions like TensorFlow, for a fixed image size""" def __init__(self, in_channels, out_channels, kernel_size, image_size=None, **kwargs): super().__init__(in_channels, out_channels, kernel_size, **kwargs) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 # Calculate padding based on image size and save it assert image_size is not None ih, iw = image_size if type(image_size) == list else [image_size, image_size] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)) else: self.static_padding = Identity() def forward(self, x): x = self.static_padding(x) x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return x class Identity(nn.Module): def __init__(self,): super(Identity, self).__init__() def forward(self, input): return input ######################################################################## ############## HELPERS FUNCTIONS FOR LOADING MODEL PARAMS ############## ######################################################################## def efficientnet_params(model_name): """ Map EfficientNet model name to parameter coefficients. """ params_dict = { # Coefficients: width,depth,res,dropout 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), } return params_dict[model_name] class BlockDecoder(object): """ Block Decoder for readability, straight from the official TensorFlow repository """ @staticmethod def _decode_block_string(block_string): """ Gets a block through a string notation of arguments. """ assert isinstance(block_string, str) ops = block_string.split('_') options = {} for op in ops: splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value # Check stride assert (('s' in options and len(options['s']) == 1) or (len(options['s']) == 2 and options['s'][0] == options['s'][1])) return BlockArgs( kernel_size=int(options['k']), num_repeat=int(options['r']), input_filters=int(options['i']), output_filters=int(options['o']), expand_ratio=int(options['e']), id_skip=('noskip' not in block_string), se_ratio=float(options['se']) if 'se' in options else None, stride=[int(options['s'][0])]) @staticmethod def _encode_block_string(block): """Encodes a block to a string.""" args = [ 'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' % (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio, 'i%d' % block.input_filters, 'o%d' % block.output_filters ] if 0 < block.se_ratio <= 1: args.append('se%s' % block.se_ratio) if block.id_skip is False: args.append('noskip') return '_'.join(args) @staticmethod def decode(string_list): """ Decodes a list of string notations to specify blocks inside the network. :param string_list: a list of strings, each string is a notation of block :return: a list of BlockArgs namedtuples of block args """ assert isinstance(string_list, list) blocks_args = [] for block_string in string_list: blocks_args.append(BlockDecoder._decode_block_string(block_string)) return blocks_args @staticmethod def encode(blocks_args): """ Encodes a list of BlockArgs to a list of strings. :param blocks_args: a list of BlockArgs namedtuples of block args :return: a list of strings, each string is a notation of block """ block_strings = [] for block in blocks_args: block_strings.append(BlockDecoder._encode_block_string(block)) return block_strings def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.2, drop_connect_rate=0.2, image_size=None, num_classes=1000): """ Creates a efficientnet model. """ blocks_args = [ 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', 'r1_k3_s11_e6_i192_o320_se0.25', ] blocks_args = BlockDecoder.decode(blocks_args) global_params = GlobalParams( batch_norm_momentum=0.99, batch_norm_epsilon=1e-3, dropout_rate=dropout_rate, drop_connect_rate=drop_connect_rate, # data_format='channels_last', # removed, this is always true in PyTorch num_classes=num_classes, width_coefficient=width_coefficient, depth_coefficient=depth_coefficient, depth_divisor=8, min_depth=None, image_size=image_size, ) return blocks_args, global_params def get_model_params(model_name, override_params): """ Get the block args and global params for a given model """ if model_name.startswith('efficientnet'): w, d, s, p = efficientnet_params(model_name) # note: all models have drop connect rate = 0.2 blocks_args, global_params = efficientnet( width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) else: raise NotImplementedError('model name is not pre-defined: %s' % model_name) if override_params: # ValueError will be raised here if override_params has fields not included in global_params. global_params = global_params._replace(**override_params) return blocks_args, global_params url_map = { 'efficientnet-b0': 'http://storage.googleapis.com/public-models/efficientnet-b0-08094119.pth', 'efficientnet-b1': 'http://storage.googleapis.com/public-models/efficientnet-b1-dbc7070a.pth', 'efficientnet-b2': 'http://storage.googleapis.com/public-models/efficientnet-b2-27687264.pth', 'efficientnet-b3': 'http://storage.googleapis.com/public-models/efficientnet-b3-c8376fa2.pth', 'efficientnet-b4': 'http://storage.googleapis.com/public-models/efficientnet-b4-e116e8b3.pth', 'efficientnet-b5': 'http://storage.googleapis.com/public-models/efficientnet-b5-586e6cc6.pth', } def load_pretrained_weights(model, model_name, load_fc=True): """ Loads pretrained weights, and downloads if loading for the first time. """ state_dict = model_zoo.load_url(url_map[model_name]) if load_fc: model.load_state_dict(state_dict) else: state_dict.pop('_fc.weight') state_dict.pop('_fc.bias') res = model.load_state_dict(state_dict, strict=False) assert str(res.missing_keys) == str(['_fc.weight', '_fc.bias']), 'issue loading pretrained weights' print('Loaded pretrained weights for {}'.format(model_name)) class MBConvBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, block_args, global_params): super().__init__() self._block_args = block_args self._bn_mom = 1 - global_params.batch_norm_momentum self._bn_eps = global_params.batch_norm_epsilon self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) self.id_skip = block_args.id_skip # skip connection and drop connect # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Expansion phase inp = self._block_args.input_filters # number of input channels oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels if self._block_args.expand_ratio != 1: self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Depthwise convolution phase k = self._block_args.kernel_size s = self._block_args.stride self._depthwise_conv = Conv2d( in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise kernel_size=k, stride=s, bias=False) self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) # Squeeze and Excitation layer, if desired if self.has_se: num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) # Output phase final_oup = self._block_args.output_filters self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) def forward(self, inputs, drop_connect_rate=None): """ :param inputs: input tensor :param drop_connect_rate: drop connect rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution x = inputs if self._block_args.expand_ratio != 1: x = relu_fn(self._bn0(self._expand_conv(inputs))) x = relu_fn(self._bn1(self._depthwise_conv(x))) # Squeeze and Excitation if self.has_se: x_squeezed = F.adaptive_avg_pool2d(x, 1) x_squeezed = self._se_expand(relu_fn(self._se_reduce(x_squeezed))) x = torch.sigmoid(x_squeezed) * x x = self._bn2(self._project_conv(x)) # Skip connection and drop connect input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: if drop_connect_rate: x = drop_connect(x, p=drop_connect_rate, training=self.training) x = x + inputs # skip connection return x class EfficientNet(nn.Module): """ An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods Args: blocks_args (list): A list of BlockArgs to construct blocks global_params (namedtuple): A set of GlobalParams shared between blocks Example: model = EfficientNet.from_pretrained('efficientnet-b0') """ def __init__(self, blocks_args=None, global_params=None): super().__init__() assert isinstance(blocks_args, list), 'blocks_args should be a list' assert len(blocks_args) > 0, 'block args must be greater than 0' self._global_params = global_params self._blocks_args = blocks_args # Get static or dynamic convolution depending on image size Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) # Batch norm parameters bn_mom = 1 - self._global_params.batch_norm_momentum bn_eps = self._global_params.batch_norm_epsilon # Stem in_channels = 3 # rgb out_channels = round_filters(32, self._global_params) # number of output channels self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Build blocks self._blocks = nn.ModuleList([]) for block_args in self._blocks_args: # Update block input and output filters based on depth multiplier. block_args = block_args._replace( input_filters=round_filters(block_args.input_filters, self._global_params), output_filters=round_filters(block_args.output_filters, self._global_params), num_repeat=round_repeats(block_args.num_repeat, self._global_params) ) # The first block needs to take care of stride and filter size increase. self._blocks.append(MBConvBlock(block_args, self._global_params)) if block_args.num_repeat > 1: block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) for _ in range(block_args.num_repeat - 1): self._blocks.append(MBConvBlock(block_args, self._global_params)) # Head in_channels = block_args.output_filters # output of final block out_channels = round_filters(1280, self._global_params) self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) # Final linear layer self._dropout = self._global_params.dropout_rate self._fc = nn.Linear(out_channels, self._global_params.num_classes) def extract_features(self, inputs): """ Returns output of the final convolution layer """ # Stem x = relu_fn(self._bn0(self._conv_stem(inputs))) # Blocks for idx, block in enumerate(self._blocks): drop_connect_rate = self._global_params.drop_connect_rate if drop_connect_rate: drop_connect_rate *= float(idx) / len(self._blocks) x = block(x, drop_connect_rate=drop_connect_rate) # Head x = relu_fn(self._bn1(self._conv_head(x))) return x def forward(self, inputs): """ Calls extract_features to extract features, applies final linear layer, and returns logits. """ # Convolution layers x = self.extract_features(inputs) # Pooling and final linear layer x = F.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1) if self._dropout: x = F.dropout(x, p=self._dropout, training=self.training) x = self._fc(x) return x @classmethod def from_name(cls, model_name, override_params=None): cls._check_model_name_is_valid(model_name) blocks_args, global_params = get_model_params(model_name, override_params) return EfficientNet(blocks_args, global_params) @classmethod def from_pretrained(cls, model_name, num_classes=1000): model = EfficientNet.from_name(model_name, override_params={'num_classes': num_classes}) return model @classmethod def get_image_size(cls, model_name): cls._check_model_name_is_valid(model_name) _, _, res, _ = efficientnet_params(model_name) return res @classmethod def _check_model_name_is_valid(cls, model_name, also_need_pretrained_weights=False): """ Validates model name. None that pretrained weights are only available for the first four models (efficientnet-b{i} for i in 0,1,2,3) at the moment. """ num_models = 4 if also_need_pretrained_weights else 8 valid_models = ['efficientnet_b'+str(i) for i in range(num_models)] if model_name.replace('-','_') not in valid_models: raise ValueError('model_name should be one of: ' + ', '.join(valid_models)) class Crop_From_Gray: def __init__(self, tol=7): self.tol = tol def _crop_image_from_gray(self, img): if img.ndim == 2: mask = img > self.tol return img[np.ix_(mask.any(1),mask.any(0))] elif img.ndim == 3: gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) mask = gray_img>self.tol check_shape = img[:,:,0][np.ix_(mask.any(1),mask.any(0))].shape[0] if (check_shape == 0): # image is too dark so that we crop out everything, return img # return original image else: img1 = img[:,:,0][np.ix_(mask.any(1),mask.any(0))] img2 = img[:,:,1][np.ix_(mask.any(1),mask.any(0))] img3 = img[:,:,2][np.ix_(mask.any(1),mask.any(0))] img = np.stack([img1,img2,img3],axis=-1) return img def __call__(self, image, force_apply=None): img = self._crop_image_from_gray(image) return {"image": img} class Circle_Crop: def _circle_crop(self, img): height, width, depth = img.shape x = int(width/2) y = int(height/2) r = np.amin((x,y)) circle_img = np.zeros((height, width), np.uint8) cv2.circle(circle_img, (x,y), int(r), 1, thickness=-1) img = cv2.bitwise_and(img, img, mask=circle_img) return img def __call__(self, image, force_apply=None): img = self._circle_crop(image) return {"image": img} class Ben_preprocess: def __init__(self, sigma=10): self.sigma = sigma def __call__(self, image, force_apply=None): image = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0,0) , self.sigma), -4, 128) return {"image": image} class RetinopathyDatasetTest(Dataset): def __init__(self, csv_file, path_to_data, transform): self.data = pd.read_csv(csv_file) self.path_to_data = path_to_data self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, idx): img_name = os.path.join(self.path_to_data, self.data.loc[idx, 'id_code'] + '.png') image = cv2.imread(img_name) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = self.transform(image=image) return {'image': image['image']} def predict(test_dl, model, batch_size, len_test_dataset, device): with torch.no_grad(): test_preds = np.zeros((len_test_dataset, 1)) t = tqdm(test_dl) for i, x_batch in enumerate(t): pred = model(x_batch['image'].to(device)) test_preds[i * batch_size:(i + 1) * batch_size] = pred.cpu().squeeze().numpy().ravel().reshape(-1, 1) return test_preds def round_preds(preds): coef = [0.5, 1.5, 2.5, 3.5] for i, pred in enumerate(preds): if pred < coef[0]: preds[i] = 0 elif pred >= coef[0] and pred < coef[1]: preds[i] = 1 elif pred >= coef[1] and pred < coef[2]: preds[i] = 2 elif pred >= coef[2] and pred < coef[3]: preds[i] = 3 else: preds[i] = 4 return preds def pre_transforms(image_size=224, crop_from_gray=False, circle_crop=False, ben_preprocess=0): transforms = [Resize(image_size, image_size)] if crop_from_gray is True: transforms = [Crop_From_Gray()] + transforms if ben_preprocess > 0: transforms.append(Ben_preprocess(sigma=ben_preprocess)) if circle_crop is True: transforms.append(Circle_Crop()) return Compose(transforms) def post_transforms(normalize=True): transforms = [ToTensor()] if normalize is True: transforms = [Normalize()] + transforms return Compose(transforms) class efficientnet_pretrained(nn.Module): def __init__(self, k, num_classes, pretrained): super(efficientnet_pretrained, self).__init__() self.name = 'efficientnet-b' + str(k) self.model = EfficientNet.from_pretrained(self.name, num_classes) def forward(self, x): return self.model(x)
[ "noreply@github.com" ]
nikita-mishunyayev.noreply@github.com
e70cb2bf382b44dc97be7bff59e7923a6a9b57ec
94675efda520e7c7927e0ff98302ba8d11d0f7e6
/myvenv/bin/pip-3.4
ec0a4a7114df884b35b77e8c995e7b33f10d95ba
[]
no_license
estefib/my-first-blog-
23358cfda50aab1f85b8d333ba7b8ad5300b8ccb
b4128b1035af300e0e3db9863716183dae0c7639
refs/heads/master
2021-01-18T22:13:38.488749
2016-10-29T17:38:32
2016-10-29T17:38:32
72,300,118
0
0
null
null
null
null
UTF-8
Python
false
false
340
4
#!/Users/Estefi/Documents/django_girls/dg-project/myvenv/bin/python3 # EASY-INSTALL-ENTRY-SCRIPT: 'pip==1.2.1','console_scripts','pip-3.4' __requires__ = 'pip==1.2.1' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('pip==1.2.1', 'console_scripts', 'pip-3.4')() )
[ "estefaniaballesterg@gmail.com" ]
estefaniaballesterg@gmail.com
9460c243621b5445e7a03324b7c44b33627e7ba6
91406d4983e24a4ac8563bc68b50ce1060259300
/digital_handwriting/urls.py
cf1c8e1bd054ee2548f2f8b3814eaaa9fda25c40
[ "MIT" ]
permissive
therajmaurya/Digital-Handwriting
c71b208c0c8268a026eafd3ca7d09c53bae40a51
8ec89a0ad11b1d071536f77d6cac85ba02b83d43
refs/heads/master
2022-03-30T01:54:36.743159
2019-12-25T21:44:39
2019-12-25T21:44:39
113,925,666
2
0
null
null
null
null
UTF-8
Python
false
false
916
py
"""digital_handwriting URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from handwriting import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$',views.text), url(r'^created/',views.create,name='create') ]
[ "therajmaurya@gmail.com" ]
therajmaurya@gmail.com
f59d1cdb320110df45c4594d131216bb073e5546
33f697fd4fd2398500cf5f8d555617a863de1eb4
/problem1_3sand5s.py
d7dc311b254a287122e893cbb1e9ee460d322951
[]
no_license
AlexHahnPublic/EulerProblems
c70e5744dc74b293a2d325b0dface457f517ad5f
53efea4f941c93d8a5e114e80f836a53dc5d9cf9
refs/heads/master
2021-06-07T02:05:16.801556
2016-10-22T04:25:00
2016-10-22T04:25:00
33,910,066
0
0
null
null
null
null
UTF-8
Python
false
false
750
py
# Euler Problem 1: # If we list all the natural numbers below 10 that are multiples of 3 or 5, we # get 3, 5, 6, and 9. The sum of these multiples is 23 # Find the sum of all the multiples of 3 and 5 below 1000. # Solution: trial division, check each number up to n, if divisible by 3 or 5 # add it to the running total import time def sum3and5(n): start_time = time.time() total = 0 for nat in range(n): if (nat % 3 == 0) or (nat % 5 == 0): total = total + nat total_time = time.time() - start_time print "The sum of all the multiples of 3 and 5 below", n, "is", total print "This program took:", total_time, "seconds to run" if __name__ == "__main__": import sys sum3and5(int(sys.argv[1]))
[ "afh53@physics.cornell.edu" ]
afh53@physics.cornell.edu
95f77f9ccf028b1c765b0de7d6a75f8a0979455b
d4e5a2095e15e5e8fc5e3ddb232f41cc3c5aa608
/Python/1001.py
c7703ba4060b8fbfdd25f5ed8fec879df3dcd8ec
[]
no_license
xaadu/uri-solves
bea5c3e78e3c6a6f3aa8c83ef9407e08d714a94a
7f0d03376c4295e9e658c5b198d1d304c93699b3
refs/heads/master
2020-05-14T17:03:44.545029
2019-04-17T12:33:49
2019-04-17T12:33:49
181,885,158
1
0
null
null
null
null
UTF-8
Python
false
false
71
py
# URI --> 1001 x = int(input()) y = int(input()) print("X =", (x+y))
[ "xayed42@gmail.com" ]
xayed42@gmail.com
41e0c35d8f6f140f28776895e5818242163e49f8
7a239875dc9147377c68403e33ce234448b3b443
/libsubmit/version.py
e35bbbade12937ef58ce92916b9c34a995a2520d
[ "Apache-2.0" ]
permissive
benhg/libsubmit
a51f14ffe7220a5c523d5b9b5c079b2a4f030749
3ff05719d01e9a7c78c81d002b22f9a927cb6a4f
refs/heads/master
2021-05-14T02:25:27.566641
2018-02-09T21:35:44
2018-02-09T21:35:44
116,594,575
0
0
null
2018-02-09T21:12:08
2018-01-07T19:55:57
Python
UTF-8
Python
false
false
91
py
''' Set module version <Major>.<Minor>.<maintenance>[-alpha/beta/..] ''' VERSION = '0.3.0'
[ "yadudoc1729@gmail.com" ]
yadudoc1729@gmail.com
e08959efc568fd56daefcf8ab0405bd7db16d4b2
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/response/AlipayOpenMiniTipsDeliveryCreateResponse.py
0f0bc4813082df45cd6c1d04d87d1319c5c3daad
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
754
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayOpenMiniTipsDeliveryCreateResponse(AlipayResponse): def __init__(self): super(AlipayOpenMiniTipsDeliveryCreateResponse, self).__init__() self._delivery_id = None @property def delivery_id(self): return self._delivery_id @delivery_id.setter def delivery_id(self, value): self._delivery_id = value def parse_response_content(self, response_content): response = super(AlipayOpenMiniTipsDeliveryCreateResponse, self).parse_response_content(response_content) if 'delivery_id' in response: self.delivery_id = response['delivery_id']
[ "jishupei.jsp@alibaba-inc.com" ]
jishupei.jsp@alibaba-inc.com
c1415377ed6f1240038e86f44212940480f53494
eb8d1aaf5992b5734bc5be5320144552decacba0
/reccurent.py
6a1603a28ec394be4cd5a9b368aa25c7d09a13c4
[]
no_license
olivernina/htr-ctc
3fa719a9ffb041dc7cd7499c0731cfd4f0a03e15
a147801741b94bac9f1658e83790d06a2a043b99
refs/heads/master
2021-01-10T05:54:09.562636
2018-07-18T10:27:06
2018-07-18T10:27:06
50,888,562
8
0
null
null
null
null
UTF-8
Python
false
false
1,602
py
import theano import theano.tensor as tt from weights import init_wts, share class RecurrentLayer(): def __init__(self, inpt, nin, nunits, conv_sz=1, learn_init_state=True): # inpt is transposed a priori tablet_wd, _ = inpt.shape if conv_sz > 1: inpt_clipped = inpt[:conv_sz * (tablet_wd // conv_sz), :] inpt_conv = inpt_clipped.reshape( (tablet_wd // conv_sz, nin * conv_sz)) else: inpt_conv = inpt wio = share(init_wts(nin * conv_sz, nunits)) # input to output woo = share(init_wts(nunits, nunits)) # output to output bo = share(init_wts(nunits)) h0 = share(init_wts(nunits)) def step(in_t, out_tm1): return tt.tanh(tt.dot(out_tm1, woo) + tt.dot(in_t, wio) + bo) self.output, _ = theano.scan( step, sequences=[inpt_conv], outputs_info=[h0] ) self.params = [wio, woo, bo] if learn_init_state: self.params += [h0] self.nout = nunits class BiRecurrentLayer(): def __init__(self, inpt, nin, nunits, conv_sz=1, learn_init_state=True): fwd = RecurrentLayer(inpt, nin, nunits, conv_sz, learn_init_state) bwd = RecurrentLayer(inpt[::-1], nin, nunits, conv_sz, learn_init_state) self.params = fwd.params + bwd.params self.nout = fwd.nout + bwd.nout self.output = tt.concatenate([fwd.output, bwd.output[::-1]], axis=1)
[ "pk_blaze@knights.ucf.edu" ]
pk_blaze@knights.ucf.edu
2f5faa2b2d0339df0be2c970e5ca671545dfad00
f11c0cb4e9fafde02c2d4a59ce5627a21a0f2e93
/turtlebot/build/turtlebot/turbot_map/catkin_generated/pkg.develspace.context.pc.py
00c3586ca66dbfaabc797269a59875e3e3884c69
[]
no_license
ilazy991/turtlebot
99e3b914758c257e92a87b34beef75c353941034
09740786a9cda8abd4c1defe90cdceb7c6e1a18f
refs/heads/master
2020-04-30T00:09:51.391880
2019-03-19T10:25:25
2019-03-19T10:25:25
176,495,982
0
2
null
2019-03-19T11:21:12
2019-03-19T11:21:11
null
UTF-8
Python
false
false
388
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "turtlebot_map" PROJECT_SPACE_DIR = "/home/nvidia/Desktop/Code/turtlebot/devel" PROJECT_VERSION = "0.0.0"
[ "1142144213@qq.com" ]
1142144213@qq.com
cce5f7d532abfffad86be6ec42bce232e7d6d494
fe97b7ba5dd24e52e0ef2f4a9cf3b2461e10ceea
/To-Do List/task/todolist/datastore.py
c2666d56a5fb7998aa6c6439f767e326bd6fff2d
[]
no_license
nghianja/To-Do-List
4acc8a5c82110d3959ddd5c1f6bc23a53cd4397b
fab7313da51a5bc4ce398550c6ba2f48e3108b0c
refs/heads/master
2022-12-18T02:44:12.213690
2020-09-26T14:26:40
2020-09-26T14:26:40
298,739,553
0
0
null
null
null
null
UTF-8
Python
false
false
719
py
# A model class that describes the table in the database. from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Date from datetime import datetime from sqlalchemy.orm import sessionmaker Base = declarative_base() class Table(Base): __tablename__ = 'task' id = Column(Integer, primary_key=True) task = Column(String) deadline = Column(Date, default=datetime.today()) def __repr__(self): return self.task def create_datastore(): engine = create_engine('sqlite:///todo.db?check_same_thread=False') Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) return Session()
[ "james.ng@projapps.com" ]
james.ng@projapps.com
d6f643dec24cf89d8b97066a05f2dc90e6dfbe46
1adf7d71d32ac15a94251cbf8c296857e7e0ab11
/Advanced Python/Design Patterns/anti-patterns_correctness.py
0d9b6613645fcd5bed2d4de35eb7266d506756ef
[]
no_license
pvvanilkumar/Learning
691c07688dc6395b2e9e92bd44e33ee8f19c7cd0
83e5bbd296031812526b7df0ae4cf7dac8aae568
refs/heads/master
2020-12-22T03:40:07.319396
2020-01-28T04:56:14
2020-01-28T04:56:14
236,659,744
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
class Rectangle(object): def __init__(self, width, height): self._width = width self._height = height r = Rectangle(5, 6) # direct access of protected member print("Width: {:d}".format(r._width))
[ "pveerav@apac.corpdir.net" ]
pveerav@apac.corpdir.net
7baaeaed32956cf32db8273ce882ac55fbcf7d77
5695d365852a5b9bc4f8092c8aba139530def229
/hs_collection_resource/migrations/0002_collectiondeletedresource_resource_owners.py
d6a80fde974db5778255ad0469fa26b6f89dd634
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
heliumdatacommons/commonsshare
6863705e71be2fb9ef4a822e391d60cfcbc82a44
4336dc337ca2b36c2d0a0a7ea793af624c1356c7
refs/heads/develop
2021-05-11T14:12:53.511860
2020-04-15T20:48:38
2020-04-15T20:48:38
117,697,775
2
4
BSD-3-Clause
2020-03-31T14:08:15
2018-01-16T14:58:04
Python
UTF-8
Python
false
false
586
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('hs_collection_resource', '0001_initial'), ] operations = [ migrations.AddField( model_name='collectiondeletedresource', name='resource_owners', field=models.ManyToManyField(related_name='collectionDeleted', to=settings.AUTH_USER_MODEL), ), ]
[ "zyli2004@gmail.com" ]
zyli2004@gmail.com
c60c7909ee17189186d37d45b7eda97c4c7d3bf0
bc441bb06b8948288f110af63feda4e798f30225
/resource_manage_sdk/api/cmdb_approve/get_history_approver_list_pb2.pyi
abd98e65926c1c34c66d48ba053cdace0455c688
[ "Apache-2.0" ]
permissive
easyopsapis/easyops-api-python
23204f8846a332c30f5f3ff627bf220940137b6b
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
refs/heads/master
2020-06-26T23:38:27.308803
2020-06-16T07:25:41
2020-06-16T07:25:41
199,773,131
5
0
null
null
null
null
UTF-8
Python
false
false
4,398
pyi
# @generated by generate_proto_mypy_stubs.py. Do not edit! import sys from google.protobuf.descriptor import ( Descriptor as google___protobuf___descriptor___Descriptor, ) from google.protobuf.internal.containers import ( RepeatedScalarFieldContainer as google___protobuf___internal___containers___RepeatedScalarFieldContainer, ) from google.protobuf.message import ( Message as google___protobuf___message___Message, ) from google.protobuf.struct_pb2 import ( Struct as google___protobuf___struct_pb2___Struct, ) from typing import ( Iterable as typing___Iterable, Optional as typing___Optional, Text as typing___Text, Union as typing___Union, ) from typing_extensions import ( Literal as typing_extensions___Literal, ) builtin___bool = bool builtin___bytes = bytes builtin___float = float builtin___int = int if sys.version_info < (3,): builtin___buffer = buffer builtin___unicode = unicode class GetHistoryApproverListRequest(google___protobuf___message___Message): DESCRIPTOR: google___protobuf___descriptor___Descriptor = ... @property def query(self) -> google___protobuf___struct_pb2___Struct: ... def __init__(self, *, query : typing___Optional[google___protobuf___struct_pb2___Struct] = None, ) -> None: ... if sys.version_info >= (3,): @classmethod def FromString(cls, s: builtin___bytes) -> GetHistoryApproverListRequest: ... else: @classmethod def FromString(cls, s: typing___Union[builtin___bytes, builtin___buffer, builtin___unicode]) -> GetHistoryApproverListRequest: ... def MergeFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def CopyFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def HasField(self, field_name: typing_extensions___Literal[u"query",b"query"]) -> builtin___bool: ... def ClearField(self, field_name: typing_extensions___Literal[u"query",b"query"]) -> None: ... class GetHistoryApproverListResponse(google___protobuf___message___Message): DESCRIPTOR: google___protobuf___descriptor___Descriptor = ... userList = ... # type: google___protobuf___internal___containers___RepeatedScalarFieldContainer[typing___Text] def __init__(self, *, userList : typing___Optional[typing___Iterable[typing___Text]] = None, ) -> None: ... if sys.version_info >= (3,): @classmethod def FromString(cls, s: builtin___bytes) -> GetHistoryApproverListResponse: ... else: @classmethod def FromString(cls, s: typing___Union[builtin___bytes, builtin___buffer, builtin___unicode]) -> GetHistoryApproverListResponse: ... def MergeFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def CopyFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def ClearField(self, field_name: typing_extensions___Literal[u"userList",b"userList"]) -> None: ... class GetHistoryApproverListResponseWrapper(google___protobuf___message___Message): DESCRIPTOR: google___protobuf___descriptor___Descriptor = ... code = ... # type: builtin___int codeExplain = ... # type: typing___Text error = ... # type: typing___Text @property def data(self) -> GetHistoryApproverListResponse: ... def __init__(self, *, code : typing___Optional[builtin___int] = None, codeExplain : typing___Optional[typing___Text] = None, error : typing___Optional[typing___Text] = None, data : typing___Optional[GetHistoryApproverListResponse] = None, ) -> None: ... if sys.version_info >= (3,): @classmethod def FromString(cls, s: builtin___bytes) -> GetHistoryApproverListResponseWrapper: ... else: @classmethod def FromString(cls, s: typing___Union[builtin___bytes, builtin___buffer, builtin___unicode]) -> GetHistoryApproverListResponseWrapper: ... def MergeFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def CopyFrom(self, other_msg: google___protobuf___message___Message) -> None: ... def HasField(self, field_name: typing_extensions___Literal[u"data",b"data"]) -> builtin___bool: ... def ClearField(self, field_name: typing_extensions___Literal[u"code",b"code",u"codeExplain",b"codeExplain",u"data",b"data",u"error",b"error"]) -> None: ...
[ "service@easyops.cn" ]
service@easyops.cn
f56554b1fcba93eccdd0b91c791dba09a26ef386
699b75c65e1bc5a793aef69dad6350fdc6e99fd6
/number_1.py
259ac43ae6b7476b3d09f30d0a94aa13a80d6a18
[]
no_license
najihabrilianti/flip.id-test-qa
4bc56487b65d88713ea606de42c74d4167717fe1
750c0ee2aa3eef1a93f4ebd1acb418e7822e3417
refs/heads/main
2023-04-18T23:46:11.497349
2021-05-08T21:56:03
2021-05-08T21:56:03
365,614,610
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
db_transaction = [['011','Smith','BCA','BRI',1000000],['100','John','BRI','BCA',1000000],['101','Fulan','Mandiri','BCA',4333011],['110','Sri','BNI','BSI',3000000],['111','Bambang','BCA','BSI',1500000]] dash_admin = [['001','Smith','BCA','BRI',1000000],['100','John','BRI','BCA',None],['101','Fulan','Mandiri','BCA',4000000],['110','Sri','BNI','BSI',3000000],['111','Bambang','BCA','BSI',1500000]] for data in db_transaction : dash_index = db_transaction.index(data) if data == dash_admin[dash_index] : print ('pass') else : print ('failed')
[ "73904901+najihabrilianti@users.noreply.github.com" ]
73904901+najihabrilianti@users.noreply.github.com
8819265c82f77a7ee9ccf1be48314333ca28c1c5
704fda0d0e05f66f0c4f3c17cc4b39e2b0bc6220
/homework1/task2.py
29779bec2ac406bc0aae1e8f0b6b2cd82a98eb24
[]
no_license
humantom88/geekbrains-python-basics
71eae1be4f8b1d757db17200d64d2b14ea51d83f
ebde8e0a9b92386f2a5b994a880184adde8c7454
refs/heads/master
2021-05-17T10:48:56.788147
2020-04-23T09:51:10
2020-04-23T09:51:10
250,743,538
0
0
null
null
null
null
UTF-8
Python
false
false
659
py
# 2. Пользователь вводит время в секундах. Переведите время в часы, # минуты и секунды и выведите в формате чч:мм:сс. Используйте форматирование строк. print('Введите количество секунд: ') seconds = int(input()) minutes = seconds // 60 hours = minutes // 60 seconds = seconds % 60 minutes = minutes % 60 hours = hours % 24 if seconds < 10: seconds = f'0{seconds}' if minutes < 10: minutes = f'0{minutes}' if hours < 10: hours = f'0{hours}' print(f'Вы ввели время: {hours}:{minutes}:{seconds}')
[ "humantom88@gmail.com" ]
humantom88@gmail.com
0d2af27c7b63e8f21fc7c713d6004cfdb8063ea9
820a8e7ec541299f315ac43ddb3b41236e11cd33
/demo/streaming/message_based_client.py
8bba3e3493dd7f6aadd1d443706b2ee614e2f6f3
[ "Apache-2.0" ]
permissive
hpsaturn/Autobahn
5caba163ee976e8ddedadfb1a79139ba6014861b
f7bd44433f227130901440e768073e2afbf410bf
refs/heads/master
2021-01-17T22:09:02.484645
2011-11-01T18:27:57
2011-11-01T18:27:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,904
py
############################################################################### ## ## Copyright 2011 Tavendo GmbH ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## ############################################################################### from ranstring import randomByteString from twisted.internet import reactor from autobahn.websocket import WebSocketClientFactory, WebSocketClientProtocol MESSAGE_SIZE = 1 * 2**20 class MessageBasedHashClientProtocol(WebSocketClientProtocol): """ Message-based WebSockets client that generates stream of random octets sent to WebSockets server as a sequence of messages. The server will respond to us with the SHA-256 computed over each message. When we receive response, we repeat by sending a new message. """ def sendOneMessage(self): data = randomByteString(MESSAGE_SIZE) self.sendMessage(data, binary = True) def onOpen(self): self.count = 0 self.sendOneMessage() def onMessage(self, message, binary): print "Digest for message %d computed by server: %s" % (self.count, message) self.count += 1 self.sendOneMessage() if __name__ == '__main__': factory = WebSocketClientFactory() factory.protocol = MessageBasedHashClientProtocol reactor.connectTCP("localhost", 9000, factory) reactor.run()
[ "tobias.oberstein@tavendo.de" ]
tobias.oberstein@tavendo.de
870c4b191c4b5666fd9ab5962c5bad455a42e9b3
4b0b0031c812b457925002236ec0ad5c98df2c63
/app.py
12b289d731d9f18327a4580bb2ba06d407f898be
[ "MIT" ]
permissive
antoreep-jana/webapp-main
1e6e418ec032492f7ef22c6be0e51bd867c2c7b1
d81cfc2f90ae5fe571e287307d194517cb202070
refs/heads/main
2023-01-05T09:31:15.452956
2020-11-05T13:59:22
2020-11-05T13:59:22
310,307,350
0
0
null
null
null
null
UTF-8
Python
false
false
3,695
py
# -*- coding: utf-8 -*- from __future__ import division, print_function # coding=utf-8 import sys import os import glob import re import numpy as np import tensorflow as tf from tensorflow.compat.v1 import ConfigProto from tensorflow.compat.v1 import InteractiveSession # Keras from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image # Flask utils from flask import Flask, redirect, url_for, request, render_template from tensorflow.keras.applications.imagenet_utils import decode_predictions from werkzeug.utils import secure_filename #from gevent.pywsgi import WSGIServer # Define a flask app app = Flask(__name__) # Model saved with Keras model.save() MODEL_PATH ='model_mobilenetv2.h5' # Load your trained model model = MobileNetV2(weights = MODEL_PATH) import numpy as np import re import base64 import numpy as np from PIL import Image from io import BytesIO def base64_to_pil(img_base64): """ Convert base64 image data to PIL image """ image_data = re.sub('^data:image/.+;base64,', '', img_base64) pil_image = Image.open(BytesIO(base64.b64decode(image_data))) return pil_image def np_to_base64(img_np): """ Convert numpy image (RGB) to base64 string """ img = Image.fromarray(img_np.astype('uint8'), 'RGB') buffered = BytesIO() img.save(buffered, format="PNG") return u"data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode("ascii") #def model_predict(img_path, model): def model_predict(img, model): #print(img_path) #img = image.load_img(img_path, target_size=(224, 224)) #img = img.resize((224,224)) img = np.resize(img, (224,224,3)) print(img.shape) print('-'*20) print(img) # Preprocessing the image x = image.img_to_array(img) x = x.astype('float32') print(x.shape) # x = np.true_divide(x, 255) ## Scaling x=x/255. x = np.expand_dims(x, axis=0) #print(x.shape) # Be careful how your trained model deals with the input # otherwise, it won't make correct prediction! # x = preprocess_input(x) preds = model.predict(x) #print(preds) #preds=np.argmax(preds, axis=1) """if preds==0: preds="The leaf is a diseased cotton leaf" elif preds==1: preds="The leaf is a diseased cotton plant" elif preds==2: preds="The leaf is a fresh cotton leaf" else: preds="The leaf is a fresh cotton plant" """ pred_proba = "{:.3f}".format(np.amax(preds)) pred_class = decode_predictions(preds, top = 1) result = str(pred_class[0][0][1]) result = result.replace('_', ' ').capitalize() return f"The result is {result}" @app.route('/', methods=['GET']) def index(): # Main page return render_template('index.html') @app.route('/predict', methods=['GET', 'POST']) def upload(): if request.method == 'POST': # Get the file from post request #f = request.files['file'] #print(request.files) #print('-' * 20) filestr = request.files['file'].read() print(filestr) import cv2 npimg = np.fromstring(filestr, np.uint8) print(npimg) print(npimg.shape) #img = cv2.imdecode(npimg, cv2.CV_LOAD_IMAGE_UNCHANGED) img = cv2.imdecode(npimg, cv2.IMREAD_COLOR) #img = base64_to_pil(request.files['file'].read()) print(img) print(img.shape) # Save the file to ./uploads #basepath = os.path.dirname(__file__) #file_path = os.path.join( # basepath, 'uploads', secure_filename(f.filename)) #f.save(file_path) # Make prediction #preds = model_predict(file_path, model) preds= model_predict(img, model) result=preds return result return None if __name__ == '__main__': app.run(port=5001,debug=True)
[ "antoreepjana@yahoo.in" ]
antoreepjana@yahoo.in
6d82dbb77c8190ea8ac5e5035aba0ecb0d2223df
8d7bd15a2d303510e483940a96200e4811d1f4df
/14_this_s.py
2e8d235b2e0b8b87497801ff7cf20b0fb0ff5184
[ "Apache-2.0" ]
permissive
zhuhuifeng/PyOJ
cecd5a97418cc282a335cb2841bb5783020a75b0
94f2bcd6f0efab099eca5ffa7e776d149b69d8d8
refs/heads/master
2021-01-13T04:46:31.843020
2017-01-31T12:58:59
2017-01-31T12:58:59
78,987,782
0
0
null
null
null
null
UTF-8
Python
false
false
61
py
# coding=utf-8 # 输出Python之禅 import this print this.s
[ "zhuhuifeng_4981@126.com" ]
zhuhuifeng_4981@126.com
be9e9f2b85890f23ffa63690cb52d7a7b92e2eb5
35bf55a3e18dfe5086d7ba39f3b5e7cdc068a9f9
/segment/statistic.py
20f0cee553f4654482b69bb385e756ad26a6603b
[]
no_license
chensian/TextProcess
c566eec375bb37c4c30f7e2c8caaaedbd4b49e92
fb50d15cc9fd2440e77c96f0b5f2e2b764043e37
refs/heads/master
2021-01-15T18:41:15.499983
2018-03-04T10:50:19
2018-03-04T10:50:19
99,799,189
2
1
null
null
null
null
UTF-8
Python
false
false
4,562
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/10/9 12:35 # @Author : chesian # @Site : # @File : statistic.py # @Software: PyCharm import pandas as pd # 统计 总词数 from load.import_util import file_to_dict def compute_word_num(name): path = "D:/python/workspace/TextProcess/segment/data/lda/" filename = name + ".lda-c" annual_word_pure_num = {} annual_word_num = {} data = open(path + filename).readlines() for key, annual in enumerate(data): annual = annual.split(" ") annual_word_pure_num[key] = annual[0] annual_word = annual[1:] # 统计不重复数 word_num = 0 for word2id_freq in annual_word: try: word_num += int(word2id_freq.split(":")[1]) except: print key, word2id_freq annual_word_num[key] = word_num return annual_word_pure_num, annual_word_num # 统计 总字数 def compute_char_num(name): path = "D:/python/workspace/TextProcess/dataset/output/seg/" filename = "seg_result_" + name + ".txt" data = open(path + filename).readlines() annual_char_num = {} for key, annual in enumerate(data): # print len(annual) annual = annual.replace(" ", "") annual_char_num[key] = len(annual) / 3 return annual_char_num # 合并 字数 次数 def turn_merge_char_word(name): annual_char_num = compute_char_num(name) annual_word_pure_num, annual_word_num = compute_word_num(name) id_path = "D:/python/workspace/TextProcess/dataset/output/csv/%s_file2id.csv" type = name.split("_")[1] file2id = pd.read_csv(id_path % type) # print file2id.columns file2id["word_pure_num"] = file2id["id"].apply(lambda x: annual_word_pure_num[x]) file2id["word_num"] = file2id["id"].apply(lambda x: annual_word_num[x]) file2id["char_num"] = file2id["id"].apply(lambda x: annual_char_num[int(x)]) file2id.to_csv("D:/python/workspace/TextProcess/dataset/output/statistic/" + name +"_annual_statistic.csv", index=False) # 匹配 单词 def match_word_freq(name, wordlist): # 1、 wordlist to idlist need word2id path = "D:/python/workspace/TextProcess/segment/data/lda/" filename = name + ".tokens2id" word2id = file_to_dict(path, filename) # print word2id idlist = [] for word in wordlist: # if word in word2id: for token in word2id: if token.find(word) != -1: print token, word2id[token] idlist.append(word2id[token]) # 加载 lda 词统计库 path = "D:/python/workspace/TextProcess/segment/data/lda/" filename = name + ".lda-c" data = open(path + filename).readlines() docs_freq_num = {} for key, annual in enumerate(data): annual = annual.split(" ") # id freq annual_word = annual[1:] id_freq_dict = {} for word2id_freq in annual_word: item = word2id_freq.split(":") try: id_freq_dict[item[0]] = int(item[1]) except: print key, word2id_freq freq_num = 0 for id in idlist: if id in id_freq_dict: freq_num += id_freq_dict[id] docs_freq_num[key] = freq_num return docs_freq_num # 合并 wordlist 在name 出现的次数 def merge_char_word(name): wordlist1 = ["丝绸之路", "一带一路"] wordlist2 = ["结构性改革", "供给侧改革"] wordlist3 = ["新常态"] id_path = "D:/python/workspace/TextProcess/dataset/output/csv/%s_file2id.csv" type = name.split("_")[1] file2id = pd.read_csv(id_path % type) # print file2id.columns docs_freq_num1 = match_word_freq(name, wordlist1) docs_freq_num2 = match_word_freq(name, wordlist2) docs_freq_num3 = match_word_freq(name, wordlist3) file2id["wordlist1"] = file2id["id"].apply(lambda x: docs_freq_num1[x]) file2id["wordlist2"] = file2id["id"].apply(lambda x: docs_freq_num2[x]) file2id["wordlist3"] = file2id["id"].apply(lambda x: docs_freq_num3[x]) file2id.to_csv("D:/python/workspace/TextProcess/dataset/output/statistic/" + name +"_match_word_freq.csv", index=False) if __name__ == "__main__": # name = "mda_mda" # name = "all_mda" name = "all_all" # turn_merge_char_word(name) merge_char_word(name)
[ "1217873870@qq.com" ]
1217873870@qq.com
68c0899de663ac126455d7e02416c71399934052
720aea0fd454b029cfa09331f2d1bbd4775e0b89
/crowdfunding/users/migrations/0002_auto_20200915_1006.py
afc27b8e39d26775181bd47d0f06ea61dd95d478
[]
no_license
RebeccaMillwood/DRF_project
e159d5f276ab51e37ac95ccd49f2f288c7ee5497
b93a1cac5ff8c4ed7736966869d93c1fe8dbd5b4
refs/heads/master
2022-12-18T16:15:14.937724
2020-09-26T02:07:39
2020-09-26T02:07:39
293,739,666
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
# Generated by Django 3.0.8 on 2020-09-15 10:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='customuser', name='about_me', field=models.TextField(blank=True, max_length=500), ), migrations.AddField( model_name='customuser', name='image', field=models.TextField(default='https://hips.hearstapps.com/hmg-prod.s3.amazonaws.com/images/golden-retriever-royalty-free-image-506756303-1560962726.jpg'), ), migrations.AddField( model_name='customuser', name='location', field=models.TextField(blank=True, max_length=30), ), migrations.AlterField( model_name='customuser', name='first_name', field=models.TextField(blank=True, max_length=30), ), migrations.AlterField( model_name='customuser', name='last_name', field=models.TextField(blank=True, max_length=30), ), ]
[ "bec-millwood@live.com.au" ]
bec-millwood@live.com.au
61f6f08c005103942b34e89882f9fddfa2baaf82
e61f16faf742ce29a12706880acd96cf4b267b91
/main.py
a2b5e84de363dbbdb962c5e752c6df6f8efb323a
[]
no_license
sabbaskaragiannidis/studyGame
cbae14cb9ecf31786ca477a92fa9fc5bfe0caf4b
08199b8e34a219065f086390af4c431c29f6564b
refs/heads/master
2022-12-16T22:14:09.651773
2020-09-20T12:10:59
2020-09-20T12:10:59
297,060,766
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
from enemy import Enemy, Troll, Vampire ugly_troll = Troll("Pug") print("Ugly troll - {}".format(ugly_troll)) another_troll = Troll("Ug") print("Another troll - {}".format(another_troll)) another_troll.take_damage(18) print(another_troll) brother = Troll("Urg") print(brother) ugly_troll.grunt() another_troll.grunt() brother.grunt() vamp = Vampire("Vlad") print(vamp) vamp.take_damage(5) print(vamp) print("-" * 40) another_troll.take_damage(30) print(another_troll) vamp._lives = 0 vamp._hit_points = 1 print(vamp)
[ "sabbaskaragiannidis@yahoo.com" ]
sabbaskaragiannidis@yahoo.com
f346a398fe5784e66ff4835f354e82f233b674e1
aea77af99b0667930c5adaa4d4e73670f6533568
/app/lookup.py
eeda258772d1c96ab902ce6a51b127f7202adb93
[]
no_license
dionseow/entity-extraction-api
ed57028a24c7f9d7be76d82d671f478aed10109f
56613dcbff5955d70d2419f72921fdfdf46ad96e
refs/heads/master
2023-06-21T06:27:55.617051
2021-08-04T07:48:10
2021-08-04T07:48:10
392,598,883
0
0
null
null
null
null
UTF-8
Python
false
false
804
py
import spacy import os import glob import pandas as pd class LookUpService: def __init__(self): # Use chinese since it can handle whitespace and # non whitespace tokens self.nlp = spacy.blank("zh") ruler = self.nlp.add_pipe("entity_ruler") lookup_files = glob.glob("./rules/*") patterns = [] for file in lookup_files: ent_type = os.path.basename(file).split(".")[0].upper() ents = list(pd.read_csv(file, header=None)[0]) patterns += [{"label": ent_type, "pattern": ent} for ent in ents] with self.nlp.select_pipes(enable="tagger"): ruler.add_patterns(patterns) def lookup(self, sentence): doc = self.nlp(sentence) return [(ent.text, ent.label_) for ent in doc.ents]
[ "dseow93@gmail.com" ]
dseow93@gmail.com
2413c49ba7094d1184240f864f659a5d3c483dd9
038e9f4f0d2d0907ca7c93fd703fee7b5484bfc3
/travel_api/asgi.py
fa8fdd6ce36eafcbf209688c3ef6c6364703ec0e
[]
no_license
Begayim1/final-project
d62c5cfa60ae03670b17179f5028c7b45d37ecd1
9377a608b7d02f6c4eff0f45246bc080ea57733f
refs/heads/master
2023-07-13T15:40:10.206086
2021-08-20T06:24:20
2021-08-20T06:24:20
397,110,994
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" ASGI config for travel_api project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'travel_api.settings') application = get_asgi_application()
[ "kyrgyzalieva12@gmail.com" ]
kyrgyzalieva12@gmail.com
cb1d4ea82e737e5bf9c2ec42560c94336b5e4563
5182897b2f107f4fd919af59c6762d66c9be5f1d
/.history/src/Simulador_20200711163425.py
aca21747f8e28878eb2b0759badeae8ea1d21215
[ "MIT" ]
permissive
eduardodut/Trabalho_final_estatistica_cd
422b7e702f96291f522bcc68d2e961d80d328c14
fbedbbea6bdd7a79e1d62030cde0fab4e93fc338
refs/heads/master
2022-11-23T03:14:05.493054
2020-07-16T23:49:26
2020-07-16T23:49:26
277,867,096
0
0
null
null
null
null
UTF-8
Python
false
false
14,607
py
import pandas as pd import numpy as np from Matriz_esferica import Matriz_esferica from Individuo import Individuo, Fabrica_individuo import random from itertools import permutations import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from scipy.sparse import csr_matrix, lil_matrix class Simulador(): SADIO = 0 INFECTADO_TIPO_1 = 1 #assintomáticos e o infectado inicial INFECTADO_TIPO_2 = 2 #sintomático CURADO = 3 MORTO = 4 def __init__( self, tamanho_matriz, #numero de linhas e colunas da matriz esférica percentual_inicial_tipo1, #percentual inicial da população que será infectada tipo 1 percentual_inicial_tipo2, #percentual inicial da população que será infectada tipo 2 chance_infeccao, #chance que um infectado tipo 2 tem de infectar um indivíduo saudável chance_infeccao_tipo2, #chance de um indivíduo infectado se tornar contagioso chance_morte, #chance de um indivíduo tipo 2 morrer ao fim de uma atualização atualizacoes_cura): #número de atualizações necessárias para a cura de um indivíduo tipo 1 ou 2 self.num_atualizacoes = 0 self.lista_infectados_tipo_2 = [] self.lista_infectados_tipo_1 = [] self.num_curados = 0 self.num_mortos = 0 self.chance_infeccao = chance_infeccao self.chance_infeccao_tipo2 = chance_infeccao_tipo2 self.chance_morte = chance_morte self.atualizacoes_cura = atualizacoes_cura self.populacao_inicial = int(tamanho_matriz**2) self.num_inicial_tipo2 = int(self.populacao_inicial * percentual_inicial_tipo2) self.num_inicial_tipo1 = 1 + int(self.populacao_inicial * percentual_inicial_tipo1) self.num_inicial_sadios = self.populacao_inicial - (self.num_inicial_tipo2 + self.num_inicial_tipo1) self.matriz_status = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) self.matriz_atualizacoes_cura = lil_matrix((tamanho_matriz, tamanho_matriz),dtype= np.uint8) #self.matriz_status = self.df_individuos.to_numpy() self.popular(tamanho_matriz) self.lista_matrizes_status = [] #objeto que é responsável por validar a movimentação no grid n x n self.matriz_esferica = Matriz_esferica(tamanho_matriz) dict = { 'num_sadios':self.num_inicial_sadios, 'num_infect_t1':self.num_inicial_tipo1, 'num_infect_t2':self.num_inicial_tipo2, 'num_curados':0, 'num_mortos':0} #dataframe que guardará os resultados de cada atualização self.dataframe = pd.DataFrame(dict,index = [0]) self.salvar_posicionamento() def criar_individuo(self, status, posicao): self.matriz_status[posicao[0], posicao[1]] = status if status == self.INFECTADO_TIPO_1 or status == self.INFECTADO_TIPO_2: self.matriz_atualizacoes_cura[posicao[0], posicao[1]] = self.atualizacoes_cura def salvar_posicionamento(self): self.lista_matrizes_status.append(self.matriz_status) def verificar_infeccao(self, lista_infectantes): lista_novos_infectados_tipo1 = [] lista_novos_infectados_tipo2 = [] #itera sobre sobre a lista de individuos que infectam e cada um realiza a tividade de infectar for indice_infectante in lista_infectantes: #busca os vizinhos do infectante atual lista_vizinhos = self.matriz_esferica.get_vizinhos(indice_infectante) #Para cada vizinho, se ele for sadio, é gerado um número aleatório para verificar se foi infectado for indice_vizinho in lista_vizinhos: #verificação de SADIO if self.verifica_status(indice_vizinho) == self.SADIO: #verificação do novo status novo_status = self.infectar(chance_infeccao, chance_infeccao_tipo2) #se for um infectado tipo 1 if novo_status == Individuo.INFECTADO_TIPO_1: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo1.append(indice_vizinho) self.criar_individuo(Individuo.INFECTADO_TIPO_1,indice_vizinho) if novo_status == Individuo.INFECTADO_TIPO_2: #adiciona na lista de novos tipo 1 lista_novos_infectados_tipo2.append(indice_vizinho) self.criar_individuo(Individuo.INFECTADO_TIPO_2,indice_vizinho) return lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 def checagem_morte_individual(self, chance_morte, indice): rng_morte = random.random() if rng_morte <= chance_morte: self.matriz_status[indice[0], indice[1]] = self.MORTO return self.MORTO else: return self.checar_cura_individual(indice) def checar_cura_individual(self, indice): #print("passei na cura") #num_atualizacoes_restantes = self.matriz_atualizacoes_cura[indice[0], indice[1]] self.matriz_atualizacoes_cura[indice[0], indice[1]] -= 1 if self.matriz_atualizacoes_cura[indice[0], indice[1]] == 0: self.matriz_status[indice[0], indice[1]] = self.CURADO return self.CURADO else: return self.matriz_status[indice[0], indice[1]] def checagem_morte_cura_lista(self, lista_infectantes_tipo2): lista_curados = [] lista_mortos = [] for indice_infectante in lista_infectantes_tipo2: novo_status = self.checagem_morte_individual(self.chance_morte, indice_infectante) if novo_status == Individuo.MORTO: lista_mortos.append(indice_infectante) if novo_status == Individuo.CURADO: lista_curados.append(indice_infectante) return lista_mortos, lista_curados def checagem_cura_lista(self, lista_infectantes): lista_curados = [] for indice_infectante in lista_infectantes: novo_status = self.checar_cura_individual(indice_infectante) if novo_status == Individuo.CURADO: lista_curados.append(indice_infectante) return lista_curados def iterar(self): #Verifica os novos infectados por infectantes do tipo 1 e 2 print(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) lista_novos_infectados_tipo1, lista_novos_infectados_tipo2 = self.verificar_infeccao(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) #Verifica morte/cura dos infectados tipo 2 lista_mortos, lista_curados_t2 = self.checagem_morte_cura_lista(self.lista_infectados_tipo_2) #Verifica cura dos infectados tipo 1 lista_curados_t1 = self.checagem_cura_lista(self.lista_infectados_tipo_1) #remove os mortos e curados das listas de infectantes tipo 1 e 2 nova_lista_infectados_t2 = [] for indice in self.lista_infectados_tipo_2: if indice not in lista_mortos and indice not in lista_curados_t2: nova_lista_infectados_t2.append(indice) self.lista_infectados_tipo_2 = nova_lista_infectados_t2 nova_lista_infectados_t1 = [] for indice in self.lista_infectados_tipo_1: if indice not in lista_curados_t1: nova_lista_infectados_t1.append(indice) self.lista_infectados_tipo_1 = nova_lista_infectados_t1 #atualiza o número de mortos self.num_mortos = self.num_mortos + len(lista_mortos) #atualiza o número de curados self.num_curados = self.num_curados + len(lista_curados_t1) + len(lista_curados_t2) #movimentar infectantes: nova_lista_infectados_t1 = [] for indice in self.lista_infectados_tipo_1: nova_lista_infectados_t1.append(self.mover_infectante(indice)) self.lista_infectados_tipo_1 = nova_lista_infectados_t1 nova_lista_infectados_t2 = [] for indice in self.lista_infectados_tipo_2: nova_lista_infectados_t2.append(self.mover_infectante(indice)) self.lista_infectados_tipo_2 = nova_lista_infectados_t2 print(self.lista_infectados_tipo_1+self.lista_infectados_tipo_2) #adicionar os novos infectados tipo 1 e 2 para as respectivas listas self.lista_infectados_tipo_2 = self.lista_infectados_tipo_2 + lista_novos_infectados_tipo2 self.lista_infectados_tipo_1 = self.lista_infectados_tipo_1 + lista_novos_infectados_tipo1 dict = { 'num_sadios':self.populacao_inicial - self.num_mortos - self.num_curados - len(self.lista_infectados_tipo_1) - len(self.lista_infectados_tipo_2) , 'num_infect_t1':len(self.lista_infectados_tipo_1), 'num_infect_t2':len(self.lista_infectados_tipo_2), 'num_curados':self.num_curados, 'num_mortos':self.num_mortos} self.dataframe = self.dataframe.append(dict, ignore_index=True) # print("num t1: ", len(self.lista_infectados_tipo_1)) # print("num t2: ", len(self.lista_infectados_tipo_2)) # print("num curados: ", self.num_curados) # print("num mortos: ", self.num_mortos) # print("---------") # #salva a nova matriz de status self.salvar_posicionamento() #adiciona 1 ao número de atualizações realizadas na matriz self.num_atualizacoes +=1 def infectar(self, chance_infeccao, chance_infeccao_tipo2): saida = Individuo.SADIO #número aleatório para chance de infectar o vizinho rng_infeccao = random.random() if rng_infeccao <= chance_infeccao: #número aleatório para chance de infecção tipo 1 ou 2 rng_infeccao_tipo2 = random.random() if rng_infeccao_tipo2 <= chance_infeccao_tipo2: saida = Individuo.INFECTADO_TIPO_2 else: saida = Individuo.INFECTADO_TIPO_1 return saida def popular(self, tamanho_matriz): #lista de possíveis combinações de índices da matriz de dados permutacoes = permutations(list(range(tamanho_matriz)),2) #conversão para lista de tuplas(x,y) lista_indices = list(permutacoes) #embaralhamento dos índices random.shuffle(lista_indices) #cria o primeiro tipo1: indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_1, indice) self.lista_infectados_tipo_1.append(indice) #cria o restante dos tipos 1 for i in range(1,self.num_inicial_tipo1): indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_1,indice) self.lista_infectados_tipo_1.append(indice) #cria o restante dos tipo 2: for indice in range(self.num_inicial_tipo2): indice = lista_indices.pop() self.criar_individuo(Individuo.INFECTADO_TIPO_2,indice) self.lista_infectados_tipo_2.append(indice) def trocar(self,matriz,ponto_ini,ponto_final): x_ini = ponto_ini[0] y_ini = ponto_ini[1] x_fin = ponto_final[0] y_fin = ponto_final[1] aux = matriz[x_fin,y_fin] matriz[x_fin,y_fin] = matriz[x_ini,y_ini] matriz[x_ini,y_ini] = aux def verifica_status(self, indice): return self.matriz_status[indice[0], indice[1]] def mover_infectante(self, posicao_inicial): pos_x, pos_y = posicao_inicial[0], posicao_inicial[1] rng_posicao = random.random() if rng_posicao <=0.25: #move pra cima pos_x -= 1 elif rng_posicao <=0.5: #move pra baixo pos_x += 1 elif rng_posicao <=0.75: #move para esquerda pos_y -= 1 else: #move para direita pos_y += 1 posicao_final= self.matriz_esferica.valida_ponto_matriz(pos_x, pos_y) self.trocar(self.matriz_status, posicao_inicial, posicao_final) self.trocar(self.matriz_atualizacoes_cura, posicao_inicial, posicao_final) return posicao_final chance_infeccao = 0.3 chance_infeccao_tipo2 = 1 chance_morte = 1 atualizacoes_cura = 10 percentual_inicial_tipo1 = 0.0 percentual_inicial_tipo2 = 0.0 sim = Simulador( 5, percentual_inicial_tipo1, percentual_inicial_tipo2, chance_infeccao, chance_infeccao_tipo2, chance_morte,atualizacoes_cura) #print(sim.lista_matrizes_posicionamento[0]) #print(sim.lista_infectados_tipo_2) #print(sim.lista_infectados_tipo_1) cmap = ListedColormap(['w', 'y', 'r', 'blue', 'black']) while sim.dataframe.iloc[-1]['num_infect_t1']+sim.dataframe.iloc[-1]['num_infect_t2'] > 0: plt.matshow(sim.matriz_status.toarray(), cmap = cmap, vmin= 0, vmax = 4) # sim.iterar() #print(sim.dataframe.iloc[-1]) #print("xxxxxxxxxxxxxxxxxTipo: ",type(sim.lista_matrizes_posicionamento[len(sim.lista_matrizes_posicionamento)-1].toarray())) print(sim.dataframe) plt.show() # for i in range(12): # #plt.matshow(sim.lista_matrizes_status[i].toarray(), cmap = cmap, vmin= 0, vmax = 4) # print(i) # print("Status") # print(sim.matriz_status.toarray()) # print("Cura") # print(sim.matriz_atualizacoes_cura.toarray()) # sim.iterar() # m = sim.matriz_atualizacoes_cura[sim.matriz_status == 1 or sim.matriz_status == 2].toarray() # print(m) #plt.show() #print(sim.dataframe) # print(sim.lista_infectados_tipo_1) # print(sim.lista_infectados_tipo_2) # sim.iterar() # print(sim.lista_infectados_tipo_1) # print(sim.lista_infectados_tipo_2) # print(sim.dataframe) # print("status inicial: ", sim.df_individuos[1][0].status) # print("Novos infectados: ", sim.verificar_infeccao(sim.lista_infectados_tipo_1)) # plt.show()
[ "eduardo_dut@edu.unifor.br" ]
eduardo_dut@edu.unifor.br
34025f1e64a14c25f1d5699d3cd87e25e6ea9587
969e5c8152ef5001ba7dbaa187c75b057b4ef2ef
/pm/migrations/0030_auto_20170826_1351.py
579de1666f756f8c53406aad794a822ef001c4a3
[]
no_license
nickwilkinson/projectmatica
94ab930843d6512efd0c55093d4da5ffc6d293bb
8e9874ac713d995a6a92814030d51aa607cb0369
refs/heads/master
2021-01-12T04:18:32.379449
2018-02-02T19:54:01
2018-02-02T19:54:01
77,577,536
5
1
null
2021-01-25T10:16:07
2016-12-29T02:54:48
Python
UTF-8
Python
false
false
460
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-08-26 20:51 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pm', '0029_auto_20170818_2230'), ] operations = [ migrations.AlterField( model_name='projectlogentry', name='entry_type', field=models.BooleanField(default=False), ), ]
[ "nwilkinson@artefactual.com" ]
nwilkinson@artefactual.com
86c6fa174383a66c46552769888fee6328dd982e
aa431a5cd979fe5b02467758bf818a1c2f503724
/make/photon/prepare/migrations/version_2_2_0/__init__.py
6a3ef56e44e83fc3f47c9fd6802c266bbcc664cd
[ "Apache-2.0" ]
permissive
stonezdj/harbor
3f12fd935ce1a5c4b020a93347ce050d0d4fdeb8
bc6a7f65a6fa854735e39381846e2a68951905c4
refs/heads/master
2023-08-31T17:31:43.685007
2021-10-21T01:25:18
2021-10-21T01:25:18
102,460,256
1
12
Apache-2.0
2019-03-12T08:28:26
2017-09-05T09:12:25
Go
UTF-8
Python
false
false
563
py
import os from jinja2 import Environment, FileSystemLoader, StrictUndefined from utils.migration import read_conf revision = '2.2.0' down_revisions = ['2.1.0'] def migrate(input_cfg, output_cfg): current_dir = os.path.dirname(__file__) tpl = Environment( loader=FileSystemLoader(current_dir), undefined=StrictUndefined, trim_blocks=True, lstrip_blocks=True ).get_template('harbor.yml.jinja') config_dict = read_conf(input_cfg) with open(output_cfg, 'w') as f: f.write(tpl.render(**config_dict))
[ "dengq@vmware.com" ]
dengq@vmware.com
76586634f0e167954ccb36328502d4e8c4ce378d
a6aadaa997afb9d93f3968d7b35856d2df30eda4
/examples/Adafruit/Adafruit_Python_BNO055-master/setup.py
ae4a2b55fcb770d922f0ed93ba54a2e4e8f95809
[ "MIT" ]
permissive
Stranjyr/FireflyControls
40e1be7236e37bac2d25b86e43cff2217544d999
662b366717e60d875a13db7338fe532978785b20
refs/heads/master
2021-01-20T04:17:17.989595
2017-04-16T10:14:06
2017-04-16T10:14:06
83,838,096
0
0
null
null
null
null
UTF-8
Python
false
false
1,197
py
from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages classifiers = ['Development Status :: 4 - Beta', 'Operating System :: POSIX :: Linux', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Topic :: Software Development', 'Topic :: System :: Hardware'] setup(name = 'Adafruit_BNO055', version = '1.0.1', author = 'Tony DiCola', author_email = 'tdicola@adafruit.com', description = 'Library for accessing the Bosch BNO055 absolute orientation sensor on a Raspberry Pi or Beaglebone Black.', license = 'MIT', classifiers = classifiers, url = 'https://github.com/adafruit/Adafruit_Python_BNO055/', dependency_links = ['https://github.com/adafruit/Adafruit_Python_GPIO/tarball/master#egg=Adafruit-GPIO-0.9.3'], install_requires = ['Adafruit-GPIO>=0.9.3', 'pyserial'], packages = find_packages())
[ "whampton99@gmail.com" ]
whampton99@gmail.com
a2822f528b7ce6c08129ddb728eb5ec76c5718e3
5374df75c4c1edf044040d838b8bca5eee7428a3
/apps/quiz/migrations/0002_auto_20180225_1348.py
6590f8e86d0a435ae2b8a1ef0fb37bf8c0023790
[]
no_license
jonathan-murmu/trivia
0d6a81fca1b00fa08fde4ba999066b2772c9dc1d
ba9d2b5e0700c17f65e851d42cb53d2673a02aa3
refs/heads/master
2022-12-09T22:36:27.079105
2018-07-11T18:17:11
2018-07-11T18:17:11
122,649,072
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
# Generated by Django 2.0.2 on 2018-02-25 13:48 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('quiz', '0001_initial'), ] operations = [ migrations.AlterField( model_name='objective', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='objectives', to='quiz.Question'), ), ]
[ "jonathanmurmu@gmail.com" ]
jonathanmurmu@gmail.com
ab754465e32782642ed3f665783f5a0990399811
c30c7cb65835e483d8329354892756390ad170db
/.config/python/pythonrc
0ff561f40fca611ec79da79e1c7da1efc9f889a9
[]
no_license
resuscv/dotfiles-python
0d94ab9741ff005b1ab21d13699d37c4af5f4921
f373a064ab25333afb4d4125b847c1e8c0881c3b
refs/heads/master
2020-06-01T00:22:35.938978
2013-12-24T05:02:28
2013-12-24T05:02:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
465
# Hey Emacs! This is a -*- python -*- file. # Get tab completion # http://docs.python.org/2/library/rlcompleter.html try: import readline except ImportError: print "Module readline not available." else: import rlcompleter readline.parse_and_bind("tab: complete") # Import pandas and numpy try: import pandas as pd except ImportError: print "Module pandas not available." try: import numpy as np except ImportError: print "Module numpy not available."
[ "still.another.person@gmail.com" ]
still.another.person@gmail.com
8c1cdeb504e120cfab9d249122eaae7a5174815b
36091288a431917f8966dce0316ae2a8091a182b
/scripts/shell.py
eda07f45115e9f359a1b3db5a6a5b16f2ac0a0ad
[ "MIT" ]
permissive
qustodio/libimobiledevice-node
f31860963c9d3dba65732f954a98fbcde6169f6b
d97b452c3e5166b3f4f9e8ba180c8de6dec2d08d
refs/heads/qustodio-main
2023-09-05T23:31:40.254804
2023-06-29T08:15:51
2023-06-29T08:15:51
142,663,144
1
0
MIT
2023-06-29T08:15:53
2018-07-28T09:06:49
C
UTF-8
Python
false
false
778
py
import subprocess from typing import Text import os def uname(option: str): return subprocess.run(["uname", option], capture_output=True, text=True).stdout.strip() def shell(command: str, cwd: str = None, check=True, env = None, executable=None): subprocess.run(command, cwd=cwd, shell=True, check=check, env=env, executable=executable) def make(arg: str = None, cwd: str = None, env = None): if arg: shell(f'make {arg}', cwd=cwd, env=env) else: shell('make', cwd=cwd, env=env) def get_relative_path(path: str) -> str: dirname = os.path.dirname(__file__) return os.path.join(dirname, path) def otool(option: str, binary: str): return subprocess.run(["otool", option, binary], capture_output=True, text=True).stdout.strip()
[ "didix21@users.noreply.github.com" ]
didix21@users.noreply.github.com
cfbf423ff62caf2ee97e36223dd20e5712eaaf0c
d1ae812c9338da065197bb936cdd96d173f868c3
/8/adventofcode-8.py
e9dcced161f163b6749a89f51a7080e7e1a39cbb
[]
no_license
NickUK/advent-of-code-2018
3d98e728eacc2f64efe63305d4dd75562ba63eff
91f5b694cedce69cfeb8b02499691090391ed67d
refs/heads/master
2020-04-09T08:20:18.156802
2018-12-25T08:10:46
2018-12-25T08:10:46
160,190,618
1
2
null
null
null
null
UTF-8
Python
false
false
1,056
py
# Day 8 part 1+2 from functools import reduce class ParsedFile: def __init__(self, children, meta, value): self.children = children self.meta = meta self.value = value all_meta = [] def parse(input, pos): files = [] meta = [] value = 0 num_files = int(input[pos]) num_meta = int(input[pos + 1]) start = pos + 2 for _ in range(num_files): new_file, start = parse(input, start) files.append(new_file) meta = input[start:start+num_meta] # For part 1 for m in meta: all_meta.append(m) if num_files == 0: value = reduce(lambda a,b: int(a) + int(b), meta) else: for ref in map(lambda x: int(x), meta): if ref - 1 < len(files): value = value + files[ref - 1].value return ParsedFile(files, meta, value), start+num_meta with open("input") as f: testinput = f.readlines()[0] #testinput = "2 3 0 3 10 11 12 1 1 0 1 99 2 1 1 2" result, _ = parse(testinput.split(" "), 0) print(reduce(lambda a,b: int(a) + int(b), all_meta)) # Part 1 print(result.value) # Part 2
[ "nick_horne_90@hotmail.com" ]
nick_horne_90@hotmail.com
097321d7ebb305770869f9fd631a4837eeeec702
b87f66b13293782321e20c39aebc05defd8d4b48
/maps/build/mayavi/enthought/mayavi/tools/sources.py
2dcd4601cae2528189b5d19a6fb7ba72ba533b83
[]
no_license
m-elhussieny/code
5eae020932d935e4d724c2f3d16126a0d42ebf04
5466f5858dbd2f1f082fa0d7417b57c8fb068fad
refs/heads/master
2021-06-13T18:47:08.700053
2016-11-01T05:51:06
2016-11-01T05:51:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
49,570
py
""" Data sources classes and their associated functions for mlab. """ # Author: Gael Varoquaux <gael.varoquaux@normalesup.org> # Prabhu Ramachandran # Copyright (c) 2007-2010, Enthought, Inc. # License: BSD Style. import operator import numpy as np from enthought.traits.api import (HasTraits, Instance, CArray, Either, Bool, on_trait_change, NO_COMPARE) from enthought.tvtk.api import tvtk from enthought.tvtk.common import camel2enthought from enthought.mayavi.sources.array_source import ArraySource from enthought.mayavi.core.registry import registry import tools from engine_manager import engine_manager __all__ = [ 'vector_scatter', 'vector_field', 'scalar_scatter', 'scalar_field', 'line_source', 'array2d_source', 'grid_source', 'open', 'triangular_mesh_source', 'vertical_vectors_source', ] ################################################################################ # A subclass of CArray that will accept floats and do a np.atleast_1d ################################################################################ class CArrayOrNumber(CArray): def validate( self, object, name, value): if operator.isNumberType(value): value = np.atleast_1d(value) return CArray.validate(self, object, name, value) ################################################################################ # `MlabSource` class. ################################################################################ class MlabSource(HasTraits): """ This class represents the base class for all mlab sources. These classes allow a user to easily update the data without having to recreate the whole pipeline. """ # The TVTK dataset we manage. dataset = Instance(tvtk.DataSet) # The Mayavi data source we manage. m_data = Instance(HasTraits) ######################################## # Private traits. # Disable the update when data is changed. _disable_update = Bool(False) ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Function to create the data from input arrays etc. This is to be used when the size of the arrays change or the first time when the data is created. This regenerates the data structures and will be slower in general. """ raise NotImplementedError() def update(self): """Update the visualization. This is to be called after the data of the visualization has changed. """ if not self._disable_update: self.dataset.modified() md = self.m_data if md is not None: if hasattr(md, '_assign_attribute'): md._assign_attribute.update() md.data_changed = True def set(self, trait_change_notify=True, **traits): """Shortcut for setting object trait attributes. This is an overridden method that will make changing multiple traits easier. This method is to be called when the arrays have changed content but not in shape/size. In that case one must call the `reset` method. Parameters ---------- trait_change_notify : Boolean If **True** (the default), then each value assigned may generate a trait change notification. If **False**, then no trait change notifications will be generated. (see also: trait_setq) traits : list of key/value pairs Trait attributes and their values to be set Returns ------- self The method returns this object, after setting attributes. """ try: self._disable_update = True super(MlabSource, self).set(trait_change_notify, **traits) finally: self._disable_update = False if trait_change_notify: self.update() return self ###################################################################### # Non-public interface. ###################################################################### def _m_data_changed(self, ds): if not hasattr(ds, 'mlab_source'): ds.add_trait('mlab_source', Instance(MlabSource)) ds.mlab_source = self ArrayOrNone = Either(None, CArray, comparison_mode=NO_COMPARE) ArrayNumberOrNone = Either(None, CArrayOrNumber, comparison_mode=NO_COMPARE) ################################################################################ # `MGlyphSource` class. ################################################################################ class MGlyphSource(MlabSource): """ This class represents a glyph data source for Mlab objects and allows the user to set the x, y, z, scalar/vector attributes. """ # The x, y, z and points of the glyphs. x = ArrayNumberOrNone y = ArrayNumberOrNone z = ArrayNumberOrNone points = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayNumberOrNone # The u, v, w components of the vector and the vectors. u = ArrayNumberOrNone v = ArrayNumberOrNone w = ArrayNumberOrNone vectors = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First convert numbers to arrays. for name in ('x', 'y', 'z', 'u', 'v', 'w', 'scalars'): if name in traits and traits[name] is not None: traits[name] = np.atleast_1d(traits[name]) # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) vectors = self.vectors scalars = self.scalars points = self.points x, y, z = self.x, self.y, self.z x = np.atleast_1d(x) y = np.atleast_1d(y) z = np.atleast_1d(z) if 'points' in traits: x=points[:,0].ravel() y=points[:,1].ravel() z=points[:,2].ravel() self.set(x=x,y=y,z=z,trait_change_notify=False) else: points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (points.size/3, 3) self.set(points=points, trait_change_notify=False) u, v, w = self.u, self.v, self.w if u is not None: u = np.atleast_1d(u) v = np.atleast_1d(v) w = np.atleast_1d(w) if len(u) > 0: vectors = np.c_[u.ravel(), v.ravel(), w.ravel()].ravel() vectors.shape = (vectors.size/3, 3) self.set(vectors=vectors, trait_change_notify=False) if 'vectors' in traits: u=vectors[:,0].ravel() v=vectors[:,1].ravel() w=vectors[:,2].ravel() self.set(u=u,v=v,w=w,trait_change_notify=False) else: if u is not None and len(u) > 0: vectors = np.c_[u.ravel(), v.ravel(), w.ravel()].ravel() vectors.shape = (vectors.size/3, 3) self.set(vectors=vectors, trait_change_notify=False) if vectors is not None and len(vectors) > 0: assert len(points) == len(vectors) if scalars is not None: scalars = np.atleast_1d(scalars) if len(scalars) > 0: assert len(points) == len(scalars) # Create the dataset. polys = np.arange(0, len(points), 1, 'l') polys = np.reshape(polys, (len(points), 1)) if self.dataset is None: # Create new dataset if none exists pd = tvtk.PolyData() else: # Modify existing one. pd = self.dataset pd.set(points=points, polys=polys) if self.vectors is not None: pd.point_data.vectors = self.vectors pd.point_data.vectors.name = 'vectors' if self.scalars is not None: pd.point_data.scalars = self.scalars pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): x = np.atleast_1d(x) self.points[:,0] = x self.update() def _y_changed(self, y): y = np.atleast_1d(y) self.points[:,1] = y self.update() def _z_changed(self, z): z = np.atleast_1d(z) self.points[:,2] = z self.update() def _u_changed(self, u): u = np.atleast_1d(u) self.vectors[:,0] = u self.update() def _v_changed(self, v): v = np.atleast_1d(v) self.vectors[:,1] = v self.update() def _w_changed(self, w): w = np.atleast_1d(w) self.vectors[:,2] = w self.update() def _points_changed(self, p): p = np.atleast_2d(p) self.dataset.points = p self.update() def _scalars_changed(self, s): if s is None: self.dataset.point_data.scalars = None self.dataset.point_data.remove_array('scalars') else: s = np.atleast_1d(s) self.dataset.point_data.scalars = s self.dataset.point_data.scalars.name = 'scalars' self.update() def _vectors_changed(self, v): self.dataset.point_data.vectors = v self.dataset.point_data.vectors.name = 'vectors' self.update() ################################################################################ # `MVerticalGlyphSource` class. ################################################################################ class MVerticalGlyphSource(MGlyphSource): """ This class represents a vertical glyph data source for Mlab objects and allows the user to set the x, y, z, scalar attributes. The vectors are created from the scalars to represent them in the vertical direction. """ def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" if 'scalars' in traits: s = traits['scalars'] if s is not None: traits['u'] = traits['v'] = np.ones_like(s), traits['w'] = s super(MVerticalGlyphSource, self).reset(**traits) def _scalars_changed(self, s): self.dataset.point_data.scalars = s self.dataset.point_data.scalars.name = 'scalars' self.set(vectors=np.c_[np.ones_like(s), np.ones_like(s), s]) self.update() ################################################################################ # `MArraySource` class. ################################################################################ class MArraySource(MlabSource): """ This class represents an array data source for Mlab objects and allows the user to set the x, y, z, scalar/vector attributes. """ # The x, y, z arrays for the volume. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone # The u, v, w components of the vector and the vectors. u = ArrayOrNone v = ArrayOrNone w = ArrayOrNone vectors = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) vectors = self.vectors scalars = self.scalars x, y, z = [np.atleast_3d(a) for a in self.x, self.y, self.z] u, v, w = self.u, self.v, self.w if 'vectors' in traits: u=vectors[:,0].ravel() v=vectors[:,1].ravel() w=vectors[:,2].ravel() self.set(u=u,v=v,w=w,trait_change_notify=False) else: if u is not None and len(u) > 0: #vectors = np.concatenate([u[..., np.newaxis], # v[..., np.newaxis], # w[..., np.newaxis] ], # axis=3) vectors = np.c_[u.ravel(), v.ravel(), w.ravel()].ravel() vectors.shape = (u.shape[0] , u.shape[1], w.shape[2], 3) self.set(vectors=vectors, trait_change_notify=False) if vectors is not None and len(vectors) > 0 and scalars is not None: assert len(scalars) == len(vectors) if x.shape[0] <= 1: dx = 1 else: dx = x[1, 0, 0] - x[0, 0, 0] if y.shape[1] <= 1: dy = 1 else: dy = y[0, 1, 0] - y[0, 0, 0] if z.shape[2] <= 1: dz = 1 else: dz = z[0, 0, 1] - z[0, 0, 0] if self.m_data is None: ds = ArraySource(transpose_input_array=True) else: ds = self.m_data old_scalar = ds.scalar_data ds.set(vector_data=vectors, origin=[x.min(), y.min(), z.min()], spacing=[dx, dy, dz], scalar_data=scalars) if scalars is old_scalar: ds._scalar_data_changed(scalars) self.dataset = ds.image_data self.m_data = ds ###################################################################### # Non-public interface. ###################################################################### @on_trait_change('[x, y, z]') def _xyz_changed(self): x, y, z = self.x, self.y, self.z dx = x[1, 0, 0] - x[0, 0, 0] dy = y[0, 1, 0] - y[0, 0, 0] dz = z[0, 0, 1] - z[0, 0, 0] ds = self.dataset ds.origin = [x.min(), y.min(), z.min()] ds.spacing = [dx, dy, dz] if self.m_data is not None: self.m_data.set(origin=ds.origin, spacing=ds.spacing) self.update() def _u_changed(self, u): self.vectors[...,0] = u self.m_data._vector_data_changed(self.vectors) def _v_changed(self, v): self.vectors[...,1] = v self.m_data._vector_data_changed(self.vectors) def _w_changed(self, w): self.vectors[...,2] = w self.m_data._vector_data_changed(self.vectors) def _scalars_changed(self, s): old = self.m_data.scalar_data self.m_data.scalar_data = s if old is s: self.m_data._scalar_data_changed(s) def _vectors_changed(self, v): self.m_data.vector_data = v ################################################################################ # `MLineSource` class. ################################################################################ class MLineSource(MlabSource): """ This class represents a line data source for Mlab objects and allows the user to set the x, y, z, scalar attributes. """ # The x, y, z and points of the glyphs. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone points = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) points = self.points scalars = self.scalars x, y, z = self.x, self.y, self.z if 'points' in traits: x=points[:,0].ravel() y=points[:,1].ravel() z=points[:,2].ravel() self.set(x=x,y=y,z=z,trait_change_notify=False) else: points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (len(x), 3) self.set(points=points, trait_change_notify=False) # Create the dataset. n_pts = len(points) - 1 lines = np.zeros((n_pts, 2), 'l') lines[:,0] = np.arange(0, n_pts-0.5, 1, 'l') lines[:,1] = np.arange(1, n_pts+0.5, 1, 'l') if self.dataset is None: pd = tvtk.PolyData() else: pd = self.dataset # Avoid lines refering to non existing points: First set the # lines to None, then set the points, then set the lines # refering to the new points. pd.set(lines=None) pd.set(points=points) pd.set(lines=lines) if scalars is not None and len(scalars) > 0: assert len(x) == len(scalars) pd.point_data.scalars = np.ravel(scalars) pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): self.points[:,0] = x self.update() def _y_changed(self, y): self.points[:,1] = y self.update() def _z_changed(self, z): self.points[:,2] = z self.update() def _points_changed(self, p): self.dataset.points = p self.update() def _scalars_changed(self, s): self.dataset.point_data.scalars = s.ravel() self.dataset.point_data.scalars.name = 'scalars' self.update() ################################################################################ # `MArray2DSource` class. ################################################################################ class MArray2DSource(MlabSource): """ This class represents a 2D array data source for Mlab objects and allows the user to set the x, y and scalar attributes. """ # The x, y values. # Values of X and Y as None are accepted, in that case we would build # values of X and Y automatically from the shape of scalars x = ArrayOrNone y = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone # The masking array. mask = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) x, y, mask = self.x, self.y, self.mask scalars = self.scalars # We may have used this without specifying x and y at all in # which case we set them from the shape of scalars. nx, ny = scalars.shape #Build X and Y from shape of Scalars if they are none if x is None and y is None: x, y = np.mgrid[-nx/2.:nx/2, -ny/2.:ny/2] if mask is not None and len(mask) > 0: scalars[mask.astype('bool')] = np.nan # The NaN trick only works with floats. scalars = scalars.astype('float') self.set(scalars=scalars, trait_change_notify=False) z = np.array([0]) self.set(x=x, y=y, z=z, trait_change_notify=False) # Do some magic to extract the first row/column, independently of # the shape of x and y x = np.atleast_2d(x.squeeze().T)[0, :].squeeze() y = np.atleast_2d(y.squeeze())[0, :].squeeze() if x.ndim == 0: dx = 1 else: dx = x[1] - x[0] if y.ndim == 0: dy = 1 else: dy = y[1] - y[0] if self.m_data is None: ds = ArraySource(transpose_input_array=True) else: ds = self.m_data old_scalar = ds.scalar_data ds.set(origin=[x.min(), y.min(), 0], spacing=[dx, dy, 1], scalar_data=scalars) if old_scalar is scalars: ds._scalar_data_changed(scalars) self.dataset = ds.image_data self.m_data = ds ###################################################################### # Non-public interface. ###################################################################### @on_trait_change('[x, y]') def _xy_changed(self): x, y,scalars = self.x, self.y, self.scalars nx, ny = scalars.shape if x is None or y is None: x, y = np.mgrid[-nx/2.:nx/2, -ny/2.:ny/2] self.trait_setq(x=x,y=y) x = np.atleast_2d(x.squeeze().T)[0, :].squeeze() y = np.atleast_2d(y.squeeze())[0, :].squeeze() dx = x[1] - x[0] dy = y[1] - y[0] ds = self.dataset ds.origin = [x.min(), y.min(), 0] ds.spacing = [dx, dy, 1] if self.m_data is not None: self.m_data.set(origin=ds.origin, spacing=ds.spacing) self.update() def _scalars_changed(self, s): mask = self.mask if mask is not None and len(mask) > 0: s[mask.astype('bool')] = np.nan # The NaN tric only works with floats. s = s.astype('float') self.set(scalars=s, trait_change_notify=False) old = self.m_data.scalar_data self.m_data.scalar_data = s if s is old: self.m_data._scalar_data_changed(s) ################################################################################ # `MGridSource` class. ################################################################################ class MGridSource(MlabSource): """ This class represents a grid source for Mlab objects and allows the user to set the x, y, scalar attributes. """ # The x, y, z and points of the grid. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone points = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) points = self.points scalars = self.scalars x, y, z = self.x, self.y, self.z assert len(x.shape) == 2, "Array x must be 2 dimensional." assert len(y.shape) == 2, "Array y must be 2 dimensional." assert len(z.shape) == 2, "Array z must be 2 dimensional." assert x.shape == y.shape, "Arrays x and y must have same shape." assert y.shape == z.shape, "Arrays y and z must have same shape." #Points in the grid source will always be created using x,y,z #Changing of points is not allowed because it cannot be used to modify values of x,y,z nx, ny = x.shape points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (nx*ny, 3) self.set(points=points, trait_change_notify=False) i, j = np.mgrid[0:nx-1,0:ny-1] i, j = np.ravel(i), np.ravel(j) t1 = i*ny+j, (i+1)*ny+j, (i+1)*ny+(j+1) t2 = (i+1)*ny+(j+1), i*ny+(j+1), i*ny+j nt = len(t1[0]) triangles = np.zeros((nt*2, 3), 'l') triangles[0:nt,0], triangles[0:nt,1], triangles[0:nt,2] = t1 triangles[nt:,0], triangles[nt:,1], triangles[nt:,2] = t2 if self.dataset is None: pd = tvtk.PolyData() else: pd = self.dataset pd.set(points=points, polys=triangles) if scalars is not None and len(scalars) > 0: if not scalars.flags.contiguous: scalars = scalars.copy() self.set(scalars=scalars, trait_change_notify=False) assert x.shape == scalars.shape pd.point_data.scalars = scalars.ravel() pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): self.trait_setq(x=x); self.points[:,0] = x.ravel() self.update() def _y_changed(self, y): self.trait_setq(y=y) self.points[:,1] = y.ravel() self.update() def _z_changed(self, z): self.trait_setq(z=z) self.points[:,2] = z.ravel() self.update() def _points_changed(self, p): self.dataset.points = p self.update() def _scalars_changed(self, s): self.dataset.point_data.scalars = s.ravel() self.dataset.point_data.scalars.name = 'scalars' self.update() ################################################################################ # `MTriangularMeshSource` class. ################################################################################ class MTriangularMeshSource(MlabSource): """ This class represents a triangular mesh source for Mlab objects and allows the user to set the x, y, scalar attributes. """ # The x, y, z and points of the grid. x = ArrayOrNone y = ArrayOrNone z = ArrayOrNone points = ArrayOrNone triangles = ArrayOrNone # The scalars shown on the glyphs. scalars = ArrayOrNone ###################################################################### # `MlabSource` interface. ###################################################################### def reset(self, **traits): """Creates the dataset afresh or resets existing data source.""" # First set the attributes without really doing anything since # the notification handlers are not called. self.set(trait_change_notify=False, **traits) points = self.points scalars = self.scalars x, y, z = self.x, self.y, self.z points = np.c_[x.ravel(), y.ravel(), z.ravel()].ravel() points.shape = (points.size/3, 3) self.set(points=points, trait_change_notify=False) triangles = self.triangles assert triangles.shape[1] == 3, \ "The shape of the triangles array must be (X, 3)" assert triangles.max() < len(points), \ "The triangles indices must be smaller that the number of points" assert triangles.min() >= 0, \ "The triangles indices must be positive or null" if self.dataset is None: pd = tvtk.PolyData() else: pd = self.dataset # Set the points first, and the triangles after: so that the # polygone can refer to the right points, in the polydata. pd.set(points=points) pd.set(polys=triangles) if (not 'scalars' in traits and scalars is not None and scalars.shape != x.shape): # The scalars where set probably automatically to z, by the # factory. We need to reset them, as the size has changed. scalars = z if scalars is not None and len(scalars) > 0: if not scalars.flags.contiguous: scalars = scalars.copy() self.set(scalars=scalars, trait_change_notify=False) assert x.shape == scalars.shape pd.point_data.scalars = scalars.ravel() pd.point_data.scalars.name = 'scalars' self.dataset = pd ###################################################################### # Non-public interface. ###################################################################### def _x_changed(self, x): self.trait_setq(x=x); self.points[:,0] = x.ravel() self.update() def _y_changed(self, y): self.trait_setq(y=y) self.points[:,1] = y.ravel() self.update() def _z_changed(self, z): self.trait_setq(z=z) self.points[:,2] = z.ravel() self.update() def _points_changed(self, p): self.dataset.points = p self.update() def _scalars_changed(self, s): self.dataset.point_data.scalars = s.ravel() self.dataset.point_data.scalars.name = 'scalars' self.update() def _triangles_changed(self, triangles): if triangles.min() < 0: raise ValueError, 'The triangles array has negative values' if triangles.max() > self.x.size: raise ValueError, 'The triangles array has values larger than' \ 'the number of points' self.dataset.polys = triangles self.update() ############################################################################ # Argument processing ############################################################################ def convert_to_arrays(args): """ Converts a list of iterables to a list of arrays or callables, if needed. """ args = list(args) for index, arg in enumerate(args): if not callable(arg): if not hasattr(arg, 'shape'): arg = np.atleast_1d(np.array(arg)) if np.any(np.isinf(arg)): raise ValueError("""Input array contains infinite values You can remove them using: a[np.isinf(a)] = np.nan """) args[index] = arg return args def process_regular_vectors(*args): """ Converts different signatures to (x, y, z, u, v, w). """ args = convert_to_arrays(args) if len(args)==3: u, v, w = [np.atleast_3d(a) for a in args] assert len(u.shape)==3, "3D array required" x, y, z = np.indices(u.shape) elif len(args)==6: x, y, z, u, v, w = args elif len(args)==4: x, y, z, f = args if not callable(f): raise ValueError, "When 4 arguments are provided, the fourth must be a callable" u, v, w = f(x, y, z) else: raise ValueError, "wrong number of arguments" assert ( x.shape == y.shape and y.shape == z.shape and u.shape == z.shape and v.shape == u.shape and w.shape == v.shape ), "argument shape are not equal" return x, y, z, u, v, w def process_regular_scalars(*args): """ Converts different signatures to (x, y, z, s). """ args = convert_to_arrays(args) if len(args)==1: s = np.atleast_3d(args[0]) assert len(s.shape)==3, "3D array required" x, y, z = np.indices(s.shape) elif len(args)==3: x, y, z = args s = None elif len(args)==4: x, y, z, s = args if callable(s): s = s(x, y, z) else: raise ValueError, "wrong number of arguments" assert ( x.shape == y.shape and y.shape == z.shape and ( s is None or s.shape == z.shape ) ), "argument shape are not equal" return x, y, z, s def process_regular_2d_scalars(*args, **kwargs): """ Converts different signatures to (x, y, s). """ args = convert_to_arrays(args) for index, arg in enumerate(args): if not callable(arg): args[index] = np.atleast_2d(arg) if len(args)==1: s = args[0] assert len(s.shape)==2, "2D array required" x, y = np.indices(s.shape) elif len(args)==3: x, y, s = args if callable(s): s = s(x, y) else: raise ValueError, "wrong number of arguments" assert len(s.shape)==2, "2D array required" if 'mask' in kwargs: mask = kwargs['mask'] s[mask.astype('bool')] = np.nan # The NaN tric only works with floats. s = s.astype('float') return x, y, s ############################################################################ # Sources ############################################################################ def vector_scatter(*args, **kwargs): """ Creates scattered vector data. **Function signatures**:: vector_scatter(u, v, w, ...) vector_scatter(x, y, z, u, v, w, ...) vector_scatter(x, y, z, f, ...) If only 3 arrays u, v, w are passed the x, y and z arrays are assumed to be made from the indices of vectors. If 4 positional arguments are passed the last one must be a callable, f, that returns vectors. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" x, y, z, u, v, w = process_regular_vectors(*args) scalars = kwargs.pop('scalars', None) if scalars is not None: scalars = np.ravel(scalars) name = kwargs.pop('name', 'VectorScatter') data_source = MGlyphSource() data_source.reset(x=x, y=y, z=z, u=u, v=v, w=w, scalars=scalars) ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def vector_field(*args, **kwargs): """ Creates vector field data. **Function signatures**:: vector_field(u, v, w, ...) vector_field(x, y, z, u, v, w, ...) vector_field(x, y, z, f, ...) If only 3 arrays u, v, w are passed the x, y and z arrays are assumed to be made from the indices of vectors. If the x, y and z arrays are passed, they should have been generated by `numpy.mgrid` or `numpy.ogrid`. The function builds a scalar field assuming the points are regularily spaced on an orthogonal grid. If 4 positional arguments are passed the last one must be a callable, f, that returns vectors. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" if len(args) == 3: x = y = z = np.atleast_3d(1) u, v, w = [np.atleast_3d(a) for a in args] else: x, y, z, u, v, w = [np.atleast_3d(a) for a in process_regular_vectors(*args)] scalars = kwargs.pop('scalars', None) if scalars is not None: scalars = np.atleast_3d(scalars) data_source = MArraySource() data_source.reset(x=x, y=y, z=z, u=u, v=v, w=w, scalars=scalars) name = kwargs.pop('name', 'VectorField') return tools.add_dataset(data_source.m_data, name, **kwargs) def scalar_scatter(*args, **kwargs): """ Creates scattered scalar data. **Function signatures**:: scalar_scatter(s, ...) scalar_scatter(x, y, z, s, ...) scalar_scatter(x, y, z, s, ...) scalar_scatter(x, y, z, f, ...) If only 1 array s is passed the x, y and z arrays are assumed to be made from the indices of vectors. If 4 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" x, y, z, s = process_regular_scalars(*args) if s is not None: s = np.ravel(s) data_source = MGlyphSource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'ScalarScatter') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def scalar_field(*args, **kwargs): """ Creates a scalar field data. **Function signatures**:: scalar_field(s, ...) scalar_field(x, y, z, s, ...) scalar_field(x, y, z, f, ...) If only 1 array s is passed the x, y and z arrays are assumed to be made from the indices of arrays. If the x, y and z arrays are passed they are supposed to have been generated by `numpy.mgrid`. The function builds a scalar field assuming the points are regularily spaced. If 4 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" if len(args) == 1: # Be lazy, don't create three big arrays for 1 input array. The # MArraySource is clever-enough to handle flat arrays x = y = z = np.atleast_1d(1) s = args[0] else: x, y, z, s = process_regular_scalars(*args) data_source = MArraySource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'ScalarField') return tools.add_dataset(data_source.m_data, name, **kwargs) def line_source(*args, **kwargs): """ Creates line data. **Function signatures**:: line_source(x, y, z, ...) line_source(x, y, z, s, ...) line_source(x, y, z, f, ...) If 4 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization.""" if len(args)==1: raise ValueError, "wrong number of arguments" x, y, z, s = process_regular_scalars(*args) data_source = MLineSource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'LineSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def array2d_source(*args, **kwargs): """ Creates structured 2D data from a 2D array. **Function signatures**:: array2d_source(s, ...) array2d_source(x, y, s, ...) array2d_source(x, y, f, ...) If 3 positional arguments are passed the last one must be an array s, or a callable, f, that returns an array. x and y give the coordinnates of positions corresponding to the s values. x and y can be 1D or 2D arrays (such as returned by numpy.ogrid or numpy.mgrid), but the points should be located on an orthogonal grid (possibly non-uniform). In other words, all the points sharing a same index in the s array need to have the same x or y value. If only 1 array s is passed the x and y arrays are assumed to be made from the indices of arrays, and an uniformly-spaced data set is created. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. :mask: Mask points specified in a boolean masking array. """ data_source = MArray2DSource() mask = kwargs.pop('mask', None) if len(args) == 1 : args = convert_to_arrays(args) s = np.atleast_2d(args[0]) data_source.reset(scalars=s, mask=mask) else: x, y, s = process_regular_2d_scalars(*args, **kwargs) data_source.reset(x=x, y=y, scalars=s, mask=mask) name = kwargs.pop('name', 'Array2DSource') return tools.add_dataset(data_source.m_data, name, **kwargs) def grid_source(x, y, z, **kwargs): """ Creates 2D grid data. x, y, z are 2D arrays giving the positions of the vertices of the surface. The connectivity between these points is implied by the connectivity on the arrays. For simple structures (such as orthogonal grids) prefer the array2dsource function, as it will create more efficient data structures. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. """ scalars = kwargs.pop('scalars', None) if scalars is None: scalars = z x, y, z, scalars = convert_to_arrays((x, y, z, scalars)) data_source = MGridSource() data_source.reset(x=x, y=y, z=z, scalars=scalars) name = kwargs.pop('name', 'GridSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def vertical_vectors_source(*args, **kwargs): """ Creates a set of vectors pointing upward, useful eg for bar graphs. **Function signatures**:: vertical_vectors_source(s, ...) vertical_vectors_source(x, y, s, ...) vertical_vectors_source(x, y, f, ...) vertical_vectors_source(x, y, z, s, ...) vertical_vectors_source(x, y, z, f, ...) If only one positional argument is passed, it can be a 1D, 2D, or 3D array giving the length of the vectors. The positions of the data points are deducted from the indices of array, and an uniformly-spaced data set is created. If 3 positional arguments (x, y, s) are passed the last one must be an array s, or a callable, f, that returns an array. x and y give the 2D coordinates of positions corresponding to the s values. The vertical position is assumed to be 0. If 4 positional arguments (x, y, z, s) are passed, the 3 first are arrays giving the 3D coordinates of the data points, and the last one is an array s, or a callable, f, that returns an array giving the data value. **Keyword arguments**: :name: the name of the vtk object created. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. """ if len(args) == 3: x, y, data = args if np.isscalar(x): z = 0 else: z = np.zeros_like(x) args = (x, y, z, data) x, y, z, s = process_regular_scalars(*args) if s is not None: s = np.ravel(s) data_source = MVerticalGlyphSource() data_source.reset(x=x, y=y, z=z, scalars=s) name = kwargs.pop('name', 'VerticalVectorsSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def triangular_mesh_source(x, y, z, triangles, **kwargs): """ Creates 2D mesh by specifying points and triangle connectivity. x, y, z are 2D arrays giving the positions of the vertices of the surface. The connectivity between these points is given by listing triplets of vertices inter-connected. These vertices are designed by there position index. **Keyword arguments**: :name: the name of the vtk object created. :scalars: optional scalar data. :figure: optionally, the figure on which to add the data source. If None, the source is not added to any figure, and will be added automatically by the modules or filters. If False, no figure will be created by modules or filters applied to the source: the source can only be used for testing, or numerical algorithms, not visualization. """ x, y, z, triangles = convert_to_arrays((x, y, z, triangles)) if triangles.min() < 0: raise ValueError, 'The triangles array has negative values' if triangles.max() > x.size: raise ValueError, 'The triangles array has values larger than' \ 'the number of points' scalars = kwargs.pop('scalars', None) if scalars is None: scalars = z data_source = MTriangularMeshSource() data_source.reset(x=x, y=y, z=z, triangles=triangles, scalars=scalars) name = kwargs.pop('name', 'TriangularMeshSource') ds = tools.add_dataset(data_source.dataset, name, **kwargs) data_source.m_data = ds return ds def open(filename, figure=None): """Open a supported data file given a filename. Returns the source object if a suitable reader was found for the file. """ if figure is None: engine = tools.get_engine() else: engine = engine_manager.find_figure_engine(figure) engine.current_scene = figure src = engine.open(filename) return src ############################################################################ # Automatically generated sources from registry. ############################################################################ def _create_data_source(metadata): """Creates a data source and adds it to the mayavi engine given metadata of the source. Returns the created source. """ factory = metadata.get_callable() src = factory() engine = tools.get_engine() engine.add_source(src) return src def _make_functions(namespace): """Make the automatic functions and add them to the namespace.""" for src in registry.sources: if len(src.extensions) == 0: func_name = camel2enthought(src.id) if func_name.endswith('_source'): func_name = func_name[:-7] func = lambda metadata=src: _create_data_source(metadata) func.__doc__ = src.help func.__name__ = func_name # Inject function into the namespace and __all__. namespace[func_name] = func __all__.append(func_name) _make_functions(locals())
[ "fspaolo@gmail.com" ]
fspaolo@gmail.com
fbf7172250b9692f46a56d7db4810ee51a517b74
e1ef870bcb76966092da2e7d8c80764e88564bd1
/lad/lad/spiders/jiujianglaolingwang2.py
3b566db65f79512e84b229585c7db11779ea23e0
[]
no_license
nicholaskh/lad-crawler
77b3586210d916758d214c1eda665d1aedf38c0a
8bee1d3c8e7dbf8ad1dfb98b9f325b9100a72df3
refs/heads/master
2020-03-22T19:20:16.661953
2018-06-06T12:59:38
2018-06-06T12:59:38
140,521,672
0
1
null
null
null
null
UTF-8
Python
false
false
3,680
py
#coding=utf-8 import scrapy import re from ..items import YanglaoItem from ..spiders.beautifulSoup import processText, processImgSep from datetime import datetime from .basespider import BaseTimeCheckSpider class newsSpider(BaseTimeCheckSpider): name = 'jiujianglaolingwang2' start_urls = ['http://www.jjllw.gov.cn/jjhlg2017/vip_doc/15762803_0_0_1.html'] def parse(self, response): should_deep = True times= response.xpath('//div[@id="text_listmodule_2"]//li/div/span[2]/text()').extract() if len(times) == 0: should_deep =False #是相对链接 urls_ori = response.xpath('//div[@id="text_listmodule_2"]//li//a/@href').extract() urls = [] for each in urls_ori: url = 'http://www.jjllw.gov.cn' + each urls.append(url) #titles_ori = response.xpath('//td[@valign="top"]/table[1]').extract() #titles = re.findall('title="(.*?)">', str(titles_ori)) valid_child_urls = list() for time, url in zip(times, urls): try: time_now = datetime.strptime(time.strip(), '%Y-%m-%d') self.update_last_time(time_now) except: print("Something Wrong") break if self.last_time is not None and self.last_time >= time_now: should_deep = False break # 变成绝对url #url = 'http://www.ahllb.cn' + url valid_child_urls.append(url) next_requests = list() # if should_deep: # #maxPageNum = int(response.xpath('//div[@class="pagenum_label"]//dd/p/text()').extract()[0].strip()) # currentPageNum = int(response.url.split('_')[-1].split('.')[0]) # # nextPageNum = currentPageNum + 1 # if nextPageNum > 5: # return # # next_url = 'http://www.jjllw.gov.cn/jjhlg2017/vip_doc/15702508_0_0_' + str(nextPageNum) + '.html' # req = scrapy.Request(url=next_url, callback=self.parse) # yield req for index, temp_url in enumerate(valid_child_urls): req = scrapy.Request(url=temp_url, callback=self.parse_info) m_item = YanglaoItem() #m_item['title'] = titles[index] m_item['time'] = times[index] m_item['className'] = '老龄新闻' req.meta['item'] = m_item yield req def parse_info(self, response): item = response.meta['item'] item["source"] = "九江老龄网" # title_ori = response.xpath('//div[@class="w96"]/h1/text() | //div[@class="w96"]/h1/span/text()').extract() # title ='' # for each in title_ori: # title = title + each title = response.xpath('//h1[@class="h1-title"]/text()').extract()[0].strip() if len(title) == 0: return item["title"] = title item["sourceUrl"] = response.url # 修改了text_list #text_list = response.xpath('//*[@id="ivs_content"]/p/text() | //*[@id="ivs_content"]/p//font/text()') text_list = response.xpath('//div[@class="wap-add-img"]/*') text = processText(text_list) item["text"] = text text_list = response.xpath('//div[@class="wap-add-img"]/*') img_list = processImgSep(text_list) final_img_list = [] for img in img_list: if 'http' not in img: img = '' + img final_img_list.append(img) item['imageUrls'] = final_img_list if text.strip() == "" and len(img_list) == 0: return yield item
[ "onebrolei@gmail.com" ]
onebrolei@gmail.com
bd4ec6f3e5db07b6e41f8752228054e9727b6fde
eca39bee61b46256bbaa417beb9f340c60bcfe2f
/settings.py
f8c20689d6aa7e8edfb67f7411ce36fc22b18d81
[]
no_license
tjsavage/runahouse
968fd8683d10f7f4ec04bc569a52990cdab1c61b
8e0f094c6120a0fd78248346a2b3320cb32e588c
refs/heads/master
2021-01-01T19:29:33.185862
2011-09-27T00:41:16
2011-09-27T00:41:16
2,464,075
0
0
null
null
null
null
UTF-8
Python
false
false
5,266
py
# Django settings for runahouse project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Los_Angeles' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True AUTH_PROFILE_MODULE = "stanford_registration.UserProfile" AUTH_URL = "http://glados.stanford.edu:8080/accounts/authenticate" # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '9*ruiw%l74uv&tq^pmcb6=$rt%3n8z5nm)i+&&9i@7r&hb(v_9' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'runahouse.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', 'stanford_registration', 'south', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
[ "tjsavage@glados.stanford.edu" ]
tjsavage@glados.stanford.edu
a8a95539dac6b0b456a25ccbafca9321dd5c8b20
5e8832e7a49e121c4db1f57d036fe39b4250246a
/347_top_k_frequent_elements.py
f3f54cdd069c2acf438ed7c5694b526627821a0d
[]
no_license
shaniavina/Leetcode_Python
9e80477794cd80e00a399d65b76088eea41d80d1
185bf1542265f5f4feca2e937d1d36a7bb4a5d2b
refs/heads/master
2022-10-12T10:56:23.476219
2022-09-21T01:53:40
2022-09-21T01:53:40
52,979,850
1
0
null
null
null
null
UTF-8
Python
false
false
506
py
import collections class Solution(object): def topKFrequent(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ frq = collections.defaultdict(list) for key, cnt in collections.Counter(nums).items(): frq[cnt].append(key) res = [] for times in reversed(range(len(nums) + 1)): res.extend(frq[times]) if len(res) >= k: return res[:k] return res[:k]
[ "noreply@github.com" ]
shaniavina.noreply@github.com
b9b347334b0c918f282370fb07ea6d660c7155fa
378a987ebe3c4418a5c3362fad5c243f8ae9ccf7
/book/writer/models.py
16a874b13c5c1a102ceeda8e691f48eb92789b93
[]
no_license
wccou/lab44
8669cb3804a346fb45c2af38d4ef6f9a3f9f9ce2
59b40b930af43ead468de9558b89a53d9d121c0d
refs/heads/master
2021-01-10T01:36:38.632269
2015-11-10T10:13:20
2015-11-10T10:13:20
45,905,360
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
from django.db import models from django.contrib import admin # Create your models here. class Author(models.Model): AuthorID = models.CharField(max_length = 150) test = models.CharField(max_length = 150) Name = models.CharField(max_length = 150) Age = models.CharField(max_length = 150) Country = models.CharField(max_length = 150) class Authors(admin.ModelAdmin): list_display = ('AuthorID','Name','Age','Country') admin.site.register(Author,Authors)
[ "1281585844@qq.com" ]
1281585844@qq.com
89fc1e0b297896bce1e1f940d5d733a873e63077
71f7c70bcf044eceb3f31103eade40a2f6f342a1
/p9/hello/apps/hello/views.py
e0dcb332ca45cfea8324aa12b44fc42e1c165dc5
[ "MIT" ]
permissive
honestcomrade/diveintodocker
9212eab83e22b02ce87411d927618930f0fbd6dc
7dcde4272704fdbbab9b37c6ade4484792b3be2d
refs/heads/master
2021-08-10T13:31:36.272431
2017-11-12T16:22:43
2017-11-12T16:22:43
109,224,270
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
from django.http import HttpResponse from django.template import loader def index(request): template = loader.get_template('index.html') return HttpResponse(template.render(request))
[ "honestcomrade@gmail.com" ]
honestcomrade@gmail.com
d0b3b7556a2fc76ae67d6b26584cda560e0e48a1
4d0f0fe04b7d9d96ad8f202550f2d04f7b873621
/agSciencesCollege/agsci.UniversalExtender/trunk/agsci/UniversalExtender/interfaces.py
604b397d384721cb0b90907ed3b9a9c92da21225
[]
no_license
tsimkins/svn-import-agSciencesCollege
20509d679fdd3f297c5eda4f324ae382e49e9826
42b4d5cd0a8bb7bda2b413424cb3aa342ba42924
refs/heads/master
2021-01-01T15:31:24.614632
2015-04-10T14:25:10
2015-04-10T14:25:10
26,240,647
0
0
null
null
null
null
UTF-8
Python
false
false
1,560
py
from zope.interface import Interface, Attribute from plone.theme.interfaces import IDefaultPloneLayer from plone.app.portlets.portlets.navigation import INavigationPortlet class IUniversalExtenderLayer(IDefaultPloneLayer): """A Layer Specific to UniversalExtender""" class IFSDPersonExtender(Interface): """ marker interface """ class IDefaultExcludeFromNav(Interface): """ marker interface """ class IFolderTopicExtender(Interface): """ marker interface """ class ITopicExtender(Interface): """ marker interface """ class IFolderExtender(Interface, INavigationPortlet): """ marker interface """ class IMarkdownDescriptionExtender(Interface): """ marker interface """ class IFullWidthTableOfContentsExtender(Interface): """ marker interface """ class ITableOfContentsExtender(IFullWidthTableOfContentsExtender): """ marker interface """ class INoComments(Interface): """ marker interface """ class ITagExtender(Interface): """ marker interface """ class IEventModifiedEvent(Interface): context = Attribute("The content object that was saved.") class ICustomNavigation(INavigationPortlet): """ marker interfaces """ class IUniversalPublicationExtender(Interface): """ Marker interface to denote something as a "publication", which will add the necessary fields to it. """ class IFilePublicationExtender(Interface): """ Marker interface to denote something as a "publication", which will add the necessary fields to it. """
[ "trs22@ea9a3244-bef9-0310-a2a5-f2a3d2dd1ec8" ]
trs22@ea9a3244-bef9-0310-a2a5-f2a3d2dd1ec8
6ddd919ec3149aaced404211f7ae154ec52fce11
7ee986a1957c621813cae28d5ab5eb688a1e4e65
/rsalgos/ressys_nearest_neighbour.py
27e3d8a5d602712e2b39c064935072dfab32fbfb
[]
no_license
datagrad/MS_Reference_recsys-rl-base
7810247351435314709a7ec55e06cd0edb61a28a
6e93aed18cf9c1b857ff13a3642abe134c8a6a9f
refs/heads/master
2023-07-08T09:08:53.843168
2020-09-30T05:30:09
2020-09-30T05:30:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
999
py
from sklearn.neighbors import NearestNeighbors from joblib import dump, load class RecSysNearestActions(object): NN_MODEL_SAVE_PATH = 'models/nearest_neighbour.model' def __init__(self): self.model_nn = None def get_nearest_neighbours(self, query_array, k_neighbours): distances, indexs = self.model_nn.kneighbors([query_array], k_neighbours) indexs = list(indexs.flatten()) distances = list(distances.flatten()) return indexs, distances def train_nearest_neighbour(self, rest_context_pc, n_neighbors=10): self.model_nn = NearestNeighbors(n_neighbors=n_neighbors, algorithm='kd_tree') self.model_nn.fit(rest_context_pc) dump(self.model_nn, self.NN_MODEL_SAVE_PATH) print('model saved to -->', self.NN_MODEL_SAVE_PATH) def load_nearest_neighbour(self): print('model loaded from -->', self.NN_MODEL_SAVE_PATH) self.model_nn = load(self.NN_MODEL_SAVE_PATH) return self.model_nn
[ "sjana@yodlee.com" ]
sjana@yodlee.com
89ced595161f3d6bd446f66218771ab53cf7a9ae
3a9454ad6d7bb5a3d313c4266f0ddd8dc87190e1
/Geeksforgeeks/count_even_odd_num_list.py
dbf009c76e2bbdc5f9b3b37ad9eb024410d81b69
[]
no_license
indrakumar0812/develop
bc60f49fbed29e148966b880a606b1f18464ac76
f0268b5a70dc2590cc236864428e1192cb30ba5e
refs/heads/master
2022-12-20T14:49:56.396032
2020-10-19T03:37:47
2020-10-19T03:37:47
305,252,754
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
list = [2, 7, 5, 64, 14] list1 =[] count_odd=0 count_even=0 for i in list: if i%2==0: count_even+=1 else: count_odd+=1 print("no. of odd numbers are", count_odd) print("no. of even numbers are", count_even)
[ "indrasen.170190@gmail.com" ]
indrasen.170190@gmail.com
e48b835e1d5120077a7225a0065dbe3c3ce26277
21c805ceb4a1f2f9142d81d4e3bf4d910e5aa19d
/mail/views.py
5bef491af9166436db497e899b2837c6adc3371e
[]
no_license
dbonach/cs50web-project-3-mail
7d9895898ebfd6defbf4e9461bdcb656d5b7a24e
0e338831d1599e14930f48d34886639bd94653d0
refs/heads/main
2023-07-02T14:01:05.953569
2021-08-08T21:05:07
2021-08-08T21:05:07
369,681,854
0
0
null
null
null
null
UTF-8
Python
false
false
5,467
py
import json from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.db import IntegrityError from django.http import JsonResponse from django.shortcuts import HttpResponse, HttpResponseRedirect, render from django.urls import reverse from django.views.decorators.csrf import csrf_exempt from .models import User, Email def index(request): # Authenticated users view their inbox if request.user.is_authenticated: return render(request, "mail/inbox.html") # Everyone else is prompted to sign in else: return HttpResponseRedirect(reverse("login")) @csrf_exempt @login_required def compose(request): # print(request.body) # print(json.loads(request.body)['recipients']) # Composing a new email must be via POST if request.method != "POST": return JsonResponse({"error": "POST request required."}, status=400) # Check recipient emails data = json.loads(request.body) emails = [email.strip() for email in data.get("recipients").split(",")] if emails == [""]: return JsonResponse({ "error": "At least one recipient required." }, status=400) # Convert email addresses to users recipients = [] for email in emails: try: user = User.objects.get(email=email) recipients.append(user) except User.DoesNotExist: return JsonResponse({ "error": f"User with email {email} does not exist." }, status=400) # Get contents of email subject = data.get("subject", "") body = data.get("body", "") # Create one email for each recipient, plus sender users = set() users.add(request.user) users.update(recipients) for user in users: email = Email( user=user, sender=request.user, subject=subject, body=body, read=user == request.user ) email.save() for recipient in recipients: email.recipients.add(recipient) email.save() return JsonResponse({"message": "Email sent successfully."}, status=201) @login_required def mailbox(request, mailbox): # Filter emails returned based on mailbox if mailbox == "inbox": emails = Email.objects.filter( user=request.user, recipients=request.user, archived=False ) elif mailbox == "sent": emails = Email.objects.filter( user=request.user, sender=request.user ) elif mailbox == "archive": emails = Email.objects.filter( user=request.user, recipients=request.user, archived=True ) else: return JsonResponse({"error": "Invalid mailbox."}, status=400) # Return emails in reverse chronologial order emails = emails.order_by("-timestamp").all() return JsonResponse([email.serialize() for email in emails], safe=False) @csrf_exempt @login_required def email(request, email_id): # Query for requested email try: email = Email.objects.get(user=request.user, pk=email_id) except Email.DoesNotExist: return JsonResponse({"error": "Email not found."}, status=404) # Return email contents if request.method == "GET": return JsonResponse(email.serialize()) # Update whether email is read or should be archived elif request.method == "PUT": data = json.loads(request.body) if data.get("read") is not None: email.read = data["read"] if data.get("archived") is not None: email.archived = data["archived"] email.save() return HttpResponse(status=204) # Email must be via GET or PUT else: return JsonResponse({ "error": "GET or PUT request required." }, status=400) def login_view(request): if request.method == "POST": # Attempt to sign user in email = request.POST["email"] password = request.POST["password"] user = authenticate(request, username=email, password=password) # Check if authentication successful if user is not None: login(request, user) return HttpResponseRedirect(reverse("index")) else: return render(request, "mail/login.html", { "message": "Invalid email and/or password." }) else: return render(request, "mail/login.html") def logout_view(request): logout(request) return HttpResponseRedirect(reverse("index")) def register(request): if request.method == "POST": email = request.POST["email"] # Ensure password matches confirmation password = request.POST["password"] confirmation = request.POST["confirmation"] if password != confirmation: return render(request, "mail/register.html", { "message": "Passwords must match." }) # Attempt to create new user try: user = User.objects.create_user(email, email, password) user.save() except IntegrityError as e: print(e) return render(request, "mail/register.html", { "message": "Email address already taken." }) login(request, user) return HttpResponseRedirect(reverse("index")) else: return render(request, "mail/register.html")
[ "deivitlopes@gmail.com" ]
deivitlopes@gmail.com
fed1bc7f40bb6feaf49880cd138754f9076b0128
fd7fe855490f80bef9cbb1b44230c31c1133635b
/HardwareObjects/SOLEIL/PX2MultiCollect.py
5773693f8f2a2eb09c7891a5ed0f11043faf7541
[]
no_license
SOLEILPX/mxcube
75dd528bbcd8743896217a7e490bf530cb5be4b1
062ccc01ecf6e9ad1ee40f6a0d4d5b42f7a49be0
refs/heads/master
2021-01-22T18:32:36.584828
2013-11-01T17:44:09
2013-11-01T17:44:09
13,930,813
0
0
null
2013-11-01T17:44:10
2013-10-28T16:04:27
Python
UTF-8
Python
false
false
2,383
py
from SOLEILMultiCollect import * import shutil import logging from PyTango import DeviceProxy import numpy import re class PX2MultiCollect(SOLEILMultiCollect): def __init__(self, name): SOLEILMultiCollect.__init__(self, name, LimaAdscDetector(), TunableEnergy()) #SOLEILMultiCollect.__init__(self, name, DummyDetector(), TunableEnergy()) def init(self): logging.info("headername is %s" % self.headername ) self.headerdev = DeviceProxy( self.headername ) self.mono1dev = DeviceProxy( self.mono1name ) self.det_mt_ts_dev = DeviceProxy( self.detmttsname ) self.det_mt_tx_dev = DeviceProxy( self.detmttxname ) self.det_mt_tz_dev = DeviceProxy( self.detmttzname ) self._detector.prepareHeader = self.prepareHeader SOLEILMultiCollect.init(self) def prepareHeader(self): '''Will set up header given the actual values of beamline energy, mono and detector distance''' X, Y = self.beamCenter() BeamCenterX = str(round(X, 3)) BeamCenterY = str(round(Y, 3)) head = self.headerdev.read_attribute('header').value head = re.sub('BEAM_CENTER_X=\d\d\d\.\d', 'BEAM_CENTER_X=' + BeamCenterX, head) head = re.sub('BEAM_CENTER_Y=\d\d\d\.\d', 'BEAM_CENTER_Y=' + BeamCenterY, head) return head def beamCenter(self): '''Will calculate beam center coordinates''' # Useful values tz_ref = -6.5 # reference tz position for linear regression tx_ref = -17.0 # reference tx position for linear regression q = 0.102592 # pixel size in milimeters wavelength = self.mono1dev.read_attribute('lambda').value distance = self.det_mt_ts_dev.read_attribute('position').value tx = self.det_mt_tx_dev.read_attribute('position').value tz = self.det_mt_tz_dev.read_attribute('position').value zcor = tz - tz_ref xcor = tx - tx_ref Theta = numpy.matrix([[1.55557116e+03, 1.43720063e+03], [-8.51067454e-02, -1.84118001e-03], [-1.99919592e-01, 3.57937064e+00]]) # values from 16.05.2013 X = numpy.matrix([1., distance, wavelength]) Origin = Theta.T * X.T Origin = Origin * q return Origin[1] + zcor, Origin[0] + xcor
[ "blissadm@proxima2a-5.(none)" ]
blissadm@proxima2a-5.(none)
ddf31aa0247b5bd2963cdb3c8159a26bb33c77e0
fe039f62337b210061bfd7291000c5fa406fd0ff
/list/webapp/models.py
4a9bf3ad037982d3daaeb33bc2a410482cb276bf
[]
no_license
Erlan1998/python_group_7_homework_45_Erlan_Kurbanaliev
a5f5956490d778341e4958fe6740ab6e1a395f45
4f860b561f046413bbc9ab8f587b8f7c40b8c23a
refs/heads/main
2023-05-07T00:16:28.530637
2021-03-04T12:32:36
2021-03-04T12:32:36
342,240,837
0
0
null
null
null
null
UTF-8
Python
false
false
692
py
from django.db import models status_choices = [('new', 'Новая'), ('in_progress', 'В процессе'), ('done', 'Сделано')] class List(models.Model): description = models.TextField(max_length=200, null=False, blank=False) detailed_description = models.TextField(max_length=3000, null=True, blank=True) status = models.CharField(max_length=120, null=False, blank=False, choices=status_choices) updated_at = models.DateField(null=True, blank=True) class Meta: db_table = 'Lists' verbose_name = 'Задача' verbose_name_plural = 'Задачи' def __str__(self): return f'{self.id}. {self.status}: {self.description}'
[ "kurbanalieverlan@gmail.com" ]
kurbanalieverlan@gmail.com
271f0e1a53a69327d69451cb15835b1dbd9ab828
13b8b25240f2fc4ed2a2c5e2a5384888c7920760
/company_logo.py
841c6a0fc2ae94d659fb1be5da20893d035079fc
[]
no_license
Harshkakani/hackerrank_python
9227f408552e10e645863c6e994ea5b6bb976bd4
fbd0391111316439c1dc8a206f68d76c3b5e132c
refs/heads/master
2022-12-21T23:57:48.569952
2020-10-01T04:00:08
2020-10-01T04:00:08
280,214,248
0
0
null
2020-10-01T04:00:09
2020-07-16T17:19:25
Python
UTF-8
Python
false
false
310
py
s = input() letters = [0]*26 for letter in s: letters[ord(letter) - ord('a')] += 1 for i in range(3): max_letter = max(letters) for index in range(26): if max_letter == letters[index]: print(chr(ord('a') + index), max_letter) letters[index] = -1 break
[ "harshkakani.hk@gmail.com" ]
harshkakani.hk@gmail.com
f53ac3f6c538688800be418ff966c4e0919f43ec
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_248/ch81_2020_04_12_22_18_46_334181.py
8e1cf83d9390b88d1079f2c7a2e6970a6b74812b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
def interseccao_valores(dic1,dic2): v=dic1.values v2=dic2.values lista=[] if v1==v2: lista.append(v1) return lista
[ "you@example.com" ]
you@example.com
5c6ca9b47c769d947c3323009808774f0d662ef7
fd8286efe303afa40354aff60282b3ec81fbb479
/Python Data Structure/Ch6-Solutions-Student.py
ba0b7fbc4bd7ecd7c6d02a99ad03125bb2e6f142
[]
no_license
Busymeng/MyPython
76419db7e2a4ec1ba91ca94a3340c889e4545165
2ca149de972d5834c912485883811a58e0ca715d
refs/heads/master
2023-07-06T18:14:29.708542
2023-06-30T19:29:03
2023-06-30T19:29:03
138,058,414
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
##################################################################### ## Ch6 Quiz ## """ 1. Hellothere 2. 42 3. print(x[8]) 4. print(x[14:17]) 5. letter 6. 42 7. print(greet.upper()) 8. shout() 9. .ma 10. strip() """ ##################################################################### ## Assignment 6.5 ## """ * Write code using find() and string slicing (see section 6.10) to extract the number at the end of the line below. Convert the extracted value to a floating point number and print it out. """ text = "X-DSPAM-Confidence: 0.8475";
[ "noreply@github.com" ]
Busymeng.noreply@github.com
9ac90402d2cf35ca49656daf947ac350ce5fdcb0
5291587d464fa1845e4689b07252d1c9c3a91994
/DNS_homework/Unit4_python_homework/test.py
b4e1fb11ee13f3716ad7e5edcadf19755ab8eca0
[]
no_license
CamboRambo83/My_projects
03a01c1c3141085fdc7ceffdd203b6f75c5d539d
0f976b5511141419ab26a28d0a4726053f1767dd
refs/heads/master
2020-07-04T11:19:29.018424
2019-08-17T21:02:49
2019-08-17T21:02:49
202,271,684
2
0
null
null
null
null
UTF-8
Python
false
false
17
py
print('wtfffff')
[ "Khmerprince83@gmail.com" ]
Khmerprince83@gmail.com
de3d4233cf25be9b3f24af1908a33f3ae45e1f5e
b3a5f2a9a1d777978a27d39325872ca8faf2f681
/RockPaperScissors.py
e31020392f25c2f2dace4042a6130b418613c6b9
[]
no_license
nickiapalucci/RockPaperScissors
28ee78e518e5801038f962d46020ea0fb0f0afbe
492bec6d3386400f6147bf747cde5a91005a46cf
refs/heads/master
2021-01-02T09:27:53.368446
2020-10-02T04:28:48
2020-10-02T04:28:48
39,541,269
1
1
null
2020-10-02T04:28:49
2015-07-23T02:29:25
Python
UTF-8
Python
false
false
2,349
py
# include random module to generate opponent hand in this game of chance import random # Welcome, title, explanation print("\n\nWelcome to Rock, Paper, Scissors!\n\n\n" "This is a game of luck, you versus the computer.\n" "You both will secretly pick a rock, paper, or scissors.\n\n" "The winner is determined by classic rock, paper, scissor standards:\n" "Rock smashes Scissors, Scissors cut Paper, and " "Paper covers a Rock\n\n") # Prompt user to enter a number print("When you are ready, choose your weapon, then press [ENTER] \n") print("Press 0 for scissors, 1 for rock, or 2 for paper\n") # Assign input to Player1 Player1 = input("=> ") # Test input to see if user typed an integer. # If input string cannot be converted integer, replace with an integer # that will represent a loss for player 1 try : Player1 = int(Player1) except : Player1 = -1 # Assign random choice to Player2 Player2 = random.randint(0, 2) # Determine winner or tie if Player1 == Player2 : Winner = 0 elif Player1 == 0 and Player2 == 1 : Winner = 2 elif Player1 == 0 and Player2 == 2 : Winner = 1 elif Player1 == 1 and Player2 == 0 : Winner = 1 elif Player1 == 1 and Player2 == 2 : Winner = 2 elif Player1 == 2 and Player2 == 0 : Winner = 2 elif Player1 == 2 and Player2 == 1 : Winner = 1 elif Player1 <= -1 or Player1 >= 3 : Winner = 2 else : Winner = -1 # Create result strings Player1ch = 'you' if Player1 == 0 : Player1ch = Player1ch + ' picked scissors' elif Player1 == 1 : Player1ch = Player1ch + ' picked rock' elif Player1 == 2 : Player1ch = Player1ch + ' picked paper' else : Player1ch = Player1ch + ' did not enter 0, 1, or 2' Player2ch = 'The computer' if Player2 == 0 : Player2ch = Player2ch + ' picked scissors' elif Player2 == 1 : Player2ch = Player2ch + ' picked rock' elif Player2 == 2 : Player2ch = Player2ch + ' picked paper' else : Player2ch = Player2ch + ' messed up (which is weird)' # Translate results to character string if Winner == 0 : Winnerch = 'It is a draw.' elif Winner == 1 : Winnerch = 'You won!' elif Winner == 2 : Winnerch = 'The computer won.' else : Winnerch = 'Nobody won. Something went wrong.' # Display results print("\n", Player2ch, ", and ", Player1ch, ". ", Winnerch, "\n", sep = '')
[ "cukid9876@outlook.com" ]
cukid9876@outlook.com
1da0fa467b0dabe86ba10b2cefbb02583f434cc5
4831ef3cf429899d657f29a6f84f7c396a8d9872
/avito/extract_features.py
360bc84b48bf0fe8f5dd8847541898d6d57ba65f
[]
no_license
senkin13/kaggle
f0aebef1fa8ecc5e4f234df91be63279d900cd0d
5f1a078eb864623376813dea620138653ada69a8
refs/heads/master
2022-12-08T09:58:40.363726
2022-12-07T08:17:48
2022-12-07T08:17:48
99,398,475
110
23
null
2022-12-07T08:15:14
2017-08-05T04:15:43
Jupyter Notebook
UTF-8
Python
false
false
26,007
py
import pandas as pd import numpy as np import pickle from sklearn.preprocessing import LabelEncoder from tqdm import tqdm train = pd.read_csv('../input/train.csv', parse_dates = ['activation_date']) test = pd.read_csv('../input/test.csv', parse_dates = ['activation_date']) train_active = pd.read_csv('../input/train_active.csv', parse_dates = ['activation_date']) test_active = pd.read_csv('../input/test_active.csv', parse_dates = ['activation_date']) train_periods = pd.read_csv('../input/periods_train.csv', parse_dates=['activation_date','date_from', 'date_to']) test_periods = pd.read_csv('../input/periods_test.csv', parse_dates=['activation_date','date_from', 'date_to']) df_all = pd.concat([ train, train_active, test, test_active ]).reset_index(drop=True) df_all.drop_duplicates(['item_id'], inplace=True) df_all['wday'] = df_all['activation_date'].dt.weekday df_all['price'].fillna(0, inplace=True) df_all['price'] = np.log1p(df_all['price']) df_all['city'] = df_all['city'] + "_" + df_all['region'] df_all['param_123'] = (df_all['param_1'].fillna('') + ' ' + df_all['param_2'].fillna('') + ' ' + df_all['param_3'].fillna('')).astype(str) text_vars = ['user_id','region', 'city', 'parent_category_name', 'category_name', 'user_type','param_1','param_2','param_3','param_123'] for col in tqdm(text_vars): lbl = LabelEncoder() lbl.fit(df_all[col].values.astype('str')) df_all[col] = lbl.transform(df_all[col].values.astype('str')) all_periods = pd.concat([ train_periods, test_periods ]) all_periods['days_up'] = all_periods['date_to'].dt.dayofyear - all_periods['date_from'].dt.dayofyear def agg(df,agg_cols): for c in tqdm(agg_cols): new_feature = '{}_{}_{}'.format('_'.join(c['groupby']), c['agg'], c['target']) gp = df.groupby(c['groupby'])[c['target']].agg(c['agg']).reset_index().rename(index=str, columns={c['target']:new_feature}) df = df.merge(gp,on=c['groupby'],how='left') return df agg_cols = [ {'groupby': ['item_id'], 'target':'days_up', 'agg':'count'}, {'groupby': ['item_id'], 'target':'days_up', 'agg':'sum'}, ] all_periods = agg(all_periods,agg_cols) all_periods.drop_duplicates(['item_id'], inplace=True) #all_periods.drop(['activation_date','date_from','date_to','days_up','days_total'],axis=1, inplace=True) all_periods.drop(['activation_date','date_from','date_to'],axis=1, inplace=True) all_periods.reset_index(drop=True,inplace=True) df_all = df_all.merge(all_periods, on='item_id', how='left') #Impute Days up df_all['item_id_count_days_up_impute'] = df_all['item_id_count_days_up'] df_all['item_id_sum_days_up_impute'] = df_all['item_id_sum_days_up'] enc = df_all.groupby('category_name')['item_id_count_days_up'].agg('median').astype(np.float32).reset_index() enc.columns = ['category_name' ,'count_days_up_impute'] df_all = pd.merge(df_all, enc, how='left', on='category_name') df_all['item_id_count_days_up_impute'].fillna(df_all['count_days_up_impute'], inplace=True) enc = df_all.groupby('category_name')['item_id_sum_days_up'].agg('median').astype(np.float32).reset_index() enc.columns = ['category_name' ,'sum_days_up_impute'] df_all = pd.merge(df_all, enc, how='left', on='category_name') df_all['item_id_sum_days_up_impute'].fillna(df_all['sum_days_up_impute'], inplace=True) df_numerical_active = df_all[['category_name','city','deal_probability', 'item_id','item_seq_number','param_1','param_2','param_3','param_123','parent_category_name','price', 'region','user_id','user_type','wday','item_id_count_days_up','item_id_sum_days_up', 'item_id_count_days_up_impute','item_id_sum_days_up_impute']] # create numerical features with active #df_numerical_active.to_pickle('/tmp/basic_numerical_active.pkl') ## with active df_all_tmp = df_numerical_active.copy() raw_columns = df_all_tmp.columns.values print ('1') ## aggregate features def agg(df,agg_cols): for c in tqdm(agg_cols): new_feature = '{}_{}_{}'.format('_'.join(c['groupby']), c['agg'], c['target']) gp = df.groupby(c['groupby'])[c['target']].agg(c['agg']).reset_index().rename(index=str, columns={c['target']:new_feature}) df = df.merge(gp,on=c['groupby'],how='left') return df agg_cols = [ ############################unique aggregation################################## {'groupby': ['user_id'], 'target':'price', 'agg':'nunique'}, {'groupby': ['parent_category_name'], 'target':'price', 'agg':'nunique'}, {'groupby': ['category_name'], 'target':'price', 'agg':'nunique'}, {'groupby': ['region'], 'target':'price', 'agg':'nunique'}, {'groupby': ['city'], 'target':'price', 'agg':'nunique'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'nunique'}, {'groupby': ['wday'], 'target':'price', 'agg':'nunique'}, {'groupby': ['param_1'], 'target':'price', 'agg':'nunique'}, {'groupby': ['category_name'], 'target':'image_top_1', 'agg':'nunique'}, {'groupby': ['parent_category_name'], 'target':'image_top_1', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'image_top_1', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'parent_category_name', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'category_name', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'wday', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'param_1', 'agg':'nunique'}, ############################count aggregation################################## {'groupby': ['user_id'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','param_1'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','region'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','city'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','parent_category_name'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','category_name'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','image_top_1'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','category_name'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','image_top_1'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','parent_category_name'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','city'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','region'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','category_name','city'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','category_name','city'], 'target':'item_id', 'agg':'count'}, {'groupby': ['price'], 'target':'item_id', 'agg':'count'}, {'groupby': ['price','user_id'], 'target':'item_id', 'agg':'count'}, {'groupby': ['price','category_name'], 'target':'item_id', 'agg':'count'}, ############################mean/median/sum/min/max aggregation################################## {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'mean'}, {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'median'}, {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'sum'}, {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'max'}, {'groupby': ['param_2'], 'target':'price', 'agg':'mean'}, {'groupby': ['param_2'], 'target':'price', 'agg':'max'}, {'groupby': ['param_3'], 'target':'price', 'agg':'mean'}, {'groupby': ['param_3'], 'target':'price', 'agg':'max'}, {'groupby': ['user_id'], 'target':'price', 'agg':'mean'}, {'groupby': ['user_id'], 'target':'price', 'agg':'median'}, {'groupby': ['user_id'], 'target':'price', 'agg':'sum'}, {'groupby': ['user_id'], 'target':'price', 'agg':'min'}, {'groupby': ['user_id'], 'target':'price', 'agg':'max'}, {'groupby': ['item_seq_number'], 'target':'price', 'agg':'mean'}, {'groupby': ['item_seq_number'], 'target':'price', 'agg':'median'}, {'groupby': ['item_seq_number'], 'target':'price', 'agg':'sum'}, {'groupby': ['item_seq_number'], 'target':'price', 'agg':'min'}, {'groupby': ['item_seq_number'], 'target':'price', 'agg':'max'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'mean'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'median'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'sum'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'max'}, {'groupby': ['param_1'], 'target':'price', 'agg':'mean'}, {'groupby': ['param_1'], 'target':'price', 'agg':'max'}, {'groupby': ['region'], 'target':'price', 'agg':'mean'}, {'groupby': ['region'], 'target':'price', 'agg':'max'}, {'groupby': ['city'], 'target':'price', 'agg':'mean'}, {'groupby': ['city'], 'target':'price', 'agg':'max'}, {'groupby': ['parent_category_name'], 'target':'price', 'agg':'mean'}, {'groupby': ['parent_category_name'], 'target':'price', 'agg':'sum'}, {'groupby': ['parent_category_name'], 'target':'price', 'agg':'max'}, {'groupby': ['category_name'], 'target':'price', 'agg':'mean'}, {'groupby': ['category_name'], 'target':'price', 'agg':'sum'}, {'groupby': ['category_name'], 'target':'price', 'agg':'max'}, {'groupby': ['wday','category_name','city'], 'target':'price', 'agg':'mean'}, {'groupby': ['wday','category_name','city'], 'target':'price', 'agg':'median'}, {'groupby': ['wday','category_name','city'], 'target':'price', 'agg':'sum'}, {'groupby': ['wday','category_name','city'], 'target':'price', 'agg':'max'}, {'groupby': ['wday','region'], 'target':'price', 'agg':'mean'}, {'groupby': ['wday','region'], 'target':'price', 'agg':'median'}, {'groupby': ['wday','region'], 'target':'price', 'agg':'sum'}, {'groupby': ['wday','region'], 'target':'price', 'agg':'max'}, {'groupby': ['wday','city'], 'target':'price', 'agg':'mean'}, {'groupby': ['wday','city'], 'target':'price', 'agg':'median'}, {'groupby': ['wday','city'], 'target':'price', 'agg':'sum'}, {'groupby': ['wday','city'], 'target':'price', 'agg':'max'}, {'groupby': ['wday','user_id'], 'target':'price', 'agg':'mean'}, {'groupby': ['wday','user_id'], 'target':'price', 'agg':'median'}, {'groupby': ['wday','user_id'], 'target':'price', 'agg':'sum'}, {'groupby': ['wday','user_id'], 'target':'price', 'agg':'min'}, {'groupby': ['wday','user_id'], 'target':'price', 'agg':'max'}, {'groupby': ['user_id'], 'target':'item_id_sum_days_up', 'agg':'mean'}, {'groupby': ['user_id'], 'target':'item_id_count_days_up', 'agg':'mean'}, ] print ('2') df_all_tmp = agg(df_all_tmp,agg_cols) tmp_columns = df_all_tmp.columns.values df_train = df_all_tmp[df_all_tmp['deal_probability'].notnull()] test_id = pd.read_csv('../input/test.csv',usecols=['item_id']) test_id = test_id.merge(df_all_tmp,on='item_id',how='left') del df_all_tmp for i in tmp_columns: if i not in raw_columns: print (i) df_train[i].to_pickle('/tmp/features/number_agg/clean_train_active/' + str(i)) test_id[i].to_pickle('/tmp/features/number_agg/clean_test_active/' + str(i)) train = pd.read_csv('../input/train.csv', parse_dates = ['activation_date']) test = pd.read_csv('../input/test.csv', parse_dates = ['activation_date']) df_all = pd.concat([train,test],axis=0).reset_index(drop=True) df_all['wday'] = df_all['activation_date'].dt.weekday df_all['price'].fillna(0, inplace=True) df_all['price'] = np.log1p(df_all['price']) df_all['city'] = df_all['city'] + "_" + df_all['region'] df_all['param_123'] = (df_all['param_1'].fillna('') + ' ' + df_all['param_2'].fillna('') + ' ' + df_all['param_3'].fillna('')).astype(str) df_all['title'] = df_all['title'].fillna('').astype(str) df_all['text'] = df_all['description'].fillna('').astype(str) + ' ' + df_all['title'].fillna('').astype(str) + ' ' + df_all['param_123'].fillna('').astype(str) # from https://www.kaggle.com/christofhenkel/text2image-top-1 # tr.csv is train_image_top_1_features.csv + test_image_top_1_features.csv image_top_2 = pd.read_csv('/tmp/features/category/tr.csv') df_all['image_top_2'] = image_top_2['image_top_1'] text_vars = ['user_id','region', 'city', 'parent_category_name', 'category_name', 'user_type','param_1','param_2','param_3','param_123'] for col in tqdm(text_vars): lbl = LabelEncoder() lbl.fit(df_all[col].values.astype('str')) df_all[col] = lbl.transform(df_all[col].values.astype('str')) # create image_top_1,2 category feature df_train = df_all[df_all['deal_probability'].notnull()] df_test = df_all[df_all['deal_probability'].isnull()] df_train['image_top_1'].to_pickle('/tmp/features/number_agg/clean_train_image_top_1/image_top_1') df_test['image_top_1'].to_pickle('/tmp/features/number_agg/clean_test_image_top_1/image_top_1') df_train['image_top_2'].to_pickle('/tmp/features/number_agg/clean_train_image_top_1/image_top_2') df_test['image_top_2'].to_pickle('/tmp/features/number_agg/clean_test_image_top_1/image_top_2') # create image_top_1,2 aggregation feature df_all_tmp = df_all.copy() raw_columns = df_all_tmp.columns.values agg_cols = [ ############################unique aggregation################################## {'groupby': ['image_top_1'], 'target':'price', 'agg':'nunique'}, {'groupby': ['image_top_2'], 'target':'price', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'image_top_1', 'agg':'nunique'}, {'groupby': ['user_id'], 'target':'image_top_2', 'agg':'nunique'}, ############################count aggregation################################## {'groupby': ['user_id','image_top_1'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','image_top_2'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','image_top_1'], 'target':'item_id', 'agg':'count'}, {'groupby': ['user_id','wday','image_top_2'], 'target':'item_id', 'agg':'count'}, ############################mean/median/sum/min/max aggregation################################## {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'mean'}, {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'median'}, {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'sum'}, {'groupby': ['image_top_1','user_id'], 'target':'price', 'agg':'max'}, {'groupby': ['image_top_2','user_id'], 'target':'price', 'agg':'mean'}, {'groupby': ['image_top_2','user_id'], 'target':'price', 'agg':'median'}, {'groupby': ['image_top_2','user_id'], 'target':'price', 'agg':'sum'}, {'groupby': ['image_top_2','user_id'], 'target':'price', 'agg':'max'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'mean'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'median'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'sum'}, {'groupby': ['image_top_1'], 'target':'price', 'agg':'max'}, {'groupby': ['image_top_2'], 'target':'price', 'agg':'mean'}, {'groupby': ['image_top_2'], 'target':'price', 'agg':'median'}, {'groupby': ['image_top_2'], 'target':'price', 'agg':'sum'}, {'groupby': ['image_top_2'], 'target':'price', 'agg':'max'}, ] df_all_tmp = agg(df_all_tmp,agg_cols) tmp_columns = df_all_tmp.columns.values df_train = df_all_tmp[df_all_tmp['deal_probability'].notnull()] df_test = df_all_tmp[df_all_tmp['deal_probability'].isnull()] for i in tmp_columns: if i not in raw_columns: print (i) df_train[i].to_pickle('/tmp/features/number_agg/clean_train_image_top_1/' + str(i)) df_test[i].to_pickle('/tmp/features/number_agg/clean_test_image_top_1/' + str(i)) from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn import preprocessing, model_selection, metrics from sklearn.decomposition import TruncatedSVD train = pd.read_csv('../input/train.csv', parse_dates = ['activation_date']) test = pd.read_csv('../input/test.csv', parse_dates = ['activation_date']) df_all = pd.concat([train,test],axis=0).reset_index(drop=True) df_all['param_123'] = (df_all['param_1'].fillna('') + ' ' + df_all['param_2'].fillna('') + ' ' + df_all['param_3'].fillna('')).astype(str) df_all['title'] = df_all['title'].fillna('').astype(str) df_all['text'] = df_all['description'].fillna('').astype(str) + ' ' + df_all['title'].fillna('').astype(str) + ' ' + df_all['param_123'].fillna('').astype(str) df_text = df_all[['deal_probability','title','param_123','text']] df_train_text = df_text[df_text['deal_probability'].notnull()] df_test_text = df_text[df_text['deal_probability'].isnull()] ### TFIDF Vectorizer ### tfidf_vec = TfidfVectorizer(ngram_range=(1,1)) full_title_tfidf = tfidf_vec.fit_transform(df_text['title'].values.tolist() ) train_title_tfidf = tfidf_vec.transform(df_train_text['title'].values.tolist()) test_title_tfidf = tfidf_vec.transform(df_test_text['title'].values.tolist()) ### SVD Components ### n_comp = 40 svd_title_obj = TruncatedSVD(n_components=n_comp, algorithm='arpack') svd_title_obj.fit(full_title_tfidf) train_title_svd = pd.DataFrame(svd_title_obj.transform(train_title_tfidf)) test_title_svd = pd.DataFrame(svd_title_obj.transform(test_title_tfidf)) train_title_svd.columns = ['svd_title_'+str(i+1) for i in range(n_comp)] test_title_svd.columns = ['svd_title_'+str(i+1) for i in range(n_comp)] for i in train_title_svd.columns: print (i) test_title_svd[i].to_pickle('/tmp/features/tsvd/train/' + str(i)) test_title_svd[i].to_pickle('/tmp/features/tsvd/test/' + str(i)) %%time from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.pipeline import FeatureUnion from scipy.sparse import hstack, csr_matrix from nltk.corpus import stopwords import re import string def count_regexp_occ(regexp="", text=None): """ Simple way to get the number of occurence of a regex""" return len(re.findall(regexp, text)) stopwords = {x: 1 for x in stopwords.words('russian')} punct = set(string.punctuation) emoji = set() for s in df_all['text'].fillna('').astype(str): for c in s: if c.isdigit() or c.isalpha() or c.isalnum() or c.isspace() or c in punct: continue emoji.add(c) all = df_text.copy() # Meta Text Features textfeats = ['param_123'] for cols in textfeats: all[cols] = all[cols].astype(str) all[cols + '_num_cap'] = all[cols].apply(lambda x: count_regexp_occ('[А-ЯA-Z]', x)) all[cols + '_num_low'] = all[cols].apply(lambda x: count_regexp_occ('[а-яa-z]', x)) all[cols + '_num_rus_cap'] = all[cols].apply(lambda x: count_regexp_occ('[А-Я]', x)) all[cols + '_num_eng_cap'] = all[cols].apply(lambda x: count_regexp_occ('[A-Z]', x)) all[cols + '_num_rus_low'] = all[cols].apply(lambda x: count_regexp_occ('[а-я]', x)) all[cols + '_num_eng_low'] = all[cols].apply(lambda x: count_regexp_occ('[a-z]', x)) all[cols + '_num_dig'] = all[cols].apply(lambda x: count_regexp_occ('[0-9]', x)) all[cols + '_num_pun'] = all[cols].apply(lambda x: sum(c in punct for c in x)) all[cols + '_num_space'] = all[cols].apply(lambda x: sum(c.isspace() for c in x)) all[cols + '_num_chars'] = all[cols].apply(len) # Count number of Characters all[cols + '_num_words'] = all[cols].apply(lambda comment: len(comment.split())) # Count number of Words all[cols + '_num_unique_words'] = all[cols].apply(lambda comment: len(set(w for w in comment.split()))) all[cols + '_ratio_unique_words'] = all[cols+'_num_unique_words'] / (all[cols+'_num_words']+1) textfeats = ['text'] for cols in textfeats: all[cols] = all[cols].astype(str) all[cols + '_num_cap'] = all[cols].apply(lambda x: count_regexp_occ('[А-ЯA-Z]', x)) all[cols + '_num_low'] = all[cols].apply(lambda x: count_regexp_occ('[а-яa-z]', x)) all[cols + '_num_rus_cap'] = all[cols].apply(lambda x: count_regexp_occ('[А-Я]', x)) all[cols + '_num_eng_cap'] = all[cols].apply(lambda x: count_regexp_occ('[A-Z]', x)) all[cols + '_num_rus_low'] = all[cols].apply(lambda x: count_regexp_occ('[а-я]', x)) all[cols + '_num_eng_low'] = all[cols].apply(lambda x: count_regexp_occ('[a-z]', x)) all[cols + '_num_dig'] = all[cols].apply(lambda x: count_regexp_occ('[0-9]', x)) all[cols + '_num_pun'] = all[cols].apply(lambda x: sum(c in punct for c in x)) all[cols + '_num_space'] = all[cols].apply(lambda x: sum(c.isspace() for c in x)) all[cols + '_num_emo'] = all[cols].apply(lambda x: sum(c in emoji for c in x)) all[cols + '_num_row'] = all[cols].apply(lambda x: x.count('/\n')) all[cols + '_num_chars'] = all[cols].apply(len) # Count number of Characters all[cols + '_num_words'] = all[cols].apply(lambda comment: len(comment.split())) # Count number of Words all[cols + '_num_unique_words'] = all[cols].apply(lambda comment: len(set(w for w in comment.split()))) all[cols + '_ratio_unique_words'] = all[cols+'_num_unique_words'] / (all[cols+'_num_words']+1) # Count Unique Words all[cols +'_num_stopwords'] = all[cols].apply(lambda x: len([w for w in x.split() if w in stopwords])) all[cols +'_num_words_upper'] = all[cols].apply(lambda x: len([w for w in str(x).split() if w.isupper()])) all[cols +'_num_words_lower'] = all[cols].apply(lambda x: len([w for w in str(x).split() if w.islower()])) all[cols +'_num_words_title'] = all[cols].apply(lambda x: len([w for w in str(x).split() if w.istitle()])) textfeats = ['title'] for cols in textfeats: all[cols] = all[cols].astype(str) all[cols + '_num_cap'] = all[cols].apply(lambda x: count_regexp_occ('[А-ЯA-Z]', x)) all[cols + '_num_low'] = all[cols].apply(lambda x: count_regexp_occ('[а-яa-z]', x)) all[cols + '_num_rus_cap'] = all[cols].apply(lambda x: count_regexp_occ('[А-Я]', x)) all[cols + '_num_eng_cap'] = all[cols].apply(lambda x: count_regexp_occ('[A-Z]', x)) all[cols + '_num_rus_low'] = all[cols].apply(lambda x: count_regexp_occ('[а-я]', x)) all[cols + '_num_eng_low'] = all[cols].apply(lambda x: count_regexp_occ('[a-z]', x)) all[cols + '_num_dig'] = all[cols].apply(lambda x: count_regexp_occ('[0-9]', x)) all[cols + '_num_pun'] = all[cols].apply(lambda x: sum(c in punct for c in x)) all[cols + '_num_space'] = all[cols].apply(lambda x: sum(c.isspace() for c in x)) all[cols + '_num_chars'] = all[cols].apply(len) # Count number of Characters all[cols + '_num_words'] = all[cols].apply(lambda comment: len(comment.split())) # Count number of Words all[cols + '_num_unique_words'] = all[cols].apply(lambda comment: len(set(w for w in comment.split()))) all[cols + '_ratio_unique_words'] = all[cols+'_num_unique_words'] / (all[cols+'_num_words']+1) df_train = all[all['deal_probability'].notnull()] df_test = all[all['deal_probability'].isnull()] df_all_tmp = all.drop(['deal_probability','param_123','title','text'],axis=1) tmp_columns = df_all_tmp.columns.values for i in tmp_columns: print (i) df_train[i].to_pickle('/tmp/features/text_agg/train/' + str(i)) df_test[i].to_pickle('/tmp/features/text_agg/test/' + str(i)) from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.pipeline import FeatureUnion from scipy.sparse import hstack, csr_matrix from nltk.corpus import stopwords import pickle from scipy import sparse from nltk.tokenize.toktok import ToktokTokenizer # tokenizer tested on russian from nltk.stem.snowball import RussianStemmer from nltk import sent_tokenize # should be multilingual from string import punctuation from nltk import sent_tokenize from nltk.corpus import stopwords from gensim.models import FastText import re from string import punctuation punct = set(punctuation) # Tf-Idf def clean_text(s): s = re.sub('м²|\d+\\/\d|\d+-к|\d+к', ' ', s.lower()) s = re.sub('\\s+', ' ', s) s = s.strip() return s print("\n[TF-IDF] Term Frequency Inverse Document Frequency Stage") russian_stop = set(stopwords.words('russian')) df_text['param_123'] = df_text['param_123'].apply(lambda x: clean_text(x)) df_text['title'] = df_text['title'].apply(lambda x: clean_text(x)) df_text["text"] = df_text["text"].apply(lambda x: clean_text(x)) df_train_text = df_text[df_text['deal_probability'].notnull()] df_test_text = df_text[df_text['deal_probability'].isnull()] tfidf_para = { "stop_words": russian_stop, "analyzer": 'word', "token_pattern": r'\w{1,}', "lowercase": True, "sublinear_tf": True, "dtype": np.float32, "norm": 'l2', #"min_df":5, #"max_df":.9, "smooth_idf":False } def get_col(col_name): return lambda x: x[col_name] vectorizer = FeatureUnion([ ('text',TfidfVectorizer( ngram_range=(1, 2), max_features=200000, **tfidf_para, preprocessor=get_col('text'))), ('title',TfidfVectorizer( ngram_range=(1, 2), stop_words = russian_stop, #lowercase=True, #max_features=7000, preprocessor=get_col('title'))), ('param_123',TfidfVectorizer( ngram_range=(1, 2), stop_words = russian_stop, #lowercase=True, #max_features=7000, preprocessor=get_col('param_123'))) ]) vectorizer.fit(df_text.to_dict('records')) ready_df_train = vectorizer.transform(df_train_text.to_dict('records')) ready_df_test = vectorizer.transform(df_test_text.to_dict('records')) tfvocab = vectorizer.get_feature_names() sparse.save_npz('/tmp/features/nlp/ready_df_train_200000_new.npz', ready_df_train) sparse.save_npz('/tmp/features/nlp/ready_df_test_200000_new.npz', ready_df_test) with open('/tmp/features/nlp/tfvocab_200000_new.pkl', 'wb') as tfvocabfile: pickle.dump(tfvocab, tfvocabfile)
[ "noreply@github.com" ]
senkin13.noreply@github.com
e29535f0d26e87b86587500aa5e2cb512dab6bd2
1118aec39a839da2ebc508f1d2a6b377aa70274d
/src/lib/test_weakset.py
9f3e8aba2ca12ecf934a509ad65cbf622dd40597
[]
no_license
serg0987/python
b3a9a2b22b4ef5a39e612a0a170ba9629933c802
074449ad6b3a90352939c55a9db37bd248cab428
refs/heads/master
2020-05-15T09:30:17.500158
2015-10-18T21:28:08
2015-10-18T21:28:08
2,454,952
0
1
null
null
null
null
UTF-8
Python
false
false
636
py
# -*- coding: utf-8 -*- ''' weakref — Weak references link: http://docs.python.org/2/library/weakref.html ''' import unittest from weakref import WeakSet, WeakValueDictionary class Object: pass class TestWeakSet(unittest.TestCase): def test_len(self): obj = Object() obj2 = Object() ws = WeakSet([obj]) self.assertIn(obj, ws) self.assertEqual(len(ws), 1) ws.add(obj2) self.assertEqual(len(ws), 2) self.assertIn(obj2, ws) del obj self.assertEqual(len(ws), 1) self.assertIn(obj2, ws) if __name__ == '__main__': unittest.main()
[ "serg0987@gmail.com" ]
serg0987@gmail.com
836368a464341d665f660be2e150e73f7438b986
e2ea841245e6e28604d529a34e4b2e21f41e97cd
/NeuralNetworkUI/NetworkXNetworkInterpreter.py
95a0022392281310632171b99fc226b594d9be89
[]
no_license
chezanthony/NaiveNEAT
81e20db90c454521b5efa4c066659f25c04e6f4d
98881c0cbcc6b6fd1c9bcd347896a5537943aba8
refs/heads/master
2023-03-23T16:48:09.661784
2020-08-31T17:11:37
2020-08-31T17:11:37
289,199,711
0
0
null
2020-08-24T18:27:07
2020-08-21T06:51:29
Python
UTF-8
Python
false
false
1,420
py
class CNetworkXNetworkInterpreter: @staticmethod def interpret_network(network, nx): node_container =\ network.get_node_container() connection_container =\ network.get_connection_container() CNetworkXNetworkInterpreter.\ _add_nodes(node_container, nx) CNetworkXNetworkInterpreter.\ _add_connections(connection_container, node_container, nx) @staticmethod def _add_nodes(nodes, nx): for node in nodes.values(): nx.add_node(node) @staticmethod def _add_connections(connections, nodes, nx): for connection in connections.values(): node_tuple =\ CNetworkXNetworkInterpreter.\ _get_nodes_from_connection(nodes, connection) n_input_node = node_tuple[0] n_output_node = node_tuple[1] nx.add_connection(n_input_node, n_output_node) @staticmethod def _get_nodes_from_connection(nodes, connection): input_node =\ nodes[connection.get_input_node_key()] output_node =\ nodes[connection.get_output_node_key()] return input_node, output_node
[ "chezanthonyintud@gmail.com" ]
chezanthonyintud@gmail.com
1579047ff059b9711269bf038bcafe72d691e46b
7a305f7f5bfb0789f12fe3f846a5aa10fcb79d4b
/python_module/stomp/test/local_test.py
fc96b984880423f96252e893cf27c1b543cee504
[ "MIT", "Apache-2.0" ]
permissive
GeneralizedLearningUtilities/SuperGLU
873dbd8c9c19117721e01e8ce7da1edea962b803
1c373d1358431fb96dd70b324b26a14fc8ed1fcb
refs/heads/master
2023-01-03T00:47:18.183214
2021-08-24T16:49:24
2021-08-24T16:49:24
38,255,548
8
6
MIT
2022-12-29T09:47:41
2015-06-29T15:36:46
JavaScript
UTF-8
Python
false
false
1,190
py
import time import unittest import stomp from stomp.listener import TestListener from stomp.test.testutils import * class TestIPV6Send(unittest.TestCase): def setUp(self): conn = stomp.Connection11(get_ipv6_host()) listener = TestListener('123') conn.set_listener('', listener) conn.start() conn.connect('admin', 'password', wait=True) self.conn = conn self.listener = listener self.timestamp = time.strftime('%Y%m%d%H%M%S') def tearDown(self): if self.conn: self.conn.disconnect(receipt=None) def test_ipv6(self): queuename = '/queue/testipv6-%s' % self.timestamp self.conn.subscribe(destination=queuename, id=1, ack='auto') self.conn.send(body='this is a test', destination=queuename, receipt='123') self.listener.wait_on_receipt() self.assertTrue(self.listener.connections == 1, 'should have received 1 connection acknowledgement') self.assertTrue(self.listener.messages == 1, 'should have received 1 message') self.assertTrue(self.listener.errors == 0, 'should not have received any errors')
[ "daniel.auerbach@gmail.com" ]
daniel.auerbach@gmail.com
505e5e0ce0cb191a5ec404f1e81be10da0578bf5
268d9c21243e12609462ebbd6bf6859d981d2356
/Python/python_stack/Django/Dojo_ninjas/main/apps/dojo_ninjas/migrations/0002_dojo_desc.py
58a3322cbefd8d01f3ac70e8cbe91f35e5cc03d2
[]
no_license
dkang417/cdj
f840962c3fa8e14146588eeb49ce7dbd08b8ff4c
9966b04af1ac8a799421d97a9231bf0a0a0d8745
refs/heads/master
2020-03-10T03:29:05.053821
2018-05-23T02:02:07
2018-05-23T02:02:07
129,166,089
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2018-05-08 14:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dojo_ninjas', '0001_initial'), ] operations = [ migrations.AddField( model_name='dojo', name='desc', field=models.TextField(null=True), ), ]
[ "dkang417@gmail.com" ]
dkang417@gmail.com
cd802f3c8a2cb2614620310b207adc8d3b08794c
e709ba8bea070d1178b14609b771f7d751a881ef
/Ada.py
83a1dca833ce65a769f39737b19586867d4d897b
[]
no_license
youko70s/2018-Humana-TAMU-HealthCare-Competition
6b25e0e16cd412243a78ed861a88dd5dd79bc92a
19ea30673c59a7d0abd9279da3517855282a382f
refs/heads/master
2020-03-31T09:58:22.148712
2019-02-22T23:11:53
2019-02-22T23:11:53
152,117,332
0
0
null
null
null
null
UTF-8
Python
false
false
4,158
py
# -*- coding: utf-8 -*- """ Created on Sun Oct 7 18:01:07 2018 @author: youko """ ##import packages needed import matplotlib.pyplot as plt import numpy as np import pandas as pd from pprint import pprint import sklearn from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles from sklearn.metrics import precision_recall_curve import matplotlib.pyplot as plt from sklearn.utils.fixes import signature ##setting n_estimators and learning rate myData=pd.read_csv('deleted_numerical_data_full.csv') del myData['Unnamed: 0'] ##split the whole data set in to Active and InActive Active=myData[myData['AMI_FLAG']==1] InActive=myData[myData['AMI_FLAG']==0] ##split Active and InActive into test dataset and training set trA, tsA = train_test_split(Active, test_size=0.382) trIn, tsIn = train_test_split(InActive, test_size=(2726*1.62)/97274) ##combine the test dataframe frames = [tsA, tsIn] test_set = pd.concat(frames) attributes=list(myData.columns.values) attributes.remove('AMI_FLAG') attributes.remove('ID') target=['AMI_FLAG'] X_test=pd.DataFrame(test_set, columns=attributes) Y_test=pd.DataFrame(test_set, columns=target) ##==================================================================== ##try it on one subsample remain_trIn,chosen_trIn=train_test_split(trIn, test_size=len(trA)/len(trIn)) frames = [trA, chosen_trIn] subsample = pd.concat(frames) X_train = pd.DataFrame(subsample, columns=attributes) Y_train=pd.DataFrame(subsample, columns=target) bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5), algorithm="SAMME", n_estimators=50, learning_rate=0.5) bdt.fit(X_train, Y_train) pred=bdt.predict(X_test) matrix =confusion_matrix(Y_test,pred) print(matrix) metrics.roc_auc_score(Y_test,pred) ##===================================================================== #n_estimators=400 #learning_rate=1.0 ''' Adapredict_value=[] remain_trIn=trIn bdtscore=[] for i in range(0,5,1): trIn=remain_trIn remain_trIn,chosen_trIn=train_test_split(trIn, test_size=len(trA)/len(remain_trIn)) ##bind the chosen_trIn and trA to create a subsample frames = [trA, chosen_trIn] subsample = pd.concat(frames) ##get X_train and Y_train X_train = pd.DataFrame(subsample, columns=attributes) Y_train=pd.DataFrame(subsample, columns=target) ##build the random forest tree model '''#here the parameters? ''' bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5), algorithm="SAMME", n_estimators=200, learning_rate=0.8) bdt.fit(X_train, Y_train) Adapredict_value.append(bdt.predict(X_test)) bdtscore.append(bdt.score(X_test,Y_test)) ##apply the majority voting scheme for the prediction results generated by subsamples df = pd.DataFrame(Adapredict_value) Adap=df.sum(axis=0) Adap=Adap.to_frame() Adap.index=test_set.index Adap.columns = ['votes'] def label (row): if row['votes'] >24: return 1 else: return 0 return 'Other' Adap['Label'] = Adap.apply (lambda row: label (row),axis=1) print("Accuracy:",metrics.accuracy_score(Y_test, Adap['Label'])) #trIn=remain_trIn #remain_trIn,chosen_trIn=train_test_split(trIn, test_size=len(trA)/len(trIn)) ##bind the chosen_trIn and trA to create a subsample #frames = [trA, chosen_trIn] #ubsample = pd.concat(frames) #subsample = pd.concat(frames) ##get X_train and Y_train #X_train = pd.DataFrame(subsample, columns=attributes) #Y_train=pd.DataFrame(subsample, columns=target) ##build the Adaboost model #bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5), # algorithm="SAMME", # n_estimators=200, learning_rate=0.8) #bdt.fit(X_train, Y_train) #pred=bdt.predict(X_test) #bdt.score(X_test,Y_test) '''
[ "noreply@github.com" ]
youko70s.noreply@github.com
a5049b077e0a7a7ba99e60920e4dd3e0ba882227
c2bd34dfcfb45f6b0da327badc928779773696a8
/math_paradox.py
9190ba1593c547758962be10c41a487ae069f9b0
[]
no_license
lisiynos/sis-cpy
2f8555b24c9e301649569b1617ad1742fc763143
d43c62697bb37d763003d1e1e4bf22e92ec5f8dc
refs/heads/master
2021-01-02T09:28:22.476953
2018-03-29T11:08:09
2018-03-29T11:08:39
99,215,997
1
0
null
null
null
null
UTF-8
Python
false
false
950
py
# Начнем мы с равенства: assert 16 + 45 == 25 + 36 # которое перепишем в виде: assert 16 + 9 * 5 == 25 + 9 * 4 # Перенесем некоторые слагаемые в другие части равенства — # естественно, изменяя знаки на противоположные: assert 16 - 9 * 4 == 25 - 9 * 5 # теперь к обеим частям добавим по 81/4. assert 16 - 9 * 4 + 81 / 4 == 25 - 9 * 5 + 81 / 4 # Заметим, что в обеих частях стоят полные квадраты: assert 16 - 9 * 4 + 81 / 4 == 16 - 2 * 4 * 9 / 2 + 81 / 4 == (4 - 9 / 2) ** 2 assert 25 - 9 * 5 + 81 / 4 == 25 - 2 * 5 * 9 / 2 + 81 / 4 == (5 - 9 / 2) ** 2 # Извлекая квадратный корень из обеих частей равенства, получаем что assert 4 - 9 / 2 == - (5 - 9 / 2) assert abs(4 - 9 / 2) == abs(5 - 9 / 2)
[ "denis@taxify.eu" ]
denis@taxify.eu
fa2e03c8a8e5896e8ea1a1cf821802b666c2ccf0
7fa5dd810aa8f2e20c59590aa6be132de749542c
/GestorCaptura.py
59ab586fbc557fb008841d7c6ce4bce079d51033
[]
no_license
such-stupid6/-Miner_Detector
802fa5cde37bb508dbcc7f7c927eb95bdc5ee818
7e2b265781d36d0bd877238a3aa691a2afaae3de
refs/heads/master
2023-03-01T16:25:19.005802
2021-01-24T04:20:13
2021-01-24T04:20:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
import time import os from selenium import webdriver from selenium.webdriver.common.keys import Keys #Lee los archivo def readArchive(): archive = open("./Entrenamiento/data0.txt" , "r") print(archive) j = 434 for i in archive.readlines(): try: driver = createSession() managmentBrowser(driver, i, j) j+=1 except: archive = open("./Entrenamiento/noEscaneada.txt" , "a") archive.write(i) pass #Ejecuta el navegador def createSession(): driver = webdriver.Chrome("./chromedriver") driver.maximize_window() return driver #Manipula los parametros como el tiempo de ejecución def managmentBrowser(driver, url, i): print(str(url)) driver.implicitly_wait(100) driver.get('https://'+str(url)) trafficStartCapture(i) time.sleep(30) driver.implicitly_wait(100) driver.quit() def execution(): readArchive(); #Ejecuta el tshark def trafficStartCapture(i): print(i) cmd = "sudo tshark -i enp1s0 -a duration:300 -w - > /home/steven/Documents/GestorCapture/s/Entrenamiento/{}.pcap".format(i) os.system(cmd) if __name__ == '__main__': execution()
[ "steven.bernal@correo.icesi.edu.co" ]
steven.bernal@correo.icesi.edu.co
ef52298f256957366a62065c6bbda48bbbfa0568
8efd8bcd3945d88370f6203e92b0376ca6b41c87
/problems100_200/131_Palindrome_Partitioning.py
4fd4acc10c6135bdd9be20744a848feda4634b56
[]
no_license
Provinm/leetcode_archive
732ad1ef5dcdfdde6dd5a33522e86f7e24ae2db5
3e72dcaa579f4ae6f587898dd316fce8189b3d6a
refs/heads/master
2021-09-21T08:03:31.427465
2018-08-22T15:58:30
2018-08-22T15:58:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
834
py
#coding=utf-8 ''' 131. Palindrome Partitioning Given a string s, partition s such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s. For example, given s = "aab", Return [ ["aa","b"], ["a","a","b"] ] ''' class Solution: def partition(self, s): """ :type s: str :rtype: List[List[str]] """ if not s: return [[]] res = [] for idx, item in enumerate(s): cur_s = s[:idx+1] if self.is_p(cur_s): r = self.partition(s[idx+1:]) for sub_item in r: res.append([cur_s] + sub_item) return res def is_p(self, s): return s == s[::-1] s = Solution() r = s.partition("aab") print(r) ## 深度优先算法
[ "zhouxin@gmail.com" ]
zhouxin@gmail.com
0b047206028e48fd160273fdfe964e854fa7c65d
82418725b9f000282171dc8a455402078858d0f9
/headache/main.py
00a28263b96e3b17acff81c9bec4c3bea08d2491
[]
no_license
sabinzero/various-py
ee2c9c16334ab3e985da2e36a3cebbceca08c6ea
2fb859a1fb64b764ef8c75a7a66db45b6e46a01c
refs/heads/master
2020-11-28T08:42:19.359185
2019-12-23T13:37:39
2019-12-23T13:37:39
229,759,161
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
fact = 1 sum = 0 n = input("enter value of n: ") for i in range(1, n + 1): fact = 1 for j in range(1, i + 1): fact *= j sum += fact print "%d! = %d" % (i, fact) print "sum of factorial of every individual number is : %d" % (sum)
[ "sabinzero@gmail.com" ]
sabinzero@gmail.com
38a7f9d190da0e26eb059cb2731c59a8ff39c6b9
288ab32e56cf34ec8a49cb57cd9674a8792b004e
/roles/migrations/0066_auto_20190813_1118.py
6f6e404b79bfcdeb44045d1dd00b4d8d0fb24437
[]
no_license
Artvell/apex
a231747a81e09bb06bab84c61aaac7d5069cba90
46dbfe5f0cd9480cdf77197116d8ccef099e25a4
refs/heads/master
2022-04-10T18:20:18.602564
2020-03-09T12:21:52
2020-03-09T12:21:52
219,150,126
0
0
null
null
null
null
UTF-8
Python
false
false
1,660
py
# Generated by Django 2.2 on 2019-08-13 06:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('roles', '0065_auto_20190813_1113'), ] operations = [ migrations.AlterField( model_name='purchase', name='fact_kol', field=models.FloatField(blank=True, null=True, verbose_name='Фактическое кол-во'), ), migrations.AlterField( model_name='purchase', name='is_accepted_zakup', field=models.BooleanField(default=False, verbose_name='Принято закупщиком?'), ), migrations.AlterField( model_name='purchase', name='is_delivered', field=models.BooleanField(default=False, verbose_name='Куплен?'), ), migrations.AlterField( model_name='purchase', name='is_returned', field=models.BooleanField(default=False, verbose_name='Возвращен?'), ), migrations.AlterField( model_name='purchase', name='new_cost', field=models.FloatField(blank=True, null=True, verbose_name='Новая цена'), ), migrations.AlterField( model_name='purchase', name='purchased_kol', field=models.FloatField(default=0.0, verbose_name='Купленное кол-во'), ), migrations.AlterField( model_name='purchase', name='summ', field=models.FloatField(blank=True, null=True, verbose_name='Сумма'), ), ]
[ "hurilla2003@mail.ru" ]
hurilla2003@mail.ru
eb7b37d089415c0132787510a0ff8cd33942e87c
b06e5e9bbc2e801135822ffee40ac52475cf5a84
/Revision/Recursion/productSum.py
97d681ba90e3ce385769cb965fc2cf04bcf56cd3
[]
no_license
vikashvishnu1508/algo
7755d4d5da3c2866d6dd623793a7777623778640
a376565362123c44288233b49e20293ebf870233
refs/heads/main
2023-06-09T08:20:46.140158
2021-06-26T19:05:31
2021-06-26T19:05:31
355,154,261
0
0
null
null
null
null
UTF-8
Python
false
false
632
py
# Tip: You can use the type(element) function to check whether an item # is a list or an integer. def productSum(array): # Write your code here. return getSum(array, 1) def getSum(array, depth): print(f"array = {array}") productSum = 0 for curItem in array: print(f"curItem = {curItem}, productSum = {productSum}") if isinstance(curItem, list): productSum += getSum(curItem, depth + 1) print(f"is a list productSum = {productSum}") else: productSum += (depth * curItem) print(f"else productSum = {productSum}") return productSum array = [5, 2, [7, -1], 3, [6, [-13, 8], 4]] print(productSum(array))
[ "vikashvishnu1508@gmail.com" ]
vikashvishnu1508@gmail.com
d22e6d2825462adbd210700d367af82d43fbe5a7
ffced6fdbfd50ccd8db25e95bbd8dfa799a2e515
/school-project/pro_blog/pro_blog/wsgi.py
df55660045bbd2b1008881944cca1ca38dd029ee
[]
no_license
danilF4/school-project
6751ad8996ab50090e487503b709f37f4f41841d
3dad6d8c72b89e84e2225d0d8b54e0d131798779
refs/heads/master
2022-12-11T05:49:07.556358
2019-01-24T21:53:49
2019-01-24T21:53:49
166,719,375
0
1
null
2022-11-27T03:42:50
2019-01-20T23:09:14
Python
UTF-8
Python
false
false
394
py
""" WSGI config for pro_blog project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pro_blog.settings") application = get_wsgi_application()
[ "danilfatkin23082000@gmail.com" ]
danilfatkin23082000@gmail.com
6b3dc31037a691d81abf299b989c4221b7da7ad9
20aa042f9c37d52c86aee8fef58652e321a0a61a
/titanic/analyze.py
bc1d69470896cda3f937e04b6bddeab63a5e6b3b
[]
no_license
EagleEYErus/coursera_ml
6705de81d488608169911c3b6abd7d5ce268d9d5
e6941a4542e0fe53a945567335299d0f3c18b106
refs/heads/master
2021-04-29T14:08:10.431471
2018-02-21T12:40:23
2018-02-21T12:40:23
121,766,528
0
0
null
null
null
null
UTF-8
Python
false
false
1,971
py
import re from collections import Counter import pandas as pd from titanic.file import write_file # Read data from CSV data = pd.read_csv("titanic.csv", index_col="PassengerId") # Counting gender count_sex = data["Sex"].value_counts() write_file(sub_dirname="analyze", filename="count_sex.txt", data_to_file=f"{count_sex['male']} {count_sex['female']}") # Counting survived count_survived = data["Survived"].value_counts() per_survived = round(count_survived[1] / sum(count_survived) * 100, 2) write_file(sub_dirname="analyze", filename="count_survived.txt", data_to_file=f"{per_survived}") # Counting people of first class count_first_class = data["Pclass"].value_counts() per_first_class = round(count_first_class[1] / sum(count_first_class) * 100, 2) write_file(sub_dirname="analyze", filename="count_first_class.txt", data_to_file=f"{per_first_class}") # Counting mean and median of age age_mean = data["Age"].mean() age_median = data["Age"].median() write_file(sub_dirname="analyze", filename="age_mean.txt", data_to_file=f"{round(age_mean, 2)} {age_median}") # Counting correlation between SibSp and Parch corr = data["SibSp"].corr(data["Parch"], method="pearson") write_file(sub_dirname="analyze", filename="corr.txt", data_to_file=f"{round(corr, 2)}") # Finding the most popular female name on the ship female_fullnames = data.loc[(data["Sex"] == "female"), ["Name"]]["Name"] female_names = [] for name in female_fullnames: if "Mrs." in name: try: female_names.append(re.findall(r"\((.*)\)", name)[0].split()[0]) except IndexError: pass elif "Miss." in name: try: female_names.append(re.findall("(Miss.)\s(.+)", name)[0][1].split()[0]) except IndexError: pass count_names = Counter(female_names) most_popular_name = max(count_names, key=count_names.get) write_file(sub_dirname="analyze", filename="most_popular_name.txt", data_to_file=f"{most_popular_name}")
[ "alex_afsoc@mail.ru" ]
alex_afsoc@mail.ru
22082fac0984c7728a7ac71f5666b9a60a1c7171
15cace5f904c5c2389ca3cc02b5ff1fc029c7651
/parsing/management/commands/scraper/test.py
cc3b4a7431673dd5f8c4b261fd80953be86ccffa
[]
no_license
ghostnoop/django-youtube-parser-asyncio
fb7146e788dfe5986ad31a45a5d5b1da918583c6
631bc4ddc0eed0407f09a810c334a0e9d8d0ed7a
refs/heads/main
2023-03-26T12:57:32.248097
2021-03-25T11:02:54
2021-03-25T11:02:54
341,303,844
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
main_list = [i for i in range(100)] size = len(main_list) // 4 a = main_list[:size] b = (main_list[size:size * 2]) c = (main_list[size * 2:size * 3]) d = (main_list[size * 3:])
[ "giliyazovmarat@gmail.com" ]
giliyazovmarat@gmail.com
334391aae07943250837c1baee5637ca0f10d64d
14946cd014b3bbd20a8cb687ef10748901a1762b
/Task/Task/settings.py
0e5dc408b452a5f6777caf3219cfc1b915d7f11c
[]
no_license
bhatiboss/Task-Manager
ade247e0c856e2f79ee720461f18200ee23f3036
445f33323d7f5f3b64140a38edbce22c4e420028
refs/heads/master
2023-05-23T01:41:01.330288
2021-06-13T20:23:05
2021-06-13T20:23:05
376,008,979
0
0
null
null
null
null
UTF-8
Python
false
false
3,338
py
""" Django settings for Task project. Generated by 'django-admin startproject' using Django 3.0.3. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8jyg%wp&4vz%%vu!t%fo=nm5d^91%8tfouklb)*_qxu$y%6t6d' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'corsheaders', 'api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Task.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR,'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Task.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS=[ os.path.join(BASE_DIR,'templates/static') ] CORS_ALLOWED_ORIGINS = [ "http://localhost:3000", ]
[ "harshitbhati40@gmail.com" ]
harshitbhati40@gmail.com
5c816bd4cd0e394c580f6a6778a47207256c2d70
4f696b0712f530f0d8e7d968ee52ed4dda97a2c6
/admix/dataset/_index.py
2ffb7196e475cb142a769a03dd81c359aa616806
[]
no_license
KangchengHou/admix-kit
5d0e1f4225f6339f10bece6fded7c156794bccbe
136e8999d94440d604a2dcfb7b7d1a340a5f6e67
refs/heads/main
2023-09-01T08:58:05.219692
2023-08-24T17:33:58
2023-08-24T17:33:58
335,100,490
7
1
null
2022-08-20T23:01:26
2021-02-01T22:23:02
Python
UTF-8
Python
false
false
4,468
py
import pandas as pd import numpy as np from typing import ( List, Union, Tuple, Sequence, ) def normalize_indices( index, snp_names: pd.Index, indiv_names: pd.Index ) -> Tuple[Union[slice, int, np.ndarray], Union[slice, int, np.ndarray]]: """Normalize the indices to return the snp slices, and individual slices Parameters ---------- index : [type] [description] snp_names : pd.index [description] indiv_names : pd.index [description] Returns ------- [type] [description] Raises ------ ValueError [description] """ # deal with tuples of length 1 if isinstance(index, tuple) and len(index) == 1: index = index[0] if isinstance(index, tuple): if len(index) > 2: raise ValueError( "data can only be sliced in SNPs (first dim) and individuals (second dim)" ) snp_ax, indiv_ax = unpack_index(index) snp_ax = _normalize_index(snp_ax, snp_names) indiv_ax = _normalize_index(indiv_ax, indiv_names) return snp_ax, indiv_ax # convert the indexer (integer, slice, string, array) to the actual positions # reference: https://github.com/theislab/anndata/blob/566f8fe56f0dce52b7b3d0c96b51d22ea7498156/anndata/_core/index.py#L16 def _normalize_index( indexer: Union[ slice, int, str, np.ndarray, ], index: pd.Index, ) -> Union[slice, int, np.ndarray]: # ndarray of int """Convert the indexed (integer, slice, string, array) to the actual positions Parameters ---------- indexer : Union[ slice, int, str, np.ndarray, ] [description] index : pd.Index [description] Returns ------- Union[slice, int, np.ndarray] [description] """ if not isinstance(index, pd.RangeIndex): assert ( index.dtype != float and index.dtype != int ), "Don't call _normalize_index with non-categorical/string names" # the following is insanely slow for sequences, # we replaced it using pandas below def name_idx(i): if isinstance(i, str): i = index.get_loc(i) return i if isinstance(indexer, slice): start = name_idx(indexer.start) stop = name_idx(indexer.stop) # string slices can only be inclusive, so +1 in that case if isinstance(indexer.stop, str): stop = None if stop is None else stop + 1 step = indexer.step return slice(start, stop, step) elif isinstance(indexer, (np.integer, int)): return indexer elif isinstance(indexer, str): return index.get_loc(indexer) # int elif isinstance(indexer, (Sequence, np.ndarray, pd.Index, np.matrix)): if hasattr(indexer, "shape") and ( (indexer.shape == (index.shape[0], 1)) or (indexer.shape == (1, index.shape[0])) ): indexer = np.ravel(indexer) if not isinstance(indexer, (np.ndarray, pd.Index)): indexer = np.array(indexer) if issubclass(indexer.dtype.type, (np.integer, np.floating)): return indexer # Might not work for range indexes elif issubclass(indexer.dtype.type, np.bool_): if indexer.shape != index.shape: raise IndexError( f"Boolean index does not match Dataset's shape along this " f"dimension. Boolean index has shape {indexer.shape} while " f"Dataset index has shape {index.shape}." ) positions = np.where(indexer)[0] return positions # np.ndarray[int] else: # indexer should be string array positions = index.get_indexer(indexer) if np.any(positions < 0): not_found = indexer[positions < 0] raise KeyError( f"Values {list(not_found)}, from {list(indexer)}, " "are not valid obs/ var names or indices." ) return positions # np.ndarray[int] else: raise IndexError(f"Unknown indexer {indexer!r} of type {type(indexer)}") def unpack_index(index): if not isinstance(index, tuple): return index, slice(None) elif len(index) == 2: return index elif len(index) == 1: return index[0], slice(None) else: raise IndexError("invalid number of indices")
[ "kangchenghou@gmail.com" ]
kangchenghou@gmail.com
4cb6895734e7784bb846ef54f0aa69215cadbcf7
524d9d26fa05d554261ad8ce97566bf7aa517b6a
/Logistic Regression/Logistic_Regression.py
2328431fab851f487ea625e082030e29e20839ab
[]
no_license
karolsitarz/MLalgorithms-collection
9bfccc5af5b01a7e57b34f7e506e82c8c13c7d15
86f6ac95625dcf1290d1e353a7de01f7bc14f4ff
refs/heads/main
2023-08-14T04:08:32.388054
2021-10-04T15:11:47
2021-10-04T15:11:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,833
py
import numpy as np class LogisticRegression(): def __init__(self,iterations=100,alpha=0.0115): self.iterations = iterations self.alpha = alpha self.J = [] self.J_val = [] self.output = 0 self.o_val = 0 self.regularization = False def sigmoid(self,a): return 1/(1+np.exp(-a)) def split(self,dataset,value): part1 = dataset[:int(len(dataset)*(1-value))] part2 = dataset[len(part1):] return part1, part2 def fit(self,X,y,regularization = False,validation = 0.1): self.validation = validation self.regularization = regularization self.X , self.x_val = self.split(X,self.validation) self.y , self.y_val = self.split(y.reshape(y.shape[0],1),self.validation) self.m = self.X.shape[1] self.W = np.random.randn(self.m,1) self.m_val = self.x_val.shape[1] self.W_val = np.random.randn(self.m_val,1) assert self.X.shape[0] == self.y.shape[0] and self.x_val.shape[0] == self.y_val.shape[0] for i in range(self.iterations): a = self.X.dot(self.W) a_val = self.x_val.dot(self.W_val) self.output = self.sigmoid(a) self.o_val = self.sigmoid(a_val) assert self.output.shape == self.y.shape and self.o_val.shape == self.y_val.shape self.cost() self.update() def cost(self,Lambda=0): if self.regularization is False: J = sum(self.y * np.log(self.output) + (1-self.y)*np.log(1-self.output)) self.J.append(*(1/-self.m)*J) # Validation J_val = sum(self.y_val * np.log(self.o_val) + (1-self.y_val)*np.log(1-self.o_val)) self.J_val.append(*(1/-self.m_val)*J_val) else : J = sum(self.y * np.log(self.output) + (1-self.y)*np.log(1-self.output)) + Lambda * sum(np.power(W,2)) self.J.append(*(1/-self.m)*J) # Validation J_val = sum(self.y_val * np.log(self.o_val) + (1-self.y_val)*np.log(1-self.o_val)) + Lambda * sum(np.power(self.W_val,2)) self.J_val.append(*(1/-self.m_val)*J) def update(self): dw = np.dot(self.X.T,self.output-self.y) self.W = self.W - (self.alpha * dw) # Validation dw_val = np.dot(self.x_val.T, self.o_val - self.y_val) self.W_val = self.W_val - (self.alpha * dw_val) def predict(self,x,threshold=0.5): prediction = self.sigmoid(np.dot(x,self.W)) prediction[prediction>threshold] = 1 prediction[prediction<=threshold] = 0 return prediction def confusion_matrix(self,predictions,y): assert predictions.shape[0] == y.shape[0] self.TP, self.TN, self.FN, self.FP = 0,0,0,0 for i in range(len(predictions)): if predictions[i]==1 and y[i]==1:self.TP+=1 elif predictions[i]==1 and y[i]==0:self.FP+=1 elif predictions[i]==0 and y[i]==1:self.FN+=1 elif predictions[i]==0 and y[i]==0:self.TN+=1 def precision(self): return self.TP/(self.TP+self.FP) def recall(self): return self.TP/(self.TP+self.FN) def accuracy(self): return (self.TP+self.TN)/(self.TP+self.TN+self.FP+self.FN) def F1_score(self): return (2*self.precision()*self.recall())/(self.precision() + self.recall()) def plot(self): x = np.linspace(0,self.iterations,self.iterations) y = np.asarray(self.J) y_val = np.asarray(self.J_val) assert x.shape == y.shape and x.shape == y_val.shape plt.plot(x,y) plt.plot(x,y_val) plt.xlabel('Iterations') plt.ylabel('Loss')
[ "noreply@github.com" ]
karolsitarz.noreply@github.com
b1474276c846fd67467f0624f4fe65200dc1f5cd
cd117c1bcde2d7d7d7a389ef6889630b99a53059
/Lesson4/L4_T2/L4_T2/L4_T2.py
aea2e29ff75371393f396fd5bc0ecf1a83e577ab
[]
no_license
mironnay/Python-Classes
e120cf5ea5403a907a9c567f9e634ab89cd04bea
6f44618519983b28e2b743f9f7f982d556fee177
refs/heads/master
2022-08-31T17:28:59.064379
2020-05-27T12:57:46
2020-05-27T12:57:46
259,941,900
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
user_line = input("Enter some number. I`ll calculate sum of all digits: ").strip() while user_line.isnumeric() == False: user_line = input("Wrong format. Try again ").strip() sum = 0 for i in user_line: sum += int(i) print(sum)
[ "noreply@github.com" ]
mironnay.noreply@github.com
459e5bfca5c7c425942e7aed02526142213dbb81
f9d3f08a3eaa857d36e9348ab1d72273aefb30db
/peachbox/task/task_chain.py
0cb37ad15e3f745656e31850f82daf0e0f07fec0
[ "Apache-2.0" ]
permissive
orakle/peachbox
466f0c4ce8d25be715928f34b7ba21e339dce990
568f10f14cac5cc2794dbb9b652aa3e86a881aa0
refs/heads/master
2021-01-15T08:37:39.714575
2015-06-24T11:01:44
2015-06-24T11:01:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,324
py
from peachbox.task import Task """ Copyright 2015 D. Britzger, P. Pahl, S. Schubert Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class TaskChain(Task): """ Peachbox Chain: A collection of tasks """ def __init__(self, tasks): super(TaskChain, self).__init__() self.set_tasks(tasks) def add_task(self, task): self.tasks += task def set_tasks(self, tasks): self.tasks = tasks def get_tasks(self,tasks): return tasks def execute(self, rdd): return self.execute_chain(rdd, self.tasks) def execute_chain(self, rdd, tasks): if len(tasks)==0: raise ValueError('No tasks defined.') ex = tasks[0].execute(rdd) if len(tasks)==1: return ex else: return self.execute_chain(ex, tasks[1:])
[ "ph.pahl@gmail.com" ]
ph.pahl@gmail.com