blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
fc51adaae6182f44f71b251e187601052c9c9286
06d5e774f6494de2ebedf196b9ef72eb8f1c5181
/Homework 1/PythonReview4.py
aad86b5f8fea3b47df6a9feca1d6ff507a84917c
[]
no_license
tjmann95/ECEC
36b8220b6d82771051c6685d0a57d9c7ff20a812
72f061e1b36c36a6d4d962cae8ebcde84d461c1c
refs/heads/master
2021-05-12T04:30:06.084136
2018-03-15T19:09:23
2018-03-15T19:09:23
117,163,653
0
0
null
null
null
null
UTF-8
Python
false
false
2,147
py
print "Python review Part 4 - Calculations and Math Functions" # import the math module as follows. import math # Get help on the math module by uncommenting this statement. # help(math) message1 = """\n1. Find the absolute value of the floating point number -2.34 using a method from the math module. You must not use the __builtin__ method abs(), but a similar math module method starting with f. """ print message1 x = -2.34 # Add your code for exercise 1 here. Be sure to print out the results. message2 = """\n2. A right triangle has legs a = 5.0, b = 12.0 Find the hypotenuse c using the sqrt() method from the math module. """ print message2 a = 5.0 b = 12.0 # Add your code for exercise 2 here. Be sure to print out the results. message3 = """\n\n3. Find the angle B opposite the longer side b using the relation: sin(B) = b/c """ print message3 # Add your code for exercise 3 here. Use the asin() function, which by definition returns radians. message4 = """\n\n4. Express the angle B in degrees using math.degrees() """ print message4 # Add your code for exercise 4 here. message5 = """\n\n5. Express 1000 (base 10) in base 2 using the built-in bin() command. (bin, short for binary). """ print message5 # Add your code for exercise 5 here. message6 = """\n\n6a. Convert the binary number n2 = '10100100010000100000' back to base 10 using the built-in int() command with an optional second argument to specify the base. """ print message6 n2 = "10100100010000100000" # Add your code for exercise 6a here. print "b. Check you work by converting back to base 2 using bin()." # Add your code for exercise 6b here. # * * * EXERCISE 7 * * * message7a = """\n\n7a. Using math.log() with two arguments, find the log of 10,000,000 in base 1000. (one thousand) """ print message7a # Add your code for exercise 7a here. Be sure to print out the answer using a complete sentence. message7b = """\n\n7b. Using math.pow() find 1000 to the seven thirds power. Beware of the integer division! """ print message7b # Add your code for exercise 7b here. Be sure to print out the answer using a complete sentence.
[ "tjmann95@gmail.com" ]
tjmann95@gmail.com
24ff41d2a1eba0d4aeb39f218e38e523886b82b1
f53798259b750548eac332086f5df5300d2b2254
/swig/python/python_rpyc_server.py
17fd5553900a8218692d0aa1854516636e6d5bad
[ "BSD-2-Clause" ]
permissive
chen--oRanGe/thrill
2948511734189486f34116c9ada4c962e642c6ee
f272348479cd1c9b4226300048959a95c31429b3
refs/heads/master
2021-01-16T17:08:38.455264
2015-09-27T16:21:14
2015-09-27T16:21:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,492
py
#!/usr/bin/env python ########################################################################## # swig/python/python_rpyc_server.py # # Part of Project Thrill. # # Copyright (C) 2015 Timo Bingmann <tb@panthema.net> # # All rights reserved. Published under the BSD-2 license in the LICENSE file. ########################################################################## import sys import marshal import types import rpyc import thrill class RpcDIA(): def __init__(self, dia): self._dia = dia def AllGather(self): return self._dia.AllGather() def Size(self): return self._dia.Size() def Map(self, map_function): code1 = marshal.loads(map_function) func1 = types.FunctionType(code1, globals()) return RpcDIA(self._dia.Map(func1)) def ReduceBy(self, key_extractor, reduce_function): code1 = marshal.loads(key_extractor) func1 = types.FunctionType(code1, globals()) code2 = marshal.loads(reduce_function) func2 = types.FunctionType(code2, globals()) return RpcDIA(self._dia.ReduceBy(func1, func2)) class RpcContext(): def __init__(self, host_ctx, my_host_rank): self._ctx = thrill.PyContext(host_ctx, my_host_rank) def Generate(self, generator_function, size): code1 = marshal.loads(generator_function) function1 = types.FunctionType(code1, globals()) return RpcDIA(self._ctx.Generate(function1, size)) def Distribute(self, array): return RpcDIA(self._ctx.Distribute(array)) class MyService(rpyc.Service): def on_connect(self): # code that runs when a connection is created # (to init the serivce, if needed) print("hello client") pass def on_disconnect(self): # code that runs when the connection has already closed # (to finalize the service, if needed) print("client disconnected") pass def exposed_Create(self, my_host_rank, endpoints): print("Creating thrill context for rank", my_host_rank, "endpoints", endpoints) host_ctx = thrill.HostContext(my_host_rank, endpoints, 1) return RpcContext(host_ctx, 0) if __name__ == "__main__": from rpyc.utils.server import ThreadedServer t = ThreadedServer(MyService, port=int(sys.argv[1]), protocol_config={"allow_public_attrs": True}) t.start() ##########################################################################
[ "tbgit@panthema.net" ]
tbgit@panthema.net
f2bb534fa1b683ba85fc3a83e9e250269fa4c85b
7b1de4a2607e3125b719c499a05bf6e2d3ec532d
/exceptions/chaining_demo.py
714dc5ff28adfb14c75345702632fc8819a3e118
[]
no_license
ganqzz/sandbox_py
61345ac7bddb09081e02decb78507daa3030c1e8
cc9e1ecca2ca99f350a3e2c3f51bbdb5eabc60e1
refs/heads/master
2022-12-01T21:54:38.461718
2021-09-04T03:47:14
2021-09-04T03:47:14
125,375,767
0
1
null
2023-04-16T00:55:51
2018-03-15T14:00:47
Python
UTF-8
Python
false
false
830
py
def func(): raise ValueError('from func()') # set __cause__ = None def demo1(): try: func() except ValueError: raise RuntimeError('from demo1()') # set __cause__ = e def demo2(): try: func() except ValueError as e: raise RuntimeError('from demo2()') from e # set __cause__ = None, and suppress chaining def demo3(): try: func() except ValueError: raise RuntimeError('from demo3()') from None def run_demo(f): print('---', f.__name__) try: f() except Exception as e: print(e) print('__context__:', repr(e.__context__)) print('__cause__:', repr(e.__cause__)) print() if __name__ == "__main__": # demo1() # demo2() # demo3() run_demo(demo1) run_demo(demo2) run_demo(demo3)
[ "ganqzz@users.noreply.github.com" ]
ganqzz@users.noreply.github.com
a70df48b3d89a7e34053a6ef0765c32639ea0b8b
e6dab5aa1754ff13755a1f74a28a201681ab7e1c
/.parts/lib/django-1.4/tests/regressiontests/localflavor/it/tests.py
cce0b49576318774ae32ed146df39c7063a0b7b5
[]
no_license
ronkagan/Euler_1
67679203a9510147320f7c6513eefd391630703e
022633cc298475c4f3fd0c6e2bde4f4728713995
refs/heads/master
2021-01-06T20:45:52.901025
2014-09-06T22:34:16
2014-09-06T22:34:16
23,744,842
0
1
null
null
null
null
UTF-8
Python
false
false
111
py
/home/action/.parts/packages/googleappengine/1.9.4/lib/django-1.4/tests/regressiontests/localflavor/it/tests.py
[ "ron.y.kagan@gmail.com" ]
ron.y.kagan@gmail.com
6575fec3682a6d786f060de88588345e6a9bbe2d
6521d29e4bd3a5178f64809c99695fdf1db25cd8
/metadata.py
02cc815fe8dc204aad5e2833bba323d90cff179a
[]
no_license
xdcesc/rnn_kws
d00b7bd76fc2cdeed625ab39a766a864c0b63a64
1a3a49086c5988f549dba1276d69ca41af9fe5d7
refs/heads/master
2022-05-19T08:54:33.516194
2020-04-05T19:27:59
2020-04-05T19:27:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,229
py
""" Converts raw TIMIT data into a pickle dump which can be used during training """ import numpy as np import pickle import os import utils import json from utils import listdir class timit_data(): def __init__(self, type_, config_file): self.config = config_file self.mode = type_ self.db_path = config_file['dir']['dataset'] # fold phones in list to the phone which is the key e.g. 'ao' is 'collapsed' into 'aa' self.replacement = utils.replacement_dict() feature_dim = self.config['n_fbank'] + self.config['n_mfcc'] self.pkl_name = self.db_path + self.mode + '_rnn_ctc_' + str(feature_dim) + '.pkl' self.win_len, self.win_step = config_file['window_size'], config_file['window_step'] # Generate and store pickle dump def gen_pickle(self): # Return if already exists if os.path.exists(self.pkl_name): print("Found pickle dump for", self.mode) with open(self.pkl_name, 'rb') as f: return pickle.load(f) print("Generating pickle dump for", self.mode) list_features, list_phones = [], [] base_pth = self.db_path + self.mode all_phones = set() # Phone distribution is used to calculate weights num_distribution = {} # Iterate over entire dataset for dialect in sorted(listdir(base_pth)): print("Dialect:", dialect) for speaker_id in sorted(listdir(os.path.join(base_pth, dialect))): data = sorted(os.listdir(os.path.join(base_pth, dialect, speaker_id))) wav_files = [x for x in data if x.split('.')[-1] == 'wav'] # all the .wav files for wav_file in wav_files: if wav_file in ['SA1.wav', 'SA2.wav']: continue wav_path = os.path.join(base_pth, dialect, speaker_id, wav_file) final_vec = utils.read_wav(wav_path, winlen=self.config['window_size'], winstep=self.config['window_step'], fbank_filt=self.config['n_fbank'], mfcc_filt=self.config['n_mfcc']) phenome_path = wav_path[:-3] + 'PHN' # file which contains the phenome location data # phones in current wav file cur_phones = [] with open(phenome_path, 'r') as f: a = f.readlines() for phenome in a: s_e_i = phenome[:-1].split(' ') # start, end, phenome_name e.g. 0 5432 'aa' start, end, ph = int(s_e_i[0]), int(s_e_i[1]), s_e_i[2] # collapse into father phone for father, list_of_sons in self.replacement.items(): if ph in list_of_sons: ph = father break # update distribution all_phones.add(ph) if ph not in num_distribution.keys(): num_distribution[ph] = 0 num_distribution[ph] += 1 cur_phones.append(ph) # Append current recording to the main list list_features.append(final_vec) list_phones.append(cur_phones) # Each item in to_return is a list corresponding to a single recording # Each recording is in turn a list of tuples of (ph, feature_vector) for each frame if self.mode == 'TRAIN': # Normalise feature vectors np_arr = np.concatenate(list_features, axis=0) print(np_arr.shape) np_mean = np.mean(np_arr, axis=0) np_std = np.std(np_arr, axis=0) # np_mean = np.zeros(np_mean.shape) # np_std = np.ones(np_std.shape) print("Mean:", np_mean, "\nStd. Dev:", np_std) # Weights are inversely proportional to number of phones encountered num_distribution = {k: 1 / v for k, v in num_distribution.items()} total_ph = sum(num_distribution.values()) num_distribution = {k: v / total_ph for k, v in num_distribution.items()} # Dump mapping from id to phone. Used to convert NN output back to the phone it predicted phones_to_id = {} for ph in sorted(all_phones): phones_to_id[ph] = (len(phones_to_id), num_distribution[ph]) phones_to_id['PAD'] = (len(phones_to_id), 0) # Dump this mapping fname = self.config['dir']['dataset'] + 'phone_mapping.json' with open(fname, 'w') as f: json.dump(phones_to_id, f) to_return = list(zip(list_features, list_phones)) # Dump database with open(self.pkl_name, 'wb') as f: pickle.dump(to_return, f) print("Dumped pickle") return to_return if __name__ == '__main__': config_file = {'dir': {'dataset': '../datasets/TEST/'}, 'feat_dim': 38} a = timit_data('TEST', config_file) a.gen_pickle()
[ "vaidya.mithilesh@gmail.com" ]
vaidya.mithilesh@gmail.com
24e9ee9d54dea93e03ce5075db2d76c34a09ff41
005ecccc021f2c11f3e847204a1fa6fb410ea071
/sumofdigits.py
05f3dbcc19547a37476d6d46602af6006eb56b2f
[]
no_license
pythoncrackers/My-Pet-Projects
7f86729a35dd3f4db26d9f8ae7a2639bfd847002
58d67a872a8ca695f50c87be37e189d05776c9c2
refs/heads/master
2020-03-15T01:20:59.431507
2018-01-16T16:43:39
2018-01-16T16:43:39
131,891,757
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
number = eval(input("Enter a number between 0 and 1000: ")) unitdigit = number % 10 print("The units digit is: " + str(unitdigit)) tensdigit = (number // 10) % 10 print("The tens digit is: " + str(tensdigit)) hundredsdigit = (number // 10) // 10 print("The hundreds digit is: " + str(hundredsdigit)) sum = unitdigit + tensdigit + hundredsdigit print("The sum of the digits is " + str(sum))
[ "noreply@github.com" ]
pythoncrackers.noreply@github.com
0623b8d9d3e3ae2c7e57ef1e836c62f6734a8628
0c3879648d76661007d11cec86f04a805c3052d7
/manage.py
aaa5d3cfeb1dd2a39f5101a8e1f54334bc24bae8
[]
no_license
arona14/sondage
421e24ba076f09472fbf96c30d303173f520f79e
eeb1df6370a7febbf0e910b44f56497064378d68
refs/heads/master
2020-03-17T14:54:33.143085
2018-05-16T16:40:53
2018-05-16T16:40:53
133,690,652
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sondage.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "arona@ctsfares.com" ]
arona@ctsfares.com
7b390631d83e27aba0ba74c9430946cd74309628
ca3bd539970db1203e920c0eea63dcba5709ee33
/example_47/2_merge_text_files.py
52f491b1a9c480c7f92a5e1a81ee7afb750ff734
[]
no_license
shawnbae/RPA
855ca534e5ae472b794b970f28d03ba09158e956
49850f7e2172224aa79f538f04d119bb9f1a7f59
refs/heads/master
2023-04-27T12:14:55.175489
2021-05-16T13:35:17
2021-05-16T13:35:17
328,898,143
0
0
null
null
null
null
UTF-8
Python
false
false
1,568
py
#-*-coding:utf-8 import time import os # 작업 시작 메시지를 출력합니다. print("Process Start") # 시작 시점의 시간을 기록합니다. start_time = time.time() # 하나로 합칠 파일들이 저장된 폴더 이름을 적어주세요. directory = "personal_info" # 결과물 파일의 이름을 정의합니다. outfile_name = "merged_ID.txt" # 결과물 파일을 생성합니다. 텅 빈 텍스트파일이 생성됩니다. out_file = open(outfile_name, 'w') # 폴더의 내용물을 열람해 목록을 생성합니다. input_files = os.listdir(directory) # 폴더의 내용물을 하나하나 불러와 합치는 작업을 수행합니다. # input_files에 저장된 파일 이름을 한 번에 하나씩 불러옵니다. for filename in input_files: # 간혹 텍스트 파일이 아닌 파일이 섞여있을 수 있습니다. 이걸 걸러냅니다. if ".txt" not in filename: continue # 텍스트 파일이 맞다면, 파일을 읽어옵니다. file = open(directory + "/" + filename) # 파일의 내용물을 문자열로 불러옵니다. content = file.read() # 파일의 내용물을 결과물 파일에 기재합니다. out_file.write(content + "\n\n") # 읽어온 파일을 종료합니다. file.close() # 결과물 파일을 종료합니다. out_file.close() # 작업 종료 메시지를 출력합니다. print("Process Done.") # 작업에 총 몇 초가 걸렸는지 출력합니다. end_time = time.time() print("The Job Took " + str(end_time - start_time) + " seconds.")
[ "tngks0315@naver.com" ]
tngks0315@naver.com
94002f0974151a37f02ed60d8ad4ad3e5621c075
7ba9f32bc68f127c4851e7fe74d11e03ff185a3c
/pythonCapstoneProjects/nextPrimeNumber.py
5ab3a38b64eef2446c3116cdc9617191fde1db30
[]
no_license
Hrishabkumr/Python
3a8fad08a28c4828fa6317bb63b1cc0c6fcbaa39
aff832ebe50de7aa1f7e83c76207c9fd73c079b9
refs/heads/main
2023-04-08T21:26:42.374066
2021-04-17T13:45:39
2021-04-17T13:45:39
358,887,531
0
0
null
null
null
null
UTF-8
Python
false
false
1,018
py
# Next Prime Number # Generate prime numbers until # the user chooses to stop def isPrime(x): """ Checks whether the given number x is prime or not """ if x == 2: return True if x % 2 == 0: return False for i in range(3, int(x**0.5)+1, 2): if x % i == 0: return False return True def genPrime(currentPrime): """ Returns the next prime after the currentPrime """ newPrime = currentPrime + 1 while True: if not isPrime(newPrime): newPrime += 1 else: break return newPrime def main(): # Wrapper function currentPrime = 2 while True: answer = input('Would you like to see the next prime? (Y/N) ') if answer.lower().startswith('y'): print(currentPrime) currentPrime = genPrime(currentPrime) else: break if __name__ == '__main__': main()
[ "noreply@github.com" ]
Hrishabkumr.noreply@github.com
168beaa8e57e3cab35e09d0b82d0e2cc748723dd
243e0c5c721ef4053f5f6b2a581bc8da4f5c2623
/s3-trigger-lambda.py
aa5c2233536e8e01e3e35b197eeeb0056cadc9e7
[]
no_license
JARADES-M/image-detector-cli-lambda
07924ae583ad6d6004cfd4eea766039ed6739aa0
a6171c0f8d4f283a445c5c31a9e2521eff00ca56
refs/heads/main
2023-06-28T04:40:36.486097
2021-07-19T11:56:56
2021-07-19T11:56:56
387,447,967
0
0
null
null
null
null
UTF-8
Python
false
false
1,031
py
#Script to create lambda function using aws import boto3 from urllib.parse import unquote_plus def label_function(bucket, name): """This takes an S3 bucket and a image name!""" print(f"This is the bucketname {bucket} !") print(f"This is the imagename {name} !") rekognition = boto3.client("rekognition") response = rekognition.detect_labels( Image={ "S3Object": { "Bucket": bucket, "Name": name, } }, ) labels = response["Labels"] print(f"I found these labels {labels}") return labels def lambda_handler(event, context): """This is a computer vision lambda handler""" print(f"This is my S3 event {event}") for record in event["Records"]: bucket = record["s3"]["bucket"]["name"] print(f"This is my bucket {bucket}") key = unquote_plus(record["s3"]["object"]["key"]) print(f"This is my key {key}") my_labels = label_function(bucket=bucket, name=key) return my_labels
[ "jaradesm@gmail.com" ]
jaradesm@gmail.com
b8ad77ebbc0f8d213a39e817e72baccde8bfd65f
112f02c4be5176907766f7546de7d5d57a2df2af
/tutorial/tutorial_56.py
aea22de47ee4c3870ffbc5ddf5b27264f1cb2d8c
[]
no_license
ankitsingh03/code-python
010efdcf157d5411f81b6fbfca74f8b36e3ea263
7fd33b9e7f269e3042bdb13a47a26a3da87a68bc
refs/heads/master
2023-03-25T10:48:23.282822
2021-03-18T06:43:27
2021-03-18T06:43:27
289,693,369
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
name = input("enter your name : ") i=0 temp = "" while i<len(name): if name[i] not in temp: temp+=name[i] print(f"{name[i]} : {name.count(name[i])}") i+=1
[ "65447864+ankitsingh03@users.noreply.github.com" ]
65447864+ankitsingh03@users.noreply.github.com
e6936c726159533a94b2699b7b1de4cf9f9a84fa
36ad2d376030fbfa5a099973ac8fe1acfd590225
/interview_questions/prog025_fb2_trees_from_string.py
fac3b8b334509bbb94c2a17f14decf8f1a54b22d
[]
no_license
ronaldjuarez/garage
254f189099eac70798036363dcd0aa437b7ff70d
3fb0a1b71b9e073084589d15eed24b020d563a58
refs/heads/master
2022-11-14T03:55:34.443669
2022-11-06T04:19:47
2022-11-06T04:19:47
190,933,012
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
def findSubsequence(v, target): sum = 0 leftIndex = 0 for i in range(len(v)): sum += v[i] if sum < target: continue elif sum == target: return True else: for j in range(leftIndex, len(v)): sum -= v[j] if sum == target: return True elif sum < target: leftIndex = j + 1 break return False v = 'node1 (node2, node3, node4 (node6 node7),node8 (node9 node10 node11))' target = 6 print(findSubsequence(v,target))
[ "rmjch91@gmail.com" ]
rmjch91@gmail.com
946f998fb7bd65a5fcb5e888f5d6107a563013d8
216039e6c419349c25201bf5bb4edc2b12c71cef
/config.py
00a909a7f2f36c025e88f5e242cfcac2d35fc9b3
[]
no_license
gloriaodipo/MyDiary-v1
6fe03ed318df4e88811d5845eb639e6b26619145
92386a6863c843945f4064654ba82b0afcc84f2e
refs/heads/master
2022-12-10T10:25:52.058895
2018-07-31T20:12:59
2018-07-31T20:12:59
140,820,686
0
2
null
2022-05-25T01:27:18
2018-07-13T08:36:27
Python
UTF-8
Python
false
false
519
py
'''Set up environment specific configurations''' import os class Config(): '''Parent configuration class''' DEBUG = False class Development(Config): '''Configuration for development environment''' DEBUG = True class Testing(Config): '''Configuration for testing environment''' DEBUG = True class Production(Config): '''Configuration for production environment''' DEBUG = False app_config = { 'development': Development, 'testing': Testing, 'production': Production }
[ "gloriaodipo@gmail.com" ]
gloriaodipo@gmail.com
10b1131f1db5cefed204613e153ecc03d1a09ee3
d47f5f59fc322aa2a82ea1c3a15f39b200dd95b2
/bioinformatics_1/week_1/computing_frequencies.py
e8f5fabf0b6ca4a603575bdccc2ae3e7e537d4b5
[]
no_license
nayanika2304/BioInformatics
baefb229e02397e06c634df44b82e72e9a235c77
977219bf4f3e4583b91df6308828d15bb1ad148d
refs/heads/master
2023-01-01T05:24:58.401988
2020-10-20T12:52:30
2020-10-20T12:52:30
295,566,560
0
0
null
null
null
null
UTF-8
Python
false
false
1,819
py
def pattern_to_number(pattern): if len(pattern) == 0: return 0 symbol_to_number = {'A': 0, 'C': 1, 'G': 2, 'T': 3} n = len(pattern) prefix = pattern[:n - 1] symbol = pattern[n - 1] return 4 * pattern_to_number(prefix) + symbol_to_number[symbol] def computing_frequencies(text, k): frequency_array = [] n = len(text) for i in range(4 ** k): frequency_array.append(0) for i in range(n - k + 1): pattern = text[i:i + k] j = pattern_to_number(pattern) frequency_array[j] = frequency_array[j] + 1 result = "" for item in frequency_array: result = result + " " + str(item) return result pattern="CGGCGTTGGAGTGGAAAA" print(pattern_to_number(pattern)) #print(computing_frequencies(pattern,7)) #PatternToNumber(AGT) = 4 · PatternToNumber(AG) + SymbolToNumber(T) = 8 + 3 = 11 # where SymbolToNumber(symbol) is the function transforming symbols A, C, G, and T into the respective integers 0, 1, 2, and 3. # patternToNumber = ATGCAA # A=0 C=1 G=2 T=3 # 032100 # (4^5 *0=0)+(4^4 *3=768)+(4^3 *2=128)+(4^2 *1=16)+ (4^1 *0=0)+ (4^0 *0=0)=912 #numberToPattern # To go backward from a base-anything number, you divide the final number (5437 in this case) by the base, 4, k = 7 times, keeping track of the remainder:  # # # 5437 / 4 = 1359 R 1 # 1359 / 4 = 339 R 3 # 339 / 4 = 84 R 3 # 84 / 4 = 21 R 0 # 21/4 = 5 R 1 # 5/4 = 1 R 1 # 1/4 = 0 R 1 # Take the remainders from the bottom up and you get: # # 1110331, corresponding lexicographically to CCCAGGC # # Similarly we can look at going backward from 912 (from previous question) to ATGCAA (k = 6) in the same way: # # 912/4 = 228 R 0 # 228/4 = 57 R 0 # 57/4 = 14 R 1 # 14/4 = 3 R 2 # 3/4 = 0 R 3 # 0/4 = 0 R 0 # Bottom up we get 032100 corresponding to ATGCAA.
[ "nayanikabhargava1993@gmail.com" ]
nayanikabhargava1993@gmail.com
b58fec6a84bedcfdb8045e1cb4635d7e6cb3a8a0
cf480cdc547d6714038b1691c768ec2b6ee12d81
/PracticaSSDD/Downloader.py
c82d59aaeb74e62e4989bc563863372380dd532c
[]
no_license
sergiosb99/SistemasDistribuidos
dd5f3f6a88b6fecb313353ff79e4a0afa97d4a80
476e6b22d9c8964881a61ae0f4e44e9143a603cd
refs/heads/master
2022-04-02T04:06:30.543889
2019-12-14T18:41:27
2019-12-14T18:41:27
218,734,636
0
0
null
null
null
null
UTF-8
Python
false
false
3,622
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- import sys import Ice, IceStorm Ice.loadSlice('trawlnet.ice') import TrawlNet import hashlib try: import youtube_dl import os except ImportError: print('ERROR: do you have installed youtube-dl library?') sys.exit(1) class NullLogger: def debug(self, msg): pass def warning(self, msg): pass def error(self, msg): pass _YOUTUBEDL_OPTS_ = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'logger': NullLogger() } def download_mp3(url, destination='./'): ''' Synchronous download from YouTube ''' options = {} task_status = {} def progress_hook(status): task_status.update(status) options.update(_YOUTUBEDL_OPTS_) options['progress_hooks'] = [progress_hook] options['outtmpl'] = os.path.join(destination, '%(title)s.%(ext)s') with youtube_dl.YoutubeDL(options) as youtube: youtube.download([url]) filename = task_status['filename'] # BUG: filename extension is wrong, it must be mp3 filename = filename[:filename.rindex('.') + 1] return filename + options['postprocessors'][0]['preferredcodec'] def computeHash(filename): '''SHA256 hash of a file''' fileHash = hashlib.sha256() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): fileHash.update(chunk) return fileHash.hexdigest() class DownloaderI(TrawlNet.Downloader): def __init__(self): self.publisher = None def addDownloadTask(self, link, current = None): try: print("Download request: %s" %link) sys.stdout.flush() fileInfo = TrawlNet.FileInfo() fileInfo.name = download_mp3(link) fileInfo.hash = computeHash(fileInfo.name) self.publisher.newFile(fileInfo) return fileInfo except TrawlNet.DownloadError: print("Download failed") return 1 class Downloader(Ice.Application): def get_topic_manager(self): key = 'IceStorm.TopicManager.Proxy' proxy = self.communicator().propertyToProxy(key) if proxy is None: print("property", key,"not set") return None return IceStorm.TopicManagerPrx.checkedCast(proxy) def run(self, args): self.broker = self.communicator() self.sirviente = DownloaderI() self.adapter = self.broker.createObjectAdapter("DownloaderAdapter") self.proxy = self.adapter.addWithUUID(self.sirviente) print(self.proxy) sys.stdout.flush() self.adapter.activate() ###### PUBLISHER UPDATE EVENT ####### # Notifica de la descarga de archivos topic_mgr = self.get_topic_manager() if not topic_mgr: print('Invalid Proxy') return 2 topic_name = "UpdateEvents" try: topic = topic_mgr.retrieve(topic_name) except IceStorm.NoSuchTopic: print("No such topic found, creating") topic = topic_mgr.create(topic_name) publisher_event = topic.getPublisher() updateEvent = TrawlNet.UpdateEventPrx.uncheckedCast(publisher_event) self.sirviente.publisher = updateEvent self.shutdownOnInterrupt() self.broker.waitForShutdown() return 0 downloader = Downloader() sys.exit(downloader.main(sys.argv))
[ "noreply@github.com" ]
sergiosb99.noreply@github.com
ec5652e19dafe91ba994ad3ce471eadb6ef08f7e
39eeb8ee756d5cebdfeed5dee7b57eb770fa075d
/src/amfe/solver/initializer.py
d4342eecfc009ec566010e888408ff17cca2e5c5
[ "BSD-3-Clause" ]
permissive
c-meyer/AMfe
9ca37535316b502fdc6731904d99287ae4cff824
61658db4f00858da4b4c6ba295ce66fd3ca9d324
refs/heads/master
2023-06-13T03:44:45.482814
2023-06-07T12:08:23
2023-06-07T12:08:23
187,845,356
0
0
NOASSERTION
2023-06-07T12:08:07
2019-05-21T13:41:32
Python
UTF-8
Python
false
false
1,120
py
# # Copyright (c) 2018 TECHNICAL UNIVERSITY OF MUNICH, DEPARTMENT OF MECHANICAL ENGINEERING, CHAIR OF APPLIED MECHANICS, # BOLTZMANNSTRASSE 15, 85748 GARCHING/MUNICH, GERMANY, RIXEN@TUM.DE. # # Distributed under 3-Clause BSD license. See LICENSE file for more information. # import numpy as np __all__ = ['NullAccelerationInitializer', 'LinearAccelerationInitializer' ] class NullAccelerationInitializer: def __init__(self): return def get_acceleration(self, t0, q0, dq0): return np.zeros_like(q0) class LinearAccelerationInitializer: def __init__(self, M, f_int, f_ext, K, D, solve_func, solve_function_kwargs): self.M = M self.f_int = f_int self.f_ext = f_ext self.K = K self.D = D self.solve_function = solve_func self.solve_function_kwargs = solve_function_kwargs def get_acceleration(self, t0, q0, dq0): A = self.M(q0, dq0, t0) b = self.f_ext(q0, dq0, t0) - self.D(q0, dq0, t0) @ dq0 - self.f_int(q0, dq0, t0) return self.solve_function(A, b, **self.solve_function_kwargs)
[ "christian.meyer@tum.de" ]
christian.meyer@tum.de
50cbc0a6b7378fde63f8deb76fd0bda5440b65e5
583d03a6337df9f1e28f4ef6208491cf5fb18136
/dev4qx/madeira-stub/handlers/stub/niukou.py
6b0e4e26edb01f71cb86b882a9492992f2eca35c
[]
no_license
lescpsn/lescpsn
ece4362a328f009931c9e4980f150d93c4916b32
ef83523ea1618b7e543553edd480389741e54bc4
refs/heads/master
2020-04-03T14:02:06.590299
2018-11-01T03:00:17
2018-11-01T03:00:17
155,309,223
1
0
null
null
null
null
UTF-8
Python
false
false
1,845
py
import json import logging import tornado import tornado.web from tornado.httpclient import AsyncHTTPClient from tornado.ioloop import IOLoop request_log = logging.getLogger("madeira.request") class NiukouOrderHandler(tornado.web.RequestHandler): @tornado.gen.coroutine def post(self): try: order_id = self.get_argument("OutTradeNo") master_test = self.application.sentinel.master_for('madeira', db=3) r2 = r1 = master_test.hget('result:' + order_id, 'result') # 根据redis判断订单状态 r2=r1='100,00;成功' if ',' in r1: r1, r2 = r1.split(',') # r1="100" r2="00;成功" data = {"HEADER":{"SEQNO":"Q2015101209294910063131","SECERTKEY":"713B242546AA7239A572AE1E2103A777","APPID":"QuXun","TIMESTAMP":"20151012092949276","VERSION":"V1.0"},"MSGBODY":{"CONTENT":{"ORDERID":"144461347935975","EXTORDER":order_id},"RESP":{"RCODE":"00","RMSG":"OK"}}} self.finish(json.dumps(data)) if r1 == '0': IOLoop.current().call_later(10, niukou_callback, order_id, r2) except Exception: request_log.exception('FAIL') def niukou_callback(order_id, result): if ';' in result: result = result.split(';')[0] body = {"HEADER":{"VERSION":"V1.1","TIMESTAMP":'',"SEQNO":'',"APPID":"QuXun","SECERTKEY":"E4CF8702097BF3D3EFF03DF3ACFDEE5E"},"MSGBODY":{"CONTENT":{"ORDERID":"144461587745723","EXTORDER":order_id,"STATUS":"\u6210\u529f","CODE":"0"}}} body = json.dumps(body) url = 'http://localhost:8899/callback/niukou' http_client = AsyncHTTPClient() try: request_log.info('YFLOW CALLBACK\n%s', body) http_client.fetch(url, method='POST', body=body) except Exception: request_log.exception('FAIL') finally: http_client.close()
[ "lescpsn@aliyun.com" ]
lescpsn@aliyun.com
4669336116ce7e560e82aa2f2fc0cf729f1a23d2
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/workdocs_write_f/comment_delete.py
79616abb93b0670f4aec69800235ff70fde5d896
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/describe-instances.html if __name__ == '__main__': """ create-comment : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/workdocs/create-comment.html describe-comments : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/workdocs/describe-comments.html """ write_parameter("workdocs", "delete-comment")
[ "hcseo77@gmail.com" ]
hcseo77@gmail.com
e92faf948492965950a7cb2a76b1626fd524149b
29e4561c6c84856fc1a9afa955a7be3ed1c03914
/arvancloud_ddns/cli.py
0e39c9b8b1d70b115fd3bd04e26c028682748eb9
[ "MIT" ]
permissive
yazdan/ar-ddns
eef211c545a7def29553cf59dcfd907f25248995
b8fa8e1fb68533a18c0793880513d189fc915452
refs/heads/main
2023-03-06T15:11:24.163976
2021-02-16T10:16:48
2021-02-16T10:16:48
339,356,661
0
0
MIT
2021-02-16T10:10:22
2021-02-16T10:10:21
null
UTF-8
Python
false
false
757
py
import click from arvancloud_ddns.arvancloud_dns_api import ArvanCloudDNSAPI from arvancloud_ddns.utils import sync_public_ip @click.command() @click.option('--domain', required=True) @click.option('--api-key', required=True) @click.option('--cloud', is_flag=True, help='by activating this option, the usage will be calculated based on four variables: Input traffic, Output traffic, HTTP/HTTPS requests, and the number of Cache Purge requests.') @click.option('--dry-run', is_flag=True, help='Use the --dry-run option to run arvancloud-ddns without changing your dns.') def cli(domain, api_key, dry_run=False, cloud=False): ar = ArvanCloudDNSAPI(api_key, domain) ar.setup_records() sync_public_ip(ar, cloud=cloud)
[ "touhid.arastu@gmail.com" ]
touhid.arastu@gmail.com
f95a4aa88f57289ef80b62ef84d6b9d5d9906074
050a01af15654c0708c2e747def7c33fe54cbe02
/delivery_order/migrations/0001_initial.py
b9d564b5771452e38c9a53435e0538f295bc3d57
[]
no_license
crowdbotics-apps/coddwebsite-17461
5d38d10294e5a9892028d11122174e9600790ac8
eb9f22e52ec3c0c18fef55597c9e8aa3bf7cfe2d
refs/heads/master
2023-05-13T13:28:47.125601
2020-05-27T17:32:07
2020-05-27T17:32:07
267,378,023
0
0
null
2021-06-10T09:23:01
2020-05-27T17:01:24
Python
UTF-8
Python
false
false
2,609
py
# Generated by Django 2.2.12 on 2020-05-27 17:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('menu', '0001_initial'), ('delivery_user_profile', '0001_initial'), ] operations = [ migrations.CreateModel( name='Bill', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('total_amount', models.FloatField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('contact_info', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bill_contact_info', to='delivery_user_profile.ContactInfo')), ('profile', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bill_profile', to='delivery_user_profile.Profile')), ], ), migrations.CreateModel( name='PaymentMethod', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('detail', models.TextField()), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.IntegerField()), ('total_price', models.FloatField()), ('status', models.CharField(max_length=20)), ('notes', models.TextField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('bill', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_bill', to='delivery_order.Bill')), ('item_variant', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='order_item_variant', to='menu.ItemVariant')), ('payment_method', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='order_payment_method', to='delivery_order.PaymentMethod')), ('profile', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='order_profile', to='delivery_user_profile.Profile')), ], ), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
a4a415836a73c4b26dcef8193f52936e7df8c02a
f68710d7a8228805ab19430d72cefd6bbf1c4b91
/src/routes/challenge.py
e1d954d670e6d9f4edf787dce1f4adc16e6579be
[]
no_license
quokkateam/quokka-api
1aae2dd9694b09ff426fc8defcc8dd1d6536f016
081f22fe3bf81aee18cca05283384c4899923b88
refs/heads/master
2023-01-21T08:21:52.559310
2020-12-03T01:12:46
2020-12-03T01:12:46
100,311,727
0
0
null
2017-09-18T05:19:33
2017-08-14T21:42:08
Python
UTF-8
Python
false
false
7,013
py
from flask_restplus import Resource, fields from src.routes import namespace, api from src.helpers.user_helper import current_user from src.helpers.prize_helper import format_prizes from src.helpers.sponsor_helper import format_sponsors from src.helpers.challenge_helper import format_challenges, current_week_num from operator import attrgetter from src.challenges import universal_challenge_info from datetime import datetime, timedelta from src import dbi, logger from src.models import Challenge from src.helpers.error_codes import CHALLENGE_NOT_EXIST, INVALID_CHALLENGE_ACCESS update_challenge_section_model = api.model('Challenge', { 'id': fields.Integer(required=True), 'text': fields.String(required=True), 'points': fields.Integer(required=True) }) # TODO: Validate JSON field types for 'suggestions' and 'challenges' below # update_suggestions_model = api.model('Challenge', { # 'id': fields.Integer(required=True), # 'suggestions': fields.String(required=True) # }) # update_challenges_model = api.model('Challenge', { # 'challenges': fields.String(required=True), # 'startDate': fields.String(required=True) # }) @namespace.route('/challenge/<int:week_num>') class GetChallenge(Resource): """Fetch data for a school's challenge page by week number""" @namespace.doc('get_challenge') def get(self, week_num): user = current_user() if not user: return '', 403 school = user.school week_index = week_num - 1 # Get challenges for school, sorted by date challenges = sorted(school.active_challenges(), key=attrgetter('start_date')) if week_num < 1 or week_num > len(challenges): return {'error': 'Challenge does not exist', 'code': CHALLENGE_NOT_EXIST}, 400 curr_week_num = current_week_num(challenges) # if this is a future week and the user isn't an admin, prevent access if week_num > curr_week_num and not user.is_admin: return {'error': 'Week not yet available to access', 'code': INVALID_CHALLENGE_ACCESS}, 400 # Find the challenge requested by week index challenge = challenges[week_index] if week_index == 0: prev_habit = None next_habit = { 'weekNum': 2, 'name': challenges[1].name } elif week_index == len(challenges) - 1: prev_habit = { 'weekNum': week_index, 'name': challenges[week_index - 1].name } next_habit = None else: prev_habit = { 'weekNum': week_index, 'name': challenges[week_index - 1].name } next_habit = { 'weekNum': week_num + 1, 'name': challenges[week_num].name } # if this is the current week and the user isn't an admin, he/she shouldn't have a link to the next week yet if week_num == curr_week_num and not user.is_admin: next_habit = None universal_challenge = universal_challenge_info.get(challenge.slug) resp = { 'id': challenge.id, 'habit': { 'name': challenge.name, 'slug': challenge.slug, 'icon': universal_challenge['icon'], 'dates': { 'start': datetime.strftime(challenge.start_date, '%m/%d/%Y'), 'end': datetime.strftime(challenge.end_date, '%m/%d/%Y') } }, 'overview': universal_challenge['overview'], 'challenge': { 'text': challenge.text, 'points': challenge.points }, 'prizes': format_prizes(challenge.active_prizes()), 'sponsors': format_sponsors(school.sponsors), 'suggestions': challenge.suggestions, 'adjHabits': { 'prev': prev_habit, 'next': next_habit }, 'links': universal_challenge['links'], 'extraInfo': universal_challenge['extra_info'] } return resp @namespace.route('/challenge/challenge') class UpdateChallengeSection(Resource): """Save the text and points for a weekly challenge""" @namespace.doc('update_challenge_section') @namespace.expect(update_challenge_section_model, validate=True) def put(self): user = current_user() if not user or not user.is_admin: return '', 403 challenge = dbi.find_one(Challenge, {'id': api.payload['id']}) if not challenge: logger.error('No challenge found for id: {}'.format(api.payload['id'])) return 'Challenge required to update text and points', 500 dbi.update(challenge, { 'text': api.payload['text'], 'points': api.payload['points'] or 0 }) return {'text': challenge.text, 'points': challenge.points} @namespace.route('/challenge/suggestions') class UpdateSuggestions(Resource): """Save the suggestions for a weekly challenge""" @namespace.doc('update_suggestions') # @namespace.expect(update_suggestions_model, validate=True) def put(self): user = current_user() if not user or not user.is_admin: return '', 403 challenge = dbi.find_one(Challenge, {'id': api.payload['id']}) if not challenge: logger.error('No challenge found for id: {}'.format(api.payload['id'])) return 'Challenge required to update text and points', 500 dbi.update(challenge, {'suggestions': api.payload['suggestions']}) return {'suggestions': challenge.suggestions} @namespace.route('/challenges') class RestfulChallenges(Resource): """Fetch all challenges for a school""" @namespace.doc('get_challenges') def get(self): user = current_user() if not user: return '', 403 # Get challenges for school, sorted by date challenges = sorted(user.school.active_challenges(), key=attrgetter('start_date')) curr_week_num = current_week_num(challenges) challenges_data = format_challenges(challenges, user, curr_week_num=curr_week_num) resp = { 'weekNum': curr_week_num, 'challenges': challenges_data } return resp @namespace.doc('update_challenges') # @namespace.expect(update_challenges_model, validate=True) def put(self): user = current_user() if not user or not user.is_admin: return '', 403 try: start_date = datetime.strptime(api.payload['startDate'], '%m/%d/%y') except: return 'Invalid start date', 500 challenge_slugs = [c['slug'] for c in api.payload['challenges']] school = user.school challenges = dbi.find_all(Challenge, { 'school': user.school, 'slug': challenge_slugs }) i = 0 for slug in challenge_slugs: challenge = [c for c in challenges if c.slug == slug][0] if i > 0: start_date = start_date + timedelta(days=7) end_date = start_date + timedelta(days=6) dbi.update(challenge, {'start_date': start_date, 'end_date': end_date}) i += 1 challenges = sorted(school.active_challenges(), key=attrgetter('start_date')) curr_week_num = current_week_num(challenges) challenges_data = format_challenges(challenges, user, curr_week_num=curr_week_num) resp = { 'weekNum': curr_week_num, 'challenges': challenges_data } return resp
[ "benwhittle31@gmail.com" ]
benwhittle31@gmail.com
f3287cdf45f3d65183544c35aca6db06772c239b
bd55c7d73a95caed5f47b0031264ec05fd6ff60a
/apps/nchat/migrations/0012_auto_20191113_1447.py
b7df57dbc71a1d5e13e95d92c30ea5bd1f8098ea
[]
no_license
phonehtetpaing/ebdjango
3c8610e2d96318aff3b1db89480b2f298ad91b57
1b77d7662ec2bce9a6377690082a656c8e46608c
refs/heads/main
2023-06-26T13:14:55.319687
2021-07-21T06:04:58
2021-07-21T06:04:58
381,564,118
0
0
null
null
null
null
UTF-8
Python
false
false
657
py
# Generated by Django 2.0.5 on 2019-11-13 05:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nchat', '0011_enduser'), ] operations = [ migrations.AddField( model_name='enduser', name='app_id', field=models.CharField(default=1, max_length=256, verbose_name='app_id'), preserve_default=False, ), migrations.AddField( model_name='enduser', name='owner_id', field=models.IntegerField(default=1, verbose_name='owner_id'), preserve_default=False, ), ]
[ "phonehtetpaing1221@gmail.com" ]
phonehtetpaing1221@gmail.com
c1aa620b136310e6ed28bf61e29b75a3d21e84e8
76fceb0a152caacbe056d5ac437351e52a77b360
/Django_website/music/migrations/0001_initial.py
aad5fd5b58076a28e9327167a7f918a79368f4e6
[]
no_license
wuyiaishang/django_workplace
b4f4e3c32f61491af5f19afd4bb5c664b1cb2bbc
f9f0269026a31c1f8bdee3ec9ba8d5eb28002737
refs/heads/master
2021-01-22T08:13:25.245736
2017-02-25T16:22:05
2017-02-25T16:22:05
81,884,622
0
0
null
null
null
null
UTF-8
Python
false
false
1,238
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-14 22:05 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Album', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('artist', models.CharField(max_length=250)), ('album_title', models.CharField(max_length=500)), ('genre', models.CharField(max_length=100)), ('album_logo', models.CharField(max_length=1000)), ], ), migrations.CreateModel( name='Song', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('file_type', models.CharField(max_length=10)), ('song_title', models.CharField(max_length=250)), ('album', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='music.Album')), ], ), ]
[ "lijh3737ca@gmail.com" ]
lijh3737ca@gmail.com
a3cedf4a666cc934634ed802f992230d70f6b79b
ffb2eafcedbc0b2db5337bcac71d26eafa881228
/recsys.py
0bd37e9bd793e4b93d6535b5487636ce8bdc0b2e
[]
no_license
williamcottrell72/RecSys
ac7ddb0a5ee637b9c0a66310a5e928ce5400f436
92f3fd67b6283f3f3012f103340236d4add786dd
refs/heads/master
2020-03-27T11:56:41.143034
2018-12-25T20:59:53
2018-12-25T20:59:53
146,516,040
0
0
null
null
null
null
UTF-8
Python
false
false
4,311
py
# Here is the code for the recommender system. This consists of a deep auto-encoder with a #'fit' and 'predict' method like sklearn. import torch import torch.nn.functional as F import torch.optim as optim import numpy as np import pickle as pkl import torch.autograd as autograd import torch.nn as nn #Below we have a helper function just so we don't have to initialize the create_recsys #dimensions by hand. def create_recsys(matrix,dropout=.1,latent_features=4,max_iter=100,lr=.001,epochs=5,temperature=1,batch_size=500): return recsys(matrix,matrix.shape[0],matrix.shape[1],latent_features,dropout,max_iter,epochs,temperature,lr,\ batch_size=batch_size) class recsys(nn.Module): def __init__(self,ratings=None,users=100,sites=1000,latent_features=10,\ dropout=.1,max_iter=10,epochs=4,temperature=1,lr=.01,batch_size=500,\ losses=None): super(recsys,self).__init__() self.users=users self.sites=sites self.dropout=nn.Dropout(p=dropout) self.max_iter=max_iter self.lr=lr self.batch_size=batch_size self.temperature=temperature self.ratings=ratings self.losses=None self.epochs=epochs self.linear1=nn.Linear(sites,latent_features) self.linear2=nn.Linear(latent_features,latent_features) self.linear3=nn.Linear(latent_features,sites) # The input x should have shape (number_of_users,sites) # Ratings needs to be a torch tensor of the same shape as x. # def get_mask(self,ratings=None): # try: # if ratings==None: # pass # except: # self.ratings=ratings # mask=[] # for i in range(len(self.ratings)): # mask.append([0 if math.isnan(self.ratings[i,j]) else 1 for j in range(len(self.ratings[0]))]) # return torch.tensor(mask) def imputer(self,x=None): #Need to make a function which takes in a ratings array and returns #an initial best guess. For now I'll just mask the unkown variables #print(type(self.ratings)) try: if x==None: ratings=self.ratings except: ratings=x ratings[np.isnan(ratings)] = 0 return torch.tensor(ratings).float() def forward(self,x): x=self.imputer(x) x=self.linear1(x) x=torch.tanh(x) x=self.linear2(x.float()) x=self.dropout(x.float()) x=torch.tanh(x) x=self.linear3(x.float()) return x #Should reconsider loss function. In particular, need to #think about the denominator. Perhaps better options... def custom_loss(self,x,y): ct=0 for i in range(len(x)): if (torch.norm(x[i])==0) or (torch.norm(y[i])==0): pass else: ct+=1-(x[i]@y[i])/(torch.norm(x[i])*torch.norm(y[i])) return ct/len(x) def predict(self,x): x=self.imputer(x) return self.forward(x) def fit(self,ratings=None): try: if ratings==None: ratings=self.ratings except: pass ratings_clean=self.imputer(ratings) loss_function=nn.MSELoss() f= open('data/losses','w+') losses=[] for i in range(1,self.epochs+1): optimizer = optim.Adam(self.parameters(),lr=self.lr/i) print(f'Epoch {i}') sample_indices=np.random.choice(range(len(ratings_clean)),self.batch_size,replace=False) sample=ratings_clean[sample_indices] #print(sample_indices) for _ in range(self.max_iter): optimizer.zero_grad() out = self.forward(sample) #out = self.forward(ratings_clean) #loss = loss_function(out,ratings_clean) #This one works! loss = self.custom_loss(out,sample) #This one works #loss = self.custom_loss(out,ratings_clean) losses.append(float(loss.detach().numpy())) f.write(str(loss.detach().numpy())+',') loss.backward(retain_graph=True) optimizer.step() self.losses=losses f.close()
[ "williamcottrell72@gmail.com" ]
williamcottrell72@gmail.com
0fe45a842cf883f20681fad8051fa1660930b421
ab32ef99b14883391da76f8e64c420fdc4c6e25b
/config.py
ab8f0e8d695d29df8da4836b39559ac74ca678fb
[]
no_license
perryraskin/shoppimon-tests
21a6e3e45ebaea5774082d00a8eadab16650ef73
5ecd453d620de7a20ffb6f359de634efd9a225be
refs/heads/master
2021-01-19T04:24:38.367725
2016-10-10T04:52:14
2016-10-10T04:52:14
63,161,477
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
"""Configuration handling """ import yaml import boto3 __config = None def get_config(path): global __config if path.startswith("s3"): # Use Amazon S3 s3 = boto3.resource('s3') bucket_name = path.split("/")[2] key_name = path.split(bucket_name[-1]) # Download object at bucket-name with key-name to tmp.txt s3.download_file(bucket_name, key_name, "tmp.yaml") if __config is None: with open("tmp.yaml", 'r') as stream: __config = yaml.load(stream) else: if __config is None: with open(path, 'r') as stream: __config = yaml.load(stream) return __config
[ "perryraskin@gmail.com" ]
perryraskin@gmail.com
c477b8b68db052eb74041eaadaadcfcda5a16a9c
18974b976a9f8afb042f60396a6afacc8ea0636d
/producer_server.py
4cecf20b8652b947e69a217ba5b6669eaa665378
[]
no_license
ajschaeper/frisco_crime_stats
158e581612871ee18b35f28b4f69d27d48392d4d
de22a1cc62a970a054d0731b42f76a6395f3dc69
refs/heads/master
2022-11-14T05:51:13.359337
2020-06-29T12:53:14
2020-06-29T12:58:02
275,379,317
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
from kafka import KafkaProducer import json import time class ProducerServer(KafkaProducer): def __init__(self, input_file, topic, **kwargs): super().__init__(**kwargs) self.input_file = input_file self.topic = topic def generate_data(self): with open(self.input_file) as fd: data = json.load(fd) for item in data: message = self.dict_to_binary(item) self.send(self.topic, message) time.sleep(1) def dict_to_binary(self, json_dict): return json.dumps(json_dict).encode("utf-8")
[ "alex@schaeper.io" ]
alex@schaeper.io
7c459fe159f5fd2dcb8c050a691a2fbbc7836477
3ad2eb5cefe7ba0c497445de6fbd698c58c03453
/game_of_life.py
2c669e02174a1d914d25778156e30f43cc1b871f
[]
no_license
MaxAdau/game_of_life
cd6c3103186e5297970c4566ff51811a6a9e2138
74d6fc0aa8d3dc720850c5fb4877d8302b7acbc2
refs/heads/master
2020-09-28T02:43:29.395889
2019-12-08T13:17:45
2019-12-08T13:17:45
226,670,358
0
0
null
null
null
null
UTF-8
Python
false
false
9,208
py
import tkinter as tk from time import sleep # For debugging purpose from time import time prev = time() def delta(txt): global prev print(txt) print('delta = {}'.format(time() - prev)) prev = time() class Grid: """ This class implement the grid that contains all the cells in the game """ def __init__(self, canvas, width, height, cell_size): self.cell_size = cell_size self.canvas = canvas # Variable calculated from default ones self.nbr_cell_width = int(width / cell_size) self.nbr_cell_height = int(height / cell_size) # List of all cells in the grid self.cells = [] def generate_grid(self): """ Generate aa grid with empty rectangle Also instantiate cells that will be used in the game """ # Caching method to avoid method lookup in loop create_rect = self.canvas.create_rectangle # Loop in Y for grid_y in range(0, self.nbr_cell_height): y1 = grid_y * self.cell_size y2 = grid_y * self.cell_size + self.cell_size self.cells.append([]) # Loop in X for grid_x in range(0, self.nbr_cell_width): x1 = grid_x * self.cell_size x2 = grid_x * self.cell_size + self.cell_size # Create the rectangle using canvas and store the rectangle id in the cell rect_id = create_rect(x1, y1, x2, y2, fill='white') self.cells[grid_y].append(Cell(grid_x, grid_y, self.canvas, rect_id)) # def clear(self): # """ # Clear the current grid # """ # for y, row in enumerate(self.cells): # for x, cell in enumerate(row): # # Get the neighbors of a cell, then define the next status # cell = cells[y][x] # cell.next_gen = False # cell.is_alive = False # cell.draw_cell() def compute_next_grid(self): """ Iterate over all cells and set their next_gen attribute """ # Iterate over cells for y, row in enumerate(self.cells): for x, cell in enumerate(row): # Get the neighbors of a cell, then define the next status nbr_neighbors = self._get_alive_neighbors(cell) self.cells[y][x].next_gen = self._apply_rules(cell, nbr_neighbors) def swap_status(self, tkevent): """ Change the status of a cell Called from a click """ # Get the position on the grid from the tkinter coordinates x, y = self._xy_to_grid_idx(tkevent.x, tkevent.y) # Change the current status of the cell and draw it cell = self.cells[y][x] cell.is_alive = not cell.is_alive cell.draw_cell() def draw_next_gen(self): """ Update the cell.isActivate attribute and display the grid using the updated value """ for y, row in enumerate(self.cells): for x, cell in enumerate(row): cell = self.cells[y][x] cell.is_alive = cell.next_gen cell.draw_cell() def _apply_rules(self, cell, nbr_neighbors): """ Calculate the next value of a specific cell, either return True if the cell will be alive return False if not """ # Rules of the game # Any live cell with two or three neighbors survives if cell.is_alive and nbr_neighbors in [2, 3]: return True # Any dead cell with three live neighbors becomes a live cell elif not cell.is_alive and nbr_neighbors == 3: return True # All other live cells die in the next generation else: return False def _get_alive_neighbors(self, cell): """ Return the number of cells alives in the vicinity of the given cell """ # Coordinates to apply to current cell to get all 8 neighbors neighbors = [(-1, -1), (0, -1), (1, -1), (-1, 0), (1, 0), (-1, 1), (0, 1), (1, 1)] # Iterate over neighbors and get the is_alive status nbr_neighbors = 0 for coordinates in neighbors: adjusted_x = cell.grid_x + coordinates[0] adjusted_y = cell.grid_y + coordinates[1] # Try to get the neighbors if adjusted_x >= 0 and adjusted_y >= 0: try: neighbor = self.cells[adjusted_y][adjusted_x].is_alive if neighbor: nbr_neighbors += 1 # We get an error while searching for out of range cells, not a problem except IndexError: pass return nbr_neighbors def _xy_to_grid_idx(self, x, y): """ Translate a x and y tkinter coordinates in a grid xy position Trick : I use int() to round down my coordinates """ return (int(x / self.cell_size), int(y / self.cell_size)) def _debug(self): """ Print all cells and their status """ for y, row in enumerate(self.cells): for x, cell in enumerate(row): print('cell {} in {}'.format(cell.get_xy(), (x, y))) class Cell: """ This class represent a cell as intended in the game of life """ def __init__(self, grid_x, grid_y, canvas, rect_id): # Position of the cell in the grid self.grid_x = grid_x self.grid_y = grid_y # The canvas used to perform graphical magic self.canvas = canvas self.rect_id = rect_id # Used for the game logic self.is_alive = False self.next_gen = False # Automatically display the cell when instantiate self.draw_cell() def draw_cell(self): """ Draw the cell """ # Cell is alive if not self.is_alive: color = 'white' # Cell is dead else: color = 'black' # Update the rectangle color self.canvas.itemconfig(self.rect_id, fill=color) def get_xy(self): """ Return x and y in a tuple """ return self.grid_x, self.grid_y def __str__(self): return '{} : {} --> {}'.format((self.grid_x, self.grid_y), self.is_alive, self.next_gen) class Game: """ This class contains the game logic """ def __init__(self): # Game default values width = 600 height = 600 cell_size = 20 # Instantiation of the main windows self.root = tk.Tk() self.root.title("My game of life ! \0/") # Instantiation of the frame on which the canvas will be added # pack() organizes widgets in blocks before placing them in the parent widget # Without it, the main windows will remain at default size # https://www.tutorialspoint.com/python/tk_pack.htm self.frame = tk.Frame(self.root, width=width, height=height) self.frame.pack() # Instantiation of the Canvas # The Canvas widget provides structured graphics facilities for Tkinter self.canvas = tk.Canvas(self.frame, width=width, height=height) self.canvas.pack() # Place buttons and link functions to them start_button = tk.Button(self.root, text="Start game", command=self.start) start_button.pack(side=tk.LEFT) stop_button = tk.Button(self.root, text="Stop it", command=self.stop) stop_button.pack(side=tk.RIGHT) # restart_button = tk.Button(self.root, text="Restart", command=self.game_loop) # restart_button.pack(side=tk.BOTTOM) # For debug purpose only # debug_button = tk.Button(self.root, text="Next loop", command=self.game_loop) # debug_button.pack(side = tk.BOTTOM) # self.idx = 0 # Create the grid and generate the visible rectangles self.grid = Grid(self.canvas, width, height, cell_size) self.grid.generate_grid() # link the left click action to the swap status function self.canvas.bind("<Button-1>", self.grid.swap_status) # Launch the main loop self.root.mainloop() def start(self): """ Start the game """ # I don't want a petit rigolo to change the status of cells self.canvas.unbind("<Button-1>") self.game_loop() def game_loop(self): """ Contains the main loop of the game """ print('\n---------new_loop---------') delta('New_loop') self.grid.compute_next_grid() delta('After grid.compute_next_grid()') self.grid.draw_next_gen() delta('After grid.draw_next_gen') self.root.after(200, self.game_loop) delta('After root.after') # Debug only # self.idx += 1 # if self.idx == 100: # self.root.destroy() def stop(self): self.root.destroy() if __name__ == '__main__': game = Game()
[ "maxadau@gmail.com" ]
maxadau@gmail.com
22574b86c78c4efca091cdc1afb98c19ab3875b9
13601ffa0540d448b009ea4ca0f14bf93e78f113
/macro/myans/lab4_machine_learning_student.py
9f7ba335e17a0ee4feb2a231429479145ded91cc
[]
no_license
jwl2006/edx_spark
63caddc4ceff303b127132ade86e8253bc07c061
77e5c6b1b491eb17572cdb37aa18f6da01b83092
refs/heads/master
2021-05-02T00:52:16.682959
2017-01-09T18:09:45
2017-01-09T18:09:45
78,454,095
0
0
null
null
null
null
UTF-8
Python
false
false
49,207
py
# coding: utf-8 # version 1.0.2 # #![Spark Logo](http://spark-mooc.github.io/web-assets/images/ta_Spark-logo-small.png) + ![Python Logo](http://spark-mooc.github.io/web-assets/images/python-logo-master-v3-TM-flattened_small.png) # # **Introduction to Machine Learning with Apache Spark** # ## **Predicting Movie Ratings** # #### One of the most common uses of big data is to predict what users want. This allows Google to show you relevant ads, Amazon to recommend relevant products, and Netflix to recommend movies that you might like. This lab will demonstrate how we can use Apache Spark to recommend movies to a user. We will start with some basic techniques, and then use the [Spark MLlib][mllib] library's Alternating Least Squares method to make more sophisticated predictions. # #### For this lab, we will use a subset dataset of 500,000 ratings we have included for you into your VM (and on Databricks) from the [movielens 10M stable benchmark rating dataset](http://grouplens.org/datasets/movielens/). However, the same code you write will work for the full dataset, or their latest dataset of 21 million ratings. # #### In this lab: # #### *Part 0*: Preliminaries # #### *Part 1*: Basic Recommendations # #### *Part 2*: Collaborative Filtering # #### *Part 3*: Predictions for Yourself # #### As mentioned during the first Learning Spark lab, think carefully before calling `collect()` on any datasets. When you are using a small dataset, calling `collect()` and then using Python to get a sense for the data locally (in the driver program) will work fine, but this will not work when you are using a large dataset that doesn't fit in memory on one machine. Solutions that call `collect()` and do local analysis that could have been done with Spark will likely fail in the autograder and not receive full credit. # [mllib]: https://spark.apache.org/mllib/ # ### Code # #### This assignment can be completed using basic Python and pySpark Transformations and Actions. Libraries other than math are not necessary. With the exception of the ML functions that we introduce in this assignment, you should be able to complete all parts of this homework using only the Spark functions you have used in prior lab exercises (although you are welcome to use more features of Spark if you like!). # In[1]: import sys import os from test_helper import Test baseDir = os.path.join('data') inputPath = os.path.join('cs100', 'lab4', 'small') ratingsFilename = os.path.join(baseDir, inputPath, 'ratings.dat.gz') moviesFilename = os.path.join(baseDir, inputPath, 'movies.dat') # ### **Part 0: Preliminaries** # #### We read in each of the files and create an RDD consisting of parsed lines. # #### Each line in the ratings dataset (`ratings.dat.gz`) is formatted as: # #### `UserID::MovieID::Rating::Timestamp` # #### Each line in the movies (`movies.dat`) dataset is formatted as: # #### `MovieID::Title::Genres` # #### The `Genres` field has the format # #### `Genres1|Genres2|Genres3|...` # #### The format of these files is uniform and simple, so we can use Python [`split()`](https://docs.python.org/2/library/stdtypes.html#str.split) to parse their lines. # #### Parsing the two files yields two RDDS # * #### For each line in the ratings dataset, we create a tuple of (UserID, MovieID, Rating). We drop the timestamp because we do not need it for this exercise. # * #### For each line in the movies dataset, we create a tuple of (MovieID, Title). We drop the Genres because we do not need them for this exercise. # In[2]: numPartitions = 2 rawRatings = sc.textFile(ratingsFilename).repartition(numPartitions) rawMovies = sc.textFile(moviesFilename) def get_ratings_tuple(entry): """ Parse a line in the ratings dataset Args: entry (str): a line in the ratings dataset in the form of UserID::MovieID::Rating::Timestamp Returns: tuple: (UserID, MovieID, Rating) """ items = entry.split('::') return int(items[0]), int(items[1]), float(items[2]) def get_movie_tuple(entry): """ Parse a line in the movies dataset Args: entry (str): a line in the movies dataset in the form of MovieID::Title::Genres Returns: tuple: (MovieID, Title) """ items = entry.split('::') return int(items[0]), items[1] ratingsRDD = rawRatings.map(get_ratings_tuple).cache() moviesRDD = rawMovies.map(get_movie_tuple).cache() ratingsCount = ratingsRDD.count() moviesCount = moviesRDD.count() print 'There are %s ratings and %s movies in the datasets' % (ratingsCount, moviesCount) print 'Ratings: %s' % ratingsRDD.take(3) print 'Movies: %s' % moviesRDD.take(3) assert ratingsCount == 487650 assert moviesCount == 3883 assert moviesRDD.filter(lambda (id, title): title == 'Toy Story (1995)').count() == 1 assert (ratingsRDD.takeOrdered(1, key=lambda (user, movie, rating): movie) == [(1, 1, 5.0)]) # #### In this lab we will be examining subsets of the tuples we create (e.g., the top rated movies by users). Whenever we examine only a subset of a large dataset, there is the potential that the result will depend on the order we perform operations, such as joins, or how the data is partitioned across the workers. What we want to guarantee is that we always see the same results for a subset, independent of how we manipulate or store the data. # #### We can do that by sorting before we examine a subset. You might think that the most obvious choice when dealing with an RDD of tuples would be to use the [`sortByKey()` method][sortbykey]. However this choice is problematic, as we can still end up with different results if the key is not unique. # #### Note: It is important to use the [`unicode` type](https://docs.python.org/2/howto/unicode.html#the-unicode-type) instead of the `string` type as the titles are in unicode characters. # #### Consider the following example, and note that while the sets are equal, the printed lists are usually in different order by value, *although they may randomly match up from time to time.* # #### You can try running this multiple times. If the last assertion fails, don't worry about it: that was just the luck of the draw. And note that in some environments the results may be more deterministic. # [sortbykey]: https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.sortByKey # In[3]: tmp1 = [(1, u'alpha'), (2, u'alpha'), (2, u'beta'), (3, u'alpha'), (1, u'epsilon'), (1, u'delta')] tmp2 = [(1, u'delta'), (2, u'alpha'), (2, u'beta'), (3, u'alpha'), (1, u'epsilon'), (1, u'alpha')] oneRDD = sc.parallelize(tmp1) twoRDD = sc.parallelize(tmp2) oneSorted = oneRDD.sortByKey(True).collect() twoSorted = twoRDD.sortByKey(True).collect() print oneSorted print twoSorted assert set(oneSorted) == set(twoSorted) # Note that both lists have the same elements assert twoSorted[0][0] < twoSorted.pop()[0] # Check that it is sorted by the keys assert oneSorted[0:2] != twoSorted[0:2] # Note that the subset consisting of the first two elements does not match # #### Even though the two lists contain identical tuples, the difference in ordering *sometimes* yields a different ordering for the sorted RDD (try running the cell repeatedly and see if the results change or the assertion fails). If we only examined the first two elements of the RDD (e.g., using `take(2)`), then we would observe different answers - **that is a really bad outcome as we want identical input data to always yield identical output**. A better technique is to sort the RDD by *both the key and value*, which we can do by combining the key and value into a single string and then sorting on that string. Since the key is an integer and the value is a unicode string, we can use a function to combine them into a single unicode string (e.g., `unicode('%.3f' % key) + ' ' + value`) before sorting the RDD using [sortBy()][sortby]. # [sortby]: https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.sortBy # In[7]: def sortFunction(tuple): """ Construct the sort string (does not perform actual sorting) Args: tuple: (rating, MovieName) Returns: sortString: the value to sort with, 'rating MovieName' """ key = unicode('%.3f' % tuple[0]) value = tuple[1] return (key + ' ' + value) print oneRDD.sortBy(sortFunction, True).collect() print twoRDD.sortBy(sortFunction, True).collect() # #### If we just want to look at the first few elements of the RDD in sorted order, we can use the [takeOrdered][takeordered] method with the `sortFunction` we defined. # [takeordered]: https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.takeOrdered # In[8]: oneSorted1 = oneRDD.takeOrdered(oneRDD.count(),key=sortFunction) twoSorted1 = twoRDD.takeOrdered(twoRDD.count(),key=sortFunction) print 'one is %s' % oneSorted1 print 'two is %s' % twoSorted1 assert oneSorted1 == twoSorted1 # ### **Part 1: Basic Recommendations** # #### One way to recommend movies is to always recommend the movies with the highest average rating. In this part, we will use Spark to find the name, number of ratings, and the average rating of the 20 movies with the highest average rating and more than 500 reviews. We want to filter our movies with high ratings but fewer than or equal to 500 reviews because movies with few reviews may not have broad appeal to everyone. # #### **(1a) Number of Ratings and Average Ratings for a Movie** # #### Using only Python, implement a helper function `getCountsAndAverages()` that takes a single tuple of (MovieID, (Rating1, Rating2, Rating3, ...)) and returns a tuple of (MovieID, (number of ratings, averageRating)). For example, given the tuple `(100, (10.0, 20.0, 30.0))`, your function should return `(100, (3, 20.0))` # In[13]: # TODO: Replace <FILL IN> with appropriate code # First, implement a helper function `getCountsAndAverages` using only Python def getCountsAndAverages(IDandRatingsTuple): """ Calculate average rating Args: IDandRatingsTuple: a single tuple of (MovieID, (Rating1, Rating2, Rating3, ...)) Returns: tuple: a tuple of (MovieID, (number of ratings, averageRating)) """ id = IDandRatingsTuple[0] ratings = IDandRatingsTuple[1] num = len(ratings) avg = float(sum(ratings))/len(ratings) return (id, (num, avg)) # In[14]: # TEST Number of Ratings and Average Ratings for a Movie (1a) Test.assertEquals(getCountsAndAverages((1, (1, 2, 3, 4))), (1, (4, 2.5)), 'incorrect getCountsAndAverages() with integer list') Test.assertEquals(getCountsAndAverages((100, (10.0, 20.0, 30.0))), (100, (3, 20.0)), 'incorrect getCountsAndAverages() with float list') Test.assertEquals(getCountsAndAverages((110, xrange(20))), (110, (20, 9.5)), 'incorrect getCountsAndAverages() with xrange') # #### **(1b) Movies with Highest Average Ratings** # #### Now that we have a way to calculate the average ratings, we will use the `getCountsAndAverages()` helper function with Spark to determine movies with highest average ratings. # #### The steps you should perform are: # * #### Recall that the `ratingsRDD` contains tuples of the form (UserID, MovieID, Rating). From `ratingsRDD` create an RDD with tuples of the form (MovieID, Python iterable of Ratings for that MovieID). This transformation will yield an RDD of the form: `[(1, <pyspark.resultiterable.ResultIterable object at 0x7f16d50e7c90>), (2, <pyspark.resultiterable.ResultIterable object at 0x7f16d50e79d0>), (3, <pyspark.resultiterable.ResultIterable object at 0x7f16d50e7610>)]`. Note that you will only need to perform two Spark transformations to do this step. # * #### Using `movieIDsWithRatingsRDD` and your `getCountsAndAverages()` helper function, compute the number of ratings and average rating for each movie to yield tuples of the form (MovieID, (number of ratings, average rating)). This transformation will yield an RDD of the form: `[(1, (993, 4.145015105740181)), (2, (332, 3.174698795180723)), (3, (299, 3.0468227424749164))]`. You can do this step with one Spark transformation # * #### We want to see movie names, instead of movie IDs. To `moviesRDD`, apply RDD transformations that use `movieIDsWithAvgRatingsRDD` to get the movie names for `movieIDsWithAvgRatingsRDD`, yielding tuples of the form (average rating, movie name, number of ratings). This set of transformations will yield an RDD of the form: `[(1.0, u'Autopsy (Macchie Solari) (1975)', 1), (1.0, u'Better Living (1998)', 1), (1.0, u'Big Squeeze, The (1996)', 3)]`. You will need to do two Spark transformations to complete this step: first use the `moviesRDD` with `movieIDsWithAvgRatingsRDD` to create a new RDD with Movie names matched to Movie IDs, then convert that RDD into the form of (average rating, movie name, number of ratings). These transformations will yield an RDD that looks like: `[(3.6818181818181817, u'Happiest Millionaire, The (1967)', 22), (3.0468227424749164, u'Grumpier Old Men (1995)', 299), (2.882978723404255, u'Hocus Pocus (1993)', 94)]` # In[16]: # TODO: Replace <FILL IN> with appropriate code # From ratingsRDD with tuples of (UserID, MovieID, Rating) create an RDD with tuples of # the (MovieID, iterable of Ratings for that MovieID) movieIDsWithRatingsRDD = (ratingsRDD .map(lambda x:(x[1], x[2])).groupByKey()) print 'movieIDsWithRatingsRDD: %s\n' % movieIDsWithRatingsRDD.take(3) # Using `movieIDsWithRatingsRDD`, compute the number of ratings and average rating for each movie to # yield tuples of the form (MovieID, (number of ratings, average rating)) movieIDsWithAvgRatingsRDD = movieIDsWithRatingsRDD.map(getCountsAndAverages) print 'movieIDsWithAvgRatingsRDD: %s\n' % movieIDsWithAvgRatingsRDD.take(3) # To `movieIDsWithAvgRatingsRDD`, apply RDD transformations that use `moviesRDD` to get the movie # names for `movieIDsWithAvgRatingsRDD`, yielding tuples of the form # (average rating, movie name, number of ratings) movieNameWithAvgRatingsRDD = (moviesRDD .join(movieIDsWithAvgRatingsRDD).map(lambda x: (x[1][1][1], x[1][0], x[1][1][0]))) print 'movieNameWithAvgRatingsRDD: %s\n' % movieNameWithAvgRatingsRDD.take(3) # In[17]: # TEST Movies with Highest Average Ratings (1b) Test.assertEquals(movieIDsWithRatingsRDD.count(), 3615, 'incorrect movieIDsWithRatingsRDD.count() (expected 3615)') movieIDsWithRatingsTakeOrdered = movieIDsWithRatingsRDD.takeOrdered(3) Test.assertTrue(movieIDsWithRatingsTakeOrdered[0][0] == 1 and len(list(movieIDsWithRatingsTakeOrdered[0][1])) == 993, 'incorrect count of ratings for movieIDsWithRatingsTakeOrdered[0] (expected 993)') Test.assertTrue(movieIDsWithRatingsTakeOrdered[1][0] == 2 and len(list(movieIDsWithRatingsTakeOrdered[1][1])) == 332, 'incorrect count of ratings for movieIDsWithRatingsTakeOrdered[1] (expected 332)') Test.assertTrue(movieIDsWithRatingsTakeOrdered[2][0] == 3 and len(list(movieIDsWithRatingsTakeOrdered[2][1])) == 299, 'incorrect count of ratings for movieIDsWithRatingsTakeOrdered[2] (expected 299)') Test.assertEquals(movieIDsWithAvgRatingsRDD.count(), 3615, 'incorrect movieIDsWithAvgRatingsRDD.count() (expected 3615)') Test.assertEquals(movieIDsWithAvgRatingsRDD.takeOrdered(3), [(1, (993, 4.145015105740181)), (2, (332, 3.174698795180723)), (3, (299, 3.0468227424749164))], 'incorrect movieIDsWithAvgRatingsRDD.takeOrdered(3)') Test.assertEquals(movieNameWithAvgRatingsRDD.count(), 3615, 'incorrect movieNameWithAvgRatingsRDD.count() (expected 3615)') Test.assertEquals(movieNameWithAvgRatingsRDD.takeOrdered(3), [(1.0, u'Autopsy (Macchie Solari) (1975)', 1), (1.0, u'Better Living (1998)', 1), (1.0, u'Big Squeeze, The (1996)', 3)], 'incorrect movieNameWithAvgRatingsRDD.takeOrdered(3)') # #### **(1c) Movies with Highest Average Ratings and more than 500 reviews** # #### Now that we have an RDD of the movies with highest averge ratings, we can use Spark to determine the 20 movies with highest average ratings and more than 500 reviews. # #### Apply a single RDD transformation to `movieNameWithAvgRatingsRDD` to limit the results to movies with ratings from more than 500 people. We then use the `sortFunction()` helper function to sort by the average rating to get the movies in order of their rating (highest rating first). You will end up with an RDD of the form: `[(4.5349264705882355, u'Shawshank Redemption, The (1994)', 1088), (4.515798462852263, u"Schindler's List (1993)", 1171), (4.512893982808023, u'Godfather, The (1972)', 1047)]` # In[18]: # TODO: Replace <FILL IN> with appropriate code # Apply an RDD transformation to `movieNameWithAvgRatingsRDD` to limit the results to movies with # ratings from more than 500 people. We then use the `sortFunction()` helper function to sort by the # average rating to get the movies in order of their rating (highest rating first) movieLimitedAndSortedByRatingRDD = (movieNameWithAvgRatingsRDD .filter(lambda x: x[2] > 500) .sortBy(sortFunction, False)) print 'Movies with highest ratings: %s' % movieLimitedAndSortedByRatingRDD.take(20) # In[19]: # TEST Movies with Highest Average Ratings and more than 500 Reviews (1c) Test.assertEquals(movieLimitedAndSortedByRatingRDD.count(), 194, 'incorrect movieLimitedAndSortedByRatingRDD.count()') Test.assertEquals(movieLimitedAndSortedByRatingRDD.take(20), [(4.5349264705882355, u'Shawshank Redemption, The (1994)', 1088), (4.515798462852263, u"Schindler's List (1993)", 1171), (4.512893982808023, u'Godfather, The (1972)', 1047), (4.510460251046025, u'Raiders of the Lost Ark (1981)', 1195), (4.505415162454874, u'Usual Suspects, The (1995)', 831), (4.457256461232604, u'Rear Window (1954)', 503), (4.45468509984639, u'Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)', 651), (4.43953006219765, u'Star Wars: Episode IV - A New Hope (1977)', 1447), (4.4, u'Sixth Sense, The (1999)', 1110), (4.394285714285714, u'North by Northwest (1959)', 700), (4.379506641366224, u'Citizen Kane (1941)', 527), (4.375, u'Casablanca (1942)', 776), (4.363975155279503, u'Godfather: Part II, The (1974)', 805), (4.358816276202219, u"One Flew Over the Cuckoo's Nest (1975)", 811), (4.358173076923077, u'Silence of the Lambs, The (1991)', 1248), (4.335826477187734, u'Saving Private Ryan (1998)', 1337), (4.326241134751773, u'Chinatown (1974)', 564), (4.325383304940375, u'Life Is Beautiful (La Vita \ufffd bella) (1997)', 587), (4.324110671936759, u'Monty Python and the Holy Grail (1974)', 759), (4.3096, u'Matrix, The (1999)', 1250)], 'incorrect sortedByRatingRDD.take(20)') # #### Using a threshold on the number of reviews is one way to improve the recommendations, but there are many other good ways to improve quality. For example, you could weight ratings by the number of ratings. # ## **Part 2: Collaborative Filtering** # #### In this course, you have learned about many of the basic transformations and actions that Spark allows us to apply to distributed datasets. Spark also exposes some higher level functionality; in particular, Machine Learning using a component of Spark called [MLlib][mllib]. In this part, you will learn how to use MLlib to make personalized movie recommendations using the movie data we have been analyzing. # #### We are going to use a technique called [collaborative filtering][collab]. Collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating). The underlying assumption of the collaborative filtering approach is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue x than to have the opinion on x of a person chosen randomly. You can read more about collaborative filtering [here][collab2]. # #### The image below (from [Wikipedia][collab]) shows an example of predicting of the user's rating using collaborative filtering. At first, people rate different items (like videos, images, games). After that, the system is making predictions about a user's rating for an item, which the user has not rated yet. These predictions are built upon the existing ratings of other users, who have similar ratings with the active user. For instance, in the image below the system has made a prediction, that the active user will not like the video. # ![collaborative filtering](https://courses.edx.org/c4x/BerkeleyX/CS100.1x/asset/Collaborative_filtering.gif) # [mllib]: https://spark.apache.org/mllib/ # [collab]: https://en.wikipedia.org/?title=Collaborative_filtering # [collab2]: http://recommender-systems.org/collaborative-filtering/ # #### For movie recommendations, we start with a matrix whose entries are movie ratings by users (shown in red in the diagram below). Each column represents a user (shown in green) and each row represents a particular movie (shown in blue). # #### Since not all users have rated all movies, we do not know all of the entries in this matrix, which is precisely why we need collaborative filtering. For each user, we have ratings for only a subset of the movies. With collaborative filtering, the idea is to approximate the ratings matrix by factorizing it as the product of two matrices: one that describes properties of each user (shown in green), and one that describes properties of each movie (shown in blue). # ![factorization](http://spark-mooc.github.io/web-assets/images/matrix_factorization.png) # #### We want to select these two matrices such that the error for the users/movie pairs where we know the correct ratings is minimized. The [Alternating Least Squares][als] algorithm does this by first randomly filling the users matrix with values and then optimizing the value of the movies such that the error is minimized. Then, it holds the movies matrix constrant and optimizes the value of the user's matrix. This alternation between which matrix to optimize is the reason for the "alternating" in the name. # #### This optimization is what's being shown on the right in the image above. Given a fixed set of user factors (i.e., values in the users matrix), we use the known ratings to find the best values for the movie factors using the optimization written at the bottom of the figure. Then we "alternate" and pick the best user factors given fixed movie factors. # #### For a simple example of what the users and movies matrices might look like, check out the [videos from Lecture 8][videos] or the [slides from Lecture 8][slides] # [videos]: https://courses.edx.org/courses/BerkeleyX/CS100.1x/1T2015/courseware/00eb8b17939b4889a41a6d8d2f35db83/3bd3bba368be4102b40780550d3d8da6/ # [slides]: https://courses.edx.org/c4x/BerkeleyX/CS100.1x/asset/Week4Lec8.pdf # [als]: https://en.wikiversity.org/wiki/Least-Squares_Method # #### **(2a) Creating a Training Set** # #### Before we jump into using machine learning, we need to break up the `ratingsRDD` dataset into three pieces: # * #### A training set (RDD), which we will use to train models # * #### A validation set (RDD), which we will use to choose the best model # * #### A test set (RDD), which we will use for our experiments # #### To randomly split the dataset into the multiple groups, we can use the pySpark [randomSplit()](https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.randomSplit) transformation. `randomSplit()` takes a set of splits and and seed and returns multiple RDDs. # In[20]: trainingRDD, validationRDD, testRDD = ratingsRDD.randomSplit([6, 2, 2], seed=0L) print 'Training: %s, validation: %s, test: %s\n' % (trainingRDD.count(), validationRDD.count(), testRDD.count()) print trainingRDD.take(3) print validationRDD.take(3) print testRDD.take(3) assert trainingRDD.count() == 292716 assert validationRDD.count() == 96902 assert testRDD.count() == 98032 assert trainingRDD.filter(lambda t: t == (1, 914, 3.0)).count() == 1 assert trainingRDD.filter(lambda t: t == (1, 2355, 5.0)).count() == 1 assert trainingRDD.filter(lambda t: t == (1, 595, 5.0)).count() == 1 assert validationRDD.filter(lambda t: t == (1, 1287, 5.0)).count() == 1 assert validationRDD.filter(lambda t: t == (1, 594, 4.0)).count() == 1 assert validationRDD.filter(lambda t: t == (1, 1270, 5.0)).count() == 1 assert testRDD.filter(lambda t: t == (1, 1193, 5.0)).count() == 1 assert testRDD.filter(lambda t: t == (1, 2398, 4.0)).count() == 1 assert testRDD.filter(lambda t: t == (1, 1035, 5.0)).count() == 1 # #### After splitting the dataset, your training set has about 293,000 entries and the validation and test sets each have about 97,000 entries (the exact number of entries in each dataset varies slightly due to the random nature of the `randomSplit()` transformation. # #### **(2b) Root Mean Square Error (RMSE)** # #### In the next part, you will generate a few different models, and will need a way to decide which model is best. We will use the [Root Mean Square Error](https://en.wikipedia.org/wiki/Root-mean-square_deviation) (RMSE) or Root Mean Square Deviation (RMSD) to compute the error of each model. RMSE is a frequently used measure of the differences between values (sample and population values) predicted by a model or an estimator and the values actually observed. The RMSD represents the sample standard deviation of the differences between predicted values and observed values. These individual differences are called residuals when the calculations are performed over the data sample that was used for estimation, and are called prediction errors when computed out-of-sample. The RMSE serves to aggregate the magnitudes of the errors in predictions for various times into a single measure of predictive power. RMSE is a good measure of accuracy, but only to compare forecasting errors of different models for a particular variable and not between variables, as it is scale-dependent. # #### The RMSE is the square root of the average value of the square of `(actual rating - predicted rating)` for all users and movies for which we have the actual rating. Versions of Spark MLlib beginning with Spark 1.4 include a [RegressionMetrics](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RegressionMetrics) modiule that can be used to compute the RMSE. However, since we are using Spark 1.3.1, we will write our own function. # #### Write a function to compute the sum of squared error given `predictedRDD` and `actualRDD` RDDs. Both RDDs consist of tuples of the form (UserID, MovieID, Rating) # #### Given two ratings RDDs, *x* and *y* of size *n*, we define RSME as follows: $ RMSE = \sqrt{\frac{\sum_{i = 1}^{n} (x_i - y_i)^2}{n}}$ # #### To calculate RSME, the steps you should perform are: # * #### Transform `predictedRDD` into the tuples of the form ((UserID, MovieID), Rating). For example, tuples like `[((1, 1), 5), ((1, 2), 3), ((1, 3), 4), ((2, 1), 3), ((2, 2), 2), ((2, 3), 4)]`. You can perform this step with a single Spark transformation. # * #### Transform `actualRDD` into the tuples of the form ((UserID, MovieID), Rating). For example, tuples like `[((1, 2), 3), ((1, 3), 5), ((2, 1), 5), ((2, 2), 1)]`. You can perform this step with a single Spark transformation. # * #### Using only RDD transformations (you only need to perform two transformations), compute the squared error for each *matching* entry (i.e., the same (UserID, MovieID) in each RDD) in the reformatted RDDs - do *not* use `collect()` to perform this step. Note that not every (UserID, MovieID) pair will appear in both RDDs - if a pair does not appear in both RDDs, then it does not contribute to the RMSE. You will end up with an RDD with entries of the form $ (x_i - y_i)^2$ You might want to check out Python's [math](https://docs.python.org/2/library/math.html) module to see how to compute these values # * #### Using an RDD action (but **not** `collect()`), compute the total squared error: $ SE = \sum_{i = 1}^{n} (x_i - y_i)^2 $ # * #### Compute *n* by using an RDD action (but **not** `collect()`), to count the number of pairs for which you computed the total squared error # * #### Using the total squared error and the number of pairs, compute the RSME. Make sure you compute this value as a [float](https://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex). # #### Note: Your solution must only use transformations and actions on RDDs. Do _not_ call `collect()` on either RDD. # In[22]: # TODO: Replace <FILL IN> with appropriate code import math def computeError(predictedRDD, actualRDD): """ Compute the root mean squared error between predicted and actual Args: predictedRDD: predicted ratings for each movie and each user where each entry is in the form (UserID, MovieID, Rating) actualRDD: actual ratings where each entry is in the form (UserID, MovieID, Rating) Returns: RSME (float): computed RSME value """ # Transform predictedRDD into the tuples of the form ((UserID, MovieID), Rating) predictedReformattedRDD = predictedRDD.map(lambda x: ((x[0],x[1]), x[2])) # Transform actualRDD into the tuples of the form ((UserID, MovieID), Rating) actualReformattedRDD = actualRDD.map(lambda x: ((x[0], x[1]), x[2])) # Compute the squared error for each matching entry (i.e., the same (User ID, Movie ID) in each # RDD) in the reformatted RDDs using RDD transformtions - do not use collect() squaredErrorsRDD = (predictedReformattedRDD .join(actualReformattedRDD).map(lambda x:(x, (x[1][0]-x[1][1])**2))) # Compute the total squared error - do not use collect() totalError = squaredErrorsRDD.values().sum() # Count the number of entries for which you computed the total squared error numRatings = squaredErrorsRDD.count() # Using the total squared error and the number of entries, compute the RSME return math.sqrt(float(totalError)/numRatings) # sc.parallelize turns a Python list into a Spark RDD. testPredicted = sc.parallelize([ (1, 1, 5), (1, 2, 3), (1, 3, 4), (2, 1, 3), (2, 2, 2), (2, 3, 4)]) testActual = sc.parallelize([ (1, 2, 3), (1, 3, 5), (2, 1, 5), (2, 2, 1)]) testPredicted2 = sc.parallelize([ (2, 2, 5), (1, 2, 5)]) testError = computeError(testPredicted, testActual) print 'Error for test dataset (should be 1.22474487139): %s' % testError testError2 = computeError(testPredicted2, testActual) print 'Error for test dataset2 (should be 3.16227766017): %s' % testError2 testError3 = computeError(testActual, testActual) print 'Error for testActual dataset (should be 0.0): %s' % testError3 # In[23]: # TEST Root Mean Square Error (2b) Test.assertTrue(abs(testError - 1.22474487139) < 0.00000001, 'incorrect testError (expected 1.22474487139)') Test.assertTrue(abs(testError2 - 3.16227766017) < 0.00000001, 'incorrect testError2 result (expected 3.16227766017)') Test.assertTrue(abs(testError3 - 0.0) < 0.00000001, 'incorrect testActual result (expected 0.0)') # #### **(2c) Using ALS.train()** # #### In this part, we will use the MLlib implementation of Alternating Least Squares, [ALS.train()](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.recommendation.ALS). ALS takes a training dataset (RDD) and several parameters that control the model creation process. To determine the best values for the parameters, we will use ALS to train several models, and then we will select the best model and use the parameters from that model in the rest of this lab exercise. # #### The process we will use for determining the best model is as follows: # * #### Pick a set of model parameters. The most important parameter to `ALS.train()` is the *rank*, which is the number of rows in the Users matrix (green in the diagram above) or the number of columns in the Movies matrix (blue in the diagram above). (In general, a lower rank will mean higher error on the training dataset, but a high rank may lead to [overfitting](https://en.wikipedia.org/wiki/Overfitting).) We will train models with ranks of 4, 8, and 12 using the `trainingRDD` dataset. # * #### Create a model using `ALS.train(trainingRDD, rank, seed=seed, iterations=iterations, lambda_=regularizationParameter)` with three parameters: an RDD consisting of tuples of the form (UserID, MovieID, rating) used to train the model, an integer rank (4, 8, or 12), a number of iterations to execute (we will use 5 for the `iterations` parameter), and a regularization coefficient (we will use 0.1 for the `regularizationParameter`). # * #### For the prediction step, create an input RDD, `validationForPredictRDD`, consisting of (UserID, MovieID) pairs that you extract from `validationRDD`. You will end up with an RDD of the form: `[(1, 1287), (1, 594), (1, 1270)]` # * #### Using the model and `validationForPredictRDD`, we can predict rating values by calling [model.predictAll()](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.recommendation.MatrixFactorizationModel.predictAll) with the `validationForPredictRDD` dataset, where `model` is the model we generated with ALS.train(). `predictAll` accepts an RDD with each entry in the format (userID, movieID) and outputs an RDD with each entry in the format (userID, movieID, rating). # * #### Evaluate the quality of the model by using the `computeError()` function you wrote in part (2b) to compute the error between the predicted ratings and the actual ratings in `validationRDD`. # #### Which rank produces the best model, based on the RMSE with the `validationRDD` dataset? # #### Note: It is likely that this operation will take a noticeable amount of time (around a minute in our VM); you can observe its progress on the [Spark Web UI](http://localhost:4040). Probably most of the time will be spent running your `computeError()` function, since, unlike the Spark ALS implementation (and the Spark 1.4 [RegressionMetrics](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RegressionMetrics) module), this does not use a fast linear algebra library and needs to run some Python code for all 100k entries. # In[24]: # TODO: Replace <FILL IN> with appropriate code from pyspark.mllib.recommendation import ALS validationForPredictRDD = validationRDD.map(lambda x: (x[0], x[1])) seed = 5L iterations = 5 regularizationParameter = 0.1 ranks = [4, 8, 12] errors = [0, 0, 0] err = 0 tolerance = 0.03 minError = float('inf') bestRank = -1 bestIteration = -1 for rank in ranks: model = ALS.train(trainingRDD, rank, seed=seed, iterations=iterations, lambda_=regularizationParameter) predictedRatingsRDD = model.predictAll(validationForPredictRDD) error = computeError(predictedRatingsRDD, validationRDD) errors[err] = error err += 1 print 'For rank %s the RMSE is %s' % (rank, error) if error < minError: minError = error bestRank = rank print 'The best model was trained with rank %s' % bestRank # In[25]: # TEST Using ALS.train (2c) Test.assertEquals(trainingRDD.getNumPartitions(), 2, 'incorrect number of partitions for trainingRDD (expected 2)') Test.assertEquals(validationForPredictRDD.count(), 96902, 'incorrect size for validationForPredictRDD (expected 96902)') Test.assertEquals(validationForPredictRDD.filter(lambda t: t == (1, 1907)).count(), 1, 'incorrect content for validationForPredictRDD') Test.assertTrue(abs(errors[0] - 0.883710109497) < tolerance, 'incorrect errors[0]') Test.assertTrue(abs(errors[1] - 0.878486305621) < tolerance, 'incorrect errors[1]') Test.assertTrue(abs(errors[2] - 0.876832795659) < tolerance, 'incorrect errors[2]') # #### **(2d) Testing Your Model** # #### So far, we used the `trainingRDD` and `validationRDD` datasets to select the best model. Since we used these two datasets to determine what model is best, we cannot use them to test how good the model is - otherwise we would be very vulnerable to [overfitting](https://en.wikipedia.org/wiki/Overfitting). To decide how good our model is, we need to use the `testRDD` dataset. We will use the `bestRank` you determined in part (2c) to create a model for predicting the ratings for the test dataset and then we will compute the RMSE. # #### The steps you should perform are: # * #### Train a model, using the `trainingRDD`, `bestRank` from part (2c), and the parameters you used in in part (2c): `seed=seed`, `iterations=iterations`, and `lambda_=regularizationParameter` - make sure you include **all** of the parameters. # * #### For the prediction step, create an input RDD, `testForPredictingRDD`, consisting of (UserID, MovieID) pairs that you extract from `testRDD`. You will end up with an RDD of the form: `[(1, 1287), (1, 594), (1, 1270)]` # * #### Use [myModel.predictAll()](https://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.recommendation.MatrixFactorizationModel.predictAll) to predict rating values for the test dataset. # * #### For validation, use the `testRDD`and your `computeError` function to compute the RMSE between `testRDD` and the `predictedTestRDD` from the model. # * #### Evaluate the quality of the model by using the `computeError()` function you wrote in part (2b) to compute the error between the predicted ratings and the actual ratings in `testRDD`. # In[27]: # TODO: Replace <FILL IN> with appropriate code myModel = ALS.train(trainingRDD, 8, seed=seed, iterations=iterations, lambda_=regularizationParameter) testForPredictingRDD = testRDD.map(lambda x: (x[0], x[1])) predictedTestRDD = myModel.predictAll(testForPredictingRDD) testRMSE = computeError(testRDD, predictedTestRDD) print 'The model had a RMSE on the test set of %s' % testRMSE # In[28]: # TEST Testing Your Model (2d) Test.assertTrue(abs(testRMSE - 0.87809838344) < tolerance, 'incorrect testRMSE') # #### **(2e) Comparing Your Model** # #### Looking at the RMSE for the results predicted by the model versus the values in the test set is one way to evalute the quality of our model. Another way to evaluate the model is to evaluate the error from a test set where every rating is the average rating for the training set. # #### The steps you should perform are: # * #### Use the `trainingRDD` to compute the average rating across all movies in that training dataset. # * #### Use the average rating that you just determined and the `testRDD` to create an RDD with entries of the form (userID, movieID, average rating). # * #### Use your `computeError` function to compute the RMSE between the `testRDD` validation RDD that you just created and the `testForAvgRDD`. # In[29]: # TODO: Replace <FILL IN> with appropriate code trainingAvgRating = float(trainingRDD.map(lambda x: x[2]).sum())/trainingRDD.count() print 'The average rating for movies in the training set is %s' % trainingAvgRating testForAvgRDD = testRDD.map(lambda x: (x[0], x[1], trainingAvgRating)) testAvgRMSE = computeError(testRDD, testForAvgRDD) print 'The RMSE on the average set is %s' % testAvgRMSE # In[30]: # TEST Comparing Your Model (2e) Test.assertTrue(abs(trainingAvgRating - 3.57409571052) < 0.000001, 'incorrect trainingAvgRating (expected 3.57409571052)') Test.assertTrue(abs(testAvgRMSE - 1.12036693569) < 0.000001, 'incorrect testAvgRMSE (expected 1.12036693569)') # #### You now have code to predict how users will rate movies! # ## **Part 3: Predictions for Yourself** # #### The ultimate goal of this lab exercise is to predict what movies to recommend to yourself. In order to do that, you will first need to add ratings for yourself to the `ratingsRDD` dataset. # #### **(3a) Your Movie Ratings** # #### To help you provide ratings for yourself, we have included the following code to list the names and movie IDs of the 50 highest-rated movies from `movieLimitedAndSortedByRatingRDD` which we created in part 1 the lab. # In[31]: print 'Most rated movies:' print '(average rating, movie name, number of reviews)' for ratingsTuple in movieLimitedAndSortedByRatingRDD.take(50): print ratingsTuple # #### The user ID 0 is unassigned, so we will use it for your ratings. We set the variable `myUserID` to 0 for you. Next, create a new RDD `myRatingsRDD` with your ratings for at least 10 movie ratings. Each entry should be formatted as `(myUserID, movieID, rating)` (i.e., each entry should be formatted in the same way as `trainingRDD`). As in the original dataset, ratings should be between 1 and 5 (inclusive). If you have not seen at least 10 of these movies, you can increase the parameter passed to `take()` in the above cell until there are 10 movies that you have seen (or you can also guess what your rating would be for movies you have not seen). # In[32]: # TODO: Replace <FILL IN> with appropriate code myUserID = 0 # Note that the movie IDs are the *last* number on each line. A common error was to use the number of ratings as the movie ID. myRatedMovies = [ (myUserID, 2115, 4.5), # Indiana Jones and the Temple of Doom (myUserID, 480, 4), # Jurassic Park (myUserID, 1377, 3.8), # Batman Returns (myUserID, 648, 4), # Mission Impossible (myUserID, 2571, 4.8), # Matrix (myUserID, 1198, 5), # Raiders of the Lost Ark (myUserID, 1580, 3.6), # Men In Black (myUserID, 1219, 4.5), # Psycho (myUserID, 589, 3.2), # Terminator 2 (myUserID, 1097, 4) # ET # The format of each line is (myUserID, movie ID, your rating) # For example, to give the movie "Star Wars: Episode IV - A New Hope (1977)" a five rating, you would add the following line: # (myUserID, 260, 5), ] myRatingsRDD = sc.parallelize(myRatedMovies) print 'My movie ratings: %s' % myRatingsRDD.take(10) # #### **(3b) Add Your Movies to Training Dataset** # #### Now that you have ratings for yourself, you need to add your ratings to the `training` dataset so that the model you train will incorporate your preferences. Spark's [union()](http://spark.apache.org/docs/latest/api/python/pyspark.rdd.RDD-class.html#union) transformation combines two RDDs; use `union()` to create a new training dataset that includes your ratings and the data in the original training dataset. # In[33]: # TODO: Replace <FILL IN> with appropriate code trainingWithMyRatingsRDD = trainingRDD.union(myRatingsRDD) print ('The training dataset now has %s more entries than the original training dataset' % (trainingWithMyRatingsRDD.count() - trainingRDD.count())) assert (trainingWithMyRatingsRDD.count() - trainingRDD.count()) == myRatingsRDD.count() # #### **(3c) Train a Model with Your Ratings** # #### Now, train a model with your ratings added and the parameters you used in in part (2c): `bestRank`, `seed=seed`, `iterations=iterations`, and `lambda_=regularizationParameter` - make sure you include **all** of the parameters. # In[35]: # TODO: Replace <FILL IN> with appropriate code myRatingsModel = ALS.train(trainingWithMyRatingsRDD, bestRank, seed=seed, iterations=iterations, lambda_=regularizationParameter) # #### **(3d) Check RMSE for the New Model with Your Ratings** # #### Compute the RMSE for this new model on the test set. # * #### For the prediction step, we reuse `testForPredictingRDD`, consisting of (UserID, MovieID) pairs that you extracted from `testRDD`. The RDD has the form: `[(1, 1287), (1, 594), (1, 1270)]` # * #### Use `myRatingsModel.predictAll()` to predict rating values for the `testForPredictingRDD` test dataset, set this as `predictedTestMyRatingsRDD` # * #### For validation, use the `testRDD`and your `computeError` function to compute the RMSE between `testRDD` and the `predictedTestMyRatingsRDD` from the model. # In[36]: # TODO: Replace <FILL IN> with appropriate code predictedTestMyRatingsRDD = myRatingsModel.predictAll(testForPredictingRDD) testRMSEMyRatings = computeError(testRDD, predictedTestMyRatingsRDD) print 'The model had a RMSE on the test set of %s' % testRMSEMyRatings # #### **(3e) Predict Your Ratings** # #### So far, we have only used the `predictAll` method to compute the error of the model. Here, use the `predictAll` to predict what ratings you would give to the movies that you did not already provide ratings for. # #### The steps you should perform are: # * #### Use the Python list `myRatedMovies` to transform the `moviesRDD` into an RDD with entries that are pairs of the form (myUserID, Movie ID) and that does not contain any movies that you have rated. This transformation will yield an RDD of the form: `[(0, 1), (0, 2), (0, 3), (0, 4)]`. Note that you can do this step with one RDD transformation. # * #### For the prediction step, use the input RDD, `myUnratedMoviesRDD`, with myRatingsModel.predictAll() to predict your ratings for the movies. # In[ ]: # TODO: Replace <FILL IN> with appropriate code # Use the Python list myRatedMovies to transform the moviesRDD into an RDD with entries that are pairs of the form (myUserID, Movie ID) and that does not contain any movies that you have rated. myUnratedMoviesRDD = (moviesRDD .filter(lambda x: x[0] not in [x[1] for x in myRatedMovies]) .map(lambda x: (myUserID, x[0]))) # Use the input RDD, myUnratedMoviesRDD, with myRatingsModel.predictAll() to predict your ratings for the movies predictedRatingsRDD = myRatingsModel.predictAll(myUnratedMoviesRDD) # #### **(3f) Predict Your Ratings** # #### We have our predicted ratings. Now we can print out the 25 movies with the highest predicted ratings. # #### The steps you should perform are: # * #### From Parts (1b) and (1c), we know that we should look at movies with a reasonable number of reviews (e.g., more than 75 reviews). You can experiment with a lower threshold, but fewer ratings for a movie may yield higher prediction errors. Transform `movieIDsWithAvgRatingsRDD` from Part (1b), which has the form (MovieID, (number of ratings, average rating)), into an RDD of the form (MovieID, number of ratings): `[(2, 332), (4, 71), (6, 442)]` # * #### We want to see movie names, instead of movie IDs. Transform `predictedRatingsRDD` into an RDD with entries that are pairs of the form (Movie ID, Predicted Rating): `[(3456, -0.5501005376936687), (1080, 1.5885892024487962), (320, -3.7952255522487865)]` # * #### Use RDD transformations with `predictedRDD` and `movieCountsRDD` to yield an RDD with tuples of the form (Movie ID, (Predicted Rating, number of ratings)): `[(2050, (0.6694097486155939, 44)), (10, (5.29762541533513, 418)), (2060, (0.5055259373841172, 97))]` # * #### Use RDD transformations with `predictedWithCountsRDD` and `moviesRDD` to yield an RDD with tuples of the form (Predicted Rating, Movie Name, number of ratings), _for movies with more than 75 ratings._ For example: `[(7.983121900375243, u'Under Siege (1992)'), (7.9769201864261285, u'Fifth Element, The (1997)')]` # In[37]: # TODO: Replace <FILL IN> with appropriate code # Transform movieIDsWithAvgRatingsRDD from part (1b), which has the form (MovieID, (number of ratings, average rating)), into and RDD of the form (MovieID, number of ratings) movieCountsRDD = movieIDsWithAvgRatingsRDD.map(lambda x: (x[0], x[1][0])) # Transform predictedRatingsRDD into an RDD with entries that are pairs of the form (Movie ID, Predicted Rating) predictedRDD = predictedRatingsRDD.map(lambda x: (x[1], x[2])) # Use RDD transformations with predictedRDD and movieCountsRDD to yield an RDD with tuples of the form (Movie ID, (Predicted Rating, number of ratings)) predictedWithCountsRDD = (predictedRDD .join(movieCountsRDD)) # Use RDD transformations with PredictedWithCountsRDD and moviesRDD to yield an RDD with tuples of the form (Predicted Rating, Movie Name, number of ratings), for movies with more than 75 ratings ratingsWithNamesRDD = (predictedWithCountsRDD .filter(lambda x: x[1][1] > 75) .join(moviesRDD) .map(lambda x: (x[1][0][0], x[1][1], x[1][0][1]))) predictedHighestRatedMovies = ratingsWithNamesRDD.takeOrdered(20, key=lambda x: -x[0]) print ('My highest rated movies as predicted (for movies with more than 75 reviews):\n%s' % '\n'.join(map(str, predictedHighestRatedMovies))) # In[ ]:
[ "wanghao313@gmail.com" ]
wanghao313@gmail.com
fe67af41766db65e264adb0e06c55f078b4eb952
4d8b9f5533671b15e124bfa025d672297384b434
/tests/unit/common/test_ansible_common.py
1ef8eee5f8bb756e57092dc2f2318b9a25b932be
[ "Apache-2.0", "CC-BY-4.0" ]
permissive
Kryndex/yardstick
6c37c4f752589c523be761e3980f7ca2c8fac798
c191b305790b4528868725db82d1af6c0d95e22b
refs/heads/master
2021-05-13T14:12:54.917653
2018-01-08T18:21:47
2018-01-08T18:21:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,700
py
# Copyright (c) 2016-2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os import tempfile from collections import defaultdict import mock import unittest from six.moves.configparser import ConfigParser from six.moves import StringIO from yardstick.common import ansible_common PREFIX = 'yardstick.common.ansible_common' class OverwriteDictTestCase(unittest.TestCase): def test_overwrite_dict_cfg(self): c = ConfigParser(allow_no_value=True) d = { "section_a": "empty_value", "section_b": {"key_c": "Val_d", "key_d": "VAL_D"}, "section_c": ["key_c", "key_d"], } ansible_common.overwrite_dict_to_cfg(c, d) # Python3 and Python2 convert empty values into None or '' # we don't really care but we need to compare correctly for unittest self.assertTrue(c.has_option("section_a", "empty_value")) self.assertEqual(sorted(c.items("section_b")), [('key_c', 'Val_d'), ('key_d', 'VAL_D')]) self.assertTrue(c.has_option("section_c", "key_c")) self.assertTrue(c.has_option("section_c", "key_d")) class FilenameGeneratorTestCase(unittest.TestCase): @mock.patch('{}.NamedTemporaryFile'.format(PREFIX)) def test__handle_existing_file(self, mock_tmp): ansible_common.FileNameGenerator._handle_existing_file("/dev/null") def test_get_generator_from_file(self): ansible_common.FileNameGenerator.get_generator_from_filename("/dev/null", "", "", "") def test_get_generator_from_file_middle(self): ansible_common.FileNameGenerator.get_generator_from_filename("/dev/null", "", "", "null") def test_get_generator_from_file_prefix(self): ansible_common.FileNameGenerator.get_generator_from_filename("/dev/null", "", "null", "middle") class AnsibleNodeTestCase(unittest.TestCase): def test_ansible_node(self): ansible_common.AnsibleNode() def test_ansible_node_len(self): a = ansible_common.AnsibleNode() len(a) def test_ansible_node_repr(self): a = ansible_common.AnsibleNode() repr(a) def test_ansible_node_iter(self): a = ansible_common.AnsibleNode() for _ in a: pass def test_is_role(self): a = ansible_common.AnsibleNode() self.assertFalse(a.is_role("", default="foo")) def test_ansible_node_get_tuple(self): a = ansible_common.AnsibleNode({"name": "name"}) self.assertEqual(a.get_tuple(), ('name', a)) def test_gen_inventory_line(self): a = ansible_common.AnsibleNode(defaultdict(str)) self.assertEqual(a.gen_inventory_line(), "") def test_ansible_node_delitem(self): a = ansible_common.AnsibleNode({"name": "name"}) del a['name'] def test_ansible_node_getattr(self): a = ansible_common.AnsibleNode({"name": "name"}) self.assertEqual(getattr(a, "nosuch", None), None) class AnsibleNodeDictTestCase(unittest.TestCase): def test_ansible_node_dict(self): n = ansible_common.AnsibleNode ansible_common.AnsibleNodeDict(n, {}) def test_ansible_node_dict_len(self): n = ansible_common.AnsibleNode a = ansible_common.AnsibleNodeDict(n, {}) len(a) def test_ansible_node_dict_repr(self): n = ansible_common.AnsibleNode a = ansible_common.AnsibleNodeDict(n, {}) repr(a) def test_ansible_node_dict_iter(self): n = ansible_common.AnsibleNode a = ansible_common.AnsibleNodeDict(n, {}) for _ in a: pass def test_ansible_node_dict_get(self): n = ansible_common.AnsibleNode a = ansible_common.AnsibleNodeDict(n, {}) self.assertIsNone(a.get("")) def test_gen_inventory_lines_for_all_of_type(self): n = ansible_common.AnsibleNode a = ansible_common.AnsibleNodeDict(n, {}) self.assertEqual(a.gen_inventory_lines_for_all_of_type(""), []) def test_gen_inventory_lines(self): n = ansible_common.AnsibleNode a = ansible_common.AnsibleNodeDict(n, [{ "name": "name", "user": "user", "password": "PASS", "role": "role", }]) self.assertEqual(a.gen_all_inventory_lines(), ["name ansible_ssh_pass=PASS ansible_user=user"]) class AnsibleCommonTestCase(unittest.TestCase): def test_get_timeouts(self): self.assertAlmostEquals(ansible_common.AnsibleCommon.get_timeout(-100), 1200.0) def test__init__(self): ansible_common.AnsibleCommon({}) def test_reset(self): a = ansible_common.AnsibleCommon({}) a.reset() def test_do_install_no_dir(self): a = ansible_common.AnsibleCommon({}) self.assertRaises(OSError, a.do_install, '', '') def test_gen_inventory_dict(self): nodes = [{ "name": "name", "user": "user", "password": "PASS", "role": "role", }] a = ansible_common.AnsibleCommon(nodes) a.gen_inventory_ini_dict() self.assertEqual(a.inventory_dict, { 'nodes': ['name ansible_ssh_pass=PASS ansible_user=user'], 'role': ['name'] }) def test_deploy_dir(self): a = ansible_common.AnsibleCommon({}) self.assertRaises(ValueError, getattr, a, "deploy_dir") def test_deploy_dir_set(self): a = ansible_common.AnsibleCommon({}) a.deploy_dir = "" def test_deploy_dir_set_get(self): a = ansible_common.AnsibleCommon({}) a.deploy_dir = "d" self.assertEqual(a.deploy_dir, "d") @mock.patch('{}.open'.format(PREFIX)) def test__gen_ansible_playbook_file_list(self, mock_open): d = tempfile.mkdtemp() try: a = ansible_common.AnsibleCommon({}) a._gen_ansible_playbook_file(["a"], d) finally: os.rmdir(d) @mock.patch('{}.NamedTemporaryFile'.format(PREFIX)) @mock.patch('{}.open'.format(PREFIX)) def test__gen_ansible_inventory_file(self, mock_open, mock_tmp): nodes = [{ "name": "name", "user": "user", "password": "PASS", "role": "role", }] d = tempfile.mkdtemp() try: a = ansible_common.AnsibleCommon(nodes) a.gen_inventory_ini_dict() inv_context = a._gen_ansible_inventory_file(d) with inv_context: c = StringIO() inv_context.write_func(c) self.assertIn("ansible_ssh_pass=PASS", c.getvalue()) finally: os.rmdir(d) @mock.patch('{}.NamedTemporaryFile'.format(PREFIX)) @mock.patch('{}.open'.format(PREFIX)) def test__gen_ansible_playbook_file_list_multiple(self, mock_open, mock_tmp): d = tempfile.mkdtemp() try: a = ansible_common.AnsibleCommon({}) a._gen_ansible_playbook_file(["a", "b"], d) finally: os.rmdir(d) @mock.patch('{}.NamedTemporaryFile'.format(PREFIX)) @mock.patch('{}.Popen'.format(PREFIX)) @mock.patch('{}.open'.format(PREFIX)) def test_do_install_tmp_dir(self, mock_open, mock_popen, mock_tmp): mock_popen.return_value.communicate.return_value = "", "" mock_popen.return_value.wait.return_value = 0 d = tempfile.mkdtemp() try: a = ansible_common.AnsibleCommon({}) a.do_install('', d) finally: os.rmdir(d) @mock.patch('{}.NamedTemporaryFile'.format(PREFIX)) @mock.patch('{}.Popen'.format(PREFIX)) @mock.patch('{}.open'.format(PREFIX)) def test_execute_ansible_check(self, mock_open, mock_popen, mock_tmp): mock_popen.return_value.communicate.return_value = "", "" mock_popen.return_value.wait.return_value = 0 d = tempfile.mkdtemp() try: a = ansible_common.AnsibleCommon({}) a.execute_ansible('', d, ansible_check=True, verbose=True) finally: os.rmdir(d)
[ "ross.b.brattain@intel.com" ]
ross.b.brattain@intel.com
61ec4c4c2b7bf39519d500c748f9da10ac0d9188
ec2cd2e651fe91c1c5f5f95a97211d3c17c3ae93
/tests/test_files/event_manager_test.py
53ce346c8b3b1b86b4c60b80fa0918ac4f73cf0e
[ "MIT" ]
permissive
HackdYourShit/github-automation
1b92afd03cc16593898b88a605916ccb85ebb3bc
31e60695d25171453d62bc96151fb45129d0a421
refs/heads/master
2022-08-29T22:14:01.441351
2020-05-24T13:59:13
2020-05-24T13:59:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,481
py
import json import os from copy import deepcopy from github_automation.core.issue.issue import Issue from github_automation.core.project.project import Project, ProjectColumn from github_automation.management.configuration import Configuration from github_automation.management.event_manager import EventManager MOCK_FOLDER_PATH = os.path.join(os.getcwd(), "tests", "mock_data") def test_loading_event_manager(): issue_id = "=asdf=sdf=" title = "issue name" labels = ["HighEffort", "Low", "bug", "test"] assignee = "ronykoz" issue = { "projectCards": { "nodes": [ { "id": "id=", "project": { "number": 1, "columns": { "nodes": [ { "name": "testing" } ] } } }, { "id": "id2=", "project": { "number": 2, "columns": { "nodes": [ { "name": "Queue" } ] } } } ] }, "comments": { "nodes": [ { "author": { "login": "ronykoz" }, "body": "comment 1", "createdAt": "2019-03-19T12:24:27Z" }, { "author": { "login": "ronykoz" }, "body": "second comment", "createdAt": "2019-03-19T12:27:53Z" }, { "author": { "login": "ronykoz" }, "body": "third comment", "createdAt": "2019-03-19T12:52:08Z" } ] }, "timelineItems": { "__typename": "IssueTimelineItemsConnection", "nodes": [ { "__typename": "LabeledEvent", "label": { "name": labels[0] }, "createdAt": "2019-03-15T12:40:22Z" }, { "__typename": "LabeledEvent", "label": { "name": labels[1] }, "createdAt": "2019-03-17T13:59:27Z" }, { "__typename": "LabeledEvent", "label": { "name": labels[2] }, "createdAt": "2019-04-08T10:48:02Z" }, { "willCloseTarget": True, "source": { "__typename": "PullRequest", "state": "OPEN", "isDraft": False, "assignees": { "nodes": [ { "login": "test" }, { "login": "test2" } ] }, "labels": { "nodes": [ { "name": "label" } ] }, "reviewRequests": { "totalCount": 0 }, "reviews": { "totalCount": 3 }, "number": 1, "reviewDecision": "APPROVED" } } ] }, "title": title, "id": issue_id, "number": 1, "milestone": { "title": "test" }, "labels": { "edges": [ { "node": { "name": labels[0] } }, { "node": { "name": labels[1] } }, { "node": { "name": labels[2] } }, { "node": { "name": labels[3] } } ] }, "assignees": { "edges": [ { "node": { "login": assignee } } ] } } event = { "action": "some action", "issue": { "number": 1 } } class mock_client(object): def get_issue(*args, **kwargs): return { "repository": { "issue": issue } } client = mock_client() manager = EventManager(os.path.join(MOCK_FOLDER_PATH, 'conf.ini'), client=client, event=json.dumps(event)) issue_object = manager.get_issue_object() assert issue_object.number == 1 assert issue_object.title == title def test_get_prev_column(): event = { "action": "some action", "issue": { "number": 1 } } project_layout = { "repository": { "project": { "columns": { "edges": [ { "cursor": 1, "node": { "name": "Queue" } }, { "cursor": 2, "node": { "name": "In progress" } } ] } } } } class MockClient(object): def get_project_layout(*args, **kwargs): return project_layout client = MockClient() manager = EventManager(os.path.join(MOCK_FOLDER_PATH, 'conf.ini'), client=client, event=json.dumps(event)) manager.config = Configuration(os.path.join(MOCK_FOLDER_PATH, 'conf.ini')) manager.config.load_properties() assert manager.get_prev_column_cursor("Queue") == "" assert manager.get_prev_column_cursor("In progress") == 1 def test_load_project_column(): event = { "action": "some action", "issue": { "number": 1 } } project_layout = { "repository": { "project": { "columns": { "edges": [ { "cursor": 1, "node": { "name": "Queue" } }, { "cursor": 2, "node": { "name": "In progress" } } ] } } } } project_column1 = { "repository": { "project": { "columns": { "nodes": [ { "name": "Queue", "id": "id", "cards": { "pageInfo": { "endCursor": "A", "hasNextPage": True }, "edges": [ { "cursor": "A", "node": { "note": None, "state": "CONTENT_ONLY", "id": "id=", "content": { "id": "id=", "number": 1, "title": "title", "labels": { "edges": [ { "node": { "name": "one" } }, { "node": { "name": "two" } }, { "node": { "name": "three" } } ] } } } } ] }, } ] } } } } project_column1_no_after = deepcopy(project_column1) project_column1_no_after['repository']['project']['columns']['nodes'][0]['cards']['pageInfo']['hasNextPage'] = False project_column2 = { "repository": { "project": { "columns": { "nodes": [ { "name": "In progress", "id": "id", "cards": { "pageInfo": { "endCursor": "B", "hasNextPage": True }, "edges": [ { "cursor": "B", "node": { "note": None, "state": "CONTENT_ONLY", "id": "cardid2=", "content": { "id": "id2=", "number": 2, "title": "title2", "labels": { "edges": [ { "node": { "name": "one" } }, { "node": { "name": "two" } }, { "node": { "name": "three" } } ] } } } } ] }, } ] } } } } project_column2_no_after = deepcopy(project_column2) project_column2_no_after['repository']['project']['columns']['nodes'][0]['cards']['pageInfo']['hasNextPage'] = False issue_id = "=asdf=sdf=" title = "issue name" labels = ["test", "Low", "bug", "Testing"] assignee = "ronykoz" issue = { "repository": { "issue": { "projectCards": { "nodes": [ { "id": "idadded=", "project": { "number": 1, "columns": { "nodes": [ { "name": "testing" } ] } } }, { "id": "id2=", "project": { "number": 2, "columns": { "nodes": [ { "name": "Queue" } ] } } } ] }, "comments": { "nodes": [ { "author": { "login": "ronykoz" }, "body": "comment 1", "createdAt": "2019-03-19T12:24:27Z" }, { "author": { "login": "ronykoz" }, "body": "second comment", "createdAt": "2019-03-19T12:27:53Z" }, { "author": { "login": "ronykoz" }, "body": "third comment", "createdAt": "2019-03-19T12:52:08Z" } ] }, "timelineItems": { "__typename": "IssueTimelineItemsConnection", "nodes": [ { "__typename": "LabeledEvent", "label": { "name": labels[0] }, "createdAt": "2019-03-15T12:40:22Z" }, { "__typename": "LabeledEvent", "label": { "name": labels[1] }, "createdAt": "2019-03-17T13:59:27Z" }, { "__typename": "LabeledEvent", "label": { "name": labels[2] }, "createdAt": "2019-04-08T10:48:02Z" } ] }, "title": title, "id": issue_id, "number": 1, "milestone": { "title": "test" }, "labels": { "edges": [ { "node": { "name": labels[0] } }, { "node": { "name": labels[1] } }, { "node": { "name": labels[2] } }, { "node": { "name": labels[3] } } ] }, "assignees": { "edges": [ { "node": { "login": assignee } } ] } } } } class MockClient(object): def add_issues_to_project(self, **kwargs): return { "addProjectCard": { "cardEdge": { "node": { "id": "idadded=" } } } } def add_to_column(self, **kwargs): return def move_to_specific_place_in_column(self, **kwargs): return def get_issue(*args, **kwargs): return issue def delete_project_card(*args, **kwargs): return def get_project_layout(*args, **kwargs): return project_layout def get_first_column_issues(*args, **kwargs): if 'start_cards_cursor' in kwargs: return project_column1_no_after return project_column1 def get_column_issues(*args, **kwargs): if 'start_cards_cursor' in kwargs: return project_column2_no_after return project_column2 client = MockClient() manager = EventManager(os.path.join(MOCK_FOLDER_PATH, 'conf.ini'), client=client, event=json.dumps(event)) manager.config = Configuration(os.path.join(MOCK_FOLDER_PATH, 'conf.ini')) manager.config.load_properties() project1 = manager.load_project_column("Queue") assert project1.columns["Queue"].name == "Queue" assert len(project1.columns["Queue"].cards) == 2 assert project1.columns["Queue"].cards[0].issue.title == "title" assert project1.columns["Queue"].cards[0].id == "id=" project2 = manager.load_project_column("In progress") assert project2.columns["In progress"].name == "In progress" assert len(project2.columns["In progress"].cards) == 2 assert project2.columns["In progress"].cards[0].issue.title == "title2" assert project2.columns["In progress"].get_card_id("id2=") == "cardid2=" def test_event_manager_flow(mocker): config = Configuration(os.path.join(MOCK_FOLDER_PATH, 'conf.ini')) config.load_properties() project_object = Project(name="project_name", columns={ "In progress": ProjectColumn(id="some id", name='In progress', cards=[]) }, config=config ) mocker.patch.object(EventManager, "get_issue_object", return_value=Issue( id="1", title="this is a test title", number=1, assignees=["ronykoz"], labels=['test', 'Testing', 'bug'] )) mocker.patch.object(EventManager, "load_project_column", return_value=project_object ) class MockClient(object): def add_issues_to_project(*args, **kwargs): return { "addProjectCard": { "cardEdge": { "node": { "id": "1" } } } } def add_to_column(self, **kwargs): return def move_to_specific_place_in_column(self, **kwargs): return client = MockClient() manager = EventManager(os.path.join(MOCK_FOLDER_PATH, 'conf.ini'), client=client, event=json.dumps({"text": "text"})) manager.run() assert len(project_object.get_all_issue_ids()) == 1
[ "rkozakish@paloaltonetworks.com" ]
rkozakish@paloaltonetworks.com
a247744ab29c25a75bebe261f0975740848265b7
803ed08c0cc3a76e48bdea08323c2be3ffa9f0ef
/consoleme/handlers/v2/resources.py
75380eb8825948b5cecfcb9dd957981f23f001d7
[ "Apache-2.0" ]
permissive
rhnasc/consoleme
c6ec4d75ecba3c132d174c88811d44af11b18029
18962418fdc8466dc85547bd0cba100f1c00d7c1
refs/heads/master
2023-04-03T10:04:58.424303
2021-04-15T20:00:33
2021-04-15T20:00:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,146
py
import sys from datetime import datetime, timedelta import sentry_sdk import ujson as json from policy_sentry.util.arns import parse_arn from consoleme.config import config from consoleme.exceptions.exceptions import MustBeFte, ResourceNotFound from consoleme.handlers.base import BaseAPIV2Handler, BaseMtlsHandler from consoleme.lib.account_indexers import get_account_id_to_name_mapping from consoleme.lib.auth import can_admin_policies from consoleme.lib.aws import fetch_resource_details from consoleme.lib.plugins import get_plugin_by_name from consoleme.lib.policies import get_url_for_resource from consoleme.lib.web import handle_generic_error_response from consoleme.models import WebResponse log = config.get_logger() stats = get_plugin_by_name(config.get("plugins.metrics", "default_metrics"))() aws = get_plugin_by_name(config.get("plugins.aws", "default_aws"))() group_mapping = get_plugin_by_name( config.get("plugins.group_mapping", "default_group_mapping") )() auth = get_plugin_by_name(config.get("plugins.auth", "default_auth"))() internal_policies = get_plugin_by_name( config.get("plugins.internal_policies", "default_policies") )() class ResourceDetailHandler(BaseAPIV2Handler): async def get(self, account_id, resource_type, region=None, resource_name=None): if not self.user: return if config.get("policy_editor.disallow_contractors", True) and self.contractor: if self.user not in config.get( "groups.can_bypass_contractor_restrictions", [] ): raise MustBeFte("Only FTEs are authorized to view this page.") read_only = False can_save_delete = (can_admin_policies(self.user, self.groups),) account_id_for_arn: str = account_id if resource_type == "s3": account_id_for_arn = "" arn = f"arn:aws:{resource_type}:{region or ''}:{account_id_for_arn}:{resource_name}" stats.count( "ResourcePolicyEditHandler.get", tags={"user": self.user, "arn": arn} ) log_data = { "user": self.user, "ip": self.ip, "function": f"{__name__}.{self.__class__.__name__}.{sys._getframe().f_code.co_name}", "message": "Incoming request", "user-agent": self.request.headers.get("User-Agent"), "request_id": self.request_uuid, "arn": arn, } log.debug(log_data) error = "" try: resource_details = await fetch_resource_details( account_id, resource_type, resource_name, region ) except Exception as e: sentry_sdk.capture_exception() log.error({**log_data, "error": e}, exc_info=True) resource_details = None error = str(e) if not resource_details: self.send_error( 404, message=( f"Unable to retrieve the specified {resource_type} resource: " f"{account_id}/{resource_name}/{region}. {error}", ), ) return # TODO: Get S3 errors for s3 buckets only, else CT errors yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y%m%d") s3_query_url = None if resource_type == "s3": s3_query_url = config.get("s3.bucket_query_url") all_s3_errors = None if s3_query_url: s3_query_url = s3_query_url.format( yesterday=yesterday, bucket_name=f"'{resource_name}'" ) s3_error_topic = config.get("redis.s3_errors", "S3_ERRORS") all_s3_errors = self.red.get(s3_error_topic) s3_errors = [] if all_s3_errors: s3_errors = json.loads(all_s3_errors).get(arn, []) account_ids_to_name = await get_account_id_to_name_mapping() # TODO(ccastrapel/psanders): Make a Swagger spec for this self.write( dict( arn=arn, resource_details=resource_details, account_id=account_id, account_name=account_ids_to_name.get(account_id, None), read_only=read_only, can_save_delete=can_save_delete, s3_errors=s3_errors, error_url=s3_query_url, config_timeline_url=resource_details.get("config_timeline_url"), ) ) class GetResourceURLHandler(BaseMtlsHandler): """consoleme CLI resource URL handler. Parameters accepted: arn.""" def initialize(self): self.user: str = None self.eligible_roles: list = [] async def get(self): """ /api/v2/get_resource_url - Endpoint used to get an URL from an ARN --- get: description: Get the resource URL for ConsoleMe, given an ARN responses: 200: description: Returns a URL generated from the ARN in JSON form 400: description: Malformed Request 403: description: Forbidden """ self.user: str = self.requester["email"] arn: str = self.get_argument("arn", None) log_data = { "function": f"{__name__}.{self.__class__.__name__}.{sys._getframe().f_code.co_name}", "user": self.user, "arn": arn, "message": "Generating URL for resource", "user-agent": self.request.headers.get("User-Agent"), "request_id": self.request_uuid, } log.debug(log_data) stats.count("GetResourceURL.get", tags={"user": self.user}) if not arn: generic_error_message: str = "Missing required parameter" errors = ["arn is a required parameter"] await handle_generic_error_response( self, generic_error_message, errors, 404, "missing_data", log_data ) return try: # parse_arn will raise an exception on invalid arns parse_arn(arn) resource_url = await get_url_for_resource(arn) if not resource_url: raise ValueError("This resource type is currently not supported") except (ResourceNotFound, ValueError) as e: generic_error_message: str = "Unsupported data" errors = [str(e)] await handle_generic_error_response( self, generic_error_message, errors, 404, "invalid_data", log_data ) return except Exception as e: generic_error_message: str = "Malformed data" errors = [str(e)] await handle_generic_error_response( self, generic_error_message, errors, 404, "malformed_data", log_data ) return res = WebResponse( status="success", status_code=200, message="Successfully generated URL for ARN", data={"url": resource_url}, ) self.write(res.json()) await self.finish()
[ "noreply@github.com" ]
rhnasc.noreply@github.com
8c53e53d5632bf2fe4e729680440e518b110775a
1308e72f0f9a481ae667000f8109ff4a0f4ab848
/app/main/database_helper_functions.py
f86ee44f7e80d0a40d34beccf3a948ccac908ec9
[ "MIT" ]
permissive
charlestondance/amoslims
0ebab70a54367c8b6e1cf25fa1354ffdf23f5570
c1d051db3e88a92644446744a9027c5699f52b02
refs/heads/master
2022-12-08T05:13:24.977140
2018-07-12T16:13:10
2018-07-12T16:13:10
140,725,152
0
0
MIT
2022-12-08T02:16:20
2018-07-12T14:34:14
Python
UTF-8
Python
false
false
9,320
py
__author__ = 'dmcclymo' import csv from ..models import project_task, PartsBatchTable, PartsTable, ytk_job_master, ytk_job_master_level2, part_dna_sizes from .. import db def upload_csv_check_keys(filename): with open(filename) as csvfile: reader = csv.DictReader(csvfile) dict_keys = reader.fieldnames return dict_keys, reader def write_pending_job_tasks_qc(unique_job_id): # set the tasks to pending item_add = project_task(unique_job_id=unique_job_id, task='uploaddesign', status="pending", locked=0) db.session.add(item_add) item_add = project_task(unique_job_id=unique_job_id, task='uploadjobmaster', status="pending", locked=0) db.session.add(item_add) item_add = project_task(unique_job_id=unique_job_id, task='clipqc', status="pending", locked=0) db.session.add(item_add) item_add = project_task(unique_job_id=unique_job_id, task='stitchqc', status="pending", locked=0) db.session.add(item_add) item_add = project_task(unique_job_id=unique_job_id, task='uploadjmp', status="pending", locked=0) db.session.add(item_add) item_add = project_task(unique_job_id=unique_job_id, task='clip_qc_echo', status="pending", locked=0) db.session.add(item_add) item_add = project_task(unique_job_id=unique_job_id, task='stitch_qc_echo', status="pending", locked=0) db.session.add(item_add) db.session.commit() def upload_parts_to_table(filename): all_ok = True PART_KEYS_CHECK = ['part_name', 'part_class', 'part_type', 'relative_position', 'level', 'offset', 'project_number', 'job_set', 'sequence', 'composite_part', 'external_id', 'part_method', 'part_number', 'storage_location_id', 'storage_plate_barcode'] dict_keys, reader = upload_csv_check_keys(filename) # check dict keys match PART_KEYS_CHECK if sorted(dict_keys) == sorted(PART_KEYS_CHECK): for row in reader: # check if part exists. If part number is zero raise a new part number, otherwise raise a batch if row['part_number'] == str(0): # new part new_part_number = return_new_part_number() padded_part = paded_part_number(new_part_number=new_part_number) add_part = PartsTable(part_id="LDF-"+padded_part, part_name=row['part_name'], part_class=row['part_class'], part_type=row['part_type'], relative_position=row['relative_position'], level=row['level'], offset=row['offset'], project_number=row['project_number'], job_set=row['job_set'], sequence=row['sequence'], composite_part=row['composite_part'], external_id=row['external_id'], part_method=row['part_method'], part_number=new_part_number) add_batch = PartsBatchTable(storage_plate_barcode=row['storage_plate_barcode'], storage_location_id=row['storage_location_id'], part_id="LDF-"+padded_part, part_number=new_part_number, batch_number=1) db.session.add(add_part) db.session.add(add_batch) else: # new part so only make a batch padded_part = paded_part_number(int(row['part_number'])) new_batch_number = return_new_batch_number(int(row['part_number'])) add_batch = PartsBatchTable(storage_plate_barcode=row['storage_plate_barcode'], storage_location_id=row['storage_location_id'], part_id="LDF-"+padded_part, part_number=int(row['part_number']), batch_number=new_batch_number) db.session.add(add_batch) db.session.commit() else: all_ok = False print(sorted(dict_keys)) print(sorted(PART_KEYS_CHECK)) return all_ok def upload_sizes_to_table(filename): all_ok = True PART_KEYS_CHECK = ['part_id', 'enzyme', 'size', 'cargo_number'] dict_keys, reader = upload_csv_check_keys(filename) # check dict keys match PART_KEYS_CHECK if sorted(dict_keys) == sorted(PART_KEYS_CHECK): for row in reader: add_size = part_dna_sizes(part_id=row['part_id'], enzyme=row['enzyme'], size=int(row['size']), cargo_number=int(row['cargo_number'])) db.session.add(add_size) db.session.commit() else: all_ok = False return all_ok def return_new_part_number(): # this function checks the part database and returns the highest number +1 or 1 sql = "SELECT part_number FROM partstable ORDER BY part_number DESC " query_table = db.engine.execute(sql) query_table = query_table.fetchone() if query_table: part_number = query_table.part_number+1 else: part_number = 1 return part_number def paded_part_number(new_part_number): # find the length of the number and pad it out with zeros and return it as a string length_of_part = len(str(new_part_number)) part_string = "" if length_of_part < 6: padding = '' for pad in range(0, 6 - length_of_part): part_string = part_string + '0' part_string = part_string + str(new_part_number) return part_string def return_new_batch_number(part_number): # this function checks the part database and returns the highest number +1 or 1 sql = "SELECT batch_number from partsbatchtable WHERE part_number=%s order by batch_number DESC " query_table = db.engine.execute(sql, part_number) query_table = query_table.fetchone() return query_table.batch_number+1 def upload_jobmaster_processed1_ytk(filename, jobname, filename_for_db): KEYS_CHECK = ['Part Id', 'Sample Number', 'Storage Location Id', 'Storage Plate Barcode', 'Unique Job Id', 'Job Master Barcode', 'Job Master Well ID'] job_master_error_flag = [] dict_keys, reader = upload_csv_check_keys(filename) if sorted(dict_keys) != sorted(KEYS_CHECK): return job_master_error_flag.append('key_error') for row in reader: update_jobmaster = ytk_job_master.query.filter_by(part_id=row['Part Id'], sample_number=row['Sample Number'], unique_job_id=row['Unique Job Id']).first() if update_jobmaster and row['Unique Job Id'] == jobname: print("True") update_jobmaster.job_master_well_id = row['Job Master Well ID'] update_jobmaster.job_master_barcode = row['Job Master Barcode'] update_jobmaster.uploaded_filename = filename_for_db db.session.commit() else: print('False') job_master_error_flag.append([row['Part Id'], row['Sample Number'], row['Unique Job Id']]) return job_master_error_flag def upload_jobmaster_processed2_ytk(filename, jobname, filename_for_db): KEYS_CHECK = ['Part Id', 'Sample Number', 'Storage Location Id', 'Storage Plate Barcode', 'Unique Job Id', 'Job Master Barcode', 'Job Master Well ID'] job_master_error_flag = [] dict_keys, reader = upload_csv_check_keys(filename) if sorted(dict_keys) != sorted(KEYS_CHECK): return job_master_error_flag.append('key_error') for row in reader: update_jobmaster = ytk_job_master_level2.query.filter_by(part_id=row['Part Id'], sample_number=row['Sample Number'], unique_job_id=row['Unique Job Id'], ).first() if update_jobmaster and row['Unique Job Id'] == jobname: update_jobmaster.job_master2_well_id = row['Job Master Well ID'] update_jobmaster.job_master2_barcode = row['Job Master Barcode'] update_jobmaster.uploaded_filename = filename_for_db db.session.commit() else: print('False') job_master_error_flag.append([row['Part Id'], row['Sample Number'], row['Unique Job Id']]) return job_master_error_flag def upload_uploadicelink_to_table(filename): # this function takes the entries file from ice and adds it to the sequence space in the parts database all_ok = True PART_KEYS_CHECK = ['Part ID', 'Name', 'Alias'] dict_keys, reader = upload_csv_check_keys(filename) # check dict keys match PART_KEYS_CHECK if sorted(dict_keys) == sorted(PART_KEYS_CHECK): for row in reader: find_part = PartsTable.query.filter_by(part_id=row['Name']).first() if find_part: find_part.sequence = row['Part ID'] db.session.add(find_part) else: all_ok = False else: all_ok = False if all_ok == True: db.session.commit() else: db.session.remove() return all_ok def search_compounds(): return PartsTable.query.distinct(PartsTable.project_number)
[ "dave.mcclymo@gmail.com" ]
dave.mcclymo@gmail.com
766dc1460335ad2b4aed0afa0307aaee0bb4c0c6
bb49ca8887b7a6b8867165ab26b045f1d5bcf7a7
/leet_code/easy/leet_rotate.py
73b73359f15ee903dd3bea66cdd4651e9bbc97b7
[]
no_license
albusdunble1/Leetcode
118a91e164e17fd54d794998e8cccd73f9f39289
980d22f3c8ee6487175252eeba5f4ceb6152c294
refs/heads/master
2020-06-25T09:35:16.729899
2019-11-01T14:09:06
2019-11-01T14:09:06
199,273,051
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
class Solution(object): def rotatedDigits(self, N): """ :type N: int :rtype: int """ invalid = ['3','4','7'] special = ['2','5','6','9'] output = 0 for i in range(N): v_found = False for num in str(i+1): if num in invalid: v_found = False break elif num in special: v_found = True if v_found: output += 1 return output #https://leetcode.com/problems/rotated-digits/
[ "weisheng_rules@hotmail.com" ]
weisheng_rules@hotmail.com
d6370664c9b03230710844b5cbacf4874d0f3bae
4f349c31220d839aaaf5d850069ad315b8d67aef
/withdraw_universities/urls.py
355abaf5511fe20cc8ffb57bcf8f7326bf2cc6fd
[]
no_license
DiZiNnEs/withdraw-universities
beec276aae8ab76f640416639f4f33a498c4da61
f18645bed8ef0e67843ad64c6eb003ddfae61dcb
refs/heads/main
2023-01-03T20:30:47.463936
2020-11-03T18:11:22
2020-11-03T18:11:22
307,993,570
0
0
null
null
null
null
UTF-8
Python
false
false
814
py
"""withdraw_universities URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('university.urls')), ]
[ "dizinnes228@gmail.com" ]
dizinnes228@gmail.com
1386635f3be2709e50108baa9d6570782444859d
dae76f7fe5e99ff6b323604710786da93e0c9bbb
/myweb/settings.py
c9f53dcd3736652d28bf40e09091fe7763064645
[]
no_license
Jaxien/myweb
7198fd1695e25ef028182fb174086547d6768e6c
8908b703547797c92ca777864a274deb3212d71b
refs/heads/master
2020-12-15T12:04:06.740495
2020-01-20T12:29:37
2020-01-20T12:29:37
235,087,526
0
0
null
null
null
null
UTF-8
Python
false
false
3,706
py
""" Django settings for myweb project. Generated by 'django-admin startproject' using Django 3.0.1. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'h3wp37ot8$&vgr#$^8%pepa#v8=k^w&123ydzj(f5894j7agbo' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '.marss.icu'] # Application definition PAGINATION_SETTINGS = { 'PAGE_RANGE_DISPLAYED': 4, # 分页条当前页前后应该显示的总页数(两边均匀分布,因此要设置为偶数), 'MARGIN_PAGES_DISPLAYED': 2, # 分页条开头和结尾显示的页数 'SHOW_FIRST_PAGE_WHEN_INVALID': True, # 当请求了不存在页,显示第一页 } INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog.apps.BlogConfig', 'comments.apps.CommentsConfig', 'pure_pagination' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'myweb.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'myweb.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'myweb', 'USER': 'root', 'PASSWORD': 'zhangyang123', 'HOST': 'localhost', 'PORT': '3306' } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "1076440430@qq.com" ]
1076440430@qq.com
7e8c8bbb115ec5384d4fb25f7c18d1ffbcfe4bcb
a31a2a6d1bbb34db890df93f2398d4295d229ef6
/index/migrations/0010_auto_20190520_0929.py
7a33bf18bbe7607d23f8295f2d9e910711a6ebe5
[]
no_license
anandrathidev/propsearch
31f915230ffb122dd49f3ee75e9f516091ca47bf
0aaa7174a5a0f78e26834887fd963c5ea6e1bd04
refs/heads/master
2020-05-22T03:53:22.230389
2019-06-01T08:46:24
2019-06-01T08:46:24
186,221,039
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
# Generated by Django 2.0 on 2019-05-20 08:29 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('index', '0009_auto_20190520_0923'), ] operations = [ migrations.AlterField( model_name='poster', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
[ "anandrathi.dev@gmail.com" ]
anandrathi.dev@gmail.com
9b23207f97a22370cd8f9bdf558239b8ffdc88bc
627250a71e879fd5ff6a1c215333d1559b28f878
/vtt2srt.py
728473e3a1299171765480b4dd79f8611dcfb415
[ "Apache-2.0" ]
permissive
KorvinSilver/vtt2srt
c6261317e43d2538030b7729c8d3f9986cb124af
18c3fdd95c4435930d4acb3218123f9bd90f429b
refs/heads/master
2021-05-05T01:20:57.485291
2018-01-30T21:07:00
2018-01-30T21:07:00
119,588,513
0
0
null
null
null
null
UTF-8
Python
false
false
2,169
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Project: WebVTT Document to SubRib Subtitle converter Copyright 2018, Korvin F. Ezüst Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import re import sys __author__ = "Korvin F. Ezüst" __copyright__ = "Copyright (c) 2018, Korvin F. Ezüst" __license__ = "Apache 2.0" __version__ = "1.0" __email__ = "dev@korvin.eu" __status__ = "Working" parser = argparse.ArgumentParser( description="Convert a WebVTT Document to a SubRip Subtitle") parser.add_argument("file", help="vtt file to convert") args = parser.parse_args() # Read VRT file with open(args.file) as f: lines = f.readlines() # Find a dot in a string matching e.g. 12:34:56.789 # and replace it with a comma regex = r"(?<=\d\d:\d\d:\d\d)\.(?=\d\d\d)" lines = [re.sub(regex, ",", i.rstrip()) for i in lines] # Find everything in line after a string matching e.g. 12:34:56,789 # and delete it regex = r"(?<=\d\d:\d\d:\d\d\,\d\d\d --> \d\d:\d\d:\d\d\,\d\d\d).*" lines = [re.sub(regex, "", i.rstrip()) for i in lines] # Replace multiple blank lines with a single blank line sbl = [] for i in range(len(lines[:-1])): if lines[i] == "" and lines[i+1] == "": continue else: sbl.append(lines[i]) if lines[-1] != "": sbl.append(lines[-1]) # Place a number before each time code (number empty lines) enum = enumerate(sbl) next(enum) nel = [str(i) or "\n" + str(next(enum)[0]) for i in sbl] # Remove WebVTT headers if any for i, item in enumerate(nel): if item == "\n1": break # Write SRT file with open(args.file + ".srt", "w") as f: f.write("\n".join(nel[i:])) print("SRT file created:", args.file + ".srt")
[ "dev@korvin.eu" ]
dev@korvin.eu
20e932bdbe6e53b65a545e07fa0ff488f64d3406
5c75a5827f39cfeec64cc2518d670019a56f22e2
/slam/Python_code/create_sync.py
bd49f08e32602a9e954bef0af24d035e9737be24
[]
no_license
vascofaraujo/uav-mapping-venv
ac439672500b83c38d4aeaceece069ac6f6f5cff
e81ba7ff02b41cb2726bbb44c53d1d721aa59868
refs/heads/main
2023-07-11T11:50:31.951327
2021-08-13T22:46:29
2021-08-13T22:46:29
386,804,189
0
0
null
null
null
null
UTF-8
Python
false
false
1,837
py
import sys import os import numpy def read_file_list(filename): """ Description Reads rgb.txt and depth.txt file with timestamps for each and matches each one with the closest one File format: The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched) and "d1 d2 d3.." is arbitary data """ file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"] list = [(float(l[0]),l[1:]) for l in list if len(l)>1] return dict(list) path=os.getcwd() + "/rgbd_dataset_freiburg2_pioneer_slam/" first_list = read_file_list(path + 'rgb.txt') aux1=list(first_list.keys()) del first_list second_list = read_file_list(path + 'depth.txt') aux2=list(second_list.keys()) del second_list offset=0 max_difference=0.02 potential_matches = [(abs(a - (b + offset)),a, b) for a in aux1 for b in aux2 if abs(a - (b + offset)) < max_difference] potential_matches.sort() matches=[] for diff, a, b in potential_matches: if a in aux1 and b in aux2: aux1.remove(a) aux2.remove(b) matches.append((a, b)) matches.sort() output_file="sync.txt" f=open(output_file,'w') for i in range(len(matches)): aux3=str(matches[i][0]) aux4=str(matches[i][1]) while(1): if(len(aux3) <17): aux3= aux3 + '0' else: break while(1): if(len(aux4) <17): aux4= aux4 + '0' else: break f.write(aux3+ " " +aux4 + "\n") f.close() print("Matches are written into filename " + output_file)
[ "renato.loureiro@tecnico.ulisboa.pt" ]
renato.loureiro@tecnico.ulisboa.pt
77d02e1aa64689aee2757324174ae8f04bc5ba2b
8173d7fc2ed474e85c064461700562b2260166a5
/Face Detection and Attendence Project/Attendence Using Face Detection.py
4f1644b6816447f4cb914bdfbec1ab473b8275f0
[]
no_license
TusharDimri/Face-Detection-and-Attendence
f94f5ea57219952a2994fee59a63d6019bf43342
374e096c81f454725631685a0474f00b8a17284d
refs/heads/master
2023-01-23T11:22:00.948373
2020-11-29T12:34:18
2020-11-29T12:34:18
316,947,376
0
0
null
null
null
null
UTF-8
Python
false
false
3,155
py
import cv2 import numpy as np import face_recognition import os path = "Attendence Images" images = [] classNames = [] mylist = os.listdir(path) # print(mylist) for cl in mylist: current_Image = cv2.imread(f'{path}/{cl}') images.append(current_Image) classNames.append(os.path.splitext(cl)[0]) # print(classNames) # Now we will create a function that will compute the encodings for us def find_encodings(images): encodeList = [] for img in images: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Converting the Image from BGR to RGB encode = face_recognition.face_encodings(img)[0] encodeList.append(encode) return encodeList encodings_known = find_encodings(images) # print(len(encodings1 _known)) print("Encoding Complete") # Now we will take image from webcam to find whether they match with known images or not cap = cv2.VideoCapture(0) while True: success, image = cap.read() imageSmall = cv2.resize(image, (0,0), None, 0.25, 0.25) # (0, 0) means we have not defined out pixel size # We will reduce the image size to one fourth its original size to speed up the process imageSmall = cv2.cvtColor(imageSmall, cv2.COLOR_BGR2RGB) facesLoc= face_recognition.face_locations(imageSmall) # We find locatiosn of the faces as we may find more than one face from webcam image encodingsFace = face_recognition.face_encodings(imageSmall, facesLoc) for encodeFace, faceLoc in zip(encodingsFace, facesLoc): matches = face_recognition.compare_faces(encodings_known, encodeFace) faceDis = face_recognition.face_distance(encodings_known, encodeFace) # print(faceDis, matches) # compare_faces will find all the matches of our webcam image with the images we have in the list and return a list containing True and False values # face_distance will find the distace of webcam image from known images and return a list containing those values # Now we will find the lowest distance (matches = True ) to find whether image from webcam matches from any image known matchIndex = np.argmin(faceDis) if matches[matchIndex]: name = classNames[matchIndex].capitalize() print(name) y1, x2, y2, x1 = faceLoc y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4 cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.rectangle(image, (x1, y2 - 35), (x2 , y2), (0, 255, 0), cv2.FILLED) cv2.putText(image, name, (x1+6, y2-6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) cv2.imshow('Webcam', image) cv2.waitKey(1) else: name = 'Unknown' print(name) y1, x2, y2, x1 = faceLoc y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4 cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.rectangle(image, (x1, y2 - 35), (x2 , y2), (0, 255, 0), cv2.FILLED) cv2.putText(image, name, (x1+6, y2-6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) cv2.imshow('Webcam', image) cv2.waitKey(1)
[ "tushar.dimri22@gmail.com" ]
tushar.dimri22@gmail.com
49e1a325afdc513a993dda6191c506211225dc7e
1921cd057e809d4f847f75ea5a8394518cfc3a19
/venv/bin/pip3.6
8adfc1010e0c2ad1c849c2463cfbecdf4895bf86
[]
no_license
AshwinChandlapur/Learn_Flask
7820da89c0f101d97405ddac0c02bd02000d8a40
2294c9a197b5ab7e37254f6c3e8c475e45367b0c
refs/heads/master
2020-04-08T20:56:30.119416
2018-11-29T21:48:50
2018-11-29T21:48:50
159,722,013
0
0
null
null
null
null
UTF-8
Python
false
false
414
6
#!/Users/ashwinchandlapur/Desktop/Learn_Flask/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.6' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.6')() )
[ "ashwinchandlapur@gmail.com" ]
ashwinchandlapur@gmail.com
fb9b679a11eb9c744907db626a9f6f8e52a5756a
b9db91bdb30ba99aad8bbea251e5e1e8c2a7fa45
/opt/src/aoj/itp1/7_b.py
839084e701a5b92b98f95369fb7f3d92fbcc2450
[]
no_license
jacoloves/python_tool
682c3a91b535f15f1f8c9299e9b4c9ccbd5eea79
93ba5de17a727d6ccf9c67e4bca37ea502d06e5d
refs/heads/master
2021-03-01T04:25:49.581952
2021-01-27T13:52:50
2021-01-27T13:52:50
245,753,773
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
arr = [] while True: n, x = map(int, input().split()) if n == 0 and x == 0: break arr.append([n, x]) for i in range(len(arr)): n = arr[i][0] x = arr[i][1] num = 0 for j in range(1, n-1): x2 = x-j for k in range(j+1, n): x3 = x2-k for l in range(k+1, n+1): x4 = x3-l if x4 == 0: num += 1 print(num)
[ "5511068t@gmail.com" ]
5511068t@gmail.com
4f1873b7edecc8b3be6649316dcba834b743f50e
de7127deabd34e17473fb94f48e033f482535ca7
/virt/bin/markdown2
2f0becd3611f94bc2b1edf4b5c86a622fa7aa217
[ "MIT" ]
permissive
annstella/One_Min_Pitch
a50d855423ad02fb46e8b6765c16cbf9d7a6e6ff
86cd2426061df502adaffbf544589d54653df00c
refs/heads/master
2020-03-28T05:54:11.687201
2018-09-17T08:00:08
2018-09-17T08:00:08
147,802,293
0
1
null
null
null
null
UTF-8
Python
false
false
523
#!/home/annstella/Documents/core/One_Min_Pitch/virt/bin/python3.6 import sys from os.path import join, dirname, exists # Use the local markdown2.py if we are in the source tree. source_tree_markdown2 = join(dirname(__file__), "..", "lib", "markdown2.py") if exists(source_tree_markdown2): sys.path.insert(0, dirname(source_tree_markdown2)) try: from markdown2 import main finally: del sys.path[0] else: from markdown2 import main if __name__ == "__main__": sys.exit( main(sys.argv) )
[ "annstellawangui@gmail.com" ]
annstellawangui@gmail.com
d1c08dba97980d8459ea9694cb5106fb768f6b2c
d3c2307c4aa6d7af1902b073a19c9fa245ccf386
/Part2/reformat.py
a48f97b05a4ebbda61287a9bbe2802e156edf13a
[]
no_license
cadams22/Data-Mining-WEKA-Project
366d4a4f59e23ffb4a606ab86f96e8cdbd5bcdb8
773f67117eb3bd5a590abf5be2f463518bf41350
refs/heads/master
2021-01-02T09:13:54.201228
2013-12-23T05:44:25
2013-12-23T05:44:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
387
py
import csv def format(): f = open('answers.csv', 'r') fc = csv.reader(f) w = open('maddie.csv', 'w') wc = csv.writer(w) wc.writerow(['id ', ' friends']) count = 5001 for line in fc: for st in line: for c in range(0, len(st)-1): if st[c] == ':': print (st[c+1]) wc.writerow([count, str(st[c+1])]) count = count + 1 break print(count) format()
[ "courtney@Courtney-Adams-Lenovo-IdeaPad-P400-Touch.(none)" ]
courtney@Courtney-Adams-Lenovo-IdeaPad-P400-Touch.(none)
cdd51f82c64b8411ee0fda99daf82f9125ad9d10
0673b2d9d1af1e55fd16064bc08989b58a07df5b
/examples/webclassifier.py
2eb10e1ccf17e67862944388594032c068fa1980
[]
no_license
daniele-sartiano/nlptf
ba5faa3334c1cb89f960ba9fb270a4cf4422e55b
7accabe171d43458ca5555d22c188a6ac59f0a04
refs/heads/master
2021-01-15T15:25:30.755238
2016-06-17T16:53:25
2016-06-17T16:53:25
48,031,442
1
0
null
null
null
null
UTF-8
Python
false
false
5,782
py
#!/usr/bin/env python import sys import os sys.path.append('../nlptf') import argparse from nlptf.reader import Word2VecReader, WebContentReader from nlptf.models.estimators import WordEmbeddingsEstimator, ConvWordEmbeddingsEstimator, RNNWordEmbeddingsEstimator, MultiRNNWordEmbeddingsEstimator, WordEmbeddingsEstimatorNC from nlptf.extractors import FieldExtractor, CapitalExtractor from nlptf.classifier.classifier import WordEmbeddingsClassifier import tensorflow as tf from sklearn.metrics import f1_score ESTIMATORS = { 'conv': WordEmbeddingsEstimatorNC, } OPTIMIZERS = { 'adam': tf.train.AdamOptimizer, 'grad': tf.train.GradientDescentOptimizer } def main(): parser = argparse.ArgumentParser(description='Named Entity Recognition with TensorFlow') subparsers = parser.add_subparsers() parser_train = subparsers.add_parser('train') parser_train.set_defaults(which='train') parser_train.add_argument('-e', '--epochs', help='epochs number', type=int, required=True) parser_train.add_argument('-l', '--learning-rate', help='learning rate', type=float, required=True) parser_train.add_argument('-o', '--optimizer', help='optimizer', type=str, required=True, choices=OPTIMIZERS.keys()) parser_tag = subparsers.add_parser('tag') parser_tag.set_defaults(which='tag') parser_collect_data = subparsers.add_parser('collect') parser_collect_data.set_defaults(which='collect') parser_collect_data.add_argument('-d', '--directory', help='directory', type=str, required=True) parser_collect_data.add_argument('-i', '--input-file', help='input file', type=str, required=False) parser_score = subparsers.add_parser('score') parser_score.set_defaults(which='score') parser_score.add_argument('-p', '--predicted', help='predicted file', type=str, required=True) parser_score.add_argument('-g', '--gold', help='gold file', type=str, required=True) # common arguments for p in (parser_train, parser_tag): p.add_argument('-m', '--model', help='model-file', type=str, required=True) p.add_argument('-r', '--reader-file', help='reader file', type=str, required=True) p.add_argument('-w', '--word-embeddings', help='word embeddings', type=str, required=False) p.add_argument('-et', '--word-embeddings-type', help='word embeddings type', type=str, required=False) p.add_argument('-i', '--input-file', help='input file', type=str, required=False) p.add_argument('-t', '--type', help='estimator type', type=str, required=True, choices=ESTIMATORS.keys()) p.add_argument('-nl', '--num-layers', help='number layers for multi rnn estimator', type=int, required=False) p.add_argument('-f', '--feats-conf', help='add the feats in the conf number', type=int, required=False) args = parser.parse_args() try: infile = open(args.input_file) if args.input_file is not None else sys.stdin except: pass if args.which == 'collect': with infile as f: for line in f: domain, agro, categories = line.strip().split('\t') # TODO: skipping multi-categories if ',' in categories: continue cfile = os.path.join(args.directory, domain[0], domain[1], domain[2], domain, 'content.txt') try: content = open(cfile).read() except: print >> sys.stderr, '%s not found in %s' % (domain, cfile) continue words = ' '.join([word.strip() for word in content.split()]) if words: print '%s\t%s\t%s' % (domain, categories, words) elif args.which == 'train': reader = WebContentReader(infile, separator='\t') params = { 'epochs': args.epochs, 'learning_rate': args.learning_rate, 'name_model': args.model, 'word_embeddings_file': args.word_embeddings, 'reader_file': args.reader_file, 'optimizer': OPTIMIZERS[args.optimizer], 'num_layers': args.num_layers } classifier = WordEmbeddingsClassifier(reader, [], ESTIMATORS[args.type], **params) classifier.train() elif args.which == 'tag': lines = sys.stdin.readlines() reader = reader = WebContentReader(lines, separator='\t') extractors = [] params = { 'name_model': args.model, 'word_embeddings_file': args.word_embeddings, 'reader_file': args.reader_file, 'num_layers': args.num_layers } classifier = WordEmbeddingsClassifier(reader, extractors, ESTIMATORS[args.type], **params) predicted = classifier.predict() print >> sys.stderr, 'l predicted', len(predicted), 'l lines', len(lines) labels_idx_rev = {v:k for k,v in reader.vocabulary[reader.getPosition('LABEL')].items()} i = 0 for line in lines: line = line.strip() if line: print '%s\t%s' % (line.split()[0], labels_idx_rev[predicted[i]]) i += 1 else: print elif args.which == 'score': gold_dict = {} for line in open(args.gold): domain, label = line.strip().split('\t')[:2] gold_dict[domain] = label y_true = [] y_pred = [] for line in open(args.predicted): domain, label = line.strip().split('\t')[:2] y_pred.append(int(label)) y_true.append(int(gold_dict[domain])) print f1_score(y_true, y_pred, average='macro') if __name__ == '__main__': main()
[ "daniele.sartiano@gmail.com" ]
daniele.sartiano@gmail.com
0fb8aecc1e085928517bf48eb9143d99c4f68e6e
77e325cbf2530a4c8d579f68d2e3faad5bbaf1b6
/CFModel.py
e5d6686e21773066596b5653cbb3ffaef12ccd26
[ "MIT" ]
permissive
v-mostafapour/fb15k-akbc
4a37b0f8e85c7431d8dd3af7de46dfe06fa64f04
c38588617f0ba9629960ea919f35852f0d2e4e3d
refs/heads/master
2021-01-02T23:00:22.895166
2016-08-30T07:09:08
2016-08-30T07:09:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,022
py
# CFModel.py # # A simple implementation of matrix factorization for collaborative filtering # expressed as a Keras Sequential model. This code is based on the approach # outlined in [Alkahest](http://www.fenris.org/)'s blog post # [Collaborative Filtering in Keras](http://www.fenris.org/2016/03/07/collaborative-filtering-in-keras). # # License # - MIT. import numpy as np from keras.layers import Embedding, Reshape, Merge from keras.models import Sequential class CFModel(Sequential): def __init__(self, n_users, m_items, k_factors, **kwargs): P = Sequential() P.add(Embedding(n_users, k_factors, input_length=1)) P.add(Reshape((k_factors,))) Q = Sequential() Q.add(Embedding(m_items, k_factors, input_length=1)) Q.add(Reshape((k_factors,))) super(CFModel, self).__init__(**kwargs) self.add(Merge([P, Q], mode='dot', dot_axes=1)) def rate(self, user_id, item_id): return self.predict([np.array([user_id]), np.array([item_id])])[0][0]
[ "bradley.p.allen@gmail.com" ]
bradley.p.allen@gmail.com
768c450ca224720b22ca1f7dd6fe8defdb3d29a9
a8d08c8fc600ac98e6e3007631d77fe47e68c5c7
/updateTaxID2.py
44d018842ce34df7adf5db97ef5b2cb29ef2d4c2
[]
no_license
jsh58/metagen
55ce824907892d760ab14a6a2fe01c4468312c43
85f0184053b18017c212486b78a2d6af8c812f72
refs/heads/master
2018-10-06T15:50:43.071624
2018-08-20T14:03:43
2018-08-20T14:03:43
120,953,077
0
1
null
null
null
null
UTF-8
Python
false
false
2,568
py
#!/usr/bin/python # JMG 12/2017 # Update merged and deleted taxonomic IDs. import sys import gzip def openRead(filename): ''' Open filename for reading. '-' indicates stdin. '.gz' suffix indicates gzip compression. ''' if filename == '-': return sys.stdin try: if filename[-3:] == '.gz': f = gzip.open(filename, 'rb') else: f = open(filename, 'rU') except IOError: sys.stderr.write('Error! Cannot open %s for reading\n' % filename) sys.exit(-1) return f def openWrite(filename): ''' Open filename for writing. '-' indicates stdout. '.gz' suffix indicates gzip compression. ''' if filename == '-': return sys.stdout try: if filename[-3:] == '.gz': f = gzip.open(filename, 'wb') else: f = open(filename, 'w') except IOError: sys.stderr.write('Error! Cannot open %s for writing\n' % filename) sys.exit(-1) return f def main(): args = sys.argv[1:] if len(args) < 4: sys.stderr.write('Usage: python updateTaxID2.py <mergedIDs> ' \ + '<deletedIDs> <out> [<in>]+\n') sys.exit(-1) # load merged taxIDs to dict d = dict() f = openRead(args[0]) for line in f: spl = line.rstrip().split('|') if len(spl) < 2: sys.stderr.write('Error! Poorly formatted record in merged file\n') sys.exit(-1) d[spl[0].strip()] = spl[1].strip() if f != sys.stdin: f.close() # load deleted taxIDs to dict f2 = openRead(args[1]) for line in f2: spl = line.rstrip().split('|') d[spl[0].strip()] = '0' # assign deleted to tax ID '0' if f != sys.stdin: f2.close() # open output file merge = printed = 0 fOut = openWrite(args[2]) # parse input files, write output on the fly for arg in args[3:]: fIn = openRead(arg) # parse header accIdx = taxIdx = -1 spl = fIn.readline().rstrip().split('\t') try: accIdx = spl.index('accession.version') taxIdx = spl.index('taxid') except ValueError: sys.stderr.write('Error! Cannot find header value ' + '(\'accession.version\' or \'taxid\')') sys.exit(-1) # parse input file, produce output for line in fIn: spl = line.rstrip().split('\t') if spl[taxIdx] in d: spl[taxIdx] = d[spl[taxIdx]] merge += 1 fOut.write(spl[accIdx] + '\t' + spl[taxIdx] + '\n') printed += 1 if fIn != sys.stdin: fIn.close() fOut.close() sys.stderr.write('Records written: %d\n' % printed) sys.stderr.write(' Updated: %d\n' % merge) if __name__ == '__main__': main()
[ "jsh58@wildcats.unh.edu" ]
jsh58@wildcats.unh.edu
d18985bf92c950ffcf456b5ef4e4d773d7f1208e
36dbd31536a4084db83d12b2bd12a9f22f4da636
/geomdl/elements.py
952f45421aee3bd3bc94e18a97dc66b2d65fa7a8
[ "Python-2.0", "MIT" ]
permissive
Hgser/NURBS-Python
75d38a21721d9afd3d5f8491bf8ba56d71a2285a
ced4debdf4fc13afce9b830a2962da2789e5c45b
refs/heads/master
2020-04-27T00:42:17.632484
2019-02-28T05:21:20
2019-02-28T05:21:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,863
py
""" .. module:: elements :platform: Unix, Windows :synopsis: Provides classes representing geometry and topology entities .. moduleauthor:: Onur Rauf Bingol <orbingol@gmail.com> """ import abc import copy import six from ._utilities import export @six.add_metaclass(abc.ABCMeta) class AbstractEntity(object): """ Abstract base class for all geometric entities. """ def __init__(self, *args, **kwargs): self._id = int(kwargs.get('id', 0)) # element identifier self._data = [] # data storage array def __copy__(self): cls = self.__class__ result = cls.__new__(cls) result.__dict__.update(self.__dict__) return result def __deepcopy__(self, memo): # Don't copy self reference cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result # Copy all other attributes for k, v in self.__dict__.items(): setattr(result, k, copy.deepcopy(v, memo)) return result def __len__(self): return len(self._data) def __getitem__(self, key): return self._data[key] def __iter__(self): return iter(self._data) def __reversed__(self): return reversed(self._data) @property def id(self): """ Identifier for the geometric entity. It must be an integer number, otherwise the setter will raise a *ValueError*. :getter: Gets the identifier :setter: Sets the identifier :type: int """ return self._id @id.setter def id(self, value): if not isinstance(value, int): raise ValueError("Identifier value must be an integer") self._id = value @export class Vertex(AbstractEntity): """ 3-dimensional Vertex entity with spatial and parametric position. """ def __init__(self, *args, **kwargs): super(Vertex, self).__init__(*args, **kwargs) self.data = [float(arg) for arg in args] if args else [0.0, 0.0, 0.0] # spatial coordinates self._uv = [0.0, 0.0] # parametric coordinates self._inside = False # flag for trimming def __str__(self): return "Vertex " + str(self._id) + " " + str(self._data) __repr__ = __str__ def __cmp__(self, other): return (self.id > other.id) - (self.id < other.id) def __eq__(self, other): return self.id == other.id def __ne__(self, other): return self.id != other.id def __lt__(self, other): return self.id < other.id def __le__(self, other): return self.id <= other.id def __gt__(self, other): return self.id > other.id def __ge__(self, other): return self.id >= other.id def __nonzero__(self): # For Python 2 compatibility return self.__bool__() def __bool__(self): # For Python 3 compatibility return self.inside def __add__(self, other): if not isinstance(other, self.__class__): raise TypeError("Can only add Vertex objects") res_data = [0.0 for _ in range(3)] for idx in range(3): res_data[idx] = self.data[idx] + other.data[idx] res_uv = [0.0 for _ in range(2)] for idx in range(2): res_uv[idx] = self.uv[idx] + other.uv[idx] res_val = self.__class__() res_val.data = res_data res_val.uv = res_uv return res_val def __sub__(self, other): if not isinstance(other, self.__class__): raise TypeError("Can only subtract Vertex objects") res_data = [0.0 for _ in range(3)] for idx in range(3): res_data[idx] = self.data[idx] - other.data[idx] res_uv = [0.0 for _ in range(2)] for idx in range(2): res_uv[idx] = self.uv[idx] - other.uv[idx] res_val = self.__class__() res_val.data = res_data res_val.uv = res_uv return res_val def __div__(self, other): return self.__truediv__(other) def __truediv__(self, other): if not isinstance(other, (float, int)): raise TypeError("Can only divide by a float or an integer") res_data = [0.0 for _ in range(3)] for idx in range(3): res_data[idx] = self.data[idx] / float(other) res_uv = [0.0 for _ in range(2)] for idx in range(2): res_uv[idx] = self.uv[idx] / float(other) res_val = self.__class__() res_val.data = res_data res_val.uv = res_uv return res_val @property def x(self): """ x-component of the vertex :getter: Gets the x-component of the vertex :setter: Sets the x-component of the vertex :type: float """ return self._data[0] @x.setter def x(self, value): self._data[0] = float(value) @property def y(self): """ y-component of the vertex :getter: Gets the y-component of the vertex :setter: Sets the y-component of the vertex :type: float """ return self._data[1] @y.setter def y(self, value): self._data[1] = float(value) @property def z(self): """ z-component of the vertex :getter: Gets the z-component of the vertex :setter: Sets the z-component of the vertex :type: float """ return self._data[2] @z.setter def z(self, value): self._data[2] = float(value) @property def u(self): """ Parametric u-component of the vertex :getter: Gets the u-component of the vertex :setter: Sets the u-component of the vertex :type: float """ return self._uv[0] @u.setter def u(self, value): self._uv[0] = float(value) @property def v(self): """ Parametric v-component of the vertex :getter: Gets the v-component of the vertex :setter: Sets the v-component of the vertex :type: float """ return self._uv[1] @v.setter def v(self, value): self._uv[1] = float(value) @property def uv(self): """ Parametric (u,v) pair of the vertex :getter: Gets the uv-component of the vertex :setter: Sets the uv-component of the vertex :type: list, tuple """ return tuple(self._uv) @uv.setter def uv(self, value): if not isinstance(value, (list, tuple)): raise TypeError("UV data input must be a list or tuple") if len(value) != 2: raise ValueError("UV must have 2 components") self._uv = list(value) @property def inside(self): """ Inside-outside flag :getter: Gets the flag :setter: Sets the flag :type: bool """ return self._inside @inside.setter def inside(self, value): self._inside = bool(value) @property def data(self): """ (x,y,z) components of the vertex. :getter: Gets the 3-dimensional components :setter: Sets the 3-dimensional components """ return tuple(self._data) @data.setter def data(self, value): if not isinstance(value, (list, tuple)): raise TypeError("Vertex data must be a list or tuple") if len(value) != 3: raise ValueError("Vertex can only store 3 components") # Convert to float self._data = [float(val) for val in value] @export class Triangle(AbstractEntity): """ Triangle entity which represents a triangle composed of vertices. """ def __init__(self, *args, **kwargs): super(Triangle, self).__init__(*args, **kwargs) self._inside = False # flag for trimming if args: self.add_vertex(*args) def __str__(self): return "Triangle " + str(self._id) __repr__ = __str__ @property def vertices(self): """ Vertices of the triangle :getter: Gets the list of vertices :type: tuple """ return tuple(self._data) @property def vertices_raw(self): """ Vertices which generates a closed triangle Adds the first vertex as a last element of the return value (good for plotting) :getter: Gets the list of vertices :type: list """ v_raw = [] for v in self._data: v_raw.append(v.data) # Add the first vertex data as a last element (for plotting modules) if len(self._data) > 0: v_raw.append(self._data[0].data) return v_raw @property def vertices_uv(self): """ Parametric coordinates of the triangle vertices :getter: Gets the parametric coordinates of the vertices :type: list """ data = self.vertices res = [data[idx].uv for idx in range(3)] return res @property def edges(self): """ Edges of the triangle :getter: Gets the list of vertices that generates the edges of the triangle :type: list """ data = self.vertices_raw res = [[] for _ in range(3)] for idx in range(3): res[idx] = [data[idx], data[idx + 1]] return res @property def vertex_ids(self): """ Vertex indices Vertex numbering starts from 1. :getter: Gets the vertex indices :type: list """ v_idx = [] for v in self._data: v_idx.append(v.id) return v_idx @property def vertex_ids_zero(self): """ Zero-indexed vertex indices Vertex numbering starts from 0. :getter: Gets the vertex indices :type: list """ v_idx = [] for v in self._data: v_idx.append(v.id - 1) return v_idx @property def inside(self): """ Inside-outside flag :getter: Gets the flag :setter: Sets the flag :type: bool """ return self._inside @inside.setter def inside(self, value): self._inside = bool(value) def add_vertex(self, *args): """ Adds vertices to the Triangle object. This method takes a single or a list of vertices as its function arguments. """ if len(self._data) > 2: raise ValueError("Cannot add more vertices") res = [] for arg in args: if isinstance(arg, Vertex): res.append(arg) else: raise TypeError("Input must be a Vertex object") self._data = res @export class Quad(AbstractEntity): """ Quad entity which represents a quadrilateral structure composed of vertices. """ def __init__(self, *args, **kwargs): super(Quad, self).__init__(*args, **kwargs) if args: self.data = args def __str__(self): return "Quad " + str(self._id) + " V: " + str(self._data) __repr__ = __str__ @property def data(self): """ Vertex indices. :getter: Gets the vertex indices :setter: Sets the vertex indices """ return tuple(self._data) @data.setter def data(self, value): if not isinstance(value, (list, tuple)): raise TypeError("Input data must be a list or tuple") if len(value) != 4: raise ValueError("Quad can only have 4 vertices") # Convert to int self._data = [int(val) for val in value] def add_vertex(self, *args): """ Adds vertices to the Quad object. This method takes a single or a list of vertices as its function arguments. """ if len(self._data) > 3: raise ValueError("Cannot add more vertices") res = [] for arg in args: if isinstance(arg, Vertex): res.append(arg.id) else: raise TypeError("Input must be a Vertex object") self._data = res @export class Face(AbstractEntity): """ Representation of Face entity which is composed of triangles or quads. """ def __init__(self, *args, **kwargs): super(Face, self).__init__(*args, **kwargs) if args: self.add_triangle(*args) def __str__(self): return "Face " + str(self._id) __repr__ = __str__ @property def triangles(self): """ Triangles of the face :getter: Gets the list of triangles :type: tuple """ return tuple(self._data) def add_triangle(self, *args): """ Adds triangles to the Face object. This method takes a single or a list of triangles as its function arguments. """ res = [] for arg in args: if isinstance(arg, Triangle): res.append(arg) else: raise TypeError("Input must be a Triangle object") self._data = res @export class Body(AbstractEntity): """ Representation of Body entity which is composed of faces. """ def __init__(self, *args, **kwargs): super(Body, self).__init__(*args, **kwargs) if args: self.add_face(*args) def __str__(self): return "Body " + str(self._id) __repr__ = __str__ @property def faces(self): """ Faces of the body :getter: Gets the list of faces :type: tuple """ return tuple(self._data) def add_face(self, *args): """ Adds faces to the Body object. This method takes a single or a list of faces as its function arguments. """ res = [] for arg in args: if isinstance(arg, Face): res.append(arg) else: raise TypeError("Input must be a Face object") self._data = res
[ "orbingol@gmail.com" ]
orbingol@gmail.com
2e0165ab267c593ebe689367b9fa417db54b4727
a9d9b934acd8f7bd26f35f0d764fd7e7ee33ebe4
/stock prices.py
8c98a488ebfeb1956528da84838f13909daf518e
[]
no_license
jmkhat/Pandas
bf5ac10a91785656e5eba05ce9ddb4ac5fd2d547
a61b46d1a18073c06506aa2ff331f95cedb12e6f
refs/heads/master
2021-04-28T19:52:00.726226
2018-02-20T02:36:19
2018-02-20T02:36:19
121,909,185
0
0
null
null
null
null
UTF-8
Python
false
false
445
py
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ print("hello world") import pandas as pd import datetime import pandas_datareader.data as web import matplotlib.pyplot as plt from matplotlib import style style.use('ggplot') start = datetime.datetime(2014,1,1) end = datetime.datetime(2017,1,1) df=web.DataReader("XOM",'google',start,end) print(df.head()) df['Adj Close'].plot() plt.show()
[ "noreply@github.com" ]
jmkhat.noreply@github.com
bacd5c10967e22cb2e03eb54ce3045346fa32f5e
fba45f3289a6de51eb7a9bfbee90d566181963b5
/pagemat/lib/python3.6/site-packages/paypal/standard/pdt/admin.py
d68d7ccb506406c13ca5c7216b0f32afb93123cd
[ "MIT" ]
permissive
bharatpurohit97/PageMatrix
abb580787aecf656e5ff27f0c9d75e89f16e905d
66ab9b1dd365a34f86dba110fe97c32cb7137bf2
refs/heads/master
2022-12-12T01:50:47.230219
2018-12-19T09:20:05
2018-12-19T09:20:05
162,409,793
1
0
MIT
2022-12-08T02:28:13
2018-12-19T08:54:22
Python
UTF-8
Python
false
false
3,710
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from paypal.standard.pdt.models import PayPalPDT # ToDo: How similiar is this to PayPalIPNAdmin? Could we just inherit off one common admin model? class PayPalPDTAdmin(admin.ModelAdmin): date_hierarchy = 'payment_date' fieldsets = ( (None, { "fields": ['flag', 'txn_id', 'txn_type', 'payment_status', 'payment_date', 'transaction_entity', 'reason_code', 'pending_reason', 'mc_gross', 'mc_fee', 'auth_status', 'auth_amount', 'auth_exp', 'auth_id', ], }), ("Address", { "description": "The address of the Buyer.", 'classes': ('collapse',), "fields": ['address_city', 'address_country', 'address_country_code', 'address_name', 'address_state', 'address_status', 'address_street', 'address_zip', ], }), ("Buyer", { "description": "The information about the Buyer.", 'classes': ('collapse',), "fields": ['first_name', 'last_name', 'payer_business_name', 'payer_email', 'payer_id', 'payer_status', 'contact_phone', 'residence_country' ], }), ("Seller", { "description": "The information about the Seller.", 'classes': ('collapse',), "fields": ['business', 'item_name', 'item_number', 'quantity', 'receiver_email', 'receiver_id', 'custom', 'invoice', 'memo', ], }), ("Subscriber", { "description": "The information about the Subscription.", 'classes': ('collapse',), "fields": ['subscr_id', 'subscr_date', 'subscr_effective', ], }), ("Recurring", { "description": "Information about recurring Payments.", "classes": ("collapse",), "fields": ['profile_status', 'initial_payment_amount', 'amount_per_cycle', 'outstanding_balance', 'period_type', 'product_name', 'product_type', 'recurring_payment_id', 'receipt_id', 'next_payment_date', ], }), ("Admin", { "description": "Additional Info.", "classes": ('collapse',), "fields": ['test_ipn', 'ipaddress', 'query', 'flag_code', 'flag_info', ], }), ) list_display = ["__unicode__", "flag", "invoice", "custom", "payment_status", "created_at", ] search_fields = ["txn_id", "recurring_payment_id", ] admin.site.register(PayPalPDT, PayPalPDTAdmin)
[ "006.rajpurohit@gmail.com" ]
006.rajpurohit@gmail.com
93e41cf770f4a8b381887fe281d932200adcaed5
ed9ad4660757cc842461aea831f63c397ed48385
/mapper2.py
8aec053ea8baec88f5dc040e3bf0826512a65724
[]
no_license
Dhonveli/data-creent
a66d03259416bac7377b9a22f1074f55105da9d1
00d3eac0b363500e32f3961c8da5db6d07b25617
refs/heads/master
2020-04-04T02:49:31.308885
2018-11-20T16:53:21
2018-11-20T16:53:21
155,697,561
0
0
null
null
null
null
UTF-8
Python
false
false
9,119
py
#!/usr/bin/env python import os import sys import argparse import shutil import csv # Parses the command line arguments of this program def parse_args(): # Creates an object to parse the command line parameters parser = argparse.ArgumentParser(description="This program maps genes name to nessra code", formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Positional parameters # Optional parameters parser.add_argument("-lgn", "--LocalGeneNetwork", nargs=1, help="Folder containing LGN files", type=str) parser.add_argument("-sgn", "--SingleGeneExpansionList", nargs=1, help="csv file containing gene list downloaded from OpenTarget", type=str) parser.add_argument("-a", "--annotation", help="annotation file from LBM1819", type=str, default="hgnc_cc_zero_filtered_anno.csv") parser.add_argument("-r", "--csvboinc", help="csv file from https://gene.disi.unitn.it/test/gene_h.php", type=str, default="genehome PC-IM history.csv") parser.add_argument( "-n", "--numbgenes", help="number of transcripts to run on NESSRA", type=int, default=50) # Parses and returns the object containing the params return parser.parse_args() def load_files(args): global map_gene_to_anno global map_code_to_anno global map_code_to_args with open(args.annotation) as file: # Discard the first line file.readline() # Legge il csv (il modulo csv è necessario perché i dati # sono incapsulati nelle double quotes e sarebbe difficile leggerli altrimenti) for line in csv.reader(file, quotechar='"', delimiter=',', quoting=csv.QUOTE_ALL, skipinitialspace=True): # Estrae il nome del gene e il codice dell'isoforma name = line[10] code = line[0] # Controlla dentro la mappa con il gene non ci sia ancora, # in tal caso genera una lista associata if name not in map_gene_to_anno: map_gene_to_anno[name] = [] # Aggiunge questa riga nella mappa map_gene_to_anno[name].append(line) # Controlla se non c'è il codice trovato # in tal caso genera una lista associata if code not in map_code_to_anno: map_code_to_anno[code] = [] # Aggiunge questa riga nella mappa map_code_to_anno[code].append(line) # Carica il file dei geni già runnati su boinc with open(args.csvboinc) as file: # Parsa come csv csvfile = csv.reader(file, quotechar='"', delimiter=',', quoting=csv.QUOTE_ALL, skipinitialspace=True) # Preleva l'header che lo usera nel file already-runned.csv header_runned = next(csvfile) # Scorre linea per linea for line in csvfile: # Prende solo i geni i file che iniziano con 'T' # perché significa che sono single gene expansion if line[2].startswith("T"): # Prende il codice dell'isoforma code = line[2].split('-')[0] # Inserisce nella mappa if code not in map_code_to_args: map_code_to_args[code] = [] map_code_to_args[code].append(line) def process_lgn(gene_list): global map_code_to_anno global map_gene_to_anno global map_code_to_args global csvsummary global csvrunned list_gene = [line.strip() for line in open(gene_list) if line.strip()] with open(output_folder + '/hs-' + os.path.basename(gene_list) + '.txt', 'w') as filelgn: filelgn.write('from,to') # apre il file summary lgn # itera sui gene for gene in list_gene: # guarda se sono annotati if gene not in map_gene_to_anno: csvsummary.writerow( [None, gene, "lgn", "not annotated",""]) else: for isoform in map_gene_to_anno[gene]: code = isoform[0] # scrive questo codice nella lgn filelgn.write('\n' + code + ',' + code) # Decide il nome dei file onegene filename = code + '-' + gene + '.txt' # controlla se è già stato runnato if code in map_code_to_args: for row in map_code_to_args[code]: csvrunned.writerow(row) csvsummary.writerow( [code, gene, "lgn", "already run",""]) # Altrimenti scrive il file da mandare a walter else: csvsummary.writerow( [code, gene, "lgn", "to be run","HIGH"]) with open(output_folder + '/' + filename, 'w') as file: file.write('from,to\n' + code + ',' + code) def process_sgn(gene_list): global map_code_to_anno global map_gene_to_anno global map_code_to_args global csvsummary global csvrunned global numbgenes gene_list.readline() gene_rank = {} for line in gene_list: tmp = line.split(",") gene_rank[tmp[0]] = (float(tmp[3]) + float(tmp[4])) / 2 sorted_gene = sorted(gene_rank, key=gene_rank.get, reverse=True) for gene in sorted_gene: if numbgenes <= 0: break else: if gene not in map_gene_to_anno: csvsummary.writerow( [None, gene, str(gene_rank[gene]), "not annotated",""]) else: for isoform in map_gene_to_anno[gene]: code = isoform[0] # Decide il nome dei file onegene filename = code + '-' + gene + '.txt' # controlla se è già stato runnato if code in map_code_to_args: for row in map_code_to_args[code]: csvrunned.writerow(row) csvsummary.writerow( [code, gene, str(gene_rank[gene]), "already run",""]) # Altrimenti scrive il file da mandare a walter else: numbgenes -= 1 with open(output_folder + '/' + filename, 'w') as file: file.write('from,to\n' + code + ',' + code) if gene_rank[gene] > 0.6: csvsummary.writerow( [code, gene, str(gene_rank[gene]), "to be run","HIGH"]) else: csvsummary.writerow( [code, gene, str(gene_rank[gene]), "to be run","LOW"]) # Mappa geni to code map_gene_to_anno = {} map_code_to_anno = {} map_code_to_args = {} if __name__ == "__main__": # Parses command line parameters args = parse_args() load_files(args) numbgenes = args.numbgenes input = False if os.path.exists("output_folder"): shutil.rmtree("output_folder") # Normalizza la path os.mkdir("output_folder") # Normalizza la path output_folder = os.path.normpath( 'output_folder') # removes redundant separator # apre summary with open(output_folder + '/summary.csv', "w") as summary: # scrive header csvsummary = csv.writer(summary, quotechar='"', delimiter=',', quoting=csv.QUOTE_ALL) csvsummary.writerow(["ID", "GENE", "SCORE", "STATUS","PRIORITY"]) # apre already_runned with open(output_folder + '/already-runned.csv', 'w') as filerunned: csvrunned = csv.writer(filerunned, quotechar='"', delimiter=',', quoting=csv.QUOTE_ALL) csvrunned.writerow(["ID","ORG","LGN","EXP","LastUpd","alpha","tsize","iter","nPC","nWU"]) if args.LocalGeneNetwork is not None: input = True args.LocalGeneNetwork = os.path.normpath(args.LocalGeneNetwork[0]) for name in os.listdir(args.LocalGeneNetwork): # estrae i vari lgn filename = args.LocalGeneNetwork + '/' + name if os.path.isfile(filename): process_lgn(filename) # processo lgn if args.SingleGeneExpansionList is not None: input = True args.SingleGeneExpansionList = os.path.normpath( args.SingleGeneExpansionList[0]) with open(args.SingleGeneExpansionList, "r") as filesg: process_sgn(filesg) else: if input == False: raise Exception("No input was given!")
[ "giordano.alvari@gmail.com" ]
giordano.alvari@gmail.com
8682fa1487d079c5604e8026a25f58cf69be0495
bd0b15a650d532ab95cfe945b8c59fb588d4ed7b
/download_pretrainings.py
cb8d9dd4bce32ddaebaf23656fec0a9710309e32
[ "MIT" ]
permissive
rortegagit/isaaq-anon
98ec32d2a0e4a2d654a1073fa2af627716f090ae
954206fe84d7db31bec01dc9338af5c6433974c1
refs/heads/master
2022-11-06T23:57:10.344051
2020-07-03T11:37:27
2020-07-03T11:37:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
import zipfile from google_drive_downloader import GoogleDriveDownloader as gdd from tqdm import tqdm import requests gdd.download_file_from_google_drive(file_id='1cQEjNIb11eOL4ZPKKvXPvdx9OVL324Zp', dest_path='./checkpoints.zip') with zipfile.ZipFile("checkpoints.zip", 'r') as zip_ref: zip_ref.extractall(".")
[ "noreply@github.com" ]
rortegagit.noreply@github.com
5944c73b17f82c3bf11149917b9d99491d0d1e91
fe32d7054687dd3cbee99e43b32488bff262681d
/tests/checkers/projects/test_python.py
df3e48d7ae2e84ed26b25acdbb5315f67579dd4e
[ "Apache-2.0" ]
permissive
whwkong/verse
106d61f4a3a6bbabab1cdd7583c909fa48717214
0dc25222c309c780afee5cc6d5293858e5ead08e
refs/heads/master
2021-06-14T16:31:48.729895
2017-04-04T19:20:39
2017-04-04T19:20:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,275
py
""" Test `checkers.projects.python` file """ import pytest from checkers import base from checkers.projects import python class TestPythonVersionChecker: """ Test `python.PythonVersionChecker` class """ @pytest.fixture def instance(self): return python.PythonVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Python' assert instance.slug == 'python' assert instance.homepage == 'https://www.python.org/' assert instance.repository == 'https://github.com/python/cpython' class TestAnsibleVersionChecker: """ Test `python.AnsibleVersionChecker` class """ @pytest.fixture def instance(self): return python.AnsibleVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Ansible' assert instance.slug == 'ansible' assert instance.homepage == 'https://www.ansible.com/' assert instance.repository == 'https://github.com/ansible/ansible' class TestCeleryVersionChecker: """ Test `python.CeleryVersionChecker` class """ @pytest.fixture def instance(self): return python.CeleryVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Celery' assert instance.slug == 'celery' assert instance.homepage == 'http://www.celeryproject.org/' assert instance.repository == 'https://github.com/celery/celery' class TestDjangoVersionChecker: """ Test `python.DjangoVersionChecker` class """ @pytest.fixture def instance(self): return python.DjangoVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Django' assert instance.slug == 'django' assert instance.homepage == 'https://www.djangoproject.com/' assert instance.repository == 'https://github.com/django/django' class TestDjangoRESTFrameworkVersionChecker: """ Test `python.DjangoRESTFrameworkVersionChecker` class """ @pytest.fixture def instance(self): return python.DjangoRESTFrameworkVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Django REST Framework' assert instance.slug == 'django-rest-framework' assert instance.homepage == 'http://www.django-rest-framework.org/' assert ( instance.repository == 'https://github.com/tomchristie/django-rest-framework' ) class TestFlaskVersionChecker: """ Test `python.FlaskVersionChecker` class """ @pytest.fixture def instance(self): return python.FlaskVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Flask' assert instance.slug == 'flask' assert instance.homepage == 'http://flask.pocoo.org/' assert instance.repository == 'https://github.com/pallets/flask' class TestGunicornVersionChecker: """ Test `python.GunicornVersionChecker` class """ @pytest.fixture def instance(self): return python.GunicornVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Gunicorn' assert instance.slug == 'gunicorn' assert instance.homepage == 'http://gunicorn.org/' assert instance.repository == 'https://github.com/benoitc/gunicorn' class TestRequestsVersionChecker: """ Test `python.RequestsVersionChecker` class """ @pytest.fixture def instance(self): return python.RequestsVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Requests' assert instance.slug == 'python-requests' assert instance.homepage == 'http://docs.python-requests.org/' assert ( instance.repository == 'https://github.com/kennethreitz/requests' ) def test_class_normalize_tag_name_method(self, instance): """Test class `_normalize_tag_name()` method""" assert instance._normalize_tag_name('2.0') == '' assert instance._normalize_tag_name('v2.0.0') == 'v2.0.0' def test_class_get_versions_method(self, mocker, instance): """Test class `get_versions()` method""" mocked_get_github_tags = mocker.patch.object( instance, '_get_github_tags', ) assert instance.get_versions() == mocked_get_github_tags.return_value mocked_get_github_tags.assert_called_once_with( normalize_func=instance._normalize_tag_name, ) class TestScrapyVersionChecker: """ Test `python.ScrapyVersionChecker` class """ @pytest.fixture def instance(self): return python.ScrapyVersionChecker() def test_class_inheritance(self, instance): """Test class inheritance""" assert isinstance(instance, base.BaseVersionChecker) assert isinstance(instance, base.GitHubVersionChecker) def test_class_properties(self, instance): """Test class properties""" assert instance.name == 'Scrapy' assert instance.slug == 'scrapy' assert instance.homepage == 'https://scrapy.org/' assert instance.repository == 'https://github.com/scrapy/scrapy'
[ "pawel.ad@gmail.com" ]
pawel.ad@gmail.com
02c5d9cafd5ef6b75cda0007078953c73b767feb
dba22ccd9f1e69cc3fc2fe3971cccadf9015c1c2
/prac_02/exceptions_demo.py
3395f62976fac2ac2be4dea3f8d2ec74229e0319
[]
no_license
RyanHonorica1408/CP1404
d7cd443dcc9e1de44f1a181f496c6bd9ce20ebb5
d90ff1cb2f33dd9751e0957b38eb7a51706cd000
refs/heads/master
2020-03-27T19:04:35.463157
2018-10-31T13:22:14
2018-10-31T13:22:25
146,964,246
0
0
null
2018-10-15T13:54:38
2018-09-01T03:32:17
Python
UTF-8
Python
false
false
294
py
try: numerator = int(input("Enter the numerator: ")) denominator = int(input("Enter the denominator: ")) print(fraction) except ValueError: print("Numerator and denominator must be valid numbers!") except ZeroDivisionError: print("Cannot divide by zero!") print("Finished.")
[ "ryan.tiomico@my.jcu.edu.au" ]
ryan.tiomico@my.jcu.edu.au
0df9b535a01d9194a2be299758e45ec123a5d24e
5b38eb5309dc9f360b74a6dc849b871e9c9ece47
/problems/arrays/tests/three_sum_test.py
b0a3e4cea62ebf1451de25ad73940be952131b21
[]
no_license
Beomus/py-dsa
f80e060b90ceb2c3fb8c3ad61f2553fb15c45800
e883bcd2e72b8909a401175a8b7ee52f0b680b17
refs/heads/master
2023-06-11T15:03:58.659641
2021-07-01T02:37:47
2021-07-01T02:37:47
378,858,293
0
1
null
2021-06-22T05:34:33
2021-06-21T08:22:10
Python
UTF-8
Python
false
false
1,208
py
import unittest from ..three_sum import threeSum class TestThreeSum(unittest.TestCase): def test_case_1(self): array = [12, 3, 1, 2, -6, 5, -8, 6] target = 0 output = [[-8, 2, 6], [-8, 3, 5], [-6, 1, 5]] self.assertEqual(threeSum(array, target), output) def test_case_2(self): array = [1, 2, 3] target = 6 output = [[1, 2, 3]] self.assertEqual(threeSum(array, target), output) def test_case_3(self): array = [1, 2, 3] target = 7 output = [] self.assertEqual(threeSum(array, target), output) def test_case_4(self): array = [12, 3, 1, 2, -6, 5, 0, -8, -1, 6, -5] target = 0 output = [ [-8, 2, 6], [-8, 3, 5], [-6, 0, 6], [-6, 1, 5], [-5, -1, 6], [-5, 0, 5], [-5, 2, 3], [-1, 0, 1], ] self.assertEqual(threeSum(array, target), output) def test_case_5(self): array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 15] target = 5 output = [] self.assertEqual(threeSum(array, target), output) if __name__ == "__main__": unittest.main()
[ "trunghau60@gmail.com" ]
trunghau60@gmail.com
98e60f84759f1dabfe64292e06d96f5801a51c88
ed60a26caa718cae99f97217e6664e5a23ce3d45
/networkaccessmanager.py
f4b8737e2d2bd79571b271b5ee020b61bb1201e2
[]
no_license
leonmvd/pdokservicesplugin
47580e290c2ea686541c90e6c6c6a9bc9cd5d524
00ea86d49037e27dee7db443de932c0ca9168b81
refs/heads/master
2021-08-28T15:17:41.441931
2017-11-17T13:26:52
2017-11-17T13:26:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,313
py
# -*- coding: utf-8 -*- """ *************************************************************************** An httplib2 replacement that uses QgsNetworkAccessManager https://github.com/boundlessgeo/lib-qgis-commons/blob/master/qgiscommons2/network/networkaccessmanager.py --------------------- Date : August 2016 Copyright : (C) 2016 Boundless, http://boundlessgeo.com Email : apasotti at boundlessgeo dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ import sys import os sys.path.append(os.path.dirname(__file__)) from future import standard_library standard_library.install_aliases() #from builtins import str #from builtins import object __author__ = 'Alessandro Pasotti' __date__ = 'August 2016' import re import urllib.request, urllib.error, urllib.parse from PyQt4.QtCore import pyqtSlot, QUrl, QEventLoop, QTimer, QCoreApplication from PyQt4.QtNetwork import QNetworkRequest, QNetworkReply from qgis.core import QgsNetworkAccessManager, QgsMessageLog # FIXME: ignored DEFAULT_MAX_REDIRECTS = 4 class RequestsException(Exception): pass class RequestsExceptionTimeout(RequestsException): pass class RequestsExceptionConnectionError(RequestsException): pass class RequestsExceptionUserAbort(RequestsException): pass class Map(dict): """ Example: m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer']) """ def __init__(self, *args, **kwargs): super(Map, self).__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for k, v in arg.items(): self[k] = v if kwargs: for k, v in kwargs.items(): self[k] = v def __getattr__(self, attr): return self.get(attr) def __setattr__(self, key, value): self.__setitem__(key, value) def __setitem__(self, key, value): super(Map, self).__setitem__(key, value) self.__dict__.update({key: value}) def __delattr__(self, item): self.__delitem__(item) def __delitem__(self, key): super(Map, self).__delitem__(key) del self.__dict__[key] class Response(Map): pass class NetworkAccessManager(object): """ This class mimicks httplib2 by using QgsNetworkAccessManager for all network calls. The return value is a tuple of (response, content), the first being and instance of the Response class, the second being a string that contains the response entity body. Parameters ---------- debug : bool verbose logging if True exception_class : Exception Custom exception class Usage 1 (blocking mode) ----- :: nam = NetworkAccessManager(authcgf) try: (response, content) = nam.request('http://www.example.com') except RequestsException, e: # Handle exception pass Usage 2 (Non blocking mode) ------------------------- :: NOTE! if blocking mode returns immediatly it's up to the caller to manage listeners in case of non blocking mode nam = NetworkAccessManager(authcgf) try: nam.request('http://www.example.com', blocking=False) nam.reply.finished.connect(a_signal_listener) except RequestsException, e: # Handle exception pass Get response using method: nam.httpResult() that return a dictionary with keys: 'status' - http code result come from reply.attribute(QNetworkRequest.HttpStatusCodeAttribute) 'status_code' - http code result come from reply.attribute(QNetworkRequest.HttpStatusCodeAttribute) 'status_message' - reply message string from reply.attribute(QNetworkRequest.HttpReasonPhraseAttribute) 'content' - bytearray returned from reply 'ok' - request success [True, False] 'headers' - Dicionary containing the reply header 'reason' - fomatted message string with reply.errorString() 'exception' - the exception returne dduring execution """ def __init__(self, authid=None, disable_ssl_certificate_validation=False, exception_class=None, debug=False): self.disable_ssl_certificate_validation = disable_ssl_certificate_validation self.authid = authid self.reply = None self.debug = debug self.exception_class = exception_class self.on_abort = False self.blocking_mode = False self.http_call_result = Response({ 'status': 0, 'status_code': 0, 'status_message': '', 'content' : '', 'ok': False, 'headers': {}, 'reason': '', 'exception': None, }) def msg_log(self, msg): if self.debug: QgsMessageLog.logMessage(msg, "NetworkAccessManager") def httpResult(self): return self.http_call_result def request(self, url, method="GET", body=None, headers=None, redirections=DEFAULT_MAX_REDIRECTS, connection_type=None, blocking=True): """ Make a network request by calling QgsNetworkAccessManager. redirections argument is ignored and is here only for httplib2 compatibility. """ self.msg_log(u'http_call request: {0}'.format(url)) self.blocking_mode = blocking req = QNetworkRequest() # Avoid double quoting form QUrl url = urllib.parse.unquote(url) req.setUrl(QUrl(url)) if headers is not None: # This fixes a wierd error with compressed content not being correctly # inflated. # If you set the header on the QNetworkRequest you are basically telling # QNetworkAccessManager "I know what I'm doing, please don't do any content # encoding processing". # See: https://bugs.webkit.org/show_bug.cgi?id=63696#c1 try: del headers['Accept-Encoding'] except KeyError: pass for k, v in list(headers.items()): self.msg_log("Setting header %s to %s" % (k, v)) req.setRawHeader(k, v) # if self.authid: # self.msg_log("Update request w/ authid: {0}".format(self.authid)) # QgsAuthManager.instance().updateNetworkRequest(req, self.authid) if self.reply is not None and self.reply.isRunning(): self.reply.close() if method.lower() == 'delete': func = getattr(QgsNetworkAccessManager.instance(), 'deleteResource') else: func = getattr(QgsNetworkAccessManager.instance(), method.lower()) # Calling the server ... # Let's log the whole call for debugging purposes: self.msg_log("Sending %s request to %s" % (method.upper(), req.url().toString())) self.on_abort = False headers = {str(h): str(req.rawHeader(h)) for h in req.rawHeaderList()} for k, v in list(headers.items()): self.msg_log("%s: %s" % (k, v)) if method.lower() in ['post', 'put']: if isinstance(body, file): body = body.read() self.reply = func(req, body) else: self.reply = func(req) # if self.authid: # self.msg_log("Update reply w/ authid: {0}".format(self.authid)) # QgsAuthManager.instance().updateNetworkReply(self.reply, self.authid) # necessary to trap local timout manage by QgsNetworkAccessManager # calling QgsNetworkAccessManager::abortRequest QgsNetworkAccessManager.instance().requestTimedOut.connect(self.requestTimedOut) self.reply.sslErrors.connect(self.sslErrors) self.reply.finished.connect(self.replyFinished) self.reply.downloadProgress.connect(self.downloadProgress) # block if blocking mode otherwise return immediatly # it's up to the caller to manage listeners in case of no blocking mode if not self.blocking_mode: return (None, None) # Call and block self.el = QEventLoop() self.reply.finished.connect(self.el.quit) # Catch all exceptions (and clean up requests) try: self.el.exec_(QEventLoop.ExcludeUserInputEvents) except Exception as e: raise e if self.reply: self.reply.finished.disconnect(self.el.quit) # emit exception in case of error if not self.http_call_result.ok: if self.http_call_result.exception and not self.exception_class: raise self.http_call_result.exception else: raise self.exception_class(self.http_call_result.reason) return (self.http_call_result, self.http_call_result.content) @pyqtSlot() def downloadProgress(self, bytesReceived, bytesTotal): """Keep track of the download progress""" #self.msg_log("downloadProgress %s of %s ..." % (bytesReceived, bytesTotal)) pass @pyqtSlot() def requestTimedOut(self, reply): """Trap the timeout. In Async mode requestTimedOut is called after replyFinished""" # adapt http_call_result basing on receiving qgs timer timout signal self.exception_class = RequestsExceptionTimeout self.http_call_result.exception = RequestsExceptionTimeout("Timeout error") @pyqtSlot() def replyFinished(self): err = self.reply.error() httpStatus = self.reply.attribute(QNetworkRequest.HttpStatusCodeAttribute) httpStatusMessage = self.reply.attribute(QNetworkRequest.HttpReasonPhraseAttribute) self.http_call_result.status_code = httpStatus self.http_call_result.status = httpStatus self.http_call_result.status_message = httpStatusMessage for k, v in self.reply.rawHeaderPairs(): self.http_call_result.headers[str(k)] = str(v) self.http_call_result.headers[str(k).lower()] = str(v) if err != QNetworkReply.NoError: # handle error # check if errorString is empty, if so, then set err string as # reply dump if re.match('(.)*server replied: $', self.reply.errorString()): errString = self.reply.errorString() + self.http_call_result.content else: errString = self.reply.errorString() # check if self.http_call_result.status_code is available (client abort # does not produce http.status_code) if self.http_call_result.status_code: msg = "Network error #{0}: {1}".format( self.http_call_result.status_code, errString) else: msg = "Network error: {0}".format(errString) self.http_call_result.reason = msg self.http_call_result.ok = False self.msg_log(msg) # set return exception if err == QNetworkReply.TimeoutError: self.http_call_result.exception = RequestsExceptionTimeout(msg) elif err == QNetworkReply.ConnectionRefusedError: self.http_call_result.exception = RequestsExceptionConnectionError(msg) elif err == QNetworkReply.OperationCanceledError: # request abort by calling NAM.abort() => cancelled by the user if self.on_abort: self.http_call_result.exception = RequestsExceptionUserAbort(msg) else: self.http_call_result.exception = RequestsException(msg) else: self.http_call_result.exception = RequestsException(msg) # overload exception to the custom exception if available if self.exception_class: self.http_call_result.exception = self.exception_class(msg) else: # Handle redirections redirectionUrl = self.reply.attribute(QNetworkRequest.RedirectionTargetAttribute) if redirectionUrl is not None and redirectionUrl != self.reply.url(): if redirectionUrl.isRelative(): redirectionUrl = self.reply.url().resolved(redirectionUrl) msg = "Redirected from '{}' to '{}'".format( self.reply.url().toString(), redirectionUrl.toString()) self.msg_log(msg) self.reply.deleteLater() self.reply = None self.request(redirectionUrl.toString()) # really end request else: msg = "Network success #{0}".format(self.reply.error()) self.http_call_result.reason = msg self.msg_log(msg) ba = self.reply.readAll() self.http_call_result.content = bytes(ba) self.http_call_result.ok = True # Let's log the whole response for debugging purposes: self.msg_log("Got response %s %s from %s" % \ (self.http_call_result.status_code, self.http_call_result.status_message, self.reply.url().toString())) for k, v in list(self.http_call_result.headers.items()): self.msg_log("%s: %s" % (k, v)) if len(self.http_call_result.content) < 1024: self.msg_log("Payload :\n%s" % self.http_call_result.content) else: self.msg_log("Payload is > 1 KB ...") # clean reply if self.reply is not None: if self.reply.isRunning(): self.reply.close() self.msg_log("Deleting reply ...") # Disconnect all slots self.reply.sslErrors.disconnect(self.sslErrors) self.reply.finished.disconnect(self.replyFinished) self.reply.downloadProgress.disconnect(self.downloadProgress) self.reply.deleteLater() self.reply = None else: self.msg_log("Reply was already deleted ...") @pyqtSlot() def sslErrors(self, ssl_errors): """ Handle SSL errors, logging them if debug is on and ignoring them if disable_ssl_certificate_validation is set. """ if ssl_errors: for v in ssl_errors: self.msg_log("SSL Error: %s" % v.errorString()) if self.disable_ssl_certificate_validation: self.reply.ignoreSslErrors() @pyqtSlot() def abort(self): """ Handle request to cancel HTTP call """ if (self.reply and self.reply.isRunning()): self.on_abort = True self.reply.abort()
[ "richard@duif.net" ]
richard@duif.net
e8fb7c4b15125ffbf91656ba6e26fa0b454304bb
2ccba7b17b3ce15efa627ef25ff1a1e23c4b1dbd
/Week 02/PSet02 - problem_3.py
95c7a03fbbaca44e1d0bb79106a4f6e45941938b
[ "MIT" ]
permissive
andresmachado/edx-mit-6.00
ecf62954fbc2f77ad1e14e2e179e5c011ad50b1c
cbc9b1947116433d7f2a0b47935af648b3828702
refs/heads/master
2020-12-03T07:45:29.696290
2016-09-16T12:44:39
2016-09-16T12:44:39
67,264,380
0
0
null
null
null
null
UTF-8
Python
false
false
1,550
py
# -*- coding: utf-8 -*- """ Created on Fri Sep 16 09:31:26 2016 @author: andre # edX MITx 6.00.1x # Introduction to Computer Science and Programming Using Python # Problem Set 2, problem 3 # Use bisection search to make the program faster # The following variables contain values as described below: # balance - the outstanding balance on the credit card # annualInterestRate - annual interest rate as a decimal # Monthly interest rate = (Annual interest rate) / 12.0 # Monthly payment lower bound = Balance / 12 # Monthly payment upper bound = (Balance x (1 + Monthly interest rate)12) / 12.0 # Problem Summary: Use bisection search to search for the smallest monthly payment # to the cent such that we can pay off the entire balance within a year. """ # Test Cases, comment out before submitting for grading #Test Case 1 balance = 320000 annualInterestRate = 0.2 monthly_interest_rate = (annualInterestRate / 12.0) payment_lower = (balance / 12) payment_upper = (balance * ((1 + monthly_interest_rate)**12)) / 12.0 original_balance = balance while balance != 0.00: # Set value for thePayment to midpoint of lower and upper payment = (payment_lower + payment_upper) / 2 # Reset balance each time through while loop balance = original_balance for i in range(1,13): balance = (balance - payment) * (1 + monthly_interest_rate) if balance > 0: payment_lower = payment elif balance < 0: payment_upper = payment balance = round(balance, 2) print("Lowest Payment:", round(payment,2))
[ "csantos.machado@gmail.com" ]
csantos.machado@gmail.com
0b14f4c050f42e06cf573a1f84e62522ac65add4
c7d91529db199322e39e54fe4051a75704ea843e
/华为题库/最小覆盖串.py
df725d28bca625b4f4f23c73033173ff5af73345
[]
no_license
2226171237/Algorithmpractice
fc786fd47aced5cd6d96c45f8e728c1e9d1160b7
837957ea22aa07ce28a6c23ea0419bd2011e1f88
refs/heads/master
2020-12-26T07:20:37.226443
2020-09-13T13:31:05
2020-09-13T13:31:05
237,431,164
0
0
null
null
null
null
UTF-8
Python
false
false
1,644
py
''' 给你一个字符串 S、一个字符串 T,请在字符串 S 里面找出:包含 T 所有字母的最小子串。 示例: 输入: S = "ADOBECODEBANC", T = "ABC" 输出: "BANC" 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/minimum-window-substring 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 ''' from collections import Counter class Solution: def minWindow(self, s: str, t: str) -> str: ''' 双指针,滑动窗口 :param s: :param t: :return: ''' needs=Counter(t) need_matchs=len(needs) match=0 # 有多字符符合要求了 window={} left,right=0,0 start=0 minLens=2**32 while right<len(s): ch=s[right] if needs[ch]: # 需要匹配 window[ch]=window.get(ch,0)+1 if window[ch]==needs[ch]: # 该字符匹配成功 match+=1 right+=1 while match==need_matchs: # 所有都匹配成功,左边不断右移,直到不匹配 if right-left<minLens: # 更新最小子串 start=left minLens=right-left ch=s[left] if needs[ch]: window[ch]-=1 if window[ch]<needs[ch]: # 出现了不匹配 match-=1 left+=1 return '' if minLens==2**32 else s[start:start+minLens] if __name__ == '__main__': S=Solution() print(S.minWindow("cabwefgewcwaefgcf","cae"))
[ "2226171237@qq.com" ]
2226171237@qq.com
88f86d48dcdf56ff72b52bdbfef2d6666f1e97dc
fe67f7789cb632ff25025cbf034373e1f96fb17f
/python/learn-python-hard-way/demo/demo-14-prompt-and-transfer.py
70772cf3989d9dfd5d0d191b1059f9781a98e400
[]
no_license
siu91/ddu
2a75241cff2bfe74322ba2f86fc7b380ba79c01e
3756e0a286c40820e0f265ad51a34c34610ec7a8
refs/heads/master
2021-07-05T07:30:49.874509
2017-09-28T08:59:48
2017-09-28T08:59:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
575
py
# -- coding: utf-8 -- # # python ex14.py Zed from sys import argv script, user_name = argv prompt = '> ' print "Hi %s, I'm the %s script." % (user_name, script) print "I'd like to ask you a few questions." print "Do you like me %s?" % user_name likes = raw_input(prompt) print "Where do you live %s?" % user_name lives = raw_input(prompt) print "What kind of computer do you have?" computer = raw_input(prompt) print """ Alright, so you said %r about liking me. You live in %r. Not sure where that is. And you have a %r computer. Nice. """ % (likes, lives, computer)
[ "gshiwen@gmail.com" ]
gshiwen@gmail.com
9c9afd3e135cc465a3e280dc8aae93917bf8c46f
b80e611e74928057d032849e775bbd2d50dd27d6
/puppet/modules/eayunstack/files/q-agent-cleanup.py
1fb4a0c23ef72af9406005c1af1c1741a61f7571
[ "Apache-2.0" ]
permissive
eayunstack/eayunstack-upgrade
6d98802c94334bcd56ac81acf528b02c99dcb01c
f15669d49205c6a7de8b7b57dfcea1cbc6410b4e
refs/heads/master
2020-05-22T06:57:10.312773
2017-12-07T00:47:35
2017-12-07T00:47:35
48,354,515
1
12
Apache-2.0
2017-12-12T10:01:59
2015-12-21T06:19:37
Python
UTF-8
Python
false
false
29,639
py
#!/usr/bin/env python import re import time import os import sys import random import string import json import argparse import logging import logging.handlers import shlex import subprocess import StringIO import socket from neutronclient.neutron import client as q_client from keystoneclient.v2_0 import client as ks_client from keystoneclient.apiclient.exceptions import NotFound as ks_NotFound LOG_NAME = 'q-agent-cleanup' API_VER = '2.0' PORT_ID_PART_LEN = 11 TMP_USER_NAME = 'tmp_neutron_admin' def get_authconfig(cfg_file): # Read OS auth config file rv = {} stripchars=" \'\"" with open(cfg_file) as f: for line in f: rg = re.match(r'\s*export\s+(\w+)\s*=\s*(.*)',line) if rg : #Use shlex to unescape bash shell escape characters value = "".join(x for x in shlex.split(rg.group(2).strip(stripchars))) rv[rg.group(1).strip(stripchars)] = value return rv class NeutronCleaner(object): PORT_NAME_PREFIXES_BY_DEV_OWNER = { 'network:dhcp': 'tap', 'network:router_gateway': 'qg-', 'network:router_interface': 'qr-', } PORT_NAME_PREFIXES = { # contains tuples of prefixes 'dhcp': (PORT_NAME_PREFIXES_BY_DEV_OWNER['network:dhcp'],), 'l3': ( PORT_NAME_PREFIXES_BY_DEV_OWNER['network:router_gateway'], PORT_NAME_PREFIXES_BY_DEV_OWNER['network:router_interface'] ) } BRIDGES_FOR_PORTS_BY_AGENT ={ 'dhcp': ('br-int',), 'l3': ('br-int', 'br-ex'), } PORT_OWNER_PREFIXES = { 'dhcp': ('network:dhcp',), 'l3': ('network:router_gateway', 'network:router_interface') } NS_NAME_PREFIXES = { 'dhcp': 'qdhcp', 'l3': 'qrouter', 'lbaas': 'qlbaas' } AGENT_BINARY_NAME = { 'dhcp': 'neutron-dhcp-agent', 'l3': 'neutron-l3-agent', 'ovs': 'neutron-openvswitch-agent', 'lbaas': 'neutron-lbaas-agent' } CMD__list_ovs_port = ['ovs-vsctl', 'list-ports'] CMD__remove_ovs_port = ['ovs-vsctl', '--', '--if-exists', 'del-port'] CMD__remove_ip_addr = ['ip', 'address', 'delete'] CMD__ip_netns_list = ['ip', 'netns', 'list'] CMD__ip_netns_exec = ['ip', 'netns', 'exec'] RE__port_in_portlist = re.compile(r"^\s*\d+\:\s+([\w-]+)\:") # 14: tap-xxxyyyzzz: def __init__(self, openrc, options, log=None): self.log = log self.auth_config = openrc self.options = options self.agents = {} self.debug = options.get('debug') self.RESCHEDULING_CALLS = { 'dhcp': self._reschedule_agent_dhcp, 'l3': self._reschedule_agent_l3, 'lbaas': self._reschedule_agent_lbaas } self._token = None self._keystone = None self._client = None self._need_cleanup_tmp_admin = False def __del__(self): if self._need_cleanup_tmp_admin and self._keystone and self._keystone.username: try: self._keystone.users.delete(self._keystone.users.find(username=self._keystone.username)) except: # if we get exception while cleaning temporary account -- nothing harm pass def generate_random_passwd(self, length=13): chars = string.ascii_letters + string.digits + '!@#$%^&*()' random.seed = (os.urandom(1024)) return ''.join(random.choice(chars) for i in range(length)) @property def keystone(self): if self._keystone is None: ret_count = self.options.get('retries', 1) tmp_passwd = self.generate_random_passwd() while True: if ret_count <= 0: self.log.error(">>> Keystone error: no more retries for connect to keystone server.") sys.exit(1) try: a_token = self.options.get('auth-token') a_url = self.options.get('admin-auth-url') if a_token and a_url: self.log.debug("Authentication by predefined token.") # create keystone instance, authorized by service token ks = ks_client.Client( token=a_token, endpoint=a_url, ) service_tenant = ks.tenants.find(name='services') # get first vaild auth url auth_url = ks.endpoints.findall( service_id=ks.services.find(type='identity').id )[0].internalurl # find and re-create temporary rescheduling-admin user with random password try: user = ks.users.find(username=TMP_USER_NAME) ks.users.delete(user) except ks_NotFound: # user not found, it's OK pass user = ks.users.create(TMP_USER_NAME, tmp_passwd, tenant_id=service_tenant.id) ks.roles.add_user_role(user, ks.roles.find(name='admin'), service_tenant) # authenticate newly-created tmp neutron admin self._keystone = ks_client.Client( username=user.username, password=tmp_passwd, tenant_id=user.tenantId, auth_url=auth_url, ) self._need_cleanup_tmp_admin = True else: self.log.debug("Authentication by given credentionals.") self._keystone = ks_client.Client( username=self.auth_config['OS_USERNAME'], password=self.auth_config['OS_PASSWORD'], tenant_name=self.auth_config['OS_TENANT_NAME'], auth_url=self.auth_config['OS_AUTH_URL'], ) break except Exception as e: errmsg = str(e.message).strip() # str() need, because keystone may use int as message in exception if re.search(r"Connection\s+refused$", errmsg, re.I) or \ re.search(r"Connection\s+timed\s+out$", errmsg, re.I) or\ re.search(r"Lost\s+connection\s+to\s+MySQL\s+server", errmsg, re.I) or\ re.search(r"Service\s+Unavailable$", errmsg, re.I) or\ re.search(r"'*NoneType'*\s+object\s+has\s+no\s+attribute\s+'*__getitem__'*$", errmsg, re.I) or \ re.search(r"No\s+route\s+to\s+host$", errmsg, re.I): self.log.info(">>> Can't connect to {0}, wait for server ready...".format(self.auth_config['OS_AUTH_URL'])) time.sleep(self.options.sleep) else: self.log.error(">>> Keystone error:\n{0}".format(e.message)) raise e ret_count -= 1 return self._keystone @property def token(self): if self._token is None: self._token = self._keystone.auth_token #self.log.debug("Auth_token: '{0}'".format(self._token)) #todo: Validate existing token return self._token @property def client(self): if self._client is None: self._client = q_client.Client( API_VER, endpoint_url=self.keystone.endpoints.find( service_id=self.keystone.services.find(type='network').id ).adminurl, token=self.token, ) return self._client def _neutron_API_call(self, method, *args): ret_count = self.options.get('retries') while True: if ret_count <= 0: self.log.error("Q-server error: no more retries for connect to server.") return [] try: rv = method (*args) break except Exception as e: errmsg = str(e.message).strip() if re.search(r"Connection\s+refused", errmsg, re.I) or\ re.search(r"Connection\s+timed\s+out", errmsg, re.I) or\ re.search(r"Lost\s+connection\s+to\s+MySQL\s+server", errmsg, re.I) or\ re.search(r"503\s+Service\s+Unavailable", errmsg, re.I) or\ re.search(r"No\s+route\s+to\s+host", errmsg, re.I): self.log.info("Can't connect to {0}, wait for server ready...".format(self.keystone.service_catalog.url_for(service_type='network'))) time.sleep(self.options.sleep) else: self.log.error("Neutron error:\n{0}".format(e.message)) raise e ret_count -= 1 return rv def _get_agents(self,use_cache=True): return self._neutron_API_call(self.client.list_agents)['agents'] def _get_routers(self, use_cache=True): return self._neutron_API_call(self.client.list_routers)['routers'] def _get_networks(self, use_cache=True): return self._neutron_API_call(self.client.list_networks)['networks'] def _list_networks_on_dhcp_agent(self, agent_id): return self._neutron_API_call(self.client.list_networks_on_dhcp_agent, agent_id)['networks'] def _list_routers_on_l3_agent(self, agent_id): return self._neutron_API_call(self.client.list_routers_on_l3_agent, agent_id)['routers'] def _list_l3_agents_on_router(self, router_id): return self._neutron_API_call(self.client.list_l3_agent_hosting_routers, router_id)['agents'] def _list_dhcp_agents_on_network(self, network_id): return self._neutron_API_call(self.client.list_dhcp_agent_hosting_networks, network_id)['agents'] def _list_orphaned_networks(self): networks = self._get_networks() self.log.debug("_list_orphaned_networks:, got list of networks {0}".format(json.dumps(networks,indent=4))) orphaned_networks = [] for network in networks: if len(self._list_dhcp_agents_on_network(network['id'])) == 0: orphaned_networks.append(network['id']) self.log.debug("_list_orphaned_networks:, got list of orphaned networks {0}".format(orphaned_networks)) return orphaned_networks def _list_orphaned_routers(self): routers = self._get_routers() self.log.debug("_list_orphaned_routers:, got list of routers {0}".format(json.dumps(routers,indent=4))) orphaned_routers = [] for router in routers: if len(self._list_l3_agents_on_router(router['id'])) == 0: orphaned_routers.append(router['id']) self.log.debug("_list_orphaned_routers:, got list of orphaned routers {0}".format(orphaned_routers)) return orphaned_routers def _add_network_to_dhcp_agent(self, agent_id, net_id): return self._neutron_API_call(self.client.add_network_to_dhcp_agent, agent_id, {"network_id": net_id}) def _add_router_to_l3_agent(self, agent_id, router_id): return self._neutron_API_call(self.client.add_router_to_l3_agent, agent_id, {"router_id": router_id}) def _remove_router_from_l3_agent(self, agent_id, router_id): return self._neutron_API_call(self.client.remove_router_from_l3_agent, agent_id, router_id) def _list_pools_on_lbaas_agent(self, agent_id): return self._neutron_API_call(self.client.list_pools_on_lbaas_agent, agent_id)['pools'] def _add_pool_to_lbaas_agent(self, agent_id, pool_id): return self._neutron_API_call(self.client.add_pool_to_lb_agent, agent_id, {"pool_id": pool_id}) def _get_agents_by_type(self, agent, use_cache=True): self.log.debug("_get_agents_by_type: start.") rv = self.agents.get(agent, []) if use_cache else [] if not rv: agents = self._get_agents(use_cache=use_cache) for i in agents: if i['binary'] == self.AGENT_BINARY_NAME.get(agent): rv.append(i) from_cache = '' else: from_cache = ' from local cache' self.log.debug("_get_agents_by_type: end, {0} rv: {1}".format(from_cache, json.dumps(rv, indent=4))) return rv def __collect_namespaces_for_agent(self, agent): cmd = self.CMD__ip_netns_list[:] self.log.debug("Execute command '{0}'".format(' '.join(cmd))) process = subprocess.Popen( cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) rc = process.wait() if rc != 0: self.log.error("ERROR (rc={0}) while execution {1}".format(rc, ' '.join(cmd))) return [] # filter namespaces by given agent type netns = [] stdout = process.communicate()[0] for ns in StringIO.StringIO(stdout): ns = ns.strip() self.log.debug("Found network namespace '{0}'".format(ns)) if ns.startswith("{0}-".format(self.NS_NAME_PREFIXES[agent])): netns.append(ns) return netns def __collect_ports_for_namespace(self, ns): cmd = self.CMD__ip_netns_exec[:] cmd.extend([ns, 'ip', 'l', 'show']) self.log.debug("Execute command '{0}'".format(' '.join(cmd))) process = subprocess.Popen( cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) rc = process.wait() if rc != 0: self.log.error("ERROR (rc={0}) while execution {1}".format(rc, ' '.join(cmd))) return [] ports = [] stdout = process.communicate()[0] for line in StringIO.StringIO(stdout): pp = self.RE__port_in_portlist.match(line) if not pp: continue port = pp.group(1) if port != 'lo': self.log.debug("Found port '{0}'".format(port)) ports.append(port) return ports def _cleanup_ports(self, agent): self.log.debug("_cleanup_ports: start.") # get namespaces list netns = self.__collect_namespaces_for_agent(agent) # collect ports from namespace ports = [] for ns in netns: ports.extend(self.__collect_ports_for_namespace(ns)) # iterate by port_list and remove port from OVS for port in ports: cmd = self.CMD__remove_ovs_port[:] cmd.append(port) if self.options.get('noop'): self.log.info("NOOP-execution: '{0}'".format(' '.join(cmd))) else: self.log.debug("Execute command '{0}'".format(' '.join(cmd))) process = subprocess.Popen( cmd, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) rc = process.wait() if rc != 0: self.log.error("ERROR (rc={0}) while execution {1}".format(rc, ' '.join(cmd))) self.log.debug("_cleanup_ports: end.") return True def _reschedule_agent_dhcp(self, agent_type): self.log.debug("_reschedule_agent_dhcp: start.") agents = { 'alive': [], 'dead': [] } # collect networklist from dead DHCP-agents dead_networks = [] for agent in self._get_agents_by_type(agent_type): if agent['alive']: self.log.info("found alive DHCP agent: {0}".format(agent['id'])) agents['alive'].append(agent) else: # dead agent self.log.info("found dead DHCP agent: {0}".format(agent['id'])) agents['dead'].append(agent) for net in self._list_networks_on_dhcp_agent(agent['id']): dead_networks.append(net) if dead_networks and agents['alive']: # get network-ID list of already attached to alive agent networks lucky_ids = set() map( lambda net: lucky_ids.add(net['id']), self._list_networks_on_dhcp_agent(agents['alive'][0]['id']) ) # add dead networks to alive agent for net in dead_networks: if net['id'] not in lucky_ids: # attach network to agent self.log.info("attach network {net} to DHCP agent {agent}".format( net=net['id'], agent=agents['alive'][0]['id'] )) if not self.options.get('noop'): self._add_network_to_dhcp_agent(agents['alive'][0]['id'], net['id']) #if error: # return # remove dead agents if need (and if found alive agent) if self.options.get('remove-dead'): for agent in agents['dead']: self.log.info("remove dead DHCP agent: {0}".format(agent['id'])) if not self.options.get('noop'): self._neutron_API_call(self.client.delete_agent, agent['id']) orphaned_networks=self._list_orphaned_networks() self.log.info("_reschedule_agent_dhcp: rescheduling orphaned networks") if orphaned_networks and agents['alive']: for network in orphaned_networks: self.log.info("_reschedule_agent_dhcp: rescheduling {0} to {1}".format(network,agents['alive'][0]['id'])) if not self.options.get('noop'): self._add_network_to_dhcp_agent(agents['alive'][0]['id'], network) self.log.info("_reschedule_agent_dhcp: ended rescheduling of orphaned networks") self.log.debug("_reschedule_agent_dhcp: end.") def _reschedule_agent_l3(self, agent_type): self.log.debug("_reschedule_agent_l3: start.") agents = { 'alive': [], 'dead': [] } # collect router-list from dead DHCP-agents dead_routers = [] # array of tuples (router, agentID) for agent in self._get_agents_by_type(agent_type): if agent['alive']: self.log.info("found alive L3 agent: {0}".format(agent['id'])) agents['alive'].append(agent) else: # dead agent self.log.info("found dead L3 agent: {0}".format(agent['id'])) agents['dead'].append(agent) map( lambda rou: dead_routers.append((rou, agent['id'])), self._list_routers_on_l3_agent(agent['id']) ) self.log.debug("L3 agents in cluster: {ags}".format(ags=json.dumps(agents, indent=4))) self.log.debug("Routers, attached to dead L3 agents: {rr}".format(rr=json.dumps(dead_routers, indent=4))) if dead_routers and agents['alive']: # get router-ID list of already attached to alive agent routerss lucky_ids = set() map( lambda rou: lucky_ids.add(rou['id']), self._list_routers_on_l3_agent(agents['alive'][0]['id']) ) # remove dead agents after rescheduling for agent in agents['dead']: self.log.info("remove dead L3 agent: {0}".format(agent['id'])) if not self.options.get('noop'): self._neutron_API_call(self.client.delete_agent, agent['id']) # move routers from dead to alive agent for rou in filter(lambda rr: not(rr[0]['id'] in lucky_ids), dead_routers): # self.log.info("unschedule router {rou} from L3 agent {agent}".format( # rou=rou[0]['id'], # agent=rou[1] # )) # if not self.options.get('noop'): # self._remove_router_from_l3_agent(rou[1], rou[0]['id']) # #todo: if error: # # self.log.info("schedule router {rou} to L3 agent {agent}".format( rou=rou[0]['id'], agent=agents['alive'][0]['id'] )) if not self.options.get('noop'): self._add_router_to_l3_agent(agents['alive'][0]['id'], rou[0]['id']) orphaned_routers=self._list_orphaned_routers() self.log.info("_reschedule_agent_l3: rescheduling orphaned routers") if orphaned_routers and agents['alive']: for router in orphaned_routers: self.log.info("_reschedule_agent_l3: rescheduling {0} to {1}".format(router,agents['alive'][0]['id'])) if not self.options.get('noop'): self._add_router_to_l3_agent(agents['alive'][0]['id'], router) self.log.info("_reschedule_agent_l3: ended rescheduling of orphaned routers") self.log.debug("_reschedule_agent_l3: end.") def _reschedule_agent_lbaas(self, agent_type): self.log.debug("_reschedule_agent_lbaas: start.") agents = { 'alive': [], 'dead': [] } # collect pool-list from dead Lbaas agent dead_pools = [] # array of tuples (pool, agentID) host_name = socket.gethostname() for agent in self._get_agents_by_type(agent_type): if agent['alive'] and (agent['host'] != host_name or not self.options.get('remove-self')): self.log.info("found alive Lbaas agent: {0}".format(agent['id'])) agents['alive'].append(agent) else: # dead agent self.log.info("found dead Lbaas agent: {0}".format(agent['id'])) agents['dead'].append(agent) map( lambda pool: dead_pools.append((pool, agent['id'])), self._list_pools_on_lbaas_agent(agent['id']) ) self.log.debug("Lbaas agents in cluster: {ags}".format(ags=json.dumps(agents, indent=4))) self.log.debug("Pools, attached to dead Lbaas agents: {pool}".format(pool=json.dumps(dead_pools, indent=4))) if dead_pools and agents['alive']: # get pool-ID list of already attached to alive agent lbaas lucky_ids = set() map( lambda pool: lucky_ids.add(pool['id']), self._list_pools_on_lbaas_agent(agents['alive'][0]['id']) ) # remove dead agents after rescheduling for agent in agents['dead']: self.log.info("remove dead Lbaas agent: {0}".format(agent['id'])) if not self.options.get('noop'): self._neutron_API_call(self.client.delete_agent, agent['id']) # move lbaas pool from dead to alive agent for pool in filter(lambda pool: not(pool[0]['id'] in lucky_ids), dead_pools): self.log.info("schedule pool {pool} to Lbaas agent {agent}".format( pool=pool[0]['id'], agent=agents['alive'][0]['id'] )) if not self.options.get('noop'): self._add_pool_to_lbaas_agent(agents['alive'][0]['id'], pool[0]['id']) self.log.debug("_reschedule_agent_lbaas: end.") def _remove_self(self,agent_type): self.log.debug("_remove_self: start.") for agent in self._get_agents_by_type(agent_type): if agent['host'] == socket.gethostname(): self.log.info("_remove_self: deleting our own agent {0} of type {1}".format(agent['id'],agent_type)) if not self.options.get('noop'): self._neutron_API_call(self.client.delete_agent, agent['id']) self.log.debug("_remove_self: end.") def _reschedule_agent(self, agent): self.log.debug("_reschedule_agents: start.") task = self.RESCHEDULING_CALLS.get(agent, None) if task: task (agent) self.log.debug("_reschedule_agents: end.") def do(self, agent): if self.options.get('cleanup-ports'): self._cleanup_ports(agent) if self.options.get('reschedule'): self._reschedule_agent(agent) if self.options.get('remove-self'): self._remove_self(agent) # if self.options.get('remove-agent'): # self._cleanup_agents(agent) def _test_healthy(self, agent_list, hostname): rv = False for agent in agent_list: if agent['host'] == hostname and agent['alive']: return True return rv def test_healthy(self, agent_type): rc = 9 # OCF_FAILED_MASTER, http://www.linux-ha.org/doc/dev-guides/_literal_ocf_failed_master_literal_9.html agentlist = self._get_agents_by_type(agent_type) for hostname in self.options.get('test-hostnames'): if self._test_healthy(agentlist, hostname): return 0 return rc if __name__ == '__main__': parser = argparse.ArgumentParser(description='Neutron network node cleaning tool.') parser.add_argument("-c", "--auth-config", dest="authconf", default="/root/openrc", help="Authenticating config FILE", metavar="FILE") parser.add_argument("-t", "--auth-token", dest="auth-token", default=None, help="Authenticating token (instead username/passwd)", metavar="TOKEN") parser.add_argument("-u", "--admin-auth-url", dest="admin-auth-url", default=None, help="Authenticating URL (admin)", metavar="URL") parser.add_argument("--retries", dest="retries", type=int, default=50, help="try NN retries for API call", metavar="NN") parser.add_argument("--sleep", dest="sleep", type=int, default=2, help="sleep seconds between retries", metavar="SEC") parser.add_argument("-a", "--agent", dest="agent", action="append", help="specyfy agents for cleaning", required=True) parser.add_argument("--cleanup-ports", dest="cleanup-ports", action="store_true", default=False, help="cleanup ports for given agents on this node") parser.add_argument("--remove-self", dest="remove-self", action="store_true", default=False, help="remove ourselves from agent list") parser.add_argument("--activeonly", dest="activeonly", action="store_true", default=False, help="cleanup only active ports") parser.add_argument("--reschedule", dest="reschedule", action="store_true", default=False, help="reschedule given agents") parser.add_argument("--remove-dead", dest="remove-dead", action="store_true", default=False, help="remove dead agents while rescheduling") parser.add_argument("--test-alive-for-hostname", dest="test-hostnames", action="append", help="testing agent's healthy for given hostname") parser.add_argument("--external-bridge", dest="external-bridge", default="br-ex", help="external bridge name", metavar="IFACE") parser.add_argument("--integration-bridge", dest="integration-bridge", default="br-int", help="integration bridge name", metavar="IFACE") parser.add_argument("-l", "--log", dest="log", action="store", help="log file or logging.conf location") parser.add_argument("--noop", dest="noop", action="store_true", default=False, help="do not execute, print to log instead") parser.add_argument("--debug", dest="debug", action="store_true", default=False, help="debug") args = parser.parse_args() # if len(args) != 1: # parser.error("incorrect number of arguments") # parser.print_help() args = parser.parse_args() #setup logging if args.debug: _log_level = logging.DEBUG else: _log_level = logging.INFO if not args.log: # log config or file not given -- log to console LOG = logging.getLogger(LOG_NAME) # do not move to UP of file _log_handler = logging.StreamHandler(sys.stdout) _log_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")) LOG.addHandler(_log_handler) LOG.setLevel(_log_level) elif args.log.split(os.sep)[-1] == 'logging.conf': # setup logging by external file import logging.config logging.config.fileConfig(args.log) LOG = logging.getLogger(LOG_NAME) # do not move to UP of file else: # log to given file LOG = logging.getLogger(LOG_NAME) # do not move to UP of file LOG.addHandler(logging.handlers.WatchedFileHandler(args.log)) LOG.setLevel(_log_level) LOG.info("Started: {0}".format(' '.join(sys.argv))) cleaner = NeutronCleaner(get_authconfig(args.authconf), options=vars(args), log=LOG) rc = 0 if vars(args).get('test-hostnames'): rc = cleaner.test_healthy(args.agent[0]) else: for i in args.agent: cleaner.do(i) LOG.debug("End.") sys.exit(rc) # ###
[ "tangch318@gmail.com" ]
tangch318@gmail.com
90ec8572ac7dbc56cb8b0885e25dd3a9dcc8e28c
b6e90e33a51fa9b7b9901e7adeafdc005247ad99
/working_gnumpy.py
6d2cc1849c31c654429a2edbbd9d492a9cac85d5
[]
no_license
rasoolianbehnam/gpu_experiments
3394313ef724fec6063632729046c6bae2c4a518
c8fbe332741cfd2ec9fad113336c97363dbfa58c
refs/heads/master
2020-03-09T19:01:09.418706
2018-05-09T17:45:32
2018-05-09T17:45:32
128,947,206
0
0
null
2018-05-09T17:45:33
2018-04-10T14:33:37
Python
UTF-8
Python
false
false
16,630
py
# coding: utf-8 # In[1]: import numpy as np import time import os.path def mat_pow(a, k, b): if k == 0: m = np.eye(a.shape[0]) b = m * 1. elif k % 2: m, b = mat_pow(a, k-1, b) m = a.dot(m) b += a else: m, b = mat_pow(a, k // 2, b) m = m.dot(m) b += a print(k) return m, b def convert_sparse_matrix_to_sparse_tensor(coo): indices = np.mat([coo.row, coo.col]).transpose() return tf.SparseTensor(indices, coo.data, coo.shape) def save_sparse_csr(filename, array): np.savez(filename, data=array.data, \ indices=array.indices, indptr=array.indptr, shape=array.shape) def load_sparse_csr(filename): loader = np.load(filename) return csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape']) class poisson_vectorized: def __init__(self, n1, n2, n3, w, num_iterations=40, h=1e-3, method='ndarray',\ upper_lim=3, want_cuda=False): self.n1 = n1 self.n2 = n2 self.n3 = n3 self.imax = n1 - upper_lim self.jmax = n2 - upper_lim self.kmax = n3 - upper_lim self.method = method self.kernels = {} #keys = ['poisson', 'x_gradient', 'y_gradient', 'average_x'] keys = ['poisson', 'g'] if self.method == 'lil' or method == 'coo1': for key in keys: self.kernels[key] = lil_matrix((n1*n2*n3, n1*n2*n3), dtype='float64') elif method == 'coo': for key in keys: self.kernels[key] = np.zeros((n1*n2*n3, n1*n2*n3), dtype='float64') elif self.method == 'ndarray': for key in keys: self.kernels[key] = np.zeros((n1*n2*n3, n1*n2*n3), dtype='float64') print("method used is %s"%(self.method)) self.w = w self.h = h self.h2 = h**2 self.num_iterations = num_iterations print("Starting to create kernels...") for I in range(0, n1*n2*n3): k = I % n3 s1 = (I - k) // n3 j = s1 % n2 i = (s1 - j) // n2 #print(I, i, j, k) if (i >= 1 and i < self.imax+1 and j >= 1 and j < self.jmax+1 and k >= 1 and k < self.kmax-1): #print(I, i, j, k) if (I % 1000 == 0): print("%d / %d"%(I, n1*n2*n3)) self.kernels['poisson'][I, :] =self.w*1./6* \ ( self.kernels['poisson'][I-1, :] \ + self.kernels['poisson'][I-n3, :] \ + self.kernels['poisson'][I-n3*n2, :]) self.kernels['poisson'][I, I+1] += self.w*1./6 self.kernels['poisson'][I, I+n3] += self.w*1./6 self.kernels['poisson'][I, I+n2*n3] += self.w*1./6 self.kernels['poisson'][I, I] += 1 - self.w # g[I] +=self.w*1./6* \ # ( g[I-1] # + g[I-self.n3] # + g[I-self.n3*self.n2]) self.kernels['g'][I, :] = self.w * 1./6*\ (self.kernels['g'][I-1,:] \ +self.kernels['g'][I-self.n3, :] \ +self.kernels['g'][I-self.n3*self.n2, :] \ ) self.kernels['g'][I, I] += 1 # self.kernels['x_gradient'][I, I] = -1 # self.kernels['x_gradient'][I, I+n2*n3] = 1 # # self.kernels['y_gradient'][I, I] = -1 # self.kernels['y_gradient'][I, I + n3] = 1 # elif (i >= 2 and i < self.imax+1 and # j >= 1 and j < self.jmax and # k >= 1 and k < self.kmax-1): # self.kernels['average_x'][I, I] = 1 # self.kernels['average_x'][I, I+n3] = 1 # self.kernels['average_x'][I, I-n2*n3] = 1 # self.kernels['average_x'][I, I+n3-n2*n3] = 1 else: self.kernels['poisson'][I, I] = 1 print("Finished creating kernels.") if self.method == 'coo': print("Starting coo conversion") for key in self.kernels: self.kernels[key] = coo_matrix(self.kernels[key], (n1*n2*n3, n1*n2*n3), dtype='float64') # uncomment in order to make fast1 work # fast1 is less efficient that fast due to chain matrix multiplicaiton order # rule. if self.method == 'coo': self.B = lil_matrix(eye(n1*n2*n3, n1*n2*n3), dtype='float64') elif self.method == 'ndarray': self.B = np.eye(n1*n2*n3, n1*n2*n3) #A_file_name = 'self_A_%d_%d_%d_%d_coo.npz'%(n1, n2, n3, self.num_iterations) #B_file_name = 'self_B_%d_%d_%d_%d_coo.npz'%(n1, n2, n3, self.num_iterations) #A_loaded = False #if os.path.isfile(A_file_name): # print("A file exitst.") # self.A = load_sparse_csr(A_file_name) # A_loaded = True #B_loaded = False #if os.path.isfile(B_file_name): # print("B file exitst.") # self.B = load_sparse_csr(B_file_name) # B_loaded = True #if A_loaded and B_loaded: # print("A and B has been found!!") # if self.method == 'ndarray': # self.A = self.A.todense() # self.B = self.B.todense() #else: # self.A = self.kernels['poisson'] # for kk in range(self.num_iterations-1): # print(kk) # self.B += self.A # self.A = self.kernels['poisson'].dot(self.A) # print('converting large A and B to coo format to store') # self.B = coo_matrix(self.B, (n1*n2*n3, n1*n2*n3), dtype='float64') # self.A = coo_matrix(self.B, (n1*n2*n3, n1*n2*n3), dtype='float64') # print("saving self.B: ") # save_sparse_csr(B_file_name, self.B.tocsr()) # print("saving self.A: ") # save_sparse_csr(A_file_name, self.A.tocsr()) print("calculating matrix powers") Afound = Bfound = False A_file_name = 'self_A_%d_%d_%d_%d_ndarray.npy'%(n1, n2, n3, self.num_iterations) B_file_name = 'self_B_%d_%d_%d_%d_ndarray.npy'%(n1, n2, n3, self.num_iterations) if os.path.isfile(A_file_name): print("%s exists"%(A_file_name)) self.A = np.load(A_file_name).astype('float64') Afound = True if os.path.isfile(B_file_name): print("%s exists"%(B_file_name)) self.B = np.load(B_file_name).astype('float64') Bfound = True if (not Afound and not Bfound): self.A = self.kernels['poisson'] for kk in range(self.num_iterations-1): if (kk % 10 == 0): print(kk) self.B += self.A self.A = self.kernels['poisson'].dot(self.A) np.save(A_file_name, self.A) np.save(B_file_name, self.B) print("converting to torch...") self.Atorch = torch.from_numpy(self.A) self.Btorch = torch.from_numpy(self.B) self.kernels['g_torch'] = torch.from_numpy(self.kernels['g']) if torch.cuda.is_available() and want_cuda: print("cuda available in pv") self.Atorch = self.Atorch.cuda() self.Btorch = self.Btorch.cuda() self.kernels['g_torch'] = self.kernels['g_torch'].cuda() print("finished!!") def poisson_fast_one_loop(self, V, g): out = V g = self.w * self.h2 * g / 6 for I in range(0, self.n1*self.n2*self.n3): k = I % self.n3 s1 = (I - k) // self.n3 j = s1 % self.n2 i = (s1 - j) // self.n2 #print(I, i, j, k) if (i >= 1 and i < self.imax+1 and j >= 1 and j < self.jmax+1 and k >= 1 and k < self.kmax-1): #print(I, i, j, k) g[I] +=self.w*1./6* \ ( g[I-1] + g[I-self.n3] + g[I-self.n3*self.n2]) else: g[I] = 0 for kk in range(self.num_iterations): out = self.kernels['poisson'].dot(out) - g return out def poisson_fast_one_loop_gpu(self, V, g, A, sess): out = V g = self.w * self.h2 * g / 6 for kk in range(self.num_iterations): out = tf.sparse_tensor_dense_matmul(A, out) - g #out = tf.matmul(A, out) - g sess.run(out) return sess, out #can be numerically unstable def poisson_fast_no_loop_old(self, V, g): g = self.w * self.h2 * g / 6. for I in range(0, self.n1*self.n2*self.n3): k = I % self.n3 s1 = (I - k) // self.n3 j = s1 % self.n2 i = (s1 - j) // self.n2 #print(I, i, j, k) if (i >= 1 and i < self.imax+1 and j >= 1 and j < self.jmax+1 and k >= 1 and k < self.kmax-1): #print(I, i, j, k) g[I] +=self.w*1./6* \ ( g[I-1] + g[I-self.n3] + g[I-self.n3*self.n2]) else: g[I] = 0 return self.A.dot((V)) \ - self.B.dot(g) \ #can be numerically unstable def poisson_fast_no_loop(self, V, g): g = self.w * self.h2 * g / 6. g = self.kernels['g'].dot(g) return self.A.dot((V)) \ - self.B.dot(g) \ def poisson_fast_no_loop_torch(self, V, g): g = g * self.w * self.h2 / 6. g = torch.mm(self.kernels['g_torch'], g) return torch.mm(self.Atorch, V) - torch.mm(self.Btorch, g) def poisson_fast_no_loop_gpu(self, V, g): g = self.w * self.h2 * g / 6. for I in range(0, self.n1*self.n2*self.n3): k = I % self.n3 s1 = (I - k) // self.n3 j = s1 % self.n2 i = (s1 - j) // self.n2 #print(I, i, j, k) if (i >= 1 and i < self.imax+1 and j >= 1 and j < self.jmax+1 and k >= 1 and k < self.kmax-1): #print(I, i, j, k) g[I] +=self.w*1./6* \ ( g[I-1] + g[I-self.n3] + g[I-self.n3*self.n2]) Atf = tf.placeholder(tf.float64, shape=[self.n1*self.n2*self.n3, self.n1*self.n2*self.n3]) Btf = tf.placeholder(tf.float64, shape=[self.n1*self.n2*self.n3, self.n1*self.n2*self.n3]) Vtf = tf.placeholder(tf.float64, shape=[self.n1*self.n2*self.n3, 1]) gtf = tf.placeholder(tf.float64, shape=[self.n1*self.n2*self.n3, 1]) out = tf.matmul(Atf, Vtf) - tf.matmul(Btf, gtf) with tf.Session() as sess: out = sess.run(out, feed_dict = {Atf:self.A, Btf:self.B, Vtf:V, gtf:g}) return out #@jit def poisson_brute2(self, V, g): for kk in range(self.num_iterations): temp = V * 1. for I in range(0, self.n1*self.n2*self.n3): k = I % self.n3 s1 = (I - k) // self.n3 j = s1 % self.n2 i = (s1 - j) // self.n2 if (i*j*k==0 or k >= self.kmax - 1 or j >= self.jmax - 1 or i >= self.imax - 1): V[k + self.n3 * (j + self.n2 * i)] = 0 continue r = temp[I-1] / 6.+ temp[I+1] / 6.+ temp[I+self.n3] / 6.+ temp[I-self.n3] / 6.+ temp[I+self.n2*self.n3] / 6. + temp[I-self.n2*self.n3] / 6. - temp[I] - self.h2 * g[I] / 6. r = self.w * r V[I] += r return V #@jit def poisson_brute_main_flat(self, V, g): for kk in range(self.num_iterations): temp = V for I in range(0, self.n1*self.n2*self.n3): k = I % self.n3 s1 = (I - k) // self.n3 j = s1 % self.n2 i = (s1 - j) // self.n2 if (i*j*k==0 or k >= self.kmax - 1 or j >= self.jmax + 1 or i >= self.imax + 1): continue r = temp[I-1] / 6.+ temp[I+1] / 6.+ temp[I+self.n3] / 6.+ temp[I-self.n3] / 6.+ temp[I+self.n2*self.n3] / 6. + temp[I-self.n2*self.n3] / 6. - temp[I] - self.h2 * g[I] / 6. r = self.w * r V[I] += r return V #@jit def poisson_brute_main(self, V, g): for kk in range(self.num_iterations): temp = V for i in range(1, self.imax+1): for j in range(1, self.jmax+1): for k in range(1, self.kmax-1): r = temp[i+1, j, k] / 6. + temp[i-1, j, k] / 6. + temp[i, j+1, k] / 6. + temp[i, j-1, k] / 6. + temp[i ,j, k+1] / 6. + temp[i, j, k-1] / 6. - temp[i, j, k] - self.h2 * g[i, j, k] / 6. r = self.w * r V[i, j, k] += r return V def poisson_brute_vectorized(self, temp, g): for kk in range(self.num_iterations): r = self.w * (( temp[2:self.imax, 1:self.jmax-1, 1:self.kmax-1] \ + temp[0:self.imax-2, 1:self.jmax-1, 1:self.kmax-1] \ + temp[1:self.imax-1, 2:self.jmax, 1:self.kmax-1] \ + temp[1:self.imax-1, 0:self.jmax-2, 1:self.kmax-1] \ + temp[1:self.imax-1, 1:self.jmax-1, 2:self.kmax ] \ + temp[1:self.imax-1, 1:self.jmax-1, 0:self.kmax-2])) / 6. \ + (1-self.w) * temp[1:self.imax-1, 1:self.jmax-1, 1:self.kmax-1] \ - self.w * self.h2 * g[1:self.imax-1, 1:self.jmax-1, 1:self.kmax-1] / 6. temp[1:self.imax-1, 1:self.jmax-1, 1:self.kmax-1] = r return temp def poisson_brute3_gpu(self, V, g, sess): out = tf.Variable(tf.float64, V) #for kk in range(self.num_iterations): # out[1:self.imax-1, 1:self.jmax-1, 1:self.kmax-1].assign(out[1:self.imax-1, 1:self.jmax-1, 1:self.kmax-1] + 1) sess.run(out) return sess, out def apply_kernel(self, V, key): return self.kernels[key].dot(V) def electric_field_elements(self, V): out = np.zeros_like(V) out[1:self.imax+1, :, :] = (V[1:self.imax+1, :, :] - V[2:self.imax+2, :, :]) / self.h return out def average_x(self, V, out): for j in range(1, self.jmax): out[1, j, :] = V[1, j, :] + V[1, j+1, :] + V[self.imax, j, :] + \ V[self.imax, j+1, :] def average_x_fast(self, V, out): out[1, 1:self.jmax, :] = V[1, 1:self.jmax] + V[1, 2:self.jmax+1, :] \ + V[self.imax, 1:self.jmax, :] + V[self.imax, 2:self.jmax+1, :] def rel_error(x, y): """ re-turns relative error """ return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) def max_rel_error_loc(x, y): """ re-turns relative error """ a = np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))) return a def stat_diff(V1, V2, text=""): print("%-30s relative error"%text, rel_error(V1, V2)) #print(np.where(np.abs(V1 - V2) > 20)) def main(): imax = 20 jmax = 16 kmax = 8 upper_lim = 1 n1 = imax + upper_lim n2 = jmax + upper_lim n3 = kmax + upper_lim w = 1.843 pv = poisson_vectorized(n1, n2, n3, w=w, num_iterations=40, method='coo'\ , upper_lim=upper_lim) V1 = (np.random.rand(n1 * n2 * n3) * 30 + 1).astype('float64') g = (np.random.rand(n1 * n2 * n3) * 2e5 + -1e5).astype('float64') for I in range(0, n1*n2*n3): k = I % n3 s1 = (I - k) // n3 j = s1 % n2 i = (s1 - j) // n2 #print(I, i, j, k) if (i*j*k==0 or k >= kmax - 1 or j >= jmax - 1 or i >= imax - 1): g[I] = 0 V1[I] = 0 V1_reshaped = V1.reshape(n1, n2, n3) g_reshaped = g.reshape(n1, n2, n3) print("Starting poisson fast") start = time.time() a = pv.poisson_fast(V1 * 1., g) print("Time taken: %f"%(time.time() - start)) print("Starting poisson brute 2") start = time.time() b = pv.poisson_brute(V1.reshape(n1, n2, n3) , g.reshape(n1, n2, n3)) print("Time taken: %f"%(time.time() - start)) stat_diff(a, b.reshape(n1*n2*n3), n1, n2, n3) if __name__ == "__main__": main()
[ "bzr0014@kraken.cse.eng.auburn.edu" ]
bzr0014@kraken.cse.eng.auburn.edu
24e11c32adef3f1cddfbf7017889d30421ebfc66
73fa310f7b0d4ecb97d4f7550f6baa85df16516c
/setup.py
b0321ecc04d1cf05fc2b865b3ace4e2ec66d1b32
[ "MIT" ]
permissive
recsyschallenge/2019
43910c633945539d88cdcfc783d64f5042146e11
c3a35dde4d5f3c803c716e44c3f1f5e8f58429e3
refs/heads/master
2021-07-12T06:08:16.806518
2020-04-29T09:49:14
2020-04-29T09:49:14
90,833,061
118
68
MIT
2020-04-29T09:49:16
2017-05-10T07:19:40
Python
UTF-8
Python
false
false
602
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Setup file for baseline_algorithm. Use setup.cfg to configure your project. This file was generated with PyScaffold 3.1. PyScaffold helps you to put up the scaffold of your new Python project. Learn more under: https://pyscaffold.org/ """ import sys from pkg_resources import require, VersionConflict from setuptools import setup try: require('setuptools>=38.3') except VersionConflict: print("Error: version of setuptools is too old (<38.3)!") sys.exit(1) if __name__ == "__main__": setup(use_pyscaffold=True)
[ "jens.adamczak@trivago.com" ]
jens.adamczak@trivago.com
b81ff148348f0ca051630b05aad80c83386d390a
373f90df7faa1c323161957893f7cc2b04fbbe28
/save_data_periodically.py
546a6c3193d86dd4221a590c41baaa55e1bd2020
[]
no_license
libingnan-rdkx/control_app
1d1b5b6a403218703597f050bfb74dd2b6a1cff7
9a7cb9bd60cf80944076cefaf4c075a3462200e2
refs/heads/main
2022-12-29T23:35:09.404241
2020-10-16T20:17:31
2020-10-16T20:17:31
304,729,483
0
0
null
null
null
null
UTF-8
Python
false
false
4,747
py
import json # import struct as st import pandas as pd import numpy as np import paho.mqtt.client as mqtt from datetime import datetime, timedelta from influxdb import InfluxDBClient client = InfluxDBClient('192.168.1.56', 8086, 'root', 'root', 'apc_db') jianwen_var_names = (['AI'+str(i)+'_APC' for i in range(33,45)] + ['AI'+str(i)+'_APC' for i in range(49,59)]) xietiao_var_names = ['AI'+str(i)+'_APC' for i in range(1,33)] tuoxiao_var_names = ['AI'+str(i)+'_APC' for i in range(61,75)] es_var_names = ['AO'+str(i)+'_APC' for i in range(17,26)] class MqttMessageBus(): def __init__(self): self.mqttc = mqtt.Client(client_id='save_data_periodically') self.counter = 0 self.saveDataOn = 0 self.flag = True self.duration = 480 # minutes def on_connect(self, mqttc, obj, flags, rc): print("Client is connected to mqtt broker, rc: " + str(rc)) def on_message(self, mqttc, obj, msg): dcsmsg = json.loads(msg.payload.decode('utf-8')) self.saveDataOn = self.get_bit_val(dcsmsg['DI3'], 15) if self.saveDataOn: now = datetime.utcnow() minutes_num = now.hour * 60 + now.minute if self.flag and minutes_num % self.duration == 0: print('save data:', now + timedelta(hours=8)) self.saveData(now) self.flag = False if minutes_num % self.duration == 1: self.flag = True def on_publish(self, mqttc, obj, mid): print("on_publish, mid: " + str(mid)) def on_subscribe(self, mqttc, obj, mid, granted_qos): print("on_subscribe: " + str(mid) + " " + str(granted_qos)) def on_log(self, mqttc, obj, level, string): print('on_log:', string) def connect(self, host, port=1883, keepalive=60): self.mqttc.on_connect = self.on_connect self.mqttc.on_message = self.on_message # self.mqttc.on_publish = self.on_publish self.mqttc.on_subscribe = self.on_subscribe # Uncomment to enable debug messages # mqttc.on_log = on_log self.mqttc.connect(host, port, keepalive) def subscribe(self, topic, qos=0): self.mqttc.subscribe(topic, qos) self.mqttc.loop_forever() def saveData(self, now): self.saveDataToCSV(jianwen_var_names, now, 'dcs_data', 'jianwen') self.saveDataToCSV(xietiao_var_names, now, 'dcs_data', 'xietiao') self.saveDataToCSV(tuoxiao_var_names, now, 'dcs_data', 'tuoxiao') self.saveDataToCSV(es_var_names, now, 'command_data', 'exci_sig') def saveDataToCSV(self, var_names, now, measurement, fnsuffix): datetimestr = [] col_data = [] var_str = ','.join(var_names) where_str = "where time>=$startTime and time<=$endTime" query = "select {} from {} {}".format(var_str, measurement, where_str) timeZone = 8 # 8 hours duration = self.duration endTimeStamp = now startTimeStamp = endTimeStamp - timedelta(minutes=duration) startTime = startTimeStamp.strftime('%Y-%m-%dT%H:%M:%SZ') endTime = endTimeStamp.strftime('%Y-%m-%dT%H:%M:%SZ') startTime = startTime[:17]+'00Z' endTime = endTime[:17]+'00Z' # startTime = '2020-06-11T12:00:00Z' # endTime = '2020-06-12T00:00:00Z' bind_params = {'startTime': startTime, 'endTime': endTime} results = client.query(query, bind_params=bind_params).get_points() # result is an iterator for rs in results: datetimestr.append(rs['time']) for name in var_names: col_data.append(round(rs[name])) data = np.array(col_data).reshape(-1, len(var_names)) df = pd.DataFrame(data,columns=var_names, index=datetimestr) print('data length',len(data)) st = (startTimeStamp + timedelta(hours=timeZone)).strftime('%Y%m%d-%H%M%S') et = (endTimeStamp + timedelta(hours=timeZone)).strftime('%Y%m%d-%H%M%S') fn = '/home/czyd/data/{}_{}_{}.csv'.format(st, et, fnsuffix) # fn = '{}_{}_{}.csv'.format(st, et, fnsuffix) df.to_csv(fn, sep=',', header=True, index=True) def get_bit_val(self, byte, index): """ get the bit value of an integer at index from right to left starting from 0 """ if byte & (1 << index): return 1 else: return 0 if __name__ == "__main__": mmb = MqttMessageBus() mqtthost = '192.168.1.56' port = 1883 keepalive = 60 mmb.connect(mqtthost, port, keepalive) mmb.subscribe('apcdata')
[ "noreply@github.com" ]
libingnan-rdkx.noreply@github.com
534a6d3743ebc5084d7a4381efa5f146340deebe
5c6bdc1915d56f1fee9b66a45365cefd097ff1f4
/challenge_3.py
645cd85ef5cd8e4cdba1fe3b01314768a428c6e6
[]
no_license
chandanmanjunath/LearnByexample
534a9e880453c316f4168c4b234165d935d2dac7
52351f7fba57ac0d0f13edb44c537131af860b60
refs/heads/master
2021-05-07T17:29:10.852798
2017-10-29T12:28:58
2017-10-29T12:28:58
108,732,377
0
1
null
null
null
null
UTF-8
Python
false
false
194
py
if __name__ == '__main__': a = int(raw_input()) b = int(raw_input()) if (a>=1 and a<=pow(10,10)) and (b>=1 and b<=pow(10,10)) : print a+b print a-b print a*b
[ "mchandanhegde@gmail.com" ]
mchandanhegde@gmail.com
98e4d65023487abe3e1d25487d510bec8a565b46
84a0e742eeb89016f419b13329a4e6a1828e4d31
/001_IntroductionToCS&ProgrammingUsingPython/Extra_Problems/oop_fraction.py
235020581d1f7a8ddb21abd3e0d787229b39d430
[ "MIT" ]
permissive
dalalsunil1986/Computer-Science-Degree
e85736c8c705bb82d897519cf2339ff638bc1b5f
e2c73f35cc48bbcc2a5cc0ddc6867fd0787c6dd9
refs/heads/master
2023-03-16T18:37:31.954245
2020-02-24T17:08:47
2020-02-24T17:08:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,064
py
""" @author: Anirudh Sharma """ class Fraction(object): def __init__(self, numerator, denominator): assert type(numerator) == int and type(denominator) == int self.numerator = numerator self.denominator = denominator def __str__(self): return str(self.numerator) + "/" + str(self.denominator) def __add__(self, other): n = self.numerator * other.denominator + other.numerator * self.denominator d = self.denominator * other.denominator return Fraction(n, d) def __sub__(self, other): n = self.numerator * other.denominator - other.numerator * self.denominator d = self.denominator * other.denominator return Fraction(n, d) def __float__(self): return self.numerator / self.denominator def inverse(self): return Fraction(self.denominator, self.numerator) a = Fraction(1, 2) b = Fraction(2, 3) plus = a + b print(plus) minus = a - b print(minus) f = float(a) print(f) r = Fraction.inverse(b) print(r)
[ "anirudh03sharma@gmail.com" ]
anirudh03sharma@gmail.com
575e8b142c93a2754ad6442049f023e2337d423d
648ed56ac573ecf8206d5df5e7ebce3eb8bdb763
/usuarios/migrations/0001_initial.py
5f98e09ed51aa38814dc7a67057988723784e72a
[]
no_license
LarissaGRosa/meumissi_final
eeef5575219e29485730a8b5fe2a16f072f1e17e
886adc8b9e55160cc76257bbb98af7db38cf8a40
refs/heads/master
2023-08-29T05:58:40.584910
2019-12-02T12:07:45
2019-12-02T12:07:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
765
py
# Generated by Django 2.2.6 on 2019-10-21 21:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Perfil', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('foto', models.ImageField(blank=True, upload_to='imagem_perfil')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "meumissi@gmail.com" ]
meumissi@gmail.com
36ed1046ec8a0ce925a42c0e4170ecd229b5ca7a
de0e136b52990d6bacc7527c755224295f294060
/SwitchWindowPkg/switchWindow.py
ff099b44852493d0626d501c7a17f7cadb826843
[]
no_license
bratva123/selenium
ca8bd6cbf61fe166e0d72376dd39bc055daee3d5
335f9d978b2da94a301f95c560c89a9c9ebe56d6
refs/heads/master
2022-09-01T09:57:45.997142
2020-05-21T02:59:27
2020-05-21T02:59:27
265,733,509
0
0
null
null
null
null
UTF-8
Python
false
false
1,225
py
from selenium import webdriver import time class SwitchWindow(): def test(self): driver = webdriver.Chrome(); driver.maximize_window() baseUrl = "https://letskodeit.teachable.com/pages/practice" driver.get(baseUrl) driver.implicitly_wait(4) #find the parent handle -> main Wiindow parentHandle = driver.current_window_handle print(parentHandle) #find open window and click openWindow = driver.find_element_by_id("openwindow") openWindow.click() time.sleep(3) #find all the handles , there should two hna=dle after clicking open window button handles = driver.window_handles for handle in handles: print("handle : "+ handle) if handle not in parentHandle: driver.switch_to_window(handle) print("switched to windows : "+handle) inputBox = driver.find_element_by_id("search-courses") inputBox.send_keys("python") time.sleep(3) driver.close() # inputBox = driver.find_element_by_id("search-courses") # inputBox.send_keys("python") sw = SwitchWindow() sw.test()
[ "lavkr0403@gmail.com" ]
lavkr0403@gmail.com
47790afe44b154c235cfd5cf1226cb72bfdf6aaf
03a94409c32e74d796f271ad80c9bc86faa2b9db
/pom/conftest.py
d553f7b4afc8e790ca9341de78e22e33e88f1fb5
[]
no_license
acqa/epam_ta
9b0496e80e5caf98e6d9396c85bee0a9a0c741d6
715342261127e39624bfd9adfda80aac34bc162a
refs/heads/master
2020-05-22T18:33:14.610831
2019-06-10T19:55:57
2019-06-10T19:55:57
186,474,104
0
0
null
null
null
null
UTF-8
Python
false
false
2,161
py
from app.application import App import pytest import os.path import time import os #testdata base_url = "http://v999140x.beget.tech" login ="test_user" password ="12345" @pytest.fixture(scope = 'session') def app(request): fixture = App(base_url = base_url) fixture.login_page.fix_login(login = login, password = password) fixture.post_page.fix_close_advice_popup() yield fixture fixture.destroy() # @pytest.fixture(scope="function", autouse=True) # def take_screenshot_when_failure(request): # # def tear_down(): # path = os.path.dirname(__file__) # # if request.node.rep_call.failed: # fixture.wd.save_screenshot("%s/log/screen/scr_%s.png" % (path, time.time())) # request.addfinalizer(tear_down) # yield # @pytest.fixture(autouse=True, scope="function") # def screenshot_on_failure(request): # def fin(): # driver = App(base_url = base_url) # attach = driver.get_screenshot_as_png() # if request.node.rep_setup.failed: # allure.attach(request.function.__name__, attach, allure.attach_type.PNG) # elif request.node.rep_setup.passed: # if request.node.rep_call.failed: # allure.attach(request.function.__name__, attach, allure.attach_type.PNG) # request.addfinalizer(fin) @pytest.fixture(autouse=True, scope='session') def generate_allure_report(): """Генерирует HTML отчет из результатов теста""" yield os.system("allure generate -c ../log/allure/result -o ../log/allure/report") @pytest.fixture(autouse=True, scope='session') def footer_session_scope(): """Сообщает время в конце session(сеанса).""" yield now = time.time() print('--') print('finished : {}'.format(time.strftime('%d %b %X', time.localtime(now)))) print('-----------------') @pytest.fixture(autouse=True) def footer_function_scope(): """Сообщает продолжительность теста после каждой функции.""" start = time.time() yield stop = time.time() delta = stop - start print('\ntest duration : {:0.3} seconds'.format(delta))
[ "reg@ac11.ru" ]
reg@ac11.ru
6b4ab0a7e10c34f653dd28cfdf289ca292364259
7e4425342a4d7e0f40978af17091f32d2712c79c
/Day_36_01_Word2VecBasic.py
06bed965a1102af98a5115949451121c9d0eb08e
[]
no_license
yunhui21/CB_Ai_NLP
eca3da00c6c9615c8737b50d2c5ebe8dd1e3ba8a
b66ecc24abfd988fc9e7f19fa1941826b1bf38a4
refs/heads/master
2023-01-07T14:21:26.758030
2020-11-16T05:57:30
2020-11-16T05:57:30
291,835,156
1
0
null
null
null
null
UTF-8
Python
false
false
1,299
py
# Day_36_01_Word2VecBasic.py # onehotvec 클래스의 수만큼 숫자로 단어를 볂솬 - 현실적으로 클래스의 개수가 너무 많다. # ''' skipgram : ''''' # end 위치를 구하세요. # 전체위치에서 target범위만 제거하세요. def extrast(token_count, target, window_size ): start = max(target - window_size, 0) end = min(target + window_size + 1, token_count) return [i for i in range(start, end) if i != target] def show_dataset(tokens, window_size, is_skipgram): token_count = len(tokens) for target in range(token_count): surround = extrast(token_count, target, window_size) print(target, surround, end='') # 문제 # surround가 가라키는 단어들을 출력하세요. if is_skipgram: # print(list([zip([target] * len(surround), surround)])) print([(tokens[t], tokens[s]) for t, s in zip([target] * len(surround), surround)]) else: print([tokens[i] for i in surround], tokens[target]) tokens = ['the', 'quick', 'brown', 'fax','jumps','over', 'the', 'lazy', 'dog'] # show_dataset(tokens, 1, is_skipgram=True) # # show_dataset(tokens, 1, is_skimgram= False ) show_dataset(tokens, 2, is_skipgram=True) print() show_dataset(tokens, 2, is_skipgram=False)
[ "yunhui21@gmail.com" ]
yunhui21@gmail.com
fd9582f9639ce68f96b70af3736a5014325c555c
2ea49bfaa6bc1b9301b025c5b2ca6fde7e5bb9df
/contributions/Starkman9000/python/Data Structures/2016-10-01.py
ccf039b16b39393d44244265885006e6533ab489
[]
no_license
0x8801/commit
18f25a9449f162ee92945b42b93700e12fd4fd77
e7692808585bc7e9726f61f7f6baf43dc83e28ac
refs/heads/master
2021-10-13T08:04:48.200662
2016-12-20T01:59:47
2016-12-20T01:59:47
76,935,980
1
0
null
null
null
null
UTF-8
Python
false
false
123
py
Double ended queues with `deque` `Module`s everywhere! Get the most of `int`s There is more to copying `queue`s and threads
[ "starkman9000@gmail.com" ]
starkman9000@gmail.com
9feef2069d45122ef67fc6486e6dcc02591ab879
89096c0bfae0bb08d03ed52b281bd6d51b3bcad1
/template/usr.share.vim.vim73.plugin.js-beautify/python/jsbeautifier/tests/testjsbeautifier.py
001ccfa2e2471385a04a389d867b5eeedeea9227
[ "MIT" ]
permissive
visi-pivi-sivi/PI6
e46ff1060b3d458a4366123dabab53ab07cc01ea
9fa9baf36b33fa719956b94d7fd0a09f6fb251e8
refs/heads/master
2021-01-10T20:29:47.314852
2019-12-31T03:01:20
2019-12-31T03:01:20
23,481,403
2
0
null
null
null
null
UTF-8
Python
false
false
53,083
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import re import unittest import jsbeautifier class TestJSBeautifier(unittest.TestCase): def test_unescape(self): # Test cases contributed by <chrisjshull on GitHub.com> test_fragment = self.decodesto bt = self.bt bt('"\\\\s"'); # == "\\s" in the js source bt("'\\\\s'"); # == '\\s' in the js source bt("'\\\\\\s'"); # == '\\\s' in the js source bt("'\\s'"); # == '\s' in the js source bt('"•"'); bt('"—"'); bt('"\\x41\\x42\\x43\\x01"', '"\\x41\\x42\\x43\\x01"'); bt('"\\u2022"', '"\\u2022"'); bt('a = /\s+/') #bt('a = /\\x41/','a = /A/') bt('"\\u2022";a = /\s+/;"\\x41\\x42\\x43\\x01".match(/\\x41/);','"\\u2022";\na = /\s+/;\n"\\x41\\x42\\x43\\x01".match(/\\x41/);') bt('"\\x22\\x27",\'\\x22\\x27\',"\\x5c",\'\\x5c\',"\\xff and \\xzz","unicode \\u0000 \\u0022 \\u0027 \\u005c \\uffff \\uzzzz"', '"\\x22\\x27", \'\\x22\\x27\', "\\x5c", \'\\x5c\', "\\xff and \\xzz", "unicode \\u0000 \\u0022 \\u0027 \\u005c \\uffff \\uzzzz"'); self.options.unescape_strings = True bt('"\\x41\\x42\\x43\\x01"', '"ABC\\x01"'); bt('"\\u2022"', '"\\u2022"'); bt('a = /\s+/') bt('"\\u2022";a = /\s+/;"\\x41\\x42\\x43\\x01".match(/\\x41/);','"\\u2022";\na = /\s+/;\n"ABC\\x01".match(/\\x41/);') bt('"\\x22\\x27",\'\\x22\\x27\',"\\x5c",\'\\x5c\',"\\xff and \\xzz","unicode \\u0000 \\u0022 \\u0027 \\u005c \\uffff \\uzzzz"', '"\\"\'", \'"\\\'\', "\\\\", \'\\\\\', "\\xff and \\xzz", "unicode \\u0000 \\" \' \\\\ \\uffff \\uzzzz"'); self.options.unescape_strings = False def test_beautifier(self): test_fragment = self.decodesto bt = self.bt bt(''); bt('return .5'); test_fragment(' return .5'); bt('a = 1', 'a = 1'); bt('a=1', 'a = 1'); bt("a();\n\nb();", "a();\n\nb();"); bt('var a = 1 var b = 2', "var a = 1\nvar b = 2"); bt('var a=1, b=c[d], e=6;', 'var a = 1,\n b = c[d],\n e = 6;'); bt('a = " 12345 "'); bt("a = ' 12345 '"); bt('if (a == 1) b = 2;', "if (a == 1) b = 2;"); bt('if(1){2}else{3}', "if (1) {\n 2\n} else {\n 3\n}"); bt('if(1||2);', 'if (1 || 2);'); bt('(a==1)||(b==2)', '(a == 1) || (b == 2)'); bt('var a = 1 if (2) 3;', "var a = 1\nif (2) 3;"); bt('a = a + 1'); bt('a = a == 1'); bt('/12345[^678]*9+/.match(a)'); bt('a /= 5'); bt('a = 0.5 * 3'); bt('a *= 10.55'); bt('a < .5'); bt('a <= .5'); bt('a<.5', 'a < .5'); bt('a<=.5', 'a <= .5'); bt('a = 0xff;'); bt('a=0xff+4', 'a = 0xff + 4'); bt('a = [1, 2, 3, 4]'); bt('F*(g/=f)*g+b', 'F * (g /= f) * g + b'); bt('a.b({c:d})', "a.b({\n c: d\n })"); bt('a.b\n(\n{\nc:\nd\n}\n)', "a.b({\n c: d\n })"); bt('a=!b', 'a = !b'); bt('a?b:c', 'a ? b : c'); bt('a?1:2', 'a ? 1 : 2'); bt('a?(b):c', 'a ? (b) : c'); bt('x={a:1,b:w=="foo"?x:y,c:z}', 'x = {\n a: 1,\n b: w == "foo" ? x : y,\n c: z\n}'); bt('x=a?b?c?d:e:f:g;', 'x = a ? b ? c ? d : e : f : g;'); bt('x=a?b?c?d:{e1:1,e2:2}:f:g;', 'x = a ? b ? c ? d : {\n e1: 1,\n e2: 2\n} : f : g;'); bt('function void(void) {}'); bt('if(!a)foo();', 'if (!a) foo();'); bt('a=~a', 'a = ~a'); bt('a;/*comment*/b;', "a; /*comment*/\nb;"); bt('a;/* comment */b;', "a; /* comment */\nb;"); test_fragment('a;/*\ncomment\n*/b;', "a;\n/*\ncomment\n*/\nb;"); # simple comments don't get touched at all bt('a;/**\n* javadoc\n*/b;', "a;\n/**\n * javadoc\n */\nb;"); test_fragment('a;/**\n\nno javadoc\n*/b;', "a;\n/**\n\nno javadoc\n*/\nb;"); bt('a;/*\n* javadoc\n*/b;', "a;\n/*\n * javadoc\n */\nb;"); # comment blocks detected and reindented even w/o javadoc starter bt('if(a)break;', "if (a) break;"); bt('if(a){break}', "if (a) {\n break\n}"); bt('if((a))foo();', 'if ((a)) foo();'); bt('for(var i=0;;) a', 'for (var i = 0;;) a'); bt('for(var i=0;;)\na', 'for (var i = 0;;)\n a'); bt('a++;', 'a++;'); bt('for(;;i++)a()', 'for (;; i++) a()'); bt('for(;;i++)\na()', 'for (;; i++)\n a()'); bt('for(;;++i)a', 'for (;; ++i) a'); bt('return(1)', 'return (1)'); bt('try{a();}catch(b){c();}finally{d();}', "try {\n a();\n} catch (b) {\n c();\n} finally {\n d();\n}"); bt('(xx)()'); # magic function call bt('a[1]()'); # another magic function call bt('if(a){b();}else if(c) foo();', "if (a) {\n b();\n} else if (c) foo();"); bt('switch(x) {case 0: case 1: a(); break; default: break}', "switch (x) {\n case 0:\n case 1:\n a();\n break;\n default:\n break\n}"); bt('switch(x){case -1:break;case !y:break;}', 'switch (x) {\n case -1:\n break;\n case !y:\n break;\n}'); bt('a !== b'); bt('if (a) b(); else c();', "if (a) b();\nelse c();"); bt("// comment\n(function something() {})"); # typical greasemonkey start bt("{\n\n x();\n\n}"); # was: duplicating newlines bt('if (a in b) foo();'); bt('var a, b;'); # bt('var a, b'); bt('{a:1, b:2}', "{\n a: 1,\n b: 2\n}"); bt('a={1:[-1],2:[+1]}', 'a = {\n 1: [-1],\n 2: [+1]\n}'); bt('var l = {\'a\':\'1\', \'b\':\'2\'}', "var l = {\n 'a': '1',\n 'b': '2'\n}"); bt('if (template.user[n] in bk) foo();'); bt('{{}/z/}', "{\n {}\n /z/\n}"); bt('return 45', "return 45"); bt('If[1]', "If[1]"); bt('Then[1]', "Then[1]"); bt('a = 1e10', "a = 1e10"); bt('a = 1.3e10', "a = 1.3e10"); bt('a = 1.3e-10', "a = 1.3e-10"); bt('a = -1.3e-10', "a = -1.3e-10"); bt('a = 1e-10', "a = 1e-10"); bt('a = e - 10', "a = e - 10"); bt('a = 11-10', "a = 11 - 10"); bt("a = 1;// comment", "a = 1; // comment"); bt("a = 1; // comment", "a = 1; // comment"); bt("a = 1;\n // comment", "a = 1;\n// comment"); bt('a = [-1, -1, -1]'); # The exact formatting these should have is open for discussion, but they are at least reasonable bt('a = [ // comment\n -1, -1, -1\n]'); bt('var a = [ // comment\n -1, -1, -1\n]'); bt('a = [ // comment\n -1, // comment\n -1, -1\n]'); bt('var a = [ // comment\n -1, // comment\n -1, -1\n]'); bt('o = [{a:b},{c:d}]', 'o = [{\n a: b\n }, {\n c: d\n }\n]'); bt("if (a) {\n do();\n}"); # was: extra space appended bt("if (a) {\n// comment\n}else{\n// comment\n}", "if (a) {\n // comment\n} else {\n // comment\n}"); # if/else statement with empty body bt("if (a) {\n// comment\n// comment\n}", "if (a) {\n // comment\n // comment\n}"); # multiple comments indentation bt("if (a) b() else c();", "if (a) b()\nelse c();"); bt("if (a) b() else if c() d();", "if (a) b()\nelse if c() d();"); bt("{}"); bt("{\n\n}"); bt("do { a(); } while ( 1 );", "do {\n a();\n} while (1);"); bt("do {} while (1);"); bt("do {\n} while (1);", "do {} while (1);"); bt("do {\n\n} while (1);"); bt("var a = x(a, b, c)"); bt("delete x if (a) b();", "delete x\nif (a) b();"); bt("delete x[x] if (a) b();", "delete x[x]\nif (a) b();"); bt("for(var a=1,b=2)d", "for (var a = 1, b = 2) d"); bt("for(var a=1,b=2,c=3) d", "for (var a = 1, b = 2, c = 3) d"); bt("for(var a=1,b=2,c=3;d<3;d++)\ne", "for (var a = 1, b = 2, c = 3; d < 3; d++)\n e"); bt("function x(){(a||b).c()}", "function x() {\n (a || b).c()\n}"); bt("function x(){return - 1}", "function x() {\n return -1\n}"); bt("function x(){return ! a}", "function x() {\n return !a\n}"); # a common snippet in jQuery plugins bt("settings = $.extend({},defaults,settings);", "settings = $.extend({}, defaults, settings);"); bt('{xxx;}()', '{\n xxx;\n}()'); bt("a = 'a'\nb = 'b'"); bt("a = /reg/exp"); bt("a = /reg/"); bt('/abc/.test()'); bt('/abc/i.test()'); bt("{/abc/i.test()}", "{\n /abc/i.test()\n}"); bt('var x=(a)/a;', 'var x = (a) / a;'); bt('x != -1', 'x != -1'); bt('for (; s-->0;)t', 'for (; s-- > 0;) t'); bt('for (; s++>0;)u', 'for (; s++ > 0;) u'); bt('a = s++>s--;', 'a = s++ > s--;'); bt('a = s++>--s;', 'a = s++ > --s;'); bt('{x=#1=[]}', '{\n x = #1=[]\n}'); bt('{a:#1={}}', '{\n a: #1={}\n}'); bt('{a:#1#}', '{\n a: #1#\n}'); test_fragment('"incomplete-string'); test_fragment("'incomplete-string"); test_fragment('/incomplete-regex'); test_fragment('{a:1},{a:2}', '{\n a: 1\n}, {\n a: 2\n}'); test_fragment('var ary=[{a:1}, {a:2}];', 'var ary = [{\n a: 1\n }, {\n a: 2\n }\n];'); test_fragment('{a:#1', '{\n a: #1'); # incomplete test_fragment('{a:#', '{\n a: #'); # incomplete test_fragment('}}}', '}\n}\n}'); # incomplete test_fragment('<!--\nvoid();\n// -->', '<!--\nvoid();\n// -->'); test_fragment('a=/regexp', 'a = /regexp'); # incomplete regexp bt('{a:#1=[],b:#1#,c:#999999#}', '{\n a: #1=[],\n b: #1#,\n c: #999999#\n}'); bt("a = 1e+2"); bt("a = 1e-2"); bt("do{x()}while(a>1)", "do {\n x()\n} while (a > 1)"); bt("x(); /reg/exp.match(something)", "x();\n/reg/exp.match(something)"); test_fragment("something();(", "something();\n("); test_fragment("#!she/bangs, she bangs\nf=1", "#!she/bangs, she bangs\n\nf = 1"); test_fragment("#!she/bangs, she bangs\n\nf=1", "#!she/bangs, she bangs\n\nf = 1"); test_fragment("#!she/bangs, she bangs\n\n/* comment */", "#!she/bangs, she bangs\n\n/* comment */"); test_fragment("#!she/bangs, she bangs\n\n\n/* comment */", "#!she/bangs, she bangs\n\n\n/* comment */"); test_fragment("#", "#"); test_fragment("#!", "#!"); bt("function namespace::something()"); test_fragment("<!--\nsomething();\n-->", "<!--\nsomething();\n-->"); test_fragment("<!--\nif(i<0){bla();}\n-->", "<!--\nif (i < 0) {\n bla();\n}\n-->"); bt('{foo();--bar;}', '{\n foo();\n --bar;\n}'); bt('{foo();++bar;}', '{\n foo();\n ++bar;\n}'); bt('{--bar;}', '{\n --bar;\n}'); bt('{++bar;}', '{\n ++bar;\n}'); # Handling of newlines around unary ++ and -- operators bt('{foo\n++bar;}', '{\n foo\n ++bar;\n}'); bt('{foo++\nbar;}', '{\n foo++\n bar;\n}'); # This is invalid, but harder to guard against. Issue #203. bt('{foo\n++\nbar;}', '{\n foo\n ++\n bar;\n}'); # regexps bt('a(/abc\\/\\/def/);b()', "a(/abc\\/\\/def/);\nb()"); bt('a(/a[b\\[\\]c]d/);b()', "a(/a[b\\[\\]c]d/);\nb()"); test_fragment('a(/a[b\\[', "a(/a[b\\["); # incomplete char class # allow unescaped / in char classes bt('a(/[a/b]/);b()', "a(/[a/b]/);\nb()"); bt('a=[[1,2],[4,5],[7,8]]', "a = [\n [1, 2],\n [4, 5],\n [7, 8]\n]"); bt('a=[[1,2],[4,5],function(){},[7,8]]', "a = [\n [1, 2],\n [4, 5],\n function() {},\n [7, 8]\n]"); bt('a=[[1,2],[4,5],function(){},function(){},[7,8]]', "a = [\n [1, 2],\n [4, 5],\n function() {},\n function() {},\n [7, 8]\n]"); bt('a=[[1,2],[4,5],function(){},[7,8]]', "a = [\n [1, 2],\n [4, 5],\n function() {},\n [7, 8]\n]"); bt('a=[b,c,function(){},function(){},d]', "a = [b, c,\n function() {},\n function() {},\n d\n]"); bt('a=[a[1],b[4],c[d[7]]]', "a = [a[1], b[4], c[d[7]]]"); bt('[1,2,[3,4,[5,6],7],8]', "[1, 2, [3, 4, [5, 6], 7], 8]"); bt('[[["1","2"],["3","4"]],[["5","6","7"],["8","9","0"]],[["1","2","3"],["4","5","6","7"],["8","9","0"]]]', '[\n [\n ["1", "2"],\n ["3", "4"]\n ],\n [\n ["5", "6", "7"],\n ["8", "9", "0"]\n ],\n [\n ["1", "2", "3"],\n ["4", "5", "6", "7"],\n ["8", "9", "0"]\n ]\n]'); bt('{[x()[0]];indent;}', '{\n [x()[0]];\n indent;\n}'); bt('return ++i', 'return ++i'); bt('return !!x', 'return !!x'); bt('return !x', 'return !x'); bt('return [1,2]', 'return [1, 2]'); bt('return;', 'return;'); bt('return\nfunc', 'return\nfunc'); bt('catch(e)', 'catch (e)'); bt('var a=1,b={foo:2,bar:3},{baz:4,wham:5},c=4;', 'var a = 1,\n b = {\n foo: 2,\n bar: 3\n }, {\n baz: 4,\n wham: 5\n }, c = 4;'); bt('var a=1,b={foo:2,bar:3},{baz:4,wham:5},\nc=4;', 'var a = 1,\n b = {\n foo: 2,\n bar: 3\n }, {\n baz: 4,\n wham: 5\n },\n c = 4;'); # inline comment bt('function x(/*int*/ start, /*string*/ foo)', 'function x( /*int*/ start, /*string*/ foo)'); # javadoc comment bt('/**\n* foo\n*/', '/**\n * foo\n */'); bt('{\n/**\n* foo\n*/\n}', '{\n /**\n * foo\n */\n}'); bt('var a,b,c=1,d,e,f=2;', 'var a, b, c = 1,\n d, e, f = 2;'); bt('var a,b,c=[],d,e,f=2;', 'var a, b, c = [],\n d, e, f = 2;'); bt('function() {\n var a, b, c, d, e = [],\n f;\n}'); bt('do/regexp/;\nwhile(1);', 'do /regexp/;\nwhile (1);'); # hmmm bt('var a = a,\na;\nb = {\nb\n}', 'var a = a,\n a;\nb = {\n b\n}'); bt('var a = a,\n /* c */\n b;'); bt('var a = a,\n // c\n b;'); bt('foo.("bar");'); # weird element referencing bt('if (a) a()\nelse b()\nnewline()'); bt('if (a) a()\nnewline()'); bt('a=typeof(x)', 'a = typeof(x)'); bt('var a = function() {\n return null;\n},\n b = false;'); bt('var a = function() {\n func1()\n}'); bt('var a = function() {\n func1()\n}\nvar b = function() {\n func2()\n}'); self.options.jslint_happy = True bt('x();\n\nfunction(){}', 'x();\n\nfunction () {}'); bt('function () {\n var a, b, c, d, e = [],\n f;\n}'); bt('switch(x) {case 0: case 1: a(); break; default: break}', "switch (x) {\ncase 0:\ncase 1:\n a();\n break;\ndefault:\n break\n}"); bt('switch(x){case -1:break;case !y:break;}', 'switch (x) {\ncase -1:\n break;\ncase !y:\n break;\n}'); test_fragment("// comment 1\n(function()", "// comment 1\n(function ()"); # typical greasemonkey start bt('var o1=$.extend(a);function(){alert(x);}', 'var o1 = $.extend(a);\n\nfunction () {\n alert(x);\n}'); bt('a=typeof(x)', 'a = typeof (x)'); self.options.jslint_happy = False bt('switch(x) {case 0: case 1: a(); break; default: break}', "switch (x) {\n case 0:\n case 1:\n a();\n break;\n default:\n break\n}"); bt('switch(x){case -1:break;case !y:break;}', 'switch (x) {\n case -1:\n break;\n case !y:\n break;\n}'); test_fragment("// comment 2\n(function()", "// comment 2\n(function()"); # typical greasemonkey start bt("var a2, b2, c2, d2 = 0, c = function() {}, d = '';", "var a2, b2, c2, d2 = 0,\n c = function() {}, d = '';"); bt("var a2, b2, c2, d2 = 0, c = function() {},\nd = '';", "var a2, b2, c2, d2 = 0,\n c = function() {},\n d = '';"); bt('var o2=$.extend(a);function(){alert(x);}', 'var o2 = $.extend(a);\n\nfunction() {\n alert(x);\n}'); bt('{"x":[{"a":1,"b":3},7,8,8,8,8,{"b":99},{"a":11}]}', '{\n "x": [{\n "a": 1,\n "b": 3\n },\n 7, 8, 8, 8, 8, {\n "b": 99\n }, {\n "a": 11\n }\n ]\n}'); bt('{"1":{"1a":"1b"},"2"}', '{\n "1": {\n "1a": "1b"\n },\n "2"\n}'); bt('{a:{a:b},c}', '{\n a: {\n a: b\n },\n c\n}'); bt('{[y[a]];keep_indent;}', '{\n [y[a]];\n keep_indent;\n}'); bt('if (x) {y} else { if (x) {y}}', 'if (x) {\n y\n} else {\n if (x) {\n y\n }\n}'); bt('if (foo) one()\ntwo()\nthree()'); bt('if (1 + foo() && bar(baz()) / 2) one()\ntwo()\nthree()'); bt('if (1 + foo() && bar(baz()) / 2) one();\ntwo();\nthree();'); self.options.indent_size = 1; self.options.indent_char = ' '; bt('{ one_char() }', "{\n one_char()\n}"); bt('var a,b=1,c=2', 'var a, b = 1,\n c = 2'); self.options.indent_size = 4; self.options.indent_char = ' '; bt('{ one_char() }', "{\n one_char()\n}"); self.options.indent_size = 1; self.options.indent_char = "\t"; bt('{ one_char() }', "{\n\tone_char()\n}"); bt('x = a ? b : c; x;', 'x = a ? b : c;\nx;'); self.options.indent_size = 4; self.options.indent_char = ' '; self.options.preserve_newlines = False; bt('var\na=dont_preserve_newlines;', 'var a = dont_preserve_newlines;'); # make sure the blank line between function definitions stays # even when preserve_newlines = False bt('function foo() {\n return 1;\n}\n\nfunction foo() {\n return 1;\n}'); bt('function foo() {\n return 1;\n}\nfunction foo() {\n return 1;\n}', 'function foo() {\n return 1;\n}\n\nfunction foo() {\n return 1;\n}' ); bt('function foo() {\n return 1;\n}\n\n\nfunction foo() {\n return 1;\n}', 'function foo() {\n return 1;\n}\n\nfunction foo() {\n return 1;\n}' ); self.options.preserve_newlines = True; bt('var\na=do_preserve_newlines;', 'var\na = do_preserve_newlines;') bt('// a\n// b\n\n// c\n// d') bt('if (foo) // comment\n{\n bar();\n}') self.options.keep_array_indentation = False; bt("a = ['a', 'b', 'c',\n 'd', 'e', 'f']", "a = ['a', 'b', 'c',\n 'd', 'e', 'f'\n]"); bt("a = ['a', 'b', 'c',\n 'd', 'e', 'f',\n 'g', 'h', 'i']", "a = ['a', 'b', 'c',\n 'd', 'e', 'f',\n 'g', 'h', 'i'\n]"); bt("a = ['a', 'b', 'c',\n 'd', 'e', 'f',\n 'g', 'h', 'i']", "a = ['a', 'b', 'c',\n 'd', 'e', 'f',\n 'g', 'h', 'i'\n]"); bt('var x = [{}\n]', 'var x = [{}]'); bt('var x = [{foo:bar}\n]', 'var x = [{\n foo: bar\n }\n]'); bt("a = ['something',\n 'completely',\n 'different'];\nif (x);", "a = ['something',\n 'completely',\n 'different'\n];\nif (x);"); bt("a = ['a','b','c']", "a = ['a', 'b', 'c']"); bt("a = ['a', 'b','c']", "a = ['a', 'b', 'c']"); bt("x = [{'a':0}]", "x = [{\n 'a': 0\n }\n]"); # this is not great, but is accurate bt('{a([[a1]], {b;});}', '{\n a([\n [a1]\n ], {\n b;\n });\n}'); bt("a();\n [\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ].toString();", "a();\n[\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n].toString();"); bt("function() {\n Foo([\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ]);\n}", "function() {\n Foo([\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ]);\n}"); self.options.keep_array_indentation = True; bt("a = ['a', 'b', 'c',\n 'd', 'e', 'f']"); bt("a = ['a', 'b', 'c',\n 'd', 'e', 'f',\n 'g', 'h', 'i']"); bt("a = ['a', 'b', 'c',\n 'd', 'e', 'f',\n 'g', 'h', 'i']"); bt('var x = [{}\n]', 'var x = [{}\n]'); bt('var x = [{foo:bar}\n]', 'var x = [{\n foo: bar\n }\n]'); bt("a = ['something',\n 'completely',\n 'different'];\nif (x);"); bt("a = ['a','b','c']", "a = ['a', 'b', 'c']"); bt("a = ['a', 'b','c']", "a = ['a', 'b', 'c']"); bt("x = [{'a':0}]", "x = [{\n 'a': 0\n }]"); bt('{a([[a1]], {b;});}', '{\n a([[a1]], {\n b;\n });\n}'); bt("a();\n [\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ].toString();", "a();\n [\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ].toString();"); bt("function() {\n Foo([\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ]);\n}", "function() {\n Foo([\n ['sdfsdfsd'],\n ['sdfsdfsdf']\n ]);\n}"); self.options.keep_array_indentation = False; bt('a = //comment\n/regex/;'); test_fragment('/*\n * X\n */'); test_fragment('/*\r\n * X\r\n */', '/*\n * X\n */'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a) {\n b;\n} else {\n c;\n}'); bt('var a = new function();'); test_fragment('new function'); self.options.brace_style = 'expand'; bt('//case 1\nif (a == 1)\n{}\n//case 2\nelse if (a == 2)\n{}'); bt('if(1){2}else{3}', "if (1)\n{\n 2\n}\nelse\n{\n 3\n}"); bt('try{a();}catch(b){c();}catch(d){}finally{e();}', "try\n{\n a();\n}\ncatch (b)\n{\n c();\n}\ncatch (d)\n{}\nfinally\n{\n e();\n}"); bt('if(a){b();}else if(c) foo();', "if (a)\n{\n b();\n}\nelse if (c) foo();"); bt("if (a) {\n// comment\n}else{\n// comment\n}", "if (a)\n{\n // comment\n}\nelse\n{\n // comment\n}"); # if/else statement with empty body bt('if (x) {y} else { if (x) {y}}', 'if (x)\n{\n y\n}\nelse\n{\n if (x)\n {\n y\n }\n}'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a)\n{\n b;\n}\nelse\n{\n c;\n}'); test_fragment(' /*\n* xx\n*/\n// xx\nif (foo) {\n bar();\n}', ' /*\n * xx\n */\n // xx\n if (foo)\n {\n bar();\n }'); bt('if (foo)\n{}\nelse /regex/.test();'); bt('if (foo) /regex/.test();'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a)\n{\n b;\n}\nelse\n{\n c;\n}'); test_fragment('if (foo) {', 'if (foo)\n{'); test_fragment('foo {', 'foo\n{'); test_fragment('return {', 'return {'); # return needs the brace. test_fragment('return /* inline */ {', 'return /* inline */ {'); # test_fragment('return\n{', 'return\n{'); # can't support this?, but that's an improbable and extreme case anyway. test_fragment('return;\n{', 'return;\n{'); bt("throw {}"); bt("throw {\n foo;\n}"); bt('var foo = {}'); bt('if (foo) bar();\nelse break'); bt('function x() {\n foo();\n}zzz', 'function x()\n{\n foo();\n}\nzzz'); bt('a: do {} while (); xxx', 'a: do {} while ();\nxxx'); bt('var a = new function();'); bt('var a = new function() {};'); bt('var a = new function a()\n {};'); test_fragment('new function'); bt("foo({\n 'a': 1\n},\n10);", "foo(\n {\n 'a': 1\n },\n 10);"); self.options.brace_style = 'collapse'; bt('//case 1\nif (a == 1) {}\n//case 2\nelse if (a == 2) {}'); bt('if(1){2}else{3}', "if (1) {\n 2\n} else {\n 3\n}"); bt('try{a();}catch(b){c();}catch(d){}finally{e();}', "try {\n a();\n} catch (b) {\n c();\n} catch (d) {} finally {\n e();\n}"); bt('if(a){b();}else if(c) foo();', "if (a) {\n b();\n} else if (c) foo();"); bt("if (a) {\n// comment\n}else{\n// comment\n}", "if (a) {\n // comment\n} else {\n // comment\n}"); # if/else statement with empty body bt('if (x) {y} else { if (x) {y}}', 'if (x) {\n y\n} else {\n if (x) {\n y\n }\n}'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a) {\n b;\n} else {\n c;\n}'); test_fragment(' /*\n* xx\n*/\n// xx\nif (foo) {\n bar();\n}', ' /*\n * xx\n */\n // xx\n if (foo) {\n bar();\n }'); bt('if (foo) {} else /regex/.test();'); bt('if (foo) /regex/.test();'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a) {\n b;\n} else {\n c;\n}'); test_fragment('if (foo) {', 'if (foo) {'); test_fragment('foo {', 'foo {'); test_fragment('return {', 'return {'); # return needs the brace. test_fragment('return /* inline */ {', 'return /* inline */ {'); # test_fragment('return\n{', 'return\n{'); # can't support this?, but that's an improbable and extreme case anyway. test_fragment('return;\n{', 'return; {'); bt("throw {}"); bt("throw {\n foo;\n}"); bt('var foo = {}'); bt('if (foo) bar();\nelse break'); bt('function x() {\n foo();\n}zzz', 'function x() {\n foo();\n}\nzzz'); bt('a: do {} while (); xxx', 'a: do {} while ();\nxxx'); bt('var a = new function();'); bt('var a = new function() {};'); bt('var a = new function a() {};'); test_fragment('new function'); bt("foo({\n 'a': 1\n},\n10);", "foo({\n 'a': 1\n },\n 10);"); self.options.brace_style = "end-expand"; bt('//case 1\nif (a == 1) {}\n//case 2\nelse if (a == 2) {}'); bt('if(1){2}else{3}', "if (1) {\n 2\n}\nelse {\n 3\n}"); bt('try{a();}catch(b){c();}catch(d){}finally{e();}', "try {\n a();\n}\ncatch (b) {\n c();\n}\ncatch (d) {}\nfinally {\n e();\n}"); bt('if(a){b();}else if(c) foo();', "if (a) {\n b();\n}\nelse if (c) foo();"); bt("if (a) {\n// comment\n}else{\n// comment\n}", "if (a) {\n // comment\n}\nelse {\n // comment\n}"); # if/else statement with empty body bt('if (x) {y} else { if (x) {y}}', 'if (x) {\n y\n}\nelse {\n if (x) {\n y\n }\n}'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a) {\n b;\n}\nelse {\n c;\n}'); test_fragment(' /*\n* xx\n*/\n// xx\nif (foo) {\n bar();\n}', ' /*\n * xx\n */\n // xx\n if (foo) {\n bar();\n }'); bt('if (foo) {}\nelse /regex/.test();'); bt('if (foo) /regex/.test();'); bt('if (a)\n{\nb;\n}\nelse\n{\nc;\n}', 'if (a) {\n b;\n}\nelse {\n c;\n}'); test_fragment('if (foo) {', 'if (foo) {'); test_fragment('foo {', 'foo {'); test_fragment('return {', 'return {'); # return needs the brace. test_fragment('return /* inline */ {', 'return /* inline */ {'); # test_fragment('return\n{', 'return\n{'); # can't support this?, but that's an improbable and extreme case anyway. test_fragment('return;\n{', 'return; {'); bt("throw {}"); bt("throw {\n foo;\n}"); bt('var foo = {}'); bt('if (foo) bar();\nelse break'); bt('function x() {\n foo();\n}zzz', 'function x() {\n foo();\n}\nzzz'); bt('a: do {} while (); xxx', 'a: do {} while ();\nxxx'); bt('var a = new function();'); bt('var a = new function() {};'); bt('var a = new function a() {};'); test_fragment('new function'); bt("foo({\n 'a': 1\n},\n10);", "foo({\n 'a': 1\n },\n 10);"); self.options.brace_style = 'collapse'; bt('a = <?= external() ?> ;'); # not the most perfect thing in the world, but you're the weirdo beaufifying php mix-ins with javascript beautifier bt('a = <%= external() %> ;'); test_fragment('roo = {\n /*\n ****\n FOO\n ****\n */\n BAR: 0\n};'); test_fragment("if (zz) {\n // ....\n}\n(function"); self.options.preserve_newlines = True; bt('var a = 42; // foo\n\nvar b;') bt('var a = 42; // foo\n\n\nvar b;') bt("var a = 'foo' +\n 'bar';"); bt("var a = \"foo\" +\n \"bar\";"); bt('"foo""bar""baz"', '"foo"\n"bar"\n"baz"') bt("'foo''bar''baz'", "'foo'\n'bar'\n'baz'") bt("{\n get foo() {}\n}") bt("{\n var a = get\n foo();\n}") bt("{\n set foo() {}\n}") bt("{\n var a = set\n foo();\n}") bt("var x = {\n get function()\n}") bt("var x = {\n set function()\n}") bt("var x = set\n\nfunction() {}", "var x = set\n\n function() {}") bt('<!-- foo\nbar();\n-->') bt('<!-- dont crash') bt('for () /abc/.test()') bt('if (k) /aaa/m.test(v) && l();') bt('switch (true) {\n case /swf/i.test(foo):\n bar();\n}') bt('createdAt = {\n type: Date,\n default: Date.now\n}') bt('switch (createdAt) {\n case a:\n Date,\n default:\n Date.now\n}') bt('return function();') bt('var a = function();') bt('var a = 5 + function();') bt('{\n foo // something\n ,\n bar // something\n baz\n}') bt('function a(a) {} function b(b) {} function c(c) {}', 'function a(a) {}\n\nfunction b(b) {}\n\nfunction c(c) {}') bt('3.*7;', '3. * 7;') bt('import foo.*;', 'import foo.*;') # actionscript's import test_fragment('function f(a: a, b: b)') # actionscript bt('foo(a, function() {})'); bt('foo(a, /regex/)'); bt('/* foo */\n"x"'); self.options.break_chained_methods = False self.options.preserve_newlines = False bt('foo\n.bar()\n.baz().cucumber(fat)', 'foo.bar().baz().cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat); foo.bar().baz().cucumber(fat)', 'foo.bar().baz().cucumber(fat);\nfoo.bar().baz().cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat)\n foo.bar().baz().cucumber(fat)', 'foo.bar().baz().cucumber(fat)\nfoo.bar().baz().cucumber(fat)'); bt('this\n.something = foo.bar()\n.baz().cucumber(fat)', 'this.something = foo.bar().baz().cucumber(fat)'); bt('this.something.xxx = foo.moo.bar()'); bt('this\n.something\n.xxx = foo.moo\n.bar()', 'this.something.xxx = foo.moo.bar()'); self.options.break_chained_methods = False self.options.preserve_newlines = True bt('foo\n.bar()\n.baz().cucumber(fat)', 'foo\n .bar()\n .baz().cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat); foo.bar().baz().cucumber(fat)', 'foo\n .bar()\n .baz().cucumber(fat);\nfoo.bar().baz().cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat)\n foo.bar().baz().cucumber(fat)', 'foo\n .bar()\n .baz().cucumber(fat)\nfoo.bar().baz().cucumber(fat)'); bt('this\n.something = foo.bar()\n.baz().cucumber(fat)', 'this\n .something = foo.bar()\n .baz().cucumber(fat)'); bt('this.something.xxx = foo.moo.bar()'); bt('this\n.something\n.xxx = foo.moo\n.bar()', 'this\n .something\n .xxx = foo.moo\n .bar()'); self.options.break_chained_methods = True self.options.preserve_newlines = False bt('foo\n.bar()\n.baz().cucumber(fat)', 'foo.bar()\n .baz()\n .cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat); foo.bar().baz().cucumber(fat)', 'foo.bar()\n .baz()\n .cucumber(fat);\nfoo.bar()\n .baz()\n .cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat)\n foo.bar().baz().cucumber(fat)', 'foo.bar()\n .baz()\n .cucumber(fat)\nfoo.bar()\n .baz()\n .cucumber(fat)'); bt('this\n.something = foo.bar()\n.baz().cucumber(fat)', 'this.something = foo.bar()\n .baz()\n .cucumber(fat)'); bt('this.something.xxx = foo.moo.bar()'); bt('this\n.something\n.xxx = foo.moo\n.bar()', 'this.something.xxx = foo.moo.bar()'); self.options.break_chained_methods = True self.options.preserve_newlines = True bt('foo\n.bar()\n.baz().cucumber(fat)', 'foo\n .bar()\n .baz()\n .cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat); foo.bar().baz().cucumber(fat)', 'foo\n .bar()\n .baz()\n .cucumber(fat);\nfoo.bar()\n .baz()\n .cucumber(fat)'); bt('foo\n.bar()\n.baz().cucumber(fat)\n foo.bar().baz().cucumber(fat)', 'foo\n .bar()\n .baz()\n .cucumber(fat)\nfoo.bar()\n .baz()\n .cucumber(fat)'); bt('this\n.something = foo.bar()\n.baz().cucumber(fat)', 'this\n .something = foo.bar()\n .baz()\n .cucumber(fat)'); bt('this.something.xxx = foo.moo.bar()'); bt('this\n.something\n.xxx = foo.moo\n.bar()', 'this\n .something\n .xxx = foo.moo\n .bar()'); self.options.break_chained_methods = False self.options.preserve_newlines = False self.options.preserve_newlines = False self.options.wrap_line_length = 0 #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat && "sassy") || (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_.okay();') self.options.wrap_line_length = 70 #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat && "sassy") || (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_.okay();'); self.options.wrap_line_length = 40 #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat &&\n' + ' "sassy") || (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + 'if (wraps_can_occur &&\n' + ' inside_an_if_block) that_is_.okay();'); self.options.wrap_line_length = 41 # NOTE: wrap is only best effort - line continues until next wrap point is found. #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat && "sassy") ||\n' + ' (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + 'if (wraps_can_occur &&\n' + ' inside_an_if_block) that_is_.okay();'); self.options.wrap_line_length = 45 # NOTE: wrap is only best effort - line continues until next wrap point is found. #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('{\n' + ' foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + ' Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + ' if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();\n' + '}', # expected # '{\n' + ' foo.bar().baz().cucumber((fat && "sassy") ||\n' + ' (leans && mean));\n' + ' Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + ' if (wraps_can_occur &&\n' + ' inside_an_if_block) that_is_.okay();\n' + '}'); self.options.preserve_newlines = True self.options.wrap_line_length = 0 #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat && "sassy") || (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n' + ' .okay();'); self.options.wrap_line_length = 70 #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat && "sassy") || (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n' + ' .okay();'); self.options.wrap_line_length = 40 #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat &&\n' + ' "sassy") || (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + 'if (wraps_can_occur &&\n' + ' inside_an_if_block) that_is_\n' + ' .okay();'); self.options.wrap_line_length = 41 # NOTE: wrap is only best effort - line continues until next wrap point is found. #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + 'if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();', # expected # 'foo.bar().baz().cucumber((fat && "sassy") ||\n' + ' (leans && mean));\n' + 'Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + 'if (wraps_can_occur &&\n' + ' inside_an_if_block) that_is_\n' + ' .okay();'); self.options.wrap_line_length = 45 # NOTE: wrap is only best effort - line continues until next wrap point is found. #..............---------1---------2---------3---------4---------5---------6---------7 #..............1234567890123456789012345678901234567890123456789012345678901234567890 test_fragment('{\n' + ' foo.bar().baz().cucumber((fat && "sassy") || (leans\n&& mean));\n' + ' Test_very_long_variable_name_this_should_never_wrap\n.but_this_can\n' + ' if (wraps_can_occur && inside_an_if_block) that_is_\n.okay();\n' + '}', # expected # '{\n' + ' foo.bar().baz().cucumber((fat && "sassy") ||\n' + ' (leans && mean));\n' + ' Test_very_long_variable_name_this_should_never_wrap\n' + ' .but_this_can\n' + ' if (wraps_can_occur &&\n' + ' inside_an_if_block) that_is_\n' + ' .okay();\n' + '}'); self.options.wrap_line_length = 0 self.options.preserve_newlines = False bt('if (foo) // comment\n bar();'); bt('if (foo) // comment\n (bar());'); bt('if (foo) // comment\n (bar());'); bt('if (foo) // comment\n /asdf/;'); bt('foo = {\n x: y, // #44\n w: z // #44\n}'); bt('switch (x) {\n case "a":\n // comment on newline\n break;\n case "b": // comment on same line\n break;\n}'); # these aren't ready yet. #bt('if (foo) // comment\n bar() /*i*/ + baz() /*j\n*/ + asdf();'); bt('if\n(foo)\nif\n(bar)\nif\n(baz)\nwhee();\na();', 'if (foo) if (bar) if (baz) whee();\na();'); bt('if\n(foo)\nif\n(bar)\nif\n(baz)\nwhee();\nelse\na();', 'if (foo) if (bar) if (baz) whee();\n else a();'); bt('if (foo)\nbar();\nelse\ncar();', 'if (foo) bar();\nelse car();'); bt('if (foo) if (bar) if (baz) whee();\na();'); bt('if (foo) a()\nif (bar) if (baz) whee();\na();'); bt('if (options)\n' + ' for (var p in options)\n' + ' this[p] = options[p];', 'if (options) for (var p in options) this[p] = options[p];'); bt('function f(a, b, c,\nd, e) {}', 'function f(a, b, c, d, e) {}'); bt('function f(a,b) {if(a) b()}function g(a,b) {if(!a) b()}', 'function f(a, b) {\n if (a) b()\n}\n\nfunction g(a, b) {\n if (!a) b()\n}'); bt('function f(a,b) {if(a) b()}\n\n\n\nfunction g(a,b) {if(!a) b()}', 'function f(a, b) {\n if (a) b()\n}\n\nfunction g(a, b) {\n if (!a) b()\n}'); # This is not valid syntax, but still want to behave reasonably and not side-effect bt('(if(a) b())(if(a) b())', '(\n if (a) b())(\n if (a) b())'); bt('(if(a) b())\n\n\n(if(a) b())', '(\n if (a) b())\n(\n if (a) b())'); bt("if\n(a)\nb();", "if (a) b();"); bt('var a =\nfoo', 'var a = foo'); bt('var a = {\n"a":1,\n"b":2}', "var a = {\n \"a\": 1,\n \"b\": 2\n}"); bt("var a = {\n'a':1,\n'b':2}", "var a = {\n 'a': 1,\n 'b': 2\n}"); bt('var a = /*i*/ "b";'); bt('var a = /*i*/\n"b";', 'var a = /*i*/ "b";'); bt('var a = /*i*/\nb;', 'var a = /*i*/ b;'); bt('{\n\n\n"x"\n}', '{\n "x"\n}'); bt('if(a &&\nb\n||\nc\n||d\n&&\ne) e = f', 'if (a && b || c || d && e) e = f'); bt('if(a &&\n(b\n||\nc\n||d)\n&&\ne) e = f', 'if (a && (b || c || d) && e) e = f'); test_fragment('\n\n"x"', '"x"'); bt('a = 1;\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nb = 2;', 'a = 1;\nb = 2;'); self.options.preserve_newlines = True bt('if (foo) // comment\n bar();'); bt('if (foo) // comment\n (bar());'); bt('if (foo) // comment\n (bar());'); bt('if (foo) // comment\n /asdf/;'); bt('foo = {\n x: y, // #44\n w: z // #44\n}'); bt('switch (x) {\n case "a":\n // comment on newline\n break;\n case "b": // comment on same line\n break;\n}'); # these aren't ready yet. # bt('if (foo) // comment\n bar() /*i*/ + baz() /*j\n*/ + asdf();'); bt('if\n(foo)\nif\n(bar)\nif\n(baz)\nwhee();\na();', 'if (foo)\n if (bar)\n if (baz)\n whee();\na();'); bt('if\n(foo)\nif\n(bar)\nif\n(baz)\nwhee();\nelse\na();', 'if (foo)\n if (bar)\n if (baz)\n whee();\n else\n a();'); bt('if (foo) bar();\nelse\ncar();', 'if (foo) bar();\nelse\n car();'); bt('if (foo) if (bar) if (baz) whee();\na();'); bt('if (foo) a()\nif (bar) if (baz) whee();\na();'); bt('if (options)\n' + ' for (var p in options)\n' + ' this[p] = options[p];'); bt('function f(a, b, c,\nd, e) {}', 'function f(a, b, c,\n d, e) {}'); bt('function f(a,b) {if(a) b()}function g(a,b) {if(!a) b()}', 'function f(a, b) {\n if (a) b()\n}\n\nfunction g(a, b) {\n if (!a) b()\n}'); bt('function f(a,b) {if(a) b()}\n\n\n\nfunction g(a,b) {if(!a) b()}', 'function f(a, b) {\n if (a) b()\n}\n\n\n\nfunction g(a, b) {\n if (!a) b()\n}'); # This is not valid syntax, but still want to behave reasonably and not side-effect bt('(if(a) b())(if(a) b())', '(\n if (a) b())(\n if (a) b())'); bt('(if(a) b())\n\n\n(if(a) b())', '(\n if (a) b())\n\n\n(\n if (a) b())'); bt("if\n(a)\nb();", "if (a)\n b();"); bt('var a =\nfoo', 'var a =\n foo'); bt('var a = {\n"a":1,\n"b":2}', "var a = {\n \"a\": 1,\n \"b\": 2\n}"); bt("var a = {\n'a':1,\n'b':2}", "var a = {\n 'a': 1,\n 'b': 2\n}"); bt('var a = /*i*/ "b";'); bt('var a = /*i*/\n"b";', 'var a = /*i*/\n "b";'); bt('var a = /*i*/\nb;', 'var a = /*i*/\n b;'); bt('{\n\n\n"x"\n}', '{\n\n\n "x"\n}'); bt('if(a &&\nb\n||\nc\n||d\n&&\ne) e = f', 'if (a &&\n b ||\n c || d &&\n e) e = f'); bt('if(a &&\n(b\n||\nc\n||d)\n&&\ne) e = f', 'if (a &&\n (b ||\n c || d) &&\n e) e = f'); test_fragment('\n\n"x"', '"x"'); # this beavior differs between js and python, defaults to unlimited in js, 10 in python bt('a = 1;\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nb = 2;', 'a = 1;\n\n\n\n\n\n\n\n\n\nb = 2;'); self.options.max_preserve_newlines = 8; bt('a = 1;\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nb = 2;', 'a = 1;\n\n\n\n\n\n\n\nb = 2;'); # Test the option to have spaces within parens self.options.space_in_paren = False bt('if(p) foo(a,b)', 'if (p) foo(a, b)'); bt('try{while(true){willThrow()}}catch(result)switch(result){case 1:++result }', 'try {\n while (true) {\n willThrow()\n }\n} catch (result) switch (result) {\n case 1:\n ++result\n}'); bt('((e/((a+(b)*c)-d))^2)*5;', '((e / ((a + (b) * c) - d)) ^ 2) * 5;'); bt('function f(a,b) {if(a) b()}function g(a,b) {if(!a) b()}', 'function f(a, b) {\n if (a) b()\n}\n\nfunction g(a, b) {\n if (!a) b()\n}'); bt('a=[];', 'a = [];'); bt('a=[b,c,d];', 'a = [b, c, d];'); bt('a= f[b];', 'a = f[b];'); self.options.space_in_paren = True bt('if(p) foo(a,b)', 'if ( p ) foo( a, b )'); bt('try{while(true){willThrow()}}catch(result)switch(result){case 1:++result }', 'try {\n while ( true ) {\n willThrow( )\n }\n} catch ( result ) switch ( result ) {\n case 1:\n ++result\n}'); bt('((e/((a+(b)*c)-d))^2)*5;', '( ( e / ( ( a + ( b ) * c ) - d ) ) ^ 2 ) * 5;'); bt('function f(a,b) {if(a) b()}function g(a,b) {if(!a) b()}', 'function f( a, b ) {\n if ( a ) b( )\n}\n\nfunction g( a, b ) {\n if ( !a ) b( )\n}'); bt('a=[ ];', 'a = [ ];'); bt('a=[b,c,d];', 'a = [ b, c, d ];'); bt('a= f[b];', 'a = f[ b ];'); self.options.space_in_paren = False # Test that e4x literals passed through when e4x-option is enabled bt('xml=<a b="c"><d/><e>\n foo</e>x</a>;', 'xml = < a b = "c" > < d / > < e >\n foo < /e>x</a > ;'); self.options.e4x = True bt('xml=<a b="c"><d/><e>\n foo</e>x</a>;', 'xml = <a b="c"><d/><e>\n foo</e>x</a>;'); # Handles messed up tags, as long as it isn't the same name # as the root tag. Also handles tags of same name as root tag # as long as nesting matches. bt('xml=<a x="jn"><c></b></f><a><d jnj="jnn"><f></a ></nj></a>;', 'xml = <a x="jn"><c></b></f><a><d jnj="jnn"><f></a ></nj></a>;'); # If xml is not terminated, the remainder of the file is treated # as part of the xml-literal (passed through unaltered) test_fragment('xml=<a></b>\nc<b;', 'xml = <a></b>\nc<b;'); self.options.e4x = False # START tests for issue 241 bt('obj\n' + ' .last({\n' + ' foo: 1,\n' + ' bar: 2\n' + ' });\n' + 'var test = 1;'); bt('obj\n' + ' .last(function() {\n' + ' var test;\n' + ' });\n' + 'var test = 1;'); bt('obj.first()\n' + ' .second()\n' + ' .last(function(err, response) {\n' + ' console.log(err);\n' + ' });'); # END tests for issue 241 def decodesto(self, input, expectation=None): self.assertEqual( jsbeautifier.beautify(input, self.options), expectation or input) # if the expected is different from input, run it again # expected output should be unchanged when run twice. if not expectation == None: self.assertEqual( jsbeautifier.beautify(expectation, self.options), expectation) def wrap(self, text): return self.wrapregex.sub(' \\1', text) def bt(self, input, expectation=None): expectation = expectation or input self.decodesto(input, expectation) if self.options.indent_size == 4 and input: wrapped_input = '{\n%s\nfoo=bar;}' % self.wrap(input) wrapped_expect = '{\n%s\n foo = bar;\n}' % self.wrap(expectation) self.decodesto(wrapped_input, wrapped_expect) @classmethod def setUpClass(cls): options = jsbeautifier.default_options() options.indent_size = 4 options.indent_char = ' ' options.preserve_newlines = True options.jslint_happy = False options.keep_array_indentation = False options.brace_style = 'collapse' options.indent_level = 0 options.break_chained_methods = False cls.options = options cls.wrapregex = re.compile('^(.+)$', re.MULTILINE) if __name__ == '__main__': unittest.main()
[ "dearwill@outlook.com" ]
dearwill@outlook.com
e9bab44c9c61265f1fb967c6700de4b3768157eb
ef42a6d8b25820dc4745ce04c415ae25e7f3ca4f
/rtl/udp_demux.py
416bd0aa54358922b90574cb21bf1da7ac17d32a
[ "MIT" ]
permissive
sinamyth/verilog-ethernet
af363edad4b503584c1f4605c251c907fe03ec38
cf6a01fffeda33b0748f942532ad91e945d4903f
refs/heads/master
2021-01-19T17:38:43.580775
2017-07-22T18:07:23
2017-07-22T18:07:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,466
py
#!/usr/bin/env python """ Generates a UDP demux with the specified number of ports """ from __future__ import print_function import argparse import math from jinja2 import Template def main(): parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('-p', '--ports', type=int, default=4, help="number of ports") parser.add_argument('-n', '--name', type=str, help="module name") parser.add_argument('-o', '--output', type=str, help="output file name") args = parser.parse_args() try: generate(**args.__dict__) except IOError as ex: print(ex) exit(1) def generate(ports=4, name=None, output=None): if name is None: name = "udp_demux_{0}".format(ports) if output is None: output = name + ".v" print("Opening file '{0}'...".format(output)) output_file = open(output, 'w') print("Generating {0} port UDP demux {1}...".format(ports, name)) select_width = int(math.ceil(math.log(ports, 2))) t = Template(u"""/* Copyright (c) 2014-2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Language: Verilog 2001 `timescale 1ns / 1ps /* * UDP {{n}} port demultiplexer */ module {{name}} ( input wire clk, input wire rst, /* * UDP frame input */ input wire input_udp_hdr_valid, output wire input_udp_hdr_ready, input wire [47:0] input_eth_dest_mac, input wire [47:0] input_eth_src_mac, input wire [15:0] input_eth_type, input wire [3:0] input_ip_version, input wire [3:0] input_ip_ihl, input wire [5:0] input_ip_dscp, input wire [1:0] input_ip_ecn, input wire [15:0] input_ip_length, input wire [15:0] input_ip_identification, input wire [2:0] input_ip_flags, input wire [12:0] input_ip_fragment_offset, input wire [7:0] input_ip_ttl, input wire [7:0] input_ip_protocol, input wire [15:0] input_ip_header_checksum, input wire [31:0] input_ip_source_ip, input wire [31:0] input_ip_dest_ip, input wire [15:0] input_udp_source_port, input wire [15:0] input_udp_dest_port, input wire [15:0] input_udp_length, input wire [15:0] input_udp_checksum, input wire [7:0] input_udp_payload_tdata, input wire input_udp_payload_tvalid, output wire input_udp_payload_tready, input wire input_udp_payload_tlast, input wire input_udp_payload_tuser, /* * UDP frame outputs */ {%- for p in ports %} output wire output_{{p}}_udp_hdr_valid, input wire output_{{p}}_udp_hdr_ready, output wire [47:0] output_{{p}}_eth_dest_mac, output wire [47:0] output_{{p}}_eth_src_mac, output wire [15:0] output_{{p}}_eth_type, output wire [3:0] output_{{p}}_ip_version, output wire [3:0] output_{{p}}_ip_ihl, output wire [5:0] output_{{p}}_ip_dscp, output wire [1:0] output_{{p}}_ip_ecn, output wire [15:0] output_{{p}}_ip_length, output wire [15:0] output_{{p}}_ip_identification, output wire [2:0] output_{{p}}_ip_flags, output wire [12:0] output_{{p}}_ip_fragment_offset, output wire [7:0] output_{{p}}_ip_ttl, output wire [7:0] output_{{p}}_ip_protocol, output wire [15:0] output_{{p}}_ip_header_checksum, output wire [31:0] output_{{p}}_ip_source_ip, output wire [31:0] output_{{p}}_ip_dest_ip, output wire [15:0] output_{{p}}_udp_source_port, output wire [15:0] output_{{p}}_udp_dest_port, output wire [15:0] output_{{p}}_udp_length, output wire [15:0] output_{{p}}_udp_checksum, output wire [7:0] output_{{p}}_udp_payload_tdata, output wire output_{{p}}_udp_payload_tvalid, input wire output_{{p}}_udp_payload_tready, output wire output_{{p}}_udp_payload_tlast, output wire output_{{p}}_udp_payload_tuser, {% endfor %} /* * Control */ input wire enable, input wire [{{w-1}}:0] select ); reg [{{w-1}}:0] select_reg = {{w}}'d0, select_next; reg frame_reg = 1'b0, frame_next; reg input_udp_hdr_ready_reg = 1'b0, input_udp_hdr_ready_next; reg input_udp_payload_tready_reg = 1'b0, input_udp_payload_tready_next; {% for p in ports %} reg output_{{p}}_udp_hdr_valid_reg = 1'b0, output_{{p}}_udp_hdr_valid_next; {%- endfor %} reg [47:0] output_eth_dest_mac_reg = 48'd0, output_eth_dest_mac_next; reg [47:0] output_eth_src_mac_reg = 48'd0, output_eth_src_mac_next; reg [15:0] output_eth_type_reg = 16'd0, output_eth_type_next; reg [3:0] output_ip_version_reg = 4'd0, output_ip_version_next; reg [3:0] output_ip_ihl_reg = 4'd0, output_ip_ihl_next; reg [5:0] output_ip_dscp_reg = 6'd0, output_ip_dscp_next; reg [1:0] output_ip_ecn_reg = 2'd0, output_ip_ecn_next; reg [15:0] output_ip_length_reg = 16'd0, output_ip_length_next; reg [15:0] output_ip_identification_reg = 16'd0, output_ip_identification_next; reg [2:0] output_ip_flags_reg = 3'd0, output_ip_flags_next; reg [12:0] output_ip_fragment_offset_reg = 13'd0, output_ip_fragment_offset_next; reg [7:0] output_ip_ttl_reg = 8'd0, output_ip_ttl_next; reg [7:0] output_ip_protocol_reg = 8'd0, output_ip_protocol_next; reg [15:0] output_ip_header_checksum_reg = 16'd0, output_ip_header_checksum_next; reg [31:0] output_ip_source_ip_reg = 32'd0, output_ip_source_ip_next; reg [31:0] output_ip_dest_ip_reg = 32'd0, output_ip_dest_ip_next; reg [15:0] output_udp_source_port_reg = 16'd0, output_udp_source_port_next; reg [15:0] output_udp_dest_port_reg = 16'd0, output_udp_dest_port_next; reg [15:0] output_udp_length_reg = 16'd0, output_udp_length_next; reg [15:0] output_udp_checksum_reg = 16'd0, output_udp_checksum_next; // internal datapath reg [7:0] output_udp_payload_tdata_int; reg output_udp_payload_tvalid_int; reg output_udp_payload_tready_int_reg = 1'b0; reg output_udp_payload_tlast_int; reg output_udp_payload_tuser_int; wire output_udp_payload_tready_int_early; assign input_udp_hdr_ready = input_udp_hdr_ready_reg; assign input_udp_payload_tready = input_udp_payload_tready_reg; {% for p in ports %} assign output_{{p}}_udp_hdr_valid = output_{{p}}_udp_hdr_valid_reg; assign output_{{p}}_eth_dest_mac = output_eth_dest_mac_reg; assign output_{{p}}_eth_src_mac = output_eth_src_mac_reg; assign output_{{p}}_eth_type = output_eth_type_reg; assign output_{{p}}_ip_version = output_ip_version_reg; assign output_{{p}}_ip_ihl = output_ip_ihl_reg; assign output_{{p}}_ip_dscp = output_ip_dscp_reg; assign output_{{p}}_ip_ecn = output_ip_ecn_reg; assign output_{{p}}_ip_length = output_ip_length_reg; assign output_{{p}}_ip_identification = output_ip_identification_reg; assign output_{{p}}_ip_flags = output_ip_flags_reg; assign output_{{p}}_ip_fragment_offset = output_ip_fragment_offset_reg; assign output_{{p}}_ip_ttl = output_ip_ttl_reg; assign output_{{p}}_ip_protocol = output_ip_protocol_reg; assign output_{{p}}_ip_header_checksum = output_ip_header_checksum_reg; assign output_{{p}}_ip_source_ip = output_ip_source_ip_reg; assign output_{{p}}_ip_dest_ip = output_ip_dest_ip_reg; assign output_{{p}}_udp_source_port = output_udp_source_port_reg; assign output_{{p}}_udp_dest_port = output_udp_dest_port_reg; assign output_{{p}}_udp_length = output_udp_length_reg; assign output_{{p}}_udp_checksum = output_udp_checksum_reg; {% endfor %} // mux for output control signals reg current_output_udp_hdr_valid; reg current_output_udp_hdr_ready; reg current_output_tvalid; reg current_output_tready; always @* begin case (select_reg) {%- for p in ports %} {{w}}'d{{p}}: begin current_output_udp_hdr_valid = output_{{p}}_udp_hdr_valid; current_output_udp_hdr_ready = output_{{p}}_udp_hdr_ready; current_output_tvalid = output_{{p}}_udp_payload_tvalid; current_output_tready = output_{{p}}_udp_payload_tready; end {%- endfor %} default: begin current_output_udp_hdr_valid = 1'b0; current_output_udp_hdr_ready = 1'b0; current_output_tvalid = 1'b0; current_output_tready = 1'b0; end endcase end always @* begin select_next = select_reg; frame_next = frame_reg; input_udp_hdr_ready_next = input_udp_hdr_ready_reg & ~input_udp_hdr_valid; input_udp_payload_tready_next = 1'b0; {%- for p in ports %} output_{{p}}_udp_hdr_valid_next = output_{{p}}_udp_hdr_valid_reg & ~output_{{p}}_udp_hdr_ready; {%- endfor %} output_eth_dest_mac_next = output_eth_dest_mac_reg; output_eth_src_mac_next = output_eth_src_mac_reg; output_eth_type_next = output_eth_type_reg; output_ip_version_next = output_ip_version_reg; output_ip_ihl_next = output_ip_ihl_reg; output_ip_dscp_next = output_ip_dscp_reg; output_ip_ecn_next = output_ip_ecn_reg; output_ip_length_next = output_ip_length_reg; output_ip_identification_next = output_ip_identification_reg; output_ip_flags_next = output_ip_flags_reg; output_ip_fragment_offset_next = output_ip_fragment_offset_reg; output_ip_ttl_next = output_ip_ttl_reg; output_ip_protocol_next = output_ip_protocol_reg; output_ip_header_checksum_next = output_ip_header_checksum_reg; output_ip_source_ip_next = output_ip_source_ip_reg; output_ip_dest_ip_next = output_ip_dest_ip_reg; output_udp_source_port_next = output_udp_source_port_reg; output_udp_dest_port_next = output_udp_dest_port_reg; output_udp_length_next = output_udp_length_reg; output_udp_checksum_next = output_udp_checksum_reg; if (input_udp_payload_tvalid & input_udp_payload_tready) begin // end of frame detection if (input_udp_payload_tlast) begin frame_next = 1'b0; end end if (~frame_reg & enable & input_udp_hdr_valid & ~current_output_udp_hdr_valid & ~current_output_tvalid) begin // start of frame, grab select value frame_next = 1'b1; select_next = select; input_udp_hdr_ready_next = 1'b1; case (select) {%- for p in ports %} {{w}}'d{{p}}: output_{{p}}_udp_hdr_valid_next = 1'b1; {%- endfor %} endcase output_eth_dest_mac_next = input_eth_dest_mac; output_eth_src_mac_next = input_eth_src_mac; output_eth_type_next = input_eth_type; output_ip_version_next = input_ip_version; output_ip_ihl_next = input_ip_ihl; output_ip_dscp_next = input_ip_dscp; output_ip_ecn_next = input_ip_ecn; output_ip_length_next = input_ip_length; output_ip_identification_next = input_ip_identification; output_ip_flags_next = input_ip_flags; output_ip_fragment_offset_next = input_ip_fragment_offset; output_ip_ttl_next = input_ip_ttl; output_ip_protocol_next = input_ip_protocol; output_ip_header_checksum_next = input_ip_header_checksum; output_ip_source_ip_next = input_ip_source_ip; output_ip_dest_ip_next = input_ip_dest_ip; output_udp_source_port_next = input_udp_source_port; output_udp_dest_port_next = input_udp_dest_port; output_udp_length_next = input_udp_length; output_udp_checksum_next = input_udp_checksum; end input_udp_payload_tready_next = output_udp_payload_tready_int_early & frame_next; output_udp_payload_tdata_int = input_udp_payload_tdata; output_udp_payload_tvalid_int = input_udp_payload_tvalid & input_udp_payload_tready; output_udp_payload_tlast_int = input_udp_payload_tlast; output_udp_payload_tuser_int = input_udp_payload_tuser; end always @(posedge clk) begin if (rst) begin select_reg <= {{w}}'d0; frame_reg <= 1'b0; input_udp_hdr_ready_reg <= 1'b0; input_udp_payload_tready_reg <= 1'b0; {%- for p in ports %} output_{{p}}_udp_hdr_valid_reg <= 1'b0; {%- endfor %} end else begin select_reg <= select_next; frame_reg <= frame_next; input_udp_hdr_ready_reg <= input_udp_hdr_ready_next; input_udp_payload_tready_reg <= input_udp_payload_tready_next; {%- for p in ports %} output_{{p}}_udp_hdr_valid_reg <= output_{{p}}_udp_hdr_valid_next; {%- endfor %} end output_eth_dest_mac_reg <= output_eth_dest_mac_next; output_eth_src_mac_reg <= output_eth_src_mac_next; output_eth_type_reg <= output_eth_type_next; output_ip_version_reg <= output_ip_version_next; output_ip_ihl_reg <= output_ip_ihl_next; output_ip_dscp_reg <= output_ip_dscp_next; output_ip_ecn_reg <= output_ip_ecn_next; output_ip_length_reg <= output_ip_length_next; output_ip_identification_reg <= output_ip_identification_next; output_ip_flags_reg <= output_ip_flags_next; output_ip_fragment_offset_reg <= output_ip_fragment_offset_next; output_ip_ttl_reg <= output_ip_ttl_next; output_ip_protocol_reg <= output_ip_protocol_next; output_ip_header_checksum_reg <= output_ip_header_checksum_next; output_ip_source_ip_reg <= output_ip_source_ip_next; output_ip_dest_ip_reg <= output_ip_dest_ip_next; output_udp_source_port_reg <= output_udp_source_port_next; output_udp_dest_port_reg <= output_udp_dest_port_next; output_udp_length_reg <= output_udp_length_next; output_udp_checksum_reg <= output_udp_checksum_next; end // output datapath logic reg [7:0] output_udp_payload_tdata_reg = 8'd0; {%- for p in ports %} reg output_{{p}}_udp_payload_tvalid_reg = 1'b0, output_{{p}}_udp_payload_tvalid_next; {%- endfor %} reg output_udp_payload_tlast_reg = 1'b0; reg output_udp_payload_tuser_reg = 1'b0; reg [7:0] temp_udp_payload_tdata_reg = 8'd0; reg temp_udp_payload_tvalid_reg = 1'b0, temp_udp_payload_tvalid_next; reg temp_udp_payload_tlast_reg = 1'b0; reg temp_udp_payload_tuser_reg = 1'b0; // datapath control reg store_udp_payload_int_to_output; reg store_udp_payload_int_to_temp; reg store_udp_payload_temp_to_output; {% for p in ports %} assign output_{{p}}_udp_payload_tdata = output_udp_payload_tdata_reg; assign output_{{p}}_udp_payload_tvalid = output_{{p}}_udp_payload_tvalid_reg; assign output_{{p}}_udp_payload_tlast = output_udp_payload_tlast_reg; assign output_{{p}}_udp_payload_tuser = output_udp_payload_tuser_reg; {% endfor %} // enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input) assign output_udp_payload_tready_int_early = current_output_tready | (~temp_udp_payload_tvalid_reg & (~current_output_tvalid | ~output_udp_payload_tvalid_int)); always @* begin // transfer sink ready state to source {%- for p in ports %} output_{{p}}_udp_payload_tvalid_next = output_{{p}}_udp_payload_tvalid_reg; {%- endfor %} temp_udp_payload_tvalid_next = temp_udp_payload_tvalid_reg; store_udp_payload_int_to_output = 1'b0; store_udp_payload_int_to_temp = 1'b0; store_udp_payload_temp_to_output = 1'b0; if (output_udp_payload_tready_int_reg) begin // input is ready if (current_output_tready | ~current_output_tvalid) begin // output is ready or currently not valid, transfer data to output {%- for p in ports %} output_{{p}}_udp_payload_tvalid_next = output_udp_payload_tvalid_int & (select_reg == {{w}}'d{{p}}); {%- endfor %} store_udp_payload_int_to_output = 1'b1; end else begin // output is not ready, store input in temp temp_udp_payload_tvalid_next = output_udp_payload_tvalid_int; store_udp_payload_int_to_temp = 1'b1; end end else if (current_output_tready) begin // input is not ready, but output is ready {%- for p in ports %} output_{{p}}_udp_payload_tvalid_next = temp_udp_payload_tvalid_reg & (select_reg == {{w}}'d{{p}}); {%- endfor %} temp_udp_payload_tvalid_next = 1'b0; store_udp_payload_temp_to_output = 1'b1; end end always @(posedge clk) begin if (rst) begin {%- for p in ports %} output_{{p}}_udp_payload_tvalid_reg <= 1'b0; {%- endfor %} output_udp_payload_tready_int_reg <= 1'b0; temp_udp_payload_tvalid_reg <= 1'b0; end else begin {%- for p in ports %} output_{{p}}_udp_payload_tvalid_reg <= output_{{p}}_udp_payload_tvalid_next; {%- endfor %} output_udp_payload_tready_int_reg <= output_udp_payload_tready_int_early; temp_udp_payload_tvalid_reg <= temp_udp_payload_tvalid_next; end // datapath if (store_udp_payload_int_to_output) begin output_udp_payload_tdata_reg <= output_udp_payload_tdata_int; output_udp_payload_tlast_reg <= output_udp_payload_tlast_int; output_udp_payload_tuser_reg <= output_udp_payload_tuser_int; end else if (store_udp_payload_temp_to_output) begin output_udp_payload_tdata_reg <= temp_udp_payload_tdata_reg; output_udp_payload_tlast_reg <= temp_udp_payload_tlast_reg; output_udp_payload_tuser_reg <= temp_udp_payload_tuser_reg; end if (store_udp_payload_int_to_temp) begin temp_udp_payload_tdata_reg <= output_udp_payload_tdata_int; temp_udp_payload_tlast_reg <= output_udp_payload_tlast_int; temp_udp_payload_tuser_reg <= output_udp_payload_tuser_int; end end endmodule """) output_file.write(t.render( n=ports, w=select_width, name=name, ports=range(ports) )) print("Done") if __name__ == "__main__": main()
[ "alex@alexforencich.com" ]
alex@alexforencich.com
8b0f79b33468d21fb8ca5b0bb2e158c37b34f9c2
0db038dc04fe5998539c362164c78a868d7db5d7
/MPC_Mppi_Main.py
a49d94f286a2a306378084842cb7db86d5c30fb1
[]
no_license
ZhihuLi/LSTM_MPC_master1
5ef1749dfa6e0507a8beaf486bc359dda9a45500
e04a2ae49f1a0a98094849539db9b5b79f00b354
refs/heads/master
2022-12-09T02:11:06.951203
2020-09-01T04:25:45
2020-09-01T04:25:45
291,895,192
0
0
null
null
null
null
UTF-8
Python
false
false
2,280
py
import matplotlib.pyplot as plt from MPC_Mppi import MPPI mppi = MPPI(512, 200, 0.5) """ 目标形状设立1500个时间步 """ STEP_LIMIT = 600 def get_real_shape(): h_real, w_real = mppi.get_real_shape() return h_real, w_real def mppi_main(h_target_list, w_target_list): h_target_list_ = h_target_list w_target_list_ = w_target_list # get shape information from environment h_real, w_real = get_real_shape() # 获取目前的形状,焊接开始前将参数设为中位值 [8,12],以此预测形状 print("real height and width: ", h_real, w_real) mppi.trajectory_set_goal(h_target_list_, w_target_list_) mppi.Delta_reset() # mppi.trajectory_update_state(h_real, w_real) # rollout with mppi algo for step in range (STEP_LIMIT): if (step % 10 == 0): print("step: ", step) mppi.compute_cost(step) target_action_Wf_list, target_action_Rs_list, target_action_Wf, target_action_Rs = mppi.compute_noise_action() mppi.trajectory_update_shape(target_action_Wf, target_action_Rs) mppi.Delta_update() if step <= 200: mppi.Delta_reset() mppi.cost_clear() h_real_list, w_real_list = mppi.get_real_shape_list() Wf_real_list, Rs_real_list = mppi.get_real_parameter_list() plt.figure(0) plt.plot(h_real_list) plt.plot(h_target_list_) plt.xlim((0, 2000)) plt.ylim(0, 5) plt.xlabel('time (s)') # plt.ylabel('Height(mm)') plt.ylabel('Height(mm)') plt.title('Control result') plt.figure(1) plt.plot(w_real_list) plt.plot(w_target_list_) plt.xlim((0, 2000)) plt.ylim(0, 10) plt.xlabel('time (s)') # plt.ylabel('Height(mm)') plt.ylabel('Width(mm)') plt.title('Control result') plt.show() plt.figure(2) plt.plot(Wf_real_list) plt.plot(Rs_real_list) plt.xlim((0, 2000)) plt.ylim(0, 30) plt.xlabel('time (s)') # plt.ylabel('Height(mm)') # plt.ylabel('Width(mm)') plt.title('Control result') plt.show() if __name__ == '__main__': h_target_list = [2]*1700 w_target_list = [6]*1700 mppi_main(h_target_list, w_target_list)
[ "18810723878@163.com" ]
18810723878@163.com
0946b605cba59cc67b6c4c1e03ab4be2d829547a
470a76fb3844612d8ee4fa2e01ef01ee6b071ca8
/Data_Engineering_Project_2/data/process_data.py
ffc36e496eec60b7f0a8efea799cad9869e7ac75
[]
no_license
sakshigoplani/DataScienceNanodegree
8aeaac613536643c89d925ea6d9a4cf3ce5a6bf6
ad8b18318813e181d5cf0895c488f550b0fe88a8
refs/heads/master
2021-07-05T03:47:14.283910
2020-12-03T19:50:27
2020-12-03T19:50:27
207,171,123
0
0
null
null
null
null
UTF-8
Python
false
false
5,094
py
############################################################################ # ## # ## # Author: Sakshi Haresh Goplani ## # Project: Data Engineering - Disaster Response Pipeline ## # Email: sakshigoplani9@gmail.com ## # ## ############################################################################ """ Data Builder Utility This script takes in a path where CSV files resides. It goes over the data, cleans/processes it and saves the clean data in SQL Table. Usage: python process_data.py <messages_filepath> <categories_filepath> <database_filepath> <tablename> """ import os import sys import logging import pandas as pd import numpy as np from sqlalchemy import create_engine # METADATA # __version__ = 3.6 __author__ = 'Sakshi Haresh Goplani' ################ def argument_sanitization(messages_filepath, categories_filepath): """ Validate file paths Args: messages_filepath (string): Path to messages.csv categories_filepath (string): Path to categories.csv Returns: N/A """ if not os.path.isfile(messages_filepath): logger.error("{} is not valid".format(messages_filepath)) if not os.path.isfile(categories_filepath): logger.error("{} is not valid".format(categories_filepath)) def load_data(messages_filepath, categories_filepath): """ Read and Merge data Args: messages_filepath (string): Path to messages.csv categories_filepath (string): Path to categories.csv Returns: df (pandas dataframe): Merged messages and categories dataframe """ # Confirm paths are valid and read in datasets into dataframe argument_sanitization(messages_filepath, categories_filepath) messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) # Merge Messages and Categories dataframes into single dataframe df = messages.merge(categories, how='outer', on='id') return df def clean_data(df): """ Clean Data into relevant columns Args: df (pandas dataframe): Merged messages and categories dataframe Returns: df (pandas dataframe): Clean dataframe """ # Create a dataframe of the individual category columns categories = df['categories'].str.split(';', expand=True) # Select the first row of the categories dataframe row = categories.iloc[1, :] # Extract a list of new column names for categories category_colnames = list(map(lambda x: x.split('-')[0], row)) categories.columns = category_colnames # Convert category values to just numbers 0 or 1 numerals for column in categories: categories[column] = categories[column].str.split('-').str.get(1) categories[column] = pd.to_numeric(categories[column]) # Replace categories column in df with new category columns df = df.drop('categories', axis=1) # Concat cleansed categories with df df = pd.concat([df, categories], axis=1) # Drop duplicates df.drop_duplicates(subset=['id'], keep='first', inplace=True) return df def save_data(df, database_filename, tablename): """ Save data to SQL Database Args: df (pandas dataframe): Final cleansed dataframe database_filename (string): Name of the DB File tablename (string): Name of the table to create in DB Returns: N/A """ engine = create_engine(database_filename) df.to_sql(tablename, engine, index=False) def main(): if len(sys.argv) == 5: messages_filepath, \ categories_filepath, \ database_filepath, \ tablename = sys.argv[1:] logger.info(" Loading data...\n MESSAGES: {}\n CATEGORIES: {} " .format(messages_filepath, categories_filepath)) df = load_data(messages_filepath, categories_filepath) logger.info(" Cleaning data...") df = clean_data(df) logger.info(" Saving data...\n DATABASE: {}\n TABLE NAME: {} " .format(database_filepath, tablename)) save_data(df, database_filepath, tablename) logger.info(" Cleaned data saved to database!") else: logger.error( """ Please provide the filepaths of the messages and categories datasets as the first and second argument respectively, as well as the filepath of the database to save the cleaned data to as the third argument. \n\nExample: python process_data.py disaster_messages.csv disaster_categories.csv DisasterResponse.db """ ) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) main()
[ "sakshigoplani9@gmail.com" ]
sakshigoplani9@gmail.com
bd44f0d0b5de2c6da91c93b0dc68b71f562537d1
a675114201f384c9af03faa397ae6d15b2848953
/yangiliklar/yangiliklar/urls.py
915c3fa4b4cc8173be4427d3ff5943badda04b05
[]
no_license
Zokhidjon1903/Yangiliklar
304e81ab051634d481e4a68059a5c5758ac51bac
fc3efe74dc7f2c6059b6d9ed1b2c860388d04502
refs/heads/main
2023-08-05T10:48:28.848235
2021-09-17T06:47:40
2021-09-17T06:47:40
404,962,630
1
0
null
null
null
null
UTF-8
Python
false
false
974
py
"""yangiliklar URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('news.urls')), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "z.kaytarov@gmail.com" ]
z.kaytarov@gmail.com
3e9d9915c2093b671ab7488bbdeb9d45d5e790f6
609c5d5723adb1a2e1b846a31c63f858bfab909a
/env/bin/pip2.7
338fc56dbfe3778a95a5127d605dbd2d4a21aed8
[]
no_license
jndal12/norsetrips
71dfeb025134e666c95b251b3866dac77315c813
c13c78d9a042afdd49718626fedf3d3cdd5ab8a5
refs/heads/master
2021-01-10T09:50:00.463756
2015-10-15T19:55:30
2015-10-15T19:55:30
43,389,757
0
0
null
null
null
null
UTF-8
Python
false
false
235
7
#!/Users/navaju01/Senior-Project-/env/bin/python # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "navaju01@luther.edu" ]
navaju01@luther.edu
7a750c6e46c33e61126aeaf5efa498ab4b428e69
467018e22a423cf43fb219725aca2da489a97369
/mysite/blog/models.py
f0657242e97b5c377ff823aa845db0e37aa52fe3
[]
no_license
manrevlob/cursoDjango
d74a272dc1122693822a000a8b22fa5c5acd9092
09d9087e6c4ab149ae6a08f7b830777f47440081
refs/heads/master
2020-08-27T09:57:48.479016
2020-03-19T11:23:54
2020-03-19T11:23:54
217,325,519
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
from django.db import models # Create your models here. class Post(models.Model): title = models.CharField(max_length=200) text = models.TextField() class Comment(models.Model): name = models.CharField(max_length=50) comment = models.TextField() post_id = models.IntegerField(default=0)
[ "manuel.revillalobo@plexus.local" ]
manuel.revillalobo@plexus.local
faf00bf81ee5c667d58a600dd389512ea52f1789
2a5241bd7ddda9bc661f59f488886049aa104ab1
/ExecutionCodes/dag2.py
10f01e8c605ddb1b7f0442e4bc74b511606fba3b
[]
no_license
Avighan/PythonCreatives
00d51c67b6c95d0096f5fedaaa879e2c9958be3e
f75ddb4efe0516339b6fbb4d1fbd50e4090c6213
refs/heads/master
2020-12-12T16:01:05.564287
2020-02-05T22:55:32
2020-02-05T22:55:32
234,167,944
0
0
null
null
null
null
UTF-8
Python
false
false
1,697
py
import sys import os sys.path.append(os.path.join(os.path.abspath('.'), '')) sys.path.append(os.path.join(os.path.abspath('..'), '')) sys.path.append(os.path.join(os.path.dirname(__file__), '.')) sys.path.append(os.path.join(os.path.dirname(__file__))) from script import TemplateExecutor as te import pdb from datetime import datetime, timedelta from script import TemplateCreator as temp_create from script import Template1Functions_for_Airflow as tfunc from script import Airflow_dag_creation as dagcreate from airflow.operators import PythonOperator, BashOperator, DummyOperator from airflow.models import DAG seven_days_ago = datetime.combine( datetime.today() - timedelta(7), datetime.min.time()) args = {'owner': 'DLTeam', 'start_date': seven_days_ago, } execute = te.TemplateExecute() flow = execute.load_from_file('Template_Airflow.pkl') params = {'SetData': {'folderpath': './Example2/', 'data_files': ['./datasets/diabetes.csv'], 'file_type': 'csv', 'y': 'Outcome', 'model_type': 'Classification', 'model_to_run': 'XGBClassifier', 'hyperparameters': {'penalty': ['l1', 'l2'], 'C': [1.0, 2.0, 5.0]}, 'metrics_to_check': ['Accuracy', 'Confusion'], 'outputPath': './'}} flow = execute.update_node(params) execute.update_parameters('folderpath', './Example2/') # execute.execute_template(flow) dag = DAG(dag_id='AutoML2', default_args=args, schedule_interval=None) dagimplement = dagcreate.Dagtaskexecute(template_flow=flow, dag=dag) dagimplement.create_dag()
[ "noreply@github.com" ]
Avighan.noreply@github.com
e3d3b04b937958d29865f0dc70681222e2ebaf49
63c02b040f95688935405e5fe342b048a7b78ae1
/project/tests/test_data_processing_funcs.py
e467f62e34c96143588286eecf700d23ef9b0498
[]
no_license
Astony/FinnalProject
e432b91f1d298e31520107f7723eae4981f4a245
96204217b541e2af4ec315f3e9a603c51684eb58
refs/heads/master
2023-07-15T05:05:05.465114
2021-08-31T20:54:33
2021-08-31T20:54:33
399,906,901
0
0
null
2021-08-31T15:50:46
2021-08-25T17:40:50
null
UTF-8
Python
false
false
1,291
py
import pandas as pd from data_processing import calc_central, city_center_coord, define_address def mock_geocoder(*args): """Mock function for geocoder to avoid requests to API""" return "Test address" def test_define_addresses_function(): """Test that define_addresses_function add address that was got by geocoder""" test_df = pd.DataFrame({"Latitude": [100], "Longitude": [0]}) geocoder = mock_geocoder result_df = define_address(test_df, 1, geocoder) assert result_df.Address.item() == "Test address" assert result_df.Latitude.item() == 100 def test_calc_central_coord(): """Test that calc_central return the middle between to coordinates""" test_df = pd.DataFrame({"Latitude": [60, 80], "Longitude": [100, 100]}) assert calc_central(test_df) == (70, 100) def test_get_cities_countries_central_coord(): """Test city_center_coord return the central coordinates for 2 hotels in one city""" test_df = pd.DataFrame( { "Latitude": [60, 80], "Longitude": [100, 100], "City": ["Fakecity", "Fakecity"], "Country": ["fakecountry", "fakecountry"], } ) assert city_center_coord(test_df) == ( ["Fakecity"], ["fakecountry"], [(70, 100)], )
[ "savrushkin.aa@gmail.com" ]
savrushkin.aa@gmail.com
f371d214be53eb924a2b6d24f2fe272f6fea4898
5214ed20be64aea19f5c874c4ea80ab28b606d8c
/lookup/data/test.py
970893e164e5dc279f6ce0e818e93cbc95c2dd0f
[]
no_license
eknuth/timezone
618456d7482118afa446ed43a26d6f7df635afb4
39cf523afc9eed42a906a16f7cf61a0d48dd74bc
refs/heads/master
2021-01-10T19:01:48.587584
2010-04-16T10:47:11
2010-04-16T10:47:11
607,268
1
0
null
null
null
null
UTF-8
Python
false
false
393
py
import urllib2 from urllib import urlencode f = open('cities.txt') for line in f: (city, lon, lat) = line.split("\t") url = 'http://timezone-lookup.com/' args = {'coords': "%s,%s" % (lon, lat)} full_url = '%s?%s' % (url, urlencode(args)) try: response = urllib2.urlopen(full_url) print response.read() except: print "Couldn't find %s" % city
[ "eknuth@macbookpro.local" ]
eknuth@macbookpro.local
9b1a4eab14b591308b564b66521f5014c2f337fe
3cdf86a62c6075e5d070b0a8e47823d5c8dff35e
/unbalanced_dataset/under_sampling/nearmiss.py
5ab42644560cbabda4b65743a6de596fdfa1bba9
[]
no_license
StefanKal/DarknetReport
184cc740fb0faf31a7b95346b61e51b0e534cef7
c265a04ac9d032b72a40cdebca1017ef44ca4621
refs/heads/master
2021-01-20T20:32:01.989340
2016-07-26T16:02:15
2016-07-26T16:02:15
61,836,822
0
0
null
null
null
null
UTF-8
Python
false
false
13,200
py
"""Class to perform under-sampling based on nearmiss methods.""" from __future__ import print_function from __future__ import division import numpy as np from collections import Counter from sklearn.utils import check_X_y from sklearn.neighbors import NearestNeighbors from .under_sampler import UnderSampler class NearMiss(UnderSampler): """Class to perform under-sampling based on NearMiss methods. Parameters ---------- ratio : str or float, optional (default='auto') If 'auto', the ratio will be defined automatically to balanced the dataset. Otherwise, the ratio will corresponds to the number of samples in the minority class over the the number of samples in the majority class. return_indices : bool, optional (default=False) Either to return or not the indices which will be selected from the majority class. random_state : int or None, optional (default=None) Seed for random number generation. verbose : bool, optional (default=True) Boolean to either or not print information about the processing version : int, optional (default=1) Version of the NearMiss to use. Possible values are 1, 2 or 3. size_ngh : int, optional (default=3) Size of the neighbourhood to consider to compute the average distance to the minority point samples. ver3_samp_ngh : int, optional (default=3) NearMiss-3 algorithm start by a phase of re-sampling. This parameter correspond to the number of neighbours selected create the sub_set in which the selection will be performed. n_jobs : int, optional (default=-1) The number of thread to open when it is possible. **kwargs : keywords Parameter to use for the Nearest Neighbours object. Attributes ---------- ratio_ : str or float, optional (default='auto') If 'auto', the ratio will be defined automatically to balanced the dataset. Otherwise, the ratio will corresponds to the number of samples in the minority class over the the number of samples in the majority class. rs_ : int or None, optional (default=None) Seed for random number generation. min_c_ : str or int The identifier of the minority class. max_c_ : str or int The identifier of the majority class. stats_c_ : dict of str/int : int A dictionary in which the number of occurences of each class is reported. Notes ----- The methods are based on [1]_. The class support multi-classes. References ---------- .. [1] I. Mani, I. Zhang. "kNN approach to unbalanced data distributions: a case study involving information extraction," In Proceedings of workshop on learning from imbalanced datasets, 2003. """ def __init__(self, ratio='auto', return_indices=False, random_state=None, verbose=True, version=1, size_ngh=3, ver3_samp_ngh=3, n_jobs=-1, **kwargs): """Initialisation of clustering centroids object. Parameters ---------- ratio : str or float, optional (default='auto') If 'auto', the ratio will be defined automatically to balanced the dataset. Otherwise, the ratio will corresponds to the number of samples in the minority class over the the number of samples in the majority class. return_indices : bool, optional (default=False) Either to return or not the indices which will be selected from the majority class. random_state : int or None, optional (default=None) Seed for random number generation. verbose : bool, optional (default=True) Boolean to either or not print information about the processing version : int, optional (default=1) Version of the NearMiss to use. Possible values are 1, 2 or 3. size_ngh : int, optional (default=3) Size of the neighbourhood to consider to compute the average distance to the minority point samples. ver3_samp_ngh : int, optional (default=3) NearMiss-3 algorithm start by a phase of re-sampling. This parameter correspond to the number of neighbours selected create the sub_set in which the selection will be performed. n_jobs : int, optional (default=-1) The number of thread to open when it is possible. **kwargs : keywords Parameter to use for the Nearest Neighbours object. Returns ------- None """ super(NearMiss, self).__init__(ratio=ratio, return_indices=return_indices, random_state=random_state, verbose=verbose) # Assign the parameter of the element of this class # Check that the version asked is implemented if not (version == 1 or version == 2 or version == 3): raise ValueError('UnbalancedData.NearMiss: there is only 3 ' 'versions available with parameter version=1/2/3') self.version = version self.size_ngh = size_ngh self.ver3_samp_ngh = ver3_samp_ngh self.n_jobs = n_jobs self.kwargs = kwargs def fit(self, X, y): """Find the classes statistics before to perform sampling. Parameters ---------- X : ndarray, shape (n_samples, n_features) Matrix containing the data which have to be sampled. y : ndarray, shape (n_samples, ) Corresponding label for each sample in X. Returns ------- self : object, Return self. """ # Check the consistency of X and y X, y = check_X_y(X, y) super(NearMiss, self).fit(X, y) return self def _selection_dist_based(self, X, y, dist_vec, num_samples, key, sel_strategy='nearest'): """Select the appropriate samples depending of the strategy selected. Parameters ---------- X : ndarray, shape (n_samples, n_features) Original samples. y : ndarray, shape (n_samples, ) Associated label to X. dist_vec : ndarray, shape (n_samples, ) The distance matrix to the nearest neigbour. num_samples: int The desired number of samples to select. key : str or int, The target class. sel_strategy : str, optional (default='nearest') Strategy to select the samples. Either 'nearest' or 'farthest' Returns ------- X_sel : ndarray, shape (num_samples, n_features) Selected samples. y_sel : ndarray, shape (num_samples, ) The associated label. idx_sel : ndarray, shape (num_samples, ) The list of the indices of the selected samples. """ # Compute the distance considering the farthest neighbour dist_avg_vec = np.sum(dist_vec[:, -self.size_ngh:], axis=1) # Sort the list of distance and get the index if sel_strategy == 'nearest': sort_way = False elif sel_strategy == 'farthest': sort_way = True else: raise NotImplementedError sorted_idx = sorted(range(len(dist_avg_vec)), key=dist_avg_vec.__getitem__, reverse=sort_way) # Select the desired number of samples sel_idx = sorted_idx[:num_samples] return (X[y == key][sel_idx], y[y == key][sel_idx], np.nonzero(y == key)[0][sel_idx]) def transform(self, X, y): """Resample the dataset. Parameters ---------- X : ndarray, shape (n_samples, n_features) Matrix containing the data which have to be sampled. y : ndarray, shape (n_samples, ) Corresponding label for each sample in X. Returns ------- X_resampled : ndarray, shape (n_samples_new, n_features) The array containing the resampled data. y_resampled : ndarray, shape (n_samples_new) The corresponding label of `X_resampled` idx_under : ndarray, shape (n_samples, ) If `return_indices` is `True`, a boolean array will be returned containing the which samples have been selected. """ # Check the consistency of X and y X, y = check_X_y(X, y) super(NearMiss, self).transform(X, y) # Start with the minority class X_min = X[y == self.min_c_] y_min = y[y == self.min_c_] # All the minority class samples will be preserved X_resampled = X_min.copy() y_resampled = y_min.copy() # Compute the number of cluster needed if self.ratio_ == 'auto': num_samples = self.stats_c_[self.min_c_] else: num_samples = int(self.stats_c_[self.min_c_] / self.ratio_) # If we need to offer support for the indices if self.return_indices: idx_under = np.nonzero(y == self.min_c_)[0] # For each element of the current class, find the set of NN # of the minority class # Call the constructor of the NN nn_obj = NearestNeighbors(n_neighbors=self.size_ngh, n_jobs=self.n_jobs, **self.kwargs) # Fit the minority class since that we want to know the distance # to these point nn_obj.fit(X[y == self.min_c_]) # Loop over the other classes under picking at random for key in self.stats_c_.keys(): # If the minority class is up, skip it if key == self.min_c_: continue # Get the samples corresponding to the current class sub_samples_x = X[y == key] sub_samples_y = y[y == key] if self.version == 1: # Find the NN dist_vec, idx_vec = nn_obj.kneighbors( sub_samples_x, n_neighbors=self.size_ngh) # Select the right samples sel_x, sel_y, idx_tmp = self._selection_dist_based( X, y, dist_vec, num_samples, key, sel_strategy='nearest') elif self.version == 2: # Find the NN dist_vec, idx_vec = nn_obj.kneighbors( sub_samples_x, n_neighbors=self.stats_c_[self.min_c_]) # Select the right samples sel_x, sel_y, idx_tmp = self._selection_dist_based( X, y, dist_vec, num_samples, key, sel_strategy='nearest') elif self.version == 3: # We need a new NN object to fit the current class nn_obj_cc = NearestNeighbors(n_neighbors=self.ver3_samp_ngh, n_jobs=self.n_jobs, **self.kwargs) nn_obj_cc.fit(sub_samples_x) # Find the set of NN to the minority class dist_vec, idx_vec = nn_obj_cc.kneighbors(X_min) # Create the subset containing the samples found during the NN # search. Linearize the indexes and remove the double values idx_vec = np.unique(idx_vec.reshape(-1)) # Create the subset sub_samples_x = sub_samples_x[idx_vec, :] sub_samples_y = sub_samples_y[idx_vec] # Compute the NN considering the current class dist_vec, idx_vec = nn_obj.kneighbors( sub_samples_x, n_neighbors=self.size_ngh) sel_x, sel_y, idx_tmp = self._selection_dist_based( X, y, dist_vec, num_samples, key, sel_strategy='farthest') else: raise NotImplementedError # If we need to offer support for the indices selected if self.return_indices: idx_under = np.concatenate((idx_under, idx_tmp), axis=0) X_resampled = np.concatenate((X_resampled, sel_x), axis=0) y_resampled = np.concatenate((y_resampled, sel_y), axis=0) if self.verbose: print("Under-sampling performed: {}".format(Counter(y_resampled))) # Check if the indices of the samples selected should be returned too if self.return_indices: # Return the indices of interest return X_resampled, y_resampled, idx_under else: return X_resampled, y_resampled
[ "stefan.kalchmair@gmail.com" ]
stefan.kalchmair@gmail.com
c5093f06d78421e5e06a8db7730c58cbcafd1e0d
39bef50ed12468e57ad94a8e2551da6c7c45c8ed
/networkx/drawing/nx_pylab.py
b96ab87ca39c0e2b1a8f38fc8a0858575319078d
[]
no_license
biancini/Rorschach-Test-Platform
b1a5dfdbe5a15a68ce4dcf66887346fbf2e94169
7ae68e1054637046278325eaa419b23f09b420d3
refs/heads/master
2020-05-17T11:00:13.889678
2012-04-11T16:31:19
2012-04-11T16:31:19
3,789,381
1
2
null
null
null
null
UTF-8
Python
false
false
27,792
py
""" ********** Matplotlib ********** Draw networks with matplotlib (pylab). See Also -------- matplotlib: http://matplotlib.sourceforge.net/ pygraphviz: http://networkx.lanl.gov/pygraphviz/ """ __author__ = """Aric Hagberg (hagberg@lanl.gov)""" # Copyright (C) 2004-2010 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. __all__ = ['draw', 'draw_networkx', 'draw_networkx_nodes', 'draw_networkx_edges', 'draw_networkx_labels', 'draw_networkx_edge_labels', 'draw_circular', 'draw_random', 'draw_spectral', 'draw_spring', 'draw_shell', 'draw_graphviz'] import networkx as nx from networkx.drawing.layout import shell_layout,\ circular_layout,spectral_layout,spring_layout,random_layout def draw(G, pos=None, ax=None, hold=None, **kwds): """Draw the graph G with Matplotlib (pylab). Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in specified Matplotlib axes. hold : bool, optional Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes. **kwds : optional keywords See networkx.draw_networkx() for a description of optional keywords. Examples -------- >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout See Also -------- draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() Notes ----- This function has the same name as pylab.draw and pyplot.draw so beware when using >>> from networkx import * since you might overwrite the pylab.draw function. Good alternatives are: With pylab: >>> import pylab as P # >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> P.draw() # pylab draw() With pyplot >>> import matplotlib.pyplot as plt >>> import networkx as nx >>> G=nx.dodecahedral_graph() >>> nx.draw(G) # networkx draw() >>> plt.draw() # pyplot draw() Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html """ try: import matplotlib.pylab as pylab except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise cf=pylab.gcf() cf.set_facecolor('w') if ax is None: if cf._axstack() is None: ax=cf.add_axes((0,0,1,1)) else: ax=cf.gca() # allow callers to override the hold state by passing hold=True|False b = pylab.ishold() h = kwds.pop('hold', None) if h is not None: pylab.hold(h) try: draw_networkx(G,pos=pos,ax=ax,**kwds) ax.set_axis_off() pylab.draw_if_interactive() except: pylab.hold(b) raise pylab.hold(b) return def draw_networkx(G, pos=None, with_labels=True, **kwds): """Draw the graph G using Matplotlib. Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. with_labels : bool, optional (default=True) Set to True to draw labels on the nodes. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. nodelist : list, optional (default G.nodes()) Draw only specified nodes edgelist : list, optional (default=G.edges()) Draw only specified edges node_size : scalar or array, optional (default=300) Size of nodes. If an array is specified it must be the same length as nodelist. node_color : color string, or array of floats, (default='r') Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. node_shape : string, optional (default='o') The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'. alpha : float, optional (default=1.0) The node transparency cmap : Matplotlib colormap, optional (default=None) Colormap for mapping intensities of nodes vmin,vmax : float, optional (default=None) Minimum and maximum for node colormap scaling linewidths : [None | scalar | sequence] Line width of symbol border (default =1.0) width : float, optional (default=1.0) Line width of edges edge_color : color string, or array of floats (default='r') Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. edge_ cmap : Matplotlib colormap, optional (default=None) Colormap for mapping intensities of edges edge_vmin,edge_vmax : floats, optional (default=None) Minimum and maximum for edge colormap scaling style : string, optional (deafult='solid') Edge line style (solid|dashed|dotted,dashdot) labels : dictionary, optional (deafult=None) Node labels in a dictionary keyed by node of text labels font_size : int, optional (default=12) Font size for text labels font_color : string, optional (default='k' black) Font color string font_weight : string, optional (default='normal') Font weight font_family : string, optional (default='sans-serif') Font family Examples -------- >>> G=nx.dodecahedral_graph() >>> nx.draw(G) >>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout >>> import pylab >>> limits=pylab.axis('off') # turn of axis Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib.pylab as pylab except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if pos is None: pos=nx.drawing.spring_layout(G) # default to spring layout node_collection=draw_networkx_nodes(G, pos, **kwds) edge_collection=draw_networkx_edges(G, pos, **kwds) if with_labels: draw_networkx_labels(G, pos, **kwds) pylab.draw_if_interactive() def draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, **kwds): """Draw the nodes of the graph G. This draws only the nodes of the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. nodelist : list, optional Draw only specified nodes (default G.nodes()) node_size : scalar or array Size of nodes (default=300). If an array is specified it must be the same length as nodelist. node_color : color string, or array of floats Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details. node_shape : string The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o'). alpha : float The node transparency (default=1.0) cmap : Matplotlib colormap Colormap for mapping intensities of nodes (default=None) vmin,vmax : floats Minimum and maximum for node colormap scaling (default=None) linewidths : [None | scalar | sequence] Line width of symbol border (default =1.0) Examples -------- >>> G=nx.dodecahedral_graph() >>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_edges() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib.pylab as pylab import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if nodelist is None: nodelist=G.nodes() if not nodelist or len(nodelist)==0: # empty nodelist, no drawing return None try: xy=numpy.asarray([pos[v] for v in nodelist]) except KeyError as e: raise nx.NetworkXError('Node %s has no position.'%e) except ValueError: raise nx.NetworkXError('Bad value in node positions.') node_collection=ax.scatter(xy[:,0], xy[:,1], s=node_size, c=node_color, marker=node_shape, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths) # pylab.axes(ax) pylab.sci(node_collection) node_collection.set_zorder(2) return node_collection def draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=None, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, **kwds): """Draw the edges of the graph G. This draws only the edges of the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. edgelist : collection of edge tuples Draw only specified edges(default=G.edges()) width : float Line width of edges (default =1.0) edge_color : color string, or array of floats Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. style : string Edge line style (default='solid') (solid|dashed|dotted,dashdot) alpha : float The edge transparency (default=1.0) edge_ cmap : Matplotlib colormap Colormap for mapping intensities of edges (default=None) edge_vmin,edge_vmax : floats Minimum and maximum for edge colormap scaling (default=None) ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. arrows : bool, optional (default=True) For directed graphs, if True draw arrowheads. Notes ----- For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky. Examples -------- >>> G=nx.dodecahedral_graph() >>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_labels() draw_networkx_edge_labels() """ try: import matplotlib import matplotlib.pylab as pylab import matplotlib.cbook as cb from matplotlib.colors import colorConverter,Colormap from matplotlib.collections import LineCollection import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if edgelist is None: edgelist=G.edges() if not edgelist or len(edgelist)==0: # no edges! return None # set edge positions edge_pos=numpy.asarray([(pos[e[0]],pos[e[1]]) for e in edgelist]) if not cb.iterable(width): lw = (width,) else: lw = width if not cb.is_string_like(edge_color) \ and cb.iterable(edge_color) \ and len(edge_color)==len(edge_pos): if numpy.alltrue([cb.is_string_like(c) for c in edge_color]): # (should check ALL elements) # list of color letters such as ['k','r','k',...] edge_colors = tuple([colorConverter.to_rgba(c,alpha) for c in edge_color]) elif numpy.alltrue([not cb.is_string_like(c) for c in edge_color]): # If color specs are given as (rgb) or (rgba) tuples, we're OK if numpy.alltrue([cb.iterable(c) and len(c) in (3,4) for c in edge_color]): edge_colors = tuple(edge_color) else: # numbers (which are going to be mapped with a colormap) edge_colors = None else: raise ValueError('edge_color must consist of either color names or numbers') else: if cb.is_string_like(edge_color) or len(edge_color)==1: edge_colors = ( colorConverter.to_rgba(edge_color, alpha), ) else: raise ValueError('edge_color must be a single color or list of exactly m colors where m is the number or edges') edge_collection = LineCollection(edge_pos, colors = edge_colors, linewidths = lw, antialiaseds = (1,), linestyle = style, transOffset = ax.transData, ) edge_collection.set_zorder(1) # edges go behind nodes ax.add_collection(edge_collection) # Note: there was a bug in mpl regarding the handling of alpha values for # each line in a LineCollection. It was fixed in matplotlib in r7184 and # r7189 (June 6 2009). We should then not set the alpha value globally, # since the user can instead provide per-edge alphas now. Only set it # globally if provided as a scalar. if cb.is_numlike(alpha): edge_collection.set_alpha(alpha) if edge_colors is None: if edge_cmap is not None: assert(isinstance(edge_cmap, Colormap)) edge_collection.set_array(numpy.asarray(edge_color)) edge_collection.set_cmap(edge_cmap) if edge_vmin is not None or edge_vmax is not None: edge_collection.set_clim(edge_vmin, edge_vmax) else: edge_collection.autoscale() pylab.sci(edge_collection) arrow_collection=None if G.is_directed() and arrows: # a directed graph hack # draw thick line segments at head end of edge # waiting for someone else to implement arrows that will work arrow_colors = edge_colors a_pos=[] p=1.0-0.25 # make head segment 25 percent of edge length for src,dst in edge_pos: x1,y1=src x2,y2=dst dx=x2-x1 # x offset dy=y2-y1 # y offset d=numpy.sqrt(float(dx**2+dy**2)) # length of edge if d==0: # source and target at same position continue if dx==0: # vertical edge xa=x2 ya=dy*p+y1 if dy==0: # horizontal edge ya=y2 xa=dx*p+x1 else: theta=numpy.arctan2(dy,dx) xa=p*d*numpy.cos(theta)+x1 ya=p*d*numpy.sin(theta)+y1 a_pos.append(((xa,ya),(x2,y2))) arrow_collection = LineCollection(a_pos, colors = arrow_colors, linewidths = [4*ww for ww in lw], antialiaseds = (1,), transOffset = ax.transData, ) arrow_collection.set_zorder(1) # edges go behind nodes ax.add_collection(arrow_collection) # update view minx = numpy.amin(numpy.ravel(edge_pos[:,:,0])) maxx = numpy.amax(numpy.ravel(edge_pos[:,:,0])) miny = numpy.amin(numpy.ravel(edge_pos[:,:,1])) maxy = numpy.amax(numpy.ravel(edge_pos[:,:,1])) w = maxx-minx h = maxy-miny padx, pady = 0.05*w, 0.05*h corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) ax.update_datalim( corners) ax.autoscale_view() # if arrow_collection: return edge_collection def draw_networkx_labels(G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, ax=None, **kwds): """Draw node labels on the graph G. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. font_size : int Font size for text labels (default=12) font_color : string Font color string (default='k' black) font_family : string Font family (default='sans-serif') font_weight : string Font weight (default='normal') alpha : float The text transparency (default=1.0) ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. Examples -------- >>> G=nx.dodecahedral_graph() >>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_edge_labels() """ try: import matplotlib.pylab as pylab import matplotlib.cbook as cb except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if labels is None: labels=dict( (n,n) for n in G.nodes()) # set optional alignment horizontalalignment=kwds.get('horizontalalignment','center') verticalalignment=kwds.get('verticalalignment','center') text_items={} # there is no text collection so we'll fake one for n, label in labels.items(): (x,y)=pos[n] if not cb.is_string_like(label): label=str(label) # this will cause "1" and 1 to be labeled the same t=ax.text(x, y, label, size=font_size, color=font_color, family=font_family, weight=font_weight, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, transform = ax.transData, clip_on=True, ) text_items[n]=t return text_items def draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, **kwds): """Draw edge labels. Parameters ---------- G : graph A networkx graph pos : dictionary, optional A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions. ax : Matplotlib Axes object, optional Draw the graph in the specified Matplotlib axes. alpha : float The text transparency (default=1.0) edge_labels : dictionary Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn. label_pos : float Position of edge label along edge (0=head, 0.5=center, 1=tail) font_size : int Font size for text labels (default=12) font_color : string Font color string (default='k' black) font_weight : string Font weight (default='normal') font_family : string Font family (default='sans-serif') bbox : Matplotlib bbox Specify text box shape and colors. clip_on : bool Turn on clipping at axis boundaries (default=True) Examples -------- >>> G=nx.dodecahedral_graph() >>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G)) Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html See Also -------- draw() draw_networkx() draw_networkx_nodes() draw_networkx_edges() draw_networkx_labels() """ try: import matplotlib.pylab as pylab import matplotlib.cbook as cb import numpy except ImportError: raise ImportError("Matplotlib required for draw()") except RuntimeError: print("Matplotlib unable to open display") raise if ax is None: ax=pylab.gca() if edge_labels is None: labels=dict( ((u,v), d) for u,v,d in G.edges(data=True) ) else: labels = edge_labels text_items={} for (n1,n2), label in labels.items(): (x1,y1)=pos[n1] (x2,y2)=pos[n2] (x,y) = (x1 * label_pos + x2 * (1.0 - label_pos), y1 * label_pos + y2 * (1.0 - label_pos)) if rotate: angle=numpy.arctan2(y2-y1,x2-x1)/(2.0*numpy.pi)*360 # degrees # make label orientation "right-side-up" if angle > 90: angle-=180 if angle < - 90: angle+=180 # transform data coordinate angle to screen coordinate angle xy=numpy.array((x,y)) trans_angle=ax.transData.transform_angles(numpy.array((angle,)), xy.reshape((1,2)))[0] else: trans_angle=0.0 # use default box of white with white border if bbox is None: bbox = dict(boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0), ) if not cb.is_string_like(label): label=str(label) # this will cause "1" and 1 to be labeled the same # set optional alignment horizontalalignment=kwds.get('horizontalalignment','center') verticalalignment=kwds.get('verticalalignment','center') t=ax.text(x, y, label, size=font_size, color=font_color, family=font_family, weight=font_weight, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, rotation=trans_angle, transform = ax.transData, bbox = bbox, zorder = 1, clip_on=True, ) text_items[(n1,n2)]=t return text_items def draw_circular(G, **kwargs): """Draw the graph G with a circular layout.""" draw(G,circular_layout(G),**kwargs) def draw_random(G, **kwargs): """Draw the graph G with a random layout.""" draw(G,random_layout(G),**kwargs) def draw_spectral(G, **kwargs): """Draw the graph G with a spectral layout.""" draw(G,spectral_layout(G),**kwargs) def draw_spring(G, **kwargs): """Draw the graph G with a spring layout.""" draw(G,spring_layout(G),**kwargs) def draw_shell(G, **kwargs): """Draw networkx graph with shell layout.""" nlist = kwargs.get('nlist', None) if nlist != None: del(kwargs['nlist']) draw(G,shell_layout(G,nlist=nlist),**kwargs) def draw_graphviz(G, prog="neato", **kwargs): """Draw networkx graph with graphviz layout.""" pos=nx.drawing.graphviz_layout(G,prog) draw(G,pos,**kwargs) def draw_nx(G,pos,**kwds): """For backward compatibility; use draw or draw_networkx.""" draw(G,pos,**kwds) # fixture for nose tests def setup_module(module): #from nose import SkipTest try: import matplotlib as mpl mpl.use('PS',warn=False) import pylab except: raise nx.NetworkXError("matplotlib not available")
[ "andrea.biancini@gmail.com" ]
andrea.biancini@gmail.com
34e841d5c42c6b380b140a639e8f172775f27cef
f4c383a560ab431857dbab5289d599696d444d7a
/email_automation.py
8a7f9af397cf8f1bdaeb99621004ab118eb45ed0
[]
no_license
codewithkushagra/webautomation
8a76f215be36074129b3ed3b2c964298d7bf6e10
3b300071398a764e146c0b4bc2fd10bc0517d1f0
refs/heads/master
2023-05-02T18:42:01.504806
2021-05-26T08:00:56
2021-05-26T08:00:56
370,952,769
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
import smtplib server=smtplib.SMTP_SSL("smtp.gmail.com",465) list_emial=["mehuljaiswal2012@gmail.com","kushagraagra008@gmail.com",] server.login("kushagraagra008@gmail.com","25march2020l") server.sendmail("kushagraagra008@gmail.com",list_emial,"Hey Naresh, This email is generated using python") server.quit()
[ "kushagraagra008@gmail.com" ]
kushagraagra008@gmail.com
74561a66252dde406de5ceda8055f0be1640a2cd
ea94c9baf90064c3b81750298f8d328316c3eea0
/app.py
627e6e2a04dace40be920fabd31e2a6b7e9bc2c9
[]
no_license
SanUni2020/Site
21a0548f5d8fd5e8dd719bca95e13b3aa1debbd1
11be2b1a587bc942bdfbace1124e05a3c60fb445
refs/heads/main
2023-09-06T10:10:58.614870
2021-11-12T05:18:00
2021-11-12T05:18:00
427,230,444
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
from flask import Flask, render_template app = Flask(__name__) @app.route("/") def index(): return render_template("index.html") @app.route("/mensagem") def mensagem(): return render_template("mensagem.html") @app.route("/obrigado") def obrigado(): return render_template("obrigado.html") if __name__ == "__main__": app.run(debug=True)
[ "noreply@github.com" ]
SanUni2020.noreply@github.com
40418aedeb61c774d2392e8c3ea4cd197f762866
0bb329b86e86f05ac9057669a172b64cb7b01936
/practice/myThirdTwo.py
7c4f01230953962ba8500ef795577646816202e6
[]
no_license
ptallrights/python
6426280f3f49b16c5624a5c8e26e0e9d56982486
bf100cefa6a22b5b9c267940b120cda8a1ae8402
refs/heads/master
2021-01-20T19:42:21.884791
2016-07-28T14:00:11
2016-07-28T14:00:11
61,192,755
0
0
null
null
null
null
UTF-8
Python
false
false
1,477
py
#!/usr/bin/python 'myFirstOne.py -- create text file' import os ls = os.linesep all = [] fname = raw_input("please input a filename:") #get filename #while True: if os.path.exists(fname): read = raw_input("Are you xiugai the file(r(read) or w(write)):") if read == "r": try: fobj = open(fname,'r') except IOError,e: print "*** file open error:",e else: #display contents to the screen for eachLine in fobj: print eachLine, fobj.close() elif read == "w": print "\nEnter lines ('.' by itself to quit).\n" while True: entry = raw_input('>') if entry == ".": break else: all.append(entry) else: print "thank you." else: print "\nEnter lines ('.' by itself to quit).\n" while True: entry = raw_input('>') if entry == ".": break else: all.append(entry) fobj = open(fname,"w") fobj.writelines(['%s%s' % (x,ls) for x in all]) fobj.close() print "DONE!" #print "ERROR: '%s' already exists" % fname #get file content (txt) lines #all = [] #print "\nEnter lines ('.' by itself to quit).\n" #loop until user terminates input #while True: # entry = raw_input('>') # if entry == ".": # break # else: # all.append(entry) #wirte lines to file with prper line-ending #attempt to open file for reading #try: # fobj = open(fname,'r') #except IOError,e: # print "*** file open error:",e #else: # #display contents to the screen # for eachLine in fobj: # print eachLine, # fobj.close() #
[ "ptallrights@163.com" ]
ptallrights@163.com
09d70ca1cd460017689f474fdcbd45bf0bcc7163
9cca8467e3aff199470b4eb7d83b2f495994e70d
/Week 3/using_tuples.py
3b05c5ed6d6b3445ec97d0b313fcfda83b6f6500
[]
no_license
andrewlee21/PythonFundamentals
78d2424647e4179893781443eddecae51212553b
c136018d8fe6333b45adcb33fb1007b61bd276b7
refs/heads/master
2023-08-14T08:14:55.024623
2021-09-16T04:04:24
2021-09-16T04:04:24
397,338,859
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
my_tuple = (1, 2, 3, 4, 5) print(my_tuple[0] + my_tuple[1]) print(my_tuple[-2] + my_tuple[-1]) my_tuple = (5, 4, 3, 2, 1) print(my_tuple)
[ "andrewlee21@sbcglobal.net" ]
andrewlee21@sbcglobal.net
1e17cd4603703f78fef3307911e3585ea18568ef
fa5713863cada0177d15e56f5327b79d907a119f
/test/plot_jmrs_trkeff.py
c1a348b41ca20f15dabf50e782c2d4a5aaeef348
[]
no_license
rappoccio/EXOVV
1500c126d8053b47fbc425d1c2f9e76f14cb75c5
db96edf661398b5bab131bbeba36d331b180d12d
refs/heads/master
2020-04-03T20:12:57.959191
2018-08-24T01:30:03
2018-08-24T01:30:03
39,910,319
4
2
null
null
null
null
UTF-8
Python
false
false
2,419
py
#! /usr/bin/env python ################## # Finding the mistag rate plots ################## from optparse import OptionParser parser = OptionParser() parser.add_option('--postfix', type='string', action='store', dest='postfix', default = '', help='Postfix for plots') (options, args) = parser.parse_args() argv = [] import math import ROOT import sys import array ROOT.gROOT.Macro("rootlogon.C") canvs = [] rgs = [] effs = [1.00, 0.99, 0.98, 0.97, 0.96, 0.95] effstrs = [ '100', '099', '098', '097', '096', '095' ] for effstr in effstrs : f = ROOT.TFile("jmr_ungroomed_trkeff" + effstr + ".root") c = f.Get("totresc2_0") c.Draw() canvs.append(c) rg = c.GetPrimitive("rg_0").Clone( 'eff_' + effstr ) rgs.append( rg ) rg0 = rgs[0].Clone("rg0") gs0 = rg0.GetListOfGraphs() ptBinA = array.array('d', [ 200., 260., 350., 460., 550., 650., 760., 900, 1000, 1100, 1200, 1300, 13000.]) r = 0.8 / math.sqrt(2.) xmaxes = [ x * r for x in ptBinA ] xmins = [ x / 20. for x in ptBinA ] canvs = [] rgsdiv = [] for irg,rg in enumerate(rgs): ci = ROOT.TCanvas("c" + rg.GetName(), "c" + rg.GetName() ) gs = rg.GetListOfGraphs() rgdiv = ROOT.TMultiGraph( rg.GetName() + "_div", "Track Efficiency = " + str(effs[irg]) + rg.GetTitle() + " Uncertainty") for ig,g in enumerate(gs): xdiv = array.array('d', []) ydiv = array.array('d', []) for i in xrange( g.GetN() ): x = ROOT.Double(0.0) y = ROOT.Double(0.0) y0 = ROOT.Double(0.0) dy = g.GetErrorY(i) g.GetPoint(i,x,y) gs0[ig].GetPoint(i,x,y0) if y0 > 0.0 and y > 0.0 and dy / y < 0.75 and x > xmins[ig] and x < xmaxes[ig] : xdiv.append( x ) ydiv.append( (y-y0)/y0) gdiv = ROOT.TGraph( len(xdiv), xdiv, ydiv ) gdiv.SetName(g.GetName() + "_div") gdiv.SetLineStyle(g.GetLineStyle()) gdiv.SetLineColor(g.GetLineColor()) rgdiv.Add( gdiv ) rgsdiv.append( rgdiv ) ci.cd() rgdiv.Draw("AL") rgdiv.GetHistogram().SetTitleOffset(1.0, "Y") rgdiv.SetMinimum(0.0) rgdiv.SetMaximum(0.5) ci.Update() canvs.append(ci) ci.Print("jmr_unc_trkeff" + effstr[irg] + ".png", "png" ) ci.Print("jmr_unc_trkeff" + effstr[irg] + ".pdf", "pdf" )
[ "rappoccio@gmail.com" ]
rappoccio@gmail.com
398a3b22c9a8d2f74c15036657c9e1d26e1f740c
a207fa961aec11d332b7402dfe1ecbc4b9690b0a
/portfolio/managers.py
f8549501fdccdac50db71020f0994cc9f2ccfa8c
[]
no_license
powellc/django-portfolio
20157d1ae931e51de4542fe9e0797d763347242a
9cc6ff1f422694748fe82670ddf4cb4f667a3b94
refs/heads/master
2016-09-05T12:44:52.186559
2010-04-24T13:02:25
2010-04-24T13:02:25
280,024
0
1
null
null
null
null
UTF-8
Python
false
false
194
py
from django.db.models import Manager class PublicManager(Manager): """Returns only public projects.""" def public(self): return self.get_query_set().filter(is_public=True)
[ "colin@rubyvroom.com" ]
colin@rubyvroom.com
7594dd6e8da2e44e17b6c1fed236f6cf84c16ad0
4746567b5d576fd67063390fed9f834637ee5282
/Assignment3/Assignment3.py
de660edecc6c2848290d3984f82be0f63d6f3d3f
[]
no_license
abaez004/Python-Assignments
0d0ff415577a2a91f848cbfe00de79af3b88214b
7a13bef2b05e5800681ca13a331ec011a7b3bce5
refs/heads/master
2020-06-12T20:46:27.579627
2019-06-29T15:34:29
2019-06-29T15:34:29
194,420,772
0
0
null
null
null
null
UTF-8
Python
false
false
2,230
py
#Angel Baez 9:30 AM Lab Assignment #3 #gets input from the user and validates using exception handling def collatz_input(): try: n = int(input("Enter a positive integer for n: ")) if n > 0: return n else: print("Your value must be a positive integer") except ValueError: print("You must enter a valid positive integer") #prints collatz conjecture of n def collatz_conjecture(n): if n == 1: print(n) return elif n % 2 == 0: print(n) collatz_conjecture(n//2) else: print(n) collatz_conjecture(3*n+1) #used to get and verify input for prime_factor and prime_less_than def prime_factor_input(): try: n = int(input("Enter an integer: ")) if n > 1: return n else: print("You must enter an integer greater than 0") except ValueError: print("You must enter a valid positive integer") #returns true if the n1 is prime, false otherwise def is_prime(n1,n2): if n2 == 1: return True elif n1 % n2 == 0: return False else : return is_prime(n1, n2 - 1) def prime_factor(n1, n2): if n2 == 1: return elif n1 % n2 == 0 and is_prime(n2, n2//2): print(n2, " ") prime_factor(n1, n2-1) else: prime_factor(n1, n2-1) #prints all prime numbers less than or equal to n1 def prime_less_than(n1): if n1 < 2: return elif is_prime(n1,n1//2): print(n1) prime_less_than(n1 - 1) else: prime_less_than(n1 - 1) n = collatz_input() collatz_conjecture(n) try: a = int(input("Enter a number:")) b = int(input("Enter a number:")) print(a/b) except ValueError: print("Please enter a valid value for a and b") except ZeroDivisionError: print("Error, divide by zero") except: print("Something unexpected happened") n1 = prime_factor_input() print("The prime factors of", "n1", "are: ") prime_factor(n1, n1) n2 = prime_factor_input() print("The prime numbers less than or equal to", "n2", "are: ") prime_less_than(n2)
[ "noreply@github.com" ]
abaez004.noreply@github.com
ae321959d0b8067b5c41602c292802fbc60f6630
a7493491dcba9f7d8b9df81b962d05ac1a4bddec
/RGB2LAB.py
c0a7177b5b2fde25883879d2db31feca98a1968a
[]
no_license
anupam54/Work4Project
5a5238a8d9d560727c44fc5e070451f69c06554a
d88fd6fb21602ddbdb7bfe53bb788e8b1811d56f
refs/heads/master
2022-12-26T01:55:46.171667
2020-09-13T15:44:08
2020-09-13T15:44:08
289,264,731
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
# -*- coding: utf-8 -*- """ Created on Sun Sep 13 16:14:32 2020 @author: hp """ # -*- coding: utf-8 -*- """ Created on Fri Aug 14 19:44:07 2020 @author: Anupam kumar """ import cv2 import glob path = "Images/*" for file in glob.glob(path): print(file) a = cv2.imread(file) print(a) c = cv2.cvtColor(a, cv2.COLOR_RGB2LAB) cv2.imshow("Color Image",c) cv2.waitKey() cv2.destroyAllWindows()
[ "noreply@github.com" ]
anupam54.noreply@github.com
d4973cc9c7c20802539e2bc13e2c21912770668e
7b5a2a0c8ba4943002a06445689024fc619d4ab1
/start-server.py
6bd2e13bc7b858c0c8cb22e86322e67f530b0ffd
[]
no_license
behroozomidvar/INTEX-2
e0b8c43fe23c0b408286cbebe54bd63fc81dc378
a99543af78640cc35bcd18b122c334cd4420537a
refs/heads/main
2023-08-14T23:02:33.140357
2021-09-24T13:23:49
2021-09-24T13:23:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
import uvicorn from server.main import * uvicorn.run(app, host="0.0.0.0", port=8080)
[ "behroozomidvar@users.noreply.github.com" ]
behroozomidvar@users.noreply.github.com
81b39ea51e3e4b438201223cb69948e960c76bc3
ccf8041c43e7ac94c5e4bb24379da62a8e0ecbb0
/rsl_reader.py
7c879149e6e3c7fcc9b599954656449da59c1c4e
[]
no_license
letrecf/psa_tools
8634a789868a527c6f2b09e09010434a7048cb51
5da8941e14e1147b45ca7a1dc43b3ec8d1af205b
refs/heads/master
2021-01-09T20:47:50.893648
2016-09-24T10:13:32
2016-09-24T10:13:32
63,040,993
0
0
null
null
null
null
UTF-8
Python
false
false
1,423
py
import codecs import logging import hanging_indent_data import unstructured_text class rsl_reader(object): def __init__(self,filepath,logger): self.filepath = filepath self.logger = logger def read_logic(self): try: input = unstructured_text(self.filepath,self.logger).get_section(anchor=["FAULT TREE LOGIC"],skip=3) columns = [ ("id", True, 0,13,True), ("name",True,13,34,True), ("type",True,34,39,True), ("item",False,39,61,False), ("item",False,61,83,False), ("item",False,83,200,False) ] dat = hanging_indent_data(input,columns,self.logger) for item in dat.parse(): yield item except: self.logger.exception("Error parsing logic in RSL file") def read_events(self): equalline = "="*105 try: input = unstructured_text(self.filepath,self.logger).get_section(anchor=[equalline,"EVENTS"],skip=3,terminator=equalline) columns = [ ("name", 0,23), ("value",23,36), ("model",49,66), ("ccf_model",66,200) ] for line in input: o = {} for c in self.columns: t = (line[c[1]:c[2]]).strip() if t: o[c[0]]=float(t) if c[0]=="value" else t yield o except: self.logger.exception("Error parsing events in RSL file")
[ "letrecf.git@gmail.com" ]
letrecf.git@gmail.com
5c1d8d1ebbdd0dcdabd40b7527d769a8a03f1b4b
a522e109b81b49729b9f67749315a6889482318f
/utils/diayn_gym_env_fixed.py
1e3730429a48b8125e3c728735fdcba67e372158
[ "Apache-2.0" ]
permissive
ademiadeniji/lords
1b166ffdd0ad91e5261d5885fb694d502e722d17
75ce115ec7f950d857d0817eb0adf2cc2673ffdd
refs/heads/master
2023-06-29T15:46:58.396324
2021-08-04T19:21:32
2021-08-04T19:21:32
377,057,139
0
0
null
null
null
null
UTF-8
Python
false
false
1,740
py
"""Gym wrapper for training the DIAYN agent. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pdb import gym class DiaynGymEnvFixed(gym.Env): """Gym wrapper for training the DIAYN agent. Augment the observation by adding a randomly sampled z. """ def __init__(self, environment, dim_z, categorical): """Initializes the environment. """ self._env = environment if categorical: self._z_space = gym.spaces.Discrete(n=dim_z) else: self._z_space = gym.spaces.Box(low=-1, high=1., shape=[dim_z]) self._z = 0 self._categorical = categorical @property def observation_space(self): return gym.spaces.Dict({ 'observation': self._env.observation_space, 'z': self._z_space, }) @property def action_space(self): return self._env.action_space @property def z_space(self): return self._z_space @property def reward_range(self): return self._env.reward_range @property def meta_data(self): return self._env.meta_data def reset(self): observation = self._env.reset() return self._augment_ob(observation) def set_z(self, z): self._z = z return def step(self, action): observation, reward, done, info = self._env.step(action) return self._augment_ob(observation), reward, done, info def _augment_ob(self, ob, seed=None): return { 'observation': ob, 'z': self._z, } def render(self, mode='rgb_array'): return self._env.render(mode)
[ "ademiadeniji7@gmail.com" ]
ademiadeniji7@gmail.com
4c4049acf8a5bd9784df24cdbcf11053a25a8765
e4ae4d2afd49a5402b87657f972274e7e8b46d57
/fav.py
930ffc3eea40df426a065f1cc8f511485ebe12cf
[]
no_license
samyoungnyc/fav_twitter_custom
a7e8770858ef67eb70b83eac4bd719a9bca7d32a
d088d673433a04d2a44bb8934a79ab1fb460ddc5
refs/heads/master
2016-09-01T19:42:24.162151
2013-08-15T19:43:46
2013-08-15T19:43:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,687
py
import twitter #import the twitter module api = twitter.Api(consumer_key='', consumer_secret='', access_token_key='', access_token_secret='') # obtain your keys from Twitter API and enter them here f = open('last_used.conf', 'r') # set var f to open last_used.conf and (r)ead id = f.readline() # reads a line, adds \n and returns identity of an object, sets it to id m = open('new_favs.txt', 'w') # sets var m to open new_favs.txt and (w)rite f.close() # closes f (file) for page in xrange(1, 10): # a for loop to run through Twitter pages statuses = api.GetSearch("#wordintweet", count=500) # sets var statuses, result of api.Getsearch and custom words and counts to favorite count = 0 # sets var count to 0 for s in statuses: friend = api.GetUser(twitter#) # this is the userID number from Twitter, must enter your own if friend.followers_count == 0: follow_ratio = 1 else: follow_ratio = friend.friends_count / friend.followers_count if follow_ratio > 0: #api.CreateFriendship(s.user.screen_name) status = api.GetStatus(s.id) if friend.id not in api.GetFriendIDs('customTwittername'): if status.favorited == False: print str(follow_ratio) + " Ratio" print str(status.user.screen_name) + " favorited" api.CreateFavorite(status) # use api to CreateFavorite count += 1 m.write(str(status.id) + "\n") id = s.id print "Favorited: " + str(count) + " tweets" f = open('last_used.conf', 'w') print id f.write(str(id)) f.close() m.close()
[ "sambyoung@gmail.com" ]
sambyoung@gmail.com
4448d6c8c421b18d7c9450edff543c95675794b8
426e56d0d15dfb9609dc31e273baa2cc0d249fdd
/certificates/custom_components/mikrotik_router/switch.py
d535829ebfb2a705abcd945370be0380f137c179
[]
no_license
hellad/hass-config
24689dbf61446e2a9cf2d216c933242a4bdec7e8
3988d204908478996fffa433faffa9ea20f42562
refs/heads/master
2023-03-19T14:41:24.300034
2023-03-05T20:33:31
2023-03-05T20:33:31
234,546,187
3
0
null
null
null
null
UTF-8
Python
false
false
19,639
py
"""Support for the Mikrotik Router switches.""" import logging from typing import Any, Optional from collections.abc import Mapping from homeassistant.components.switch import SwitchEntity from homeassistant.const import CONF_NAME, CONF_HOST, ATTR_ATTRIBUTION from homeassistant.core import callback from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.restore_state import RestoreEntity from .helper import format_attribute from .const import DOMAIN, ATTRIBUTION from .switch_types import ( MikrotikSwitchEntityDescription, SWITCH_TYPES, DEVICE_ATTRIBUTES_IFACE_ETHER, DEVICE_ATTRIBUTES_IFACE_SFP, ) _LOGGER = logging.getLogger(__name__) # --------------------------- # async_setup_entry # --------------------------- async def async_setup_entry(hass, config_entry, async_add_entities): """Set up switches for Mikrotik Router component.""" inst = config_entry.data[CONF_NAME] mikrotik_controller = hass.data[DOMAIN][config_entry.entry_id] switches = {} @callback def update_controller(): """Update the values of the controller.""" update_items(inst, mikrotik_controller, async_add_entities, switches) mikrotik_controller.listeners.append( async_dispatcher_connect( hass, mikrotik_controller.signal_update, update_controller ) ) update_controller() # --------------------------- # update_items # --------------------------- @callback def update_items(inst, mikrotik_controller, async_add_entities, switches): """Update device switch state from the controller.""" new_switches = [] # Add switches for switch, sid_func in zip( # Switch type name [ "interface", "nat", "mangle", "filter", "ppp_secret", "queue", "kidcontrol_enable", "kidcontrol_pause", ], # Entity function [ MikrotikControllerPortSwitch, MikrotikControllerNATSwitch, MikrotikControllerMangleSwitch, MikrotikControllerFilterSwitch, MikrotikControllerSwitch, MikrotikControllerQueueSwitch, MikrotikControllerSwitch, MikrotikControllerKidcontrolPauseSwitch, ], ): uid_switch = SWITCH_TYPES[switch] for uid in mikrotik_controller.data[SWITCH_TYPES[switch].data_path]: uid_data = mikrotik_controller.data[SWITCH_TYPES[switch].data_path] item_id = f"{inst}-{switch}-{uid_data[uid][uid_switch.data_reference]}" _LOGGER.debug("Updating sensor %s", item_id) if item_id in switches: if switches[item_id].enabled: switches[item_id].async_schedule_update_ha_state() continue switches[item_id] = sid_func( inst=inst, uid=uid, mikrotik_controller=mikrotik_controller, entity_description=uid_switch, ) new_switches.append(switches[item_id]) if new_switches: async_add_entities(new_switches) # --------------------------- # MikrotikControllerSwitch # --------------------------- class MikrotikControllerSwitch(SwitchEntity, RestoreEntity): """Representation of a switch.""" def __init__( self, inst, uid, mikrotik_controller, entity_description: MikrotikSwitchEntityDescription, ): self.entity_description = entity_description self._inst = inst self._ctrl = mikrotik_controller self._attr_extra_state_attributes = {ATTR_ATTRIBUTION: ATTRIBUTION} self._data = mikrotik_controller.data[self.entity_description.data_path][uid] @property def available(self) -> bool: """Return if controller is available.""" return self._ctrl.connected() @property def name(self) -> str: """Return the name.""" if self.entity_description.data_name_comment and self._data["comment"]: return ( f"{self._inst} {self.entity_description.name} {self._data['comment']}" ) return f"{self._inst} {self.entity_description.name} {self._data[self.entity_description.data_name]}" @property def unique_id(self) -> str: """Return a unique id for this entity.""" return f"{self._inst.lower()}-{self.entity_description.key}-{self._data[self.entity_description.data_reference].lower()}" @property def is_on(self) -> bool: """Return true if device is on.""" return self._data[self.entity_description.data_is_on] @property def icon(self) -> str: """Return the icon.""" if self._data[self.entity_description.data_is_on]: return self.entity_description.icon_enabled else: return self.entity_description.icon_disabled @property def extra_state_attributes(self) -> Mapping[str, Any]: """Return the state attributes.""" attributes = super().extra_state_attributes for variable in self.entity_description.data_attributes_list: if variable in self._data: attributes[format_attribute(variable)] = self._data[variable] return attributes def turn_on(self, **kwargs: Any) -> None: """Required abstract method.""" pass def turn_off(self, **kwargs: Any) -> None: """Required abstract method.""" pass async def async_turn_on(self) -> None: """Turn on the switch.""" path = self.entity_description.data_switch_path param = self.entity_description.data_reference value = self._data[self.entity_description.data_reference] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, False) await self._ctrl.force_update() async def async_turn_off(self) -> None: """Turn off the switch.""" path = self.entity_description.data_switch_path param = self.entity_description.data_reference value = self._data[self.entity_description.data_reference] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, True) await self._ctrl.async_update() @property def device_info(self) -> DeviceInfo: """Return a description for device registry.""" dev_connection = DOMAIN dev_connection_value = self.entity_description.data_reference dev_group = self.entity_description.ha_group if self.entity_description.ha_group.startswith("data__"): dev_group = self.entity_description.ha_group[6:] if dev_group in self._data: dev_group = self._data[dev_group] dev_connection_value = dev_group if self.entity_description.ha_connection: dev_connection = self.entity_description.ha_connection if self.entity_description.ha_connection_value: dev_connection_value = self.entity_description.ha_connection_value if dev_connection_value.startswith("data__"): dev_connection_value = dev_connection_value[6:] dev_connection_value = self._data[dev_connection_value] info = DeviceInfo( connections={(dev_connection, f"{dev_connection_value}")}, identifiers={(dev_connection, f"{dev_connection_value}")}, default_name=f"{self._inst} {dev_group}", model=f"{self._ctrl.data['resource']['board-name']}", manufacturer=f"{self._ctrl.data['resource']['platform']}", sw_version=f"{self._ctrl.data['resource']['version']}", configuration_url=f"http://{self._ctrl.config_entry.data[CONF_HOST]}", via_device=(DOMAIN, f"{self._ctrl.data['routerboard']['serial-number']}"), ) return info async def async_added_to_hass(self): """Run when entity about to be added to hass.""" _LOGGER.debug("New switch %s (%s)", self._inst, self.unique_id) # --------------------------- # MikrotikControllerPortSwitch # --------------------------- class MikrotikControllerPortSwitch(MikrotikControllerSwitch): """Representation of a network port switch.""" @property def extra_state_attributes(self) -> Mapping[str, Any]: """Return the state attributes.""" attributes = super().extra_state_attributes if self._data["type"] == "ether": for variable in DEVICE_ATTRIBUTES_IFACE_ETHER: if variable in self._data: attributes[format_attribute(variable)] = self._data[variable] if "sfp-shutdown-temperature" in self._data: for variable in DEVICE_ATTRIBUTES_IFACE_SFP: if variable in self._data: attributes[format_attribute(variable)] = self._data[variable] return attributes @property def icon(self) -> str: """Return the icon.""" if self._data["running"]: icon = self.entity_description.icon_enabled else: icon = self.entity_description.icon_disabled if not self._data["enabled"]: icon = "mdi:lan-disconnect" return icon async def async_turn_on(self) -> Optional[str]: """Turn on the switch.""" path = self.entity_description.data_switch_path param = self.entity_description.data_reference if self._data["about"] == "managed by CAPsMAN": _LOGGER.error("Unable to enable %s, managed by CAPsMAN", self._data[param]) return "managed by CAPsMAN" if "-" in self._data["port-mac-address"]: param = "name" value = self._data[self.entity_description.data_reference] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, False) if "poe-out" in self._data and self._data["poe-out"] == "off": path = "/interface/ethernet" self._ctrl.set_value(path, param, value, "poe-out", "auto-on") await self._ctrl.force_update() async def async_turn_off(self) -> Optional[str]: """Turn off the switch.""" path = self.entity_description.data_switch_path param = self.entity_description.data_reference if self._data["about"] == "managed by CAPsMAN": _LOGGER.error("Unable to disable %s, managed by CAPsMAN", self._data[param]) return "managed by CAPsMAN" if "-" in self._data["port-mac-address"]: param = "name" value = self._data[self.entity_description.data_reference] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, True) if "poe-out" in self._data and self._data["poe-out"] == "auto-on": path = "/interface/ethernet" self._ctrl.set_value(path, param, value, "poe-out", "off") await self._ctrl.async_update() # --------------------------- # MikrotikControllerNATSwitch # --------------------------- class MikrotikControllerNATSwitch(MikrotikControllerSwitch): """Representation of a NAT switch.""" @property def name(self) -> str: """Return the name.""" if self._data["comment"]: return f"{self._inst} NAT {self._data['comment']}" return f"{self._inst} NAT {self._data['name']}" async def async_turn_on(self) -> None: """Turn on the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["nat"]: if self._ctrl.data["nat"][uid]["uniq-id"] == ( f"{self._data['chain']},{self._data['action']},{self._data['protocol']}," f"{self._data['in-interface']}:{self._data['dst-port']}-" f"{self._data['out-interface']}:{self._data['to-addresses']}:{self._data['to-ports']}" ): value = self._ctrl.data["nat"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, False) await self._ctrl.force_update() async def async_turn_off(self) -> None: """Turn off the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["nat"]: if self._ctrl.data["nat"][uid]["uniq-id"] == ( f"{self._data['chain']},{self._data['action']},{self._data['protocol']}," f"{self._data['in-interface']}:{self._data['dst-port']}-" f"{self._data['out-interface']}:{self._data['to-addresses']}:{self._data['to-ports']}" ): value = self._ctrl.data["nat"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, True) await self._ctrl.async_update() # --------------------------- # MikrotikControllerMangleSwitch # --------------------------- class MikrotikControllerMangleSwitch(MikrotikControllerSwitch): """Representation of a Mangle switch.""" async def async_turn_on(self) -> None: """Turn on the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["mangle"]: if self._ctrl.data["mangle"][uid]["uniq-id"] == ( f"{self._data['chain']},{self._data['action']},{self._data['protocol']}," f"{self._data['src-address']}:{self._data['src-port']}-" f"{self._data['dst-address']}:{self._data['dst-port']}," f"{self._data['src-address-list']}-{self._data['dst-address-list']}" ): value = self._ctrl.data["mangle"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, False) await self._ctrl.force_update() async def async_turn_off(self) -> None: """Turn off the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["mangle"]: if self._ctrl.data["mangle"][uid]["uniq-id"] == ( f"{self._data['chain']},{self._data['action']},{self._data['protocol']}," f"{self._data['src-address']}:{self._data['src-port']}-" f"{self._data['dst-address']}:{self._data['dst-port']}," f"{self._data['src-address-list']}-{self._data['dst-address-list']}" ): value = self._ctrl.data["mangle"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, True) await self._ctrl.async_update() # --------------------------- # MikrotikControllerFilterSwitch # --------------------------- class MikrotikControllerFilterSwitch(MikrotikControllerSwitch): """Representation of a Filter switch.""" async def async_turn_on(self) -> None: """Turn on the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["filter"]: if self._ctrl.data["filter"][uid]["uniq-id"] == ( f"{self._data['chain']},{self._data['action']},{self._data['protocol']},{self._data['layer7-protocol']}," f"{self._data['in-interface']},{self._data['in-interface-list']}:{self._data['src-address']},{self._data['src-address-list']}:{self._data['src-port']}-" f"{self._data['out-interface']},{self._data['out-interface-list']}:{self._data['dst-address']},{self._data['dst-address-list']}:{self._data['dst-port']}" ): value = self._ctrl.data["filter"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, False) await self._ctrl.force_update() async def async_turn_off(self) -> None: """Turn off the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["filter"]: if self._ctrl.data["filter"][uid]["uniq-id"] == ( f"{self._data['chain']},{self._data['action']},{self._data['protocol']},{self._data['layer7-protocol']}," f"{self._data['in-interface']},{self._data['in-interface-list']}:{self._data['src-address']},{self._data['src-address-list']}:{self._data['src-port']}-" f"{self._data['out-interface']},{self._data['out-interface-list']}:{self._data['dst-address']},{self._data['dst-address-list']}:{self._data['dst-port']}" ): value = self._ctrl.data["filter"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, True) await self._ctrl.async_update() # --------------------------- # MikrotikControllerQueueSwitch # --------------------------- class MikrotikControllerQueueSwitch(MikrotikControllerSwitch): """Representation of a queue switch.""" async def async_turn_on(self) -> None: """Turn on the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["queue"]: if self._ctrl.data["queue"][uid]["name"] == f"{self._data['name']}": value = self._ctrl.data["queue"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, False) await self._ctrl.force_update() async def async_turn_off(self) -> None: """Turn off the switch.""" path = self.entity_description.data_switch_path param = ".id" value = None for uid in self._ctrl.data["queue"]: if self._ctrl.data["queue"][uid]["name"] == f"{self._data['name']}": value = self._ctrl.data["queue"][uid][".id"] mod_param = self.entity_description.data_switch_parameter self._ctrl.set_value(path, param, value, mod_param, True) await self._ctrl.async_update() # --------------------------- # MikrotikControllerKidcontrolPauseSwitch # --------------------------- class MikrotikControllerKidcontrolPauseSwitch(MikrotikControllerSwitch): """Representation of a queue switch.""" async def async_turn_on(self) -> None: """Turn on the switch.""" path = self.entity_description.data_switch_path param = self.entity_description.data_reference value = self._data[self.entity_description.data_reference] command = "resume" self._ctrl.execute(path, command, param, value) await self._ctrl.force_update() async def async_turn_off(self) -> None: """Turn off the switch.""" path = self.entity_description.data_switch_path param = self.entity_description.data_reference value = self._data[self.entity_description.data_reference] command = "pause" self._ctrl.execute(path, command, param, value) await self._ctrl.async_update()
[ "hellad@mail.ru" ]
hellad@mail.ru
b9976fcc8a187ef1316be16450346f233bf79a7e
738a072f2cd6969c30a89fc9c72a8af3995df076
/allRunn.py
812eb7a8304239ba54330c7c267948fa32a7967e
[]
no_license
yagniksuchak2/CodeParser
69465da3f954582fc1e1a8adf3bfb57e3cc4034e
2a23e6bde0da628a5b88518a67ee3ca934966849
refs/heads/master
2020-04-05T23:16:24.985001
2015-08-19T21:11:36
2015-08-19T21:11:36
40,984,321
0
0
null
null
null
null
UTF-8
Python
false
false
1,546
py
#get the path of directory in which project directories are there. Assume dirsPath #rootdir ='C:\Users\Yagnik\PycharmProjects\Top_Project' import os import sys import ghProc from logChunk import getExceptionKeyword #print os.listdir(rootdir) # for subdir, dirs, files in os.walk(rootdir): # print dirs def main(): print "Utility to BULK process github logs" if len(sys.argv) < 2: print "!!! Usage: python allRun.py top_project directory" sys.exit() if not os.path.isdir("../Results"): os.mkdir("../Results") fPtrChangeSummary=open("../Results/"+"ChangeSummary.csv",'w') fPtrChangeSummary.write("project,sha,author,commit_date,is_bug\n") fPtrPatchSummary=open("../Results/"+"PatchSummary.csv",'w') fPtrMisMatchSummary=open("../Results/"+"MisMatchSummary.csv",'w') fPtrMisMatchSummary.write("project,Total,Match,MisMatch,Exception,matchException,misMatchException\n") lst=[] listToDict={} getExceptionKeyword(lst) for keyword in lst: listToDict[str(keyword)+" Adds"]=0 listToDict[str(keyword)+" Dels"]=0 fPtrPatchSummary.write("project, sha, language, file_name, is_test,bracket_diff,isExceptionPatch, method_name,total_add,total_del,uniqueExcepAdd,uniqueExcepDel,%s\n"%",".join(listToDict.keys())) fPtrChangeSummary.close() fPtrPatchSummary.close() fPtrMisMatchSummary.close() rootdir = sys.argv[1] for dir in os.listdir(rootdir): path= os.path.join(rootdir,dir) print path os.system('python ghProc.py %s'%path) if __name__ == '__main__': main()
[ "yvsuchak@ucdavis.edu" ]
yvsuchak@ucdavis.edu
07ac073b25aff0899c09b1e6f460eb15191384c5
7c4c82ccbcfff21ea5dd40644ccd3ca674ec2be8
/bin/protoc-gen-lua
982b7e3ec091867143443327f95c4e20b3392ed7
[]
no_license
konser/go-pack
22d517e15e9e1d288a3c395cd14b8dc15f178ffe
a40a5c4809a7c3e861b2dc4910b13cf41a2281f2
refs/heads/master
2023-03-12T06:23:53.175212
2021-03-01T02:53:20
2021-03-01T02:53:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,935
#!/usr/bin/env python # -*- encoding:utf8 -*- # protoc-gen-erl # Google's Protocol Buffers project, ported to lua. # https://code.google.com/p/protoc-gen-lua/ # # Copyright (c) 2010 , 林卓毅 (Zhuoyi Lin) netsnail@gmail.com # All rights reserved. # # Use, modification and distribution are subject to the "New BSD License" # as listed at <url: http://www.opensource.org/licenses/bsd-license.php >. import sys import os.path as path from cStringIO import StringIO import plugin_pb2 import google.protobuf.descriptor_pb2 as descriptor_pb2 _packages = {} _files = {} _message = {} FDP = plugin_pb2.descriptor_pb2.FieldDescriptorProto if sys.platform == "win32": import msvcrt, os msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY) msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY) class CppType: CPPTYPE_INT32 = 1 CPPTYPE_INT64 = 2 CPPTYPE_UINT32 = 3 CPPTYPE_UINT64 = 4 CPPTYPE_DOUBLE = 5 CPPTYPE_FLOAT = 6 CPPTYPE_BOOL = 7 CPPTYPE_ENUM = 8 CPPTYPE_STRING = 9 CPPTYPE_MESSAGE = 10 CPP_TYPE ={ FDP.TYPE_DOUBLE : CppType.CPPTYPE_DOUBLE, FDP.TYPE_FLOAT : CppType.CPPTYPE_FLOAT, FDP.TYPE_INT64 : CppType.CPPTYPE_INT64, FDP.TYPE_UINT64 : CppType.CPPTYPE_UINT64, FDP.TYPE_INT32 : CppType.CPPTYPE_INT32, FDP.TYPE_FIXED64 : CppType.CPPTYPE_UINT64, FDP.TYPE_FIXED32 : CppType.CPPTYPE_UINT32, FDP.TYPE_BOOL : CppType.CPPTYPE_BOOL, FDP.TYPE_STRING : CppType.CPPTYPE_STRING, FDP.TYPE_MESSAGE : CppType.CPPTYPE_MESSAGE, FDP.TYPE_BYTES : CppType.CPPTYPE_STRING, FDP.TYPE_UINT32 : CppType.CPPTYPE_UINT32, FDP.TYPE_ENUM : CppType.CPPTYPE_ENUM, FDP.TYPE_SFIXED32 : CppType.CPPTYPE_INT32, FDP.TYPE_SFIXED64 : CppType.CPPTYPE_INT64, FDP.TYPE_SINT32 : CppType.CPPTYPE_INT32, FDP.TYPE_SINT64 : CppType.CPPTYPE_INT64 } def printerr(*args): sys.stderr.write(" ".join(args)) sys.stderr.write("\n") sys.stderr.flush() class TreeNode(object): def __init__(self, name, parent=None, filename=None, package=None): super(TreeNode, self).__init__() self.child = [] self.parent = parent self.filename = filename self.package = package if parent: self.parent.add_child(self) self.name = name def add_child(self, child): self.child.append(child) def find_child(self, child_names): if child_names: for i in self.child: if i.name == child_names[0]: return i.find_child(child_names[1:]) raise StandardError else: return self def get_child(self, child_name): for i in self.child: if i.name == child_name: return i return None def get_path(self, end = None): pos = self out = [] while pos and pos != end: out.append(pos.name) pos = pos.parent out.reverse() return '.'.join(out) def get_global_name(self): return self.get_path() def get_local_name(self): pos = self while pos.parent: pos = pos.parent if self.package and pos.name == self.package[-1]: break return self.get_path(pos) def __str__(self): return self.to_string(0) def __repr__(self): return str(self) def to_string(self, indent = 0): return ' '*indent + '<TreeNode ' + self.name + '(\n' + \ ','.join([i.to_string(indent + 4) for i in self.child]) + \ ' '*indent +')>\n' class Env(object): filename = None package = None extend = None descriptor = None message = None context = None register = None def __init__(self): self.message_tree = TreeNode('') self.scope = self.message_tree def get_global_name(self): return self.scope.get_global_name() def get_local_name(self): return self.scope.get_local_name() def get_ref_name(self, type_name): try: node = self.lookup_name(type_name) except: # if the child doesn't be founded, it must be in this file return type_name[len('.'.join(self.package)) + 1:] if node.filename != self.filename: return node.filename + '_pb.' + node.get_local_name() return node.get_local_name() def lookup_name(self, name): names = name.split('.') if names[0] == '': return self.message_tree.find_child(names[1:]) else: return self.scope.parent.find_child(names) def enter_package(self, package): if not package: return self.message_tree names = package.split('.') pos = self.message_tree for i, name in enumerate(names): new_pos = pos.get_child(name) if new_pos: pos = new_pos else: return self._build_nodes(pos, names[i:]) return pos def enter_file(self, filename, package): self.filename = filename self.package = package.split('.') self._init_field() self.scope = self.enter_package(package) def exit_file(self): self._init_field() self.filename = None self.package = [] self.scope = self.scope.parent def enter(self, message_name): self.scope = TreeNode(message_name, self.scope, self.filename, self.package) def exit(self): self.scope = self.scope.parent def _init_field(self): self.descriptor = [] self.context = [] self.message = [] self.register = [] def _build_nodes(self, node, names): parent = node for i in names: parent = TreeNode(i, parent, self.filename, self.package) return parent class Writer(object): def __init__(self, prefix=None): self.io = StringIO() self.__indent = '' self.__prefix = prefix def getvalue(self): return self.io.getvalue() def __enter__(self): self.__indent += ' ' return self def __exit__(self, type, value, trackback): self.__indent = self.__indent[:-4] def __call__(self, data): self.io.write(self.__indent) if self.__prefix: self.io.write(self.__prefix) self.io.write(data) DEFAULT_VALUE = { FDP.TYPE_DOUBLE : '0.0', FDP.TYPE_FLOAT : '0.0', FDP.TYPE_INT64 : '0', FDP.TYPE_UINT64 : '0', FDP.TYPE_INT32 : '0', FDP.TYPE_FIXED64 : '0', FDP.TYPE_FIXED32 : '0', FDP.TYPE_BOOL : 'false', FDP.TYPE_STRING : '""', FDP.TYPE_MESSAGE : 'nil', FDP.TYPE_BYTES : '""', FDP.TYPE_UINT32 : '0', FDP.TYPE_ENUM : '1', FDP.TYPE_SFIXED32 : '0', FDP.TYPE_SFIXED64 : '0', FDP.TYPE_SINT32 : '0', FDP.TYPE_SINT64 : '0', } def code_gen_enum_item(index, enum_value, env): full_name = env.get_local_name() + '.' + enum_value.name obj_name = full_name.upper().replace('.', '_') + '_ENUM' env.descriptor.append( "%s = protobuf.EnumValueDescriptor();\n"% obj_name ) context = Writer(obj_name) context('.name = "%s"\n' % enum_value.name) context('.index = %d\n' % index) context('.number = %d\n' % enum_value.number) env.context.append(context.getvalue()) return obj_name def code_gen_enum(enum_desc, env): env.enter(enum_desc.name) full_name = env.get_local_name() obj_name = full_name.upper().replace('.', '_') env.descriptor.append( "%s = protobuf.EnumDescriptor();\n"% obj_name ) context = Writer(obj_name) context('.name = "%s"\n' % enum_desc.name) context('.full_name = "%s"\n' % env.get_global_name()) values = [] for i, enum_value in enumerate(enum_desc.value): values.append(code_gen_enum_item(i, enum_value, env)) context('.values = {%s}\n' % ','.join(values)) env.context.append(context.getvalue()) env.exit() return obj_name def code_gen_field(index, field_desc, env): full_name = env.get_local_name() + '.' + field_desc.name obj_name = full_name.upper().replace('.', '_') + '_FIELD' env.descriptor.append( "%s = protobuf.FieldDescriptor();\n"% obj_name ) context = Writer(obj_name) context('.name = "%s"\n' % field_desc.name) context('.full_name = "%s"\n' % ( env.get_global_name() + '.' + field_desc.name)) context('.number = %d\n' % field_desc.number) context('.index = %d\n' % index) context('.label = %d\n' % field_desc.label) if field_desc.HasField("default_value"): context('.has_default_value = true\n') value = field_desc.default_value if field_desc.type == FDP.TYPE_STRING: context('.default_value = "%s"\n'%value) else: context('.default_value = %s\n'%value) else: context('.has_default_value = false\n') if field_desc.label == FDP.LABEL_REPEATED: default_value = "{}" elif field_desc.HasField('type_name'): default_value = "nil" else: default_value = DEFAULT_VALUE[field_desc.type] context('.default_value = %s\n' % default_value) if field_desc.HasField('type_name'): type_name = env.get_ref_name(field_desc.type_name).upper().replace('.', '_') if field_desc.type == FDP.TYPE_MESSAGE: context('.message_type = %s\n' % type_name) else: context('.enum_type = %s\n' % type_name) if field_desc.HasField('extendee'): type_name = env.get_ref_name(field_desc.extendee) env.register.append( "%s.RegisterExtension(%s)\n" % (type_name, obj_name) ) context('.type = %d\n' % field_desc.type) context('.cpp_type = %d\n\n' % CPP_TYPE[field_desc.type]) env.context.append(context.getvalue()) return obj_name def code_gen_message(message_descriptor, env, containing_type = None): env.enter(message_descriptor.name) full_name = env.get_local_name() obj_name = full_name.upper().replace('.', '_') env.descriptor.append( "%s = protobuf.Descriptor();\n"% obj_name ) context = Writer(obj_name) context('.name = "%s"\n' % message_descriptor.name) context('.full_name = "%s"\n' % env.get_global_name()) nested_types = [] for msg_desc in message_descriptor.nested_type: msg_name = code_gen_message(msg_desc, env, obj_name) nested_types.append(msg_name) context('.nested_types = {%s}\n' % ', '.join(nested_types)) enums = [] for enum_desc in message_descriptor.enum_type: enums.append(code_gen_enum(enum_desc, env)) context('.enum_types = {%s}\n' % ', '.join(enums)) fields = [] for i, field_desc in enumerate(message_descriptor.field): fields.append(code_gen_field(i, field_desc, env)) context('.fields = {%s}\n' % ', '.join(fields)) if len(message_descriptor.extension_range) > 0: context('.is_extendable = true\n') else: context('.is_extendable = false\n') extensions = [] for i, field_desc in enumerate(message_descriptor.extension): extensions.append(code_gen_field(i, field_desc, env)) context('.extensions = {%s}\n' % ', '.join(extensions)) if containing_type: context('.containing_type = %s\n' % containing_type) env.message.append('%s = protobuf.Message(%s)\n' % (full_name, obj_name)) env.context.append(context.getvalue()) env.exit() return obj_name def write_header(writer): writer("""-- Generated By protoc-gen-lua Do not Edit """) def code_gen_file(proto_file, env, is_gen): filename = path.splitext(proto_file.name)[0] env.enter_file(filename, proto_file.package) includes = [] for f in proto_file.dependency: inc_file = path.splitext(f)[0] includes.append(inc_file) # for field_desc in proto_file.extension: # code_gen_extensions(field_desc, field_desc.name, env) for enum_desc in proto_file.enum_type: code_gen_enum(enum_desc, env) for enum_value in enum_desc.value: env.message.append('%s = %d\n' % (enum_value.name, enum_value.number)) for msg_desc in proto_file.message_type: code_gen_message(msg_desc, env) if is_gen: lua = Writer() write_header(lua) lua('local protobuf = import ".protobuf"\n') for i in includes: lua('local %s_pb = import(".%s_pb")\n' % (i, i)) lua("module('%s_pb')\n" % env.filename) lua('\n\n') map(lua, env.descriptor) lua('\n') map(lua, env.context) lua('\n') env.message.sort() map(lua, env.message) lua('\n') map(lua, env.register) _files[env.filename+ '_pb.lua'] = lua.getvalue() env.exit_file() def main(): plugin_require_bin = sys.stdin.read() code_gen_req = plugin_pb2.CodeGeneratorRequest() code_gen_req.ParseFromString(plugin_require_bin) env = Env() for proto_file in code_gen_req.proto_file: code_gen_file(proto_file, env, proto_file.name in code_gen_req.file_to_generate) code_generated = plugin_pb2.CodeGeneratorResponse() for k in _files: file_desc = code_generated.file.add() file_desc.name = k file_desc.content = _files[k] sys.stdout.write(code_generated.SerializeToString()) if __name__ == "__main__": main()
[ "zhaizhao@qq.com" ]
zhaizhao@qq.com
a4448c0b73dc933cb006ddbd60296702015f389e
a0b4ea4ace7b3c14a43815d8e891e74c4d02d346
/net/combined_loss.py
84fa526efec39c74fd7678cb74cbbac6f8e6f473
[]
no_license
greenwolf-nsk/tgs-salt-identification-challenge
d7e908491a4f05a59fdab8c7c8b508bec2031e79
07838e76d2027373425b0f97f74979bae1fbc9dc
refs/heads/master
2020-04-02T05:09:37.637029
2019-04-10T13:12:30
2019-04-10T13:12:30
154,055,314
7
1
null
null
null
null
UTF-8
Python
false
false
3,332
py
import torch import torch.nn as nn from .lovasz_loss import lovasz_hinge class BoundaryLoss: def __init__(self, weights: tuple = (0.1, 1)): self.boundary_loss_fn = nn.BCEWithLogitsLoss() self.segmentation_loss_fn = nn.BCEWithLogitsLoss() self.weights = weights def __call__(self, outputs: torch.Tensor, targets: torch.Tensor): segmentation_loss = self.boundary_loss_fn(outputs[:, :1, :, :], targets[:, :1, :, :]) boundary_loss = self.boundary_loss_fn(outputs[:, 1:, :, :], targets[:, 1:, :, :]) return ( self.weights[0] * segmentation_loss + self.weights[1] * boundary_loss ) class BoundaryLoss2: def __init__(self, weights: tuple = (0.1, 1)): self.boundary_loss_fn = nn.BCEWithLogitsLoss() self.segmentation_loss_fn = lovasz_hinge self.weights = weights def __call__(self, outputs: torch.Tensor, targets: torch.Tensor): segmentation_loss = self.boundary_loss_fn(outputs[:, :1, :, :], targets[:, :1, :, :]) boundary_loss = self.boundary_loss_fn(outputs[:, 1:, :, :], targets[:, 1:, :, :]) return ( self.weights[0] * segmentation_loss + self.weights[1] * boundary_loss ) class CombinedLoss: def __init__(self, segmentation_loss_fn, weights: tuple = (0.05, 0.1, 1.0)): self.classification_loss_fn = nn.BCEWithLogitsLoss() self.non_empty_segmentation_loss_fn = segmentation_loss_fn self.segmentation_loss_fn = segmentation_loss_fn self.weights = weights def __call__(self, outputs: tuple, targets: torch.Tensor): fused_outputs, clf_outputs, seg_outputs = outputs classes = targets.sum(dim=(1, 2, 3)) > 0 classification_loss = self.classification_loss_fn(clf_outputs, classes.float().unsqueeze(1)) non_empty_segmentation_loss = self.segmentation_loss_fn(seg_outputs[classes], targets[classes]) segmentation_loss = self.segmentation_loss_fn(fused_outputs, targets) return ( self.weights[0] * classification_loss + self.weights[1] * non_empty_segmentation_loss + self.weights[2] * segmentation_loss ) class CombinedLossHypercolumn: def __init__(self, segmentation_loss_fn, weights: tuple = (0.05, 0.1, 1.0)): self.classification_loss_fn = nn.BCEWithLogitsLoss() self.non_empty_segmentation_loss_fn = segmentation_loss_fn self.segmentation_loss_fn = segmentation_loss_fn self.weights = weights def __call__(self, outputs: tuple, targets: torch.Tensor): fused_outputs, clf_outputs, seg_outputs = outputs classes = targets.sum(dim=(1, 2, 3)) > 0 classification_loss = self.classification_loss_fn(clf_outputs, classes.float().unsqueeze(1)) non_empty_segmentation_loss = 0 for seg_output in seg_outputs: non_empty_segmentation_loss += self.segmentation_loss_fn(seg_output[classes], targets[classes]) non_empty_segmentation_loss /= len(seg_outputs) segmentation_loss = self.segmentation_loss_fn(fused_outputs, targets) return ( self.weights[0] * classification_loss + self.weights[1] * non_empty_segmentation_loss + self.weights[2] * segmentation_loss )
[ "greenwolf.nsk@gmail.com" ]
greenwolf.nsk@gmail.com
504bb84fc68bf1dfd94876a59dc581ff3a921147
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2846/60586/295434.py
e2875119305df6adbc78001b5fc61b6eda843866
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
399
py
def test12(): n=int(input()) s=input() x=s.split(" ") arr=[] for i in x: arr.append(int(i)) zero=arr.count(0) if s=="1 1 1 1 1": return 1 if s=="0 0 0 0 0 0 0": return 0 if zero==len(set(arr)): return 0 if(len(set(arr))==22): return(21) if len(set(arr))==3: return 2 return len(set(arr)) print(test12())
[ "1069583789@qq.com" ]
1069583789@qq.com
a4b1c54b4bb3f7c5e696da947123729e9367eee1
29c3595a4e1f8de9382650610aee5a13e2a135f6
/venv/Lib/site-packages/django/views/decorators/cache.py
773cf0c2c67412bd30b50ad90f517d50dbab8552
[ "MIT" ]
permissive
zoelesv/Smathchat
1515fa56fbb0ad47e1859f6bf931b772446ea261
5cee0a8c4180a3108538b4e4ce945a18726595a6
refs/heads/main
2023-08-04T14:47:21.185149
2023-08-02T15:53:20
2023-08-02T15:53:20
364,627,392
9
1
MIT
2023-08-02T15:53:21
2021-05-05T15:42:47
Python
UTF-8
Python
false
false
1,705
py
from functools import wraps from django.middleware.cache import CacheMiddleware from django.utils.cache import add_never_cache_headers, patch_cache_control from django.utils.decorators import decorator_from_middleware_with_args def cache_page(timeout, *, cache=None, key_prefix=None): """ Decorator for views that tries getting the page from the cache and populates the cache if the page isn't in the cache yet. The cache is keyed by the URL and some data from the headers. Additionally there is the key prefix that is used to distinguish different cache areas in a multi-site setup. You could use the get_current_site().domain, for example, as that is unique across a Django project. Additionally, all headers from the response's Vary header will be taken into account on caching -- just like the middleware does. """ return decorator_from_middleware_with_args(CacheMiddleware)( page_timeout=timeout, cache_alias=cache, key_prefix=key_prefix, ) def cache_control(**kwargs): def _cache_controller(viewfunc): @wraps(viewfunc) def _cache_controlled(request, *args, **kw): response = viewfunc(request, *args, **kw) patch_cache_control(response, **kwargs) return response return _cache_controlled return _cache_controller def never_cache(view_func): """ Decorator that adds headers to a response so that it will never be cached. """ @wraps(view_func) def _wrapped_view_func(request, *args, **kwargs): response = view_func(request, *args, **kwargs) add_never_cache_headers(response) return response return _wrapped_view_func
[ "ZoomLee@users.noreply.github.com" ]
ZoomLee@users.noreply.github.com
aef367a09899eddb180510197ba842dab8c3c751
fbcf404d37e3d608f2896a6044384cfcdf14e750
/coref.py
8c11a9ff9fe3a1393aef6c853366860a523d9c7f
[]
no_license
TGDivy/Towards-unlabelled-Entity-Detection
40bf5768fe1439c9ad14b6f77ef04a0852a2b241
d04a5471f3f89f06c29de5f9874778d4c8d0bc6f
refs/heads/main
2023-08-24T23:09:46.177036
2021-10-05T17:32:50
2021-10-05T17:32:50
413,900,302
1
0
null
null
null
null
UTF-8
Python
false
false
2,101
py
import json import random import requests import seaborn as sns from spacy import displacy class Display: def __init__(self) -> None: pass def run(self, dic, text): self.categories = list(dic.keys()) self.label_color = self.color_label_dict() text, spans = self.get_spans(text, dic) return self.render_entities(text, spans) def random_hex(self): rgb = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) return "#%02x%02x%02x" % rgb def color_label_dict(self): dic = {} colors = sns.color_palette("Spectral", len(self.categories)).as_hex() for i in self.categories: dic[i] = colors[int(i)] return dic def get_spans(self, text, dic): sentence_lengths = [] total = 0 final_text = " ".join(text) for i in text: sentence_lengths.append(total) total += len(i) + 1 print(sentence_lengths) spans = [] for cluster in dic.keys(): for entity in dic[cluster]: s_offset = entity["sentence_offset"] start = entity["span"][0] + sentence_lengths[s_offset] end = entity["span"][1] + sentence_lengths[s_offset] ent = {"start": start, "end": end, "label": cluster} spans.append(ent) spans.sort(key=lambda x: x["start"]) print(dic) print("=" * 50) print(spans) return final_text, spans def render_entities(self, text, spans): ent = { "text": text, "ents": spans, "title": None, } options = {"ents": list(self.label_color.keys()), "colors": self.label_color} markdown = displacy.render(ent, manual=True, style="ent", options=options) return markdown if __name__ == "__main__": text = ["This is Boris Johnson.", "He is very funny."] corefs = json.loads(requests.post("http://localhost:9000/predict", json=text).text) d = Display() print(d.run(corefs, text))
[ "divy.bramhecha@adarga.ai" ]
divy.bramhecha@adarga.ai