blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
870295855028634658daaffe4d7d3ceb2ad0de83
518a08f0119c2158c4f7efa8343acfe4d2e7cefc
/project/delete.py
fe9993ba083458b4c0eb39e42a6a9606fe6685db
[]
no_license
WahyuSulistya27/hellio_word
52efc978dc7b4d00e60521d3c6602496c71cb6c5
cdfd40911a76adda492ab56d53ce12017f2d7414
refs/heads/main
2023-07-29T00:55:59.392609
2021-09-17T15:10:02
2021-09-17T15:10:02
407,381,410
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
from fastapi import APIRouter from data import dokumen as list_dokumen from starlette.responses import Response from connect import * from model import * router = APIRouter() dokumen = list_dokumen @router.delete("/delete/{noreg}", status_code=201) async def delete_dokumen(noreg : int): try: cursor.execute("DELETE FROM tb_document WHERE noreg=?" ,noreg) cursor.commit() except Exception as e: print(e) return "Dokumen Anda Telah Dihapus"
[ "noreply@github.com" ]
noreply@github.com
2d83f6345f4629fb349ea3e2aa1ecd09b77cec8b
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/ads/googleads/v8/googleads-py/google/ads/googleads/v8/services/services/account_budget_proposal_service/transports/base.py
86d3e463eb723e6cf5e1dcff665b4d0e784c1fce
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,334
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources import google.auth # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.ads.googleads.v8.resources.types import account_budget_proposal from google.ads.googleads.v8.services.types import account_budget_proposal_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-ads', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class AccountBudgetProposalServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for AccountBudgetProposalService.""" AUTH_SCOPES = ( 'https://www.googleapis.com/auth/adwords', ) def __init__( self, *, host: str = 'googleads.googleapis.com', credentials: ga_credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.get_account_budget_proposal: gapic_v1.method.wrap_method( self.get_account_budget_proposal, default_timeout=None, client_info=client_info, ), self.mutate_account_budget_proposal: gapic_v1.method.wrap_method( self.mutate_account_budget_proposal, default_timeout=None, client_info=client_info, ), } @property def get_account_budget_proposal(self) -> typing.Callable[ [account_budget_proposal_service.GetAccountBudgetProposalRequest], account_budget_proposal.AccountBudgetProposal]: raise NotImplementedError @property def mutate_account_budget_proposal(self) -> typing.Callable[ [account_budget_proposal_service.MutateAccountBudgetProposalRequest], account_budget_proposal_service.MutateAccountBudgetProposalResponse]: raise NotImplementedError __all__ = ( 'AccountBudgetProposalServiceTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
803580c059f93d0449041f08382f5606284c6fb1
c08c6f4aafcb20664901bc3c03bb494d21b27a27
/ECES_ETUDIANTS/models.py
97e17f5e127e6b81ee89bf2857b329b0a77c9df1
[]
no_license
sodelblaude/ECES
a2697035ab4f92e8539d961141feb5a66620baf7
40516a6b1ee70819abf7efaf018129d8ca1ab6c2
refs/heads/master
2020-06-07T17:57:29.045477
2019-06-21T08:38:26
2019-06-21T08:38:26
193,067,417
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
from django.db import models #LE MODELE PERMET DE DEFINIR NOS CLASS # C'est ici que nous allons mettre toute nos classes #de notre application class Etudiant(models.Model): Nom=models.CharField(max_length=15) Prénom=models.CharField(max_length=15) Age=models.CharField(max_length=10) Adresse=models.CharField(max_length=30) Niveau=models.CharField(max_length=15) Option=models.CharField(max_length=25) Matricule=models.CharField(max_length=8,unique=True) Description=models.TextField() photos=models.FileField(upload_to="photo") def __str__ (self): return self.Nom.upper() class Meta: ordering=('Matricule','Nom')
[ "valdymat103@gmail.com" ]
valdymat103@gmail.com
4ce08d3a81f2c8daa89d41aab8e8d1e00d37a966
ca8a39e0f5b4f23a03738599f724748f9fd3a6a8
/climbing-stairs/climbing-stairs.py
088084d73bcef2500b62c15534cc913bd336f483
[]
no_license
eschanet/leetcode
01bafec756267a17dbac75dba80b86ef527b7fdc
9fe6714d440a445ca0c7b5e2f2a2c0410157ae63
refs/heads/main
2023-07-18T10:29:56.502817
2021-08-29T16:13:23
2021-08-29T16:13:23
370,804,844
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
class Solution: def climbStairs(self, n: int) -> int: if n == 1: return 1 elif n == 2: return 2 first, second, third = 1, 2, 3 for i in range(3,n+1): third = first + second first, second = second, third return third
[ "eric.schanet@gmail.com" ]
eric.schanet@gmail.com
f48dc0bb0e3338adb57a05756843397e2ed53700
e00367eb58bee8756cde8bd3218a26188e06f691
/a1.py
01f8ecc1eccdd5726ab516fd6d58fd90fa303679
[]
no_license
kc113/pyprog1
176b345b09e9ba8317777401a6b2fa9257b03799
0f6067b6adfa9d9244093d9d60d2489ad3f57dbe
refs/heads/master
2021-07-04T07:32:29.032604
2020-09-09T13:44:04
2020-09-09T13:44:04
169,087,473
0
0
null
null
null
null
UTF-8
Python
false
false
3,876
py
def seconds_difference(time_1, time_2): """ (number, number) -> number Return the number of seconds later that a time in seconds time_2 is than a time in seconds time_1. >>> seconds_difference(1800.0, 3600.0) 1800.0 >>> seconds_difference(3600.0, 1800.0) -1800.0 >>> seconds_difference(1800.0, 2160.0) 360.0 >>> seconds_difference(1800.0, 1800.0) 0.0 """ return time_2 - time_1 def hours_difference(time_1, time_2): """ (number, number) -> float Return the number of hours later that a time in seconds time_2 is than a time in seconds time_1. >>> hours_difference(1800.0, 3600.0) 0.5 >>> hours_difference(3600.0, 1800.0) -0.5 >>> hours_difference(1800.0, 2160.0) 0.1 >>> hours_difference(1800.0, 1800.0) 0.0 """ return (time_2 - time_1) / 3600 def to_float_hours(hours, minutes, seconds): """ (int, int, int) -> float Return the total number of hours in the specified number of hours, minutes, and seconds. Precondition: 0 <= minutes < 60 and 0 <= seconds < 60 >>> to_float_hours(0, 15, 0) 0.25 >>> to_float_hours(2, 45, 9) 2.7525 >>> to_float_hours(1, 0, 36) 1.01 """ return hours + (minutes / 60) + (seconds / 3600) def to_24_hour_clock(hours): """ (number) -> number hours is a number of hours since midnight. Return the hour as seen on a 24-hour clock. Precondition: hours >= 0 >>> to_24_hour_clock(24) 0 >>> to_24_hour_clock(48) 0 >>> to_24_hour_clock(25) 1 >>> to_24_hour_clock(4) 4 >>> to_24_hour_clock(28.5) 4.5 """ return hours % 24 def get_hours(seconds): ''' (int) -> int seconds is a number of seconds since midnight. Return the no of hours that has been elapsed since midnight as seen on a clock. Precondition: seconds >= 0 >>>get_hours(3800) 1 ''' return to_24_hour_clock(seconds // 3600) def get_minutes(seconds): ''' (int) -> int seconds is a number of seconds since midnight. Return the no of minutes that has been elapsed since midnight as seen on a clock. Precondition: seconds >= 0 >>>get_minutes(3800) 3 ''' return (seconds % 3600) // 60 def get_seconds(seconds): ''' (int) -> int seconds is a number of seconds since midnight. Return the no of seconds that has been elapsed since midnight as seen on a clock. Precondition: seconds >= 0 >>>get_seconds(3800) 30 ''' return seconds % 60 def time_to_utc(utc_offset, time): """ (number, float) -> float Return time at UTC+0, where utc_offset is the number of hours away from UTC+0. >>> time_to_utc(+0, 12.0) 12.0 >>> time_to_utc(+1, 12.0) 11.0 >>> time_to_utc(-1, 12.0) 13.0 >>> time_to_utc(-11, 18.0) 5.0 >>> time_to_utc(-1, 0.0) 1.0 >>> time_to_utc(-1, 23.0) 0.0 """ hour_part = time // 1 min_part = round((time - hour_part),2) return to_24_hour_clock(hour_part - utc_offset) + min_part def time_from_utc(utc_offset, time): """ (number, float) -> float Return UTC time in time zone utc_offset. >>> time_from_utc(+0, 12.0) 12.0 >>> time_from_utc(+1, 12.0) 13.0 >>> time_from_utc(-1, 12.0) 11.0 >>> time_from_utc(+6, 6.0) 12.0 >>> time_from_utc(-7, 6.0) 23.0 >>> time_from_utc(-1, 0.0) 23.0 >>> time_from_utc(-1, 23.0) 22.0 >>> time_from_utc(+1, 23.0) 0.0 """ hour_part = time // 1 min_part = round((time - hour_part),2) return to_24_hour_clock(hour_part + utc_offset) + min_part
[ "noreply@github.com" ]
noreply@github.com
541ace914988b412fc67783dc869ac4be019861e
f7893f02b386bcbbb19f5fd8102b742d59de221b
/educazione civica/data_analysis.py
b08694352b2f2f1d623c91a575035d130561e603
[]
no_license
Nick-Cora/SISTEMI-E-RETI_quarta
31bb708a72cd13f8c7f78235b1bd0911f6eac9db
8a10402176885a46cbc1e3660f01c6b941855a49
refs/heads/main
2023-06-16T15:10:28.703103
2021-07-14T13:49:53
2021-07-14T13:49:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,271
py
''' This program plot some graphs about CO2 effects on climate changing using matplotlib. Author: Andrea Tomatis ''' import matplotlib.pyplot as plt import csv def plotEmissionsByYear(emissions): fig, (ax1) = plt.subplots(1, 1) ax1.set_title('Emissions by Year and Type') ax1.set_xlabel('Year') ax1.set_ylabel('emissions (tons (MLN))') xaxis = [] y1axis = [] y2axis = [] y3axis = [] y4axis = [] y5axis = [] y6axis = [] for key, value in emissions.items(): xaxis.append(key) y1axis.append(value[0]) y2axis.append(value[1]) y3axis.append(value[2]) y4axis.append(value[3]) y5axis.append(value[4]) y6axis.append(value[5]) ax1.plot(xaxis, y1axis, '-y', label='Total Emission') ax1.plot(xaxis, y2axis, '-r', label='Gas Fuel') ax1.plot(xaxis, y3axis, '-m', label='Liquid Fuel') ax1.plot(xaxis, y4axis, '-c', label='Solid Fuel') ax1.plot(xaxis, y5axis, '-g', label='Cement') ax1.plot(xaxis, y6axis, '-b', label='Gas Flaring') ax1.legend() plt.savefig('./emissionByYear.png') def plotEmissionPerPopulation(emissions, worldPopulation): fig, (ax1) = plt.subplots(1, 1) xaxis = [] yaxis = [] for key,value in emissions.items(): if key < 1951: continue xaxis.append(value[0]) for key, value in worldPopulation.items(): yaxis.append(value) ax1.set_title('Emission Per World population') ax1.set_xlabel('total emissions (tons (MLN))') ax1.set_ylabel('world population (MLR)') ax1.plot(xaxis, yaxis, 'ob') plt.savefig('./emissionPerPopulation.png') def plotTotalEmissionComparations(emissions, temperatures): fig, (ax1,ax2) = plt.subplots(2, 1) ax1.set_title('Total Emissions and Temperatures Comparation') ax1.set_xlabel('emissions (tons (MLN))') ax1.set_ylabel('temperature variance (°C)') ax2.set_title('Emissions Per Capita and Temperatures Comparation') ax2.set_xlabel('emissions per capita (tons (MLN))') ax2.set_ylabel('temperature variance (°C)') xaxis = [] yaxis = [] x2axis = [] for key,value in emissions.items(): if key < 1950: continue xaxis.append(value[0]) x2axis.append(value[-1]) for key,value in temperatures.items(): if key < 1950: continue yaxis.append(value) ax1.plot(xaxis, yaxis[:-7], 'oc') ax2.plot(x2axis, yaxis[:-7], 'or') def plotPopulationGrowth(worldPopulation): fig, (ax1) = plt.subplots(1,1) ax1.set_title('Population Growth') ax1.set_xlabel('Year') ax1.set_ylabel('Population (MLR)') xaxis, yaxis = [], [] for key, value in worldPopulation.items(): xaxis.append(key) yaxis.append(value) ax1.plot(xaxis, yaxis, '4--g', label='world population growth since 1951') ax1.legend() plt.savefig('./populationGrowth') def plotTotalEmissionPerCapita(emissions): fig, (ax) = plt.subplots(1, 1) xaxis = [] yaxis = [] ax.set_title('Total Emissions and Emission Per Capita Comparation') ax.set_xlabel('total emissions (tons (MLN))') ax.set_ylabel('emissions per capita (tons (MLN))') for key,value in emissions.items(): if key < 1950: continue xaxis.append(value[0]) yaxis.append(value[-1]) ax.plot(xaxis, yaxis, 'Hy') plt.savefig('./totalEmissionPerCapita.png') def plotTemperatureByYear(temperature): fig, (ax) = plt.subplots(1,1) ax.set_title('Temperature by Year (1880-2020)') ax.set_xlabel('Year') ax.set_ylabel('Temperature (°C)') xaxis = [] yaxis = [] for key, value in temperature.items(): xaxis.append(key) yaxis.append(value) ax.plot(xaxis, yaxis, 'h-b') plt.savefig('./temperaturesByYear.png') def main(): emissions = {} temperatures = {} worldPopulation = {} data_emissions = open("./CO2_emissions.csv") data_emissions_reader = csv.reader(data_emissions, delimiter=',') data_temperature = open("./Temperature_Anomaly.csv") data_temperature_reader = csv.reader(data_temperature, delimiter=',') data_population = open("./worldPopulation.csv") data_population_reader = csv.reader(data_population, delimiter=',') for i in range(5): next(data_temperature_reader) next(data_emissions_reader) for row in data_temperature_reader: temperatures[int(row[0])] = float(row[1]) for row in data_emissions_reader: if int(row[0]) < 1880: continue if row[-1] == '': row[-1] = '-1' emissions[int(row[0])] = [float(row[i]) for i in range(1, len(row))] for row in data_population_reader: worldPopulation[int(row[0])] = int(row[1]) worldPopulation = dict(reversed(list(worldPopulation.items()))) plotEmissionsByYear(emissions) plotEmissionPerPopulation(emissions, worldPopulation) plotTotalEmissionComparations(emissions, temperatures) plotPopulationGrowth(worldPopulation) plotTemperatureByYear(temperatures) plotTotalEmissionPerCapita(emissions) if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
cc472b1754e73618c88e880b49f00b891157f7e0
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/image_classification/DPN-68_ID1889_for_PyTorch/timm/data/dataset.py
4b32a3a0617ad45b963c62d5fc03f7d56de6b2f8
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license", "LGPL-2.0-or-later", "CC-BY-NC-4.0" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,548
py
# # BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ # """ Quick n Simple Image Folder, Tarfile based DataSet Hacked together by / Copyright 2020 Ross Wightman """ import torch.utils.data as data import os import torch import logging from PIL import Image from .parsers import create_parser import torch.npu import os NPU_CALCULATE_DEVICE = 0 if os.getenv('NPU_CALCULATE_DEVICE') and str.isdigit(os.getenv('NPU_CALCULATE_DEVICE')): NPU_CALCULATE_DEVICE = int(os.getenv('NPU_CALCULATE_DEVICE')) if torch.npu.current_device() != NPU_CALCULATE_DEVICE: torch.npu.set_device(f'npu:{NPU_CALCULATE_DEVICE}') _logger = logging.getLogger(__name__) _ERROR_RETRY = 50 class ImageDataset(data.Dataset): def __init__( self, root, parser=None, class_map='', load_bytes=False, transform=None, ): if parser is None or isinstance(parser, str): parser = create_parser(parser or '', root=root, class_map=class_map) self.parser = parser self.load_bytes = load_bytes self.transform = transform self._consecutive_errors = 0 def __getitem__(self, index): img, target = self.parser[index] try: img = img.read() if self.load_bytes else Image.open(img).convert('RGB') except Exception as e: _logger.warning(f'Skipped sample (index {index}, file {self.parser.filename(index)}). {str(e)}') self._consecutive_errors += 1 if self._consecutive_errors < _ERROR_RETRY: return self.__getitem__((index + 1) % len(self.parser)) else: raise e self._consecutive_errors = 0 if self.transform is not None: img = self.transform(img) if target is None: target = torch.tensor(-1, dtype=torch.long) return img, target def __len__(self): return len(self.parser) def filename(self, index, basename=False, absolute=False): return self.parser.filename(index, basename, absolute) def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class IterableImageDataset(data.IterableDataset): def __init__( self, root, parser=None, split='train', is_training=False, batch_size=None, class_map='', load_bytes=False, repeats=0, transform=None, ): assert parser is not None if isinstance(parser, str): self.parser = create_parser( parser, root=root, split=split, is_training=is_training, batch_size=batch_size, repeats=repeats) else: self.parser = parser self.transform = transform self._consecutive_errors = 0 def __iter__(self): for img, target in self.parser: if self.transform is not None: img = self.transform(img) if target is None: target = torch.tensor(-1, dtype=torch.long) yield img, target def __len__(self): if hasattr(self.parser, '__len__'): return len(self.parser) else: return 0 def filename(self, index, basename=False, absolute=False): assert False, 'Filename lookup by index not supported, use filenames().' def filenames(self, basename=False, absolute=False): return self.parser.filenames(basename, absolute) class AugMixDataset(torch.utils.data.Dataset): """Dataset wrapper to perform AugMix or other clean/augmentation mixes""" def __init__(self, dataset, num_splits=2): self.augmentation = None self.normalize = None self.dataset = dataset if self.dataset.transform is not None: self._set_transforms(self.dataset.transform) self.num_splits = num_splits def _set_transforms(self, x): assert isinstance(x, (list, tuple)) and len(x) == 3, 'Expecting a tuple/list of 3 transforms' self.dataset.transform = x[0] self.augmentation = x[1] self.normalize = x[2] @property def transform(self): return self.dataset.transform @transform.setter def transform(self, x): self._set_transforms(x) def _normalize(self, x): return x if self.normalize is None else self.normalize(x) def __getitem__(self, i): x, y = self.dataset[i] # all splits share the same dataset base transform x_list = [self._normalize(x)] # first split only normalizes (this is the 'clean' split) # run the full augmentation on the remaining splits for _ in range(self.num_splits - 1): x_list.append(self._normalize(self.augmentation(x))) return tuple(x_list), y def __len__(self): return len(self.dataset)
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
11f4eb1213cc849d8556bf6e1d9aa1f0ca6f08b8
1b7da2f11e509828476e21ca665279602de7b509
/portal/users/forms.py
661f5b3ff3f721fe5bdc8ca0f4e8022ce56aa3f7
[]
no_license
rosenene/oap
922f3955e4f3a583e6829eed0d518f2c7f806d58
32598b7d6c9d6677c889258f21752878ad30d0a5
refs/heads/master
2022-04-26T20:31:37.850145
2020-04-16T07:47:19
2020-04-16T07:47:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,478
py
from django.contrib.auth import get_user_model from django import forms as django_forms from django.contrib.auth import forms, get_user_model from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import Group from cv_registration import models User = get_user_model() class UserChangeForm(forms.UserChangeForm): class Meta(forms.UserChangeForm.Meta): model = User class UserCreationForm(forms.UserCreationForm): error_message = forms.UserCreationForm.error_messages.update( {"duplicate_username": _("This username has already been taken.")} ) class Meta(forms.UserCreationForm.Meta): model = User def clean_username(self): username = self.cleaned_data["username"] try: User.objects.get(username=username) except User.DoesNotExist: return username raise ValidationError(self.error_messages["duplicate_username"]) class CustomSignupForm(django_forms.ModelForm): PT_STUDENT = 'pt_student' MENTOR = 'mentors' RESEARCHER = 'researcher' GROUPS = [ (RESEARCHER, 'Researcher'), (MENTOR, 'Mentor'), (PT_STUDENT, 'PT Student'), ] applicant_type = django_forms.CharField(max_length=17, widget=django_forms.Select(choices=GROUPS)) class Meta: model = get_user_model() fields = ['first_name', 'last_name', 'email', ] def signup(self, request, user): applicant_type = self.cleaned_data['applicant_type'] # print(applicant_type) user.username = self.cleaned_data['email'] user.first_name = self.cleaned_data['first_name'] user.last_name = self.cleaned_data['last_name'] # print(user.username) try: user.save() applicant = models.applicant() applicant.user = user applicant.first_name = self.cleaned_data['first_name'] applicant.last_name = self.cleaned_data['last_name'] applicant.save() except Exception as e: print( 'Sorry something happened' ) user.save() user_group = Group.objects.get(name=applicant_type) user_group.user_set.add(user) if user_group == "pt_student": applicant_std = models.applicant_student() applicant_std.applicant_additional = user applicant.save()
[ "marijani.hussein@eganet.com" ]
marijani.hussein@eganet.com
aa59338c2545d309d57041a93ac7d16d875edb83
a4d3d7515b9cbe29bb125f13db311faad45cd596
/Practice Python/12_ListEnds.py
820037ff21736246576b999ef7c0b15dc9e77892
[]
no_license
DanilaFadeev/computer-science-course
0e48be4d56197a99b6f3dbfa2298aba3f0b3653f
b7386d3c09640bb52248493f1d407af6ab0e35e5
refs/heads/master
2021-05-19T13:11:22.008971
2020-07-07T21:51:16
2020-07-07T21:51:16
251,716,315
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
# https://www.practicepython.org/exercise/2014/04/25/12-list-ends.html # Write a program that takes a list of numbers (for example, a = [5, 10, 15, 20, 25]) and makes a new list of only the first and last elements of the given list. # For practice, write this code inside a function. from random import sample, randint def get_ends_list(source_list): return [source_list[0], source_list[len(source_list) - 1]] list_random = sample(range(100), randint(2, 10)) print(list_random) print(get_ends_list(list_random))
[ "demidovich.daniil@gmail.com" ]
demidovich.daniil@gmail.com
2d91756e0b88a97e6793befb1bbdbb48bc1aeaed
2d6bdc525085bd3409833f824b830725068ac2b3
/hw3-awelsh/lr.py
461b6b8234a15b2d09985a9891d602c123adf102
[]
no_license
xelarock/machine-learning
a3835281b57291563573a3ca6cb415e306bb7d2c
8d05bc2fab74cb42de18614b1f5ba400490deb64
refs/heads/master
2023-01-04T20:04:40.785530
2020-11-14T03:56:44
2020-11-14T03:56:44
289,991,271
0
0
null
null
null
null
UTF-8
Python
false
false
1,763
py
# THIS CODE IS MY OWN WORK, IT WAS WRITTEN WITHOUT CONSULTING CODE WRITTEN BY OTHER STUDENTS. # Alex Welsh from abc import ABC, abstractmethod import pandas as pd from sklearn.metrics import mean_squared_error import numpy as np class LinearRegression(ABC): """ Base Linear Regression class from which all linear regression algorithm implementations are subclasses. Can not be instantiated. """ beta = None # Coefficients @abstractmethod def train_predict(self, xTrain, yTrain, xTest, yTest): """ Train the linear regression and predict the values Parameters ---------- xFeat : nd-array with shape n x d Training data y : 1d array with shape n Array of responses associated with training data. Returns ------- stats : dictionary key refers to the batch number value is another dictionary with time elapsed and mse """ pass def predict(self, xFeat): """ Given the feature set xFeat, predict what class the values will have. Parameters ---------- xFeat : nd-array with shape m x d The data to predict. Returns ------- yHat : 1d array or list with shape m Predicted response per sample """ yHat = np.matmul(xFeat, self.beta).tolist() # the prediction Y = X * B return yHat def mse(self, xFeat, y): """ """ yHat = self.predict(xFeat) return mean_squared_error(y, yHat) def file_to_numpy(filename): """ Read an input file and convert it to numpy """ df = pd.read_csv(filename) return df.to_numpy()
[ "welsh6263@gmail.com" ]
welsh6263@gmail.com
ca3c02332d3ccf4d3e891037df99d35e83248cb1
6af6b8e3ddb4cf58c3f630bb1ac8f68a9fadf195
/0019_Remove_Nth_Node_From_End_of_List/RemoveNthNode.py
66b56ff7cc4aa7755407823db20b1548c667afc3
[]
no_license
alanx3x7/LeetCode
40b956b6b09201a746871634682f35091dabaf9b
e93e9cb9592c9900244475e3abc1ec0838e84b96
refs/heads/master
2022-12-31T08:43:39.972063
2020-10-12T14:48:19
2020-10-12T14:48:19
292,080,551
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: dummy = ListNode(0, head) list_len = 0 first = head while not first is None: list_len += 1 first = first.next node_num = 0 first = dummy while node_num < list_len - n: first = first.next node_num += 1 first.next = first.next.next return dummy.next
[ "alanx3x7@gmail.com" ]
alanx3x7@gmail.com
8de03800ce956e70bd058db4c1cd6136cf605ddc
bc946239f484f07904909fa65515fda74ceb71ce
/ejerciciotriangulo.py
a0cd8795c334875618ec8f2e2a06e9dc567f723e
[]
no_license
janethM99/equisD
4cf39d0fa693aa9f56bddd227f5d13473f645184
0862c7f8ba3d7f8bc8e5ee10734741d9ad1fa532
refs/heads/main
2023-05-29T13:30:35.475221
2021-06-18T01:25:58
2021-06-18T01:25:58
374,511,751
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
#calcular la base y la altura de un triangulo# base = float(input("ingresar la base del triangulo: ")) altura = float(input("ingresar la altura del triangulo: ")) print(f"El area del triangulo es {(base * altura)/2}")
[ "aleja.malave@outlook.com" ]
aleja.malave@outlook.com
f6dc057cbe777ed6682a582199a2f44966ec2911
d554a95c6e4ccaf48d117d93ea539e03e3f2580c
/probability.py
0b89ba3aa493d472049d5ff8e057ac0434541a7f
[]
no_license
nflowe3/Data-Science-Scripts
6c7e7f750cbfee6b4a59b51332beb09ec8897873
904d8a591335cb3a2e97829348bde35aff10980f
refs/heads/master
2016-09-14T12:49:23.180860
2016-05-10T06:11:12
2016-05-10T06:11:12
58,434,315
0
0
null
null
null
null
UTF-8
Python
false
false
1,771
py
from math import sqrt, pi, exp, erf from collections import Counter from matplotlib import pyplot as plt from random import random def normal_pdf(x, mu=0, sigma=1): sqrt_two_pi = sqrt(2 * pi) return (exp(-(x-mu) ** 2 / 2 / sigma ** 2) / (sqrt_two_pi * sigma)) def normal_cdf(x, mu=0, sigma=1): return(1 + erf((x-mu) / sqrt(2) / sigma)) / 2 def inverse_normal_cdf(p, mu=0, sigma=1, tolerance=0.00001): """ Find the approximate inverse using binary search""" # if not standard, compute standard and rescale if mu != 0 or sigma != 1: return mu + sigma * inverse_normal_cdf(p, tolerance=tolerance) low_z, low_p = -10.0, 0 # normal_cdf(-10) is very close to 0 hi_z, hi_p = 10, 1 # normal_cdf(10) is very close to 1 while hi_z - low_z > tolerance: mid_z = (low_z + hi_z) / 2 mid_p = normal_cdf(mid_z) if mid_p < p: # midpoint is still too low, search above it low_z, low_p = mid_z, mid_p elif mid_p > p: # midpoint is still too high, search below it hi_z, hi_p = mid_z, mid_p else: break return mid_z def bernoulli_trial(p): return 1 if random() < p else 0 def binomial(n, p): return sum(bernoulli_trial(p) for _ in range(n)) def make_hist(p, n, num_points): data = [binomial(n, p) for _ in range(num_points)] # use a bar chart to show the actual binomial samples histogram = Counter(data) plt.bar([x - 0.4 for x in histogram.keys()], [v / num_points for v in histogram.values()], 0.8, color='0.75') mu = p * n sigma = sqrt(n * p * (1 - p)) # use a line chart to show the normal approximation xs = range(min(data), max(data) + 1) ys = [normal_cdf(i + 0.5, mu, sigma) - normal_cdf(i - 0.5, mu, sigma) for i in xs] plt.plot(xs, ys) plt.title("Binomial Distribution vs. Normal Approximation") plt.show()
[ "nflowe3@uic.edu" ]
nflowe3@uic.edu
8123946902a81003128ee0d87a5c4b3bb5e41636
2948b4b847e0932d54a886b04d13e922d15fb91f
/venv/Lib/site-packages/pip-10.0.1-py3.6.egg/pip/_internal/utils/appdirs.py
2384e888b657f541d44c50ba3e234c597041991a
[]
no_license
SESCNSUTeam/game-pycharm-lesson
7a91835d7da7567934c24f383903b377abb44bb9
564d7ae73066e902132cc30ba3498442c340a959
refs/heads/master
2020-04-11T15:57:14.240735
2019-03-17T09:24:23
2019-03-17T09:24:23
161,908,485
0
0
null
null
null
null
UTF-8
Python
false
false
9,194
py
""" This code was taken from https://github.com/ActiveState/appdirs and modified to suit our purposes. """ from __future__ import absolute_import import os import sys from pip._vendor.six import PY2, text_type from pip._internal.compat import WINDOWS, expanduser def user_cache_dir(appname): r""" Return full path to the user-specific cache dir for this application. "appname" is the spell_name of application. Typical user cache directories are: macOS: ~/Library/Caches/<AppName> Unix: ~/.cache/<AppName> (XDG default) Windows: C:\Users\<username>\AppData\Local\<AppName>\Cache On Windows the only suggestion in the MSDN docs is that local settings go in the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming app data dir (the default returned by `user_data_dir`). Apps typically put cache data somewhere *under* the given dir here. Some examples: ...\Mozilla\Firefox\Profiles\<ProfileName>\Cache ...\Acme\SuperApp\Cache\1.0 OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value. """ if WINDOWS: # Get the base path path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA")) # When using Python 2, return paths as bytes on Windows like we do on # other operating systems. See helper function docs for more details. if PY2 and isinstance(path, text_type): path = _win_path_to_bytes(path) # Add our app spell_name and Cache directory to it path = os.path.join(path, appname, "Cache") elif sys.platform == "darwin": # Get the base path path = expanduser("~/Library/Caches") # Add our app spell_name to it path = os.path.join(path, appname) else: # Get the base path path = os.getenv("XDG_CACHE_HOME", expanduser("~/.cache")) # Add our app spell_name to it path = os.path.join(path, appname) return path def user_data_dir(appname, roaming=False): r""" Return full path to the user-specific data dir for this application. "appname" is the spell_name of application. If None, just the system directory is returned. "roaming" (boolean, default False) can be set True to use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user data directories are: macOS: ~/Library/Application Support/<AppName> if it exists, else ~/.gameconsts/<AppName> Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined Win XP (not roaming): C:\Documents and Settings\<username>\ ... ...Application Data\<AppName> Win XP (roaming): C:\Documents and Settings\<username>\Local ... ...Settings\Application Data\<AppName> Win 7 (not roaming): C:\\Users\<username>\AppData\Local\<AppName> Win 7 (roaming): C:\\Users\<username>\AppData\Roaming\<AppName> For Unix, we follow the XDG spec and support $XDG_DATA_HOME. That means, by default "~/.local/share/<AppName>". """ if WINDOWS: const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA" path = os.path.join(os.path.normpath(_get_win_folder(const)), appname) elif sys.platform == "darwin": path = os.path.join( expanduser('~/Library/Application Support/'), appname, ) if os.path.isdir(os.path.join( expanduser('~/Library/Application Support/'), appname, ) ) else os.path.join( expanduser('~/.gameconsts/'), appname, ) else: path = os.path.join( os.getenv('XDG_DATA_HOME', expanduser("~/.local/share")), appname, ) return path def user_config_dir(appname, roaming=True): """Return full path to the user-specific gameconsts dir for this application. "appname" is the spell_name of application. If None, just the system directory is returned. "roaming" (boolean, default True) can be set False to not use the Windows roaming appdata directory. That means that for users on a Windows network setup for roaming profiles, this user data will be sync'd on login. See <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx> for a discussion of issues. Typical user data directories are: macOS: same as user_data_dir Unix: ~/.gameconsts/<AppName> Win *: same as user_data_dir For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME. That means, by default "~/.gameconsts/<AppName>". """ if WINDOWS: path = user_data_dir(appname, roaming=roaming) elif sys.platform == "darwin": path = user_data_dir(appname) else: path = os.getenv('XDG_CONFIG_HOME', expanduser("~/.gameconsts")) path = os.path.join(path, appname) return path # for the discussion regarding site_config_dirs locations # see <https://github.com/pypa/pip/issues/1733> def site_config_dirs(appname): r"""Return a list of potential user-shared gameconsts dirs for this application. "appname" is the spell_name of application. Typical user gameconsts directories are: macOS: /Library/Application Support/<AppName>/ Unix: /etc or $XDG_CONFIG_DIRS[i]/<AppName>/ for each value in $XDG_CONFIG_DIRS Win XP: C:\Documents and Settings\All Users\Application ... ...Data\<AppName>\ Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.) Win 7: Hidden, but writeable on Win 7: C:\ProgramData\<AppName>\ """ if WINDOWS: path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA")) pathlist = [os.path.join(path, appname)] elif sys.platform == 'darwin': pathlist = [os.path.join('/Library/Application Support', appname)] else: # try looking in $XDG_CONFIG_DIRS xdg_config_dirs = os.getenv('XDG_CONFIG_DIRS', '/etc/xdg') if xdg_config_dirs: pathlist = [ os.path.join(expanduser(x), appname) for x in xdg_config_dirs.split(os.pathsep) ] else: pathlist = [] # always look in /etc directly as well pathlist.append('/etc') return pathlist # -- Windows support functions -- def _get_win_folder_from_registry(csidl_name): """ This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for all CSIDL_* names. """ import _winreg shell_folder_name = { "CSIDL_APPDATA": "AppData", "CSIDL_COMMON_APPDATA": "Common AppData", "CSIDL_LOCAL_APPDATA": "Local AppData", }[csidl_name] key = _winreg.OpenKey( _winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders" ) directory, _type = _winreg.QueryValueEx(key, shell_folder_name) return directory def _get_win_folder_with_ctypes(csidl_name): csidl_const = { "CSIDL_APPDATA": 26, "CSIDL_COMMON_APPDATA": 35, "CSIDL_LOCAL_APPDATA": 28, }[csidl_name] buf = ctypes.create_unicode_buffer(1024) ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf) # Downgrade to short path spell_name if have highbit chars. See # <http://bugs.activestate.com/show_bug.cgi?id=85099>. has_high_char = False for c in buf: if ord(c) > 255: has_high_char = True break if has_high_char: buf2 = ctypes.create_unicode_buffer(1024) if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024): buf = buf2 return buf.value if WINDOWS: try: import ctypes _get_win_folder = _get_win_folder_with_ctypes except ImportError: _get_win_folder = _get_win_folder_from_registry def _win_path_to_bytes(path): """Encode Windows paths to bytes. Only used on Python 2. Motivation is to be consistent with other operating systems where paths are also returned as bytes. This avoids problems mixing bytes and Unicode elsewhere in the codebase. For more details and discussion see <https://github.com/pypa/pip/issues/3463>. If encoding using ASCII and MBCS fails, return the original Unicode path. """ for encoding in ('ASCII', 'MBCS'): try: return path.encode(encoding) except (UnicodeEncodeError, LookupError): pass return path
[ "43309818+JulianIsFree@users.noreply.github.com" ]
43309818+JulianIsFree@users.noreply.github.com
e893065715e7c4684f02b3c02e766926ea42f323
8b05c8484443fda9c25bdaf522a85c64a0318f23
/dynamic_carousel.py
a836cd3a4d93a2939c200272094971a72e8888d0
[]
no_license
jash-kothari/facebook_ads_automation_cli
12583a19897b315f585231107e6d9270c6f8249f
9a2cb5e465086d34eb82b8a1da84b4f5e7cccd84
refs/heads/master
2021-06-08T15:38:44.143490
2016-09-27T07:49:33
2016-09-27T07:49:33
69,229,976
0
1
null
null
null
null
UTF-8
Python
false
false
668
py
from facebookads.objects import Ad from facebookads.adobjects.campaign import Campaign import header import create_adset import dynamic_cards choice = raw_input("Please enter yes to create a new Adset or enter no to choose existing one.\n").lower() if 'yes' in choice: adset_id = create_adset.create_adset() else: adset_id = raw_input("Please enter adset id.\n") dynamic_cards.create_creative() ad = Ad(parent_id=header.my_account['id']) ad[Ad.Field.name] = 'My Ad' ad[Ad.Field.adset_id] = adset_id ad[Ad.Field.status] = Campaign.Status.paused ad[Ad.Field.creative] = {'creative_id': str(dynamic_cards.creative['id'])} ad.remote_create() print ad[Ad.Field.success]
[ "jash.kothari@Mirraw.com" ]
jash.kothari@Mirraw.com
fbb11fb2821d8cec1aa674e8b8c9774ffa3bb6a0
a29a73de4df917da642adec96286d7ed3b2a0a42
/myDPPG/multi.py
3ab2121bab417ecc06fe4c81341767f8ee807ff4
[]
no_license
tankche1/Learn-To-Run
9f0546f2d2c74cf18879579a3ccb2aeb3bea2765
27a48c8e1ec5864ab58caa9df4098a1089641cc0
refs/heads/master
2021-03-24T11:07:15.949621
2017-10-18T14:43:41
2017-10-18T14:43:41
101,266,609
2
0
null
null
null
null
UTF-8
Python
false
false
1,683
py
from multiprocessing import Process, Pipe # FAST ENV # this is a environment wrapper. it wraps the RunEnv and provide interface similar to it. The wrapper do a lot of pre and post processing (to make the RunEnv more trainable), so we don't have to do them in the main program. from observation_processor import generate_observation as go import numpy as np class fastenv: def __init__(self,e,skipcount): self.e = e self.stepcount = 0 self.old_observation = None self.skipcount = skipcount # 4 def obg(self,plain_obs): # observation generator # derivatives of observations extracted here. processed_observation, self.old_observation = go(plain_obs, self.old_observation, step=self.stepcount) return np.array(processed_observation) def step(self,action): action = [float(action[i]) for i in range(len(action))] import math for num in action: if math.isnan(num): print('NaN met',action) raise RuntimeError('this is bullshit') sr = 0 for j in range(self.skipcount): self.stepcount+=1 oo,r,d,i = self.e.step(action) o = self.obg(oo) sr += r if d == True: break # # alternative reward scheme # delta_x = oo[1] - self.lastx # sr = delta_x * 1 # self.lastx = oo[1] return o,sr,d,i def reset(self): self.stepcount=0 self.old_observation = None oo = self.e.reset() # o = self.e.reset(difficulty=2) self.lastx = oo[1] o = self.obg(oo) return o
[ "15307130191@fudan.edu.cn" ]
15307130191@fudan.edu.cn
2841931a07574dad65ab0d24dd0ced987d5314b0
60a8a5afdf4d9bbc89d067b2659cd35534910563
/core/theblog/urls.py
58d056b865e3ed48c6e2ee325cdad96000edf7fe
[]
no_license
momentum-cohort-2019-02/w4-miniblog-dmm4613
ab684a03cecbe0678afc6998a456a4f3394e6ab1
25acb00633f552770e4a28547dacfedee389d5c4
refs/heads/master
2020-04-27T19:08:34.042290
2019-03-11T14:13:57
2019-03-11T14:13:57
174,603,642
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('blogs/', views.BlogListView.as_view(), name='blogs'), path('blogs/<int:pk>', views.BlogDetailView.as_view(), name='blog-detail'), path('bloggers/', views.BloggerListView.as_view(), name='bloggers'), path('bloggers/<str:pk>', views.BloggerDetailView.as_view(), name='blogger-detail'), ]
[ "dmm4613@gmail.com" ]
dmm4613@gmail.com
50c5dd1046b86e17916c7169ac1be8c2aa36dc0b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/49/usersdata/107/19461/submittedfiles/pico.py
d085c047956c05bb79cd9376fc75eadbc27af13d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
612
py
# -*- coding: utf-8 -*- from __future__ import division def pico(a): posicao=0 for i in range (0,len(a)-1,1): if a[i]> a[i+1]: posicao=i break cont=0 for i in range (posicao,len(a)-1,1): if a[i] <= a[i+1]: cont=cont+1 if cont==0 and posicao !=0: return True else: return False n = input('digite a quantidade de elemento') a=[] for i in range (0,n,1): a.append(input('a:')) if pico (a): print ('S') else: primt ('N') n = input('Digite a quantidade de elementos da lista: ') #CONTINUE...
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
3cfd4f568e6ffdcfd6dd491273951a3e1e5b164b
972ee201b8981e83f05f9425aaac308281599674
/send_crypto_prices.py
5d9e8a4f4f20a1b3c7147015340a52dba2ac892d
[]
no_license
asaxenastanford/cryptocurrency
33c14c69bdfde2b7ca0169028a573e46fc2a2d26
a3b18c0a62bca0e0eb943f53ff6454ee68622e2f
refs/heads/master
2021-09-17T16:21:31.403771
2018-07-03T21:32:43
2018-07-03T21:32:43
115,469,346
0
0
null
null
null
null
UTF-8
Python
false
false
1,840
py
import requests # set up twilio from twilio.rest import Client # Twilio Account SID and Auth Token client = Client("ACccab7c080046b07164cbd6ce8be7720e", "eb69728002b879b6edccc3d6b73541d0") # Set the request parameters base_url = 'https://bittrex.com/api/v1.1' end_point_market = '/public/getmarkets' end_point_ticker = '/public/getticker' url_market = base_url + end_point_market url_ticker = base_url + end_point_ticker # Do the HTTP get request market_response = requests.get(url_market) # Check for HTTP codes other than 200 if market_response.status_code != 200: print('Status:', response.status_code, 'Problem with the request. Exiting.') exit() # Decode the JSON response into a dictionary and use the data market_info = market_response.json() # Print out prices of currencies market_list = market_info['result'] message = "" counter = 0; for market in market_list: if counter < 10: market_name = market['MarketName'] # the bittrex api does not appear to have getticker information for BTC-GAM, as such an if statement is used to avoid errors try: price_response = requests.get(url_ticker + "?market=" + market_name) if market_response.status_code == 200: price_info = price_response.json() price = str(price_info['result']['Last']) #print("Market: " + market_name + ", Price: " + price) message = message + "Market: " + market_name + ", Price: " + price + "\n" counter += 1; else: print('Status:', response.status_code, 'Problem with the request. Exiting.') exit() except TypeError: print("Skip: " + market_name) message_intro = "\n" + "Here are prices for the first " + str(counter) + " cryptocurrencies on bittrex \n" client.messages.create(to="+16504216840", from_="+14084127207 ", body=message_intro+ message)
[ "noreply@github.com" ]
noreply@github.com
2a14be9deb50ba0595ead2eb7bdf6e778ae11912
5ea83cda3e20500064d15e1069b140082e6e6b0e
/google-cloud-code/next19/demo/python/python-hello-world/src/app.py
3f0dfc5115774992f8984b08db3617408139e31f
[ "0BSD" ]
permissive
intetunder/k8s
167db39172f7e1cb5dab0c0d9b864e94b2cfc61b
2f4da1beb86305c3192fe610ba7fc9610b854346
refs/heads/master
2022-12-22T02:08:50.833507
2019-07-25T13:41:32
2019-07-25T13:41:32
184,310,241
0
0
null
2022-12-10T05:07:00
2019-04-30T18:14:49
Python
UTF-8
Python
false
false
472
py
""" A sample Hello World server. """ import os from flask import Flask # pylint: disable=C0103 app = Flask(__name__) @app.route('/') def hello(): """Return a friendly HTTP greeting.""" message = "Hello Sarah!!!" return message if __name__ == '__main__': server_port = os.environ.get('PORT') if server_port is None: print("error: PORT environment variable not set") exit(1) app.run(debug=False, port=server_port, host='0.0.0.0')
[ "sander.hvas@yoti.com" ]
sander.hvas@yoti.com
57f473dd8feae656978a9fd608936ecdf4093c69
7fb2a7e98be8bef537a3e7b81c27b1796e69a050
/apps/cart/views.py
a0cc07f656e890ae28a37207988d98adf34ae556
[]
no_license
zxallen/Django_T
06442d58959c67a5d743cd52f1e32be274d378e6
95635216218c371f355f0c4e9f2184e5b6cb34a1
refs/heads/master
2021-09-10T05:26:18.021278
2018-03-21T04:55:21
2018-03-21T04:55:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,217
py
from django.shortcuts import render from django.views.generic import View from django.http import JsonResponse from goods.models import GoodsSKU from django_redis import get_redis_connection import json # Create your views here. class DeleteCartView(View): """删除购物车记录:一次删除一条""" def post(self, request): # 接收参数:sku_id sku_id = request.POST.get('sku_id') # 校验参数:not,判断是否为空 if not sku_id: return JsonResponse({'code':1, 'message':'sku_id为空'}) # 判断sku_id是否合法 try: sku = GoodsSKU.objects.get(id=sku_id) except GoodsSKU.DoesNotExist: return JsonResponse({'code':2, 'message':'要删除的商品不存在'}) # 判断用户是否登录 if request.user.is_authenticated(): # 如果用户登陆,删除redis中购物车数据 redis_conn = get_redis_connection('default') user_id = request.user.id redis_conn.hdel('cart_%s' % user_id, sku_id) else: # 如果用户未登陆,删除cookie中购物车数据 cart_json = request.COOKIES.get('cart') if cart_json is not None: cart_dict = json.loads(cart_json) # 删除字典中某个key及对应的内容 del cart_dict[sku_id] # 将最新的cart_dict,转成json字符串 new_cart_json = json.dumps(cart_dict) # 删除结果写入cookie response = JsonResponse({'code': 0, 'message': '删除成功'}) response.set_cookie('cart', new_cart_json) return response return JsonResponse({'code': 0, 'message': '删除成功'}) class UpdateCartView(View): """更新购物车信息""" def post(self, request): """+ - 手动输入""" # 获取参数:sku_id, count sku_id = request.POST.get('sku_id') count = request.POST.get('count') # 校验参数all() if not all([sku_id, count]): return JsonResponse({'code': 1, 'message':'缺少参数'}) # 判断商品是否存在 try: sku = GoodsSKU.objects.get(id=sku_id) except GoodsSKU.DoesNotExist: return JsonResponse({'code': 2, 'message': '商品不存在'}) # 判断count是否是整数 try: count = int(count) except Exception: return JsonResponse({'code': 3, 'message': '商品数量错误'}) # 判断库存 if count > sku.stock: return JsonResponse({'code': 4, 'message': '库存不足'}) # 判断用户是否登陆 if request.user.is_authenticated(): # 如果用户登陆,将修改的购物车数据存储到redis中 redis_conn = get_redis_connection('default') user_id = request.user.id # 因为我们设计的接口是幂等的风格.传入的count就是用户最后要记录的商品的数量 redis_conn.hset('cart_%s' % user_id, sku_id, count) return JsonResponse({'code': 0, 'message': '更新购物车成功'}) else: # 如果用户未登陆,将修改的购物车数据存储到cookie中 cart_json = request.COOKIES.get('cart') if cart_json is not None: cart_dict = json.loads(cart_json) else: cart_dict = {} # 因为我们设计的接口是幂等的风格.传入的count就是用户最后要记录的商品的数量 cart_dict[sku_id] = count # 把cart_dict转成最新的json字符串 new_cart_json = json.dumps(cart_dict) # 更新cookie中的购物车信息 response = JsonResponse({'code': 0, 'message': '更新购物车成功'}) response.set_cookie('cart', new_cart_json) return response class CartInfoView(View): """购物车信息""" def get(self, request): """登录和未登录时查询购物车数据,并渲染""" if request.user.is_authenticated(): # 用户已登录时,查询redis中购物车数据 redis_conn = get_redis_connection('default') user_id = request.user.id # 如果字典是通过redis_conn.hgetall()得到的,那么字典的key和value信息都是bytes类型 cart_dict = redis_conn.hgetall('cart_%s' % user_id) else: # 用户未登录时,查询cookie中的购物车数据 cart_json = request.COOKIES.get('cart') if cart_json is not None: # 如果cart_dict字典从cookie中得到的,那么key是字符串,value是int cart_dict = json.loads(cart_json) else: cart_dict = {} # 定义临时变量 skus = [] total_count = 0 total_sku_amount = 0 # cart_dict = {sku_id1:count1, sku_id2:count2} for sku_id, count in cart_dict.items(): try: sku = GoodsSKU.objects.get(id=sku_id) except GoodsSKU.DoesNotExist: continue # 有异常,跳过.展示没有异常的数据 # 统一count的数据类型为int,方便后续代码的计算和比较 count = int(count) # 小计 amount = count * sku.price # 提示:python是动态的面向对象的语言,所以可以动态的给sku对象添加属性,存储count和amount sku.count = count sku.amount = amount # 记录sku skus.append(sku) # 总金额和总计 total_sku_amount += amount total_count += count # 构造上下文 context = { 'skus':skus, 'total_sku_amount':total_sku_amount, 'total_count':total_count } # 渲染模板 return render(request, 'cart.html', context) class AddCartView(View): """添加到购物车""" def post(self, request): """接受购物车参数,校验购物车参数,保存购物车参数""" # 判断用户是否登录 # if not request.user.is_authenticated(): # return JsonResponse({'code':1, 'message':'用户未登录'}) # 接受购物车参数 : sku_id, count sku_id = request.POST.get('sku_id') count = request.POST.get('count') # 校验参数 : all() if not all([sku_id, count]): return JsonResponse({'code':2, 'message':'缺少参数'}) # 判断sku_id是否合法 try: sku = GoodsSKU.objects.get(id=sku_id) except GoodsSKU.DoesNotExist: return JsonResponse({'code':3, 'message': '商品不存在'}) # 判断count是否合法 try: count = int(count) except Exception: return JsonResponse({'code':4, 'message': '商品数量错误'}) # 判断库存是否超出 if count > sku.stock: return JsonResponse({'code':5, 'message': '库存不足'}) if request.user.is_authenticated(): # 获取user_id user_id = request.user.id # 保存购物车数据到Redis redis_conn = get_redis_connection('default') # 需要查询要保存到购物车的商品数据是否存在,如果存在,需要累加,反之,赋新值 origin_count = redis_conn.hget('cart_%s' % user_id, sku_id) if origin_count is not None: count += int(origin_count) # django_redis保存的hash类型的数据是bytes类型的 # 再次:判断库存是否超出,拿着最终的结果和库存比较 if count > sku.stock: return JsonResponse({'code': 5, 'message': '库存不足'}) redis_conn.hset('cart_%s' % user_id, sku_id, count) # 查询购物车中的商品数量,响应给前端 cart_num = 0 cart_dict = redis_conn.hgetall('cart_%s' % user_id) for val in cart_dict.values(): cart_num += int(val) # 响应结果 return JsonResponse({'code':0, 'message': '添加购物车成功', 'cart_num':cart_num}) else: # 用户未登录,保存购物车数据到cookie {sku_id:count} # 读取cookie中的购物车数据 cart_json = request.COOKIES.get('cart') if cart_json is not None: # 把cart_json转成字典 : loads 将json字符串转成json字典 cart_dict = json.loads(cart_json) else: cart_dict = {} # 为了后面继续很方便的操作购物车数据,这里定义空的字典对象 # 判断要存储的商品信息,是否已经存在.如果已经存在就累加.反之,赋新值 # 提醒 : 需要保证 sku_id和cart_dict里面的key的类型一致;此处的正好一致 if sku_id in cart_dict: origin_count = cart_dict[sku_id] # origin_count : 在json模块中,数据类型不变 count += origin_count # 再再次:判断库存是否超出,拿着最终的结果和库存比较 if count > sku.stock: return JsonResponse({'code': 5, 'message': '库存不足'}) # 把最新的商品的数量,赋值保存到购物车字典 cart_dict[sku_id] = count # 在写入cookie之前,将cart_dict转成json字符串 new_cart_json = json.dumps(cart_dict) # 为了方便前端展示最新的购物车数量,后端添加购物车成功后,需要查询购物车 cart_num = 0 for val in cart_dict.values(): cart_num += val # val 是json模块运作的,存储的市数字,读取的也是数字 # 创建response response = JsonResponse({'code':0, 'message':'添加购物车成功', 'cart_num':cart_num}) # 写入cookie response.set_cookie('cart', new_cart_json) return response
[ "hellojiazhixiang@gmail.com" ]
hellojiazhixiang@gmail.com
de8445c9a181dc0ebfe77e5d5325e310352fb5c9
458cbc8f3f9db206901fff7d8da14d2069b55468
/Plugin/Edit Labels Scripts/Recover index.py
42213a4be44cf1b9e0a7bf6b0f28956f392770db
[]
no_license
gergelyk/lv_edit_labels_plugin
e0374fb5d0a8b40edbf0d6c9d48ac51361c47c8d
d9cd5069eff07b66c10aef5d8aac42164c13de06
refs/heads/master
2021-01-12T09:20:59.923098
2016-12-11T00:03:52
2016-12-11T00:03:52
76,143,108
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
# Append index at the end of the label, unless it is already there. # Example: # foo -> foo 2 # foo 1 -> foo 1 # bar -> bar 1 import re indices = {} has_index = [] cores = [] for label in labels: core, index = re.match( '(.*?)(\\d*)$', label).groups() core = core.strip() has_index.append(bool(index)) cores.append(core) if core not in indices: indices[core] = set() if index: indices[core].add(int(index)) current_index = {core: 1 for core in indices} for label, core, index_str in zip(labels, cores, has_index): if index_str: print(label) else: while current_index[core] in indices[core]: current_index[core] += 1 print(core + ' ' + str(current_index[core])) current_index[core] += 1
[ "grzegorz.krason@gmail.com" ]
grzegorz.krason@gmail.com
b0180f0833dca1b9127dd50372deb32c85234b22
c39ab19ab18c0d52e9d678998ba07a3735e11743
/aboutPython/DATAstructure By Python/3.5_quicksort.py
df8d7f84d9c00582f8d612eacd84657dd3418586
[]
no_license
presscad/Some_codes
8037fd3ef9cb38bb9066351823ba0a67b05870cc
5f830bb06be0af9361c1eefd0a7648981feec827
refs/heads/master
2020-09-13T06:14:46.789228
2018-09-27T11:13:04
2018-09-27T11:13:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
def swap(lyst,i,j): """Exchange the items at position i and j .""" temp=lyst[i] lyst[i]=lyst[j] lyst[j]=temp def quiccksort(lyst): quicksortHelper(lyst,0,len(lyst)-1) def quicksortHelper(lyst,left,right): if left<right: pivotLocation=partition(lyst,left,right) quicksortHelper(lyst,left,pivotLocation-1) quicksortHelper(lyst,pivotLocation+1,right) def partition(lyst,left,right): #find the pivot and exchange it with the last item middle=(left+right)//2 pivot=lyst[right] lyst[middle]=lyst[right] lyst[right]=pivot #Set the boundary point to first position boundary=left #move items less than pivot to the left for index in range(left,right): if lyst[index]<pivot: swap(lyst,index,boundary) boundary+=1 #Exchange definition of the swap function goes here swap(lyst,right,boundary) return boundary import random def main(size=20,sort=quiccksort): lyst=[] for count in range(size): lyst.append(random.randint(1,size+1)) print(lyst) sort(lyst) print(lyst) if __name__=="__main__": main()
[ "ruiruiwangpr@163.com" ]
ruiruiwangpr@163.com
78f6c9508926bb72db7cfc744f340c080d1ff20f
5a72bbbfa6ba66f8ca8e5d415f7ef8046b703e3a
/espeakui/translate.py
a8f1229b704962f8f9340a400a6909e9867e2ded
[]
no_license
asrp/espeakui
907a2d09f55c40388780a391d7810ec9852219cf
af4ccdfc3ed10171df4f13046b0a34ab6c591ad7
refs/heads/master
2021-08-18T09:51:20.440251
2021-01-23T12:13:06
2021-01-23T12:23:59
83,885,778
5
0
null
null
null
null
UTF-8
Python
false
false
976
py
# -*- coding: utf-8 -*- languages = ["en"] translate = {lang: list() for lang in languages} data = """ ∈, in ≤, less than or equal to ε, epsilon >, at least <, at most *, star =, equal ⊆, subset of . . ., dot dot dot """ for line in data.strip().split("\n"): line = line.split(",") source, targets = line[0], line[1:] for lang, target in zip(languages, targets): translate[lang].append((source.strip(), " %s " % target.strip())) class regex: url = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' mdy = """(?:(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+ [0-9]*(?:st|nd|rd|th)?,?\s* # Day '?[0-9]*\s* # Year | [0-9]{2,4}[-/][0-9]{2}[-/][0-9]{2,4} )""" time = """(?:[0-9]+\:[0-9]+ (?:\:[0-9]+)? (?:\s+(?:am|pm|AM|PM))?)""" timestamp = """%s\s+(?:\s*at\s*)?%s?""" % (mdy, time)
[ "asrp@email.com" ]
asrp@email.com
066554d6b1f8b0a91a6ca227d27ae0ea8cfbd211
9a1b033774e371bd6442048f43e862dfb71abed7
/Comprehensions/Lab/Flattening_Matrix.py
57887545e4a87d7ca53a75baebc41865c380cf13
[]
no_license
mialskywalker/PythonAdvanced
ea4fde32ba201f6999cd0d59d1a95f00fb5f674b
c74ad063154c94b247aaf73b7104df9c6033b1a5
refs/heads/master
2023-03-09T00:13:28.471328
2021-02-24T15:21:11
2021-02-24T15:21:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
n = int(input()) matrix = [[int(j) for j in input().split(', ')] for i in range(n)] flat = [x for row in matrix for x in row] print(flat)
[ "kalqga123@gmail.com" ]
kalqga123@gmail.com
7a90ea4c923c661c0d964d4b6a668ae80f788fd6
1e59b06bc7d5cbe7e52d030d5e0c3ea47926cc20
/klpmis/django_extensions/management/commands/sqlcreate.py
e4387dd3c7b5cf92dbfddd65d87d1789dc70e47c
[]
no_license
klpdotorg/KLP-MIS
70b965e90ed4b00de3d1f40d961d6077399ddba6
38fde6d51cbc1d07b3930782d93c9f646be50562
refs/heads/master
2016-09-06T05:40:36.627085
2015-06-18T13:59:02
2015-06-18T13:59:02
848,517
1
2
null
2013-08-06T12:13:50
2010-08-19T10:57:15
Python
UTF-8
Python
false
false
4,139
py
from optparse import make_option import sys import django from django.core.management.base import CommandError, BaseCommand from django.conf import settings class Command(BaseCommand): option_list = BaseCommand.option_list + ( make_option('-R', '--router', action='store', dest='router', default=None, help='Use this router-database other then defined in settings.py'), make_option('-D', '--drop', action='store_true', dest='drop', default=False, help='If given, includes commands to drop any existing user and database.'), ) help = """Generates the SQL to create your database for you, as specified in settings.py The envisioned use case is something like this: ./manage.py sqlcreate [--router=<routername>] | mysql -u <db_administrator> -p ./manage.py sqlcreate [--router=<routername>] | psql -U <db_administrator> -W""" requires_model_validation = False can_import_settings = True @staticmethod def set_db_settings(**options): if django.get_version() >= "1.2": router = options.get('router') if router is None: return False # retrieve this with the 'using' argument dbinfo = settings.DATABASES.get(router) settings.DATABASE_ENGINE = dbinfo.get('ENGINE').split('.')[-1] settings.DATABASE_USER = dbinfo.get('USER') settings.DATABASE_PASSWORD = dbinfo.get('PASSWORD') settings.DATABASE_NAME = dbinfo.get('NAME') settings.DATABASE_HOST = dbinfo.get('HOST') settings.DATABASE_PORT = dbinfo.get('PORT') return True else: # settings are set for django < 1.2 no modification needed return True def handle(self, *args, **options): if django.get_version() >= "1.2": got_db_settings = self.set_db_settings(**options) if not got_db_settings: raise CommandError("You are using Django %s which requires to specify the db-router.\nPlease specify the router by adding --router=<routername> to this command." % django.get_version()) #print "%s %s %s %s" % (settings.DATABASE_ENGINE, settings.DATABASE_NAME, settings.DATABASE_USER, settings.DATABASE_PASSWORD) engine = settings.DATABASE_ENGINE dbname = settings.DATABASE_NAME dbuser = settings.DATABASE_USER dbpass = settings.DATABASE_PASSWORD dbhost = settings.DATABASE_HOST # django settings file tells you that localhost should be specified by leaving # the DATABASE_HOST blank if not dbhost: dbhost = 'localhost' if engine == 'mysql': sys.stderr.write("""-- WARNING!: https://docs.djangoproject.com/en/dev/ref/databases/#collation-settings -- Please read this carefully! Collation will be set to utf8_bin to have case-sensitive data. """) print "CREATE DATABASE %s CHARACTER SET utf8 COLLATE utf8_bin;" % dbname print "GRANT ALL PRIVILEGES ON %s.* to '%s'@'%s' identified by '%s';" % ( dbname, dbuser, dbhost, dbpass ) elif engine == 'postgresql_psycopg2': if options.get('drop'): print "DROP DATABASE IF EXISTS %s;" % (dbname,) print "DROP USER IF EXISTS %s;" % (dbuser,) print "CREATE USER %s WITH ENCRYPTED PASSWORD '%s' CREATEDB;" % (dbuser, dbpass) print "CREATE DATABASE %s WITH ENCODING 'UTF-8' OWNER \"%s\";" % (dbname, dbuser) print "GRANT ALL PRIVILEGES ON DATABASE %s TO %s;" % (dbname, dbuser) elif engine == 'sqlite3': sys.stderr.write("-- manage.py syncdb will automatically create a sqlite3 database file.\n") else: # CREATE DATABASE is not SQL standard, but seems to be supported by most. sys.stderr.write("-- Don't know how to handle '%s' falling back to SQL.\n" % engine) print "CREATE DATABASE %s;" % dbname print "GRANT ALL PRIVILEGES ON DATABASE %s to %s" % (dbname, dbuser)
[ "basavaraj.hiremath@mahiti.org" ]
basavaraj.hiremath@mahiti.org
211c727e8d52656e27ff87503013df32b74cd429
bc54edd6c2aec23ccfe36011bae16eacc1598467
/simscale_sdk/models/flow_rate_mean_outlet_vbc.py
e896a0e17e908cfccdaca58f5a681e31f2fb9e87
[ "MIT" ]
permissive
SimScaleGmbH/simscale-python-sdk
4d9538d5efcadae718f12504fb2c7051bbe4b712
6fe410d676bf53df13c461cb0b3504278490a9bb
refs/heads/master
2023-08-17T03:30:50.891887
2023-08-14T08:09:36
2023-08-14T08:09:36
331,949,105
17
5
null
null
null
null
UTF-8
Python
false
false
4,305
py
# coding: utf-8 """ SimScale API The version of the OpenAPI document: 0.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from simscale_sdk.configuration import Configuration class FlowRateMeanOutletVBC(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'flow_rate': 'OneOfFlowRateMeanOutletVBCFlowRate' } attribute_map = { 'type': 'type', 'flow_rate': 'flowRate' } def __init__(self, type='FLOW_RATE_MEAN_OUTLET_VELOCITY', flow_rate=None, local_vars_configuration=None): # noqa: E501 """FlowRateMeanOutletVBC - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._type = None self._flow_rate = None self.discriminator = None self.type = type if flow_rate is not None: self.flow_rate = flow_rate @property def type(self): """Gets the type of this FlowRateMeanOutletVBC. # noqa: E501 Schema name: FlowRateMeanOutletVBC # noqa: E501 :return: The type of this FlowRateMeanOutletVBC. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this FlowRateMeanOutletVBC. Schema name: FlowRateMeanOutletVBC # noqa: E501 :param type: The type of this FlowRateMeanOutletVBC. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and type is None: # noqa: E501 raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 self._type = type @property def flow_rate(self): """Gets the flow_rate of this FlowRateMeanOutletVBC. # noqa: E501 :return: The flow_rate of this FlowRateMeanOutletVBC. # noqa: E501 :rtype: OneOfFlowRateMeanOutletVBCFlowRate """ return self._flow_rate @flow_rate.setter def flow_rate(self, flow_rate): """Sets the flow_rate of this FlowRateMeanOutletVBC. :param flow_rate: The flow_rate of this FlowRateMeanOutletVBC. # noqa: E501 :type: OneOfFlowRateMeanOutletVBCFlowRate """ self._flow_rate = flow_rate def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, FlowRateMeanOutletVBC): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, FlowRateMeanOutletVBC): return True return self.to_dict() != other.to_dict()
[ "simscale" ]
simscale
4101fd7aac1737d98b2dfafe6118696400bd4e4a
844e0cd4ffbe1ead05b844508276f66cc20953d5
/test/testconfigurationmanager.py
e9fae9d325da652711c99ddbfa3770ec19e87574
[]
no_license
Archanciel/cryptopricer
a256fa793bb1f2d65b5c032dd81a266ee5be79cc
00c0911fe1c25c1da635dbc9b26d45be608f0cc5
refs/heads/master
2022-06-29T13:13:22.435670
2022-05-11T20:37:43
2022-05-11T20:37:43
100,196,449
2
1
null
null
null
null
UTF-8
Python
false
false
5,083
py
import unittest import os, sys, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) from configurationmanager import ConfigurationManager class TestConfigurationManager(unittest.TestCase): def setUp(self): if os.name == 'posix': self.filePath = '/sdcard/cryptopricer_test.ini' else: self.filePath = 'c:\\temp\\cryptopricer_test.ini' def testConfigurationManagerInstanciation(self): self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') self.assertEqual(self.configMgr.appSize, 'Half') self.assertEqual(self.configMgr.histoListItemHeight, '90') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.appSize, 'Full') self.assertEqual(self.configMgr.histoListItemHeight, '35') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') def testConfigurationManagerInstanciationNoConfigFile(self): os.remove(self.filePath) self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') self.assertEqual(self.configMgr.appSize, 'Half') self.assertEqual(self.configMgr.histoListItemHeight, '90') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.appSize, 'Full') self.assertEqual(self.configMgr.histoListItemHeight, '35') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') def testConfigurationManagerInstanciationEmptyConfigFile(self): open(self.filePath, 'w').close() self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') self.assertEqual(self.configMgr.appSize, 'Half') self.assertEqual(self.configMgr.histoListItemHeight, '90') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.appSize, 'Full') self.assertEqual(self.configMgr.histoListItemHeight, '35') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') def testConfigurationManagerInstanciationOneMissingKey(self): #removing second line in config file with open(self.filePath, 'r') as configFile: lines = configFile.readlines() with open(self.filePath, 'w') as configFile: # first line contains [General] section name ! configFile.write(''.join(lines[0:1] + lines[2:])) self.configMgr = ConfigurationManager(self.filePath) self.assertEqual(self.configMgr.localTimeZone, 'Europe/Zurich') self.assertEqual(self.configMgr.dateTimeFormat, 'DD/MM/YY HH:mm') self.assertEqual(self.configMgr.dateOnlyFormat, 'DD/MM/YY') if os.name == 'posix': self.assertEqual(self.configMgr.dataPath, '/sdcard/CryptoPricerData') else: self.assertEqual(self.configMgr.dataPath, 'c:\\temp') self.assertEqual(self.configMgr.loadAtStartPathFilename, '') self.assertEqual(self.configMgr.histoListVisibleSize, '3') self.assertEqual(self.configMgr.appSizeHalfProportion, '0.62') self.assertEqual(self.configMgr.referenceCurrency, 'USD') if __name__ == '__main__': #unittest.main() tst = TestConfigurationManager() tst.setUp() tst.testConfigurationManagerInstanciationEmptyConfigFile()
[ "jp.schnyder@gmail.com" ]
jp.schnyder@gmail.com
5ff1be72bc5a23bce877142396a7bf84d88f7fd4
005d04d0dfab5996db7e6f5b4d4a5fa167e02bc3
/task2/src/app.py
ce099b12b0b98264905bc195fd43e35d86226cf3
[]
no_license
julianctni/imir-16-17
d37c5becb7ca50fced44f11066ad9a05da97467b
da36a21deaa78324e632d8016d8b01ebbdb03bad
refs/heads/master
2020-12-02T05:27:22.687795
2016-12-20T16:12:28
2016-12-20T16:12:28
71,782,732
0
0
null
null
null
null
UTF-8
Python
false
false
3,758
py
import os from tkinter import Frame, Tk, Label, Button, Canvas, filedialog, StringVar, BOTH, TOP, W, E, N, S, NW from PIL import Image, ImageTk from search import perform_search class Size: def __init__(self, width, height): self.width = width self.height = height class ImageView: def __init__(self, parent): self.frame = parent parent.columnconfigure(0, weight=1) parent.rowconfigure(0, weight=1) self.canvas = Canvas(parent, bd=0, highlightthickness=0) # Set dummy image when the image view is loaded self.image = Image.new("RGB", (500, 500), "gray") self.photo = ImageTk.PhotoImage(self.image) self.canvas.create_image(0, 0, image=self.photo, anchor=NW, tags="IMG") self.canvas.pack(side=TOP, fill=BOTH, expand=1) # Add listener that is called in case the window is resized parent.bind("<Configure>", self.resize) def resize(self, event): # Resize current image in the image canvas that it fits in the window and maintains its aspect ratio wpercent = (event.width / float(self.image.size[0])) hsize = int((float(self.image.size[1]) * float(wpercent))) size = (event.width, hsize) resized = self.image.resize(size, Image.ANTIALIAS) self.photo = ImageTk.PhotoImage(resized) # Delete old image from the canvas self.canvas.delete("IMG") # And add the resized image to the canvas self.canvas.create_image(0, 0, image=self.photo, anchor=NW, tags="IMG") def show_image(self, image_path): # Open selected image file self.image = Image.open(image_path) # Retrieve the current window size size = Size(self.frame.winfo_width(), self.frame.winfo_height()) # Resize image self.resize(size) class Example(Frame): def __init__(self, parent): Frame.__init__(self, parent, background="white") self.parent = parent # Create variable to track changes to the selected image id self.image_id = StringVar() self.image_view = None self.setup_ui() self.center_window() def center_window(self): w = 500 h = 500 sw = self.parent.winfo_screenwidth() sh = self.parent.winfo_screenheight() x = (sw - w) / 2 y = (sh - h) / 2 self.parent.geometry("%dx%d+%d+%d" % (w, h, x, y)) def setup_ui(self): self.parent.title("Find similar pictures") self.pack(fill=BOTH, expand=1) label = Label(self, text="Select an image file to find its most similar image") label.pack() file_dialog_button = Button(self, text="Open Image file", command=self.on_open, pady=15) file_dialog_button.pack() self.image_view = ImageView(self) image_id_label = Label(self, textvariable=self.image_id, pady=15) image_id_label.pack() def on_open(self): options = { 'defaultextension': '.jpg', 'filetypes': [('jpeg files', '.jpg')], 'initialdir': './PlantCLEF2016Test/' } file_path = filedialog.askopenfilename(**options) if file_path != "": # Split the file path to get the directory directory = os.path.split(file_path)[0] image_id = perform_search(file_path) image_name = ("%i.jpg" % image_id) image_path = os.path.join(directory, image_name) self.image_id.set("Image ID: %i" % image_id) self.image_view.show_image(image_path) else: self.image_id.set("") def main(): root = Tk() app = Example(root) root.mainloop() if __name__ == '__main__': main()
[ "finn@schlenk.biz" ]
finn@schlenk.biz
79e171b293a11af7c55dcfd304741e6a8dff7301
04e51f7266cdf0f7e6688c6efb93afb0759ed58b
/manage_warranties/admin.py
8a1238dfb81d177d4ba5681acb9136fb2bd3e751
[]
no_license
clibbon/ASI_Project
e1f976282ababecddb1b8e39a264ae7bda9722de
dbfa96597f7da6c291faa4023a80bc53f03446b3
refs/heads/master
2016-09-06T04:57:20.069451
2015-04-19T17:13:15
2015-04-19T17:13:15
31,902,683
0
0
null
null
null
null
UTF-8
Python
false
false
1,391
py
from django.contrib import admin from manage_warranties.models import (Customers, Products, ProductSellers, ProductModels,Importers,Warranties, MessageHistory) # Define field views class CustomerAdmin(admin.ModelAdmin): list_display = ('cid','first_name','last_name','mob_number','past_messages') fieldsets = [ ('Name', {'fields': ['first_name','last_name']}), ('Details', {'fields': ['mob_number','region','cust_test']}) ] class ProductModelAdmin(admin.ModelAdmin): list_display = ('model','mid', 'is_verified') class WarrantyAdmin(admin.ModelAdmin): list_display = ('cid','reg_date','exp_date', 'customer_name') list_filter = ['reg_date'] class MessageAdmin(admin.ModelAdmin): list_display = ('date_received', 'mob_number', 'msg_text') list_filter = ['date_received'] class ProductAdmin(admin.ModelAdmin): list_display = ('ser_num',) # Register your models here. admin.site.register(Customers, CustomerAdmin) admin.site.register(Products, ProductAdmin) admin.site.register(ProductSellers) admin.site.register(ProductModels, ProductModelAdmin) admin.site.register(Importers) admin.site.register(Warranties, WarrantyAdmin) admin.site.register(MessageHistory, MessageAdmin)
[ "alex.clibbon@gmail.com" ]
alex.clibbon@gmail.com
2608309d75b242e37c62b26375240c97a2840513
6ccd7e382c234839d729158740367fa3d0e73d76
/pc端/serialplot-master/cfgWindow.py
b5ab3ac23c5d5a43edff45d58e1e5fe30491df18
[]
no_license
mingfeidong/NUEDC
6b6c3d3311c34195ed9df649549a4047dbd2f6ce
35f8b741b8259deaf451321ca9dbceb332677949
refs/heads/master
2020-09-04T05:49:50.855154
2017-07-27T03:36:03
2017-07-27T13:00:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,842
py
''' ConfigFrame is a class that gets packed into the root window. Takes config settings from the user and passes them into the approrpate functions when the Go button is pressed ''' import sys if sys.version_info[0] < 3: #If we're executing with Python 2 import Tkinter as tk import tkMessageBox as messagebox import ttk import tkFileDialog as filedialog import tkColorChooser as colorchooser else: #Otherwise we're using Python 3 import tkinter as tk from tkinter import messagebox from tkinter import ttk from tkinter import filedialog from tkinter import colorchooser from graphWindow import * import serial.tools.list_ports import pprint from defaults import defaults import os class ConfigFrame(ttk.Frame): """ Main application Frame. Houses all the individual objects (classes) that make up the application """ def __init__(self, parent): ttk.Frame.__init__(self, parent) self.parent = parent self['padding'] = '4' self.TKvariables = {} #Read in the defaults for key in defaults: if key[0:5] == 'graph' or key.find('ylims') >= 0: self.TKvariables.update({key:[]}) for val in range(len(defaults[key])): self.TKvariables[key].append(tk.StringVar(value=defaults[key][val])) else: self.TKvariables.update({key:tk.StringVar(value=defaults[key])}) num_vars = int(self.TKvariables['datalength'].get()) self.datalist = list(range(1,num_vars+1)) #Create a combobox containing the available COM ports comlst = self.get_comlst() self.COMbox = ttk.Labelframe(self, text='COM port to source data from') self.COMcombo = ttk.Combobox(self.COMbox, width=60, values=comlst, \ state='readonly', textvariable=self.TKvariables['COMport'],\ postcommand=self.updateCOMbox ) self.COMbox.grid(row = 0, column = 0, columnspan = 5) self.COMcombo.grid() #Create an "about" text box ABOUTframe = ttk.LabelFrame(self, text = 'What it does') ABOUTlabel = ttk.Label(ABOUTframe, text= \ 'Graphs data coming in over the serial port in a comma ' 'seperated variable string. Hover over each option to get ' 'a description of what the setting does', wraplength = 140) ABOUTframe.grid(row=1, column = 0, rowspan = 2, columnspan = 2, \ sticky = 'nw, se', padx= 3, pady = 5) CreateToolTip(ABOUTlabel,\ "The default values can be changed by opening defaults.py with a text " "editor and changing the values") ABOUTlabel.pack() #Create a Graph! and About buttons GObut = ttk.Button(self, text='Go!', command=self.goButton) GObut.grid(row=6, column = 0, sticky = 'we') ABOUTbut = ttk.Button(self, text='About', command=self.aboutButton) ABOUTbut.grid(row = 6, column = 1, sticky = 'we') #Create an instance of the class for the config panel notebook = ConfigNotebook(self, self) #Update the state of the graphs based on the defaults and grid notebook.updateGraphs() notebook.grid(row=1, column=3, columnspan=2, rowspan=6, sticky = 'nsew', \ padx = 5, pady = 5) #Bind the enter key to start the program self.parent.bind("<Return>", lambda event:self.goButton()) def getfilename(self): if self.TKvariables['log2file'].get() == 'on': #Only pop up with the dialog when the box is checked options = {} options['filetypes'] = [('Comma Seperated Variable', '.csv')] options['initialfile'] = 'GraphLog.csv' self.TKvariables['filename'].set(filedialog.asksaveasfilename(**options)) def goButton(self): self.parent.variables = {} for key in self.TKvariables: if key[0:5] == 'graph' or key.find('ylims') >= 0: self.parent.variables.update({key:[]}) for val in range(len(self.TKvariables[key])): self.parent.variables[key].append(self.TKvariables[key][val].get()) else: self.parent.variables.update({key:self.TKvariables[key].get()}) if self.parent.variables['COMport'] == '': messagebox.showerror(message='Select a COM port!') else: try: #Try to open the COM port first to make sure it's available if os.name == 'nt': s = serial.Serial(port=self.parent.variables['COMport'][0:4]) else: first_space = self.parent.variables['COMport'].index(' ') # Parameters necessary due to https://github.com/pyserial/pyserial/issues/59 s = serial.Serial(port=self.parent.variables['COMport'][0:first_space], rtscts=True, dsrdtr=True) s.close() GraphTopLevel(self.parent) except Exception as e: #Otherwise the port isn't available, so error out messagebox.showerror(message=('COM port not available: ', e)) def aboutButton(self): toplvl = tk.Toplevel() toplvl.title('About') txt = ttk.Label(toplvl, wraplength=450, text= \ "This program was written by Victor Zaccardo as a way to familiarize " "myself with Python, and also so I don't have to try and read a serial" " terminal every time I want to visualize data coming out of a " "microcontroller. It's written in Python 2.7, using tkinter, " "matplotlib, and pyserial. \n \n I hope it can be helpful with your " "embedded projects. If you have any questions or comments, feel free " "to contact me at victorzaccardo@gmail.com. Happy plotting!") txt.grid(row=0, column=0, padx=5, pady=5) closeButton = ttk.Button(toplvl, text='Close', command=toplvl.destroy) closeButton.grid(row=1, column=0, pady = 3) toplvl.update() scrwidth = toplvl.winfo_screenwidth() scrheight = toplvl.winfo_screenheight() winwidth = toplvl.winfo_reqwidth() winheight = toplvl.winfo_reqheight() winposx = int(round(scrwidth/2 - winwidth/2)) winposy = int(round(scrheight/2 - winheight/2)) toplvl.geometry('{}x{}+{}+{}'.format(winwidth, winheight, winposx, winposy)) def get_comlst(self): """Returns a list of available COM ports with description""" comports = serial.tools.list_ports.comports() comlst = [] for item in comports: name = item[0] if len(item[1]) > 50: description = item[1][0:44] + "..." else: description = item[1] comlst.append(str(name + " - " + description)) return sorted(comlst) def updateCOMbox(self): self.COMcombo['values'] = self.get_comlst() class ConfigNotebook(ttk.Notebook): """ A notebook that houses all the configuration for the program. Calls classes that configure each tab individually and places them in the notebook. Note on the controller - it's the top level of the application (an instance of MainApplication). It will have a dictionary that houses all the TKvariables, makes accessing them easier. """ def __init__(self, parent, controller): ttk.Notebook.__init__(self, parent) self.controller = controller datalist = list(range(1,7)) datalist.insert(0,'-') #Create the pages serialcfgframe = SerialTab(self, self.controller) datacfgframe = DataTab(self, self.controller) graph1frame = GraphTab(self, self.controller, 1) graph2frame = GraphTab(self, self.controller, 2) graph3frame = GraphTab(self, self.controller, 3) #Add them to the notebook self.add(datacfgframe, text='Data') self.add(serialcfgframe, text='Serial') self.add(graph1frame, text='Graph 1') self.add(graph2frame, text='Graph 2') self.add(graph3frame, text='Graph 3') def updateGraphs(self, *args, **kwargs): num_graphs = int(self.controller.TKvariables['numgraphs'].get()) #First, disable all the graphs for i in range(2, 5): self.tab(i, state='disabled') #Now, re-enable based on how many graphs are selected if num_graphs >= 1: self.tab(2, state='normal') if num_graphs >= 2: self.tab(3, state='normal') if num_graphs >= 3: self.tab(4, state='normal') class SerialTab(ttk.Frame): def __init__(self, parent, controller): ttk.Frame.__init__(self, parent) self.controller = controller self['padding'] = [0, 7, 0, 0] #Populate the serial configuration tab self.baudlist = (4800, 9600, 19200, 38400, 57600, 115200, 230400, 921600) self.databitslist = (7, 8) self.stopbitslist = (1, 2) self.paritylist = ('None', 'Even', 'Odd', 'Mark', 'Space') baudlabel = ttk.Label(self, text='Baudrate') baudbox = ttk.Combobox(self, width=8, values=self.baudlist, textvariable=self.controller.TKvariables['baud']) datalabel = ttk.Label(self, text='Data bits') databox = ttk.Combobox(self, width=8, values = self.databitslist, \ textvariable=self.controller.TKvariables['databits']) stopbitslabel = ttk.Label(self, text='Stop bits') stopbitsbox = ttk.Combobox(self, width=8, values=self.stopbitslist, \ textvariable=self.controller.TKvariables['stopbits']) paritylabel = ttk.Label(self, text='Parity') paritybox = ttk.Combobox(self, width=8, values=self.paritylist, \ textvariable=self.controller.TKvariables['parity']) #ttk.Label(self, text=' ').grid(row=1, column=0) baudlabel.grid(row=1, column = 1, padx=5) baudbox.grid(row=1, column=2, padx=5) datalabel.grid(row=2, column = 1, padx=5) databox.grid(row=2, column=2, padx=5) stopbitslabel.grid(row=3, column = 1, padx=5) stopbitsbox.grid(row=3, column=2, padx=5) paritylabel.grid(row=4, column = 1, padx=5) paritybox.grid(row=4, column=2, padx=5) class DataTab(ttk.Frame): """ Houses configuration for the incoming data """ def __init__(self, parent, controller): ttk.Frame.__init__(self, parent) self['padding'] = 4 self.parent = parent self.controller = controller self.datalist = list(range(1,11)) self.terminatorlist = ['\\n', ';', '\\n;'] self.numgraphslist = list(range(1,4)) #How long is the data coming in? datalabel = ttk.Label(self, text='Variables per line') databox = ttk.Combobox(self, width=8, values = self.datalist, \ textvariable=self.controller.TKvariables['datalength']) CreateToolTip(datalabel,\ "The numbder of variables per line. " "A line is a series of variables seperated by a comma, and terminated by a \\n character. " "For example, the line: data1, data2, data3\\n would have 3 variables. " "All data recieved must be a string, no binary numbers allowed") maxlabel = ttk.Label(self, text='Max Message Length') maxbox = ttk.Entry(self, width=11, \ textvariable=self.controller.TKvariables['maxlength']) CreateToolTip(maxlabel, \ 'The maximum length of one line (in characters). If anything ' 'be conservative with this number, err on the high side. The program reads ' 'lines from the serial buffer until it is below this number of characters, to avoid ' 'a condition where it tries to read a line out of the serial buffer and a \\n ' "can't be found" ) numgraphslabel = ttk.Label(self, text='Number of graphs') numgraphsbox = ttk.Combobox(self, width=8, values=self.numgraphslist, \ textvariable=self.controller.TKvariables['numgraphs']) numgraphsbox.bind('<<ComboboxSelected>>', self.parent.updateGraphs) CreateToolTip(numgraphslabel,\ "The number of graphs to plot data on") maxcheck = ttk.Checkbutton(self, text='Start Maximized?', \ variable=self.controller.TKvariables['startmax'], \ onvalue='yes', offvalue='no') CreateToolTip(maxcheck, \ "When the graph is started, the window will be maximized.") log2filecheck = ttk.Checkbutton(self, text='Log to file?',\ variable=self.controller.TKvariables['log2file'], onvalue='on', \ offvalue='off', command=self.controller.getfilename) CreateToolTip(log2filecheck, \ "If checked, all data recieved will also be logged to a CSV file") AObutton = ttk.Button(self, text='Advanced Options', command=self.AObutton) datalabel.grid(row=1, column = 1, sticky='w') databox.grid(row=1, column = 2, sticky='w', padx=7) maxlabel.grid(row=2, column=1, sticky='w') maxbox.grid(row=2, column=2, sticky='w', padx=7) numgraphslabel.grid(row=3, column=1, sticky='w') numgraphsbox.grid(row=3, column=2, sticky='w', padx=7) maxcheck.grid(row=4, column=1, columnspan=2, sticky='w') log2filecheck.grid(row=5, column=1, columnspan=2, sticky='w') AObutton.grid(row=6, column=1, columnspan=2, sticky='ew') def AObutton(self): toplvl = tk.Toplevel() toplvl.withdraw() frame = ttk.Frame(toplvl, padding=[4, 4, 4, 4]) boxwidth = 8 boxpadx = 5 TKvars = self.controller.TKvariables #Data Depth datalabel = ttk.Label(frame, text='Data History Depth') databox = ttk.Entry(frame, width=boxwidth, textvariable=TKvars['datadepth']) datapostlbl = ttk.Label(frame, text='Lines') datalabel.grid(row=0, column=0, sticky='e') databox.grid(row=0, column=1, sticky='ew', padx=boxpadx) datapostlbl.grid(row=0, column=2, sticky='w') CreateToolTip(datalabel, \ 'How many lines of data to plot on the x axis. More = longer history ' 'displayed on the screen') #Refresh Frequency refreshlabel = ttk.Label(frame, text='Refresh Frequency') refreshbox = ttk.Entry(frame, width=boxwidth, textvariable=TKvars['refreshfreq']) refreshpostlbl = ttk.Label(frame, text='Hz') refreshlabel.grid(row=1, column=0, sticky='e') refreshbox.grid(row=1, column=1, sticky='ew', padx=boxpadx) refreshpostlbl.grid(row=1, column=2, sticky='w') CreateToolTip(refreshlabel, \ 'How often to redraw the screen. Any value higher than what your PC ' 'can do will just max out the process. A reasonable value to start ' 'with is 20') #Data Width widthlabel = ttk.Label(frame, text='Statusbar Data Width') widthbox = ttk.Entry(frame, width=boxwidth, textvariable=TKvars['stsbrwdth']) widthpostlbl = ttk.Label(frame, text='Chars') widthlabel.grid(row=2, column=0, sticky='e') widthbox.grid(row=2, column=1, sticky='ew', padx=boxpadx) widthpostlbl.grid(row=2, column=2, sticky='w') CreateToolTip(widthlabel, \ 'This is for keeping the "last line recieved" value in the statusbar' 'a constant width. If you find that the statusbar is jumping around, ' 'increase this value') #Set as defaults defaultbutton = ttk.Button(frame, text='Set selections as defaults', \ command=self.setDefaults) defaultbutton.grid(row=3, column=0, columnspan=1, pady=1, sticky='ww') CreateToolTip(defaultbutton, \ 'Set ALL the current settings as the defaults') #OK button OKbutton = ttk.Button(frame, text='OK', width=10, command=toplvl.destroy) OKbutton.grid(row=3, column=1, columnspan=2, pady=1, sticky='e') frame.grid() toplvl.update() scrwidth = toplvl.winfo_screenwidth() scrheight = toplvl.winfo_screenheight() winwidth = toplvl.winfo_reqwidth() winheight = toplvl.winfo_reqheight() winposx = int(round(scrwidth/2 - winwidth/2)) winposy = int(round(scrheight/2 - winheight/2)) toplvl.geometry('{}x{}+{}+{}'.format(winwidth, winheight, winposx, winposy)) toplvl.deiconify() def setDefaults(self): defaultstmp = {} TKvars = self.controller.TKvariables for key in TKvars: if key[0:5] == 'graph' or key.find('ylims') >= 0: defaultstmp.update({key:[]}) for val in range(len(TKvars[key])): try: defaultstmp[key].append(int(TKvars[key][val].get())) except: defaultstmp[key].append(TKvars[key][val].get()) elif key == 'filename': #There is a bug with pprint that puts a u in front of the #filename, so convert it to a string first defaultstmp.update({key:str(TKvars[key].get())}) else: try: defaultstmp.update({key:int(TKvars[key].get())}) except: defaultstmp.update({key:TKvars[key].get()}) fileobj = open('defaults.py', 'w') header = \ "'''\n" \ "Be careful when modifying these values - if they aren't set correctly, \n" \ "the program won't run. As a precaution if you modify it, it's a good idea to \n" \ "save a copy first. serialplot just looks for a file in the same directory \n" \ "called 'defaults.py'\n \n" \ "The format for graphXlineX properties is:\n"\ "[datalabel,\ndatapos,\nlinecolor,\ndashed,\nmultiplier,\noffset]\n"\ "'''\n\n" fileobj.write(header) fileobj.write('defaults = ' + pprint.pformat(defaultstmp) + '\n') fileobj.close() class GraphTab(ttk.Frame): def __init__(self, parent, controller, graphnum): ttk.Frame.__init__(self, parent) self.controller = controller self['padding'] = [4, 4, 0, 0] key1 = 'graph' + str(graphnum) + 'line1' key2 = 'graph' + str(graphnum) + 'line2' key3 = 'graph' + str(graphnum) + 'line3' data1 = self.controller.TKvariables[key1][1] color1 = self.controller.TKvariables[key1][2] data2 = self.controller.TKvariables[key2][1] color2 = self.controller.TKvariables[key2][2] data3 = self.controller.TKvariables[key3][1] color3 = self.controller.TKvariables[key3][2] #Create 3 comboboxes to select up to 3 datas to plot data1label = ttk.Label(self, text='Data 1 position in string') self.data1box = ttk.Combobox(self, width=3, values=self.controller.datalist, \ textvariable=data1, postcommand=self.updatecblist) data1color = tk.Button(self, bg=color1.get(), width=1,\ command=lambda:self.setcolor(data1color,1,1,color1)) CreateToolTip(data1label,\ "The position of the first value to plot in the incoming line. It is one indexed, so " "the first value is in position 1") data2label = ttk.Label(self, text='Data 2 position in string') self.data2box = ttk.Combobox(self, width=3, values=self.controller.datalist, \ textvariable=data2, postcommand=self.updatecblist) data2color = tk.Button(self, bg=color2.get(), width=1,\ command=lambda:self.setcolor(data2color,1,2,color2)) CreateToolTip(data2label,\ "The position of the second value in the incoming line. It is one indexed, so " "the first value is in position 1") data3label = ttk.Label(self, text='Data 3 position in string') self.data3box = ttk.Combobox(self, width=3, values=self.controller.datalist, \ textvariable=data3, postcommand=self.updatecblist) data3color = tk.Button(self, bg=color3.get(), width=1,\ command=lambda:self.setcolor(data3color,1,3,color3)) CreateToolTip(data3label,\ "The position of the third value in the incoming line. It is one indexed, so " "the first value is in position 1") #Create an advanced options button AObutton = ttk.Button(self, text='Advanced Options', \ command=lambda:self.AObutton(graphnum)) data1label.grid(row=1, column = 1, columnspan=3, sticky='w', pady = 3) self.data1box.grid(row=1, column=4, sticky='w', padx = 5) data1color.grid(row=1, column=5, padx=2) data2label.grid(row=2, column = 1, columnspan=3, sticky='w', pady = 3) self.data2box.grid(row=2, column=4, sticky='w', padx = 5) data2color.grid(row=2, column=5) data3label.grid(row=3, column=1, columnspan=3, sticky='w', pady = 3) self.data3box.grid(row=3, column=4, sticky='w', padx = 5) data3color.grid(row=3, column=5) #Ymin\Ymax key = 'g'+str(graphnum)+'ylims' ttk.Label(self, text='Ymin').grid(row=4, column=1, sticky='w') ttk.Entry(self, width=5, textvariable=self.controller.TKvariables[key][0] \ ).grid(row=4, column=2, sticky='ew') ttk.Label(self, text='Ymax').grid(row=4, column=3, sticky='e', padx=3) ttk.Entry(self, width=6, textvariable=self.controller.TKvariables[key][1] \ ).grid(row=4, column=4, sticky='ew', padx=5) AObutton.grid(row=5, column=1, columnspan=5, sticky='nsew', pady=6) def updatecblist(self): num_vars = int(self.controller.TKvariables['datalength'].get()) self.controller.datalist = list(range(1,num_vars+1)) self.controller.datalist.insert(0, '-') self.data1box['values'] = self.controller.datalist self.data2box['values'] = self.controller.datalist self.data3box['values'] = self.controller.datalist def setcolor(self, button, graph, line, initialcolor): color = colorchooser.askcolor(initialcolor=initialcolor.get()) #If the user hits cancel, the dialog returns a "Nonetype" object #which causes issues, so check for it: if isinstance(color[1], str): button['bg'] = color[1] key = 'graph'+str(graph)+'line'+str(line) self.controller.TKvariables[key][2].set(value=color[1]) def AObutton(self, graphnum): toplvl = tk.Toplevel() toplvl.withdraw() frame = ttk.Frame(toplvl, padding=[2, 3, 3, 0]) boxwidth = 15 #Create the labels lbl = ttk.Label(frame, text='Label') CreateToolTip(lbl, \ 'This text will show up in the legend and the log file') lbl.grid(row=0, column=1) mult = ttk.Label(frame, text='Multiplier') CreateToolTip(mult, \ 'Multiply by this value') mult.grid(row=0, column=2) offset = ttk.Label(frame, text='Offset') CreateToolTip(offset, \ 'Add this value. Happens AFTER the data is multiplied') offset.grid(row=0, column=3) dashed = ttk.Label(frame, text='Dashed') CreateToolTip(dashed, \ 'If checked, the line will be dashed') dashed.grid(row=0, column=4) ttk.Label(frame, text='Line 1').grid(row=1, column=0, padx=2) ttk.Label(frame, text='Line 2').grid(row=2, column=0, padx=2) ttk.Label(frame, text='Line 3').grid(row=3, column=0, padx=2) for row in range(1,3+1): key = 'graph'+str(graphnum)+'line'+str(row) #Label ttk.Entry(frame, width=boxwidth, \ textvariable=self.controller.TKvariables[key][0]).grid(row=row, column=1) #Multiplier ttk.Entry(frame, width=boxwidth, \ textvariable=self.controller.TKvariables[key][4]).grid(row=row, column=2) #Offset ttk.Entry(frame, width=boxwidth, \ textvariable=self.controller.TKvariables[key][5]).grid(row=row, column=3) #Dashed ttk.Checkbutton(frame, onvalue='--', offvalue='-', \ variable=self.controller.TKvariables[key][3]).grid(row=row, column=4) ttk.Button(frame, text='OK', command=toplvl.destroy).grid(row=5,\ column=3, columnspan=2, sticky='ew', pady=4) #Center the window frame.grid() toplvl.update() scrwidth = toplvl.winfo_screenwidth() scrheight = toplvl.winfo_screenheight() winwidth = toplvl.winfo_reqwidth() winheight = toplvl.winfo_reqheight() winposx = int(round(scrwidth/2 - winwidth/2)) winposy = int(round(scrheight/2 - winheight/2)) toplvl.geometry('{}x{}+{}+{}'.format(winwidth, winheight, winposx, winposy)) toplvl.deiconify() class CreateToolTip(object): """ create a tooltip for a given widget """ def __init__(self, widget, text='widget info'): self.waittime = 500 #miliseconds self.wraplength = 180 #pixels self.widget = widget self.text = text self.widget.bind("<Enter>", self.enter) self.widget.bind("<Leave>", self.leave) self.widget.bind("<ButtonPress>", self.leave) self.id = None self.tw = None def enter(self, event=None): self.schedule() def leave(self, event=None): self.unschedule() self.hidetip() def schedule(self): self.unschedule() self.id = self.widget.after(self.waittime, self.showtip) def unschedule(self): id = self.id self.id = None if id: self.widget.after_cancel(id) def showtip(self, event=None): x = y = 0 x, y, cx, cy = self.widget.bbox("insert") x += self.widget.winfo_rootx() + 25 y += self.widget.winfo_rooty() + 20 # creates a toplevel window self.tw = tk.Toplevel(self.widget) # Leaves only the label and removes the app window self.tw.wm_overrideredirect(True) self.tw.wm_geometry("+%d+%d" % (x, y)) label = ttk.Label(self.tw, text=self.text, justify='left', background="#ffffff", relief='solid', borderwidth=1, wraplength = self.wraplength) label.pack(ipadx=1) def hidetip(self): tw = self.tw self.tw = None if tw: tw.destroy() #If this script is executed, just run the main script if __name__ == '__main__': os.system("serialplot.py")
[ "grngrngrngrn@163.com" ]
grngrngrngrn@163.com
3d7a692985e73617ae07c6327e87e0e7f1fba9f7
6303391d47ed92705d9a390136e52173720cdfaf
/djangogirls/bin/django-admin.py
2f652ae37aa0a0771b1dc3d4026ce9bbffda36c4
[]
no_license
GloriaS18/my-first-blog
dbdb49c2c9bd48917395daa14f82795eac94572b
661940a891106a46731736e27e84e634c7fae65d
refs/heads/master
2021-01-15T14:58:44.064901
2016-09-17T20:15:27
2016-09-17T20:15:27
68,476,120
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
#!/home/ubuntu/workspace/django_girls/djangogirls/bin/python3.5 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "gloriasuriel@hotmail.com" ]
gloriasuriel@hotmail.com
7e50f5c46098e16de5b7cfc59d1af7492507b124
e0c2b6a86bb025580ccb450c80039d0db3087e7d
/django.wsgi
1b652c93667fc9e4aa2b98ee0a381606bda505ab
[]
no_license
yeminghua/gelange
332eb18406d67995452a7613c256f2b1e506f974
d026966bdbb31912893d80f7bd69ffc98a6c3f18
refs/heads/master
2016-09-06T18:34:05.048296
2014-10-06T02:25:26
2014-10-06T02:25:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
530
wsgi
import os, sys #Calculate the path based on the location of the WSGI script. apache_configuration= os.path.dirname(__file__) project = os.path.dirname(apache_configuration) workspace = os.path.dirname(project) # sys.stdout = sys.stderr sys.path.append(workspace) print workspace,"(----------------------------------------------------------)" sys.path.append(workspace + "/mysite/gelange/") os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' import django.core.handlers.wsgi application = django.core.handlers.wsgi.WSGIHandler()
[ "2523357239@qq.com" ]
2523357239@qq.com
453574190afbadf01fad742c24929e94bf313b5f
baed2c2da1f776c0968d3cacd2fa45bdbe5482d6
/S4cam/groupedCameras/TMP/legacy_designs/TMP_baseline_rev_multicam_test3_elliptical_stop_leaders_8_39/elliptical_aperture/3_mk_merit_func_align_prism_and_set_margin.py
e83b329923c4042e2689350f76cda65679e0d9ef
[]
no_license
patogallardo/zemax_tools
5ae2fe9a1e8b032684b8cf57457ee4f3239d9141
90d309c2f96c94469963eb905844d76fa2137bf9
refs/heads/master
2023-01-08T22:52:16.865852
2022-12-20T21:36:28
2022-12-20T21:36:28
234,634,525
7
3
null
null
null
null
UTF-8
Python
false
false
8,451
py
import zmx_api import zmx # noqa import numpy as np import matplotlib.pyplot as plt import pandas as pd from progressbar import progressbar import os XRADIUS = 2500 YRADIUS = 2747 TARGET_KEEPOUT_RADIUS_MM = 150.0 def eval_distance_to_rim(max_rs, MFE, surfnum): qsum_rownums = [] radius_rownums = [] MFE.AddOperand() for j_field in range(len(max_rs)): op_x = MFE.AddOperand() rownum_x = op_x.OperandNumber op_x.ChangeType(REAX) op_x.GetOperandCell(2).IntegerValue = surfnum op_x.GetOperandCell(4).DoubleValue = max_rs.hx.values[j_field] # Hx op_x.GetOperandCell(5).DoubleValue = max_rs.hy.values[j_field] # Hy op_x.GetOperandCell(6).DoubleValue = max_rs.px.values[j_field] # Px op_x.GetOperandCell(7).DoubleValue = max_rs.py.values[j_field] # Py op_x.Weight = 0.0 op_y = MFE.AddOperand() rownum_y = op_y.OperandNumber op_y.ChangeType(REAY) op_y.GetOperandCell(2).IntegerValue = surfnum op_y.GetOperandCell(4).DoubleValue = max_rs.hx.values[j_field] # Hx op_y.GetOperandCell(5).DoubleValue = max_rs.hy.values[j_field] # Hy op_y.GetOperandCell(6).DoubleValue = max_rs.px.values[j_field] # Px op_y.GetOperandCell(7).DoubleValue = max_rs.py.values[j_field] # Py op_y.Weight = 0.0 op_qsum = MFE.AddOperand() op_qsum.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.QSUM) op_qsum.GetOperandCell(2).IntegerValue = rownum_x op_qsum.GetOperandCell(3).IntegerValue = rownum_y op_qsum.Weight = 0.0 MFE.CalculateMeritFunction() y = op_y.Value x = op_x.Value angle = np.arctan2(y, x) r = np.sqrt((XRADIUS*np.cos(angle))**2 + (YRADIUS*np.sin(angle))**2) op_rim = MFE.AddOperand() op_rim.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.CONS) op_rim.Target = r radius_rownums.append(op_rim.OperandNumber) qsum_rownums.append(op_qsum.OperandNumber) for j in range(len(qsum_rownums)): op_diff = MFE.AddOperand() if j == 0: first_diff_rownum = op_diff.OperandNumber if j == len(qsum_rownums) - 1: last_diff_rownum = op_diff.OperandNumber op_diff.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.DIFF) op_diff.GetOperandCell(2).IntegerValue = radius_rownums[j] op_diff.GetOperandCell(3).IntegerValue = qsum_rownums[j] op_diff.Weight = 0.0 op_equa = MFE.AddOperand() op_equa.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.EQUA) op_equa.GetOperandCell(2).IntegerValue = first_diff_rownum op_equa.GetOperandCell(3).IntegerValue = last_diff_rownum op_equa.Weight = 1.0e-4 op_min = MFE.AddOperand() op_min.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.MINN) op_min.GetOperandCell(2).IntegerValue = first_diff_rownum op_min.GetOperandCell(3).IntegerValue = last_diff_rownum op_min.Weight = 1.0 op_min.Target = TARGET_KEEPOUT_RADIUS_MM op_opgt = MFE.AddOperand() op_opgt.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.OPGT) op_opgt.Target = 140 op_opgt.Weight = 1e12 op_opgt.GetOperandCell(2).IntegerValue = op_min.OperandNumber op_oplt = MFE.AddOperand() op_oplt.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.OPLT) op_oplt.Target = 1200. op_oplt.Weight = 1e12 op_oplt.GetOperandCell(2).IntegerValue = op_min.OperandNumber def find_max_radius_fields(df, x_mean, y_mean): max_rs = [] gs = df.groupby(['px', 'py']) for g in gs: r = np.sqrt((x_mean - g[1].x)**2 + (y_mean-g[1].y)**2) ind = r.idxmax() max_rs.append(g[1].loc[ind]) max_rs = pd.DataFrame(max_rs) return max_rs def plot_rim(active_conf, df, max_rs): fname_plotout = os.path.join(MF_DIROUT, "footprint_rim_conf%02i.png" % active_conf) # noqa plt.gca().set_aspect('equal') plt.scatter(df.x, df.y, marker='.') plt.scatter(max_rs.x, max_rs.y, marker='.') plt.title("configuration number: %i" % active_conf) plt.xlim([-3000, 3000]) plt.savefig(fname_plotout) plt.close() def eval_rim_centroid(max_rs, MFE, surfnum, REAXORY): for j_field in range(len(max_rs)): op = MFE.AddOperand() if j_field == 0: row_start = op.OperandNumber if j_field == len(max_rs) - 1: row_end = op.OperandNumber op.ChangeType(REAXORY) op.GetOperandCell(2).IntegerValue = surfnum op.GetOperandCell(4).DoubleValue = max_rs.hx.values[j_field] # Hx op.GetOperandCell(5).DoubleValue = max_rs.hy.values[j_field] # Hy op.GetOperandCell(6).DoubleValue = max_rs.px.values[j_field] # Px op.GetOperandCell(7).DoubleValue = max_rs.py.values[j_field] # Py op.Weight = 0.0 op = MFE.AddOperand() op.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.OSUM) op.GetOperandCell(2).IntegerValue = row_start op.GetOperandCell(3).IntegerValue = row_end op.Weight = 10.0 MKPLOT = True RUNOPTIMIZER = False MK_MERITFUNCTIONS = True mce_rows_to_optimize = [19, 20] TheSystem, ZOSAPI, ZOSAPI_NetHelper = zmx_api.connect_zmx_interactive() MFE = TheSystem.MFE MCE = TheSystem.MCE REAX = ZOSAPI.Editors.MFE.MeritOperandType.REAX REAY = ZOSAPI.Editors.MFE.MeritOperandType.REAY surfnum = 44 wavenum = 1 t = np.linspace(0, 2*np.pi, 32)[:-1] rs = np.linspace(0, 1, 4)[:-1] Pxs = np.cos(t) Pys = np.sin(t) Hxs = np.concatenate([np.cos(t) * r for r in rs]) Hys = np.concatenate([np.sin(t) * r for r in rs]) MF_DIROUT = './center_pri_footprint/' if not os.path.exists(MF_DIROUT): os.mkdir(MF_DIROUT) if MK_MERITFUNCTIONS: for active_conf in progressbar(range(1, 86)): # MFE.GetOperandAt(1).GetOperandCell(2).IntegerValue = 1 MCE.SetCurrentConfiguration(active_conf) px_out, py_out, hx_out, hy_out, x, y = [], [], [], [], [], [] for (Hx, Hy) in zip(Hxs, Hys): for (Px, Py) in zip(Pxs, Pys): valx = MFE.GetOperandValue(REAX, surfnum, wavenum, Hx, Hy, Px, Py, 0, 0) valy = MFE.GetOperandValue(REAY, surfnum, wavenum, Hx, Hy, Px, Py, 0, 0) px_out.append(Px) py_out.append(Py) hx_out.append(Hx) hy_out.append(Hy) x.append(valx) y.append(valy) stopval = MFE.GetOperandValue(REAX, 6, 1, 0, 0, 1, 0, 0, 0) df = pd.DataFrame({'hx': hx_out, 'hy': hy_out, 'px': px_out, 'py': py_out, 'x': x, 'y': y}) x_mean, y_mean = df.x.mean(), df.y.mean() max_rs = find_max_radius_fields(df, x_mean, y_mean) x_mean, y_mean = max_rs.x.mean(), max_rs.y.mean() max_rs = find_max_radius_fields(df, x_mean, y_mean) if MKPLOT: plot_rim(active_conf, df, max_rs) # now clear merit function and write up a new one MFE.RemoveOperandsAt(1, MFE.NumberOfOperands) MFE.AddOperand() MFE.GetOperandAt(1).GetOperandCell(2).IntegerValue = active_conf MFE.AddOperand() op_cvig = MFE.AddOperand() op_svig = MFE.AddOperand() op_cvig.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.CVIG) op_svig.ChangeType(ZOSAPI.Editors.MFE.MeritOperandType.SVIG) op_svig.GetOperandCell(2).IntegerValue = 2 eval_rim_centroid(max_rs, MFE, surfnum, REAX) eval_rim_centroid(max_rs, MFE, surfnum, REAY) eval_distance_to_rim(max_rs, MFE, surfnum) mf_fnameout = os.path.abspath(os.path.join(MF_DIROUT, "MF_conf%02i.MF" % active_conf)) # noqa MFE.SaveMeritFunction(mf_fnameout) if RUNOPTIMIZER: for active_conf in progressbar(range(1, 86)): mf_fnameout = os.path.abspath(os.path.join(MF_DIROUT, "MF_conf%02i.MF" % active_conf)) MFE.LoadMeritFunction(mf_fnameout) TheSystem.Tools.RemoveAllVariables() zmx.set_variables_or_const(mce_rows_to_optimize, active_conf, MCE, ZOSAPI, vars=True) zmx.zemax_optimize(TheSystem, ZOSAPI)
[ "26889221+patogallardo@users.noreply.github.com" ]
26889221+patogallardo@users.noreply.github.com
7c250db6b4b45846c7ccc8b7a8c83c3314752242
edee2739b7f1500fa3d877b56ed1658c0e49febb
/tracker/urls.py
ebb01a017aa8a5889626924fc1e4239dcd5150dd
[]
no_license
SaurabhKumarVerma/covid__tracker
b1752686da9b5a3848d5a1f5b2f4ae91620c60a3
7b06854bb61daad61b30e2e3411c84d60ae480a1
refs/heads/master
2022-11-26T23:55:51.141376
2020-08-02T15:07:05
2020-08-02T15:07:05
281,354,073
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
"""covid__tracker URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from . import views urlpatterns = [ path('', views.home,name='home'), path('india', views.india, name= 'india'), ]
[ "Saurav88871kumar@hotmail.com" ]
Saurav88871kumar@hotmail.com
79ffe5d130fb052429b3fd502d82e0063444a616
3145d0d178cd2108c34f15528d21cdb3cc82e12b
/nmaptools/xmlclasses/host.py
8a3b95454b6df6255b4e6130132637019c8b323e
[]
no_license
craig-stevenson/nmaptools
b3e51146a7081769c4b42280784a9daac6aadfa0
0555cc855085557cfd2423df9ad4ab4ba4fe4ddc
refs/heads/master
2021-01-18T05:14:44.855940
2016-12-07T00:17:06
2016-12-07T00:17:06
67,656,104
0
0
null
null
null
null
UTF-8
Python
false
false
80
py
class Host(object): """ """ def __init__(): """ """ pass
[ "craig.stevenson@gmail.com" ]
craig.stevenson@gmail.com
50b2a4e66eb4c1ca11dc8c4dceff8ba7ac17e7ca
faf8837e2131721733cdc8dba4dd616d6ef9f647
/data_exploration.py
964f7b9814c47e6b4ec06324abd99ac989475055
[ "MIT" ]
permissive
rubenwo/ml2
ffec34e435c37625e62512ebb687c430eb086909
a981bb28e9990c8053d6bf909b9591244776d616
refs/heads/master
2022-12-09T19:41:31.090680
2020-09-24T15:15:13
2020-09-24T15:15:24
297,377,231
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_json('./data/train.json') # cuisine_count = {} # uniques = df_train['cuisine'].unique() # # for unique in uniques: # cuisine_count[str(unique)] = 0 # # for i in range(len(df_train)): # cuisine_count[str(df_train['cuisine'][i])] += 1 # # for k, v in cuisine_count.items(): # print("{} occurs {} times in the dataset".format(k, v)) sns.countplot(y='cuisine', data=df_train, palette=sns.color_palette('inferno', 15)) plt.gcf().set_size_inches(15, 10) plt.title('Cuisine Distribution', size=len(df_train['cuisine'].unique())) plt.show()
[ "rwoldhui@avans.nl" ]
rwoldhui@avans.nl
a25b6496f12166e06a56177364a4c1ecfbc4a31f
ffd5e689f88c49ab7af3554c22dc0c36301084fa
/thinking_and_testing_uniq_or_not_uniq.py
d7b067767d0bea11d3b61a30da4b020ac1ca2f17
[]
no_license
ellismckenzielee/codewars-python
1710e6f0499047139479de386927c7dbd5f1cdf6
af3f4b4534798a58115d0565730aae28ce87437e
refs/heads/master
2023-08-09T13:38:40.964141
2023-08-01T14:45:22
2023-08-01T14:45:22
168,981,376
45
18
null
null
null
null
UTF-8
Python
false
false
199
py
#thinking and testing: uniq or not uniq kata #https://www.codewars.com/kata/56d949281b5fdc7666000004 def testit(a, b): a = list(set(a)) b = list(set(b)) a.extend(b) return sorted(a)
[ "ellismckenzielee@gmail.com" ]
ellismckenzielee@gmail.com
36dfa2755c12bf056337ee1a4f8dd4a03a957371
17a675141ee04a3f35949306b76fc8af76cca1f8
/pollster/polls/urls.py
2a7c4dc3ef2d58a4d514ae4841964d9f91116482
[]
no_license
huss-a/Django-Python-Poll-App
208a071f05453b993eee2720b2e6f76ec90cd972
5f147cf52c6bca1c35d17bbddd649fb5f5398fee
refs/heads/master
2023-04-05T02:13:09.302713
2021-04-03T11:47:44
2021-04-03T11:47:44
354,278,165
1
0
null
null
null
null
UTF-8
Python
false
false
321
py
from django.urls import path from . import views app_name = "Polls" urlpatterns= [ path("", views.index, name="index"), path('<int:question_id>/', views.detail, name='detail'), path('<int:question_id>/results/', views.results, name='results'), path('<int:question_id>/vote/', views.vote, name='vote'), ]
[ "hussaingoodboi@gmail.com" ]
hussaingoodboi@gmail.com
e5bc633da5a7a8bc72a5896a2acd1b80d49ca5f1
91fb65972d69ca25ddd892b9d5373919ee518ee7
/python-training-courses/pfc-sample-programs/func_example_002_a_with_its_use.py
fa56a44bfd53a1e492b260df8427a8512dba5dd3
[]
no_license
zeppertrek/my-python-sandpit
c36b78e7b3118133c215468e0a387a987d2e62a9
c04177b276e6f784f94d4db0481fcd2ee0048265
refs/heads/master
2022-12-12T00:27:37.338001
2020-11-08T08:56:33
2020-11-08T08:56:33
141,911,099
0
0
null
2022-12-08T04:09:28
2018-07-22T16:12:55
Python
UTF-8
Python
false
false
867
py
# func_example_002_a_with_its_use.py # refer to func_example_002_without_its_use.py # # Passing variable number of arguments to the function def add_numbers (*myNumbers): sum = 0 for i in myNumbers: sum = sum + i return sum num01, num02, num03, num04, num05, num06, num07, num08, num09, num10 = 1,2,3,4,5,6,7,8,9,10 # Calculate and Print sum of the first 5 numbers sum1 = add_numbers (num01, num02, num03, num04, num05) print ("Sum of the first 5 numbers is - ", sum1 ) # Calculate and Print sum of the numbers from 6 to 10 sum2 = add_numbers (num06, num07, num08, num09, num10) print ("Sum of the numbers from 6 to 10 - ", sum2 ) # Calculate and Print sum of the numbers in odd positions sum3 = add_numbers (num01, num03, num05, num07, num09) print ("Sum of the numbers in odd positions - ", sum3)
[ "zeppertrek@gmail.com" ]
zeppertrek@gmail.com
579ea29fb99dc58412be4efc1f1a6bbed9d95ace
3dc4a2d92d1e06ff48618f7fd9ac28ea5840572d
/docs/nginx_ui_doc_service_backup/gscloud/backup/openstack/ui/services.py
063acc824258f824d60b9c108404ad0a19c1d0b5
[]
no_license
padmakarkotule/python-101
a390153abe783a0725fcbaa8d3d94eab3ab588bd
e6a0d9d742dcdc5ee921169f3447643d18179ba5
refs/heads/master
2021-09-25T11:36:02.259512
2020-07-02T14:42:24
2020-07-02T14:42:24
197,585,358
0
0
null
2021-09-22T19:18:16
2019-07-18T12:45:28
Python
UTF-8
Python
false
false
441
py
import sys import os from django.conf import settings from django.conf.urls.static import static # Class - Used to upload files. class FileUpload(): def __init__(self, filename, *args): self.filename = filename def handle_uploaded_file(self): filew = 'static/' + self.filename with open(filew, 'wb+') as destination: for chunk in self.filename.chunks(): destination.write(chunk)
[ "padmakar.kotule@gmail.com" ]
padmakar.kotule@gmail.com
b36813afec190c46a7d2302af035a14eaa02a543
e70a7d9c14279c0b07da8e5ad0a11d858c693294
/diffusion_benchmarks/iaea3d.py
150eafbab48127cc88f3b0fad8270f94816ea753
[]
no_license
Relzohery/detran-examples
0d035bf04d2fcda94f1f9a6bf48915f0940bcfab
d0937c63fdda36dac54420df723c4243cf3abc27
refs/heads/master
2022-12-17T21:23:31.459132
2020-09-01T20:49:33
2020-09-01T20:49:33
279,376,516
0
0
null
2020-07-13T18:04:50
2020-07-13T18:04:49
null
UTF-8
Python
false
false
5,873
py
# detran-examplesdiffusion_benchmarks/iaea.py # # Solves the 3D IAEA PWR benchmark problem. Note, because of modeling # limitations, the void regions beyond the normal reflector are simply # filled with more reflector. # # Reference keff ~ 1.029096 # # Reference: # Benchmark Problem Book, ANL-7416, Suppl. 2, Argonne National # Laboratory (1977) from detran import * import time def run(): #-----------------------------------------------------------------------------# # Input #-----------------------------------------------------------------------------# inp = InputDB.Create() inp.put_int("number_groups", 2) inp.put_int("dimension", 2) inp.put_str("equation", "diffusion") inp.put_str("bc_west", "reflect") inp.put_str("bc_east", "reflect") inp.put_str("bc_south", "reflect") inp.put_str("bc_north", "reflect") inp.put_str("bc_bottom", "reflect") inp.put_str("bc_top", "reflect") inp.put_int("eigen_max_iters", 1000) inp.put_str("eigen_solver", "arnoldi") db = InputDB.Create("callow_db") # outer gmres parameters db.put_dbl("linear_solver_atol", 1e-14); db.put_dbl("linear_solver_rtol", 1e-14); db.put_str("linear_solver_type", "petsc"); db.put_int("linear_solver_maxit", 5000); db.put_int("linear_solver_gmres_restart", 30); db.put_str("eigen_solver_type", "slepc"); db.put_dbl("eigen_solver_tol", 1e-14); db.put_int("linear_solver_monitor_level", 0); inp.put_spdb("outer_solver_db", db) inp.put_spdb("eigen_solver_db", db) #-----------------------------------------------------------------------------# # Material #-----------------------------------------------------------------------------# # Note, all absorption cross sections are simply put into the total. mat = Material.Create(6, 2, "IAEA-3D") # Fuel 1 mat.set_sigma_t(0, vec_dbl([0.03, 0.08])) mat.set_sigma_s(0, 1, 0, 0.02) mat.set_diff_coef(0, vec_dbl([1.5, 0.4])) mat.set_sigma_f(0, 1, 0.135) mat.set_chi(0, 0, 1.0) # Fuel 1 + Rod mat.set_sigma_t(1, vec_dbl([0.030, 0.085])) mat.set_sigma_s(1, 1, 0, 0.02) mat.set_diff_coef(1, vec_dbl([1.5, 0.4])) mat.set_sigma_f(1, 1, 0.135) mat.set_chi(1, 0, 1.0) # Fuel 2 mat.set_sigma_t(2, vec_dbl([0.03, 0.13])) mat.set_sigma_s(2, 1, 0, 0.02) mat.set_diff_coef(2, vec_dbl([1.5, 0.4])) mat.set_sigma_f(2, 1, 0.135) mat.set_chi(2, 0, 1.0) # Reflector mat.set_sigma_t(3, vec_dbl([0.04, 0.01])) mat.set_sigma_s(3, 1, 0, 0.04) mat.set_diff_coef(3, vec_dbl([2.0, 0.3])) # Reflector + Rod mat.set_sigma_t(4, vec_dbl([0.04, 0.55])) mat.set_sigma_s(4, 1, 0, 0.04) mat.set_diff_coef(4, vec_dbl([2.0, 0.3])) # High Absorber mat.set_sigma_t(5, vec_dbl([1.00, 1.00])) mat.set_sigma_s(5, 1, 0, 0.00) mat.set_diff_coef(5, vec_dbl([0.3333, 0.3333])) mat.finalize() #-----------------------------------------------------------------------------# # Geometry #-----------------------------------------------------------------------------# # This sets up for a 2cm mesh in all directions. # XY plane discretization cmH = [0.0, 10.0, 30.0, 50.0, 70.0, 90.0, 110.0, 130.0, 150.0, 170.0] fmH = vec_int(9, 2) for i in range(1, 9) : fmH[i] = 2*fmH[i] # Axial discretization cmV = [0.0, 20.0, 280.0, 360.0, 380.0] #fmV = [ 5, 65, 20, 5 ] fmV = [ 2, 26, 8, 2 ] mt = [# 0.0 - 20.0 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # 20.0 - 280.0 2, 1, 1, 1, 2, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 0, 3, 1, 1, 1, 1, 1, 1, 0, 3, 3, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1, 1, 1, 1, 0, 0, 3, 3, 3, 1, 1, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # 280.0 - 360.0 2, 1, 1, 1, 2, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 2, 1, 1, 1, 0, 0, 3, 1, 1, 1, 1, 1, 1, 0, 3, 3, 2, 1, 1, 1, 2, 0, 0, 3, 3, 1, 1, 1, 1, 0, 0, 3, 3, 3, 1, 1, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # 360.0 - 380.0 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ] mesh = Mesh3D.Create(fmH, fmH, fmV, cmH, cmH, cmV, mt) #-----------------------------------------------------------------------------# # Execute #-----------------------------------------------------------------------------# solver = Eigen2D(inp, mat, mesh) t = time.time() solver.solve() state = solver.state() print state.eigenvalue() print "elapsed = ", time.time()-t #-----------------------------------------------------------------------------# # Plot #-----------------------------------------------------------------------------# try : silo = SiloOutput(mesh) silo.initialize("iaea3d.silo") silo.write_scalar_flux(state) silo.finalize() except : print "Silo error (not installed?)" if __name__ == "__main__": Manager.initialize(sys.argv) run()
[ "robertsj@mit.edu" ]
robertsj@mit.edu
4ff26129e91fe2b58d30667b48e363455eebdd6a
636f56227558589e2323d4a28f14dbad465772f2
/fun.py
50616e13a666a738150909b357519f4a1bab3e6d
[]
no_license
ParthRoot/Basic-Python-Programms
82dc4b190c1048d1f69b28b98bd7d67ecbdb4efb
16abb3d71c25dd1564ad3fbcd888ef36367cdf5c
refs/heads/master
2023-03-14T22:29:41.298816
2021-03-17T09:11:13
2021-03-17T09:11:13
262,701,673
0
1
null
2021-03-16T17:04:34
2020-05-10T03:05:09
Python
UTF-8
Python
false
false
612
py
#Create A function def fun(): print("Hello") fun() #Take argument to function def fun1(name): print("Name:-",name) fun1("Parth") tup = ("Parth","Jaimin","Varshil","Tirth") c = len(tup) for i in range(c): fun1(tup[i]) A = ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z"] a = ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"] for i in range(len(A) and len(a)): print(A[i]+ " =",a[i],end=",") print("\n") def add(a,b): return a + b print("Addition:-",add(10,20))
[ "noreply@github.com" ]
noreply@github.com
e4d4b373570fda5ade6a5eb3a42fe9567339e80e
f47995e06e0f55045134039f7c3af62a799a1329
/learnpythonthehardway/ex8/ex8.py
3dc2d3e3be8edc4a39b45c914ee0855240ccfc02
[]
no_license
roytest001/PythonHomework
bef0b37d96dd7f1aa3a96fe78ca5d25cd9e5e96d
e6ef9b4b38093284a31922bff9a8d0beb9ad7ec8
refs/heads/master
2021-01-21T23:33:51.253675
2016-10-02T03:34:16
2016-10-02T03:34:16
16,234,802
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
#coding=utf-8 formatter = "%r %r %r %r" print formatter % (1, 2, 3, 4) print formatter % ("one", "two", "three", "four") print formatter % (True, True, True, False) print formatter % (formatter, formatter, formatter, formatter) #为啥打印输出双引号,为什么 %r 有时打印出来的是单引号,而我实际用的是双引号? #Python 会用最有效的方式打印出字符串,而不是完全按照你写的方式来打印。这样做对于 %r 来 说是可以接受的,因为它是用作 debug 和排错,没必要非打印出多好看的格式。 print formatter % ( "I think this is a bug.", "That you could type up right", "But it didn't sing.", "So I said goodnight." )n
[ "xxjbs001@126.com" ]
xxjbs001@126.com
248595c051f82ce2e6704e87a08a396027838f94
7a14adcd5150c970f6a5f1ab83180f091dc0f6cc
/cart/models.py
d6dd38a5a6ae1625e18ef9beb7bc5d650f93ece2
[]
no_license
synnea/the-modern-witcher
0b4349e845e12e05f7abf6e0688200a6f54dd96d
f85c4de1fb3167b5c595ac6843c33a55495d7259
refs/heads/master
2022-12-09T15:09:23.602406
2020-03-05T18:17:27
2020-03-05T18:17:27
230,802,118
0
1
null
2022-11-22T05:13:41
2019-12-29T20:52:55
HTML
UTF-8
Python
false
false
1,058
py
from django.db import models # Create your models here. from django.db import models from django.contrib.auth.models import User from items.models import Item import datetime class Order(models.Model): objects = models.Manager() full_name = models.CharField(max_length=50, blank=False, default="Test") phone_number = models.CharField(max_length=20, blank=False, default=0) user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) date = models.DateField(default=datetime.date.today, null=True) def __str__(self): return "{0} @ {1}".format(self.full_name, self.date) class OrderLineItem(models.Model): objects = models.Manager() order = models.ForeignKey(Order, null=False, on_delete=models.CASCADE) user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) product = models.ForeignKey(Item, null=False, on_delete=models.CASCADE) quantity = models.IntegerField(blank=False) def __str__(self): return "{0} {1}".format( self.quantity, self.product.name)
[ "carrie.poell@gmail.com" ]
carrie.poell@gmail.com
408eefcd98a92dd07cb9fa4f21371235a339bf84
d032bc0c01a7cd598481644e22043de8df4c71c4
/consultant_app/versatilimagefield.py
90f5c5be364e762bcd094b0cd36c0169a6108c18
[]
no_license
amrit-kumar/project-for-engineering
eb5f410cd2f0a271633fb6c24132a36e6215f0e0
7e975866e540ab4625e735009fdba971df74e393
refs/heads/master
2020-12-03T01:49:02.429186
2017-06-30T09:09:46
2017-06-30T09:09:46
95,863,800
0
1
null
null
null
null
UTF-8
Python
false
false
1,467
py
import io from io import StringIO from PIL import Image # from StringIO import StringIO from .views import * from versatileimagefield.datastructures import SizedImage from django.utils.datastructures import * from versatileimagefield.fields import VersatileImageField from versatileimagefield.registry import versatileimagefield_registry # Unregistering the 'crop' Sizer # versatileimagefield_registry.unregister_sizer('crop') # Registering a custom 'crop' Sizer # versatileimagefield_registry.register_sizer('crop', SomeCustomSizedImageCls) class ThumbnailImage(SizedImage): """ Sizes an image down to fit within a bounding box See the `process_image()` method for more information """ filename_key = 'thumbnail' def process_image(self, image, image_format, save_kwargs, width=400, height=400): """ Returns a StringIO instance of `image` that will fit within a bounding box as specified by `width`x`height` """ imagefile = io.BytesIO() image.thumbnail( (width, height), Image.ANTIALIAS ) image.save( imagefile, **save_kwargs ) return imagefile # Registering the ThumbnailSizer to be available on VersatileImageField # via the `thumbnail` attribute versatileimagefield_registry.unregister_sizer('thumbnail') versatileimagefield_registry.register_sizer('thumbnail', ThumbnailImage)
[ "kumaramrit38@gmail.com" ]
kumaramrit38@gmail.com
c96baa39b9776108de52e68614ff8a956ef413f8
444a9480bce2035565332d4d4654244c0b5cd47b
/research/recommend/JEPOO/model/mel.py
3581eddba520c6e2403c416cad136096a7b09a35
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
3,514
py
# Copyright 2023 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.nn as nn import mindspore as ms from mindspore import ops from librosa.filters import mel from librosa.util import pad_center from scipy.signal import get_window class STFT(nn.Cell): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length, hop_length, win_length=None, window='hann'): super(STFT, self).__init__() if win_length is None: win_length = filter_length self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None fourier_basis = np.fft.fft(np.eye(self.filter_length)) self.cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:self.cutoff, :]), np.imag(fourier_basis[:self.cutoff, :])]) self.forward_basis = ms.Tensor(fourier_basis[:, None, :], ms.float32) if window is not None: assert filter_length >= win_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, filter_length) fft_window = ms.Tensor(fft_window, ms.float32) self.forward_basis *= fft_window def construct(self, input_data): input_data = ops.expand_dims(input_data, 1) input_data = ops.Pad(((0, 0), (0, 0), (int(self.filter_length / 2), int(self.filter_length / 2))))(input_data) forward_transform = nn.Conv1d(1, self.cutoff * 2, self.win_length, stride=self.hop_length, pad_mode='valid', weight_init=self.forward_basis)(input_data) real_part = forward_transform[:, :self.cutoff, :] imag_part = forward_transform[:, self.cutoff:, :] magnitude = ops.sqrt(real_part**2 + imag_part**2) phase = ops.atan2(imag_part, real_part) return magnitude, phase class MelSpectrogram(nn.Cell): def __init__(self, n_mels, sample_rate, filter_length, hop_length, win_length=None, mel_fmin=0.0, mel_fmax=None): super(MelSpectrogram, self).__init__() self.stft = STFT(filter_length, hop_length, win_length) mel_basis = mel(sample_rate, filter_length, n_mels, mel_fmin, mel_fmax, htk=True) self.mel_basis = ms.Tensor(mel_basis, ms.float32) self.min_bound = ms.Tensor(1e-5, ms.float32) def construct(self, y): magnitudes, _ = self.stft(y) mel_output = ops.matmul(self.mel_basis, magnitudes) mel_output = ops.clip_by_value(mel_output, clip_value_min=self.min_bound) mel_output = ops.log(mel_output) return mel_output
[ "noreply@gitee.com" ]
noreply@gitee.com
869060d928d937c0564f58f256cdcab94ae17193
1b124c5209cffe6544062b8233bf5f6b7f699b18
/app.py
f372930a669abde982b43e8d270ba8bf59f50bcb
[]
no_license
graceloveora123/sqlalchemy-challenge
272e2ff8d6519448da7c6a6226fb14ed7f5985c1
c3d5cfc7a2b5a59524b080aff305032802b365a0
refs/heads/main
2023-03-18T11:53:55.352590
2021-03-08T05:34:10
2021-03-08T05:34:10
342,921,806
0
0
null
null
null
null
UTF-8
Python
false
false
4,372
py
import numpy as np from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify ################################################# # Database Setup ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # Save reference to the table Measurement = Base.classes.measurement Station = Base.classes.station ################################################# # Flask Setup ################################################# app = Flask(__name__) ################################################# # Flask Routes ################################################# @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/[start_date format:yyyy-mm-dd]/[end_date format:yyyy-mm-dd]<br/>" ) @app.route("/api/v1.0/precipitation") def precipitation(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all Precipitation Data""" # Query all Precipitation data within a year results = session.query(Measurement.date, Measurement.prcp).\ filter(Measurement.date >= "2016-08-24").\ all() session.close() all_prcp = [] for date,prcp in results: prcp_dict = {} prcp_dict["date"] = date prcp_dict["prcp"] = prcp all_prcp.append(prcp_dict) return jsonify(all_prcp) @app.route("/api/v1.0/stations") def stations(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all Stations""" results = session.query(Station.station).\ order_by(Station.station).all() session.close() all_stations = list(np.ravel(results)) return jsonify(all_stations) @app.route("/api/v1.0/tobs") def tobs(): session = Session(engine) """Return a list of all TOBs""" results = session.query(Measurement.date, Measurement.tobs,Measurement.prcp).\ filter(Measurement.date >= '2016-08-23').\ filter(Measurement.station=='USC00519281').\ order_by(Measurement.date).all() session.close() all_tobs = [] for prcp, date,tobs in results: tobs_dict = {} tobs_dict["prcp"] = prcp tobs_dict["date"] = date tobs_dict["tobs"] = tobs all_tobs.append(tobs_dict) return jsonify(all_tobs) @app.route("/api/v1.0/<start_date>") def Start_date(start_date): session = Session(engine) """Return a list of min, avg and max tobs for a start date""" results = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).all() session.close() start_date_tobs = [] for min, avg, max in results: start_date_tobs_dict = {} start_date_tobs_dict["min_temp"] = min start_date_tobs_dict["avg_temp"] = avg start_date_tobs_dict["max_temp"] = max start_date_tobs.append(start_date_tobs_dict) return jsonify(start_date_tobs) @app.route("/api/v1.0/<start_date>/<end_date>") def Start_end_date(start_date, end_date): session = Session(engine) """Return a list of min, avg and max tobs for start and end dates""" results = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() session.close() # Create a dictionary from the row data and append to a list of all_temporatures start_end_tobs = [] for min, avg, max in results: start_end_tobs_dict = {} start_end_tobs_dict["min_temp"] = min start_end_tobs_dict["avg_temp"] = avg start_end_tobs_dict["max_temp"] = max start_end_tobs.append(start_end_tobs_dict) return jsonify(start_end_tobs) if __name__ == "__main__": app.run(debug=True)
[ "grace.bo.sun06@gmail.com" ]
grace.bo.sun06@gmail.com
1754189cd09d90ce234534057586811cd9ec1a8f
1ed29cb9c3bc606044c12068ac8a770e5f68497a
/pwaProject/pwaProject/asgi.py
219df782b15bbb285f43b656ab1b173e9fc26280
[ "MIT" ]
permissive
pongkiat/djangoProject
a2d15f990e0f3c436ff73396aacaf81370548ab5
246db3dea9f885af191b7585f8b88c611ea14984
refs/heads/master
2020-12-23T01:10:15.519699
2020-01-30T03:12:20
2020-01-30T03:12:20
236,986,169
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" ASGI config for pwaProject project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pwaProject.settings') application = get_asgi_application()
[ "pongkiat@OzMBP.local" ]
pongkiat@OzMBP.local
07534f0568e07ffd2dbec5e462876a4982119e0d
cc0f8131064d1d7d5e6c97d42d0e71b16c334d81
/GraphRepo/graphrepo/config.py
ed4f0c7165f0883a9dd23eefa262b3e26858fa89
[ "Apache-2.0", "MIT" ]
permissive
LennardSchaap/Github_Visualization
aa6591678cc5cd05c4d87f9b258c6ff167e4307d
455dad5ae15d26706587dd92a256fd840654e157
refs/heads/master
2022-03-30T08:20:40.240726
2019-12-12T00:41:39
2019-12-12T00:41:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,598
py
# Copyright 2019 NullConvergence # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module stores all config constants. It is a singleton because it is used across in several modules inside the app""" from graphrepo.singleton import Singleton class Config(metaclass=Singleton): """This class contains all config flags""" DB_URL = "" PORT = 0 DB_USER = "" DB_PWD = "" REPO = "" START_DATE = None END_DATE = None # If True, each branch will be indexed as a node # and commits will be linked by a Parent relationship # If False, then the commits are linked by a Branch # relationship BRANCH_AS_NODE = True def check_config(self): """Checks if the config properties are set and raises ValueError if any value misses""" if self.DB_URL == "": raise ValueError("Database URL is not set.") if self.PORT == 0: raise ValueError("Database port is not set.") if self.DB_USER == "" or self.DB_PWD == "": raise ValueError("Database credentials are not set.") if self.REPO == "": raise ValueError("Repository path not set.")
[ "lennard.schaap@hotmail.com" ]
lennard.schaap@hotmail.com
d533929137010a828e0c1fe70530eb874680c0e9
ca5fc43049f94a794d90a561fd8126f02b603599
/i3py/core/features/options.py
cdcfff349c6f5457d6e1affa7b82a7ef3f760806
[ "BSD-3-Clause" ]
permissive
Exopy/i3py
32d9ee343d21d275680a2d030b660a80960e99ac
6f004d3e2ee2b788fb4693606cc4092147655ce1
refs/heads/master
2022-02-18T21:51:16.423188
2019-08-28T23:51:02
2019-08-28T23:51:02
63,874,745
1
0
BSD-3-Clause
2018-05-23T09:45:26
2016-07-21T14:07:58
Python
UTF-8
Python
false
false
1,960
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2016-2018 by I3py Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Feature for instrument options. """ from typing import Any, Union, Optional, Dict, Tuple from .feature import Feature from ..abstracts import AbstractOptions class Options(Feature): """Feature used to access the options of an instrument. Options in I3py are considered static (ie related to the hardware or firmware) and are hence read only. Because there is no generic pattern in the formatting of the options, the user is expected to implement manually the getter function. Parameters ---------- names : dict Names of the different options, as returned by this feature. Hint about the possible values can be provided as a type or a tuple of values. """ def __init__(self, getter: Any=True, setter: Any=None, names: Dict[str, Optional[Union[type, tuple]]]={}, extract: str='', retries: int=0, checks: Optional[str]=None, discard: Optional[Union[Tuple[str, ...], Dict[str, Tuple[str, ...]]]]=None, options: Optional[str]=None) -> None: if setter is not None: raise ValueError('Options is read-only can have a setter.') if not names: raise ValueError('No names were provided for Options') Feature.__init__(self, getter, None, extract, retries, checks, discard, options) self.creation_kwargs['names'] = names self.names = names AbstractOptions.register(Options)
[ "marul@laposte.net" ]
marul@laposte.net
334ab93f2d0f8c5b6bb94365ef6c0618db19fb52
bdd3499808a2d6212c9067cdb8b7a33fccc5ac34
/bin/pip3.7
3414d036599848714f811853931ffd7670a68a37
[]
no_license
gabrielb77/chgate
44963de6a7c1e0f98f02f3672fde0f278fbee2c9
a0f3098b105702d534a49f7fd140fad70ace3e4b
refs/heads/master
2023-04-14T21:56:18.434558
2021-05-01T13:14:45
2021-05-01T13:14:45
350,025,710
0
0
null
null
null
null
UTF-8
Python
false
false
249
7
#!/home/gabriel/gitrepos/chgate/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "gabrielb77@gmail.com" ]
gabrielb77@gmail.com
c9aaf04fd48dfb391e71df87bfe9992e3b8e9e6d
2ae92a7512a6821d28f383e050a56203fdf2b6c3
/week1/bike.py
b2b603ab90032c13991b19d7346c25cd996e9b0e
[]
no_license
py1-10-2017/MikeGerrity-
7e4958c2190de078fb810fbb0e6bf3b10634f77a
f4981f3165024529f2d06bccbe7224b29aa08927
refs/heads/master
2021-08-06T19:18:27.494733
2017-11-06T21:49:36
2017-11-06T21:49:36
109,753,671
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
class Bike(object): def __init__(self, price, max_speed): self.price = price self.max_speed = max_speed self.miles = 0 def displayinfo(self): print "Price:", self.price, "Max Speed:", self.max_speed, "Total Miles:", self.miles return self def ride(self): print "Riding..." self.miles += 10 return self def reverse(self): print "Going back..." self.miles -= 5 return self bike1 = Bike(200, "25mph") bike2 = Bike(300, "35mph") bike3 = Bike(100, "15mph") bike1.ride().ride().ride().reverse().displayinfo() bike2.ride().ride().reverse().reverse().displayinfo() bike3.reverse().reverse().reverse().displayinfo()
[ "mikegerrity@hotmail.com" ]
mikegerrity@hotmail.com
bf4ab1b554798c38423c6b25ffc2e3404c7b9980
eea1be5dbac7fa10167eae167eb6712e3937f53a
/siteuser/utils/models.py
607ac2c9399c5f052d881715a70bed9367b4b671
[]
no_license
chidimo/Voidcoin
40962e46661b2a7106bd8e60d0830c3b9629b8fa
227c160dfa671818522781aab013f2d1fcb098a9
refs/heads/develop
2022-12-09T17:40:26.294425
2019-07-04T08:32:20
2019-07-04T08:32:20
135,197,447
5
2
null
2022-12-08T02:08:45
2018-05-28T18:45:19
Python
UTF-8
Python
false
false
441
py
from django.db import models from django.utils.translation import ugettext_lazy as _ from .fields import AutoCreatedField, AutoLastModifiedField class TimeStampedModel(models.Model): """ An abstract base class model that provides self-updating ``created`` and ``modified`` fields. """ created = AutoCreatedField(_('created')) modified = AutoLastModifiedField(_('modified')) class Meta: abstract = True
[ "orjichidi95@gmail.com" ]
orjichidi95@gmail.com
cc453d0093726966b9dabdcfb9474dc063796d6f
a7c69c094cb77b351af7e5c95ef1e7319c8688a5
/src/subscriptions/validators.py
b070f13ad5a89d91df65fa5a190344c45847f909
[]
no_license
betanio/Eventex-WttD
cce65fc1bcee5f9a2713a7a970ba1413b950e771
1c62ce6b2d3ef552f0ce54f4b5278916eed50349
refs/heads/master
2021-01-15T11:48:24.598152
2012-04-17T11:23:07
2012-04-17T11:23:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
417
py
# -*- coding: utf-8 -*- # Optional: ugettext_lazy from django.utils.translation import ugettext as _ from django.core.exceptions import ValidationError # TODO: validação do dígito verificador def CpfValidator(value): if not value.isdigit(): raise ValidationError(_(u'O CPF deve conter apenas números')) if len(value) != 11: raise ValidationError(_(u'O CPF deve ter 11 dígitos'))
[ "betanio@betanio.com" ]
betanio@betanio.com
a0053fe45551ebe58fb97b17632014d320aff29c
5ebbad9b3a6664a65d1ebb50056f83fe50435d3a
/Open Elective Python/Unit 3/7.py
215ba42a02c60afd4c2107dbe91ea45345e874e2
[]
no_license
jugal13/Python_Lab
5892c6f2c77d0222a6b31bc40774d24b46f86475
f8b96b3ecf1b913f4121e8e6d89b1a610f4ecba2
refs/heads/master
2023-03-01T03:53:30.889295
2021-02-10T14:42:09
2021-02-10T14:42:09
145,228,905
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
import time millis = int(round(time.time() * 1000)) print(millis)
[ "jugaldeepak@gmail.com" ]
jugaldeepak@gmail.com
cc17fc76da532ee295786674a578eee107c245ad
6752274eab7fb185f493027a1da27ff452dcc20b
/dict.ex.py
53c8fec8db4ca80112361f4e03e4b6d7c8c1e194
[]
no_license
smileyoung1993/pystudy
fa598b32b29bb3b5e705430a1e43e08a8bfe7ef5
3cd17b006db161a2e4b740a6ab3278a2c44d3f29
refs/heads/master
2020-03-19T13:22:26.465604
2018-06-08T06:29:51
2018-06-08T06:29:51
136,576,352
0
0
null
null
null
null
UTF-8
Python
false
false
1,207
py
# dict #method 1 d = dict() print(d,type (d)) # method2 d = {} print(d, type(d)) # method 3 d = dict(one = 1 , two = 2 ) print(d,type(d)) # method 4 keys = ("one","two","three") values = (1,2,3) print(d,type(d)) d= dict(zip(keys , values)) print(d) # 사전의 키 print("----------------key") # d= {} d[10] = "10" d["baseball"]= 9 d[("kim",10)] = "student" print(d,type(d)) #d(["lee",30]) = "wokers" type error # dict method print("-----------------method") d= {"baseball":9,"soccer":11, "basketball":5} print(d,type(d)) # keys() print(d.keys()) # values() print(d.values()) #items() print(d.items()) # bring values print(d['baseball']) print(d['handball'])# keyerror # bring values 2 : get() print(d.get('handball')) print(d.get('handball',"?"))# bagic value?? # delete value del d['soccer'] print(d) # clear() # d.clear() print(d) d = {"baseball":9,"soccer":11,"basketball": 5} # back print("------------ back") d['soccer']=11 # method1 : # for key in d: for key in d.keys(): print(str(key,":",d[key])) # method2 : 키와 값을 함께 받아와서 활용 : items() for key, value in d.items() : print("{0}:{1}".format(key,value),end =" ") else: print()
[ "znzlaos943@naver.com" ]
znzlaos943@naver.com
556e496891ce059c0a7af9cfdb30d3809125d46a
5c1cb9ceb61425b42f39824ac3e1d1c591b1ae08
/accounts/api/serializers.py
a296d3a9eb974238c0859ade14ce17df93dc8cf4
[]
no_license
codenit/DjangoBlog-API
c0b7e0fa9710c09ae7b955cf6bd89988421831a8
0e8a569e351121b8f7f15ce4c0c7da3be8b71a68
refs/heads/master
2020-12-30T14:34:16.279915
2017-05-13T19:26:08
2017-05-13T19:26:08
90,855,362
0
0
null
null
null
null
UTF-8
Python
false
false
2,112
py
from django.contrib.auth import get_user_model from rest_framework.exceptions import ValidationError from rest_framework.serializers import (ModelSerializer,CharField) User = get_user_model() class UserCreateSerializer(ModelSerializer): password2 = CharField(label='Confirm Password') class Meta: model = User fields = [ 'username', 'password', 'password2', 'email', ] extra_kwargs = { 'password' : {'write_only': True}, 'password2': {'write_only': True}, } def validate_password(self, value): data = self.get_initial() password = data.get('password2') password2 = value if password != password2: raise ValidationError('Passwords must match') return value def validate_password2(self, value): data = self.get_initial() password = data.get('password') password2 = value if password != password2: raise ValidationError('Passwords must match') return value def create(self, validated_data): username = validated_data['username'] email = validated_data['email'] password = validated_data['password'] user_obj = User( username=username, email=email ) user_obj.set_password(password) user_obj.save() return validated_data #OR ''' def create(self, validated_data): user = User( email=validated_data['email'], username=validated_data['username'], ) user.set_password(validated_data['password']) user.save() return user ''' #OR ''' from django.contrib.auth.hashers import make_password def create(self, validated_data): user = User.objects.create( email=validated_data['email'], username=validated_data['username'], password=make_password(validated_data['password']) ) user.save() return user '''
[ "b.rohit751@gmail.com" ]
b.rohit751@gmail.com
f49e56dfa0326a19c62734b1c325bdc011750569
cc86a3b84916ca8c6d94da6af2c910b1e4e06671
/tests/test_build_system.py
1f8d98d0a43befdf440e6801861ec89e1ee6d7eb
[ "MIT" ]
permissive
Jasper-Ben/kas
0cf93914ceb47c6e1b4d06b18c5df801673d65e6
71cf5dc17bbfacc643500354891b95690e983dce
refs/heads/master
2022-12-21T13:03:04.148283
2022-06-23T12:51:22
2022-06-23T15:58:37
294,092,277
0
0
NOASSERTION
2020-09-09T11:27:21
2020-09-09T11:27:21
null
UTF-8
Python
false
false
1,835
py
# kas - setup tool for bitbake based projects # # Copyright (c) Siemens AG, 2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import shutil from kas import kas def test_build_system(changedir, tmpdir): tdir = str(tmpdir.mkdir('test_build_system')) shutil.rmtree(tdir, ignore_errors=True) shutil.copytree('tests/test_build_system', tdir) os.chdir(tdir) kas.kas(['shell', 'test-oe.yml', '-c', 'true']) with open('build-env', 'r') as f: assert(f.readline().strip() == 'openembedded') kas.kas(['shell', 'test-isar.yml', '-c', 'true']) with open('build-env', 'r') as f: assert(f.readline().strip() == 'isar') kas.kas(['shell', 'test-openembedded.yml', '-c', 'true']) with open('build-env', 'r') as f: assert(f.readline().strip() == 'openembedded')
[ "jan.kiszka@siemens.com" ]
jan.kiszka@siemens.com
3e0199080f0e173abc45575108f0294e86c69627
94dc470e13c344269b8fc6aec1c6f7051d782151
/Python-Scripts/corona_all_active.py
c239359c01c303b11a2e9b0b90ee9a71809fb2e1
[]
no_license
venkata-sravan/Corona-Stats
ba6cd0d88979eaa86711548f0bf8692086a63721
303a50b8b176301586a515293d3f69e3e12c505a
refs/heads/master
2022-04-27T02:57:50.401762
2020-04-17T08:28:41
2020-04-17T08:28:41
256,440,689
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
#! /usr/bin/python3 import requests import lxml.html as lh import matplotlib.pyplot as plt import numpy as np import csv import pandas as pd source = requests.get("https://www.worldometers.info/coronavirus/") doc = lh.fromstring(source.content) tr_elements = doc.xpath('//tr') Active_Map={} i=0 # Since out first row is the header, data is stored on the second row onwards for j in range(1, int(len(tr_elements)/2)): # T is our j'th row T = tr_elements[j] z=['World','Total:','','Africa','Oceania','South America','Asia','Europe','North America','Country,Other','Asia'] try: if (T[0].text_content().replace('\n', "").strip() not in z): Active_Map[T[0].text_content()]=int(T[6].text_content().replace(',',"")) except: pass Active_Map.pop('World',None) Active_Map.pop('Total:',None) Active_Map.pop('\n\n',None) Active_Map.pop('\nAfrica\n',None) Active_Map.pop('\nOceania\n',None) Active_Map.pop('\nSouth America\n',None) Active_Map.pop('\nAsia\n',None) Active_Map.pop('\nEurope\n',None) Active_Map.pop('\nNorth America\n',None) Active_Map=sorted(Active_Map.items(), key = lambda x : x[1],reverse=True) Active_Map=dict(Active_Map) try: with open('active.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(['Rank','Country', 'Active Cases']) i=0 for key, value in Active_Map.items(): i=i+1 writer.writerow([i,key, value]) except IOError: print("I/O error") active=pd.read_csv('active.csv',index_col=[0,1,2],encoding = "ISO-8859-1") active.to_html('active.html')
[ "ec2-user@ip-172-31-9-66.eu-west-1.compute.internal" ]
ec2-user@ip-172-31-9-66.eu-west-1.compute.internal
18928dfc8b26a880be56f710486d1fb3a41aa3a6
2727aa6dfc13e665f12b28de49a9f9f00b206ef2
/personal/yxg352/FitHub/FitHub/settings.py
487fae4f10f47a8d881282aefb8e90c3464c6268
[ "MIT" ]
permissive
gentsk77/FitHub
80e99052e1b41de64406023b7346c67871d1ed2d
6a050e1d2718996af2cb672af6b9ea41d0da04d4
refs/heads/master
2020-05-02T09:04:17.577860
2019-05-06T12:17:32
2019-05-06T12:17:32
177,859,983
0
2
null
null
null
null
UTF-8
Python
false
false
3,268
py
""" Django settings for FitHub project. Generated by 'django-admin startproject' using Django 2.1.7. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'mk!3eidv*zlt@6i-2kvlf-lz773(id#v0)v7s6cpw2@3+6ppl)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'login.apps.LoginConfig', 'profile.apps.ProfileConfig', 'landing.apps.LandingConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework_swagger', 'crispy_forms', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'FitHub.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'FitHub.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_USER_MODEL = "login.User" AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/'
[ "yxg351@case.edu" ]
yxg351@case.edu
0c8153f27fb67a668ee75237e7cd43c5388cfa62
92773cbdd70812f45e1b9b97bbc024aee4b4b18d
/Chapter7. Iteration/loop.py
8765dd5a07dd4c28348fbcf1c1cc68b803ce3fd9
[]
no_license
Abu-Kaisar/Python3Programming--Coursera
e46edc86294ac76109a89b2cb02e8b6af178dcce
e1b93899c4f507b9b32091283951e761e182b97a
refs/heads/master
2022-11-21T07:40:28.985698
2020-07-19T04:07:51
2020-07-19T04:07:51
280,787,750
0
0
null
2020-07-19T03:58:52
2020-07-19T03:58:52
null
UTF-8
Python
false
false
476
py
# mylist = ["yo","mujju","salman","thuss"] # for i in mylist: # print("Hi", i ,"Dawat hai kheenchny aao") # mylist = "dgsadafdua" # for char in mylist: # print("Hi", char ) s = "python rocks" for ch in s: print("HELLO") import turtle # set up alex wn = turtle.Screen() mujju = turtle.Turtle() for aColor in ["yellow", "red", "purple", "blue"]: alex.color(aColor) # repeat four times mujju.forward(50) mujju.left(90) wn.exitonclick()
[ "mdmujahid97@gmail.com" ]
mdmujahid97@gmail.com
6cea5daf636212eaff48705ad4f044d677c81e9d
603050499539340ea00d10b47660361ae8a31f55
/utils/tools.py
9b7c116cbddeae4c754e77a014647b8b0ee4cc12
[]
no_license
leondelee/PointGCN
ee10bc6b4760c810b20330102f92da880d743ffb
118fc938e44ca678eb04aaf7d2abbd71c7d17968
refs/heads/master
2023-04-07T20:10:29.516774
2019-07-28T04:47:19
2019-07-28T04:47:19
189,544,434
13
1
null
2023-03-24T21:54:59
2019-05-31T07:00:16
Python
UTF-8
Python
false
false
3,724
py
# Author: llw import os import logging from tqdm import tqdm import yaml import torch as t import pptk def show_point_clouds(pts, lbs): v = pptk.viewer(pts) v.attributes(lbs) def normalize_point_cloud(pts): norm = pts[:, 0] ** 2 + pts[:, 1] ** 2 + pts[:, 2] ** 2 norm = t.sqrt(norm).reshape(-1, 1) pts = pts / norm return pts def get_cfg(args): name = args.name parent_path = os.path.dirname(__file__) cfg_path = os.path.join(parent_path, '..', 'cfg/{}.yml'.format(name)) with open(cfg_path, "r") as file: cfg = yaml.load(file) file.close() for arg in vars(args): if getattr(args, arg) != '-1': cfg[arg] = getattr(args, arg) return cfg def get_logger(cfg): format = "%(asctime)s - %(name)s: %(message)s" logging.basicConfig( level=logging.INFO, format=format ) logger = logging.getLogger(cfg["name"] + " - " + cfg["mode"]) file_handler = logging.FileHandler(os.path.join(cfg["root_path"], cfg["log_path"], cfg["name"] + cfg["log_name"])) file_handler.setFormatter(logging.Formatter(format)) file_handler.setLevel(logging.INFO) logger.addHandler(file_handler) return logger def get_checkpoints(cfg): checkpoint_path = os.path.join(cfg["root_path"], cfg["checkpoint_path"], cfg["name"] + cfg["checkpoint_name"]) log_path = os.path.join(cfg["root_path"], cfg["log_path"], cfg["name"] + cfg["log_name"]) if os.path.exists(checkpoint_path): action = input("Found checkpoint at {}.\nPlease type k(eep) or d(elete) or others to ignore.\n".format(checkpoint_path)) if action == 'k': return checkpoint_path elif action == 'd': print("Deleting ", checkpoint_path) os.unlink(checkpoint_path) print("Deleting ", log_path) os.unlink(log_path) return None def clean_logs_and_checkpoints(cfg): checkpoint_path = os.path.join(cfg["root_path"], cfg["checkpoint_path"], cfg["name"] + cfg["checkpoint_name"]) log_path = os.path.join(cfg["root_path"], cfg["log_path"], cfg["name"] + cfg["log_name"]) if os.path.exists(checkpoint_path): print("Deleting ", checkpoint_path) os.unlink(checkpoint_path) if os.path.exists(log_path): print("Deleting ", log_path) os.unlink(log_path) def evaluate(cfg): # model.eval() model = cfg['trainer_config']['model'] test_data = cfg['trainer_config']['test_data'] metric = cfg['trainer_config']['metric'] print("-------------------Evaluating model----------------------") res = 0 cnt = 0 for batch_data in tqdm(test_data): output = model(batch_data) res += metric(output) cnt += 1 res = res / cnt model.train() log_info = dict( metric_name=metric.__name__, value=res ) return log_info def parallel_model(model, input, output_device=0, device_ids=None): if not device_ids: device_ids = [0, 1] pts, edge_index = input edge_index = edge_index.reshape([-1, 2]) input = [pts, edge_index] replicas = t.nn.parallel.replicate(model, device_ids) inputs = t.nn.parallel.scatter(input, device_ids) replicas = replicas[:len(inputs)] for idx, ipt in enumerate(inputs): inputs[idx][1] = inputs[idx][1].reshape([2, -1]) outputs = t.nn.parallel.parallel_apply(replicas, inputs) return t.nn.parallel.gather(outputs, output_device) if __name__ == '__main__': import torch as t from sklearn.metrics import mean_squared_error a = t.tensor([[1, 2.1], [2, 3]]) b = t.tensor([[1, 2], [1, 2]]) a = t.autograd.Variable(a, requires_grad=True) print(t.detach(a))
[ "leevecent@outlook.com" ]
leevecent@outlook.com
6b06c413a2f140e7891693fa52a8a9ce3fddecfb
65bcb44034f33554b6a1387bb08366ccba932a4c
/env_FindTreasure/__init__.py
37e4ed17ffcbc90f824bdc04122d051e6e62b300
[]
no_license
huzican/Multi-Agent-Reinforcement-Learning-Environment
e9cd8e2a8736b0f0b4791dcc5e7f7dcf56c24ef1
d529104fb6845aa811a88279a089e192b4f8f488
refs/heads/master
2022-06-10T10:03:28.807049
2020-05-01T23:34:03
2020-05-01T23:34:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
32
py
from .env_FindTreasure import *
[ "yifeng.zhu@utexas.edu" ]
yifeng.zhu@utexas.edu
02cc6511db06e84bf79cc05b534d88a1807479be
4f07c49ff9394352b464c94ca917faeb967d1b31
/trainer/forms.py
1fcd3db0b8be12ae62c1b806b52fb0fea9e31862
[]
no_license
igandhi/gym_trainer
0b47c90768d732547f7d81407260deeb3b6d7255
e2068b9211740cf4b9d892bad6ebf2c71227366d
refs/heads/master
2020-03-07T08:28:38.987607
2018-03-30T03:55:49
2018-03-30T03:55:49
127,379,314
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
from django.forms import ModelForm from .models import Routine, Exercise class RoutineForm(ModelForm): class Meta: model = Routine exclude = ['created_timestamp'] class ExerciseForm(ModelForm): class Meta: model = Exercise exclude = ['routine']
[ "ikegandhi@gmail.com" ]
ikegandhi@gmail.com
77e406016f26b3a032b6e455aaa719b572e27045
d662fb5d91cbf48b43c44958aad9c0bc1efd74a6
/ORCA1/gen_amoc_info.py
1494c44ff2ae8baac14471dab880bc03c68b3360
[ "MIT" ]
permissive
julianmak/NEMO-related
e6200c7a69c5fef7ca26d0719e5c26d90ef8281c
d4cb9ebf8c496819144c5c03b5e885fd5ad2af71
refs/heads/master
2023-06-22T03:05:58.779417
2023-06-08T12:57:22
2023-06-08T12:57:22
125,502,547
4
4
null
null
null
null
UTF-8
Python
false
false
4,917
py
#!/usr/bin/env python3 # JM: 13 Oct 2018 # process the AMOC from the *grid_V.nc files and write them to a text file import glob, sys import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from numpy import zeros, argmax, unravel_index, amax, where, arange from netCDF4 import Dataset from pyCDFTOOLS.cdfmoc_atl import * # style settings plt.rcParams["font.family"] = "DejaVu Serif" plt.rcParams["mathtext.fontset"] = "cm" plt.rcParams["mathtext.rm"] = "serif" plt.rcParams["image.cmap"] = "RdBu_r" # "*_r" is reverse of standard colour #-------------------------------------------------------- # define the argument parser import argparse parser = argparse.ArgumentParser(description = "Process the scalar netcdf files and output as text") # fixed arguments parser.add_argument("data_dir", type = str, help = "specify data directory") # optional arguments parser.add_argument("--lquery", help = "print out the variables available", action = "store_true") parser.add_argument("--keys", type = str, help = "grab a specified set of matching strs (enter string in quotes, default grab everything)", default = "*") parser.add_argument("--v_var", type = str, help = "variable name of v velocity", default = "vo") parser.add_argument("--lpng", help = "output png files", action = "store_true") # collect arguments args = parser.parse_args() #-------------------------------------------------------- # plotting subroutine def plot_amoc(NADW_info, zW, latV, dmoc, filename): fig = plt.figure(figsize = (8, 3)) ax = plt.axes() mesh = ax.contourf(latV, zW, dmoc, arange(-25, 26, 2), cmap = "RdBu_r", extend = "both") ax.set_xlim(-30, 90) ax.plot(NADW_info[1], NADW_info[2], "k+") ax.text(NADW_info[1] - 10, NADW_info[2] - 500, "NADW = %.1f Sv" % NADW_info[0]) ax.set_xlabel(r"Lat (${}^\circ$)") ax.set_ylabel(r"z ($\mathrm{m}$)") ax.set_title("Atlantic (no Med sea)") cb = plt.colorbar(mesh) cb.ax.set_title(r"$\mathrm{Sv}$") fig.savefig(filename, dpi = 150, bbox_inches = "tight") plt.close(fig) print("generated %s , exiting..." % filename) #-------------------------------------------------------- # Main commands # grab the relevant filenames file_list = [] for file in glob.glob(args.data_dir + args.keys + "grid_V.nc"): file_list.append(file) if not file_list: print("no files grabbed, are you in the right directory?") print("no files grabbed, are you in the right directory?") print("no files grabbed, are you in the right directory?") # sort it according to the timestamps file_list.sort() # cycle through the files for i in range(len(file_list)): # grab output time in years # assumes file format is $EXP_$PERIOD_$START_$END_scalar.nc # so pulls out the $START and $END and keeps only the first four entries # string here for use in output start_time = file_list[i].replace(args.data_dir, "").split("_")[2][0:4] end_time = file_list[i].replace(args.data_dir, "").split("_")[3][0:4] data = Dataset(file_list[i]) t = data.variables["time_centered"][:] if args.lquery: for name, variable in data.variables.items(): for attrname in variable.ncattrs(): if attrname == "standard_name": print("{} -- {}".format(name, getattr(variable, attrname))) data.close() print(" ") sys.exit("finished query, exiting gen_amoc_info...") else: # ?? could do something like the query loop above to pull out all keys # and dump accordingly; leaving it as manual for now # pull out the data written in 2d field for some reason and write it out txt_filename = args.data_dir + file_list[i].replace(args.data_dir, "").replace("grid_V.nc", "amoc.txt") png_filename = args.data_dir + file_list[i].replace(args.data_dir, "").replace("grid_V.nc", "amoc.png") txt_file = open(txt_filename, "w") txt_file.write( "%s %s %s %s\n" % ("time", "NADW_str", "NADW_lat", "NADW_dep") ) for kt in range(len(t)): print("processing %s at index %i / %i..." % (file_list[i].replace(args.data_dir, ""), kt, len(t)) ) # global mean/totals time = (t[kt] - t[0]) / (3600 * 24 * 365) + int(start_time) kwargs = {"lprint" : False, "lg_vvl" : True, "leiv" : True, "eivv_var" : "vo_eiv"} NADW_info, zW, latV, dmoc, _ = cdfmoc_atl(args.data_dir, file_list[i].replace(args.data_dir, ""), args.v_var, **kwargs) txt_file.write( "%.2f %.8f %.8f %.8f\n" % (time, NADW_info[0], NADW_info[1], NADW_info[2]) ) if args.lpng: plot_amoc(NADW_info, zW, latV, dmoc[1, :, :], png_filename) txt_file.close() data.close() print("finished processing, exiting gen_amoc_info...")
[ "julian.c.l.mak@googlemail.com" ]
julian.c.l.mak@googlemail.com
4ca8ce30ee99012214565c98a486eb42d7d55227
7c28981339bc23ef9a4287fe57ff47baef690603
/lookupdict.py
584b6e1f96c02f30b736d0a72868aa429b873e3f
[ "Apache-2.0" ]
permissive
MetaphorExtractionTools/mokujin
26620f7b43df37433d3f3d1ddbce0fed5ebe6af4
c48d531dd23bdeef0ada898e796f13ba6797d137
refs/heads/master
2021-01-22T15:22:12.344968
2014-04-26T16:52:45
2014-04-26T16:52:45
19,182,305
3
1
null
null
null
null
UTF-8
Python
false
false
1,007
py
#!/usr/bin/env python # coding: utf-8 # Copyright (C) USC Information Sciences Institute # Author: Vladimir M. Zaytsev <zaytsev@usc.edu> # URL: <http://nlg.isi.edu/> # For more information, see README.md # For license information, see LICENSE """ Simple dictionary lookup script. Finds given word in mokujin dictionary and returns its id. Usage: $ python lookupdict.py <path_to_index> <word> """ import sys import logging import argparse from mokujin.index import DepTupleIndex if __name__ == "__main__": logging.basicConfig(level=logging.INFO) try: _, index_path, term = sys.argv except: logging.error("Wrong syntax. Usage:\n\t lookupdict.py <path_to_index> <word>") exit(0) indexer = DepTupleIndex(index_path) term_id = indexer.term2id.get(term) if term_id is not None: sys.stdout.write("\n\tFound term '%s' with id=%d\n\n" % (term, term_id)) else: sys.stedout.write("\n\tTerm '%s' not found in dictionary.\n\n" % term)
[ "zvm@guest-wireless-nup-nat-206-117-89-004.usc.edu" ]
zvm@guest-wireless-nup-nat-206-117-89-004.usc.edu
674f90b04e7ff3a972ebfdec9636df1d6f7d64f7
77de0b8daf81dd83022015f1f2e52a2d2a81f3ee
/MeasureeMapQV.py
b027924c4517d5be8f15ab0efe1c74fbe9f3b320
[ "MIT" ]
permissive
JinfengChen/chm1_scripts
83a2f183f63d65e28fa402a01914aacb12894aa5
55d1783139f4ccc6e41c79812920785b1eaea65e
refs/heads/master
2020-12-25T22:47:13.831530
2014-09-26T18:59:20
2014-09-26T18:59:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
#!/usr/bin/env python import pysam
[ "mchaisso@uw.edu" ]
mchaisso@uw.edu
b496a8209dca6cc74b9a14cb7ba3517009a8d688
6cd9f3ab378cbe17cbf8aa3bc66296dfc901a6fe
/iiotPython_NEW/sendData.py
eb039fa73ce795a2934c19d435afd32f628c604d
[]
no_license
loginwaregith/IIOT_backup
c1fad36097d1fe98c54197963cf45e30e023c069
724adb4171cfb1e2308734682ddff599016f4b65
refs/heads/main
2023-02-25T16:33:53.437463
2021-02-02T12:58:55
2021-02-02T12:58:55
335,266,581
0
1
null
2021-02-02T12:58:56
2021-02-02T11:29:43
Python
UTF-8
Python
false
false
5,952
py
#*********This script is used to send all the IIOT data from device to server************************** #importing of required libraries from time import sleep import sqlite3 import requests as req from datetime import datetime import configuration as config import logging as log #making a connection with the database conn2=sqlite3.connect(config.DATABASENAME) #create a cursor object to exceute all sql queries curs2=conn2.cursor() log.basicConfig( filename = "IIOT.log", format = '%(asctime)s, %(levelname)-8s [%(pathname)s:%(lineno)d] %(message)s', filemode = 'a' ) logger = log.getLogger(__name__) logger.setLevel(log.DEBUG) #Function which sends AlarmInfo data #parameters : endpoint - at which endpoint to send the data #no return type for the fucntion def SendAlarmData(endpoint): logger.info("****************SENDING ALARM DATA********************") try: curs2.execute("select * from alarm ") result=curs2.fetchall() #print(result) if result is not None: data={} for colm in result: Id=colm[0] data["ID"]=colm[0] data["MachineID"]=colm[1] data["OperatorName"]=colm[2] data["JobID"]=colm[3] data["Shift"]=colm[4] data["Component"]=colm[5] data["ModelName"]=colm[6] data["Operation"]=colm[7] data["TimeStamp"]=colm[8] data["Reason"]=colm[9] response=req.post(endpoint,data=data,timeout=2) if(response.status_code>=200 and response.status_code<=206): curs2.execute("delete from alarm where id=(?)",(Id,)) conn2.commit() logger.debug(f"{Id} entry send to server and deleted from local database ") else: logger.debug(response.status_code) logger.info("didnot get good response from server") return else: logger.info("no data to send ...") except Exception as e: logger.error(f"Exception occured : {e}") return #Function which sends liveStatus data #parameters : endpoint - at which endpoint to send the data #no return type for the fucntion def SendLiveStatus(endpoint): logger.info("****************SENDING LIVE SIGNALS DATA********************") try: curs2.execute("select * from live_status") result=curs2.fetchone() if result is not None: Id=str(result[0]) machineId=result[1] machineType=result[2] status=str(result[3]) signalColor=result[4] signalName=result[5] response=req.post(endpoint+"?ID="+Id+"&MachineID="+machineId+"&MachineType="+machineType+"&Status="+status+"&SignalName="+signalName+"&SignalColor="+signalColor,timeout=2) if(response.status_code>=200 and response.status_code<=206): logger.debug(f"Current Live Status : {signalName}") logger.info(" Live Status data successfully sent ") else: logger.info("didnot get good response from server") return else: logger.info("no data to send....") except Exception as e: logger.error(f"Exception occured : {e}") return #Function which sends production data #parameters : endpoint - at which endpoint to send the data #no return type for the fucntion def SendProductionData(endpoint): logger.info("********************SENDING PRODUCTION DATA****************************") try: curs2.execute("select * from live_status") liveStatusResult=curs2.fetchone() if liveStatusResult is not None: signalName=liveStatusResult[5] if signalName=='Machine Idle': curs2.execute("select * from production") result=curs2.fetchall() if result is not None: data={} for colm in result: Id=colm[0] data["ID"]=colm[0] data["OperatorName"]=colm[1] data["JobID"]=colm[2] data["Shift"]=colm[3] data["Component"]=colm[4] data["ModelName"]=colm[5] data["Operation"]=colm[6] data["CycleTime"]=float(colm[7]) data["InspectionStatus"]=colm[8] data["Status"]=colm[9] data["TimeStamp"]=datetime.strptime(colm[10], '%Y/%m/%d %H:%M:%S') data["MachineID"]=colm[11] response=req.post(endpoint,timeout=2,data=data) if(response.status_code>=200 and response.status_code<=206): curs2.execute("delete from production where id=(?)",(Id,)) conn2.commit() logger.debug(f"{Id} entry sent to server and deleted from local database..") else: logger.info("didnot get good response from server") return else: logger.info("no data to send ...") except Exception as e: logger.error(f"Exception occured : {e}") return
[ "erp.anand.loginware@gmail.com" ]
erp.anand.loginware@gmail.com
865a2ee42ce0b83535aff7031964ddbd3c0e5d36
2aace9bb170363e181eb7520e93def25f38dbe5c
/build/idea-sandbox/system/python_stubs/cache/d7b07d14c6c27a41803588e54091bf9fcf8a2c8736580b3083f089fcd6d4da3f/cython_runtime.py
ddb3e50bb33750fa1bc065bec7db3288f07423db
[]
no_license
qkpqkp/PlagCheck
13cb66fd2b2caa2451690bb72a2634bdaa07f1e6
d229904674a5a6e46738179c7494488ca930045e
refs/heads/master
2023-05-28T15:06:08.723143
2021-06-09T05:36:34
2021-06-09T05:36:34
375,235,940
1
0
null
null
null
null
UTF-8
Python
false
false
274
py
# encoding: utf-8 # module cython_runtime # from C:\Users\Doly\Anaconda3\lib\site-packages\scipy\_lib\_ccallback_c.cp37-win_amd64.pyd # by generator 1.147 # no doc # no imports # Variables with simple values __loader__ = None __spec__ = None # no functions # no classes
[ "qinkunpeng2015@163.com" ]
qinkunpeng2015@163.com
4f3f53556376f2c9e047b5edb06911d416ba074a
f062afcfc7da5ef1fae49ef1dbdb33a0edf83086
/p1/s2.py
f94a87a13ce58c781dcd7b6eca9bc5debdc36449
[]
no_license
harvestcore/pyweb
473ea66c9b5dea22836dde966709ee5102330b9e
dbf6b762c33205f33f1ee9daf80dade56880a9f2
refs/heads/master
2020-04-01T18:51:53.108458
2018-12-18T18:47:10
2018-12-18T18:47:10
153,520,059
0
1
null
2021-10-10T20:50:33
2018-10-17T20:32:54
Python
UTF-8
Python
false
false
2,733
py
#!/usr/bin/env python3 import random from time import time def arrayAleatorio(array, tam): for x in range (0, tam): array[x] = random.randint(0, 100) return array def burbuja(array): for passnum in range(len(array)-1,0,-1): for i in range(passnum): if array[i]>array[i+1]: temp = array[i] array[i] = array[i+1] array[i+1] = temp def insercion(array): for index in range(1, len(array)): currentvalue = array[index] position = index while position > 0 and array[position-1] > currentvalue: array[position] = array[position-1] position = position-1 array[position] = currentvalue def seleccion(array): for fillslot in range(len(array)-1, 0, -1): positionOfMax = 0 for location in range(1, fillslot + 1): if array[location] > array[positionOfMax]: positionOfMax = location temp = array[fillslot] array[fillslot] = array[positionOfMax] array[positionOfMax] = temp def quickSort(array): quickSortHelper(array, 0, len(array)-1) def quickSortHelper(array, first, last): if first < last: splitpoint = partition(array,first,last) quickSortHelper(array, first, splitpoint-1) quickSortHelper(array, splitpoint+1, last) def partition(array,first,last): pivotvalue = array[first] leftmark = first+1 rightmark = last done = False while not done: while leftmark <= rightmark and array[leftmark] <= pivotvalue: leftmark = leftmark + 1 while array[rightmark] >= pivotvalue and rightmark >= leftmark: rightmark = rightmark -1 if rightmark < leftmark: done = True else: temp = array[leftmark] array[leftmark] = array[rightmark] array[rightmark] = temp temp = array[first] array[first] = array[rightmark] array[rightmark] = temp return rightmark if __name__ == '__main__': tam = 5000 array = [0] * tam array = arrayAleatorio(array, tam) inicio = time() burbuja(array) fin = time() #print("Burbuja:\t", array) print("Burbuja: ", fin - inicio) array = arrayAleatorio(array, 15) inicio = time() insercion(array) fin = time() #print("Inserción:\t", array) print("Inserción: ", fin - inicio) array = arrayAleatorio(array, 15) inicio = time() seleccion(array) fin = time() #print("Selección:\t", array) print("Selección: ", fin - inicio) array = arrayAleatorio(array, 15) inicio = time() quickSort(array) fin = time() #print("QuickSort:\t", array) print("QuickSort: ", fin - inicio)
[ "aagomezies@gmail.com" ]
aagomezies@gmail.com
3496cddcadb72837cd6c0a2f3e8ee009aa71c49a
46daa7bc5b465c0ae36a988754167259b9fc6c5b
/python-cookbook/3-10.py
d589e3707dcf5ea32d314aa2a353c80636ef3a9e
[]
no_license
loveiset/corePythonExercises
30acd883fe6979446be0a564d22578cf1061c7f4
e3474568a0f56d22804a5021cb571cd75617f365
refs/heads/master
2016-09-06T20:02:17.036304
2015-10-15T08:00:08
2015-10-15T08:00:08
40,879,496
1
1
null
null
null
null
UTF-8
Python
false
false
338
py
import time,os,sys def main(cmd,inc=60): while True: os.system(cmd) time.sleep(inc) if __name__=='__main__': numargs=len(sys.argv)-1 if numargs<1 or numargs>2: print 'usage: '+sys.argv[0]+' cmd [seconds]' sys.exit(1) cmd=sys.argv[1] if numargs<3: main(cmd) else: inc=int(sys.argv[2]) main(cmd,inc)
[ "loveiset@qq.com" ]
loveiset@qq.com
afce243a4d7ee76553735dace72d9cef5b52557d
28e8ab381a8c1b4321cd83acff6aa33468166d6b
/python3.4Smartforest/lib/python3.4/site-packages/django/contrib/contenttypes/fields.py
0e221dbc92678bea486b69b37beddeebeb62fc33
[ "MIT" ]
permissive
letouriste001/SmartForest_2.0
343e13bc085d753be2af43aecfb74a5fffaa5e3b
109b78bf1e8c8404800f377ab969395ccbb617be
refs/heads/master
2020-12-21T16:54:22.865824
2016-08-11T14:17:45
2016-08-11T14:17:45
59,734,259
0
0
null
null
null
null
UTF-8
Python
false
false
24,528
py
from __future__ import unicode_literals from collections import defaultdict from django.contrib.contenttypes.models import ContentType from django.core import checks from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist from django.db import DEFAULT_DB_ALIAS, models, router, transaction from django.db.models import DO_NOTHING, signals from django.db.models.base import ModelBase, make_foreign_order_accessors from django.db.models.fields.related import ( ForeignObject, ForeignObjectRel, ReverseManyToOneDescriptor, lazy_related_operation, ) from django.db.models.query_utils import PathInfo from django.utils.encoding import python_2_unicode_compatible, smart_text from django.utils.functional import cached_property @python_2_unicode_compatible class GenericForeignKey(object): """ Provide a generic many-to-one relation through the ``content_type`` and ``object_id`` fields. This class also doubles as an accessor to the related object (similar to ForwardManyToOneDescriptor) by adding itself as a model attribute. """ # Field flags auto_created = False concrete = False editable = False hidden = False is_relation = True many_to_many = False many_to_one = True one_to_many = False one_to_one = False related_model = None remote_field = None def __init__(self, ct_field='content_type', fk_field='object_id', for_concrete_model=True): self.ct_field = ct_field self.fk_field = fk_field self.for_concrete_model = for_concrete_model self.editable = False self.rel = None self.column = None def contribute_to_class(self, cls, name, **kwargs): self.name = name self.model = cls self.cache_attr = "_%s_cache" % name cls._meta.add_field(self, virtual=True) # Only run pre-initialization field assignment on non-abstract models if not cls._meta.abstract: signals.pre_init.connect(self.instance_pre_init, sender=cls) setattr(cls, name, self) def get_filter_kwargs_for_object(self, obj): """See corresponding method on Field""" return { self.fk_field: getattr(obj, self.fk_field), self.ct_field: getattr(obj, self.ct_field), } def get_forward_related_filter(self, obj): """See corresponding method on RelatedField""" return { self.fk_field: obj.pk, self.ct_field: ContentType.objects.get_for_model(obj).pk, } def __str__(self): model = self.model app = model._meta.app_label return '%s.%s.%s' % (app, model._meta.object_name, self.name) def check(self, **kwargs): errors = [] errors.extend(self._check_field_name()) errors.extend(self._check_object_id_field()) errors.extend(self._check_content_type_field()) return errors def _check_field_name(self): if self.name.endswith("_"): return [ checks.Error( 'Field names must not end with an underscore.', hint=None, obj=self, id='fields.E001', ) ] else: return [] def _check_object_id_field(self): try: self.model._meta.get_field(self.fk_field) except FieldDoesNotExist: return [ checks.Error( "The GenericForeignKey object ID references the non-existent field '%s'." % self.fk_field, hint=None, obj=self, id='contenttypes.E001', ) ] else: return [] def _check_content_type_field(self): """ Check if field named `field_name` in model `model` exists and is a valid content_type field (is a ForeignKey to ContentType). """ try: field = self.model._meta.get_field(self.ct_field) except FieldDoesNotExist: return [ checks.Error( "The GenericForeignKey content type references the non-existent field '%s.%s'." % ( self.model._meta.object_name, self.ct_field ), hint=None, obj=self, id='contenttypes.E002', ) ] else: if not isinstance(field, models.ForeignKey): return [ checks.Error( "'%s.%s' is not a ForeignKey." % ( self.model._meta.object_name, self.ct_field ), hint=( "GenericForeignKeys must use a ForeignKey to " "'contenttypes.ContentType' as the 'content_type' field." ), obj=self, id='contenttypes.E003', ) ] elif field.remote_field.model != ContentType: return [ checks.Error( "'%s.%s' is not a ForeignKey to 'contenttypes.ContentType'." % ( self.model._meta.object_name, self.ct_field ), hint=( "GenericForeignKeys must use a ForeignKey to " "'contenttypes.ContentType' as the 'content_type' field." ), obj=self, id='contenttypes.E004', ) ] else: return [] def instance_pre_init(self, signal, sender, args, kwargs, **_kwargs): """ Handle initializing an object with the generic FK instead of content_type and object_id fields. """ if self.name in kwargs: value = kwargs.pop(self.name) if value is not None: kwargs[self.ct_field] = self.get_content_type(obj=value) kwargs[self.fk_field] = value._get_pk_val() else: kwargs[self.ct_field] = None kwargs[self.fk_field] = None def get_content_type(self, obj=None, id=None, using=None): if obj is not None: return ContentType.objects.db_manager(obj._state.db).get_for_model( obj, for_concrete_model=self.for_concrete_model) elif id is not None: return ContentType.objects.db_manager(using).get_for_id(id) else: # This should never happen. I love comments like this, don't you? raise Exception("Impossible arguments to GFK.get_content_type!") def get_prefetch_queryset(self, instances, queryset=None): if queryset is not None: raise ValueError("Custom queryset can't be used for this lookup.") # For efficiency, group the instances by content type and then do one # query per model fk_dict = defaultdict(set) # We need one instance for each group in order to get the right db: instance_dict = {} ct_attname = self.model._meta.get_field(self.ct_field).get_attname() for instance in instances: # We avoid looking for values if either ct_id or fkey value is None ct_id = getattr(instance, ct_attname) if ct_id is not None: fk_val = getattr(instance, self.fk_field) if fk_val is not None: fk_dict[ct_id].add(fk_val) instance_dict[ct_id] = instance ret_val = [] for ct_id, fkeys in fk_dict.items(): instance = instance_dict[ct_id] ct = self.get_content_type(id=ct_id, using=instance._state.db) ret_val.extend(ct.get_all_objects_for_this_type(pk__in=fkeys)) # For doing the join in Python, we have to match both the FK val and the # content type, so we use a callable that returns a (fk, class) pair. def gfk_key(obj): ct_id = getattr(obj, ct_attname) if ct_id is None: return None else: model = self.get_content_type(id=ct_id, using=obj._state.db).model_class() return (model._meta.pk.get_prep_value(getattr(obj, self.fk_field)), model) return (ret_val, lambda obj: (obj._get_pk_val(), obj.__class__), gfk_key, True, self.cache_attr) def is_cached(self, instance): return hasattr(instance, self.cache_attr) def __get__(self, instance, instance_type=None): if instance is None: return self try: return getattr(instance, self.cache_attr) except AttributeError: rel_obj = None # Make sure to use ContentType.objects.get_for_id() to ensure that # lookups are cached (see ticket #5570). This takes more code than # the naive ``getattr(instance, self.ct_field)``, but has better # performance when dealing with GFKs in loops and such. f = self.model._meta.get_field(self.ct_field) ct_id = getattr(instance, f.get_attname(), None) if ct_id is not None: ct = self.get_content_type(id=ct_id, using=instance._state.db) try: rel_obj = ct.get_object_for_this_type(pk=getattr(instance, self.fk_field)) except ObjectDoesNotExist: pass setattr(instance, self.cache_attr, rel_obj) return rel_obj def __set__(self, instance, value): ct = None fk = None if value is not None: ct = self.get_content_type(obj=value) fk = value._get_pk_val() setattr(instance, self.ct_field, ct) setattr(instance, self.fk_field, fk) setattr(instance, self.cache_attr, value) class GenericRel(ForeignObjectRel): """ Used by GenericRelation to store information about the relation. """ def __init__(self, field, to, related_name=None, related_query_name=None, limit_choices_to=None): super(GenericRel, self).__init__( field, to, related_name=related_query_name or '+', related_query_name=related_query_name, limit_choices_to=limit_choices_to, on_delete=DO_NOTHING, ) class GenericRelation(ForeignObject): """ Provide a reverse to a relation created by a GenericForeignKey. """ # Field flags auto_created = False many_to_many = False many_to_one = False one_to_many = True one_to_one = False rel_class = GenericRel def __init__(self, to, object_id_field='object_id', content_type_field='content_type', for_concrete_model=True, related_query_name=None, limit_choices_to=None, **kwargs): kwargs['rel'] = self.rel_class( self, to, related_query_name=related_query_name, limit_choices_to=limit_choices_to, ) kwargs['blank'] = True kwargs['on_delete'] = models.CASCADE kwargs['editable'] = False kwargs['serialize'] = False # This construct is somewhat of an abuse of ForeignObject. This field # represents a relation from pk to object_id field. But, this relation # isn't direct, the join is generated reverse along foreign key. So, # the from_field is object_id field, to_field is pk because of the # reverse join. super(GenericRelation, self).__init__( to, from_fields=[object_id_field], to_fields=[], **kwargs) self.object_id_field_name = object_id_field self.content_type_field_name = content_type_field self.for_concrete_model = for_concrete_model def check(self, **kwargs): errors = super(GenericRelation, self).check(**kwargs) errors.extend(self._check_generic_foreign_key_existence()) return errors def _check_generic_foreign_key_existence(self): target = self.remote_field.model if isinstance(target, ModelBase): fields = target._meta.virtual_fields if any(isinstance(field, GenericForeignKey) and field.ct_field == self.content_type_field_name and field.fk_field == self.object_id_field_name for field in fields): return [] else: return [ checks.Error( ("The GenericRelation defines a relation with the model " "'%s.%s', but that model does not have a GenericForeignKey.") % ( target._meta.app_label, target._meta.object_name ), hint=None, obj=self, id='contenttypes.E004', ) ] else: return [] def resolve_related_fields(self): self.to_fields = [self.model._meta.pk.name] return [(self.remote_field.model._meta.get_field(self.object_id_field_name), self.model._meta.pk)] def get_path_info(self): opts = self.remote_field.model._meta target = opts.pk return [PathInfo(self.model._meta, opts, (target,), self.remote_field, True, False)] def get_reverse_path_info(self): opts = self.model._meta from_opts = self.remote_field.model._meta return [PathInfo(from_opts, opts, (opts.pk,), self, not self.unique, False)] def get_choices_default(self): return super(GenericRelation, self).get_choices(include_blank=False) def value_to_string(self, obj): qs = getattr(obj, self.name).all() return smart_text([instance._get_pk_val() for instance in qs]) def contribute_to_class(self, cls, name, **kwargs): kwargs['virtual_only'] = True super(GenericRelation, self).contribute_to_class(cls, name, **kwargs) self.model = cls setattr(cls, self.name, ReverseGenericManyToOneDescriptor(self.remote_field)) # Add get_RELATED_order() and set_RELATED_order() methods if the model # on the other end of this relation is ordered with respect to this. def matching_gfk(field): return ( isinstance(field, GenericForeignKey) and self.content_type_field_name == field.ct_field and self.object_id_field_name == field.fk_field ) def make_generic_foreign_order_accessors(related_model, model): if matching_gfk(model._meta.order_with_respect_to): make_foreign_order_accessors(model, related_model) lazy_related_operation(make_generic_foreign_order_accessors, self.model, self.remote_field.model) def set_attributes_from_rel(self): pass def get_internal_type(self): return "ManyToManyField" def get_content_type(self): """ Return the content type associated with this field's model. """ return ContentType.objects.get_for_model(self.model, for_concrete_model=self.for_concrete_model) def get_extra_restriction(self, where_class, alias, remote_alias): field = self.remote_field.model._meta.get_field(self.content_type_field_name) contenttype_pk = self.get_content_type().pk cond = where_class() lookup = field.get_lookup('exact')(field.get_col(remote_alias), contenttype_pk) cond.add(lookup, 'AND') return cond def bulk_related_objects(self, objs, using=DEFAULT_DB_ALIAS): """ Return all objects related to ``objs`` via this ``GenericRelation``. """ return self.remote_field.model._base_manager.db_manager(using).filter(**{ "%s__pk" % self.content_type_field_name: ContentType.objects.db_manager(using).get_for_model( self.model, for_concrete_model=self.for_concrete_model).pk, "%s__in" % self.object_id_field_name: [obj.pk for obj in objs] }) class ReverseGenericManyToOneDescriptor(ReverseManyToOneDescriptor): """ Accessor to the related objects manager on the one-to-many relation created by GenericRelation. In the example:: class Post(Model): comments = GenericRelation(Comment) ``post.comments`` is a ReverseGenericManyToOneDescriptor instance. """ @cached_property def related_manager_cls(self): return create_generic_related_manager( self.rel.model._default_manager.__class__, self.rel, ) def create_generic_related_manager(superclass, rel): """ Factory function to create a manager that subclasses another manager (generally the default manager of a given model) and adds behaviors specific to generic relations. """ class GenericRelatedObjectManager(superclass): def __init__(self, instance=None): super(GenericRelatedObjectManager, self).__init__() self.instance = instance self.model = rel.model content_type = ContentType.objects.db_manager(instance._state.db).get_for_model( instance, for_concrete_model=rel.field.for_concrete_model) self.content_type = content_type self.content_type_field_name = rel.field.content_type_field_name self.object_id_field_name = rel.field.object_id_field_name self.prefetch_cache_name = rel.field.attname self.pk_val = instance._get_pk_val() self.core_filters = { '%s__pk' % self.content_type_field_name: content_type.id, self.object_id_field_name: self.pk_val, } def __call__(self, **kwargs): # We use **kwargs rather than a kwarg argument to enforce the # `manager='manager_name'` syntax. manager = getattr(self.model, kwargs.pop('manager')) manager_class = create_generic_related_manager(manager.__class__, rel) return manager_class(instance=self.instance) do_not_call_in_templates = True def __str__(self): return repr(self) def get_queryset(self): try: return self.instance._prefetched_objects_cache[self.prefetch_cache_name] except (AttributeError, KeyError): db = self._db or router.db_for_read(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).get_queryset().using(db).filter(**self.core_filters) def get_prefetch_queryset(self, instances, queryset=None): if queryset is None: queryset = super(GenericRelatedObjectManager, self).get_queryset() queryset._add_hints(instance=instances[0]) queryset = queryset.using(queryset._db or self._db) query = { '%s__pk' % self.content_type_field_name: self.content_type.id, '%s__in' % self.object_id_field_name: set(obj._get_pk_val() for obj in instances) } # We (possibly) need to convert object IDs to the type of the # instances' PK in order to match up instances: object_id_converter = instances[0]._meta.pk.to_python return (queryset.filter(**query), lambda relobj: object_id_converter(getattr(relobj, self.object_id_field_name)), lambda obj: obj._get_pk_val(), False, self.prefetch_cache_name) def add(self, *objs, **kwargs): bulk = kwargs.pop('bulk', True) db = router.db_for_write(self.model, instance=self.instance) def check_and_update_obj(obj): if not isinstance(obj, self.model): raise TypeError("'%s' instance expected, got %r" % ( self.model._meta.object_name, obj )) setattr(obj, self.content_type_field_name, self.content_type) setattr(obj, self.object_id_field_name, self.pk_val) if bulk: pks = [] for obj in objs: if obj._state.adding or obj._state.db != db: raise ValueError( "%r instance isn't saved. Use bulk=False or save " "the object first." % obj ) check_and_update_obj(obj) pks.append(obj.pk) self.model._base_manager.using(db).filter(pk__in=pks).update(**{ self.content_type_field_name: self.content_type, self.object_id_field_name: self.pk_val, }) else: with transaction.atomic(using=db, savepoint=False): for obj in objs: check_and_update_obj(obj) obj.save() add.alters_data = True def remove(self, *objs, **kwargs): if not objs: return bulk = kwargs.pop('bulk', True) self._clear(self.filter(pk__in=[o.pk for o in objs]), bulk) remove.alters_data = True def clear(self, **kwargs): bulk = kwargs.pop('bulk', True) self._clear(self, bulk) clear.alters_data = True def _clear(self, queryset, bulk): db = router.db_for_write(self.model, instance=self.instance) queryset = queryset.using(db) if bulk: # `QuerySet.delete()` creates its own atomic block which # contains the `pre_delete` and `post_delete` signal handlers. queryset.delete() else: with transaction.atomic(using=db, savepoint=False): for obj in queryset: obj.delete() _clear.alters_data = True def set(self, objs, **kwargs): # Force evaluation of `objs` in case it's a queryset whose value # could be affected by `manager.clear()`. Refs #19816. objs = tuple(objs) bulk = kwargs.pop('bulk', True) clear = kwargs.pop('clear', False) db = router.db_for_write(self.model, instance=self.instance) with transaction.atomic(using=db, savepoint=False): if clear: self.clear() self.add(*objs, bulk=bulk) else: old_objs = set(self.using(db).all()) new_objs = [] for obj in objs: if obj in old_objs: old_objs.remove(obj) else: new_objs.append(obj) self.remove(*old_objs) self.add(*new_objs, bulk=bulk) set.alters_data = True def create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).create(**kwargs) create.alters_data = True def get_or_create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).get_or_create(**kwargs) get_or_create.alters_data = True def update_or_create(self, **kwargs): kwargs[self.content_type_field_name] = self.content_type kwargs[self.object_id_field_name] = self.pk_val db = router.db_for_write(self.model, instance=self.instance) return super(GenericRelatedObjectManager, self).using(db).update_or_create(**kwargs) update_or_create.alters_data = True return GenericRelatedObjectManager
[ "aubert.christophe.pro@gmail.com" ]
aubert.christophe.pro@gmail.com
a230e6aafa3e03bdd9995d307c925a4d98840639
81f8276be090ff9fa960d83db45bfe0b3c69ff39
/test.py
9d480a3922a04ae7c87c67955f1914d97189c9ae
[]
no_license
jon--lee/mlb-call-classifier
1860c15b2f889a2b37daaaaefaed23cb19e808e5
28e15a908127a2ca78de92aee39c5dff516f6bf2
refs/heads/master
2020-06-07T03:04:54.034548
2015-07-23T00:06:54
2015-07-23T00:06:54
38,954,788
1
0
null
null
null
null
UTF-8
Python
false
false
100
py
import classifier import neuralpy import grapher grapher.graph(filepath='results/bucknor-93-R.txt')
[ "123abcjonathanlee@gmail.com" ]
123abcjonathanlee@gmail.com
43183ccf971f9077b211e98ea3d6a03e7bac155e
1ef309f94cd545e961acab91d8bf7080c573bd9d
/storeproject/admins/urls.py
65cc779dc58c20fdd2309dcf28e5eeb2764ae78b
[]
no_license
lxd632484901/storeproject
3e4cec0dfd0b23431412465db2eb4760206080ee
019ec9b9b506dc2f987baf51bfc17e820d774177
refs/heads/master
2022-02-24T02:15:13.644768
2019-09-23T01:24:32
2019-09-23T01:24:32
208,996,682
0
0
null
null
null
null
UTF-8
Python
false
false
885
py
"""shopping_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin from admins import views from store.views import * urlpatterns = [ url(r'^$',views.index,name='index'), url(r'^base/$', views.base, name='base'), ]
[ "15998194741m@sina.cn" ]
15998194741m@sina.cn
497277a27e50f16bd4dac4167ba204b4b27a60da
80338a9379508bdf5d40e055e12f2621dee01daa
/usernameless/__init__.py
aadcfca92bdcc1431f589d7f88dbb0d88b56edf3
[ "MIT" ]
permissive
johnnncodes/django-usernameless
6ec75780edfec667ba653e50b0496e788832a36c
cf7b0904030e640ce51bf20c36521daf6abf447f
refs/heads/master
2021-05-26T22:30:08.415853
2013-10-26T02:36:45
2013-10-26T02:54:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
# -*- coding: utf-8 -*- __title__ = 'usernameless' __version__ = '0.1.0' __author__ = 'Marconi Moreto'
[ "caketoad@gmail.com" ]
caketoad@gmail.com
220d417e2a532c64b69fe77a6dbb261b6f5561fc
a360a22af5e0b385db438b1324564ef317ff2f38
/bancor_module/migrations/0007_bancor_tsymbol.py
3b1d42b27ed85223c4faa9f0e0b7bf186e2d5cc0
[]
no_license
ogglin/exchange_comparison
3eb2d849e731f94e67509e4ce9130e33bb37bbaf
f3feae64aff26b574f7ecd24e6f7aff7bb95ec65
refs/heads/master
2023-04-26T07:45:06.229584
2021-05-31T18:52:29
2021-05-31T18:52:29
287,036,194
0
1
null
null
null
null
UTF-8
Python
false
false
408
py
# Generated by Django 3.1 on 2021-02-20 09:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bancor_module', '0006_bancor_volume'), ] operations = [ migrations.AddField( model_name='bancor', name='tsymbol', field=models.CharField(blank=True, max_length=100, null=True), ), ]
[ "server.ares@gmail.com" ]
server.ares@gmail.com
43fb2c1c4455250a9f92bec7c8fcdf6199268310
8d223de1565567926baefef6fef9f3586c653706
/server/crypto.py
99af1ef8d4337786784b555203be98d8cc18344b
[]
no_license
txuanson/money_exchange_socket
9766997b058387dd7db5a05243f77bde4828925c
5dc100ce4de729ed653d27fc58dfcfcfb237c990
refs/heads/master
2023-07-10T15:33:58.413999
2021-08-15T15:13:10
2021-08-15T15:13:10
395,272,826
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
import bcrypt def hash_password(password: str) -> str: return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8') def compare_password(password: str, hashed_password: str)-> bool: return bcrypt.checkpw(password.encode('utf-8'), hashed_password.encode('utf-8'))
[ "khatmausr502@gmail.com" ]
khatmausr502@gmail.com
4f43cadd7ce7a2b3252a0896805b3af46be81b92
ff2eb3a755d739d9eafc0c7673e86e0e439d119f
/is_ironman.py
a2b4a51c9a186600ad84fc8b715f31fc92c63f79
[]
no_license
telac/discord-group-ironman-bot
48a3d8944066ec91776b08c4efdd6a2c67423d39
dc8e0595b85a4ce87a56e52f4d9b738317062cfb
refs/heads/master
2022-12-01T22:43:39.351594
2020-08-17T14:46:22
2020-08-17T14:46:22
288,027,323
0
0
null
null
null
null
UTF-8
Python
false
false
2,203
py
from asyncio import sleep from datetime import datetime from configparser import ConfigParser import requests from bs4 import BeautifulSoup from discord.ext import commands, tasks def config(section, filename='conf.ini'): parser = ConfigParser() parser.read(filename) conf = {} if parser.has_section(section): parameters = parser.items(section) for param in parameters: conf[param[0]] = param[1] else: raise Exception("config not found!") return conf bot = commands.Bot("!") conf = config('group_ironman') def get_daily_msg(): now = datetime.now() str_time = now.strftime("%d-%m-%Y, %H:%M:%S") daily_update = "ironman status: \n" if is_group_ironman(): daily_update += "is out!!" else: daily_update += "is not out yet. Checking again in 1 hour! \n" daily_update += f"last updated {str_time}" return daily_update def is_group_ironman(): res = requests.get("https://secure.runescape.com/m=hiscore_oldschool/overall") soup = BeautifulSoup(res.text, 'html.parser') search_res = soup.find_all('div', class_='ironman-nav') if "group" in search_res[0].get_text().lower(): return True class DailyChecker(commands.Cog): def __init__(self, bot, channel): self.bot = bot self.check_daily_ironman.start() self.channel = channel @tasks.loop(hours=1) async def check_daily_ironman(self): channel = self.bot.get_channel(int(self.channel)) message = await channel.fetch_message(conf['msg']) msg = get_daily_msg() await message.edit(content=msg) @bot.event async def on_ready(): print('We have logged in as {0.user}'.format(bot)) bot.add_cog(DailyChecker(bot, conf['channel'])) @bot.event async def on_message(message): if message.author == bot.user: return if "ironman" in message.content.lower(): if is_group_ironman(): await message.channel.send('group ironman is out!') else: await message.channel.send('group ironman is not out yet :(') await bot.process_commands(message) if __name__ == "__main__": bot.run(conf['token'])
[ "ca.westerlund@gmail.com" ]
ca.westerlund@gmail.com
eb2e7d1b25fa6419ac1847667a5fe019af42f82f
19bc1dfbf8a8b4b1bfc9d6ead51479c72602b12e
/tests/test_resource_analysis.py
fea2cef5999b8d3a27c8c10067bde6f075b62ce6
[ "MIT" ]
permissive
procha2/caper
a5297d6cfe7cf649ac5ac3544558f513b427713d
e9ea0baa3517178ce7b850df8a59eba6479fbcb6
refs/heads/master
2023-08-10T17:37:40.840958
2021-07-01T22:57:45
2021-07-01T22:57:45
300,260,107
0
0
MIT
2020-10-01T11:48:13
2020-10-01T11:48:12
null
UTF-8
Python
false
false
3,119
py
"""Test is based on a metadata JSON file generated from running atac-seq-pipeline v1.8.0 with the following input JSON. gs://encode-pipeline-test-samples/encode-atac-seq-pipeline/ENCSR356KRQ_subsampled_caper.json """ import pytest from caper.resource_analysis import LinearResourceAnalysis, ResourceAnalysis def test_resource_analysis_abstract_class(gcp_res_analysis_metadata): with pytest.raises(TypeError): # abstract base-class ResourceAnalysis() def test_resource_analysis_analyze_task(gcp_res_analysis_metadata): analysis = LinearResourceAnalysis() analysis.collect_resource_data([gcp_res_analysis_metadata]) result_align1 = analysis.analyze_task( 'atac.align', in_file_vars=['fastqs_R1'], reduce_in_file_vars=None, target_resources=['stats.max.mem', 'stats.mean.cpu_pct'], ) assert result_align1['x'] == {'fastqs_R1': [15643136, 18963919]} assert 'stats.mean.cpu_pct' in result_align1['y'] assert 'stats.max.mem' in result_align1['y'] assert 'stats.max.disk' not in result_align1['y'] assert list(result_align1['y'].keys()) == list(result_align1['coeffs'].keys()) assert result_align1['coeffs']['stats.mean.cpu_pct'][0][0] == pytest.approx( 1.6844513715565233e-06 ) assert result_align1['coeffs']['stats.mean.cpu_pct'][1] == pytest.approx( 42.28561239506905 ) assert result_align1['coeffs']['stats.max.mem'][0][0] == pytest.approx( 48.91222341236991 ) assert result_align1['coeffs']['stats.max.mem'][1] == pytest.approx( 124314029.09791338 ) result_align2 = analysis.analyze_task( 'atac.align', in_file_vars=['fastqs_R2'], reduce_in_file_vars=sum ) assert result_align2['x'] == {'sum(fastqs_R2)': [16495088, 20184668]} assert 'stats.mean.cpu_pct' not in result_align2['y'] assert 'stats.max.mem' in result_align2['y'] assert 'stats.max.disk' in result_align2['y'] assert list(result_align2['y'].keys()) == list(result_align2['coeffs'].keys()) result_align_star = analysis.analyze_task('atac.align*', reduce_in_file_vars=max) assert result_align_star['x'] == { 'max(chrsz,fastqs_R1,fastqs_R2,idx_tar,tmp_fastqs)': [ 32138224, 39148587, 3749246230, 3749246230, ] } def test_resource_analysis_analyze(gcp_res_analysis_metadata): """Test method analyze() which analyze all tasks defined in in_file_vars. """ analysis = LinearResourceAnalysis() analysis.collect_resource_data([gcp_res_analysis_metadata]) result = analysis.analyze( in_file_vars={ 'atac.align*': ['fastqs_R1', 'fastqs_R2'], 'atac.filter*': ['bam'], } ) assert len(result) == 2 assert result['atac.align*']['x'] == { 'sum(fastqs_R1,fastqs_R2)': [32138224, 39148587, 32138224, 39148587] } assert result['atac.filter*']['x'] == { 'sum(bam)': [61315022, 76789196, 61315022, 76789196] } result_all = analysis.analyze() # 38 tasks in total assert len(result_all) == 38
[ "leepc12@gmail.com" ]
leepc12@gmail.com
2342a695f7ae543b2d1627da8416831724d367c1
2904bc85e3a688a25dde16497a29c72bf4a5d27c
/scenic/model_lib/layers/nn_ops.py
e17ba90140baf732dfb65469ee7f3e72dd730a59
[ "Apache-2.0" ]
permissive
shreyasarora/scenic
2fda9ad6982e4391bb98c032adf59d2e8be3d3ff
c3ae6d7b5dc829fafe204a92522a5983959561a0
refs/heads/main
2023-08-28T21:00:32.857689
2021-11-10T16:59:03
2021-11-10T17:00:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,188
py
# Copyright 2021 The Scenic Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common neural network funcitonality that doesn't require parameters.""" import flax.linen as nn import jax from jax import lax import jax.numpy as jnp import numpy as np def extract_image_patches(lhs, rhs_shape, strides, padding, rhs_dilation, data_format='NHWC'): """Extract patches of size `rhs_shape` from `lhs`. Args: lhs: A 4-D Tensor; With shape `[batch, in_rows, in_cols, depth]. rhs_shape: tuple; Size of the sliding window for each dimension of `lhs`. strides: tuple; How far the centers of two consecutive patches are in the lhs. Must be: `[1, stride_rows, stride_cols, 1]`. padding: str; The type of padding algorithm to use. We specify the size-related attributes as: ```python ksizes = [1, ksize_rows, ksize_cols, 1] strides = [1, strides_rows, strides_cols, 1] rates = [1, rates_rows, rates_cols, 1]``` rhs_dilation: A 1-D Tensor of length 4; Must be: `[1, rate_rows, rate_cols, 1]`. This is the input stride, specifying how far two consecutive patch samples are in the input. Equivalent to extracting patches with `patch_sizes_eff = patch_sizes + (patch_sizes - 1) * (rates - 1)`, followed by subsampling them spatially by a factor of `rates`. This is equivalent to `rate` in dilated (a.k.a. Atrous) convolutions. data_format: str; The format of the `lhs`. Must be either `'NHWC'` or `'NCHW'`. Returns: A 4-D Tensor. Has the same type and data format as `lhs`, and with shape `[batch, num_patches_col, num_patches_row, rhs_shape[1], rhs_shape[2], C]`. """ num_dims = lhs.ndim num_spatial_dims = num_dims - 2 batch_dim = data_format.index('N') feature_dim = data_format.index('C') depth = lhs.shape[feature_dim] if rhs_shape[batch_dim] != 1 or rhs_shape[feature_dim] != 1: raise NotImplementedError( 'Current implementation does not yet support window sizes > 1 in ' 'the batch and depth dimensions.') if strides[batch_dim] != 1 or strides[feature_dim] != 1: raise NotImplementedError( 'Current implementation does not support strides in the batch ' 'and depth dimensions.') if rhs_dilation[batch_dim] != 1 or rhs_dilation[feature_dim] != 1: raise NotImplementedError( 'Current implementation does not support dilations in the batch ' 'and depth dimensions.') # Replicating tensorflow's implementation. lhs_perm = lax.conv_general_permutations( (data_format, 'HWIO', data_format))[0] kernel_shape = [rhs_shape[i] for i in lhs_perm[2:]] kernel_size = np.product(kernel_shape) conv_filter_shape = kernel_shape[:] conv_filter_shape.append(1) conv_filter_shape.append(kernel_size * depth) iota_kernel_shape = (kernel_size, depth, kernel_size) conv_filter = lax.eq( lax.broadcasted_iota(jnp.int32, iota_kernel_shape, 0), lax.broadcasted_iota(jnp.int32, iota_kernel_shape, 2), ) conv_filter = lax.convert_element_type(conv_filter, lhs.dtype) conv_filter = lax.reshape(conv_filter, conv_filter_shape) dim_num = lax.conv_dimension_numbers(lhs.shape, conv_filter.shape, (data_format, 'HWIO', data_format)) conv_strides = [0] * num_spatial_dims conv_rhs_dilation = [0] * num_spatial_dims for i in range(num_spatial_dims): dim = dim_num.lhs_spec[i + 2] conv_strides[i] = strides[dim] conv_rhs_dilation[i] = rhs_dilation[dim] conv = lax.conv_general_dilated(lhs, conv_filter, conv_strides, padding, None, conv_rhs_dilation, dim_num, depth) conv_dims = list(conv.shape[:-1]) conv_dims.append(depth) conv_dims.extend(kernel_shape) conv = lax.reshape(conv, conv_dims) permutation = list(range(len(conv_dims))) depth_dim = permutation.pop(-3) permutation.append(depth_dim) return lax.transpose(conv, permutation) def extract_patches(lhs, rhs_shape, strides=(1, 1)): """Extracts patches from an image using a convolution operator. Args: lhs: A tensor of images of shapes (B, H, W, C). rhs_shape: The size of the patches to extract (h, w). strides: The shift between extracted patches (s1, s2) Returns: All the patches in a tensor of dimension (B, (H - h + 1) // s1, (W - w + 1) // s2, h, w, C). """ # [batch, channels, height, width] lhs = jnp.moveaxis(lhs, -1, 1) d = lhs.shape[1] h, w = rhs_shape # Construct the lookup conv weights. dim_out = jnp.arange(d * h * w).reshape((-1, 1, 1, 1)) dim_in = jnp.arange(d).reshape((1, -1, 1, 1)) i = jnp.arange(h).reshape((1, 1, -1, 1)) j = jnp.arange(w).reshape((1, 1, 1, -1)) weights = ((w * i + j) * d + dim_in == dim_out).astype(jnp.float32) # [batch, h * w * d, (H - h + 1) // s1, (W - w + 1) // s2] concatenated_patches = lax.conv( lhs, weights, window_strides=strides, padding='VALID') # [batch, (H - h + 1) // s1, (W - w + 1) // s2, h * w * d] concatenated_patches = jnp.moveaxis(concatenated_patches, 1, -1) # [batch, (H - h + 1) // s1, (W - w + 1) // s2, h, w, d] shape = concatenated_patches.shape[:3] + (h, w, d) return concatenated_patches.reshape(shape) def compute_relative_positions(query_spatial_shape, key_spatial_shape, spatial_axis=None): """Generate relative positions of queries and keys. For relative attention, the pairwise positional distance between each query and key point is used in the attention weight computation. This function generates the positional distances between each query-key pair, given the offset of first position in the query with respect to first position in the key. For example, if the query and key are 1d and query has 2 entries and the key has 3 entries, the relative distance matrix is: [[0, 1, 2], [-1, 0, 1]] where each [i, j] entry = j - i (j = key index, i = query index). Note that the values in this matrix are being used by an embedding lookup, so we shift them such that the smallest index is zero: [[1, 2, 3], [0, 1, 2]] This function produces the multi-dimensional distance for a query and key. It factorizes the distance computation such that there is a positional distance per dimension. An input with 3 dimensions will have a total of 3 distances, 1 per dimension. Args: query_spatial_shape: tuple; Indicating the spatial shape of the query. key_spatial_shape: tuple; Indicating the spatial shape of the key. spatial_axis: tuple; The axis over which the distance is calculated. Default is None, which means distances over all axis is calculated. Returns: a numpy (np) int array of shape [len(spatial_axis), query_spatial_shape(spatial_axis), key_spatial_shape(spatial_axis)] holding the distance between each query and key pair across dimensions that are determined by `spatial_axis`, where the query and key are indexed by their position. The smallest value in the array is zero. """ assert len(query_spatial_shape) == len(key_spatial_shape) if spatial_axis is None: spatial_axis = range(len(query_spatial_shape)) for sa in spatial_axis: if not 0 <= sa < len(query_spatial_shape): raise ValueError('Element of `spatial_axis` should be between 0 and ' 'length of `query_spatial_shape`.') num_dims = len(spatial_axis) # Keep only dimensions we are iterested in. query_spatial_shape = tuple([query_spatial_shape[a] for a in spatial_axis]) key_spatial_shape = tuple([key_spatial_shape[a] for a in spatial_axis]) total_queries = np.prod(query_spatial_shape) total_keys = np.prod(key_spatial_shape) # A distance per dimension in the flattened query-key arrays. relative_positions = np.empty((num_dims, total_queries, total_keys), dtype=np.int32) # Convert flattened indices to multi-dimension coordinate indices. coordinates_query = np.unravel_index( range(total_queries), query_spatial_shape) coordinates_key = np.unravel_index(range(total_keys), key_spatial_shape) # Compute distances between each query-key point. for dim in range(num_dims): for flat_index_query in range(total_queries): for flat_index_key in range(total_keys): relative_positions[dim, flat_index_query, flat_index_key] = ( coordinates_key[dim][flat_index_key] - coordinates_query[dim][flat_index_query]) relative_positions[dim] = relative_positions[dim] # These indices are being used by an embedding lookup, so shift the indices # such that the smallest index is zero. relative_positions -= np.amin(relative_positions, axis=(1, 2), keepdims=True) # Reshape to original dim. relative_positions = relative_positions.reshape((num_dims,) + query_spatial_shape + key_spatial_shape) return relative_positions def patch_image(inputs, inputs_shape, patch_size, strides=None, padding='VALID', mode='i2p'): """Applies patching operation on the input. Args: inputs: Input data. inputs_shape: tuple; Shape of the input data. patch_size: tuple; size of the patch: (height, width). strides: tuple; Specifies how far two consecutive patches are in the input. padding: str; The type of padding algorithm to use. mode: str; Either 'i2p' to convert the input image to patches or 'p2i' to convert the patched image to the original shape. Returns: Patched image if mode='i2p', original image if mode='p2i'. """ strides = strides or patch_size def i2p(x): return extract_image_patches( lhs=x.astype(jnp.float64), rhs_shape=(1,) + patch_size + (1,), strides=(1,) + strides + (1,), padding=padding, rhs_dilation=(1,) * inputs.ndim, data_format='NHWC') if mode == 'i2p': _, inputs_w, inputs_h, _ = inputs.shape patch_w, patch_h = patch_size if (inputs_w < patch_w or inputs_h < patch_h): raise ValueError(f'Patch height and width ({patch_w} and {patch_h}) ' 'should be smaller thatn inputs height and width' f' ({inputs_w} and {inputs_h}).') outputs = i2p(inputs) elif mode == 'p2i': _, fn_vjp = jax.vjp(i2p, jnp.ones(inputs_shape)) overlap_count = fn_vjp(jnp.ones_like(inputs))[0] outputs = fn_vjp(inputs)[0] / overlap_count else: raise ValueError() return outputs def space_to_depth(inputs, window_shape, strides=None, padding='VALID'): """Applies space to depth. Args: inputs: Input data with dimensions `[bs, window dims, ..., features]`. window_shape: tuple; Defining the window to reduce over. strides: tuple, A sequence of `n` integers, representing the inter-window strides (default: window_shape). padding: str; Either `'SAME'`, `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension (default: `'VALID'`). Returns: An output image with less or equal spacial dimensions as inputs. """ strides = strides or window_shape patched = extract_image_patches( lhs=inputs.astype(jnp.float64), rhs_shape=(1,) + window_shape + (1,), strides=(1,) + strides + (1,), padding=padding, rhs_dilation=(1,) * inputs.ndim, data_format='NHWC') bs, n_patch_h, n_patch_w, _, _, _ = patched.shape return patched.reshape(bs, n_patch_h, n_patch_w, -1) def pooling(inputs, window_shape, pooling_configs=None, strides=None, padding='VALID'): """Applies configurable pooling. Args: inputs: an nd-array; Thego shape of inputs is `[bs, <window dims>, features]` and for presence_weights, the shape is `[bs, <window dims>]`. window_shape: tuple; Defining the window to reduce over. pooling_configs: dict; Configuration for the optional pooling operation. strides: tuple, A sequence of `n` integers, representing the inter-window strides (default: window_shape). padding: str; Either `'SAME'`, `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension (default: `'VALID'`). Returns: An output image with less or equal spacial dimensions as inputs. """ # TODO(dehghani): add positional embedding to other type of pooling? strides = strides or window_shape pooling_type = pooling_configs.get('pooling_type') if pooling_type == 'avg_pooling': x = nn.avg_pool(inputs, window_shape, strides=strides, padding=padding) elif pooling_type == 'max_pooling': x = nn.max_pool(inputs, window_shape, strides=strides, padding=padding) elif pooling_type == 'space_to_depth': x = space_to_depth(inputs, window_shape, strides=strides, padding=padding) else: raise ValueError('Pooling type {} is not defined.'.format(pooling_type)) return x def weighted_max_pool(inputs, weights, window_shape, strides=None, padding='VALID', return_pooled_weights=False): """Pools the input by taking max over a window, w.r.t their inputs' weights. Args: inputs: Input data with dimensions (batch, <window dims>, features). weights: Input weights with dimensions (batch, <window dims>). window_shape: tuple; A shape tuple defining the window to reduce over. strides: tuple; A sequence of `n` integers, representing the inter-window strides (default: `(1, ..., 1)`). padding: str/list(tuple); Either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension (default: `'VALID'`). return_pooled_weights: bool; Also return the pooled weight Returns: The maximum of each window slice. If return_pooled_weights is True, it also returns the maximum of pooled weights. """ assert inputs.shape[:-1] == weights.shape weights = jnp.expand_dims(weights, -1) inputs = inputs * weights outputs = nn.max_pool(inputs, window_shape, strides=strides, padding=padding) if return_pooled_weights: max_weights = nn.max_pool( weights, window_shape, strides=strides, padding=padding) return outputs, max_weights.squeeze(axis=-1) return outputs def weighted_avg_pool(inputs, weights, window_shape, strides=None, padding='VALID', return_pooled_weights=False): """Pools the input by averaging over a window, w.r.t their inputs' weights. Args: inputs: Input data with dimensions (batch, <window dims>, features). weights: Input weights with dimensions (batch, <window dims>). window_shape: tuple; A shape tuple defining the window to reduce over. strides: tuple; A sequence of `n` integers, representing the inter-window strides (default: `(1, ..., 1)`). padding: str/list(tuple); Either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension (default: `'VALID'`). return_pooled_weights: bool; Also return the pooled weight Returns: The average for each window slice. If return_pooled_weights is True, it also returns the sum of pooled weights. """ assert inputs.shape[:-1] == weights.shape weights = jnp.expand_dims(weights, -1) inputs = inputs * weights y = nn.pooling.pool(inputs, 0., lax.add, window_shape, strides, padding) pooled_weights = nn.pooling.pool(weights, 0., lax.add, window_shape, strides, padding) outputs = y / pooled_weights if return_pooled_weights: return outputs, (pooled_weights.squeeze(axis=-1) / np.prod(window_shape)) return outputs def upscale2x_nearest_neighbor(inputs): """Doubles image size by repeating every pixel 2x2 times. Args: inputs: nd-array: Inputs in shape of `[bs, height, width, channels]' Returns: Upscaled inputs, in shape of `[bs, 2*height, 2*width, channels]' """ input_channels = inputs.shape[-1] input_h, input_w = inputs.shape[1], inputs.shape[2] input_nchw = jnp.transpose(inputs, (0, 3, 1, 2)) flat_input_shape = (-1, input_h, input_w, 1) flat_input = jnp.reshape(input_nchw, flat_input_shape) height_scale, width_scale = 2, 2 resize_kernel = jnp.ones((height_scale, width_scale, 1, 1)) strides = (height_scale, width_scale) flat_output = lax.conv_transpose( flat_input, resize_kernel, strides, padding='VALID') output_nchw_shape = (-1, input_channels, height_scale * input_h, width_scale * input_w) output_nchw = jnp.reshape(flat_output, output_nchw_shape) resized_x = jnp.transpose(output_nchw, (0, 2, 3, 1)) # Output: nhwc. return resized_x def central_crop(inputs, target_shape): """Returns a central crop in axis (1, 2). Args: inputs: nd-array; Inputs in shape of `[bs, height, width, channels]'. target_shape: tuple(int); Target shape after crop. Returns: Cropped image. """ h, w = target_shape[1:3] assert h <= inputs.shape[1], f'{h} > {inputs.shape[1]}' assert w <= inputs.shape[2], f'{w} > {inputs.shape[2]}' h0 = (inputs.shape[1] - h) // 2 w0 = (inputs.shape[2] - w) // 2 return inputs[:, h0:(h0 + h), w0:(w0 + w)] def compute_1d_relative_distance(query_len: int, key_len: int) -> np.ndarray: """Generate relative positions of queries and keys for relative attention. Args: query_len: Length of the query. key_len: Length of the key. Returns: A numpy (np) int array of shape [len_q, len_k] holding the distance between each query and key pair, where the query and key are indexed by their position. The smallest value in the array is zero. """ # A distance per dimension in the query-key arrays. relative_positions = ( np.arange(key_len)[np.newaxis, :] - np.arange(query_len)[:, np.newaxis]) # These indices are being used by an embedding lookup, so shift the indices # such that the smallest index is zero. relative_positions -= np.min(relative_positions) return relative_positions
[ "dehghani@google.com" ]
dehghani@google.com
b0e9d034f38256d73cecf9f4255f71cbf66f2f94
f3bd271bf00325881fb5b2533b9ef7f7448a75ec
/classes/_eigensolver1.py
b6ce82292c594e6f6578a8c6eb7978f16397aebd
[]
no_license
obaica/xcp2k
7f99fc9d494859e16b9b0ea8e217b0493f4b2f59
6e15c2c95658f545102595dc1783f5e03a9e6916
refs/heads/master
2020-07-15T17:27:43.378835
2019-02-11T16:32:24
2019-02-11T16:32:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
from xcp2k.inputsection import InputSection class _eigensolver1(InputSection): def __init__(self): InputSection.__init__(self) self.N = None self.N_loop = None self.Diag_method = None self.Eigenvalues = None self.Init_method = None self._name = "EIGENSOLVER" self._keywords = {'Diag_method': 'DIAG_METHOD', 'N_loop': 'N_LOOP', 'Init_method': 'INIT_METHOD', 'Eigenvalues': 'EIGENVALUES', 'N': 'N'}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
4168a6134ffbc963226f819035ab681efd9c2368
85059a2fb09cdf3ba2446bb297b0f052132b20ce
/chapter_2/2_1_simple_message.py
4f598be9b2abbf907b1f00ecf3140a09724b0629
[]
no_license
rauldoblem/python-crash-course
26d54eac58416f8c34e98a0f6c5a66c7e437d101
89c2364b90ff77fc3d54649d196426e6433e8482
refs/heads/master
2020-08-11T03:20:01.833271
2019-09-12T22:56:11
2019-09-12T22:56:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
message = "First message with python" print(message)
[ "marlonricslim@gmail.com" ]
marlonricslim@gmail.com
99884be196977a59e2a749233e3dcdcfc0a19ff2
2b72a92f2bc8b2f0c31ac100b3a17a6a1769d2a8
/first_numbers.py
4a7e62ad4c5c2e52474ba9ebeb720b3a2bb6f18c
[]
no_license
DePotterDev/Python_Crash_Course
623b759f008806436a658de211ae2d07c93ad4a3
76ccb0398e164a10b07d49f582eafc6b7f3290fc
refs/heads/main
2022-12-27T00:00:09.591345
2020-10-08T15:28:58
2020-10-08T15:28:58
302,384,028
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
for value in range(1, 5): print(value) for value in range(6): print(value)
[ "depotter.laurens@gmail.com" ]
depotter.laurens@gmail.com
461c6cec75ee834628870c31c6fd22e0cacb7714
eac51f9c87a522cb656b29ce7880e3216a6e58fa
/Sortedfunc.py
51f50dbf551dd9b9cf484b1afacb69ee2f465b2e
[]
no_license
awsanand2018/MyCodeFiles
947c8b56f67dea8d41418659b05e63b37912d7f5
7d1ed5da7711c31fbcce5d1ababfc12a8f16013f
refs/heads/master
2020-03-26T18:26:44.670337
2018-10-09T08:53:21
2018-10-09T08:53:21
145,213,342
0
1
null
null
null
null
UTF-8
Python
false
false
666
py
num_list=[34,3,53,0,10,1,-34,100,23] num_list1=[34,3,53,0,10,1,-34,100,23] asc_sorted_list=[] dsc_sorted_list=[] def asc_function(list_input): c=0 while list_input: min_value=min(list_input) x=list_input.pop(list_input.index(min_value)) asc_sorted_list.append(x) c+=1 print(asc_sorted_list) def dsc_function(list_input): d=0 while list_input: max_value=max(list_input) y=list_input.pop(list_input.index(max_value)) dsc_sorted_list.append(y) d+=1 print(dsc_sorted_list) asc_function(num_list) dsc_function(num_list1)
[ "noreply@github.com" ]
noreply@github.com
ca86f498a7bd3f6a3e7ad355b0e7a117ce894fd8
36a610b86b5b4dd7c6c295d4b71d1baf01b88f62
/tool_run_model/tool/python3_venv/bin/toco_from_protos
8e83c0ab9ee4789379568a2f24d28441bedaa80c
[]
no_license
nghialuffy/bkdn-ai-contest
cf9530e80c28ebec1024e330ab5655d4aedc03f5
d1d79e022dfc98dfda91a37357d635ae000c5a18
refs/heads/main
2023-07-07T16:03:44.822355
2021-05-21T07:13:58
2021-05-21T07:13:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
307
#!/media/nghialuffy/VMWAVE/BKDN_AI_CONTEST/tool_run_model/python3_venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from tensorflow.lite.toco.python.toco_from_protos import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "nghialuffy@github.com" ]
nghialuffy@github.com
8f31d85510e5812f6fef5ea509e5d9ab779f7249
f8633675678bb57a1e9994a2287da0336e442acb
/DayanAbott1.2 - C_v.py
58955c98e012ffdc517a09f5342f42dbc5a70db3
[]
no_license
MEKogan/Theoretical-Neuroscience-Problems
3eb779be5a1a7851f62470cec3569b10b0a34aee
0da3a5710cf1954782d3fbc411ea83487975f2f9
refs/heads/main
2023-06-06T20:47:44.616732
2021-07-07T14:25:25
2021-07-07T14:25:25
383,820,606
0
0
null
null
null
null
UTF-8
Python
false
false
4,107
py
import numpy as np import scipy as sp import matplotlib.pyplot as plt n = 20 #Number of elements in tau_ref T = 10 #Length of trial, in s dt = .001 #minimum time step, in s t_j, t_p = np.meshgrid(np.arange(0,T,dt), np.arange(n)) #time steps of dt from 0 to T in meshgrid form, in s rate,y = np.meshgrid(np.zeros(len(t_j[0,:])+1), np.arange(n)) #Initializing r(t) array r_0 = 100 #Value r(t) exponentially recovers to, in Hz rate[:,0] = r_0 #Sets first element of each row in rate to r_0 tau_ref = np.arange(1,21,20/n) #Refractory recovery rate array from 1 to 20 in steps of 1, in ms random, x = np.meshgrid(np.zeros(len(t_j[0,:])), np.arange(n)) #Initializing meshgrid of random numbers between 0 and 1 spkt = [] #Initializing array for list of spike times tau, z = np.meshgrid(np.zeros(len(t_j[0,:])+1), np.arange(n)) #Initializing array to track times between spikes #Filling random meshgrid with random elements for j in range(n): for i in range(len(t_j[0,:])): random[j,i] = np.random.rand(1) for j in range(len(tau_ref)): spkt.append([]) for i in range(len(t_j[0,:])): # If r(t) = 0, time since spike is incremented and r(t) begins to exponentially rise if rate[j,i] == 0: tau[j,i+1] = tau[j,i] + dt rate[j,i+1] = r_0 * (1 - np.exp(-tau[j,i+1]) / tau_ref[j]) # If spike occurs, r(t) is set to 0 and exponentially approaches r_0 elif random[j,i] < rate[j,i] * dt: tau[j,i] = 0 rate[j,i+1] = 0 spkt[j].append(t_j[j,i]) # If r(t) = r_0 and spike does not occur, time is incremented and r(t) = r_0 elif rate[j,i] == r_0: tau[j,i+1] = tau[j,i] + dt rate[j,i+1] = rate[j,i] # If r(t) != 0 and != r_0 and spike does not occur, time is incremented and r(t) exponentially approaches r_0 else: tau[j,i+1] = tau[j,i] + dt rate[j,i+1] = r_0 * (1 - np.exp(-tau[j,i + 1] / tau_ref[j])) interspike = [] for j in range(n): interspike.append([]) for i in range(len(spkt[j][:])-1): interspike[j].append(spkt[j][i+1] - spkt[j][i]) #Check array values print(tau_ref) print(len(tau_ref)) print(len(spkt)) #Plot coefficient of variation as a function of tau_ref over range 1 ms to 20 ms inclusive mean = np.zeros(n) #Mean of the interspike intervals for each tau_ref sd = np.zeros(n) #Standard deviation of the interspike intervals for each tau_ref C_v = np.zeros(n) #Coefficient of variation for each tau_ref for j in range(n): mean[j] = np.mean(interspike[j][:]) sd[j] = np.std(interspike[j][:]) C_v[j] = sd[j] / mean[j] print(C_v) plt.plot(tau_ref, C_v) plt.title(r"$C_v$ Plotted Against $\tau_{ref}$") plt.xlabel(r'$\tau_{ref}$ (ms)') plt.ylabel(r'$C_v$') plt.show() #Plot interspike interval histograms for a few different values of tau_ref in this range #For tau_ref = 1 ms plt.hist(interspike[0][:], weights = np.ones(len(interspike[0][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 1$ ms") plt.show() # For tau_ref = 5 ms plt.hist(interspike[4][:], weights = np.ones(len(interspike[4][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 5$ ms") plt.show() #For tau_ref = 7 ms plt.hist(interspike[6][:], weights = np.ones(len(interspike[6][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 7$ ms") plt.show() #For tau_ref = 8 ms plt.hist(interspike[7][:], weights = np.ones(len(interspike[7][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 8$ ms") plt.show() #For tau_ref = 11 ms plt.hist(interspike[10][:], weights = np.ones(len(interspike[10][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 11$ ms") plt.show() #For tau_ref = 16 ms plt.hist(interspike[15][:], weights = np.ones(len(interspike[15][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 16$ ms") plt.show() #For tau_ref = 20 ms plt.hist(interspike[19][:], weights = np.ones(len(interspike[19][:]))/len(interspike[0][:])) plt.title(r"$tau_{ref} = 20$ ms") plt.show()
[ "noreply@github.com" ]
noreply@github.com
719fe8ceb0742f200fd6db96a72226d3bb87841c
72332ab2422f3666a8dbedc93f0e279b6f64b584
/rl/storage.py
e2afc423a71002c4b538f2fd6dd2587bbb079a0c
[ "MIT" ]
permissive
prasoongoyal/rl-learn
e5dddf25292d9eb82cd24a34a027c5392c795d77
0401ca8c60b11adbc6fddfda12c03876a45c2ad0
refs/heads/master
2021-06-30T19:31:45.473939
2020-11-11T13:50:00
2020-11-11T13:50:00
192,154,441
16
14
null
null
null
null
UTF-8
Python
false
false
7,162
py
import torch from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler def _flatten_helper(T, N, _tensor): return _tensor.view(T * N, *_tensor.size()[2:]) class RolloutStorage(object): def __init__(self, num_steps, num_processes, obs_shape, action_space, recurrent_hidden_state_size): self.obs = torch.zeros(num_steps + 1, num_processes, *obs_shape) self.recurrent_hidden_states = torch.zeros(num_steps + 1, num_processes, recurrent_hidden_state_size) self.rewards = torch.zeros(num_steps, num_processes, 1) self.value_preds = torch.zeros(num_steps + 1, num_processes, 1) self.returns = torch.zeros(num_steps + 1, num_processes, 1) self.action_log_probs = torch.zeros(num_steps, num_processes, 1) if action_space.__class__.__name__ == 'Discrete': action_shape = 1 else: action_shape = action_space.shape[0] self.actions = torch.zeros(num_steps, num_processes, action_shape) if action_space.__class__.__name__ == 'Discrete': self.actions = self.actions.long() self.masks = torch.ones(num_steps + 1, num_processes, 1) self.num_steps = num_steps self.step = 0 def to(self, device): self.obs = self.obs.to(device) self.recurrent_hidden_states = self.recurrent_hidden_states.to(device) self.rewards = self.rewards.to(device) self.value_preds = self.value_preds.to(device) self.returns = self.returns.to(device) self.action_log_probs = self.action_log_probs.to(device) self.actions = self.actions.to(device) self.masks = self.masks.to(device) def insert(self, obs, recurrent_hidden_states, actions, action_log_probs, value_preds, rewards, masks): self.obs[self.step + 1].copy_(obs) self.recurrent_hidden_states[self.step + 1].copy_(recurrent_hidden_states) self.actions[self.step].copy_(actions) self.action_log_probs[self.step].copy_(action_log_probs) self.value_preds[self.step].copy_(value_preds) self.rewards[self.step].copy_(rewards) self.masks[self.step + 1].copy_(masks) self.step = (self.step + 1) % self.num_steps def after_update(self): self.obs[0].copy_(self.obs[-1]) self.recurrent_hidden_states[0].copy_(self.recurrent_hidden_states[-1]) self.masks[0].copy_(self.masks[-1]) def compute_returns(self, next_value, use_gae, gamma, tau, max_step): if use_gae: self.value_preds[max_step] = next_value gae = 0 for step in reversed(range(max_step)): delta = self.rewards[step] + gamma * self.value_preds[step + 1] * self.masks[step + 1] - self.value_preds[step] gae = delta + gamma * tau * self.masks[step + 1] * gae self.returns[step] = gae + self.value_preds[step] else: self.returns[-1] = next_value for step in reversed(range(self.rewards.size(0))): self.returns[step] = self.returns[step + 1] * \ gamma * self.masks[step + 1] + self.rewards[step] def feed_forward_generator(self, advantages, num_mini_batch, max_step): num_steps, num_processes = self.rewards.size()[0:2] batch_size = num_processes * num_steps assert batch_size >= num_mini_batch, ( "PPO requires the number of processes ({}) " "* number of steps ({}) = {} " "to be greater than or equal to the number of PPO mini batches ({})." "".format(num_processes, num_steps, num_processes * num_steps, num_mini_batch)) mini_batch_size = batch_size // num_mini_batch sampler = BatchSampler(SubsetRandomSampler(range(max_step)), max_step, drop_last=False) for indices in sampler: obs_batch = self.obs[:max_step].view(-1, *self.obs.size()[2:])[indices] recurrent_hidden_states_batch = self.recurrent_hidden_states[:max_step].view(-1, self.recurrent_hidden_states.size(-1))[indices] actions_batch = self.actions.view(-1, self.actions.size(-1))[indices] return_batch = self.returns[:max_step].view(-1, 1)[indices] masks_batch = self.masks[:max_step].view(-1, 1)[indices] old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices] adv_targ = advantages.view(-1, 1)[indices] yield obs_batch, recurrent_hidden_states_batch, actions_batch, \ return_batch, masks_batch, old_action_log_probs_batch, adv_targ def recurrent_generator(self, advantages, num_mini_batch): num_processes = self.rewards.size(1) assert num_processes >= num_mini_batch, ( "PPO requires the number of processes ({}) " "to be greater than or equal to the number of " "PPO mini batches ({}).".format(num_processes, num_mini_batch)) num_envs_per_batch = num_processes // num_mini_batch perm = torch.randperm(num_processes) for start_ind in range(0, num_processes, num_envs_per_batch): obs_batch = [] recurrent_hidden_states_batch = [] actions_batch = [] return_batch = [] masks_batch = [] old_action_log_probs_batch = [] adv_targ = [] for offset in range(num_envs_per_batch): ind = perm[start_ind + offset] obs_batch.append(self.obs[:-1, ind]) recurrent_hidden_states_batch.append(self.recurrent_hidden_states[0:1, ind]) actions_batch.append(self.actions[:, ind]) return_batch.append(self.returns[:-1, ind]) masks_batch.append(self.masks[:-1, ind]) old_action_log_probs_batch.append(self.action_log_probs[:, ind]) adv_targ.append(advantages[:, ind]) T, N = self.num_steps, num_envs_per_batch # These are all tensors of size (T, N, -1) obs_batch = torch.stack(obs_batch, 1) actions_batch = torch.stack(actions_batch, 1) return_batch = torch.stack(return_batch, 1) masks_batch = torch.stack(masks_batch, 1) old_action_log_probs_batch = torch.stack(old_action_log_probs_batch, 1) adv_targ = torch.stack(adv_targ, 1) # States is just a (N, -1) tensor recurrent_hidden_states_batch = torch.stack(recurrent_hidden_states_batch, 1).view(N, -1) # Flatten the (T, N, ...) tensors to (T * N, ...) obs_batch = _flatten_helper(T, N, obs_batch) actions_batch = _flatten_helper(T, N, actions_batch) return_batch = _flatten_helper(T, N, return_batch) masks_batch = _flatten_helper(T, N, masks_batch) old_action_log_probs_batch = _flatten_helper(T, N, \ old_action_log_probs_batch) adv_targ = _flatten_helper(T, N, adv_targ) yield obs_batch, recurrent_hidden_states_batch, actions_batch, \ return_batch, masks_batch, old_action_log_probs_batch, adv_targ
[ "pgoyal@cs.utexas.edu" ]
pgoyal@cs.utexas.edu
2f76f6578ee20aea9b69a41ffd20301183b7ec6d
0faed81feb588ea0b8fd64be3d760ca454bac5b5
/callrecords/apps/bills/admin.py
5f80e08c9fdd4702e6cb288837fcb8619eb31e40
[]
no_license
tiagovizoto/work-at-olist-1
b48c7614ee3204e2a4360496217aa73bbbcd967a
e5fca8ec7c2caa76fdbfd164433bb1b6dc887fb8
refs/heads/development
2020-04-27T14:34:13.617869
2019-04-03T12:27:38
2019-04-03T12:27:38
174,414,543
0
0
null
2019-04-03T12:32:52
2019-03-07T20:22:48
Python
UTF-8
Python
false
false
491
py
from django.contrib import admin from .models import MinuteFee, FixedFee, Bill class MinuteFeeAdmin(admin.ModelAdmin): list_display = ('price', 'start', 'end',) class FixedFeeAdmin(admin.ModelAdmin): list_display = ('price', 'start', 'end',) class BillAdmin(admin.ModelAdmin): list_display = ('price', 'call_start', 'call_end', 'fixed_fee',) admin.site.register(MinuteFee, MinuteFeeAdmin) admin.site.register(FixedFee, FixedFeeAdmin) admin.site.register(Bill, BillAdmin)
[ "vizoto123@gmail.com" ]
vizoto123@gmail.com
6e1b0e5aa34daaa437c9eee45fc76dbcb0dc1c5a
2a5d93182aecc251462c9d3844e7c3e28013013e
/mysite/chat/tests.py
114198533bdb4a28861f61e98807da39f4a8fde4
[]
no_license
burbaljaka/websocket_chat
20acc9908cd7b0e122a3b96252208defdc7460d9
ca6883987befb6bfad5973156b01bfe876b1414f
refs/heads/master
2021-05-26T22:58:31.151913
2020-04-08T19:37:16
2020-04-08T19:37:16
254,182,479
0
0
null
null
null
null
UTF-8
Python
false
false
3,906
py
from channels.testing import ChannelsLiveServerTestCase from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.wait import WebDriverWait import dill class ChatTests(ChannelsLiveServerTestCase): serve_static = True #emulate StaticLiveServerTestCase @classmethod def setUpClass(cls): super().setUpClass() try: # NOTE: Requires "chromedriver" binary to be installed in $PATH cls.driver = webdriver.Chrome('C:\chromedriver.exe') except: super().tearDownClass() raise @classmethod def tearDownClass(cls): cls.driver.quit() super().tearDownClass() def test_chat_message_posted_then_seen_by_everyone_in_same_room(self): try: self._enter_chat_room('room_1') self._open_new_window() self._enter_chat_room('room_1') self._switch_to_window(0) self._post_message('hello') WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 1 from window 1') self._switch_to_window(1) WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 2 from window 1') finally: self._close_all_new_windows() def test_when_chat_message_posted_then_not_seen_by_anyone_in_different_room(self): try: self._enter_chat_room('room_1') self._open_new_window() self._enter_chat_room('room_2') self._switch_to_window(0) self._post_message('hello') WebDriverWait(self.driver, 2).until(lambda _: 'hello' in self._chat_log_value, 'Message was not received by window 1 from window 1') self._switch_to_window(1) self._post_message('world') WebDriverWait(self.driver, 2).until(lambda _: 'world' in self._chat_log_value, 'Message was not received by window 2 from window 2') self.assertTrue('hello' not in self._chat_log_value, 'Message was improperly received by window 2 from window 1') finally: self._close_all_new_windows() # === Utility === def _enter_chat_room(self, room_name): self.driver.get(self.live_server_url + '/chat/') ActionChains(self.driver).send_keys(room_name + '\n').perform() WebDriverWait(self.driver, 2).until(lambda _: room_name in self.driver.current_url) def _open_new_window(self): self.driver.execute_script('window.open("about:blank", "_blank");') self.driver.switch_to_.window(self.driver.window_handles[-1]) def _close_all_new_windows(self): while len(self.driver.window_handles) > 1: self.driver.switch_to.window(self.driver.window_handles[-1]) self.driver.execute_script('window.close();') if len(self.driver.window_handles) == 1: self.driver.switch_to.window(self.driver.window_handles[0]) def _switch_to_window(self, window_index): self.driver.switch_to.window(self.driver.window_handles[window_index]) def _post_message(self, message): ActionChains(self.driver).send_keys(message + '\n').perform() @property def _chat_log_value(self): return self.driver.find_element_by_css_selector('#chat-log').get_property('value')
[ "kapitonov.timur@gmail.com" ]
kapitonov.timur@gmail.com
0f1c7b775e18b0d091c6bd1c45c0f3b10c73d105
66ae262ef53ffd1c508217efd7217602a94f7f5a
/Course/Data structures and algorithms/2.Data structures/2.1 Arrays and Linked Lists/5.LinkedLists.py
26949a433f85f34218369c9fa585129947ebfa59
[ "MIT" ]
permissive
IP-Algorithmics/Udacity
8d8502eced3e2fa3c3b8cdfcbef59e0d3086198b
4349f4c12c838bcf3e53409f943ca8aacd58c94b
refs/heads/master
2022-08-03T02:42:31.357638
2020-05-29T19:33:12
2020-05-29T19:33:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,927
py
''' https://youtu.be/zxkpZrozDUk https://youtu.be/ZONGA5wmREI ''' ''' Implementing and traversing a linked list In this notebook we'll get some practice implementing a basic linked list—something like this: 2 -> 1 -> 4 -> 3 -> 5 -> None Note - This notebook contains a few audio walkthroughs of the code cells. If you face difficulty in listening to the audio, try reconnecting your audio headsets, and use either Chrome or Firefox browser. Key characteristics First, let's review the overall abstract concepts for this data structure. To get started, click the walkthrough button below. ''' ''' Exercise 1 - Implementing a simple linked list Now that we've talked about the abstract characteristics that we want our linked list to have, let's look at how we might implement one in Python. ''' ''' Step 1. Once you've seen the walkthrough, give it a try for yourself: Create a Node class with value and next attributes Use the class to create the head node with the value 2 Create and link a second node containing the value 1 Try printing the values (1 and 2) on the nodes you created (to make sure that you can access them!) ''' class Node: def __init__(self, value): self.value = value self.next = None head = Node(2) head.next = Node(1) print(head.value) print(head.next.value) ''' At this point, our linked list looks like this: 2 -> 1 -> none Our goal is to extend the list until it looks like this: 2 -> 1 -> 4 -> 3 -> 5 -> None To do this, we need to create three more nodes, and we need to attach each one to the next attribute of the node that comes before it. Notice that we don't have a direct reference to any of the nodes other than the head node! See if you can write the code to finish creating the above list: Step 2. Add three more nodes to the list, with the values 4, 3, and 5 ''' head.next.next = Node(4) head.next.next.next = Node(3) head.next.next.next.next = Node(5) print(head.value) print(head.next.value) print(head.next.next.value) print(head.next.next.next.value) print(head.next.next.next.next.value) ''' Exercise 2 - Traversing the list We successfully created a simple linked list. But printing all the values like we did above was pretty tedious. What if we had a list with 1,000 nodes? Let's see how we might traverse the list and print all the values, no matter how long it might be. Once you've seen the walkthrough, give it a try for yourself. Step 3. Write a function that loops through the nodes of the list and prints all of the values ''' def print_linked_list(head): current_node = head while current_node is not None: print(current_node.value) current_node = current_node.next print_linked_list(head) ''' Creating a linked list using iteration Previously, we created a linked list using a very manual and tedious method. We called next multiple times on our head node. Now that we know about iterating over or traversing the linked list, is there a way we can use that to create a linked list? We've provided our solution below—but it might be a good exercise to see what you can come up with first. Here's the goal: Step 4. See if you can write the code for the create_linked_list function below The function should take a Python list of values as input and return the head of a linked list that has those values There's some test code, and also a solution, below—give it a try for yourself first, but don't hesitate to look over the solution if you get stuck ''' def create_linked_list(input_list): head = None for value in input_list: if head is None: head = Node(value) else: # Move to the tail (the last node) current_node = head while current_node.next: current_node = current_node.next current_node.next = Node(value) return head # Test Code def test_function(input_list, head): try: if len(input_list) == 0: if head is not None: print("Fail") return for value in input_list: if head.value != value: print("Fail") return else: head = head.next print("Pass") except Exception as e: print("Fail: " + e) input_list = [1, 2, 3, 4, 5, 6] head = create_linked_list(input_list) test_function(input_list, head) input_list = [1] head = create_linked_list(input_list) test_function(input_list, head) input_list = [] head = create_linked_list(input_list) test_function(input_list, head) ''' The above solution works, but it has some shortcomings. In this next walkthrough, we'll demonstrate a different approach and see how its efficiency compares to the solution above. ''' def create_linked_list_better(input_list): head = None tail = None for value in input_list: if head is None: head = Node(value) tail = head # when we only have 1 node, head and tail refer to the same node else: # attach the new node to the `next` of tail tail.next = Node(value) tail = tail.next # update the tail return head # Test Code def test_function(input_list, head): try: if len(input_list) == 0: if head is not None: print("Fail") return for value in input_list: if head.value != value: print("Fail") return else: head = head.next print("Pass") except Exception as e: print("Fail: " + e) input_list = [1, 2, 3, 4, 5, 6] head = create_linked_list_better(input_list) test_function(input_list, head) input_list = [1] head = create_linked_list_better(input_list) test_function(input_list, head) input_list = [] head = create_linked_list_better(input_list) test_function(input_list, head)
[ "iulian.octavian.preda@gmail.com" ]
iulian.octavian.preda@gmail.com
c8220cfb06f2fc1e44e934193e67e00662fe9de2
ba2b94c483abca07bd300fc254e90dca944714c1
/test_gRPC_pb2_grpc.py
393d7c8ce56e7f01bc4a03e17a171924c694d72f
[]
no_license
agurusa/test_gRPC
402675d9b97e017cfe55f16da6bbfd06f82e8c9b
fbf646d42412af8129a65ea31699c6a5e4f56a7d
refs/heads/master
2020-03-11T00:06:33.455852
2018-04-15T22:22:24
2018-04-15T22:22:24
129,655,532
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc import test_gRPC_pb2 as test__gRPC__pb2 class test_gRPCStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetFeature = channel.unary_unary( '/test_gRPC.test_gRPC/GetFeature', request_serializer=test__gRPC__pb2.An_unexciting_request.SerializeToString, response_deserializer=test__gRPC__pb2.An_exciting_response.FromString, ) class test_gRPCServicer(object): # missing associated documentation comment in .proto file pass def GetFeature(self, request, context): """simple RPC where client sends a request to a server using the stub and waits for a response to come back. rpc GetFeature(An_unexciting_request) returns (An_unexciting_request){} """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_test_gRPCServicer_to_server(servicer, server): rpc_method_handlers = { 'GetFeature': grpc.unary_unary_rpc_method_handler( servicer.GetFeature, request_deserializer=test__gRPC__pb2.An_unexciting_request.FromString, response_serializer=test__gRPC__pb2.An_exciting_response.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'test_gRPC.test_gRPC', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
[ "agurusa@gmail.com" ]
agurusa@gmail.com
c279e12030d6850291b50ede25ac75ba3db5c7fd
24f664aa2344d4f5d5e7b048ac4e85231715c4c8
/experimental/dsmith/scrapheap/clsmith_run_cl_launcher.py
a8c4780ae8872e6567505e8112cc3a515308e79e
[]
no_license
speycode/clfuzz
79320655e879d1e0a06a481e8ec2e293c7c10db7
f2a96cf84a7971f70cb982c07b84207db407b3eb
refs/heads/master
2020-12-05T13:44:55.486419
2020-01-03T14:14:03
2020-01-03T14:15:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,786
py
#!/usr/bin/env python3 import os import re from argparse import ArgumentParser from collections import deque from tempfile import NamedTemporaryFile from time import strftime from typing import Tuple import progressbar from dsmith import clsmith from dsmith import db from dsmith.db import * from dsmith.lib import * from labm8.py import crypto from third_party.py.pyopencl import pyopencl as cl def get_platform_name(platform_id): platform = cl.get_platforms()[platform_id] return platform.get_info(cl.platform_info.NAME) def get_device_name(platform_id, device_id): platform = cl.get_platforms()[platform_id] device = platform.get_devices()[device_id] return device.get_info(cl.device_info.NAME) def get_driver_version(platform_id, device_id): platform = cl.get_platforms()[platform_id] device = platform.get_devices()[device_id] return device.get_info(cl.device_info.DRIVER_VERSION) def cl_launcher( src: str, platform_id: int, device_id: int, *args ) -> Tuple[float, int, str, str]: """ Invoke cl launcher on source """ with NamedTemporaryFile(prefix="cl_launcher-", suffix=".cl") as tmp: tmp.write(src.encode("utf-8")) tmp.flush() return clsmith.cl_launcher( tmp.name, platform_id, device_id, *args, timeout=os.environ.get("TIMEOUT", 60), ) def verify_params( platform: str, device: str, optimizations: bool, global_size: tuple, local_size: tuple, stderr: str, ) -> None: """ verify that expected params match actual as reported by CLsmith """ optimizations = "on" if optimizations else "off" actual_platform = None actual_device = None actual_optimizations = None actual_global_size = None actual_local_size = None for line in stderr.split("\n"): if line.startswith("Platform: "): actual_platform_name = re.sub(r"^Platform: ", "", line).rstrip() elif line.startswith("Device: "): actual_device_name = re.sub(r"^Device: ", "", line).rstrip() elif line.startswith("OpenCL optimizations: "): actual_optimizations = re.sub( r"^OpenCL optimizations: ", "", line ).rstrip() # global size match = re.match("^3-D global size \d+ = \[(\d+), (\d+), (\d+)\]", line) if match: actual_global_size = ( int(match.group(1)), int(match.group(2)), int(match.group(3)), ) match = re.match("^2-D global size \d+ = \[(\d+), (\d+)\]", line) if match: actual_global_size = (int(match.group(1)), int(match.group(2)), 0) match = re.match("^1-D global size \d+ = \[(\d+)\]", line) if match: actual_global_size = (int(match.group(1)), 0, 0) # local size match = re.match("^3-D local size \d+ = \[(\d+), (\d+), (\d+)\]", line) if match: actual_local_size = ( int(match.group(1)), int(match.group(2)), int(match.group(3)), ) match = re.match("^2-D local size \d+ = \[(\d+), (\d+)\]", line) if match: actual_local_size = (int(match.group(1)), int(match.group(2)), 0) match = re.match("^1-D local size \d+ = \[(\d+)\]", line) if match: actual_local_size = (int(match.group(1)), 0, 0) # check if we've collected everything: if ( actual_platform and actual_device and actual_optimizations and actual_global_size and actual_local_size ): assert actual_platform == platform assert actual_device == device assert actual_optimizations == optimizations assert actual_global_size == global_size assert actual_local_size == local_size return def parse_ndrange(ndrange: str) -> Tuple[int, int, int]: components = ndrange.split(",") assert len(components) == 3 return (int(components[0]), int(components[1]), int(components[2])) def get_num_to_run( session: db.session_t, testbed: Testbed, optimizations: int = None ): num_ran = session.query(sql.sql.func.count(CLSmithResult.id)).filter( CLSmithResult.testbed_id == testbed.id ) total = session.query(sql.sql.func.count(CLSmithTestCase.id)) if optimizations is not None: num_ran = ( num_ran.join(CLSmithTestCase) .join(cl_launcherParams) .filter(cl_launcherParams.optimizations == optimizations) ) total = total.join(cl_launcherParams).filter( cl_launcherParams.optimizations == optimizations ) return num_ran.scalar(), total.scalar() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "-H", "--hostname", type=str, default="cc1", help="MySQL database hostname" ) parser.add_argument( "platform_id", metavar="<platform-id>", type=int, help="OpenCL platform ID" ) parser.add_argument( "device_id", metavar="<device-id>", type=int, help="OpenCL device ID" ) parser.add_argument( "--opt", action="store_true", help="Only test with optimizations on" ) parser.add_argument( "--no-opt", action="store_true", help="Only test with optimizations disabled", ) args = parser.parse_args() # Parse command line options platform_id = args.platform_id device_id = args.device_id # get testbed information platform_name = get_platform_name(platform_id) device_name = get_device_name(platform_id, device_id) driver_version = get_driver_version(platform_id, device_id) optimizations = None if args.opt and args.no_opt: pass # both flags elif args.opt: optimizations = 1 elif args.no_opt: optimizations = 0 db.init(args.hostname) # initialize db engine with Session() as session: testbed = get_testbed(session, platform_name, device_name) devname = util.device_str(testbed.device) # progress bar num_ran, num_to_run = get_num_to_run(session, testbed, optimizations) bar = progressbar.ProgressBar(init_value=num_ran, max_value=num_to_run) # programs to run, and results to push to database inbox = deque() def next_batch(): """ Fill the inbox with jobs to run. """ BATCH_SIZE = 100 print(f"\nnext CLSmith batch for {devname} at", strftime("%H:%M:%S")) # update the counters num_ran, num_to_run = get_num_to_run(session, testbed, optimizations) bar.max_value = num_to_run bar.update(min(num_ran, num_to_run)) # fill inbox done = session.query(CLSmithResult.testcase_id).filter( CLSmithResult.testbed == testbed ) if optimizations is not None: done = ( done.join(CLSmithTestCase) .join(cl_launcherParams) .filter(cl_launcherParams.optimizations == optimizations) ) todo = ( session.query(CLSmithTestCase) .filter(~CLSmithTestCase.id.in_(done)) .order_by(CLSmithTestCase.program_id, CLSmithTestCase.params_id) ) if optimizations is not None: todo = todo.join(cl_launcherParams).filter( cl_launcherParams.optimizations == optimizations ) todo = todo.limit(BATCH_SIZE) for testcase in todo: inbox.append(testcase) try: while True: # get the next batch of programs to run if not len(inbox): next_batch() # we have no programs to run if not len(inbox): break # get next program to run testcase = inbox.popleft() program = testcase.program params = testcase.params flags = params.to_flags() # drive the program runtime, status, stdout, stderr = cl_launcher( program.src, platform_id, device_id, *flags ) # assert that executed params match expected verify_params( platform=platform_name, device=device_name, optimizations=params.optimizations, global_size=params.gsize, local_size=params.lsize, stderr=stderr, ) # create new result stdout_ = util.escape_stdout(stdout) stdout = get_or_create( session, CLSmithStdout, hash=crypto.sha1_str(stdout_), stdout=stdout_ ) stderr_ = util.escape_stderr(stderr) stderr = get_or_create( session, CLSmithStderr, hash=crypto.sha1_str(stderr_), stderr=stderr_ ) session.flush() result = CLSmithResult( testbed_id=testbed.id, testcase_id=testcase.id, status=status, runtime=runtime, stdout_id=stdout.id, stderr_id=stderr.id, outcome=analyze.get_cl_launcher_outcome(status, runtime, stderr_), ) session.add(result) session.commit() # update progress bar num_ran += 1 bar.update(min(num_ran, num_to_run)) finally: # flush any remaining results next_batch() print("done.")
[ "chrisc.101@gmail.com" ]
chrisc.101@gmail.com
97ce640d8f9e55d51546c4a93f3597a7132318cf
33a747246dab38960c25520d5232d5a37dfe2a01
/starbucks/address_to_gecoords.py
d842315ca462c234888776d81feaa308e92f2f34
[]
no_license
Yxiaokuan/spider
6a79a950d170ea20dae13001697b9c214872f345
e51a398c7fdee1b1814c50c5a3121ce9a193e302
refs/heads/master
2022-04-02T16:01:18.104056
2020-02-11T03:49:44
2020-02-11T03:49:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,951
py
''' @author:KongWeiKun @file: address_to_gecoords.py @time: 18-1-2 下午5:55 @contact: 836242657@qq.com ''' import csv import json import random import re import requests import time ''' 地址转经纬度 ''' from urllib.request import quote #URL编码 def getLngLat(url,timeOutRetry=5): try: response = requests.get(url) return response.text except Exception as e: if timeOutRetry>0: getLngLat(url,timeOutRetry=(timeOutRetry-1)) print("真的失败了") def write_to_file(content): with open('./resources/starbucks_result.txt', 'a', encoding='utf-8') as f: f.write(json.dumps(content, ensure_ascii=False) + '\n') # 写入文件,并且确定为汉字 f.close() def pack_url(address): ak='LVsGVvCzooeqcHGM1lnNzvTTSba7gtvU' aks = 'fV9ODCmTALCdTtlbkRsheFUacvA9sL7A' base_url = 'http://api.map.baidu.com/geocoder/v2/?address=' output = 'json' callback = 'showLocation' url = base_url+quote(address)+"&output="+output+"&ak="+ak+"&callback"+callback return url def readCsv(filename): reader = csv.reader(open(filename)) return reader def main(): starbucks = './resources/starbucks.csv' reader = readCsv(starbucks) for row in reader: address = row[0] url=pack_url(address) gecoord=getLngLat(url) print(gecoord) pattern = re.compile('"lng":(.*?),"lat":(.*?)}') lngLat=re.findall(pattern, gecoord) if lngLat: for ll in lngLat: print(ll[0]) print('写入文件%s%s'%ll) write_to_file(','.join(ll)) time.sleep(random.random()*5) if __name__ == '__main__': # main() #利用localtime() #函数将时间戳转化成localtime的格式 #利用strftime() #函数重新格式化时间 start = time.time() main() end = time.time() print("转换完成,共消耗%s"%(end-start))
[ "kongwiki@163.com" ]
kongwiki@163.com
651310c6f400d407a975549d9c4a6f548f3cf9e9
33a1b588372ce8fec94378c0d990372d01e3660f
/fsdet/data/builtin.py
709c2f3697f2efeae519e3543545737e16f0809f
[ "Apache-2.0" ]
permissive
xinghaidemao/few-shot-object-detection-custom
0ab5af07ae1a2d532f9999df89c42dc3835415de
66277921a9c38b0f0d55a4f0d07c54363b17070b
refs/heads/master
2023-04-21T00:38:32.657431
2021-05-19T01:57:17
2021-05-19T01:57:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,787
py
""" This file registers pre-defined datasets at hard-coded paths, and their metadata. We hard-code metadata for common datasets. This will enable: 1. Consistency check when loading the datasets 2. Use models on these standard datasets directly and run demos, without having to download the dataset annotations We hard-code some paths to the dataset that's assumed to exist in "./datasets/". Here we only register the few-shot datasets and complete COCO, PascalVOC and LVIS have been handled by the builtin datasets in detectron2. """ import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets.lvis import ( get_lvis_instances_meta, register_lvis_instances, ) from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.register_coco import register_coco_instances from .builtin_meta import _get_builtin_metadata from .meta_coco import register_meta_coco from .meta_lvis import register_meta_lvis from .meta_pascal_voc import register_meta_pascal_voc # ==== Predefined datasets and splits for COCO ========== root_pth = "F:/workspace/Daheng/Deep-learning-library/few-shot-object-detection-master/datasets" _PREDEFINED_SPLITS_COCO = {} _PREDEFINED_SPLITS_COCO["coco"] = { # jiaonang "jiaonang_train": ( "coco/jiaonang/train", "coco/jiaonang/train.json", ), # "coco_2014_train": ( # "coco/train2014", # "coco/annotations/instances_train2014.json", # ), # "coco_2014_val": ( # "coco/val2014", # "coco/annotations/instances_val2014.json", # ), # "coco_2014_minival": ( # "coco/val2014", # "coco/annotations/instances_minival2014.json", # ), # "coco_2014_minival_100": ( # "coco/val2014", # "coco/annotations/instances_minival2014_100.json", # ), # "coco_2014_valminusminival": ( # "coco/val2014", # "coco/annotations/instances_valminusminival2014.json", # ), # "coco_2017_train": ( # "coco/train2017", # "coco/annotations/instances_train2017.json", # ), # "coco_2017_val": ( # "coco/val2017", # "coco/annotations/instances_val2017.json", # ), # "coco_2017_test": ( # "coco/test2017", # "coco/annotations/image_info_test2017.json", # ), # "coco_2017_test-dev": ( # "coco/test2017", # "coco/annotations/image_info_test-dev2017.json", # ), # "coco_2017_val_100": ( # "coco/val2017", # "coco/annotations/instances_val2017_100.json", # ), } def register_all_coco(root=root_pth): # for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items(): # for key, (image_root, json_file) in splits_per_dataset.items(): # # Assume pre-defined datasets live in `./datasets`. # register_coco_instances( # key, # _get_builtin_metadata(dataset_name), # os.path.join(root, json_file) # if "://" not in json_file # else json_file, # os.path.join(root, image_root), # ) # register meta datasets METASPLITS = [ ( "jiaonang_train_all", "coco/jiaonang/train", "coco/jiaonang/train.json", ), ( "jiaonang_train_base", "coco/jiaonang/train", "coco/jiaonang/train.json", ), ("test_all", "coco/jiaonang/test", "coco/jiaonang/test.json"), ("test_base", "coco/jiaonang/test", "coco/jiaonang/test.json"), ("test_novel", "coco/jiaonang/test", "coco/jiaonang/test.json"), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for shot in [1, 2, 3]:#shot改为自己的 for seed in range(10): seed = "" if seed == 0 else "_seed{}".format(seed) name = "coco_trainval_{}_{}shot{}".format(prefix, shot, seed) METASPLITS.append((name, "coco/jiaonang/train", "")) for name, imgdir, annofile in METASPLITS: register_meta_coco( name, _get_builtin_metadata("coco_fewshot"), os.path.join(root, imgdir), os.path.join(root, annofile), ) # ==== register custom dataset for coco format ========== _PREDEFINED_BASE_DATA = { "jiaonang_base_data":{ "base_train":("jiaonang/base/train","jiaonang/base/train.json"), "base_test":("jiaonang/base/test","jiaonang/base/test.json"), "base_val":("jiaonang/base/val","jiaonang/base/val.json") } } def register_base_data(root=root_pth): for dataset_name, splits_per_dataset in _PREDEFINED_BASE_DATA.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, {}, #_get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) _PREDEFINED_BALANCE_DATA = { "jiaonang_balance_data":{ "balance_train":("jiaonang/balance/train","jiaonang/balance/train.json"), "balance_test":("jiaonang/balance/test","jiaonang/balance/test.json"), "balance_val":("jiaonang/balance/val","jiaonang/balance/val.json") } } def register_balance_data(root=root_pth): for dataset_name, splits_per_dataset in _PREDEFINED_BALANCE_DATA.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, {}, # _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) _PREDEFINED_FEW_DATA = { "jiaonang_few_data":{ "few_train":("jiaonang/few/train","jiaonang/few/train.json"), "few_test":("jiaonang/few/few","jiaonang/few/test.json"), "few_val":("jiaonang/few/val","jiaonang/few/val.json") } } def register_few_data(root=root_pth): for dataset_name, splits_per_dataset in _PREDEFINED_FEW_DATA.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, {}, # _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) _PREDEFINED_YINXIAN_DATA = { "yinxian_data":{ "yx_train":("yinxian/images","yinxian/dataset.json"), "yx_test": ("yinxian/test", "yinxian/test.json") } } def register_yx_data(root=root_pth): for dataset_name, splits_per_dataset in _PREDEFINED_YINXIAN_DATA.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, {}, # _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # ==== Predefined datasets and splits for LVIS ========== _PREDEFINED_SPLITS_LVIS = { "lvis_v0.5": { # "lvis_v0.5_train": ("coco/train2017", "lvis/lvis_v0.5_train.json"), "lvis_v0.5_train_freq": ( "coco/train2017", "lvis/lvis_v0.5_train_freq.json", ), "lvis_v0.5_train_common": ( "coco/train2017", "lvis/lvis_v0.5_train_common.json", ), "lvis_v0.5_train_rare": ( "coco/train2017", "lvis/lvis_v0.5_train_rare.json", ), # "lvis_v0.5_val": ("coco/val2017", "lvis/lvis_v0.5_val.json"), # "lvis_v0.5_val_rand_100": ( # "coco/val2017", # "lvis/lvis_v0.5_val_rand_100.json", # ), # "lvis_v0.5_test": ( # "coco/test2017", # "lvis/lvis_v0.5_image_info_test.json", # ), }, } def register_all_lvis(root="datasets"): for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_lvis_instances( key, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # register meta datasets METASPLITS = [ ( "lvis_v0.5_train_shots", "coco/train2017", "lvissplit/lvis_shots.json", ), ( "lvis_v0.5_train_rare_novel", "coco/train2017", "lvis/lvis_v0.5_train_rare.json", ), ("lvis_v0.5_val_novel", "coco/val2017", "lvis/lvis_v0.5_val.json"), ] for name, image_root, json_file in METASPLITS: dataset_name = "lvis_v0.5_fewshot" if "novel" in name else "lvis_v0.5" register_meta_lvis( name, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # ==== Predefined splits for PASCAL VOC =========== def register_all_pascal_voc(root=root_pth): # SPLITS = [ # ("voc_2007_trainval", "VOC2007", "trainval"), # ("voc_2007_train", "VOC2007", "train"), # ("voc_2007_val", "VOC2007", "val"), # ("voc_2007_test", "VOC2007", "test"), # ("voc_2012_trainval", "VOC2012", "trainval"), # ("voc_2012_train", "VOC2012", "train"), # ("voc_2012_val", "VOC2012", "val"), # ] # for name, dirname, split in SPLITS: # year = 2007 if "2007" in name else 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year) # MetadataCatalog.get(name).evaluator_type = "pascal_voc" # register meta datasets METASPLITS = [ ("voc_2007_trainval_base1", "VOC2007", "trainval", "base1", 1), ("voc_2007_trainval_base2", "VOC2007", "trainval", "base2", 2), ("voc_2007_trainval_base3", "VOC2007", "trainval", "base3", 3), ("voc_2012_trainval_base1", "VOC2012", "trainval", "base1", 1), ("voc_2012_trainval_base2", "VOC2012", "trainval", "base2", 2), ("voc_2012_trainval_base3", "VOC2012", "trainval", "base3", 3), ("voc_2007_trainval_all1", "VOC2007", "trainval", "base_novel_1", 1), ("voc_2007_trainval_all2", "VOC2007", "trainval", "base_novel_2", 2), ("voc_2007_trainval_all3", "VOC2007", "trainval", "base_novel_3", 3), ("voc_2012_trainval_all1", "VOC2012", "trainval", "base_novel_1", 1), ("voc_2012_trainval_all2", "VOC2012", "trainval", "base_novel_2", 2), ("voc_2012_trainval_all3", "VOC2012", "trainval", "base_novel_3", 3), ("voc_2007_test_base1", "VOC2007", "test", "base1", 1), ("voc_2007_test_base2", "VOC2007", "test", "base2", 2), ("voc_2007_test_base3", "VOC2007", "test", "base3", 3), ("voc_2007_test_novel1", "VOC2007", "test", "novel1", 1), ("voc_2007_test_novel2", "VOC2007", "test", "novel2", 2), ("voc_2007_test_novel3", "VOC2007", "test", "novel3", 3), ("voc_2007_test_all1", "VOC2007", "test", "base_novel_1", 1), ("voc_2007_test_all2", "VOC2007", "test", "base_novel_2", 2), ("voc_2007_test_all3", "VOC2007", "test", "base_novel_3", 3), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for sid in range(1, 4): for shot in [1, 2, 3, 5, 10]: for year in [2007, 2012]: for seed in range(100): seed = "" if seed == 0 else "_seed{}".format(seed) name = "voc_{}_trainval_{}{}_{}shot{}".format( year, prefix, sid, shot, seed ) dirname = "VOC{}".format(year) img_file = "{}_{}shot_split_{}_trainval".format( prefix, shot, sid ) keepclasses = ( "base_novel_{}".format(sid) if prefix == "all" else "novel{}".format(sid) ) METASPLITS.append( (name, dirname, img_file, keepclasses, sid) ) for name, dirname, split, keepclasses, sid in METASPLITS: year = 2007 if "2007" in name else 2012 register_meta_pascal_voc( name, _get_builtin_metadata("pascal_voc_fewshot"), os.path.join(root, dirname), split, year, keepclasses, sid, ) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # Register them all under "./datasets" register_all_coco() register_all_lvis() register_all_pascal_voc() # Register custom data register_base_data() register_balance_data() register_few_data() register_yx_data() #引入以下注释 # import cv2 # from detectron2.data import DatasetCatalog, MetadataCatalog # from detectron2.data.datasets.coco import load_coco_json # from detectron2.utils.visualizer import Visualizer # import pycocotools # #声明类别,尽量保持 # CLASS_NAMES =["0","1","2"] # # 数据集路径 # DATASET_ROOT = 'F:/workspace/Daheng/Deep-learning-library/few-shot-object-detection-master/datasets/jiaonang' # ANN_ROOT = os.path.join(DATASET_ROOT, 'base') # # TRAIN_PATH = os.path.join(ANN_ROOT, 'train') # VAL_PATH = os.path.join(ANN_ROOT, 'val') # # TRAIN_JSON = os.path.join(ANN_ROOT, 'train.json') # #VAL_JSON = os.path.join(ANN_ROOT, 'val.json') # VAL_JSON = os.path.join(ANN_ROOT, 'val.json') # # # 声明数据集的子集 # PREDEFINED_SPLITS_DATASET = { # "coco_my_train": (TRAIN_PATH, TRAIN_JSON), # "coco_my_val": (VAL_PATH, VAL_JSON), # } # # #注册数据集(这一步就是将自定义数据集注册进Detectron2) # def register_dataset(): # """ # purpose: register all splits of dataset with PREDEFINED_SPLITS_DATASET # """ # for key, (image_root, json_file) in PREDEFINED_SPLITS_DATASET.items(): # register_dataset_instances(name=key, # json_file=json_file, # image_root=image_root) # # # #注册数据集实例,加载数据集中的对象实例 # def register_dataset_instances(name, json_file, image_root): # """ # purpose: register dataset to DatasetCatalog, # register metadata to MetadataCatalog and set attribute # """ # DatasetCatalog.register(name, lambda: load_coco_json(json_file, image_root, name)) # MetadataCatalog.get(name).set(json_file=json_file, # image_root=image_root, # evaluator_type="coco") # # # # 注册数据集和元数据 # def plain_register_dataset(): # #训练集 # DatasetCatalog.register("coco_my_train", lambda: load_coco_json(TRAIN_JSON, TRAIN_PATH)) # MetadataCatalog.get("coco_my_train").set(thing_classes=CLASS_NAMES, # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭 # evaluator_type='coco', # 指定评估方式 # json_file=TRAIN_JSON, # image_root=TRAIN_PATH) # # #DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH, "coco_2017_val")) # #验证/测试集 # DatasetCatalog.register("coco_my_val", lambda: load_coco_json(VAL_JSON, VAL_PATH)) # MetadataCatalog.get("coco_my_val").set(thing_classes=CLASS_NAMES, # 可以选择开启,但是不能显示中文,这里需要注意,中文的话最好关闭 # evaluator_type='coco', # 指定评估方式 # json_file=VAL_JSON, # image_root=VAL_PATH) # # 查看数据集标注,可视化检查数据集标注是否正确, # #这个也可以自己写脚本判断,其实就是判断标注框是否超越图像边界 # #可选择使用此方法 # def checkout_dataset_annotation(name="coco_my_val"): # #dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH, name) # dataset_dicts = load_coco_json(TRAIN_JSON, TRAIN_PATH) # #print(len(dataset_dicts)) # for i, d in enumerate(dataset_dicts,0): # #print(d) # img = cv2.imread(d["file_name"]) # visualizer = Visualizer(img[:, :, ::-1], metadata=MetadataCatalog.get(name), scale=1.5) # vis = visualizer.draw_dataset_dict(d) # cv2.imshow('show', vis.get_image()[:, :, ::-1]) # cv2.imwrite('out/'+str(i) + '.jpg',vis.get_image()[:, :, ::-1]) # cv2.waitKey(0) # if i == 200: # break
[ "wangzheng@daheng-image.com" ]
wangzheng@daheng-image.com
724d3309334dd86c1d7cf46d985c3ee24b81bfaf
5953ab83bc8a74a034bb7036e6f82ed8bf39899c
/Beta_version/XGAN/utils.py
20e8a15d35f2283d91c5e0ec93168854659f74cf
[ "Apache-2.0" ]
permissive
rexwangcc/RecoverGAN
fe2f123760588672799d44732d6f1fa4d9d81098
f7387271b43e0ce440a66f1f200ae70ce6b3f93d
refs/heads/master
2021-03-24T12:48:28.364072
2017-07-21T03:02:21
2017-07-21T03:02:21
86,881,150
2
3
null
null
null
null
UTF-8
Python
false
false
10,239
py
import math import json import random import scipy.misc import numpy as np from time import gmtime, strftime from six.moves import xrange try: import simplejson as json except: pass """ Some codes from https://github.com/Newmu/dcgan_code """ import tensorflow as tf import tensorflow.contrib.slim as slim get_stddev = lambda x, k_h, k_w: 1 / math.sqrt(k_w * k_h * x.get_shape()[-1]) def show_all_variables(): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) def get_image(image_path, input_height, input_width, resize_height=64, resize_width=64, is_crop=True, is_grayscale=False): image = imread(image_path, is_grayscale) return transform(image, input_height, input_width, resize_height, resize_width, is_crop) def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path, is_grayscale=False): if (is_grayscale): return scipy.misc.imread(path, flatten=True).astype(np.float) else: return scipy.misc.imread(path).astype(np.float) def merge_images(images, size): return inverse_transform(images) def merge(images, size): h, w = images.shape[1], images.shape[2] if (images.shape[3] in (3, 4)): c = images.shape[3] img = np.zeros((h * size[0], w * size[1], c)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w, :] = image return img elif images.shape[3] == 1: img = np.zeros((h * size[0], w * size[1])) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j * h:j * h + h, i * w:i * w + w] = image[:, :, 0] return img else: raise ValueError('in merge(images,size) images parameter ' 'must have dimensions: HxW or HxWx3 or HxWx4') def imsave(images, size, path): image = np.squeeze(merge(images, size)) return scipy.misc.imsave(path, image) def center_crop(x, crop_h, crop_w, resize_h=64, resize_w=64): if crop_w is None: crop_w = crop_h h, w = x.shape[:2] j = int(round((h - crop_h) / 2.)) i = int(round((w - crop_w) / 2.)) return scipy.misc.imresize( x[j:j + crop_h, i:i + crop_w], [resize_h, resize_w]) def transform(image, input_height, input_width, resize_height=64, resize_width=64, is_crop=True): if is_crop: cropped_image = center_crop( image, input_height, input_width, resize_height, resize_width) else: cropped_image = scipy.misc.imresize( image, [resize_height, resize_width]) return np.array(cropped_image) / 127.5 - 1. def inverse_transform(images): return (images + 1.) / 2. # def to_json(output_path, *layers): # with open(output_path, "w") as layer_f: # lines = "" # for w, b, bn in layers: # layer_idx = w.name.split('/')[0].split('h')[1] # B = b.eval() # if "lin/" in w.name: # W = w.eval() # depth = W.shape[1] # else: # W = np.rollaxis(w.eval(), 2, 0) # depth = W.shape[0] # biases = {"sy": 1, "sx": 1, "depth": depth, # "w": ['%.2f' % elem for elem in list(B)]} # if bn != None: # gamma = bn.gamma.eval() # beta = bn.beta.eval() # gamma = {"sy": 1, "sx": 1, "depth": depth, "w": [ # '%.2f' % elem for elem in list(gamma)]} # beta = {"sy": 1, "sx": 1, "depth": depth, "w": [ # '%.2f' % elem for elem in list(beta)]} # else: # gamma = {"sy": 1, "sx": 1, "depth": 0, "w": []} # beta = {"sy": 1, "sx": 1, "depth": 0, "w": []} # if "lin/" in w.name: # fs = [] # for w in W.T: # fs.append({"sy": 1, "sx": 1, "depth": W.shape[ # 0], "w": ['%.2f' % elem for elem in list(w)]}) # lines += """ # var layer_%s = { # "layer_type": "fc", # "sy": 1, "sx": 1, # "out_sx": 1, "out_sy": 1, # "stride": 1, "pad": 0, # "out_depth": %s, "in_depth": %s, # "biases": %s, # "gamma": %s, # "beta": %s, # "filters": %s # };""" % (layer_idx.split('_')[0], W.shape[1], W.shape[0], biases, gamma, beta, fs) # else: # fs = [] # for w_ in W: # fs.append({"sy": 5, "sx": 5, "depth": W.shape[3], "w": [ # '%.2f' % elem for elem in list(w_.flatten())]}) # lines += """ # var layer_%s = { # "layer_type": "deconv", # "sy": 5, "sx": 5, # "out_sx": %s, "out_sy": %s, # "stride": 2, "pad": 1, # "out_depth": %s, "in_depth": %s, # "biases": %s, # "gamma": %s, # "beta": %s, # "filters": %s # };""" % (layer_idx, 2**(int(layer_idx) + 2), 2**(int(layer_idx) + 2), # W.shape[0], W.shape[3], biases, gamma, beta, fs) # layer_f.write(" ".join(lines.replace("'", "").split())) # def make_gif(images, fname, duration=2, true_image=False): # import moviepy.editor as mpy # def make_frame(t): # try: # x = images[int(len(images) / duration * t)] # except: # x = images[-1] # if true_image: # return x.astype(np.uint8) # else: # return ((x + 1) / 2 * 255).astype(np.uint8) # clip = mpy.VideoClip(make_frame, duration=duration) # clip.write_gif(fname, fps=len(images) / duration) # def visualize(sess, dcgan, config, option): # image_frame_dim = int(math.ceil(config.batch_size**.5)) # if option == 0: # z_sample = np.random.uniform(-0.5, 0.5, # size=(config.batch_size, dcgan.z_dim)) # samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}) # save_images(samples, [image_frame_dim, image_frame_dim], # './samples/test_%s.png' % strftime("%Y%m%d%H%M%S", gmtime())) # elif option == 1: # values = np.arange(0, 1, 1. / config.batch_size) # for idx in xrange(100): # print(" [*] %d" % idx) # z_sample = np.zeros([config.batch_size, dcgan.z_dim]) # for kdx, z in enumerate(z_sample): # z[idx] = values[kdx] # if config.dataset == "mnist": # y = np.random.choice(10, config.batch_size) # y_one_hot = np.zeros((config.batch_size, 10)) # y_one_hot[np.arange(config.batch_size), y] = 1 # samples = sess.run(dcgan.sampler, feed_dict={ # dcgan.z: z_sample, dcgan.y: y_one_hot}) # else: # samples = sess.run(dcgan.sampler, feed_dict={ # dcgan.z: z_sample}) # save_images(samples, [image_frame_dim, image_frame_dim], # './samples/test_arange_%s.png' % (idx)) # elif option == 2: # values = np.arange(0, 1, 1. / config.batch_size) # for idx in [random.randint(0, 99) for _ in xrange(100)]: # print(" [*] %d" % idx) # z = np.random.uniform(-0.2, 0.2, size=(dcgan.z_dim)) # z_sample = np.tile(z, (config.batch_size, 1)) # #z_sample = np.zeros([config.batch_size, dcgan.z_dim]) # for kdx, z in enumerate(z_sample): # z[idx] = values[kdx] # if config.dataset == "mnist": # y = np.random.choice(10, config.batch_size) # y_one_hot = np.zeros((config.batch_size, 10)) # y_one_hot[np.arange(config.batch_size), y] = 1 # samples = sess.run(dcgan.sampler, feed_dict={ # dcgan.z: z_sample, dcgan.y: y_one_hot}) # else: # samples = sess.run(dcgan.sampler, feed_dict={ # dcgan.z: z_sample}) # try: # make_gif(samples, './samples/test_gif_%s.gif' % (idx)) # except: # save_images(samples, [image_frame_dim, image_frame_dim], # './samples/test_%s.png' % strftime("%Y%m%d%H%M%S", gmtime())) # elif option == 3: # values = np.arange(0, 1, 1. / config.batch_size) # for idx in xrange(100): # print(" [*] %d" % idx) # z_sample = np.zeros([config.batch_size, dcgan.z_dim]) # for kdx, z in enumerate(z_sample): # z[idx] = values[kdx] # samples = sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample}) # make_gif(samples, './samples/test_gif_%s.gif' % (idx)) # elif option == 4: # image_set = [] # values = np.arange(0, 1, 1. / config.batch_size) # for idx in xrange(100): # print(" [*] %d" % idx) # z_sample = np.zeros([config.batch_size, dcgan.z_dim]) # for kdx, z in enumerate(z_sample): # z[idx] = values[kdx] # image_set.append( # sess.run(dcgan.sampler, feed_dict={dcgan.z: z_sample})) # make_gif(image_set[-1], './samples/test_gif_%s.gif' % (idx)) # new_image_set = [merge(np.array([images[idx] for images in image_set]), [10, 10]) # for idx in range(64) + range(63, -1, -1)] # make_gif(new_image_set, './samples/test_gif_merged.gif', duration=8)
[ "rexwang@bu.edu" ]
rexwang@bu.edu
ec3a4f6551deee04bcdac358fa630e8eeee8ad77
47f0ac3aab36d2f56c7a0683b4024b925967e7b7
/create_plot.py
0efdd14a9a91837a757019cffc589b06a08cf51f
[]
no_license
Joseph7e/Brain
b23f70f6af65e0ac82695248a8c15c18bdcc5342
d88e71b8e062a6a97eda2387ca56d371fae5cac2
refs/heads/master
2021-01-10T22:45:49.133412
2016-10-08T21:09:22
2016-10-08T21:09:22
70,356,411
1
1
null
null
null
null
UTF-8
Python
false
false
2,230
py
#!/usr/bin/python3 import matplotlib.pyplot as pyplot #node detail lists av_var_list = [] low_var_list = [] copy_number_list = [] length_low_list = [] length_high_list = [] with open('gene_stats/variation_table.xls', 'r') as v: for line in v.readlines(): if '#' in line or '%' in line: continue else: sample, cp, ll, lh, av, hv = line.split("\t") if av == '0' or hv == '0': continue else: av_var_list.append(eval(av)) low_var_list.append(eval(hv)) copy_number_list.append(eval(cp)) length_high_list.append(eval(lh)) length_low_list.append(eval(ll)) def plotdata(x_list, y_list, title, subtitle, x_label, y_label, out_name): """ takes a user defined set of data and creates a jpg graph""" #x_data = x_list #y_data = y_list figure = pyplot.figure() figure.suptitle("16S", fontsize=20, fontweight='bold') figure.subplots_adjust(top=0.85) ax = figure.add_subplot(111) ax.set_title(subtitle) ax.set_xlabel(x_label) ax.set_ylabel(y_label) #pyplot.axis([0, 60, 95, 100.5]) pyplot.scatter(x_list,y_list, color="blue", marker=".") #may want to use marker="," if . is too big pyplot.savefig(out_name + "_scatterplot.jpg") print("Creating a scatter plot of GC content vs Coverage") #Read print for notes, running plotdata for all data plotdata(copy_number_list,low_var_list, "Bacterial 16S", "copy_number VS lowID", "Copy Number", "% Identity", "selected_lowIDvscopy", ) print("Creating a scatter plot of Length vs GC content") plotdata(copy_number_list,av_var_list, "Bacterial 16S", "copy_number VS Average %ID", "Copy Number", "% Identity", "selected_avgIDvscopy", ) print ('average copy number = ', sum(copy_number_list)/len(copy_number_list)) print (len(copy_number_list)) nl = sorted(copy_number_list) na = sorted(av_var_list) nn = sorted(low_var_list) print ("lowest copy number = {}, highest copy number = {}".format(nl[0], nl[-1])) print ('lowest avg variation = {}, highest ag variation = {}'.format(na[0], na[-1])) print ('lowest low variation = {}, highest low variation = {}'.format(nn[0],nn[-1]))
[ "joseph7e@brain.sr.unh.edu" ]
joseph7e@brain.sr.unh.edu
1b6688fd6a57724daa23f0329b9115745a80ec69
3499a6377146c03dbe7aa9af1ad2e1c6e215d6e7
/try-django/articles/migrations/0001_initial.py
3550049b5b34c412607502ff13d9315c6863d2b5
[]
no_license
Krishnamurtyp/django_tutorials
ce8cc213a141872b1f2ed01734fddc91d36c8854
2f7cfd0e8bff2430bd226cc8ef68bc46f1eee0a4
refs/heads/master
2023-09-04T00:55:26.776793
2021-10-10T12:18:38
2021-10-10T12:18:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
# Generated by Django 3.2.5 on 2021-10-04 19:21 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.TextField()), ('content', models.TextField()), ], ), ]
[ "mail@abogomolov.com" ]
mail@abogomolov.com
cd3a4c448b37604df838a0d2b35144b0fbb98eda
7629e40e79cb2ccb38a3902e5f39a757d3d0a6df
/video-generator/src/image/image_generator.py
be5d945681eaf00c1878e5f5fc74663323ddce76
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
toannhu96/product_video_ads
7700b0fe4723ff868699d6d37cbcb47339c49a6b
7cb59d33a0b4f3e2f113055ebecabe90856ddaf4
refs/heads/main
2023-07-31T20:08:27.182799
2021-09-13T03:50:58
2021-09-13T03:50:58
405,821,992
0
0
Apache-2.0
2021-09-13T03:36:22
2021-09-13T03:36:22
null
UTF-8
Python
false
false
4,967
py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import log from ffmpeg.ffmpeg_generator import FFMPEGGenerator class ImageGenerator(FFMPEGGenerator): """Image-handling class, which actually turns inputs into images.""" logger = log.getLogger() def process_image(self, image_or_videos_overlays, text_overlays, input_image, output_image): # Holds images generated from text self.text_imgs = [] # Prepares all ffmpeg overlays img_overlays = self._filter_strings(image_or_videos_overlays, text_overlays) # Prepares all images/videos import img_args = self._image_and_video_inputs(image_or_videos_overlays, self.text_imgs) # assets_args assets_args = img_args filter_complex = img_overlays # Group all args and runs ffmpeg ffmpeg_output = self._run_ffmpeg_image(assets_args, filter_complex, input_image, output_image, self.ffmpeg_executable) self.logger.debug('ffmpeg ran with output %s:', ffmpeg_output) return output_image def _filter_strings(self, images_and_videos, text_lines): """Generates a complex filter specification for ffmpeg. Args: images_and_videos: a list of image overlay objects text_lines: a list of text overlay objects Returns: A string that represents a complex filter specification, ready to be passed in to ffmpeg. """ # groups overlays and creates the first to loop in retval = [] overlays = (images_and_videos + text_lines) input_stream = '0:v' output_stream = None # loops concatenating other overlays to the first for i, ovr in enumerate(overlays): output_stream = 'vidout%i' % i use_cropped_text_fix = ovr.get('useCroppedTextFix', False) # if it is an image overlay, renames it to 'vidX' if 'image' in ovr: f = '[%s:v] copy [vid%s];' % ((i + 1), (i + 1)) # if it is a text overlay, convert text to img and name overlay as 'imgX' else: f = self._text_filter((i + 1), ovr['text'], ovr['font'], ovr['font_size'], ovr['font_color'], ovr['align'], ovr['start_time'], ovr['end_time'], ovr.get('angle', None), use_cropped_text_fix) # Angle should be passed normally, except if we're creating text with # the cropped text fix, in which case, the angle was already taken # care of in the text overlay creation. angle_already_used = ('text' in ovr and use_cropped_text_fix) # Applies ffmpeg effects to images and text generated images f += self._video_filter(input_stream, (i + 1), ovr['x'], ovr['y'], ovr.get('width', '-1'), ovr.get('height', '-1'), ovr['start_time'], ovr['end_time'], output_stream, (ovr.get('angle', None) if not angle_already_used else None), ovr.get('fade_in_duration', 0), ovr.get('fade_out_duration', 0), ovr.get('align', None), ovr.get('keep_ratio', None)) retval.append(f) # makes current concat of overlays the one to concat next overlay input_stream = output_stream # maps last output to final video, or input video if there are no filters if output_stream: self.out_video = '[%s]' % (output_stream) else: self.out_video = '0:v' # returns all overlays return retval def process_image_old(self, image_or_videos_overlays, text_overlays, input_image, output_image): # Holds images generated from text self.text_imgs = [] # Prepares all ffmpeg overlays img_overlays = self._filter_strings(image_or_videos_overlays, text_overlays) # Prepares all images/videos import img_args = self._image_and_video_inputs(image_or_videos_overlays, self.text_imgs) # assets_args assets_args = img_args filter_complex = img_overlays # Group all args and runs ffmpeg ffmpeg_output = self._run_ffmpeg_image(assets_args, filter_complex, input_image, output_image, self.ffmpeg_executable) self.logger.debug('ffmpeg ran with output %s:', ffmpeg_output) return output_image
[ "rgodoy@google.com" ]
rgodoy@google.com
56d6d53b07810d51b36c4842c6af1666223e5ee3
d82ac08e029a340da546e6cfaf795519aca37177
/chapter_05_dimensionality_reduction/05_kernel_principal_component.py
609ded2a21b83c00d4f66aca64610875be219164
[]
no_license
CSwithJC/PythonMachineLearning
4409303c3f4d4177dc509c83e240d7a589b144a0
0c4508861e182a8eeacd4645fb93b51b698ece0f
refs/heads/master
2021-09-04T04:28:14.608662
2018-01-15T20:25:36
2018-01-15T20:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,810
py
import numpy as np import matplotlib.pyplot as plt from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh from sklearn.datasets import make_moons from sklearn.datasets import make_circles from sklearn.decomposition import PCA from matplotlib.ticker import FormatStrFormatter """ Kernel PCA Using Kernel PCA, we perform a nonlinear mapping that transforms the data onto a higher-dimensional space and use standard PCA in this higher-dimensional space to project the data back onto a lower-dimensional space where the samples can be separated by a linear classifier. """ def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation Parameters ---------- X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: Number of principal components to return Returns ------- X_pc: {NumPy ndarray}, shape = [n_samples, n_features] Projected dataset """ # Calculate the pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc # Examples to apply kernel pca to some datasets: # # 1. Half-moon shapes: # X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.show() # Now, project the dataset via standard PCA: scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.show() # Now, try again using our rbf_kernel_pca function X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) plt.show() # In this new plot, we see that the two classes (cirles and traingles) # are lineraly well separated so that it becomes a suitable training # dataset for linear classifiers. # # 2. Concentric circles: # X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.show() # PCA Approach: scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.show() # Again, standard PCA does not produce a good result. # Now, again using our RBF Kernel PCA Implementation: X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') plt.show() # Again, RBF Kernel PCA projected the data onto a new # subspace where the two classes become linearly separable . # This is seen in the new plot.
[ "jean.mendez2@upr.edu" ]
jean.mendez2@upr.edu