blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
34b6d2825eff4be4f5a6eeea5fb44f5a8c0c54d4
69bd4cbf6660bb75131b89b1faa2668dfdd55da5
/7. Imagenes/src/imagenes_TEST.py
0e416026a0228381d7080134de6b67f5be8b09b6
[]
no_license
anatitanic/proyectos-laboratorio
8ed50c524ecb9a228cbee37555d2f9897f56c676
22296bb9ef593f3641ec33858e5a73fb27f4257a
refs/heads/master
2021-10-09T13:09:38.614674
2018-12-28T16:20:06
2018-12-28T16:20:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,101
py
# -*- coding: utf-8 -*- from imagenes import * ################################################################ # Funciones de test ################################################################ def test_muestra_imagen(imagen): muestra_imagen(imagen) def test_guarda_imagen(imagen): guarda_imagen('../img/salida.jpeg', imagen) def test_calcula_dimensiones(imagen): filas, columnas = calcula_dimensiones(imagen) print("Las dimensiones de la imagen son:") print(" - Filas:", filas) print(" - Columnas:", columnas) def test_calcula_intensidades_medias(imagen): rojo, verde, azul = calcula_intensidades_medias(imagen) print("Las intensidades medias de la imagen son:") print(" - Rojo:", rojo) print(" - Verde:", verde) print(" - Azul:", azul) def test_reflejo_vertical(imagen): reflejo = reflejo_vertical(imagen) muestra_imagen(reflejo) def test_reflejo_horizontal(imagen): reflejo = reflejo_horizontal(imagen) muestra_imagen(reflejo) def test_rotacion(imagen): rotada = rotacion(imagen) muestra_imagen(rotada) def test_filtro_color(imagen): solo_azul_rojo = filtro_color(imagen, ['B', 'R']) muestra_imagen(solo_azul_rojo) def test_escala_grises(imagen): grises = escala_grises(imagen) muestra_imagen(grises, cmap='gray') guarda_imagen('../img/grises.jpeg', grises, cmap='gray') def test_blanco_negro(imagen): imagen_bn = blanco_negro(imagen) muestra_imagen(imagen_bn, cmap='gray') ################################################################ # Programa principal ################################################################ imagen = lee_imagen('../img/gibraltar.jpeg') #test_muestra_imagen(imagen) #test_guarda_imagen(imagen) #test_calcula_dimensiones(imagen) #test_calcula_intensidades_medias(imagen) #test_reflejo_vertical(imagen) #test_reflejo_horizontal(imagen) #test_rotacion(imagen) #test_filtro_color(imagen) #test_escala_grises(imagen) #test_blanco_negro(imagen)
[ "noreply@github.com" ]
noreply@github.com
f1b17665c3b46dd3f018e50c818700cf0e574a2f
73d361e2cd52cc647d39660e1f7cf31f0fea6b0f
/Regression/SimpleLinearRegression/SalaryPrediction.py
06e09ef8db3315144bf9de01a8ac9e5ad50460f3
[]
no_license
Aniruddha10/UdemyPythonML
0d1ac434bcb2c8cd5bb6124c4648b2b16126449c
3d33de775d72e51ee6e47483882c10d9c3f2d43c
refs/heads/master
2022-11-24T17:05:42.777851
2020-07-25T16:06:13
2020-07-25T16:06:13
282,477,910
0
0
null
null
null
null
UTF-8
Python
false
false
1,381
py
# -*- coding: utf-8 -*- """ Created on Mon Jun 15 19:19:14 2020 @author: chakanc """ from sklearn import linear_model import matplotlib.pyplot as mp import numpy as np #regressor = "" #train SLR model on Training set def trainModel(X_train, y_train): #print(X_train) #print(y_train) regressor = linear_model.LinearRegression() regressor.fit(X_train, y_train) return regressor def showTheta(regressor): print('Coefficient {} '.format(regressor.Coefficient)) #Predict test Set def predictTest(regressor, X_test): y_test = regressor.predict(X_test) np.set_printoptions(precision=2) return y_test def predictMultiTest(regressor, X_test, y_test): y_pred = regressor.predict(X_test) np.set_printoptions(precision=2) y_pred_array = y_pred.reshape(len(y_pred), 1) y_test_nparray = np.array(y_test) y_test_array = y_test_nparray.reshape(len(y_test_nparray),1) print(np.concatenate((y_pred_array, y_test_array), 1)) return y_test #Visualize training set results def drawTrainSet(X_train, y_train): mp.scatter(X_train, y_train, color='black') mp.plot(X_train, y_train, color = 'blue', linewidth=3) #Visualize Test set results def drawTestSet(X_test, y_test): mp.scatter(X_test, y_test, color='black') #mp.plot(X_test, y_test, color = 'blue', linewidth=1) mp.show()
[ "chakanc@MFCGD.COM" ]
chakanc@MFCGD.COM
03d32acc40385f42ae5c0d2d04765bfd79f49c6e
c71eefb18081ffa79ed63aa1a0d762ec49948cb8
/blog/migrations/0004_auto_20201110_1314.py
53bf3195b4127687b9ede056d84c5fd21aa614fd
[]
no_license
gitjeet/Blog_Site_Using_Django
6532cdf25f0f7db941deb3d905c2bd83d2fcb19f
bf69c81d4cc1c5004827905d42b7192128d92b56
refs/heads/main
2023-01-29T22:46:58.957503
2020-12-03T17:55:54
2020-12-03T17:55:54
318,273,824
1
0
null
null
null
null
UTF-8
Python
false
false
519
py
# Generated by Django 3.1.2 on 2020-11-10 07:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('blog', '0003_auto_20201110_1019'), ] operations = [ migrations.RenameField( model_name='comment', old_name='create_date', new_name='created_date', ), migrations.RenameField( model_name='post', old_name='create_date', new_name='created_date', ), ]
[ "vayuabhijeet@gmail.com" ]
vayuabhijeet@gmail.com
a1175788b89b96596e5c65524f893947f9cd6f68
59a27d1244c372d72e2124e634330a62a40d504b
/aoc_21/01.py
f6ccdcdc71177bdf6c719dba89689ecaf96ef9d1
[]
no_license
rliffredo/advent-of-code
2037813d6765a2c650c240190267c944e4d5148d
3dccb51e252d0e0cc2f627476db69a38be7686de
refs/heads/master
2022-12-22T05:02:14.708180
2022-12-15T08:44:58
2022-12-15T08:44:58
160,335,685
0
0
null
2021-05-13T21:07:08
2018-12-04T09:53:42
Python
UTF-8
Python
false
false
1,037
py
from itertools import tee from common import read_data, pairwise def parse_data(): raw_numbers = read_data("01", True) return [int(n) for n in raw_numbers] def part_1(print_result: bool = True) -> int: depths = parse_data() measurement_pairs = list(pairwise(depths)) increased_pairs = [p for p in measurement_pairs if p[1] > p[0]] increased = len(increased_pairs) return increased def thricewise(iterable): """ s -> (s0,s1,s2), (s1,s2), (s2, s3), ... """ a, b, c = tee(iterable, 3) next(b, None) next(c, None) next(c, None) return zip(a, b, c) def part_2(print_result: bool = True) -> int: depths = parse_data() sliding_windows = list(sum(t) for t in thricewise(depths)) measurement_pairs = list(pairwise(sliding_windows)) increased_pairs = [p for p in measurement_pairs if p[1] > p[0]] increased = len(increased_pairs) return increased SOLUTION_1 = 1400 SOLUTION_2 = 1429 if __name__ == "__main__": print(part_1()) print(part_2())
[ "rliffredo@outlook.com" ]
rliffredo@outlook.com
8d8ddb865c6a12401cc24112051255881181248e
f4f5d98101db7baf9703be077615383b831c35d8
/setup.py
f00a4b6116f81b93954694c531ecc2ff819e8e74
[ "MIT" ]
permissive
TrendingTechnology/PyYouTube-1
23099fd1b825f226cabf2e0f50112e1b3f53346b
774213412210ab03adf11eb8b38906b0f3de5ee6
refs/heads/main
2023-08-17T13:50:03.035784
2021-09-15T09:11:31
2021-09-15T09:11:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
import pathlib import setuptools def read(file: str) -> list: with open(file, encoding="utf-8") as r: return [i.strip() for i in r] file = pathlib.Path(__file__).parent README = (file / "README.md").read_text() setuptools.setup( name='PyYouTube', version="1.0.7", author="mrlokaman", author_email="ln0technical@gmail.com", long_description = README, long_description_content_type = "text/markdown", description="Python library Get YouTube Video Data", license="MIT", url="https://github.com/lntechnical2/PyYouTube", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(), install_requires = read("requirements.txt"), python_requires=">=3.6" )
[ "noreply@github.com" ]
noreply@github.com
439bf310097453fbbe84be8f94fdecf17a33b4a2
701dc6b5c2ea7af5f94729dcc4ca56a8f8c8477e
/settings/wsgi.py
67d3dd056ee37db4b3874cb1f6f0e8630246dcd0
[]
no_license
GuiMend/delivery-backend
f00521920b720967b0bdc9cb9dd9e574424d74eb
56fba4f8fe400d18b0f2813b530cb916488b42ea
refs/heads/master
2023-04-13T16:36:35.636676
2021-04-27T14:46:34
2021-04-27T14:46:34
361,578,794
0
0
null
null
null
null
UTF-8
Python
false
false
260
py
""" topfood-backend WSGI Configuration """ ### # Libraries ### import os from django.core.wsgi import get_wsgi_application ### # Main Configuration ### os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings.settings") application = get_wsgi_application()
[ "guigmen@gmail.com" ]
guigmen@gmail.com
8b41ac7a5a4163138fe8b9a9962e83c1799151aa
dcd616927e4d0a6748a623e916e1c5ba6baaf143
/h2o-py/tests/testdir_generic_model/pyunit_generic_model_mojo_irf.py
890b9f27a2be891431827653afefdaaeb49fcf2e
[ "Apache-2.0" ]
permissive
kaistha23/h2o-3
526340a58d04d440f14e4e0e2847b6a1a95bec57
1f31e84c68c0cda3b3dde0d3112c0ff3cac2270c
refs/heads/master
2020-05-09T10:07:00.356419
2019-04-12T04:14:18
2019-04-12T04:14:18
181,020,702
1
0
Apache-2.0
2019-04-12T14:08:44
2019-04-12T14:08:44
null
UTF-8
Python
false
false
1,322
py
import h2o import tempfile import os from h2o.estimators import H2OIsolationForestEstimator, H2OGenericEstimator from tests import pyunit_utils def mojo_model_irf_test(): # GLM airlines = h2o.import_file(path=pyunit_utils.locate("smalldata/testng/airlines_train.csv")) irf = H2OIsolationForestEstimator(ntrees=1) irf.train(x = ["Origin", "Dest"], y = "Distance", training_frame=airlines) original_model_filename = tempfile.mkdtemp() original_model_filename = irf.download_mojo(original_model_filename) model = H2OGenericEstimator.from_file(original_model_filename) assert model is not None predictions = model.predict(airlines) assert predictions is not None assert predictions.nrows == 24421 assert model._model_json["output"]["variable_importances"] is None assert model._model_json["output"]["model_summary"] is not None assert len(model._model_json["output"]["model_summary"]._cell_values) > 0 generic_mojo_filename = tempfile.mkdtemp("zip", "genericMojo"); generic_mojo_filename = model.download_mojo(path=generic_mojo_filename) assert os.path.getsize(generic_mojo_filename) == os.path.getsize(original_model_filename) if __name__ == "__main__": pyunit_utils.standalone_test(mojo_model_irf_test) else: mojo_model_irf_test()
[ "noreply@github.com" ]
noreply@github.com
c1ae9e6fb753e4652eee299f5a2816c6ddc0a51f
514e85ae034b7782ff29dcff082a888d80a3dc8f
/urlshorter/migrations/0001_initial.py
6a3763f321e156bc1ee0cb592f33697ff01fd0bf
[]
no_license
CossackDex/UrlShorterDjango
48785adda7565104d20ce4ad184a7f42618244d6
fd778acb0f030f3458aea84dfdd112c2b4b15ce7
refs/heads/main
2023-05-09T14:53:49.140333
2021-06-03T14:42:13
2021-06-03T14:42:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
793
py
# Generated by Django 3.2.4 on 2021-06-03 01:00 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='UrlShortener', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_date', models.DateTimeField(auto_now_add=True)), ('click_counter', models.PositiveIntegerField(default=0)), ('long_url', models.URLField()), ('short_url', models.CharField(max_length=15, unique=True)), ], options={ 'ordering': ['-create_date'], }, ), ]
[ "242589@student.pwr.edu.pl" ]
242589@student.pwr.edu.pl
bd2c830fec21a04fa77baa6c330e3c3708b289db
932a75866784589d427afadb11f41abfbbc2dcd4
/yelp-crawler/YelpAdaption.py
45fdee987c09094020666b32b4f016e431c5b310
[]
no_license
wjffxy/dining-bot
a69d5ac5567b149379a86530e8acdb504653a318
047255aabb9816162598066cd30310ab8e794de5
refs/heads/master
2021-01-09T19:00:41.691686
2020-02-22T22:37:28
2020-02-22T22:37:28
242,420,645
0
0
null
2020-02-22T22:30:47
2020-02-22T22:28:39
JavaScript
UTF-8
Python
false
false
3,883
py
# -*- coding: utf-8 -*- """ Yelp Fusion API code sample. This program demonstrates the capability of the Yelp Fusion API by using the Search API to query for businesses by a search term and location, and the Business API to query additional information about the top result from the search query. Please refer to http://www.yelp.com/developers/v3/documentation for the API documentation. This program requires the Python requests library, which you can install via: `pip install -r requirements.txt`. Sample usage of the program: `python sample.py --term="bars" --location="San Francisco, CA"` """ from __future__ import print_function import argparse import json import pprint import requests import sys import urllib # This client code can run on Python 2.x or 3.x. Your imports can be # simpler if you only need one of those. try: # For Python 3.0 and later from urllib.error import HTTPError from urllib.parse import quote from urllib.parse import urlencode except ImportError: # Fall back to Python 2's urllib2 and urllib from urllib2 import HTTPError from urllib import quote from urllib import urlencode # Yelp Fusion no longer uses OAuth as of December 7, 2017. # You no longer need to provide Client ID to fetch Data # It now uses private keys to authenticate requests (API Key) # You can find it on # https://www.yelp.com/developers/v3/manage_app API_KEY= "ueSaG54dzEo5zQeM8aI2LT5C4krMvCYm5HJiNWuh13viiwEgh-Zl3qk3Te1ZOfYK6l4kWDIQzaL4O0sezTPUejlxXv_4-v0DDcguHQjazqPClbvOhTclNpJXOe6YXXYx" # API constants, you shouldn't have to change these. API_HOST = 'https://api.yelp.com' SEARCH_PATH = '/v3/businesses/search' BUSINESS_PATH = '/v3/businesses/' # Business ID will come after slash. # Defaults for our simple example. DEFAULT_TERM = 'french restaurant' DEFAULT_LOCATION = 'manhatten' SEARCH_LIMIT = 50 OFFSET = 0 def request(host, path, api_key, url_params=None): url_params = url_params or {} url = '{0}{1}'.format(host, quote(path.encode('utf8'))) headers = { 'Authorization': 'Bearer %s' % api_key, } print(u'Querying {0} ...'.format(url)) response = requests.request('GET', url, headers=headers, params=url_params) return response.json() def search(api_key, term, location, offset): url_params = { 'term': term.replace(' ', '+'), 'location': location.replace(' ', '+'), 'limit': SEARCH_LIMIT, 'offset': offset } return request(API_HOST, SEARCH_PATH, api_key, url_params=url_params) def get_business(api_key, business_id): business_path = BUSINESS_PATH + business_id return request(API_HOST, business_path, api_key) def query_api(term, location): offset = 0 response = [] json_map = {} k=0 for i in range(20): k = k + 1 json_map[k] = search(API_KEY, term, location, offset) offset = offset + 50 with open('data.json', 'w') as openfile: json.dump(json_map, openfile,sort_keys=True, indent=4) def main(): parser = argparse.ArgumentParser() parser.add_argument('-q', '--term', dest='term', default=DEFAULT_TERM,type=str, help='Search term (default: %(default)s)') parser.add_argument('-l', '--location', dest='location',default=DEFAULT_LOCATION, type=str,help='Search location (default: %(default)s)') input_values = parser.parse_args() try: query_api(input_values.term, input_values.location) except HTTPError as error: sys.exit('Encountered HTTP error {0} on {1}:\n {2}\nAbort program.'.format(error.code,error.url,error.read(),)) if __name__ == '__main__': main()
[ "noreply@github.com" ]
noreply@github.com
e988fb44ebf77ef6fb46be8468feeba747b3f022
7afc43157ab4338614ee1ad9e6824c75694293fb
/inventario/bin/chardetect
eadc1c8ccb6bbc406cf6577397dc505a686811fc
[]
no_license
eze-fayu/inventario
9d8c2c83a123f0a643028e262cc83c1ef612862f
83b63a2f5e7bd14d12e5f6b34682fbacca10fd28
refs/heads/main
2023-05-13T22:20:12.382242
2021-05-29T20:41:19
2021-05-29T20:41:19
354,267,142
0
0
null
null
null
null
UTF-8
Python
false
false
273
#!/home/ezequiel/Documentos/Proyectos/inventario/inventario/bin/python # -*- coding: utf-8 -*- import re import sys from chardet.cli.chardetect import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ezequielfaiella@gmail.com" ]
ezequielfaiella@gmail.com
a9d23248a6c436c6c49ed34c13b6d1fb71b7abf5
bf388b74d823551121f45dfba3333637f845e051
/hm_web/apps.py
2f43c6503ad735c3c85578dadb4c034beb9e681b
[ "MIT" ]
permissive
dantswain/heavy_meta
d5178a61f63474315a62d2c9597f2ddd7ab9187e
c3154130c2c951f1a5b46174193157625bb1be17
refs/heads/master
2021-09-06T13:26:50.018504
2018-02-07T02:55:31
2018-02-07T02:55:31
117,156,773
0
0
null
null
null
null
UTF-8
Python
false
false
160
py
''' Django boilerplate ''' from django.apps import AppConfig class HmWebConfig(AppConfig): ''' Django config boilerplate ''' name = 'hm_web'
[ "dan.t.swain@gmail.com" ]
dan.t.swain@gmail.com
2bec7b1c41956ec1783c8369ebfd7c8ba03d97fa
5604a50361637f8ed1327a5618f96e63fdc60c24
/first_bot/bin/flask
c409f1b8ca260f1d58f0c76ea8703c531a53ca9d
[]
no_license
razmanov666/first_bot_telegram
f82daded45341f92d9b531e6e74cee595fce7779
6d33aae297e3369e3c036f8f50b6ac555cd7c3de
refs/heads/master
2023-07-25T22:20:23.074419
2021-06-30T06:57:46
2021-09-01T17:35:03
376,825,871
0
0
null
null
null
null
UTF-8
Python
false
false
263
#!/home/kurama/Документы/first_bot_telegram/first_bot/bin/python # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "razmanov666@gmail.com" ]
razmanov666@gmail.com
bbb4d451e6ea33efbfab2bbfba0e4b1b5efcb954
bc40f1bcf6d779b39a684e79816e51da7ad828d9
/venv/Scripts/pip3.6-script.py
3dd31b464e10e9516671a4ffb64d17b5d90d2e3e
[]
no_license
dovgin2/data_hackerspace_homework
c3b71b4f988688ce3d133a002fc8419e3dff8322
2396fe026b81c634f30c67694f27ec1dc3c83a7c
refs/heads/master
2020-03-30T11:26:17.094261
2018-10-16T00:06:29
2018-10-16T00:06:29
151,173,716
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
#!C:\Users\s3dov\PycharmProjects\data_hackerspace_homework\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.6' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.6')() )
[ "s3dovgin@gmail.com" ]
s3dovgin@gmail.com
faf4719b940c4e5811346205c59cd9ad7daa89ec
2813f969fc9833023f543fa14c1c22a87325ca8f
/logging_tree/tests/test_format.py
787b959fd92bbf2bdc6650b8ba7e639e870cd017
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
ralphbean/logging_tree
5761afc380719f4069fd00b1f21f5765927ce593
1db0ad6f485b5333fee637813faf827990924421
refs/heads/master
2021-01-16T22:05:05.459626
2012-12-04T02:16:14
2012-12-04T02:16:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,425
py
"""Tests for the `logging_tree.format` module.""" import logging import logging.handlers import unittest import sys from logging_tree.format import build_description, printout from logging_tree.tests.case import LoggingTestCase if sys.version_info >= (3,): from io import StringIO else: from StringIO import StringIO class FakeFile(StringIO): def __init__(self, filename, mode): self.filename = filename StringIO.__init__(self) def __repr__(self): return '<file %r>' % self.filename class FormatTests(LoggingTestCase): def setUp(self): # Prevent logging file handlers from trying to open real files. # (The keyword delay=1, which defers any actual attempt to open # a file, did not appear until Python 2.6.) logging.open = FakeFile super(FormatTests, self).setUp() def tearDown(self): del logging.open super(FormatTests, self).tearDown() def test_printout(self): stdout, sys.stdout = sys.stdout, StringIO() printout() self.assertEqual(sys.stdout.getvalue(), '<--""\n Level WARNING\n') sys.stdout = stdout def test_simple_tree(self): logging.getLogger('a') logging.getLogger('a.b').setLevel(logging.DEBUG) logging.getLogger('x.c') self.assertEqual(build_description(), '''\ <--"" Level WARNING | o<--"a" | | | o<--"a.b" | Level DEBUG | o<--[x] | o<--"x.c" ''') def test_fancy_tree(self): logging.getLogger('').setLevel(logging.DEBUG) log = logging.getLogger('db') log.setLevel(logging.INFO) log.propagate = False log.addFilter(MyFilter()) handler = logging.StreamHandler() log.addHandler(handler) handler.addFilter(logging.Filter('db.errors')) logging.getLogger('db.errors') logging.getLogger('db.stats') log = logging.getLogger('www.status') log.setLevel(logging.DEBUG) log.addHandler(logging.FileHandler('/foo/log.txt')) log.addHandler(MyHandler()) self.assertEqual(build_description(), '''\ <--"" Level DEBUG | o "db" | Level INFO | Propagate OFF | Filter <MyFilter> | Handler Stream %r | Filter name='db.errors' | | | o<--"db.errors" | | | o<--"db.stats" | o<--[www] | o<--"www.status" Level DEBUG Handler File '/foo/log.txt' Handler <MyHandler> ''' % (sys.stderr,)) def test_most_handlers(self): ah = logging.getLogger('').addHandler ah(logging.handlers.RotatingFileHandler( '/bar/one.txt', maxBytes=10000, backupCount=3)) ah(logging.handlers.SocketHandler('server.example.com', 514)) ah(logging.handlers.DatagramHandler('server.example.com', 1958)) ah(logging.handlers.SysLogHandler()) ah(logging.handlers.SMTPHandler( 'mail.example.com', 'Server', 'Sysadmin', 'Logs!')) # ah(logging.handlers.NTEventLogHandler()) ah(logging.handlers.HTTPHandler('api.example.com', '/logs', 'POST')) ah(logging.handlers.BufferingHandler(20000)) sh = logging.StreamHandler() ah(logging.handlers.MemoryHandler(30000, target=sh)) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler RotatingFile '/bar/one.txt' maxBytes=10000 backupCount=3 Handler Socket server.example.com 514 Handler Datagram server.example.com 1958 Handler SysLog ('localhost', 514) facility=1 Handler SMTP via mail.example.com to ['Sysadmin'] Handler HTTP POST to http://api.example.com//logs Handler Buffering capacity=20000 Handler Memory capacity=30000 dumping to: Handler Stream %r ''' % (sh.stream,)) logging.getLogger('').handlers[3].socket.close() # or Python 3 warning def test_2_dot_5_handlers(self): if sys.version_info < (2, 5): return ah = logging.getLogger('').addHandler ah(logging.handlers.TimedRotatingFileHandler('/bar/two.txt')) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler TimedRotatingFile '/bar/two.txt' when='H' interval=3600 backupCount=0 ''') def test_2_dot_6_handlers(self): if sys.version_info < (2, 6): return ah = logging.getLogger('').addHandler ah(logging.handlers.WatchedFileHandler('/bar/three.txt')) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler WatchedFile '/bar/three.txt' ''') def test_nested_handlers(self): h1 = logging.StreamHandler() h2 = logging.handlers.MemoryHandler(30000, target=h1) h2.addFilter(logging.Filter('worse')) h3 = logging.handlers.MemoryHandler(30000, target=h2) h3.addFilter(logging.Filter('bad')) logging.getLogger('').addHandler(h3) self.assertEqual(build_description(), '''\ <--"" Level WARNING Handler Memory capacity=30000 dumping to: Filter name='bad' Handler Memory capacity=30000 dumping to: Filter name='worse' Handler Stream %r ''' % (h1.stream,)) class MyFilter(object): def __repr__(self): return '<MyFilter>' class MyHandler(object): def __repr__(self): return '<MyHandler>' if __name__ == '__main__': # for Python <= 2.4 unittest.main()
[ "brandon@rhodesmill.org" ]
brandon@rhodesmill.org
cb0b2c679a02d35a32e443a9412c0292555d4f6b
cff588a68be44913be884ba5c4ebf36a0a96cb75
/python/007study_namespace.py
3377539352b3e241261c717dfa8c5240c876539d
[]
no_license
KOOKDONGHUN/trading
e6a8d023f4bdbb0f1cf32e3e5b6b26b6265fc3a6
2d4337978a5849098ed890e9e2c3f059e4706536
refs/heads/master
2022-11-15T00:38:32.705125
2020-07-12T10:25:46
2020-07-12T10:25:46
275,761,616
0
0
null
null
null
null
UTF-8
Python
false
false
1,215
py
class Stock: market = 'kospi' print(dir())# // ['Stock', '__annotations__', '__builtins__', '__cached__', '__doc__', # // '__file__', '__loader__', '__name__', '__package__', '__spec__'] # Stock이 추가됐다 print(Stock) # <class '__main__.Stock'> # 클래스가 정의되면 하나의 독립적인 네임스페이스가 생기고 클래스내에 정의된 변수나 메서드는 해당 네임스페이스 안에 파이썬 딕셔너리 타입으로 저장된다 print(Stock.market) # 네임스페이스를 확인하는 방법 print(Stock.__dict__) # // {'__module__': '__main__', 'market': 'kospi', '__dict__': <attribute '__dict__' of 'Stock' objects>, #// '__weakref__': <attribute '__weakref__' of 'Stock' objects>, '__doc__': None} s1 = Stock() s2 = Stock() print(id(s1)) # 2120139199496 print(id(s2)) # 2120139199560 print(s1.__dict__) # 비어있음 print(s2.__dict__) # 비어있음 s1.market = 'kosdaq' print(s1.__dict__) # {'market': 'kosdaq'} print(s2.__dict__) # 비어있음 print(s1.market) # kosdaq # 인스턴스의 네임스페이스에 해당 이름이 없으면 클래스의 네임스페이스로 이동 print(s2.market) # kospi
[ "dh3978@naver.com" ]
dh3978@naver.com
e9a17f8c7e0790a3636e026ef43c3c2087b22714
49ce91d1058f98088350a262700aeb36673800f2
/aula39/aula39.py
a1a880a7a21687070682de71c6f65175b4c94fdc
[]
no_license
adrxA/python
fc838d96518e5e4dd5e6bbdc5420cadf2f0882e2
31488e812af54c30117e7027b2b387bf9b4b78cc
refs/heads/master
2023-06-22T14:34:41.267845
2021-07-19T03:58:11
2021-07-19T03:58:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
import pandas as pd alunos = { "Nome": ['Ricardo', 'Pedro', 'Roberto', 'Carlos'], "Nota": [4, 7, 9, 9.7], "Aprovado":['Não', 'Sim', 'Sim', 'Sim'] } dataframe = pd.DataFrame(alunos) print(dataframe.head()) #Transformou o dicionário em dataframe objeto1 = pd.Series([1,2,4,6,7,9]) print(objeto1) matriz = [ ["1" , "A" , "X"], ["2" , "B" , "Y"], ["3" , "C" , "Z"] ] objeto2 = pd.Series(matriz) print(objeto2) #Transformou a matriz em dataframe
[ "leovasc5@hotmail.com" ]
leovasc5@hotmail.com
187e1c46f87f4c4220aeebea29f79220ed2388ec
1d3ee56d9a95ffc35e08bbc211f2a6b8e83be7c2
/resources/chart_line.py
95ee7407a9e507a1fe2c0397207e5748f31395b8
[]
no_license
Lucas0Braz/charts_generete
6ea69cf3526ec713877d9214173d40a65456a184
748e110971839f4b1c7463c23c297fcebcdd70e1
refs/heads/master
2021-07-10T09:53:50.906534
2020-01-28T03:11:18
2020-01-28T03:11:18
236,640,364
0
0
null
2021-03-20T02:39:52
2020-01-28T02:16:17
Python
UTF-8
Python
false
false
1,110
py
from flask_restful import Resource,reqparse from models.chart_line import Chart_LineModel class Chart_LineResource(Resource): parser = reqparse.RequestParser() parser.add_argument('x', #type=list, action='append', required=True, help="This field X cannot be left blank, and must be a list of integers" ) parser.add_argument('y', #type=list, action='append', required=True, help="This field Y cannot be left blank, and must be a list of integers" ) def post(self): data = self.parser.parse_args() import sys print(type(data), file=sys.stderr) chart = Chart_LineModel(**data) path_chart = chart.gerar_chart() if path_chart is not None: return {"path_chart":f"{path_chart}"},200 return {"message":"Something went bad"}, 404
[ "lucasbraz430@gmail.com" ]
lucasbraz430@gmail.com
7f079cf4970ef56999d64bea7b1fcc1351cba791
cee5070499cf59dd5019f86e785e41ad5c55837b
/PageLocators/setting_tab_locator.py
daabcd188f53a965b2ab4371cdec37c91c884a4d
[]
no_license
Yttyou/AppUi
b76cae345039d6c3a39f601960c085696b63b60a
d5303d33c4fb67d3b50e02918f15e5849a956b30
refs/heads/master
2023-02-25T07:59:12.759684
2021-02-01T01:47:45
2021-02-01T01:47:45
334,800,103
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
__author__ = 'developer' # 【设定】tab页面元素定位 from appium.webdriver.common.mobileby import MobileBy as Mb class SettingTabLocator: setting_button = (Mb.ID, "com.suncity.sunpeople.qa:id/tv_setting") # 导航栏【设定】 signout_button = (Mb.ID, "com.suncity.sunpeople.qa:id/tv_signout") # 【登出】按钮 confirm_signout_button = ( Mb.ANDROID_UIAUTOMATOR, "new UiSelector().className(\"android.widget.TextView\").textContains(\"登出\")") signout_button_load = (Mb.ID,"com.suncity.sunpeople.qa:id/lcv_circleload") # 登出load set_button = (Mb.ID, "com.suncity.sunpeople.qa:id/rl_setting") # 设定按钮 user_image = (Mb.ID, "com.suncity.sunpeople.qa:id/sdv_avatar") # 用户图像 taking_pictures = (Mb.CLASS_NAME, "android.widget.TextView") # 拍照 the_shutter = (Mb.ID, "NONE") # 快门 is_ok = (Mb.ID, "com.sec.android.app.camera:id/okay") # 确定
[ "t-youtongtong@MEGVII-INC.com" ]
t-youtongtong@MEGVII-INC.com
e793c7028c56c76c140624f40a268ba44ce1ccc3
90def3915f597b26182087a6c6b6d54eded6d940
/catalogExport/public_api/httpClient/callapi.py
4878c72c6096c9a0e2b3fcaf30d55721d642cf97
[ "MIT" ]
permissive
goodbarber/shop_custom_dev_examples
4f8122b54149c2a6a0d618bcc7bfaa651b823fa2
b8aa99386fb2a1ef83ed86f519ef707c533d7470
refs/heads/main
2023-07-06T01:45:59.532726
2021-08-03T06:36:56
2021-08-03T06:36:56
342,181,521
1
1
null
2021-08-03T06:36:58
2021-02-25T08:55:20
Python
UTF-8
Python
false
false
689
py
import requests class CallApi: '''Class that allow to call multiple requests types''' def get(self, url, headers={}): print(url) res = requests.get(url, headers=headers) if res.status_code == 200: return res else: raise requests.models.HTTPError( f"HTTP {res.status_code}, aborting.\nBody: {res.text}") def patch(self, url, data, headers={}): res = requests.patch(url, headers=headers, json=data) # res = res.json() return res def post(self, url, data, headers={}): res = requests.post(url, headers=headers, json=data) # res = res.json() return res
[ "christophelucchini@MacBook-Pro-de-Christophe.local" ]
christophelucchini@MacBook-Pro-de-Christophe.local
fc0d64f7a2b0c2bf8d96c8331a25546b633e2b03
9f926ba20c9d72004f30944646eae2f9cc305afd
/timeline_logger/compat.py
b61099b1a6832c44e448678b0e81a5580c5352fb
[ "MIT" ]
permissive
tsiaGeorge/django-timeline-logger
625a15c27fc6b5b4caf73b300120e0c3c29540e7
07bee5038dd84256e3863e6a7634e29521345ce1
refs/heads/master
2021-04-06T00:01:11.095501
2018-03-07T11:34:45
2018-03-07T11:34:45
125,027,461
0
0
null
2018-03-13T09:41:11
2018-03-13T09:41:11
null
UTF-8
Python
false
false
263
py
import sys # Safely importing the HTML parser utility, highly dependent on Python versions if sys.version_info >= (3, 4): # From v3.4.0 in advance import html else: # Python 2.x versions from HTMLParser import HTMLParser html = HTMLParser()
[ "jose.lpa@gmail.com" ]
jose.lpa@gmail.com
62ba6288d1f83cb12eabbd9f1ca1f699279434d8
96a6d2f6544d8d4aa43ce73c0abe851697fa0602
/birthplan/scheduler.py
722c5423ed7b18e606c1abf6f1d353fac063ce22
[]
no_license
basman/atc_bot
7f12d65dbac21fc586646c1773e7144f8da2f985
4106bed0b635dbfabfb1cb4499f27154ed380c08
refs/heads/master
2021-01-20T04:37:25.582247
2014-10-31T11:22:15
2014-10-31T11:22:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,323
py
import string import time from position import Airport, Exit, Position class Scheduler: DEBUG_STEPS = False DEBUG_NO_TIMEOUT = False def __init__(self, arena, connector): self._arena = arena self._connector = connector self._schedules = {} # nested dict; _schedules[time][airplane_id] = position def _compute_commands(self, path, airplane): # compute commands along the path delta_z = 0 # ascent rate delta_z_idx = -1 # start of ascent rate for i in range(1, len(path)): speed = airplane.speed if i == 1: # slow plane might be born at odd time, so we might need a command on the first position (i.e. starting from airports) speed = 1 # slow planes move every second time step if path[i].time % speed != 0: continue if path[i].z - path[i - speed].z != delta_z: if delta_z_idx >= 0: path[delta_z_idx].add_cmd_altitude(path[i - speed].z) # new delta_z delta_z = path[i].z - path[i - speed].z if delta_z != 0: delta_z_idx = i - speed else: delta_z_idx = -1 if (i > 1 or path[0].z != 7) and path[i].dir != path[i - speed].dir or i == 1 and path[0].z == 7 and path[i].dir != path[0].reverseDirection(): path[i - speed].add_cmd_direction(path[i].dir) else: # don't forget command for last section if delta_z != 0: path[delta_z_idx].add_cmd_altitude(path[-1].z) def _complex_path(self, airplane): # used for airplanes were brute force path computation took to long print "all scheduled flight paths at moment of despair:" for aid in sorted(self._arena.airplanes): a = self._arena.airplanes[aid] print "Airplane " + aid + ": ", i=self._arena.clock while i in self._schedules and a in self._schedules[i]: print "%15s " % str(self._schedules[i][a]), i += 1 print "" raise Exception("emergency procedures necessary for airplane " + str(airplane)) def _compute_path(self, airplane, timelimit): #print "looking for a path from " + str(start) + " to " + str(dest) + ", starting at " + str(p) begin_computation = time.time() start = Position(airplane) start.time = self._arena.clock plan = [ start ] # aim for approach position, one step in front of airport if isinstance(airplane.dest, Airport): tmp = Position(airplane.dest) tmp.dir = tmp.reverseDirection() approach = tmp.step(0, 1) approach.dir = airplane.dest.dir # turn around else: approach = Position(airplane.dest) approach.dir_tolerance = 90 # allow max. 90 degree derivation from target direction # enter recursion if not self._step_recursive(airplane, plan, start, approach, timelimit): if time.time() > timelimit: print "Path of " + str(airplane) + " from " + str(start) + " to " + str(airplane.dest) + ": COMPUTATION TIMEOUT (comp.time=" + \ str(int((time.time()-begin_computation) * 1000000)/1000.0) + "ms)" else: print "Airplane " + str(airplane) + " will delay its take-off due to ongoing traffic" return False # append destination itself d = Position(airplane.dest) d.time = plan[-1].time + 1 plan.append( d ) self._compute_commands(plan, airplane) print "Path of " + str(airplane) + " from " + str(start) + " to " + str(airplane.dest) + " (" + str(len(plan)) + " steps, comp.time=" + \ str(int((time.time()-begin_computation) * 100000)/100.0) + "ms): ", print string.join(map(str, plan), '; ') # add schedule to database for s in plan: if s.time < self._arena.clock: raise Exception("can't schedule for past time " + str(s.time) + ". current time: " + str(self._arena.clock)) if not s.time in self._schedules: self._schedules[s.time] = {} self._schedules[s.time][airplane] = s return True def _scheduled_is_collision(self, airplane, p): if p.time in self._schedules: for a in self._schedules[p.time]: if self._schedules[p.time][a].is_collision(p): return True return False def _step_recursive(self, airplane, path, p, dest, timeout): # slow planes move every second time step if (p.time+1) % airplane.speed != 0: p = Position(p) p.time += 1 if self._scheduled_is_collision(airplane, p): return False path.append(p) if not self._step_recursive(airplane, path, p, dest, timeout): del(path[-1]) return False else: return True if p.equals(dest): return True if len(path) >= airplane.fuel * airplane.speed: # safe one fuel unit for the last step from approach to destination return False if time.time() > timeout: #print "Airplane " + str(airplane) + " can't find a path before next update" return False #self.log += "\n _step_recursive: try " + str(p) steps = self._gen_possible_steps(p) possible_steps = {} # try to walk in any direction (preferrably towards dest) for s in steps: s.time = p.time+1 if self._scheduled_is_collision(airplane, s): continue skip = False if s.equals(dest): # present arrival as only solution possible_steps[0] = [s] break # exclude illegal steps (out of area or invalid altitude) if ( s.x <= 0 or s.y <= 0 or s.y >= self._arena.height-1 or s.x >= self._arena.width-1 or s.z < 1 or s.z > 9): continue # must start straight from airport if path[0].z == 0 and len(path) < 2 and s.dir != path[0].dir: continue if skip: continue distance = dest.distance(s) if not distance in possible_steps: possible_steps[distance] = [] possible_steps[distance].append(s) if len(possible_steps) == 0: #print " step_rec.: fail" return False ordered_steps = [] for d in sorted(possible_steps): ordered_steps.extend(possible_steps[d]) for st in ordered_steps: path.append(st) if Scheduler.DEBUG_STEPS: print '-STEPPING(' + str(len(path)) + '): ' + ','.join(map(str, path)) if self._step_recursive(airplane, path, st, dest, timeout): return True else: del(path[-1]) return False def _gen_possible_steps(self, pos): steps = [] if pos.z == 0: steps.append(Position(pos)) # stay at airport or ... steps.append(pos.step(0, 1)) # ...take off else: for delta_dir in ( 0, -45, 45, -90, 90 ): for delta_z in (-1, 0, 1): npos = pos.step(delta_dir, delta_z) # skip invalid steps if not npos is None: steps.append(npos) return steps def update(self): # cleanup past schedule if self._arena.clock-1 in self._schedules: del(self._schedules[self._arena.clock-1]) # Prio 0: guide old planes commands = [] # collect commands of all guided airplanes unguided = [] # list unguided airplanes for path computation gonner = [] # list airplanes that jumped (glitch!) and therefor were reborn for aid in sorted(self._arena.airplanes.keys()): a = self._arena.airplanes[aid] if self._arena.clock in self._schedules and a in self._schedules[self._arena.clock]: # only airplanes still on the ground can avoid this loop # (i.e. no collision free launch is possible at the moment) for c in self._schedules[self._arena.clock][a].cmd: commands.append(a.id + c + "\n") print "cmd: " + a.id + c # check flight path position for each plane if not a.equals(self._schedules[self._arena.clock][a]): # In rare cases an airplane can reach its destination and the ID is reused by a new plane during the same update cycle. # The bot will think it is still the old plane that jumped to a different location. # We analyse the jump distance. If it's more than 3, we delete the airplane and let it reappear by the next update, which will # trigger a path calculation. if a.distance(self._schedules[self._arena.clock][a]) >= 4: print "REBORN airplane " + str(a) gonner.append(a) else: print "Path: " + self._sched2str(a) raise Exception("airplane left flight path: " + str(a) + ", expected " + str(self._schedules[self._arena.clock][a]) + ', t=' + str(self._arena.clock)) else: unguided.append(a) if len(commands) > 0: self._connector.send(string.join(commands)) commands = [] waiting = {} # allow searching for a solution for almost one update interval of atc timelimit = time.time() + (float(self._arena.update_time - 0.02) / max(len(unguided), 1)) if Scheduler.DEBUG_NO_TIMEOUT: timelimit = time.time() + 3600*24*7 # cleanup airplanes and commands that were reborn under the same name. They will be routed upon the next update cycle. for a in gonner: del(self._arena.airplanes[a.id]) for i in range(2): if self._arena.clock+i in self._schedules and a in self._schedules[self._arena.clock+i]: del(self._schedules[self._arena.clock+i][a]) for a in unguided: # Prio 1: guide new planes in the air if a.z > 0: # new airplane already in flight if not self._compute_path(a, timelimit): self._complex_path(a) else: # Prio 2: guide new planes waiting on the ground ap = a.start # pull up one single airplane per airport if not ap in waiting and not ap.must_wait(self._arena.clock): waiting[ap] = a if not self._arena.clock in self._schedules or not a in self._schedules[self._arena.clock]: self._compute_path(a, timelimit) # send commands for freshly routed planes if self._arena.clock in self._schedules and a in self._schedules[self._arena.clock]: for c in self._schedules[self._arena.clock][a].cmd: commands.append(a.id + c + "\n") print "cmd: " + a.id + c if len(commands) > 0: self._connector.send(string.join(commands)) def _sched2str(self, airplane): clock = self._arena.clock result = '' while clock in self._schedules and airplane in self._schedules[clock]: if clock != self._arena.clock: result += ', ' result += str(self._schedules[clock][airplane]) clock += 1 return result
[ "rha_github@disconnect.ch" ]
rha_github@disconnect.ch
6dc14984a85ef7d3fbfbaa874a0267f1787fbeba
8723d2cb798f6198a84f5746cb9a2ae732a49dd6
/vafnet/util/Optimizer.py
1cb4956e0d5975f00f0c6a23b9fda71bfe48a11d
[ "Apache-2.0" ]
permissive
MaxInGaussian/VAFnet
5d3984ae97be576ac61df5995f58dad96aa6ad05
618a16abae08a193b94072d5d5ff176f02bb1288
refs/heads/master
2021-07-11T06:31:49.834370
2017-10-15T15:54:29
2017-10-15T15:54:29
104,314,614
0
0
null
null
null
null
UTF-8
Python
false
false
15,637
py
# Copyright 2017 Max W. Y. Lam # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import numpy.random as npr import theano import theano.tensor as TT from collections import OrderedDict __all__ = [ "Optimizer", ] class Optimizer(object): algos = [ "momentum", "nesterov", "sgd", "adagrad", "rmsprop", "adadelta", "adam", "adamax", ] @staticmethod def momentum(updates, momentum=0.9): """Returns a modified update dictionary including momentum Generates update expressions of the form: *``velocity := momentum*velocity+updates[param]-param`` *``param := param+velocity`` Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions momentum : float or symbolic scalar, optional The amount of momentum to apply. Higher momentum results in smoothing over more update steps. Defaults to 0.9. Returns ------- OrderedDict A copy of `updates` with momentum updates for all `params`. Notes ----- Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning rate by `1-momentum`. """ params = list(updates.keys())[0] updates = OrderedDict(updates) value = params.get_value(borrow=True) velocity = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) x = momentum*velocity+updates[params] updates[velocity] = x-params updates[params] = x return updates @staticmethod def nesterov(updates, momentum=0.9): """Returns a modified update dictionary including Nesterov momentum Generates update expressions of the form: *``velocity := momentum*velocity+updates[params]-params`` *``params := params+momentum*velocity+updates[params]-params`` Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions momentum : float or symbolic scalar, optional The amount of momentum to apply. Higher momentum results in smoothing over more update steps. Defaults to 0.9. Returns ------- OrderedDict A copy of `updates` with momentum updates for all `params`. Notes ----- Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning rate by `1-momentum`. The classic formulation of Nesterov momentum (or Nesterov accelerated gradient) requires the gradient to be evaluated at the predicted next position in parameter space. Here, we use the formulation described at https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617, which allows the gradient to be evaluated at the current parameters. """ params = list(updates.keys())[0] updates = OrderedDict(updates) value = params.get_value(borrow=True) velocity = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) x = momentum*velocity+updates[params]-params updates[velocity] = x updates[params] = momentum*x+updates[params] return updates @staticmethod def sgd(updates, learning_rate=0.01, **args): """Stochastic Gradient Descent (SGD) updates Generates update expressions of the form: *``params := params-learning_rate*gradient`` Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions learning_rate : float or symbolic scalar The learning rate controlling the size of update steps Returns ------- OrderedDict A dictionary mapping each parameter to its update expression """ params, grads = list(updates.items())[0] updates = OrderedDict(updates) updates[params] = params-learning_rate*grads return updates @staticmethod def adagrad(updates, learning_rate=0.01, epsilon=1e-6, **args): """Adagrad updates Scale learning rates by dividing with the square root of accumulated squared gradients. See [1]_ for further description. Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions learning_rate : float or symbolic scalar The learning rate controlling the size of update steps epsilon : float or symbolic scalar Small value added for numerical stability Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- Using step size eta Adagrad calculates the learning rate for feature i at time step t as: .. math:: \\eta_{t,i} = \\frac{\\eta} {\\sqrt{\\sum^t_{t^\\prime} g^2_{t^\\prime,i}+\\epsilon}} g_{t,i} as such the learning rate is monotonically decreasing. Epsilon is not included in the typical formula, see [2]_. References ---------- .. [1] Duchi, J., Hazan, E., & Singer, Y. (2011): Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159. .. [2] Chris Dyer: Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf """ params, grads = list(updates.items())[0] updates = OrderedDict(updates) value = params.get_value(borrow=True) accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) accu_new = accu+grads**2 updates[accu] = accu_new updates[params] = params-(learning_rate*grads/TT.sqrt(accu_new+epsilon)) return updates @staticmethod def rmsprop(updates, learning_rate=0.01, rho=0.9, epsilon=1e-6, **args): """RMSProp updates Scale learning rates by dividing with the moving average of the root mean squared (RMS) gradients. See [1]_ for further description. Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions learning_rate : float or symbolic scalar The learning rate controlling the size of update steps rho : float or symbolic scalar Gradient moving average decay factor epsilon : float or symbolic scalar Small value added for numerical stability Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- `rho` should be between 0 and 1. A value of `rho` close to 1 will decay the moving average slowly and a value close to 0 will decay the moving average fast. Using the step size :math:`\\eta` and a decay factor :math:`\\rho` the learning rate :math:`\\eta_t` is calculated as: .. math:: r_t &= \\rho r_{t-1}+(1-\\rho)*g^2\\\\ \\eta_t &= \\frac{\\eta}{\\sqrt{r_t+\\epsilon}} References ---------- .. [1] Tieleman, TT. and Hinton, G. (2012): Neural Networks for Machine Learning, Lecture 6.5-rmsprop. Coursera. http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20) """ params, grads = list(updates.items())[0] updates = OrderedDict(updates) one = TT.constant(1) value = params.get_value(borrow=True) accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) accu_new = rho*accu+(one-rho)*grad**2 updates[accu] = accu_new updates[params] = params-(learning_rate*grads/TT.sqrt(accu_new+epsilon)) return updates @staticmethod def adadelta(updates, learning_rate=1., rho=0.95, epsilon=1e-6, **args): """ Adadelta updates Scale learning rates by the ratio of accumulated gradients to accumulated updates, see [1]_ and notes for further description. Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions learning_rate : float or symbolic scalar The learning rate controlling the size of update steps rho : float or symbolic scalar Squared gradient moving average decay factor epsilon : float or symbolic scalar Small value added for numerical stability Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value close to 0 will decay the moving average fast. rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to work for multiple datasets (MNIST, speech). In the paper, no learning rate is considered (so learning_rate=1.0). Probably best to keep it at this value. epsilon is important for the very first update (so the numerator does not become 0). Using the step size eta and a decay factor rho the learning rate is calculated as: .. math:: r_t &= \\rho r_{t-1}+(1-\\rho)*g^2\\\\ \\eta_t &= \\eta \\frac{\\sqrt{s_{t-1}+\\epsilon}} {\sqrt{r_t+\epsilon}}\\\\ s_t &= \\rho s_{t-1}+(1-\\rho)*(\\eta_t*g)^2 References ---------- .. [1] Zeiler, M. D. (2012): ADADELTA: An Adaptive Learning Rate Method. arXiv Preprint arXiv:1212.5701. """ params, grads = list(updates.items())[0] updates = OrderedDict(updates) one = TT.constant(1) value = params.get_value(borrow=True) accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) delta_accu = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) accu_new = rho*accu+(one-rho)*grads**2 updates[accu] = accu_new update = (grads*TT.sqrt(delta_accu+epsilon)/ TT.sqrt(accu_new+epsilon)) updates[params] = params-learning_rate*update delta_accu_new = rho*delta_accu+(one-rho)*update**2 updates[delta_accu] = delta_accu_new return updates @staticmethod def adam(updates, learning_rate=0.01, beta1=0.9, beta2=0.99, epsilon=1e-8, **args): """Adam updates Adam updates implemented as in [1]_. Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions learning_rate : float Learning rate beta1 : float Exponential decay rate for the first moment estimates. beta2 : float Exponential decay rate for the second moment estimates. epsilon : float Constant for numerical stability. Returns ------- OrderedDict A dictionary mapping each parameter to its update expression Notes ----- The paper [1]_ includes an additional hyperparameter lambda. This is only needed to prove convergence of the algorithm and has no practical use (personal communication with the authors), it is therefore omitted here. References ---------- .. [1] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980. """ params, grads = list(updates.items())[0] updates = OrderedDict(updates) t_prev = theano.shared(np.asarray(0., dtype=theano.config.floatX)) one = TT.constant(1) t = t_prev+1 a_t = learning_rate*TT.sqrt(one-beta2**t)/(one-beta1**t) value = params.get_value(borrow=True) m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) v_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) m_t = beta1*m_prev+(one-beta1)*grads v_t = beta2*v_prev+(one-beta2)*grads**2 step = a_t*m_t/(TT.sqrt(v_t)+epsilon) updates[m_prev] = m_t updates[v_prev] = v_t updates[params] = params-step updates[t_prev] = t return updates @staticmethod def adamax(updates, learning_rate=0.01, beta1=0.9, beta2=0.999, epsilon=1e-8, **args): """Adamax updates Adamax updates implemented as in [1]_. This is a variant of of the Adam algorithm based on the infinity norm. Parameters ---------- updates : OrderedDict A dictionary mapping parameters to update expressions learning_rate : float Learning rate beta1 : float Exponential decay rate for the first moment estimates. beta2 : float Exponential decay rate for the weighted infinity norm estimates. epsilon : float Constant for numerical stability. Returns ------- OrderedDict A dictionary mapping each parameter to its update expression References ---------- .. [1] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980. """ params, grads = list(updates.items())[0] updates = OrderedDict(updates) t_prev = theano.shared(np.asarray(0., dtype=theano.config.floatX)) one = TT.constant(1) t = t_prev+1 a_t = learning_rate/(one-beta1**t) value = params.get_value(borrow=True) m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) u_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype), broadcastable=params.broadcastable) m_t = beta1*m_prev+(one-beta1)*grads u_t = TT.maximum(beta2*u_prev, abs(grads)) step = a_t*m_t/(u_t+epsilon) updates[m_prev] = m_t updates[u_prev] = u_t updates[params] = params-step updates[t_prev] = t return updates
[ "maxingaussian@gmail.com" ]
maxingaussian@gmail.com
405b180fbc5d7387565172702112313d01dff282
6efb6f69426bbd821f2e748decb9d9c0652e0743
/lab4/venv/Scripts/UTscapy-script.py
0630774b1472e4df9b492ed23be125597842f719
[]
no_license
Notheryne/Sieci
cd3616577c40f0b546f1bfa77aca0d7f054997b2
fcdb1b7af298ca4eaea8110b0a7dc171400ce37b
refs/heads/master
2020-09-04T16:26:13.821539
2020-01-28T22:43:35
2020-01-28T22:43:35
219,801,060
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
#!D:\Programowanie\SieciLab\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'scapy==2.4.3','console_scripts','UTscapy' __requires__ = 'scapy==2.4.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('scapy==2.4.3', 'console_scripts', 'UTscapy')() )
[ "rydzinski.bartosz.1998@gmail.com" ]
rydzinski.bartosz.1998@gmail.com
d661b6d2d860ce3bc6425535f573ad65b0bb1d5a
c23692a8b77916124ac3fd840ff8466405b5e2ff
/samples/clap_driving.py
dbecdc37ba53a76df07a43866d8354938ef3d11e
[]
no_license
toanh/edpysim
575586cda1c8f6364841e162af801cfeaa509f6f
e9d3244c4f2414de9a370adc9f831e71f9296fe2
refs/heads/master
2021-05-17T21:05:10.180301
2020-04-08T06:48:26
2020-04-08T06:48:26
250,952,059
2
1
null
2020-04-08T06:49:46
2020-03-29T04:18:53
JavaScript
UTF-8
Python
false
false
1,369
py
#-------------Setup---------------- Ed.EdisonVersion = Ed.V2 Ed.DistanceUnits = Ed.CM Ed.Tempo = Ed.TEMPO_MEDIUM def waitClap(): #loop around, waiting for a clap to be detected while Ed.ReadClapSensor() != Ed.CLAP_DETECTED: pass #--------Your code below----------- while True: #wait for a clap to be detected waitClap() #turn on LED to indicate a detection Ed.RightLed(Ed.ON) #wait a short amount of time so that the same clap is not detected twice Ed.TimeWait(100, Ed.TIME_MILLISECONDS) #clear the clap detection, so that the same clap is not detected twice Ed.ReadClapSensor() #wait a short amount of time to ensure the second clap has time to be detected Ed.TimeWait(250, Ed.TIME_MILLISECONDS) #test to see if a second clap has occured if Ed.ReadClapSensor() == Ed.CLAP_DETECTED: #A second clap has been found! turn on the other LED and drive forwards Ed.LeftLed(Ed.ON) Ed.Drive(Ed.FORWARD, Ed.SPEED_10, 15) else: #only one clap detected. spin to the right Ed.Drive(Ed.SPIN_RIGHT, Ed.SPEED_10, 45) # wait a short time and clears the clap detection before looping Ed.TimeWait(250, Ed.TIME_MILLISECONDS) Ed.RightLed(Ed.OFF) Ed.LeftLed(Ed.OFF) Ed.ReadClapSensor() #To use this code with Edison Version 1: #change the version in the setup to Ed.EdisonVersion = Ed.V2 #change Ed.DistanceUnits = Ed.CM to Ed.DistanceUnits = Ed.TIME
[ "toan.kien@gmail.com" ]
toan.kien@gmail.com
d53862d05b52b8276f07a6c6e02b29cd0b79c931
2f95a207bb948ad1ac09e9a8d50c5ec0b72c9201
/untils.py
6e6ccaf3bb46994152037295c93527d33dca7938
[]
no_license
wangyuanhao/springD2A
037e79117cf493481e35da694eca0857348189a5
89f1f6d1f6a3e4a942d28a83232c643578888854
refs/heads/main
2023-05-01T13:52:00.406182
2021-05-24T02:45:09
2021-05-24T02:45:09
348,259,419
5
0
null
null
null
null
UTF-8
Python
false
false
7,083
py
import os from torch.utils.data import TensorDataset, DataLoader import torch import matplotlib.pyplot as plt import numpy as np from torch import nn import logging def get_logger(filename, verbosity=1, name=None): level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING} # formatter = logging.Formatter( # "[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s" # ) formatter = logging.Formatter( "[%(asctime)s][%(levelname)s] %(message)s" ) logger = logging.getLogger(name) logger.setLevel(level_dict[verbosity]) fh = logging.FileHandler(filename, "w") fh.setFormatter(formatter) logger.addHandler(fh) sh = logging.StreamHandler() sh.setFormatter(formatter) logger.addHandler(sh) return logger def chck_dir(tdir): if not os.path.exists(tdir): os.makedirs(tdir) def compute_adj(X, topk): X = X.numpy() sample_num = X.shape[0] t_adj_mat = np.zeros((sample_num, sample_num)) for i in range(sample_num): dist = np.diag(np.dot(X[i, :] - X, (X[i, :] - X).T)) # dist = -X[i, :] # dist[i] = 0 ind = np.argsort(dist) t_adj_mat[i, ind[:topk]] = 1 adj_mat_bool = ((t_adj_mat + t_adj_mat.T) / 2) > 0.5 sym_adj_mat = np.zeros((sample_num, sample_num)) sym_adj_mat[adj_mat_bool] = 1.0 return sym_adj_mat - np.diag(np.diag(sym_adj_mat)) def ind2sub(array_shape, ind): ind[ind < 0] = -1 ind[ind >= array_shape[0]*array_shape[1]] = -1 rows = (ind // array_shape[1]) cols = ind % array_shape[1] return rows, cols def get_k_fold(k, i, X, y): # 返回第i折交叉验证是所需要的训练和验证数据 assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j*fold_size, (j+1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat((X_train, X_part), dim=0) y_train = torch.cat((y_train, y_part), dim=0) return X_train, y_train, X_valid, y_valid def flatten_data(disease_data, drug_data, get_idx=False): disease_num, disease_dim = disease_data.shape[0], disease_data.shape[1] drug_num, drug_dim = drug_data.shape[0], drug_data.shape[1] disease_drug_assoc = torch.zeros((disease_num, drug_num)) idx = torch.where(disease_drug_assoc == 0) if get_idx: return idx else: disease_drug_data = torch.cat((disease_data[idx[0]], drug_data[idx[1]]), dim=1) return disease_drug_data def data_iter_obsolte(pos_X_train_idx, unkwn_pairs_idx, batch_size, neg_pos_ratio): np.random.shuffle(unkwn_pairs_idx) pos_num = len(pos_X_train_idx) neg_num = np.minimum(neg_pos_ratio*pos_num, len(unkwn_pairs_idx)) selected_unkwn_paris_idx = unkwn_pairs_idx[0:neg_num] y = torch.cat((torch.ones(pos_num, ), torch.zeros(neg_num, )), dim=0) # # X = torch.cat((disease_drug_data[pos_X_train_idx, :], # disease_drug_data[selected_unkwn_paris_idx, :]), dim=0) X = torch.cat((torch.tensor(pos_X_train_idx), torch.tensor(selected_unkwn_paris_idx)), dim=0) dataset = TensorDataset(X, y) train_iter = DataLoader(dataset, batch_size, shuffle=True) return train_iter def data_loader(pos_X_train_idx, unkwn_pairs_idx, batch_size, neg_pos_ratio, neg_sample_weight): # np.random.seed(123) # np.random.shuffle(unkwn_pairs_idx) pos_num = len(pos_X_train_idx) neg_num = np.minimum(neg_pos_ratio * pos_num, len(unkwn_pairs_idx)) # selected_unkwn_paris_idx = unkwn_pairs_idx[0:neg_num] select_unkwn_pairs_idx = np.random.choice(unkwn_pairs_idx, neg_num, replace=False, p=neg_sample_weight) pos_train_iter = data_iter(pos_X_train_idx, batch_size, pos=True) neg_train_iter = data_iter(select_unkwn_pairs_idx, batch_size*neg_pos_ratio, pos=False) if len(pos_train_iter) != len(neg_train_iter): assert "pos-neg missmathced!" return zip(pos_train_iter, neg_train_iter), select_unkwn_pairs_idx def data_iter(train_idx, batch_size, pos=True): if pos: y = torch.ones((len(train_idx), )) else: y = torch.zeros(len(train_idx, )) dataset = TensorDataset(torch.tensor(train_idx), y) train_iter = DataLoader(dataset, batch_size, shuffle=True) return train_iter def loss_in_epoch(train_ce_ls, train_roc_ls, train_pr_ls, test_ce_ls, test_roc_ls, test_pr_ls, title_, fout1, fout2, num_epochs, interval): # epoch_num = len(train_ce_ls) fig1, ax1 = plt.subplots() ax1.plot(range(interval, num_epochs+interval, interval), train_ce_ls, "r--", label="Train Loss") ax1.plot(range(interval, num_epochs+interval, interval), test_ce_ls, "b", label="Test Loss") # ax1.plot(range(1, epoch_num+1), test_acc_ls, "b:", label="Test ACC") ax1.set(xlabel="Epoch", ylabel="Loss", title=title_) lg1 = ax1.legend(loc='best') fig1.savefig(fout1) fig2, ax2 = plt.subplots() ax2.plot(range(interval, num_epochs+interval, interval), train_roc_ls, "r", label="Train ROC") ax2.plot(range(interval, num_epochs+interval, interval), test_roc_ls, "b", label="Test ROC") ax2.plot(range(interval, num_epochs+interval, interval), train_pr_ls, "r--", label="Train PR") ax2.plot(range(interval, num_epochs+interval, interval), test_pr_ls, "b--", label="Test PR") ax2.set(xlabel="Epoch", ylabel="Metric", title=title_) lg2 = ax2.legend(loc='best') fig2.savefig(fout2) def adjust_learning_rate(optimizer, epoch, init_lr): if epoch < 100: update_lr = init_lr elif epoch < 200: update_lr = 0.01 else: update_lr = 0.001 for param_group in optimizer.param_groups: param_group["lr"] = update_lr def cyclial_learning_rate(optimizer, epoch, min_lr, init_max_lr, step, lr_decay): k = np.floor(epoch / (2*step)) max_lr = init_max_lr*lr_decay ** k cycle = np.ceil(epoch / (2*step)) x = np.abs(epoch / step - 2 * cycle + 1) # if epoch > 1500: lr = min_lr + (max_lr - min_lr) * np.maximum(0, 1-x) # lr = init_max_lr / 9 # elif epoch > 1000: # lr = init_max_lr / 3 # elif epoch > 500: # lr = init_max_lr / 3 # else: # lr = init_max_lr for param_group in optimizer.param_groups: param_group["lr"] = lr return optimizer def step_decay_learning_rate(optimizer, epoch, init_lr, step, lr_decay): lr = init_lr * (lr_decay ** np.floor(epoch/step)) for param_group in optimizer.param_groups: param_group["lr"] = lr return optimizer def write_train_record(f_name, train_ls, valid_ls): write_lines = ["epoch %d, train loss: %f, test loss: %f\n" % (i+1, train_ls[i], valid_ls[-1]) for i in range(len(train_ls))] write_lines = ["="*60+"\n"] + write_lines with open(f_name, "a") as fout: fout.writelines(write_lines)
[ "wang_yuanhao@live.com" ]
wang_yuanhao@live.com
6fff1d2dfde9c50515de49dc1e667c6e3472c144
663d48b2a2bda714b97341ce9aaefba92602f194
/model_utils.py
87ae801ef079ef49395de421fc1d45eae0a38f7c
[ "MIT" ]
permissive
SushantKafle/speechtext-wimp-labeler
15d9bbac20e96c894d91a5e7ae50c50640f91d7a
32b71e72f86ab7f864e75e8517bb32f4400352d4
refs/heads/master
2023-04-02T00:02:09.914758
2020-04-12T18:11:08
2020-04-12T18:11:08
119,284,336
11
2
MIT
2023-03-24T23:22:54
2018-01-28T18:09:07
Python
UTF-8
Python
false
false
753
py
import tensorflow as tf def get_rnn_cell(size, type_, state_is_tuple = True): if type_ == "LSTM": return tf.contrib.rnn.LSTMCell(size, state_is_tuple=state_is_tuple) elif type_ == "GRU": return tf.contrib.rnn.GRUCell(size) def create_feedforward(input_tensor, input_size, output_size, fn_initializer, activation, scope): with tf.variable_scope(scope): weights = tf.get_variable("W_", dtype = tf.float32, initializer = fn_initializer((input_size, output_size))) bias = tf.get_variable("b_", dtype = tf.float32, initializer = fn_initializer((output_size,))) output = tf.matmul(input_tensor, weights) + bias if activation == "tanh": output = tf.tanh(output) elif activation == "sigmoid": output = tf.sigmoid(output) return output
[ "sxk5664@lac2050-05.main.ad.rit.edu" ]
sxk5664@lac2050-05.main.ad.rit.edu
58dea61f01c79d510c5abba801845512de484d1f
31ed3085759ed1e8dc8ffdbeb52d0c6605a009f3
/mylinebot/urls.py
4d6b2fff64af08db4795cda8762dfba9c9e60732
[]
no_license
poytoday/lineconnect
af28ef27c57b4c7c7693b2c0595495366dfbe112
45a4ac0406326c036bdbd0c01050f1f772f56b40
refs/heads/master
2022-11-18T01:00:10.172245
2020-07-14T10:19:33
2020-07-14T10:19:33
279,545,734
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
from django.urls import path, include from .views import callback urlpatterns=[ path('callback/', callback, name='callback') ]
[ "poytoday@gmail.com" ]
poytoday@gmail.com
dbc6d0472c2132b6af6592c1e1e8e960c32f3f6d
e8d3b04a19ba1b6373877068c3200e91f5142932
/lastfour_main/helper.py
9522ad7c13cd6f25f7de19af268f57c0b4856c83
[]
no_license
kpavankumar623/cricket-project
46005ebc7586979deef4d9071441c13b726b095a
d83ed4400080d1bf8f40f086cd88d5e71957e3ba
refs/heads/master
2020-07-16T14:15:03.475153
2019-09-20T13:08:06
2019-09-20T13:08:06
205,804,147
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
def cal_winners(inn,match): """below conditions declare the winner""" actual_score = match.WIN_SCORE-1 if inn.score >= actual_score: print("Lengaburu WON by {} wickets".format(match.WICKETS_MAX - inn.wickets)) elif inn.score == actual_score: print("Match DRAWN") else: print("Enchai WON the Match by {} runs".format(actual_score - inn.score)) #Enchai score is 39.
[ "kpavankumar623@hotmail.com" ]
kpavankumar623@hotmail.com
5f96b2f9df61b2997848aed9767153a92a516338
762de1c66746267e05d53184d7854934616416ee
/tools/MolSurfGenService/MolSurfaceGen32/chimera/share/VolumeProcessing/apply.py
e3698c7a49fcc4c0b7f6619db155e7b141e47eb8
[]
no_license
project-renard-survey/semanticscience
6e74f5d475cf0ebcd9bb7be6bb9522cf15ed8677
024890dba56c3e82ea2cf8c773965117f8cda339
refs/heads/master
2021-07-07T21:47:17.767414
2017-10-04T12:13:50
2017-10-04T12:13:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,364
py
#!/usr/bin/env python # ----------------------------------------------------------------------------- # Apply a function to a grid pointwise. # The resulting volume is written in netcdf format. # # Syntax: apply.py sqrt|square|abs|exp|log <infile> <outfile> # # The file type must be one of the types handled by VolumeData. # import sys from VolumeData import Grid_Data # ----------------------------------------------------------------------------- # def apply_function(array_func, inpath, outpath): from VolumeData import fileformats try: grids = fileformats.open_file(inpath) except fileformats.Unknown_File_Type, e: sys.stderr.write(str(e)) sys.exit(1) fvalues = [Mapped_Grid(g, array_func) for g in grids] from VolumeData.netcdf import write_grid_as_netcdf write_grid_as_netcdf(fvalues, outpath) # ----------------------------------------------------------------------------- # class Mapped_Grid(Grid_Data): def __init__(self, grid_data, array_func): self.array_func = array_func Grid_Data.__init__(self, grid_data.size, grid_data.value_type, grid_data.origin, grid_data.step, name = grid_data.name, default_color = grid_data.rgba) # --------------------------------------------------------------------------- # def read_matrix(self, ijk_origin, ijk_size, ijk_step, progress): data = self.component.matrix(ijk_origin, ijk_size, ijk_step, progress) fvalues = self.array_func(data) return fvalues # ----------------------------------------------------------------------------- # def syntax(): msg = ('Apply a function to a grid pointwise.\n' + 'The resulting volume is written in netcdf format.\n' 'Syntax: apply.py sqrt|square|abs|exp|log <infile> <outfile>\n') sys.stderr.write(msg) sys.exit(1) # ----------------------------------------------------------------------------- # if len(sys.argv) != 4: syntax() fname = sys.argv[1] from numpy import sqrt, power, absolute, exp, log if fname == 'sqrt': array_func = sqrt elif fname == 'square': array_func = lambda a: power(a, 2) elif fname == 'abs': array_func = absolute elif fname == 'exp': array_func = exp elif fname == 'log': array_func = log else: syntax() inpath = sys.argv[2] outpath = sys.argv[3] apply_function(array_func, inpath, outpath)
[ "alex.gawronski@d60594c4-dda9-11dd-87d8-31aa04531ed5" ]
alex.gawronski@d60594c4-dda9-11dd-87d8-31aa04531ed5
83bee1c913ad98cd00f75327075dbef6727ae53a
3784495ba55d26e22302a803861c4ba197fd82c7
/venv/lib/python3.6/site-packages/torchx/legacy/nn/VolumetricReplicationPadding.py
16cc7a1c097d7c351bcc12cb145425dff9ac1bf3
[ "MIT" ]
permissive
databill86/HyperFoods
cf7c31f5a6eb5c0d0ddb250fd045ca68eb5e0789
9267937c8c70fd84017c0f153c241d2686a356dd
refs/heads/master
2021-01-06T17:08:48.736498
2020-02-11T05:02:18
2020-02-11T05:02:18
241,407,659
3
0
MIT
2020-02-18T16:15:48
2020-02-18T16:15:47
null
UTF-8
Python
false
false
1,969
py
import torch from .Module import Module class VolumetricReplicationPadding(Module): def __init__(self, pleft, pright=None, ptop=None, pbottom=None, pfront=None, pback=None): super(VolumetricReplicationPadding, self).__init__() self.pleft = pleft self.pright = pright or pleft self.ptop = ptop or pleft self.pbottom = pbottom or pleft self.pfront = pfront or pleft self.pback = pback or pleft def updateOutput(self, input): assert input.dim() == 5 self._backend.VolumetricReplicationPadding_updateOutput( self._backend.library_state, input, self.output, self.pleft, self.pright, self.ptop, self.pbottom, self.pfront, self.pback ) return self.output def updateGradInput(self, input, gradOutput): assert input.dim() == 5 and gradOutput.dim() == 5 assert input.size(0) == gradOutput.size(0) assert input.size(1) == gradOutput.size(1) assert input.size(2) + self.pfront + self.pback == gradOutput.size(2) assert input.size(3) + self.ptop + self.pbottom == gradOutput.size(3) assert input.size(4) + self.pleft + self.pright == gradOutput.size(4) self._backend.VolumetricReplicationPadding_updateGradInput( self._backend.library_state, input, gradOutput, self.gradInput, self.pleft, self.pright, self.ptop, self.pbottom, self.pfront, self.pback ) return self.gradInput def __repr__(self): s = super(VolumetricReplicationPadding, self).__repr__() s += '({}, {}, {}, {}, {}, {})'.format(self.pleft, self.pright, self.ptop, self.pbottom, self.pfront, self.pback ) return s
[ "luis20dr@gmail.com" ]
luis20dr@gmail.com
5e57e42cf81e3523dfaa874a315995fbc33cfcb9
62e58c051128baef9452e7e0eb0b5a83367add26
/edifact/D11B/PAYDUCD11BUN.py
3dccdf3361385387dedef9f876212a5ce94c56a8
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
1,580
py
#Generated by bots open source edi translator from UN-docs. from bots.botsconfig import * from edifact import syntax from recordsD11BUN import recorddefs structure = [ {ID: 'UNH', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BGM', MIN: 1, MAX: 1}, {ID: 'PAI', MIN: 1, MAX: 1}, {ID: 'FII', MIN: 1, MAX: 2}, {ID: 'DTM', MIN: 1, MAX: 4}, {ID: 'CUX', MIN: 0, MAX: 1}, {ID: 'PYT', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 5}, {ID: 'RFF', MIN: 0, MAX: 99, LEVEL: [ {ID: 'DTM', MIN: 0, MAX: 1}, ]}, {ID: 'NAD', MIN: 0, MAX: 6, LEVEL: [ {ID: 'CTA', MIN: 0, MAX: 5, LEVEL: [ {ID: 'COM', MIN: 0, MAX: 1}, ]}, ]}, {ID: 'GEI', MIN: 1, MAX: 9, LEVEL: [ {ID: 'RFF', MIN: 1, MAX: 1}, {ID: 'MOA', MIN: 1, MAX: 9}, {ID: 'BUS', MIN: 0, MAX: 1}, {ID: 'CUX', MIN: 0, MAX: 1}, {ID: 'DTM', MIN: 1, MAX: 99, LEVEL: [ {ID: 'UGH', MIN: 0, MAX: 1, LEVEL: [ {ID: 'NAD', MIN: 0, MAX: 999999, LEVEL: [ {ID: 'RFF', MIN: 0, MAX: 9}, {ID: 'MOA', MIN: 1, MAX: 9}, {ID: 'AJT', MIN: 0, MAX: 9}, {ID: 'PYT', MIN: 0, MAX: 1}, {ID: 'FTX', MIN: 0, MAX: 3}, {ID: 'DTM', MIN: 0, MAX: 9}, ]}, {ID: 'UGT', MIN: 1, MAX: 1}, ]}, ]}, ]}, {ID: 'UNS', MIN: 1, MAX: 1}, {ID: 'MOA', MIN: 1, MAX: 1}, {ID: 'CNT', MIN: 0, MAX: 9}, {ID: 'AUT', MIN: 0, MAX: 1}, {ID: 'UNT', MIN: 1, MAX: 1}, ]}, ]
[ "jason.capriotti@gmail.com" ]
jason.capriotti@gmail.com
669826572171af8678d7799f11c25be1be9d1480
b092806631c5284a71996c7f16ba3aec6d845cdb
/Analysis/HSCPStudy/python/config.py
63a9fdad617cd84fbca9131658dde97f0026f240
[]
no_license
tvami/HSCPAnalysis
f4700c40cf96cc42133befe4c313b0536f69ffaf
936725605c9ad5f64dd3b874064f9d4d58806d66
refs/heads/master
2021-12-25T18:56:04.191661
2021-12-20T00:38:21
2021-12-20T00:38:21
218,607,653
0
0
null
2021-03-30T20:12:26
2019-10-30T19:35:57
C++
UTF-8
Python
false
false
643
py
import FWCore.ParameterSet.Config as cms process = cms.Process("Demo") process.load("FWCore.MessageService.MessageLogger_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("PoolSource", # replace 'myfile.root' with the source file you want to use fileNames = cms.untracked.vstring( 'file:/afs/cern.ch/cms/Tutorials/TWIKI_DATA/TTJets_8TeV_53X.root' ) ) process.demo = cms.EDAnalyzer('HSCPStudy' ) process.p = cms.Path(process.demo)
[ "noreply@github.com" ]
noreply@github.com
0308fbd80076e9763f9daf836a65b64f1a5decc9
2558bfcc4781f220ecbeb664785c643cf45720f2
/blog_tutorial/views.py
bb172057aaab3f642de1a5dc6aeecd00af9977f3
[]
no_license
bornie21/blog_tutorial
066d5c7722bfae82c3b928f67f07a36ba38940c1
6595337809d9a8ffdf448cc08e6990b97dfaba81
refs/heads/master
2021-01-17T20:13:11.589245
2016-09-18T17:13:34
2016-09-18T17:13:34
68,509,992
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
from django.views.generic import ListView from blog.models import Entry class HomeView(ListView): template_name = 'index.html' queryset = Entry.objects.order_by('-created_at')
[ "matembudzeb@gmail.com" ]
matembudzeb@gmail.com
33707edb80b081ec1ed745507088f9c26ebd20fd
b182ff74d1107c00d77d3bb241dfca589ccc9404
/config.py
2bba1aadff966f60605fa7fdf900d990f46442d1
[]
no_license
aexleader/Tornado-OA-System
7846a13a90c6da512a7f7620b003bd77b331a63d
6ffc51d2f42fcbd5b0abe7082dae4505bf687894
refs/heads/master
2020-08-01T14:00:28.966198
2019-09-10T10:57:23
2019-09-10T10:57:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,153
py
#coding=utf-8 from libs.flash.flash_lib import get_flashed_messages # 引入一个变量 from libs.permission.permission_auth.permission_interface_libs import menu_permission settings = dict( template_path = 'templates', static_path = 'static', debug = True, cookie_secret = 'aaaa', login_url = '/auth/user_login', xsrf_cookies = True, # ui_mrthods 是可以作为全局模板变量,在所有的html文件中都可以获取这个参数 ui_methods= { "menu_permission": menu_permission, "get_flashed_messages": get_flashed_messages }, # pycket的配置信息 pycket = { 'engine': 'redis', # 设置存储器类型 'storage': { 'host': 'localhost', 'port': 6379, 'db_sessions': 5, 'db_notifications': 11, 'max_connections': 2 ** 31, }, 'cookies': { 'expires_days': 30, # 设置过期时间 #'max_age': 5000, }, }, )
[ "htxz_jiang@163.com" ]
htxz_jiang@163.com
9b25fca4182e31a9a72666772e8b52b3eebcb24f
33b40df749eecb1195fc2312135c5a1f4b38355a
/django_newsapp/core/migrations/0007_auto_20160111_0141.py
a2e955df261020773a28948b709602ea666e3367
[]
no_license
ksj1993/django_newsapp
01d8b47b91ad599a605e34310fd31950ecdc214e
4e7224c74ce6dcc76c443a38cb7e2b57e7267dad
refs/heads/master
2021-01-10T07:59:52.210334
2016-02-06T06:29:53
2016-02-06T06:29:53
49,241,435
1
0
null
null
null
null
UTF-8
Python
false
false
708
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-01-11 01:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0006_article_title'), ] operations = [ migrations.AddField( model_name='userprofile', name='description', field=models.CharField(default='', max_length=300), preserve_default=False, ), migrations.AddField( model_name='userprofile', name='occupation', field=models.CharField(default='', max_length=100), preserve_default=False, ), ]
[ "kunaljasty@gmail.com" ]
kunaljasty@gmail.com
e01310498475202a0897ae8f1cbd77d2d62f8aea
6b163125b7d2f3ea5c2b107e6451e423ac7f1f3a
/app/forms/signup_form.py
4b55991e511d372190937258dd788f9ba156783f
[]
no_license
guny12/Capstone-Mise-En
a1d6e689230ad2e49cce7a09bad52d6243808d15
b45d510adc04a69c73cf738a97c3a68d7166eebd
refs/heads/main
2023-06-14T02:13:24.280617
2021-07-15T06:30:39
2021-07-15T06:30:39
363,795,101
0
0
null
null
null
null
UTF-8
Python
false
false
1,106
py
from flask_wtf import FlaskForm from wtforms import StringField from wtforms.validators import DataRequired, Email, ValidationError, Length from app.models import User def email_exists(form, field): email = field.data user = User.query.filter(User.email == email).first() if user: raise ValidationError("User is already registered.") def user_exists(form, field): username = field.data user = User.query.filter(User.username == username).first() if user: raise ValidationError("User is already registered.") class SignUpForm(FlaskForm): firstName = StringField("First name", validators=[DataRequired()]) lastName = StringField("Last name", validators=[DataRequired()]) email = StringField( "Email", validators=[ DataRequired(), email_exists, Email(), ], ) username = StringField("Username", validators=[DataRequired(), user_exists]) password = StringField( "Password", validators=[DataRequired(), Length(min=8, message="password must be at least 8 characters")] )
[ "Jimjnguy@gmail.com" ]
Jimjnguy@gmail.com
14e20c46fd479497e766de6b6114b7dae024aad5
295cdb8828639d84c9bdd71f80587669773c174e
/mysite/time_traveler/migrations/0001_initial.py
b23615ea8a4d74e6f332fc1e677222fb65950d85
[]
no_license
VeyronRomeo/mysite
a6cdddc9ffa34be865492cbfb7c346c4167ae2c4
5c0180678d25c453091e4612e4868e9bbf748b4e
refs/heads/master
2021-08-16T23:42:35.887457
2017-11-20T13:32:54
2017-11-20T13:32:54
27,227,975
0
0
null
null
null
null
UTF-8
Python
false
false
846
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-17 03:42 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='userName', fields=[ ('id', models.IntegerField(primary_key=True)), ('uname', models.CharField(max_length=12)), ('upassword', models.CharField(max_length=32)), ('ulast_time_password', models.CharField(max_length=32)), ('uregistration_time', models.DateTimeField()), ('ulast_time_login_time', models.DateTimeField()), ('ulast_time_login_addr', models.CharField(max_length=32)), ], ), ]
[ "killni.ma@163.com" ]
killni.ma@163.com
e8ff2ecd2620b1f6bb2ef13e7babba0a737a2405
fbb552bd9ef5378c915b73f35ae002e0719bfdbd
/dumbPlayer.py
8e03986b887f23176e658fcb138390e89eb1ff8c
[]
no_license
PROgram52bc/COS280_TicTacToe
1c346efd83fc07a9a7344e272c46d2275a13dc47
7e5b382fa29a98fb8921db5d5e3337b7a899b10c
refs/heads/master
2020-04-29T06:17:27.783495
2019-03-24T21:38:33
2019-03-24T21:38:38
175,911,420
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
from player import Player class DumbPlayer(Player): def __init__(self, mySymbol, opponentSymbol): super().__init__(mySymbol, opponentSymbol) def makeMove(self, board): for row in range(len(board)): for col in range(len(board[0])): if not board[row][col]: return row,col def __str__(self): return "Dumb Player"
[ "daviddenghaotian@163.com" ]
daviddenghaotian@163.com
355a94e3e219a007c388d1c3247bbc2eb62f6ec2
30e06035a4fd3cdfc6bae72c4cd66c0154802d52
/TpFriend/TpFriend.py
3d17e88db6adbfccca5b39f4e8c8cc372b2374ef
[]
no_license
h0wHigh/Python-Plugins
3563e5e8ad42e9a270146d57056daa74af005209
e8e0eaea4077ca2a19cfc235c4441e729a608af9
refs/heads/master
2021-01-18T05:16:40.663474
2015-03-14T00:42:22
2015-03-14T00:42:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,132
py
__author__ = 'DreTaX' __version__ = '3.7.1' import clr clr.AddReferenceByPartialName("Fougerite") import Fougerite import math import System from System import * import re import sys path = Util.GetRootFolder() sys.path.append(path + "\\Save\\Lib\\") try: import random except ImportError: pass red = "[color #FF0000]" green = "[color #009900]" white = "[color #FFFFFF]" """ Class """ Pending = [] class TpFriend: """ Methods """ sys = None DizzyDist = None def On_PluginInit(self): DataStore.Flush("TpTimer") DataStore.Flush("tpfriendautoban") DataStore.Flush("tpfriendpending") DataStore.Flush("tpfriendpending2") DataStore.Flush("tpfriendcooldown") DataStore.Flush("tpfriendy") config = self.TpFriendConfig() self.sys = config.GetSetting("Settings", "sysname") self.DizzyDist = float(config.GetSetting("Settings", "DizzyDist")) Util.ConsoleLog("TpFriend v" + __version__ + " by " + __author__ + " loaded.", True) def TpFriendConfig(self): if not Plugin.IniExists("TpFriendConfig"): loc = Plugin.CreateIni("TpFriendConfig") loc.Save() return Plugin.GetIni("TpFriendConfig") def DefaultLoc(self): if not Plugin.IniExists("DefaultLoc"): loc = Plugin.CreateIni("DefaultLoc") loc.Save() return Plugin.GetIni("DefaultLoc") def KillJob(self, Player): if Player in Pending: Pending.remove(Player) """ CheckV method based on Spock's method. Upgraded by DreTaX Can Handle Single argument and Array args. V4.1 """ def GetPlayerName(self, namee): try: name = namee.lower() for pl in Server.Players: if pl.Name.lower() == name: return pl return None except: return None def CheckV(self, Player, args): count = 0 if hasattr(args, '__len__') and (not isinstance(args, str)): p = self.GetPlayerName(str.join(" ", args)) if p is not None: return p for pl in Server.Players: for namePart in args: if namePart.lower() in pl.Name.lower(): p = pl count += 1 continue else: nargs = str(args).lower() p = self.GetPlayerName(nargs) if p is not None: return p for pl in Server.Players: if nargs in pl.Name.lower(): p = pl count += 1 continue if count == 0: Player.MessageFrom(self.sys, "Couldn't find [color#00FF00]" + str.join(" ", args) + "[/color]!") return None elif count == 1 and p is not None: return p else: Player.MessageFrom(self.sys, "Found [color#FF0000]" + str(count) + "[/color] player with similar name. [color#FF0000] Use more correct name!") return None def getPlayer(self, d): try: pl = Server.FindPlayer(d) return pl except: return None def Replace(self, String): str = re.sub('[(\)]', '', String) return str.split(',') def TrytoGrabID(self, Player): try: id = Player.SteamID return id except: return None def isMod(self, id): if DataStore.ContainsKey("Moderators", id): return True return False """ Timer Functions """ def addJob(self, xtime, PlayerFrom, PlayerTo, callback, id=None, tid=None): List = Plugin.CreateDict() List["PlayerF"] = PlayerFrom List["PlayerT"] = PlayerTo # Let's make sure we have the steamid all the time. if id is None: List["PlayerFID"] = PlayerFrom.SteamID List["PlayerTID"] = PlayerTo.SteamID else: List["PlayerFID"] = id List["PlayerTID"] = tid List["Call"] = callback Plugin.CreateParallelTimer("TpJobTimer", xtime * 1000, List).Start() def clearTimers(self): Plugin.KillParallelTimer("TpJobTimer") def TpJobTimerCallback(self, timer): timer.Kill() List = timer.Args PlayerFrom = List["PlayerF"] PlayerTo = List["PlayerT"] callback = List["Call"] id = List["PlayerFID"] tid = List["PlayerTID"] if self.TrytoGrabID(PlayerFrom) is None or self.TrytoGrabID(PlayerTo) is None: DataStore.Add("tpfriendautoban", id, "none") self.KillJob(PlayerFrom) self.KillJob(PlayerTo) return DataStore.Add("tpfriendautoban", id, "using") # Normal Teleport Callback if callback == 1: PlayerFrom.TeleportTo(PlayerTo.Location) PlayerFrom.MessageFrom(self.sys, "You have been teleported to your friend") self.addJob(2, PlayerFrom, PlayerTo, 3, id, tid) # AutoKill elif callback == 2: if PlayerFrom not in Pending or PlayerTo not in Pending: return self.KillJob(PlayerFrom) self.KillJob(PlayerTo) ispend = DataStore.Get("tpfriendpending", id) ispend2 = DataStore.Get("tpfriendpending2", tid) if ispend is not None and ispend2 is not None: DataStore.Remove("tpfriendpending", id) DataStore.Remove("tpfriendpending2", tid) DataStore.Add("tpfriendcooldown", id, 7) DataStore.Add("tpfriendautoban", id, "none") if PlayerFrom is not None: PlayerFrom.MessageFrom(self.sys, "Teleport request timed out") if PlayerTo is not None: PlayerTo.MessageFrom(self.sys, "Teleport request timed out") elif callback == 3: PlayerFrom.TeleportTo(PlayerTo.Location) PlayerFrom.MessageFrom(self.sys, "You have been teleported to your friend again.") DataStore.Add("tpfriendy", id, str(PlayerTo.Y)) self.addJob(2, PlayerFrom, PlayerTo, 5, id, tid) elif callback == 4: DataStore.Add("tpfriendautoban", id, "none") elif callback == 5: y = float(PlayerFrom.Y) oy = float(DataStore.Get("tpfriendy", id)) if oy - y > self.DizzyDist: Server.BroadcastFrom(self.sys, PlayerFrom.Name + red + " tried to fall through a house via tpa. Kicked.") Plugin.Log("DizzyHackBypass", PlayerFrom.Name + " - " + PlayerFrom.SteamID + " - " + PlayerFrom.IP + " - " + str(PlayerFrom.Location)) rand = self.DefaultLoc() num = random.randrange(1, 8155) loc = rand.GetSetting("DefaultLoc", str(num)) loc = self.Replace(loc) loc = Util.CreateVector(float(loc[0]), float(loc[1]), float(loc[2])) PlayerFrom.TeleportTo(loc) DataStore.Remove("tpfriendy", id) self.addJob(2, PlayerFrom, PlayerTo, 6, id, tid) return self.addJob(2, PlayerFrom, PlayerTo, 4, id, tid) elif callback == 6: try: PlayerFrom.Disconnect() except: pass def On_PlayerDisconnected(self, Player): id = self.TrytoGrabID(Player) if id is None: return self.KillJob(Player) DataStore.Add("tpfriendautoban", id, "none") def On_Command(self, Player, cmd, args): id = Player.SteamID if cmd == "cleartpatimers": if Player.Admin or self.isMod(id): self.clearTimers() Player.MessageFrom(self.sys, "Cleared!") elif cmd == "tpa": if len(args) == 0: Player.MessageFrom(self.sys, "Teleport Usage:") Player.MessageFrom(self.sys, "TpFriend V" + __version__ + " by DreTaX") Player.MessageFrom(self.sys, "\"/tpa [PlayerName]\" to request a teleport.") Player.MessageFrom(self.sys, "\"/tpaccept\" to accept a requested teleport.") Player.MessageFrom(self.sys, "\"/tpdeny\" to deny a request.") Player.MessageFrom(self.sys, "\"/tpcount\" to see how many requests you have remaining.") Player.MessageFrom(self.sys, "\"/tpcancel\" to cancel your own request.") else: config = self.TpFriendConfig() playertor = self.CheckV(Player, args) if playertor is None: return if playertor == Player: Player.MessageFrom(self.sys, "Cannot teleport to yourself!") return name = Player.Name id = Player.SteamID idt = playertor.SteamID namet = playertor.Name maxuses = int(config.GetSetting("Settings", "Maxuses")) cooldown = int(config.GetSetting("Settings", "cooldown")) stuff = int(config.GetSetting("Settings", "timeoutr")) time = DataStore.Get("tpfriendcooldown", id) usedtp = DataStore.Get("tpfriendusedtp", id) if time is None: DataStore.Add("tpfriendcooldown", id, 7) time = 7 calc = System.Environment.TickCount - time if calc < 0 or math.isnan(calc): DataStore.Add("tpfriendcooldown", id, 7) time = 7 if calc >= cooldown or time == 7: if usedtp is None: DataStore.Add("tpfriendusedtp", id, 0) usedtp = 0 if maxuses > 0: if maxuses >= int(usedtp): Player.MessageFrom(self.sys, "Reached max number of teleport requests!") return if DataStore.Get("tpfriendpending2", idt) is not None: Player.MessageFrom(self.sys, "This player is pending a request. Wait a bit.") return if DataStore.Get("tpfriendpending", id): Player.MessageFrom(self.sys, "You are pending a request. Wait a bit or cancel It") return DataStore.Add("tpfriendcooldown", id, System.Environment.TickCount) playertor.MessageFrom(self.sys, "Teleport request from " + name + " to accept write /tpaccept") Player.MessageFrom(self.sys, "Teleport request sent to " + namet) DataStore.Add("tpfriendpending", id, idt) DataStore.Add("tpfriendpending2", idt, id) self.KillJob(Player) self.KillJob(playertor) self.addJob(stuff, Player, playertor, 2, id, idt) else: Player.MessageFrom(self.sys, "You have to wait before teleporting again!") done = round((calc / 1000) / 60, 2) done2 = round((cooldown / 1000) / 60, 2) Player.MessageFrom(self.sys, "Time Remaining: " + str(done) + "/" + str(done2) + " mins") elif cmd == "tpaccept": pending = DataStore.Get("tpfriendpending2", id) config = self.TpFriendConfig() if pending is not None: playerfromm = self.getPlayer(pending) if playerfromm is not None: self.KillJob(Player) self.KillJob(playerfromm) maxtpnumber = int(config.GetSetting("Settings", "Maxuses")) playertpuse = int(DataStore.Get("tpfriendusedtp", pending)) tpdelayy = int(config.GetSetting("Settings", "tpdelay")) if maxtpnumber > 0: playertpuse = int(playertpuse) + 1 DataStore.Add("tpfriendusedtp", pending, playertpuse) playerfromm.MessageFrom(self.sys, "Teleport requests used " + str(playertpuse) + " / " + str(maxtpnumber)) else: playerfromm.MessageFrom(self.sys, "You have unlimited requests remaining!") check = int(config.GetSetting("Settings", "safetpcheck")) idt = playerfromm.SteamID if tpdelayy > 0: playerfromm.MessageFrom(self.sys, "Teleporting you in: " + str(tpdelayy) + " second(s)") self.addJob(tpdelayy, playerfromm, Player, 1, idt, id) else: DataStore.Add("tpfriendautoban", idt, "using") DataStore.Add("tpfriendy", idt, str(Player.Y)) playerfromm.TeleportTo(Player.Location) playerfromm.MessageFrom(self.sys, "Teleported!") DataStore.Add("tpfriendautoban", idt, "none") self.addJob(check, playerfromm, Player, 3, idt, id) DataStore.Remove("tpfriendpending", idt) DataStore.Remove("tpfriendpending2", id) Player.MessageFrom(self.sys, "Teleport Request Accepted!") else: self.KillJob(Player) Player.MessageFrom(self.sys, "Player isn't online!") else: Player.MessageFrom(self.sys, "Your request was timed out, or you don't have any.") elif cmd == "tpdeny": pending = DataStore.Get("tpfriendpending2", id) if pending is not None: playerfromm = self.getPlayer(pending) if playerfromm is not None: playerfromm.MessageFrom(self.sys, "Your request was denied!") self.KillJob(playerfromm) self.KillJob(Player) DataStore.Remove("tpfriendpending", pending) DataStore.Add("tpfriendcooldown", pending, 7) DataStore.Remove("tpfriendpending2", id) Player.MessageFrom(self.sys, "Request denied!") else: Player.MessageFrom(self.sys, "No request to deny.") elif cmd == "tpcancel": pending = DataStore.Get("tpfriendpending", id) if pending is not None: playerto = self.getPlayer(pending) if playerto is not None: playerto.MessageFrom(self.sys, Player.Name + " Cancelled the request!") self.KillJob(playerto) self.KillJob(Player) DataStore.Remove("tpfriendpending", id) DataStore.Add("tpfriendcooldown", id, 7) DataStore.Remove("tpfriendpending2", pending) Player.MessageFrom(self.sys, "Request Cancelled!") else: Player.MessageFrom(self.sys, "There is nothing to cancel.") elif cmd == "tpcount": config = self.TpFriendConfig() maxuses = int(config.GetSetting("Settings", "Maxuses")) if maxuses > 0: uses = int(DataStore.Get("tpfriendusedtp", id)) if uses is None: uses = 0 Player.MessageFrom(self.sys, "Teleport requests used " + str(uses) + " / " + str(maxuses)) else: Player.MessageFrom(self.sys, "You have unlimited requests remaining!") elif cmd == "tpresettime": if Player.Admin or self.isMod(id): DataStore.Add("tpfriendcooldown", id, 7) Player.Message("Reset!") elif cmd == "clearuses": id = Player.SteamID if Player.Admin or self.isMod(id): DataStore.Flush("tpfriendusedtp") Player.MessageFrom(self.sys, "Flushed!")
[ "dretax14@gmail.com" ]
dretax14@gmail.com
335fe03ecf60ad60f91b937781b87ec328478859
d7f366993efd8dce8ee88836ccd02db4fb6c31a2
/attack.py
6061a3a8217792d89a700f5c2e33413ede522625
[ "Apache-2.0" ]
permissive
hebo1221/Inconspicuous-Adversarial-perturbation-post-processing-method-with-texture-analysis
b92721b88f4691bbaa041ee4c74ca031a0eaa7bc
770a2c8898d56293845d7fd63f01649793e0d65f
refs/heads/main
2023-02-16T01:45:08.868788
2021-01-16T00:36:23
2021-01-16T00:36:23
330,053,015
0
0
null
null
null
null
UTF-8
Python
false
false
19,405
py
import torch import torch.nn as nn import torch.nn.functional as F from torchattacks.attack import Attack import cv2 from skimage.color import rgb2gray from skimage.filters import sobel from skimage.segmentation import mark_boundaries from skimage.util import img_as_float from skimage.metrics import mean_squared_error, structural_similarity import numpy as np import json import os import sys import time from torch import Tensor import torch.nn as nn import torch.optim as optim import torchvision.utils from torchvision import models import torchvision.datasets as dsets import torchvision.transforms as transforms import torchattacks from utils import imshow, image_folder_custom_label import matplotlib.pyplot as plt # True False show = False original_attack = False use_cuda = True device = torch.device("cuda" if use_cuda else "cpu") class_idx = json.load(open("./data/imagenet_class_index.json")) idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))] transform = transforms.Compose([ transforms.Resize((299, 299)), transforms.ToTensor(), # ToTensor : [0, 255] -> [0, 1] # Using normalization for Inception v3. # https://discuss.pytorch.org/t/how-to-preprocess-input-for-pre-trained-networks/683 # transforms.Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) # However, DO NOT USE normalization transforms in this section. # torchattacks only supports images with a range between 0 and 1. # Thus, please refer to the model construction section. ]) print("dataset: imagenet-mini_val") # print("dataset: imagenet-mini_train") # print("dataset: custom mini dataset") normal_data = image_folder_custom_label(root='./data/imagenet2', transform=transform, idx2label=idx2label) normal_loader = torch.utils.data.DataLoader(normal_data, batch_size=1, shuffle=False) test_set = torchvision.datasets.ImageNet( root='./data/imagenet', split= 'val', download=False, transform=transform ) normal_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False) class Normalize(nn.Module) : def __init__(self, mean, std) : super(Normalize, self).__init__() self.register_buffer('mean', torch.Tensor(mean)) self.register_buffer('std', torch.Tensor(std)) def forward(self, input): # Broadcasting mean = self.mean.reshape(1, 3, 1, 1) std = self.std.reshape(1, 3, 1, 1) return (input - mean) / std # Adding a normalization layer for Inception v3. # We can't use torch.transforms because it supports only non-batch images. norm_layer = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) print("original_attack",end=": ") print(original_attack) print("network model",end=": ") model = nn.Sequential( norm_layer, # models.inception_v3(pretrained=True) # models.alexnet(pretrained=True) models.resnet50(pretrained=True) ) print(model) model = model.to(device).eval() class FGSM(Attack): r""" FGSM in the paper 'Explaining and harnessing adversarial examples' [https://arxiv.org/abs/1412.6572] """ def __init__(self, model, eps=0.007): super(FGSM, self).__init__("FGSM", model) self.eps = eps def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) labels = labels.to(self.device) labels = self._transform_label(images, labels) loss = nn.CrossEntropyLoss() images.requires_grad = True outputs = self.model(images) cost = self._targeted*loss(outputs, labels).to(self.device) grad = torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0] ######### purturb = grad.sign() # filterd = torch.clamp(filterd, min=0.02, max=0.3) if original_attack == False: # adv_images = images_ + purturb_*self.eps # eps_filterd_2d = (filterd/filterd.mean()) # eps_filterd_2d = filterd # purturb_ = np.uint8(purturb.cpu().data.squeeze(0).permute(1, 2, 0).numpy()*255)*10 # purturb_[:,:,0] = purturb_[:,:,0] * (eps_filterd_2d)*200 # purturb_ = torch.clamp(transforms.ToTensor()(purturb_), min=0, max=1).detach() adv_images = images + filterd*purturb*self.eps else: adv_images = images + purturb*self.eps # adv_images = images + self.eps*grad.sign() adv_images = torch.clamp(adv_images, min=0, max=1).detach() return adv_images class RFGSM(Attack): r""" R+FGSM in the paper 'Ensemble Adversarial Training : Attacks and Defences' [https://arxiv.org/abs/1705.07204] """ def __init__(self, model, eps=16/255, alpha=8/255, steps=1): super(RFGSM, self).__init__("RFGSM", model) self.eps = eps self.alpha = alpha self.steps = steps def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) labels = labels.to(self.device) labels = self._transform_label(images, labels) loss = nn.CrossEntropyLoss() adv_images = images.clone().detach() + self.alpha*torch.randn_like(images).sign() adv_images = torch.clamp(adv_images, min=0, max=1).detach() for i in range(self.steps): adv_images.requires_grad = True outputs = self.model(adv_images) cost = self._targeted*loss(outputs, labels).to(self.device) grad = torch.autograd.grad(cost, adv_images, retain_graph=False, create_graph=False)[0] purturb = (self.eps-self.alpha)*grad.sign() if original_attack == False: adv_images = adv_images.detach() + filterd * purturb else: adv_images = adv_images.detach() + purturb adv_images = torch.clamp(adv_images, min=0, max=1).detach() return adv_images class FFGSM(Attack): r""" New FGSM proposed in 'Fast is better than free: Revisiting adversarial training' [https://arxiv.org/abs/2001.03994] """ def __init__(self, model, eps=8/255, alpha=10/255): super(FFGSM, self).__init__("FFGSM", model) self.eps = eps self.alpha = alpha def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) labels = labels.to(self.device) labels = self._transform_label(images, labels) loss = nn.CrossEntropyLoss() adv_images = images.clone().detach() adv_images = adv_images + torch.randn_like(images).uniform_(-self.eps, self.eps) adv_images = torch.clamp(adv_images, min=0, max=1).detach() adv_images.requires_grad = True outputs = self.model(adv_images) cost = self._targeted*loss(outputs, labels).to(self.device) grad = torch.autograd.grad(cost, adv_images, retain_graph=False, create_graph=False)[0] purturb = self.alpha*grad.sign() if original_attack == False: adv_images = adv_images.detach() + filterd * purturb else: adv_images = adv_images.detach() + purturb delta = torch.clamp(adv_images - images, min=-self.eps, max=self.eps) adv_images = torch.clamp(images + delta, min=0, max=1).detach() return adv_images class PGD(Attack): r""" PGD in the paper 'Towards Deep Learning Models Resistant to Adversarial Attacks' [https://arxiv.org/abs/1706.06083] """ def __init__(self, model, eps=0.3, alpha=2/255, steps=40, random_start=False): super(PGD, self).__init__("PGD", model) self.eps = eps self.alpha = alpha self.steps = steps self.random_start = random_start def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) labels = labels.to(self.device) labels = self._transform_label(images, labels) loss = nn.CrossEntropyLoss() adv_images = images.clone().detach() # eps_filterd_2d = (filterd/filterd.mean())*self.eps #이러면 합이 엡실론 if self.random_start: # Starting at a uniformly random point adv_images = adv_images + torch.empty_like(adv_images).uniform_(-self.eps, self.eps) adv_images = torch.clamp(adv_images, min=0, max=1) for i in range(self.steps): adv_images.requires_grad = True outputs = self.model(adv_images) cost = self._targeted*loss(outputs, labels).to(self.device) grad = torch.autograd.grad(cost, adv_images, retain_graph=False, create_graph=False)[0] purturb = self.alpha*grad.sign() if original_attack == False: adv_images = adv_images.detach() + filterd * purturb else: adv_images = adv_images.detach() + purturb delta = torch.clamp(adv_images.to(self.device) - images, min=-self.eps, max=self.eps) adv_images = torch.clamp(images + delta, min=0, max=1).detach() return adv_images class TPGD(Attack): r""" PGD based on KL-Divergence loss in the paper 'Theoretically Principled Trade-off between Robustness and Accuracy' [https://arxiv.org/abs/1901.08573] """ def __init__(self, model, eps=8/255, alpha=2/255, steps=7): super(TPGD, self).__init__("TPGD", model) self.eps = eps self.alpha = alpha self.steps = steps self._attack_mode = 'only_original' def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) adv_images = images.clone().detach() + 0.001*torch.randn_like(images).to(self.device).detach() adv_images = torch.clamp(adv_images, min=0, max=1).detach() loss = nn.KLDivLoss(reduction='sum') for i in range(self.steps): adv_images.requires_grad = True logit_ori = self.model(images) logit_adv = self.model(adv_images) cost = loss(F.log_softmax(logit_adv, dim=1), F.softmax(logit_ori, dim=1)).to(self.device) grad = torch.autograd.grad(cost, adv_images, retain_graph=False, create_graph=False)[0] adv_images = adv_images.detach() + self.alpha*grad.sign() delta = torch.clamp(adv_images.to(self.device) - images, min=-self.eps, max=self.eps) if original_attack == False: adv_images = torch.clamp(images + filterd * delta, min=0, max=1).detach() else: adv_images = torch.clamp(images + delta, min=0, max=1).detach() return adv_images class APGD(Attack): r""" Comment on "Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network" [https://arxiv.org/abs/1907.00895] Distance Measure : Linf """ def __init__(self, model, eps=0.3, alpha=2/255, steps=40, sampling=10): super(APGD, self).__init__("APGD", model) self.eps = eps self.alpha = alpha self.steps = steps self.sampling = sampling def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) labels = labels.to(self.device) labels = self._transform_label(images, labels) loss = nn.CrossEntropyLoss() ori_images = images.clone().detach() for i in range(self.steps): grad = torch.zeros_like(images) images.requires_grad = True for j in range(self.sampling): outputs = self.model(images) cost = self._targeted*loss(outputs, labels).to(self.device) grad += torch.autograd.grad(cost, images, retain_graph=False, create_graph=False)[0] # grad.sign() is used instead of (grad/sampling).sign() adv_images = images + self.alpha*grad.sign() eta = torch.clamp(adv_images - ori_images, min=-self.eps, max=self.eps) if original_attack == False: images = torch.clamp(ori_images + filterd *eta, min=0, max=1).detach() else: images = torch.clamp(ori_images + eta, min=0, max=1).detach() adv_images = images return adv_images class DeepFool(Attack): r""" 'DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks' [https://arxiv.org/abs/1511.04599] Distance Measure : L2 """ def __init__(self, model, steps=3): super(DeepFool, self).__init__("DeepFool", model) self.steps = steps self._attack_mode = 'only_original' def forward(self, images, labels, filterd): r""" Overridden. """ images = images.to(self.device) for b in range(images.shape[0]): image = images[b:b+1, :, :, :] image.requires_grad = True output = self.model(image)[0] _, pre_0 = torch.max(output, 0) f_0 = output[pre_0] grad_f_0 = torch.autograd.grad(f_0, image, retain_graph=False, create_graph=False)[0] num_classes = len(output) for i in range(self.steps): image.requires_grad = True output = self.model(image)[0] _, pre = torch.max(output, 0) if pre != pre_0: image = torch.clamp(image, min=0, max=1).detach() break r = None min_value = None for k in range(num_classes): if k == pre_0: continue f_k = output[k] grad_f_k = torch.autograd.grad(f_k, image, retain_graph=True, create_graph=True)[0] f_prime = f_k - f_0 grad_f_prime = grad_f_k - grad_f_0 value = torch.abs(f_prime)/torch.norm(grad_f_prime) if r is None: r = (torch.abs(f_prime)/(torch.norm(grad_f_prime)**2))*grad_f_prime min_value = value else: if min_value > value: r = (torch.abs(f_prime)/(torch.norm(grad_f_prime)**2))*grad_f_prime min_value = value if original_attack == False: image = torch.clamp(image + filterd * r, min=0, max=1).detach() else: image = torch.clamp(image + r, min=0, max=1).detach() images[b:b+1, :, :, :] = image adv_images = images return adv_images attacks = [ FGSM(model, eps=4/255), FFGSM(model, eps=4/255, alpha=12/255), RFGSM(model, eps=8/255, alpha=4/255, steps=1), PGD(model, eps=4/255, alpha=2/255, steps=7), APGD(model, eps=4/255, alpha=2/255, steps=7), TPGD(model, eps=8/255, alpha=2/255, steps=7), DeepFool(model, steps=3), #torchattacks.RFGSM(model, eps=8/255, alpha=4/255, steps=1), #torchattacks.FFGSM(model, eps=8/255, alpha=12/255), #torchattacks.APGD(model, eps=8/255, alpha=2/255, steps=7), #torchattacks.TPGD(model, eps=8/255, alpha=2/255, steps=7), ] def filter(im): # read image imsum = im.sum(axis=2) img_gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY) img_canny = cv2.Canny(img_gray, 50, 150) img_canny_f = img_as_float(img_canny) N=5 S=img_canny.shape E=np.array(img_canny_f) for row in range(S[0]): for col in range(S[1]): Lx=np.max([0,col-N]) Ux=np.min([S[1],col+N]) Ly=np.max([0,row-N]) Uy=np.min([S[0],row+N]) region=img_canny_f[Ly:Uy,Lx:Ux].mean() E[row,col]=region E = E + 0.02 if show == True: plt.imshow(E, cmap=plt.cm.jet) plt.colorbar() plt.show() # print(img_canny_f.mean()) E = E / E.mean() return E print("Adversarial Image & Predicted Label") for attack in attacks : print("-"*70) print(attack) correct = 0 total = 0 stacked_img = np.array([[0]*3]) for images_, labels in normal_loader: original = np.uint8(images_.squeeze(0).permute(1, 2, 0).numpy()*255) start = time.time() if original_attack == False: filterd = filter(original) stacked_img = np.stack((filterd,)*3,-1) adv_images = attack(images_, labels, transforms.ToTensor()(stacked_img).to(device, dtype=torch.float)) # print(structural_similarity(original,np.uint8(adv_images.clone().cpu().squeeze(0).permute(1, 2, 0).numpy()*255), full=True,multichannel=True)) if show == True: # imshow(torchvision.utils.make_grid(transforms.ToTensor()(adv_images).permute(0, 1, 2).cpu().data), [normal_data.classes[i] for i in pre]) imshow(torchvision.utils.make_grid(adv_images.cpu().data),'filterd') #plt.imshow(original) #plt.show() # img = np.array([originaㅋl]) labels = labels.to(device) outputs = model(adv_images.to(device)) _, pre = torch.max(outputs.data, 1) total += 1 correct += (pre == labels).sum() """ if (pre == labels): print('O',end=" ") else: print('X',end=" ") """ # imshow(torchvision.utils.make_grid(transforms.ToTensor()(original).permute(0, 1, 2).cpu().data), [normal_data.classes[i] for i in pre]) # imshow(torchvision.utils.make_grid(images.cpu().data, normalize=True), [normal_data.classes[i] for i in pre]) # imshow(torchvision.utils.make_grid(noise_.cpu().data, normalize=True), [normal_data.classes[i] for i in pre]) print('Total elapsed time (sec) : %.2f' % (time.time() - start)) print('Robust accuracy: %.2f %%' % (100 * float(correct) / total))
[ "noreply@github.com" ]
noreply@github.com
e7b07e9da69275211369027ccc4b4e3df2428c9a
98d328e4e00ac7cf8930d2ff9bd68af1d9d9cc3b
/utils/lib_clustering.py
3e1b9079f84417c6585bb40e6d8bcf926bf03a2b
[]
no_license
jtpils/Lane-Detection-from-Point-Cloud
4d7e98cafada569097e16e7bcb5fdabc048e0644
238cb8cedc823a84c32b60ce13e7de8c81f19232
refs/heads/master
2020-06-05T08:42:46.397450
2019-06-17T15:41:58
2019-06-17T15:41:58
192,380,398
14
4
null
2019-06-17T16:16:58
2019-06-17T16:16:58
null
UTF-8
Python
false
false
3,810
py
''' Clustering by DBSCAN using sklearn library This code is copied and modified from: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ''' import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt class Clusterer(object): def __init__(self): self.fit_success = False def fit(self, X, eps=0.3, min_samples=10): # Compute DBSCAN db = DBSCAN(eps=eps, min_samples=min_samples).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) # samples that is close to the center core_samples_mask[db.core_sample_indices_] = True self.X = X self.db = db self.core_samples_mask = core_samples_mask self.fit_success = True self.labels = db.labels_ # label of each sample self.unique_labels = set(self.labels) self.n_clusters = len(set(self.labels)) - \ (1 if -1 in self.labels else 0) def plot_clusters(self): if not self.fit_success: return assert self.X.shape[1] == 2, "To visualize result, X must be 2 dimenstions." # member vars used in this function labels, n_clusters, unique_labels = self.labels, self.n_clusters, self.unique_labels core_samples_mask = self.core_samples_mask X = self.X # Black removed and is used for noise instead. colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] # print(colors) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=6) # break plt.title('Clustering result: {} clusters'.format(n_clusters)) def print_clustering_result(self): if not self.fit_success: return labels, n_clusters = self.labels, self.n_clusters # Number of clusters in labels, ignoring noise if present. n_noise_ = list(labels).count(-1) print('Estimated number of clusters: %d' % n_clusters) print('Estimated number of noise points: %d' % n_noise_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels, average_method='arithmetic')) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) if __name__ == "__main__": # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) # Fit cluster = Clusterer() cluster.fit(X) # Plot cluster.plot_clusters() plt.show()
[ "felixchenfy@gmail.com" ]
felixchenfy@gmail.com
0acc75cf50775793b9ea0595bc40eede48ac8136
5358e2a0c829490f1384b6969a42b1ce3ee2c830
/docker_container/enderecos/endereco.py
1850d08271052659eb38f8f718d709884a6014cd
[]
no_license
douglasrocha06/tech_talent_desafio_III
ffb23deade7a4698b15bb01a0028540b83f75da9
0c6bcd21b76e958f9d45141c804aa71a8c3248b0
refs/heads/master
2023-08-16T20:56:25.953386
2021-10-15T17:37:53
2021-10-15T17:37:53
417,583,818
0
1
null
null
null
null
UTF-8
Python
false
false
6,832
py
import pymysql from app import app from config import mysql from flask import jsonify from flask import flash, request from flask_httpauth import HTTPBasicAuth auth = HTTPBasicAuth() @app.route('/') def welcome(): return 'Sejam Bem-Vindos!' #Vizualizar ENDEREÇOS DE TODOS CLIENTES @app.route('/enderecos/clientes', methods=['GET']) @auth.login_required def enderecos_clientes(): try: conn = mysql.connect() cursor = conn.cursor(pymysql.cursors.DictCursor) cursor.execute("select clientes.id as id, clientes.nome as Nome, enderecos.rua as Rua, enderecos.numero as Numero, enderecos.complemento as Complemento, enderecos.bairro as Bairro, enderecos.cidade as Cidade, enderecos.estado as Estado, enderecos.cep as Cep from clientes join enderecos on clientes.id = enderecos.idCliente order by Nome, Rua") linha = cursor.fetchall() #Retornará todas as linhas do banco de dados resposta = jsonify(linha) #Formata em JSON resposta.status_code = 200 return resposta except Exception as e: print(e) finally: cursor.close() conn.close() #Vizualiza os endereços de UM CLIENTE ESPECÍFICO @app.route('/enderecos/clientes/<int:id>', methods=['GET']) @auth.login_required def vizu_end_clientes(id): try: conn = mysql.connect() cursor = conn.cursor(pymysql.cursors.DictCursor) cursor.execute("select clientes.id as id,clientes.nome as Nome, enderecos.rua as Rua, enderecos.numero as Numero, enderecos.complemento as Complemento, enderecos.bairro as Bairro, enderecos.cidade as Cidade, enderecos.estado as Estado, enderecos.cep as Cep from clientes join enderecos on clientes.id = enderecos.idCliente where id = %s", id) linhas = cursor.fetchall() #Retornará todas as linhas com os endereços do cliente específico. if not linhas: return jsonify({'status':'Cliente não possui endereço cadastrado!'}), 404 resposta = jsonify(linhas) #Formata em JSON resposta.status_code = 200 return resposta except Exception as e: print(e) finally: cursor.close() conn.close() #Vizualizar todos os endereços @app.route('/enderecos', methods=['GET']) @auth.login_required def enderecos(): try: conn = mysql.connect() cursor = conn.cursor(pymysql.cursors.DictCursor) cursor.execute("SELECT idEndereco, rua, numero, complemento, bairro, cidade, estado, cep, idCliente FROM enderecos") linha = cursor.fetchall() #Retornará todas as linhas do banco de dados resposta = jsonify(linha) #Formata em JSON resposta.status_code = 200 return resposta except Exception as e: print(e) finally: cursor.close() conn.close() #Vizualizar um endereço específico @app.route('/enderecos/<int:id>', methods=['GET']) @auth.login_required def vizualizar(id): try: conn = mysql.connect() cursor = conn.cursor(pymysql.cursors.DictCursor) cursor.execute("SELECT idEndereco, rua, numero, complemento, bairro, cidade, estado, cep, idCliente FROM enderecos WHERE idEndereco =%s", id) linhas = cursor.fetchone() #Retornará apenas uma linha do banco de dados if not linhas: return jsonify({'status':'Endereço não cadastrado!'}), 404 resposta = jsonify(linhas) #Formata em JSON resposta.status_code = 200 return resposta except Exception as e: print(e) finally: cursor.close() conn.close() #Adicionar um endereço @app.route('/enderecos', methods=['POST']) @auth.login_required def adicionar(): try: json = request.json #Pegando os dados para adicionar no Banco rua = json['rua'] numero = json['numero'] complemento = json['complemento'] bairro = json['bairro'] cidade = json['cidade'] estado = json['estado'] cep = json['cep'] idCliente = json['idCliente'] if rua and numero and complemento and bairro and cidade and estado and cep and idCliente and request.method == 'POST': sqlQuery = "INSERT INTO enderecos(rua, numero, complemento, bairro, cidade, estado, cep, idCliente) VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" dados = (rua, numero, complemento, bairro, cidade, estado, cep, idCliente) conn = mysql.connect() #Conexão com banco de dados cursor = conn.cursor(pymysql.cursors.DictCursor) cursor.execute(sqlQuery, dados) conn.commit() resposta = jsonify({'status':'Endereço adicionado com sucesso!'}) resposta.status_code = 200 return resposta else: return not_found() except Exception as e: print(e) finally: cursor.close() conn.close() #Atualizar um endereço @app.route('/enderecos', methods=['PUT']) @auth.login_required def atualizar(): try: json = request.json idEndereco = json['idEndereco'] rua = json['rua'] numero = json['numero'] complemento = json['complemento'] bairro = json['bairro'] cidade = json['cidade'] estado = json['estado'] cep = json['cep'] idCliente = json['idCliente'] if rua and numero and complemento and bairro and cidade and estado and cep and idCliente and idEndereco and request.method == 'PUT': sqlQuery = "UPDATE enderecos SET rua=%s, numero=%s, complemento=%s, bairro=%s, cidade=%s, estado=%s, cep=%s, idCliente=%s WHERE idEndereco=%s" dados = (rua, numero, complemento, bairro, cidade, estado, cep, idCliente, idEndereco,) conn = mysql.connect() #Conexão banco de dados cursor = conn.cursor() cursor.execute(sqlQuery, dados) conn.commit() resposta = jsonify({'status':'Endereço atualizado com sucesso!'}) resposta.status_code = 200 return resposta else: return not_found() except Exception as e: print(e) finally: cursor.close() conn.close() #Deletar um endereço @app.route('/enderecos/<int:id>', methods=['DELETE']) @auth.login_required def deletar(id): try: conn = mysql.connect() cursor = conn.cursor() sqlQuery = "SELECT * FROM enderecos where idEndereco=%s" cursor.execute(sqlQuery, id) linha = cursor.fetchone() if not linha: return jsonify({'error':'Endereço inexistente!'}), 404 cursor.execute("DELETE FROM enderecos WHERE idEndereco =%s", (id,)) conn.commit() resposta = jsonify({'status':'Endereço deletado com sucesso!'}) resposta.status_code = 200 return resposta except Exception as e: print(e) finally: cursor.close() conn.close() #Método de verificação de senha @auth.verify_password def verificacao(login, senha): usuarios= { 'douglas':'123', 'cristhian':'321' } #Valida se o login existe if not (login, senha): #Se não for informado retorna false return False return usuarios.get(login) == senha #Retorna verdadeiro se for iguais #Caso não encontre o caminho @app.errorhandler(404) def not_found(error=None): messagem = { 'status': 404, 'mensagem': 'Registro nao encontrado: ' + request.url, } respone = jsonify(messagem) respone.status_code = 404 return respone if __name__ == "__main__": app.run(debug=True, host='0.0.0.0', port=5200)
[ "douglas.rocha@inmetrics.com.br" ]
douglas.rocha@inmetrics.com.br
d10cffd433e1382aa8c9269811b4ec706c2b5af9
28aca7a21dbd066c30e0385937adc683ae707401
/flag_bot.py
954844ba9373d425539a352150b25658caf78f8d
[]
no_license
obscuritysystems/DC801_CTF
219ed509e96e29712e2c018f4bd97602e7a19568
5b9ae581d1e1e2b914cd413735c5fe057a916dea
refs/heads/master
2016-09-06T17:52:50.623862
2013-05-07T05:26:54
2013-05-07T05:26:54
7,049,834
0
2
null
null
null
null
UTF-8
Python
false
false
560
py
#!/usr/bin/env python import sys, time, socket from daemon import Daemon from flag_bot_ai import FlagBotAI class FlagBot(Daemon): def run(self): bot = FlagBotAI() bot.run() if __name__ == "__main__": daemon = NemusBot('/tmp/FlagBot.pid') if len(sys.argv) == 2: if 'start' == sys.argv[1]: daemon.start() elif 'stop' == sys.argv[1]: daemon.stop() elif 'restart' == sys.argv[1]: daemon.restart() else: print "Unknown command" sys.exit(2) sys.exit(0) else: print "usage: %s start|stop|restart" % sys.argv[0] sys.exit(2)
[ "nemus@obscuritysytems.com" ]
nemus@obscuritysytems.com
fe17d4d7bf8095d15031ae2cf93d0c18c28d6751
10409d39ca4db722a084ee024d4088492917d8c1
/date.py
aab77b2861504e3aa5a0f35972ad30a53b7b2a6e
[]
no_license
polaroidz/tkdata_fraud_detetction
d0ca643f4cbf1e7f44a0971f298a82ba726c4cba
dfaeb1c075fc8bbf6e5fcddf6b31e112d993383b
refs/heads/master
2022-04-20T09:11:18.875931
2020-04-18T22:48:51
2020-04-18T22:48:51
256,614,723
0
0
null
null
null
null
UTF-8
Python
false
false
1,248
py
import math import pyspark from pyspark import keyword_only from pyspark.sql import functions as F from pyspark.ml import Transformer from pyspark.ml.param.shared import HasInputCol from pyspark.ml.param.shared import HasInputCols from pyspark.ml.param.shared import HasOutputCol from pyspark.ml.param.shared import Param from pyspark.ml.param.shared import Params from pyspark.ml.param.shared import TypeConverters class DateColumns(Transformer, HasInputCol): @keyword_only def __init__(self, inputCol=None): super(Transformer, self).__init__() self.setInputCol(inputCol) def _transform(self, df): input = self.getInputCol() df = df.withColumn("dt_day", F.dayofmonth(input)) df = df.withColumn("dt_hour", F.hour(input)) df = df.withColumn("dt_minute", F.minute(input)) df = df.withColumn("dt_second", F.second(input)) df = df.withColumn("dt_dayofyear", F.dayofyear(input)) df = df.withColumn("dt_dayofweek", F.dayofweek(input)) df = df.withColumn("dt_weekofyear", F.weekofyear(input)) return df def getOutputColumns(self): return [ "dt_day", "dt_hour", "dt_minute", "dt_second", "dt_dayofyear", "dt_dayofweek", "dt_weekofyear" ]
[ "diego.mrodrigues11@gmail.com" ]
diego.mrodrigues11@gmail.com
ca02764f5cda7953b2d8979696c2f5fce8cc6ebc
25318e17552bce267ab4bc7436f0f630800d9aac
/OCR_MLP_M.py
70c25fb97264371eba6521022a963489a0216e76
[]
no_license
Stx666Michael/digit_recognition
fbed7413955c919ef86805dd09582df7e5659e2e
1bf12d4c1e673d5cb2fd459c1bd56b7c7d3c71aa
refs/heads/main
2023-03-07T20:01:03.600883
2021-02-22T01:50:21
2021-02-22T01:50:21
340,858,740
0
0
null
null
null
null
UTF-8
Python
false
false
2,568
py
import numpy as np #导入numpy工具包 from os import listdir #使用listdir模块,用于访问本地文件 from sklearn.neural_network import MLPClassifier import PIL.Image as image import random import time def img2vector(fileName): f = open(fileName,'rb') data = [] img = image.open(f) m,n = img.size for i in range(m): for j in range(n): x = img.getpixel((i,j)) data.append(round(x/255)) f.close() return np.mat(data) def readDataSet_R(path,num): fileList = listdir(path) #获取文件夹下的所有文件 numFiles = len(fileList) #统计需要读取的文件的数目 print("Ramdom:",num) dataSet = np.zeros([num,784],int) #用于存放所有的数字文件 hwLabels = np.zeros([num,10])#用于存放对应的标签 Sample = random.sample(range(numFiles),num) for i in range(num): #遍历所有的文件 filePath = fileList[Sample[i]] #获取文件名称/路径 digit = int(filePath.split('_')[0]) #通过文件名获取标签 hwLabels[i][digit] = 1.0 #将对应的one-hot标签置1 dataSet[i] = img2vector(path +'/'+filePath) #读取文件内容 if (i%(num/100) == 0): print("\rLoading:",'█'*int(20*i/num),100*i/num+1,"%",end="") return dataSet,hwLabels #read dataSet print("Training...") #train_dataSet, train_hwLabels = readDataSet('trainingDigits_M') train_dataSet, train_hwLabels = readDataSet_R('trainingDigits_M',10000) clf = MLPClassifier(solver='sgd',activation='relu',alpha=1e-4,hidden_layer_sizes=(50,50),random_state=1,max_iter=10,verbose=10,learning_rate_init=.1) print() print(clf) clf.fit(train_dataSet,train_hwLabels) print("Training complete.") #read testing dataSet print("\nTesting...") #dataSet,hwLabels = readDataSet('testDigits_M') dataSet,hwLabels = readDataSet_R('testDigits_M',1000) res = clf.predict(dataSet) #对测试集进行预测 error_num = 0 #统计预测错误的数目 num = len(dataSet) #测试集的数目 for i in range(num): #遍历预测结果 #比较长度为10的数组,返回包含01的数组,0为不同,1为相同 #若预测结果与真实结果相同,则10个数字全为1,否则不全为1 if np.sum(res[i] == hwLabels[i]) < 10: error_num += 1 print("\nTotal num:",num," Wrong num:", \ error_num," Accuracy:",1 - error_num / float(num)) time.sleep(100)
[ "noreply@github.com" ]
noreply@github.com
0963782c89cb406827ba1acfa143e7fdd445951a
601f1eb021241c13d7b84aab0b51d30efa259b09
/homework 8.1 mood checker.py
46348b98396405be5f06098886d5f07db8878bea
[]
no_license
johnbook666/PythonersteProgramme
f1d690332219e8807dce8e001065f2fa1086d454
95242ce9ffefc7c2c13c2b5e14b8b1d97128a424
refs/heads/master
2020-11-24T21:55:48.874857
2019-12-16T10:03:27
2019-12-16T10:03:27
228,356,654
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
print('--- mood checker ---') print('enter mood: happy, nervous, sad, excited, relaxed') mood = input('your mood ? ') if mood == "happy": print('It is great to see you happy!') elif mood == "nervous": print('Take a deep breath 3 times.') elif mood == "sad": print('take a walk and enjoy the sun !') elif mood == "excited": print('get the party started !') elif mood == "relaxed": print('feel free to relax more') else: print('I don't recognize this mood. Next time :-)')
[ "markusarendt@hotmail.com" ]
markusarendt@hotmail.com
ba0cd3b1c0948476c5e95310ac7aa974653dfd23
29e444e9cd38e9d54f7af12db13be325946c8608
/events_spider/master_server.py
93e7e7c01260190296bc6d9b8d669f8a51fefa8a
[]
no_license
HughLK/Distributed-News-Monitoring-System
0cf3da8f4a3de3afb9b24e6185408231d9ec7bdd
180472c4f5bc642eddc247d18b203d5da92fe40d
refs/heads/master
2020-09-24T12:53:23.538981
2019-12-14T05:25:16
2019-12-14T05:25:16
225,763,169
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
# -*- coding: utf-8 -*- import datetime from events_spider.utils.tools import LOGGER, APP_CONF, SCHEDULER from rpc_client import RpcClient from SimpleXMLRPCServer import SimpleXMLRPCServer CLIENT = RpcClient() def callback(): LOGGER.info("New Master Confirmed.") CLIENT.call() # SCHEDULER.add_job(CLIENT.call, 'interval', id='call', minutes=APP_CONF['config']['crawl_frequency'], next_run_time=datetime.datetime.now()) LOGGER.info(SCHEDULER.get_jobs()) server = SimpleXMLRPCServer((APP_CONF['config']['localhost'], 8888)) server.register_function(callback, "call") LOGGER.info("Awaiting Being Eelcted.") server.serve_forever()
[ "scdylk@aliyun.com" ]
scdylk@aliyun.com
46335ec9e4accf5fef2e9fe3fc4542bb092994bf
6bff080a2bfba280244fc956c40acfd294e9c095
/Inner Graph Generator/graph_tester.py
66d35ed8f0e3f38c8b5e92af551439672e8c6bd7
[]
no_license
thunderbolt06/Enumeration-of-RFPs
7ca0745e79fa094be3aeef5580be926f4999c34d
324366ba8f690347eda5ac97a5285fb8a139a3e6
refs/heads/master
2020-08-07T13:17:22.366289
2020-03-26T11:48:00
2020-03-26T11:48:00
213,460,625
1
2
null
2020-02-16T10:30:07
2019-10-07T18:46:12
Python
UTF-8
Python
false
false
333
py
import networkx as nx import matplotlib.pyplot as plt gaf = nx.Graph() for i in range(int(input())): gaf.add_edge(*map(int, input().strip().split(' '))) print(gaf.edges()) nx.draw_planar(gaf, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None) plt.show()
[ "4chinmai@gmail.com" ]
4chinmai@gmail.com
aa8aabf65ecb49d7092f518affba7b4f4200745b
609582ee37a01ac6a67fb9c957825dcd3c9a5b3a
/LeetCode_Math/67_Add_Binaray.py
77bf2de64eddd1dca19c9a8f56aeabd0235107f3
[]
no_license
captainjack331089/captainjack33.LeetCode
a9ad7b3591675c76814eda22e683745068e0abed
4c03f28371e003e8e6a7c30b7b0c46beb5e2a8e7
refs/heads/master
2022-03-07T19:53:40.454945
2019-11-06T19:32:00
2019-11-06T19:32:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
""" 67. Add Binary Category: Math Difficulty: Easy """ """ Given two binary strings, return their sum (also a binary string). The input strings are both non-empty and contains only characters 1 or 0. Example 1: Input: a = "11", b = "1" Output: "100" Example 2: Input: a = "1010", b = "1011" Output: "10101" """ class Solution(): def addBinary(self,a,b): return (bin( int(a,2) + int(b,2) )[2:]) a = "100" b = "100" if __name__ == "__main__": print(Solution().addBinary(a,b))
[ "qfhjack@gmail.com" ]
qfhjack@gmail.com
483082bb132d04dca5ed5513a195893b7756e4ed
e86c934b98fd78352eda6fa5ee23ab89a9814c4b
/aliyun/log/etl_core/restrict_config_parser.py
5b9db1008be7bd7755136820711f15e427bae620
[ "MIT" ]
permissive
aliyun/aliyun-log-python-sdk
fbe8212da62f0ae30aa4fcb2c10c4e2ef7b7aaee
0ccf358adecf01f953011f21dfcf259114bab2aa
refs/heads/master
2023-08-31T03:25:26.183336
2023-08-18T02:12:26
2023-08-18T02:12:26
78,168,645
162
149
MIT
2023-09-05T01:37:51
2017-01-06T03:03:17
Python
UTF-8
Python
false
false
2,723
py
import ast import logging import six import sys TRUST_AST_TYPES = (ast.Call, ast.Module, ast.List, ast.Tuple, ast.Dict, ast.Name, ast.Num, ast.Str, ast.Assign, ast.Load) if sys.version_info[:2] == (3, 3): TRUST_AST_TYPES = TRUST_AST_TYPES + (ast.Bytes,) elif six.PY3: TRUST_AST_TYPES = TRUST_AST_TYPES + (ast.Bytes, ast.NameConstant) class InvalidETLConfig(Exception): pass builtin_macros = [ 'KEEP_EVENT_', 'DROP_EVENT_', 'KEEP_FIELDS_', 'DROP_FIELDS_', 'RENAME_FIELDS_', 'ALIAS_', 'DISPATCH_EVENT_', 'TRANSFORM_EVENT_', 'KV_FIELDS_' ] built_in_fns = ['V', 'JSON', 'CSV', 'REGEX', 'EMPTY', 'NO_EMPTY', 'DROP_F', 'KV', 'TSV', 'PSV', 'LOOKUP', 'SPLIT', 'ZIP'] built_in_ids = ['KV', 'ANY', 'ALL', 'F_TIME', 'F_META', 'F_TAGS', 'SPLIT', 'JSON', 'True', 'False', 'None'] logger = logging.getLogger(__name__) class RestrictConfigParser(ast.NodeVisitor): def visit_ImportFrom(self, node): if node.module == 'aliyun.log.etl_core' and len(node.names) == 1 and node.names[0].name == '*': logger.info("[Passed] import detected: from aliyun.log.etl_core import *") else: raise InvalidETLConfig("unknown import: {0}".format(node.module)) def visit_Call(self, node): if isinstance(node.func, ast.Name): if isinstance(node.func.ctx, ast.Load) and node.func.id in built_in_fns: logger.info("[Passed] known call detected") else: raise InvalidETLConfig("unknown call id detected: {0}".format(node.func.id)) else: raise InvalidETLConfig("unknown call type detected: {0}".format(node.func)) def visit_Name(self, node): if isinstance(node.ctx, ast.Store): for p in builtin_macros: if node.id.startswith(p): logger.info('[Passed] assign detected: ', node.id) break else: raise InvalidETLConfig('unknown assign detected: ', node.id) elif isinstance(node.ctx, ast.Load): if node.id in built_in_ids: logger.info(' [Passed] assigned name:', node.id) else: raise InvalidETLConfig('unknown load detected: ', node.id) else: raise InvalidETLConfig("unknown Name: {0}".format(node.id)) def generic_visit(self, node): if isinstance(node, TRUST_AST_TYPES): logger.info("... known type detected: ", type(node)) else: raise InvalidETLConfig("unknown type detected: {0}".format(type(node))) ast.NodeVisitor.generic_visit(self, node) def parse(self, code): self.visit(ast.parse(code))
[ "wjo1212@163.com" ]
wjo1212@163.com
db5478f9a0cb0cf030d084d4aa9c480907c197a7
0dc3e9b70da8ccd056e0a0fab2b1d8f850c3d470
/lantern/django/django_celery/src/apps/cars/serializers.py
3b2841adafff0d4d82de945686eeba93f6718cd8
[]
no_license
ArturYefriemov/green_lantern
28e7150af7b9d2281a107ad80026828ad77af62a
2841b647e1bfae4a7505e91e8a8695d03f35a3a2
refs/heads/master
2021-03-01T16:54:58.881835
2020-11-17T19:42:23
2020-11-17T19:42:23
245,799,969
0
0
null
2020-07-14T18:51:13
2020-03-08T11:13:32
Python
UTF-8
Python
false
false
190
py
from rest_framework import serializers from apps.cars.models import Car class CarSerializer(serializers.ModelSerializer): class Meta: model = Car fields = '__all__'
[ "odarchenko@ex.ua" ]
odarchenko@ex.ua
80d65ef8dd7fb82cd527bbcf4cec83c78d67c536
e12b840d9ac3eb1cc0e3a08e91b5812fc9509798
/invoke_lambda/demo/demo.py
b31cc9a44d7cdb8eba5db9b55f0c63b9627f5326
[]
no_license
kfunamizu/python_commonlib
7122272f3c1c75e62d9585ebdf5cbc6fa5c1ab77
6ecdbc904840763880928c1014c6898f82fb6b46
refs/heads/master
2020-04-17T03:57:09.252029
2019-11-22T02:08:25
2019-11-22T02:08:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
from invoke_lambda import invoke_lambda lambda_function_name = 'kfunamizu_sample' event_dict = { '1' : '1', '2' : '2', '3' : '3' } invoke_lambda(lambda_function_name, event_dict)
[ "noreply@github.com" ]
noreply@github.com
e0b9e75b23d4f7865588f65066034254d752d3c3
33e0d2d343b276b96236890823e8446482c5b9d8
/myapi/settings.py
11a2ffab604010b5288b8d2f545d6d1d8ec2f759
[]
no_license
ketan9712735468/myapi
1b3e96ba76f4b37dc28a4954b0a4d1f306d9ae7c
0c3c4054f55759c816a589246aac439f85544b7a
refs/heads/main
2023-04-17T02:53:00.794462
2021-05-11T05:51:14
2021-05-11T05:51:14
366,246,508
0
0
null
null
null
null
UTF-8
Python
false
false
3,762
py
""" Django settings for myapi project. Generated by 'django-admin startproject' using Django 3.1.2. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path,os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ # 'rest_framework.authentication.BasicAuthentication', # 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ], 'DEFAULT_PERMISSION_CLASSES': [ # 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' 'rest_framework.permissions.AllowAny' ] } # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'eucbpib&@3hm3zauyx0)10#do-45c!ey^+$dom-w-6e-jy@j4p' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'firstapp', 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'django.contrib.sites', 'allauth', 'allauth.account', 'rest_auth.registration', 'cars', ] SITE_ID = 1 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'myapi.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'myapi.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "ketanmangukiya001@gmail.com" ]
ketanmangukiya001@gmail.com
3a4176029eb9b62a827d71c46ebb1792fdf37b91
6d703f97d1326023cbfe9818474d446a32e9e7a0
/siteProject/wsgi.py
252143bc4db532c80ff3654dbd30ecdecfab7e7b
[]
no_license
LiFFTB/LearnPython
748d1b89d2197ba1da3026dd488c08aaa15bf258
2132c055f8ce3219366a0d023a3e3cb4a0398979
refs/heads/master
2022-10-05T11:46:48.552301
2020-06-01T15:15:46
2020-06-01T15:15:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
""" WSGI config for siteProject project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'siteProject.settings') application = get_wsgi_application()
[ "jinyu929@qq.com" ]
jinyu929@qq.com
1f6d7e07edb5c93c86a793d1ec1b2f4d6b7155c1
479aefa19c46bd31d567035fed0227b4282fc662
/MovieWebsite/group_func/migrations/0005_remove_group_description.py
ebb5650eb875ada7722ba22810ddda024100be8d
[]
no_license
KarryBanana/SE_Project
cc60371bf5194bf003ecafe1d21ce7f3878f644d
f9ede4caae56de97dfe6abb84f0e4811ff6d65b5
refs/heads/master
2021-05-23T01:36:27.939979
2020-08-10T08:39:25
2020-08-10T08:39:25
253,175,737
0
0
null
null
null
null
UTF-8
Python
false
false
334
py
# Generated by Django 3.0.7 on 2020-06-29 06:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('group_func', '0004_group_description'), ] operations = [ migrations.RemoveField( model_name='group', name='description', ), ]
[ "bill881@126.com" ]
bill881@126.com
8e1d635e43cf0d4a577b35facf856bf52864130c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04005/s700047032.py
6b014ba065ec8998d3dab92a228e7bca1810778d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
a,b,c=map(int,input().split()) print(0 if (a*b*c)%2==0 else min(a*b,b*c,c*a))
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
635b2ea8ba272c29ef49790aae721a40124e6873
98f3deef793bee63b029f5bcc2335524e8c2e5c2
/爬虫/爬虫入门/封装函数后爬取某网站.py
50c1c24b6182b08bf25e0ac5785cdc9135f43a84
[]
no_license
BBBBchan/python
f6a069821b8c4848fd25d70c6f36d6217023beb5
ca106ea549f68b557829da51588c5ceb416d5435
refs/heads/master
2021-06-04T13:19:13.485475
2019-11-29T03:38:12
2019-11-29T03:38:12
112,024,051
3
0
null
null
null
null
UTF-8
Python
false
false
272
py
# -*- coding: utf-8 -*- import requests def gethtml(url): try: r = requests.get(url, timeout=30) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "异常" if __name__ == "__main__": url = "www.baidu.com" print(gethtml(url))
[ "sbysbysby123@gmail.com" ]
sbysbysby123@gmail.com
76b5e2452098e49235282783ad7eb1263db83e08
ae7ba9c83692cfcb39e95483d84610715930fe9e
/yubinbai/pcuva-problems/UVa 10539 - Almost Prime Numbers/main.py
30bb7c3cab4b9a2a5ac9a024702a2f2bdb6ddbf0
[]
no_license
xenron/sandbox-github-clone
364721769ea0784fb82827b07196eaa32190126b
5eccdd8631f8bad78eb88bb89144972dbabc109c
refs/heads/master
2022-05-01T21:18:43.101664
2016-09-12T12:38:32
2016-09-12T12:38:32
65,951,766
5
7
null
null
null
null
UTF-8
Python
false
false
820
py
from bisect import * from bitstring import BitArray import sys MAXN = 1000005 def prime_sieve(top=MAXN): b = BitArray(top) # bitstring of ’0’ bits for i in range(2, top): if not b[i]: yield i # i is prime, so set all its multiples to ’1’. b.set(True, range(i * i, top, i)) if __name__ == '__main__': primes = list(prime_sieve()) almostPrimes = [] for p in primes: p1 = p ** 2 while p1 < MAXN: almostPrimes.append(p1) p1 *= p almostPrimes.sort() sys.stdin = open('input.txt') numTest = int(input()) for x in range(numTest): left, right = map(int, raw_input().split()) i1 = bisect_right(almostPrimes, left) i2 = bisect_right(almostPrimes, right) print(i2 - i1)
[ "xenron@outlook.com" ]
xenron@outlook.com
d485c36b325898c6a6574811444544a7d9f9a257
6001b2460904142720818b961669f8306dd330ed
/posts/tests/test_urls.py
04870058ad052e1973f51af4e76d181c18aa72a7
[]
no_license
aryanlilian/Social-Posts
aad06d3d7527a73db296d107845b38ffee6daeae
610b59474aa4f65e9ccd8504c547d9ec31d725c1
refs/heads/main
2023-04-18T15:30:08.081117
2021-04-29T16:50:41
2021-04-29T16:50:41
362,097,172
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
from django.test import SimpleTestCase from django.urls import reverse, resolve from posts.views import postsList class TestUrls(SimpleTestCase): # The setUp method is for defining all the fields that should be used for testing purposes in the testing methods def setUp(self): self.posts_list_url = reverse('posts-list') # testing the URLs by checking if it's using the right view function for handling the request and responses def test_posts_list_url_resolves(self): self.assertEquals(resolve(self.posts_list_url).func, postsList)
[ "aryanlilian@gmail.com" ]
aryanlilian@gmail.com
7326d2d7689ae724544c3a6135e5fed3824e819f
b27f5d5691d1aaae3f3b334f73c4f91f835bcabc
/Code/ops.py
eb9e8390bbc44d2e79660faaa3eacc3112d47c71
[]
no_license
VTLI/comic-gen
a27220193524ec0833a3896343ffc2613c2ebedd
4ee2a6e22b29b47b2aeaaef18ba972c9d5f5d151
refs/heads/master
2020-05-24T03:46:26.256772
2019-07-11T08:39:53
2019-07-11T08:39:53
187,078,397
2
0
null
null
null
null
UTF-8
Python
false
false
4,013
py
import math import numpy as np import tensorflow as tf from tensorflow.python.framework import ops from utils import * try: image_summary = tf.image_summary scalar_summary = tf.scalar_summary histogram_summary = tf.histogram_summary merge_summary = tf.merge_summary SummaryWriter = tf.train.SummaryWriter except: image_summary = tf.summary.image scalar_summary = tf.summary.scalar histogram_summary = tf.summary.histogram merge_summary = tf.summary.merge SummaryWriter = tf.summary.FileWriter if "concat_v2" in dir(tf): def concat(tensors, axis, *args, **kwargs): return tf.concat_v2(tensors, axis, *args, **kwargs) else: def concat(tensors, axis, *args, **kwargs): return tf.concat(tensors, axis, *args, **kwargs) class batch_norm(object): def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"): with tf.variable_scope(name): self.epsilon = epsilon self.momentum = momentum self.name = name def __call__(self, x, train=True): return tf.contrib.layers.batch_norm(x, decay=self.momentum, updates_collections=None, epsilon=self.epsilon, scale=True, is_training=train, scope=self.name) def conv_cond_concat(x, y): """Concatenate conditioning vector on feature map axis.""" x_shapes = x.get_shape() y_shapes = y.get_shape() return concat([ x, y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])], 3) def conv2d(input_, output_dim, k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, name="conv2d"): with tf.variable_scope(name): w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME') biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0)) conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape()) return conv def deconv2d(input_, output_shape, k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, name="deconv2d", with_w=False): with tf.variable_scope(name): # filter : [height, width, output_channels, in_channels] w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]], initializer=tf.random_normal_initializer(stddev=stddev)) try: deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape, strides=[1, d_h, d_w, 1]) # Support for verisons of TensorFlow before 0.7.0 except AttributeError: deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape, strides=[1, d_h, d_w, 1]) biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0)) deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape()) if with_w: return deconv, w, biases else: return deconv def lrelu(x, leak=0.2, name="lrelu"): return tf.maximum(x, leak*x) def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False): shape = input_.get_shape().as_list() with tf.variable_scope(scope or "Linear"): try: matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32, tf.random_normal_initializer(stddev=stddev)) except ValueError as err: msg = "NOTE: Usually, this is due to an issue with the image dimensions. Did you correctly set '--crop' or '--input_height' or '--output_height'?" err.args = err.args + (msg,) raise bias = tf.get_variable("bias", [output_size], initializer=tf.constant_initializer(bias_start)) if with_w: return tf.matmul(input_, matrix) + bias, matrix, bias else: return tf.matmul(input_, matrix) + bias
[ "noreply@github.com" ]
noreply@github.com
9d9a28c406e812fde853a9ab4577cc16b649995d
9b77f1e31d5901924431a2a3164312cc346bde4f
/ADI4/manage.py
e9ec1a96a7b096f6b2698c979c0b121ed89eb43f
[]
no_license
Adi19471/Djnago_Code-Daily
c2184bf21db5c8d4b3c4098fbd593e4949375ae8
03b1b70d3e187fe85eb24e88b7ef3391b14aa98c
refs/heads/master
2023-08-14T14:36:36.144243
2021-09-20T12:52:46
2021-09-20T12:52:46
375,690,484
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ADI4.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "akumatha@gmail.com" ]
akumatha@gmail.com
44ccbd118db55872abc28425b29a43c1682f0194
a14ab84ccb471b52e32fe1bf0ed70a1d1813396e
/python/firstproject/firstproject/settings.py
9fa477b41686ba8d46a37c5f60de4b86c4660205
[]
no_license
Aashirya1995/COMP705
051c7be353e8ffa21262feacf3e2af0016153ad5
bc382beb66979462de24ff427f397de4f9b8892d
refs/heads/master
2021-05-09T20:33:14.511019
2018-03-06T17:05:18
2018-03-06T17:05:18
118,692,267
0
1
null
null
null
null
UTF-8
Python
false
false
3,354
py
""" Django settings for firstproject project. Generated by 'django-admin startproject' using Django 2.0.1. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) # equivalent to where manage.py lives BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'r8y_2gctiffm(jd47wb76zu6o3kpeyxog+@04a+l0b^76y228z' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'firstproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'firstproject.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIR = [os.path.join(BASE_DIR, 'static')]
[ "ak1107@wildcats.unh.edu" ]
ak1107@wildcats.unh.edu
627e5d9f212753a73b9f9c9e81a215e81c4bc4b6
14b768ac8d2ea19fa8f3c99f9802fb9096a2e7f0
/core/world_patch_block.py
368aaefd742a463d793003cbd5c261621fc6e847
[]
no_license
RogodaThallus/PyLogo
f1c397b0cd262b5cf39f3720c30348204525e0de
b41e47dfa287636675f38535ae2d3995aa4cd027
refs/heads/master
2021-01-08T08:13:50.671951
2020-04-11T00:02:17
2020-04-11T00:02:17
241,967,208
0
0
null
2020-02-20T19:07:50
2020-02-20T19:07:49
null
UTF-8
Python
false
false
9,780
py
from __future__ import annotations from math import sqrt from typing import Tuple import numpy as np from pygame.color import Color from pygame.rect import Rect from pygame.sprite import Sprite from pygame.surface import Surface import core.gui as gui # Importing this file eliminates the need for a globals declaration # noinspection PyUnresolvedReferences import core.world_patch_block as world from core.gui import SHAPES from core.pairs import center_pixel, Pixel_xy, RowCol from core.utils import get_class_name class Block(Sprite): """ A generic patch/agent. Has a Pixel_xy but not necessarily a RowCol. Has a Color. """ agent_text_offset = int(1.5*gui.PATCH_SIZE) patch_text_offset = -int(1.0*gui.PATCH_SIZE) def __init__(self, center_pixel: Pixel_xy, color=Color('black')): super().__init__() self.center_pixel: Pixel_xy = center_pixel self.rect = Rect((0, 0), (gui.PATCH_SIZE, gui.PATCH_SIZE)) # noinspection PyTypeChecker sum_pixel: Pixel_xy = center_pixel + Pixel_xy((1, 1)) self.rect.center = sum_pixel self.image = Surface((self.rect.w, self.rect.h)) self.color = self.base_color = color self._label = None self.highlight = None def distance_to_xy(self, xy: Pixel_xy): x_dist = self.center_pixel.x - xy.x y_dist = self.center_pixel.y - xy.y dist = sqrt(x_dist * x_dist + y_dist*y_dist) return dist # Note that the actual drawing (blit and draw_line) takes place in core.gui. def draw(self, shape_name=None): if self.label: self.draw_label() if isinstance(self, Patch) or shape_name in SHAPES: self.rect.center = self.center_pixel # self.rect = Rect(center=self.rect.center) gui.blit(self.image, self.rect) else: gui.draw(self, shape_name=shape_name) def draw_label(self): offset = Block.patch_text_offset if isinstance(self, Patch) else Block.agent_text_offset text_center = Pixel_xy((self.rect.x + offset, self.rect.y + offset)) line_color = Color('white') if isinstance(self, Patch) and self.color == Color('black') else self.color obj_center = self.rect.center label = self.label gui.draw_label(label, text_center, obj_center, line_color) # def draw_label(self): # text = gui.FONT.render(self.label, True, Color('black'), Color('white')) # offset = Block.patch_text_offset if isinstance(self, Patch) else Block.agent_text_offset # text_center = Pixel_xy((self.rect.x + offset, self.rect.y + offset)) # gui.blit(text, text_center) # line_color = Color('white') if isinstance(self, Patch) and self.color == Color('black') else self.color # gui.draw_line(start_pixel=self.rect.center, end_pixel=text_center, line_color=line_color) @property def label(self): return self._label if self._label else None @label.setter def label(self, value): self._label = value def set_color(self, color): self.color = color self.image.fill(color) class Patch(Block): def __init__(self, row_col: RowCol, color=Color('black')): super().__init__(row_col.patch_to_center_pixel(), color) self.row_col = row_col self.agents = None self._neighbors_4 = None self._neighbors_8 = None self._neighbors_24 = None def __str__(self): class_name = get_class_name(self) return f'{class_name}{(self.row_col.row, self.row_col.col)}' def add_agent(self, agent): self.agents.add(agent) @property def col(self): return self.row_col.col @property def row(self): return self.row_col.row def clear(self): self.agents = set() self.label = None self.set_color(self.base_color) def neighbors_4(self): if self._neighbors_4 is None: cardinal_deltas = ((-1, 0), (1, 0), (0, -1), (0, 1)) self._neighbors_4 = self.neighbors(cardinal_deltas) return self._neighbors_4 def neighbors_8(self): if self._neighbors_8 is None: eight_deltas = ((-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1)) self._neighbors_8 = self.neighbors(eight_deltas) return self._neighbors_8 def neighbors_24(self): if self._neighbors_24 is None: twenty_four_deltas = ((-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1, 1), (1, -1), (1, 1), (-2, -2), (-1, -2), (0, -2), (1, -2), (2, -2), (-2, -1), (2, -1), (-2, 0), (2, 0), (-2, 1), (2, 1), (-2, 2), (-1, 2), (0, 2), (1, 2), (2, 2), ) self._neighbors_24 = self.neighbors(twenty_four_deltas) return self._neighbors_24 def neighbors(self, deltas): """ The neighbors of this patch determined by the deltas. Note the addition of two RowCol objects to produce a new RowCol object: self.row_col + utils.RowCol(r, c). Wrap around is handled by RowCol. We then use the RowCol object as a tuple to access the np.ndarray """ # noinspection PyUnresolvedReferences neighbors = [World.patches_array[(self.row_col + RowCol((r, c))).wrap().as_int()] for (r, c) in deltas] return neighbors def remove_agent(self, agent): self.agents.remove(agent) class World: agents = None links = None patches = None patches_array: np.ndarray = None ticks = None def __init__(self, patch_class, agent_class): World.ticks = 0 self.patch_class = patch_class self.create_patches_array() self.agent_class = agent_class self.done = False self.reset_all() @staticmethod def clear_all(): World.agents = set() World.links = set() for patch in World.patches: patch.clear() def create_agents(self, nbr_agents): for _ in range(nbr_agents): self.agent_class() def create_ordered_agents(self, n, shape_name='netlogo_figure', scale=1.4, color=None, radius=140): """ Create n Agents with headings evenly spaced from 0 to 360 Return a list of the Agents in the order created. """ agent_list = [self.agent_class(shape_name=shape_name, scale=scale, color=color) for _ in range(n)] for (i, agent) in enumerate(agent_list): heading = i * 360 / n agent.set_heading(heading) if radius: agent.forward(radius) return agent_list def create_patches_array(self): patch_pseudo_array = [[self.patch_class(RowCol((r, c))) for c in range(gui.PATCH_COLS)] for r in range(gui.PATCH_ROWS)] World.patches_array = np.array(patch_pseudo_array) # .flat is an iterator. Can't use it more than once. World.patches = list(World.patches_array.flat) def create_random_agents(self, n, shape_name='netlogo_figure', color=None, scale=1.4): """ Create n Agents placed randomly on the screen. They are all facing the screen's center pixel. """ for _ in range(n): agent = self.agent_class(color=color, shape_name=shape_name, scale=scale) agent.move_to_xy(Pixel_xy.random_pixel()) agent.face_xy(center_pixel()) def draw(self): """ Draw the world by drawing the patches and agents. Should check to see which really need to be re-drawn. """ for patch in World.patches: patch.draw() for link in World.links: link.draw() for agent in World.agents: agent.draw() def final_thoughts(self): """ Add any final tests, data gathering, summarization, etc. here. """ pass # Uncomment this code to see how well the (@lru) caches work. # print() # for fn in [utils._heading_to_dxdy_int, utils._dx_int, utils._dy_int, # utils.atan2_normalized, utils._cos_int, utils._sin_int]: # if fn == utils.atan2: # print() # print(f'{str(fn.__wrapped__).split(" ")[1]}: {fn.cache_info()}') def handle_event(self, _event): pass @staticmethod def increment_ticks(): World.ticks += 1 def mouse_click(self, xy): pass def pixel_tuple_to_patch(self, xy: Tuple[int, int]): """ Get the patch RowCol for this pixel """ return self.pixel_xy_to_patch(Pixel_xy(xy)) @staticmethod def pixel_xy_to_patch(pixel_xy: Pixel_xy) -> Patch: """ Get the patch RowCol for this pixel """ row_col: RowCol = pixel_xy.pixel_to_row_col() patch = World.patches_array[row_col.row, row_col.col] return patch def reset_all(self): self.done = False self.clear_all() self.reset_ticks() @staticmethod def reset_ticks(): World.ticks = 0 def setup(self): """ Set up the world. Override for each world """ pass def step(self): """ Update the world. Override for each world """ pass
[ "noreply@github.com" ]
noreply@github.com
a9df993bc04715662c0fc174ac283338714e2f13
94f07753b134531c06dc2e789f594c25bfa6993e
/aiida_kkr/tests/workflows/test_kkrimp_dos_wc.py
1a7b6fa1abb1b81319983a2e8bed278e2d44c444
[ "MIT" ]
permissive
IngoMeyer441/aiida-kkr
23316ca7d74b40580d149ebcf7ae9da79373f8a5
5ce20a61a667787aeb68fa0c8b81e73aa3cf94a5
refs/heads/master
2023-07-15T01:02:11.685631
2021-05-05T06:54:56
2021-05-05T06:54:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,222
py
#!/usr/bin/env python from __future__ import absolute_import import pytest from aiida_kkr.tests.dbsetup import * # tests class Test_kkrimp_dos_workflow(): """ Tests for the kkrimp_scf workflow """ @pytest.mark.timeout(300, method='thread') @pytest.mark.usefixtures("fresh_aiida_env") def test_dos_startpot_wc(self): """ simple Cu noSOC, FP, lmax2 full example using scf workflow for impurity host-in-host """ from aiida.orm import Code, load_node from aiida.plugins import DataFactory from aiida.orm.querybuilder import QueryBuilder from masci_tools.io.kkr_params import kkrparams from aiida_kkr.workflows.kkr_imp_dos import kkr_imp_dos_wc from numpy import array Dict = DataFactory('dict') StructureData = DataFactory('structure') # prepare computer and code (needed so that prepare_code(kkrimp_codename, codelocation, computername, workdir) prepare_code(kkr_codename, codelocation, computername, workdir) wfd =kkr_imp_dos_wc.get_wf_defaults() options = {'queue_name' : queuename, 'resources': {"num_machines": 1}, 'max_wallclock_seconds' : 5*60, 'use_mpi' : False, 'custom_scheduler_commands' : ''} options = Dict(dict=options) # The scf-workflow needs also the voronoi and KKR codes to be able to run the calulations KKRimpCode = Code.get_from_string(kkrimp_codename+'@'+computername) KKRCode = Code.get_from_string(kkr_codename+'@'+computername) # import previous GF writeout from aiida.tools.importexport import import_data import_data('files/db_dump_kkrflex_create.tar.gz') GF_host_calc = load_node('baabef05-f418-4475-bba5-ef0ee3fd5ca6') # now create a SingleFileData node containing the impurity starting potential from aiida_kkr.tools.common_workfunctions import neworder_potential_wf from numpy import loadtxt neworder_pot1 = [int(i) for i in loadtxt(GF_host_calc.outputs.retrieved.open('scoef'), skiprows=1)[:,3]-1] settings_dict = {'pot1': 'out_potential', 'out_pot': 'potential_imp', 'neworder': neworder_pot1} settings = Dict(dict=settings_dict) startpot_imp_sfd = neworder_potential_wf(settings_node=settings, parent_calc_folder=GF_host_calc.outputs.remote_folder) label = 'kkrimp_dos Cu host_in_host' descr = 'kkrimp_dos workflow for Cu bulk' imp_info = GF_host_calc.inputs.impurity_info.get_dict() imp_info ['Rcut'] = 2.5533 print(imp_info) # create process builder to set parameters builder = kkr_imp_dos_wc.get_builder() builder.metadata.description = descr builder.metadata.label = label builder.options = options builder.kkr = KKRCode builder.kkrimp = KKRimpCode builder.imp_pot_sfd = startpot_imp_sfd builder.wf_parameters = Dict(dict=wfd) builder.impurity_info = Dict(dict=imp_info) builder.host_remote = GF_host_calc.outputs.remote_folder # now run calculation from aiida.engine import run print(builder) out = run(builder) print(out) assert 'last_calc_info' in out.keys() assert 'last_calc_output_parameters' in out.keys() assert 'workflow_info' in out.keys() assert 'dos_data' in out.keys() assert 'dos_data_interpol' in out.keys() assert len(out['dos_data_interpol'].get_y()) == 5 assert len(out['dos_data_interpol'].get_y()[0]) == 3 assert len(out['dos_data_interpol'].get_y()[0][0]) == 20 @pytest.mark.timeout(300, method='thread') def test_dos_reuse_gf_writeout(self): pass @pytest.mark.timeout(300, method='thread') def test_dos_from_kkrimp_sub(self): pass @pytest.mark.timeout(300, method='thread') def test_dos_from_kkrimp_full(self): pass #run test manually if __name__=='__main__': from aiida import load_profile load_profile() Test = Test_kkrimp_dos_workflow() Test.test_dos_startpot_wc() Test.test_dos_reuse_gf_writeout() Test.test_dos_from_kkrimp_sub() Test.test_dos_from_kkrimp_full()
[ "p.ruessmann@fz-juelich.de" ]
p.ruessmann@fz-juelich.de
85350cd3891916912a4ea7f31d7e3e9d72b3c3e5
ad32805a821fb06bde87a6d05c3d80ae477dc00b
/parts/migrations/0008_auto_20200204_0224.py
216c76ae8458539d3633edecdce7f9023faeff6c
[]
no_license
phrac/maintdx
a89a15e4d92f77b91016737a7b410a7579d07c6c
583b308568e25da6d99fa6d41150602baa253377
refs/heads/master
2021-07-01T05:11:51.994071
2021-05-14T13:41:20
2021-05-14T13:41:20
131,013,331
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
# Generated by Django 3.0.2 on 2020-02-04 02:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('parts', '0007_part_on_hand'), ] operations = [ migrations.AlterField( model_name='partinventoryitem', name='current_on_hand', field=models.PositiveIntegerField(default=0), ), migrations.AlterField( model_name='partinventoryitem', name='purchase_quantity', field=models.PositiveIntegerField(default=0), ), ]
[ "158748+phrac@users.noreply.github.com" ]
158748+phrac@users.noreply.github.com
374aa8f21043fa4ad07e5c55dc32e3b41b325b47
592be52fb1623947515a8c9a6ab9f17da58366a6
/shop_account/views.py
d1b7437a13ba203acbc309837291b05e653e441a
[]
no_license
mahnazfallah067/them
c224921ad27903b2aae79d9b186fe400288899d1
b51209a5b524298a53ab6888a61b5e1d4bfd20e2
refs/heads/master
2023-08-13T11:53:05.800278
2021-10-02T18:45:59
2021-10-02T18:45:59
412,881,887
0
0
null
null
null
null
UTF-8
Python
false
false
1,605
py
from django.contrib.auth.models import User from django.shortcuts import render, redirect from .form import LoginForms, RegisterForm from django.contrib.auth import authenticate, login, logout # Create your views here. def login_user(request): if request.user.is_authenticated: return redirect('/') login_form = LoginForms(request.POST or None) if login_form.is_valid(): username = login_form.cleaned_data.get('username') password = login_form.cleaned_data.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('/') else: login_form.add_error('username', 'کاربری با مشخصات وارد شده یافت نشد') context = { 'login_form': login_form } return render(request, 'account/login.html', context) def register_user(request): if request.user.is_authenticated: return redirect('/') register_form = RegisterForm(request.POST or None) if register_form.is_valid(): username = register_form.cleaned_data.get('username') email = register_form.cleaned_data.get('email') password = register_form.cleaned_data.get('password') User.objects.create_user(username=username, email=email, password=password) return redirect('/login') context = { 'register_form': register_form } return render(request, 'account/register.html', context) def log_out(request): logout(request) return redirect('/login')
[ "mahnaz.fallah1213@gmail.com" ]
mahnaz.fallah1213@gmail.com
a9fbf6d770010914427a3c36f2748a7edf47a25c
4236063269a9989e97d56cea6651ac371e310ed0
/gscholar/migrations/0002_auto_20150526_1846.py
0daab647349f8d31ab37dc4760f66708be8f448a
[ "MIT" ]
permissive
afonari/scholar-scrapy
8cddef03b9657adf0148e5a87cb846cd409c92e1
2d363789a376e5428971ceaa6b830de326e2b1a3
refs/heads/master
2021-01-18T04:44:40.307013
2015-05-27T14:02:21
2015-05-27T14:02:21
36,240,290
1
1
null
null
null
null
UTF-8
Python
false
false
580
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('gscholar', '0001_initial'), ] operations = [ migrations.AlterField( model_name='organization', name='logo', field=models.CharField(max_length=255, blank=True), ), migrations.AlterField( model_name='organization', name='title', field=models.CharField(max_length=255, blank=True), ), ]
[ "firstname.lastname@gaetch.edu" ]
firstname.lastname@gaetch.edu
73ca58f9efc45c92c45588633643d3a142934c43
4ad8443f46a93eb3d4dfe0855ed0860143818a2b
/wiki_processor/exobraindata_preprocessor.py
e8bcca59479cfaf7aa7af25ef69510b0fd8f247c
[]
no_license
delosyCho/Sentio-Web
97186c659ca268288b66e8f222bd5ca1427fc304
c39493998dd9aa217102e5b9578c98268dd4fa7e
refs/heads/master
2020-03-30T08:20:57.578484
2018-11-08T16:54:30
2018-11-08T16:54:30
151,008,025
0
0
null
null
null
null
UTF-8
Python
false
false
3,391
py
import numpy as np import codecs import pandas from functions import * exo_paragraph = open('exo_paragraph', 'w', encoding='utf-8') exo_question = open('exo_question', 'w', encoding='utf-8') exo_label = open('exo_label', 'w', encoding='utf-8') exo_answers = open('exo_answers', 'w', encoding='utf-8') paragraph_file = open('wiki_corpus', 'r', encoding='utf-8') rule_file = open('wiki_info', 'r', encoding='utf-8') # 정보가 들어있는 텍스트파일 exo_Questions = [] exo_Titles = [] exo_answer_info = [] exo_answer = [] exobrain_data1 = pandas.read_excel('exo1.xlsx') temp = exobrain_data1['질문'] temp2 = exobrain_data1['위키피디아 제목'] temp3 = exobrain_data1['정답 근거1(문장)'] temp4 = exobrain_data1['정답'] for i in range(len(temp)): exo_Questions.append(str(temp[i]).replace('?', '')) exo_Titles.append(str(temp2[i])) info_str = str(temp3[i]) exo_answer_info.append(preprocess(info_str)) exo_answer.append(preprocess(str(temp4[i]))) exobrain_data1 = pandas.read_excel('exo3.xlsx') temp = exobrain_data1['질문'] temp2 = exobrain_data1['위키피디아 제목'] temp3 = exobrain_data1['정답 근거1(문장)'] temp4 = exobrain_data1['정답'] for i in range(len(temp)): exo_Questions.append(str(temp[i]).replace('?', '')) exo_Titles.append(str(temp2[i])) info_str = str(temp3[i]).replace('.', '\n') exo_answer_info.append(preprocess(info_str)) exo_answer.append(preprocess(str(temp4[i]))) print(len(exo_answer)) print(len(exo_answer_info)) print(len(exo_Questions)) print(len(exo_Titles)) exo_data_dictionary = np.array(exo_Titles, dtype='<U20') exo_dictionary_index = exo_data_dictionary.argsort() exo_data_dictionary.sort() paragraphs = paragraph_file.read().split('\a') count = 0 for i in range(len(exo_answer)): exo_answers.write(exo_answer[i]) exo_answers.write('\n') exo_answers.close() for i, paragraph in enumerate(exo_answer_info): temp_TK = str(exo_answer_info[i]).split() TK = str(exo_answer[i]).split() if len(TK) > 0: start_word = TK[0] stop_word = TK[len(TK) - 1] TK = str(exo_answer_info[i]).split() start_index = -1 stop_index = -1 for j in range(len(TK)): a = TK[j].find(start_word) b = TK[j].find(stop_word) if a != -1 and start_index == -1: start_index = j if b != -1 and stop_index == -1: stop_index = j if start_index != -1 and stop_word != -1: if start_index <= stop_index: para = str(exo_answer_info[i]).replace(str(exo_answer[i]), '#' + str(i) + '@') TK = para.split('\n') for k in range(len(TK)): exo_paragraph.write(TK[k].strip()) exo_paragraph.write('\n') exo_paragraph.write('@#!\n') exo_question.write(exo_Questions[i]) exo_question.write('\a') exo_label.write(exo_answer[i]) exo_label.write('\a') count += 1 else: print('check!!!!!!!!!!') print(exo_answer_info[i]) print(exo_answer[i]) print(start_index, stop_index) print('---------------') print(count) exo_paragraph.close() exo_question.close() exo_label.close()
[ "delosycho@gmail.com" ]
delosycho@gmail.com
11d8813586dc9942197cdf6aa7084833e35848d1
a12d2d99d6bbb00bf4dabcab8c3efe5ea4714648
/DistractedDriverMaskFaces.py
6dfccfe249c75a8c993f7a9c25cc269dfce6661e
[]
no_license
devyhia/slim-backup
01a702f65d4d5a2994cd2fac1ee225646e819fd9
26471cf66cf8e8ceff136a692ae6ba36fea90952
refs/heads/master
2021-01-12T00:14:25.456094
2017-10-17T09:54:35
2017-10-17T09:54:35
78,696,206
1
0
null
null
null
null
UTF-8
Python
false
false
1,195
py
import pickle from glob import glob import numpy as np from PIL import Image import Shared from tqdm import tqdm import os with open('/home/devyhia/FaceDetection_CNN/result.pickle') as f: results = pickle.load(f) def mask_image(img_path, boxes): img = Image.open(img_path) if len(boxes) == 0: return img box = boxes[0] # there is only one box per image! (by construction) x0 = int(np.floor(box[0])) y0 = int(np.floor(box[1])) x1 = int(np.ceil(box[2])) y1 = int(np.ceil(box[3])) if x0 > 0.5 * 1920: # Face can not be in the right corner of the image (by construction) return img mask = np.zeros((1080, 1920, 3)) mask[y0:y1, x0:x1, :] = 1 return Image.fromarray(mask.astype(np.uint8) * img) # <-- Masked Image img_count = 0 for k in tqdm(results.keys(), total=len(results.keys()), desc="Masking Faces"): img_path = k.replace('\n', '').replace('.jpg', '.original.jpg') # avoid the \n at the end of each file! boxes = results[k] save_path = img_path.replace('.original.jpg', '.face.jpg') # if os.path.isfile(save_path): continue masked_img = mask_image(img_path, boxes) masked_img.save(save_path)
[ "devyhia@aucegypt.edu" ]
devyhia@aucegypt.edu
3821e4b7f0ea0366e7b7f21df53b33cf7690def7
9a942f1e58f296b68868d777c5351d7dfaa43103
/mysite/polls/admin.py
1c12987515f57b99d7e9a6f0812fdf0720def0ff
[]
no_license
priscilamoreno/proyectofinal
570f16afd53df7d9ac24a877e2b4c9f0e1e6e470
c40fdb47754eacbe6c7aba606c1706f281b5a16c
refs/heads/master
2020-08-23T19:21:22.109761
2019-10-29T00:53:04
2019-10-29T00:53:04
216,691,051
0
0
null
null
null
null
UTF-8
Python
false
false
780
py
from django.contrib import admin # Register your models here. from .models import Choice, Question class QuestionAdmin(admin.ModelAdmin): fields = ['pub_date', 'question_text'] fieldsets = [ (None, {'fields': ['question_text']}), ('Date information', {'fields': ['pub_date']}), ] list_display = ('question_text', 'pub_date','was_published_recently') admin.site.register(Choice) class ChoiceInline(admin.TabularInline): model = Choice extra = 3 class QuestionAdmin(admin.ModelAdmin): fieldsets = [ (None, {'fields': ['question_text']}), ('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}), ] inlines = [ChoiceInline] admin.site.register(Question,QuestionAdmin)
[ "prismoreno12@gmail.com" ]
prismoreno12@gmail.com
d58bb0a7506b482ebe8691fb9e5ca33753fc225f
51c5f9b4dfeb9b17f451215556c1c80f77373731
/LeetCode/firstUniqueCharacterInAString.py
a56e50cfae12139b6a45450b8edc331cc15d2f85
[]
no_license
rupampatil/InterviewPractice
56c4b75b88f9c99092d4351e98e002eadddc19e4
e1b2acd592a9255b865c3a7973241e65e78881c4
refs/heads/master
2021-09-13T06:34:14.188208
2018-04-26T01:47:41
2018-04-26T01:47:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
class Solution(object): def firstUniqChar(self, s): """ :type s: str :rtype: int """ index = -1 occuranceMap = {} counter = 0 for char in s: if char not in occuranceMap: occuranceMap[char] = [1, counter] else: occuranceMap[char][0] +=1 counter+=1 maxIndex = len(s) for key, value in occuranceMap.iteritems(): if value[0] == 1 and value[1] < maxIndex: maxIndex = value[1] index = value[1] return index
[ "vignesh.palani96@gmail.com" ]
vignesh.palani96@gmail.com
9f9f44f274098ac6cff49f994acfc329089a67fc
6169edb3d95a01ccc03a6e8fe9c571267c6f5773
/setup.py
5865ed91c4583b6e56b7d480f9c59ff6a4a12850
[ "MIT" ]
permissive
thatscotdatasci/flask-simple-api
95d823e46b7ee0cda485567128823060bf0c42e9
e4c23a3d9c0817856e3736da4805a9d727a37058
refs/heads/master
2020-04-02T04:01:24.551686
2018-12-02T17:49:59
2018-12-02T17:49:59
153,995,864
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
try: from setuptools import setup except ImportError: from distutils.core import setup with open('packages.dat') as f: packages = f.readlines() packages = [s.strip() for s in packages] setup( name='flaskapi', version=open('version.txt').read().strip(), packages=packages, description='Simple API written in Flask to test various AWS features', author='Alan Clark', author_email='alan@thatscotdatasci.com', url='thatscotdatasci.com', platforms='linux', license=open('LICENSE').read(), long_description=open('README.md').read(), install_requires=open('requirements.txt').read() )
[ "alan@thatscottishdatascientist.com" ]
alan@thatscottishdatascientist.com
e0f9165cff9cd3483a106ee3bf7fe2a57c111548
6632d2c21ad089ef6952422211fd01bf33a9408e
/backend/todo_api/todos/migrations/0001_initial.py
d5de5a7a539d4425737b2308f0d479ae147c178d
[]
no_license
tylarpierson/front-end-to-back-end
bc5a46d662abd369e05a60864d1c2b9b94c075fc
e2d8da87418544abcf3f9ee9746a96e098d01ddb
refs/heads/master
2020-03-25T16:09:22.172683
2018-08-09T17:02:10
2018-08-09T17:02:10
143,917,591
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
# Generated by Django 2.1 on 2018-08-07 20:12 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Todo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('description', models.TextField()), ], ), ]
[ "tylarpiersonbusiness@gmail.com" ]
tylarpiersonbusiness@gmail.com
c0574a8a5fa7e73892144516652ea7a402e4d49e
62f0ed8bbe8f10bd646cc9f8eaaf5a2da20f9241
/Persistence/settings.py
bdeccb02e414f2142a1c14a2dd63ec91e24b008a
[]
no_license
leonardoGarciaOlmos/Persistence
3e329366ded3ac4cac41564e48c9048027674529
266ff798f70656b580355d689a327807604a9ba9
refs/heads/master
2022-12-26T15:10:27.612123
2020-09-09T02:20:55
2020-09-09T02:20:55
293,978,223
0
0
null
2020-10-06T01:58:21
2020-09-09T02:14:57
Python
UTF-8
Python
false
false
3,077
py
""" Django settings for Persistence project. Generated by 'django-admin startproject' using Django 3.1.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'd)&8@ve@x_t7whim9mru42)%8qi4#601r(l_$9jxktej(+8pk=' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Persistence.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Persistence.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "leonardogarciaolmos.12@gmail.com" ]
leonardogarciaolmos.12@gmail.com
b5722af8ed32f8e2da48f5c2d6fcd13c8de9701f
52d324c6c0d0eb43ca4f3edc425a86cdc1e27d78
/scripts/asos/archive_quantity.py
9c22be17d7528b94acd44e3f1e30933859ee8315
[ "MIT" ]
permissive
deenacse/iem
992befd6d95accfdadc34fb7928d6b69d661d399
150512e857ca6dca1d47363a29cc67775b731760
refs/heads/master
2021-02-04T04:20:14.330527
2020-02-26T21:11:32
2020-02-26T21:11:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,342
py
""" Create a simple prinout of observation quanity in the database """ from __future__ import print_function import sys import datetime import numpy as np from pyiem.util import get_dbconn class bcolors: """Kind of hacky""" HEADER = "\033[95m" OKBLUE = "\033[94m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" def d(hits, total): """another hack""" if total == 0: return " N/A" val = hits / float(total) c1 = bcolors.ENDC if val > 0.5: c1 = bcolors.FAIL return "%s%.2f%s" % (c1, val, bcolors.ENDC) def main(argv): """Go Main Go""" now = datetime.datetime.utcnow() counts = np.zeros((120, 12)) mslp = np.zeros((120, 12)) metar = np.zeros((120, 12)) pgconn = get_dbconn("asos", user="nobody") acursor = pgconn.cursor() stid = argv[1] acursor.execute( """ SELECT extract(year from valid) as yr, extract(month from valid) as mo, count(*), sum(case when mslp is null or mslp < 1 then 1 else 0 end), sum(case when metar is null or metar = '' then 1 else 0 end) from alldata WHERE station = %s GROUP by yr, mo ORDER by yr ASC, mo ASC """, (stid,), ) for row in acursor: counts[int(row[0] - 1900), int(row[1] - 1)] = row[2] mslp[int(row[0] - 1900), int(row[1] - 1)] = row[3] metar[int(row[0] - 1900), int(row[1] - 1)] = row[4] print("Observation Count For %s" % (stid,)) print("YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC") output = False for i in range(120): year = 1900 + i if year > now.year: continue if not output and np.max(counts[i, :]) == 0: continue output = True if len(argv) < 3: print( ("%s %4i %4i %4i %4i %4i %4i %4i %4i %4i %4i %4i %4i") % ( year, counts[i, 0], counts[i, 1], counts[i, 2], counts[i, 3], counts[i, 4], counts[i, 5], counts[i, 6], counts[i, 7], counts[i, 8], counts[i, 9], counts[i, 10], counts[i, 11], ) ) else: if argv[2] == "metar": data = metar else: data = mslp print( ("%s %4s %4s %4s %4s %4s %4s %4s %4s %4s %4s %4s %4s") % ( year, d(data[i, 0], counts[i, 0]), d(data[i, 1], counts[i, 1]), d(data[i, 2], counts[i, 2]), d(data[i, 3], counts[i, 3]), d(data[i, 4], counts[i, 4]), d(data[i, 5], counts[i, 5]), d(data[i, 6], counts[i, 6]), d(data[i, 7], counts[i, 7]), d(data[i, 8], counts[i, 8]), d(data[i, 9], counts[i, 9]), d(data[i, 10], counts[i, 10]), d(data[i, 11], counts[i, 11]), ) ) if __name__ == "__main__": main(sys.argv)
[ "akrherz@iastate.edu" ]
akrherz@iastate.edu
64be5a82e097dc255667f247d99645295516de35
b194a672bfd619a82fb6f46755ab277a249e8f8c
/pcdViewer.py
ba8fed3078e23da69f1d6910320118e5e2f85ee8
[]
no_license
nakawang/3D_VIEWER
af968d7ec1de681951fc22d5ea6f36b0dac65c5c
eed7187c76e25d3235fe5882ef5f0f8a7990b75d
refs/heads/master
2020-08-14T19:45:37.307273
2019-10-24T00:25:30
2019-10-24T00:25:30
215,224,225
0
0
null
null
null
null
UTF-8
Python
false
false
6,802
py
# -*- coding: utf-8 -*- import vtk,sys,numpy,os from numpy import random,genfromtxt,size from PyQt5 import QtCore, QtGui, QtWidgets from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor from PyQt5.QtCore import pyqtSlot, QThread from vtkPointCloud import VtkPointCloud class PCDviewer(QtWidgets.QFrame): def __init__(self, parent, dataPath=None): super(PCDviewer,self).__init__(parent) self.interactor = QVTKRenderWindowInteractor(self) self.layout = QtWidgets.QHBoxLayout() self.layout.addWidget(self.interactor) self.layout.setContentsMargins(0,0,0,0) self.setLayout(self.layout) self.pointCloud = VtkPointCloud() self.actors = [] if dataPath != None: self.add_newData(dataPath) # Renderer renderer = vtk.vtkRenderer() renderer.AddActor(self.pointCloud.vtkActor) #cubeActor = self.addCubeAxesActor(renderer) #renderer.AddActor(cubeActor) # Scalar Bar #renderer.SetBackground(.2, .3, .4) #colors=vtk.vtkNamedColors() #colors.SetColor("BkgColor",[179,204,255,255]) #renderer.SetBackground(colors.GetColor3d("BkgColor")) renderer.ResetCamera() #renderer.SetLayer(1) # Render Window renderWindow = self.interactor.GetRenderWindow() #renderWindow = vtk.vtkRenderWindow() print(renderWindow) #renderWindow.SetNumberOfLayers(2) renderWindow.AddRenderer(renderer) #renderWindow.AddRenderer(self.addLogo()) # Interactor #renderWindowInteractor = vtk.vtkRenderWindowInteractor() self.interactor.SetRenderWindow(renderWindow) self.interactor.SetInteractorStyle(vtk.vtkInteractorStyleTrackballCamera()) # Scalar Bar #self.addScalarBar(self.pointCloud.getLUT()) #renderer.AddActor(self.addScalarBar(self.pointCloud.getLUT())) #renderWindow.SetInteractor(self.interactor) # Logo #self.addLogo() # Begin Interaction renderWindow.Render() renderWindow.SetWindowName("XYZ Data Viewer:"+ "xyz") self.interactor.Start() #renderWindowInteractor.Start() # Pack to class self.renderer=renderer #self.interactor=interactor #self.xyzLoader.signalOut.connect(self.addActor) def start(self): self.interactor.Start() def addScalarBar(self,lut): self.scalarBar = vtk.vtkScalarBarActor() self.scalarBar.SetOrientationToVertical() self.scalarBar.SetLookupTable(lut) self.scalarBar.SetBarRatio(0.12) self.scalarBar.SetTitleRatio(0.12) self.scalarBar.SetMaximumWidthInPixels(60) self.scalarBar.SetMaximumHeightInPixels(300) print(self.scalarBar.GetProperty().SetDisplayLocationToBackground()) #self.scalarBar.SetDisplayPosition(750,250) self.scalarBar.SetDisplayPosition(60,200) textP = vtk.vtkTextProperty() textP.SetFontSize(10) self.scalarBar.SetLabelTextProperty(textP) self.scalarBar.SetTitleTextProperty(textP) self.scalarBar.SetNumberOfLabels(8) self.scalarBar.SetLabelFormat("%-#6.3f")#輸出格式 #self.scalarBarWidget = vtk.vtkScalarBarWidget() #self.scalarBarWidget.SetInteractor(self.interactor) #self.scalarBarWidget.SetScalarBarActor(self.scalarBar) #self.scalarBarWidget.On() self.interactor.Initialize() return self.scalarBar def addCubeAxesActor(self,renderer): cubeAxesActor = vtk.vtkCubeAxesActor() #設定軸上下限 cubeAxesActor.SetBounds(self.pointCloud.getBounds()) #將RENDER CAMERA指定給軸 cubeAxesActor.SetCamera(renderer.GetActiveCamera()) #設定標題與標籤文字顏色 cubeAxesActor.GetTitleTextProperty(0).SetColor(0.5,0.5,0.5) cubeAxesActor.GetLabelTextProperty(0).SetColor(0.5,0.5,0.5) cubeAxesActor.GetTitleTextProperty(1).SetColor(0.5,0.5,0.5) cubeAxesActor.GetLabelTextProperty(1).SetColor(0.5,0.5,0.5) cubeAxesActor.GetTitleTextProperty(2).SetColor(0.5,0.5,0.5) cubeAxesActor.GetLabelTextProperty(2).SetColor(0.5,0.5,0.5) #設定坐標軸線寬 cubeAxesActor.GetXAxesLinesProperty().SetLineWidth(0.5) cubeAxesActor.GetYAxesLinesProperty().SetLineWidth(0.5) cubeAxesActor.GetZAxesLinesProperty().SetLineWidth(0.5) #開啟網格線 cubeAxesActor.DrawXGridlinesOn() cubeAxesActor.DrawYGridlinesOn() cubeAxesActor.DrawZGridlinesOn() #內部網格線不畫 cubeAxesActor.SetDrawXInnerGridlines(False) cubeAxesActor.SetDrawYInnerGridlines(False) cubeAxesActor.SetDrawZInnerGridlines(False) #網格線顏色 cubeAxesActor.GetXAxesGridlinesProperty().SetColor(0.5,0.5,0.5) cubeAxesActor.GetYAxesGridlinesProperty().SetColor(0.5,0.5,0.5) cubeAxesActor.GetZAxesGridlinesProperty().SetColor(0.5,0.5,0.5) #控制軸的繪製方式(外,最近,最遠,靜態最近,靜態外) cubeAxesActor.SetFlyMode(0) #設定刻度線的位置(內,外,兩側) cubeAxesActor.SetTickLocation(1) #網格線樣式(所有,最近,最遠) cubeAxesActor.SetGridLineLocation(2) cubeAxesActor.XAxisMinorTickVisibilityOff() cubeAxesActor.YAxisMinorTickVisibilityOff() cubeAxesActor.ZAxisMinorTickVisibilityOff() return cubeAxesActor def add_newData(self,path): xyz = genfromtxt(path,dtype=float,usecols=[0,1,2]) minH=xyz[:,2].min() maxH=xyz[:,2].max() count = len(xyz) pcd=VtkPointCloud(minH,maxH,count) pcd.clearPoints() for k in range(size(xyz,0)): point = xyz[k] pcd.addPoint(point) self.pointCloud = pcd self.__addActor() def __addActor(self): lastActor=self.renderer.GetActors().GetLastActor() if lastActor: self.renderer.RemoveActor(lastActor) actor=self.pointCloud.vtkActor #set uniform color #actor.GetMapper().ScalarVisibilityOff() #actor.GetProperty().SetColor(1.0,0.0,0.0) #actor.GetProperty().SetPointSize(4) print("set actor color") self.renderer.AddActor(actor) self.refresh_renderer() def __removeAll(self): actors = self.renderer.GetActors() print(actors) if len(actors)>0: for i in actors: self.renderer.RemoveActor(i) def refresh_renderer(self): render_window=self.interactor.GetRenderWindow() self.renderer.ResetCamera() render_window.Render() if __name__=="__main__": print("PCD viewer")
[ "nakawang@benanos.com" ]
nakawang@benanos.com
0f0ac7131d34ccf128488c79b8bcfe76a6563d3b
d9eee05d8b4b7c7eadc3f1a4b5f7c4c2ceb34640
/Blog_app/Blog_app/wsgi.py
b2990117ca40734ad4f7f1b3ba0d3dbabd1788c0
[]
no_license
Balarubinan/Y_Blog_Django
42713bd4c1e49db2d428a5cf11ba49f010a0abcf
6ff0d1e7b22edb47446ad4c0f64b01de5ecefaa3
refs/heads/master
2023-05-29T20:52:33.299987
2021-06-18T01:27:05
2021-06-18T01:27:05
371,956,802
1
0
null
null
null
null
UTF-8
Python
false
false
393
py
""" WSGI config for Blog_app project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Blog_app.settings') application = get_wsgi_application()
[ "sudhagouthirubi@gmail.com" ]
sudhagouthirubi@gmail.com
21930607b7f52c05a07d0c7707febfa51400b0ab
553ff32aab110184fc4ed8eb709a99e03e37b9f7
/wxglade/egy/egy.py~
319c86196187e4c4400f55d90951044eaa8e1a7e
[]
no_license
janos01/esti2020Python
21201e07e7c0f8a93fd7c5bc420d6b10021b5d51
6617370c715e309614e8b4808e12ffe3b0130562
refs/heads/main
2023-04-15T10:01:56.332714
2021-04-28T21:48:03
2021-04-28T21:48:03
302,071,533
0
2
null
null
null
null
UTF-8
Python
false
false
1,458
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # generated by wxGlade 1.0.0a9 on Wed Dec 16 18:20:18 2020 # import wx # begin wxGlade: dependencies # end wxGlade # begin wxGlade: extracode # end wxGlade class MainFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: MainFrame.__init__ kwds["style"] = kwds.get("style", 0) | wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.SetSize((400, 300)) self.SetTitle("frame") self.panel_1 = wx.Panel(self, wx.ID_ANY) sizer_1 = wx.BoxSizer(wx.VERTICAL) self.button_1 = wx.Button(self.panel_1, wx.ID_ANY, "button_1") sizer_1.Add(self.button_1, 0, wx.ALL, 5) self.button_2 = wx.Button(self.panel_1, wx.ID_ANY, "button_2") sizer_1.Add(self.button_2, 0, wx.ALL, 5) self.text_ctrl_1 = wx.TextCtrl(self.panel_1, wx.ID_ANY, "") sizer_1.Add(self.text_ctrl_1, 0, wx.ALL, 5) label_1 = wx.StaticText(self.panel_1, wx.ID_ANY, u"Első wxGlade") sizer_1.Add(label_1, 0, wx.ALL, 5) self.panel_1.SetSizer(sizer_1) self.Layout() # end wxGlade # end of class MainFrame class EgyApp(wx.App): def OnInit(self): self.frame = MainFrame(None, wx.ID_ANY, "") self.SetTopWindow(self.frame) self.frame.Show() return True # end of class EgyApp if __name__ == "__main__": app = EgyApp(0) app.MainLoop()
[ "termih@gmail.com" ]
termih@gmail.com
668367219c3778b58c7a11e35d4dd7933fc53e37
6240aaa218bacab8099e13f95c37faff0ff9f074
/scripts/inject-document-props-as-overload.py
1b7d302fbf1e8c24229df496e932c0589c583689
[ "Apache-2.0" ]
permissive
florian-hoenicke/jina
5f5a7b38641a1cbe1018bfeab17b22a00c0f16f8
52cd3074b65caec7a370386ec5a5f87ad7b0133d
refs/heads/master
2023-07-21T03:17:14.676658
2021-08-29T15:42:32
2021-08-29T15:42:32
309,146,742
1
0
Apache-2.0
2021-08-29T18:26:30
2020-11-01T17:11:45
Python
UTF-8
Python
false
false
2,667
py
import inspect import re import warnings from operator import itemgetter from typing import Optional, Tuple, List from jina import Document def get_properties(cls) -> List[Tuple[str, Optional[str], Optional[str]]]: src = inspect.getsource(cls) members = dict(inspect.getmembers(cls)) setters = re.findall( r'@[a-zA-Z0-9_]+\.setter\s+def\s+([a-zA-Z0-9_]+)\s*\(self,\s*[a-zA-Z0-9_]+\s*:\s*(.*?)\)', src, flags=re.DOTALL, ) property_docs = [] for setter, _ in setters: if setter not in members: warnings.warn( f'{setter} is found as a setter but there is no corresponding getter' ) property_docs.append(None) else: doc = inspect.getdoc(members[setter]) description = next(iter(re.findall(':return:(.*)', doc)), None) if description: description = description.strip() property_docs.append(description) return sorted( list( zip(map(itemgetter(0), setters), map(itemgetter(1), setters), property_docs) ), key=lambda x: x[0], ) def get_overload_signature( properties, indent=' ' * 4, ): kwargs = [ f'{indent}{indent}{property_name}: Optional[{type_hint}] = None' for property_name, type_hint, _ in properties ] args_str = ', \n'.join(kwargs + [f'{indent}{indent}**kwargs']) doc_str = '\n'.join( [ f'{indent}{indent}:param {property_name}: {description}' for property_name, _, description in properties ] + [ f'{indent}{indent}:param kwargs: other parameters to be set _after_ the document is constructed' ] ) signature = f'def __init__(\n{indent}{indent}self,\n{args_str}\n{indent}):' final_str = f'@overload\n{indent}{signature}\n{indent}{indent}"""\n{doc_str}\n{indent}{indent}"""' return final_str def write_signature( cls, overload_signature, tag, indent=' ' * 4, ): filepath = inspect.getfile(cls) final_code = re.sub( rf'(# overload_inject_start_{tag}).*(# overload_inject_end_{tag})', f'\\1\n{indent}{overload_signature}\n{indent}\\2', open(filepath).read(), 0, re.DOTALL, ) with open(filepath, 'w') as fp: fp.write(final_code) def inject_properties_as_overload(cls): properties = get_properties(cls) overload_signature = get_overload_signature(properties) write_signature(cls, overload_signature, 'document') print(inspect.getfile(cls)) if __name__ == '__main__': inject_properties_as_overload(Document)
[ "noreply@github.com" ]
noreply@github.com
900089348be19cdb331a0375bc31ff95224dd942
d8c006e858be14eb595cdfbe702d1a29f1262e35
/qa_community/urls.py
d159479338e3daf1c5c1dea4e5808477e8cd04ae
[]
no_license
xautxuqiang/qa_community
96dc1211b3a254dd2faac44571c474d48bb75059
385244735e6deb3e36c9340ea5b2d08f74ea25db
refs/heads/master
2021-01-20T00:21:40.329485
2017-04-23T08:54:15
2017-04-23T08:54:15
89,118,127
0
0
null
null
null
null
UTF-8
Python
false
false
1,006
py
"""qa_community URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from question.views import index,profile,settings urlpatterns = [ url(r'^$', index, name='index'), url(r'^people/(\d+)/$', profile, name='profile'), url(r'^settings/$', settings, name='settings'), url(r'^admin/', admin.site.urls), url(r'^accounts/', include('users.urls')), ]
[ "xautxuqiang@126.com" ]
xautxuqiang@126.com
d7c5e0e63a5da66fb40e2613241a31fe1a99a12e
2418e4c4f640c48708c12c3058f8e16144856a0c
/problem0016.py
d0c86a69bd091b9f305da0b8e4390291e4127b61
[]
no_license
sergii-yatsuk/projecteuler
482eb32d0cc71ea5dbcaaf3bb1bca7ef575f799b
94918d0d77c0b1b4f2c28af8d241e1c2fd8424f4
refs/heads/master
2021-05-26T18:32:11.616693
2013-01-10T14:59:00
2013-01-10T14:59:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
# 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. # # What is the sum of the digits of the number 2^1000? s = str(2**1000) sum = 0 for i in s: sum = sum + eval(i) print (sum)
[ "tifon@bigmir.net" ]
tifon@bigmir.net
c4ec45f547704f0827cbcb4543ad433d679ff606
da50dccf17b01c370a3e31a27f2a813be1dd74ba
/2.RL_Codes/6.Oct16th-WeightedInterpolation/RL_SISO_Linea2.py
faf0b67afd08b5daee6c439f100c5110e081553c
[]
no_license
Tang-08080103/Research
13d297749657bf572ad3258fb507305afb4e2311
814e1054ed43384d99e3be7085cbffbed93f4dd1
refs/heads/master
2022-04-12T04:37:32.171533
2019-10-29T23:36:52
2019-10-29T23:36:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,482
py
import numpy as np import sys sys.path.insert(0, '/home/rui/Documents/RL_vs_MPC/Models') sys.path.insert(0, '/home/rui/Documents/RL_vs_MPC/Modules') from RL_Module import ReinforceLearning from Linear_System import LinearSystem """ Define reward function for RL. User defines the reward function structure. The below is an example. """ def simulation(): # Model Initiation model = LinearSystem(nsim=100, model_type='SISO', x0=np.array([0.5]), u0=np.array([1]), xs=np.array([5]), us=np.array([10]), step_size=0.2) # model = LinearSystem(nsim=100, model_type='MIMO', x0=np.array()) # Reinforcement Learning Initiation rl = ReinforceLearning(discount_factor=0.95, states_start=300, states_stop=340, states_interval=0.5, actions_start=-15, actions_stop=15, actions_interval=2.5, learning_rate=0.5, epsilon=0.2, doe=1.2, eval_period=1) """ Example of user defined states and actions. Users do not need to do this. This is only if users want to define their own states and actions. RL will automatically populate states and actions if user does not input their own. """ states = np.zeros([27]) states[0:12] = np.linspace(0, 2.5, 12) states[12:27] = np.linspace(3, 8, 15) rl.user_states(list(states)) # actions = np.zeros([20]) # actions[0:5] = np.linspace(290, 298, 5) actions = np.linspace(5, 15, 16) # actions[30:35] = np.linspace(302, 310, 5) rl.user_actions(list(actions)) """ Load pre-trained Q, T and NT matrices """ q = np.loadtxt("Q_Matrix.txt") t = np.loadtxt("T_Matrix.txt") nt = np.loadtxt("NT_Matrix.txt") rl.user_matrices(q, t, nt) """ Simulation portion """ rlist = [] for episode in range(1): # Reset the model after each episode model.reset(random_init=False) tot_reward = 0 state = 0 action_index = 0 for t in range(1, model.Nsim + 1): """ Disturbance """ # if t % 30 == 0: # model.x[t - 1] += np.random.uniform(-5, 3) """ RL Evaluate """ if t % rl.eval_period == 0: state, action = rl.ucb_action_selection(model.x[t - 1, 0]) action, action_index = rl.action_selection(state, action, model.u[t - 1, 0], no_decay=25, ep_greedy=False, time=t, min_eps_rate=0.5) # Use interpolation to perform action action = rl.interpolation(model.x[t - 1, 0]) else: action = model.u[t - 1, :][0] next_state, reward, done, info = model.step([action], t, obj_function="MPC") """ Feedback evaluation """ if t == rl.eval_feedback: rl.matrix_update(action_index, reward, state, model.x[t, 0], 5) tot_reward = tot_reward + reward rlist.append(tot_reward) rl.autosave(episode, 250) if episode % 100 == 0: print(model.cost_function(transient_period=120)) return model, rl, rlist if __name__ == "__main__": env, RL, rList = simulation()
[ "Rnian@ualberta.ca" ]
Rnian@ualberta.ca
fa29d9535df03bd0c2da27a460344a114a8b1395
58fc6705ce0422a1cc1d597aac41501600d5328c
/Python/113_PathSum2.py
e14f8818e68b55e0ef4632200285b9ed16b2df47
[]
no_license
CollinErickson/LeetCode
d8963e6e6f34863148aa0a724adc783413ad1297
d9159ba7ebd14daec994380f3d4361777053ea67
refs/heads/master
2022-03-03T19:55:55.003619
2022-02-22T00:29:13
2022-02-22T00:29:13
90,581,747
0
0
null
null
null
null
UTF-8
Python
false
false
1,569
py
class TreeNode(object): def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def __repr__(self): s = str(self.val) if self.left is not None: s += "(" + str(self.left) + ")" if self.right is not None: s += "[" + str(self.right) + "]" return s class Solution(object): def pathSum(self, root, sum): """ :type root: TreeNode :type sum: int :rtype: bool """ s = [] if root is None: return s if root.left is None and root.right is None: if sum == root.val: s.append([root.val]) if root.left is not None: sL = self.pathSum(root.left, sum - root.val) for isL in sL: s.append([root.val] + isL) if root.right is not None: sR = self.pathSum(root.right, sum - root.val) for isR in sR: #print([root.val], isR) s.append([root.val] + isR) return s sol = Solution() s = [] n1 = TreeNode(5) n2 = TreeNode(4) n3 = TreeNode(8) n4 = TreeNode(11) #n5 = TreeNode(5) n6 = TreeNode(13) n7 = TreeNode(4) n8 = TreeNode(7) n9 = TreeNode(2) n10 = TreeNode(1) n11 = TreeNode(5) n1.left = n2 n1.right = n3 n2.left = n4 n3.left = n6 n3.right = n7 n4.left = n8 n4.right = n9 n7.right = n10 n7.left = n11 print(n1, sol.pathSum(n1, 22), True) print(n1, sol.pathSum(n1, 23), False) print(n10, sol.pathSum(n10, 1), True) print(n10, sol.pathSum(n10, 2), False)
[ "collinberickson@gmail.com" ]
collinberickson@gmail.com
8ddd254592f7edae681a46dc57c7889ff7b0ec7a
65d5b8c6c928fd26015e1af4b9b5c644f28f04e2
/Comp307v3/TeraChess/views.py
e4eb6e54125a42961a13560a7dec6dcfabe6a7ec
[]
no_license
307Project2018/The-Project
3fd66f1776ea0ea6026c7f880e678c9f829f6ce7
ba850f7d6f82bca034e53778e6ecea2d20c246e4
refs/heads/master
2020-04-04T11:16:37.294196
2018-12-11T16:59:22
2018-12-11T16:59:22
155,884,992
0
0
null
2018-12-10T21:39:53
2018-11-02T15:24:45
Python
UTF-8
Python
false
false
25,631
py
from django.shortcuts import render, redirect from .models import PieceSet, Player, PieceInstance, BoardInstance, Cell from django.http import Http404 from django.views.generic.edit import CreateView from django.views.generic import View from .forms import UserForm, PieceSetForm, PieceInstanceForm, BoardForm, SecondPlayerForm, MoveForm from django.contrib.auth import authenticate, login from django.contrib.auth import logout import random def account(request): return render(request, 'TeraChess/html/account.html') def build(request): return render(request, 'TeraChess/html/build.html') def collection(request): context = {} if request.user.is_authenticated: profile = request.user.profile all_pieces = PieceSet.objects.filter(player=profile) context = { 'profile': profile, 'all_pieces': all_pieces } return render(request, 'TeraChess/html/collection.html', context) def gameUI(request): return render(request, 'TeraChess/html/gameUI.html') def index(request): return render(request, 'TeraChess/html/index.html') def learn(request): return render(request, 'TeraChess/html/learn.html') def loginSignUp(request): context = {} if request.user.is_authenticated: profile = request.user.profile all_pieces = PieceSet.objects.filter(player=profile) context = { 'profile': profile, 'all_pieces': all_pieces } return render(request, 'TeraChess/html/loginSignUp.html', context) def pieces(request, piece_set_id): try: current_set = PieceSet.objects.get(pk=piece_set_id) my_pieces = current_set.pieceinstance_set.all() except PieceSet.DoesNotExist: raise Http404("PieceSet does not exist") return render(request, 'TeraChess/html/pieces.html', {'pieces': my_pieces}) def piecesetupdate(request, piece_set_id): current_set = PieceSet.objects.get(pk=piece_set_id) all_sets = PieceSet.objects.filter(player=request.user.profile) for set in all_sets: set.main = False set.save() current_set.main = True current_set.save() return render(request, 'TeraChess/html/index.html') def piece_details(request, piece_id): current_piece = PieceInstance.objects.get(pk=piece_id) return render(request, 'TeraChess/html/piece_details.html', {'piece_instance': current_piece}) def play(request): return render(request, 'TeraChess/html/play.html') def template(request): return render(request, 'TeraChess/html/template.html') class PieceSetCreate(CreateView): model = PieceSet fields = ['name', 'player'] def PieceSetDelete(request, piece_set_id): piece_set = PieceSet.objects.get(pk=piece_set_id) piece_set.delete() return render(request, 'TeraChess/html/pieceset_confirm_delete.html', {'piece_set':piece_set}) def deletePieceSet(request): context = {} if request.user.is_authenticated: profile = request.user.profile all_pieces = PieceSet.objects.filter(player=profile) context = { 'profile': profile, 'all_pieces': all_pieces } return render(request, 'TeraChess/html/delete_pieceset.html', context) class PieceInstanceCreate(CreateView): model = PieceInstance fields = ['name', 'order', 'piece', 'piece_set'] class PieceInstanceFormView(View): form_class = PieceInstanceForm template_name = 'TeraChess/pieceinstance_form.html' def get(self, request): form = self.form_class(user=request.user) return render(request, self.template_name, {'form': form}) def post(self, request): form = self.form_class(request.POST, user=request.user) if form.is_valid(): name = form.cleaned_data['name'] order = form.cleaned_data['order'] piece = form.cleaned_data['piece'] piece_set = form.cleaned_data['piece_set'] front = piece.front PieceInstance.objects.create(name=name, order=order, piece=piece, piece_set=piece_set, front=front) if request.user.is_authenticated: return redirect('TeraChess/index') return render(request, self.template_name, {'form': form}) def get_form_kwargs(self): kwargs = super(PieceInstanceFormView, self).get_form_kwargs() kwargs.update({'user': self.request.user}) return kwargs class PieceSetFormView(View): form_class = PieceSetForm template_name = 'TeraChess/pieceset_form.html' def post(self, request): form = self.form_class(request.POST) if form.is_valid(): name = form.cleaned_data['name'] PieceSet.objects.create(player=request.user.profile, name=name) if request.user.is_authenticated: return redirect('TeraChess/index') return render(request, self.template_name, {'form': form}) def get(self, request): form = self.form_class(None) return render(request, self.template_name, {'form': form}) class BoardFormView(View): template_name = 'TeraChess/boardinstance_form.html' form_class = BoardForm def get(self, request): form = self.form_class(None) return render(request, self.template_name, {'form': form}) def post(self, request): form = self.form_class(request.POST) my_rand = random.randint(0, 11) if form.is_valid(): game_id = form.cleaned_data['game_id'] current_player = request.user.profile if my_rand <= 4: board = BoardInstance.objects.create(player1=current_player, game_id=game_id, white_player=current_player) else: board = BoardInstance.objects.create(player1=current_player, game_id=game_id, black_player=current_player) for i in range(0, 8): for j in range(0, 8): board.cell_set.add(Cell.objects.create(x_coord=j, y_coord=i)) if request.user.is_authenticated: return redirect('TeraChess/index') return render(request, self.template_name, {'form': form}) class SecondPlayer(View): form_class = SecondPlayerForm template_name = 'TeraChess/secondplayer_form.html' def get(self, request): form = self.form_class(None) return render(request, self.template_name, {'form': form}) def post(self, request): form = self.form_class(request.POST) if form.is_valid(): game_id = form.cleaned_data['game_id'] current_player = request.user.profile board = BoardInstance.objects.get(game_id=game_id) board.player2 = current_player.username if board.white_player: board.black_player = current_player.username else: board.white_player = current_player.username board.save() if request.user.is_authenticated: return redirect('TeraChess/index') return render(request, self.template_name, {'form': form}) class UserFormView(View): form_class = UserForm template_name = 'TeraChess/registration_form.html' def get(self, request): form = self.form_class(None) return render(request, self.template_name, {'form': form}) def post(self, request): form = self.form_class(request.POST) if form.is_valid(): user = form.save(commit=False) username = form.cleaned_data['username'] password = form.cleaned_data['password'] user.username = username user.set_password(password) user.save() Player.objects.create(user=user, username=username) user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) return redirect('TeraChess/index') return render(request, self.template_name, {'form': form}) def logoutview(request): if request.user.is_authenticated: logout(request) return redirect('TeraChess/index') def loginview(request): if request.user.is_authenticated: login(request) return redirect('TeraChess/collection') def displayGames(request): context = {} if request.user.is_authenticated: player = request.user.profile games_player1 = BoardInstance.objects.filter(player1=player.username) games_player2 = BoardInstance.objects.filter(player2=player.username) context = { 'games_player1': games_player1, 'games_player2': games_player2 } return render(request, 'TeraChess/html/my_games.html', context) # I am so very sorry for having disgusting hard-coded garbage like this def gametime(request, game_id): context = {} is_front = False if request.user.is_authenticated: game = BoardInstance.objects.get(game_id=game_id) white_player = Player.objects.get(username=game.white_player) black_player = Player.objects.get(username=game.black_player) white_player_set = PieceSet.objects.get(player=white_player, main=True).pieceinstance_set black_player_set = PieceSet.objects.get(player=black_player, main=True).pieceinstance_set for i in range(0, 8): for j in range(0, 2): if j == 0: is_front = False if j == 1: is_front = True cell_piece = white_player_set.get(order=i, front=is_front) cell_piece.picture = cell_piece.piece.picture_white cell_piece.save() cell = Cell.objects.get(x_coord=i, y_coord=j, board=game) cell.piece = cell_piece cell.is_null = False cell.save() for i in range(0, 8): for j in range(2,6): cell = Cell.objects.get(x_coord=i, y_coord=j, board=game) cell.is_null = True cell.save() for i in range(0, 8): for j in range(6, 8): if j == 6: is_front = True if j == 7: is_front = False cell_piece = black_player_set.get(order=i, front=is_front) cell_piece.picture = cell_piece.piece.picture_black cell_piece.save() cell = Cell.objects.get(x_coord=i, y_coord=j, board=game) cell.piece = cell_piece cell.is_null = False cell.save() cell_00 = Cell.objects.get(x_coord=0, y_coord=0, board=game) cell_01 = Cell.objects.get(x_coord=0, y_coord=1, board=game) cell_02 = Cell.objects.get(x_coord=0, y_coord=2, board=game) cell_03 = Cell.objects.get(x_coord=0, y_coord=3, board=game) cell_04 = Cell.objects.get(x_coord=0, y_coord=4, board=game) cell_05 = Cell.objects.get(x_coord=0, y_coord=5, board=game) cell_06 = Cell.objects.get(x_coord=0, y_coord=6, board=game) cell_07 = Cell.objects.get(x_coord=0, y_coord=7, board=game) cell_10 = Cell.objects.get(x_coord=1, y_coord=0, board=game) cell_11 = Cell.objects.get(x_coord=1, y_coord=1, board=game) cell_12 = Cell.objects.get(x_coord=1, y_coord=2, board=game) cell_13 = Cell.objects.get(x_coord=1, y_coord=3, board=game) cell_14 = Cell.objects.get(x_coord=1, y_coord=4, board=game) cell_15 = Cell.objects.get(x_coord=1, y_coord=5, board=game) cell_16 = Cell.objects.get(x_coord=1, y_coord=6, board=game) cell_17 = Cell.objects.get(x_coord=1, y_coord=7, board=game) cell_20 = Cell.objects.get(x_coord=2, y_coord=0, board=game) cell_21 = Cell.objects.get(x_coord=2, y_coord=1, board=game) cell_22 = Cell.objects.get(x_coord=2, y_coord=2, board=game) cell_23 = Cell.objects.get(x_coord=2, y_coord=3, board=game) cell_24 = Cell.objects.get(x_coord=2, y_coord=4, board=game) cell_25 = Cell.objects.get(x_coord=2, y_coord=5, board=game) cell_26 = Cell.objects.get(x_coord=2, y_coord=6, board=game) cell_27 = Cell.objects.get(x_coord=2, y_coord=7, board=game) cell_30 = Cell.objects.get(x_coord=3, y_coord=0, board=game) cell_31 = Cell.objects.get(x_coord=3, y_coord=1, board=game) cell_32 = Cell.objects.get(x_coord=3, y_coord=2, board=game) cell_33 = Cell.objects.get(x_coord=3, y_coord=3, board=game) cell_34 = Cell.objects.get(x_coord=3, y_coord=4, board=game) cell_35 = Cell.objects.get(x_coord=3, y_coord=5, board=game) cell_36 = Cell.objects.get(x_coord=3, y_coord=6, board=game) cell_37 = Cell.objects.get(x_coord=3, y_coord=7, board=game) cell_40 = Cell.objects.get(x_coord=4, y_coord=0, board=game) cell_41 = Cell.objects.get(x_coord=4, y_coord=1, board=game) cell_42 = Cell.objects.get(x_coord=4, y_coord=2, board=game) cell_43 = Cell.objects.get(x_coord=4, y_coord=3, board=game) cell_44 = Cell.objects.get(x_coord=4, y_coord=4, board=game) cell_45 = Cell.objects.get(x_coord=4, y_coord=5, board=game) cell_46 = Cell.objects.get(x_coord=4, y_coord=6, board=game) cell_47 = Cell.objects.get(x_coord=4, y_coord=7, board=game) cell_50 = Cell.objects.get(x_coord=5, y_coord=0, board=game) cell_51 = Cell.objects.get(x_coord=5, y_coord=1, board=game) cell_52 = Cell.objects.get(x_coord=5, y_coord=2, board=game) cell_53 = Cell.objects.get(x_coord=5, y_coord=3, board=game) cell_54 = Cell.objects.get(x_coord=5, y_coord=4, board=game) cell_55 = Cell.objects.get(x_coord=5, y_coord=5, board=game) cell_56 = Cell.objects.get(x_coord=5, y_coord=6, board=game) cell_57 = Cell.objects.get(x_coord=5, y_coord=7, board=game) cell_60 = Cell.objects.get(x_coord=6, y_coord=0, board=game) cell_61 = Cell.objects.get(x_coord=6, y_coord=1, board=game) cell_62 = Cell.objects.get(x_coord=6, y_coord=2, board=game) cell_63 = Cell.objects.get(x_coord=6, y_coord=3, board=game) cell_64 = Cell.objects.get(x_coord=6, y_coord=4, board=game) cell_65 = Cell.objects.get(x_coord=6, y_coord=5, board=game) cell_66 = Cell.objects.get(x_coord=6, y_coord=6, board=game) cell_67 = Cell.objects.get(x_coord=6, y_coord=7, board=game) cell_70 = Cell.objects.get(x_coord=7, y_coord=0, board=game) cell_71 = Cell.objects.get(x_coord=7, y_coord=1, board=game) cell_72 = Cell.objects.get(x_coord=7, y_coord=2, board=game) cell_73 = Cell.objects.get(x_coord=7, y_coord=3, board=game) cell_74 = Cell.objects.get(x_coord=7, y_coord=4, board=game) cell_75 = Cell.objects.get(x_coord=7, y_coord=5, board=game) cell_76 = Cell.objects.get(x_coord=7, y_coord=6, board=game) cell_77 = Cell.objects.get(x_coord=7, y_coord=7, board=game) context = { 'game_id': game_id, 'white_player_set': white_player_set, 'black_player_set': black_player_set, 'player1': game.player1, 'player2': game.player2, 'cells': game.cell_set, 'cell_00': cell_00, 'cell_01': cell_01, 'cell_02': cell_02, 'cell_03': cell_03, 'cell_04': cell_04, 'cell_05': cell_05, 'cell_06': cell_06, 'cell_07': cell_07, 'cell_10': cell_10, 'cell_11': cell_11, 'cell_12': cell_12, 'cell_13': cell_13, 'cell_14': cell_14, 'cell_15': cell_15, 'cell_16': cell_16, 'cell_17': cell_17, 'cell_20': cell_20, 'cell_21': cell_21, 'cell_22': cell_22, 'cell_23': cell_23, 'cell_24': cell_24, 'cell_25': cell_25, 'cell_26': cell_26, 'cell_27': cell_27, 'cell_30': cell_30, 'cell_31': cell_31, 'cell_32': cell_32, 'cell_33': cell_33, 'cell_34': cell_34, 'cell_35': cell_35, 'cell_36': cell_36, 'cell_37': cell_37, 'cell_40': cell_40, 'cell_41': cell_41, 'cell_42': cell_42, 'cell_43': cell_43, 'cell_44': cell_44, 'cell_45': cell_45, 'cell_46': cell_46, 'cell_47': cell_47, 'cell_50': cell_50, 'cell_51': cell_51, 'cell_52': cell_52, 'cell_53': cell_53, 'cell_54': cell_54, 'cell_55': cell_55, 'cell_56': cell_56, 'cell_57': cell_57, 'cell_60': cell_60, 'cell_61': cell_61, 'cell_62': cell_62, 'cell_63': cell_63, 'cell_64': cell_64, 'cell_65': cell_65, 'cell_66': cell_66, 'cell_67': cell_67, 'cell_70': cell_70, 'cell_71': cell_71, 'cell_72': cell_72, 'cell_73': cell_73, 'cell_74': cell_74, 'cell_75': cell_75, 'cell_76': cell_76, 'cell_77': cell_77, } return render(request, 'TeraChess/html/gameUI.html', context) class NextMoveFormView(View): form_class = MoveForm template_name = 'TeraChess/gameUI_form.html' def get(self, request): form = self.form_class(None) return render(request, self.template_name, {'form': form}) def post(self, request): form = self.form_class(request.POST) if form.is_valid(): user = form.save(commit=False) x_old = form.cleaned_data['x_coord_old'] y_old = form.cleaned_data['y_coord_old'] x_new = form.cleaned_data['x_coord_new'] y_new = form.cleaned_data['y_coord_new'] game_id = form.cleaned_data['game_id'] game = BoardInstance.objects.get(game_id=game_id) old_cell = game.cell_set.get(x_coord=x_old, y_coord=y_old) new_cell = game.cell_set.get(x_coord=x_new, y_coord=y_new) def is_valid_move(prev_cell, next_cell): return True if is_valid_move(old_cell, new_cell): new_cell.piece = old_cell.piece new_cell.is_null = False new_cell.save() old_cell.is_null = True old_cell.save() if request.user.is_authenticated: next_page = 'ViewGame/' + str(game_id) return redirect(next_page) return render(request, self.template_name, {'form': form}) def viewgame(request, game_id): context = {} game = BoardInstance.objects.get(game_id=game_id) if request.user.is_authenticated: cell_00 = Cell.objects.get(x_coord=0, y_coord=0, board=game) cell_01 = Cell.objects.get(x_coord=0, y_coord=1, board=game) cell_02 = Cell.objects.get(x_coord=0, y_coord=2, board=game) cell_03 = Cell.objects.get(x_coord=0, y_coord=3, board=game) cell_04 = Cell.objects.get(x_coord=0, y_coord=4, board=game) cell_05 = Cell.objects.get(x_coord=0, y_coord=5, board=game) cell_06 = Cell.objects.get(x_coord=0, y_coord=6, board=game) cell_07 = Cell.objects.get(x_coord=0, y_coord=7, board=game) cell_10 = Cell.objects.get(x_coord=1, y_coord=0, board=game) cell_11 = Cell.objects.get(x_coord=1, y_coord=1, board=game) cell_12 = Cell.objects.get(x_coord=1, y_coord=2, board=game) cell_13 = Cell.objects.get(x_coord=1, y_coord=3, board=game) cell_14 = Cell.objects.get(x_coord=1, y_coord=4, board=game) cell_15 = Cell.objects.get(x_coord=1, y_coord=5, board=game) cell_16 = Cell.objects.get(x_coord=1, y_coord=6, board=game) cell_17 = Cell.objects.get(x_coord=1, y_coord=7, board=game) cell_20 = Cell.objects.get(x_coord=2, y_coord=0, board=game) cell_21 = Cell.objects.get(x_coord=2, y_coord=1, board=game) cell_22 = Cell.objects.get(x_coord=2, y_coord=2, board=game) cell_23 = Cell.objects.get(x_coord=2, y_coord=3, board=game) cell_24 = Cell.objects.get(x_coord=2, y_coord=4, board=game) cell_25 = Cell.objects.get(x_coord=2, y_coord=5, board=game) cell_26 = Cell.objects.get(x_coord=2, y_coord=6, board=game) cell_27 = Cell.objects.get(x_coord=2, y_coord=7, board=game) cell_30 = Cell.objects.get(x_coord=3, y_coord=0, board=game) cell_31 = Cell.objects.get(x_coord=3, y_coord=1, board=game) cell_32 = Cell.objects.get(x_coord=3, y_coord=2, board=game) cell_33 = Cell.objects.get(x_coord=3, y_coord=3, board=game) cell_34 = Cell.objects.get(x_coord=3, y_coord=4, board=game) cell_35 = Cell.objects.get(x_coord=3, y_coord=5, board=game) cell_36 = Cell.objects.get(x_coord=3, y_coord=6, board=game) cell_37 = Cell.objects.get(x_coord=3, y_coord=7, board=game) cell_40 = Cell.objects.get(x_coord=4, y_coord=0, board=game) cell_41 = Cell.objects.get(x_coord=4, y_coord=1, board=game) cell_42 = Cell.objects.get(x_coord=4, y_coord=2, board=game) cell_43 = Cell.objects.get(x_coord=4, y_coord=3, board=game) cell_44 = Cell.objects.get(x_coord=4, y_coord=4, board=game) cell_45 = Cell.objects.get(x_coord=4, y_coord=5, board=game) cell_46 = Cell.objects.get(x_coord=4, y_coord=6, board=game) cell_47 = Cell.objects.get(x_coord=4, y_coord=7, board=game) cell_50 = Cell.objects.get(x_coord=5, y_coord=0, board=game) cell_51 = Cell.objects.get(x_coord=5, y_coord=1, board=game) cell_52 = Cell.objects.get(x_coord=5, y_coord=2, board=game) cell_53 = Cell.objects.get(x_coord=5, y_coord=3, board=game) cell_54 = Cell.objects.get(x_coord=5, y_coord=4, board=game) cell_55 = Cell.objects.get(x_coord=5, y_coord=5, board=game) cell_56 = Cell.objects.get(x_coord=5, y_coord=6, board=game) cell_57 = Cell.objects.get(x_coord=5, y_coord=7, board=game) cell_60 = Cell.objects.get(x_coord=6, y_coord=0, board=game) cell_61 = Cell.objects.get(x_coord=6, y_coord=1, board=game) cell_62 = Cell.objects.get(x_coord=6, y_coord=2, board=game) cell_63 = Cell.objects.get(x_coord=6, y_coord=3, board=game) cell_64 = Cell.objects.get(x_coord=6, y_coord=4, board=game) cell_65 = Cell.objects.get(x_coord=6, y_coord=5, board=game) cell_66 = Cell.objects.get(x_coord=6, y_coord=6, board=game) cell_67 = Cell.objects.get(x_coord=6, y_coord=7, board=game) cell_70 = Cell.objects.get(x_coord=7, y_coord=0, board=game) cell_71 = Cell.objects.get(x_coord=7, y_coord=1, board=game) cell_72 = Cell.objects.get(x_coord=7, y_coord=2, board=game) cell_73 = Cell.objects.get(x_coord=7, y_coord=3, board=game) cell_74 = Cell.objects.get(x_coord=7, y_coord=4, board=game) cell_75 = Cell.objects.get(x_coord=7, y_coord=5, board=game) cell_76 = Cell.objects.get(x_coord=7, y_coord=6, board=game) cell_77 = Cell.objects.get(x_coord=7, y_coord=7, board=game) context = { 'game_id': game_id, 'cell_00': cell_00, 'cell_01': cell_01, 'cell_02': cell_02, 'cell_03': cell_03, 'cell_04': cell_04, 'cell_05': cell_05, 'cell_06': cell_06, 'cell_07': cell_07, 'cell_10': cell_10, 'cell_11': cell_11, 'cell_12': cell_12, 'cell_13': cell_13, 'cell_14': cell_14, 'cell_15': cell_15, 'cell_16': cell_16, 'cell_17': cell_17, 'cell_20': cell_20, 'cell_21': cell_21, 'cell_22': cell_22, 'cell_23': cell_23, 'cell_24': cell_24, 'cell_25': cell_25, 'cell_26': cell_26, 'cell_27': cell_27, 'cell_30': cell_30, 'cell_31': cell_31, 'cell_32': cell_32, 'cell_33': cell_33, 'cell_34': cell_34, 'cell_35': cell_35, 'cell_36': cell_36, 'cell_37': cell_37, 'cell_40': cell_40, 'cell_41': cell_41, 'cell_42': cell_42, 'cell_43': cell_43, 'cell_44': cell_44, 'cell_45': cell_45, 'cell_46': cell_46, 'cell_47': cell_47, 'cell_50': cell_50, 'cell_51': cell_51, 'cell_52': cell_52, 'cell_53': cell_53, 'cell_54': cell_54, 'cell_55': cell_55, 'cell_56': cell_56, 'cell_57': cell_57, 'cell_60': cell_60, 'cell_61': cell_61, 'cell_62': cell_62, 'cell_63': cell_63, 'cell_64': cell_64, 'cell_65': cell_65, 'cell_66': cell_66, 'cell_67': cell_67, 'cell_70': cell_70, 'cell_71': cell_71, 'cell_72': cell_72, 'cell_73': cell_73, 'cell_74': cell_74, 'cell_75': cell_75, 'cell_76': cell_76, 'cell_77': cell_77, } next_page = 'TeraChess/ ' return render(request, 'TeraChess/html/gameUI.html', context)
[ "44643868+oblivionmasta@users.noreply.github.com" ]
44643868+oblivionmasta@users.noreply.github.com
8390f315350a7ef693bf2bcfdc6e4036a4cc0c15
c968e2d6e6e6ce33ed3a32f7f458117495627856
/chessBoard.py
e7f21d88521d0d33f730a83ba064b9aae25f1611
[]
no_license
cjeongmin/AD_Project
e86c000cc50c04ee5d31b1d8a73f96fb733a0859
9293e4870b2e2eeb7f4e8e8ca82a93d8eda806c9
refs/heads/master
2020-09-09T23:25:59.257906
2019-12-19T07:45:49
2019-12-19T07:45:49
221,595,081
0
0
null
null
null
null
UTF-8
Python
false
false
5,302
py
import os, sys, copy sys.path.insert(0, os.path.dirname(os.path.abspath(__package__))+"/chess") from chess.pieces.pawn import Pawn from chess.pieces.bishop import Bishop from chess.pieces.knight import Knight from chess.pieces.rook import Rook from chess.pieces.queen import Queen from chess.pieces.king import King from chess.position import Position from chess.team import Team from chess.check import * chessBoard_init = [ [ Rook(Position(0, 0), Team.BLACK), Knight(Position(1, 0), Team.BLACK), Bishop(Position(2, 0), Team.BLACK), Queen(Position(3, 0), Team.BLACK), King(Position(4, 0), Team.BLACK), Bishop(Position(5, 0), Team.BLACK), Knight(Position(6, 0), Team.BLACK), Rook(Position(7, 0), Team.BLACK) ], [ Pawn(Position(x, 1), Team.BLACK) for x in range(8) ], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [ Pawn(Position(x, 6), Team.WHITE) for x in range(8) ], [ Rook(Position(0, 7), Team.WHITE), Knight(Position(1, 7), Team.WHITE), Bishop(Position(2, 7), Team.WHITE), Queen(Position(3, 7), Team.WHITE), King(Position(4, 7), Team.WHITE), Bishop(Position(5, 7), Team.WHITE), Knight(Position(6, 7), Team.WHITE), Rook(Position(7, 7), Team.WHITE) ], ] checkBoard_init = fillCheckBoard(chessBoard_init, Team.WHITE)[0] chessBoard_checkMate = [ [ Rook(Position(0, 0), Team.BLACK), Knight(Position(1, 0), Team.BLACK), Bishop(Position(2, 0), Team.BLACK), None, King(Position(4, 0), Team.BLACK), Bishop(Position(5, 0), Team.BLACK), Knight(Position(6, 0), Team.BLACK), Rook(Position(7, 0), Team.BLACK) ], [ Pawn(Position(x, 1), Team.BLACK) if x != 4 else None for x in range(8) ], [None if x != 4 else Pawn(Position(x, 2), Team.BLACK) for x in range(8)], [None for _ in range(8)], [None if x != 6 else Pawn(Position(x, 4), Team.WHITE) for x in range(7)] + [Queen(Position(7, 4), Team.BLACK)], [None if x != 5 else Pawn(Position(x, 5), Team.WHITE) for x in range(8)], [ Pawn(Position(x, 6), Team.WHITE) if x != 5 and x != 6 else None for x in range(8) ], [ Rook(Position(0, 7), Team.WHITE), Knight(Position(1, 7), Team.WHITE), Bishop(Position(2, 7), Team.WHITE), Queen(Position(3, 7), Team.WHITE), King(Position(4, 7), Team.WHITE), Bishop(Position(5, 7), Team.WHITE), Knight(Position(6, 7), Team.WHITE), Rook(Position(7, 7), Team.WHITE) ], ] checkBoard_checkMate = fillCheckBoard(chessBoard_checkMate, Team.WHITE)[0] chessBoard_staleMate = [ [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [None if x != 0 else King(Position(x, 5), Team.BLACK) for x in range(8)], [None for _ in range(8)], [King(Position(0, 7), Team.WHITE), Bishop(Position(1, 7), Team.WHITE)] + [None for _ in range(5)] + [Rook(Position(7, 7), Team.BLACK)], ] checkBoard_staleMate = fillCheckBoard(chessBoard_staleMate, Team.WHITE)[0] chessBoard_check = [ [ Rook(Position(0, 0), Team.BLACK), Knight(Position(1, 0), Team.BLACK), Bishop(Position(2, 0), Team.BLACK), None, King(Position(4, 0), Team.BLACK), Bishop(Position(5, 0), Team.BLACK), Knight(Position(6, 0), Team.BLACK), Rook(Position(7, 0), Team.BLACK) ], [ Pawn(Position(x, 1), Team.BLACK) if x != 3 else None for x in range(8) ], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(3)] + [Pawn(Position(4, 4), Team.WHITE), Queen(Position(5, 4), Team.BLACK)] + [None for _ in range(3)], [None for _ in range(8)], [ Pawn(Position(x, 6), Team.WHITE) if x != 3 and x != 4 else None for x in range(8) ], [ Rook(Position(0, 7), Team.WHITE), Knight(Position(1, 7), Team.WHITE), Bishop(Position(2, 7), Team.WHITE), Queen(Position(3, 7), Team.WHITE), King(Position(4, 7), Team.WHITE), Bishop(Position(5, 7), Team.WHITE), Knight(Position(6, 7), Team.WHITE), Rook(Position(7, 7), Team.WHITE) ], ] checkBoard_check = fillCheckBoard(chessBoard_check, Team.WHITE)[0] chessBoard_promotion = [ [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(7)] + [Pawn(Position(7, 2), Team.WHITE)], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], [None for _ in range(8)], ] pawn_board = [[Pawn(Position(4, 4), Team.WHITE) if i == 4 and j == 4 else None for j in range(8)] for i in range(8)] rook_board = [[Rook(Position(4, 4), Team.WHITE) if i == 4 and j == 4 else None for j in range(8)] for i in range(8)] bishop_board = [[Bishop(Position(4, 4), Team.WHITE) if i == 4 and j == 4 else None for j in range(8)] for i in range(8)] knight_board = [[Knight(Position(4, 4), Team.WHITE) if i == 4 and j == 4 else None for j in range(8)] for i in range(8)] queen_board = [[Queen(Position(4, 4), Team.WHITE) if i == 4 and j == 4 else None for j in range(8)] for i in range(8)]
[ "hsj9830@kookmin.ac.kr" ]
hsj9830@kookmin.ac.kr
c9cae191ed82b398a32e7bbb77325f3110605fe2
1c099518cfa5843928763854e6c231d435fc25f4
/deepfake/feature_trainer.py
792d8d588a90208ba85107a71b5c7f82eb5ecf4d
[ "CC-BY-2.0" ]
permissive
poke53280/ml_mercari
b3cdda6d53fc4e0f2fca93d9a0ea0231f205ad69
f01ff6c1ca3f341e57c769e06abb136a044c9f74
refs/heads/master
2021-06-02T06:21:57.211262
2020-10-11T12:08:58
2020-10-11T12:08:58
114,643,388
0
0
null
null
null
null
UTF-8
Python
false
false
9,039
py
import numpy as np from mp4_frames import get_output_dir from mp4_frames import get_ready_data_dir from featureline import get_feature_converter from featureline import is_error_line import pandas as pd from random import shuffle #################################################################################### # # create_test_merge # def create_test_merge(iPartMin, iPartMax): assert iPartMax > iPartMin l_test_parts = list (range(iPartMin, iPartMax)) num_length = 32 input_dir = get_output_dir() assert input_dir.is_dir() output_dir = get_ready_data_dir() assert output_dir.is_dir() d_f = get_feature_converter() l_files = list (input_dir.iterdir()) l_files = [x for x in l_files if x.suffix == '.npy'] l_data_test = {} for zFeature in list (d_f.keys()): l_data_test[zFeature] = [] l_iPart = [] l_zVideo = [] l_y = [] for x in l_files: l_x = str(x.stem).split("_") isTestFile = (len (l_x) == 6) and (l_x[1] == 'Test') if isTestFile: pass else: continue iPart = int (l_x[3]) video = l_x[4] y = l_x[5] isCollect = (iPart in l_test_parts) if isCollect: pass else: continue data = np.load(x) if is_error_line(data): continue anFeature = data[:, 0] data = data[:, 1:] data = data.reshape(-1, num_length, 3) num_rows = data.shape[0] assert num_rows % len (d_f.keys()) == 0 num_rows_per_feature = num_rows // len (d_f.keys()) l_iPart.extend([iPart] * num_rows_per_feature) l_zVideo.extend([video] * num_rows_per_feature) l_y.extend([y] * num_rows_per_feature) for zFeature in list (d_f.keys()): iF = d_f[zFeature] m_correct_feature = (anFeature == iF) l_data_test[zFeature].append(data[m_correct_feature]) assert data[m_correct_feature].shape[0] == num_rows_per_feature num_meta = len (l_iPart) for zFeature in list (d_f.keys()): if len (l_data_test[zFeature]) > 0: anDataTest = np.concatenate(l_data_test[zFeature]) assert anDataTest.shape[0] == num_meta np.save(output_dir / f"test_{zFeature}_p_{iPartMin}_p_{iPartMax}.npy", anDataTest) else: print(f"No data: test_{zFeature}_p_{iPartMin}_p_{iPartMax}") df_meta = pd.DataFrame({'iPart' : l_iPart, 'video': l_zVideo, 'y': l_y}) df_meta.to_pickle(output_dir / f"test_meta_p_{iPartMin}_p_{iPartMax}.pkl") #################################################################################### # # create_train_merge # def create_train_merge(iPartMin, iPartMax): assert iPartMax > iPartMin l_train_parts = list (range(iPartMin, iPartMax)) num_length = 32 input_dir = get_output_dir() assert input_dir.is_dir() output_dir = get_ready_data_dir() assert output_dir.is_dir() d_f = get_feature_converter() l_files = list (input_dir.iterdir()) l_files = [x for x in l_files if x.suffix == '.npy'] l_data_train = {} for zFeature in list (d_f.keys()): l_data_train[zFeature] = [] for x in l_files: l_x = str(x.stem).split("_") isTrainFile = (len (l_x) == 6) and (l_x[1] == 'Pair') if isTrainFile: pass else: continue iPart = int (l_x[3]) original = l_x[4] fake = l_x[5] isCollect = (iPart in l_train_parts) if isCollect: pass else: continue data = np.load(x) if is_error_line(data): continue anFeature = data[:, 0] data = data[:, 1:] data = data.reshape(-1, num_length * 2, 3) for zFeature in list (d_f.keys()): iF = d_f[zFeature] m_correct_feature = (anFeature == iF) l_data_train[zFeature].append(data[m_correct_feature]) for zFeature in list (d_f.keys()): if len (l_data_train[zFeature]) > 0: anDataTrain = np.concatenate(l_data_train[zFeature]) np.save(output_dir / f"train_{zFeature}_p_{iPartMin}_p_{iPartMax}.npy", anDataTrain) #################################################################################### # # create_train_merge_chunks # def create_train_merge_chunks(iPartMin, iPartMax): assert iPartMax > iPartMin l_Parts = list (range(iPartMin, iPartMax)) for iPart in l_Parts: create_train_merge(iPart, iPart + 1) #################################################################################### # # create_test_merge_chunks # def create_test_merge_chunks(iPartMin, iPartMax): assert iPartMax > iPartMin l_Parts = list (range(iPartMin, iPartMax)) for iPart in l_Parts: create_test_merge(iPart, iPart + 1) #################################################################################### # # create_train_chunks # def create_train_chunks(iPartMin, iPartMax, nGBInternal): assert iPartMax > iPartMin assert nGBInternal > 5 data_dir = get_ready_data_dir() l_files = list (data_dir.iterdir()) l_files_out = [] for x in l_files: l_x = str(x.stem).split("_") if len(l_x) != 7: continue if l_x[0] != 'train': continue iMin = int (l_x[4]) iMax = int (l_x[6]) assert iMax > iMin if (iMin >= iPartMin) and (iMax <= iPartMax): pass else: continue l_files_out.append(x) shuffle(l_files_out) size_row_bytes = 64 * 3 * 4 size_internal_bytes = nGBInternal * 1024 * 1024 * 1024 max_internal_rows = int (size_internal_bytes / size_row_bytes) max_out_rows = 1000000 l_data = [] num_rows_internal = 0 iFile = 0 for idx, x in enumerate(l_files_out): isLastFile = (idx == (len(l_files_out) -1)) print(f"loading {x}...") anData = np.load(x) assert anData.shape[0] <= max_internal_rows, "single file exceeds internal buffer size" num_rows_internal = num_rows_internal + anData.shape[0] l_data.append(anData.copy()) if isLastFile or (num_rows_internal > max_internal_rows): print(f"Writing out. {num_rows_internal} > {max_internal_rows} or last file") anData = np.concatenate(l_data) np.random.shuffle(anData) num_rows_out = anData.shape[0] num_chunks = int (1 + num_rows_out / max_out_rows) print(f" Writing out. {num_rows_out} lines in {num_chunks} chunks") l_data = np.array_split(anData, num_chunks) for data_chunk in l_data: file_out = data_dir / f"tr_{iPartMin}_{iPartMax}_{iFile:04}.npy" np.save(file_out, data_chunk) print(f" saved chunk with {data_chunk.shape[0]} lines") iFile = iFile + 1 l_data = [] num_rows_internal = 0 #################################################################################### # # _get_meta_file # def _get_meta_file(iMin, iMax): data_dir = get_ready_data_dir() filename = data_dir / f"test_meta_p_{iMin}_p_{iMax}.pkl" return filename #################################################################################### # # create_test_video_chunks # def create_test_video_chunks(iPartMin, iPartMax): assert iPartMax > iPartMin data_dir = get_ready_data_dir() l_files = list (data_dir.iterdir()) l_files_out = [] for x in l_files: l_x = str(x.stem).split("_") if len(l_x) != 7: continue if l_x[0] != 'test': continue if l_x[1] == 'meta': continue iMin = int (l_x[4]) iMax = int (l_x[6]) assert iMax > iMin if (iMin >= iPartMin) and (iMax <= iPartMax): pass else: continue metafile = _get_meta_file(iMin, iMax) if metafile.is_file(): pass else: continue l_files_out.append((x, metafile)) """c""" l_test = [] l_meta = [] for x in l_files_out: anTest = np.load(x[0]) df_meta = pd.read_pickle(x[1]) assert anTest.shape[0] == df_meta.shape[0] l_test.append(anTest) l_meta.append(df_meta) anTest = np.concatenate(l_test) df_meta = pd.concat(l_meta, ignore_index = True) z_video = df_meta.iPart.astype('str') + "_" + df_meta.video azVideo = np.unique(z_video) for ix, x in enumerate(azVideo): m = z_video == x anVideoData = anTest[m] zRealFake = df_meta[m].y.iloc[0] zOut = data_dir / f"te_{iPartMin}_{iPartMax}_{ix:04}_{zRealFake}" np.save(zOut, anVideoData)
[ "anders.topper@gmail.com" ]
anders.topper@gmail.com
d55e1cacb5ece1533562af42c297ae0b015d4026
f49e474bfc8a605d6b1afe3fbc020e976fadbca4
/KWS/TestPrograms/test_vad_test.py
ffae8969597b5e6e975a5569b98232ab9fee26c2
[ "MIT" ]
permissive
xrick/gotek_smic
1b3100f38253cb06eae9eb4435c176168cc71cc6
7655b6d7415b23c35810b8db48af7424f7dcdb06
refs/heads/master
2021-01-14T16:51:22.331707
2020-09-15T08:11:08
2020-09-15T08:11:08
242,686,062
0
0
null
null
null
null
UTF-8
Python
false
false
1,919
py
import numpy as np from numpy.linalg import norm import scipy.io.wavfile as wavio def vad_test(s, fs): s = s - np.amin(s) s = s / np.amax(s) FrameSize = int(fs * 0.025) #400 ShiftSize = int(fs * 0.010) #160 Overlap = FrameSize - ShiftSize #240 threshold = -1.9 s_temp = [] temp = [] temp_all = [] new = [] rest_s = [] t = s n = np.floor((len(s) - FrameSize) / ShiftSize) #97 loop_size = int(ShiftSize * n + FrameSize) #15920 norm_t = norm(t, 2) #115.2325447 for i in range(FrameSize, loop_size, ShiftSize): temp = np.log(norm(t[i - FrameSize:i], 2) / norm_t + 0.00001) # temp_all = np.insert(temp_all, temp)#[temp_all, temp] temp_all = np.hstack((temp_all, temp)) if temp > threshold: # new = [new, 1 * np.ones(ShiftSize, 1)] new = np.hstack((new, 1 * np.ones(ShiftSize))) else: # new = [new, 0 * np.ones(ShiftSize, 1)] new = np.hstack((new, 0 * np.ones(ShiftSize))) # for i in range(ShiftSize * n + FrameSize): # for i in range(loop_size): #15920 s_temp = np.array(s) end = len(new)#len(s_temp) s_temp = s_temp[0:end ]#s_temp[0:(end - Overlap)] new_s = np.transpose(new) * s_temp for j in range(len(new)): if new[j] == 1: rest_s = np.hstack((rest_s, new_s[j])) # rest_s = np.insert(rest_s, new_s[j]) return rest_s if __name__ == "__main__": # read test file test_wav = "../../Speech_DataSets/whole_keyword_clean_second_run_1429/0b40aa8e_nohash_0y4s6_1.wav" save_wav = "../../Speech_DataSets/whole_keyword_clean_second_run_1429/silence_removed/reduced_0b40aa8e_nohash_0y4s6_1.wav" fs, sig = wavio.read(test_wav) processed_sig = vad_test(sig, fs) print("original signal length is {}".format(sig.shape)) print("processed signal length is {}".format(processed_sig.shape))
[ "noreply@github.com" ]
noreply@github.com
f3b2d326186a171ad037c7d0921726cd3589a4da
d51ae5ad901442f117f68cbac61551fed4e6b89d
/article/migrations/0013_auto_20200402_1207.py
7bcd04b865bff3c0252dce15107f397ba349af4e
[]
no_license
wmc-wmc/wmc-ex_2
933717da29ef830d81eda1540ac3551d7f131e32
eea9ead0f66bd68167f46f796d154733b6b28dbc
refs/heads/master
2021-02-13T00:41:14.541497
2020-12-24T00:35:27
2020-12-24T00:35:27
244,646,110
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
# Generated by Django 2.2 on 2020-04-02 12:07 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('article', '0012_auto_20200402_1205'), ] operations = [ migrations.AlterField( model_name='text', name='tag', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='article.Tag'), ), ]
[ "ting@TingdeMacBook-Pro.local" ]
ting@TingdeMacBook-Pro.local
d61e4fd8b851cc4502bc8ecd7ef7e7bfa986eba9
408ac5f3ca1bd31f3f0aad22a7a96f800b8bd197
/main.py
615df94c4c5beacdd6fc0eabd2a923dc5e089ddc
[ "MIT" ]
permissive
HandsomeBrotherShuaiLi/ICM
8bedc9df2320374f82f06cf6acd2d1e00a4e9b6d
81218c52e83760f7a0f0b98677be138ccf5f99f1
refs/heads/master
2022-06-02T05:57:34.428872
2020-05-02T04:51:04
2020-05-02T04:51:04
240,472,354
1
0
null
null
null
null
UTF-8
Python
false
false
18,117
py
import pandas as pd import networkx as nx import matplotlib.pyplot as plt import tqdm,json,math from collections import defaultdict match_path='2020_Problem_D_DATA/matches.csv' passings='2020_Problem_D_DATA/passingevents.csv' fullevents='2020_Problem_D_DATA/fullevents.csv' def draw_graph(): fp=pd.read_csv(passings) matchID=list(set(fp['MatchID'])) for id in tqdm.tqdm(matchID,total=len(matchID)): match_passing=fp[fp.MatchID==id] all_team_id=set(match_passing['TeamID']) for team_id in all_team_id: graph=nx.DiGraph() sub_matching=match_passing[match_passing.TeamID==team_id] edges_label={} for index in sub_matching.index: team_id=match_passing.loc[index,'TeamID'] original_coord=(match_passing.loc[index,'EventOrigin_x'],match_passing.loc[index,'EventOrigin_y']) dst_coord=(match_passing.loc[index,'EventDestination_x'],match_passing.loc[index,'EventDestination_y']) original_id=match_passing.loc[index,'OriginPlayerID'] dst_id=match_passing.loc[index,'DestinationPlayerID'] match_period=match_passing.loc[index,'MatchPeriod'] match_time=match_passing.loc[index,'EventTime'] graph.add_nodes_from([ (original_id,{'id':original_id,'coord':original_coord,'team_id':team_id,'match_time':match_time,'match_period':match_period}), (dst_id,{'id':dst_id,'coord':dst_coord,'team_id':team_id,'match_time:':match_time,'match_period':match_period}) ]) edges_label[(original_id,dst_id)]="{}".format(match_time) graph.add_edge(original_id,dst_id) nx.draw(graph,pos=nx.spring_layout(graph),with_labels=True,font_color='black',node_color='pink', font_size=7) # nx.draw_networkx_edge_labels(graph,pos=nx.spring_layout(graph),edge_labels=edges_label,font_size=3,font_weight='bold', # font_color='green') plt.title('macthID_{}_teamID_{} passing graphs'.format(id,team_id)) plt.savefig('passing_graphs/macthid_{}_teamid_{}_passing_graphs.png'.format(id,team_id),dpi=200) plt.close() graph.clear() def draw_full_events_ball_count(draw_pic=False,analysis=True): fp=pd.read_csv(fullevents) match_ID=set(fp['MatchID']) mapping={} plt.rc('font',family='Times New Roman') ax=plt.gca() ax.spines['right'].set_color("none") ax.spines['top'].set_color("none") f=open('pattern_report/all_match_count.txt','w',encoding='utf-8') for id in tqdm.tqdm(match_ID,total=len(match_ID)): match_ball_graph=fp[fp.MatchID==id] all_team_id=set(match_ball_graph['TeamID']) if len(list(all_team_id))!=2: raise ValueError('team error!') ball_passing_coord=[] ball_control_player=[] ball_control_time=[] for c,idx in enumerate(match_ball_graph.index): teamID=match_ball_graph.loc[idx,'TeamID'] time=match_ball_graph.loc[idx,'EventTime'] original_player_id=match_ball_graph.loc[idx,'OriginPlayerID'] dstplayer_id=match_ball_graph.loc[idx,'DestinationPlayerID'] original_x=match_ball_graph.loc[idx,'EventOrigin_x'] original_y=match_ball_graph.loc[idx,'EventOrigin_y'] dst_x=match_ball_graph.loc[idx,'EventDestination_x'] dst_y=match_ball_graph.loc[idx,'EventDestination_y'] if pd.isna(dst_x) or pd.isna(dst_y) or pd.isna(original_x) or pd.isna(original_y): continue if teamID.startswith('Opponent'): original_x=100-original_x original_y=100-original_y dst_x=100-dst_x dst_y=100-dst_y original_x,original_y,dst_x,dst_y=int(original_x),int(original_y),int(dst_x),int(dst_y) if c==0: ball_passing_coord.append((original_x,original_y,dst_x,dst_y)) ball_control_time.append(time) ball_control_player.append([original_player_id]) else: if (original_x,original_y,dst_x,dst_y)==ball_passing_coord[-1]: ball_control_player[-1].append(original_player_id) else: if (original_x,original_y)==(ball_passing_coord[-1][2],ball_passing_coord[-1][3]): ball_passing_coord.append((original_x,original_y,dst_x,dst_y)) ball_control_time.append(time) ball_control_player.append([original_player_id]) else: original_x,original_y=ball_passing_coord[-1][2],ball_passing_coord[-1][3] if (original_x,original_y,dst_x,dst_y)==ball_passing_coord[-1]: ball_control_player[-1].append(original_player_id) else: ball_passing_coord.append((original_x,original_y,dst_x,dst_y)) ball_control_time.append(time) ball_control_player.append([original_player_id]) assert len(ball_passing_coord)==len(ball_control_player) assert len(ball_control_player)==len(ball_control_time) mapping[id]=[ball_control_player,ball_passing_coord,ball_control_time] if draw_pic: last_dst=None linesw=0.05 for i in range(len(ball_control_player)): players=ball_control_player[i] coord=[j*10000 for j in ball_passing_coord[i]] teams=list(set([j.split('_')[0] for j in players])) if len(teams)==1 and teams[0]=='Huskies': if last_dst==None: plt.scatter(x=[coord[0],coord[2]],y=[coord[1],coord[3]], c='red',marker='^',linewidths=linesw) plt.quiver(coord[0],coord[1],coord[2],coord[3],color='g', width=0.0005) else: plt.scatter(x=[last_dst[0],coord[2]],y=[last_dst[1],coord[3]],c='red', marker='^',linewidths=linesw) plt.quiver(last_dst[0],last_dst[1],coord[2],coord[3],color='g', width=0.0005) elif len(teams)==1 and teams[0].startswith('Opponent'): if last_dst==None: plt.scatter(x=[coord[0],coord[2]],y=[coord[1],coord[3]], c='blue',marker='o',linewidths=linesw) plt.quiver(coord[0],coord[1],coord[2],coord[3],color='g', width=0.0005) else: plt.scatter(x=[last_dst[0],coord[2]],y=[last_dst[1],coord[3]],c='blue', marker='o',linewidths=linesw) plt.quiver(last_dst[0],last_dst[1],coord[2],coord[3],color='g', width=0.0005) else: if last_dst==None: plt.scatter(x=[coord[0],coord[2]],y=[coord[1],coord[3]], c='black',marker='o',linewidths=linesw) plt.quiver(coord[0],coord[1],coord[2],coord[3],color='g', width=0.0005) else: plt.scatter(x=[last_dst[0],coord[2]],y=[last_dst[1],coord[3]],c='black', marker='o',linewidths=linesw) plt.quiver(last_dst[0],last_dst[1],coord[2],coord[3],color='g', width=0.0005) last_dst=(coord[2],coord[3]) plt.savefig('ball_graphs/{}_full_events.png'.format(id),dpi=300) plt.close() if analysis: report=open('pattern_report/matchid_{}.txt'.format(id),'w',encoding='utf-8') i=0#quick point j=0#slow point count=defaultdict(int) while i<len(ball_control_time): teams_i=set([p.split('_')[0] for p in ball_control_player[i]]) teams_j=set([p.split('_')[0] for p in ball_control_player[j]]) if teams_i==teams_j: i+=1 else: teams_j=list(teams_j) teams_i=list(teams_i) time_cut=(ball_control_time[j],ball_control_time[i]) temp_p=[] for play_t in ball_control_player[j:i]: temp_p+=play_t temp_p=list(set(temp_p)) if len(temp_p)==3: patt='triadic configuration' elif len(temp_p)<=2: patt='dyadic' else: patt='team formations' if len(teams_i)==1 and len(teams_j)==1: report.write('From time: {} to time: {}, {} team takes {}, with players:{}\n'.format( time_cut[0],time_cut[1],teams_j[0],patt,temp_p )) count[teams_j[0]+'_'+patt]+=1 j=i i+=1 elif len(teams_i)>1 and len(teams_j)==1: report.write('From time: {} to time: {}, {} team took {}, with players:{}, and teams:{} started to dual \n'.format( time_cut[0],time_cut[1],teams_j[0],patt,temp_p,teams_i )) count[teams_j[0]+'_'+patt]+=1 j=i i+=1 elif len(teams_i)==1 and len(teams_j)>1: ts=[z for z in teams_j if z not in teams_i] report.write('From time: {} to time: {}, {} team took {}, with players:{}, and ' 'teams:{} started to take control of the ball by player:{} \n'.format( time_cut[0],time_cut[1],teams_i[0],patt,temp_p,ts[0],ball_control_player[i] )) count[teams_j[0]+'_'+patt]+=1 j=i i+=1 else: report.write('From time: {} to time: {}, teams:{} were always dualing\n'.format( time_cut[0],time_cut[1],teams_j )) count[teams_j[0]+'_'+patt]+=1 j=i i+=1 report.close() f.write('*'*20+'Match:{}'.format(id)+'*'*20+'\n') for k in count: f.write("{}:{}\n".format(k,count[k])) json.dump(mapping,open('all_match_mapping.json','w',encoding='utf-8')) f.close() def conduct_new_passing_tables(): fp=pd.read_csv(passings) match_id=list(set(fp['MatchID'])) for id in tqdm.tqdm(match_id,total=len(match_id)): match_passing=fp[fp.MatchID==id] node=pd.DataFrame() edge=pd.DataFrame() for c,idx in enumerate(match_passing.index): original_x=match_passing.loc[idx,'EventOrigin_x'] original_y=match_passing.loc[idx,'EventOrigin_y'] dst_x=match_passing.loc[idx,'EventDestination_x'] dst_y=match_passing.loc[idx,'EventDestination_y'] if match_passing.loc[idx,'TeamID'].startswith('Opponent'): original_x=100-original_x original_y=100-original_y dst_x=100-dst_x dst_y=100-dst_y original_x,original_y,dst_x,dst_y=int(original_x),int(original_y),int(dst_x),int(dst_y) node=node.append({'Id':int(c),'Label':match_passing.loc[idx,'OriginPlayerID']}, ignore_index=True) edge=edge.append({ 'Source':match_passing.loc[idx,'OriginPlayerID'], 'Target':match_passing.loc[idx,'DestinationPlayerID'], 'EventTime':round(float(match_passing.loc[idx,'EventTime']),2), 'EventSubType':match_passing.loc[idx,'EventSubType'], 'MatchPeriod':match_passing.loc[idx,'MatchPeriod'].strip('H'), 'EventOrigin_x':original_x, 'EventOrigin_y':original_y, 'EventDestination_x':dst_x, 'EventDestination_y':dst_y, 'Distance':round(math.sqrt((original_x-dst_x)**2+(original_y-dst_y)**2),2) },ignore_index=True) node.to_csv('new_passing_tables/passingevents_{}_node.csv'.format(id),index=False) edge.to_csv('new_passing_tables/passingevents_{}_edge.csv'.format(id),index=False) def conduct_degree(): fp=pd.read_csv(passings) match_ID=set(fp['MatchID']) all_match_degree_in=defaultdict(int) all_match_degree_out=defaultdict(int) all_match_degree={} result=open('all_match_in_out_degree.txt','w',encoding='utf-8') for id in tqdm.tqdm(match_ID,total=len(match_ID)): Ha_degree_in=defaultdict(int) Ha_degree_out=defaultdict(int) Ha_degree_all={} Oppo_degree_in=defaultdict(int) Oppo_degree_out=defaultdict(int) Oppo_degree_all={} match_single=fp[fp.MatchID==id] for idx in match_single.index: if not pd.isna(match_single.loc[idx,'OriginPlayerID']) and match_single.loc[idx,'OriginPlayerID'].startswith('Huskies'): Ha_degree_out[match_single.loc[idx,'OriginPlayerID']]+=1 all_match_degree_out[match_single.loc[idx,'OriginPlayerID']]+=1 if not pd.isna(match_single.loc[idx,'DestinationPlayerID']) and match_single.loc[idx,'DestinationPlayerID'].startswith('Huskies'): Ha_degree_in[match_single.loc[idx,'DestinationPlayerID']]+=1 all_match_degree_in[match_single.loc[idx,'DestinationPlayerID']]+=1 if not pd.isna(match_single.loc[idx,'OriginPlayerID']) and match_single.loc[idx,'OriginPlayerID'].startswith('Opponent'): Oppo_degree_out[match_single.loc[idx,'OriginPlayerID']]+=1 if not pd.isna(match_single.loc[idx,'DestinationPlayerID']) and match_single.loc[idx,'DestinationPlayerID'].startswith('Opponent'): Oppo_degree_in[match_single.loc[idx,'DestinationPlayerID']]+=1 ha_player=set(list(Ha_degree_in.keys())+list(Ha_degree_out.keys())) oppo_player=set(list(Oppo_degree_in.keys())+list(Oppo_degree_out.keys())) for h_p in ha_player: if h_p in Ha_degree_out.keys() and h_p in Ha_degree_out.keys(): Ha_degree_all[h_p]=Ha_degree_in[h_p]+Ha_degree_out[h_p] elif h_p in Ha_degree_out.keys(): Ha_degree_all[h_p]=Ha_degree_out[h_p] elif h_p in Ha_degree_in.keys(): Ha_degree_all[h_p]=Ha_degree_in[h_p] else: pass for o_p in oppo_player: if o_p in Oppo_degree_in.keys() and o_p in Oppo_degree_out.keys(): Oppo_degree_all[o_p]=Oppo_degree_in[o_p]+Oppo_degree_out[o_p] elif o_p in Oppo_degree_out.keys(): Oppo_degree_all[o_p]=Oppo_degree_out[o_p] elif o_p in Oppo_degree_in.keys(): Oppo_degree_all[h_p]=Oppo_degree_in[h_p] else: pass ha_out=sorted(Ha_degree_out.items(),key=lambda item:item[1],reverse=True) ha_in=sorted(Ha_degree_in.items(),key=lambda item:item[1],reverse=True) oppo_out=sorted(Oppo_degree_out.items(),key=lambda item:item[1],reverse=True) oppo_in=sorted(Oppo_degree_in.items(),key=lambda item:item[1],reverse=True) oppo_all=sorted(Oppo_degree_all.items(),key=lambda item:item[1],reverse=True) ha_all=sorted(Ha_degree_all.items(),key=lambda item:item[1],reverse=True) result.write('*'*20+'第{}场比赛哈士奇队出度:'.format(id)+'*'*20+'\n') for i in ha_out: result.write("{}:{}\n".format(i[0],i[1])) result.write('*'*20+'第{}场比赛哈士奇队入度:'.format(id)+'*'*20+'\n') for i in ha_in: result.write('{}:{}\n'.format(i[0],i[1])) result.write('*'*20+'第{}场比赛哈士奇队总度:'.format(id)+'*'*20+'\n') for i in ha_all: result.write('{}:{}\n'.format(i[0],i[1])) result.write('*'*20+'第{}场比赛反方出度:'.format(id)+'*'*20+'\n') for i in oppo_out: result.write('{}:{}\n'.format(i[0],i[1])) result.write('*'*20+'第{}场比赛反方入度:'.format(id)+'*'*20+'\n') for i in oppo_in: result.write('{}:{}\n'.format(i[0],i[1])) result.write('*'*20+'第{}场比赛反方总度:'.format(id)+'*'*20+'\n') for i in oppo_all: result.write('{}:{}\n'.format(i[0],i[1])) ha_player=set(list(all_match_degree_in.keys())+list(all_match_degree_out.keys())) for p in ha_player: if p in all_match_degree_out.keys() and p in all_match_degree_in.keys(): all_match_degree[p]=all_match_degree_in[p]+all_match_degree_out[p] elif p in all_match_degree_out.keys(): all_match_degree[p]=all_match_degree_out[p] elif p in all_match_degree_in.keys(): all_match_degree[p]=all_match_degree_in[p] else: pass all_match_degree_in=sorted(all_match_degree_in.items(),key=lambda item:item[1],reverse=True) all_match_degree_out=sorted(all_match_degree_out.items(),key=lambda item:item[1],reverse=True) all_match_degree=sorted(all_match_degree.items(),key=lambda item:item[1],reverse=True) result.write('*'*20+'哈士奇队总的出度:'+'*'*20+'\n') for i in all_match_degree_out: result.write('{}:{}\n'.format(i[0],i[1])) result.write('*'*20+'哈士奇队总的入度:'+'*'*20+'\n') for i in all_match_degree_in: result.write('{}:{}\n'.format(i[0],i[1])) result.write('*'*20+'哈士奇队总度数:'+'*'*20+'\n') for i in all_match_degree: result.write('{}:{}\n'.format(i[0],i[1])) if __name__=='__main__': conduct_degree()
[ "shuai.li@shopee.com" ]
shuai.li@shopee.com
1f329583d0700cf40723e268122106387cae7255
31a60b44e078fa75033c4deb8528c2da9726a370
/run_files/191012_regularizer_comp_toy.py
2fa0dbccf291c278969dfc082ea0e8ba0d5509a6
[]
no_license
janmaltel/stew
85f8d4592ab1c06ced21c99a8ea480c679562f8b
a1ed53499c6ace8a92a83b959680f89cf95cf5b7
refs/heads/master
2021-12-29T16:39:38.138520
2021-12-15T13:35:04
2021-12-15T13:35:04
157,102,775
0
0
null
null
null
null
UTF-8
Python
false
false
4,544
py
import numpy as np import stew.example_data as create import stew.mlogit as mlogit import stew.utils as utils import matplotlib.pyplot as plt from stew.utils import create_diff_matrix from sklearn.linear_model import LinearRegression from stew.regression import * import matplotlib.pyplot as plt import os from datetime import datetime # from stew.regression import LinearRegressionTorch time_id = datetime.now().strftime('%Y_%m_%d_%H_%M'); name_id = "_reg_path_comp" run_id = time_id + name_id run_id_path = os.path.join("/Users/malte/Dropbox/projects/ozgur/shrinkage toward noncompensatory weights/figures/", run_id) if not os.path.exists(run_id_path): os.makedirs(run_id_path) os.makedirs(os.path.join(run_id_path, "positive_weights")) num_samples = 500 noise_scale = 1 beta = np.array([1, -1.2, 1.5, -0.3, 0.5]) num_features = len(beta) epochs = 2000 # Torch params learning_rate = 0.002 np.random.seed(1) torch.manual_seed(1) X, y = create.regression_example_data(num_samples=num_samples, num_features=num_features, noise_scale=noise_scale, beta=beta) regularizers = np.array(["stew2", "stem2", "stow", "stnw", "sted"]) regularizer_names = np.array(["Shrinkage toward equal weights", "Shrinkage toward equal weight magnitudes", "Shrinkage toward ordered weights", "Shrinkage toward noncompensatory weights", "Shrinkage toward exponentially decaying weights"]) # regularizers = np.array(["sted"]) # regularizer_names = np.array(["Shrinkage toward exponentially decaying weights"]) num_regularizers = len(regularizers) lambda_min = -3 lambda_max = 1.8 num_lambdas = 40 # lams = np.insert(np.logspace(lambda_min, lambda_max, num=num_lambdas-1), 0, 0.0) lams = np.logspace(lambda_min, lambda_max, num=num_lambdas) weight_storage = np.zeros((num_regularizers, num_lambdas, num_features)) for reg_ix, regularizer in enumerate(regularizers): # regularizer = "stew" print(reg_ix, regularizer) for lam_ix, lam in enumerate(lams): # lam = 0.1 lin_reg_torch = LinearRegressionTorch(num_features=num_features, learning_rate=learning_rate, regularization=regularizer, lam=lam) betas = lin_reg_torch.fit(X, y, epochs=epochs).detach().numpy() weight_storage[reg_ix, lam_ix] = betas # Plot for reg_ix, regularizer in enumerate(regularizers): fig1, ax1 = plt.subplots(figsize=(8, 6)) plt.title(regularizer_names[reg_ix]) for weight_ix in range(num_features): ax1.plot(lams, weight_storage[reg_ix, :, weight_ix], label="beta_" + str(weight_ix+1)) plt.xscale("log") plt.axhline(y=0, color="grey") plt.legend() fig1.show() fig1.savefig(os.path.join(run_id_path, regularizer + ".pdf"), ) plt.close() ## On positive weights beta = np.array([1, 0.8, 1.5, 0.3, 0.5]) X, y = create.regression_example_data(num_samples=num_samples, num_features=num_features, noise_scale=noise_scale, beta=beta) weight_storage = np.zeros((num_regularizers, num_lambdas, num_features)) for reg_ix, regularizer in enumerate(regularizers): # regularizer = "stew" print(reg_ix, regularizer) for lam_ix, lam in enumerate(lams): # lam = 0.1 lin_reg_torch = LinearRegressionTorch(num_features=num_features, learning_rate=learning_rate, regularization=regularizer, positivity_constraint=True, lam=lam) betas = lin_reg_torch.fit(X, y, epochs=epochs).detach().numpy() weight_storage[reg_ix, lam_ix] = betas # Plot for reg_ix, regularizer in enumerate(regularizers): fig1, ax1 = plt.subplots(figsize=(5, 3.5)) plt.title(regularizer_names[reg_ix]) for weight_ix in range(num_features): ax1.plot(lams, weight_storage[reg_ix, :, weight_ix], label="beta_" + str(weight_ix+1)) plt.xscale("log") plt.axhline(y=0, color="grey") plt.legend() fig1.show() fig1.savefig(os.path.join(run_id_path, "positive_weights", regularizer + ".pdf")) plt.close()
[ "j.m.lichtenberg@bath.ac.uk" ]
j.m.lichtenberg@bath.ac.uk
6dc7df348f7ef3111d18950993f5efc39de88ea9
41d95796e81289c87ef839ab78e74decb862d556
/Website_Scanner/general.py
eb69beec20a259e92191c11a442cab9ffbc7de01
[]
no_license
Sliking/Redes
770446b5be0118f39af9860e8d6f78957a279478
32183dfe0abcb005b2c622c3878b0db8f2208cb7
refs/heads/master
2021-01-10T15:47:32.462242
2015-11-26T23:38:27
2015-11-26T23:38:27
45,213,119
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
import os def create_dir(directory): print("[DEBUG] Checking folder") if not os.path.exists(directory): os.makedirs(directory) print("[DEBUG] Created folder -> DONE!") def write_file(path, data): print("[DEBUG] Writing in file") f = open(path, 'w') f.write(data) f.close() print("[DEBUG] Write -> DONE!")
[ "miguelpinto25@hotmail.com" ]
miguelpinto25@hotmail.com
8a52bc396fcafcd7f2ed6b20d0b110a3e5a59648
1d60c5a7b8ce6277bff514e376f79848f706344c
/Data Scientist with Python - Career Track /22. Machine Learning with the Experts: School Budgets/02. Creating a simple first model/01. Setting up a train-test split in scikit-learn.py
09e603e05172de82530517858d1031747721ca01
[]
no_license
DidiMilikina/DataCamp
338c6e6d3b4f5b6c541c1aba155a36e9ee24949d
3bf2cf3c1430190a7f8e54efda7d50a5fd66f244
refs/heads/master
2020-12-15T13:16:54.178967
2020-05-06T17:30:54
2020-05-06T17:30:54
235,113,616
4
3
null
null
null
null
UTF-8
Python
false
false
2,016
py
''' Setting up a train-test split in scikit-learn Alright, you've been patient and awesome. It's finally time to start training models! The first step is to split the data into a training set and a test set. Some labels don't occur very often, but we want to make sure that they appear in both the training and the test sets. We provide a function that will make sure at least min_count examples of each label appear in each split: multilabel_train_test_split. Feel free to check out the full code for multilabel_train_test_split here. You'll start with a simple model that uses just the numeric columns of your DataFrame when calling multilabel_train_test_split. The data has been read into a DataFrame df and a list consisting of just the numeric columns is available as NUMERIC_COLUMNS. Instructions 100 XP Create a new DataFrame named numeric_data_only by applying the .fillna(-1000) method to the numeric columns (available in the list NUMERIC_COLUMNS) of df. Convert the labels (available in the list LABELS) to dummy variables. Save the result as label_dummies. In the call to multilabel_train_test_split(), set the size of your test set to be 0.2. Use a seed of 123. Fill in the .info() method calls for X_train, X_test, y_train, and y_test. ''' SOLUTION # Create the new DataFrame: numeric_data_only numeric_data_only = df[NUMERIC_COLUMNS].fillna(-1000) # Get labels and convert to dummy variables: label_dummies label_dummies = pd.get_dummies(df[LABELS]) # Create training and test sets X_train, X_test, y_train, y_test = multilabel_train_test_split(numeric_data_only, label_dummies, size=0.2, seed=123) # Print the info print("X_train info:") print(X_train.info()) print("\nX_test info:") print(X_test.info()) print("\ny_train info:") print(y_train.info()) print("\ny_test info:") print(y_test.info())
[ "didimilikina8@gmail.com" ]
didimilikina8@gmail.com
9b930250c80b39f856585160a5b1f150a3d9355a
6053cef7fc0b063a6105cd38659ba082ee706335
/tweettools/blockmute.py
945725ca153e6f977a12db922ae170e6fb90aabe
[ "MIT" ]
permissive
jdidion/blockmute
18dd24535d75d6c8998a432a1a5b657a3e91b93f
05984da637206d2bc5c69d2f68b10a1df4f9985f
refs/heads/main
2021-01-19T19:52:16.657531
2018-04-29T01:20:39
2018-04-29T01:20:39
101,212,612
0
0
null
null
null
null
UTF-8
Python
false
false
1,470
py
#!/usr/bin/env python # Block everyone you've muted, and vice-versa. from argparse import ArgumentParser import time from tqdm import tqdm from tweettools import get_client def blockmute(api, sleep_secs=300): mutes = set(api.GetMutesIDs()) blocks = set(api.GetBlocksIDs()) new_blocks = mutes - blocks for user_id in tqdm(new_blocks): while True: try: api.CreateBlock(user_id) break except: print("Exceeded rate limit; sleeping for {} seconds".format(sleep_secs)) time.sleep(sleep_secs) new_mutes = blocks - mutes for user_id in tqdm(new_mutes): while True: try: api.CreateMute(user_id) break except: print("Exceeded rate limit; sleeping for {} seconds".format(sleep_secs)) time.sleep(sleep_secs) def main(): parser = ArgumentParser() parser.add_argument('-ck', '--consumer-key') parser.add_argument('-cs', '--consumer-secret') parser.add_argument('-tk', '--token-key', default=None) parser.add_argument('-ts', '--token-secret', default=None) parser.add_argument('-s', '--sleep-secs', type=int, default=15*60) args = parser.parse_args() api = get_client(args.token_key, args.token_secret, args.consumer_key, args.consumer_secret) blockmute(api, sleep_secs=args.sleep_secs) if __name__ == '__main__': main()
[ "github@didion.net" ]
github@didion.net
e0d35b7ac5b882a39a6e7533e9b46ac4bddf2677
27752fee55422acb5264f3e19fa45c6ab421338d
/convetions/dd_game.py
85d73a3f18d03f0dfcf8422d46f269be85dcc7f5
[]
no_license
Tuzosdaniel12/learningPython
0be4ae6c2aa4e45744afc1bac5bf38b932433023
966fcc6a05e2b203f8d134b8ac0d3f0f179ad19a
refs/heads/main
2023-06-03T07:55:18.228505
2021-06-17T09:34:54
2021-06-17T09:34:54
359,373,334
0
0
null
null
null
null
UTF-8
Python
false
false
2,756
py
import logging import random logging.basicConfig(filename="game.log", level=logging.DEBUG) logging.info("You wont see this") logging.warn("OH NO") player = {'location': None, 'path': []} cells = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)] def get_locations(): monster = random.choice(cells) door = random.choice(cells) start = random.choice(cells) if monster == door or monster == start or door == start: monster, door, start = get_locations() return monster, door, start def get_moves(player): moves = ['LEFT', 'RIGHT', 'UP', 'DOWN'] if player in [(0, 0), (1, 0), (2, 0)]: moves.remove('LEFT') if player in [(0, 0), (0, 1), (0, 2)]: moves.remove('UP') if player in [(0, 2), (1, 2), (2, 2)]: moves.remove('RIGHT') if player in [(2, 0), (2, 1), (2, 2)]: moves.remove('DOWN') return moves def move_player(player, move): x, y = player['location'] player['path'].append((x, y)) if move == 'LEFT': player['location'] = x, y - 1 elif move == 'UP': player['location'] = x - 1, y elif move == 'RIGHT': player['location'] = x, y + 1 elif move == 'DOWN': player['location'] = x + 1, y return player def draw_map(): print(' _ _ _') tile = '|{}' for idx, cell in enumerate(cells): if idx in [0, 1, 3, 4, 6, 7]: if cell == player['location']: print(tile.format('X'), end='') elif cell in player['path']: print(tile.format('.'), end='') else: print(tile.format('_'), end='') else: if cell == player['location']: print(tile.format('X|')) elif cell in player['path']: print(tile.format('.|')) else: print(tile.format('_|')) monster, door, player['location'] = get_locations() logging.info(f"monster: {monster}, door: {door}, player:{player['location']}") while True: moves = get_moves(player['location']) print("Welcome to the dungeon!") print("You're currently in room {}".format(player['location'])) draw_map() print("\nYou can move {}".format(', '.join(moves))) print("Enter QUIT to quit") move = input("> ") move = move.upper() if move == 'QUIT': break if not move in moves: print("\n** Walls are hard! Stop running into them! **\n") continue player = move_player(player, move) if player['location'] == door: print("\n** You escaped! **\n") break elif player['location'] == monster: print("\n** You got eaten! **\n") break else: continue
[ "danielsoledad@gmail.com" ]
danielsoledad@gmail.com
e27620ac43423c4e604d8e08a4bc43ff1c01c49e
c9c97b5f002577f97fe14fb12951cec7dae5c3e1
/data/jpg_to_npy.py
eb0019236a7071b28919ec4a1afaec2cc1c26ed9
[ "Apache-2.0", "MIT" ]
permissive
trandaitai327/ml-lab-02-classification
b44eed12ff4568031a6c78a5c36f5c5a819977c8
0130e89eef80e9f69d2a6c578313841c770bc7f7
refs/heads/main
2023-05-30T19:25:38.418310
2021-06-07T15:18:42
2021-06-07T15:18:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,829
py
import os import numpy as np import cv2 as cv import pandas as pd IMG_ORIGINAL_SHAPE = (1365, 2048, 3) def center_crop(image,out_height,out_width): image_height, image_width = image.shape[:2] offset_height = (image_height - out_height) // 2 offset_width = (image_width - out_width) // 2 image = image[offset_height:offset_height+out_height, offset_width:offset_width+out_width,:] return image def resize_maintain_aspect(image,target_h,target_w): image_height, image_width = image.shape[:2] if image_height > image_width: new_width = target_w new_height = int(image_height*(target_w/image_width)) else: new_height = target_h new_width = int(image_width*(target_h/image_height)) image = cv.resize(image,(new_width,new_height),interpolation=cv.INTER_CUBIC) return image def npy_converter(image_path, image_height,image_width, output_path): # open image to numpy array img = cv.imread(image_path) # resize img = resize_maintain_aspect(img,image_height,image_width) # center crop to target height & width img = center_crop(img,image_height,image_width) # switch to RGB from BGR img = cv.cvtColor(img, cv.COLOR_BGR2RGB) np.save(output_path, img, allow_pickle=True) IMAGES_PATH = 'images/' df_train = pd.read_csv('train.csv') df_test = pd.read_csv('test.csv') def get_image_path(filename): return (IMAGES_PATH + filename + '.jpg') df_train['image_path'] = df_train['image_id'].apply(get_image_path) df_test['image_path'] = df_test['image_id'].apply(get_image_path) train_labels = df_train.loc[:, 'healthy':'scab'] train_paths = df_train.image_path test_paths = df_test.image_path for filename in df_test.image_id: npy_converter(IMAGES_PATH + filename + '.jpg', 512, 512, 'images_npy/' + filename + '.npy')
[ "lenam.fithcmus@gmail.com" ]
lenam.fithcmus@gmail.com
9ac298fb3e0f4e14401c2b75d4e859bc33eb3bd0
6b99473f9ba16700d0e86aaa8e5f109a28d1e976
/Cryptography/Cryptography-1/Materials/caesar_encrypt.py
6a56c9ec31a0c331b0cb43f26a2dce2a68ae1db1
[]
no_license
kcwong395/CyberSecMaterial
190988ca26f04d365c24d49e2a014b00a6086410
cb974f7a837a6103b4344c6c5e50d26ddf1c1752
refs/heads/master
2020-07-26T07:09:16.877651
2020-01-03T14:52:53
2020-01-03T14:52:53
208,573,409
2
0
null
null
null
null
UTF-8
Python
false
false
655
py
# This function intends to encrypt plaintext using Caesar Cipher def CaesarEncrypt(): plainText = input("Plaintext: ") key = input("Key: ") cipher = "" for letter in plainText: if 'a' <= letter <= 'z': # ord(letter) - ord('a') gives the index in alphabetical sequence # + int(key) gives the encrypted index letter = chr((ord(letter) - ord('a') + int(key)) % 26 + ord('a')) elif 'A' <= letter <= 'Z': letter = chr((ord(letter) - ord('A') + int(key)) % 26 + ord('A')) cipher += letter return cipher while True: print("Ciphertext: " + CaesarEncrypt() + '\n')
[ "wl01377870@gmail.com" ]
wl01377870@gmail.com
12e4828e3b5e912252a0998ff78bb73a30201e47
8d902f52d27bc433534c27ae2c83fa73d5148cf4
/blog_api/articles/migrations/0002_auto_20201005_1255.py
492f0a90eff41602e26bd1d40ddb86e6a3a3ccf3
[]
no_license
AleksanderRadziszewski/zadanko_api_mrx
f39d3f8c3169b683809153fa331aeddcac232ebd
1197c6533904509467429c3fdf764ae5dadc1f2b
refs/heads/master
2023-01-22T13:53:15.384122
2020-11-20T09:48:24
2020-11-20T09:48:24
301,105,359
0
0
null
2020-11-16T15:55:34
2020-10-04T10:53:44
Python
UTF-8
Python
false
false
929
py
# Generated by Django 2.2.6 on 2020-10-05 12:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('articles', '0001_initial'), ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('body', models.TextField()), ('created', models.DateTimeField(auto_now=True, null=True)), ('modified', models.DateTimeField(auto_now=True, null=True)), ('pub_date', models.DateTimeField(auto_now_add=True, null=True)), ('comments_count', models.IntegerField(null=True)), ], ), migrations.DeleteModel( name='articles', ), ]
[ "radziszewski.aleksander@gmail.com" ]
radziszewski.aleksander@gmail.com
668a774ae59db7287f12b14d726b4dfd98b97063
6b757245104fc83aec31d87a07a40b1fa75648ad
/spec/lab_results.spec
940b4ed432dc49e9e50f479d22626a95923a7a54
[]
no_license
BaobabHealthTrust/module_chronic_care
d8a74edb3aa30822986217300aca747f884b98e0
b4652c9dd1ed9f8ebdba25783f3e99883dfd2b55
refs/heads/master
2021-01-04T14:18:56.341563
2015-06-10T11:32:21
2015-06-10T11:32:21
9,372,578
0
0
null
null
null
null
UTF-8
Python
false
false
1,024
spec
P.1. LAB RESULTS [program: CHRONIC CARE MODULE, label: Lab Results] C.1.1. For all patients capture the following lab results Q.1.1.1. Test Type [pos: 1, concept: Test Type, field_type: number] O.1.1.1.1. FASTING BLOOD SUGAR O.1.1.1.2. NON-FASTING BLOOD SUGAR O.1.1.1.3. RANDOM BLOOD SUGAR O.1.1.1.4. CHOLESTEROL FASTING O.1.1.1.5. CHOLESTEROL NOT FASTING Q.1.1.2. Height [pos: 2, concept: Height, field_type: number] Q.1.1.3. Waist circumference (in cm) [pos: 3, concept: Waist circumference (in cm), field_type: number] Q.1.1.4. Systolic blood pressure [pos: 4, concept: Systolic blood pressure, field_type: number] Q.1.1.5. Diastolic blood pressure [pos: 5, concept: Diastolic blood pressure, field_type: number] Q.1.1.6. Respiratory rate [pos: 6, concept: Respiratory rate, field_type: number] Q.1.1.7. Pulse rate [pos: 7, concept: Pulse rate, field_type: number] Q.1.1.8. Oxygen saturation [pos: 8, concept: Oxygen saturation, field_type: number] Q.1.1.9. Temperature [pos: 9, concept: Temperature, field_type: number]
[ "F88kavutausiwa@gmail.com" ]
F88kavutausiwa@gmail.com
c59860e2c00c47a8509ad358429bc68d5820ac99
555e43e55bf51273cf413fe828a5913a44ab1878
/Aws boto/Boto_scripts/s3file.py
a0045d276a795608dc77d29aded02b19effb9445
[]
no_license
sagarkites/Devops
24ea85d184a4c51bebb490575e9d10163a149471
2b58206cabb8f55a0ff69325fa424ff9c480565f
refs/heads/master
2020-04-12T07:48:30.406785
2019-04-09T11:53:05
2019-04-09T11:53:05
130,677,714
1
0
null
null
null
null
UTF-8
Python
false
false
166
py
import boto3 # Downloding file from S3 s3 = boto3.client('s3') s3_get = s3.download_file('jiraya','Bucket.py', '/Users/pavanscott/Downloads/script.py') print(s3_get)
[ "vidyasagarchintaluri@gmail.com" ]
vidyasagarchintaluri@gmail.com
0dcac4aca6617a9ef7da23c13d41c070f15d4041
3d9689945a2b40f4ffc975e19eb21a68aa1e12e3
/homepage/migrations/0001_initial.py
86c909114bf4830e62b7d346987f2bf770c291bf
[]
no_license
mjdemory/RoastBoast_assessment
45adcb8715435dd2e8220e51c5e377a443faefa2
2d3d8b595c3b9ef52328ee6a4a762e0de2d42ff1
refs/heads/master
2022-12-01T18:11:52.871404
2020-08-21T20:39:18
2020-08-21T20:39:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
# Generated by Django 3.1 on 2020-08-21 15:04 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='RoastBoastModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.CharField(max_length=280)), ('choices', models.BooleanField(choices=[(True, 'Boast'), (False, 'Roast')], default=True)), ('upvote', models.IntegerField(default=0)), ('downvote', models.IntegerField(default=0)), ], ), ]
[ "mjdemory2891@gmail.com" ]
mjdemory2891@gmail.com