blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
10f0e4d1efac1de782eb9787d553aaa17c0cf94c
2976c5e9c534ace3e25674ace113ed3d920cc05c
/progress_bar/tests/test_progress_bar.py
084f7792e05ff5156a81e9757bd5cc0406e94a1d
[]
no_license
nstanger/process_podcast
cc1d5d3813dc002b52a2cf169bf2d378bfb83952
16761c7dc62b036decedd67c24529d198b9d2a85
refs/heads/master
2021-08-28T15:47:49.280134
2021-08-23T10:30:30
2021-08-23T10:30:30
68,779,493
0
0
null
null
null
null
UTF-8
Python
false
false
2,909
py
from contextlib import contextmanager from io import StringIO import sys import unittest from progress_bar import ProgressBar @contextmanager def captured_output(): """Capture stdout and stderr so we can assert against them.""" new_out, new_err = StringIO(), StringIO() old_out, old_err = sys.stdout, sys.stderr try: sys.stdout, sys.stderr = new_out, new_err yield sys.stdout, sys.stderr finally: sys.stdout, sys.stderr = old_out, old_err class ProgressBarTestCase(unittest.TestCase): """Test the ProgressBar class.""" DEFAULT_VALUE = 0 DEFAULT_MAX_VALUE = 100 DEFAULT_PRINT_WIDTH = 50 DEFAULT_NEWLINE = "\r" def setUp(self): """Set up for test.""" self.bar = ProgressBar(quiet=True) def tearDown(self): """Clean up after test.""" self.bar = None def test_defaults(self): """Test default values are correct.""" test_data = ( (self.bar.value, self.DEFAULT_VALUE, "default value = {v}".format(v=self.DEFAULT_VALUE)), (self.bar.initial_value, self.DEFAULT_VALUE, "default initial value = {v}".format(v=self.DEFAULT_VALUE)), (self.bar.max_value, self.DEFAULT_MAX_VALUE, "default max value = {v}".format(v=self.DEFAULT_MAX_VALUE)), (self.bar.print_width, self.DEFAULT_PRINT_WIDTH, "default print width = {v}".format(v=self.DEFAULT_PRINT_WIDTH)), (self.bar.newline, self.DEFAULT_NEWLINE, "default newline = {v}".format(v=self.DEFAULT_NEWLINE)), ) for actual, expected, description in test_data: with self.subTest(msg=description): self.assertEqual(actual, expected) def test_set_and_reset(self): """Test setting and resetting the current value.""" self.bar.set(value=50) self.assertEqual(self.bar.value, 50) self.bar.reset() self.assertEqual(self.bar.value, 0) def test_update_ad_draw(self): """Test updating and drawing the progress bar.""" self.bar.reset() self.bar.quiet = False for i in range(self.bar.initial_value, self.bar.max_value + 1): percent = int(i * 100 / self.bar.max_value) dots = int(i * self.bar.print_width / self.bar.max_value) expected_bar = "{nl}[{c}{nc}] {p}% ".format( c="".join(["+"] * dots), nc="".join(["."] * (self.bar.print_width - dots)), p=percent, nl=self.bar.newline) with captured_output() as (out, _): self.bar.update(i) with self.subTest(msg="value = {v}".format(v=i)): self.assertEqual(self.bar.value, i) with self.subTest(msg="output = {v}".format(v=expected_bar)): self.assertEqual(out.getvalue(), expected_bar)
[ "nigel.stanger@otago.ac.nz" ]
nigel.stanger@otago.ac.nz
5abbfb92bebe2926a9fbaeed80d3c343edc5ecd4
9be74fed44caef7bd9a8913b872911564cbdd5f2
/BaseDeDatos/Semana4/call_terceraui.py
7414cc1d7696b8bfbd8453d90f70ae0328333a78
[]
no_license
Genshzkan/ToulouseLautrec
c19e8572620728d69857233ec2e2dfa23f63a007
33ff93bfadf65d0ae13e4c6e6c61c9fcfd22c3bc
refs/heads/master
2022-10-10T18:21:01.061019
2020-06-14T15:15:24
2020-06-14T15:15:24
260,724,891
0
0
null
null
null
null
UTF-8
Python
false
false
1,642
py
import sqlite3, sys from PyQt5.QtWidgets import QDialog, QApplication from sqlite3 import Error from terceraui import * tabledefinition="" class MyForm(QDialog): def __init__(self): super().__init__() self.ui = Ui_Dialog() self.ui.setupUi(self) self.ui.pushButtonCreateTable.clicked.connect(self.createTable) self.ui.pushButtonAddColumn.clicked.connect(self.addColumns) self.show() def addColumns(self): global tabledefinition if tabledefinition=="": tabledefinition="CREATE TABLE IF NOT EXISTS "+ self.ui.lineEditTableName.text()+" ("+ self.ui.lineEditColumnName.text()+" "+ self.ui.comboBox.itemText(self.ui.comboBox.currentIndex()) else: tabledefinition+=","+self.ui.lineEditColumnName.text()+" "+ self.ui.comboBox.itemText(self.ui.comboBox.currentIndex()) self.ui.lineEditColumnName.setText("") self.ui.lineEditColumnName.setFocus() def createTable(self): global tabledefinition try: conn = sqlite3.connect(self.ui.lineEditDBName.text()+".db") self.ui.labelResponse.setText("Database is connected") c = conn.cursor() tabledefinition+=");" c.execute(tabledefinition) self.ui.labelResponse.setText("Table is successfully created") except Error as e: self.ui.labelResponse.setText("Error in creating table") finally: conn.close() if __name__=="__main__": app = QApplication(sys.argv) w = MyForm() w.show() sys.exit(app.exec_())
[ "noreply@github.com" ]
Genshzkan.noreply@github.com
28ec052e9c58a50f9db14275c3fe505405877f48
dd098f8a93f787e38676283679bb39a290ba28b4
/samples/openapi3/client/3_0_3_unit_test/python-experimental/test/test_models/test_anyof.py
197c3449a9e49196e0d0dc3b0844ab50910bddba
[ "Apache-2.0" ]
permissive
InfoSec812/openapi-generator
727c0235d3bad9b85ac12068808f844287af6003
e0c72702c3d5dae2a627a2926f0cddeedca61e32
refs/heads/master
2022-10-22T00:31:33.318867
2022-08-20T14:10:31
2022-08-20T14:10:31
152,479,633
1
0
Apache-2.0
2023-09-04T23:34:09
2018-10-10T19:38:43
Java
UTF-8
Python
false
false
1,385
py
# coding: utf-8 """ openapi 3.0.3 sample spec sample spec for testing openapi functionality, built from json schema tests for draft6 # noqa: E501 The version of the OpenAPI document: 0.0.1 Generated by: https://openapi-generator.tech """ import unittest import unit_test_api from unit_test_api.model.anyof import Anyof from unit_test_api import configuration class TestAnyof(unittest.TestCase): """Anyof unit test stubs""" _configuration = configuration.Configuration() def test_second_anyof_valid_passes(self): # second anyOf valid Anyof._from_openapi_data( 2.5, _configuration=self._configuration ) def test_neither_anyof_valid_fails(self): # neither anyOf valid with self.assertRaises((unit_test_api.ApiValueError, unit_test_api.ApiTypeError)): Anyof._from_openapi_data( 1.5, _configuration=self._configuration ) def test_both_anyof_valid_passes(self): # both anyOf valid Anyof._from_openapi_data( 3, _configuration=self._configuration ) def test_first_anyof_valid_passes(self): # first anyOf valid Anyof._from_openapi_data( 1, _configuration=self._configuration ) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
InfoSec812.noreply@github.com
35197901f27c1fbf3371fa2e0dd9b5bb490cac04
43c653032caee6e440c4a62ca953a43159872652
/bin/scripts/entities/counter.py
e43048d5d3fdd457815e8834532009cd107424bd
[]
no_license
KentMadsen/Private-Scraper
a39b23c552b86dba9629374be4500d1ec853d1a4
2230c0e2b79cc99389a344069a44265068dff029
refs/heads/master
2020-08-07T13:04:51.232139
2019-10-08T14:01:05
2019-10-08T14:01:05
213,461,958
0
1
null
null
null
null
UTF-8
Python
false
false
755
py
zero = 0 movement_size = 1 class Counter: global zero, movement_size """ """ def __init__(self): self.value = zero self.movement = movement_size def increase(self, variable_value): self.value = self.value + variable_value def increment(self): self.increase(self.movement) def decrease(self, variable_value): self.value = self.value - variable_value def decrement(self): self.decrease(self.movement) def reset(self): self.set_value(zero) def is_zero(self): return self.get_value() == zero def get_value(self): return self.value def set_value(self, variable_value): self.value = variable_value return self.value
[ "20760795+KentMadsen@users.noreply.github.com" ]
20760795+KentMadsen@users.noreply.github.com
c6c2dc5894b4ae4053e691e30c01a290561dc8d3
228b514d129506adffb354314d8ce1b2c382aabb
/core/migrations/0004_auto_20211020_1615.py
3d5f3b7c2ce2e7bcf269cee07677f94e7a24842d
[]
no_license
sannjayy/chat-support-django
1bab78d28380d3e86db61187af086408d85e6878
7473632d6534afab22dad1b3b7c17a5afda0983f
refs/heads/master
2023-08-31T09:53:08.316121
2021-10-27T12:36:05
2021-10-27T12:36:05
418,448,166
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
# Generated by Django 3.2.8 on 2021-10-20 16:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20211019_1601'), ] operations = [ migrations.AddField( model_name='user', name='mobile', field=models.CharField(blank=True, max_length=15, null=True, verbose_name='Mobile number'), ), migrations.AddField( model_name='user', name='whatsapp', field=models.CharField(blank=True, max_length=15, null=True, verbose_name='Whatsapp number'), ), ]
[ "znasofficial@gmail.com" ]
znasofficial@gmail.com
6fd20aa2da6073c474f234458c001826634eb8e6
356a3a5484f6e508b071fcad318ca3c28eff8589
/examples/example_depth.py
3aedc0dc3d84cb09d106474b828b166a5e366d5b
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla" ]
permissive
HighLordGame/FaceEngine
0fe20d5f3a7480912627266c1fb219ca1e30fbbb
7315e413b03a2234017b20a1fbe85b567397e81f
refs/heads/master
2023-06-07T22:04:23.351402
2021-06-25T04:19:45
2021-06-25T04:19:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,897
py
import sys import argparse import cv2 import numpy as np #Parse arguments and load additional modules parser = argparse.ArgumentParser(description = 'Luna SDK realsense depth demo') group = parser.add_argument_group('Required arguments') group.add_argument('--data', required = True, help = 'absolute path to Luna SDK data directory') group.add_argument('--bindPath', required = True, help = 'absolute path to Luna SDK bindings directory') group.add_argument('--rsbindPath', required = True, help = 'absolute path to realsense bindings directory') args = parser.parse_args() print("Arguments are: data: {} bindPath: {} rsbindPath: {}".format(args.data, args.bindPath, args.rsbindPath)) sys.path += (args.bindPath, args.rsbindPath) import FaceEngine as fe import pyrealsense2 as rs if __name__ == "__main__": #create Face Engine root object root = fe.createFaceEngine(args.data) #check license license = root.getLicense() if not root.activateLicense(license, args.data + "/license.conf"): print("Failed to activate license!") exit(-1) detector = root.createDetector(fe.FACE_DET_V1) estimator = root.createDepthEstimator() warper = root.createWarper() # Configure streams and start the pipeline pipe = rs.pipeline() pipeProfile = pipe.start() device = pipeProfile.get_device() print(device) # Since realsense depth sensors contain pixel values in hardware specific units # we have to manually convert it to milimeters for depth estimator to work properly depthSensor = device.first_depth_sensor() depthScale = depthSensor.get_depth_scale() * 1000 print("Depth scale is {}".format(depthScale)) #For warper to work properly, we need to align both stream viewports. align_to = rs.stream.color depthToColorAlignment = rs.align(align_to) #create window cv2.namedWindow('Realsense depth example', cv2.WINDOW_AUTOSIZE) # main processing loop try: while True: # Get frameset of color and depth frames = pipe.wait_for_frames() # Align the depth frame to color frame alignedFrames = depthToColorAlignment.process(frames) # Get aligned frames depthFrame = alignedFrames.get_depth_frame() rgbFrame = alignedFrames.get_color_frame() # Validate that both frames are valid if not depthFrame or not rgbFrame: continue #convert depth map to milimeters depthFrame = np.asanyarray(depthFrame.get_data()) depthFrame = (depthFrame * depthScale).astype(np.int16) rgbFrame = np.asanyarray(rgbFrame.get_data()) #convert incoming frames to SDK images depthImage = fe.Image() depthImage.setData(depthFrame, fe.FormatType.R16) rgbImage = fe.Image() rgbImage.setData(rgbFrame, fe.FormatType.R8G8B8) #perform detection err, face = detector.detectOne(rgbImage, rgbImage.getRect(), fe.DetectionType(fe.dt5Landmarks)) #prepare cv image for visualisation cvRGBImage = cv2.cvtColor(rgbFrame, cv2.COLOR_BGR2RGB) if(err.isError): print("Failed to detect!") else: if(face.isValid() and face.landmarks5_opt.isValid()): #warp depth image transformation = warper.createTransformation(face.detection, face.landmarks5_opt.value()) warpResult, warpImage = warper.warp(depthImage, transformation) if warpResult.isError: print("Failed to warp image!") #perform depth liveness estimation error, output = estimator.estimate(warpImage) if(error.isOk): color = (0, 255, 0) if output.isReal else (0, 0, 255) box = face.detection.rect #draw bbox cv2.rectangle(cvRGBImage, (int(box.x), int(box.y)), (int(box.x + box.width), int(box.y + box.height)), color, 2) print(output) cv2.imshow('Realsense depth example', cvRGBImage) key = cv2.waitKey(1) # Press esc or 'q' to close the image window if key & 0xFF == ord('q') or key == 27: cv2.destroyAllWindows() break finally: pipe.stop()
[ "a.balashov@visionlabs.ru" ]
a.balashov@visionlabs.ru
2e3d23bb4aa493a361704b390ed48ae2ea9b0542
0ccfa5a1144faab1377fa9dd74867155edf013d4
/BP.py
597e358608a8903afed15ca9f53f9aad94a7b8a2
[]
no_license
jarangol/ML
e8b6559d8870587bc1c98330b19714040fba6d4e
7f5a26de1ad69d9768603603b72c70273a40f7a2
refs/heads/master
2020-04-21T22:40:57.874888
2019-04-07T00:33:36
2019-04-07T00:33:36
169,920,643
0
0
null
null
null
null
UTF-8
Python
false
false
2,985
py
#!/usr/bin/env python # coding: utf-8 # In[16]: import numpy as np class ANN(): def __init__(self, nn_structure, eta): self.nn_structure = nn_structure self.eta = eta def set_weights(self,weights,b): self.W = weights self.b = b def f(self,x): return 1 / (1 + np.exp(-x)) def f_deriv(self,x): return self.f(x) * (1 - self.f(x)) def feed_forward(self,x): h = {1:x} z = {} for l in range(1,len(self.W)+1): if l == 1: node_in = x else: node_in = h[l] z[l+1] = self.W[l].dot(node_in) + self.b[l] h[l+1] = self.f(z[l+1]) return h, z def init_tri_values(self): tri_W = {} tri_b = {} for l in range(1,len(self.nn_structure)): tri_W[l] = np.zeros((self.nn_structure[l], self.nn_structure[l-1])) tri_b[l] = np.zeros((self.nn_structure[l],)) return tri_W, tri_b def calculate_out_layer_delta(self,y,h_out,z_out): return -(y-h_out)*self.f_deriv(z_out) def calculate_hidden_delta(self,delta_plus_1,w_l,z_l): return np.dot(np.transpose(w_l),delta_plus_1) * self.f_deriv(z_l) def fit(self, X, y, iter_num= 10000): print("Entrenando..") cnt = 0 m = len(y) avg_cost_func = [] while cnt < iter_num: if cnt%1000 == 0: print('Iteration {} of {}'.format(cnt, iter_num)) tri_W, tri_b = self.init_tri_values() avg_cost = 0 for i in range(len(y)): delta = {} h, z = self.feed_forward(X[i,:]) for l in range(len(self.nn_structure), 0, -1): if l == len(self.nn_structure): delta[l] = self.calculate_out_layer_delta(y[i, :], h[l], z[l]) avg_cost += np.linalg.norm((y[i,:]-h[l])) else: if l > 1: delta[l] = self.calculate_hidden_delta(delta[l+1], self.W[l], z[l]) tri_W[l] += np.dot(delta[l+1][:,np.newaxis], np.transpose(h[l][:,np.newaxis])) tri_b[l] += delta[l+1] for l in range(len(self.nn_structure) - 1, 0, -1): self.W[l] += -self.eta * (1.0/m * tri_W[l]) b[l] += -self.eta * (1.0/m * tri_b[l]) avg_cost = 1.0/m * avg_cost avg_cost_func.append(avg_cost) cnt += 1 return self.W, self.b def predict(self, X): m = X.shape[0] y = np.zeros(X.shape) for i in range(m): h, z = self.feed_forward(X[i, :]) y[i] = h[len(self.nn_structure)] print(y) return y # In[17]: w1 = np.array([[.15, .2], [.25, .3]]) w2 = np.array([[.4, .45], [.5, .55]]) b1 = np.array([.35, .35]) b2 = np.array([.6, .6]) W = {1:w1, 2:w2} b = {1:b1, 2:b2} X = np.array([[.05, .1]]) y = np.array([[.01, .99]]) # In[18]: nn_structure = [2,2,2] model = ANN(nn_structure, .5) model.set_weights(W,b) y_pred = model.predict(X) model.fit(X, y) y_pred2 = model.predict(X)
[ "jarangol@eafit.edu.co" ]
jarangol@eafit.edu.co
801500a3039b52130e88ad991a245baa74a5c88f
f78daddf7d83d1f6b9f13ac973cdb33d40717839
/examples/petrol/conanfile.py
a09ae6e5cb24d5171ebd32986be6ddfa9eac35de
[ "Apache-2.0" ]
permissive
xtuml/masl
fe43c7131d0aea919f24136aaf1686162629f70f
80d07b41573bdad9c191e2d7d6a18ee59c3cf5c7
refs/heads/master
2023-08-31T07:12:58.662239
2023-08-22T18:28:17
2023-08-22T18:31:28
71,495,752
6
13
null
2023-09-12T14:39:41
2016-10-20T19:14:06
Java
UTF-8
Python
false
false
1,084
py
# ---------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- # Classification: UK OFFICIAL # ---------------------------------------------------------------------------- import conan class ConanFile(conan.ConanFile): name = "masl_examples_petrol" version = "0.1" user = 'xtuml' channel = 'stable' python_requires = 'masl_conan/[>=0.1]@xtuml/stable' python_requires_extend = 'masl_conan.MaslConanHelper'
[ "levi@roxsoftware.com" ]
levi@roxsoftware.com
fcfe732e166431bbb85b5f073a245161e166f9a1
8c24d0ac619a2e83e574bb0bf9172b21bc6a06a6
/Dialog/WaferInkDialog.py
70428730352cd67d0e29894783d338ce9db72402
[]
no_license
qiujian3328103/pySortMap
7142e02158a7fbb080c7132b59511511423af5bf
c013ba6bea2e16c286401261a3c15622871a0aee
refs/heads/master
2023-09-04T10:56:12.908632
2023-08-21T05:34:08
2023-08-21T05:34:08
363,678,584
5
1
null
null
null
null
UTF-8
Python
false
false
12,783
py
from PyQt5.QtCore import pyqtSignal from PyQt5.QtGui import QColor, QPixmap, QPalette from PyQt5.QtWidgets import QDialog, QApplication, QColorDialog from UI import Ui_Ink_Dialog class ShowInkDialog(QDialog, Ui_Ink_Dialog): ink_signal = pyqtSignal(dict) close_ink_dialog_signal = pyqtSignal(bool) def __init__(self): super(QDialog, self).__init__() Ui_Ink_Dialog.__init__(self) self.setupUi(self) # inital color for polygon tool self.toolButton_pick_poly_edge_color.setText("") self.toolButton_pick_poly_edge_color.setStyleSheet("background-color: {}".format(QColor('blue').name())) self.toolButton_pick_poly_point_color.setText("") self.toolButton_pick_poly_point_color.setStyleSheet("background-color: {}".format(QColor('green').name())) self.toolButton_pick_poly_click_color.setText("") self.toolButton_pick_poly_click_color.setStyleSheet("background-color: {}".format(QColor('red').name())) self.ink_selection = { "auto_ink": False, "click_die_ink": self.toolButton_click.isChecked(), "drag_ink": self.toolButton_drag.isChecked(), "polygon_ink": self.toolButton_polygon.isChecked(), "update_polygon_ink": False, "redraw_polygon": False, "ink_shape": self.comboBox_ink_shape.currentText(), "nearest_die_number": self.spinBox_ink_number.value(), "window_close": False, "polygon_props":{ "polygon_color": self.toolButton_pick_poly_edge_color.palette().color(QPalette.Background), "polygon_radius": self.spinBox_polygon_radius.value(), "polygon_width": self.spinBox_polygon_width_size.value(), "grip_number": self.spinBox_polygon_num_points.value(), "grip_ellipse_size": self.spinBox_point_size.value(), "grip_ellipse_color": self.toolButton_pick_poly_point_color.palette().color(QPalette.Background), "polygon_hover_color": self.toolButton_pick_poly_click_color.palette().color(QPalette.Background) } } self.toolButton_click.clicked.connect(self.emitClickInkSignal) self.toolButton_drag.clicked.connect(self.emitDragInkSignal) self.toolButton_polygon.clicked.connect(self.emitPolygonInkSignal) self.toolButton_reset.clicked.connect(self.emitClickInkSignal) self.toolButton_auto_ink.clicked.connect(self.emitClickInkSignal) self.toolButton_pick_poly_edge_color.clicked.connect(lambda : self.clickButtonPickColor(self.toolButton_pick_poly_edge_color)) self.toolButton_pick_poly_point_color.clicked.connect(lambda : self.clickButtonPickColor(self.toolButton_pick_poly_point_color)) self.toolButton_pick_poly_click_color.clicked.connect(lambda: self.pickDoubleClickPolygonColor(self.toolButton_pick_poly_click_color)) self.spinBox_polygon_num_points.valueChanged.connect(self.emitReDrawPolygonSignal) self.spinBox_polygon_radius.valueChanged.connect(self.emitReDrawPolygonSignal) self.spinBox_point_size.valueChanged.connect(self.emitReDrawPolygonSignal) self.spinBox_polygon_width_size.valueChanged.connect(self.emitPolygonLineWidthChangeSignal) self.spinBox_ink_number.valueChanged.connect(self.changeInkNearestDieNumber) self.comboBox_ink_shape.currentTextChanged.connect(self.changeInkDieShape) def emitClickInkSignal(self): """ change the tool states on toolButton :return: """ # click and drag mode can only either one be use # print(self.toolButton_click.isChecked()) # if self.toolButton_click.isChecked(): self.toolButton_drag.setChecked(False) self.toolButton_polygon.setChecked(False) self.ink_selection.update({ "click_die_ink": self.toolButton_click.isChecked(), "drag_ink": self.toolButton_drag.isChecked(), "polygon_ink": self.toolButton_polygon.isChecked(), "update_polygon_ink": False, "redraw_polygon": False, }) self.ink_signal.emit(self.ink_selection) def emitDragInkSignal(self): """ change th tool sates to drag mode :return: """ if self.toolButton_drag.isChecked(): self.toolButton_click.setChecked(False) self.toolButton_polygon.setChecked(False) self.ink_selection.update({ "click_die_ink": self.toolButton_click.isChecked(), "drag_ink": self.toolButton_drag.isChecked(), "polygon_ink": self.toolButton_polygon.isChecked(), "update_polygon_ink": False, "redraw_polygon": False }) self.ink_signal.emit(self.ink_selection) def emitPolygonInkSignal(self): """ emit the PolygonInk :return: """ if self.toolButton_polygon.isChecked(): self.toolButton_click.setChecked(True) self.toolButton_drag.setChecked(False) self.ink_selection.update({ "polygon_ink": self.toolButton_polygon.isChecked(), "click_die_ink": self.toolButton_click.isChecked(), "update_polygon_ink": False, "redraw_polygon": False, "polygon_props": { "polygon_color": self.toolButton_pick_poly_edge_color.palette().color(QPalette.Background), "polygon_radius": self.spinBox_polygon_radius.value(), "polygon_width": self.spinBox_polygon_width_size.value(), "grip_number": self.spinBox_polygon_num_points.value(), "grip_ellipse_size": self.spinBox_point_size.value(), "grip_ellipse_color": self.toolButton_pick_poly_point_color.palette().color(QPalette.Background), "polygon_hover_color": self.toolButton_pick_poly_click_color.palette().color(QPalette.Background), } }) self.ink_signal.emit(self.ink_selection) def clickButtonPickColor(self, Button): """ click the pick color button :return: """ color = QColorDialog.getColor() if color.isValid(): self.die_edge_color = color Button.setStyleSheet("background-color: {}".format(color.name())) self.ink_selection.update({ "update_polygon_ink": True, "redraw_polygon": False, "polygon_props": { "polygon_color": self.toolButton_pick_poly_edge_color.palette().color(QPalette.Background), "polygon_radius": self.spinBox_polygon_radius.value(), "polygon_width": self.spinBox_polygon_width_size.value(), "grip_number": self.spinBox_polygon_num_points.value(), "grip_ellipse_size": self.spinBox_point_size.value(), "grip_ellipse_color": self.toolButton_pick_poly_point_color.palette().color(QPalette.Background), "polygon_hover_color": self.toolButton_pick_poly_click_color.palette().color(QPalette.Background), } }) self.ink_signal.emit(self.ink_selection) def emitPolygonLineWidthChangeSignal(self): """ emit signal when the value changed :return: """ self.ink_selection.update({ "update_polygon_ink": True, "redraw_polygon": False, "polygon_props": { "polygon_color": self.toolButton_pick_poly_edge_color.palette().color(QPalette.Background), "polygon_radius": self.spinBox_polygon_radius.value(), "polygon_width": self.spinBox_polygon_width_size.value(), "grip_number": self.spinBox_polygon_num_points.value(), "grip_ellipse_size": self.spinBox_point_size.value(), "grip_ellipse_color": self.toolButton_pick_poly_point_color.palette().color(QPalette.Background), "polygon_hover_color": self.toolButton_pick_poly_click_color.palette().color(QPalette.Background), } }) self.ink_signal.emit(self.ink_selection) def emitReDrawPolygonSignal(self): """ todo: find better way to change in GripItem instead of current method redo the plot for polygon :return: """ self.ink_selection.update({ "update_polygon_ink": False, "redraw_polygon": True, "polygon_props": { "polygon_color": self.toolButton_pick_poly_edge_color.palette().color(QPalette.Background), "polygon_radius": self.spinBox_polygon_radius.value(), "polygon_width": self.spinBox_polygon_width_size.value(), "grip_number": self.spinBox_polygon_num_points.value(), "grip_ellipse_size": self.spinBox_point_size.value(), "grip_ellipse_color": self.toolButton_pick_poly_point_color.palette().color(QPalette.Background), "polygon_hover_color": self.toolButton_pick_poly_click_color.palette().color(QPalette.Background), } }) self.ink_signal.emit(self.ink_selection) def pickDoubleClickPolygonColor(self, Button): color = QColorDialog.getColor() if color.isValid(): self.die_edge_color = color Button.setStyleSheet("background-color: {}".format(color.name())) self.ink_selection.update({ "update_polygon_ink": False, "redraw_polygon": True, "polygon_props": { "polygon_color": self.toolButton_pick_poly_edge_color.palette().color(QPalette.Background), "polygon_radius": self.spinBox_polygon_radius.value(), "polygon_width": self.spinBox_polygon_width_size.value(), "grip_number": self.spinBox_polygon_num_points.value(), "grip_ellipse_size": self.spinBox_point_size.value(), "grip_ellipse_color": self.toolButton_pick_poly_point_color.palette().color(QPalette.Background), "polygon_hover_color": self.toolButton_pick_poly_click_color.palette().color(QPalette.Background), } }) self.ink_signal.emit(self.ink_selection) def changeInkDieShape(self): """ current four modes, for ink die shape around cross conner all :return: """ try: self.comboBox_ink_shape.currentText() pixmap = QPixmap() pixmap.load(":/mainwindowIcon/icons8_automatic.ico") pixmap = pixmap.scaledToWidth(96) self.label_type.setPixmap(pixmap) except Exception as e: print(e) self.ink_selection.update({ "ink_shape": self.comboBox_ink_shape.currentText() }) self.ink_signal.emit(self.ink_selection) def changeInkNearestDieNumber(self): """ change inked dies numbers :return: """ self.ink_selection.update({ "nearest_die_number":self.spinBox_ink_number.value() }) self.ink_signal.emit(self.ink_selection) # try: # name = self.comboBox_inkoff_shape_type.currentText() # pixmap = QPixmap() # pixmap.load(":/newPrefix/{}.ico".format(name)) # pixmap = pixmap.scaledToWidth(96) # self.label_inkoff_display.setPixmap(pixmap) # self.statusBar().showMessage("Ink Search Algorithm Changed To {}".format(name)) # self.statusBar().setStyleSheet("QStatusBar{color:#008000;}") # except Exception as e: # print(e) # self.statusBar().showMessage("Cannot find the shape icon!") # self.statusBar().setStyleSheet("QStatusBar{color:#E74C3C;}") # # self.graphicsView.search_shape = self.comboBox_inkoff_shape_type.currentText() # self.graphicsView.searchNearestN = int(self.comboBox_inkoff_number.currentText()) def closeEvent(self, event): """ close event signal emit :param event: :return: """ # close = QMessageBox() # close.setText("?") # close.setStandardButtons(QMessageBox.Yes | QMessageBox.Cancel) # close = close.exec() # self.close_ink.emit(True) # self.ink_selection = { # "window_close": True # } # self.ink_signal.emit(self.ink_selection) # event.accept() self.close_ink_dialog_signal.emit(True) self.hide() if __name__ == "__main__": import sys app = QApplication(sys.argv) Dialog = ShowInkDialog() Dialog.show() sys.exit(app.exec_())
[ "Ethan.qiujian@gmail.com" ]
Ethan.qiujian@gmail.com
9d84cac07d4408083b05d8d295ccfd35d8e5d30a
bec582ead54db4e903d792850c8cbc869879769b
/lib/TransParser.py
ed4f3ccd66edd236c87cbb3f9e2c26d3636bb691
[]
no_license
MattDiesel/staticpress
1c787d02feca83267bf622b2573b68f7083bb366
3b2c53549f2653e22582b8771655589efebd4a98
refs/heads/master
2021-01-10T19:43:27.011386
2012-09-18T20:34:14
2012-09-18T20:34:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,714
py
from html.parser import HTMLParser class TransParser(HTMLParser): def __init__(self, strict = False, reps = None, outs = None, sc = True): self.rep = reps self.outStream = outs self.stripComment = sc self.rep.parser = self HTMLParser.__init__(self, strict) def feedf(self, file): f = open(file, "rt", encoding="utf-8") self.feed(f.read(None)) f.close() def attrs(self, attr): if (len(attr) > 0): return ' ' + ' '.join(['{}="{}"'.format(a, v) for (a, v) in attr.items()]) else: return '' def out(self, s): print(s, sep='', end='', file=self.outStream) def handle_startendtag(self, tag, attrs): attrs = dict(attrs) r = None if (self.rep != None): r = self.rep.transf(tag, attrs) if ((r == None) and self.rep and (':' in tag)): r = self.rep.get(tag, attrs) if (r != None): self.out(r) else: self.out('<{}{} />'.format(tag, self.attrs(attrs))) def handle_pi(self, proc): exec(proc.strip('?').strip()) def handle_starttag(self, tag, attrs): attrs = dict(attrs) r = None if (self.rep != None): r = self.rep.transf(tag, attrs) if ((r == None) and self.rep and (':' in tag)): r = self.rep.get(tag, attrs) if (r != None): self.out(r) else: self.out("<{}{}>".format(tag, self.attrs(attrs))) def handle_endtag(self, tag): self.out("</{}>".format(tag)) def handle_data(self, data): self.out(data) def handle_decl(self, data): self.out("<!{}>".format(data)) def handle_comment(self, data): if (not self.stripComment): self.out("<!-- {} //-->".format(data.strip('-!<>/ '))) def handle_entityref(self, name): self.out('&{};'.format(name)) def handle_charref(self, name): self.out('&{};'.format(name))
[ "M@ttDiesel.co.uk" ]
M@ttDiesel.co.uk
0bbd2de8dc824f52d6a0f42c25382c0215c06147
7813653f41a440f5666b5bd4f96e71b5c8856b41
/main.py
bc32db66dd05654158a252af0318e50eaea3f4eb
[]
no_license
evidencebp/commit-classification
e404e1abff60fa648ed151092fa856094276c13b
d8cdf9908db494281b1c236a0549b5ad52b4b28e
refs/heads/master
2023-08-19T04:49:42.652647
2023-07-30T10:58:16
2023-07-30T10:58:16
253,520,268
14
5
null
null
null
null
UTF-8
Python
false
false
613
py
""" The repository is mainly stateless since this is a language library commit_type_model is a python program that decompose enitities and generate a regular experssion. One can use them in python program. For use in BigQuery, the file also genertae function. The current functions are in the bq_*.sql scripts. If one moodifes the commit_type_model, recration and redployment of the scripts is needed. The confusion matrix is a utility for performance evaluation. For the evaluation of the given classifiers use linguistic_model_performance that will evalute them on the labled samples in the data directory """
[ "idanamit@gmail.com" ]
idanamit@gmail.com
0c0b4c57534821da8d86289ea7b2c0e905648ed2
e8a6154683f27dd5143a29bc9333b829e5e12b38
/CAP7/7-10.py
9727c9dcea1ffde03a921ddf3d4bc45232a24625
[]
no_license
Rodrigodebarros17/Livropython
78512091ee9cedfb498e34dde8765fb4b2fee608
9a5b4bd8083d31c291ca1b53acbc7b3b07d53510
refs/heads/master
2021-05-19T10:28:25.741553
2020-10-02T16:13:45
2020-10-02T16:13:45
251,652,669
1
0
null
null
null
null
UTF-8
Python
false
false
160
py
#Programa Jogo da Velha matriz=[["-","-","-"],["-","-","-"],["-","-","-"]] for e in matriz: prin while true: print("Jogador 1, digite a coluna e a ")
[ "rodrigodebarros17@gmail.com" ]
rodrigodebarros17@gmail.com
3a2fcef79c162226a9627026894a0b0845627c8a
6ec0ed313be8805eb50b7241dd508c27d3540f7e
/one_hot_y.py
e7acf05434fe8a7d8b2ef138cb9e22b184ef6109
[]
no_license
LYHHYR/Text-Classification
d0d50a13ce4047176b2e7a677572207d6a6b7c32
ac531c98938bd33128193a4036bb4464752fbec6
refs/heads/master
2020-06-07T00:51:49.447613
2019-08-15T03:07:38
2019-08-15T03:07:38
192,887,942
0
0
null
null
null
null
UTF-8
Python
false
false
1,016
py
import numpy as np def one_hot(X, y): """ While y belongs to {1, 2, ..., n} (n>2), tranform y to one-hot encoded matrix """ n_samples, n_features = X.shape y_classes = set(y) n_classes = len(y_classes) one_hot = np.zeros((n_samples, n_classes)) # y should be transfer into a series which begin with 0 in order to get the position information y_position = y - np.min(y) one_hot[np.arange(n_samples), y_position.T] = 1 # np.arange(n_samples): generate an array([0, 1, 2, 3,..., (n_sample - 1)]) return one_hot ###################################### # Testing functions below # ###################################### def test_one_hot(): np.random.seed(20190606) X = np.random.rand(100, 10) y = np.random.randint(1, 5, 100) # the range of y is {1,2,3,4} y_one_hot = one_hot(X, y) print ("\n === TEST RESULT === ") print("\n the result of one hot function is") print (y, y_one_hot) if __name__ == "__main__": test_one_hot()
[ "noreply@github.com" ]
LYHHYR.noreply@github.com
6796f3024c4ba730e5ec237035170e0320b726cc
133a1604e67507fdc5b3396303d84c98f1222eaf
/thanos/bin/pip
f95161d98d14c0efb3d9ac1654ffdda914cd589a
[]
no_license
junniepat/Python-Car-Rental-
fb72e8aad97d8e5a8530d392d4b4ba6722844d78
0e197df7f10b1caf344df70b1361f88f3e865137
refs/heads/master
2020-12-05T03:15:58.457401
2020-01-05T23:38:49
2020-01-05T23:38:49
231,994,340
0
0
null
null
null
null
UTF-8
Python
false
false
268
#!/Users/bobby/Desktop/Car_Rental_Project/CarRental/thanos/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "emmanuel.amadi@lloydant.com" ]
emmanuel.amadi@lloydant.com
cb2df88f9154e5ab553526285f461976f28e27a3
50400174010e6f49fca3120b94223be32e5ca02e
/common/tests.py
0b76d3ffb01915965b92612f0e33cfcc67438484
[]
no_license
whut2962575697/webs
7ed6dcb3c879ef57f08cee436be80f1b64e579b7
b463c1a0e937ace6ef99812117998e742b05bfe5
refs/heads/master
2020-04-04T13:49:43.615315
2018-11-15T12:25:26
2018-11-15T12:25:26
155,976,743
0
0
null
null
null
null
UTF-8
Python
false
false
12,313
py
# -*- encoding:utf-8 -*- import arcpy arcpy.env.workspace = "" polygons = arcpy.FromWKT("POLYGON((116.13982 29.88508,116.133298 29.865047,116.140065 29.853345,116.136074 29.841912,116.141487 29.833255,116.139141 29.827136,116.094168 29.804491,116.05429 29.765514,115.969441 29.730778,115.951961 29.7266,115.901597 29.733592,115.848585 29.751062,115.769124 29.800163,115.713168 29.842946,115.689668 29.85718,115.674007 29.857044,115.613694 29.842301,115.586868 29.840578,115.5252 29.843555,115.478962 29.856092,115.459597 29.869491,115.436349 29.905496,115.418339 29.915956,115.414394 29.928174,115.41487 29.950444,115.38586 29.975737,115.368123 30.006744,115.33548 30.036738,115.330484 30.045083,115.328576 30.078342,115.30855 30.117856,115.27418 30.161666,115.23118 30.208822,115.214144 30.218919,115.195419 30.222019,115.173966 30.221622,115.148019 30.211853,115.12642 30.215717,115.103114 30.227566,115.086667 30.242818,115.085262 30.267359,115.096426 30.298311,115.09247 30.330363,115.104584 30.354133,115.094606 30.369622,115.083706 30.363208,115.071347 30.385562,115.055222 30.399363,115.040581 30.405584,115.018059 30.411633,114.957343 30.410559,114.899734 30.41612,114.879463 30.426017,114.853994 30.448418,114.842412 30.468337,114.838641 30.484741,114.84026 30.520581,114.845446 30.546981,114.844419 30.566417,114.815363 30.595449,114.811554 30.606528,114.794198 30.619363,114.802522 30.625508,114.850438 30.631565,114.858127 30.637346,114.85142 30.643258,114.862842 30.639819,114.864011 30.642663,114.860203 30.649033,114.852272 30.647867,114.852101 30.653853,114.835283 30.675505,114.830507 30.676892,114.825561 30.669529,114.819804 30.666575,114.816514 30.668242,114.811099 30.680345,114.817529 30.692339,114.802808 30.705428,114.790826 30.727486,114.810885 30.729886,114.822966 30.736901,114.847936 30.744705,114.877126 30.76586,114.8828 30.776263,114.882513 30.798587,114.88531 30.802074,114.894284 30.802577,114.921991 30.790449,114.939121 30.802092,114.945921 30.792376,114.959368 30.782336,114.963342 30.786666,114.96319 30.795321,114.960114 30.799798,114.951639 30.802635,114.950814 30.808121,114.969669 30.813316,114.97633 30.818195,114.979415 30.813385,114.987561 30.821945,114.989159 30.814371,114.994905 30.815386,114.998204 30.830591,115.007347 30.836425,114.998341 30.851483,115.00346 30.862551,115.025286 30.869018,115.028789 30.862642,115.037593 30.861618,115.035839 30.854631,115.04188 30.850942,115.045785 30.851971,115.05348 30.862421,115.056052 30.858734,115.061764 30.862101,115.059112 30.869897,115.085775 30.888963,115.085336 30.895442,115.066106 30.900638,115.061758 30.910838,115.042152 30.915286,115.027965 30.931268,115.018792 30.92898,115.001472 30.943353,114.992939 30.961009,114.998714 30.973105,114.992991 30.974555,114.988736 30.980992,114.995281 30.990673,114.99451 31.003842,114.989741 31.003911,114.990181 30.998608,114.986967 30.998621,114.99071 31.02373,114.982844 31.033432,114.976799 31.027439,114.983139 31.012355,114.967394 30.992596,114.961789 30.993082,114.955782 31.00162,114.945048 31.003443,114.942708 31.008364,114.934727 31.001685,114.926412 31.020488,114.911053 31.011414,114.888873 31.012258,114.867955 30.998404,114.862745 30.991306,114.880109 30.979102,114.882972 30.971623,114.871909 30.963025,114.866862 30.950256,114.846928 30.956291,114.82872 30.951981,114.831069 30.957608,114.820999 30.962728,114.817705 30.973194,114.810046 30.97664,114.815296 30.982364,114.811771 30.998215,114.809814 31.000226,114.802814 30.99584,114.802259 31.000993,114.791246 31.001181,114.788892 30.991263,114.781402 30.985945,114.778763 30.971567,114.775575 30.969779,114.768857 30.969822,114.771886 30.975968,114.76959 30.986108,114.775284 30.989111,114.767173 30.990936,114.767066 30.995398,114.745638 30.992904,114.743519 30.988484,114.726931 30.983487,114.724253 30.987747,114.721543 30.986954,114.722417 30.982951,114.715469 30.984287,114.7085 30.976746,114.704021 30.964551,114.704513 30.955779,114.713819 30.948315,114.710907 30.9441,114.689074 30.95457,114.672481 30.94021,114.664655 30.938172,114.653631 30.942485,114.647617 30.933368,114.641731 30.931858,114.639359 30.934332,114.630028 30.929696,114.618815 30.932664,114.618511 30.944029,114.614296 30.944745,114.608447 30.964198,114.582758 30.975708,114.577497 30.984266,114.567496 30.985505,114.559948 30.998378,114.549434 30.997934,114.534128 31.017041,114.515958 31.020291,114.505379 31.042626,114.510063 31.051115,114.520831 31.056739,114.520952 31.069604,114.539429 31.100064,114.533888 31.113969,114.539931 31.122675,114.532992 31.128099,114.531053 31.14123,114.524885 31.149985,114.498782 31.15543,114.494142 31.163872,114.476393 31.176468,114.466775 31.174727,114.464416 31.189197,114.47743 31.190161,114.478975 31.195288,114.455993 31.202376,114.458803 31.209721,114.448437 31.213001,114.44016 31.211763,114.42829 31.218499,114.411223 31.235328,114.407847 31.255088,114.419227 31.267522,114.445372 31.313759,114.446905 31.330576,114.442649 31.344421,114.448519 31.348893,114.442387 31.353385,114.432527 31.354634,114.427524 31.362635,114.434872 31.371223,114.434845 31.384979,114.443762 31.389819,114.454063 31.389234,114.458361 31.403237,114.454526 31.414458,114.456414 31.420686,114.466922 31.416097,114.465453 31.413397,114.469619 31.410747,114.484346 31.411855,114.4868 31.415353,114.487982 31.425088,114.481745 31.427521,114.480298 31.433099,114.484099 31.45201,114.493771 31.464832,114.491864 31.472315,114.500945 31.473035,114.506337 31.464248,114.518121 31.468019,114.511651 31.49118,114.504449 31.503365,114.510851 31.52703,114.516487 31.530359,114.519307 31.542013,114.526502 31.546997,114.526771 31.564185,114.53279 31.555897,114.549104 31.554274,114.55665 31.558135,114.564285 31.574856,114.570682 31.56126,114.579807 31.55948,114.582312 31.565415,114.600178 31.566877,114.603141 31.579745,114.617239 31.58251,114.62747 31.590941,114.651282 31.585372,114.651766 31.5791,114.661541 31.575266,114.680052 31.548028,114.706204 31.549034,114.702325 31.529738,114.723111 31.531185,114.727399 31.522276,114.746222 31.531099,114.75576 31.52621,114.761336 31.532734,114.777091 31.524576,114.790754 31.530455,114.791239 31.523687,114.779621 31.517887,114.78021 31.508141,114.789299 31.502798,114.788838 31.490142,114.797717 31.484076,114.819982 31.484091,114.82887 31.477643,114.838684 31.463435,114.844162 31.464421,114.851908 31.471893,114.856639 31.482785,114.863192 31.486108,114.879829 31.484074,114.882654 31.476262,114.891734 31.47434,114.899298 31.479691,114.914412 31.481529,114.929275 31.488296,114.931868 31.48322,114.945258 31.475494,114.952793 31.489237,114.967484 31.501594,114.978556 31.506294,114.984929 31.502176,114.988015 31.485051,114.997985 31.485086,114.999473 31.477295,115.00308 31.477081,115.007129 31.49153,115.016765 31.494657,115.010039 31.502629,115.00923 31.509013,115.016027 31.5132,115.029032 31.536241,115.03494 31.534701,115.034802 31.529257,115.043322 31.519877,115.055471 31.525102,115.068594 31.518233,115.101459 31.5178,115.101209 31.527958,115.115479 31.533358,115.119238 31.540576,115.109011 31.548142,115.115812 31.559081,115.10863 31.564921,115.107938 31.573351,115.134895 31.591423,115.127197 31.604829,115.149195 31.612496,115.175791 31.611138,115.182675 31.60627,115.185719 31.587897,115.199406 31.578925,115.199109 31.57197,115.214844 31.572164,115.219599 31.561897,115.242319 31.565029,115.236272 31.542118,115.224075 31.522845,115.22649 31.510471,115.219119 31.49993,115.224538 31.476021,115.214123 31.453465,115.226173 31.43265,115.23831 31.433767,115.258035 31.42754,115.264992 31.412741,115.256552 31.400027,115.266247 31.395099,115.286959 31.405837,115.30062 31.402019,115.306333 31.390535,115.315443 31.389411,115.321471 31.39062,115.342141 31.40745,115.359597 31.404823,115.37775 31.409837,115.397032 31.398586,115.396406 31.390501,115.388797 31.381075,115.380874 31.377444,115.386836 31.36816,115.386777 31.362071,115.377385 31.355558,115.405442 31.348323,115.412118 31.343414,115.413555 31.348049,115.42653 31.356402,115.429582 31.352893,115.438153 31.355854,115.447926 31.352476,115.454686 31.322173,115.461217 31.319593,115.466916 31.326425,115.468671 31.323056,115.462004 31.288572,115.472822 31.282094,115.475243 31.27438,115.480474 31.270321,115.496113 31.272547,115.507352 31.267582,115.515038 31.27479,115.525659 31.269228,115.546605 31.235028,115.542372 31.202524,115.550979 31.19715,115.553844 31.188476,115.562147 31.179989,115.562634 31.169448,115.579972 31.160191,115.590623 31.147888,115.607905 31.1626,115.610421 31.173625,115.622233 31.181662,115.623023 31.186983,115.641341 31.189969,115.650631 31.213164,115.668037 31.217624,115.696735 31.208499,115.704971 31.209038,115.717648 31.20368,115.718586 31.188251,115.737536 31.181124,115.741155 31.160704,115.752689 31.157327,115.76592 31.141429,115.777535 31.112688,115.780448 31.111422,115.788921 31.116356,115.794354 31.12673,115.801647 31.131465,115.826943 31.129911,115.843701 31.132265,115.858299 31.143827,115.860093 31.149592,115.886448 31.152017,115.892995 31.139171,115.902002 31.134273,115.895242 31.123793,115.895955 31.111487,115.900378 31.103587,115.908972 31.097068,115.915874 31.09731,115.928161 31.091494,115.929075 31.083006,115.951301 31.070989,115.951618 31.062845,115.945969 31.051767,115.94851 31.046625,115.95869 31.048855,115.972275 31.043132,115.988653 31.046029,116.003491 31.038258,116.009739 31.039272,116.017746 31.02034,116.027375 31.019824,116.035744 31.014776,116.04488 31.021074,116.063983 31.018804,116.065558 31.000886,116.077162 30.962304,116.047004 30.964629,116.039827 30.957333,116.029978 30.959531,116.015379 30.955626,115.995908 30.940526,115.981332 30.936904,115.975923 30.925561,115.959439 30.918586,115.954485 30.909704,115.941312 30.909209,115.934947 30.893816,115.92591 30.891918,115.91952 30.894103,115.894965 30.885388,115.881032 30.873533,115.871126 30.869971,115.869591 30.861065,115.857126 30.849658,115.852721 30.840682,115.854492 30.833435,115.869031 30.821363,115.868285 30.81373,115.872309 30.806709,115.863476 30.792441,115.865825 30.788719,115.877422 30.786234,115.875672 30.781676,115.857662 30.771593,115.857064 30.762417,115.85402 30.761352,115.840658 30.762252,115.82886 30.756294,115.816104 30.765256,115.792347 30.763,115.771688 30.715526,115.772657 30.700282,115.767745 30.694612,115.768171 30.690951,115.777794 30.683605,115.780638 30.674777,115.801175 30.665835,115.804294 30.656048,115.817896 30.64497,115.820385 30.630732,115.813087 30.621712,115.824007 30.604475,115.829461 30.602055,115.833386 30.611926,115.854061 30.607463,115.862673 30.595031,115.880346 30.588913,115.884593 30.583824,115.880954 30.574867,115.888666 30.564918,115.89181 30.549389,115.904693 30.543706,115.916036 30.525154,115.926697 30.523412,115.915055 30.512749,115.903385 30.488223,115.906101 30.472615,115.899297 30.465305,115.900062 30.458558,115.922408 30.448996,115.927994 30.43481,115.951524 30.431067,115.94572 30.424197,115.93647 30.426842,115.929185 30.424607,115.917671 30.407157,115.906027 30.403756,115.890743 30.387713,115.90073 30.363726,115.9078 30.357794,115.912463 30.347674,115.91972 30.346279,115.924055 30.339604,115.92052 30.323124,115.912347 30.314241,115.935972 30.307002,115.945403 30.316165,115.948881 30.312347,115.958854 30.312169,115.965677 30.30641,115.979242 30.304494,115.994949 30.292735,115.990897 30.283856,115.997086 30.277172,115.992685 30.27178,115.994357 30.267901,116.00258 30.261562,116.016766 30.259885,116.021479 30.251972,116.019792 30.24688,116.0345 30.24611,116.035058 30.239861,116.049434 30.232436,116.054099 30.225438,116.063322 30.225327,116.071754 30.211239,116.067526 30.207052,116.072542 30.200057,116.062027 30.192428,116.061776 30.188938,116.067774 30.159359,116.076815 30.138369,116.094534 30.131912,116.090472 30.120182,116.095002 30.110338,116.087375 30.096647,116.09333 30.083696,116.08326 30.071534,116.085095 30.061653,116.098449 30.037232,116.08855 30.031404,116.090631 30.024616,116.084122 30.000224,116.086296 29.986582,116.07991 29.971681,116.132426 29.90812,116.133564 29.890932,116.13982 29.88508),(115.136881 30.223666,115.156066 30.243421,115.152526 30.248852,115.141529 30.253336,115.136949 30.249692,115.121486 30.263801,115.118886 30.251386,115.100492 30.240335,115.124195 30.223945,115.136881 30.223666))") arcpy.CopyFeatures_management(polygons, 'wuhan.shp')
[ "2962575697@whut.edu.cn" ]
2962575697@whut.edu.cn
7f9523279e54933a282f53790b3106e4f5825bdf
9fea90e6756eeb1f67c71fbb9b893fbf8e3821b1
/catalogue/settings.py
a6bfb1f6963d57c8a0556f7431fd95d896649a73
[]
no_license
a-romald/scrapy-mysqlclient
169c88fa6993edb3d7070e79636b0f5d90ead467
86c1773e4e6c6036fb604e86cbd165ec0eea348f
refs/heads/master
2021-04-28T19:36:31.185284
2018-02-17T23:52:09
2018-02-17T23:52:09
121,901,104
0
0
null
null
null
null
UTF-8
Python
false
false
3,204
py
# -*- coding: utf-8 -*- # Scrapy settings for catalogue project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'catalogue' SPIDER_MODULES = ['catalogue.spiders'] NEWSPIDER_MODULE = 'catalogue.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'catalogue (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'catalogue.middlewares.CatalogueSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'catalogue.middlewares.CatalogueDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' FEED_EXPORT_ENCODING = 'utf-8' # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'scrapy.pipelines.images.ImagesPipeline': 1, 'catalogue.pipelines.MySQLStorePipeline': 300, } IMAGES_STORE = 'images'
[ "a_rhoma@mail.ru" ]
a_rhoma@mail.ru
537ad2da2c4e4aa5f8bbe056a3e25e3ef68ca0a9
23b9611fa4a04df65323f7aadb76c91a9423b2e0
/smoketest/systemconfiguration/sysAbout.py
c9ac5752c93a854c6742c9c0ec5d417084634acf
[]
no_license
da3m0n/ctrguiautotest
b22b8a7cc64a4178534b85c7ea364c4fe994e910
ed5a55baa4d31ee8f26c616c1ba1a132b7b715f5
refs/heads/master
2020-05-17T15:42:41.367186
2018-11-14T22:03:56
2018-11-14T22:03:56
21,019,373
0
0
null
null
null
null
UTF-8
Python
false
false
2,537
py
import sys, os import time from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from smoketest.TestHelper import TestHelper from smoketest.TestLog import TestLog from smoketest.mylib.IsolatedLoginHandler import IsolatedLoginHandler from smoketest.mylib.utils import Utils def main(): log_dir = Utils.log_dir() about = SystemAbout(IsolatedLoginHandler()) test_log = TestLog('System About', log_dir) about.run_system_about(Utils.create_driver(sys.argv[2]), test_log) test_log.close() class SystemAbout(object): def __init__(self, login_manager): self.login_manager = login_manager def run_system_about(self, driver, test_log): gui_lib = Utils(driver) self.login_manager.login() test_log.start('System About') test_helper = TestHelper(test_log, driver) driver.switch_to_default_content() # WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.ID, "menu_node_7_tree"))) # driver.find_element_by_id("menu_node_7_tree").click() # time.sleep(2) # WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.ID, "menu_node_10"))) gui_lib.click_element("top_menu_help") gui_lib.click_element("help_about") original_window_handle = driver.current_window_handle driver.switch_to_window(driver.window_handles[1]) # about = driver.find_element(By.XPATH, "//body/fieldset/legend").text # assert about == "About", ("Expected About but got ", about) title = 'Aviat Networks Converged Transport Router' # webTitle = driver.find_element_by_xpath('//body/div/div/h3').text # assert title == webTitle, ('Expected ', title, ' but got ', webTitle) # # # WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.ID, 'licenses'))) # time.sleep(2) licenses = gui_lib.find_element('licenses') # driver.execute_script("document.getElementById('licenses').innerHTML=\"\";") test_helper.assert_true(len(licenses.text) == 0, 'Expected SW Version to be > 0', 'Checking Licenses text not empty') driver.close() driver.switch_to_window(original_window_handle) time.sleep(2) self.login_manager.logout() if __name__ == "__main__": main()
[ "rowan.naude@aviatnet.com" ]
rowan.naude@aviatnet.com
fad7775f9731907181f1e05c218b3bd67efc38a3
a68d32aeae18bbedf81dc759fbf1eb8d24e0b70b
/happiness_project/settings.py
286e6b05c417f15108ffab6fe1134e1e7d8881a3
[]
no_license
fernandocmelo/django-test
94679580b9184a5199c31777707f22c553903432
60826ffd016eb7601074638415f89f937616cae5
refs/heads/master
2020-03-29T03:59:16.761764
2018-09-26T01:23:23
2018-09-26T01:23:23
149,510,092
0
0
null
2018-09-19T20:44:26
2018-09-19T20:44:26
null
UTF-8
Python
false
false
3,686
py
""" Django settings for happiness_project project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'goqsn30ib2w9$3-@#g7t4iost8cnrlnvsv!#(8%t=@x3v1dig$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'crispy_forms', 'happiness_app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'happiness_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR,], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'happiness_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', ] AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Toronto' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' # Login and Logout URLs LOGIN_REDIRECT_URL = "index" LOGOUT_REDIRECT_URL = "index" AUTH_PROFILE_MODULE = 'happiness_app.UserProfile'
[ "grandifalcao@gmail.com" ]
grandifalcao@gmail.com
8092ddd1f080a38810e69f276d3975ec42790fd9
e91fd1071b91bfae76d293c8b9b85d4afa1286f7
/utilidades/__init__.py
e49bfceab9edfd4a8fb393638c594497d22fdbe8
[]
no_license
MiguelRubioS2P/CodeBreaker
2d540981d18ce9b5f0aefb859318f7f8db07fed6
5f6ebd73b8e1876e700c6b938fa64e061b80a298
refs/heads/master
2020-12-15T00:00:52.124787
2020-01-20T19:03:17
2020-01-20T19:03:17
234,919,693
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
import utilidades import JuegoPalabras
[ "miguelrubio@paucasesnovescifp.cat" ]
miguelrubio@paucasesnovescifp.cat
a904290ec8ed97238dff5bff3c599df824611c11
02e23da0431623db86c8138bda350a1d526d4185
/Archivos Python Documentos/Graficas/.history/ejecutable_20200216215432.py
dfa14620e68d6ef4a0639d6914525ed6612644cf
[]
no_license
Jaamunozr/Archivos-python
d9996d3d10ff8429cd1b4c2b396016a3a5482889
1f0af9ba08f12ac27e111fcceed49bbcf3b39657
refs/heads/master
2022-08-05T14:49:45.178561
2022-07-13T13:44:39
2022-07-13T13:44:39
244,073,267
0
0
null
null
null
null
UTF-8
Python
false
false
3,272
py
import pylab as pl import numpy as np # Crear una figura de 8x6 puntos de tamaño, 80 puntos por pulgada (Se modifica a 16x8) pl.figure(figsize=(16, 8), dpi=100) # Crear una nueva subgráfica en una rejilla de 1x1 (se podrian crean una de dos graficas en una reijlla) pl.subplot(1, 1, 1) # Obtencion de datos para seno y coseno (Desde -2pi hasta 2pi) X = np.linspace(-2.1*np.pi, 2.1*np.pi, 256, endpoint=True) #el numero 256 es la cantidad de datos en ese intervalo C, S = np.cos(X), np.sin(X) # Graficar la función coseno con una línea continua azul de 1 pixel de grosor pl.plot(X, C, color="blue", linewidth=1.0, linestyle="-") # Graficar la función seno con una línea continua verde de 1 pixel de grosor pl.plot(X, S, color="green", linewidth=1.0, linestyle="-") # Establecer límites del eje x (Divisiones en X) pl.xlim(-8.0, 8.0) # Ticks en x(Impresión de intervalos, cantidad de datos mostrados en el eje) pl.xticks(np.linspace(-8, 8, 17, endpoint=True)) # Establecer límites del eje y (Divisiones en Y) pl.ylim(-1.0, 1.0) # Ticks en y (Impresión de intervalos, cantidad de datos mostrados en el eje) pl.yticks(np.linspace(-1, 1, 5, endpoint=True)) '''Otra opcion de determinar los limites a imprimir pl.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) pl.yticks([-1, 0, +1]) ''' #AGREGAR LINEAS DE EJES Y QUITAR EL RECUADRO: ''' ax = pl.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0))''' # Guardar la figura usando 72 puntos por pulgada # savefig("exercice_2.png", dpi=72) #Indicamos los espacios entre los bordes de grafica y las graficas #pl.xlim(X.min() * 1.1, X.max() * 1.1) pl.ylim(C.min() * 1.1, C.max() * 1.1) #AGREGRA UNA LEYENDA pl.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="Coseno") pl.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="Seno") pl.legend(loc='upper left') #AGREGRA UNA ANOTACION EN UN PUNTO CONOCIDO t = 2 * np.pi / 3 #Para coseno------------------------------------------------------------------------------------ pl.plot([t, t], [0, np.cos(t)], color='blue', linewidth=2.5, linestyle="--") pl.scatter([t, ], [np.cos(t), ], 350, color='blue') pl.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',#DATOS A IMPRIMIR DEL TEXTO xy=(t, np.sin(t)), xycoords='data', #COORDENADAS DE REFERENCIA PARA LA FLECHA Y EL TEXTO xytext=(+10, +30), textcoords='offset points', fontsize=16,#INDICAN POSICION DEL TEXTO arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) #DIRECCION DE LA FLECHA #Para seno-------------------------------------------------------------------------------------- pl.plot([t, t],[0, np.sin(t)], color='red', linewidth=2.5, linestyle="--") pl.scatter([t, ],[np.sin(t), ], 50, color='red') pl.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))#DIRECCION DE LA FLECHA # Mostrar resultado en pantalla (Con 2 segundos de muestreo) pl.pause(10)
[ "jaamunozr@gmail.com" ]
jaamunozr@gmail.com
cdec8f2f5cee0435ef81c841599dda2f2479e791
18db4071110091026eece33676a87cdc8da53a3a
/func/constants.py
7881b87d7f18f4cf8774b942171ea7b32de4d72f
[]
no_license
gengd/my_shell
57e859116db65c6ba001eb5e08658bab28aa77ac
7d84166539625c547febf1b22326a2df73afcab2
refs/heads/master
2021-07-04T09:15:19.868551
2017-09-26T08:57:17
2017-09-26T08:57:17
104,856,045
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
import os SHELL_STATUS_STOP = 0 SHELL_STATUS_RUN = 1 HISTORY_PATH = os.path.expanduser('~') + os.sep + '.shiyanlou_shell_history'
[ "Daniel.Geng@emc.com" ]
Daniel.Geng@emc.com
1b0db2cf114ec7808c322fa1e8df8a933b35ea6f
7ebb62d990d530e5a97cea3bf7891edda5881b00
/youtube-dl-master/youtube_dl/jsinterp.py
ae5bca2e643f1ec4d719e8e895b0a655a98a151a
[ "Unlicense", "LicenseRef-scancode-public-domain" ]
permissive
dj168/Hackathon1
fb3f537320189844f9c6514c0b70a5d432426dd1
36339458edea2a207e2c7b67ad4cfd1acc3ba569
refs/heads/master
2021-01-24T11:00:43.937962
2014-08-16T20:05:19
2014-08-16T20:05:19
21,998,804
0
0
null
null
null
null
UTF-8
Python
false
false
5,487
py
from __future__ import unicode_literals import re from .utils import ( ExtractorError, ) class JSInterpreter(object): def __init__(self, code): self.code = code self._functions = {} self._objects = {} def interpret_statement(self, stmt, local_vars, allow_recursion=20): if allow_recursion < 0: raise ExtractorError('Recursion limit reached') if stmt.startswith('var '): stmt = stmt[len('var '):] ass_m = re.match(r'^(?P<out>[a-z]+)(?:\[(?P<index>[^\]]+)\])?' + r'=(?P<expr>.*)$', stmt) if ass_m: if ass_m.groupdict().get('index'): def assign(val): lvar = local_vars[ass_m.group('out')] idx = self.interpret_expression( ass_m.group('index'), local_vars, allow_recursion) assert isinstance(idx, int) lvar[idx] = val return val expr = ass_m.group('expr') else: def assign(val): local_vars[ass_m.group('out')] = val return val expr = ass_m.group('expr') elif stmt.startswith('return '): assign = lambda v: v expr = stmt[len('return '):] else: raise ExtractorError( 'Cannot determine left side of statement in %r' % stmt) v = self.interpret_expression(expr, local_vars, allow_recursion) return assign(v) def interpret_expression(self, expr, local_vars, allow_recursion): if expr.isdigit(): return int(expr) if expr.isalpha(): return local_vars[expr] m = re.match(r'^(?P<in>[a-z]+)\.(?P<member>.*)$', expr) if m: member = m.group('member') variable = m.group('in') if variable not in local_vars: if variable not in self._objects: self._objects[variable] = self.extract_object(variable) obj = self._objects[variable] key, args = member.split('(', 1) args = args.strip(')') argvals = [int(v) if v.isdigit() else local_vars[v] for v in args.split(',')] return obj[key](argvals) val = local_vars[variable] if member == 'split("")': return list(val) if member == 'join("")': return ''.join(val) if member == 'length': return len(val) if member == 'reverse()': return val[::-1] slice_m = re.match(r'slice\((?P<idx>.*)\)', member) if slice_m: idx = self.interpret_expression( slice_m.group('idx'), local_vars, allow_recursion - 1) return val[idx:] m = re.match( r'^(?P<in>[a-z]+)\[(?P<idx>.+)\]$', expr) if m: val = local_vars[m.group('in')] idx = self.interpret_expression( m.group('idx'), local_vars, allow_recursion - 1) return val[idx] m = re.match(r'^(?P<a>.+?)(?P<op>[%])(?P<b>.+?)$', expr) if m: a = self.interpret_expression( m.group('a'), local_vars, allow_recursion) b = self.interpret_expression( m.group('b'), local_vars, allow_recursion) return a % b m = re.match( r'^(?P<func>[a-zA-Z$]+)\((?P<args>[a-z0-9,]+)\)$', expr) if m: fname = m.group('func') if fname not in self._functions: self._functions[fname] = self.extract_function(fname) argvals = [int(v) if v.isdigit() else local_vars[v] for v in m.group('args').split(',')] return self._functions[fname](argvals) raise ExtractorError('Unsupported JS expression %r' % expr) def extract_object(self, objname): obj = {} obj_m = re.search( (r'(?:var\s+)?%s\s*=\s*\{' % re.escape(objname)) + r'\s*(?P<fields>([a-zA-Z$]+\s*:\s*function\(.*?\)\s*\{.*?\})*)' + r'\}\s*;', self.code) fields = obj_m.group('fields') # Currently, it only supports function definitions fields_m = re.finditer( r'(?P<key>[a-zA-Z$]+)\s*:\s*function' r'\((?P<args>[a-z,]+)\){(?P<code>[^}]+)}', fields) for f in fields_m: argnames = f.group('args').split(',') obj[f.group('key')] = self.build_function(argnames, f.group('code')) return obj def extract_function(self, funcname): func_m = re.search( (r'(?:function %s|[{;]%s\s*=\s*function)' % ( re.escape(funcname), re.escape(funcname))) + r'\((?P<args>[a-z,]+)\){(?P<code>[^}]+)}', self.code) if func_m is None: raise ExtractorError('Could not find JS function %r' % funcname) argnames = func_m.group('args').split(',') return self.build_function(argnames, func_m.group('code')) def build_function(self, argnames, code): def resf(args): local_vars = dict(zip(argnames, args)) for stmt in code.split(';'): res = self.interpret_statement(stmt, local_vars) return res return resf
[ "huderrick@berkeley.edu" ]
huderrick@berkeley.edu
08cb23a06a7856db4ecb22d88ec90a611deba95b
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/man/case/life/big_government.py
7fba7f61642853f57bfca0dad6bb4279f36648e4
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
#! /usr/bin/env python def fact_or_eye(str_arg): ask_new_woman(str_arg) print('world_or_last_life') def ask_new_woman(str_arg): print(str_arg) if __name__ == '__main__': fact_or_eye('long_child_or_few_place')
[ "jingkaitang@gmail.com" ]
jingkaitang@gmail.com
0a1d557a8ad4bb66d5e06b1c0dbaa7b77111316c
2e2f334d5ad1e37294e691e71c2cf0513a533e19
/loop4.py
b57cfb5fcdcf3bdb1d3fdf8fcebd644961c67765
[]
no_license
vishnubalaji1998/guvi2
142afccbdb35037ae465ccad73527228d6c9229c
496cfa35f126020c9e3a71c994d70d0803f5affd
refs/heads/master
2020-11-29T22:15:52.385856
2019-12-26T08:45:09
2019-12-26T08:45:09
230,228,224
0
0
null
null
null
null
UTF-8
Python
false
false
39
py
i=0 while i<101: print(i) i+=2
[ "noreply@github.com" ]
vishnubalaji1998.noreply@github.com
04cead922b1938277bca7947212824fa8027daed
f61da218587b48026fb91cb6bcf6c06ece9c8f2c
/Matrix - Nine Submatrices.py
7054cb0faefdc5fb68b7128143c7a91b551f1d36
[]
no_license
DANUSHRAJ/Skillrack-Daily-Challenge-And-Daily-Test
ec1b7dafab8be603f3eaa193316c895bb7dbc997
f32da952e0d01a015cc9f9d01a67c5c7de0b20fa
refs/heads/main
2023-05-21T00:33:36.896465
2021-06-04T03:58:04
2021-06-04T03:58:04
317,618,098
0
0
null
null
null
null
UTF-8
Python
false
false
2,141
py
Matrix - Nine Submatrices The program must accept an integer matrix of size N*N as the input. The program must divide the given matrix into 9 submatrices based on the following conditions. - The program must divide t he given matrix into four submatrices of equal size. - Then the program must divide the top-right submatrix horizontally into two submatrices of equal size. - Then the program must divide th e bottom-left submatrix vertically into two submatrices of equal size. - Then the program must divide th e bottom-right submatrix into four submatrices of equal size. Finally, the program must print the sum of integers in each submatrix as the output. Note: The valu e of N is always a multiple of 4. Boundary Condition(s): 4 <= N <= 100 0 <= Matrix ele ment value <= 1000 Input Format: The first line co ntains N. The next N lines, each co ntains N integers separated by a space. Output Format: The first line cont ains 9 integers representing the sum of integers in the 9 submatrices. Example Input/Output 1: Input: 4 10 20 55 65 40 30 92 82 11 23 34 24 21 43 74 94 Output: 100 120 174 32 66 34 24 74 94 Explanation: The 1 submatrix (2*2) is given below. 10 20 40 30 The 2 submatrix (1*2) is given below. 55 65 The 3 submatrix (1*2) is given below. 92 82 The 4 submatrix (2*1) is given below. 11 21 The 5 submatrix (2*1) is given below. 23 43 The 6 , 7 , 8 and 9 submatrices (1*1) are given below. 34 24 74 94 Example Input/Output 2: Input: 8 7 2 3 0 3 4 2 7 4 7 9 4 3 4 6 8 5 3 3 0 3 6 2 6 0 4 5 0 1 3 4 6 7 5 8 8 9 2 6 7 0 8 0 9 7 8 6 6 6 9 8 4 2 1 8 4 8 9 9 4 1 2 2 4 Output: 56 37 31 52 50 26 25 6 18 SOLUTION: def fun(l,a,b,c,d): su=0 for k in range(a,b): for h in range(c,d): su+=l[k][h] print(su,end=' ') x=int(input());l=[list(map(int,input().split())) for _ in range(x)] fun(l,0,x//2,0,x//2);fun(l,0,(x//2)//2,x//2,x);fun(l,(x//2)//2,x//2,x//2,x) fun(l,x//2,x,0,(x//2)//2);fun(l,x//2,x,(x//2)//2,x//2);fun(l,x//2,x-(x//4),x//2,x-(x//4)) fun(l,x//2,x-(x//4),x-(x//4),x);fun(l,x-(x//4),x,x//2,x-(x//4));fun(l,x-(x//4),x,x-(x//4),x)
[ "noreply@github.com" ]
DANUSHRAJ.noreply@github.com
09d021b1d8dfe86996bf792304540f403d3b766f
ac5934409435751a338af98cb9141c1dd76b56e9
/pet/votes/migrations/0001_initial.py
d205dfa208e8d564edaef2b798357fc80a5133f0
[]
no_license
jfarriagada/pets
667f5b61f5c9445fe5e93b49ab0b090111874283
f2571f2ba7158484f30e9d9395daf9127282ad94
refs/heads/master
2021-06-25T13:20:59.126903
2019-10-09T00:36:53
2019-10-09T00:36:53
213,784,034
0
0
null
2021-06-10T22:04:23
2019-10-09T00:32:21
Python
UTF-8
Python
false
false
818
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-10-08 22:45 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Pet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nickname', models.CharField(max_length=100)), ('name', models.CharField(max_length=100)), ('photo', models.ImageField(blank=True, null=True, upload_to='static/img/pets/')), ('votes', models.IntegerField(choices=[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], default=1)), ], ), ]
[ "fainnovex@innovex.cl" ]
fainnovex@innovex.cl
c776c118e859ee46295315dd953878803a4fe286
29728c3b5584ffcbff26646f6f4fc794b5be51ac
/gogoedu/migrations/0001_initial.py
c54a889250bef98ec21abffcfc7b9b93d37be413
[]
no_license
tuantuan98/hn-naitei18-python-els
d6c966189ff6f8bdcaa484daafe06f962b8507ae
6674edbbf270bb95fda9c764ddabe41dccf4b2ef
refs/heads/master
2022-12-17T20:14:10.306934
2020-09-15T01:37:36
2020-09-15T02:12:21
288,126,316
0
0
null
2020-08-17T08:33:41
2020-08-17T08:33:41
null
UTF-8
Python
false
false
6,730
py
# Generated by Django 3.0.9 on 2020-08-18 03:15 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='myUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('avatar', models.CharField(max_length=255)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Catagory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='Lesson', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('catagory', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Catagory')), ], ), migrations.CreateModel( name='Test', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_num', models.IntegerField()), ('time', models.TimeField()), ('lesson', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Lesson')), ], ), migrations.CreateModel( name='Word', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('word', models.CharField(max_length=255)), ('mean', models.CharField(blank=True, max_length=255, null=True)), ('type', models.CharField(max_length=255)), ('catagory', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Catagory')), ('lesson', models.ManyToManyField(to='gogoedu.Lesson')), ], ), migrations.CreateModel( name='User_word', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('memoried', models.BooleanField(default=True)), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ('word', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Word')), ], ), migrations.CreateModel( name='User_test', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('correct_answer_num', models.IntegerField()), ('test', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Test')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=255)), ('test', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Test')), ], ), migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=255)), ('is_true', models.BooleanField(default=False)), ('question', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='gogoedu.Question')), ], ), ]
[ "dang.hoang.tuan@sun-asterisk.com" ]
dang.hoang.tuan@sun-asterisk.com
662e84a750cca07fce5f1cf16fec0a383a1efbd9
1e2afd391efc662363098011dcb500b8279656b6
/meiduo_mall/meiduo_mall/apps/goods/constants.py
3a22e91ff594fab09d549ec21fa37dd93b5a6023
[]
no_license
baixin999/mymd
c5269e70ebbb6fe26338a18f210dd7e0fc1fdfe0
267d5d18ba03d30b7255d4ee1f820b20cad6ed2c
refs/heads/master
2020-07-07T00:17:24.354799
2019-08-25T13:29:03
2019-08-25T13:29:03
203,183,555
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
# 列表页中每页显示多少条数据 SKU_LIST_PER_PAGE = 5
[ "324559937@qq.com" ]
324559937@qq.com
9b4933a763e3a74f5645ce3216ced5248e67092d
0487f110c61453ffd1df3446ebdbfe525f03079a
/hiseek/clustering/regionizer.py
0b62f81f60b9354b23067fd8dc06ce49e89cae14
[ "BSD-2-Clause" ]
permissive
droftware/Medusa
76024f6076dae8bfcd85ed08cc15681391606a65
a22f1b252bd752a4ab6e6d4f6245c5c90991dcb8
refs/heads/master
2021-03-16T10:18:28.894072
2019-11-15T14:43:15
2019-11-15T14:43:15
96,506,839
1
1
null
null
null
null
UTF-8
Python
false
false
2,487
py
import numpy as np from numpy import linalg as LA import matplotlib.pyplot as plt import seaborn as sns sns.set() file_name = 'id_3.obstruction' visibility_map = np.loadtxt(file_name) visibility_map = visibility_map.astype('int') num_rows = visibility_map.shape[0] num_cols = visibility_map.shape[1] n = num_rows * num_cols # Creating the weight matrix of similarity graph W = np.zeros((n, n)) print('Creating W matrix') for i in range(num_rows): for j in range(num_cols): print('') if visibility_map[i, j] != -1: print('Value of',i,j,' is:', visibility_map[i, j]) right = i+1, j down = i, j+1 node1 = (i * num_cols) + j if right[0] < num_rows and right[1] < num_cols and visibility_map[right[0], right[1]] != -1: print('Evaluating right edge') node2 = (right[0] * num_cols) + right[1] print('Value of', right[0], right[1], 'is:', visibility_map[right[0], right[1]]) val = abs(visibility_map[i, j] - visibility_map[right[0], right[1]]) * 1.0 if val == 0: print('right val is 0') print(visibility_map[i, j], visibility_map[right[0], right[1]]) val = 1 W[node1, node2] = 1/val print('Right: Assigning val', W[node1, node2], 'to:', i,j,':',right) if down[0] < num_rows and down[1] < num_cols and visibility_map[down[0], down[1]] != -1: print('Evaluating down edge') node2 = (down[0] * num_cols) + down[1] print('Value of', down[0], down[1], 'is:', visibility_map[down[0], down[1]]) val = abs(visibility_map[i, j] - visibility_map[down[0], down[1]]) * 1.0 if val == 0: print('Down val is 0') print(visibility_map[i, j], visibility_map[down[0], down[1]]) val = 1 W[node1, node2] = 1/val print('Down: Assigning val', W[node1, node2], 'to:', i,j, down) print('Saving W matrix') np.savetxt('W.mtx', W) # Computing the D matrix D = np.zeros((n, n)) print('Creating D matrix') for i in range(n): wt = 0 for j,k in [(1,0), (-1,0), (0,1), (0,-1)]: idx = i + j, i + k if idx[0] >=0 and idx[0] < num_rows: if idx[1] >=0 and idx[1] < num_cols: wt += W[idx[0], idx[1]] D[i,i] = wt print('Saving D matrix') np.savetxt('D.mtx', D) # Computing the graph laplacian matrix print('Computing L matrix') L = np.subtract(D, W) print('Savinf L matrix') np.savetxt('L.mtx', L) print('Computing eigen vectors and vals') eigen_vals, eigen_vecs = LA.eig(L) print('Saving eigen vector and vals') np.savetxt('eigen_vals.mtx', eigen_vals) np.savetxt('eigen_vecs.mtx', eigen_vecs)
[ "akshat.tandon@research.iiit.ac.in" ]
akshat.tandon@research.iiit.ac.in
954acd060cc73756929785875add890248c8f565
3967a651350ef70dd84f61b50b21082b0a493af8
/scripts/graph2.py
94e3756936a08117c88d9e3556baa51bdb702b0e
[]
no_license
goyalnikhil02/tensosrflowexamples
8b73766cb366b13ffcbeadb41fe3fedbecdbc23c
6dec8ddf2cb1ce638613d38182cd6fa3d8320373
refs/heads/master
2020-05-18T07:51:02.983946
2019-05-12T06:52:34
2019-05-12T06:52:34
184,278,063
0
0
null
null
null
null
UTF-8
Python
false
false
586
py
import tensorflow as tf import numpy as np n_features=10 #row or say feauters or attribute n_dense_neuron=3 #layer #weight x=tf.placeholder(tf.float32,(None,n_features)) #print(x) #matrix data W = tf.Variable(tf.random_normal([n_features,n_dense_neuron])) #print(W) c = tf.Variable(tf.ones([n_dense_neuron])) #print(c) xW = tf.matmul(x,W) #print(xW) z = tf.add(xW,c) a=tf.sigmoid(z) init=tf.global_variables_initializer() with tf.Session() as session: session.run(init) layer_out=session.run(a,feed_dict={x:np.random.random([1,n_features])}) print(layer_out)
[ "G521784@mph.morpho.com" ]
G521784@mph.morpho.com
93f64826229da5dd4cba501017b9f57d118a48e5
339456d4f86b19bc5f44b8ba986944306e509e11
/python-methods/main-dani.py
cc9dd8a2e93e405204ce942bab6e12b1577dc296
[]
no_license
PepitoAndCo/Blip
d0567b64e7d9f78bd0219cad3dd4590a62f5bfc1
e756a2701d5e2ca1771f5d9bdf9f2b90ecc286c2
refs/heads/master
2021-06-16T20:56:09.448638
2017-05-06T08:46:28
2017-05-06T08:46:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
import tbContacts import re logBook = tbContacts.loadcsv('sample.csv'); # print('all',logBook.getAll()) # print('get 16473839095',logBook.get("6473839095")) # print('get all but 16473839095',logBook.getAllbut("16473839095")) # print('numbers',logBook.numbers()) textList = logBook.get("6472349313"); print(textList) a = []; for txt in textList: txt = textList[0]; words = txt.split(' '); s = 0; for word in words: print('word =',word); # print(' > ',(re.findall(r'[a-z]|[A-Z]',word))) # print(' > ',len(re.findall(r'[a-z]|[A-Z]',word))) # print(' > ',len(re.findall(r'[a-z]|[A-Z]',word))>0); # print(' > ',1*(len(re.findall(r'[a-z]|[A-Z]',word))>0)); # s=s+int(1*(len(re.findall(r'[a-z]|[A-Z]',word))>0)); # print('s =',s); # print('final s = ',s) # print(a)
[ "gaspard.witrand@epitech.eu" ]
gaspard.witrand@epitech.eu
aea61614eb4da3c08f9b3da9a334abbd9b207bc3
1b275405f78a6fbbff53a84cfa8fa2354ba19289
/mitushchapchap/url.py
e99d2411744a33eed18b02c6c79f16ee4d4e0dbf
[]
no_license
marianjoroge/mitumbachap
662002835071d0d949f59d04775d426f5411f74d
e62f2c88a26e9ea5173732eb4e6d8950f0f88177
refs/heads/master
2020-04-24T17:50:20.190935
2019-02-23T03:14:51
2019-02-23T03:14:51
172,160,945
1
0
null
null
null
null
UTF-8
Python
false
false
196
py
from django.urls import path from . import views urlpatterns = [ path('', views.post_list, name='post_list'), path('post-list/', views.mitushchapchapListView.as_view(), name='post-list') ]
[ "njorogemaria8@gmail.com" ]
njorogemaria8@gmail.com
b0d36ff01b81621a8a30b4260aee51ff0b7fd312
0ac1df08e2cb2a089e912e3237209e0fb683504a
/edgy/workflow/transition.py
d44537e832efd938ea119ed0b1b40d23812ce52a
[]
no_license
python-edgy/workflow
ee8654b5cd3931f26dc6c4c519bc865cba1864ca
b27edaa7a80bf7cd40d5a26df114058f3795dacd
refs/heads/master
2020-12-11T20:24:36.461621
2016-07-22T09:26:47
2016-07-22T09:26:47
51,644,998
1
0
null
2016-08-17T14:18:02
2016-02-13T12:28:06
Python
UTF-8
Python
false
false
3,284
py
# -*- coding: utf-8 -*- """ The smallest atom of ``edgy.workflow`` is a ``Transition``, which basically is a regular python callable with additional metadata to make the system aware of when it can be applied. """ from edgy.workflow.constants import WILDCARD from edgy.workflow.utils import issequence class Transition(object): """ Defines when and how to go from one state to another, eventually applying a user-defined side-effect while being applied. Example:: >>> t = Transition(name='sleep', source='awake', target='asleep') >>> class Person(object): ... state = 'awake' >>> me = Person() >>> t(me) >>> me.state 'asleep' This class can also be used as a decorator:: >>> @Transition(source='asleep', target='awake') >>> def wakeup(self, subject): ... print('HEY!') >>> wakeup(me) >>> me.state 'awake' A special wildcard source can make transitions work from any state. Just specify "*" as a transition source and you'll be able to transition from any state. """ # Tracks each time a Transition instance is created. Used to retain order. creation_counter = 0 # Transition handler. If absent, the transition is considered as "partial", and should be called with a handler # callable to be complete. handler = None def __init__(self, handler=None, name=None, source=None, target=None): self.source = tuple(source if issequence(source) else (source,)) self.target = target self._name = name # Increase the creation counter, and save our local copy. self.creation_counter = Transition.creation_counter Transition.creation_counter += 1 if handler: self.handler = handler or self.handler def __call__(self, *args, **kwargs): if self.handler: return self.__call_complete(*args, **kwargs) return self.__call_partial(*args, **kwargs) def __call_partial(self, handler): self.handler = handler return self def __call_complete(self, subject, *args, **kwargs): if not WILDCARD in self.source and not subject.state in self.source: raise RuntimeError( 'This transition cannot be executed on a subject in "{}" state, authorized source ' 'states are {}.'.format(subject.state, ', '.join(['"{}"'.format(state) for state in self.source])) ) try: retval = self.handler(self, subject, *args, **kwargs) subject.state = self.target except Exception as e: raise return retval @property def __name__(self): if self._name: return self._name if self.handler: return self.handler.__name__ return 'partial' # Alias that can be used in django templates, for example. name = __name__ def __repr__(self): return '<{}.{} object "{}" ({} to {}) at {}>'.format( type(self).__module__, type(self).__name__, self.__name__, '/'.join(self.source), self.target, hex(id(self)), )
[ "romain@dorgueil.net" ]
romain@dorgueil.net
4807df81987b6ae2a41ea2af20450135a6d02107
b414178038ebb3006660301e4c7741c5adc1abe0
/web/app/app/forms.py
ab3d7c8578957628c5529ae0444bfb4b2c2a123d
[]
no_license
KatyaShchuplova/openvpn-as-gui
9525cc759ab9d03cce83b65a5420fd69060faea5
fd8eb3dc2b400f47cc1decc0e94458584a484fd4
refs/heads/master
2021-05-15T21:51:57.538485
2018-03-10T12:09:46
2018-03-10T12:09:46
106,600,777
0
1
null
2018-03-10T12:09:48
2017-10-11T19:37:40
HTML
UTF-8
Python
false
false
1,498
py
from app import app, models, db from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, RadioField, SelectField from wtforms.ext.sqlalchemy.fields import QuerySelectField from wtforms.validators import InputRequired, Email, Length # форма для авторизации пользователей class LoginForm(FlaskForm): username = StringField('Username', validators=[InputRequired(), Length(min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=4, max=15)]) # форма для регистрации новых пользователей class RegisterForm(FlaskForm): username = StringField('Username', validators=[InputRequired(), Length(min=4, max=15)]) email = StringField('Email', validators=[InputRequired(), Email(message='Invalid email'), Length(max=50)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=4, max=15)]) # форма для генерации ключей class RegisterKeyForm(FlaskForm): unique_name = StringField('UniqueName', validators=[InputRequired(), Length(max=50)]) days = RadioField('Days', choices=[('90', '90 days'), ('180', '180 days'), ('360', '360 days')], default='180') def choice_query(): return models.Key.query # форма для удаления ключей class DeactivationKeyForm(FlaskForm): deactivation_key = QuerySelectField(query_factory=choice_query(), allow_blank=True, get_label="uniqueName")
[ "e.shchuplova@gmail.com" ]
e.shchuplova@gmail.com
78ab8469e9d3cb049c2360ccbb087a9236a83ec7
a1a3fc3511d3e2e29909411163bafd8932f87426
/tests/extension/dataflow_/regionadd_filter_enable/dataflow_regionadd_filter_enable.py
bef3f6dbb5ee6c07fe7b89b1e8dc44cb193f5f69
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
yongfu-li/veriloggen
25316c6f1a024669e7cb87f3491a1d3592356ea9
a6230da3350c6e4bb54e10a46ac855c24c27f17f
refs/heads/master
2021-01-23T11:50:43.050607
2017-09-04T08:30:06
2017-09-04T08:30:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,378
py
from __future__ import absolute_import from __future__ import print_function import sys import os # the next line can be removed after installation sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__))))))) from veriloggen import * import veriloggen.dataflow as dataflow def mkMain(): # input variiable x = dataflow.Variable('xdata', valid='xvalid', ready='xready') reset = dataflow.Variable( 'resetdata', valid='resetvalid', ready='resetready', width=1) enable = dataflow.Variable( 'enabledata', valid='enablevalid', ready='enableready', width=1) # dataflow definition z, v = dataflow.RegionAdd( x * x, 4, initval=0, enable=enable, reset=reset, filter=True) # set output attribute z.output('zdata', valid='zvalid', ready='zready') v.output('vdata', valid='vvalid', ready='vready') df = dataflow.Dataflow(z, v) m = df.to_module('main') # df.draw_graph() return m def mkTest(numports=8): m = Module('test') # target instance main = mkMain() params = m.copy_params(main) ports = m.copy_sim_ports(main) clk = ports['CLK'] rst = ports['RST'] xdata = ports['xdata'] xvalid = ports['xvalid'] xready = ports['xready'] resetdata = ports['resetdata'] resetvalid = ports['resetvalid'] resetready = ports['resetready'] enabledata = ports['enabledata'] enablevalid = ports['enablevalid'] enableready = ports['enableready'] zdata = ports['zdata'] zvalid = ports['zvalid'] zready = ports['zready'] vdata = ports['vdata'] vvalid = ports['vvalid'] vready = ports['vready'] uut = m.Instance(main, 'uut', params=m.connect_params(main), ports=m.connect_ports(main)) reset_done = m.Reg('reset_done', initval=0) reset_stmt = [] reset_stmt.append(reset_done(0)) reset_stmt.append(xdata(0)) reset_stmt.append(xvalid(0)) reset_stmt.append(enabledata(0)) reset_stmt.append(enablevalid(0)) reset_stmt.append(resetdata(0)) reset_stmt.append(resetvalid(0)) reset_stmt.append(zready(0)) simulation.setup_waveform(m, uut) simulation.setup_clock(m, clk, hperiod=5) init = simulation.setup_reset(m, rst, reset_stmt, period=100) nclk = simulation.next_clock init.add( Delay(1000), reset_done(1), nclk(clk), Delay(10000), Systask('finish'), ) def send(name, data, valid, ready, step=1, waitnum=10, send_size=20): fsm = FSM(m, name + 'fsm', clk, rst) count = m.TmpReg(32, initval=0) fsm.add(valid(0)) fsm.goto_next(cond=reset_done) for _ in range(waitnum): fsm.goto_next() fsm.add(valid(1)) fsm.goto_next() fsm.add(data(data + step), cond=ready) fsm.add(count.inc(), cond=ready) fsm.add(valid(0), cond=AndList(count == 5, ready)) fsm.goto_next(cond=AndList(count == 5, ready)) for _ in range(waitnum): fsm.goto_next() fsm.add(valid(1)) fsm.add(data(data + step), cond=ready) fsm.add(count.inc(), cond=ready) fsm.add(valid(0), cond=AndList(count == send_size, ready)) fsm.goto_next(cond=AndList(count == send_size, ready)) fsm.make_always() def receive(name, data, valid, ready, waitnum=10): fsm = FSM(m, name + 'fsm', clk, rst) fsm.add(ready(0)) fsm.goto_next(cond=reset_done) fsm.goto_next() yinit = fsm.current fsm.add(ready(1), cond=valid) fsm.goto_next(cond=valid) for i in range(waitnum): fsm.add(ready(0)) fsm.goto_next() fsm.goto(yinit) fsm.make_always() send('x', xdata, xvalid, xready, waitnum=10, send_size=100) receive('z', zdata, Ands(zvalid, vvalid), zready, waitnum=5) receive('v', vdata, Ands(zvalid, vvalid), vready, waitnum=5) # enable port enable_fsm = FSM(m, 'enable', clk, rst) enable_count = m.Reg('enable_count', 32, initval=0) enable_fsm.goto_next(cond=reset_done) enable_fsm_init = enable_fsm.current enable_fsm.add(enablevalid(1)) # always High enable_fsm.add(enable_count.inc(), cond=AndList(enablevalid, enableready)) enable_fsm.add(enabledata(1), cond=AndList( enablevalid, enableready, enable_count == 2)) enable_fsm.goto_next(cond=AndList( enablevalid, enableready, enable_count == 2)) enable_fsm.add(enabledata(0), cond=AndList(enablevalid, enableready)) enable_fsm.add(enable_count(0)) enable_fsm.goto(enable_fsm_init, cond=AndList(enablevalid, enableready)) enable_fsm.make_always() # reset port reset_fsm = FSM(m, 'reset', clk, rst) reset_count = m.Reg('reset_count', 32, initval=0) reset_fsm.goto_next(cond=reset_done) reset_fsm_init = reset_fsm.current reset_fsm.add(resetvalid(1)) # always High reset_fsm.add(reset_count.inc(), cond=AndList(resetvalid, resetready)) #reset_fsm.add( resetdata(1), cond=AndList(resetvalid, resetready, reset_count==2) ) reset_fsm.add(resetdata(0), cond=AndList( resetvalid, resetready, reset_count == 2)) reset_fsm.goto_next(cond=AndList(resetvalid, resetready, reset_count == 2)) reset_fsm.add(resetdata(0), cond=AndList(resetvalid, resetready)) reset_fsm.add(reset_count(0)) reset_fsm.goto(reset_fsm_init, cond=AndList(resetvalid, resetready)) reset_fsm.make_always() m.Always(Posedge(clk))( If(reset_done)( If(AndList(xvalid, xready))( Systask('display', 'xdata=%d', xdata) ), If(AndList(zvalid, zready))( Systask('display', 'zdata=%d', zdata) ), If(AndList(vvalid, vready))( Systask('display', 'vdata=%d', vdata) ) ) ) return m if __name__ == '__main__': test = mkTest() verilog = test.to_verilog('tmp.v') print(verilog) # run simulator (Icarus Verilog) sim = simulation.Simulator(test) rslt = sim.run() # display=False #rslt = sim.run(display=True) print(rslt) # launch waveform viewer (GTKwave) # sim.view_waveform() # background=False # sim.view_waveform(background=True)
[ "shta.ky1018@gmail.com" ]
shta.ky1018@gmail.com
8053d37ecac9ad02b42e97ea9b0bbbbb3dd4a690
a871507b02337a12e4ad2abe900ce5250146d0de
/pachong.py
9ae727f1572d88abc7872572c4c635f3b343dcbc
[]
no_license
onlinesen/gfxtest
3263a7039ade21e44025939ad6a0ec5eb8c1c308
8ba7ba858d0a0ae5ce108047b3b857ba69424f2b
refs/heads/master
2020-03-28T05:39:13.115627
2018-09-07T07:45:02
2018-09-07T07:45:02
147,789,162
0
0
null
null
null
null
UTF-8
Python
false
false
1,821
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import urllib2, urllib import cookielib rooturl=r"http://osgroup.jstinno.com:8082/encrypt/key/encrypt" url = r'http://ttms.tinno.com/auth/login?next=%2F' url1 = r'http://ttms.tinno.com/tools/test-tools-version/24/' import requests session = requests.Session() session.headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36' } session.get(url) r = session.get('http://ttms.tinno.com/tools/test-tools-version/24/') login_data = { 'username': 'lin.shen', 'password': 'lin.shen', 'bg_color': 'true' } session.post(url, data=login_data) res = session.get(url1) filename = 'cookie.txt' #声明一个MozillaCookieJar对象实例来保存cookie,之后写入文件 cookie = cookielib.MozillaCookieJar(filename) opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie)) postdata = urllib.urlencode({ 'username': 'lin.shen', 'password': 'lin.shen', 'bg_color': 'true' }) #登录教务系统的URL loginUrl =url #模拟登录,并把cookie保存到变量 result = opener.open(loginUrl,postdata) #保存cookie到cookie.txt中 cookie.save(ignore_discard=True, ignore_expires=True) #利用cookie请求访问另一个网址,此网址是成绩查询网址 gradeUrl = url1 #请求访问成绩查询网址 result = opener.open(gradeUrl) #print result.read() import requests import json data={"keyString":"45GUAIW44LTOEE7H"} r=requests.post(rooturl,data=data) #在一些post请求中,还需要用到headers部分,此处未加,在下文中会说到 c= r.json().get("encryptString") print type(c.encode()) print (r.json().get("encryptString")),"encryptString" in (r.content),r.content
[ "lin.shen@tinno.com" ]
lin.shen@tinno.com
cac5fc6ab5693b393eca31f726948adb1534be15
cc6ab068e4b0374d593e89010a91493cacb3b6be
/Practice_Exercises/007_no_idea_MED.py
4bb81fef821ab19df92f7988387e9bd024f2a136
[]
no_license
EugeneMondkar/hackerrank-code
7671a09ca33046800afdd91fe0f1ee098b6eba2b
7578fc278f8caf275e37815ee1e0f3ce7af6e03b
refs/heads/main
2023-08-24T00:17:25.457984
2021-10-02T23:00:02
2021-10-02T23:00:02
409,016,532
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
# Problem Link: https://www.hackerrank.com/challenges/no-idea/problem n,m = tuple(map(int, input().split())) arr = list(map(int, input().split())) set_a = set(map(int, input().split())) set_b = set(map(int, input().split())) happiness_score = 0 # My Original Solution # for x in arr: # if x in set_a: # happiness_score += 1 # if x in set_b: # happiness_score -= 1 # Alternative Solution happiness_score = sum([(x in set_a) - (x in set_b) for x in arr]) print(happiness_score)
[ "yatinm@gmail.com" ]
yatinm@gmail.com
66b3bc9dc0d840c47e8a9166f415c12b9fb029aa
62f26a0417e3e2ba72a0b0736a6ae82c66b06719
/Solo-Yasser Lachachi/Toolbox.py
05eaf9575a6f89fbf6560c80d59b598e2c882807
[]
no_license
EgyAlg/Projet
288d62b114a1f80e7968d181aeeddf63478a77a0
97ce93ee22854fd5c4dd09f1f0ed36052a0ee323
refs/heads/master
2021-01-11T20:32:10.238104
2017-05-01T20:07:59
2017-05-01T20:07:59
79,136,061
0
0
null
null
null
null
UTF-8
Python
false
false
4,211
py
from soccersimulator import Strategy from soccersimulator import SoccerTeam, Simulation from soccersimulator import SimuGUI,show_state,show_simu from soccersimulator import Vector2D, SoccerState, SoccerAction from soccersimulator import Simulation, SoccerTeam, Player, show_simu from soccersimulator import Strategy from soccersimulator.settings import * from Toolbox import * import math class Toolbox(object): def __init__(self,state,id_team,id_player): self.state = state self.id_team = id_team self.id_player = id_player self.key = (id_team, id_player) #POSITIONS def my_position(self): return self.state.player_state(self.key[0],self.key[1]).position def my_positionX(self): return self.state.player_state(self.key[0],self.key[1]).position.x def my_positionY(self): return self.state.player_state(self.key[0],self.key[1]).position.y def position_player1(self): return self.state.player_state(self.id_team,0).position def position_player2(self): return self.state.player_state(self.id_team,1).position def ball_position(self): return self.state.ball.position def ball_positionX(self): return self.state.ball.position.x def ball_positionY(self): return self.state.ball.position.y def position_but_adv(self): if (self.id_team == 1): return Vector2D(GAME_WIDTH,GAME_HEIGHT/2) else : return Vector2D(0,GAME_HEIGHT/2) def getX_position_but_adv(self): if (self.id_team == 1): return GAME_WIDTH else : return 0 def position_mon_but(self): if (self.id_team == 1): return Vector2D(0,GAME_HEIGHT/2) else : return Vector2D(GAME_WIDTH,GAME_HEIGHT/2) def distanceMonBut(self): return (self.ball_prediction()-self.position_mon_but()).norm def distanceAuButAdv(self): return (self.ball_prediction()-self.position_but_adv()).norm def distanceAuBallon(self): return (self.ball_prediction()-self.my_position()).norm #DEPLACEMENTS def fonceur(self,me): return me.aller(me.ball_prediction())+me.shoot(me.position_but_adv()) def ball_vitesse(self): return self.state.ball.vitesse def ball_prediction(self): if (self.ball_vitesse().norm > 2 or self.ball_vitesse() < -2): return self.ball_position() + self.ball_vitesse()*10 else: return self.ball_position() def aller(self,p): return SoccerAction(p-self.my_position(),Vector2D()) def get_position_def(self): if (self.id_team == 1): return self.aller(Vector2D(7,GAME_HEIGHT/2)) else : return self.aller(Vector2D(GAME_WIDTH-7,GAME_HEIGHT/2)) #ACTIONS def shoot(self,p): return SoccerAction(Vector2D(), p-self.my_position()) def mini_shoot(self, p): return SoccerAction(Vector2D(),(p-self.my_position())*0.040) def passe(self): if (self.id_player == 0): return SoccerAction(Vector2D(),(self.position_player2()-self.my_position())*0.125) else : return SoccerAction(Vector2D(),(self.position_player1()-self.my_position())*0.125) def laisse(self): if (self.id_player == 0): if(self.distanceAuBallon()>(self.ball_prediction()-self.position_player2()).norm): return self.trace() else : return self.aller(self.ball_prediction()) else: if(self.distanceAuBallon()>(self.ball_prediction()-self.position_player1()).norm): return self.trace() else : return self.aller(self.ball_prediction()) def trace(self): if (self.id_team == 1): return self.aller(Vector2D(self.ball_positionX()+30,self.my_positionY())) else: return self.aller(Vector2D(self.ball_positionX()-30,self.my_positionY()))
[ "yasser_lachachi@hotmail.fr" ]
yasser_lachachi@hotmail.fr
507a2d4956f10161437960274d64c27c47843770
50921ecf3b98151180e70c8e86a0cc374393fdff
/examples/demo_beholder.py
067c6dc7c959b8a9996424707fa892db1d51693c
[ "MIT" ]
permissive
lanpa/tensorboardX
bd7ca7bd256c5cff628eef53ab3f2b6ee8f65aeb
092fcb08f295a483ecd4808407d4c5c39b7a369f
refs/heads/master
2023-09-06T09:53:03.203099
2023-09-03T09:26:33
2023-09-03T09:26:33
94,218,531
5,884
814
MIT
2023-09-03T09:39:59
2017-06-13T13:54:19
Python
UTF-8
Python
false
false
1,783
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple MNIST classifier to demonstrate features of Beholder. Based on tensorflow/examples/tutorials/mnist/mnist_with_summaries.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorboardX.beholder as beholder_lib import time from collections import namedtuple LOG_DIRECTORY = '/tmp/beholder-demo' tensor_and_name = namedtuple('tensor_and_name', 'tensor, name') def beholder_pytorch(): for i in range(1000): fake_param = [tensor_and_name(np.random.randn(128, 768, 3), 'test' + str(i)) for i in range(5)] arrays = [tensor_and_name(np.random.randn(128, 768, 3), 'test' + str(i)) for i in range(5)] beholder = beholder_lib.Beholder(logdir=LOG_DIRECTORY) beholder.update( trainable=fake_param, arrays=arrays, frame=np.random.randn(128, 128), ) time.sleep(0.1) print(i) if __name__ == '__main__': import os if not os.path.exists(LOG_DIRECTORY): os.makedirs(LOG_DIRECTORY) print(LOG_DIRECTORY) beholder_pytorch()
[ "huang.dexter@gmail.com" ]
huang.dexter@gmail.com
87cc2abd3c13a2d90fd462c57af819701673b894
7c5f9f4a237669d9acc4b59711ac1cf91ba71f26
/torch/_dynamo/guards.py
c16c48515857ab7f942a58f2c98d68360e317e40
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
colesbury/pytorch
4924df03a4aaf88b51ff9d2c5572ac35a30f26be
d70f9c7888dc488304010a554d8b56a505919bda
refs/heads/master
2023-08-27T22:11:15.257393
2023-03-29T20:17:06
2023-03-29T20:17:10
79,366,698
1
0
null
2018-08-09T13:54:22
2017-01-18T17:47:38
Python
UTF-8
Python
false
false
33,502
py
import builtins import collections import logging import math import os import re import types import weakref from inspect import currentframe, getframeinfo from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union from weakref import ReferenceType import torch from torch._guards import ( DuplicateInputs, Guard, GuardBuilderBase, GuardEnvExpr, GuardSource, Source, ) from torch.fx.experimental.symbolic_shapes import SYMPY_INTERP from . import config, convert_frame, mutation_guard from .eval_frame import set_guard_error_hook, set_guard_fail_hook from .exc import unimplemented from .types import GuardedCode, GuardFail, GuardFn # noqa: F401 from .utils import ( dict_const_keys, dict_const_keys_repr, dict_param_key_ids, guard_failures, HAS_NUMPY, istype, np, orig_code_map, rename_implicit, tensor_always_has_static_shape, tensor_static_reason_to_message, tuple_iterator_getitem, tuple_iterator_len, ) log = logging.getLogger(__name__) TensorGuards = torch._C._dynamo.guards.TensorGuards check_obj_id = torch._C._dynamo.guards.check_obj_id check_type_id = torch._C._dynamo.guards.check_type_id CLOSURE_VARS = collections.OrderedDict( [ ("___check_type_id", check_type_id), ("___check_obj_id", check_obj_id), ("___is_grad_enabled", torch.is_grad_enabled), ("___odict_getitem", collections.OrderedDict.__getitem__), ("___dict_param_key_ids", dict_param_key_ids), ("___dict_const_keys", dict_const_keys), ("___tuple_iterator_len", tuple_iterator_len), ("___tuple_iterator_getitem", tuple_iterator_getitem), ("__math_isnan", math.isnan), ("inf", float("inf")), ] ) def strip_function_call(name): """ "___odict_getitem(a, 1)" => "a" """ m = re.search(r"([a-z0-9_]+)\(([^(),]+)[^()]*\)", name) if m and m.group(1) != "slice": return strip_function_call(m.group(2)) return strip_getattr_getitem(name) def strip_getattr_getitem(name): """ "a[1]" => "a" "a.foo" => "a" """ return re.split(r"[.\[]", name)[0] class GuardBuilder(GuardBuilderBase): def __init__( self, id_ref: Callable[[Type[object]], str], source_ref: Callable[[Source], str], scope: Optional[Dict[str, object]], check_fn_manager: "CheckFunctionManager", renames=True, ): self.id_ref = id_ref self.source_ref = source_ref if scope: if renames: scope = {rename_implicit(k): v for k, v in scope.items()} else: scope = dict() self.scope: Dict[str, object] = scope self.scope["__builtins__"] = builtins.__dict__.copy() for ( name, package_module, ) in torch.package.package_importer._package_imported_modules.items(): name = name.replace(">", "_").replace("<", "_").replace(".", "_dot_") # Write the package module into the scope so that we can import it self.scope["__builtins__"][name] = package_module # type: ignore[index] # Write the demangled name to the scope so that we can use it self.scope[name] = package_module self.argnames: List[str] = [] # Code is python expression strings generated for each guard self.code: List[str] = [] # shape_env_code is only used by local_builder and is used for # shape env code. This exists only because we need to make sure # shape env guards get run after tensor match guards (since the # tensor match guards make sure we actually have tensors) self.shape_env_code: List[str] = [] # [Note - On Eager Tensor Guards] # Most of the time, we generate Python code in a guard to directly # check various properties. However, tensors are a bit special; # it is too slow to check their properties one-by-one in Python. # Instead, there is a C++ function TensorGuards.check which takes # all of the tensor arguments and checks them all against compile-time # examples entirely in C++. Thus, every time we process a # TENSOR_MATCH guard, we just add another entry to # tensor_check_names/tensor_check_examples, saying "for this local, # check it against this example", and it all ends up getting # swept up into a single call to ___check_tensors. Invariant: # len(tensor_check_names) == len(tensor_check_examples). self.tensor_check_names: List[str] = [] self.tensor_check_examples: List[torch.Tensor] = [] self.check_fn_manager: CheckFunctionManager = check_fn_manager # Warning: use this with care! This lets you access what the current # value of the value you are guarding on is. You probably don't want # to actually durably save this value though (because it's specific # to this frame!) Instead, you should be reading out some property # (like its type) which is what you permanently install into the # guard code. def get(self, name: str) -> Any: return eval(name, self.scope, CLOSURE_VARS) # Registers the usage of the source name referenced by the # string (or stored in the Guard) as being guarded upon. It's important # to call this before generating some code that makes use of 'guard', # because without this call, we won't actually bind the variable # you reference in the actual guard closure (oops!) def arg_ref(self, guard: Union[str, Guard]) -> str: name: str if isinstance(guard, str): name = guard else: name = guard.name base = strip_getattr_getitem(strip_function_call(name)) if base not in self.argnames: if re.match(r"^\d+$", base): log.warning(f"invalid var name: {guard}") self.argnames.append(base) return name def TYPE_MATCH(self, guard: Guard): # ___check_type_id is same as `id(type(x)) == y` t = type(self.get(guard.name)) obj_id = self.id_ref(t) code = f"___check_type_id({self.arg_ref(guard)}, {obj_id})" self._produce_guard_code(guard, [code]) def BOOL_FALSE(self, guard: Guard): # Guard on the runtime value being 'False', # can be faster than seemingly equivalent checks like DICT_KEYS for empty dict # # WARNING: this guard is not safe to use generally. It only works if the runtime # value is of a type that supports bool(), and some types e.g. Tensor do not. # Only use this guard in cases you can guarantee the runtime type will be friendly. # (e.g. Specialized NNModule with mutation protection via setattr) # # Why not simply check the runtime type inside this guard? It's slow enough to defeat # the purpose of using this guard, which itself is supposed to be a faster alternative # to DICT_KEYS. ref = self.arg_ref(guard) code = f"not {ref}" self._produce_guard_code(guard, [code]) def ID_MATCH(self, guard: Guard): # ___check_obj_id is same as `id(x) == y` m = re.match(r"^type\((.+)\)$", guard.name) if m: # optional optimization to produce cleaner/faster guard code return self.TYPE_MATCH( Guard(m.group(1), guard.source, GuardBuilder.TYPE_MATCH) ) code = f"___check_obj_id({self.arg_ref(guard)}, {self.id_ref(self.get(guard.name))})" self._produce_guard_code(guard, [code]) def NAME_MATCH(self, guard: Guard): obj = self.get(guard.name) code = f"{self.arg_ref(guard)}.__name__ == {obj.__name__}" self._produce_guard_code(guard, [code]) def HASATTR(self, guard: Guard): m = re.match(r"^(.*)[.]([a-zA-Z0-9_]+)$", guard.name) assert m, f"invalid hasattr check {guard.name}" base, attr = m.group(1, 2) ref = self.arg_ref(base) val = hasattr(self.get(base), attr) code = None if val: code = f"hasattr({ref}, {attr!r})" else: code = f"not hasattr({ref}, {attr!r})" self._produce_guard_code(guard, [code], provided_guarded_object=self.get(base)) def EQUALS_MATCH(self, guard: Guard): ref = self.arg_ref(guard) val = self.get(guard.name) t = type(val) np_types = ( ( np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float16, np.float32, np.float64, ) if HAS_NUMPY else () ) assert istype( val, ( int, float, bool, type(None), str, type, list, tuple, set, slice, frozenset, range, torch.Size, torch.device, torch.dtype, ) + np_types, ), t.__name__ if istype(val, (torch.device, torch.dtype)): # TODO(jansel): is this slow? perhaps optimize it code = [f"str({ref}) == {str(val)!r}"] self._produce_guard_code(guard, code) return # Special case for nan because float("nan") == float("nan") evaluates to False if istype(val, float) and math.isnan(val): code = list() code.append(f"___check_type_id({ref}, {self.id_ref(t)})") code.append(f"__math_isnan({ref})") self._produce_guard_code(guard, code) return code = list() # If matching equality against list/tuple, we must also check that # the internal types match. (TODO: what about nested lists?) if istype(val, (list, tuple)): # NB: LIST_LENGTH takes care of the outer __check_type_id test self.LIST_LENGTH(guard) for idx, elem in enumerate(val): code.append( f"___check_type_id({ref}[{idx}], {self.id_ref(type(elem))})" ) else: # Add type check to prevent equality check between tensor and non-tensor. code.append(f"___check_type_id({ref}, {self.id_ref(t)})") if istype(val, torch.Size): val = tuple(val) # TODO: It feels like it would be better to just implement our own # equality test in C that handles all of the necessary type checking # and NaN tests code.append(f"{ref} == {val!r}") self._produce_guard_code(guard, code) def CONSTANT_MATCH(self, guard: Guard): val = self.get(guard.name) if istype(val, (bool, type(None))): self.ID_MATCH(guard) else: self.EQUALS_MATCH(guard) def NN_MODULE(self, guard: Guard): self.ID_MATCH(guard) ref = self.arg_ref(guard) val = self.get(guard.name) def setup_guard(): assert istype(val.training, bool) self.code.append(f"{ref}.training == {val.training}") if hasattr(val, "training"): # There are cases where a monkeypatched object has a guard made between __new__ and __init__ setup_guard() else: unimplemented(f"Guard setup for uninitialized class {type(val)}") def FUNCTION_MATCH(self, guard: Guard): """things like torch.add and user defined functions""" if guard.is_local(): return self.ID_MATCH(guard) def BUILTIN_MATCH(self, guard: Guard): return self.FUNCTION_MATCH(guard) def PYMODULE_MATCH(self, guard: Guard): return self.FUNCTION_MATCH(guard) def LIST_LENGTH(self, guard): ref = self.arg_ref(guard) value = self.get(guard.name) t = type(value) code = list() code.append(f"___check_type_id({ref}, {self.id_ref(t)})") code.append(f"len({ref}) == {len(value)}") self._produce_guard_code(guard, code) def TUPLE_ITERATOR_LEN(self, guard): ref = self.arg_ref(guard) value = self.get(guard.name) t = type(value) code = list() code.append(f"___check_type_id({ref}, {self.id_ref(t)})") code.append(f"___tuple_iterator_len({ref}) == {tuple_iterator_len(value)}") self._produce_guard_code(guard, code) def DICT_KEYS(self, guard): ref = self.arg_ref(guard) value = self.get(guard.name) t = type(value) code = list() code.append(f"___check_type_id({ref}, {self.id_ref(t)})") param_key_ids = set(dict_param_key_ids(value)) const_keys = set(dict_const_keys(value)) const_keys_repr = dict_const_keys_repr(const_keys) if param_key_ids: code.append(f"___dict_param_key_ids({ref}) == {param_key_ids!r}") code.append(f"___dict_const_keys({ref}) == {const_keys_repr}") else: code.append(f"set({ref}.keys()) == {const_keys_repr}") self._produce_guard_code(guard, code) def WEAKREF_ALIVE(self, guard): self._produce_guard_code(guard, [f"{self.arg_ref(guard)} is not None"]) def NN_MODULE_PARAM_NAMES(self, guard): ref = self.arg_ref(guard) value = self.get(guard.name) t = type(value) keys = {k for k, v in value.named_parameters()} code = list() code.append(f"___check_type_id({ref}, {self.id_ref(t)})") code.append(f"{{k for k, v in {ref}.named_parameters()}} == {keys!r}") self._produce_guard_code(guard, code) def ODICT_KEYS(self, guard): """OrderedDict keys match""" ref = self.arg_ref(guard) value = self.get(guard.name) t = type(value) code = list() code.append(f"___check_type_id({ref}, {self.id_ref(t)})") code.append(f"str({ref}.keys()) == {str(value.keys())!r}") self._produce_guard_code(guard, code) def OBJECT_MUTATION(self, guard: Guard): mutation_guard.watch(self.get(guard.name), self.check_fn_manager) def GRAD_MODE(self, guard: Guard): """Guard on the initial grad state""" assert guard.name == "" assert guard.source is GuardSource.GLOBAL code = None if convert_frame.initial_grad_state: code = "___is_grad_enabled()" else: code = "not ___is_grad_enabled()" self._produce_guard_code(guard, [code]) def SHAPE_ENV(self, guard: Guard): # Let's handle ShapeEnv guards. To do this, we will resolve # shape variables to sources from tracked_fakes. This must happen after # tensor checks. assert guard.name == "" output_graph = self.check_fn_manager.output_graph # NB: self.output_graph can be None in the debug_nops tests fs = output_graph.tracked_fakes constraint_inputs = [a.constraint_dims for a in fs] guards = output_graph.shape_env.produce_guards( [a.fake for a in fs], [a.source for a in fs], constraint_inputs=constraint_inputs, source_ref=self.source_ref, ) for shape_guard in guards: self._produce_guard_code(guard, [shape_guard], shape_env=True) def TENSOR_MATCH(self, guard: Guard): if guard.is_nn_module(): self.ID_MATCH(guard) else: value = self.get(guard.name) assert isinstance(value, torch.Tensor) tensor_name = self.arg_ref(guard) # [Note - On Export Tensor Guards] # # In eager mode, tensor guards are evaluated through C++, in guards.cpp # see [Note - On Eager Tensor Guards] for more info. # # In export mode, we instead maintain parallel logic between C++ and python # here, with an exception of checking the dispatch key - with the idea that a dispatch key # is an entirely runtime notion that would make no sense to keep in an exported graph. # # Now, this idea is okay, but to paraphrase @ezyang, this mental model is sufficient for now, although # not entirely true. # For example, suppose one of the input tensors had the negative dispatch key. # You should end up with a graph that is specialized for tensors that have a negative dispatch key. # If you allow a Tensor that does NOT have this bit set, you will accidentally run it "as if" it were negated. # Now, negative key only shows up for complex numbers, and most likely, the exported to target doesn't # support this feature at all, but the point stands that :some: tensor state only shows up on dispatch key. # TODO(voz): Either populate a dispatch_key check into the guards, or error on users passing in an unsupported # subset of keys during export. # # The list of tensor fields and calls we care about can be found in `terms` below. # TODO(voz): We are missing storage offset in all our tensor guards? code: List[str] = list() if self.check_fn_manager.output_graph.export: self.TYPE_MATCH(guard) terms = [ "dtype", "device.type", "device.index", "requires_grad", "ndimension()", ] if not config.dynamic_shapes: terms.append("stride()") # We need to do this to avoid the torch.Size type in guards code.append(f"{tensor_name}.shape == {tuple(value.shape)}") for term in terms: real_value = self.get(tensor_name + "." + term) code.append(f"{tensor_name}.{term} == {real_value}") else: self.tensor_check_names.append(tensor_name) self.tensor_check_examples.append(value) # A frame is valid for reuse with dynamic dimensions if the new dynamic dimensions are a # strict subset of the old. # # The logic here is as follows: # # Every mark_dynamic directive is a user-knows-best command, which can incur a raise at tracing # time if we find guards that run counter to the user directive. # If compiling a frame with explicit dynamic dims X could cause an exception, we MUST NOT skip compiling. # # If the frame is compiled with any marked dynamic indices, let's call that set of indices X. # When we evaluated inputs against the guards, given the same tensor with potentially new dynamic indices, # let's call that set Y. # # When X is a strict subset of Y, the potential new raises introduced during compilation are a strict subset # of the raises we # could have encountered. The frame compiled under Y is safe to reuse with X. # When X is not a strict subset of Y, the non-overlapping new elements of X may cause new raises, and the # frame is no longer fit for reuse. # # This is the case because any newly introduced mark_dynamic directives have a chance of # raising, failing compilation. Any existing mark_dynamic indices that we lost are safe to lose # as all it means is that we have gotten rid of a user directive which could incur a raise at compile time. # In the case of when there is no Y, that is, there are no dynamic indices marked at all, the frame is safe # to reuse # as an empty set is a safe degeneration - that is, a strictly static tensor is always valid for a frame # compiled with that same # tensor + more onerous user directives. assert guard.source is not None static, reason = tensor_always_has_static_shape(value, is_tensor=True) if not static: if hasattr(value, "_dynamo_dynamic_indices"): code.append( f"({tensor_name}._dynamo_dynamic_indices.issubset({value._dynamo_dynamic_indices})) if hasattr({tensor_name}, '_dynamo_dynamic_indices') else True" # noqa: B950 ) # In the case of us not having any dynamic dimension indices, we compiled the frame with no chance of # raising for this specific tensor - and any inputs with more dynamic user directives specified must be recompiled. else: code.append( f"hasattr({tensor_name}, '_dynamo_dynamic_indices') == False" ) else: assert not hasattr( value, "_dynamo_dynamic_indices" ), f"Illegal Unreachable state, guard accumulation for dynamic tensor that should have been static. Initial static message: {tensor_static_reason_to_message(reason)}" # noqa: B950 if len(code) > 0: self._produce_guard_code(guard, code) # A util that appends guarded code, or, in the case of export, adds data onto guards def _produce_guard_code( self, guard, code_list, provided_guarded_object=None, shape_env=False ): # WARNING: It is important that cur_frame/caller do NOT stay in # the current frame, because they will keep things live longer # than they should. See TestMisc.test_release_module_memory cur_frame = currentframe() assert cur_frame is not None caller = cur_frame.f_back del cur_frame assert caller is not None func_name = getframeinfo(caller)[2] del caller # We use func_name for export, so might as well get a nice defensive check out of it assert func_name in dir( self.__class__ ), f"_produce_guard_code must be called from inside GuardedCode. Called from {func_name}" if shape_env: self.shape_env_code.extend(code_list) else: self.code.extend(code_list) # Not all guards have names, some can be installed globally (see asserts on HAS_GRAD) if provided_guarded_object is None: name_valid = guard.name is not None and guard.name != "" guarded_object = self.get(guard.name) if name_valid else None else: guarded_object = provided_guarded_object guarded_object_type = ( weakref.ref(type(guarded_object)) if guarded_object is not None else None ) obj_ref = None if hasattr(guarded_object.__class__, "__weakref__"): obj_ref = weakref.ref(guarded_object) guard.set_export_info( func_name, guarded_object_type, code_list, obj_ref, ) # NB: Naively, you'd expect this to only be a function that produces # the callable that constitutes the guard. However, there is some # delicate handling for invalidating this check function when the # locals/globals get invalidated, so there's some extra state # we have to hold in this manager class. # # TODO: this object has reference cycle with itself, via check_fn which # references back to CheckFunction via ___guarded_code in closure_vars. # Ideally, there shouldn't be any ref cycle so that guards are # promptly disposed of. class CheckFunctionManager: def __init__( self, output_graph=None, f_locals: Optional[Dict[str, object]] = None, f_globals: Optional[Dict[str, object]] = None, guard_fail_fn: Optional[Callable[[Tuple[str, str]], None]] = None, ): guards = output_graph.guards if output_graph else None self.valid = True self._weakrefs: List["ReferenceType[object]"] = [] self._seen_ids: Set[int] = set() self.output_graph = output_graph # Note: right overrides left def combine_scopes(left, right): if left is None: return right if right is None: return left return {**left, **right} def source_ref(source): guard_source = source.guard_source() if guard_source is GuardSource.CONSTANT: # No need to track constants return source.name() builder = guard_source.select(w_local(), w_global()) assert builder is not None return builder.arg_ref(source.name()) local_builder = GuardBuilder( self.id_ref, source_ref, combine_scopes(f_globals, f_locals), self, renames=True, ) global_builder = GuardBuilder( self.id_ref, source_ref, f_globals, self, renames=False ) # source_ref can cause a cycle, make sure we break it with weakref w_local = weakref.ref(local_builder) w_global = weakref.ref(global_builder) for guard in sorted(guards or [], key=Guard.sort_key): if ( not config.guard_nn_modules and guard.is_nn_module() # Default func args must be guarded on. # TODO: we could make use of 'DefaultsSource' and offer a .guard.is_defaults() API and "__defaults__" not in guard.name and "__kwdefaults__" not in guard.name and (config.skip_nnmodule_hook_guards or "hooks" not in guard.name) ): continue guard.create(local_builder, global_builder) self.check_fn = self.compile_check_fn( local_builder, global_builder, guards, guard_fail_fn ) self._seen_ids.clear() def compile_check_fn( self, local_builder, global_builder, guards_out, guard_fail_fn ): assert not (set(local_builder.argnames) & set(global_builder.argnames)) # see parallel handling of ".0" / "___implicit0" in _eval_frame.c largs = [a for a in local_builder.scope.keys() if a == "___implicit0"] largs += [a for a in local_builder.argnames if a != "___implicit0"] largs += ["**___kwargs_ignored"] args = ",".join(largs) code_parts = ( ["___guarded_code.valid"] + local_builder.code + global_builder.code ) # TODO(whc) maybe only the 'check_tensors' one is ambiguous? if so we can be less general.. verbose_code_parts = ( ["___guarded_code.valid"] + local_builder.code + global_builder.code ) tensor_check_names = ( local_builder.tensor_check_names + global_builder.tensor_check_names ) check_tensors_fn = None check_tensors_verbose_fn = None if tensor_check_names: assert ( not self.output_graph.export ), "Illegal to set tensor_check_names in export." tensor_check_examples = ( local_builder.tensor_check_examples + global_builder.tensor_check_examples ) tensor_guards = TensorGuards( *tensor_check_examples, dynamic_shapes=config.dynamic_shapes ) check_tensors_fn = tensor_guards.check check_tensors_verbose_fn = tensor_guards.check_verbose code_parts.append(f"___check_tensors({', '.join(tensor_check_names)})") verbose_args = ", ".join( tensor_check_names + ["tensor_check_names=tensor_check_names"] ) verbose_code_parts.append(f"___check_tensors_verbose({verbose_args})") aotautograd_guards: List[GuardEnvExpr] = ( self.output_graph.tracing_context.guards_context.aotautograd_guards if self.output_graph else [] ) for guard in aotautograd_guards: if isinstance(guard, DuplicateInputs): source_a = guard.input_source_a source_b = guard.input_source_b code_part = f"{source_a.name()} is {source_b.name()}" code_parts.append(code_part) verbose_code_parts.append(code_part) else: raise RuntimeError(f"Unknown GuardEnvExpr: {guard}") code_parts.extend(local_builder.shape_env_code) verbose_code_parts.extend(local_builder.shape_env_code) assert not global_builder.shape_env_code code = " and ".join(unique(code_parts)) closure_vars = collections.OrderedDict( [ ("___guarded_code", self), ("___check_tensors", check_tensors_fn), ("___check_tensors_verbose", check_tensors_verbose_fn), ("tensor_check_names", tensor_check_names), ] + list(SYMPY_INTERP.items()) ) closure_vars.update(CLOSURE_VARS) py_code = f"""\ def ___make_guard_fn({','.join(closure_vars.keys())}): return lambda {args}: {code} """ if os.environ.get("TORCHDYNAMO_PRINT_GUARDS", None) == "1": print("GUARDS", code) set_guard_fail_hook(guard_fail_hook) out: Dict[str, Any] = dict() # print("RUNNING PY CODE", py_code) exec(py_code, global_builder.scope, out) guard_fn = out["___make_guard_fn"](*closure_vars.values()) guard_fn.closure_vars = closure_vars # TODO(whc) maybe '.code_parts' was only kept around for the guard callback? so we don't need both guard_fn.args = largs guard_fn.code_parts = code_parts guard_fn.verbose_code_parts = verbose_code_parts guard_fn.global_scope = global_builder.scope guard_fn.guard_fail_fn = guard_fail_fn return guard_fn def invalidate(self, ref): # A weakref is no longer valid, self.check_fn should return false self.valid = False def id_ref(self, obj): """add a weakref, return the id""" try: if id(obj) not in self._seen_ids: self._weakrefs.append(weakref.ref(obj, self.invalidate)) self._seen_ids.add(id(obj)) except TypeError: pass # cannot weakref bool object return id(obj) stashed_first_fail_reason = None def guard_fail_hook( guard_fn: GuardFn, code: types.CodeType, f_locals: Dict[str, object], index: int, last: bool, ) -> None: """ called whenever a guard fails. """ first = index == 0 global stashed_first_fail_reason # Don't waste time computing the fail reason for guards we aren't going to report out. if not guard_fn.guard_fail_fn and not (first or last): return scope = {rename_implicit(k): v for k, v in f_locals.items()} scope.update(guard_fn.closure_vars) reason = None for part in guard_fn.verbose_code_parts: fail_reason = eval(part, guard_fn.global_scope, scope) # TODO(whc) hacky for now as not every 'part' in guard_fn.verbose_code_parts # is updated to return a string explaining the failure. if isinstance(fail_reason, str): reason = fail_reason break elif isinstance(fail_reason, bool) and not fail_reason: reason = part break if first: stashed_first_fail_reason = reason if not last: return # Technically, we're failing our last guard, which is our oldest guard due to the # eval_frame.c logic that moves newest frames to head, but for logging purposes # it's more useful to see the 'first' failure (if we never got a hit) since it's # likely not yet been logged as a failure reason in a case of repeating failures. assert stashed_first_fail_reason guard_failures[orig_code_map[code]].append(stashed_first_fail_reason) stashed_first_fail_reason = None # TODO should we GuardFail our stashed_first_fail_reason too? try: if guard_fn.guard_fail_fn is not None: guard_fn.guard_fail_fn( GuardFail(reason or "unknown reason", orig_code_map[code]) ) except Exception as e: log.error( "Failure in guard_fail_fn callback - raising here will cause a NULL Error on guard eval", exc_info=True, ) def guard_error_hook( guard_fn: GuardFn, code: types.CodeType, f_locals: Dict[str, object], index: int, last: bool, ): print( f"ERROR RUNNING GUARDS {code.co_name} {code.co_filename}:{code.co_firstlineno}" ) # TODO: If we passed in the exception here, we could get a precise # column number of which subexpression failed. But that would also # require us to have the TRUE code that was eval'ed, not a shoddy # reconstruction (like is done here) print("lambda " + ", ".join(guard_fn.args) + ":") print(" ", " and\n ".join(guard_fn.code_parts)) set_guard_error_hook(guard_error_hook) def unique(seq): seen = set() for x in seq: if x not in seen: yield x seen.add(x)
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
12b0bbe1c7d0171b65f4472d8f2656afe5089091
4fdb272e69f1114d1c7fc35281cc4f7366dc1169
/AI_Challenger_2018-master/Baselines/autonomous_driving_perception208_baseline/segmentation/vis.py
160b161efdce7a51f967621879567ee47175d0e9
[ "Apache-2.0" ]
permissive
DarkT2014/mydeeplearning
b7d004f94f707b327075702174e74d45f6a48f6a
7707492a4df320e35a59113c00edaaf39b684c3a
refs/heads/master
2022-10-27T18:29:48.574175
2019-09-23T02:56:15
2019-09-23T02:56:15
203,542,891
0
1
null
2022-10-06T06:27:09
2019-08-21T08:41:07
Python
UTF-8
Python
false
false
13,017
py
# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Segmentation results visualization on a given set of images. See model.py for more details and usage. """ import math import os.path import time import numpy as np import tensorflow as tf from deeplab import common from deeplab import model from deeplab.datasets import segmentation_dataset from deeplab.utils import input_generator from deeplab.utils import save_annotation import os os.environ["CUDA_VISIBLE_DEVICES"]="0" slim = tf.contrib.slim flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string('master', '', 'BNS name of the tensorflow server') # Settings for log directories. flags.DEFINE_string('vis_logdir', './vis_res', 'Where to write the event logs.') flags.DEFINE_string('checkpoint_dir', './train', 'Directory of model checkpoints.') # Settings for visualizing the model. flags.DEFINE_integer('vis_batch_size', 1, 'The number of images in each batch during evaluation.') flags.DEFINE_multi_integer('vis_crop_size', [960, 1280], 'Crop size [height, width] for visualization.') flags.DEFINE_integer('eval_interval_secs', 60 * 5, 'How often (in seconds) to run evaluation.') # For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or # rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note # one could use different atrous_rates/output_stride during training/evaluation. flags.DEFINE_multi_integer('atrous_rates', None, 'Atrous rates for atrous spatial pyramid pooling.') flags.DEFINE_integer('output_stride', 16, 'The ratio of input to output spatial resolution.') # Change to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] for multi-scale test. flags.DEFINE_multi_float('eval_scales', [1.0], 'The scales to resize images for evaluation.') # Change to True for adding flipped images during test. flags.DEFINE_bool('add_flipped_images', False, 'Add flipped images for evaluation or not.') # Dataset settings. flags.DEFINE_string('dataset', 'bdd100k', 'Name of the segmentation dataset.') flags.DEFINE_string('vis_split', 'val', 'Which split of the dataset used for visualizing results') flags.DEFINE_string('dataset_dir', './tfrecord', 'Where the dataset reside.') flags.DEFINE_enum('colormap_type', 'pascal', ['pascal', 'cityscapes'], 'Visualization colormap type.') flags.DEFINE_boolean('also_save_raw_predictions', False, 'Also save raw predictions.') flags.DEFINE_integer('max_number_of_iterations', 0, 'Maximum number of visualization iterations. Will loop ' 'indefinitely upon nonpositive values.') # The folder where semantic segmentation predictions are saved. _SEMANTIC_PREDICTION_SAVE_FOLDER = 'segmentation_results' # The folder where raw semantic segmentation predictions are saved. _RAW_SEMANTIC_PREDICTION_SAVE_FOLDER = 'raw_segmentation_results' # The format to save image. _IMAGE_FORMAT = '%06d_image' # The format to save prediction _PREDICTION_FORMAT = '%06d_prediction' # To evaluate Cityscapes results on the evaluation server, the labels used # during training should be mapped to the labels for evaluation. _CITYSCAPES_TRAIN_ID_TO_EVAL_ID = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33] def _convert_train_id_to_eval_id(prediction, train_id_to_eval_id): """Converts the predicted label for evaluation. There are cases where the training labels are not equal to the evaluation labels. This function is used to perform the conversion so that we could evaluate the results on the evaluation server. Args: prediction: Semantic segmentation prediction. train_id_to_eval_id: A list mapping from train id to evaluation id. Returns: Semantic segmentation prediction whose labels have been changed. """ converted_prediction = prediction.copy() for train_id, eval_id in enumerate(train_id_to_eval_id): converted_prediction[prediction == train_id] = eval_id return converted_prediction def _process_batch(sess, original_images, semantic_predictions, image_names, image_heights, image_widths, image_id_offset, save_dir, raw_save_dir, train_id_to_eval_id=None): """Evaluates one single batch qualitatively. Args: sess: TensorFlow session. original_images: One batch of original images. semantic_predictions: One batch of semantic segmentation predictions. image_names: Image names. image_heights: Image heights. image_widths: Image widths. image_id_offset: Image id offset for indexing images. save_dir: The directory where the predictions will be saved. raw_save_dir: The directory where the raw predictions will be saved. train_id_to_eval_id: A list mapping from train id to eval id. """ (original_images, semantic_predictions, image_names, image_heights, image_widths) = sess.run([original_images, semantic_predictions, image_names, image_heights, image_widths]) num_image = semantic_predictions.shape[0] for i in range(num_image): image_height = np.squeeze(image_heights[i]) image_width = np.squeeze(image_widths[i]) original_image = np.squeeze(original_images[i]) semantic_prediction = np.squeeze(semantic_predictions[i]) crop_semantic_prediction = semantic_prediction[:image_height, :image_width] # Save image. save_annotation.save_annotation( original_image, save_dir, _IMAGE_FORMAT % (image_id_offset + i), add_colormap=False) # Save prediction. save_annotation.save_annotation( crop_semantic_prediction, save_dir, _PREDICTION_FORMAT % (image_id_offset + i), add_colormap=True, colormap_type=FLAGS.colormap_type) if FLAGS.also_save_raw_predictions: image_filename = os.path.basename(image_names[i]) if train_id_to_eval_id is not None: crop_semantic_prediction = _convert_train_id_to_eval_id( crop_semantic_prediction, train_id_to_eval_id) save_annotation.save_annotation( crop_semantic_prediction, raw_save_dir, image_filename, add_colormap=False) def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Get dataset-dependent information. dataset = segmentation_dataset.get_dataset( FLAGS.dataset, FLAGS.vis_split, dataset_dir=FLAGS.dataset_dir) train_id_to_eval_id = None if dataset.name == segmentation_dataset.get_cityscapes_dataset_name(): tf.logging.info('Cityscapes requires converting train_id to eval_id.') train_id_to_eval_id = _CITYSCAPES_TRAIN_ID_TO_EVAL_ID # Prepare for visualization. tf.gfile.MakeDirs(FLAGS.vis_logdir) save_dir = os.path.join(FLAGS.vis_logdir, _SEMANTIC_PREDICTION_SAVE_FOLDER) tf.gfile.MakeDirs(save_dir) raw_save_dir = os.path.join( FLAGS.vis_logdir, _RAW_SEMANTIC_PREDICTION_SAVE_FOLDER) tf.gfile.MakeDirs(raw_save_dir) tf.logging.info('Visualizing on %s set', FLAGS.vis_split) g = tf.Graph() with g.as_default(): samples = input_generator.get(dataset, FLAGS.vis_crop_size, FLAGS.vis_batch_size, min_resize_value=FLAGS.min_resize_value, max_resize_value=FLAGS.max_resize_value, resize_factor=FLAGS.resize_factor, dataset_split=FLAGS.vis_split, is_training=False, model_variant=FLAGS.model_variant) model_options = common.ModelOptions( outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes}, crop_size=FLAGS.vis_crop_size, atrous_rates=FLAGS.atrous_rates, output_stride=FLAGS.output_stride) if tuple(FLAGS.eval_scales) == (1.0,): tf.logging.info('Performing single-scale test.') predictions = model.predict_labels( samples[common.IMAGE], model_options=model_options, image_pyramid=FLAGS.image_pyramid) else: tf.logging.info('Performing multi-scale test.') predictions = model.predict_labels_multi_scale( samples[common.IMAGE], model_options=model_options, eval_scales=FLAGS.eval_scales, add_flipped_images=FLAGS.add_flipped_images) predictions = predictions[common.OUTPUT_TYPE] if FLAGS.min_resize_value and FLAGS.max_resize_value: # Only support batch_size = 1, since we assume the dimensions of original # image after tf.squeeze is [height, width, 3]. assert FLAGS.vis_batch_size == 1 # Reverse the resizing and padding operations performed in preprocessing. # First, we slice the valid regions (i.e., remove padded region) and then # we reisze the predictions back. original_image = tf.squeeze(samples[common.ORIGINAL_IMAGE]) original_image_shape = tf.shape(original_image) predictions = tf.slice( predictions, [0, 0, 0], [1, original_image_shape[0], original_image_shape[1]]) resized_shape = tf.to_int32([tf.squeeze(samples[common.HEIGHT]), tf.squeeze(samples[common.WIDTH])]) predictions = tf.squeeze( tf.image.resize_images(tf.expand_dims(predictions, 3), resized_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True), 3) tf.train.get_or_create_global_step() saver = tf.train.Saver(slim.get_variables_to_restore()) sv = tf.train.Supervisor(graph=g, logdir=FLAGS.vis_logdir, init_op=tf.global_variables_initializer(), summary_op=None, summary_writer=None, global_step=None, saver=saver) num_batches = int(math.ceil( dataset.num_samples / float(FLAGS.vis_batch_size))) last_checkpoint = None # Loop to visualize the results when new checkpoint is created. num_iters = 0 while (FLAGS.max_number_of_iterations <= 0 or num_iters < FLAGS.max_number_of_iterations): num_iters += 1 last_checkpoint = slim.evaluation.wait_for_new_checkpoint( FLAGS.checkpoint_dir, last_checkpoint) start = time.time() tf.logging.info( 'Starting visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S', time.gmtime())) tf.logging.info('Visualizing with model %s', last_checkpoint) with sv.managed_session(FLAGS.master, start_standard_services=False) as sess: sv.start_queue_runners(sess) sv.saver.restore(sess, last_checkpoint) image_id_offset = 0 for batch in range(num_batches): tf.logging.info('Visualizing batch %d / %d', batch + 1, num_batches) _process_batch(sess=sess, original_images=samples[common.ORIGINAL_IMAGE], semantic_predictions=predictions, image_names=samples[common.IMAGE_NAME], image_heights=samples[common.HEIGHT], image_widths=samples[common.WIDTH], image_id_offset=image_id_offset, save_dir=save_dir, raw_save_dir=raw_save_dir, train_id_to_eval_id=train_id_to_eval_id) image_id_offset += FLAGS.vis_batch_size tf.logging.info( 'Finished visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S', time.gmtime())) time_to_next_eval = start + FLAGS.eval_interval_secs - time.time() if time_to_next_eval > 0: time.sleep(time_to_next_eval) if __name__ == '__main__': flags.mark_flag_as_required('checkpoint_dir') flags.mark_flag_as_required('vis_logdir') flags.mark_flag_as_required('dataset_dir') tf.app.run()
[ "lincheng@linchengdeMacBook-Pro.local" ]
lincheng@linchengdeMacBook-Pro.local
d236ab80a1798bb92f400c21f53470b7b4d79c24
fdffd3f8ad31ffd917b1df4199ff5d88df80b420
/Chapter_08/matplotlib_learning.py
f2b0806f79708322e36af13779f60ecd5eb0b416
[]
no_license
LelandYan/data_analysis
83c0cefa1b0783a8d3d13050092b2ab085cd859e
9482c4667ecac189545f40b9f5bad3c495d48068
refs/heads/master
2020-04-17T04:25:47.975087
2019-02-12T07:40:37
2019-02-12T07:40:37
166,229,621
0
0
null
null
null
null
UTF-8
Python
false
false
4,529
py
import matplotlib.pyplot as plt from numpy.random import randn import numpy as np # fig = plt.figure() # ax1 = fig.add_subplot(2, 2, 1) # ax2 = fig.add_subplot(2, 2, 2) # ax3 = fig.add_subplot(2, 2, 3) # plt.plot(randn(50).cumsum(), 'k--') # _ = ax1.hist(randn(100), bins=20, color='k', alpha=0.3) # ax2.scatter(np.arange(30), np.arange(30) + 3 * randn(30)) # 调整subplot周围的间距 # fig, axes = plt.subplots(2, 2, sharex=True, sharey=True) # for i in range(2): # for j in range(2): # axes[i, j].hist(randn(500), bins=50, color='k', alpha=0.5) # plt.subplots_adjust(wspace=0, hspace=0) # plt.plot(randn(30).cumsum(), 'ko--') # plt.plot(randn(30).cumsum(), color='k', linestyle='dashed', marker='o') # data = randn(30).cumsum() # # plt.plot(data, 'k--', label='Default') # plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post') # plt.legend(loc='best') # plt.xlim() # plt.savefig('figpath.svg') # plt.show() # from io import BytesIO # buffer = BytesIO() # plt.savefig(buffer) # plot_data = buffer.getvalue() # ax = fig.add_subplot(1, 1, 1) # ax.plot(randn(1000).cumsum()) # plt.show() # from datetime import datetime # import pandas as pd # # fig = plt.figure() # ax = fig.add_subplot(1, 1, 1) # # data = pd.read_csv('spx.csv', index_col=0, parse_dates=True) # spx = data['SPX'] # spx.plot(ax=ax, style='k--',alpha=0.3) # crisis_data = [ # (datetime(2007, 10, 11), 'Peak of bull market'), # (datetime(2008, 3, 12), 'Bear Stearns Fails'), # (datetime(2008, 9, 15), 'Lehman Bankruptcy') # ] # for date, label in crisis_data: # ax.annotate(label, xy=(date, spx.asof(date) + 50), # xytext=(date, spx.asof(date) + 200), # arrowprops=dict(facecolor='black'), # horizontalalignment='left', verticalalignment='top') # ax.set_xlim(['1/1/2007', '1/1/2011']) # ax.set_ylim([600, 1800]) # ax.set_title("Important dates in 2008-2009 financial crisis") # plt.show() # ax.savefig('figpath.svg') # matplotlib配置 # plt.rc('figure', figsize=(10, 10)) from pandas import DataFrame, Series # pandas中的绘图函数 # 线型图 # s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10)) # s.plot() # plt.show() # df = DataFrame(np.random.randn(10, 4).cumsum(0), columns=['A', 'B', 'C', 'D'], index=np.arange(0, 100, 10)) # df.plot() # plt.show() # 柱状图 kind='bar/barh' Serise和DataFrame的索引将会被X,Y刻度 # fig, axes = plt.subplots(2, 1) # data = Series(np.random.rand(16), index=list('abcdefghijklmnop')) # data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7) # data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7) # plt.show() import pandas as pd # df = DataFrame(np.random.rand(6, 4), # index=['one', 'two', 'three', 'four', 'five', 'six'], # columns=pd.Index(['A', 'B', 'C', 'D'], names='Genus')) # df.plot(kind='bar') # df.plot(kind='barh', stacked=True, alpha=0.5) # plt.show() # tips = pd.read_csv('tips.csv') # party_counts = pd.crosstab(tips.day,tips.size) # print(party_counts.ix[:,2:5]) # 直方图和密度图 # tips = pd.read_csv('tips.csv') # tips['tip_pct'] = tips['tip'] / tips['total_bill'] # tips['tip_pct'].hist(bins=20) # tips['tip_pct'].plot(kind='kde') # plt.show() # comp1 = np.random.normal(0, 1, size=200) # comp2 = np.random.normal(10, 2, size=200) # values = Series(np.concatenate([comp1,comp2])) # values.hist(bins=100,alpha=0.3,color='k',normed=True) # values.plot(kind='kde',style='k--') # plt.show() # 散步图 # macro = pd.read_csv('macrodata.csv') # # data = macro[['cpi', 'm1', 'tbilrate', 'unemp']] # # # print(data[-5:]) # # trans_data = np.log(data).diff().dropna() # # # print(trans_data[-5:]) # # plt.scatter(trans_data['m1'],trans_data['unemp']) # # plt.title('Changes in log') # # pd.scatter_matrix(trans_data,diagonal='kde',color='k',alpha=0.3) # # plt.show() # 绘制地图 data = pd.read_csv('Haiti.csv') # 清除错误的信息 data = data[(data.LATITUDE > 18) & (data.LATITUDE < 20) & (data.LONGITUDE > -75) & (data.LONGITUDE < -70) & ( data.CATEGORY.notnull())] def to_cat_list(catstr): stripped = (x.strip() for x in catstr.split(',')) return [x for x in stripped if x] def get_all_categories(cat_series): cat_sets = (set(to_cat_list(x) for x in cat_series)) return sorted(set.union(*cat_sets)) def get_english(cat): code, names = cat.split('.') if '|' in names: names = names.split('|')[1] return code, names.strip() print(get_english('2. Urgences logistiques | Vital Lines'))
[ "2721599586@qq.com" ]
2721599586@qq.com
60dd612b880ef07f9e7cccbc338222d0d7dc4514
bdaf2715c970f1863356897c2d86722aa42dc067
/hash-table/0016-3sum-closest.py
3296052fcb473d1697ec792c7716dc54aa6e8137
[]
no_license
chengchaoyang/my-leetcode-record
e32ec43d46c8b5cf249a372ff7eeb25363e0ba92
04bf208aec4245de199cadf7cc7936038dffcb5b
refs/heads/master
2021-05-19T06:48:28.808531
2020-06-10T10:42:41
2020-06-10T10:42:41
251,571,986
0
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
""" 给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。 例如,给定数组 nums = [-1,2,1,-4], 和 target = 1. 与 target 最接近的三个数的和为 2. (-1 + 2 + 1 = 2). 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/3sum-closest 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 """ from typing import List class Solution: def threeSumClosest(self, nums: List[int], target: int) -> int: if len(nums) < 3: return [] # 初始化 diff = float('inf') nums.sort() for index in range(len(nums) - 2): if index > 0 and nums[index] == nums[index - 1]: continue l = index + 1 r = len(nums) - 1 while l < r: s = nums[index] + nums[l] + nums[r] if abs(s - target) < diff: diff = abs(s - target) res = s if s > target: r -= 1 elif s < target: l += 1 else: # 如果已经等于 target 的话, 肯定是最接近的,根据题目要求,返回这三个数的和 return target return res
[ "526879530@qq.com" ]
526879530@qq.com
0036a3aa6a27f4fb7809ec127059fbbf09413654
7b4682d56541c863ca05f84737ce9296f425e339
/query_parser/spark/spark.py
49ebfb27ab745891013b1636606d496666ae9013
[]
no_license
dav009/truthgraph
f3387788c0158aae1c50f1d3da8e674fce47325d
e8e2ff40353bb1a1e13f6465d74656a78fa3f52d
refs/heads/master
2016-09-16T05:26:23.871595
2013-07-10T19:05:44
2013-07-10T19:05:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,142
py
# Copyright (c) 1998-2002 John Aycock # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. __version__ = 'SPARK-0.7 (pre-alpha-7)' import re import sys import string def _namelist(instance): namelist, namedict, classlist = [], {}, [instance.__class__] for c in classlist: for b in c.__bases__: classlist.append(b) for name in c.__dict__.keys(): if not namedict.has_key(name): namelist.append(name) namedict[name] = 1 return namelist class GenericScanner: def __init__(self, flags=0): pattern = self.reflect() self.re = re.compile(pattern, re.VERBOSE|flags) self.index2func = {} for name, number in self.re.groupindex.items(): self.index2func[number-1] = getattr(self, 't_' + name) def makeRE(self, name): doc = getattr(self, name).__doc__ rv = '(?P<%s>%s)' % (name[2:], doc) return rv def reflect(self): rv = [] for name in _namelist(self): if name[:2] == 't_' and name != 't_default': rv.append(self.makeRE(name)) rv.append(self.makeRE('t_default')) return string.join(rv, '|') def error(self, s, pos): print "Lexical error at position %s" % pos raise SystemExit def position(self, newpos=None): oldpos = self.pos if newpos is not None: self.pos = newpos return self.string, oldpos def tokenize(self, s): self.string = s self.pos = 0 n = len(s) while self.pos < n: m = self.re.match(s, self.pos) if m is None: self.error(s, self.pos) groups = m.groups() self.pos = m.end() for i in range(len(groups)): if groups[i] is not None and self.index2func.has_key(i): self.index2func[i](groups[i]) def t_default(self, s): r'( . | \n )+' print "Specification error: unmatched input" print s raise SystemExit # # Extracted from GenericParser and made global so that [un]picking works. # class _State: def __init__(self, stateno, items): self.T, self.complete, self.items = [], [], items self.stateno = stateno class GenericParser: # # An Earley parser, as per J. Earley, "An Efficient Context-Free # Parsing Algorithm", CACM 13(2), pp. 94-102. Also J. C. Earley, # "An Efficient Context-Free Parsing Algorithm", Ph.D. thesis, # Carnegie-Mellon University, August 1968. New formulation of # the parser according to J. Aycock, "Practical Earley Parsing # and the SPARK Toolkit", Ph.D. thesis, University of Victoria, # 2001, and J. Aycock and R. N. Horspool, "Practical Earley # Parsing", unpublished paper, 2001. # def __init__(self, start): self.rules = {} self.rule2func = {} self.rule2name = {} self.collectRules() self.augment(start) self.ruleschanged = 1 _NULLABLE = '\e_' _START = 'START' _BOF = '|-' # # When pickling, take the time to generate the full state machine; # some information is then extraneous, too. Unfortunately we # can't save the rule2func map. # def __getstate__(self): if self.ruleschanged: # # XXX - duplicated from parse() # self.computeNull() self.newrules = {} self.new2old = {} self.makeNewRules() self.ruleschanged = 0 self.edges, self.cores = {}, {} self.states = { 0: self.makeState0() } self.makeState(0, self._BOF) # # XXX - should find a better way to do this.. # changes = 1 while changes: changes = 0 for k, v in self.edges.items(): if v is None: state, sym = k if self.states.has_key(state): self.goto(state, sym) changes = 1 rv = self.__dict__.copy() for s in self.states.values(): del s.items del rv['rule2func'] del rv['nullable'] del rv['cores'] return rv def __setstate__(self, D): self.rules = {} self.rule2func = {} self.rule2name = {} self.collectRules() start = D['rules'][self._START][0][1][1] # Blech. self.augment(start) D['rule2func'] = self.rule2func D['makeSet'] = self.makeSet_fast self.__dict__ = D # # A hook for GenericASTBuilder and GenericASTMatcher. Mess # thee not with this; nor shall thee toucheth the _preprocess # argument to addRule. # def preprocess(self, rule, func): return rule, func def addRule(self, doc, func, _preprocess=1): fn = func rules = string.split(doc) index = [] for i in range(len(rules)): if rules[i] == '::=': index.append(i-1) index.append(len(rules)) for i in range(len(index)-1): lhs = rules[index[i]] rhs = rules[index[i]+2:index[i+1]] rule = (lhs, tuple(rhs)) if _preprocess: rule, fn = self.preprocess(rule, func) if self.rules.has_key(lhs): self.rules[lhs].append(rule) else: self.rules[lhs] = [ rule ] self.rule2func[rule] = fn self.rule2name[rule] = func.__name__[2:] self.ruleschanged = 1 def collectRules(self): for name in _namelist(self): if name[:2] == 'p_': func = getattr(self, name) doc = func.__doc__ self.addRule(doc, func) def augment(self, start): rule = '%s ::= %s %s' % (self._START, self._BOF, start) self.addRule(rule, lambda args: args[1], 0) def computeNull(self): self.nullable = {} tbd = [] for rulelist in self.rules.values(): lhs = rulelist[0][0] self.nullable[lhs] = 0 for rule in rulelist: rhs = rule[1] if len(rhs) == 0: self.nullable[lhs] = 1 continue # # We only need to consider rules which # consist entirely of nonterminal symbols. # This should be a savings on typical # grammars. # for sym in rhs: if not self.rules.has_key(sym): break else: tbd.append(rule) changes = 1 while changes: changes = 0 for lhs, rhs in tbd: if self.nullable[lhs]: continue for sym in rhs: if not self.nullable[sym]: break else: self.nullable[lhs] = 1 changes = 1 def makeState0(self): s0 = _State(0, []) for rule in self.newrules[self._START]: s0.items.append((rule, 0)) return s0 def finalState(self, tokens): # # Yuck. # if len(self.newrules[self._START]) == 2 and len(tokens) == 0: return 1 start = self.rules[self._START][0][1][1] return self.goto(1, start) def makeNewRules(self): worklist = [] for rulelist in self.rules.values(): for rule in rulelist: worklist.append((rule, 0, 1, rule)) for rule, i, candidate, oldrule in worklist: lhs, rhs = rule n = len(rhs) while i < n: sym = rhs[i] if not self.rules.has_key(sym) or \ not self.nullable[sym]: candidate = 0 i = i + 1 continue newrhs = list(rhs) newrhs[i] = self._NULLABLE+sym newrule = (lhs, tuple(newrhs)) worklist.append((newrule, i+1, candidate, oldrule)) candidate = 0 i = i + 1 else: if candidate: lhs = self._NULLABLE+lhs rule = (lhs, rhs) if self.newrules.has_key(lhs): self.newrules[lhs].append(rule) else: self.newrules[lhs] = [ rule ] self.new2old[rule] = oldrule def typestring(self, token): return None def error(self, token): print "Syntax error at or near `%s' token" % token raise SystemExit def parse(self, tokens): sets = [ [(1,0), (2,0)] ] self.links = {} if self.ruleschanged: self.computeNull() self.newrules = {} self.new2old = {} self.makeNewRules() self.ruleschanged = 0 self.edges, self.cores = {}, {} self.states = { 0: self.makeState0() } self.makeState(0, self._BOF) for i in xrange(len(tokens)): sets.append([]) if sets[i] == []: break self.makeSet(tokens[i], sets, i) else: sets.append([]) self.makeSet(None, sets, len(tokens)) # _dump(tokens, sets, self.states) finalitem = (self.finalState(tokens), 0) if finalitem not in sets[-2]: if len(tokens) > 0: self.error(tokens[i-1]) else: self.error(None) return self.buildTree(self._START, finalitem, tokens, len(sets)-2) def isnullable(self, sym): # # For symbols in G_e only. If we weren't supporting 1.5, # could just use sym.startswith(). # return self._NULLABLE == sym[0:len(self._NULLABLE)] def skip(self, (lhs, rhs), pos=0): n = len(rhs) while pos < n: if not self.isnullable(rhs[pos]): break pos = pos + 1 return pos def makeState(self, state, sym): assert sym is not None # # Compute \epsilon-kernel state's core and see if # it exists already. # kitems = [] for rule, pos in self.states[state].items: lhs, rhs = rule if rhs[pos:pos+1] == (sym,): kitems.append((rule, self.skip(rule, pos+1))) core = kitems core.sort() tcore = tuple(core) if self.cores.has_key(tcore): return self.cores[tcore] # # Nope, doesn't exist. Compute it and the associated # \epsilon-nonkernel state together; we'll need it right away. # k = self.cores[tcore] = len(self.states) K, NK = _State(k, kitems), _State(k+1, []) self.states[k] = K predicted = {} edges = self.edges rules = self.newrules for X in K, NK: worklist = X.items for item in worklist: rule, pos = item lhs, rhs = rule if pos == len(rhs): X.complete.append(rule) continue nextSym = rhs[pos] key = (X.stateno, nextSym) if not rules.has_key(nextSym): if not edges.has_key(key): edges[key] = None X.T.append(nextSym) else: edges[key] = None if not predicted.has_key(nextSym): predicted[nextSym] = 1 for prule in rules[nextSym]: ppos = self.skip(prule) new = (prule, ppos) NK.items.append(new) # # Problem: we know K needs generating, but we # don't yet know about NK. Can't commit anything # regarding NK to self.edges until we're sure. Should # we delay committing on both K and NK to avoid this # hacky code? This creates other problems.. # if X is K: edges = {} if NK.items == []: return k # # Check for \epsilon-nonkernel's core. Unfortunately we # need to know the entire set of predicted nonterminals # to do this without accidentally duplicating states. # core = predicted.keys() core.sort() tcore = tuple(core) if self.cores.has_key(tcore): self.edges[(k, None)] = self.cores[tcore] return k nk = self.cores[tcore] = self.edges[(k, None)] = NK.stateno self.edges.update(edges) self.states[nk] = NK return k def goto(self, state, sym): key = (state, sym) if not self.edges.has_key(key): # # No transitions from state on sym. # return None rv = self.edges[key] if rv is None: # # Target state isn't generated yet. Remedy this. # rv = self.makeState(state, sym) self.edges[key] = rv return rv def gotoT(self, state, t): return [self.goto(state, t)] def gotoST(self, state, st): rv = [] for t in self.states[state].T: if st == t: rv.append(self.goto(state, t)) return rv def add(self, set, item, i=None, predecessor=None, causal=None): if predecessor is None: if item not in set: set.append(item) else: key = (item, i) if item not in set: self.links[key] = [] set.append(item) self.links[key].append((predecessor, causal)) def makeSet(self, token, sets, i): cur, next = sets[i], sets[i+1] ttype = token is not None and self.typestring(token) or None if ttype is not None: fn, arg = self.gotoT, ttype else: fn, arg = self.gotoST, token for item in cur: ptr = (item, i) state, parent = item add = fn(state, arg) for k in add: if k is not None: self.add(next, (k, parent), i+1, ptr) nk = self.goto(k, None) if nk is not None: self.add(next, (nk, i+1)) if parent == i: continue for rule in self.states[state].complete: lhs, rhs = rule for pitem in sets[parent]: pstate, pparent = pitem k = self.goto(pstate, lhs) if k is not None: why = (item, i, rule) pptr = (pitem, parent) self.add(cur, (k, pparent), i, pptr, why) nk = self.goto(k, None) if nk is not None: self.add(cur, (nk, i)) def makeSet_fast(self, token, sets, i): # # Call *only* when the entire state machine has been built! # It relies on self.edges being filled in completely, and # then duplicates and inlines code to boost speed at the # cost of extreme ugliness. # cur, next = sets[i], sets[i+1] ttype = token is not None and self.typestring(token) or None for item in cur: ptr = (item, i) state, parent = item if ttype is not None: k = self.edges.get((state, ttype), None) if k is not None: #self.add(next, (k, parent), i+1, ptr) #INLINED --v new = (k, parent) key = (new, i+1) if new not in next: self.links[key] = [] next.append(new) self.links[key].append((ptr, None)) #INLINED --^ #nk = self.goto(k, None) nk = self.edges.get((k, None), None) if nk is not None: #self.add(next, (nk, i+1)) #INLINED --v new = (nk, i+1) if new not in next: next.append(new) #INLINED --^ else: add = self.gotoST(state, token) for k in add: if k is not None: self.add(next, (k, parent), i+1, ptr) #nk = self.goto(k, None) nk = self.edges.get((k, None), None) if nk is not None: self.add(next, (nk, i+1)) if parent == i: continue for rule in self.states[state].complete: lhs, rhs = rule for pitem in sets[parent]: pstate, pparent = pitem #k = self.goto(pstate, lhs) k = self.edges.get((pstate, lhs), None) if k is not None: why = (item, i, rule) pptr = (pitem, parent) #self.add(cur, (k, pparent), # i, pptr, why) #INLINED --v new = (k, pparent) key = (new, i) if new not in cur: self.links[key] = [] cur.append(new) self.links[key].append((pptr, why)) #INLINED --^ #nk = self.goto(k, None) nk = self.edges.get((k, None), None) if nk is not None: #self.add(cur, (nk, i)) #INLINED --v new = (nk, i) if new not in cur: cur.append(new) #INLINED --^ def predecessor(self, key, causal): for p, c in self.links[key]: if c == causal: return p assert 0 def causal(self, key): links = self.links[key] if len(links) == 1: return links[0][1] choices = [] rule2cause = {} for p, c in links: rule = c[2] choices.append(rule) rule2cause[rule] = c return rule2cause[self.ambiguity(choices)] def deriveEpsilon(self, nt): if len(self.newrules[nt]) > 1: rule = self.ambiguity(self.newrules[nt]) else: rule = self.newrules[nt][0] #print rule rhs = rule[1] attr = [None] * len(rhs) for i in range(len(rhs)-1, -1, -1): attr[i] = self.deriveEpsilon(rhs[i]) return self.rule2func[self.new2old[rule]](attr) def buildTree(self, nt, item, tokens, k): state, parent = item choices = [] for rule in self.states[state].complete: if rule[0] == nt: choices.append(rule) rule = choices[0] if len(choices) > 1: rule = self.ambiguity(choices) #print rule rhs = rule[1] attr = [None] * len(rhs) for i in range(len(rhs)-1, -1, -1): sym = rhs[i] if not self.newrules.has_key(sym): if sym != self._BOF: attr[i] = tokens[k-1] key = (item, k) item, k = self.predecessor(key, None) #elif self.isnullable(sym): elif self._NULLABLE == sym[0:len(self._NULLABLE)]: attr[i] = self.deriveEpsilon(sym) else: key = (item, k) why = self.causal(key) attr[i] = self.buildTree(sym, why[0], tokens, why[1]) item, k = self.predecessor(key, why) return self.rule2func[self.new2old[rule]](attr) def ambiguity(self, rules): # # XXX - problem here and in collectRules() if the same rule # appears in >1 method. Also undefined results if rules # causing the ambiguity appear in the same method. # sortlist = [] name2index = {} for i in range(len(rules)): lhs, rhs = rule = rules[i] name = self.rule2name[self.new2old[rule]] sortlist.append((len(rhs), name)) name2index[name] = i sortlist.sort() list = map(lambda (a,b): b, sortlist) return rules[name2index[self.resolve(list)]] def resolve(self, list): # # Resolve ambiguity in favor of the shortest RHS. # Since we walk the tree from the top down, this # should effectively resolve in favor of a "shift". # return list[0] # # GenericASTBuilder automagically constructs a concrete/abstract syntax tree # for a given input. The extra argument is a class (not an instance!) # which supports the "__setslice__" and "__len__" methods. # # XXX - silently overrides any user code in methods. # class GenericASTBuilder(GenericParser): def __init__(self, AST, start): GenericParser.__init__(self, start) self.AST = AST def preprocess(self, rule, func): rebind = lambda lhs, self=self: \ lambda args, lhs=lhs, self=self: \ self.buildASTNode(args, lhs) lhs, rhs = rule return rule, rebind(lhs) def buildASTNode(self, args, lhs): children = [] for arg in args: if isinstance(arg, self.AST): children.append(arg) else: children.append(self.terminal(arg)) return self.nonterminal(lhs, children) def terminal(self, token): return token def nonterminal(self, type, args): rv = self.AST(type) rv[:len(args)] = args return rv # # GenericASTTraversal is a Visitor pattern according to Design Patterns. For # each node it attempts to invoke the method n_<node type>, falling # back onto the default() method if the n_* can't be found. The preorder # traversal also looks for an exit hook named n_<node type>_exit (no default # routine is called if it's not found). To prematurely halt traversal # of a subtree, call the prune() method -- this only makes sense for a # preorder traversal. Node type is determined via the typestring() method. # class GenericASTTraversalPruningException: pass class GenericASTTraversal: def __init__(self, ast): self.ast = ast def typestring(self, node): return node.type def prune(self): raise GenericASTTraversalPruningException def preorder(self, node=None): if node is None: node = self.ast try: name = 'n_' + self.typestring(node) if hasattr(self, name): func = getattr(self, name) func(node) else: self.default(node) except GenericASTTraversalPruningException: return for kid in node: self.preorder(kid) name = name + '_exit' if hasattr(self, name): func = getattr(self, name) func(node) def postorder(self, node=None): if node is None: node = self.ast for kid in node: self.postorder(kid) name = 'n_' + self.typestring(node) if hasattr(self, name): func = getattr(self, name) func(node) else: self.default(node) def default(self, node): pass # # GenericASTMatcher. AST nodes must have "__getitem__" and "__cmp__" # implemented. # # XXX - makes assumptions about how GenericParser walks the parse tree. # class GenericASTMatcher(GenericParser): def __init__(self, start, ast): GenericParser.__init__(self, start) self.ast = ast def preprocess(self, rule, func): rebind = lambda func, self=self: \ lambda args, func=func, self=self: \ self.foundMatch(args, func) lhs, rhs = rule rhslist = list(rhs) rhslist.reverse() return (lhs, tuple(rhslist)), rebind(func) def foundMatch(self, args, func): func(args[-1]) return args[-1] def match_r(self, node): self.input.insert(0, node) children = 0 for child in node: if children == 0: self.input.insert(0, '(') children = children + 1 self.match_r(child) if children > 0: self.input.insert(0, ')') def match(self, ast=None): if ast is None: ast = self.ast self.input = [] self.match_r(ast) self.parse(self.input) def resolve(self, list): # # Resolve ambiguity in favor of the longest RHS. # return list[-1] def _dump(tokens, sets, states): for i in range(len(sets)): print 'set', i for item in sets[i]: print '\t', item for (lhs, rhs), pos in states[item[0]].items: print '\t\t', lhs, '::=', print string.join(rhs[:pos]), print '.', print string.join(rhs[pos:]) if i < len(tokens): print print 'token', str(tokens[i]) print
[ "dav.alejandro@gmail.com" ]
dav.alejandro@gmail.com
fe52fa4e112e388bd4ed6512fec0ae90874dd234
7b1c4e8039dc289d3606ba293d98dfaf9dac2a65
/simplecode.py
2714fe63229557106b4c6d6768d908400817293b
[]
no_license
abiroslyn/Module-10
c1d702e98de45c5f9c241fd40a932cae4e7c5e08
cb898e4d4a7d83b7b67d5b17cef1c8839f2d9aec
refs/heads/main
2023-04-27T23:14:08.522645
2021-05-06T01:09:35
2021-05-06T01:09:35
364,748,360
0
0
null
null
null
null
UTF-8
Python
false
false
331
py
import sys shift = int(sys.argv[1]) message=input() print (shift) print(message.upper()) message = message.upper() for letter in message: if not letter.isalpha(): continue offset = 65 ord('A') = 65 pi = ord(letter) - offset ci = (pi + k) % 26 message.append(chr(ci + offset)) return message
[ "abigail.thomas@bison.howard.edu" ]
abigail.thomas@bison.howard.edu
123b7bc3f22b4abfbc14b4111b7add46ae238606
ef1bba79251acf71504b8fbb30f9292de67278dc
/core_firefly/firefly/firefly_library.py
129d014ddd8011ecc1a0dfe4edd2f216b4885dd3
[]
no_license
OliWenman/firefly_website
3c857f54ddceafc8dcbade84686705743221b75b
701f2b57f7cbdb4eaf8a75106cdfe5732f229804
refs/heads/master
2022-06-07T14:12:35.664931
2020-04-29T17:26:47
2020-04-29T17:26:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,997
py
from __future__ import division from __future__ import print_function from __future__ import absolute_import import sys if sys.version > '3': long = int import numpy as np import copy import pickle as cPickle from scipy.stats import chi2 #----------------------------------------------------------------------- def airtovac(wave_air): """ __author__ = 'Kyle B. Westfall' Wavelengths are corrected for the index of refraction of air under standard conditions. Wavelength values below 2000 A will not be altered. Uses formula from Ciddor 1996, Applied Optics 62, 958. Args: wave_air (int or float): Wavelength in Angstroms, scalar or vector. If this is the only parameter supplied, it will be updated on output to contain double precision vacuum wavelength(s). Returns: numpy.float64 : The wavelength of the line in vacuum. Example: If the air wavelength is W = 6056.125 (a Krypton line), then :func:`airtovac` returns vacuum wavelength of W = 6057.8019. *Revision history*: | Written W. Landsman November 1991 | Use Ciddor (1996) formula for better accuracy in the infrared | Added optional output vector, W Landsman Mar 2011 | Iterate for better precision W.L./D. Schlegel Mar 2011 | Transcribed to python, K.B. Westfall Apr 2015 .. note:: Take care within 1 A of 2000 A. Wavelengths below 2000 A *in air* are not altered. """ # Copy the data wave_vac = wave_air.astype(np.float64) if hasattr(wave_air, "__len__") else float(wave_air) g = wave_vac > 2000.0 # Only modify above 2000 A Ng = np.sum(g) if Ng > 0: # Handle both arrays and scalars if hasattr(wave_air, "__len__"): _wave_air = wave_air[g].astype(np.float64) _wave_vac = wave_vac[g] else: _wave_air = float(wave_air) _wave_vac = float(wave_vac) for i in range(0,2): sigma2 = np.square(1.0e4/_wave_vac) #Convert to wavenumber squared fact = 1.0 + 5.792105e-2/(238.0185 - sigma2) + 1.67917e-3/(57.362 - sigma2) _wave_vac = _wave_air*fact if hasattr(wave_air, "__len__"): # Save the result wave_vac[g] = _wave_vac else: wave_vac = _wave_vac return wave_vac #----------------------------------------------------------------------- def bisect_array(array): """ It takes an array as input and returns the bisected array : bisected array[i] = (array[i] + array[i+1] )/2. Its lenght is one less than the array. :param array: input array """ bisected_array = np.zeros(len(array) - 1) for ai in range(len(bisected_array)): bisected_array[ai] = (array[ai] + array[ai + 1])/2.0 return bisected_array #----------------------------------------------------------------------- def max_pdf(probs,property,sampling): """ determines the maximum of a pdf of a property for a given sampling :param probs: probabilities :param property: property :param sampling: sampling of the property """ lower_limit = np.min(property) upper_limit = np.max(property) error_interval = np.round(upper_limit, 2) - np.round(lower_limit, 2) if np.round(upper_limit, 2) == np.round(lower_limit, 2) or error_interval <= abs((upper_limit/100.)*3): return np.asarray(property),np.ones(len(probs))/np.size(probs) property_pdf_int= np.arange(lower_limit, upper_limit * 1.001, (upper_limit-lower_limit) /sampling ) + ( upper_limit - lower_limit) * 0.000001 prob_pdf = np.zeros(len(property_pdf_int)) for p in range(len(property_pdf_int)-1): match_prop = np.where( (property <= property_pdf_int[p+1]) & (property > property_pdf_int[p]) ) if np.size(match_prop) == 0: continue else: prob_pdf[p] = np.max( probs[match_prop] ) property_pdf = bisect_array(property_pdf_int) return property_pdf,prob_pdf[:-1]/np.sum(prob_pdf) #----------------------------------------------------------------------- def convert_chis_to_probs(chis,dof): """ Converts chi squares to probabilities. :param chis: array containing the chi squares. :param dof: array of degrees of freedom. """ chis = chis / np.min(chis) * dof prob = 1.0 - chi2.cdf(chis,dof) prob = prob / np.sum(prob) return prob #----------------------------------------------------------------------- def light_weights_to_mass(light_weights,mass_factors): """ Uses the data/model mass-to-light ratio to convert SSP contribution (weights) by light into SSP contributions by mass. :param light_weights: light (luminosity) weights obtained when model fitting :param mass_factors: mass factors obtained when normalizing the spectrum """ mass_weights = np.zeros(np.shape(light_weights)) unnorm_mass = np.zeros(np.shape(light_weights)) for w in range(len(light_weights)): unnorm_mass[w] = light_weights[w] * mass_factors mass_weights[w] = unnorm_mass[w] / np.sum(unnorm_mass[w]) return unnorm_mass,mass_weights #----------------------------------------------------------------------- def find_closest(A, target): """ returns the id of the target in the array A. :param A: Array, must be sorted :param target: target value to be located in the array. """ idx = A.searchsorted(target) idx = np.clip(idx, 1, len(A)-1) left = A[idx-1] right = A[idx] idx -= target - left < right - target return idx #----------------------------------------------------------------------- def averages_and_errors(probs,prop,sampling): """ determines the average and error of a property for a given sampling returns : an array with the best fit value, +/- 1, 2, 3 sigma values. :param probs: probabilities :param property: property :param sampling: sampling of the property """ # This prevents galaxies with 1 unique solution from going any further. This is because the code crashes when constructing the likelihood # distributions. HACKY, but we need to think about this... if ((len(probs) <= 1) or (len(prop[~np.isnan(prop)]) <= 1)): best_fit, upper_onesig,lower_onesig, upper_twosig,lower_twosig, upper_thrsig,lower_thrsig = 999.0, 999.0, 999.0, 999.0, 999.0, 999.0, 999.0 else: xdf,y = max_pdf(probs,prop,sampling) cdf = np.zeros(np.shape(y)) cdf_probspace = np.zeros(np.shape(y)) for m in range(len(y)): cdf[m] = np.sum(y[:m]) cdf = cdf / np.max(cdf) area_probspace = y*(xdf[1]-xdf[0]) area_probspace = area_probspace/np.sum(area_probspace) indx_probspace = np.argsort(area_probspace)[::-1] desc_probspace = np.sort(area_probspace)[::-1] cdf_probspace = np.zeros(np.shape(desc_probspace)) for m in range(len(desc_probspace)): cdf_probspace[m] = np.sum(desc_probspace[:m]) av_sigs = [0.6827,0.9545,0.9973] # Median, + / - 1 sig, + / - 2 sig, + / - 3 sig # Sorts results by likelihood and calculates confidence intervals on sorted space index_close = find_closest(cdf_probspace, av_sigs) best_fit = xdf[indx_probspace[0]] upper_onesig,lower_onesig = np.max(xdf[indx_probspace[:index_close[0]]]),np.min(xdf[indx_probspace[:index_close[0]]]) upper_twosig,lower_twosig = np.max(xdf[indx_probspace[:index_close[1]]]),np.min(xdf[indx_probspace[:index_close[1]]]) upper_thrsig,lower_thrsig = np.max(xdf[indx_probspace[:index_close[2]]]),np.min(xdf[indx_probspace[:index_close[2]]]) if np.size(xdf) == 0: raise Exception('No solutions found??? FIREFLY error (see statistics.py)') return [best_fit,upper_onesig,lower_onesig,upper_twosig,lower_twosig,upper_thrsig,lower_thrsig] #----------------------------------------------------------------------- def calculate_averages_pdf(probs,light_weights,mass_weights,unnorm_mass,age,metal,sampling,dist_lum, flux_units): """ Calculates light- and mass-averaged age and metallicities. Also outputs stellar mass and mass-to-light ratios. And errors on all of these properties. It works by taking the complete set of probs-properties and maximising over the parameter range (such that solutions with equivalent values but poorer probabilities are excluded). Then, we calculate the median and 1/2 sigma confidence intervals from the derived 'max-pdf'. NB: Solutions with identical SSP component contributions are re-scaled such that the sum of probabilities with that component = the maximum of the probabilities with that component. i.e. prob_age_ssp1 = max(all prob_age_ssp1) / sum(all prob_age_ssp1) This is so multiple similar solutions do not count multiple times. Outputs a dictionary of: - light_[property], light_[property]_[1/2/3]_sigerror - mass_[property], mass_[property]_[1/2/3]_sigerror - stellar_mass, stellar_mass_[1/2/3]_sigerror - mass_to_light, mass_to_light_[1/2/3]_sigerror - maxpdf_[property] - maxpdf_stellar_mass where [property] = [age] or [metal] :param probs: probabilities :param light_weights: light (luminosity) weights obtained when model fitting :param mass_weights: mass weights obtained when normalizing models to data :param unnorm_mass: mass weights obtained from the mass to light ratio :param age: age :param metal: metallicity :param sampling: sampling of the property :param dist_lum: luminosity distance in cm """ # Sampling number of max_pdf (100:recommended) from options # Keep the age in linear units of Age(Gyr) log_age = age av = {} # dictionnary where values are stored : av['light_age'],av['light_age_1_sig_plus'],av['light_age_1_sig_minus'], av['light_age_2_sig_plus'], av['light_age_2_sig_minus'], av['light_age_3_sig_plus'], av['light_age_3_sig_minus'] = averages_and_errors(probs,np.dot(light_weights,log_age),sampling) av['light_metal'], av['light_metal_1_sig_plus'], av['light_metal_1_sig_minus'], av['light_metal_2_sig_plus'], av['light_metal_2_sig_minus'], av['light_metal_3_sig_plus'], av['light_metal_3_sig_minus'] = averages_and_errors(probs, np.dot(light_weights, metal), sampling) av['mass_age'], av['mass_age_1_sig_plus'], av['mass_age_1_sig_minus'], av['mass_age_2_sig_plus'], av['mass_age_2_sig_minus'], av['mass_age_3_sig_plus'], av['mass_age_3_sig_minus'] = averages_and_errors(probs, np.dot(mass_weights, log_age), sampling) av['mass_metal'], av['mass_metal_1_sig_plus'], av['mass_metal_1_sig_minus'], av['mass_metal_2_sig_plus'], av['mass_metal_2_sig_minus'], av['mass_metal_3_sig_plus'], av['mass_metal_3_sig_minus'] = averages_and_errors(probs, np.dot(mass_weights, metal), sampling) conversion_factor = flux_units * 4 * np.pi * dist_lum**2.0 # unit 1e-17 cm2 # Keep the mass in linear units until later M/M_{odot}. tot_mass = np.sum(unnorm_mass, 1) * conversion_factor av['stellar_mass'], av['stellar_mass_1_sig_plus'], av['stellar_mass_1_sig_minus'], av['stellar_mass_2_sig_plus'], av['stellar_mass_2_sig_minus'], av['stellar_mass_3_sig_plus'], av['stellar_mass_3_sig_minus'] = averages_and_errors(probs,tot_mass,sampling) return av #----------------------------------------------------------------------- def normalise_spec(data_flux,model_flux): """ Normalises all models to the median value of the spectrum. Saves the factors for later use. Outputs : normed models and translation factors. :param data_flux: observed flux in the data :param model_flux: flux from the models """ data_norm = np.median(data_flux) num_mods = len(model_flux) model_norm,mass_factor = np.zeros(num_mods),np.zeros(num_mods) normed_model_flux = np.zeros((num_mods,len(model_flux[0]))) for m in range(len(model_flux)): model_norm[m] = np.median(model_flux[m]) mass_factor[m] = data_norm/model_norm[m] normed_model_flux[m] = model_flux[m] / model_norm[m] * data_norm return normed_model_flux,mass_factor #----------------------------------------------------------------------- def match_data_models( data_wave_int, data_flux_int, data_flags, error_flux_int, model_wave_int, model_flux_int, min_wave_in, max_wave_in, saveDowngradedModel = True, downgradedModelFile = "DGmodel.txt"): """ * 0.Take data and models as inputs * 1. interpolate data and model to the lowest sampled array. * 1.1. Defines the wavelength range on the model and on the data * 1.2. Downgrades the array, model or data, that has most sampling * 1.3. integrate between them to output a matched resolution array for data and model * 2. Returns the matched wavelength array, the corresponding data, error and model arrays : matched_wave,matched_data,matched_error,matched_model :param data_wave_int: data wavelength array in the restframe :param data_flux_int: data flux array :param data_flags: data quality flag array : 1 for good data :param error_flux_int: data flux error array :param model_wave_int: model wavelength array (in the rest frame) :param model_flux_int: model flux array :param min_wave_in: minimum wavelength to be considered :param max_wave_in: maximum wavelength to be considered :param saveDowngradedModel: if True it will save the downgraded models :param downgradedModelFile: location where downgreaded models will be saved """ # 1. interpolate onto the bisection of lowest sampled array. num_models = len(model_flux_int) # 1.1. Defines the wavelength range on the model and on the data min_wave = np.max([np.min(data_wave_int[np.where(data_flags==1)]), np.min(model_wave_int),min_wave_in]) max_wave = np.min([np.max(data_wave_int[np.where(data_flags==1)]), np.max(model_wave_int),max_wave_in]) print("min wave =",min_wave) print("max wave =",max_wave) #print np.min(data_wave_int[np.where(data_flags==1)]), np.min(model_wave_int), min_wave_in #print np.max(data_wave_int[np.where(data_flags==1)]), np.max(model_wave_int), max_wave_in loc_model = np.array(( model_wave_int <= max_wave) & (model_wave_int >= min_wave)) if np.sum(loc_model)==0: raise ValueError("The wavelength range input is below or above model wavelength coverage!") model_wave = model_wave_int[loc_model] num_mod = np.sum(loc_model) model_flux = np.zeros((num_models,num_mod)) for m in range(num_models): model_flux[m] = model_flux_int[m][loc_model] loc_data = np.array(( data_wave_int <= max_wave) & (data_wave_int >= min_wave)) if np.sum(loc_data)==0: raise ValueError("The wavelength range input is below or above data wavelength coverage!") num_dat = np.sum(loc_data) data_wave = data_wave_int[loc_data] data_flux = data_flux_int[loc_data] error_flux = error_flux_int[loc_data] # 1.2. Downgrades the array, model or data, that has most sampling if num_mod >= num_dat: #print "More model points than data points! Downgrading models to data sampling ..." bisect_data = bisect_array(data_wave) + np.min(data_wave)*0.0000000001 matched_model = np.zeros((num_models,len(bisect_data) - 1)) for m in range(num_models): model_flux_bounds = np.interp(bisect_data, model_wave, model_flux[m]) combined_wave_int = np.concatenate((model_wave,bisect_data)) combined_flux_int = np.concatenate((model_flux[m],model_flux_bounds)) sort_indices = np.argsort(combined_wave_int) combined_wave = np.sort(combined_wave_int) boundary_indices = np.searchsorted(combined_wave,bisect_data) combined_flux = combined_flux_int[sort_indices] len_combo = len(combined_flux) # 1.3. produces a matched resolution array for l in range(len(boundary_indices) - 1): if boundary_indices[l + 1] >= len_combo: matched_model[m][l] = matched_model[m][l - 1] else: matched_model[m][l] = np.trapz(combined_flux[boundary_indices[l] : boundary_indices[l + 1] + 1], x=combined_wave[boundary_indices[l] :boundary_indices[l + 1] + 1]) / (combined_wave[boundary_indices[l + 1]] - combined_wave[boundary_indices[l] ]) matched_wave = data_wave[1:-1] matched_data = data_flux[1:-1] matched_error = error_flux[1:-1] # OPTION : saves the downgraded models. if saveDowngradedModel: #print "saving downgraded models to ",downgradedModelFile f.open(downgradedModelFile,'w') cPickle.dump([matched_wave, matched_data, matched_error],f) f.close() else: #print "More data points than model points! Downgrading data to model sampling ..." bisect_model = bisect_array(model_wave) + np.min(model_wave)*0.0000000001 boundaries = np.searchsorted(data_wave,bisect_model) data_flux_bounds = np.interp(bisect_model, data_wave, data_flux) error_flux_bounds = np.interp(bisect_model, data_wave, error_flux) combined_wave_int = np.concatenate((data_wave,bisect_model)) combined_flux_int = np.concatenate((data_flux,data_flux_bounds)) combined_error_int = np.concatenate((data_flux,error_flux_bounds)) sort_indices = np.argsort(combined_wave_int) combined_wave = np.sort(combined_wave_int) boundary_indices = np.searchsorted(combined_wave,bisect_model) combined_flux = combined_flux_int[sort_indices] combined_error = combined_error_int[sort_indices] # 1.3. produces a matched resolution array matched_data,matched_error= np.zeros(len(boundary_indices) - 1),np.zeros(len(boundary_indices) - 1) len_combo = len(combined_flux) for l in range(len(boundary_indices) - 1): if boundary_indices[l + 1] >= len_combo: matched_data[l] = matched_data[l - 1] matched_error[l] = matched_error[l - 1] else: matched_data[l] = np.trapz(combined_flux[boundary_indices[l]:boundary_indices[l + 1] + 1], x=combined_wave[boundary_indices[l]: boundary_indices[l + 1] + 1])/ (combined_wave[boundary_indices[l + 1]] - combined_wave[boundary_indices[l]]) matched_error[l] = np.trapz(combined_error[boundary_indices[l]:boundary_indices[l + 1] + 1], x=combined_wave[boundary_indices[l]:boundary_indices[l + 1] + 1])/ (combined_wave[boundary_indices[l + 1]] - combined_wave[boundary_indices[l]]) matched_wave = model_wave[1:-1] matched_model = np.zeros((num_models,len(matched_wave))) for m in range(num_models): matched_model[m][:] = model_flux[m][1:-1] return matched_wave,matched_data,matched_error,matched_model
[ "42441085+OliWenman@users.noreply.github.com" ]
42441085+OliWenman@users.noreply.github.com
5f4d648fe87f277326ed1c245f130c1540612c9f
acda0bc700943654156d491eaa0b766bea0ae7bd
/apps/item/views.py
5a977f899786fbf9bf8ce0698dd0d24153b6aefd
[]
no_license
bluehawkarthur/casa_campo
a11baaec966d51a1e733ad2dd48bb77a0ecd6cb5
22a57b58a722769e8e25330457ed868d230f5c05
refs/heads/master
2021-01-18T15:05:47.674205
2016-10-26T20:03:55
2016-10-26T20:03:55
68,387,895
1
0
null
null
null
null
UTF-8
Python
false
false
1,605
py
from django.shortcuts import render_to_response, render from django.views.generic import FormView, ListView, DetailView, UpdateView from pure_pagination.mixins import PaginationMixin from django.core.urlresolvers import reverse_lazy from .forms import ItemForm from django.http import HttpResponseRedirect from django.template import RequestContext from .models import Item # Create your views here. , UpdateView, DeleteView def CrearItem(request): if request.method == 'POST': form = ItemForm(request.POST) if form.is_valid(): item = Item( codigo=form.cleaned_data['codigo'], unidad=form.cleaned_data['unidad'], descripcion=form.cleaned_data['descripcion'], cantidad=form.cleaned_data['cantidad'], pr_costo=form.cleaned_data['pr_costo']) item.save() return HttpResponseRedirect(reverse_lazy('listar_item')) else: print 'dfsdfsdfsdf' form = ItemForm() variables = RequestContext(request, {'form': form}) return render_to_response('item/crearitem.html', variables) class ListarItem(PaginationMixin, ListView): template_name = 'item/listar_item.html' paginate_by = 5 model = Item context_object_name = 'item' class DetalleItem(DetailView): template_name = 'item/detalle_item.html' model = Item context_object_name = 'item' class EditItem(UpdateView): template_name = 'item/edit_item.html' model = Item fields = ['codigo', 'unidad', 'descripcion', 'cantidad', 'pr_costo'] success_url = reverse_lazy('listar_item') def DeleteItem(request, item): e = Item.objects.get(id=item) e.delete() return HttpResponseRedirect(reverse_lazy('listar_item'))
[ "josedanielf9@gmail.com" ]
josedanielf9@gmail.com
bfd136f3bac4f2347c1f6f74a47385b3c44153cf
30e4859a4c471a25c1e980c4629c589b6b499e7e
/Lab/Lab7/book_analyzer_profiled.py
66dcadda10ae0b46eee3cb826ecea36410ab5d08
[]
no_license
GoodestUsername/Python-examples-from-school
a8ad63b617f95c7850031fa77396928f9feb9c62
cb20b571ab50dd46c6f838e55ff5ad39b51e6f11
refs/heads/master
2023-03-29T21:01:15.838077
2021-04-03T04:33:34
2021-04-03T04:33:34
328,768,546
0
0
null
null
null
null
UTF-8
Python
false
false
3,169
py
""" This module is responsible for holding a badly written (but not so bad that you won't find this in the workplace) BookAnalyzer class that needs to be profiled and optimized. """ import time class BookAnalyzer: """ This class provides the ability to load the words in a text file in memory and provide the ability to filter out the words that appear only once. """ # a constant to help filter out common punctuation. COMMON_PUNCTUATION = [",", "*", ";", ".", ":", "(", "[", "]", ")"] def __init__(self): self.text = None def read_data(self, src="House of Usher.txt"): """ Reads through a text file and loads in all the words. This function also processes the words such that all whitespace and common punctuation is removed. :param src: the name of the file, a string """ # read lines with open(src, mode='r', encoding='utf-8') as book_file: self.text = book_file.readlines() # strip out empty lines stripped_text = [] for line in self.text: if line != "\n": stripped_text.append(line) self.text = stripped_text # convert list of lines to list of words words = [] for line in self.text: words += line.split() self.text = words # remove common punctuation from words temp_text = [] for word in self.text: temp_word = word for punctuation in self.COMMON_PUNCTUATION: temp_word = temp_word.replace(punctuation, '') temp_text.append(temp_word) self.text = temp_text @staticmethod def is_unique(word, word_list): """ Checks to see if the given word appears in the provided sequence. This check is case in-sensitive. :param word: a string :param word_list: a sequence of words :return: True if not found, false otherwise """ for a_word in word_list: if word.lower() == a_word.lower(): return False return True def find_unique_words(self): """ Filters out all the words in the text. :return: a list of all the unique words. """ temp_text = self.text unique_words = [] unique_words_2 = [] while temp_text: word = temp_text.pop() if word.lower() not in unique_words_2: if self.is_unique(word, temp_text): unique_words.append(word) else: unique_words.append(word) unique_words_2.append(word.lower()) return unique_words def main(): start_time = time.time() book_analyzer = BookAnalyzer() book_analyzer.read_data() unique_words = book_analyzer.find_unique_words() print("-" * 50) print(f"List of unique words (Count: {len(unique_words)})") print("-" * 50) for word in unique_words: print(word) print("-" * 50) print("--- %s seconds ---" % (time.time() - start_time)) if __name__ == '__main__': main()
[ "ericdongcannn@hotmail.com" ]
ericdongcannn@hotmail.com
a06e523614c65dc76a0ee5de471b3d4970df6c87
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/GstVideo/VideoResampler.py
a56a7a96d40d30d7b2b241bb4ea4fabe51b4f99e
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
6,320
py
# encoding: utf-8 # module gi.repository.GstVideo # from /usr/lib64/girepository-1.0/GstVideo-1.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gi.repository.Gst as __gi_repository_Gst import gi.repository.GstBase as __gi_repository_GstBase import gobject as __gobject class VideoResampler(__gi.Struct): """ :Constructors: :: VideoResampler() """ def clear(self): # real signature unknown; restored from __doc__ """ clear(self) """ pass def init(self, method, flags, n_phases, n_taps, shift, in_size, out_size, options): # real signature unknown; restored from __doc__ """ init(self, method:GstVideo.VideoResamplerMethod, flags:GstVideo.VideoResamplerFlags, n_phases:int, n_taps:int, shift:float, in_size:int, out_size:int, options:Gst.Structure) -> bool """ return False def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self): # real signature unknown; restored from __doc__ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass in_size = property(lambda self: object(), lambda self, v: None, lambda self: None) # default max_taps = property(lambda self: object(), lambda self, v: None, lambda self: None) # default n_phases = property(lambda self: object(), lambda self, v: None, lambda self: None) # default n_taps = property(lambda self: object(), lambda self, v: None, lambda self: None) # default offset = property(lambda self: object(), lambda self, v: None, lambda self: None) # default out_size = property(lambda self: object(), lambda self, v: None, lambda self: None) # default phase = property(lambda self: object(), lambda self, v: None, lambda self: None) # default taps = property(lambda self: object(), lambda self, v: None, lambda self: None) # default _gst_reserved = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(VideoResampler), '__module__': 'gi.repository.GstVideo', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'VideoResampler' objects>, '__weakref__': <attribute '__weakref__' of 'VideoResampler' objects>, '__doc__': None, 'in_size': <property object at 0x7f930d2a1770>, 'out_size': <property object at 0x7f930d2a1860>, 'max_taps': <property object at 0x7f930d2a1950>, 'n_phases': <property object at 0x7f930d2a1a40>, 'offset': <property object at 0x7f930d2a1b30>, 'phase': <property object at 0x7f930d2a1c20>, 'n_taps': <property object at 0x7f930d2a1d10>, 'taps': <property object at 0x7f930d2a1e00>, '_gst_reserved': <property object at 0x7f930d2a1ef0>, 'clear': gi.FunctionInfo(clear), 'init': gi.FunctionInfo(init)})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(VideoResampler)
[ "ttys3@outlook.com" ]
ttys3@outlook.com
2e5ea15b346c2e4143dd8edea22dcce8081c4c42
7cf619b3348e6a9ccc0402c27ae2480a60eef1c2
/Python_Learning/thread_test.py
2e418dece76f55a07d9d1c39363c5fe191bad850
[ "MIT" ]
permissive
lifedespicable/Python_Learning
cbe4284ce4688c931a3c3860197d077d0fb19a48
b3ec851c80a8137d64d02d15a3566af49b9a7ba7
refs/heads/master
2022-11-20T12:33:03.987342
2020-07-19T03:25:05
2020-07-19T03:25:05
194,821,318
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
import threading import time from threading import current_thread def myThread(arg1, arg2): print(current_thread().getName(),'start') print('%s , %s' %(arg1, arg2)) time.sleep(1) print(current_thread().getName(),'stop') for i in range(1, 6, 1): # 循环从1到5,递增的值是1,会循环5次 # t1 = myThread(i, i+1) # print(t1) t1 = threading.Thread(target= myThread, args= (i,i+1)) # t1 = threading.Thread(target=myThread(i, i+1)) t1.start() print(current_thread().getName(),'end')
[ "945432954@qq.com" ]
945432954@qq.com
00e7a6ada85829b18aee5223436b27d7d2b44fb1
d3b0c2f4a2a2a5087b517501126ec101018af84c
/dcgan.py
ac31ec12e6f47d5624ff65232118449a06bb9a8f
[]
no_license
pl561/dcgan
9b14ad90b44c1b4007ceabec98d3867cb0074371
62e39e72b926a4249690f5d131e8f20245681663
refs/heads/master
2022-12-02T20:02:40.775251
2020-08-24T06:56:40
2020-08-24T06:56:40
289,850,732
0
0
null
null
null
null
UTF-8
Python
false
false
17,776
py
""" DCGAN implementation (based on the Keras DCGAN tutorial) Tensorflow 2.1/Keras (should work from TF2.0) experiments to train with an autoencoder on 512x512 images """ import os import sys import argparse import numpy as np from numpy import expand_dims from numpy import mean from numpy import ones from numpy.random import randn from numpy.random import randint import cv2 import imutils import datetime import glob import imageio import matplotlib.pyplot as plt import PIL import tensorflow as tf from tensorflow.keras import layers import time from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import backend from tensorflow.keras.initializers import RandomNormal from tensorflow.keras.constraints import Constraint from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.preprocessing.image import img_to_array from tensorboardX import SummaryWriter import tqdm import yaml from easydict import EasyDict import wgan # fixed config args with open('cfg/main.yaml', 'r') as f: cargs = EasyDict(yaml.load(f, Loader=yaml.SafeLoader)) # def gen_layers(num_filter, ) def get_time_now(): now = datetime.datetime.now() now = now.strftime("%d-%m-%Y_%H-%M-%S") return now def add_layers(model, filter_size, assert_output=None): c2dt = layers.Conv2DTranspose(filter_size, (5, 5), strides=(2, 2), padding='same', use_bias=False) bn = layers.BatchNormalization() lrelu = layers.LeakyReLU() model.add(c2dt) if assert_output is not None: assert model.output_shape == assert_output model.add(bn) model.add(lrelu) def make_encoder_model(noise_dim): model = tf.keras.Sequential() # model.add(layers.Input(shape=(512,512,3))) model.add(layers.Conv2D( 16, (5, 5), strides=(2, 2), input_shape=(512, 512, 3), padding='same', use_bias=False)) assert model.output_shape == (None, 256, 256, 16), model.output_shape model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2D( 32, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 128, 128, 32), model.output_shape model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2D( 64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 64, 64, 64), model.output_shape model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) # model.add(layers.Conv2D( # 128, (5, 5), strides=(2, 2), padding='same', use_bias=False)) # assert model.output_shape == (None, 32, 32, 128), model.output_shape # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) # model.add(layers.Conv2D( # 256, (5, 5), strides=(2, 2), padding='same', use_bias=False)) # assert model.output_shape == (None, 16, 16, 256), model.output_shape # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) # model.add(layers.Conv2D( # 512, (5, 5), strides=(2, 2), padding='same', use_bias=False)) # assert model.output_shape == (None, 8, 8, 512), model.output_shape # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) model.add(layers.Flatten()) # assert model.output_shape == (None, 32*32*128) # model.add(layers.Dense(noise_dim)) return model def make_generator_model(noise_dim): model = tf.keras.Sequential() # model.add(layers.Dense(8*8*512, use_bias=False, input_shape=(noise_dim,))) # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) model.add(layers.Input(shape=(noise_dim,))) model.add(layers.Reshape((64, 64, 64))) # Note: None is the batch size # assert model.output_shape == (None, 32, 32, 128) assert model.output_shape == (None, 64, 64, 64) # model.add(layers.Conv2DTranspose( # 512, (5, 5), strides=(1, 1), padding='same', use_bias=False)) # assert model.output_shape == (None, 8, 8, 512) # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) # model.add(layers.Conv2DTranspose( # 256, (5, 5), strides=(2, 2), padding='same', use_bias=False)) # assert model.output_shape == (None, 16, 16, 256) # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) # model.add(layers.Conv2DTranspose( # 128, (5, 5), strides=(2, 2), padding='same', use_bias=False)) # assert model.output_shape == (None, 32, 32, 128) # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) # model.add(layers.Conv2DTranspose( # 64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) # assert model.output_shape == (None, 64, 64, 64) # model.add(layers.BatchNormalization()) # model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose( 32, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 128, 128, 32) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose( 16, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 256, 256, 16) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 512, 512, 3) return model def make_autoencoder_model(noise_dim): pass def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Conv2D(32, (5, 5), strides=(2, 2), padding='same', input_shape=[512, 512, 3])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) # model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) # model.add(layers.LeakyReLU()) # model.add(layers.Dropout(0.3)) # model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same')) # model.add(layers.LeakyReLU()) # model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(100)) model.add(layers.Dense(1)) return model def discriminator_loss(real_output, fake_output, cross_entropy): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss def generator_loss(fake_output, cross_entropy): return cross_entropy(tf.ones_like(fake_output), fake_output) def autoencoder_loss(real_image, generated_image): mse = tf.keras.losses.MeanSquaredError() total_mse = mse(real_image[:, :, :, 0], generated_image[:, :, :, 0]) + \ mse(real_image[:, :, :, 1], generated_image[:, :, :, 1]) + \ mse(real_image[:, :, :, 2], generated_image[:, :, :, 2]) return total_mse # def show_test_image(): # generator = make_generator_model() # noise = tf.random.normal([1, 100]) # generated_image = generator(noise, training=False) # plt.imshow(generated_image[0, :, :, 0], cmap='gray') # # plt.show() # discriminator = make_discriminator_model() # decision = discriminator(generated_image) # print(decision) def bgr2rgb(img): return img[:, :, ::-1] def autoencode_ds(sample_it, autoencoder, img_shape, n_sample=16): for i in range(n_sample): img, _ = sample_it.next() generated_image = autoencoder(img, training=False) image = generated_image[0].numpy() * 127.5 + 127.5 img_ae = bgr2rgb(image) cv2.imwrite("generated/image_{}.png".format(i), img_ae) def do(args): # (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data() path = cargs.ds_path nb_image = 15 # train_images = np.zeros((nb_image, 28, 28)) # for i in range(nb_image): # fname = path + "{}.jpg".format(i+1) # img = cv2.imread(fname, 0) # img = cv2.resize(img, (28,28)) # cv2.imwrite("orig/image_{}.png".format(i), img) # train_images[i] = img BUFFER_SIZE = cargs.buffer_size BATCH_SIZE = cargs.batch_size EPOCHS = cargs.epochs start_epoch = args.startepoch # noise_dim = 100 # noise_dim = 8*8*512 noise_dim = 64 * 64 * 64 num_examples_to_generate = cargs.num_ex_to_gen img_shape = cargs.img_shape_w, cargs.img_shape_h # 940 train_datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True, vertical_flip=True) orig_datagen = ImageDataGenerator() train_it = train_datagen.flow_from_directory(path, batch_size=BATCH_SIZE, target_size=img_shape, color_mode="rgb", shuffle=True) orig_it = orig_datagen.flow_from_directory(path, batch_size=BATCH_SIZE, target_size=img_shape, color_mode="rgb") sample_it = orig_datagen.flow_from_directory(path, batch_size=1, target_size=img_shape, color_mode="rgb") for i in range(nb_image): fname = path + "{}.jpg".format(i + 1) img, _ = orig_it.next() img = bgr2rgb(img[0]) # breakpoint() cv2.imwrite("orig/image_{}.png".format(i), img) # breakpoint() # train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') # train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') # train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1] # train_datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True) # Batch and shuffle the data # train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) # This method returns a helper function to compute cross entropy loss cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) mse = tf.keras.losses.MeanSquaredError() # mse = tf.keras.losses.MeanSquaredError() generator = make_generator_model(noise_dim) encoder = make_encoder_model(noise_dim) inp = layers.Input(shape=(512, 512, 3)) # breakpoint() # inp1 = encoder.layers[0](inp) # encoded = generator.layers[0](encoder(inp)) outp = generator(encoder(inp)) autoencoder = tf.keras.Model(inputs=[inp], outputs=[outp]) discriminator = make_discriminator_model() # autoencoder = tf.keras.Model(encoder.layers[0], generator(encoder.layers[0])) generator_optimizer = tf.keras.optimizers.Adam(cargs.lr_gen) discriminator_optimizer = tf.keras.optimizers.Adam(cargs.lr_disc) ae_opt = tf.keras.optimizers.Adam(cargs.lr_ae) wgan_critic_opt = tf.keras.optimizers.RMSProp(lr=cargs.lr_critic) wgan_gan_opt = tf.keras.optimizers.RMSProp(lr=cargs.lr_critic) writer = SummaryWriter(logdir=cargs.log_path, max_queue=1) checkpoint_dir = cargs.checkpoints_path checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=generator, discriminator=discriminator) # breakpoint() if args.restore: status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) # We will reuse this seed overtime (so it's easier) # to visualize progress in the animated GIF) seed = tf.random.normal([num_examples_to_generate, noise_dim]) n_sample = len(train_it) now = get_time_now() @tf.function def train_step_gan(images): noise = tf.random.normal([BATCH_SIZE, noise_dim]) # tf.reshape(noise, (BATCH_SIZE, )) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output, cross_entropy) disc_loss = discriminator_loss( real_output, fake_output, cross_entropy) gradients_of_generator = gen_tape.gradient( gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient( disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients( zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients( zip(gradients_of_discriminator, discriminator.trainable_variables)) @tf.function def train_step_ae(images): noise = tf.random.normal([BATCH_SIZE, noise_dim]) with tf.GradientTape() as ae_tape, tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: # latent_images = encoder(images, training=True) generated_images = autoencoder(images, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) ae_loss = autoencoder_loss(images, generated_images) gen_loss = generator_loss(fake_output, cross_entropy) disc_loss = discriminator_loss(real_output, fake_output, cross_entropy) # trainable vars ae_vars = autoencoder.trainable_variables gen_vars = generator.trainable_variables disc_vars = discriminator.trainable_variables # GRADIENTS grad_ae = ae_tape.gradient(ae_loss, ae_vars) grad_gen = gen_tape.gradient(gen_loss, gen_vars) grad_disc = disc_tape.gradient(disc_loss, disc_vars) # breakpoint() # AE UPDATE # ae_opt.apply_gradients(zip(grad_ae, ae_vars)) # GEN UPDATE generator_optimizer.apply_gradients(zip(grad_gen, gen_vars)) # DISC UPDATE discriminator_optimizer.apply_gradients(zip(grad_disc, disc_vars)) return ae_loss, gen_loss, disc_loss def train(train_it, epochs, start_epoch=0): for epoch in range(start_epoch, epochs): start = time.time() for ind in range(len(train_it)): image_batch, _ = train_it.next() image_batch = (image_batch - 127.5) / 127.5 ae_loss, gen_loss, disc_loss = train_step_ae(image_batch) # train_step_gan(image_batch) print("batch {} \r".format(ind), end="") end = time.time() ae_loss, gen_loss, disc_loss = ae_loss.numpy(), gen_loss.numpy(), disc_loss.numpy() loss_print = "{:.8} {:.8} {:.8} \r".format( ae_loss, gen_loss, disc_loss) print(' Time for epoch {} is {:.2} sec '.format( epoch + 1, end - start) + loss_print, end="") writer.add_scalars("losses/{}_{}".format("dcgan_ae", now), { 'ae_loss': ae_loss.numpy(), 'gen_loss': gen_loss.numpy(), 'disc_loss': disc_loss.numpy(), }, epoch) # Save the model every 200 epochs if (epoch + 1) % 500 == 0: checkpoint.save(file_prefix=checkpoint_prefix) print( "[Epoch {}] Checkpoint saved. ".format(epoch + 1)) if (epoch + 1) % 20 == 0: predictions = generator(seed, training=False) for i in range(num_examples_to_generate): # breakpoint() img = predictions[i].numpy() * 127.5 + 127.5 img = bgr2rgb(img) cv2.imwrite("from_noise/image_{}.png".format(i), img) # saves on disk example images generated by the AE autoencode_ds(sample_it, autoencoder, img_shape, n_sample=16) print("n_sample =", n_sample) train(train_it, EPOCHS, start_epoch=start_epoch) print("n_sample =", n_sample) writer.close() # predictions = generator(seed, training=False) # Generate after the final epoch # display.clear_output(wait=True) # generate_and_save_images(generator, # epochs, # seed) # def generate_and_save_images(model, epoch, test_input): # Notice `training` is set to False. # This is so all layers run in inference mode (batchnorm). # fig = plt.figure(figsize=(4,4)) # for i in range(predictions.shape[0]): # plt.subplot(4, 4, i+1) # plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') # plt.axis('off') # plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) # plt.show() # show_test_image() def main(): parser = argparse.ArgumentParser("Parser") parser.add_argument("--startepoch", default=0, help="help") parser.add_argument("--restore", action="store_true", help="help") args = parser.parse_args() print(args) # if args.arg: # do() do(args) if __name__ == "__main__": sys.exit(main())
[ "noreply@github.com" ]
pl561.noreply@github.com
abdaa8154bd3938393381ebeaf41a1febab3ef94
9ab856a6f80fa305efcad6974da6ab220f268177
/Suma, resta, multiplicación y división de dos números.py
b519a0f5c998a16a0df286fecb9090f54d263c59
[]
no_license
EduZarate/My-first-one
f97859b862efea9876427b5f997a5ae77552be46
d395b5981677e3cdefd5e3647a0c34be766a786b
refs/heads/main
2023-05-21T05:04:06.372330
2021-06-14T00:32:34
2021-06-14T00:32:34
376,557,788
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
""" Implementar un algoritmo que permita ingresar dos númerosenteros por teclado y luego muestre la suma, resta, multiplicación y división de ambos números.""" a = int(input("Ingrese un número: ")) b = int(input("Ingrese el otro: ")) print ("El resultado de la suma es: ",a+b) print ("El resultado de la resta es: ", a-b) print ("El resultado de la multiplicación es: ", a*b) print ("El resultado de la división es: ", a//b)
[ "noreply@github.com" ]
EduZarate.noreply@github.com
f62b6f02dd845156b9c7c0fe2884823a58fed264
3746667a7b2c6d0c941a22a19929b0ffaf432a33
/starkapp/apps.py
1df7173440a063bf5d0441e5edfcaf9dc294327a
[]
no_license
maxhope8/stark
fe4cf0a99614256a8d50f275ede3de3158779cea
4670686909b1f0e92b72f1791a0afe056da3d8f9
refs/heads/master
2020-11-28T03:31:16.493901
2019-12-23T07:01:21
2019-12-23T07:01:21
229,693,532
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
from django.apps import AppConfig from django.utils.module_loading import autodiscover_modules class StarkappConfig(AppConfig): name = 'starkapp' # 程序启动时,扫描app下得指定文件(stark1.py)并执行 def ready(self): autodiscover_modules('stark1')
[ "18309221170@163.com" ]
18309221170@163.com
b9622cc80db54887aced95f3b024315916271d8a
8eb9276ec6b9af26b4161e4f81fd8c21a3fcac22
/home/views.py
0484af25188d3f79482afe1f4a89ad3177287729
[]
no_license
olufekosamuel/bincomtest
4cd4fdf38926ad30bed29bfac432debab1101bd3
0c138009014552e41c3df2e331d2ea1abd170c74
refs/heads/master
2020-08-15T02:09:29.954537
2019-10-15T16:53:41
2019-10-15T16:53:41
215,264,962
0
0
null
null
null
null
UTF-8
Python
false
false
3,873
py
from datetime import datetime import datetime from smtplib import SMTPException from urllib.parse import urlparse from django.conf import settings from django.contrib.auth.hashers import check_password from django.core.mail import send_mail, BadHeaderError from django.shortcuts import render,redirect, reverse, get_object_or_404 from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required, permission_required from django.template.response import TemplateResponse from django.utils.datastructures import MultiValueDictKeyError from django.views.decorators.csrf import csrf_exempt from django.contrib import messages #from django.core.mail import send_mail from django.http import HttpResponse, HttpResponseRedirect from datetime import timedelta from django.views.decorators.csrf import csrf_protect from django.http import JsonResponse from .models import * def index(request): pol = PollingUnit.objects.get(uniqueid=8) return render(request,'index.html') def polling(request): pol = PollingUnit.objects.all() return render(request, 'poll.html', {'poll':pol}) def result(request, id): try: res = AnnouncedPuResults.objects.filter(polling_unit_uniqueid=id) print(res) except AnnouncedPuResults.DoesNotExist: pass return render(request, 'result.html', {'result':res}) def lgalist(request): lga = Lga.objects.all() party = Party.objects.all() return render(request, 'lga.html', {'locals':lga,'party':party}) def lgaresult(request, id, party): result = [] total = 0 polls = PollingUnit.objects.filter(lga_id=id) if party== "LABOUR": party="LABO" for poll in polls: results = AnnouncedPuResults.objects.filter(polling_unit_uniqueid=poll.polling_unit_id,party_abbreviation=party) for result in results: total += result.party_score return JsonResponse({'totstat': total}) def storeresult(request): party = Party.objects.all() users = Agentname.objects.all() wards = Ward.objects.all() Laga = Lga.objects.all() if request.method == "POST": name = request.POST['pollname'] no = request.POST['pollno'] desc = request.POST['description'] ward = request.POST['ward'] lga = request.POST['lga'] user = request.POST['user'] polls = PollingUnit.objects.all().reverse()[0] try: PollingUnit.objects.get(polling_unit_number=no) error= "Polling Unit Already Exist" return render(request, 'storeresult.html', {'party':party,'users':users,'wards':wards,'lga':lga,'error':error}) except PollingUnit.DoesNotExist: poll = PollingUnit.objects.create(polling_unit_number=no,polling_unit_name=name,polling_unit_description=desc,lat=0,long=0,entered_by_user=user,user_ip_address=0,lga_id=lga,ward_id=ward,polling_unit_id=polls.polling_unit_id+1,) poll.save() for part in party: if part.partyname== "LABOUR": res = AnnouncedPuResults.objects.create(party_abbreviation="LABO",party_score=request.POST[part.partyname],entered_by_user=user,user_ip_address=0,polling_unit_uniqueid=poll.polling_unit_id,date_entered=datetime.datetime.now()) else: res = AnnouncedPuResults.objects.create(party_abbreviation=part.partyname,party_score=request.POST[part.partyname],entered_by_user=user,user_ip_address=0,polling_unit_uniqueid=poll.polling_unit_id,date_entered=datetime.datetime.now()) res.save() message = "Results submitted successfully" return render(request, 'storeresult.html', {'party':party,'users':users,'wards':wards,'lga':Laga,'message':message}) return render(request, 'storeresult.html', {'party':party,'users':users,'wards':wards,'lga':Laga})
[ "mololuwasamuel12@gmail.com" ]
mololuwasamuel12@gmail.com
bc73fb03c4c94707f8f879d786c89b45091a67da
d131a239dc3a40966301721fb359eb11d3854280
/IA_Notebook_2.py
b7427c01dec4b1112940880f73c96f0d87fc3663
[]
no_license
FORGIS98/ia-notebook-dotcsv
b8aad39cd9c659acaeccbbd2209a4b6b005d33af
c30b8e09e003cd3fd7d30a40692cf18a8e6f2412
refs/heads/main
2023-06-27T23:49:00.100011
2021-08-04T09:18:33
2021-08-04T09:18:33
388,564,105
0
0
null
null
null
null
UTF-8
Python
false
false
4,507
py
#!/usr/bin/env python # coding: utf-8 # El objetivo es trucar la red neuronal **Inception V3** con un ataque adversario. Pero antes, probemos si funciona la red neuronal con una imágen. import tensorflow as tf # plataforma para el aprendizaje automatico # Desabilitamos eager-execution por que peta cuando usemos más adelante keras.gradients() tf.compat.v1.disable_eager_execution() import keras # deep learning framework/api import matplotlib.pyplot as plt import numpy as np from keras.applications.inception_v3 import InceptionV3, decode_predictions # importamos la red neuronal ya entrenada from keras import backend as k iv3 = InceptionV3() # Cargamos la red neuronal, la primera vez se descarga de internet # print(iv3.summary()) # Ver resumen de la red neuronal from keras.preprocessing import image # Para introducir la imágen a InceptionV3, la imagen requiere de unos requisitos # Cargamos la imagen con dimension 299x299 (para iv3) y la convertimos a una matriz de datos coche_2 = image.img_to_array(image.load_img("./img/Notebook_2/coche_2.jpg", target_size=(299,299))) # Cambiamos el rango o base, de [0-255] a [-1-1], por que # así espera iv3 que pases los datos de la imágen coche_2 /= 255 coche_2 -= 0.5 coche_2 *= 2 # La red neuronal espera que como entrada le pasemos un tensor, # este tiene una dimensión más que la imágen que le pasamos, # la primera dimensión hace referencia al tamaño del lote o "badge size?" # esto es útil si queremos meter varias imágenes coche_2 = coche_2.reshape([1, coche_2.shape[0], coche_2.shape[1], coche_2.shape[2]]) # LISTO, la variable ya esta lista para pasarsela al modelo resultado = iv3.predict(coche_2) decode_predictions(resultado) # Ahora, pasemos a romper el modelo con un `Ataque Adversario`. El objetivo es generar una imágen que truque a la red neuronal pero que a su vez, los cambios no sean perceptibles por el ojo humano. # Queremos hacer un grafo que represente un proceso de optimización en el que vamos a maximizar la probabilidad # de que cierta clase aparezca. Queremos que prediga una clase concreta, del palo, le damos un gato # y queremos que la red identifique que el gato es un limón. # Para ello solo necesitamos el punto de entrada y salida de la red neuronal: input_layer = iv3.layers[0].input # Primera capa de la red neuronal, en concreto el punto de entrada out_layer = iv3.layers[-1].output # Última capa de la red neuronal, el punto de salida vamos target_class = 951 # Referencia a la clase limon (porque lo dice DotCSV) # La función de coste es la probabilidad de la clase 951, osea, de todo el vector de probabilidades # que devuelve le pedimos la fila 0, columna 951 que es el que nos interesa maximizar (el limon) loss = out_layer[0, target_class] # Gradiente sobre la variable de entrada, gradiente = k.gradients(loss, input_layer)[0] # Calcular el gradiente del coste respecto al tensor de entrada # A estas funciones le suministramos los valores de entrada y salida, nuestra entrada es # el input_layer y le decimos también que estamos en la fase de entrenamiento y la salida # es el gradiente y el coste. optimize_gradient = k.function([input_layer, k.learning_phase()], [gradiente, loss]) copy_coche_2 = np.copy(coche_2) # Copia para no modificar la imágen original cost = 0.0 # Minimicemos los cambios en la imágen para que no sean perceptibles # por el ojo humano (de lo contrario apareceran pixeles muy saturados, # y se nota que la imágen ha sido modificada). max_perturb = coche_2 + 0.01 min_perturb = coche_2 - 0.01 while cost < 0.95: new_grad, cost = optimize_gradient([copy_coche_2, 0]) copy_coche_2 += new_grad # Los valores fuera del rango, se redondean al min o max especificado # Ej: [3, 2, 5, 2, 1, -2] con rango [0, 2] -> [2, 2, 2, 2, 1, 0] copy_coche_2 = np.clip(copy_coche_2, min_perturb, max_perturb) copy_coche_2 = np.clip(copy_coche_2, -1, 1) # print("Verbose:", cost) # Anteriormente reformateamos la matriz de la imágen para # que la red neuronal la entendiese, ahora para mostrarla por # pantalla hay que volver a darle el formato normal copy_coche_2 /= 2 copy_coche_2 += 0.5 copy_coche_2 *= 255 plt.imshow(copy_coche_2[0].astype(np.uint8)) plt.show() from PIL import Image # Importante guardarlo con png, si se guarda con jpg se pierde # calidad en los píxeles y la red neuronal es capaz de identificar # correctamente que hay en la foto Image.fromarray(copy_coche_2[0].astype(np.uint8)).save("lemon.png")
[ "jorgesolgonzalez1998@gmail.com" ]
jorgesolgonzalez1998@gmail.com
dd405bcc91982cd7b3a2368fbc2ccd80f9bdd887
d42e8c23b5a6cd221b2971469f7266fcb767c8c1
/Unet_CTseg.py
6fcacf7f5f5f36472db519dec237acf02679b324
[]
no_license
yBourne/CTImgSegmentation
cec18a53e93a579d55853e44e52793df8f49cb79
b3d68e4e3b4f671d9f67ca8cbfab1e7c9a43a4e8
refs/heads/master
2022-12-10T06:47:45.146371
2020-09-07T11:24:52
2020-09-07T11:24:52
293,469,158
0
0
null
null
null
null
UTF-8
Python
false
false
10,531
py
#!/usr/bin/env python # coding: utf-8 import os import sys import random import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm from itertools import chain from skimage.io import imread, imshow, imread_collection, concatenate_images, imsave from skimage.transform import resize from skimage.morphology import label from skimage.color import rgb2gray from keras.models import Model, load_model from keras.layers import Input from keras.layers.core import Dropout, Lambda from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D from keras.layers.merge import concatenate from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import backend as K import tensorflow as tf #Set some parameters IMG_WIDTH = 128 IMG_HEIGHT = 128 IMG_CHANNELS = 3 TRAIN_PATH = './dataset/train_data-2/' TEST_PATH = './dataset/test_data-2/' # VALIDATION_PATH = './dataset/validation_data/' warnings.filterwarnings('ignore', category=UserWarning, module='skimage') seed = 42 random.seed = seed np.random.seed = seed # In[3]: #Get train and test IDs train_ids = next(os.walk(TRAIN_PATH))[2] test_ids = next(os.walk(TEST_PATH))[2] # val_ids = next(os.walk(VALIDATION_PATH))[2] # In[8]: test_ids # In[4]: X_train = np.zeros((int(len(train_ids)/2), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.uint8) Y_train = np.zeros((int(len(train_ids)/2), IMG_HEIGHT, IMG_WIDTH, 1), dtype=np.bool) print('Getting and resizing train images and masks ...') sys.stdout.flush() for n, id_ in tqdm(enumerate(train_ids), total=len(train_ids)): if id_=='desktop.ini': continue path = TRAIN_PATH + id_ if n%2 == 0: img = imread(path)[:,:,:IMG_CHANNELS] img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)#mark X_train[int(n/2)] = img # mask = np.zeros((IMG_HEIGHT, IMG_WIDTH, 3), dtype=np.unint8) # for mask_file in next(os.walk(path +'/masks/'))[2]:#mark # mask_ = imread(path + '/masks/' + mask_file) # mask_ = np.expand_dims(resize(mask_, (IMG_HEIGHT, IMG_WIDTH), mode='constant', # preserve_range=True), axis=-1)#mark # mask = np.maximum(mask, mask_) else: Y_train[int(n/2), :, :, 0] = rgb2gray(imread(path)) # Get and resize test images X_test = np.zeros((len(test_ids), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.uint8) # sizes_test = [] print('Getting and resizing test images ...') sys.stdout.flush() for n, id_ in tqdm(enumerate(test_ids), total=len(test_ids)): path = TEST_PATH + id_ img = imread(path)[:,:,:IMG_CHANNELS] # sizes_test.append([img.shape[0], img.shape[1]])#mark img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True) X_test[n] = img # Get validation data # X_val = np.zeros((int(len(val_ids)/2), IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS), dtype=np.uint8) # Y_val = np.zeros((int(len(val_ids)/2), IMG_HEIGHT, IMG_WIDTH, 1), dtype=np.bool) # print('Getting and resizing validation images ...') # sys.stdout.flush() # for n, id_ in tqdm(enumerate(val_ids), total=len(val_ids)): # if os.path.splitext(id_)[-1]!='.png': # continue # path = VALIDATION_PATH + id_ # if n%2 == 0: # img = imread(path)[:,:,:IMG_CHANNELS] # img = resize(img, (IMG_HEIGHT, IMG_WIDTH), mode='constant', preserve_range=True)#mark # X_val[int(n/2)] = img # else: # Y_val[int(n/2), :, :, 0] = rgb2gray(imread(path)) print('Done!') # In[5]: # Define IoU metric def mean_iou(y_true, y_pred): prec = [] for t in np.arange(0.5, 1.0, 0.05): y_pred_ = tf.to_int32(y_pred > t) score, up_opt = tf.metrics.mean_iou(y_true, y_pred_, 2) K.get_session().run(tf.local_variables_initializer()) with tf.control_dependencies([up_opt]): score = tf.identity(score) prec.append(score) return K.mean(K.stack(prec), axis=0) ## intersection over union def IoU(y_true, y_pred, eps=1e-6): if np.max(y_true) == 0.0: return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros intersection = K.sum(y_true * y_pred, axis=[1,2,3]) union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection return -K.mean( (intersection + eps) / (union + eps), axis=0) # 原文链接:https://blog.csdn.net/m0_37477175/article/details/83004746 def dice_coef(y_true, y_pred, smooth=1): intersection = K.sum(y_true * y_pred, axis=[1,2,3]) union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) return K.mean( (2. * intersection + smooth) / (union + smooth), axis=0) def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred, smooth=1) # import cv2 # def mean_count(y_true, y_pred): # # print(K.is_tensor(y_true), type(y_pred)) # try: # count1, markers_true = cv2.connectedComponents(K.eval(y_true),connectivity=8) # count2, markers_pred = cv2.connectedComponents(K.eval(y_pred),connectivity=8) # except: # return K.zeros(shape=(1)) # return K.cast_to_floatx(count2/count1*0.5) # In[6]: # Build U-Net model from keras import metrics inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) s = Lambda(lambda x: x / 255) (inputs) c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (s) c1 = Dropout(0.1) (c1) c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c1) p1 = MaxPooling2D((2, 2)) (c1) c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1) c2 = Dropout(0.1) (c2) c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2) p2 = MaxPooling2D((2, 2)) (c2) c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p2) c3 = Dropout(0.2) (c3) c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3) p3 = MaxPooling2D((2, 2)) (c3) c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p3) c4 = Dropout(0.2) (c4) c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4) p4 = MaxPooling2D(pool_size=(2, 2)) (c4) c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p4) c5 = Dropout(0.3) (c5) c5 = Conv2D(256, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5) u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same') (c5) u6 = concatenate([u6, c4]) c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u6) c6 = Dropout(0.2) (c6) c6 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c6) u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c6) u7 = concatenate([u7, c3]) c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u7) c7 = Dropout(0.2) (c7) c7 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c7) u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c7) u8 = concatenate([u8, c2]) c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u8) c8 = Dropout(0.1) (c8) c8 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c8) u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c8) u9 = concatenate([u9, c1], axis=3) c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u9) c9 = Dropout(0.1) (c9) c9 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c9) outputs = Conv2D(1, (1, 1), activation='sigmoid') (c9) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer='adam', loss=IoU, metrics=[mean_iou, 'mae', 'acc'])#dice_coef_loss, 'binary_crossentropy',mean_absolute_error model.summary() # In[7]: # Fit model earlystopper = EarlyStopping(patience=30, verbose=1) checkpointer = ModelCheckpoint('model-CTseg-9wts.h5', verbose=1, save_best_only=True) results = model.fit(X_train, Y_train, validation_split=0.1, batch_size=16, epochs=80, callbacks=[earlystopper, checkpointer])# validation_data=(X_val, Y_val) # In[8]: # 绘制训练 & 验证的准确率值 # results.history plt.plot(results.history['acc']) plt.plot(results.history['val_acc']) plt.title('Model accuracy') plt.ylabel('ACC') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # 绘制训练 & 验证的损失值 plt.plot(results.history['loss'][1:]) plt.plot(results.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() # In[ ]: results.history.keys() # In[10]: # Predict on train, val and test # model = load_model('model-CTseg-8IoUloss-2.h5', custom_objects={'mean_iou': mean_iou,'dice_coef_loss':dice_coef_loss, 'IoU':IoU}) preds_train = model.predict(X_train[:int(X_train.shape[0]*0.9)], verbose=1) preds_val = model.predict(X_train[int(X_train.shape[0]*0.9):], verbose=1) preds_test = model.predict(X_test, verbose=1) # Threshold predictions preds_train_t = (preds_train == 1).astype(np.uint8) preds_val_t = (preds_val > 0.5).astype(np.uint8) preds_test_t = (preds_test > 0).astype(np.uint8) # Create list of upsampled test masks preds_test_upsampled = [] for i in range(len(preds_test)): preds_test_upsampled.append(resize(np.squeeze(preds_test[i]), (160, 160), mode='constant', preserve_range=True)) print('finish') # In[12]: # Perform a sanity check on some random training samples ix = random.randint(0, len(preds_train_t)) imshow(X_train[ix]) plt.show() imshow(np.squeeze(Y_train[ix])) plt.show() imshow(np.squeeze(preds_train_t[ix]), cmap='gray') plt.show() # In[22]: # preds_test = model.predict(X_test, verbose=1) # preds_test_t = (preds_test == 1).astype(np.uint8) # Perform a sanity check on some random test samples ix = random.randint(0, len(preds_test_t)) # ix = 0 imshow(X_test[ix]) plt.show() imshow(np.squeeze(preds_test_t[ix]), cmap='gray') plt.show() # In[27]: # 保存 for n, img in enumerate(preds_test_upsampled): imsave(TEST_PATH+str(n+1)+'pred.png', img) # In[2]: import numpy as np help(np.squeeze)
[ "49144395+yBourne@users.noreply.github.com" ]
49144395+yBourne@users.noreply.github.com
cec03f25f354aaa3f99e4de8a868b3777d100efc
0010a92176b766f4bdf37c1144fa0f724cfaf564
/env/lib/python3.5/site-packages/aliyunsdkecs/request/v20140526/CreateImageRequest.py
5fcd8e48fafcdcaf41af6211a1c3634952c20daa
[]
no_license
pengjinfu/My-Admin
bc2d8b53da8be0fad60e1d8979bdca3f2c4560d9
26206d1def673adb7dfe5c8044c654a0e65320d1
refs/heads/master
2021-08-30T02:17:57.432743
2017-12-15T17:05:05
2017-12-15T17:05:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,655
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class CreateImageRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'CreateImage') def get_DiskDeviceMappings(self): return self.get_query_params().get('DiskDeviceMappings') def set_DiskDeviceMappings(self,DiskDeviceMappings): for i in range(len(DiskDeviceMappings)): if DiskDeviceMappings[i].get('Size') is not None: self.add_query_param('DiskDeviceMapping.' + bytes(i + 1) + '.Size' , DiskDeviceMappings[i].get('Size')) if DiskDeviceMappings[i].get('SnapshotId') is not None: self.add_query_param('DiskDeviceMapping.' + bytes(i + 1) + '.SnapshotId' , DiskDeviceMappings[i].get('SnapshotId')) if DiskDeviceMappings[i].get('Device') is not None: self.add_query_param('DiskDeviceMapping.' + bytes(i + 1) + '.Device' , DiskDeviceMappings[i].get('Device')) if DiskDeviceMappings[i].get('DiskType') is not None: self.add_query_param('DiskDeviceMapping.' + bytes(i + 1) + '.DiskType' , DiskDeviceMappings[i].get('DiskType')) def get_Tag4Value(self): return self.get_query_params().get('Tag.4.Value') def set_Tag4Value(self,Tag4Value): self.add_query_param('Tag.4.Value',Tag4Value) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_SnapshotId(self): return self.get_query_params().get('SnapshotId') def set_SnapshotId(self,SnapshotId): self.add_query_param('SnapshotId',SnapshotId) def get_Tag2Key(self): return self.get_query_params().get('Tag.2.Key') def set_Tag2Key(self,Tag2Key): self.add_query_param('Tag.2.Key',Tag2Key) def get_ClientToken(self): return self.get_query_params().get('ClientToken') def set_ClientToken(self,ClientToken): self.add_query_param('ClientToken',ClientToken) def get_Description(self): return self.get_query_params().get('Description') def set_Description(self,Description): self.add_query_param('Description',Description) def get_Tag3Key(self): return self.get_query_params().get('Tag.3.Key') def set_Tag3Key(self,Tag3Key): self.add_query_param('Tag.3.Key',Tag3Key) def get_Platform(self): return self.get_query_params().get('Platform') def set_Platform(self,Platform): self.add_query_param('Platform',Platform) def get_Tag1Value(self): return self.get_query_params().get('Tag.1.Value') def set_Tag1Value(self,Tag1Value): self.add_query_param('Tag.1.Value',Tag1Value) def get_ImageName(self): return self.get_query_params().get('ImageName') def set_ImageName(self,ImageName): self.add_query_param('ImageName',ImageName) def get_Tag3Value(self): return self.get_query_params().get('Tag.3.Value') def set_Tag3Value(self,Tag3Value): self.add_query_param('Tag.3.Value',Tag3Value) def get_Architecture(self): return self.get_query_params().get('Architecture') def set_Architecture(self,Architecture): self.add_query_param('Architecture',Architecture) def get_Tag5Key(self): return self.get_query_params().get('Tag.5.Key') def set_Tag5Key(self,Tag5Key): self.add_query_param('Tag.5.Key',Tag5Key) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_Tag5Value(self): return self.get_query_params().get('Tag.5.Value') def set_Tag5Value(self,Tag5Value): self.add_query_param('Tag.5.Value',Tag5Value) def get_Tag1Key(self): return self.get_query_params().get('Tag.1.Key') def set_Tag1Key(self,Tag1Key): self.add_query_param('Tag.1.Key',Tag1Key) def get_InstanceId(self): return self.get_query_params().get('InstanceId') def set_InstanceId(self,InstanceId): self.add_query_param('InstanceId',InstanceId) def get_Tag2Value(self): return self.get_query_params().get('Tag.2.Value') def set_Tag2Value(self,Tag2Value): self.add_query_param('Tag.2.Value',Tag2Value) def get_ImageVersion(self): return self.get_query_params().get('ImageVersion') def set_ImageVersion(self,ImageVersion): self.add_query_param('ImageVersion',ImageVersion) def get_Tag4Key(self): return self.get_query_params().get('Tag.4.Key') def set_Tag4Key(self,Tag4Key): self.add_query_param('Tag.4.Key',Tag4Key)
[ "dylan@zhxfei.com" ]
dylan@zhxfei.com
6c1c35ef28e08ac096358de3535ce5d1f50ca604
e57d7785276053332c633b57f6925c90ad660580
/sdk/loganalytics/azure-mgmt-loganalytics/azure/mgmt/loganalytics/aio/operations/_shared_keys_operations.py
e209ceb60ee78a0cc0c90df3c27836f9fb07693b
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
adriananeci/azure-sdk-for-python
0d560308497616a563b6afecbb494a88535da4c5
b2bdfe659210998d6d479e73b133b6c51eb2c009
refs/heads/main
2023-08-18T11:12:21.271042
2021-09-10T18:48:44
2021-09-10T18:48:44
405,684,423
1
0
MIT
2021-09-12T15:51:51
2021-09-12T15:51:50
null
UTF-8
Python
false
false
7,719
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SharedKeysOperations: """SharedKeysOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.loganalytics.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def get_shared_keys( self, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> "_models.SharedKeys": """Gets the shared keys for a workspace. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SharedKeys, or the result of cls(response) :rtype: ~azure.mgmt.loganalytics.models.SharedKeys :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SharedKeys"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self.get_shared_keys.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str', max_length=63, min_length=4, pattern=r'^[A-Za-z0-9][A-Za-z0-9-]+[A-Za-z0-9]$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SharedKeys', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_shared_keys.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName}/sharedKeys'} # type: ignore async def regenerate( self, resource_group_name: str, workspace_name: str, **kwargs: Any ) -> "_models.SharedKeys": """Regenerates the shared keys for a Log Analytics Workspace. These keys are used to connect Microsoft Operational Insights agents to the workspace. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SharedKeys, or the result of cls(response) :rtype: ~azure.mgmt.loganalytics.models.SharedKeys :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SharedKeys"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self.regenerate.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str', max_length=63, min_length=4, pattern=r'^[A-Za-z0-9][A-Za-z0-9-]+[A-Za-z0-9]$'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SharedKeys', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized regenerate.metadata = {'url': '/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Microsoft.OperationalInsights/workspaces/{workspaceName}/regenerateSharedKey'} # type: ignore
[ "noreply@github.com" ]
adriananeci.noreply@github.com
c0ef2d87ef5e7fd809684761560fd8507a7c3e1f
a199d75cd956ee288709db95cd9f7e83bd105629
/jz21.py
6c2a0d4f64d67a0da94901794f1350aa5558c512
[]
no_license
yikouniao/JianZhiOffer
5defc9a9ec3b2f1a5d730074b5715125abee1f06
fdb498e4954833fba0ff207c1569bca332380fdf
refs/heads/main
2023-07-31T18:07:31.767759
2021-09-15T03:19:54
2021-09-15T03:19:54
399,709,142
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
# https://leetcode-cn.com/problems/diao-zheng-shu-zu-shun-xu-shi-qi-shu-wei-yu-ou-shu-qian-mian-lcof/ class Solution: def exchange(self, nums: List[int]) -> List[int]: odd = [num for num in nums if num % 2] even = [num for num in nums if not num % 2] return odd + even
[ "noreply@github.com" ]
yikouniao.noreply@github.com
f8738efaaf8b348ef5e99c3f6300bacf6df4a265
8f9df03ace0b6e4677b79e34a766f43dbafbd334
/HW1/Hongyi Nie/graph_adjacency_list.py
b974a8eef1128be7a884d8be8e12394e8659bf77
[]
no_license
sylvianie98/Algorithms-and-Data-Structures
04e5c716cfee80486eaae5e2ce51b8c4a84ac723
d7f7688d8909ef6dcdb29ba638f36497771d71bd
refs/heads/main
2023-06-08T22:42:03.348272
2021-07-03T23:03:01
2021-07-03T23:03:01
382,723,548
0
0
null
null
null
null
UTF-8
Python
false
false
1,418
py
# Hongyi Nie, hn327 # Please see instructions.pdf for the description of this problem. # An implementation of a weighted, directed graph as an adjacency list. This # means that it's represented as a map from each node to a list of it's # respective adjacent nodes. class Graph: def __init__(self): # DO NOT EDIT THIS CONSTRUCTOR self.graph = {} def add_edge(self, node1, node2, weight): # Adds a directed edge from `node1` to `node2` to the graph with weight defined by `weight`. # TODO: YOUR CODE HERE, delete the `raise NotImplementedError`line below once you finish writing your code if node1 in self.graph: self.graph[node1].append((node2,weight)) else: self.graph[node1] = [(node2,weight)] def has_edge(self, node1, node2): # Returns whether the graph contains an edge from `node1` to `node2`. # DO NOT EDIT THIS METHOD if node1 not in self.graph: return False return node2 in [x for (x,i) in self.graph[node1]] def get_neighbors(self, node): # Returns the neighbors of `node` as a list of tuples [(x, y), ...] where # `x` is the neighbor node, and `y` is the weight of the edge from `node` # to `x`. # TODO: YOUR CODE HERE, delete the `raise NotImplementedError`line below once you finish writing your code if node not in self.graph: return [] return self.graph[node]
[ "noreply@github.com" ]
sylvianie98.noreply@github.com
8f966c091fe8a880c52ace080de665e6e1a0bb02
743e3624fe1c5eb7c1daa1154aafe72d18977ab5
/pridesport_work/sportgoods/migrations/0001_initial.py
7ba1f47cb0a4afdd2f2ef4fe47bed993d4e38ff5
[ "MIT" ]
permissive
Trifon87/pridesport_work
54f958eb0861a872f986d84573afe4bc4ef63fcc
9ab47d3c58915c2e791bf8a1fcb3ceee1d8de62c
refs/heads/main
2023-01-29T12:24:02.790164
2020-12-13T11:04:08
2020-12-13T11:04:08
319,147,749
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
# Generated by Django 3.1.3 on 2020-11-12 17:59 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Pet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[('dog', 'Dog'), ('cat', 'Cat'), ('parrot', 'Parrot'), ('unknown', 'Unknown')], default='unknown', max_length=7)), ('name', models.CharField(max_length=6)), ('price', models.FloatField()), ('description', models.TextField(blank=True)), ('image_url', models.URLField()), ], ), migrations.CreateModel( name='Like', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sportgoods.pet')), ], ), ]
[ "trifon.ivanov@gmail.com" ]
trifon.ivanov@gmail.com
169cc6e3a08adc088826a5b3ab17e5fcb13c6c44
b976a3ca1e9cb98a9c90e57243255d0a8ace3572
/Probability & Statistics/pharmacy_multi_regression.py
911ba06a6717cd97204579ffadd3597f75e39138
[ "MIT" ]
permissive
akhilvydyula/Data-Science-and-Machine-Learning-Projects-Dojo
fbe9408818cbfdb31d7fa0e52d9566bab998b9e1
4e2932dfa6749b360a7a605050c953ef52fc6547
refs/heads/master
2023-05-06T00:42:57.787384
2021-05-28T06:40:25
2021-05-28T06:40:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
""" A pharmacy delivers medications to the surrounding community. Drivers can make several stops per delivery. The owner would like to predict the length of time a delivery will take based on one or two related variables. """ from sklearn.linear_model import LinearRegression x1, x2 = [1,3,2,3,1], [8,4,9,6,3] y = [29, 31, 36, 35, 19] reg = LinearRegression() reg.fit(list(zip(x1,x2)), y) b1, b2 = reg.coef_[0], reg.coef_[1] b0 = reg.intercept_ print(f'y = {b0:.{3}} + {b1:.{3}}x1 + {b2:.{3}}x2')
[ "ptyadana@users.noreply.github.com" ]
ptyadana@users.noreply.github.com
b137998baadcf6c1c7eddef0dd667c340d56e435
6a41f12ddb104c4f214fa8bf2864860a8952d17c
/books_crawler/books_crawler/settings.py
7916845ebd89642dd40df20c0bfb0f0e827a9905
[]
no_license
jakiiii/Web-Scraping-Scratch
39bb32ea2044e6c4e52ee58ea88794f2a77d75cd
46cd54d3a06d70cef070f47b3c15b530691c3187
refs/heads/master
2020-04-21T00:34:50.736222
2019-02-07T06:38:54
2019-02-07T06:38:54
169,200,752
1
1
null
null
null
null
UTF-8
Python
false
false
3,194
py
# -*- coding: utf-8 -*- # Scrapy settings for books_crawler project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'books_crawler' SPIDER_MODULES = ['books_crawler.spiders'] NEWSPIDER_MODULE = 'books_crawler.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'books_crawler (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'books_crawler.middlewares.BooksCrawlerSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'books_crawler.middlewares.BooksCrawlerDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'scrapy.pipelines.images.ImagesPipeline': 1 } IMAGES_STORE = '/home/jaki/Dev/WebScrapingScratch/images' # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "me.jaki@outlook.com" ]
me.jaki@outlook.com
5fc70f024b6f44a29946ecfd1ddaff48ffd8d577
fa44fafdb236d71fb06add9f727c36f017c1c969
/tomef/tools/tools.py
c131a4fdae29f481d71824582a4d42fb09ffc94c
[ "MIT" ]
permissive
unlikelymaths/tomef
43738717233d37df662c22051d72bd0554e664b2
57b629a3ee932486c55afcf62ef9d8224488ae65
refs/heads/master
2022-12-21T00:05:57.081200
2019-05-14T10:12:47
2019-05-14T10:12:47
179,456,896
1
0
MIT
2022-12-08T03:02:03
2019-04-04T08:37:40
Jupyter Notebook
UTF-8
Python
false
false
1,541
py
#!/usr/bin/env python # coding: utf-8 # # Tools # <div style="position: absolute; right:0;top:0"><a href="../evaluation.py.ipynb" style="text-decoration: none"> <font size="5">↑</font></a></div> # # Various Scripts. Command line use: # # `python evaluation.py --script scriptname` # # ## Overview # `scriptname` in brackets # - [Export Results](./export_results.ipynb) (export) # - [Clear Data](./clear_data.ipynb) (cleardata) # In[ ]: import argparse from os.path import join, dirname def run_tools_(): parser = argparse.ArgumentParser(description="Topic Modeling Evaluation Framework") parser.add_argument('-s','--script', action='store', choices=['letter', 'wiki', 'tweetsodp', 'export', 'cleardata'], help='Runs a script from the tools folder') parser.add_argument('-p','--printconfig', action='store_true', help='Prints the configuration') args = parser.parse_args() if args.script: if args.script == "letter": pass elif args.script == "wiki": pass elif args.script == "tweetsodp": pass elif args.script == "export": from tools.export_results import main as export_results_main export_results_main(join(dirname(__file__),'../')) elif args.script == 'cleardata': from tools.clear_data import main as clear_data_main clear_data_main() exit() def run_tools(): try: get_ipython except: run_tools_()
[ "markus.plack@gmail.com" ]
markus.plack@gmail.com
02cb7b37f10449199d227b815a2628225cd6b57e
0571711577354ea057d78ab1d2fc031f5dd84d36
/pipeline/twopoint/calculate_gg_errors.py
7a1c0864e00346137851cf5d58cbce6fdd106e94
[]
no_license
ssamuroff/mbii
404a069cde2a16417acff2ae21ac62ef1312ce14
9c4ee124b4a311e2f7ffc26cbfcfd3312d7ff73e
refs/heads/master
2021-03-24T09:49:31.751031
2019-01-09T17:55:22
2019-01-09T17:55:22
106,590,755
0
1
null
null
null
null
UTF-8
Python
false
false
3,255
py
import fitsio as fi import treecorr import numpy as np import argparse import yaml #import mbii.lego_tools as util from mbii.pipeline.twopoint.jackknife import multipurpose_errors as errors period={'massiveblackii':100, 'illustris':75} def compute(options, binning): print('Shape data : %s'%options['2pt']['shapes']) data = fi.FITS(options['2pt']['shapes'])[-1].read() data_sym = fi.FITS(options['2pt']['shapes_symmetrised'])[-1].read() if 'npart_cut' in options['2pt'].keys(): nlow = options['2pt']['npart_cut'] print('Imposing additional cut at npart>%d'%nlow) data = data[(data['npart_dm']>nlow)] data_sym = data_sym[(data_sym['npart_dm']>nlow)] else: nlow=-1 if 'npart_cut_upper' in options['2pt'].keys(): nhigh = options['2pt']['npart_cut_upper'] print('Imposing additional cut at npart<%d'%nhigh) data = data[(data['npart_dm']<nhigh)] data_sym = data_sym[(data_sym['npart_dm']<nhigh)] else: nhigh = -1 splitflag = options['2pt']['split'] if splitflag is not None: name = options['2pt']['split'] print('Dividing catalogue by %s'%name) mask = (data[name]>=options['2pt']['split_val']) print('%3.3f percent split'%(data[name][mask].size*100./data[name].size)) else: print('No catalogue split required.') mask = np.ones(data.size).astype(bool) if options['2pt']['binning']=='log': rbins = np.logspace(np.log10(options['2pt']['rmin']), np.log10(options['2pt']['rmax']), binning+1) elif options['2pt']['binning']=='equal': rbins = util.equalise_binning(data[mask], data[mask], options['2pt']['rmin'], options['2pt']['rmax'], binning+1) print('Setting up correlations') # don't need randoms here if we know the period of the box print('Computing correlation functions.') if splitflag: suffix = '_splitby%s'%options['2pt']['split'] else: suffix='' if (nlow>=0): suffix+='-ndm_part_low%d'%nlow if (nhigh>0): suffix+='-ndm_part_high%d'%nhigh if splitflag: print('11') cat1 = data[mask] cat1_sym = data_sym[mask] F11,R11 = errors.jackknife('gg', cat1, cat1, cat1_sym, cat1_sym, options, nbins=binning) export_array('%s/gg_var_11%s.txt'%(options['2pt']['savedir'], suffix), rbins, F11, R11) cat2 = data[np.invert(mask)] cat2_sym = data_sym[np.invert(mask)] print('22') F22,R22 = errors.jackknife('gg', cat2, cat2, cat2_sym, cat2_sym, options, nbins=binning) export_array('%s/EE_var_22%s.txt'%(options['2pt']['savedir'], suffix), rbins, F22, R22) print('12') F12,R12 = errors.jackknife('gg', cat1, cat2, cat1_sym, cat2_sym, options, nbins=binning) print('21') F21,R21 = errors.jackknife('gg', cat2, cat1, cat2_sym, cat1_sym, options, nbins=binning) export_array('%s/gg_var_12%s.txt'%(options['2pt']['savedir'], suffix), rbins, F12, R12) export_array('%s/gg_var_21%s.txt'%(options['2pt']['savedir'], suffix), rbins, F21, R21) print('00') cat0 = data cat0_sym = data_sym F00,R00 = errors.jackknife('gg', cat0, cat0, cat0_sym, cat0_sym, options, nbins=binning) export_array('%s/gg_var_00%s.txt'%(options['2pt']['savedir'], suffix), rbins, F00, R00) print('Done') def export_array(path, edges, result, error): x = np.sqrt(edges[:-1]*edges[1:]) out = np.vstack((x, result, error)) print('Exporting to %s'%path) np.savetxt(path, out.T)
[ "ssamurof@andrew.cmu.edu" ]
ssamurof@andrew.cmu.edu
6bc148e4670713ed88b82c4a0a14237077fc0130
0e27ba14e3ea4184619893686e18557932ca24f0
/pegawai/admin.py
500eca2b6bab68dee2a6e470c89f80e106814eee
[]
no_license
affandyletto/aktualNew
2d8b87628729f534507aeabef077bd89359775d4
2db3d18e40f276a5a0a33685c180bb5a8bc9e54e
refs/heads/master
2023-01-19T18:24:16.942342
2020-11-21T06:24:48
2020-11-21T06:24:48
314,744,826
0
0
null
null
null
null
UTF-8
Python
false
false
212
py
from django.contrib import admin # Register your models here. from .models import pegawai from import_export.admin import ImportExportModelAdmin @admin.register(pegawai) class user(ImportExportModelAdmin): pass
[ "letto.affandy@yahoo.com" ]
letto.affandy@yahoo.com
9ecf9ee4f2dde940f3f1270467edae21b47aed08
660433016b82875198c198f06f1d58a91e3a752a
/bloodbank_proj/asgi.py
3d9909e015989f91d884363e11ccddcdef1db45b
[]
no_license
TusharSarkar181/Blood_Bank_Management_System
7aae9c630e555acdc577f3042b50cf65783aba33
4bbc823b99d83e9a5827c95d254e259a80d4e606
refs/heads/master
2023-07-17T07:47:43.485745
2021-09-05T13:33:01
2021-09-05T13:33:01
383,558,618
1
1
null
null
null
null
UTF-8
Python
false
false
405
py
""" ASGI config for bloodbank_proj project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bloodbank_proj.settings') application = get_asgi_application()
[ "tusharsarkar97@gmail.com" ]
tusharsarkar97@gmail.com
80d8ce6609110537d0ace4a9b6e1e4ac37926939
b6ed92f8e38b2464dfbf045bf20c2ffc1cc37438
/setup.py
6274ecafe705f8205edfcbba9cdd003210420a41
[ "Apache-2.0" ]
permissive
arbedout/peekaboo
33794b28bfc52e3271fe0510b31dcac17f3ab7d5
9199a6803a91bc7c185449df3ca0276d3d8854ea
refs/heads/master
2021-01-12T22:09:10.595941
2015-03-04T10:49:08
2015-03-04T10:49:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,393
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Setup script for peekaboo ''' from setuptools import setup, find_packages import sys, os, glob with open('requirements.txt') as f: requires = f.read().splitlines() CLASSIFIERS = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', ] setup( name = 'peekaboo', version = '0.7-1', description = 'Expose hardware info through HTTP', long_description = open("README.rst").read(), author = 'Michael Persson', author_email = 'michael.ake.persson@gmail.com', url = 'https://github.com/mickep76/peekaboo.git', license = 'Apache License, Version 2.0', packages = find_packages(), classifiers = CLASSIFIERS, scripts = ['scripts/peekaboo'], data_files = [('/etc', ['etc/peekaboo.conf']), ('/var/lib/peekaboo/plugins/info', glob.glob('plugins/info/*.py')), ('/var/lib/peekaboo/plugins/status', glob.glob('plugins/status/*.py')), ('/usr/share/peekaboo', ['LICENSE', 'README.rst']), ('/usr/share/peekaboo/contrib', glob.glob('contrib/*'))], install_requires = requires, )
[ "michael.ake.persson@gmail.com" ]
michael.ake.persson@gmail.com
ff74747105a771c51a28a917d9ce7ebfb5ce40de
c062847c2d2d7e1f0a15128b716b496425db84d2
/ex7/nation_mood.py
b168f24ce125991ea52a721b99afa3cf46ead0bb
[]
no_license
aviadlevy/Intro2cs-huji-2014
3dae8c15d5292532e1d4cf58d3b655d98ccbe26e
d17b71ec5b98961fb536095926112ad1c926ecc9
refs/heads/master
2021-01-21T00:17:00.168468
2015-06-20T21:55:43
2015-06-20T21:55:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,894
py
from data import load_tweets def most_talkative_state(tweets,find_state): """Return the state that has the largest number of tweets containing term. """ state = [] #create a list of all tweets locations for index in range(len(tweets)): state.append(find_state(tweets[index])) if len(state) == 0: return #return the state the appear the most on the list we built using key in # max (the max value relevant to the count) return max(state, key = state.count) def average_sentiments(tweets_by_state,word_sentiments): """Calculate the average sentiment of the states by averaging over all the tweets from each state. Return the result as a dictionary from state names to average sentiment values (numbers). If a state has no tweets with sentiment values, leave it out of the dictionary entirely. Do NOT include states with no tweets, or with tweets that have no sentiment, as 0. 0 represents neutral sentiment, not unknown sentiment. tweets_by_state -- A dictionary from state names to lists of tweets """ sentimentDict = {} for state,tweets in tweets_by_state.items(): summarizeSentiment = 0 numOfCountedTweets = 0 for index in range(len(tweets)): #if we got value from 'get_sentiment' func, sum it and add 1 to # the counter (that count how many tweets we summarized if tweets[index].get_sentiment(word_sentiments) != None: summarizeSentiment += \ tweets[index].get_sentiment(word_sentiments) numOfCountedTweets += 1 #if we summarized, update the dictionary with value - state, # key - average if numOfCountedTweets != 0: sentimentDict.update({state : summarizeSentiment / numOfCountedTweets}) return sentimentDict def group_tweets_by_hour(tweets): """Return a list of lists of tweets that are gouped by the hour they were posted. The indexes of the returned list represent the hour when they were posted - the integers 0 through 23. tweets_by_hour[i] is the list of all tweets that were posted between hour i and hour i + 1. Hour 0 refers to midnight, while hour 23 refers to 11:00PM. To get started, read the Python Library documentation for datetime objects: http://docs.python.org/py3k/library/datetime.html#datetime.datetime tweets -- A list of tweets to be grouped """ llistOfLists = [[] for hour in range(24)] #create list of 24 lists inside for index in range(len(tweets)): time = tweets[index].get_time() #enter tweet in the hour it posted (using .hour that represent the # hour of 'datetime' class from 0 to 23 (just like list index)) llistOfLists[time.hour].append(tweets[index]) return llistOfLists
[ "aviadlevy1@gmail.com" ]
aviadlevy1@gmail.com
be2207f28e2b5bb0f8ffca81258406938785ee7f
e71658fa2936e20d2d1b11e198562fc7c935c975
/Dados Brutos/spider.py
dfea85e2ec863754c20ccd701db6b2ba65570222
[]
no_license
visualizacao-ufpe/producao_academica
3cbe855fe3baed217f60410c18bfb51839f978ef
c465da65b0017afee1d4a89270a20118be8a86a5
refs/heads/master
2021-01-12T02:51:54.678738
2017-01-05T15:27:39
2017-01-05T15:27:39
78,122,066
0
1
null
null
null
null
UTF-8
Python
false
false
8,478
py
#!/usr/bin/python # -*- coding: UTF-8 -*- from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.webdriver.common.by import By import time import json class Author(object): """docstring for Author""" def __init__(self, order, name, category): self.order = order self.name = name self.category = category def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) class Document(object): def __init__(self, ies, program, year, name, type_, subtype_, authors, area, researchLine, researchProjet): self.ies = ies self.program = program self.year = year self.name = name self.type_ = type_ self.subtype_ = subtype_ self.authors = authors self.area = area self.researchLine = researchLine self.researchProjet = researchProjet self.extension = None def setExtension(self, DocExtension): self.extension = DocExtension def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) class DocExtension(object): def __init(self): self.info = "Doc Extension" def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) class Periodico(DocExtension): def __init__(self, issn, nature, volume, fasciculo, serie, n_finalPage, n_startPage, idiom, advertising, url, observation, editor, city, doi): self.issn = issn self.nature = nature self.volume = volume self.fasciculo = fasciculo self.serie = serie self.n_finalPage = n_finalPage self.n_startPage = n_startPage self.idiom = idiom self.advertising = advertising self.url = url self.observation = observation self.editor = editor self.city = city self.doi = doi class Livro(DocExtension): def __init__(self, nature, editor, city_country, page_count, isbn, url, observation, title, year_fst_pusblish, tiragem, reedition, reimpresion, advertising_mode, idiom, editor_type, funding, name_funding, editorial_conselor, distribution, parecer, indice, contribution_type, award, award_date, reference_work, institution, indication_date, content_nature, author_info, page_count_contribution, editorial_city): self.nature = nature self.editor = editor self.city_country = city_country self.page_count = page_count self.isbn = isbn self.url = url self.observation = observation self.title = title self.year_fst_pusblish = year_fst_pusblish self.tiragem = tiragem self.reedition = reedition self.reimpresion = reimpresion self.advertising_mode = advertising_mode self.idiom = idiom self.editor_type = editor_type self.funding = funding self.name_funding = name_funding self.editorial_conselor = editorial_conselor self.distribution = distribution self.parecer = parecer self.indice = indice self.contribution_type = contribution_type self.award = award self.award_date = award_date self.reference_work = reference_work self.institution = institution self.indication_date = indication_date self.content_nature = content_nature self.author_info = author_info self.page_count_contribution = page_count_contribution self.editorial_city = editorial_city class Anais(DocExtension): def __init__(self, nature, title, volume, fasciculo, serie, n_finalPage, n_startPage, event_name, event_city, event_country, idiom, isbn_issn, advertising, url, observation, edition): self.nature = nature self.title = title self.volume = volume self.fasciculo = fasciculo self.serie = serie self.n_finalPage = n_finalPage self.n_startPage = n_startPage self.event_name = event_name self.event_city = event_city self.event_country = event_country self.idiom = idiom self.isbn_issn = isbn_issn self.advertising = advertising self.url = url self.observation = observation self.edition = edition driver = webdriver.Chrome() driver.get("https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/producaoIntelectual/listaProducaoIntelectual.jsf") assert "Plataforma Sucupira" in driver.title universidade_in = driver.find_element_by_id("form:j_idt45:inst:input") universidade_in.clear(); universidade_in.send_keys("UFPE") time.sleep(3) select = Select(driver.find_element_by_id("form:j_idt45:inst:listbox")) select.select_by_visible_text("25001019 UNIVERSIDADE FEDERAL DE PERNAMBUCO (UFPE)") time.sleep(2) course = Select(driver.find_element_by_name("form:j_idt45:j_idt122")) course.select_by_visible_text(u"CIÊNCIAS DA COMPUTAÇÃO (25001019004P6)") doc_type = Select(driver.find_element_by_name("form:tipo")) doc_type.select_by_visible_text(u"BIBLIOGRÁFICA") documents_links = [] for x in xrange(2013,2017): submit = driver.find_element_by_id("form:consultar") year = driver.find_element_by_id("form:j_idt45:ano") year.clear() year.send_keys(x) submit.click() time.sleep(3) #checking if there is results available warning = "" try: warning = driver.find_element_by_class_name("aviso").text except Exception as e: pass if(warning is not None and warning == u'N\xe3o existem dados cadastrados para a pesquisa realizada.'): print "Sem resultados para o ano " + str(x) else: reg_year = int(driver.find_elements(By.XPATH, "//div[@id='form:j_idt88:div_paginacao']/ul/li")[0].text.split("de")[1].split(" ")[1]) for x in xrange(1,reg_year, 50): links_page = len(driver.find_elements(By.XPATH, "//table/tbody/tr/td/a")) default_handler = driver.window_handles[0] links = driver.find_elements(By.XPATH, "//table/tbody/tr/td/a[@href]") for link in links: documents_links.append(link.get_attribute("href")) if reg_year > 50: driver.find_element_by_class_name("pag-proxima").click() time.sleep(3) time.sleep(3) print "[" for link in documents_links: driver.get(link) time.sleep(1) authors = driver.find_elements(By.XPATH, "//table[@class='listagem']")[0].find_elements_by_tag_name("tr") authors_arr = [] for z in xrange(1,len(authors)): data = authors[z].find_elements_by_tag_name("td") authors_arr.append(Author(int(data[0].text), data[1].text, data[2].text)) ies = driver.find_element_by_id("formView:ies").text program = driver.find_element_by_id("formView:programa").text year = driver.find_element_by_id("formView:periodo").text name = driver.find_element_by_id("formView:nome").text type_ = driver.find_element_by_id("formView:tipo").text subtype_ = driver.find_element_by_id("formView:subtipo").text context = driver.find_elements(By.XPATH, "//div[@class='form-container']/div[@class='form-grid-3']")[-3:] area = context[0].text researchLine = context[1].text researchProjet = context[2].text doc = Document(ies, program, year, name, type_, subtype_, authors_arr, area, researchLine, researchProjet) subdata = driver.find_elements(By.XPATH, "//table[@class='listagem']/tbody/tr/td/div/div[@class='form-grid-3']") if subtype_ == u"ARTIGO EM PERIÓDICO": doc.setExtension(Periodico( subdata[0].text, subdata[1].text, subdata[2].text, subdata[3].text, subdata[4].text, subdata[5].text, subdata[6].text, subdata[7].text, subdata[8].text, subdata[9].text, subdata[10].text, subdata[11].text, subdata[12].text, subdata[13].text )) elif subtype_ == u"LIVRO": doc.setExtension(Livro( subdata[0].text, subdata[1].text, subdata[2].text, subdata[3].text, subdata[4].text, subdata[5].text, subdata[6].text, subdata[7].text, subdata[8].text, subdata[9].text, subdata[10].text, subdata[11].text, subdata[12].text, subdata[13].text, subdata[14].text, subdata[15].text, subdata[16].text, subdata[17].text, subdata[18].text, subdata[19].text, subdata[20].text, subdata[21].text, subdata[22].text, subdata[23].text, subdata[24].text, subdata[25].text, subdata[26].text, subdata[27].text, subdata[28].text, subdata[29].text, subdata[30].text )) elif subtype_ == u"TRABALHO EM ANAIS": periodico = Anais( subdata[0].text, subdata[1].text, subdata[2].text, subdata[3].text, subdata[4].text, subdata[5].text, subdata[6].text, subdata[7].text, subdata[8].text, subdata[9].text, subdata[10].text, subdata[11].text, subdata[12].text, subdata[13].text, subdata[14].text, subdata[15].text) doc.setExtension(periodico) else: print "Novo subtipo" + subtype_ print doc.toJSON() + "," print "]" driver.close()
[ "nivan.ferreira@gmail.com" ]
nivan.ferreira@gmail.com
3f64bff5e5477cdf4957e7b0c3668de6b97d9d85
46dccb38e665324156c1eb868e234fcb32a9d222
/Bianca/Exercitii_curs/Python-exercitii/Curs4/Parcurgere_liste.py
e39e44fba05753566e031a71e3fd93a5bae1c994
[]
no_license
BiancavD/PEP19G04
dc654904e00958fdb2a16521d50447bc437cac03
2c14b9447c00ec18d7bd8c7c6754ae3fdca5fd8e
refs/heads/master
2020-08-28T15:58:26.013068
2019-12-13T13:44:45
2019-12-13T13:44:45
217,746,982
0
2
null
null
null
null
UTF-8
Python
false
false
906
py
#a = [23, 34, 425, -32, 73, 6, 256, 9, 33, 45.7] v=[23,11,42,53,48,25,16] #print("lungimea vectorului este:", len(v[2:4])) """for x in v: print(x)""" #sa se afiseze elementele pare din vectorul v """for x in v: if x % 2 == 0: print(x)""" #sa se afiseze elementele de pe pozitiile impare """for i in range(len(v)): if i % 2 != 0: print(v[i])""" ###Afisare din 2 in 2 """ a = [23, 34, 425, -32, 73, 6, 256, 9, 33, 45.7] for i in range(0,len(a),2): print(a[i])""" ####Afisare elemente fara 0 v = [23, 34, 425, -32, 73, 6, 0, 9, 33, 45.7] for i in range(len(v)): if v[i] == 0: continue print(v[i]) #### ### sa se opreasca cand ajunge la 0 v = [23, 34, 425, -32, 73, 6, 256, 9, 33, 45.7] for i in range(len(v)): if v[i]== 0: break print(v[i]) ### #varianta mai eficienta """print() for i in range(1, len(v), 2): print(v[i])"""
[ "mihaita-cristian.manda@atos.net" ]
mihaita-cristian.manda@atos.net
b9f0bdc682f5444b42f1881c2f9fd3147ee47dc5
bb04717f74c5cd6593083ce68815923256f8843a
/player/migrations/0001_initial.py
fe09bf5f4c1c90401b21dafa20261667abecc3aa
[]
no_license
xujingao13/new_teamwork
77eb6941a3067dfc131ab34d580a7d8fb2b69517
447f0497c6a9e41a7b839ad3e424a9d5465d2c95
refs/heads/master
2021-01-13T02:11:16.987281
2015-12-30T15:24:00
2015-12-30T15:24:00
40,200,354
0
1
null
null
null
null
UTF-8
Python
false
false
3,187
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings import datetime class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='ChessPlayer', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to='', verbose_name='头像')), ('nick_name', models.CharField(max_length=256, verbose_name='游戏状态')), ('game_num', models.IntegerField(verbose_name='游戏次数', default=0)), ('game_grade', models.IntegerField(verbose_name='游戏积分', default=0)), ('game_state', models.CharField(max_length=128, verbose_name='游戏状态')), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, serialize=False, verbose_name='ID')), ('publisher_id', models.IntegerField()), ('receiver_id', models.IntegerField()), ('type', models.CharField(max_length=128, verbose_name='信息类型')), ('content', models.CharField(max_length=400, verbose_name='信息内容')), ], ), migrations.CreateModel( name='Relationship', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, serialize=False, verbose_name='ID')), ('user1_id', models.IntegerField()), ('user2_id', models.IntegerField()), ], ), migrations.CreateModel( name='Room', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, serialize=False, verbose_name='ID')), ('owner_id', models.IntegerField()), ('guest_id', models.IntegerField()), ('whose_turn', models.IntegerField()), ('game_state', models.CharField(max_length=128, verbose_name='游戏状态')), ('chess_board', models.CharField(max_length=450, verbose_name='棋盘状态')), ('last_chess_board', models.CharField(max_length=450, verbose_name='上一次棋盘状态')), ('last_steptime', models.DateTimeField(blank=True, default=datetime.datetime(2015, 8, 5, 20, 42, 37, 294029))), ('pausestart', models.DateTimeField(blank=True, default=datetime.datetime(2015, 8, 5, 20, 42, 37, 294029))), ], ), migrations.CreateModel( name='WatchingGame', fields=[ ('id', models.AutoField(primary_key=True, auto_created=True, serialize=False, verbose_name='ID')), ('user_id', models.IntegerField()), ('room_id', models.IntegerField()), ], ), ]
[ "xujingao13@gmail.com" ]
xujingao13@gmail.com
db2142bda638e20badb1ee6c14cf9429f34b6309
4590f24f3ac94e5c4669674ec2f23f15a523af57
/finalv2.py
a693d0552881b292652cad6b92c86fdc0d622f04
[]
no_license
shaavi/Spectre_FYP
1b5fa707080981bc558bbe16859d0a9b3dd15184
63b7770f46e4c8510648d5d169098178614506f0
refs/heads/master
2020-06-11T17:06:22.789407
2020-03-02T12:23:43
2020-03-02T12:23:43
194,032,411
0
0
null
null
null
null
UTF-8
Python
false
false
4,889
py
#!/usr/bin/env python # coding: utf-8 # In[101]: import numpy as np import cv2 import matplotlib.pyplot as plt from skimage import io from skimage import measure #read image image = cv2.imread('H:/FYP/interim/images/222.jpg',0) #preprocess using median blur img = cv2.medianBlur(image,5) plt.imshow(img) # In[102]: #erosion using morphological operations ret,th1 = cv2.threshold(img,50,255,cv2.THRESH_BINARY) kernel = np.ones((3,3),np.uint8) erosion = cv2.erode(th1, kernel, iterations = 4) plt.imshow(erosion) # In[103]: # perform a connected component analysis on the eroded image, then initialize a mask to store only the "large" components labels = measure.label(erosion, neighbors=8, background=0) mask1 = np.zeros(erosion.shape, dtype="uint8") # loop over the unique components for label in np.unique(labels): # if this is the background label, ignore it if label == 0: continue # otherwise, construct the label mask and count the # number of pixels labelMask = np.zeros(erosion.shape, dtype="uint8") labelMask[labels == label] = 255 numPixels = cv2.countNonZero(labelMask) # if the number of pixels in the component is sufficiently # large, then add it to our mask of "large blobs" if numPixels > 30000: mask1 = cv2.add(mask1, labelMask) plt.imshow(mask1) # In[104]: mask = cv2.dilate(mask1,kernel,iterations = 6) plt.imshow(mask) # In[105]: #extract the brain using the mask img = io.imread("H:/FYP/interim/images/222.jpg") mask2 = np.where((mask<200),0,1).astype('uint8') brain_img = img*mask2[:,:,np.newaxis] plt.imshow(brain_img) # In[106]: # Load image, grayscale, Otsu's threshold, and extract ROI image = brain_img gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] #thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1] x,y,w,h = cv2.boundingRect(thresh) ROI = image[y:y+h, x:x+w] plt.imshow(ROI) # In[108]: # Color segmentation on ROI hsv = cv2.cvtColor(ROI, cv2.COLOR_BGR2HSV) lower = np.array([0, 0, 125]) upper = np.array([179, 255, 255]) mask = cv2.inRange(hsv, lower, upper) plt.imshow(mask) # In[109]: plt.imshow(hsv) # In[110]: # Crop left and right half of mask x, y, w, h = 0, 0, ROI.shape[1]//2, ROI.shape[0] left = mask[y:y+h, x:x+w] right = mask[y:y+h, x+w:x+w+w] # Count pixels left_pixels = cv2.countNonZero(left) right_pixels = cv2.countNonZero(right) print('Left pixels:', left_pixels) print('Right pixels:', right_pixels) # In[111]: # Crop top and bottom half of mask x, y, w, h = 0, 0, mask.shape[0], mask.shape[1]//2 bottom = mask[y+h:y+h+h, x:x+w] top = mask[y:y+h, x:x+w] # Count pixels top_pixels = cv2.countNonZero(top) bottom_pixels = cv2.countNonZero(bottom) print('Top pixels:', top_pixels) print('Bottom pixels:', bottom_pixels) # In[112]: if left_pixels > right_pixels: print("Left") else: print("Right") if top_pixels > bottom_pixels: print("Top") else: print("Bottom") # In[113]: plt.imshow(left) # In[114]: plt.imshow(right) # In[115]: plt.imshow(top) # In[116]: plt.imshow(bottom) # In[117]: plt.imshow(mask) # In[124]: #img = cv2.imread('H:/FYP/interim/images/3322.jpg') #img = mask #gray_image = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) # convert the grayscale image to binary image ret,thresh = cv2.threshold(mask,127,255,0) # calculate moments of binary image M = cv2.moments(thresh) I = cv2.moments(mask) # calculate x,y coordinate of center of tumor cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) print('tumor center:', cX, cY) # calculate x,y coordinate of center of image iX = ROI.shape[1]//2 iY = ROI.shape[0]//2 print('image center:', iX, iY) # put text and highlight the center #center = cv2.circle(mask, (iX, iY), 5, (22, 100, 8), -1) #cv2.putText(mask, "centroid", (cX - 25, cY - 25),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (22, 100, 8), 2) # put text and highlight the center center = cv2.circle(mask, (cX, cY), 5, (22, 100, 80), -1) center = cv2.putText(center, "centroid", (cX - 25, cY - 25),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (22, 100, 8), 2) center = cv2.circle(center, (iX, iY), 5, (22, 100, 8), -1) center = cv2.putText(center, "centroid", (iX - 25, iY - 25),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (22, 100, 8), 2) plt.imshow(center) # In[120]: #calculate distance of tumor from center import math p1 = [iX, iY] p2 = [cX, cY] distance = math.sqrt( ((p1[0]-p2[0])**2)+((p1[1]-p2[1])**2) ) print('distance = ', distance) # In[87]: print('Left pixels:', left_pixels) print('Right pixels:', right_pixels) print('Top pixels:', top_pixels) print('Bottom pixels:', bottom_pixels) print(" ") print("Location of tumor:") if left_pixels > right_pixels: print(" Left") else: print(" Right") if top_pixels > bottom_pixels: print(" Top") else: print(" Bottom") # In[ ]:
[ "shavindip@gmail.com" ]
shavindip@gmail.com
522bd050c87ec2e3215a3c729553e1d611c0549a
824b582c2e0236e987a29b233308917fbdfc57a7
/sdk/python/pulumi_google_native/orgpolicy/v2/get_folder_policy.py
14f2f3278537c86a7f93b5c154315a900a2b904d
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
24601/pulumi-google-native
ce8faf8455609a9572a8cbe0638c66427bf0ae7f
b219a14201c6c58eaa10caaeacbdaab528931adf
refs/heads/master
2023-08-23T05:48:31.819709
2021-10-08T18:50:44
2021-10-08T18:50:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,527
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetFolderPolicyResult', 'AwaitableGetFolderPolicyResult', 'get_folder_policy', 'get_folder_policy_output', ] @pulumi.output_type class GetFolderPolicyResult: def __init__(__self__, name=None, spec=None): if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if spec and not isinstance(spec, dict): raise TypeError("Expected argument 'spec' to be a dict") pulumi.set(__self__, "spec", spec) @property @pulumi.getter def name(self) -> str: """ Immutable. The resource name of the Policy. Must be one of the following forms, where constraint_name is the name of the constraint which this Policy configures: * `projects/{project_number}/policies/{constraint_name}` * `folders/{folder_id}/policies/{constraint_name}` * `organizations/{organization_id}/policies/{constraint_name}` For example, "projects/123/policies/compute.disableSerialPortAccess". Note: `projects/{project_id}/policies/{constraint_name}` is also an acceptable name for API requests, but responses will return the name using the equivalent project number. """ return pulumi.get(self, "name") @property @pulumi.getter def spec(self) -> 'outputs.GoogleCloudOrgpolicyV2PolicySpecResponse': """ Basic information about the Organization Policy. """ return pulumi.get(self, "spec") class AwaitableGetFolderPolicyResult(GetFolderPolicyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetFolderPolicyResult( name=self.name, spec=self.spec) def get_folder_policy(folder_id: Optional[str] = None, policy_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetFolderPolicyResult: """ Gets a `Policy` on a resource. If no `Policy` is set on the resource, NOT_FOUND is returned. The `etag` value can be used with `UpdatePolicy()` to update a `Policy` during read-modify-write. """ __args__ = dict() __args__['folderId'] = folder_id __args__['policyId'] = policy_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('google-native:orgpolicy/v2:getFolderPolicy', __args__, opts=opts, typ=GetFolderPolicyResult).value return AwaitableGetFolderPolicyResult( name=__ret__.name, spec=__ret__.spec) @_utilities.lift_output_func(get_folder_policy) def get_folder_policy_output(folder_id: Optional[pulumi.Input[str]] = None, policy_id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetFolderPolicyResult]: """ Gets a `Policy` on a resource. If no `Policy` is set on the resource, NOT_FOUND is returned. The `etag` value can be used with `UpdatePolicy()` to update a `Policy` during read-modify-write. """ ...
[ "noreply@github.com" ]
24601.noreply@github.com
86bf68a3fdb54d1cb09fca3faa9ef12d0f6fa966
ee53b0262007b2f0db0fe15b2ad85f65fafa4e25
/Leetcode/849. Maximize Distance to Closest Person.py
f36d9de210337b439e5c96e96c00caecda775ca7
[]
no_license
xiaohuanlin/Algorithms
bd48caacb08295fc5756acdac609be78e143a760
157cbaeeff74130e5105e58a6b4cdf66403a8a6f
refs/heads/master
2023-08-09T05:18:06.221485
2023-08-08T11:53:15
2023-08-08T11:53:15
131,491,056
1
0
null
null
null
null
UTF-8
Python
false
false
2,279
py
''' In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is empty. There is at least one empty seat, and at least one person sitting. Alex wants to sit in the seat such that the distance between him and the closest person to him is maximized. Return that maximum distance to closest person. Example 1: Input: [1,0,0,0,1,0,1] Output: 2 Explanation: If Alex sits in the second open seat (seats[2]), then the closest person has distance 2. If Alex sits in any other open seat, the closest person has distance 1. Thus, the maximum distance to the closest person is 2. Example 2: Input: [1,0,0,0] Output: 3 Explanation: If Alex sits in the last seat, the closest person is 3 seats away. This is the maximum distance possible, so the answer is 3. Note: 1 <= seats.length <= 20000 seats contains only 0s or 1s, at least one 0, and at least one 1. ''' import unittest class Solution: def maxDistToClosest(self, seats): """ :type seats: List[int] :rtype: int """ i = 0 start = -1 max_dis = 0 while i < len(seats): if seats[i] == 0: if i == len(seats) - 1: # print(i, start) dis = i - start else: i += 1 continue else: if start == -1: # print(i, start) dis = i start = i else: dis = (i - start) // 2 # print(mid, dis) start = i # print(dis, max_dis) if dis > max_dis: max_dis = dis i += 1 return max_dis class TestSolution(unittest.TestCase): def test_case(self): examples = ( ([1,0,0,0,1,0,1], 2), ([1,0,0,0], 3), ([0,0,0,1], 3), ([0,1,0,0,0,0], 4), ) for first, second in examples: self.assert_function(first, second) def assert_function(self, first, second): self.assertEqual(Solution().maxDistToClosest(first), second, msg="first: {}; second: {}".format(first, second)) unittest.main()
[ "derek.xiao@loftk.us" ]
derek.xiao@loftk.us
63f6862c5fa020fc79e11cdb16aee06ddb1ff1a0
d5d35d20ec811cbaa792e681d559361cd7f38159
/challenge/DidacticVampireText.py
70cdffe7dc20b01345fe0e2f5d252051a8275136
[]
no_license
markieboy/hacker.org
afe43f0b4213ec135f8b095bcc7b1a7a755581d8
da1689bdcc2fe91a81a30385680fd367f2d6e9cf
refs/heads/master
2021-06-21T12:07:21.503999
2017-08-11T08:38:05
2017-08-11T08:38:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
#!/usr/bin/env python3 # Q: http://www.hacker.org/challenge/chal.php?id=139 # A: http://www.hacker.org/challenge/chal.php?answer=sunshine&id=139&go=Submit import re import urllib.request import hacker_org_util PROBLEM_ID = '139' def main(): source = urllib.request.urlopen(hacker_org_util.build_challenge_url(PROBLEM_ID)).read().decode() m = re.search('<p>(.*)<p>', source, flags=re.DOTALL) text = m.group(1) print(''.join(re.findall(r'[A-Z]', text))) if __name__ == '__main__': main()
[ "charles.wangkai@gmail.com" ]
charles.wangkai@gmail.com
1f282037ba707bdcb0c2fbd47ed08bb8e0e60104
5aa14c620a383d8429c144e5af46b0322c674439
/tests/python/Lut1DTransformTest.py
0b6073a7cd51dad23173cb33a42118d333820dbb
[ "BSD-3-Clause", "CC-BY-4.0" ]
permissive
asdlei99/OpenColorIO
ae421f6c14870ffe735c73107b76f6746bd563ee
9b23e9623792d8cc6e6c1dfd5394335ee148bcf3
refs/heads/master
2023-03-13T16:14:19.693576
2021-03-03T03:11:10
2021-03-03T03:11:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,698
py
# SPDX-License-Identifier: BSD-3-Clause # Copyright Contributors to the OpenColorIO Project. import logging import unittest logger = logging.getLogger(__name__) try: import numpy as np except ImportError: logger.warning( "NumPy could not be imported. " "Test case will lack significant coverage!" ) np = None import PyOpenColorIO as OCIO class Lut1DTransformTest(unittest.TestCase): def test_default_constructor(self): """ Test the default constructor. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getLength(), 2) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_FORWARD) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_NONE) self.assertFalse(lut.getInputHalfDomain()) self.assertFalse(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_DEFAULT) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UNKNOWN) r, g, b = lut.getValue(0) self.assertEqual([r, g, b], [0, 0, 0]) r, g, b = lut.getValue(1) self.assertEqual([r, g, b], [1, 1, 1]) def test_direction(self): """ Test the setDirection() and getDirection() methods. """ lut = OCIO.Lut1DTransform() for direction in OCIO.TransformDirection.__members__.values(): lut.setDirection(direction) self.assertEqual(lut.getDirection(), direction) # Wrong type tests. for invalid in (None, 1, 'test'): with self.assertRaises(TypeError): lut.setDirection(invalid) def test_format_metadata(self): """ Test the getFormatMetadata() method. """ lut = OCIO.Lut1DTransform() format_metadata = lut.getFormatMetadata() self.assertIsInstance(format_metadata, OCIO.FormatMetadata) self.assertEqual(format_metadata.getElementName(), 'ROOT') self.assertEqual(format_metadata.getName(), '') self.assertEqual(format_metadata.getID(), '') format_metadata.setName('name') format_metadata.setID('id') self.assertEqual(format_metadata.getName(), 'name') self.assertEqual(format_metadata.getID(), 'id') def test_file_output_bit_depth(self): """ Test get/setFileOutputBitDepth. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UNKNOWN) lut.setFileOutputBitDepth(OCIO.BIT_DEPTH_UINT10) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UINT10) def test_hue_adjust(self): """ Test get/setHueAdjust. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getHueAdjust(), OCIO.HUE_NONE) lut.setHueAdjust(OCIO.HUE_DW3) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_DW3) with self.assertRaises(OCIO.Exception): lut.setHueAdjust(OCIO.HUE_WYPN) def test_input_half_domain(self): """ Test get/getInputHalfDomain. """ lut = OCIO.Lut1DTransform() self.assertFalse(lut.getInputHalfDomain()) lut.setInputHalfDomain(True) self.assertTrue(lut.getInputHalfDomain()) def test_output_raw_halfs(self): """ Test get/setOutputRawHalfs. """ lut = OCIO.Lut1DTransform() self.assertFalse(lut.getOutputRawHalfs()) lut.setOutputRawHalfs(True) self.assertTrue(lut.getOutputRawHalfs()) def test_length(self): """ Test get/setLength. """ lut = OCIO.Lut1DTransform() self.assertEqual(lut.getLength(), 2) lut.setValue(0, 0.1, 0.2, 0.3) lut.setLength(3) self.assertEqual(lut.getLength(), 3) # Changing the length reset LUT values to identity. r, g, b = lut.getValue(0) self.assertEqual([r, g, b], [0, 0, 0]) def test_constructor_with_keywords(self): """ Test Lut1DTransform constructor with keywords and validate its values. """ lut = OCIO.Lut1DTransform( length=65536, inputHalfDomain=True, outputRawHalfs=True, fileOutputBitDepth=OCIO.BIT_DEPTH_UINT10, hueAdjust=OCIO.HUE_DW3, interpolation=OCIO.INTERP_BEST, direction=OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getLength(), 65536) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_DW3) self.assertTrue(lut.getInputHalfDomain()) self.assertTrue(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_BEST) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UINT10) lut = OCIO.Lut1DTransform( length=4, direction=OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getLength(), 4) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_NONE) self.assertFalse(lut.getInputHalfDomain()) self.assertFalse(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_DEFAULT) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UNKNOWN) def test_constructor_with_positional(self): """ Test Lut1DTransform constructor without keywords and validate its values. """ lut = OCIO.Lut1DTransform(65536, True, True, OCIO.BIT_DEPTH_UINT10, OCIO.HUE_DW3, OCIO.INTERP_BEST, OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getLength(), 65536) self.assertEqual(lut.getDirection(), OCIO.TRANSFORM_DIR_INVERSE) self.assertEqual(lut.getHueAdjust(), OCIO.HUE_DW3) self.assertTrue(lut.getInputHalfDomain()) self.assertTrue(lut.getOutputRawHalfs()) self.assertEqual(lut.getInterpolation(), OCIO.INTERP_BEST) self.assertEqual(lut.getFileOutputBitDepth(), OCIO.BIT_DEPTH_UINT10) def test_array(self): """ Get & set Lut array values. """ lut = OCIO.Lut1DTransform(length=3) r, g, b = lut.getValue(0) self.assertEqual([r, g, b], [0, 0, 0]) r, g, b = lut.getValue(1) self.assertEqual([r, g, b], [0.5, 0.5, 0.5]) r, g, b = lut.getValue(2) self.assertEqual([r, g, b], [1, 1, 1]) lut.setValue(0, 0.1, 0.2, 0.3) r, g, b = lut.getValue(0) # Values are stored as float. self.assertAlmostEqual(r, 0.1, delta=1e-6) self.assertAlmostEqual(g, 0.2, delta=1e-6) self.assertAlmostEqual(b, 0.3, delta=1e-6) if not np: logger.warning("NumPy not found. Skipping part of test!") return data = lut.getData() expected = np.array([0.1, 0.2, 0.3, 0.5, 0.5, 0.5, 1., 1., 1.]).astype(np.float32) self.assertEqual(data.all(), expected.all()) data[6] = 0.9 data[7] = 1.1 data[8] = 1.2 lut.setData(data) r, g, b = lut.getValue(2) self.assertAlmostEqual(r, 0.9, delta=1e-6) self.assertAlmostEqual(g, 1.1, delta=1e-6) self.assertAlmostEqual(b, 1.2, delta=1e-6) def test_equals(self): """ Test equals. """ lut = OCIO.Lut1DTransform() lut2 = OCIO.Lut1DTransform() self.assertTrue(lut.equals(lut2)) lut.setValue(0, 0.1, 0.2, 0.3) self.assertFalse(lut.equals(lut2))
[ "noreply@github.com" ]
asdlei99.noreply@github.com
bf56c90a7fa0b42362e0679ec9a27b21f6edd258
7359acb9f96a7e4196ef1472cae543b17a45717a
/crawl2.py
b5bba826d394773673dac58a635b25978107026e
[]
no_license
miyagilabs/revisionCrawler
e4b8240e6eda09f29b4a7e7bd5bebf85d4eab7f6
355648dcbd099d9f117343bdcf75abf2510d1771
refs/heads/master
2021-01-23T14:15:09.463020
2017-06-12T16:47:25
2017-06-12T16:47:25
93,249,320
0
0
null
null
null
null
UTF-8
Python
false
false
785
py
import urllib2 # THIS IS WHAT IT IS DOING # CHANGE => REVISION 1 COMMENTS => DEBUG = False project_url = "https://gerrit.wikimedia.org/r" change_id = "356858" comments_url = project_url + "/changes/" + change_id + "/revisions/1/comments" comments_content = urllib2.urlopen(comments_url).read() # The response strangely has 4 characters ")]}'" that breaks JSON parsing. if comments_content[:4] == ")]}'": comments_content = comments_content[4:] if DEBUG: print comments_content import json comments_content_in_json = json.loads(comments_content) print len(comments_content_in_json["SpamBlacklistHooks.php"]) for comment_map in comments_content_in_json["SpamBlacklistHooks.php"]: print comment_map["author"]["name"] + "says: \"\n " + comment_map["message"] print "\""
[ "cagdas.gerede@gmail.com" ]
cagdas.gerede@gmail.com
3e5e9331b99206c659a89d95766e9583bd254a66
184dcfbb4a6ab18688ad14b337acbf733a8a9ee6
/Recommenders.py
f4c12ef35003be81962263ed2d2f5d66508f20f7
[]
no_license
Viole-Grace/RedHat_2019
58aa46a739612db164353143c5c439db5597305b
9aed7adc4a31f0d129a5d53efd028f4fb4995982
refs/heads/master
2020-05-09T11:55:39.870829
2019-04-13T02:07:30
2019-04-13T02:07:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,713
py
import numpy as np import pandas class popularity_recommender_py(): def __init__(self): self.train_data = None self.user_id = None self.item_id = None self.popularity_recommendations = None def create(self, train_data, user_id, item_id): self.train_data = train_data self.user_id = user_id self.item_id = item_id train_data_grouped = train_data.groupby([self.item_id]).agg({self.user_id: 'count'}).reset_index() train_data_grouped.rename(columns = {'user_id': 'score'},inplace=True) train_data_sort = train_data_grouped.sort_values(['score', self.item_id], ascending = [0,1]) train_data_sort['Rank'] = train_data_sort['score'].rank(ascending=0, method='first') self.popularity_recommendations = train_data_sort.head(10) def recommend(self, user_id): user_recommendations = self.popularity_recommendations user_recommendations['user_id'] = user_id cols = user_recommendations.columns.tolist() cols = cols[-1:] + cols[:-1] user_recommendations = user_recommendations[cols] return user_recommendations class item_similarity_recommender_py(): def __init__(self): self.train_data = None self.user_id = None self.item_id = None self.cooccurence_matrix = None self.songs_dict = None self.rev_songs_dict = None self.item_similarity_recommendations = None def get_user_items(self, user): user_data = self.train_data[self.train_data[self.user_id] == user] user_items = list(user_data[self.item_id].unique()) return user_items def get_item_users(self, item): item_data = self.train_data[self.train_data[self.item_id] == item] item_users = set(item_data[self.user_id].unique()) return item_users def get_all_items_train_data(self): all_items = list(self.train_data[self.item_id].unique()) return all_items def construct_cooccurence_matrix(self, user_songs, all_songs): user_songs_users = [] for i in range(0, len(user_songs)): user_songs_users.append(self.get_item_users(user_songs[i])) cooccurence_matrix = np.matrix(np.zeros(shape=(len(user_songs), len(all_songs))), float) for i in range(0,len(all_songs)): songs_i_data = self.train_data[self.train_data[self.item_id] == all_songs[i]] users_i = set(songs_i_data[self.user_id].unique()) for j in range(0,len(user_songs)): users_j = user_songs_users[j] users_intersection = users_i.intersection(users_j) #Calculate cooccurence_matrix[i,j] as Jaccard Index if len(users_intersection) != 0: users_union = users_i.union(users_j) cooccurence_matrix[j,i] = float(len(users_intersection))/float(len(users_union)) else: cooccurence_matrix[j,i] = 0 return cooccurence_matrix def generate_top_recommendations(self, user, cooccurence_matrix, all_songs, user_songs): print("Non zero values in cooccurence_matrix :%d" % np.count_nonzero(cooccurence_matrix)) user_sim_scores = cooccurence_matrix.sum(axis=0)/float(cooccurence_matrix.shape[0]) user_sim_scores = np.array(user_sim_scores)[0].tolist() sort_index = sorted(((e,i) for i,e in enumerate(list(user_sim_scores))), reverse=True) columns = ['user_id', 'song', 'score', 'rank'] df = pandas.DataFrame(columns=columns) rank = 1 for i in range(0,len(sort_index)): if ~np.isnan(sort_index[i][0]) and all_songs[sort_index[i][1]] not in user_songs and rank <= 10: df.loc[len(df)]=[user,all_songs[sort_index[i][1]],sort_index[i][0],rank] rank = rank+1 if df.shape[0] == 0: print("The current user has no songs for training the item similarity based recommendation model.") return -1 else: return df def create(self, train_data, user_id, item_id): self.train_data = train_data self.user_id = user_id self.item_id = item_id #make recommendations def recommend(self, user): user_songs = self.get_user_items(user) print("No. of unique songs for the user: %d" % len(user_songs)) all_songs = self.get_all_items_train_data() print("no. of unique songs in the training set: %d" % len(all_songs)) cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs) df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix, all_songs, user_songs) return df_recommendations def get_similar_items(self, item_list): user_songs = item_list all_songs = self.get_all_items_train_data() print("no. of unique songs in the training set: %d" % len(all_songs)) cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs) user = "" df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix, all_songs, user_songs) return df_recommendations
[ "noreply@github.com" ]
Viole-Grace.noreply@github.com
efcdcd2e3b9ad9c39bfda4e7240953fca1add4af
01ae99d512962035059117782170c85f87060dd9
/packages/package.py
6b12ccbe6f345ab5fbd9a5be62714e593a5bc550
[]
no_license
JkbLskw/chocolateyUpgradeUtilityCore
711bc9697b5a639c77de5902323b3a11e89ab0ae
83496b9c9f2e3c560694a38acdec7a6f9f8621c8
refs/heads/master
2022-10-18T01:19:57.829411
2022-10-16T22:18:38
2022-10-16T22:18:38
180,997,376
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
class Package(object): def __init__(self): self.name = None self.type = None self.extern = None self.chocolatey = None
[ "5z4hsex7Yc3f4XOkXRrP" ]
5z4hsex7Yc3f4XOkXRrP
8defd0b690371cf2651951fb928ae9eb9d6912f7
c8488d1538537c1b9a0aca65e9d5fc22ad0db37f
/engine/error/ecs.py
ed34a529e9f5ee833d3f64f7b2e9895870374308
[ "MIT" ]
permissive
TWoolhouse/Libraries
67e5a235153acf80a71cb938b7c83de242c07860
5cf6b3a80d80a5cc69bea5431a29731dd6b39d76
refs/heads/master
2022-04-30T11:13:21.142631
2022-03-29T23:20:13
2022-03-29T23:20:13
157,422,268
1
0
MIT
2021-01-05T16:34:13
2018-11-13T17:50:25
Python
UTF-8
Python
false
false
1,822
py
from .base import ECSError __all__ = ["ComponentTypeError", "EntityLimitError", "GetComponentError", "InitializeComponent", "TerminateComponent"] class ComponentTypeError(ECSError): def __init__(self, component, expected=None): self.component = component self.expected = expected def __str__(self) -> str: if self.expected is None: return f"{self.component} is not the correct type" return f"Expected: '{self.expected}' Got {self.component}" class EntityLimitError(ECSError): def __init__(self, world, limit): self.world = world self.limit = limit def __str__(self) -> str: return "Entity Limit: {} reached in World: {}".format(self.limit, self.world) class GetComponentError(ECSError): def __init__(self, entity, component): self.entity = entity self.component = component def __str__(self) -> str: return "{}<{}> Does not Exist".format(self.entity, self.component.__name__) class InitializeComponent(ECSError): def __init__(self, entity, component, value): self.entity = entity self.component = component self.value = value def __str__(self) -> str: return "{}<{}> Failed to Initialize with '{}'".format(self.entity, self.component.__class__.__name__, self.value) class TerminateComponent(ECSError): def __init__(self, entity, component, value): self.entity = entity self.component = component self.value = value def __str__(self) -> str: return "{}<{}> Failed to Terminate with '{}'".format(self.entity, self.component.__class__.__name__, self.value) class ParentError(ECSError): def __init__(self, entity): self.entity = entity def __str__(self) -> str: return "{} Has no parent"
[ "thomasrwoolhouse@gmail.com" ]
thomasrwoolhouse@gmail.com
746f538f4f59613057ed9e33923e1a08e11e714b
1524720d6480ad0a51b6fd8ff709587455bf4c5d
/tums/trunk/lite/nevow/scripts/consolejstest.py
0a952bcc2cf4f3a02ccf1aa2154442b69701dc9e
[]
no_license
calston/tums
2bd6d3cac5232d2ccb7e9becfc649e302a310eab
b93e3e957ff1da5b020075574942913c8822d12a
refs/heads/master
2020-07-12T03:46:43.639800
2018-05-12T10:54:54
2018-05-12T10:54:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,135
py
# Copyright (c) 2006 Divmod. # See LICENSE for details. """ Out-of-browser conversion of javascript test modules that use Athena's "// import" syntax into monolithic scripts suitable for feeding into a plain javascript interpreter """ from sys import argv from twisted.python.util import sibpath import nevow, subprocess _DUMMY_MODULE_NAME = 'ConsoleJSTest' def getDependencies(fname, ignore=('Divmod.Runtime', 'MochiKit.DOM'), bootstrap=nevow.athena.LivePage.BOOTSTRAP_MODULES, packages=None): """ Get the javascript modules that the code in the file with name C{fname} depends on, recursively @param fname: javascript source file name @type fname: C{str} @param ignore: names of javascript modules to exclude from dependency list @type ignore: sequence @param boostrap: names of javascript modules to always include, regardless of explicit dependencies (defaults to L{nevow.athena.LivePage}'s list of bootstrap modules) @type boostrap: sequence @param packages: all javascript packages we know about. defaults to the result of L{nevow.athena.allJavascriptPackages} @type packages: C{dict} @return: modules included by javascript in file named C{fname} @rtype: dependency-ordered list of L{nevow.athena.JSModule} instances """ if packages is None: packages = nevow.athena.allJavascriptPackages() packages[_DUMMY_MODULE_NAME] = fname # TODO if a module is ignored, we should ignore its dependencies return ([nevow.athena.JSModule.getOrCreate(m, packages) for m in bootstrap if m not in ignore] + [dep for dep in nevow.athena.JSModule( _DUMMY_MODULE_NAME, packages).allDependencies() if dep.name not in bootstrap and dep.name != _DUMMY_MODULE_NAME and dep.name not in ignore]) def generateTestScript(fname, after={'Divmod.Base': ('Divmod.Base.addLoadEvent = function() {};',)}, dependencies=None): """ Turn the contents of the Athena-style javascript test module in the file named C{fname} into a plain javascript script. Recursively includes any modules that are depended on, as well as the utility module nevow/test/testsupport.js. @param fname: javascript source file name @type fname: C{str} @param after: mapping of javascript module names to sequences of lines of javascript source that should be injected into the output immediately after the source of the named module is included @type after: C{dict} @param dependencies: the modules the script depends on. Defaults to the result of L{getDependencies} @type dependencies: dependency-ordered list of L{nevow.athena.JSModule} instances @return: converted javascript source text @rtype: C{str} """ if dependencies is None: dependencies= getDependencies(fname) load = lambda fname: 'load(%r);' % (fname,) initialized = set() js = [load(sibpath(nevow.__file__, 'test/testsupport.js'))] for m in dependencies: segments = m.name.split('.') if segments[-1] == '__init__': segments = segments[:-1] initname = '.'.join(segments) if initname not in initialized: initialized.add(initname) if '.' in initname: prefix = '' else: prefix = 'var ' js.append('%s%s = {};' % (prefix, initname)) js.append(load(m.mapping[m.name])) if m.name in after: js.extend(after[m.name]) js.append(file(fname).read()) return '\n'.join(js) def run(): """ Read a single filename from the command line arguments, replace any module imports with the body of the module in question and pipe the result to the spidermonkey javascript interpreter """ # TODO: support more than one filename at a time js = generateTestScript(argv[1]) subprocess.Popen('/usr/bin/smjs', stdin=subprocess.PIPE).communicate(js)
[ "junwin@gmail.com" ]
junwin@gmail.com
614adee46ed6432a0f1bc2c1bc7d3dff42797991
c10633b49f927dd5c0dad517a1cd2bf60e59e501
/multi.py
cf4a74b7102c2ec2f08848e0d01bd930b0470266
[ "MIT" ]
permissive
mohabedalgani/GFSA
d011e45be3f4f3adc99f568c36cf64d25a5f0e49
30a9ebad3d6b7f4f275ab2ea4b8509f64ab7ff40
refs/heads/master
2022-12-30T02:49:44.440909
2020-10-20T14:19:02
2020-10-20T14:19:02
292,627,811
0
0
null
null
null
null
UTF-8
Python
false
false
2,848
py
''' This file is part of GFLIB toolbox First Version Sept. 2018 Cite this project as: Mezher M., Abbod M. (2011) Genetic Folding: A New Class of Evolutionary Algorithms. In: Bramer M., Petridis M., Hopgood A. (eds) Research and Development in Intelligent Systems XXVII. SGAI 2010. Springer, London Copyright (C) 20011-2018 Mohd A. Mezher (mohabedalgani@gmail.com) ''' from warnings import filterwarnings import matplotlib.pyplot as plt import numpy as np import os import glob # create folder for graphs generated during the run if not os.path.exists('images/'): os.makedirs('images/') else: files = glob.glob('images/*') for f in files: os.remove(f) from inipop import inipop from genpop import genpop from tipicalsvm import typicalsvm filterwarnings('ignore') print('Running multi classification ...\n\n') print('Type the maximum length of the chromosome: ') max_chromosome_length = int(input()) # the maximum total length of the chromosome DATA_PATH = 'data/multi/' # Dataset path for binary classification params = dict() params['type'] = 'multi' # problem type params['data'] = 'wine_scale.txt' # path to data file params['kernel'] = 'rbf' # rbf,linear,polynomial,gf params['mutProb'] = 0.1 # mutation probability params['crossProb'] = 0.5 # crossover probability params['maxGen'] = 5 # max generation params['popSize'] = 10 # population size params['crossVal'] = 5 # number of cross validation slits params['opList'] = ['Plus_s', 'Minus_s', 'Plus_v', 'Minus_v', 'Sine', 'Cosine', 'Tanh', 'Log', 'x', 'y'] # Operators and operands print(f'''Data Set : {DATA_PATH + params['data']}\n\n''') kernels = ['poly', 'rbf', 'linear', 'gf'] totalMSE = dict() for ker in kernels: totalMSE[ker] = list() for i in range(5): temp = [] for index, kernel in enumerate(kernels): params['kernel'] = kernel print(f'''SVM Kernel : {params['kernel']} \n''') if kernel == 'gf': print(f'''Max Generation : {params['maxGen']}\n''') print(f'''Population Size : {params['popSize']}\n''') print(f'''CrossOver Probability : {params['crossProb']}\n''') print(f'''Mutation Probability : {params['mutProb']}\n\n''') pop = inipop(params, max_chromosome_length) mse = genpop(pop, params, i) else: mse = typicalsvm(params) totalMSE[kernel].append(mse) print('\n') # Boxplot of errors for each kernel plt.boxplot([totalMSE['poly'], totalMSE['rbf'], totalMSE['linear'], totalMSE['gf']]) plt.xticks(np.arange(1,5), kernels) plt.title('MSE for each svm kernel') plt.xlabel('SVM kernel') plt.ylabel('Test Error Rate') plt.ioff() plt.savefig('images/mse.png') plt.show()
[ "noreply@github.com" ]
mohabedalgani.noreply@github.com
819b1e3786aa43a656e60a23ca7029b7e0c4009f
5c1aa426d983ff26ff0135d506ea7e40d2ef0d0d
/Portfolio/main/urls.py
20219270ab13dae1b1bbae51c747a3b2f5a1b608
[ "MIT" ]
permissive
kprakhar27/Django-course
2a070c31ee821efb08113a89c3f048d7b1d1e207
3643a98ab2fe78b533e549ad05f1f7eededaaeff
refs/heads/main
2023-05-26T05:17:42.504828
2021-05-31T19:37:47
2021-05-31T19:37:47
354,726,285
2
0
null
2021-05-30T20:37:02
2021-04-05T05:12:45
Jupyter Notebook
UTF-8
Python
false
false
228
py
from django.urls import path from main import views urlpatterns = [ path('projects/', views.projects, name='projects'), path('languages/', views.languages, name='languages'), path('', views.index, name='index'), ]
[ "kumarprkhr@gmail.com" ]
kumarprkhr@gmail.com
735d952b9b73db8a38c1a772c6a5c61bceced913
e1dd6d9dccb822d472b7f4f9e8446dd9202eb5a1
/sdk/test/test_io_k8s_api_rbac_v1alpha1_cluster_role_list.py
f7e76f339f1516a69e8e00215b9d2dd97d478213
[]
no_license
swiftdiaries/argo_client
8af73e8df6a28f9ea5f938b5894ab8b7825e4cc2
b93758a22d890cb33cbd81934042cfc3c12169c7
refs/heads/master
2020-05-17T12:11:57.556216
2019-07-24T23:23:33
2019-07-24T23:23:33
183,701,327
0
0
null
null
null
null
UTF-8
Python
false
false
1,030
py
# coding: utf-8 """ Argo API Client Generated python client for the Argo Workflows # noqa: E501 OpenAPI spec version: v1.14.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import argo.sdk from models.io_k8s_api_rbac_v1alpha1_cluster_role_list import IoK8sApiRbacV1alpha1ClusterRoleList # noqa: E501 from argo.sdk.rest import ApiException class TestIoK8sApiRbacV1alpha1ClusterRoleList(unittest.TestCase): """IoK8sApiRbacV1alpha1ClusterRoleList unit test stubs""" def setUp(self): pass def tearDown(self): pass def testIoK8sApiRbacV1alpha1ClusterRoleList(self): """Test IoK8sApiRbacV1alpha1ClusterRoleList""" # FIXME: construct object with mandatory attributes with example values # model = argo.sdk.models.io_k8s_api_rbac_v1alpha1_cluster_role_list.IoK8sApiRbacV1alpha1ClusterRoleList() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "adhita94@gmail.com" ]
adhita94@gmail.com
0ef7ffea33b2244997b5c41254c53c90db1083aa
ee8cb974f12977894f7f0fda5b8129570224618b
/gim/core/migrations/0013_auto__add_field_issueevent_related_content_type__add_field_issueevent_.py
43503150f2cbcde634778bdb46e6ccbccd7ff624
[]
no_license
derekey/github-issues-manager
996b3c7b9acd0362b7d99948d45a15ea05d58cc2
63a405b993e77f10b9c2b6d9790aae7576d9d84f
refs/heads/develop
2021-01-21T01:03:01.739800
2014-11-09T21:26:49
2014-11-09T21:26:49
42,234,954
1
0
null
2015-09-10T09:22:40
2015-09-10T09:22:39
null
UTF-8
Python
false
false
27,500
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'IssueEvent.related_content_type' db.add_column(u'core_issueevent', 'related_content_type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['contenttypes.ContentType'], null=True, blank=True), keep_default=False) # Adding field 'IssueEvent.related_object_id' db.add_column(u'core_issueevent', 'related_object_id', self.gf('django.db.models.fields.PositiveIntegerField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'IssueEvent.related_content_type' db.delete_column(u'core_issueevent', 'related_content_type_id') # Deleting field 'IssueEvent.related_object_id' db.delete_column(u'core_issueevent', 'related_object_id') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'core.commit': { 'Meta': {'ordering': "('committed_at',)", 'object_name': 'Commit'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'commits_authored'", 'null': 'True', 'to': u"orm['core.GithubUser']"}), 'author_email': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), 'author_name': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'authored_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'comments_count': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'committed_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'committer': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'commits__commited'", 'null': 'True', 'to': u"orm['core.GithubUser']"}), 'committer_email': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), 'committer_name': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'parents': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'parents_rel_+'", 'to': u"orm['core.Commit']"}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'commits'", 'to': u"orm['core.Repository']"}), 'sha': ('django.db.models.fields.CharField', [], {'max_length': '40', 'db_index': 'True'}), 'tree': ('django.db.models.fields.CharField', [], {'max_length': '40', 'null': 'True', 'blank': 'True'}) }, u'core.githubuser': { 'Meta': {'ordering': "('username',)", 'object_name': 'GithubUser'}, '_available_repositories': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'available_repositories_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'avatar_url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_organization': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'organizations': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'organizations_rel_+'", 'to': u"orm['core.GithubUser']"}), 'organizations_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'organizations_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'token': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, u'core.issue': { 'Meta': {'unique_together': "(('repository', 'number'),)", 'object_name': 'Issue'}, 'assignee': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'assigned_issues'", 'null': 'True', 'to': u"orm['core.GithubUser']"}), 'base_label': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'base_sha': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), 'body': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'body_html': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'closed_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'closed_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'closed_issues'", 'null': 'True', 'to': u"orm['core.GithubUser']"}), 'closed_by_fetched': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'comments_count': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'comments_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'comments_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'commits': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'issues'", 'symmetrical': 'False', 'to': u"orm['core.Commit']"}), 'commits_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'commits_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'events_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'events_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_pr_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), 'head_label': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'head_sha': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_pull_request': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'labels': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'issues'", 'symmetrical': 'False', 'to': u"orm['core.Label']"}), 'mergeable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'merged': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'merged_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'merged_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'merged_prs'", 'null': 'True', 'to': u"orm['core.GithubUser']"}), 'milestone': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'issues'", 'null': 'True', 'to': u"orm['core.Milestone']"}), 'nb_additions': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'nb_changed_files': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'nb_commits': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'nb_deletions': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'number': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'pr_comments_count': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'pr_comments_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'pr_comments_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'pr_fetched_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'issues'", 'to': u"orm['core.Repository']"}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '10', 'db_index': 'True'}), 'title': ('django.db.models.fields.TextField', [], {'db_index': 'True'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'created_issues'", 'to': u"orm['core.GithubUser']"}) }, u'core.issuecomment': { 'Meta': {'ordering': "('created_at',)", 'object_name': 'IssueComment'}, 'body': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'body_html': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issue': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'comments'", 'to': u"orm['core.Issue']"}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'comments'", 'to': u"orm['core.Repository']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'issue_comments'", 'to': u"orm['core.GithubUser']"}) }, u'core.issueevent': { 'Meta': {'ordering': "('created_at', 'github_id')", 'object_name': 'IssueEvent'}, 'commit_sha': ('django.db.models.fields.CharField', [], {'max_length': '40', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'event': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issue': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'events'", 'to': u"orm['core.Issue']"}), 'related_content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']", 'null': 'True', 'blank': 'True'}), 'related_object_id': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'issues_events'", 'to': u"orm['core.Repository']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'issues_events'", 'null': 'True', 'to': u"orm['core.GithubUser']"}) }, u'core.label': { 'Meta': {'ordering': "('label_type', 'order', 'typed_name')", 'unique_together': "(('repository', 'name'),)", 'object_name': 'Label', 'index_together': "(('repository', 'label_type', 'order'),)"}, 'api_url': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'color': ('django.db.models.fields.CharField', [], {'max_length': '6'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label_type': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'labels'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': u"orm['core.LabelType']"}), 'name': ('django.db.models.fields.TextField', [], {}), 'order': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'labels'", 'to': u"orm['core.Repository']"}), 'typed_name': ('django.db.models.fields.TextField', [], {'db_index': 'True'}) }, u'core.labeltype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('repository', 'name'),)", 'object_name': 'LabelType'}, 'edit_details': ('jsonfield.fields.JSONField', [], {'null': 'True', 'blank': 'True'}), 'edit_mode': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '250', 'db_index': 'True'}), 'regex': ('django.db.models.fields.TextField', [], {}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'label_types'", 'to': u"orm['core.Repository']"}) }, u'core.milestone': { 'Meta': {'ordering': "('number',)", 'unique_together': "(('repository', 'number'),)", 'object_name': 'Milestone'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'milestones'", 'to': u"orm['core.GithubUser']"}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'due_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'number': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'milestones'", 'to': u"orm['core.Repository']"}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '10', 'db_index': 'True'}), 'title': ('django.db.models.fields.TextField', [], {'db_index': 'True'}) }, u'core.pullrequestcomment': { 'Meta': {'ordering': "('created_at',)", 'object_name': 'PullRequestComment'}, 'body': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'body_html': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'entry_point': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'comments'", 'to': u"orm['core.PullRequestCommentEntryPoint']"}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issue': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pr_comments'", 'to': u"orm['core.Issue']"}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pr_comments'", 'to': u"orm['core.Repository']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pr_comments'", 'to': u"orm['core.GithubUser']"}) }, u'core.pullrequestcommententrypoint': { 'Meta': {'ordering': "('created_at',)", 'object_name': 'PullRequestCommentEntryPoint'}, 'commit_sha': ('django.db.models.fields.CharField', [], {'max_length': '40', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'diff_hunk': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issue': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pr_comments_entry_points'", 'to': u"orm['core.Issue']"}), 'original_commit_sha': ('django.db.models.fields.CharField', [], {'max_length': '40', 'null': 'True', 'blank': 'True'}), 'original_position': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'path': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'position': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'repository': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'pr_comments_entry_points'", 'to': u"orm['core.Repository']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'pr_comments_entry_points'", 'null': 'True', 'to': u"orm['core.GithubUser']"}) }, u'core.repository': { 'Meta': {'ordering': "('owner', 'name')", 'unique_together': "(('owner', 'name'),)", 'object_name': 'Repository'}, 'collaborators': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'repositories'", 'symmetrical': 'False', 'to': u"orm['core.GithubUser']"}), 'collaborators_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'collaborators_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'comments_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'comments_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'github_id': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}), 'github_status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1', 'db_index': 'True'}), 'has_issues': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_fork': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'issues_events_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'issues_events_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'issues_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'issues_state_closed_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'issues_state_open_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'labels_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'labels_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'milestones_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'milestones_state_closed_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'milestones_state_open_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.TextField', [], {'db_index': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'owned_repositories'", 'to': u"orm['core.GithubUser']"}), 'pr_comments_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'pr_comments_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'private': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'prs_fetched_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'prs_state_closed_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'prs_state_open_etag': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['core']
[ "s.angel@twidi.com" ]
s.angel@twidi.com
6d23fa4b5b3ab1a873dca811f647611e1b4bb2c3
e40945130b3819a0a3c6ad3e66f0f8de6cba8a62
/xym/order/order_test.py
3c3d31eab542857ad86d2da543821a7778a3831f
[]
no_license
jinge324/test002
1d778e9f15d48eba19947576acc6e42994c35d93
5d4fac1e770d5aae41aa7ba1be8650195d8cc09c
refs/heads/fenzhi
2022-09-10T18:17:38.005875
2020-05-26T02:52:56
2020-05-26T02:52:56
262,921,532
0
0
null
2020-05-26T02:52:58
2020-05-11T02:42:09
Python
UTF-8
Python
false
false
805
py
import json import xym.request.myrequests import xym.test_cases.test_fee_data.fee_one_data class order_qw(): def iop(self): run = xym.request.myrequests.RunMain headers = xym.test_cases.test_fee_data.fee_one_data.headers payurl = 'https://api.imways.com/mall/electricity/test_cases/prepay?feePaymentMode=CASH&isCardCharged=1&storeId=8606&degree=&amount=1' paydata = { 'entityId': 25, 'rechargeInfo': { 'assetRechargeMode': "CASH", 'posInfo': {'enablePoundage': 'true'}, 'remark': 'iowefjio' }, 'remark': 'jieofjwaoi' } payfee = run.run_main(payurl, 'POST', headers, json.dumps(paydata)) print(payfee) if __name__ == "__main__": order_qw.iop()
[ "iop" ]
iop
893136904401af906e7bdbcf75c63539d98f9364
5cb7b9fe09b1dd20c0664d0c86c375ffe353903c
/static/js/pypyjs/pypy-nojit.js-0.3.1/lib/modules/test/test_shlex.py
ba0f3d1fcae7670d0a08cc51cf4cc0b57557c939
[ "LicenseRef-scancode-free-unknown", "Apache-2.0" ]
permissive
shiblon/pytour
6d0ee4a679cf7e6ffd8ac6326b8bb0d9071a7c73
71a181ec16fd38b0af62f55e28a50e91790733b9
refs/heads/master
2021-01-17T10:09:18.822575
2020-09-23T20:05:58
2020-09-23T20:05:58
23,226,350
2
3
Apache-2.0
2020-02-17T22:36:02
2014-08-22T13:33:27
Python
UTF-8
Python
false
false
5,315
py
# -*- coding: utf-8 -*- import unittest import shlex from test import test_support try: from cStringIO import StringIO except ImportError: from StringIO import StringIO # The original test data set was from shellwords, by Hartmut Goebel. data = r"""x|x| foo bar|foo|bar| foo bar|foo|bar| foo bar |foo|bar| foo bar bla fasel|foo|bar|bla|fasel| x y z xxxx|x|y|z|xxxx| \x bar|\|x|bar| \ x bar|\|x|bar| \ bar|\|bar| foo \x bar|foo|\|x|bar| foo \ x bar|foo|\|x|bar| foo \ bar|foo|\|bar| foo "bar" bla|foo|"bar"|bla| "foo" "bar" "bla"|"foo"|"bar"|"bla"| "foo" bar "bla"|"foo"|bar|"bla"| "foo" bar bla|"foo"|bar|bla| foo 'bar' bla|foo|'bar'|bla| 'foo' 'bar' 'bla'|'foo'|'bar'|'bla'| 'foo' bar 'bla'|'foo'|bar|'bla'| 'foo' bar bla|'foo'|bar|bla| blurb foo"bar"bar"fasel" baz|blurb|foo"bar"bar"fasel"|baz| blurb foo'bar'bar'fasel' baz|blurb|foo'bar'bar'fasel'|baz| ""|""| ''|''| foo "" bar|foo|""|bar| foo '' bar|foo|''|bar| foo "" "" "" bar|foo|""|""|""|bar| foo '' '' '' bar|foo|''|''|''|bar| \""|\|""| "\"|"\"| "foo\ bar"|"foo\ bar"| "foo\\ bar"|"foo\\ bar"| "foo\\ bar\"|"foo\\ bar\"| "foo\\" bar\""|"foo\\"|bar|\|""| "foo\\ bar\" dfadf"|"foo\\ bar\"|dfadf"| "foo\\\ bar\" dfadf"|"foo\\\ bar\"|dfadf"| "foo\\\x bar\" dfadf"|"foo\\\x bar\"|dfadf"| "foo\x bar\" dfadf"|"foo\x bar\"|dfadf"| \''|\|''| 'foo\ bar'|'foo\ bar'| 'foo\\ bar'|'foo\\ bar'| "foo\\\x bar\" df'a\ 'df'|"foo\\\x bar\"|df'a|\|'df'| \"foo"|\|"foo"| \"foo"\x|\|"foo"|\|x| "foo\x"|"foo\x"| "foo\ "|"foo\ "| foo\ xx|foo|\|xx| foo\ x\x|foo|\|x|\|x| foo\ x\x\""|foo|\|x|\|x|\|""| "foo\ x\x"|"foo\ x\x"| "foo\ x\x\\"|"foo\ x\x\\"| "foo\ x\x\\""foobar"|"foo\ x\x\\"|"foobar"| "foo\ x\x\\"\''"foobar"|"foo\ x\x\\"|\|''|"foobar"| "foo\ x\x\\"\'"fo'obar"|"foo\ x\x\\"|\|'"fo'|obar"| "foo\ x\x\\"\'"fo'obar" 'don'\''t'|"foo\ x\x\\"|\|'"fo'|obar"|'don'|\|''|t'| 'foo\ bar'|'foo\ bar'| 'foo\\ bar'|'foo\\ bar'| foo\ bar|foo|\|bar| foo#bar\nbaz|foobaz| :-) ;-)|:|-|)|;|-|)| áéíóú|á|é|í|ó|ú| """ posix_data = r"""x|x| foo bar|foo|bar| foo bar|foo|bar| foo bar |foo|bar| foo bar bla fasel|foo|bar|bla|fasel| x y z xxxx|x|y|z|xxxx| \x bar|x|bar| \ x bar| x|bar| \ bar| bar| foo \x bar|foo|x|bar| foo \ x bar|foo| x|bar| foo \ bar|foo| bar| foo "bar" bla|foo|bar|bla| "foo" "bar" "bla"|foo|bar|bla| "foo" bar "bla"|foo|bar|bla| "foo" bar bla|foo|bar|bla| foo 'bar' bla|foo|bar|bla| 'foo' 'bar' 'bla'|foo|bar|bla| 'foo' bar 'bla'|foo|bar|bla| 'foo' bar bla|foo|bar|bla| blurb foo"bar"bar"fasel" baz|blurb|foobarbarfasel|baz| blurb foo'bar'bar'fasel' baz|blurb|foobarbarfasel|baz| ""|| ''|| foo "" bar|foo||bar| foo '' bar|foo||bar| foo "" "" "" bar|foo||||bar| foo '' '' '' bar|foo||||bar| \"|"| "\""|"| "foo\ bar"|foo\ bar| "foo\\ bar"|foo\ bar| "foo\\ bar\""|foo\ bar"| "foo\\" bar\"|foo\|bar"| "foo\\ bar\" dfadf"|foo\ bar" dfadf| "foo\\\ bar\" dfadf"|foo\\ bar" dfadf| "foo\\\x bar\" dfadf"|foo\\x bar" dfadf| "foo\x bar\" dfadf"|foo\x bar" dfadf| \'|'| 'foo\ bar'|foo\ bar| 'foo\\ bar'|foo\\ bar| "foo\\\x bar\" df'a\ 'df"|foo\\x bar" df'a\ 'df| \"foo|"foo| \"foo\x|"foox| "foo\x"|foo\x| "foo\ "|foo\ | foo\ xx|foo xx| foo\ x\x|foo xx| foo\ x\x\"|foo xx"| "foo\ x\x"|foo\ x\x| "foo\ x\x\\"|foo\ x\x\| "foo\ x\x\\""foobar"|foo\ x\x\foobar| "foo\ x\x\\"\'"foobar"|foo\ x\x\'foobar| "foo\ x\x\\"\'"fo'obar"|foo\ x\x\'fo'obar| "foo\ x\x\\"\'"fo'obar" 'don'\''t'|foo\ x\x\'fo'obar|don't| "foo\ x\x\\"\'"fo'obar" 'don'\''t' \\|foo\ x\x\'fo'obar|don't|\| 'foo\ bar'|foo\ bar| 'foo\\ bar'|foo\\ bar| foo\ bar|foo bar| foo#bar\nbaz|foo|baz| :-) ;-)|:-)|;-)| áéíóú|áéíóú| """ class ShlexTest(unittest.TestCase): def setUp(self): self.data = [x.split("|")[:-1] for x in data.splitlines()] self.posix_data = [x.split("|")[:-1] for x in posix_data.splitlines()] for item in self.data: item[0] = item[0].replace(r"\n", "\n") for item in self.posix_data: item[0] = item[0].replace(r"\n", "\n") def splitTest(self, data, comments): for i in range(len(data)): l = shlex.split(data[i][0], comments=comments) self.assertEqual(l, data[i][1:], "%s: %s != %s" % (data[i][0], l, data[i][1:])) def oldSplit(self, s): ret = [] lex = shlex.shlex(StringIO(s)) tok = lex.get_token() while tok: ret.append(tok) tok = lex.get_token() return ret def testSplitPosix(self): """Test data splitting with posix parser""" self.splitTest(self.posix_data, comments=True) def testCompat(self): """Test compatibility interface""" for i in range(len(self.data)): l = self.oldSplit(self.data[i][0]) self.assertEqual(l, self.data[i][1:], "%s: %s != %s" % (self.data[i][0], l, self.data[i][1:])) # Allow this test to be used with old shlex.py if not getattr(shlex, "split", None): for methname in dir(ShlexTest): if methname.startswith("test") and methname != "testCompat": delattr(ShlexTest, methname) def test_main(): test_support.run_unittest(ShlexTest) if __name__ == "__main__": test_main()
[ "shiblon@gmail.com" ]
shiblon@gmail.com
24ab3b6bc9948f727288670a20148e9be24cf5a9
22dfd0857377a1b8747cd1481d2c3c9e5dbfd0e4
/edgedetect.py
b97065484be499d7e7c1ec4c82e3ba6cfdbeb2c2
[]
no_license
msbomrel/cheque
d60a7ff26df1d523d4e7a63eaa95d145857a57f6
94d8dc383f7385063513e246d992685660e17b2b
refs/heads/master
2021-01-02T22:53:52.128668
2017-09-15T01:39:49
2017-09-15T01:39:49
99,415,341
0
0
null
null
null
null
UTF-8
Python
false
false
1,685
py
# import the necessary packages from Services.transform import four_point_transform import cv2 import glob from os.path import join, dirname, realpath UPLOAD_FOLDER = join(dirname(realpath(__file__)),'static/images/') def detect(): print "I am called" files = glob.glob(UPLOAD_FOLDER +'*') for f in files: print f image = cv2.imread(f) orig = image.copy() gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (5, 5), 0) edged = cv2.Canny(gray, 100, 100) print "I am here in loop" # show the original image and the edge detected image _, cnts, _ = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5] # loop over the contours for c in cnts: # approximate the contour peri = cv2.arcLength(c, True) print peri approx = cv2.approxPolyDP(c, 0.02 * peri, True) print len(approx) # if our approximated contour has four points, then we # can assume that we have found our screen if len(approx) == 4: screenCnt = approx break # show the contour (outline) of the piece of paper cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 1) warped = four_point_transform(orig, screenCnt.reshape(4, 2)) cropped = cv2.resize(warped, (1500,750), interpolation=cv2.INTER_LINEAR) # cv2.imshow('', warped) # cv2.waitKey(0) s = UPLOAD_FOLDER +'firstImage'+'.png' cv2.imwrite(s, cropped) return 'OKay'
[ "mohan.bomrel@deerwalk.edu.np" ]
mohan.bomrel@deerwalk.edu.np
28559c924e5a546d830cba07e2a3cf237ab9c05e
dc40f134d3713c0a4951588182bbe64b580761ef
/web/telebble/fetch.py
56f38b729dd8286332285600c1d7d7ee69216440
[ "MIT" ]
permissive
hkpeprah/television-2.0
79eaa553dc1246fc9fb468fd14830ef7fdccc3b7
8d6ce9cc7c8e22447769845159464422153cb8f6
refs/heads/master
2021-01-15T15:34:02.739470
2015-10-18T00:02:44
2015-10-18T00:05:15
38,463,076
0
0
null
null
null
null
UTF-8
Python
false
false
8,586
py
import datetime import constants import models import sources import utils def fetch_from_funimation(): data = sources.funimation.list_latest_episodes() series = data.get('series', []) episodes = data.get('episodes', []) source_type = sources.FUNIMATION_SOURCE network = models.Network.objects(source_type=source_type).first() if network is None: network = models.Network() network._type = 'Subscription' network.name = 'Funimation' network.description = 'You Should be Watching' network.country = 'US' network.source_type = source_type network.save() for series_data in series: extra_data = series_data.get('extra_data', {}) _id = extra_data.get('series_id') query = models.Series.objects(source_id=_id, source_type=source_type) if query.first() is not None: continue series = models.Series() series.name = series_data['name'] series.description = series_data['description'] or '' series.genres = series_data['genres'] series.image = series_data['image'] or '' series.runtime = series_data['runtime'] series.network = network series.source_id = _id series.source_type = source_type series.extra_data = extra_data series.save() network.update(add_to_set__series=[series]) network.save() for episode_data in episodes: extra_data = episode_data.get('extra_data', {}) series_id = extra_data.get('series_id') _id = extra_data.get('media_id') query = models.Media.objects(source_id=_id) query = filter(lambda m: m.source_type == source_type, query) media = query[0] if len(query) > 0 else models.Media() media.name = episode_data['name'] media.summary = episode_data['summary'] media.image = episode_data['image'] media.season = int(episode_data['season']) media.number = int(episode_data['number']) media.timestamp = episode_data['timestamp'] media._runtime = episode_data['runtime'] series = models.Series.objects(source_type=source_type, source_id=series_id).first() media.series = series media.source_id = _id media.extra_data = extra_data media.save() series.update(add_to_set__media=[media]) series.save() def fetch_from_crunchyroll(): data = sources.crunchyroll.list_latest_episodes(100) episodes = data.get('episodes', []) series = data.get('series', []) source_type = sources.CRUNCHYROLL_SOURCE network = models.Network.objects(source_type=source_type).first() if network is None: network = models.Network() network._type = 'Subscription' network.name = 'Crunchyroll' network.description = 'Official, legal streaming anime videos including Naruto Shippuden, ' + \ 'Attack on Titan, Sword Art Online, Skip Beat, and Shugo Chara. Start watching now.' network.country = 'US' network.source_type = source_type network.save() for series_data in series: extra_data = series_data.get('extra_data', {}) _id = extra_data.get('series_id') query = models.Series.objects(source_id=_id, source_type=source_type) if query.first() is not None: continue series = models.Series() series.name = series_data['name'] series.description = series_data['description'] or '' series.genres = series_data['genres'] series.image = series_data['image'] or '' if series_data['runtime']: series.runtime = series_data['runtime'] series.network = network series.source_id = _id series.source_type = source_type series.extra_data = extra_data series.save() network.update(add_to_set__series=[series]) network.save() for episode_data in episodes: extra_data = episode_data.get('extra_data', {}) series_id = extra_data.get('series_id') _id = extra_data.get('media_id') media_objects = models.Media.objects(source_id=_id) filtered_media_objects = filter(lambda m: m.source_type == source_type, media_objects) if len(filtered_media_objects) > 0: continue media = models.Media() media.name = episode_data['name'] media.summary = episode_data['summary'] media.image = episode_data['image'] or '' media.season = episode_data['season'] or 1 media.number = episode_data['number'] media.timestamp = utils.iso_to_timestamp(episode_data['timestamp']) if episode_data['runtime'] is not None: media._runtime = episode_data['runtime'] series = models.Series.objects(source_type=source_type, source_id=series_id).first() media.series = series media.source_id = _id media.extra_data = extra_data media.save() series.update(add_to_set__media=[media]) series.save() def parse_television_data(data): source_type = sources.TELEVISION_SOURCE shows = data.get('shows', []) networks = data.get('networks', []) episodes = data.get('episodes', []) for network_data in networks: _id = network_data.get('extra_data', {}).get('id') query = models.Network.objects(source_id=_id, source_type=source_type) if query.first() is not None: continue network = models.Network() network._type = 'None' network.name = network_data['name'] network.description = network_data.get('description', '') network.timezone = network_data['timezone'] network.country = network_data['country_code'] network.source_id = _id network.source_type = source_type network.save() for show_data in shows: extra_data = show_data.get('extra_data', {}) _id = extra_data.get('id') network_id = extra_data.get('network_id') query = models.Series.objects(source_id=_id, source_type=source_type) if query.first() is not None: continue series = models.Series() series.name = show_data['name'] or '' series.description = show_data['description'] series.genres = show_data['genres'] series.image = show_data.get('image', '') series.runtime = show_data['runtime'] network_query = models.Network.objects(source_id=network_id, source_type=source_type) network = network_query.first() series.network = network series.source_id = _id series.source_type = source_type series.extra_data = extra_data series.save() network.update(add_to_set__series=[series]) network.save() for episode_data in episodes: extra_data = episode_data.get('extra_data', {}) series_id = extra_data['series_id'] network_id = extra_data['network_id'] episode_number = episode_data['number'] if episode_number is None: continue network = models.Network.objects(source_id=network_id, source_type=source_type).first() series = models.Series.objects(source_id=series_id, source_type=source_type).first() exists = False media = filter(lambda m: m.number == episode_number, series.media) if len(media) > 0: continue media = models.Media() media.name = episode_data['name'] or '' media.summary = episode_data['summary'] media.image = episode_data['image'] or '' media.season = episode_data['season'] or 1 media.number = episode_number media.timestamp = utils.iso_to_timestamp(episode_data['timestamp']) if episode_data['runtime'] is not None: media._runtime = int(episode_data['runtime']) media.series = series media.extra_data = extra_data media.save() series.update(add_to_set__media=[media]) series.save() def fetch_from_television(year, month, day): date = datetime.datetime(year, month, day) countries = constants.COUNTRY_CODES for country in countries: data = sources.television.list_latest_episodes_for_country(country, date) parse_television_data(data) def search_from_television(query, limit=None): countries = constants.COUNTRY_CODES data = sources.television.search_for_series(query, countries, limit) parse_television_data(data)
[ "ford.peprah@uwaterloo.ca" ]
ford.peprah@uwaterloo.ca
dfb96190100b8be320491ef9b7eae480f6f820c9
49361b00b942f2fb9e05d8bbab368c684c90c95b
/projectweb/urls.py
37c2c450f406420c7f22e4b8b6f9a37cea295bd3
[]
no_license
vinodh1988/python-service
224e8a7b98acf17279c1f30e59d8cd1d41a7094a
b04b5fcc01f5fc88a6a59589f861ccaac845cb6a
refs/heads/master
2023-08-05T03:35:27.692968
2021-09-09T12:46:13
2021-09-09T12:46:13
403,600,520
0
0
null
null
null
null
UTF-8
Python
false
false
918
py
"""projectweb URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('market-api/',include('firstrest.urls')), path('common/',include('firstrest.generalurls')), path('account/', include('user_app.api.urls')), ]
[ "vinodhkc@vinodhconnects.onmicrosoft.com" ]
vinodhkc@vinodhconnects.onmicrosoft.com
0eb24ff5044be2fee91c60335d5eff66d6f6606b
f261b4ac05694cac34ae726d874bd723087a239a
/weather_application/asgi.py
7b86d336eee56295bfdf939caf9526556bddae41
[]
no_license
AGolobokov/epamWeatherApp
50f44bdff517d4f6bb20a7172594743c896d74c0
9ab74d2417df4e747056d82d3d529b06a9eb2989
refs/heads/master
2023-07-25T12:35:21.624902
2021-09-02T22:25:19
2021-09-02T22:25:19
402,088,558
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
""" ASGI config for weather_application project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'weather_application.settings') application = get_asgi_application()
[ "bullet93639@mail.ru" ]
bullet93639@mail.ru
49bf2c1b0d24319a2822b8d511a0eb5a55bf56af
0b3e7dd58b9e521d3af45332a7c343c8eb6792f6
/deadloop.py
a692a56975326203b609a1c01c694faa5cc20a9f
[]
no_license
hanshantong/gitlearnpy
13c1dd4b3b1df35225f568eb9104161ad53f36b6
1fde167811641838d9bbe8d1fd3c8d13a8374694
refs/heads/master
2021-07-25T20:24:04.162552
2018-11-07T09:52:18
2018-11-07T09:52:18
145,381,392
0
0
null
null
null
null
UTF-8
Python
false
false
307
py
#!/usr/bin/env python3 #-*- coding:utf-8 -*- __author__ = "tongzi" import threading,multiprocessing def loop(): x = 0 while True: x = x ^ 1 print("The number of cpu core is: ",multiprocessing.cpu_count()) for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=loop) t.start()
[ "1356466973@qq.com" ]
1356466973@qq.com
67ae5942e03cb4f245ecd286713c9620a53ef868
4b4bfaf66d8dbe28987656ac603e707e36b2d493
/package/HTMLTestRunner11.py
cc28b1862f6fce856fa7a77fbad9baab22266dfc
[]
no_license
xieguoyong/SeleniumDoctor
846e63160a79615e3865e249f274298e8f334bdc
d0238e33421903907966b6add81d2287b17810bb
refs/heads/master
2020-03-27T04:33:09.731273
2018-09-03T08:55:21
2018-09-03T08:55:21
145,949,808
1
0
null
null
null
null
UTF-8
Python
false
false
24,265
py
""" A TestRunner for use with the Python unit testing framework. It generates a HTML report to show the result at a glance. The simplest way to use this is to invoke its main method. E.g. import unittest import HTMLTestRunner ... define your tests ... if __name__ == '__main__': HTMLTestRunner.main() For more customization options, instantiates a HTMLTestRunner object. HTMLTestRunner is a counterpart to unittest's TextTestRunner. E.g. # output to a file fp = file('my_report.html', 'wb') runner = HTMLTestRunner.HTMLTestRunner( stream=fp, title='My unit test', description='This demonstrates the report output by HTMLTestRunner.' ) # Use an external stylesheet. # See the Template_mixin class for more customizable options runner.STYLESHEET_TMPL = '<link rel="stylesheet" href="my_stylesheet.css" type="text/css">' # run the test runner.run(my_test_suite) ------------------------------------------------------------------------ Copyright (c) 2004-2007, Wai Yip Tung All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name Wai Yip Tung nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ # URL: http://tungwaiyip.info/software/HTMLTestRunner.html __author__ = "Wai Yip Tung" __version__ = "0.8.2" """ Change History Version 0.8.2 * Show output inline instead of popup window (Viorel Lupu). Version in 0.8.1 * Validated XHTML (Wolfgang Borgert). * Added description of test classes and test cases. Version in 0.8.0 * Define Template_mixin class for customization. * Workaround a IE 6 bug that it does not treat <script> block as CDATA. Version in 0.7.1 * Back port to Python 2.3 (Frank Horowitz). * Fix missing scroll bars in detail log (Podi). """ # TODO: color stderr # TODO: simplify javascript using ,ore than 1 class in the class attribute? import datetime import io import sys import time import unittest from xml.sax import saxutils # ------------------------------------------------------------------------ # The redirectors below are used to capture output during testing. Output # sent to sys.stdout and sys.stderr are automatically captured. However # in some cases sys.stdout is already cached before HTMLTestRunner is # invoked (e.g. calling logging.basicConfig). In order to capture those # output, use the redirectors for the cached stream. # # e.g. # >>> logging.basicConfig(stream=HTMLTestRunner.stdout_redirector) # >>> class OutputRedirector(object): """ Wrapper to redirect stdout or stderr """ def __init__(self, fp): self.fp = fp def write(self, s): self.fp.write(s) def writelines(self, lines): self.fp.writelines(lines) def flush(self): self.fp.flush() stdout_redirector = OutputRedirector(sys.stdout) stderr_redirector = OutputRedirector(sys.stderr) # ---------------------------------------------------------------------- # Template class Template_mixin(object): """ Define a HTML template for report customerization and generation. Overall structure of an HTML report HTML +------------------------+ |<html> | | <head> | | | | STYLESHEET | | +----------------+ | | | | | | +----------------+ | | | | </head> | | | | <body> | | | | HEADING | | +----------------+ | | | | | | +----------------+ | | | | REPORT | | +----------------+ | | | | | | +----------------+ | | | | ENDING | | +----------------+ | | | | | | +----------------+ | | | | </body> | |</html> | +------------------------+ """ STATUS = { 0: 'pass', 1: 'fail', 2: 'error', } DEFAULT_TITLE = 'Unit Test Report' DEFAULT_DESCRIPTION = '' # ------------------------------------------------------------------------ # HTML Template HTML_TMPL = r"""<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>%(title)s</title> <meta name="generator" content="%(generator)s"/> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> %(stylesheet)s </head> <body> <script language="javascript" type="text/javascript"><!-- output_list = Array(); /* level - 0:Summary; 1:Failed; 2:All */ function showCase(level) { trs = document.getElementsByTagName("tr"); for (var i = 0; i < trs.length; i++) { tr = trs[i]; id = tr.id; if (id.substr(0,2) == 'ft') { if (level < 1) { tr.className = 'hiddenRow'; } else { tr.className = ''; } } if (id.substr(0,2) == 'pt') { if (level > 1) { tr.className = ''; } else { tr.className = 'hiddenRow'; } } } } function showClassDetail(cid, count) { var id_list = Array(count); var toHide = 1; for (var i = 0; i < count; i++) { tid0 = 't' + cid.substr(1) + '.' + (i+1); tid = 'f' + tid0; tr = document.getElementById(tid); if (!tr) { tid = 'p' + tid0; tr = document.getElementById(tid); } id_list[i] = tid; if (tr.className) { toHide = 0; } } for (var i = 0; i < count; i++) { tid = id_list[i]; if (toHide) { document.getElementById('div_'+tid).style.display = 'none' document.getElementById(tid).className = 'hiddenRow'; } else { document.getElementById(tid).className = ''; } } } function showTestDetail(div_id){ var details_div = document.getElementById(div_id) var displayState = details_div.style.display // alert(displayState) if (displayState != 'block' ) { displayState = 'block' details_div.style.display = 'block' } else { details_div.style.display = 'none' } } function html_escape(s) { s = s.replace(/&/g,'&'); s = s.replace(/</g,'<'); s = s.replace(/>/g,'>'); return s; } /* obsoleted by detail in <div> function showOutput(id, name) { var w = window.open("", //url name, "resizable,scrollbars,status,width=800,height=450"); d = w.document; d.write("<pre>"); d.write(html_escape(output_list[id])); d.write("\n"); d.write("<a href='javascript:window.close()'>close</a>\n"); d.write("</pre>\n"); d.close(); } */ --></script> %(heading)s %(report)s %(ending)s </body> </html> """ # variables: (title, generator, stylesheet, heading, report, ending) # ------------------------------------------------------------------------ # Stylesheet # # alternatively use a <link> for external style sheet, e.g. # <link rel="stylesheet" href="$url" type="text/css"> STYLESHEET_TMPL = """ <style type="text/css" media="screen"> body { font-family: verdana, arial, helvetica, sans-serif; font-size: 80%; } table { font-size: 100%; } pre { } /* -- heading ---------------------------------------------------------------------- */ h1 { font-size: 16pt; color: gray; } .heading { margin-top: 0ex; margin-bottom: 1ex; } .heading .attribute { margin-top: 1ex; margin-bottom: 0; } .heading .description { margin-top: 4ex; margin-bottom: 6ex; } /* -- css div popup ------------------------------------------------------------------------ */ a.popup_link { } a.popup_link:hover { color: red; } .popup_window { display: none; position: relative; left: 0px; top: 0px; /*border: solid #627173 1px; */ padding: 10px; background-color: #E6E6D6; font-family: "Lucida Console", "Courier New", Courier, monospace; text-align: left; font-size: 8pt; width: 500px; } } /* -- report ------------------------------------------------------------------------ */ #show_detail_line { margin-top: 3ex; margin-bottom: 1ex; } #result_table { width: 80%; border-collapse: collapse; border: 1px solid #777; } #header_row { font-weight: bold; color: white; background-color: #777; } #result_table td { border: 1px solid #777; padding: 2px; } #total_row { font-weight: bold; } .passClass { background-color: #6c6; } .failClass { background-color: #c60; } .errorClass { background-color: #c00; } .passCase { color: #6c6; } .failCase { color: #c60; font-weight: bold; } .errorCase { color: #c00; font-weight: bold; } .hiddenRow { display: none; } .testcase { margin-left: 2em; } /* -- ending ---------------------------------------------------------------------- */ #ending { } </style> """ # ------------------------------------------------------------------------ # Heading # HEADING_TMPL = """<div class='heading'> <h1>%(title)s</h1> %(parameters)s <p class='description'>%(description)s</p> </div> """ # variables: (title, parameters, description) HEADING_ATTRIBUTE_TMPL = """<p class='attribute'><strong>%(name)s:</strong> %(value)s</p> """ # variables: (name, value) # ------------------------------------------------------------------------ # Report # REPORT_TMPL = """ <p id='show_detail_line'>Show <a href='javascript:showCase(0)'>Summary</a> <a href='javascript:showCase(1)'>Failed</a> <a href='javascript:showCase(2)'>All</a> </p> <table id='result_table'> <colgroup> <col align='left' /> <col align='right' /> <col align='right' /> <col align='right' /> <col align='right' /> <col align='right' /> </colgroup> <tr id='header_row'> <td>Test Group/Test case</td> <td>Count</td> <td>Pass</td> <td>Fail</td> <td>Error</td> <td>View</td> </tr> %(test_list)s <tr id='total_row'> <td>Total</td> <td>%(count)s</td> <td>%(Pass)s</td> <td>%(fail)s</td> <td>%(error)s</td> <td> </td> </tr> </table> """ # variables: (test_list, count, Pass, fail, error) REPORT_CLASS_TMPL = r""" <tr class='%(style)s'> <td>%(desc)s</td> <td>%(count)s</td> <td>%(Pass)s</td> <td>%(fail)s</td> <td>%(error)s</td> <td><a href="javascript:showClassDetail('%(cid)s',%(count)s)">Detail</a></td> </tr> """ # variables: (style, desc, count, Pass, fail, error, cid) REPORT_TEST_WITH_OUTPUT_TMPL = r""" <tr id='%(tid)s' class='%(Class)s'> <td class='%(style)s'><div class='testcase'>%(desc)s</div></td> <td colspan='5' align='center'> <!--css div popup start--> <a class="popup_link" onfocus='this.blur();' href="javascript:showTestDetail('div_%(tid)s')" > %(status)s</a> <div id='div_%(tid)s' class="popup_window"> <div style='text-align: right; color:red;cursor:pointer'> <a onfocus='this.blur();' onclick="document.getElementById('div_%(tid)s').style.display = 'none' " > [x]</a> </div> <pre> %(script)s </pre> </div> <!--css div popup end--> </td> </tr> """ # variables: (tid, Class, style, desc, status) REPORT_TEST_NO_OUTPUT_TMPL = r""" <tr id='%(tid)s' class='%(Class)s'> <td class='%(style)s'><div class='testcase'>%(desc)s</div></td> <td colspan='5' align='center'>%(status)s</td> </tr> """ # variables: (tid, Class, style, desc, status) REPORT_TEST_OUTPUT_TMPL = r""" %(id)s: %(output)s """ # variables: (id, output) # ------------------------------------------------------------------------ # ENDING # ENDING_TMPL = """<div id='ending'> </div>""" # -------------------- The end of the Template class ------------------- TestResult = unittest.TestResult class _TestResult(TestResult): # note: _TestResult is a pure representation of results. # It lacks the output and reporting ability compares to unittest._TextTestResult. def __init__(self, verbosity=1): TestResult.__init__(self) self.stdout0 = None self.stderr0 = None self.success_count = 0 self.failure_count = 0 self.error_count = 0 self.verbosity = verbosity # result is a list of result in 4 tuple # ( # result code (0: success; 1: fail; 2: error), # TestCase object, # Test output (byte string), # stack trace, # ) self.result = [] def startTest(self, test): TestResult.startTest(self, test) # just one buffer for both stdout and stderr self.outputBuffer = io.BytesIO() stdout_redirector.fp = self.outputBuffer stderr_redirector.fp = self.outputBuffer self.stdout0 = sys.stdout self.stderr0 = sys.stderr sys.stdout = stdout_redirector sys.stderr = stderr_redirector def complete_output(self): """ Disconnect output redirection and return buffer. Safe to call multiple times. """ if self.stdout0: sys.stdout = self.stdout0 sys.stderr = self.stderr0 self.stdout0 = None self.stderr0 = None return self.outputBuffer.getvalue() def stopTest(self, test): # Usually one of addSuccess, addError or addFailure would have been called. # But there are some path in unittest that would bypass this. # We must disconnect stdout in stopTest(), which is guaranteed to be called. self.complete_output() def addSuccess(self, test): self.success_count += 1 TestResult.addSuccess(self, test) output = self.complete_output() self.result.append((0, test, output, '')) if self.verbosity > 1: sys.stderr.write('ok ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('.') def addError(self, test, err): self.error_count += 1 TestResult.addError(self, test, err) _, _exc_str = self.errors[-1] output = self.complete_output() self.result.append((2, test, output, _exc_str)) if self.verbosity > 1: sys.stderr.write('E ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('E') def addFailure(self, test, err): self.failure_count += 1 TestResult.addFailure(self, test, err) _, _exc_str = self.failures[-1] output = self.complete_output() self.result.append((1, test, output, _exc_str)) if self.verbosity > 1: sys.stderr.write('F ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('F') class HTMLTestRunner(Template_mixin): """ """ def __init__(self, stream=sys.stdout, verbosity=1, title=None, description=None): self.stream = stream self.verbosity = verbosity if title is None: self.title = self.DEFAULT_TITLE else: self.title = title if description is None: self.description = self.DEFAULT_DESCRIPTION else: self.description = description self.startTime = datetime.datetime.now() def run(self, test): "Run the given test case or test suite." result = _TestResult(self.verbosity) test(result) self.stopTime = datetime.datetime.now() self.generateReport(test, result) print(sys.stderr, '\nTime Elapsed: %s' % (self.stopTime-self.startTime)) return result def sortResult(self, result_list): # unittest does not seems to run in any particular order. # Here at least we want to group them together by class. rmap = {} classes = [] for n,t,o,e in result_list: cls = t.__class__ if not cls in rmap: rmap[cls] = [] classes.append(cls) rmap[cls].append((n,t,o,e)) r = [(cls, rmap[cls]) for cls in classes] return r def getReportAttributes(self, result): """ Return report attributes as a list of (name, value). Override this to add custom attributes. """ startTime = str(self.startTime)[:19] duration = str(self.stopTime - self.startTime) status = [] if result.success_count: status.append('Pass %s' % result.success_count) if result.failure_count: status.append('Failure %s' % result.failure_count) if result.error_count: status.append('Error %s' % result.error_count ) if status: status = ' '.join(status) else: status = 'none' return [ ('Start Time', startTime), ('Duration', duration), ('Status', status), ] def generateReport(self, test, result): report_attrs = self.getReportAttributes(result) generator = 'HTMLTestRunner %s' % __version__ stylesheet = self._generate_stylesheet() heading = self._generate_heading(report_attrs) report = self._generate_report(result) ending = self._generate_ending() output = self.HTML_TMPL % dict( title = saxutils.escape(self.title), generator = generator, stylesheet = stylesheet, heading = heading, report = report, ending = ending, ) self.stream.write(output.encode('utf8')) def _generate_stylesheet(self): return self.STYLESHEET_TMPL def _generate_heading(self, report_attrs): a_lines = [] for name, value in report_attrs: line = self.HEADING_ATTRIBUTE_TMPL % dict( name = saxutils.escape(name), value = saxutils.escape(value), ) a_lines.append(line) heading = self.HEADING_TMPL % dict( title = saxutils.escape(self.title), parameters = ''.join(a_lines), description = saxutils.escape(self.description), ) return heading def _generate_report(self, result): rows = [] sortedResult = self.sortResult(result.result) for cid, (cls, cls_results) in enumerate(sortedResult): # subtotal for a class np = nf = ne = 0 for n,t,o,e in cls_results: if n == 0: np += 1 elif n == 1: nf += 1 else: ne += 1 # format class description if cls.__module__ == "__main__": name = cls.__name__ else: name = "%s.%s" % (cls.__module__, cls.__name__) doc = cls.__doc__ and cls.__doc__.split("\n")[0] or "" desc = doc and '%s: %s' % (name, doc) or name row = self.REPORT_CLASS_TMPL % dict( style = ne > 0 and 'errorClass' or nf > 0 and 'failClass' or 'passClass', desc = desc, count = np+nf+ne, Pass = np, fail = nf, error = ne, cid = 'c%s' % (cid+1), ) rows.append(row) for tid, (n,t,o,e) in enumerate(cls_results): self._generate_report_test(rows, cid, tid, n, t, o, e) report = self.REPORT_TMPL % dict( test_list = ''.join(rows), count = str(result.success_count+result.failure_count+result.error_count), Pass = str(result.success_count), fail = str(result.failure_count), error = str(result.error_count), ) return report def _generate_report_test(self, rows, cid, tid, n, t, o, e): # e.g. 'pt1.1', 'ft1.1', etc has_output = bool(o or e) tid = (n == 0 and 'p' or 'f') + 't%s.%s' % (cid+1,tid+1) name = t.id().split('.')[-1] doc = t.shortDescription() or "" desc = doc and ('%s: %s' % (name, doc)) or name tmpl = has_output and self.REPORT_TEST_WITH_OUTPUT_TMPL or self.REPORT_TEST_NO_OUTPUT_TMPL # o and e should be byte string because they are collected from stdout and stderr? if isinstance(o,str): # TODO: some problem with 'string_escape': it escape \n and mess up formating # uo = unicode(o.encode('string_escape')) uo = o.decode('latin-1') else: uo = o if isinstance(e,str): # TODO: some problem with 'string_escape': it escape \n and mess up formating # ue = unicode(e.encode('string_escape')) ue = e else: ue = e script = self.REPORT_TEST_OUTPUT_TMPL % dict( id = tid, output = saxutils.escape(str(uo)+ue), ) row = tmpl % dict( tid = tid, Class = (n == 0 and 'hiddenRow' or 'none'), style = n == 2 and 'errorCase' or (n == 1 and 'failCase' or 'none'), desc = desc, script = script, status = self.STATUS[n], ) rows.append(row) if not has_output: return def _generate_ending(self): return self.ENDING_TMPL ############################################################################## # Facilities for running tests from the command line ############################################################################## # Note: Reuse unittest.TestProgram to launch test. In the future we may # build our own launcher to support more specific command line # parameters like test title, CSS, etc. class TestProgram(unittest.TestProgram): """ A variation of the unittest.TestProgram. Please refer to the base class for command line parameters. """ def runTests(self): # Pick HTMLTestRunner as the default test runner. # base class's testRunner parameter is not useful because it means # we have to instantiate HTMLTestRunner before we know self.verbosity. if self.testRunner is None: self.testRunner = HTMLTestRunner(verbosity=self.verbosity) unittest.TestProgram.runTests(self) main = TestProgram ############################################################################## # Executing this module from the command line ############################################################################## if __name__ == "__main__": main(module=None)
[ "xie.guoyong@dr-elephant.com" ]
xie.guoyong@dr-elephant.com
bea0d53b9ad8af2ff72f2f2b917b932eaff47d93
59f5ce54604b69624cf559c804bcf7ee14e4685c
/scripts/mmaction2_tsm/dataset_generation_script/gen_label_ava.py
aa49c3b5d0f3d319ec7ae099643408a39d43b934
[]
no_license
ZJU-lishuang/shengshi_github
334737f9072d0ee40b19f480f1e856a98b1d0d29
f01905c5b9aa587232e3532be96bca4f84839cd8
refs/heads/master
2023-07-17T02:08:52.072460
2021-09-01T02:54:48
2021-09-01T02:54:48
188,337,859
0
0
null
2023-07-06T21:27:29
2019-05-24T02:20:59
Python
UTF-8
Python
false
false
7,034
py
import os import xml.etree.ElementTree as ET import numpy as np # import mmcv import shutil # import re def subfiles(path): """Yield directory names not starting with '.' under given path.""" for entry in os.scandir(path): if not entry.name.startswith('.') and not entry.is_dir(): yield entry.name def loadAllTagFile( DirectoryPath, tag ):# download all files' name result = [] for file in subfiles(DirectoryPath): # for file in os.listdir(DirectoryPath): file_path = os.path.join(DirectoryPath, file) if os.path.splitext(file_path)[1] == tag: result.append(file_path) return result def checkdir(dirpath): if not os.path.exists(dirpath): os.makedirs(dirpath) def GetFileFromThisRootDir(dir,ext = None): allfiles = [] needExtFilter = (ext != None) for root,dirs,files in os.walk(dir): for filespath in files: filepath = os.path.join(root, filespath) extension = os.path.splitext(filepath)[1] if needExtFilter and extension in ext: allfiles.append(filepath) elif not needExtFilter: allfiles.append(filepath) return allfiles def gen_dataset(): # dataset_xml = '/home/lishuang/Disk/gitlab/traincode/video_action_det/data/ava_xianchang/天府机场标签' # dataset_xml = '/home/lishuang/Disk/dukto/异常行为标注/action_train' dataset_xml='../action_dataset/annotations_addv1' dst_dir_path="./result_csv_track_shortvideo_addv1/" xml_names = GetFileFromThisRootDir(dataset_xml, '.xml') xml_names.sort() total_ann = {} total_action_labels = [] for xml_path in xml_names: img_basename = os.path.basename(xml_path) tree = ET.parse(xml_path) root = tree.getroot() size = root.find('imagesize') w = int(size.find('ncols').text) h = int(size.find('nrows').text) video_id, frame_id = os.path.splitext(img_basename)[0].rsplit('_', 1) if video_id == 'frame': video_id=os.path.basename(os.path.dirname(xml_path)) if video_id =="default": video_id = os.path.basename(os.path.dirname(os.path.dirname(xml_path))) if video_id not in total_ann: total_ann[video_id]={} timestamp = int(frame_id) for obj in root.findall('object'): name = obj.find('name').text if name != '异常行为人' and name != '正常行为人': continue labels = obj.find('attributes').text for label in labels.split(','): if '人物ID' in label: entity_id = label if '异常行为' in label: action_label = label if name == "正常行为人": action_label = "异常行为=正常" for label in labels.split(','): if 'track_id' in label: entity_id = video_id + '_' + label polygon = obj.find('polygon') pts = polygon.findall('pt') bbox = [ float(pts[0].find('x').text) , float(pts[0].find('y').text) , float(pts[2].find('x').text) , float(pts[2].find('y').text) ] action_label = action_label.strip() entity_id = entity_id.strip() if entity_id not in total_ann[video_id]: total_ann[video_id][entity_id] = {} if action_label not in total_ann[video_id][entity_id]: total_ann[video_id][entity_id][action_label] = {} if timestamp not in total_ann[video_id][entity_id][action_label]: total_ann[video_id][entity_id][action_label][timestamp] = {} total_ann[video_id][entity_id][action_label][timestamp]['bbox'] = bbox if action_label not in total_action_labels: total_action_labels.append(action_label) def custom_action_labels(): return [ '异常行为=头撞墙', '异常行为=砸门', '异常行为=正常', '异常行为=扇巴掌', '异常行为=掐脖子', '异常行为=举高', '异常行为=撞桌', '异常行为=打斗', '异常行为=打滚', '异常行为=快速移动', '异常行为=举标语', '异常行为=发传单' ] checkdir(dst_dir_path) short_video=True #25帧为1秒,1分钟1500帧 for video_name,total_ids in total_ann.items(): #单个视频 video_id = 0 for entity_id,actions in total_ids.items(): #单个跟踪目标 for action_name,total_frame in actions.items(): #单个行为动作时 class_name = action_name.replace("异常行为=", "") dst_class_path = os.path.join(dst_dir_path, class_name) checkdir(dst_class_path) #init track_data="action_name,video_name,entity_id,frame_id,xmin,ymin,xmax,ymax\n" if short_video: frame_start = -1 frame_end = -1 for frame_id, person_ann in total_frame.items(): xmin, ymin, xmax, ymax = person_ann['bbox'] track_data += f"{action_name},{video_name},{entity_id},{frame_id},{xmin},{ymin},{xmax},{ymax}\n" if short_video: if frame_start < 0: frame_start=frame_id frame_end = frame_id if frame_start >= 0 and frame_end - frame_start >= 150 and frame_end - frame_start <= 300: frame_start = frame_end txt_path = f"result_{video_name}_{video_id}.txt" txt_path = os.path.join(dst_class_path, txt_path) with open(txt_path, 'w') as f: f.write(track_data) video_id += 1 track_data = "action_name,video_name,entity_id,frame_id,xmin,ymin,xmax,ymax\n" elif frame_start >= 0 and frame_end-frame_start >=300: frame_start=frame_end track_data = "action_name,video_name,entity_id,frame_id,xmin,ymin,xmax,ymax\n" if short_video and frame_end - frame_start >= 75: txt_path = f"result_{video_name}_{video_id}.txt" txt_path = os.path.join(dst_class_path, txt_path) with open(txt_path, 'w') as f: f.write(track_data) video_id += 1 if not short_video: txt_path=f"result_{video_name}_{video_id}.txt" txt_path=os.path.join(dst_class_path,txt_path) with open(txt_path, 'w') as f: f.write(track_data) video_id+=1 if __name__ == '__main__': gen_dataset()
[ "qqlishuang@gmail.com" ]
qqlishuang@gmail.com
1f0bb0dbee3cb5c8fdeb8522e150fe9eb161a007
7b869138fb194dcd4901d9b4f299fcde67148e85
/550C/DivisibleByEight.py
5f0f62b2924791aa211a50aaad6b93d39f171284
[]
no_license
CrabBucket/Super-Competitive-Competivie-Programming
badc4b17687d66d5c2eb11c026392e2c08eabf59
706dbcb8405fbb10ff8e88b2f72c56acfacdeb0c
refs/heads/master
2022-12-24T02:53:14.226783
2020-09-20T18:38:16
2020-09-20T18:38:16
271,158,791
0
0
null
2020-07-02T00:01:01
2020-06-10T02:35:03
C++
UTF-8
Python
false
false
1,287
py
totaliters = 0 def removeEle(string,index): return string[:index] + string[index+1:] dptable = {} def byEight(num): global totaliters if num in dptable: return dptable[num] #print(num) if num%8 == 0: #print(num) dptable[num] = (num,True) return (num,True) else: totaliters+=1 if num<10: dptable[num] = (-1,False) return (-1,False) index = 0 number = str(num) #print(number) if totaliters > 100000: print("NO") exit() for _char in number: temp = byEight(int(removeEle(number,index))) if temp[1]: dptable[num] = temp return temp index+=1 dptable[num] = (-1,False) return (-1,False) case = input() if '0' in case: print("YES") print('0') exit() for x in range(len(case))[::-1]: if int(case[x]) % 2 != 0: continue case = case[:x+1] break superodd = True for char in case: if int(char) % 2 == 0: superodd = False break if superodd: print("NO") exit() answer = byEight(int(case)) if answer[1]: print("YES") print(answer[0]) else: print("NO")
[ "tom@mcratracing.com" ]
tom@mcratracing.com
dafca90b588ffde69707a03ec8a7cc7080e5d2c3
a02e5905fa556ec962f65a80fcaa57b1ff38d177
/code/custom.py
c96a8fc5087f255c1186a0897a9bf22715e27f1f
[]
no_license
Xueelei/Computer-Vision-for-Melanoma-Detection
991e803bffd8c2d05e672adf9764b82838effa06
871c8d5143f5622198c68c89ffce7e10d713cb2f
refs/heads/master
2020-08-07T00:52:27.790090
2019-11-01T21:01:28
2019-11-01T21:01:28
213,228,063
0
0
null
null
null
null
UTF-8
Python
false
false
12,346
py
# -*- coding: utf-8 -*- """ Created on Thu Jan 31 16:43:15 2019 @author: dell """ import numpy as np import util from matplotlib import pyplot as plt import skimage.io from skimage import transform import numpy as np import scipy.ndimage import skimage.color import sklearn.cluster import scipy.spatial.distance import visual_words import skimage.io def extract_filter_responses(image): ''' Extracts the filter responses for the given image. [input] * image: numpy.ndarray of shape (H,W) or (H,W,3) [output] * filter_responses: numpy.ndarray of shape (H,W,3F) ''' ''' Check image to make it a floating point with range[0,1] ''' if image.any()>1: image = image.astype('float')/255 ''' Convert to 3 channels if not ''' if len(image.shape) == 2: image = np.tile(image[:, np.newaxis], (1, 1, 3)) if image.shape[2] == 4: image = image[:,:,0:3] ''' Convert image into lab color space ''' image = skimage.color.rgb2lab(image) ''' Apply filters ''' scales = [1, 2, 4, 8, 8*np.sqrt(2)] for scale in range(len(scales)): for c in range(3): #img = skimage.transform.resize(image, (int(ss[0]/scales[i]),int(ss[1]/scales[i])),anti_aliasing=True) img = scipy.ndimage.gaussian_filter(image[:,:,c],sigma=scales[scale]) if scale == 0 and c == 0: filter_responses = img[:,:,np.newaxis] else: filter_responses = np.concatenate((filter_responses,img[:,:,np.newaxis]),axis=2) for c in range(3): img = scipy.ndimage.gaussian_laplace(image[:,:,c],sigma=scales[scale]) filter_responses = np.concatenate((filter_responses,img[:,:,np.newaxis]),axis=2) for c in range(3): img = scipy.ndimage.gaussian_filter(image[:,:,c],sigma=scales[scale],order=[0,1]) filter_responses = np.concatenate((filter_responses,img[:,:,np.newaxis]),axis=2) for c in range(3): img = scipy.ndimage.gaussian_filter(image[:,:,c],sigma=scales[scale],order=[1,0]) filter_responses = np.concatenate((filter_responses,img[:,:,np.newaxis]),axis=2) return filter_responses def get_visual_words(image,dictionary): ''' Compute visual words mapping for the given image using the dictionary of visual words. [input] * image: numpy.ndarray of shape (H,W) or (H,W,3) [output] * wordmap: numpy.ndarray of shape (H,W) ''' # ----- TODO ----- filter_responses = extract_filter_responses(image) H, W = image.shape[0], image.shape[1] filter_responses = filter_responses.reshape(H*W, -1) dists = scipy.spatial.distance.cdist(filter_responses, dictionary) wordmap = np.argmin(dists, axis = 1).reshape(H,W) return wordmap pass def compute_dictionary(num_workers): ''' Creates the dictionary of visual words by clustering using k-means. [input] * num_workers: number of workers to process in parallel [saved] * dictionary: numpy.ndarray of shape (K,3F) ''' train_data = np.load("../data/train_data.npz") # ----- TODO ----- ''' iterate through the paths to read images ''' i = 0 # index of training image alpha = 50 # alpha between 50 and 500 K = 100 # K between 100 and 200 for image_path in train_data.f.files: #print(i) args = i, alpha, image_path compute_dictionary_one_image(args) current_compute = np.load(str(i)+".npy") if i==0: filter_responses = current_compute else: filter_responses = np.append(filter_responses, current_compute, axis=0) i+=1 np.save("filter_responses.npy",filter_responses) #filter_responses = np.load("filter_responses.npy") kmeans = sklearn.cluster.KMeans(n_clusters = K,random_state=0).fit(filter_responses) dictionary = kmeans.cluster_centers_ np.save("dictionary.npy",dictionary) def compute_dictionary_one_image(args): ''' Extracts random samples of the dictionary entries from an image. This is a function run by a subprocess. [input] * i: index of training image * alpha: number of random samples * image_path: path of image file * time_start: time stamp of start time [saved] * sampled_response: numpy.ndarray of shape (alpha,3F) ''' i,alpha,image_path = args # ----- TODO ----- image = skimage.io.imread('../data/'+image_path) image = image.astype('float')/255 image = transform.downscale_local_mean(image, (3,3,1)) filter_response = extract_filter_responses(image) ''' get random pixels ''' #alpha_response = (np.random.permutation(filter_response)) alpha_response = np.zeros(shape = (alpha,filter_response.shape[2])) for j in range(alpha): row = np.random.randint(0,filter_response.shape[0]) col = np.random.randint(0,filter_response.shape[1]) alpha_response[j]=filter_response[row][col] np.save(str(i)+".npy",alpha_response) def build_recognition_system(num_workers): ''' Creates a trained recognition system by generating training features from all training images. [input] * num_workers: number of workers to process in parallel [saved] * features: numpy.ndarray of shape (N,K*(4^layer_num-1)/3) * labels: numpy.ndarray of shape (N) * dictionary: numpy.ndarray of shape (K,3F) * SPM_layer_num: number of spatial pyramid layers ''' train_data = np.load("../data/train_data.npz") dictionary = np.load("dictionary.npy") # ----- TODO ----- SPM_layer_num = 4 labels = train_data.f.labels N = len(labels) dict_size = dictionary.shape[0] features = np.zeros((N, dict_size*((4**SPM_layer_num-1)//3))) files = train_data.f.files i=0 for image_path in files: feature = get_image_feature(image_path,dictionary,SPM_layer_num,dict_size) features[i] = feature i+=1 #print(i) trained_system = features, labels, dictionary, SPM_layer_num np.save("trained_system.npz",trained_system) pass def evaluate_recognition_system(num_workers=2): ''' Evaluates the recognition system for all test images and returns the confusion matrix. [input] * num_workers: number of workers to process in parallel [output] * conf: numpy.ndarray of shape (8,8) * accuracy: accuracy of the evaluated system ''' test_data = np.load("../data/test_data.npz") trained_system = np.load("trained_system.npz.npy") # ----- TODO ----- features, train_labels, dictionary, SPM_layer_num = trained_system test_labels = test_data.f.labels files = test_data.f.files accurate = 0 count=0 conf = [[0 for i in range(8)] for i in range(8)] for i in range(len(files)): word_hist = get_image_feature(files[i],dictionary,SPM_layer_num,dictionary.shape[0]) distance = distance_to_set(word_hist, features) label = train_labels[np.argmax(distance)] conf[test_labels[i]][label]+=1 count+=1 if test_labels[i]==label: accurate+=1 accuracy = accurate/count #print("accurate:",test_labels[i],"predict:", label, "accuracy:",accuracy) conf = np.array(conf) return conf, accuracy def distance_to_set(word_hist,histograms): ''' Compute similarity between a histogram of visual words with all training image histograms. [input] * word_hist: numpy.ndarray of shape (K*(4^layer_num-1)/3) * histograms: numpy.ndarray of shape (N,K*(4^layer_num-1)/3) [output] * sim: numpy.ndarray of shape (N) ''' # ----- TODO ----- sim = np.minimum(word_hist, histograms) return np.sum(sim, axis=1) def get_image_feature(file_path,dictionary,layer_num,K): ''' Extracts the spatial pyramid matching feature. [input] * file_path: path of image file to read * dictionary: numpy.ndarray of shape (K,3F) * layer_num: number of spatial pyramid layers * K: number of clusters for the word maps [output] * feature: numpy.ndarray of shape (K*(4^layer_num-1)/3) ''' # ----- TODO ----- image = skimage.io.imread('../data/'+file_path) image = image.astype('float')/255 image = transform.downscale_local_mean(image, (3,3,1)) wordmap = visual_words.get_visual_words(image, dictionary) feature = get_feature_from_wordmap_SPM(wordmap, layer_num, K) return feature def get_feature_from_wordmap(wordmap,dict_size): ''' Compute histogram of visual words. [input] * wordmap: numpy.ndarray of shape (H,W) * dict_size: dictionary size K [output] * hist: numpy.ndarray of shape (K) ''' # ----- TODO ----- hist,bins = np.histogram(wordmap, bins=list(range(dict_size + 1)), density=True) return hist def get_feature_from_wordmap_SPM(wordmap,layer_num,dict_size): ''' Compute histogram of visual words using spatial pyramid matching. [input] * wordmap: numpy.ndarray of shape (H,W) * layer_num: number of spatial pyramid layers * dict_size: dictionary size K [output] * hist_all: numpy.ndarray of shape (K*(4^layer_num-1)/3) ''' # ----- TODO ----- H = wordmap.shape[0] W = wordmap.shape[1] # compute the finest, L=2 step_h = H // 4 step_w = W // 4 hist_all = np.zeros(dict_size*((4**layer_num-1)//3)) i,h,w = 0,0,0 for h in range(0, step_h*4, step_h): for w in range(0, step_w*4, step_w): sub_wordmap = wordmap[h:h+step_h, w:w+step_w] sub_hist,sub_bins = np.histogram(sub_wordmap, bins=list(range(dict_size + 1))) hist_all[i: i+dict_size] = np.divide(sub_hist, 2) i+=dict_size # compute the finer, L=1 sub_hist = (hist_all[0: dict_size] +hist_all[dict_size: dict_size*2] +hist_all[dict_size*4: dict_size*5] +hist_all[dict_size*5: dict_size*6]) hist_all[i:i+dict_size] = np.divide(sub_hist, 4) i+=dict_size sub_hist = (hist_all[dict_size*2: dict_size*3] +hist_all[dict_size*3: dict_size*4] +hist_all[dict_size*6: dict_size*7] +hist_all[dict_size*7: dict_size*8]) hist_all[i:i+dict_size] = np.divide(sub_hist, 4) i+=dict_size sub_hist = (hist_all[dict_size*8: dict_size*9] +hist_all[dict_size*9: dict_size*10] +hist_all[dict_size*12: dict_size*13] +hist_all[dict_size*13: dict_size*14]) hist_all[i:i+dict_size] = np.divide(sub_hist, 4) i+=dict_size sub_hist = (hist_all[dict_size*10: dict_size*11] +hist_all[dict_size*11: dict_size*12] +hist_all[dict_size*14: dict_size*15] +hist_all[dict_size*15: dict_size*16]) hist_all[i:i+dict_size] = np.divide(sub_hist, 4) i+=dict_size # compute the coarst, L=0 sub_hist = (hist_all[dict_size*16: dict_size*17] +hist_all[dict_size*17: dict_size*18] +hist_all[dict_size*18: dict_size*19] +hist_all[dict_size*19: dict_size*20]) hist_all[i:i+dict_size] = np.divide(sub_hist, 4) # L1 norm hist_all = np.divide(hist_all, np.sum(hist_all)) return hist_all if __name__ == '__main__': num_cores = util.get_num_CPU() path_img = "../data/park/labelme_evuftvyfpanmmab.jpg" image = skimage.io.imread(path_img) image = image.astype('float')/255 image = transform.downscale_local_mean(image, (3,3,1)) filter_responses = visual_words.extract_filter_responses(image) util.display_filter_responses(filter_responses) compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') wordmap = get_visual_words(image,dictionary) filename="wordmap.jpg" util.save_wordmap(wordmap, filename) build_recognition_system(num_workers=num_cores) conf, accuracy = evaluate_recognition_system(num_workers=num_cores) print(conf) print(np.diag(conf).sum()/conf.sum())
[ "xuelei@andrew.cmu.edu" ]
xuelei@andrew.cmu.edu
f9aac5699d1e1c4bcbcdff38e4792101d207fcfc
8bf0babe2fede24e8727b3f04352dd1032631e1e
/news/netease.py
c48249c132560c9e56cce91e935103c2fe832088
[]
no_license
maochuanwangzi/anna-news-server
80dfe4f95cd68291b5f071ea8f69b9c2f62e36f4
73b262f132013bb138f125195e0780449dc560fe
refs/heads/master
2020-03-19T08:30:02.602188
2018-05-15T11:40:27
2018-05-15T11:40:27
136,209,181
1
0
null
2018-06-05T17:03:14
2018-06-05T17:03:14
null
UTF-8
Python
false
false
133
py
#!/usr/bin/env python # coding=utf-8 def get_news_from_netease(site_url): res = {'result': site_url} return res
[ "noreply@github.com" ]
maochuanwangzi.noreply@github.com
01e00b4ca543649fd4254ff5114f45c0090e5d27
61ced4644ccf4fe82a1d41c146388f0cc2b646fb
/asteroid_detection/features.py
8652a5dfc5b2a32506196578de1714bbed9344a8
[]
no_license
cmccachern/asteroid_detection
89ff50f325db49911f27a70cb6f1aecfa5eb0a91
fba94a7008b611c8e4cda2a69cc7f601a7a49b7f
refs/heads/master
2022-11-28T10:21:23.098023
2019-11-12T00:55:07
2019-11-12T00:55:07
208,173,427
0
0
null
2022-11-22T04:16:26
2019-09-13T01:10:55
Python
UTF-8
Python
false
false
6,695
py
""" Functions for manipulating fits images to find asteroids. """ #pylint: disable=no-member #pylint: disable=unsubscriptable-object import numpy as np from scipy.signal import correlate2d import cv2 from astropy.io import fits import matplotlib.pyplot as plt from sdss import fits_from_rcf, jpg_from_rcf def plot_histogram(img): """ Plot the RGB histogram of an image. """ rgb_hist = rgb_histogram(img) plt.figure() for color, hist in rgb_hist.items(): plt.plot(hist, color=color) plt.xlim([0, 256]) def rgb_histogram(img, channels=["r", "g", "b"]): """ Find the rgb histogram """ hist = {} for ii, color in enumerate(channels): hist[color] = cv2.calcHist([img], [ii], None, [256], [0, 256]) return hist def data_from_fits(fits_file): """ Return the image data from a fits file. """ hdul = fits.open(fits_file) data = hdul[0].data return data def asteroid(img): """ Hardcoded location for known asteroid in test image. """ return img[170:205, 200:230] def other_object(img): """ Hardcoded location for non-asteroid object in test image. """ return img[500:570, 1000:1070] def galaxy(img): """ Hardcoded location for galaxy in test image. """ return img[420:490, 710:770] def plot_object(fits_file, object_getter=asteroid): """ Show the image of an object in a fits file. This function uses an object getter function to get the cropped data from a larger 2D array. """ data = data_from_fits(fits_file) data = object_getter(data) plt.figure() plt.title(fits_file) plt.imshow(np.log10(data)) def plot_rgb(r_fits, g_fits, b_fits, object_getter=asteroid): """ Plot an rgb image with area cropped by an object getter. """ data = [None, None, None] for ii, fits_file in enumerate([r_fits, g_fits, b_fits]): data[ii] = data_from_fits(fits_file) data[ii] = object_getter(data[ii]) plt.figure() plt.imshow(data[ii]) data = np.dstack(data) plt.figure() plt.imshow(data) def show_corls(): """ Test function that shows correlations between multiple fit files. """ datar = data_from_fits("752_1_373_r.fits") datar = other_object(datar) datag = data_from_fits("752_1_373_g.fits") datag = other_object(datag) corl = correlate2d(datar, datag, mode="same") plt.figure() plt.imshow(corl) datar = data_from_fits("752_1_373_r.fits") datar = galaxy(datar) datag = data_from_fits("752_1_373_g.fits") datag = galaxy(datag) corl = correlate2d(datar, datag, mode="same") plt.figure() plt.imshow(corl) datar = data_from_fits("752_1_373_r.fits") datar = asteroid(datar) datag = data_from_fits("752_1_373_g.fits") datag = asteroid(datag) corl = correlate2d(datar, datag, mode="same") plt.figure() plt.imshow(corl) def mask_img(img, mask): """ Return an image with all the masked data zeroed out. """ masked_img = np.zeros(img.shape) masked_img[mask] = img[mask] return masked_img def find_objects(img, threshold=.3): """ Return an array of object centers from an image. """ thresholded_img = np.uint8(img > threshold) _, markers = cv2.connectedComponents(thresholded_img) object_centers = [] for ii in range(1, np.max(markers)): masked_img = mask_img(img, markers == ii) object_index = np.argmax(masked_img) object_center = np.unravel_index(object_index, img.shape) object_centers.append(object_center) return np.array(object_centers) class OutOfBounds(Exception): """ Error that is raised when trying to access image data that does not exist. """ pass #pylint: disable=unnecessary-pass def crop(img, center, width, height): """ Crop an image. """ left = int(center[0] - np.floor(width/2.0)) right = left + width bottom = int(center[1] - np.floor(height/2.0)) top = bottom + height if left < 0: raise OutOfBounds("Left side of crop window is outside of image") if bottom < 0: raise OutOfBounds("Bottom of crop window is outside of image") if right > img.shape[0]: raise OutOfBounds("Right side of crop window is outside of image") if top > img.shape[1]: raise OutOfBounds("Top of crop window is outside of image") return img[left:right, bottom:top] def crop_all(images, center, width, height): """" Crop multiple bands of fits file image data """ cropped_images = {} for band, img in images.items(): cropped_images[band] = crop(img, center, width, height) return cropped_images def max_corl_offset(img1, img2): """ Return the maximum value in the cross correlation between two images. """ assert img1.shape == img2.shape, "Images must be the same shape" corl = correlate2d(img1, img2, mode="same") corl_max = np.argmax(corl) return np.unravel_index(corl_max, img1.shape) def find_asteroids(images, crop_width=50, crop_height=50): """ Use a correlation technique to find asteroids in images. """ objects = find_objects(images["r"]) asteroid_candidates = [] for obj in objects: try: cropped_images = crop_all(images, obj, crop_width, crop_height) except OutOfBounds: continue corl_max_rg = max_corl_offset(cropped_images["r"], cropped_images["g"]) - np.array([10, 21]) corl_max_ri = max_corl_offset(cropped_images["r"], cropped_images["i"]) - np.array([20, 26]) if np.sum(np.abs(corl_max_rg)) > 1 and \ np.sum(np.abs(corl_max_ri)) > 1 and \ np.sum(np.abs(corl_max_rg - corl_max_ri)) > 1: asteroid_candidates.append(obj) return np.array(asteroid_candidates) def main(): """ Main function. """ run = 756#752 camcol = 1 field = 314#373 fits_file = fits_from_rcf(run, camcol, field) images = {"r": fits_file["r"][0].data, "g": fits_file["g"][0].data, "i": fits_file["i"][0].data, } #images = {"r": data_from_fits("752_1_373_r.fits"), # "g": data_from_fits("752_1_373_g.fits"), # "i": data_from_fits("752_1_373_i.fits"), # } asteroids = find_asteroids(images) print(asteroids) img = jpg_from_rcf(run, camcol, field)#plt.imread("image.jpg") plt.figure() plt.imshow(img) plt.figure() plt.imshow(np.log10(fits_file["r"][0].data)) plt.scatter(asteroids.T[1], asteroids.T[0], color="r") plt.show() if __name__ == "__main__": main()
[ "carey@mccachern.com" ]
carey@mccachern.com
8651769e811843c8771b34777e0cd3f9f73886cd
20674c17d815214bf66b75be686bb8a45c0f5914
/version1/382_Linked_List_Random_Note.py
b3eb2bb00277f1ab4588a3185e4daf65f981fec9
[]
no_license
moontree/leetcode
e7b670969fe20785b15aae82996875fd66de1b08
f2bf9b13508cd01c8f383789569e55a438f77202
refs/heads/master
2021-05-20T20:36:45.615420
2020-04-02T09:15:26
2020-04-02T09:15:26
252,408,563
1
0
null
null
null
null
UTF-8
Python
false
false
1,799
py
""" Given a singly linked list, return a random node's value from the linked list. Each node must have the same probability of being chosen. Follow up: What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space? Example: // Init a singly linked list [1,2,3]. ListNode head = new ListNode(1); head.next = new ListNode(2); head.next.next = new ListNode(3); Solution solution = new Solution(head); // getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning. solution.getRandom(); """ from list_helper import * import random import collections class Solution(object): def __init__(self, head): """ @param head The linked list's head. Note that the head is guaranteed to be not null, so it contains at least one node. :type head: ListNode """ cur = head self.nums = [] while cur: self.nums.append(cur.val) cur = cur.next def getRandom(self): """ Returns a random node's value. :rtype: int """ step = random.randint(0, len(self.nums) - 1) return self.nums[step] def _get_random_of_stream(self): """ Returns a random node's value. :rtype: int """ h = self._head if h is None: return None count = 0 res = h.val while h: rv = random.randint(0, count) if rv == 0: res = h.val h = h.next count += 1 return res head = ListNode(1); head.next = ListNode(2); head.next.next = ListNode(3); solution = Solution(head); for i in xrange(5): print solution.getRandom()
[ "zhangchao@zhangchaodeMacBook-Pro.local" ]
zhangchao@zhangchaodeMacBook-Pro.local