blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
7018f257a6effb3e3a626e56384ae5a7ae0ba684
e7b4ddbf23fca6ff3929cca13614b378b4449f6c
/3rd_year/ex_2/dn16018_ex2_code.py
432ec1afbc07388f7fbc2084a6d79431c40b7a8c
[]
no_license
dazzabaijan/py_comp_model
598479d70ca50ac99e2929398e899d0cc66f8881
2e61bf34f1aabc484c73d1e3dc6dd35897704f51
refs/heads/master
2021-09-17T14:27:28.293477
2021-08-17T12:55:25
2021-08-17T12:55:25
229,984,890
1
0
null
null
null
null
UTF-8
Python
false
false
22,700
py
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from copy import copy from scipy.sparse import diags from scipy.sparse.linalg import spsolve from time import clock import sys """Boundary conditions for second Physics problem""" def hot_cold(m, l, u, F): """A boundary condition function for when rod is in a furnace one end and in an ice bath for another. Parameters: m, l, u : ndarray(s) representing the main, lower and upper diagonal elements of a tridiagonal matrix F : a constant within a triadiagonal matrix Returns: m, l, u : The original ndarray with certain elements assigned to specific values according to the initial condition. """ m[0], u[0] = 1, 0 l[-1], m[-1] = 0, 1 return m, l, u def adiabatic(m, l, u, F): """A boundary condition function for when the poker is adiabatic at either end. Parameters: m, l, u : ndarray(s) representing the main, lower and upper diagonal elements of a tridiagonal matrix F : a constant within a triadiagonal matrix Returns: m, l, u : The original ndarray with certain elements assigned to specific values according to the initial condition. """ m[0], u[0] = 1, 0 l[-1] = -2*F return m, l, u def both_ice(m, l, u, F): """A boundary condition function for when the poker is in an ice bath at both ends. Parameters: m, l, u : ndarray(s) representing the main, lower and upper diagonal elements of a tridiagonal matrix F : a constant within a triadiagonal matrix Returns: m, l, u : The original ndarray with certain elements assigned to specific values according to the initial condition. F : Not being returned since will be taken in within another function """ m[0], u[0] = 1, 0 l[-1], m[-1] = 0, 1 return m, l, u def potential(x_axis, y_axis, cbar, x_label, y_label, cbar_label, int_pol, colorMap, xmin=None, xmax=None, ymin=None, ymax=None, plot=None): """A general plotter allowing for the plotting of a heatmap(primarily used here for potential function) which takes in relevant data about the graph. It also allows for the option of overlaying either a quiver or a streamline plot, or not! Parameters: x_axis, y_axis : The corresponding x and y axis data lists of a plot cbar: The heatmap list data which usually corresponds to x and y axis x_label, y_label, : The x, y and z label of the graph dtype = string cbar_label : The colourbar label dtype = string int_pol: The colour interpolation of the heatmap dtype = integer colorMap: The style and colour of heatmap dtype = string xmin, xmax: The minimum and maximum value of the x-axis ymin, ymax: The minimum and maximum value of the y-axis plot: "quiver", "stream" allowing for the overlay of quiver or streamline plot Returns: Image : AxesImage """ plt.contourf(x_axis, y_axis, cbar, int_pol, cmap=colorMap) cbar_tag = plt.colorbar() Z = cbar plt.xlabel(x_label) plt.ylabel(y_label) cbar_tag.set_label(cbar_label, rotation=270) cbar_tag.set_clim(-1000.0, 1000.0) E = np.gradient(Z) E = E/np.sqrt(E[0]**2 + E[1]**2) if plot is not None: if plot == "quiver": print("\nQuiver plot:") plt.quiver(x_axis, y_axis, E[1], E[0]) if plot == "stream": print("\nStreamline Plot:") plt.streamplot(x_axis, y_axis, -E[1], -E[0], color='black') if xmin is not None and xmax is not None: plt.xlim(xmin, xmax) if ymin is not None and ymax is not None: plt.ylim(ymin, ymax) plt.show() def e_field(x_axis, y_axis, cbar, x_label, y_label, cbar_label, int_pol, colorMap, xmin=None, xmax=None, ymin=None, ymax=None, plot=None): """A general plotter allowing for the plotting of a heatmap(primarily used here for electric field) which takes in relevant data about the graph It also allows for the option of overlaying either a quiver or a streamline plot, or not! Parameters: x_axis, y_axis : The corresponding x and y axis data lists of a plot cbar: The heatmap list data which usually corresponds to x and y axis x_label, y_label, : The x, y and z label of the graph dtype = string cbar_label : The colourbar label dtype = string int_pol: The colour interpolation of the heatmap dtype = integer colorMap: The style and colour of heatmap dtype = string xmin, xmax: The minimum and maximum value of the x-axis dtype = int ymin, ymax: The minimum and maximum value of the y-axis dtype = int plot: "quiver", "stream" allowing for the overlay of quiver or streamline plot Returns: Image : AxesImage """ a, d = np.gradient(cbar) cbar2 = -a plt.contourf(x_axis, y_axis, cbar2, int_pol, cmap=colorMap) cbar2_tag = plt.colorbar() plt.xlabel(x_label) plt.ylabel(y_label) cbar2_tag.set_label(cbar_label, rotation=270) E = np.gradient(cbar) E = E/np.sqrt(E[0]**2 + E[1]**2) if plot is not None: if plot == "quiver": print("\nQuiver plot:") plt.quiver(x_axis, y_axis, E[1], E[0]) if plot == "stream": print("\nStreamline Plot:") plt.streamplot(x_axis, y_axis, -E[1], -E[0], color='black') if xmin is not None and xmax is not None: plt.xlim(xmin, xmax) if ymin is not None and ymax is not None: plt.ylim(ymin, ymax) plt.show() def multiline(x_axis, y_axis, x_label, y_label, l_names, l_title, y_max, loca=None, anchor_x=None, anchor_y=None): """Allows for ANY number of line to be plotted on the same graph, with the ability to label every line. Parameters: x_axis, y_axis: Takes in lists of lists of x and y data points x_label, y_label: The x and y label of the graph l_names: Takes in lists of strings as the corresponding label of each line l_title: Title of the legend dtype = string y_max: Maximum value of the y axis dtype = float loca: Location of the legend box anchor_x, anchor_y: Coordinates for which the legend box is anchored Returns: Image : AxesImage """ l_labels = l_names*len(y_axis) fig = plt.figure() ax = fig.add_subplot(111) for i, (y_axis, l_labels) in enumerate(zip(y_axis, l_labels)): ax.plot(x_axis, y_axis, label=l_labels) ax.legend(title=l_title, ncol=3) if loca is not None and anchor_x is not None and anchor_y is not None: ax.legend(title=l_title, bbox_to_anchor=(anchor_x, anchor_y), loc=loca, ncol=3) ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.set_ylim(0, y_max) plt.show() def capacitor_bc(v, V): """Sets the boundary condition for a parallel plate capacitor Parameters: V : ndarray of a grid, will only be called within gauss_solver or jacobi_solver v : Potential difference between plates Returns: Updated ndarray of the initial grid taken into account of BC """ V[16, 10:31] = -v # here V[y, x] because Python is weird V[25, 10:31] = v return V def linecharge_bc(v, V): """Sets the boundary condition for a line charge Parameters: V : ndarray of a grid, will only be called within gauss_solver or jacobi_solver v : Potential difference of the line charge Returns: Updated ndarray of the initial grid taken into account of BC """ V[-1, 0:-1] = v return V def gauss_solver(a, d, h, v, BC): """An iterative solver for the capacitor, works for both Gauss-Seidel and Jacobi methods. It allows for the input of different boundary conditions which runs within the function. Parameters: a : Length of grid d : Height of grid h : Grid density v : Potential difference BC : A boundary condition function Returns: X, Y, Z : Lists of meshgrid coordinates and potential(V) """ M = np.zeros(shape=(int((a/h)+1), int((d/h)+1))) max_iter = 20000 M1 = copy(M) count = 0 while count < max_iter: count += 1 M2 = copy(M1) for i in range(1, (M.shape[0]-1)): for j in range(1, (M.shape[1]-1)): # top left if i == j == 0: M1[i, j] = 0.5*(M1[i+1, j]+M1[i, j+1]) # top edge no corners elif i == 0 and j > 0 and j < (M.shape[1]-1): M1[i, j] = (1/3)*(M1[i, j-1]+M1[i, j+1]+M1[i+1, j]) # top right elif i == 0 and j == (M.shape[1]-1): M1[i, j] = 0.5*(M1[i+1, j]+M1[i, j-1]) # right edge no corners elif j == (M.shape[1]-1) and i > 0 and i < (M.shape[0]-1): M1[i, j] = (1/3)*(M1[i-1, j]+M1[i+1, j]+M1[i, j-1]) # bot right elif i == (M.shape[0]-1) and j == (M.shape[1]-1): M1[i, j] = 0.5*(M1[i-1, j]+M1[i, j-1]) # bot edge elif i == (M.shape[0]-1) and j > 0 and j < (M.shape[1]-1): M1[i, j] = (1/3)*(M1[i, j-1]+M1[i, j+1]+M1[i-1, j]) # bot left no corners elif i == (M.shape[0]-1) and j == 0: M1[i, j] = 0.5*(M1[i-1, j]+M1[i, j+1]) # left edge elif j == 0 and i > 0 and i < (M.shape[0]-1): M1[i, j] = (1/3)*(M1[i-1, j]+M1[i+1, j]+M1[i, j+1]) else: M1[i, j] = 0.25*(M1[i-1, j]+M1[i+1, j]+M1[i, j-1]+M1[i, j+1]) BC(v, M1) if np.allclose(M1, M2, rtol=1e-3): print("\nConvergence occurs after {} iterations.".format(count)) break else: sys.stdout.write("\r"+"Convergence did not happen before {} iterations.".format(count)) x = np.linspace(0, a, int(a/h)+1) y = np.linspace(0, d, int(d/h)+1) return x, y, M1 def jacobi_solver(a, d, h, v, BC): """An iterative solver for the capacitor, works for both Gauss-Seidel and Jacobi methods. It allows for the input of different boundary conditions which runs within the function. Parameters: a : Length of grid d : Height of grid h : Grid density v : Potential difference BC : A boundary condition function Returns: X, Y, Z : Lists of meshgrid coordinates and potential(V) """ M = np.zeros(shape=(int((a/h)+1), int((d/h)+1))) max_iter = 20000 M1 = copy(M) count = 0 while count < max_iter: count += 1 M2 = copy(M1) for i in range(1, (M.shape[0]-1)): for j in range(1, (M.shape[1]-1)): # top left if i == j == 0: M1[i, j] = 0.5*(M2[i+1, j]+M2[i, j+1]) # top edge no corners elif i == 0 and j > 0 and j < (M.shape[1]-1): M1[i, j] = (1/3)*(M2[i, j-1]+M2[i, j+1]+M2[i+1, j]) # top right elif i == 0 and j == (M.shape[1]-1): M1[i, j] = 0.5*(M2[i+1, j]+M2[i, j-1]) # right edge no corners elif j == (M.shape[1]-1) and i > 0 and i < (M.shape[0]-1): M1[i, j] = (1/3)*(M2[i-1, j]+M2[i+1, j]+M2[i, j-1]) # bot right elif i == (M.shape[0]-1) and j == (M.shape[1]-1): M1[i, j] = 0.5*(M2[i-1, j]+M2[i, j-1]) # bot edge no corners elif i == (M.shape[0]-1) and j > 0 and j < (M.shape[1]-1): M1[i, j] = (1/3)*(M2[i, j-1]+M1[i, j+1]+M2[i-1, j]) # bot left elif i == (M.shape[0]-1) and j == 0: M1[i, j] = 0.5*(M2[i-1, j]+M2[i, j+1]) # left edge no corners elif j == 0 and i > 0 and i < (M.shape[0]-1): M1[i, j] = (1/3)*(M2[i-1, j]+M2[i+1, j]+M2[i, j+1]) else: M1[i, j] = 0.25*(M2[i-1, j]+M2[i+1, j]+M2[i, j-1]+M2[i, j+1]) BC(v, M1) if np.allclose(M1, M2, rtol=1e-3): print("\nConvergence occurs after {} iterations.".format(count)) break else: sys.stdout.write("\r"+"Convergence did not happen before {} iterations.".format(count)) x = np.linspace(0, a, int(a/h)+1) y = np.linspace(0, d, int(d/h)+1) return x, y, M1 def heat_eq(T, bc, temp_i, temp_f): """Solving the heat equation of a rod for a general boundary condition by using the backwards-Euler method. Since the matrix is tridiagonal, a sparse matrix is precomputed to save run time by not having to compute the elements with 0 value. Parameters: T : The maximum run time for which dt is also calculated. bc : A specific boundary condition that's suited for the situation temp_i : The initial temperature of the start of the rod temp_f : The initial temperature of the tail of the rod Returns: x : Length of the rod segmented up into points and stored in a list. u : The temperature of the rod at time T. """ L, Nx, alpha = 0.5, 99, 59/(450*7900) x = np.linspace(0, L, Nx+1) t = np.linspace(0, T, Nx+1) dx, dt = x[1]-x[0], t[1]-t[0] u, u_n = np.zeros(Nx+1), np.zeros(Nx+1) K = alpha*dt/(dx**2) # Initiate sparse matrix and RHS solution of equation main = np.zeros(Nx+1) b = np.zeros(Nx+1) lower, upper = np.zeros(Nx), np.zeros(Nx) # Precompute sparse matrix main[:] = 1 + 2*K lower[:] = -K upper[:] = -K # Insert boundary conditions main, lower, upper = bc(main, lower, upper, K) A = diags(diagonals=[main, lower, upper], offsets=[0, -1, 1], shape=(Nx+1, Nx+1), format='csr') # print(A.todense()) # Check that A is correct # Set initial condition for i in range(0, Nx+1): u_n[i] = 20 for n in range(0, T): b = u_n b[0] = temp_i # bc start of rod b[-1] = temp_f # bc end of rod u[:] = spsolve(A, b) u_n[:] = u return x, u def wireframe(x_axis, y_axis, cbar, offset, rs, cs): fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(x_axis, y_axis, cbar, color='red', rstride=rs, cstride=cs,linewidth=0.5) ax.set_xlabel("x(m)") ax.set_ylabel("y(m)") ax.set_zlabel("$\phi (x,y)$", rotation = 180) plt.show() def wire_anal(x, y, L, N): series = 0 if N > 114: for n in range(1, N): series += 4000*np.sin(((2*n)-1)*np.pi*x/L)*np.exp(((2*n)-1)*np.pi*((y/L)-1))/(((2*n)-1)*np.pi) else: for n in range(1, N): series += (4000/(((2*n)-1)*np.pi))*np.sin(((2*n)-1)*np.pi*x/L)*(np.sinh(((2*n)-1)*np.pi*y/L))/(np.sinh(np.pi*((2*n)-1))) return series def heat_anal(x, t, L, N): k = 59/(450*7900) T_0 = 20 # u(x,0) = 0, u(0,0) = 0 series = 0 for n in range(1, N): series += (4*T_0/(((2*n)-1)*np.pi))*(np.sin((((2*n)-1)*x*np.pi)/L))*np.exp((-k*t*(np.pi*((2*n)-1)/L)**2)) return series def choice_a(): """Handles choice b in MainMenu()""" t1 = clock() X, Y, V = gauss_solver(50, 50, 1, 1000, linecharge_bc) print("\n\nPotential") potential(X, Y, V, "x(cm)", "y(cm)", "Potential(V)", 30, cm.jet, 0, 50, 0, 50, "stream") t1 = clock() - t1 print("Took {}(s)".format(t1)) t1 = clock() print("\n\nElectric field") e_field(X, Y, V, "x(cm)", "y(cm)", "Electric field", 30, cm.jet, 0, 50, 0, 50, "stream") t1 = clock() - t1 print("Took {}(s)".format(t1)) Y = 0.25 X = np.linspace(0, 50, 101) u0 = wire_anal(X, Y, 50, 40000) X, Y, V = gauss_solver(50, 50, 0.5, 1000, linecharge_bc) print("\n\nDifference between analytical Fourier series and GS solution.") multiline(X, [u0, V[26,:]], "y(cm)", "$\phi (x, y=0.25)$", ["Analytical", "GS"], "Method", 60, 'upper center', 0.5, 1.1) X = Y = np.linspace(0, 0.5, 101) X, Y = np.meshgrid(X, Y) Z = wire_anal(X, Y, 0.5, 21) print("\n\nGibbs phenomenon") wireframe(X, Y, Z, 0, 3, 3) def choice_b(): """Handles choice b in MainMenu()""" t1 = clock() print("\n\nPotential overlayed with quiver plot using Gauss-Seidel method") X, Y, V = gauss_solver(40, 40, 1, 1000, capacitor_bc) potential(X, Y, V, "x(cm)", "y(cm)", "Potential(V)", 30, cm.jet, 0, 40, 0, 40, "quiver") t1 = clock() - t1 print("Took {}(s)".format(t1)) t2 = clock() potential(X, Y, V, "x(cm)", "y(cm)", "Potential(V)", 25, cm.hot, 0, 40, 0, 40, "stream") t2 = clock() - t2 print("Took {}(s)".format(t2)) t1 = clock() print("\n\nElectric field overlayed with streamline plot using Gauss-Seidel method") e_field(X, Y, V, "x(cm)", "y(cm)", "Electric field(V/m)", 30, cm.hot, 0, 40,0,40, "stream") t1 = clock() - t1 print("Took {}(s)".format(t1)) t3 = clock() print("\n\nPotential overlayed with quiver plot using Jacobi method") X, Y, V = jacobi_solver(40, 40, 1, 1000, capacitor_bc) potential(X, Y, V, "x(cm)", "y(cm)", "Potential(V)", 30, cm.jet, 0, 40, 0, 40, "quiver") t3 = clock() - t3 print("Took {}(s)".format(t3)) t4 = clock() print("\n\nElectric field overlayed with streamline plot using Jacobi method") e_field(X, Y, V, "x(cm)", "y(cm)", "Electric field(V/m)", 25, cm.hot, 0, 40, 0, 40, "stream") t4 = clock() - t4 print("Took {}(s)".format(t4)) def choice_d(): """Handles choice d in MainMenu()""" x, u0 = heat_eq(1, both_ice, 0, 0) sols0 = heat_anal(x, 1, 0.5, 1000) k0 = np.abs(sum(sols0-u0))/len(sols0) x, u = heat_eq(50, both_ice, 0, 0) sols = heat_anal(x, 50, 0.5, 1000) k = np.abs(sum(sols-u))/len(sols) x, u2 = heat_eq(150, both_ice, 0, 0) sols2 = heat_anal(x, 150, 0.5, 1000) k2 = np.abs(sum(sols2-u2))/len(sols2) x, u3 = heat_eq(250, both_ice, 0, 0) sols3 = heat_anal(x, 250, 0.5, 1000) k3 = np.abs(sum(sols3-u3))/len(sols3) x, u4 = heat_eq(350, both_ice, 0, 0) sols4 = heat_anal(x, 350, 0.5, 1000) k4 = np.abs(sum(sols4-u4))/len(sols4) x, u5 = heat_eq(450, both_ice, 0, 0) sols5 = heat_anal(x, 450, 0.5, 1000) k5 = np.abs(sum(sols5-u5))/len(sols5) x, u6 = heat_eq(550, both_ice, 0, 0) sols6 = heat_anal(x, 550, 0.5, 1000) k6 = np.abs(sum(sols6-u6))/len(sols6) x, u7 = heat_eq(650, both_ice, 0, 0) sols7 = heat_anal(x, 650, 0.5, 1000) k7 = np.abs(sum(sols7-u7))/len(sols7) x, u8 = heat_eq(750, both_ice, 0, 0) sols8 = heat_anal(x, 750, 0.5, 1000) k8 = np.abs(sum(sols8-u8))/len(sols8) x, u9 = heat_eq(1000, both_ice, 0, 0) sols9 = heat_anal(x, 1000, 0.5, 1000) k9 = np.abs(sum(sols9-u9))/len(sols9) x, u10 = heat_eq(1200, both_ice, 0, 0) sols10 = heat_anal(x, 1200, 0.5, 1000) k10 = np.abs(sum(sols10-u10))/len(sols10) x, u11 = heat_eq(1400, both_ice, 0, 0) sols11 = heat_anal(x, 1400, 0.5, 1000) k11 = np.abs(sum(sols11-u11))/len(sols11) multiline(x, [u0, u, u2, u3, u4, u5, u6, u7, u8], "Length(m)", "Temperature($^{\circ}$C)", [1, 50, 150, 250, 350, 450, 550, 650, 750], "Time(s)", 21, 'upper center', 0.5, 1.1) print("\n\nAbsolute error between analytical Fourier series solution and GS solution.") a = [1, 50, 150, 250, 350, 450, 550, 650, 750, 1000, 1200, 1400] b = [k0, k, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11] plt.plot(a, b, 'ro-') plt.xlabel("Total Time(s)") plt.ylabel("Absolute Error") def choice_e(): """Handles choice d in MainMenu()""" x, u0 = heat_eq(1, adiabatic, 1000, 20) x, u = heat_eq(50, adiabatic, 1000, 20) x, u2 = heat_eq(150, adiabatic, 1000, 20) x, u3 = heat_eq(350, adiabatic, 1000, 20) x, u4 = heat_eq(750, adiabatic, 1000, 20) x, u5 = heat_eq(4000, adiabatic, 1000, 20) x, u6 = heat_eq(10000, adiabatic, 1000, 20) x, u7 = heat_eq(20000, adiabatic, 1000, 20) x, u8 = heat_eq(50000, adiabatic, 1000, 20) multiline(x, [u0, u, u2, u3, u4, u5, u6, u7, u8], "Length(m)", "Temperature(Degree Celsius)", [1, 50, 150, 350, 750, 4000, "$1x10^{4}$", "$2x10^{4}$", "$5x10^{4}$"], "Time(s)", 1100, 'upper center', 0.5, 1.1) def choice_f(): """Handles choice d in MainMenu()""" x, u0 = heat_eq(1, hot_cold, 1000, 0) x, u = heat_eq(25, hot_cold, 1000, 0) x, u2 = heat_eq(100, hot_cold, 1000, 0) x, u3 = heat_eq(200, hot_cold, 1000, 0) x, u4 = heat_eq(300, hot_cold, 1000, 0) x, u5 = heat_eq(400, hot_cold, 1000, 0) x, u6 = heat_eq(500, hot_cold, 1000, 0) x, u7 = heat_eq(600, hot_cold, 1000, 0) x, u8 = heat_eq(700, hot_cold, 1000, 0) multiline(x, [u0, u, u2, u3, u4, u5, u6, u7, u8], "Length(m)", "Temperature(Degree Celsius)", [1, 25, 100, 200, 300, 400, 500, 600, 700], "Time(s)", 1100) def MainMenu(): choice = '0' while choice != 'q': print("\n%s\nData Analysis\n%s" % (13*'=', 13*'=')) print("(a)Solves Laplace's equation for a line charge.") print("(b)Calculate the potential and electric field within and around", "a parallel plate capacitor") print("(c)Investigate field configuration as a/d becomes large.") print("Temperature distribution plotted at different times:") print("(d)Starting with ice at both ends of poker, and compared with", "its analytical Fourier series solution.") print("(e)with no heat loss from the far end of the poker") print("(f)with far end of poker immersed in a block of ice at 0*C.") print("(g)\n(q)") choice = (input("Please enter your choice [a-q] : ").lower()) if choice == 'a': choice_a() elif choice == 'b': choice_b() elif choice == 'd': choice_d() elif choice == 'e': choice_e() elif choice == 'f': choice_f() elif choice != 'q': print("Invalid choice. Please try again.") MainMenu()
[ "dn16018@bristol.ac.uk" ]
dn16018@bristol.ac.uk
5ced071bc4465f0c1a0fcf55338b9614fdb8f92c
661c86ff31d4e74ba2e7d868117e4be46f6500aa
/0148 Sort List.py
808ee7005e5a85f56f1561fe12139701180c2689
[]
no_license
Desolve/LeetCode
0f6bf95ae20bc034c5dae6f51aed6d87f2c8a135
145dda3a75a748dc2509fdcbb55327a5cbc945f2
refs/heads/master
2021-06-03T14:37:10.390154
2020-07-30T15:31:12
2020-07-30T15:31:12
143,541,878
2
1
null
null
null
null
UTF-8
Python
false
false
1,162
py
# Adapted from jeantimex # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def sortList(self, head: ListNode) -> ListNode: if not head or not head.next: return head prev, slow, fast = None, head, head while fast and fast.next: prev = slow slow = slow.next fast = fast.next.next # Clear the first half's last node's next to NIL prev.next = None # n1 : head to prev, n2: slow to the last node n1 = self.sortList(head) n2 = self.sortList(slow) return self.merge(n1, n2) def merge(self, n1: ListNode, n2: ListNode) -> ListNode: n = ListNode(0) ite = n while n1 and n2: if n1.val < n2.val: ite.next = n1 n1 = n1.next else: ite.next = n2 n2 = n2.next ite = ite.next if n1: ite.next = n1 if n2: ite.next = n2 return n.next
[ "fp60403@gmail.com" ]
fp60403@gmail.com
ba99bdbe64af5381bc3553611178b6160490ccfd
c02a4f10cee910f48a52cfd08cf7a05902f284f1
/api/serializers/update_profile.py
b9ee6e8937eb87087e01389f2f4a28d450114a67
[]
no_license
shiro102/canvas-gamification
6d984eae1a48465ea740fac42daeef64acc7de3b
7818889dc51520e03ad69176cf2ce6550b9948ba
refs/heads/master
2023-06-12T18:11:05.235574
2021-06-30T21:26:28
2021-06-30T21:26:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,144
py
from rest_framework.validators import UniqueValidator from accounts.models import MyUser from rest_framework import serializers import api.error_messages as ERROR_MESSAGES class UpdateProfileSerializer(serializers.ModelSerializer): class Meta: model = MyUser fields = ['id', 'first_name', 'last_name', 'email'] email = serializers.EmailField( required=True, error_messages=ERROR_MESSAGES.EMAIL.ERROR_MESSAGES, validators=[UniqueValidator( queryset=MyUser.objects.all(), message=ERROR_MESSAGES.EMAIL.UNIQUE, )] ) first_name = serializers.CharField( required=True, error_messages=ERROR_MESSAGES.FIRSTNAME.ERROR_MESSAGES, ) last_name = serializers.CharField( required=True, error_messages=ERROR_MESSAGES.LASTNAME.ERROR_MESSAGES, ) def create(self, validated_data): user = self.context['request'].user user.first_name = validated_data['first_name'] user.last_name = validated_data['last_name'] user.email = validated_data['email'] user.save() return user
[ "noreply@github.com" ]
noreply@github.com
0b0f9eb22c4e7ab366c091e291c1f8854f5f5aa4
8e257ec5a47699f6c76f558f98e1edd536159a18
/snalla/in-class/2014-09-29 JSON & XML/ModelForms sample solution/sio/views.py
3dce92dde0245c7e64348686140e269b84231631
[]
no_license
nshikha/437
6e854f5c86123788c34965bc5d60ae9fa6f98b2d
35b984784b778815a2b4ffd95e7c1c89011b9a8f
refs/heads/master
2021-01-25T03:20:19.011146
2014-12-28T06:11:56
2014-12-28T06:11:56
28,555,189
0
1
null
null
null
null
UTF-8
Python
false
false
2,248
py
from django.shortcuts import render from django.db import transaction from models import * from forms import * def make_view(request, messages=[], create_student_form=CreateStudentForm(), create_course_form=CreateCourseForm(), register_student_form=RegisterStudentForm()): context = { 'courses':Course.objects.all(), 'messages':messages, 'create_student_form':create_student_form, 'create_course_form':create_course_form, 'register_student_form':register_student_form, } return render(request, 'sio.html', context) def home(request): return make_view(request, []) @transaction.atomic def create_student(request): form = CreateStudentForm(request.POST) if not form.is_valid(): return make_view(request, create_student_form=form) new_student = Student(andrew_id=form.cleaned_data['andrew_id'], first_name=form.cleaned_data['first_name'], last_name=form.cleaned_data['last_name']) new_student.save() return make_view(request, ['Added %s'%new_student]) @transaction.atomic def create_course(request): form = CreateCourseForm(request.POST) if not form.is_valid(): return make_view(request, create_course_form=form) new_course = Course(course_number=request.POST['course_number'], course_name=request.POST['course_name'], instructor=request.POST['instructor']) new_course.save() return make_view(request, messages=['Added %s'%new_course]) @transaction.atomic def register_student(request): form = RegisterStudentForm(request.POST) if not form.is_valid(): return make_view(request, register_student_form=form) course = Course.objects.get(course_number=request.POST['course_number']) student = Student.objects.get(andrew_id=request.POST['andrew_id']) course.students.add(student) course.save() return make_view(request, messages=['Added %s to %s' % (student, course)]) # Complete this action to generate a JSON response containing all courses def get_all_courses(request): return None
[ "shikha@Shikhas-MacBook-Air.local" ]
shikha@Shikhas-MacBook-Air.local
dda9f5d4466062d8ad277427e9721c6efad04a50
e9d52dcf101aea0327c6b0d7e5244c91dfd62cf6
/spexy/bases/regular.py
ee2e4fd35ec1af3c62bc446c89556cd8cd5295c7
[]
no_license
drufat/spexy
6eba9f44a5539245486cd4ef8fefd24bdb7ade6a
53255009c1830501986afbf6688142ddefe17b9a
refs/heads/master
2021-09-18T19:51:47.313946
2018-07-19T05:09:02
2018-07-19T05:09:02
100,453,374
2
1
null
null
null
null
UTF-8
Python
false
false
2,976
py
# Copyright (C) 2010-2016 Dzhelil S. Rufat. All Rights Reserved. from spexy.bases import basesimp class BasesImp(basesimp.BasesImp): def module(self): return 'spexy.bases.circular' def numbers(self): N = self.N N0 = N + 1 N1 = N N0d = N N1d = N + 1 return (N0, N1), (N0d, N1d) def cells_index(self): half = self.imp.half i0 = lambda n: (n,) i1 = lambda n: (n, n + 1) id0 = lambda n: (n + half,) id1 = lambda n: (n - half, n + half) return (i0, i1), (id0, id1) def points(self, n): N = self.N return self.imp.points_regular_clamped(N, n) def bases(self, correct=True): imp = self.imp N, half = imp.S(self.N), imp.half def corr0(kappa): # primal boundary vertex if correct: return lambda N, n, x: kappa(N, n, x) * imp.correction0(N, n) return kappa # Bases Functions kappa0 = lambda n: lambda x: corr0(imp.kappa)(N, n, x) kappa1 = lambda n: lambda x: imp.kappa_star(N, n + half, x) kappad0 = lambda n: lambda x: imp.kappa(N, n + half, x) kappad1 = lambda n: lambda x: imp.kappa_star(N, n, x) # Gradients kappa0.grad = lambda n: lambda x: corr0(imp.kappa_grad)(N, n, x) kappad0.grad = lambda n: lambda x: imp.kappa_grad(N, n + half, x) return (kappa0, kappa1), (kappad0, kappad1) def boundary(self): pi = self.imp.pi return None, (0, pi) def run_kappa(): """ >>> from sympy.abc import x >>> (kappa0, kappa1), (kappad0, kappad1) = BasesImp(2, 'sym').bases() >>> kappa0(0)(x) cos(x)/2 + cos(2*x)/4 + 1/4 >>> kappa0(1)(x) -cos(2*x)/2 + 1/2 >>> kappa0(2)(x) -cos(x)/2 + cos(2*x)/4 + 1/4 >>> kappa1(0)(x) cos(x)/2 + 1/pi >>> kappa1(1)(x) -cos(x)/2 + 1/pi >>> kappad0(0)(x) sqrt(2)*cos(x)/2 + 1/2 >>> kappad0(1)(x) -sqrt(2)*cos(x)/2 + 1/2 >>> kappad1(0)(x) sqrt(2)*cos(x)/2 + cos(2*x)/2 + 1/pi >>> kappad1(1)(x) -cos(2*x)/2 + 1/pi >>> kappad1(2)(x) -sqrt(2)*cos(x)/2 + cos(2*x)/2 + 1/pi """ pass def run(N): """ >>> run(1) zero-form [1, 0] [0, 1] one-form [1] dual zero-form [1] dual one-form [1, 0] [0, 1] >>> run(2) zero-form [1, 0, 0] [0, 1, 0] [0, 0, 1] one-form [1, 0] [0, 1] dual zero-form [1, 0] [0, 1] dual one-form [1, 0, 0] [0, 1, 0] [0, 0, 1] >>> run(3) zero-form [1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 1, 0] [0, 0, 0, 1] one-form [1, 0, 0] [0, 1, 0] [0, 0, 1] dual zero-form [1, 0, 0] [0, 1, 0] [0, 0, 1] dual one-form [1, 0, 0, 0] [0, 1, 0, 0] [0, 0, 1, 0] [0, 0, 0, 1] """ from spexy.bases.symintegrals import run_integrals run_integrals(BasesImp)(N)
[ "drufat@caltech.edu" ]
drufat@caltech.edu
27fa882eea596627bf8a09a59032bd37ff44641b
1a64bbc7079bf2a916219821ddd8167e7fbeb37c
/nets/hourglass_segm.py
b47f8befd82aabf68b04872c493a848949458adb
[]
no_license
shuaiqi361/PointCenterNet_project
697da0dfc60046e4a0331e45a37cfb64fa7d17c1
16aa6a9aaaf94b5f4ca3073ff7646004d57ec64c
refs/heads/master
2023-03-04T21:27:37.087211
2021-02-18T22:42:58
2021-02-18T22:42:58
292,664,025
0
0
null
null
null
null
UTF-8
Python
false
false
7,024
py
import numpy as np import torch import torch.nn as nn class convolution(nn.Module): def __init__(self, k, inp_dim, out_dim, stride=1, with_bn=True): super(convolution, self).__init__() pad = (k - 1) // 2 self.conv = nn.Conv2d(inp_dim, out_dim, (k, k), padding=(pad, pad), stride=(stride, stride), bias=not with_bn) self.bn = nn.BatchNorm2d(out_dim) if with_bn else nn.Sequential() self.relu = nn.ReLU(inplace=True) def forward(self, x): conv = self.conv(x) bn = self.bn(conv) relu = self.relu(bn) return relu class residual(nn.Module): def __init__(self, k, inp_dim, out_dim, stride=1, with_bn=True): super(residual, self).__init__() self.conv1 = nn.Conv2d(inp_dim, out_dim, (3, 3), padding=(1, 1), stride=(stride, stride), bias=False) self.bn1 = nn.BatchNorm2d(out_dim) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_dim, out_dim, (3, 3), padding=(1, 1), bias=False) self.bn2 = nn.BatchNorm2d(out_dim) self.skip = nn.Sequential(nn.Conv2d(inp_dim, out_dim, (1, 1), stride=(stride, stride), bias=False), nn.BatchNorm2d(out_dim)) \ if stride != 1 or inp_dim != out_dim else nn.Sequential() self.relu = nn.ReLU(inplace=True) def forward(self, x): conv1 = self.conv1(x) bn1 = self.bn1(conv1) relu1 = self.relu1(bn1) conv2 = self.conv2(relu1) bn2 = self.bn2(conv2) skip = self.skip(x) return self.relu(bn2 + skip) # inp_dim -> out_dim -> ... -> out_dim def make_layer(kernel_size, inp_dim, out_dim, modules, layer, stride=1): layers = [layer(kernel_size, inp_dim, out_dim, stride=stride)] layers += [layer(kernel_size, out_dim, out_dim) for _ in range(modules - 1)] return nn.Sequential(*layers) # inp_dim -> inp_dim -> ... -> inp_dim -> out_dim def make_layer_revr(kernel_size, inp_dim, out_dim, modules, layer): layers = [layer(kernel_size, inp_dim, inp_dim) for _ in range(modules - 1)] layers.append(layer(kernel_size, inp_dim, out_dim)) return nn.Sequential(*layers) # key point layer def make_kp_layer(cnv_dim, curr_dim, out_dim): return nn.Sequential(convolution(3, cnv_dim, curr_dim, with_bn=False), nn.Conv2d(curr_dim, out_dim, (1, 1))) class kp_module(nn.Module): def __init__(self, n, dims, modules): super(kp_module, self).__init__() self.n = n curr_modules = modules[0] next_modules = modules[1] curr_dim = dims[0] next_dim = dims[1] # curr_mod x residual,curr_dim -> curr_dim -> ... -> curr_dim self.top = make_layer(3, curr_dim, curr_dim, curr_modules, layer=residual) self.down = nn.Sequential() # curr_mod x residual,curr_dim -> next_dim -> ... -> next_dim self.low1 = make_layer(3, curr_dim, next_dim, curr_modules, layer=residual, stride=2) # next_mod x residual,next_dim -> next_dim -> ... -> next_dim if self.n > 1: self.low2 = kp_module(n - 1, dims[1:], modules[1:]) else: self.low2 = make_layer(3, next_dim, next_dim, next_modules, layer=residual) # curr_mod x residual,next_dim -> next_dim -> ... -> next_dim -> curr_dim self.low3 = make_layer_revr(3, next_dim, curr_dim, curr_modules, layer=residual) self.up = nn.Upsample(scale_factor=2) def forward(self, x): up1 = self.top(x) down = self.down(x) low1 = self.low1(down) low2 = self.low2(low1) low3 = self.low3(low2) up2 = self.up(low3) return up1 + up2 class exkp(nn.Module): def __init__(self, n, nstack, dims, modules, cnv_dim=256, num_classes=80): super(exkp, self).__init__() self.nstack = nstack self.num_classes = num_classes curr_dim = dims[0] self.pre = nn.Sequential(convolution(7, 3, 128, stride=2), residual(3, 128, curr_dim, stride=2)) self.kps = nn.ModuleList([kp_module(n, dims, modules) for _ in range(nstack)]) self.cnvs = nn.ModuleList([convolution(3, curr_dim, cnv_dim) for _ in range(nstack)]) self.inters = nn.ModuleList([residual(3, curr_dim, curr_dim) for _ in range(nstack - 1)]) self.inters_ = nn.ModuleList([nn.Sequential(nn.Conv2d(curr_dim, curr_dim, (1, 1), bias=False), nn.BatchNorm2d(curr_dim)) for _ in range(nstack - 1)]) self.cnvs_ = nn.ModuleList([nn.Sequential(nn.Conv2d(cnv_dim, curr_dim, (1, 1), bias=False), nn.BatchNorm2d(curr_dim)) for _ in range(nstack - 1)]) # heatmap layers self.hmap = nn.ModuleList([make_kp_layer(cnv_dim, curr_dim, num_classes) for _ in range(nstack)]) for hmap in self.hmap: hmap[-1].bias.data.fill_(-2.19) # regression layers self.regs = nn.ModuleList([make_kp_layer(cnv_dim, curr_dim, 2) for _ in range(nstack)]) self.w_h_ = nn.ModuleList([make_kp_layer(cnv_dim, curr_dim, 2) for _ in range(nstack)]) # codes layers self.codes_ = nn.ModuleList([make_kp_layer(cnv_dim, curr_dim, 64) for _ in range(nstack)]) # for c in self.codes_: # c[-1].bias.data.fill_(1.0157) # np.exp(1/64.), average sum of all components self.relu = nn.ReLU(inplace=True) def forward(self, image): inter = self.pre(image) outs = [] for ind in range(self.nstack): kp = self.kps[ind](inter) cnv = self.cnvs[ind](kp) if self.training or ind == self.nstack - 1: outs.append([self.hmap[ind](cnv), self.regs[ind](cnv), self.w_h_[ind](cnv), self.codes_[ind](cnv)]) if ind < self.nstack - 1: inter = self.inters_[ind](inter) + self.cnvs_[ind](cnv) inter = self.relu(inter) inter = self.inters[ind](inter) return outs get_hourglass = \ {'large_hourglass': exkp(n=5, nstack=2, dims=[256, 256, 384, 384, 384, 512], modules=[2, 2, 2, 2, 2, 4]), 'small_hourglass': exkp(n=5, nstack=1, dims=[256, 256, 384, 384, 384, 512], modules=[2, 2, 2, 2, 2, 4])} if __name__ == '__main__': from collections import OrderedDict from utils.utils import count_parameters, count_flops, load_model def hook(self, input, output): print(output.data.cpu().numpy().shape) # pass net = get_hourglass['large_hourglass'] load_model(net, '../ckpt/pretrain/checkpoint.t7') count_parameters(net) count_flops(net, input_size=512) for m in net.modules(): if isinstance(m, nn.Conv2d): m.register_forward_hook(hook) with torch.no_grad(): y = net(torch.randn(2, 3, 512, 512).cuda()) # print(y.size())
[ "liukeyi1993@gmail.com" ]
liukeyi1993@gmail.com
cc5f5e52e6123e32c7894ce9542d460cf539b8e2
2b28530b3108f41cfa24a0d589149272ce734cb1
/Python/POO/Práctica_Parcial.py
096b3c23a78258d394af3188226da16ad50cb80b
[]
no_license
emMercado/TUP-Programacion1
e986a02ba07ab88a137803e8ce8750e09685a344
49cad7e4776b7f03e4ebd7afce831eaac8a8e104
refs/heads/main
2023-08-23T12:40:39.121779
2021-09-27T23:21:09
2021-09-27T23:21:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,625
py
import uuid from random import randint class Producto: def __init__(self,descripcion,codigoBarras,precio,proveedor): self.id = uuid.uuid4() self.descripcion = descripcion self.clave = randint(1,200) self.codigoBarras = codigoBarras self.precio = precio self.proveedor = proveedor def __str__(self): return '{0}, {1}, {2}, {3}, {4}, {5}'.format(self.id,self.descripcion,self.clave,self.codigoBarras,self.precio,self.proveedor) class Carrito: def __init__(self): self.listadoProductos = [] self.usuario = "" def cargarProducto(self,prod,cant): self.listadoProductos.append([prod,cant]) def mostrarProductos(self): i = 1 for Producto in self.listadoProductos: print(str(i) + " - " + str(Producto[0].descripcion) + "\n") i=i+1 class ListaProductos: def __init__(self): self.listadoProductos = [] def cargarProducto(self,prod): self.listadoProductos.append(prod) def mostrarProductos(self): i = 0 for Producto in self.listadoProductos: print(str(i) + " - " + str(Producto.descripcion) + "\n") i=i+1 # Manzana = Producto("Fruta",1231241231,120,"Moño Azul") # Carrito1 = Carrito() # Carrito1.cargarProducto(Manzana,2) # print(Carrito1.listadoProductos[0][0].descripcion) # print(Carrito1.listadoProductos[0][1]) # print(Carrito1.listadoProductos) menu = '''### MENÚ ### - 1 Agregar Producto - 2 Agregar al Carrito - 3 Salir''' opcion = True listadoProductosObjeto = ListaProductos() carritoProductosObjeto = Carrito() while opcion == True : print(menu) op = int (input("Ingrese una Opción\n")) if op == 1: descripcion = input("Descripcion\n") codigoBarras = int (input("Codigo de Barras\n")) precio = int (input("Precio\n")) proveedor = input("Proveedor\n") objetoTransitorio = Producto(descripcion, codigoBarras, precio, proveedor) listadoProductosObjeto.cargarProducto(objetoTransitorio) print("Se agrego el Producto",objetoTransitorio) #listadoProductosObjeto(Producto(descripcion,codigoBarras,precio,proveedor)) elif op == 2: listadoProductosObjeto.mostrarProductos() indice = int (input("Ingrese el numero del producto\n")) cantidad = int (input("cantidad\n")) productoTransitorio = listadoProductosObjeto.listadoProductos[indice] carritoProductosObjeto.cargarProducto(productoTransitorio,cantidad) carritoProductosObjeto.mostrarProductos() elif op == 3: opcion=False
[ "graciajorge.sist@gmail.com" ]
graciajorge.sist@gmail.com
833b2113b3ae2c9ad9deecfba486cc67eee08b41
21839bc2817a02d01180baff826b4ce5fe2789bd
/official/vision/beta/projects/yolo/modeling/backbones/darknet.py
5a76c7eefbc615657b563714da3e8a042c18257f
[ "Apache-2.0" ]
permissive
TrellixVulnTeam/TF-OD-API_BICS
1240fbf7cfbed73fe8633870c4eb237289dbd899
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
refs/heads/main
2023-06-24T23:46:19.756540
2021-07-26T05:27:12
2021-07-26T05:27:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,207
py
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Contains definitions of Darknet Backbone Networks. The models are inspired by ResNet, and CSPNet Residual networks (ResNets) were proposed in: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 Cross Stage Partial networks (CSPNets) were proposed in: [1] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh CSPNet: A New Backbone that can Enhance Learning Capability of CNN. arXiv:1911.11929 Darknets are used mainly for object detection in: [1] Joseph Redmon, Ali Farhadi YOLOv3: An Incremental Improvement. arXiv:1804.02767 [2] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv:2004.10934 """ import collections import tensorflow as tf from official.modeling import hyperparams from official.vision.beta.modeling.backbones import factory from official.vision.beta.projects.yolo.modeling.layers import nn_blocks class BlockConfig: """Class to store layer config to make code more readable.""" def __init__(self, layer, stack, reps, bottleneck, filters, pool_size, kernel_size, strides, padding, activation, route, dilation_rate, output_name, is_output): """Initializing method for BlockConfig. Args: layer: A `str` for layer name. stack: A `str` for the type of layer ordering to use for this specific level. reps: An `int` for the number of times to repeat block. bottleneck: A `bool` for whether this stack has a bottle neck layer. filters: An `int` for the output depth of the level. pool_size: An `int` for the pool_size of max pool layers. kernel_size: An `int` for convolution kernel size. strides: A `Union[int, tuple]` that indicates convolution strides. padding: An `int` for the padding to apply to layers in this stack. activation: A `str` for the activation to use for this stack. route: An `int` for the level to route from to get the next input. dilation_rate: An `int` for the scale used in dialated Darknet. output_name: A `str` for the name to use for this output. is_output: A `bool` for whether this layer is an output in the default model. """ self.layer = layer self.stack = stack self.repetitions = reps self.bottleneck = bottleneck self.filters = filters self.kernel_size = kernel_size self.pool_size = pool_size self.strides = strides self.padding = padding self.activation = activation self.route = route self.dilation_rate = dilation_rate self.output_name = output_name self.is_output = is_output def build_block_specs(config): specs = [] for layer in config: specs.append(BlockConfig(*layer)) return specs class LayerBuilder: """Layer builder class. Class for quick look up of default layers used by darknet to connect, introduce or exit a level. Used in place of an if condition or switch to make adding new layers easier and to reduce redundant code. """ def __init__(self): self._layer_dict = { 'ConvBN': (nn_blocks.ConvBN, self.conv_bn_config_todict), 'MaxPool': (tf.keras.layers.MaxPool2D, self.maxpool_config_todict) } def conv_bn_config_todict(self, config, kwargs): dictvals = { 'filters': config.filters, 'kernel_size': config.kernel_size, 'strides': config.strides, 'padding': config.padding } dictvals.update(kwargs) return dictvals def darktiny_config_todict(self, config, kwargs): dictvals = {'filters': config.filters, 'strides': config.strides} dictvals.update(kwargs) return dictvals def maxpool_config_todict(self, config, kwargs): return { 'pool_size': config.pool_size, 'strides': config.strides, 'padding': config.padding, 'name': kwargs['name'] } def __call__(self, config, kwargs): layer, get_param_dict = self._layer_dict[config.layer] param_dict = get_param_dict(config, kwargs) return layer(**param_dict) # model configs LISTNAMES = [ 'default_layer_name', 'level_type', 'number_of_layers_in_level', 'bottleneck', 'filters', 'kernal_size', 'pool_size', 'strides', 'padding', 'default_activation', 'route', 'dilation', 'level/name', 'is_output' ] CSPDARKNET53 = { 'list_names': LISTNAMES, 'splits': { 'backbone_split': 106, 'neck_split': 132 }, 'backbone': [ [ 'ConvBN', None, 1, False, 32, None, 3, 1, 'same', 'mish', -1, 1, 0, False ], [ 'DarkRes', 'csp', 1, True, 64, None, None, None, None, 'mish', -1, 1, 1, False ], [ 'DarkRes', 'csp', 2, False, 128, None, None, None, None, 'mish', -1, 1, 2, False ], [ 'DarkRes', 'csp', 8, False, 256, None, None, None, None, 'mish', -1, 1, 3, True ], [ 'DarkRes', 'csp', 8, False, 512, None, None, None, None, 'mish', -1, 2, 4, True ], [ 'DarkRes', 'csp', 4, False, 1024, None, None, None, None, 'mish', -1, 4, 5, True ], ] } CSPADARKNET53 = { 'list_names': LISTNAMES, 'splits': { 'backbone_split': 100, 'neck_split': 135 }, 'backbone': [ [ 'ConvBN', None, 1, False, 32, None, 3, 1, 'same', 'mish', -1, 1, 0, False ], [ 'DarkRes', 'residual', 1, True, 64, None, None, None, None, 'mish', -1, 1, 1, False ], [ 'DarkRes', 'csp', 2, False, 128, None, None, None, None, 'mish', -1, 1, 2, False ], [ 'DarkRes', 'csp', 8, False, 256, None, None, None, None, 'mish', -1, 1, 3, True ], [ 'DarkRes', 'csp', 8, False, 512, None, None, None, None, 'mish', -1, 2, 4, True ], [ 'DarkRes', 'csp', 4, False, 1024, None, None, None, None, 'mish', -1, 4, 5, True ], ] } LARGECSP53 = { 'list_names': LISTNAMES, 'splits': { 'backbone_split': 100, 'neck_split': 135 }, 'backbone': [ [ 'ConvBN', None, 1, False, 32, None, 3, 1, 'same', 'mish', -1, 1, 0, False ], [ 'DarkRes', 'csp', 1, True, 64, None, None, None, None, 'mish', -1, 1, 1, False ], [ 'DarkRes', 'csp', 3, False, 128, None, None, None, None, 'mish', -1, 1, 2, False ], [ 'DarkRes', 'csp', 15, False, 256, None, None, None, None, 'mish', -1, 1, 3, True ], [ 'DarkRes', 'csp', 15, False, 512, None, None, None, None, 'mish', -1, 2, 4, True ], [ 'DarkRes', 'csp', 7, False, 1024, None, None, None, None, 'mish', -1, 4, 5, True ], [ 'DarkRes', 'csp', 7, False, 1024, None, None, None, None, 'mish', -1, 8, 6, True ], [ 'DarkRes', 'csp', 7, False, 1024, None, None, None, None, 'mish', -1, 16, 7, True ], ] } DARKNET53 = { 'list_names': LISTNAMES, 'splits': { 'backbone_split': 76 }, 'backbone': [ [ 'ConvBN', None, 1, False, 32, None, 3, 1, 'same', 'leaky', -1, 1, 0, False ], [ 'DarkRes', 'residual', 1, True, 64, None, None, None, None, 'leaky', -1, 1, 1, False ], [ 'DarkRes', 'residual', 2, False, 128, None, None, None, None, 'leaky', -1, 1, 2, False ], [ 'DarkRes', 'residual', 8, False, 256, None, None, None, None, 'leaky', -1, 1, 3, True ], [ 'DarkRes', 'residual', 8, False, 512, None, None, None, None, 'leaky', -1, 2, 4, True ], [ 'DarkRes', 'residual', 4, False, 1024, None, None, None, None, 'leaky', -1, 4, 5, True ], ] } CSPDARKNETTINY = { 'list_names': LISTNAMES, 'splits': { 'backbone_split': 28 }, 'backbone': [ [ 'ConvBN', None, 1, False, 32, None, 3, 2, 'same', 'leaky', -1, 1, 0, False ], [ 'ConvBN', None, 1, False, 64, None, 3, 2, 'same', 'leaky', -1, 1, 1, False ], [ 'CSPTiny', 'csp_tiny', 1, False, 64, None, 3, 2, 'same', 'leaky', -1, 1, 2, False ], [ 'CSPTiny', 'csp_tiny', 1, False, 128, None, 3, 2, 'same', 'leaky', -1, 1, 3, False ], [ 'CSPTiny', 'csp_tiny', 1, False, 256, None, 3, 2, 'same', 'leaky', -1, 1, 4, True ], [ 'ConvBN', None, 1, False, 512, None, 3, 1, 'same', 'leaky', -1, 1, 5, True ], ] } DARKNETTINY = { 'list_names': LISTNAMES, 'splits': { 'backbone_split': 14 }, 'backbone': [ [ 'ConvBN', None, 1, False, 16, None, 3, 1, 'same', 'leaky', -1, 1, 0, False ], [ 'DarkTiny', 'tiny', 1, True, 32, None, 3, 2, 'same', 'leaky', -1, 1, 1, False ], [ 'DarkTiny', 'tiny', 1, True, 64, None, 3, 2, 'same', 'leaky', -1, 1, 2, False ], [ 'DarkTiny', 'tiny', 1, False, 128, None, 3, 2, 'same', 'leaky', -1, 1, 3, False ], [ 'DarkTiny', 'tiny', 1, False, 256, None, 3, 2, 'same', 'leaky', -1, 1, 4, True ], [ 'DarkTiny', 'tiny', 1, False, 512, None, 3, 2, 'same', 'leaky', -1, 1, 5, False ], [ 'DarkTiny', 'tiny', 1, False, 1024, None, 3, 1, 'same', 'leaky', -1, 1, 5, True ], ] } BACKBONES = { 'darknettiny': DARKNETTINY, 'darknet53': DARKNET53, 'cspdarknet53': CSPDARKNET53, 'altered_cspdarknet53': CSPADARKNET53, 'cspdarknettiny': CSPDARKNETTINY, 'csp-large': LARGECSP53, } @tf.keras.utils.register_keras_serializable(package='yolo') class Darknet(tf.keras.Model): """The Darknet backbone architecture.""" def __init__( self, model_id='darknet53', input_specs=tf.keras.layers.InputSpec(shape=[None, None, None, 3]), min_level=None, max_level=5, width_scale=1.0, depth_scale=1.0, csp_level_mod=(), activation=None, use_sync_bn=False, norm_momentum=0.99, norm_epsilon=0.001, dilate=False, kernel_initializer='glorot_uniform', kernel_regularizer=None, bias_regularizer=None, **kwargs): layer_specs, splits = Darknet.get_model_config(model_id) self._model_name = model_id self._splits = splits self._input_shape = input_specs self._registry = LayerBuilder() # default layer look up self._min_size = min_level self._max_size = max_level self._output_specs = None self._csp_level_mod = set(csp_level_mod) self._kernel_initializer = kernel_initializer self._bias_regularizer = bias_regularizer self._norm_momentum = norm_momentum self._norm_epislon = norm_epsilon self._use_sync_bn = use_sync_bn self._activation = activation self._kernel_regularizer = kernel_regularizer self._dilate = dilate self._width_scale = width_scale self._depth_scale = depth_scale self._default_dict = { 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, 'bias_regularizer': self._bias_regularizer, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epislon, 'use_sync_bn': self._use_sync_bn, 'activation': self._activation, 'dilation_rate': 1, 'name': None } inputs = tf.keras.layers.Input(shape=self._input_shape.shape[1:]) output = self._build_struct(layer_specs, inputs) super().__init__(inputs=inputs, outputs=output, name=self._model_name) @property def input_specs(self): return self._input_shape @property def output_specs(self): return self._output_specs @property def splits(self): return self._splits def _build_struct(self, net, inputs): endpoints = collections.OrderedDict() stack_outputs = [inputs] for i, config in enumerate(net): if config.output_name > self._max_size: break if config.output_name in self._csp_level_mod: config.stack = 'residual' config.filters = int(config.filters * self._width_scale) config.repetitions = int(config.repetitions * self._depth_scale) if config.stack is None: x = self._build_block( stack_outputs[config.route], config, name=f'{config.layer}_{i}') stack_outputs.append(x) elif config.stack == 'residual': x = self._residual_stack( stack_outputs[config.route], config, name=f'{config.layer}_{i}') stack_outputs.append(x) elif config.stack == 'csp': x = self._csp_stack( stack_outputs[config.route], config, name=f'{config.layer}_{i}') stack_outputs.append(x) elif config.stack == 'csp_tiny': x_pass, x = self._csp_tiny_stack( stack_outputs[config.route], config, name=f'{config.layer}_{i}') stack_outputs.append(x_pass) elif config.stack == 'tiny': x = self._tiny_stack( stack_outputs[config.route], config, name=f'{config.layer}_{i}') stack_outputs.append(x) if (config.is_output and self._min_size is None): endpoints[str(config.output_name)] = x elif (self._min_size is not None and config.output_name >= self._min_size and config.output_name <= self._max_size): endpoints[str(config.output_name)] = x self._output_specs = {l: endpoints[l].get_shape() for l in endpoints.keys()} return endpoints def _get_activation(self, activation): if self._activation is None: return activation return self._activation def _csp_stack(self, inputs, config, name): if config.bottleneck: csp_filter_scale = 1 residual_filter_scale = 2 scale_filters = 1 else: csp_filter_scale = 2 residual_filter_scale = 1 scale_filters = 2 self._default_dict['activation'] = self._get_activation(config.activation) self._default_dict['name'] = f'{name}_csp_down' if self._dilate: self._default_dict['dilation_rate'] = config.dilation_rate else: self._default_dict['dilation_rate'] = 1 # swap/add dilation x, x_route = nn_blocks.CSPRoute( filters=config.filters, filter_scale=csp_filter_scale, downsample=True, **self._default_dict)( inputs) dilated_reps = config.repetitions - self._default_dict['dilation_rate'] // 2 for i in range(dilated_reps): self._default_dict['name'] = f'{name}_{i}' x = nn_blocks.DarkResidual( filters=config.filters // scale_filters, filter_scale=residual_filter_scale, **self._default_dict)( x) for i in range(dilated_reps, config.repetitions): self._default_dict[ 'dilation_rate'] = self._default_dict['dilation_rate'] // 2 self._default_dict[ 'name'] = f"{name}_{i}_degridded_{self._default_dict['dilation_rate']}" x = nn_blocks.DarkResidual( filters=config.filters // scale_filters, filter_scale=residual_filter_scale, **self._default_dict)( x) self._default_dict['name'] = f'{name}_csp_connect' output = nn_blocks.CSPConnect( filters=config.filters, filter_scale=csp_filter_scale, **self._default_dict)([x, x_route]) self._default_dict['activation'] = self._activation self._default_dict['name'] = None return output def _csp_tiny_stack(self, inputs, config, name): self._default_dict['activation'] = self._get_activation(config.activation) self._default_dict['name'] = f'{name}_csp_tiny' x, x_route = nn_blocks.CSPTiny( filters=config.filters, **self._default_dict)( inputs) self._default_dict['activation'] = self._activation self._default_dict['name'] = None return x, x_route def _tiny_stack(self, inputs, config, name): x = tf.keras.layers.MaxPool2D( pool_size=2, strides=config.strides, padding='same', data_format=None, name=f'{name}_tiny/pool')( inputs) self._default_dict['activation'] = self._get_activation(config.activation) self._default_dict['name'] = f'{name}_tiny/conv' x = nn_blocks.ConvBN( filters=config.filters, kernel_size=(3, 3), strides=(1, 1), padding='same', **self._default_dict)( x) self._default_dict['activation'] = self._activation self._default_dict['name'] = None return x def _residual_stack(self, inputs, config, name): self._default_dict['activation'] = self._get_activation(config.activation) self._default_dict['name'] = f'{name}_residual_down' if self._dilate: self._default_dict['dilation_rate'] = config.dilation_rate if config.repetitions < 8: config.repetitions += 2 else: self._default_dict['dilation_rate'] = 1 x = nn_blocks.DarkResidual( filters=config.filters, downsample=True, **self._default_dict)( inputs) dilated_reps = config.repetitions - ( self._default_dict['dilation_rate'] // 2) - 1 for i in range(dilated_reps): self._default_dict['name'] = f'{name}_{i}' x = nn_blocks.DarkResidual( filters=config.filters, **self._default_dict)( x) for i in range(dilated_reps, config.repetitions - 1): self._default_dict[ 'dilation_rate'] = self._default_dict['dilation_rate'] // 2 self._default_dict[ 'name'] = f"{name}_{i}_degridded_{self._default_dict['dilation_rate']}" x = nn_blocks.DarkResidual( filters=config.filters, **self._default_dict)( x) self._default_dict['activation'] = self._activation self._default_dict['name'] = None self._default_dict['dilation_rate'] = 1 return x def _build_block(self, inputs, config, name): x = inputs i = 0 self._default_dict['activation'] = self._get_activation(config.activation) while i < config.repetitions: self._default_dict['name'] = f'{name}_{i}' layer = self._registry(config, self._default_dict) x = layer(x) i += 1 self._default_dict['activation'] = self._activation self._default_dict['name'] = None return x @staticmethod def get_model_config(name): name = name.lower() backbone = BACKBONES[name]['backbone'] splits = BACKBONES[name]['splits'] return build_block_specs(backbone), splits @property def model_id(self): return self._model_name @classmethod def from_config(cls, config, custom_objects=None): return cls(**config) def get_config(self): layer_config = { 'model_id': self._model_name, 'min_level': self._min_size, 'max_level': self._max_size, 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, 'bias_regularizer': self._bias_regularizer, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epislon, 'use_sync_bn': self._use_sync_bn, 'activation': self._activation, } return layer_config @factory.register_backbone_builder('darknet') def build_darknet( input_specs: tf.keras.layers.InputSpec, backbone_config: hyperparams.Config, norm_activation_config: hyperparams.Config, l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model: """Builds darknet.""" backbone_cfg = backbone_config.get() model = Darknet( model_id=backbone_cfg.model_id, min_level=backbone_cfg.min_level, max_level=backbone_cfg.max_level, input_specs=input_specs, dilate=backbone_cfg.dilate, width_scale=backbone_cfg.width_scale, depth_scale=backbone_cfg.depth_scale, activation=norm_activation_config.activation, use_sync_bn=norm_activation_config.use_sync_bn, norm_momentum=norm_activation_config.norm_momentum, norm_epsilon=norm_activation_config.norm_epsilon, kernel_regularizer=l2_regularizer) model.summary() return model
[ "hjkim@multiiq.com" ]
hjkim@multiiq.com
3a986721bc36d1ad9af86b993cfa8c6f23662c94
3839caecee5d5e237055b9968598a58dc1007885
/user/urls.py
eb6f4f2b815f21c06cb9aaf8ff832249fdbc7af6
[]
no_license
hwangseonu/Yazamoon
64869878e32a9366782c0f080c49e2f320720fb3
3defce29ff4ce09f3aae592c2d72afc6858172cc
refs/heads/master
2021-06-12T00:32:14.042680
2021-05-09T11:08:52
2021-05-09T11:08:52
134,995,863
0
0
null
2021-05-09T11:08:53
2018-05-26T21:29:29
Python
UTF-8
Python
false
false
245
py
from django.urls import path from .views import * urlpatterns = [ path('login', LoginView.as_view(), name='login'), path('logout', LogoutView.as_view(), name='logout'), path('register', RegisterView.as_view(), name='register'), ]
[ "hwangseonu12@naver.com" ]
hwangseonu12@naver.com
82e1baea688932692b1e89c3d367c760d949b168
683b4174a86d1aea5fb1fec53e27dfca43169356
/MPI/02.mpi_bcast.py
6c3664c44fe5952efd8c08da6ac0743acf94d457
[]
no_license
naufalhilmiaji/pds-mpi-thread
4be2ce0225973aa60cfe8a64fe519859a9f1bcc9
8e1bcbb8bc9f82fff39295528527c0be706264c0
refs/heads/master
2022-04-24T11:27:16.096416
2020-04-28T23:25:28
2020-04-28T23:25:28
259,584,358
0
0
null
null
null
null
UTF-8
Python
false
false
438
py
# import mpi4py from mpi4py import MPI # buat COMM comm = MPI.COMM_WORLD # dapatkan rank proses rank = comm.Get_rank() # dapatkan total proses berjalan size = comm.Get_size() pesan = 'HALO!' data = comm.bcast(pesan, root=0) # jika saya rank 0 maka saya akan melakukan broadscast if rank == 0: print('Broadcast data:', data+'\n') # jika saya bukan rank 0 maka saya menerima pesan else: print('Received data: "'+ data+'"')
[ "noreply@github.com" ]
noreply@github.com
e34bfa5f3d2bc242c5e1c36d1f5abb5517de2055
29e881915cb0132035e223dd2b97e0cbf44c2d12
/alluvian/commands/wizard/users.py
c076295c3b637b748c6e12830c8eb493e410d2d3
[ "MIT" ]
permissive
wrparker/alluvian-engine
37701d542e4485131fd178ded281c2af44f2b264
70a6227af3e977ecda2fc4a1752dd4703f206778
refs/heads/master
2023-06-21T22:56:11.323860
2020-09-20T21:45:57
2020-09-20T21:45:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
891
py
from alluvian.commands.mud_command import MudCommand import alluvian.globals as globs from players.level import Level from beautifultable import BeautifulTable class Users(MudCommand): key = 'users' aliases = [] level = Level.IMPL def execute(self): table = BeautifulTable() table.columns.header = ['Num', 'Name', 'IPAddr'] table.set_style(BeautifulTable.STYLE_COMPACT) table.columns.alignment = BeautifulTable.ALIGN_LEFT for pid, pl in globs.sessions.items(): try: table.rows.append([pid, pl.player.name, globs.mud.get_player_ip(pid)]) except AttributeError: table.rows.append([pid, 'Unidentified', globs.mud.get_player_ip(pid)]) msg = f'{table}\r\n\r\n' msg += f'{len(table.rows)} visible Sockets connected' self.msg(msg)
[ "rparker@indeed.com" ]
rparker@indeed.com
7ad1e1493d3ea5d4a3b73bb9d7556fba745c4024
11ea97128214750b403a150edfab70dc6207d970
/ia32doc/processors/c_processor.py
9652e5799613a984a0bf9827d571a769fdb01d7c
[ "MIT" ]
permissive
fengjixuchui/ia32-doc
5dc8a18dcc8fdbcb083433d3ed4aa8b3f3d35005
2336ac5d0cd8475656d8dbb56940d9b17d07295a
refs/heads/master
2022-05-17T02:00:49.877215
2022-04-16T10:34:36
2022-04-16T10:34:36
167,521,447
0
0
MIT
2022-04-16T10:34:37
2019-01-25T09:28:59
C
UTF-8
Python
false
false
25,075
py
from typing import Union, Tuple from .base import DocProcessor from ..doc import DocBase, DocGroup, DocDefinition, DocEnum, DocEnumField,\ DocBitfield, DocBitfieldField, DocStruct, DocStructField from ..doc import DOC_DEFINITION, DOC_STRUCT, DOC_BITFIELD, DOC_STRUCT_FIELD, DOC_ENUM_FIELD from ..text import DocText class DocCProcessor(DocProcessor): def __init__(self): super().__init__() # # Nesting level of union/struct typedefs. # self._typedef_nesting = 0 # # Bitfield position of last bitfield field. # self._bitfield_position = None # # Number of "Reserved" bitfield fields in current bitfield. # self._bitfield_reserved_count = None # # Make C++ code. # self._output_cpp = False def process_group(self, doc: DocGroup) -> None: if self.opt.group_comments and doc.long_description or self.opt.group_defgroup: self.print(f'/**') self.print_details(doc) if self.opt.group_defgroup: self.print(f' * @{{') self.print(f' */') self.process(doc.fields) if self.opt.group_defgroup: self.print(f'/**') self.print(f' * @}}') self.print(f' */') self.print(f'') def process_definition(self, doc: DocDefinition) -> None: # # We need to set "override_name_letter_case" explicitly, # because this method is also shared for DocEnumField. # name = self.make_name(doc, override_name_letter_case=self.opt.definition_name_letter_case) if self.opt.definition_comments and doc.long_description: # # Do not print empty line for the first element. # if next(filter(lambda field: isinstance(field, DocDefinition), doc.parent.fields)) != doc: self.print(f'') self.print(f'/**') self.print_details(doc) self.print(f' */') align = self.opt.align if self.opt.definition_no_indent else \ self.align_indent_adjusted value = f'0x{doc.value:08X}' if isinstance(doc.value, int) else \ f'{doc.value}' self.print(f'#define {name:<{align}} {value}') self.process(doc.fields) def process_enum(self, doc: DocEnum) -> None: if self.opt.enum_as_define: if self.opt.enum_comments and doc.long_description: self.print(f'/**') self.print_details(doc) # # Create defgroup for this group of definitions (enum). # if self.opt.group_defgroup: self.print(f' * @{{') self.print(f' */') for field in doc.fields: assert field.type in [ DOC_DEFINITION, DOC_ENUM_FIELD ] definition_field: DocDefinition = field # # DocDefinition and DocEnumField has the same interface, # so it can be hacked this way. # self.process_definition(definition_field) if self.opt.group_defgroup: self.print(f'/**') self.print(f' * @}}') self.print(f' */') else: self._typedef_nesting += 1 if self.opt.enum_comments and doc.long_description: self.print(f'/**') self.print_details(doc, treat_description_as_short=True) self.print(f' */') optional_curly_brace = ' {' if not self.opt.brace_on_next_line else '' optional_typedef = '' optional_name_begin = '' optional_name_end = '' if self._output_cpp: optional_name_begin = f' {self.make_name(doc)}' else: optional_typedef = 'typedef ' if self._typedef_nesting == 1 else '' optional_name_end = f' {self.make_name(doc)}' self.print(f'{optional_typedef}enum{optional_name_begin}{optional_curly_brace}') if self.opt.brace_on_next_line: self.print(f'{{') with self.indent: for field in doc.fields: assert field.type in [ DOC_DEFINITION, DOC_ENUM_FIELD ] getattr(self, f'process_{field.type}')(field) if self._typedef_nesting == 1: self.print(f'}}{optional_name_end};') else: name = self.make_name( doc, standalone=True, override_name_letter_case=self.opt.enum_field_name_letter_case ) self.print(f'}} {name};') self._typedef_nesting -= 1 self.print(f'') def process_enum_field(self, doc: DocEnumField) -> None: name = self.make_name(doc) if self.opt.enum_field_comments and doc.long_description: # # Do not print empty line for the first element. # if next(filter(lambda field: isinstance(field, DocEnumField), doc.parent.fields)) != doc: self.print(f'') self.print(f'/**') self.print_details(doc) self.print(f' */') value = f'0x{doc.value:08X}' self.print(f'{name:<{self.opt.align}} = {value},') self.process(doc.fields) def process_struct(self, doc: DocStruct) -> None: self._typedef_nesting += 1 if self.opt.struct_comments and doc.long_description: self.print(f'/**') self.print_details(doc, treat_description_as_short=True) self.print(f' */') if doc.tag == 'Packed': self.print(f'#pragma pack(push, 1)') has_name = doc.short_name or doc.long_name optional_curly_brace = ' {' if not self.opt.brace_on_next_line else '' optional_typedef = '' optional_name_begin = '' optional_name_end = '' if self._output_cpp: optional_name_begin = f' {self.make_name(doc)}' else: optional_typedef = 'typedef ' if self._typedef_nesting == 1 else '' optional_name_end = f' {self.make_name(doc)}' self.print(f'{optional_typedef}struct{optional_name_begin}{optional_curly_brace}') if self.opt.brace_on_next_line: self.print(f'{{') with self.indent: for field in doc.fields: assert field.type in [ DOC_STRUCT, DOC_BITFIELD, DOC_STRUCT_FIELD ] if isinstance(field, DocBitfield) and not self.opt.bitfield_create_struct: self.print(f'{self.make_size_type(field.size)[0]} {self.make_name(field, standalone=True)};') else: getattr(self, f'process_{field.type}')(field) if self._typedef_nesting == 1: assert has_name self.print(f'}}{optional_name_end};') else: if has_name: name = self.make_name( doc, standalone=True, override_name_letter_case=self.opt.struct_field_name_letter_case ) self.print(f'}} {name};') else: self.print(f'}};') if doc.tag == 'Packed': self.print(f'#pragma pack(pop)') self.print(f'') self._typedef_nesting -= 1 def process_struct_field(self, doc: DocStructField) -> None: if self.opt.struct_field_comments and doc.long_description: # # Do not print empty line for the first element. # if next(iter(doc.parent.fields)) != doc: self.print(f'') self.print(f'/**') self.print_details(doc) self.print(f' */') size_type, size_type_array = self.make_size_type(doc.size) self.print(f'{size_type} {self.make_name(doc)}{size_type_array};') if doc.fields: self.print(f'') self.process(doc.fields) def process_bitfield(self, doc: DocBitfield) -> None: if self.opt.bitfield_create_struct: self._typedef_nesting += 1 if self.opt.bitfield_comments and doc.long_description: self.print(f'/**') self.print_details(doc, treat_description_as_short=True) self.print(f' */') has_name = doc.short_name or doc.long_name optional_curly_brace = ' {' if not self.opt.brace_on_next_line else '' optional_typedef = '' optional_name_begin = '' optional_name_end = '' # # Bitfields at root level MUST have name. # if self._typedef_nesting == 1: assert has_name if self._output_cpp: optional_name_begin = f' {self.make_name(doc)}' else: optional_typedef = 'typedef ' if self._typedef_nesting == 1 else '' optional_name_end = f' {self.make_name(doc)}' # # Create union (only for named bitfields). # if has_name: self.print(f'{optional_typedef}union{optional_name_begin}{optional_curly_brace}') if self.opt.brace_on_next_line: self.print(f'{{') else: # # If the bitfield is unnamed, do not double-indent the struct. # self.indent.indent_next = 0 with self.indent: self.print(f'struct{optional_curly_brace}') if self.opt.brace_on_next_line: self.print(f'{{') with self.indent: assert self._bitfield_position is None assert self._bitfield_reserved_count is None self._bitfield_position = 0 self._bitfield_reserved_count = 0 last_field = None for field in doc.fields: if isinstance(field, DocBitfieldField): self.process_bitfield_field(field) last_field = field # # Check if we have to create last "Reserved" field. # last_bit_from, last_bit_to = last_field.bit if last_bit_to < doc.size and self.opt.bitfield_field_fill_with_reserved: self._bitfield_reserved_count += 1 bit_length = doc.size - self._bitfield_position long_name = f'{self.opt.bitfield_field_reserved_prefix}{self._bitfield_reserved_count}' self.print( f'{self.make_size_type(doc.size)[0]} {long_name:<{self.align_indent_adjusted}}: ' f'{bit_length};' ) self._bitfield_position = None self._bitfield_reserved_count = None self.print(f'}};') # # Print "Flags" member (only for named bitfields). # if has_name: self.print(f'') self.print(f'{self.make_size_type(doc.size)[0]} {self.opt.bitfield_field_flags_name};') # # End of the union (only for named bitfields). # if has_name: if self._typedef_nesting == 1: self.print(f'}}{optional_name_end};') else: name = self.make_name( doc, standalone=True, override_name_letter_case=self.opt.bitfield_field_name_letter_case ) self.print(f'}} {name};') self._typedef_nesting -= 1 else: # # Do not create unions. # for field in doc.fields: if isinstance(field, DocBitfieldField): self.process_bitfield_field(field) self.print(f'') def process_bitfield_field(self, doc: DocBitfieldField) -> None: bit_from, bit_to = doc.bit if self.opt.bitfield_create_struct: # # Handle "Reserved" fields. # if bit_from > self._bitfield_position: self._bitfield_reserved_count += 1 bit_length = bit_from - self._bitfield_position long_name = f'{self.opt.bitfield_field_reserved_prefix}{self._bitfield_reserved_count}' self.print( f'{self.make_size_type(doc.parent.size)[0]} {long_name:<{self.align_indent_adjusted}}: ' f'{bit_length};' ) self._bitfield_position = bit_from # # Print bit-field. # bit_length = bit_to - self._bitfield_position if self.opt.bitfield_field_comments and doc.long_description: if self._bitfield_position > 0: self.print(f'') self.print(f'/**') self.print_details(doc) self.print(f' */') self.print( f'{self.make_size_type(doc.parent.size)[0]} {self.make_name(doc):<{self.align_indent_adjusted}}: ' f'{bit_length};' ) # # Print definitions for fields. # bit_shift = bit_to - bit_from # # Print definitions only for NAMED bitfields. # if doc.parent.short_name or doc.parent.long_name: bitfield_field_with_define_any = any([ self.opt.bitfield_field_with_define_bit, self.opt.bitfield_field_with_define_flag, self.opt.bitfield_field_with_define_mask, self.opt.bitfield_field_with_define_get ]) if bitfield_field_with_define_any: part1 = self.make_name(doc.parent, override_name_letter_case=self.opt.definition_name_letter_case) part2 = self.make_name(doc, override_name_letter_case=self.opt.definition_name_letter_case) align = self.opt.align if self.opt.definition_no_indent else \ self.align_indent_adjusted # # !!! INCREDIBLY UGLY HACK !!! # Remove _REGISTER suffix. # if 'name_with_suffix' in doc.parent._doc: part1 = part1[0:(len(part1) - len(doc.parent._doc['name_with_suffix']) - 1)] if self.opt.bitfield_field_with_define_bit: definition = f'{part1}_{part2}{self.opt.bitfield_field_with_define_bit_suffix}' self.print(f'#define {definition:<{align}} {bit_from}') if self.opt.bitfield_field_with_define_flag: definition = f'{part1}_{part2}{self.opt.bitfield_field_with_define_flag_suffix}' self.print(f'#define {definition:<{align}} 0x{(((1 << bit_shift) - 1) << bit_from):02X}') if self.opt.bitfield_field_with_define_mask: definition = f'{part1}_{part2}{self.opt.bitfield_field_with_define_mask_suffix}' self.print(f'#define {definition:<{align}} 0x{((1 << bit_shift) - 1):02X}') if self.opt.bitfield_field_with_define_get: definition = f'{part1}_{part2}({self.opt.bitfield_field_with_define_get_macro_argument_name})' self.print( f'#define {definition:<{align}} ' f'((({self.opt.bitfield_field_with_define_get_macro_argument_name}) >> {bit_from}) & ' f'0x{((1 << bit_shift) - 1):02X})' ) self._bitfield_position = bit_to self.process(doc.fields) def process_struct(self, doc: DocStruct) -> None: self._typedef_nesting += 1 if self.opt.struct_comments and doc.long_description: self.print(f'/**') self.print_details(doc, treat_description_as_short=True) self.print(f' */') if doc.tag == 'Packed': self.print(f'#pragma pack(push, 1)') has_name = doc.short_name or doc.long_name optional_curly_brace = ' {' if not self.opt.brace_on_next_line else '' optional_typedef = 'typedef ' if self._typedef_nesting == 1 else '' self.print(f'{optional_typedef}struct{optional_curly_brace}') if self.opt.brace_on_next_line: self.print(f'{{') with self.indent: for field in doc.fields: assert field.type in [ DOC_DEFINITION, DOC_STRUCT, DOC_BITFIELD, DOC_STRUCT_FIELD ] if isinstance(field, DocBitfield) and not self.opt.bitfield_create_struct: self.print(f'{self.make_size_type(field.size)[0]} {self.make_name(field, standalone=True)};') else: getattr(self, f'process_{field.type}')(field) if self._typedef_nesting == 1: assert has_name self.print(f'}} {self.make_name(doc)};') else: if has_name: name = self.make_name( doc, standalone=True, override_name_letter_case=self.opt.struct_field_name_letter_case ) self.print(f'}} {name};') else: self.print(f'}};') if doc.tag == 'Packed': self.print(f'#pragma pack(pop)') self.print(f'') self._typedef_nesting -= 1 def process_struct_field(self, doc: DocStructField) -> None: if self.opt.struct_field_comments and doc.long_description: # # Do not print empty line for the first element. # if next(iter(doc.parent.fields)) != doc: self.print(f'') self.print(f'/**') self.print_details(doc) self.print(f' */') size_type, size_type_array = self.make_size_type(doc.size) self.print(f'{size_type} {self.make_name(doc)}{size_type_array};') if doc.fields: self.print(f'') self.process(doc.fields) # # # ================================================================================================================ # # # def print_details(self, doc: DocBase, treat_description_as_short=False) -> None: # # Handle group-related comments. # ------------------------------ # print_defgroup = False if isinstance(doc, DocGroup): print_defgroup = self.opt.group_defgroup if print_defgroup and doc.short_name: group_id = self.make_name(doc, long=False, raw=True) group_name = self.make_multiline_comment(doc.short_description, ' ') self.print(f' * @defgroup {group_id} \\') self.print(f' * {group_name}') # # Handle short/long descriptions. # ------------------------------- # print_short_description = getattr(self.opt, f'{doc.type}_short_description') and doc.short_description print_long_description = getattr(self.opt, f'{doc.type}_long_description') and doc.long_description print_access = getattr(self.opt, f'{doc.type}_access') and doc.access if doc.short_description_raw == doc.long_description_raw: if treat_description_as_short: print_long_description = False else: print_short_description = False # # Do not print @brief when @defgroup has been printed. # if print_short_description and not print_defgroup: access = f' <b>({doc.access})</b>' if print_access else '' short_description = self.make_multiline_comment(doc.short_description, '@brief ') self.print(f' * {short_description}{access}') if print_long_description: # # Delimit short_description and long_description with empty line. # Delimit @defgroup and long_description with empty line. # if print_short_description or print_defgroup: self.print(f' *') if isinstance(doc, DocBitfieldField) and self.opt.bitfield_field_long_description_with_bit_range: bit_from, bit_to = doc.bit bit_to -= 1 bit = f'[Bit {bit_from}] ' if bit_from == bit_to else \ f'[Bits {bit_to}:{bit_from}] ' long_description = self.make_multiline_comment(f'{bit}{doc.long_description}') else: long_description = self.make_multiline_comment(doc.long_description) self.print(f' * {long_description}') # # Handle detailed comments. # ------------------------- # print_note = getattr(self.opt, f'{doc.type}_note') and doc.note print_remarks = getattr(self.opt, f'{doc.type}_remarks') and doc.remarks print_see = getattr(self.opt, f'{doc.type}_see') and doc.see print_reference = getattr(self.opt, f'{doc.type}_reference') and doc.reference # # Delimit description (above) from details with empty line. # if any([print_note, print_remarks, print_see, print_reference]): self.print(f' *') if print_note: note = self.make_multiline_comment(doc.note, '@note ') self.print(f' * {note}') if print_remarks: remarks = self.make_multiline_comment(doc.remarks, '@remarks ') self.print(f' * {remarks}') # # see and reference can be either list (of strings) or string. # if print_see: if isinstance(doc.see, list): for see in doc.see: self.print(f' * @see {see}') else: self.print(f' * @see {doc.see}') if print_reference: if isinstance(doc.reference, list): for reference in doc.reference: self.print(f' * @see {reference} (reference)') else: self.print(f' * @see {doc.reference} (reference)') def make_name(self, doc: DocBase, long: bool=None, raw: bool=False, standalone: bool=False, override_name_letter_case: str=None) -> str: assert not (raw and standalone) # invalid combination if long is None: long = getattr(self.opt, f'{doc.type}_prefer_long_names') if getattr(self.opt, f'{doc.type}_prefer_alternative_names') and doc.alternative_name: result = doc.alternative_name else: if raw: result = doc.long_name_raw if long else doc.short_name_raw elif standalone: result = doc.long_name_standalone if long else doc.short_name_standalone else: result = doc.long_name if long else doc.short_name if override_name_letter_case is not None: letter_case = override_name_letter_case else: letter_case = getattr(self.opt, f'{doc.type}_name_letter_case') return DocText.convert_case(result, letter_case) def make_size_type(self, size) -> Union[str, Tuple[str, str]]: try: if size in [ 8, 16, 32, 64 ]: return getattr(self.opt, f'int_type_{size}'), '' elif size % 8 == 0: size_in_bytes = size // 8 return self.opt.int_type_8, f'[{size_in_bytes}]' else: raise Exception('Cannot represent size as type') except: import sys print(size, file=sys.stderr) raise @staticmethod def make_multiline_comment(text: str, prefix: str='', indent: int=1) -> str: # # Compute indent from the prefix (if provided). # if prefix: indent = len(prefix) + 1 # + 1 space ' * {...}' # ~~~~~~~~~~~~ ^ here text = prefix + text indent_text = ' ' * indent lines = DocText.wrap(text, 120) result = lines[0] if len(lines) > 1: result += f'\n' result += f'\n'.join([ f' *{indent_text}{line}' for line in lines[1:] ]) return result @property def align_indent_adjusted(self) -> int: return max(0, self.opt.align - self.indent.indent)
[ "w.benny@outlook.com" ]
w.benny@outlook.com
61c08f3149c26a08411c2cf3f2177844c8a9a0c1
f76e1898476d05ab3007a9b08c9737f131a838c5
/projeto_banco/sqllite.py
438814e15550e3ee741bf3637361d60af1f2f897
[]
no_license
bbnsdevelop/python_3_estudos
8f9f6ac51c751914bd48cd464a844691e13e23c8
d299177bf9ad0cb37577576b02776d31d768f9c9
refs/heads/main
2023-07-12T06:53:29.747184
2021-08-23T20:03:03
2021-08-23T20:03:03
335,139,653
0
0
null
null
null
null
UTF-8
Python
false
false
1,708
py
#!/usr/bin/python3 # coding: utf-8 from sqlite3 import connect, ProgrammingError, Row tabela_grupo = """ CREATE TABLE IF NOT EXISTS grupos ( id INTEGER PRIMARY KEY AUTOINCREMENT, descricao VARCHAR(30) ) """ tabela_contatos = """ CREATE TABLE IF NOT EXISTS contatos ( id INTEGER PRIMARY KEY AUTOINCREMENT, nome VARCHAR(50), tel VARCHAR(40), grupo_id INTEGER, FOREIGN KEY (grupo_id) REFERENCES grupos(id) ) """ insert_grupos = 'INSERT INTO grupos (descricao) VALUES (?)' select_grupos = 'SELECT id, descricao FROM grupos' insert_contatos = 'INSERT INTO contatos (nome, tel, grupo_id) VALUES (?, ?, ?)' select = """ SELECT grupos.descricao AS grupo, contatos.nome AS contato FROM contatos INNER JOIN grupos ON contatos.grupo_id = grupos.id ORDER BY grupo, contato """ try: conexao = connect(':memory:') conexao.row_factory = Row cursor = conexao.cursor() cursor.execute(tabela_grupo) cursor.execute(tabela_contatos) cursor.executemany(insert_grupos, (('Casa',), ('Trabalho',))) cursor.execute(select_grupos) grupos = {row['descricao']: row['id'] for row in cursor.fetchall()} contatos = ( ('Arthur', '456', grupos['Casa']), ('Paulo', '789', grupos['Casa']), ('Ângelo', '000', grupos['Trabalho']), ('Eduardo', '987', None), ('Yuri', '654', grupos['Casa']), ('Leonardo', '321', grupos['Casa']), ) cursor.executemany(insert_contatos, contatos) cursor.execute(select) for contato in cursor: print(contato['contato'], contato['grupo']) except ProgrammingError as e: print(f'Erro: {e.msg}')
[ "bbnsdevelop@gmail.com" ]
bbnsdevelop@gmail.com
d443767901ae0397302c5d783a2ee3b265d80304
0f0e724b73f1998bac96bea2c581271388192a2a
/Data_Analyst_basics/test.py
053d6897f7e065c0d6c9013cc6777830d2fdf503
[]
no_license
hkmangla/Data-Analyst-Nanodegree
572dad5e1493e0e50edb6e0f9fd6a02c0b78dbba
04f17a19c7005f0cc59fb5cae92ae1b585faa72e
refs/heads/master
2020-12-24T20:14:52.906927
2016-09-30T18:06:55
2016-09-30T18:06:55
58,628,693
0
0
null
null
null
null
UTF-8
Python
false
false
6,687
py
import unicodecsv from datetime import datetime as dt from collections import defaultdict import numpy as np with open('enrollments.csv', 'rb') as f: reader = unicodecsv.DictReader(f) enrollments = list(reader) with open('daily_engagement.csv', 'rb') as f: reader = unicodecsv.DictReader(f) daily_engagement = list(reader) with open('project_submissions.csv', 'rb') as f: reader = unicodecsv.DictReader(f) project_submissions = list(reader) def parse_date(date): if date == '': return None else: return dt.strptime(date, '%Y-%m-%d') def parse_maybe_int(i): if i == '': return None else: return int(i) for enrollment in enrollments: enrollment['cancel_date'] = parse_date(enrollment['cancel_date']) enrollment['days_to_cancel'] = parse_maybe_int(enrollment['days_to_cancel']) enrollment['is_canceled'] = enrollment['is_canceled'] == 'True' enrollment['is_udacity'] = enrollment['is_udacity'] == 'True' enrollment['join_date'] = parse_date(enrollment['join_date']) for engagement_record in daily_engagement: engagement_record['lessons_completed'] = int(float(engagement_record['lessons_completed'])) engagement_record['num_courses_visited'] = int(float(engagement_record['num_courses_visited'])) engagement_record['projects_completed'] = int(float(engagement_record['projects_completed'])) engagement_record['total_minutes_visited'] = float(engagement_record['total_minutes_visited']) engagement_record['utc_date'] = parse_date(engagement_record['utc_date']) for submission in project_submissions: submission['completion_date'] = parse_date(submission['completion_date']) submission['creation_date'] = parse_date(submission['creation_date']) def check_id(enrollments): unique_id = [] enrollment_num_unique_students = 0 for i in enrollments: if i['account_key'] not in unique_id: unique_id.append(i['account_key']) enrollment_num_unique_students += 1 return unique_id enrollment_num_rows = len(enrollments) engagement_num_rows = len(daily_engagement) submission_num_rows = len(project_submissions) enrollment_num_unique_students = len(check_id(enrollments)) engagement_num_unique_students = 0 unique_id = [] for i in daily_engagement: if i['acct'] not in unique_id: unique_id.append(i['acct']) engagement_num_unique_students += 1 i['account_key'] = i['acct'] del i['acct'] submission_num_unique_students = len(check_id(project_submissions)) v = 0 y = unique_id x = check_id(enrollments) for item in enrollments: iyt = item['account_key'] if iyt not in y and item['join_date'] != item['cancel_date']: v += 1 udacity_test_account = set() for enrollment in enrollments: if enrollment['is_udacity']: udacity_test_account.add(enrollment['account_key']) def remove_udacity_account(data): non_udacity = [] for datalist in data: if datalist['account_key'] not in udacity_test_account: non_udacity.append(datalist) return non_udacity non_udacity_enrollments = remove_udacity_account(enrollments) non_udacity_engagements = remove_udacity_account(daily_engagement) non_udacity_submissions = remove_udacity_account(project_submissions) paid_students = {} for enrollment in non_udacity_enrollments: if not enrollment['is_canceled'] or enrollment['days_to_cancel'] > 7: if enrollment['account_key'] not in paid_students or enrollment['join_date'] > paid_students[enrollment['account_key']]: paid_students[enrollment['account_key']] = enrollment['join_date'] def within_one_week(join_date, engagement_date): time_delta = engagement_date - join_date return time_delta.days < 7 and time_delta.days >=0 paid_engagement_in_first_week = [] for data in daily_engagement: if data['account_key'] in paid_students.keys(): if within_one_week(paid_students[data['account_key']],data['utc_date']): paid_engagement_in_first_week.append(data) def group_by_account(data,key): enagaged_by_account = defaultdict(list) for engaged in data: account_key = engaged[key] enagaged_by_account[account_key].append(engaged) return enagaged_by_account enagaged_by_account = group_by_account(paid_engagement_in_first_week,'account_key') def total_num_of_by_account(enagaged_by_account,key): total_minutes_by_account = {} for account_key,engaged_record in enagaged_by_account.items(): total_minutes = 0 for i in engaged_record: total_minutes += i[key] total_minutes_by_account[account_key] = total_minutes return total_minutes_by_account total_minutes_by_account = total_num_of_by_account(enagaged_by_account,'total_minutes_visited') tatal_lesson_completed_by_account = total_num_of_by_account(enagaged_by_account,'lessons_completed') # total_num_of_day_visited = total_num_of_by_account(enagaged_by_account,'has_visited') subway_project_lesson_keys = ['746169184', '3176718735'] passing_engagement = [] non_passing_engagement = [] passing_project_keys = set() for submission in non_udacity_submissions: if submission['lesson_key'] in subway_project_lesson_keys: if submission['assigned_rating'] == 'PASSED' or submission['assigned_rating'] == 'DISTINCTION': passing_project_keys.add(submission['account_key']) # print len(passing_project_keys) for engaged in paid_engagement_in_first_week: if engaged['account_key'] in passing_project_keys: passing_engagement.append(engaged) else: non_passing_engagement.append(engaged) # print len(passing_engagement) # print len(non_passing_engagement) passing_engagement_by_account = group_by_account(passing_engagement,'account_key') non_passing_engagement_by_account = group_by_account(non_passing_engagement,'account_key') total_minutes_in_passing_engagement = total_num_of_by_account(passing_engagement_by_account,'total_minutes_visited') total_minutes_in_non_passing_engagement = total_num_of_by_account(non_passing_engagement_by_account,'total_minutes_visited') # total_minutes = total_minutes_in_passing_engagement.values() # print np.mean(total_minutes) # total_minutes = total_minutes_in_non_passing_engagement.values() # print np.mean(total_minutes) # total_minutes = total_minutes_by_account.values() # max_minutes = np.max(total_minutes) # for account_key,engaged_record in enagaged_by_account.items(): # if total_minutes_by_account[account_key] == max_minutes: # print engaged_record # print len(paid_engagement_in_first_week) # print daily_engagement[0]['account_key'] # print enrollment_num_rows # print engagement_num_rows # print submission_num_rows # print enrollment_num_unique_students # print engagement_num_unique_students # print submission_num_unique_students # print enrollments[0] # print daily_engagement[0] # print project_submissions[0]
[ "hemantmangla78@gmail.com" ]
hemantmangla78@gmail.com
83622cad6e919ac9bd61c4be424b88df3b873a66
658e16b3004ebae7520b1780a9b9c61f7b1a3b0c
/Scripts/tests/test_custom_loss_in_rl.py
f9a203329e5c95ff728580457d09926637cf0dba
[]
no_license
flyinskybtx/CNP-BC
8298ae912520ebbac0d317d9d9781e48cb79df8b
0219121f914d00108362459432a83d156e8ccdb2
refs/heads/master
2023-06-09T04:47:22.937304
2023-05-26T10:05:15
2023-05-26T10:05:15
289,280,452
0
0
null
null
null
null
UTF-8
Python
false
false
1,898
py
import random import string import numpy as np import ray from ray.rllib import rollout from ray.rllib.agents import pg from ray.rllib.models import ModelCatalog from ray.tune import register_env from tqdm import tqdm from Envs.custom_cartpole_v1 import CustomCartPole from Models.policy_model import PolicyFCModel if __name__ == '__main__': ray.shutdown(True) ray.init(num_gpus=1, ) register_env('CustomCartPole-v1', lambda config: CustomCartPole(config)) # Model Free model_name = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10)) ModelCatalog.register_custom_model(model_name, PolicyFCModel) config_rl = { "train_batch_size": 200, 'num_workers': 0, 'log_level': 'INFO', 'framework': 'tf', 'env_config': { 'masscart': 1.0, 'masspole': 0.1, 'length': np.random.uniform(0.5, 1), 'force_mag': 10, }, 'model': { 'custom_model': model_name, "custom_model_config": { 'hiddens': [32, 32, 16], 'offline_dataset': 'offline/cartpole/Cem_MPC' }, }, } results = {'mf': [], 'mpc-bc': []} agent = pg.PGTrainer(config=config_rl, env='CustomCartPole-v1') for i in tqdm(range(100)): result_mf = agent.train() print(f"\t RL Reward: " f"{result_mf['episode_reward_max']:.4f} | " f"{result_mf['episode_reward_mean']:.4f} | " f"{result_mf['episode_reward_min']:.4f} |" ) results['mf'].append(result_mf['episode_reward_mean']) if i % 50 == 0: checkpoint = agent.save() print("checkpoint saved at", checkpoint) if i % 50 == 0: rollout.rollout(agent, env_name='CustomCartPole-v1', num_steps=50, num_episodes=1, no_render=False)
[ "flyinskybtx@sina.com" ]
flyinskybtx@sina.com
19e5e99b4598f9270e0cc992301e841753fd2870
c2b386e1d28c58efbb9d847098a87032e2cbacca
/products_app/init.py
930a8691b7c54fa99f1d8508a131fb4977bb6b31
[]
no_license
jmlm74/P11-Ameliorez-un-projet-existant-en-Python
e6468342554f5c4aa03bc0bb954aa7995e98e293
28cd84698bf272e279bbf6e1d15211ef2a3c6403
refs/heads/master
2022-12-11T02:57:59.563283
2020-09-10T16:02:27
2020-09-10T16:02:27
290,844,109
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
# url an parameters for the open food fact API url = 'https://fr-en.openfoodfacts.org/cgi/search.pl' params_off = {'search_simple': 1, 'action': 'process', 'json': 1, 'page_size': 300, 'page': 1, 'tagtype_0': 'categories', 'tag_contains_0': 'contains', 'tag_0': 'cat', 'tagtype_1': 'countries', 'tag_contains_1': 'contains', 'tag_1': 'france', 'sort_by': 'unique_scans_n' } # categories to fetch categories = ['biscuits', 'Crepes', 'desserts', 'sweetened-beverages', ] # brands to fecth to have well known products brands = {'coca cola', 'ferrero', 'pepsi'} # items per page for the paginator NB_ITEMS_PAGE = 12
[ "jmlm74@gmail.com" ]
jmlm74@gmail.com
dda19d3760238be041683f318ac54c057e37c6f2
e049a58929f0a878b4b46f4b5d21db1cf5833863
/backend/app/schemas/video.py
57277fdf149ab05923208064769126b42ba8c9d6
[ "MIT" ]
permissive
Asma-Alghamdi/CREstimator_website
791e8e15d8bb382ca63ea0e7260c02a1257d89e3
7c4dc07e9ed15cbfa4981ceba8e3115b2b9dabad
refs/heads/master
2023-07-07T05:11:13.425156
2021-08-12T16:30:23
2021-08-12T16:30:23
394,372,142
0
0
null
null
null
null
UTF-8
Python
false
false
755
py
# Normal way def videoEntity(item) -> dict: return { "name": item["name"], "path": item["path"], "Placename": item["Placename"], "setting": item["setting"], "country": item["country"], "duration": item["duration"], "date": item["date"], "sendEmail": item["sendEmail"], "publish": item["publish"], "outputVideoPath": item["outputVideoPath"], "contactRate": item["contactRate"], "average": item["average"], "totalPeople": item["totalPeople"], "coverPic": item["coverPic"], "figurePath": item["figurePath"], "userId": item["userId"], } def videosEntity(entity) -> list: return [videoEntity(item) for item in entity]
[ "aalghamdi.wo@gmail.com" ]
aalghamdi.wo@gmail.com
90a04cffae6636dbc36a4055192bd72cc9f358fc
bfd33836d69dd05d6e7720216cef6d341c35147b
/User/TDat/fruitandgreen_project.py
a2e78d191c64653e701c1fe60dc0e25dafb17e89
[]
no_license
ducdan/PYTHON-COURSE
5371b65685769e88c2e14a38b9c86a2bdfc82b79
cc5a26d0d8124087f711ee0ca354065df6ea4fcf
refs/heads/master
2020-05-25T15:00:00.465760
2017-06-15T11:49:54
2017-06-15T11:49:54
84,941,845
1
2
null
2017-06-15T11:44:32
2017-03-14T11:34:28
HTML
UTF-8
Python
false
false
1,918
py
from flask import Flask,render_template,request,send_file from DataModel import KHO, XNK app = Flask(__name__,static_folder='vendors') @app.route('/') def hello_world(): return render_template('index.html') @app.route('/xemct') def xemct(): return render_template('XemCT.html') @app.route('/xemhangton') def xemhangton(): return render_template('xemhangton.html') @app.route('/xuatkho') def xuatkho(): return render_template('xuatkho.html') @app.route('/phieunhap') def phieunhap(): return render_template('phieunhap.html') @app.route('/phieuxuat') def phieuxuat(): return render_template('phieuxuat.html') @app.route('/nhap',methods=['POST']) def nhap(): fistname=request.form['firstname'] lastname = request.form['lastname'] print(fistname+" "+lastname) dic={ 'first':fistname, 'last':lastname } return render_template('nhapkho.html',fist=dic) @app.route('/xemct', methods=['GET', 'POST']) def show_kho(): xnk = "" MaKho = "" LoaiSp = "" if request.method == 'POST': xnk = request.form['XNK'] Port_of_Discharge = xnk[''] Shipper = request.form['LoaiSP'] data = [] if ((xnk == "Tất cả") & (Port_of_Discharge == "") & (Shipper == "")): data = KHO.query.all() elif ((xnk == "Tất cả") & (Port_of_Discharge == "")): pass elif ((xnk == "Tất cả") & (Shipper == "")): pass elif ((xnk == "Tất cả")): pass elif ((Port_of_Discharge == "") & (Shipper == "")): data = XNK.query.filter_by(XNK=Port_of_Discharge).all() elif ((Port_of_Discharge == "")): pass elif ((Shipper == "")): pass else: pass return render_template("XemCT.html", data = data) @app.route('/report') def report(): return send_file('report.pdf',attachment_filename=True) if __name__ == '__main__': app.run(debug=True)
[ "why.not.me.20131995@gmail.com" ]
why.not.me.20131995@gmail.com
6e0c4ad69b4b49971c03a2c5351156bcf88a2bb4
f9fee177fcc9c512550bb5216b4c227a8509518f
/Additional Linear Referencing Tools.pyt
ebc7a5dbd34a897fd89ede9f881de9133b919159
[ "Apache-2.0" ]
permissive
M-Bryant/arcgis-additional-linear-referencing-toolbox
a45d6ace2e2bd5c619ad9f29f0d5c00db1ca29b2
12d1129b9adde506ecd9f50c81e486d4ebb506cf
refs/heads/master
2020-12-24T10:32:50.478404
2019-12-17T03:53:45
2019-12-17T03:53:45
73,145,171
1
1
null
null
null
null
UTF-8
Python
false
false
1,617
pyt
""" The Additional Linear Referencing Tools provides a collection of geoprocessing tools for working with linear referencing systems. The toolbox is conveniently organized into toolsets which define the general sequence of tasks accomplished by the tools. More information about linear referencing systems is available at http://desktop.arcgis.com/en/arcmap/latest/manage-data/linear-referencing/what-is-linear-referencing.htm """ import sys import os # Tools are located in a subfolder called Scripts. Append to path SCRIPTPATH = os.path.join(os.path.dirname(__file__), "Scripts") sys.path.append(SCRIPTPATH) # Do not compile .pyc files for the tool modules. sys.dont_write_bytecode = True # Import the tool from create_point_event_table import CreatePointEventTable from create_line_event_table import CreateLineEventTable from create_route_by_length import CreateRouteByLength from create_points_along_line import PointsAlongLine from station_points_and_cross_sections import StationPointsAndCrossSections del SCRIPTPATH class Toolbox(object): """ArcGIS Python Toolbox - Additional Linear Referencing Tools""" def __init__(self): """Define the toolbox (the name of the toolbox is the name of the .pyt file).""" self.label = 'Additional Linear Referencing Tools' self.alias = 'alr' # List of tool classes associated with this toolbox self.tools = [CreatePointEventTable, CreateLineEventTable, CreateRouteByLength, PointsAlongLine, StationPointsAndCrossSections]
[ "Mark.Bryant@aecom.com" ]
Mark.Bryant@aecom.com
ac82366a01d98b48b370d69f835e2fbf03cad04d
43efe19d743e16236cdb29a78cf70b0990facdd8
/Lxf/06模块/test22/hello.py
32f4375b3beda022eda364f83bc2272aaf988726
[]
no_license
qiongloo/python-learning
17ecb71106f9c770b29920bbad65c504225949e5
03d0f635b2bf8038ecfd8f5064a51ade794a528b
refs/heads/master
2021-05-09T09:49:57.499089
2019-08-12T02:29:57
2019-08-12T02:29:57
119,462,064
2
0
null
null
null
null
UTF-8
Python
false
false
572
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ' a test22 module ' __author__ = 'Billy Yang' import sys def test(): args = sys.argv if len(args)==1: print('Hello, world!') elif len(args)==2: print('Hello, %s!' % args[1]) else: print('Too many arguments!') if __name__=='__main__': test() def _private_1(name): return 'Hello, %s' % name def _private_2(name): return 'Hi, %s' % name def greeting(name): if len(name) > 3: return _private_1(name) else: return _private_2(name) print(test())
[ "e@qiongloo.com" ]
e@qiongloo.com
ec51d97b1126b9b3ccbac302459e3ba7f14b9559
bb4f8edd2eb8bb12fc303ff9bacb31b62a312466
/firstnumber.py
5f7941b99470b9ee116c97ca5acea6353f6fca90
[]
no_license
maninsa/Coursera_basics
99fcb813209a661e08a83ded33824928c5de12d8
0dce72e5f80cebc9c26dee58d285b77a4fba2ef3
refs/heads/main
2023-03-27T21:17:14.448451
2021-03-30T11:23:34
2021-03-30T11:23:34
352,972,360
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
#!/bin/python3.9 # Вывести первое число в строке user_input = int(input('введите число: ')) a = user_input print(a // 10)
[ "noreply@github.com" ]
noreply@github.com
3b8afbc42efa361f2ca62cc337f001e390465515
a64dd26503e8d8a878d021e308e79230344145b5
/2016/day_1/1-1.py
451366a024963350de72331833a0f8bebf9c31d3
[ "MIT" ]
permissive
zigapk/adventofcode
4a93602afd8f4aeae942a6a42dec4facf4231970
693b03014ae1dc6c303e717b3d7e9b7658d6211b
refs/heads/master
2021-05-08T09:51:11.888319
2020-12-25T11:45:26
2020-12-25T11:45:26
76,105,279
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
asdf = input().split(", ") smeri = [(1,0),(0,1),(-1,0),(0,-1)] smer = 0 gor = 0 desno = 0 for item in asdf: if item[0] == "R": smer = (smer + 1) % 4 else: smer = (smer - 1) % 4 gor += int(item[1:])*smeri[smer][0] desno += int(item[1:])*smeri[smer][1] print(abs(gor)+abs(desno))
[ "ziga.patacko@protonmail.com" ]
ziga.patacko@protonmail.com
103462c39288b8fcdbe883ec1b1cccea5ab73dd5
277c29b460cef26db7d43fb80d10667f5fa321f6
/SIR_extended/init_spec_beta_gamma.py
aec3e23832a44abf6387b5b566cf86dea5f6677a
[]
no_license
zuzancek/corona
75e0bd3678f1a01ec0109338067649abf1292bbe
da15613e231d4d61a0a6bb739b59454a65c0c36f
refs/heads/master
2021-07-16T14:56:27.052410
2021-05-24T21:34:08
2021-05-24T21:34:08
248,943,879
0
1
null
null
null
null
UTF-8
Python
false
false
1,735
py
import sys import numpy as np from tqdm import tqdm_notebook import pickle import pandas as pd import plotly import plotly.graph_objects as go import matplotlib.pyplot as plt import seaborn as sns import time import os import init_common as x import helpers as hp from random import sample from sklearn.utils import shuffle sns.set(rc={'figure.figsize':(11, 4)}) R0_target = 2.2 N_nodes = 1000000 ## 1. add distribution for recovery time / gamma Trec_mean = 6.5 # serial interval Trec_sig = 0.62 m0 = Trec_mean*(Trec_sig**2) s0 = 1/(Trec_sig**2) Trec_vec = np.random.gamma(m0,s0,N_nodes) Trec_vec_list = Trec_vec.tolist() Trec_mean = np.average(Trec_vec) gamma_mean = 1/Trec_mean gamma_vec = 1/Trec_vec ## use this -->> gamma_vec_list = gamma_vec.tolist() ## 2.add distribution for R0 ## 2.A self-isolated isol_share = 0.7 N_nodes_isol = round(isol_share*N_nodes) R0_scale = 100 #10**2 R0_isol_mean = 0.25*3.96# 1.43 R0_isol_vec = np.random.gamma(R0_scale*R0_isol_mean,1/R0_scale,N_nodes_isol) ## 2.B non-isolated a0 = R0_isol_mean+np.std(R0_isol_vec)#2 a1 = 14#16 scale_nonisol = 2.3#1.65 N_nodes_nonisol = N_nodes-N_nodes_isol R0_nonisol_vec = hp.power_law_pdf(np.random.uniform(0,1,N_nodes_nonisol),a0,a1,scale_nonisol) ## 2.C joint distribution R0_vec = shuffle(np.transpose([*np.transpose(R0_isol_vec),*np.transpose(R0_nonisol_vec)]),random_state=0) R0_vec_list = R0_vec.tolist() R0_mean = np.mean(R0_vec) R0_std = np.std(R0_vec) ## 3. exctract Beta beta_vec = R0_vec/Trec_vec beta_vec_mean = np.mean(beta_vec) ## use this -->> beta_vec_list = beta_vec.tolist() def get_vectors(R0_scale=1): beta_vec_new = R0_scale*beta_vec beta_vec_list_new = beta_vec_new.tolist() return beta_vec_list_new,Trec_vec_list
[ "zuzana.mucka@gmail.com" ]
zuzana.mucka@gmail.com
16f3dbf02322671414bc23c389a471151a3fcd0c
0ef8742a124fd89e3b2a650d7f3667ba4ad5ad54
/Sudoku/solution.py
2cb82178bd9d6e5f2b7b891f036f3a332024bd96
[]
no_license
letyrodridc/Artificial-Intelligence-Udacity
13d286566f2c3cb90320181925ea6c638d71dfdd
3ea3c3714c6c85af1e0d6587c81644ef35d1c25d
refs/heads/master
2021-05-05T12:14:34.727082
2018-10-27T18:11:36
2018-10-27T18:11:36
118,210,080
0
0
null
null
null
null
UTF-8
Python
false
false
8,842
py
''' Udacity AIND Project 1: Solve a Sudoku with AI by Leticia Rodriguez ''' from utils import * assignments = [] #UDACITY def assign_value(values, box, value): """ Assigns a value to a given box. If it updates the board record it. Args: values(dict): a dictionary of the form {'box_name': '123456789', ...} box (str): box to be udated value: new value for the box Returns: values updated with value in box """ values[box] = value if len(value) == 1: assignments.append(values.copy()) return values #MY_SOLUTION def naked_twins(values): """ Eliminate values using the naked twins strategy. Args: values(dict): a dictionary of the form {'box_name': '123456789', ...} Returns: the values dictionary with the naked twins eliminated from peers. """ # Find all instances of naked twins all_twins = list() # Are twins! I need 2 values, if > or < I avoid iteration boxes_to_search = [box for box in boxes if len(values[box]) == 2] # Uses a stack just not to add same tuple twice while boxes_to_search: box = boxes_to_search.pop() value = values[box] for p in peers[box]: if p in boxes_to_search and values[p] == value: # They have same value, are twins! all_twins.append( (box,p) ) # Eliminate the naked twins as possibilities for their peers for box, twin in all_twins: value = values[box] # It's interested just to update those boxes affected by both twins # uses an intersection of peers of both boxes for p in peers[box].intersection(peers[twin]): if not values[p] == value: for c in value: values[p] = values[p].replace(c, '') return values #MY_SOLUTION def grid_values(grid): """ Convert grid into a dict of {square: char} with '123456789' for empties. Args: grid(string) - A grid in string form. Returns: A grid in dictionary form Keys: The boxes, e.g., 'A1' Values: The value in each box, e.g., '8'. If the box has no value, then the value will be '123456789'. """ res = dict() for i, c in enumerate(grid): k = boxes[i] if c=='.': res[k] = digits else: res[k] = c return res #UDACITY def display(values): """ Display the values as a 2-D grid. Input: values - The sudoku in dictionary form Output: None """ width = 1+max(len(values[s]) for s in boxes) line = '+'.join(['-'*(width*3)]*3) for r in rows: print(''.join(values[r+c].center(width)+('|' if c in '36' else '') for c in cols)) if r in 'CF': print(line) return #MY_SOLUTION def diagonal_peers(block): """ Returns a set with diagonal peers of block (both diagonals) Input: block - string Output: set of peers of block in the diagonal """ res = set() if block in diagonal_units: res.union(set(diagonal_units)) if block in diagonal_units2: res.union(set(diagonal_units2)) if res: res.remove(block) return res #MY_SOLUTION def diagonal_units_search(block): """ Returns a list of list that are diagonal_units if the block belongs to any of these Input: block Output: list of diagonal_units lists """ res = list() if block in diagonal_units: res.append(list(diagonal_units)) if block in diagonal_units2: res.append(list(diagonal_units2)) return res #MY_SOLUTION def eliminate(values): """ Returns a dictionary with elimination technique applied. Solution for Diagonal Sudoku. It also eliminates the value from diagonals. Input: values - The sudoku in dictionary form Output: dict - copy of values with elimination technique applied """ res = dict(values) for block in values.keys(): block_value = values[block] if len(block_value) == 1: # Changed for Diagonal Sudoku. Searchs also in the peers in both diagonal. for p in peers[block].union(diagonal_peers(block)): assign_value(res, p, res[p].replace(block_value, '')) return res #MY_SOLUTION def only_choice(values): """ Returns a dictionary with Only Choice technique applied. Solution for Diagonal Sudoku. It also verify the values in diagonals. Input: values - The sudoku in dictionary form Output: dict - copy of values with Only Choice applied """ new_values = values.copy() # note: do not modify original values boxes = [box for box in values.keys() if len(values[box]) > 1] for box in boxes: # For Diagonal Sudoku not only search in units but also in diagonals box_units = units[box] + diagonal_units_search(box) # Iterates over diferent box units: row, column, square and diagonals if it applies for s_units in box_units: # Create a set with all values found in the boxes of the unit s_values = set() for p in s_units: if not box == p: s_values = s_values | set(values[p]) # Calculate the choices that the current box have choices = set(values[box]) - s_values # If there is only one is an only_choice. Update it value if len(choices) == 1: assign_value(new_values,box,choices.pop()) return new_values #MY_SOLUTION def reduce_puzzle(values): """ Applies elimination and only choice techiniques until no more changes could be made Input: values - The sudoku in dictionary form Output: values (dict updated) """ stalled = False while not stalled: # Check how many boxes have a determined value solved_values_before = len([box for box in values.keys() if len(values[box]) == 1]) # Eliminate Strategy values = eliminate(values) # Only Choice Strategy values = only_choice(values) # Check how many boxes have a determined value, to compare solved_values_after = len([box for box in values.keys() if len(values[box]) == 1]) # If no new values were added, stop the loop. stalled = solved_values_before == solved_values_after # Sanity check, return False if there is a box with zero available values: if len([box for box in values.keys() if len(values[box]) == 0]): return False return values #MY_SOLUTION - DFS def search(values): """ Solves a Sudoku problem in variant Diagonal Sudoku. Input: values - The sudoku in dictionary form Output: values - Sudoku solved """ values = reduce_puzzle(values) # Verify if could't solved it and there is no solution for that instance # See reduce_puzzle not_solved = values is False if not_solved: return None # Checks if all the boxes has one value --- so, solved true solved = len([b for b in boxes if len(values[b]) == 1]) == len(boxes) if solved: return values else: # Chose one of the unfilled square s with the fewest possibilities _,selected = min([(len(values[b]), b) for b in boxes if len(values[b]) > 1]) # Saves selected values old_value = values[selected] s = None # Try each value of the selected for v in old_value: # Update box using one of the values of selected box values[selected] = v # Recursion s = s or search(dict(values)) # Restore previous value values[selected] = old_value return s #MY_SOLUTION def solve(grid): """ Find the solution to a Sudoku grid. Args: grid(string): a string representing a sudoku grid. Example: '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3' Returns: The dictionary representation of the final sudoku grid. False if no solution exists. """ # Converts from sudoku string to sudoku dictionary sudoku = grid_values(grid) # Search solution sudoku = search(sudoku) return sudoku if __name__ == '__main__': diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3' display(solve(diag_sudoku_grid)) try: from visualize import visualize_assignments visualize_assignments(assignments) except SystemExit: pass except: print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.')
[ "lrodrig@dc.uba.ar" ]
lrodrig@dc.uba.ar
cf3dc94deb898b3147c1d529a1fbf335561c2e0b
639d6a00e3a8fab07ce07fec408eef6bc050d21d
/indice_pollution/db.py
8c93d5b392a7f26b2474e3b88b9e22891432315d
[ "MIT" ]
permissive
betagouv/indice_pollution
e04634e0b9c6d4ce24ffdc4c19868599995c1bd5
b85e53ca22d420e3d685fc84843d2011c6a696e4
refs/heads/master
2023-02-10T20:25:13.321999
2023-02-06T10:57:09
2023-02-06T10:57:09
250,297,957
4
1
MIT
2023-01-25T09:25:45
2020-03-26T15:33:02
Python
UTF-8
Python
false
false
218
py
from sqlalchemy import MetaData from sqlalchemy.orm import declarative_base global engine, Session metadata = MetaData(schema="indice_schema") Base = declarative_base(metadata=metadata) engine = None session = None
[ "lara.vincent@gmail.com" ]
lara.vincent@gmail.com
dac61de3894ea89b441f9876d43b4e8b8e7aabcc
a7587f813492163433202e244df2237c9993a1a1
/Store/migrations/0003_variation.py
192756496452ac5feb5ca11e93277167f0ed89b4
[]
no_license
kamran1231/E-COM-WEBSITE-2021
3a10bc0059f4d29fc52ee029e4919d4f965174c6
32214468cf716cc312a63f6346b8c844f720abda
refs/heads/master
2023-06-01T03:18:03.137405
2021-07-04T14:20:16
2021-07-04T14:20:16
381,634,544
1
0
null
null
null
null
UTF-8
Python
false
false
935
py
# Generated by Django 3.2.4 on 2021-07-02 18:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Store', '0002_alter_product_price'), ] operations = [ migrations.CreateModel( name='Variation', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('variation_category', models.CharField(choices=[('color', 'color'), ('size', 'size')], max_length=100)), ('variation_value', models.CharField(max_length=100)), ('is_active', models.BooleanField(default=True)), ('created_date', models.DateTimeField(auto_now=True)), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Store.product')), ], ), ]
[ "khanbrother805@gmail.com" ]
khanbrother805@gmail.com
56efa079b2691582bee503f93198d1e99ed01d56
48cd431063b33f430251275a51307987ce2dae78
/JewelryBox.py
ccd580cbdad58c2b0acc563ee1c1f8a6bf08c833
[]
no_license
edwardsong05/competitive-programming
005168a946f4af6bdd53671aab3ea00ffe401796
68bc9e38351c1c9c333d25e2cb1322c856d9bb0a
refs/heads/master
2020-04-06T20:35:21.247329
2019-09-19T20:25:22
2019-09-19T20:25:22
157,776,988
1
0
null
null
null
null
UTF-8
Python
false
false
568
py
# problem on kattis # https://open.kattis.com/problems/jewelrybox # ternary search def volume(x, y, h): return (x-2*h)*(y-2*h)*h T = int(input()) for i in range(T): x, y = [int(i) for i in input().split()] left = 0 right = min([x, y]) / 2 while right-left > 10**-6: m1 = left + (right - left) / 3 m2 = right - (right - left) / 3 v1 = volume(x, y, m1) v2 = volume(x, y, m2) if v1 > v2: right = m2 else: left = m1 print(volume(x, y, left))
[ "noreply@github.com" ]
noreply@github.com
72b698651d6f869623903874a9cb46cd307ac5e2
05218d01394294bb7ede726bf3dc6f0691e4299b
/machineLearning/mini_Project/mini_project_0401.py
21e36071cf323a4a3e1726e08d32fe4925ed6a43
[]
no_license
bitacademy-howl/anaconda_workspace
156556c52342b461ffb8304dfb55a845fff5ae90
d9dc5007b6e95fa0bf7b95a457cafe68a0167992
refs/heads/master
2020-03-23T12:10:14.872385
2018-08-10T10:04:55
2018-08-10T10:04:55
141,539,377
0
0
null
null
null
null
UTF-8
Python
false
false
3,058
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.datasets import load_boston import os # sklearn 에서 제공하는 학습용 데이터셋 data = load_boston() print('=============================================================================') print('================================ 데이터 타입 =================================') print(type(data)) print('=============================================================================') print('=============================================================================') print(type(data.keys()), data.keys()) print('=============================================================================') print('=============================== =설명서= ==================================') print(data['DESCR']) print('=============================================================================') # 실제 값들만 존재하는 데이터셋 print('================================데이터 셋=====================================') X = data['data'] print(X) print('=============================================================================') # 실제 데이터 필드에 컬럼명이 들어있지 않다. print('=============================================================================') header = data['feature_names'] print(header) # 제공되는 데이터셋에 가격은 별도로 target 으로 제공되므로 dataframe을 만들때는 합쳐서 만든다.... print('=============================================================================') Y = data['target'] Y = Y.reshape(-1, 1) print(type(Y), Y) print('=============================================================================') # 실제 사용될 데이터 프레임 : 아직 헤더 포함되지 않음 df = pd.DataFrame(np.append(X, Y, axis=1)) print(df) print('=============================================================================') # 헤더에 header와 PRICE 컬럼명 추가 df.columns = np.append(header,'PRICE') # 데이터 프레임에 헤더 추가 # 데이터프레임의 확인 print(df.head(5)) print(df.tail(5)) # 여러 통계치의 종합 선물세트 result_desc = df.describe() print(result_desc) ####################################################################################################### # 여기서 잠깐 번외로 통계치를 가지고 # 1. 박스플롯 그려보고 # 2. 분포도 그려보고 # # 1. 가격 분포도 # plt.hist(df['PRICE'],bins=100,color='green', density=True) # plt.show() # # 2. # plt.boxplot([df['PRICE']],0) # plt.show() # 일단 이건 계속 해보고 생각해보쟈.... ####################################################################################################### # 각각의 컬럼간 상관관계 corr_df = np.round(df.corr(),3) print(corr_df) # ,marker='o',s=10 pd.plotting.scatter_matrix(df,alpha=0.8, diagonal='kde') # os.chdir(r'D:\1. stark\temp') # # df.to_csv('data.csv',index=True)
[ "howl1118@gmail.com" ]
howl1118@gmail.com
0599e1b5865e8d9987e0659e9e04bf93f58d70be
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/cloud/bigquery/v2/bigquery-v2-py/google/cloud/bigquery_v2/services/model_service/async_client.py
f663b4845089503f56d9cf414847565501df681b
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,963
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict import functools import re from typing import Dict, Sequence, Tuple, Type, Union import pkg_resources import google.api_core.client_options as ClientOptions # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.bigquery_v2.types import encryption_config from google.cloud.bigquery_v2.types import model from google.cloud.bigquery_v2.types import model as gcb_model from google.cloud.bigquery_v2.types import model_reference from google.cloud.bigquery_v2.types import standard_sql from google.protobuf import wrappers_pb2 # type: ignore from .transports.base import ModelServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc_asyncio import ModelServiceGrpcAsyncIOTransport from .client import ModelServiceClient class ModelServiceAsyncClient: """""" _client: ModelServiceClient DEFAULT_ENDPOINT = ModelServiceClient.DEFAULT_ENDPOINT DEFAULT_MTLS_ENDPOINT = ModelServiceClient.DEFAULT_MTLS_ENDPOINT common_billing_account_path = staticmethod(ModelServiceClient.common_billing_account_path) parse_common_billing_account_path = staticmethod(ModelServiceClient.parse_common_billing_account_path) common_folder_path = staticmethod(ModelServiceClient.common_folder_path) parse_common_folder_path = staticmethod(ModelServiceClient.parse_common_folder_path) common_organization_path = staticmethod(ModelServiceClient.common_organization_path) parse_common_organization_path = staticmethod(ModelServiceClient.parse_common_organization_path) common_project_path = staticmethod(ModelServiceClient.common_project_path) parse_common_project_path = staticmethod(ModelServiceClient.parse_common_project_path) common_location_path = staticmethod(ModelServiceClient.common_location_path) parse_common_location_path = staticmethod(ModelServiceClient.parse_common_location_path) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ModelServiceAsyncClient: The constructed client. """ return ModelServiceClient.from_service_account_info.__func__(ModelServiceAsyncClient, info, *args, **kwargs) # type: ignore @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: ModelServiceAsyncClient: The constructed client. """ return ModelServiceClient.from_service_account_file.__func__(ModelServiceAsyncClient, filename, *args, **kwargs) # type: ignore from_service_account_json = from_service_account_file @property def transport(self) -> ModelServiceTransport: """Returns the transport used by the client instance. Returns: ModelServiceTransport: The transport used by the client instance. """ return self._client.transport get_transport_class = functools.partial(type(ModelServiceClient).get_transport_class, type(ModelServiceClient)) def __init__(self, *, credentials: ga_credentials.Credentials = None, transport: Union[str, ModelServiceTransport] = "grpc_asyncio", client_options: ClientOptions = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiates the model service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.ModelServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. """ self._client = ModelServiceClient( credentials=credentials, transport=transport, client_options=client_options, client_info=client_info, ) async def get_model(self, request: model.GetModelRequest = None, *, project_id: str = None, dataset_id: str = None, model_id: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> model.Model: r"""Gets the specified model resource by model ID. Args: request (:class:`google.cloud.bigquery_v2.types.GetModelRequest`): The request object. project_id (:class:`str`): Required. Project ID of the requested model. This corresponds to the ``project_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset_id (:class:`str`): Required. Dataset ID of the requested model. This corresponds to the ``dataset_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model_id (:class:`str`): Required. Model ID of the requested model. This corresponds to the ``model_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.bigquery_v2.types.Model: """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_id, dataset_id, model_id]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") request = model.GetModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_id is not None: request.project_id = project_id if dataset_id is not None: request.dataset_id = dataset_id if model_id is not None: request.model_id = model_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.get_model, default_timeout=600.0, client_info=DEFAULT_CLIENT_INFO, ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def list_models(self, request: model.ListModelsRequest = None, *, project_id: str = None, dataset_id: str = None, max_results: wrappers_pb2.UInt32Value = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> model.ListModelsResponse: r"""Lists all models in the specified dataset. Requires the READER dataset role. Args: request (:class:`google.cloud.bigquery_v2.types.ListModelsRequest`): The request object. project_id (:class:`str`): Required. Project ID of the models to list. This corresponds to the ``project_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset_id (:class:`str`): Required. Dataset ID of the models to list. This corresponds to the ``dataset_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. max_results (:class:`google.protobuf.wrappers_pb2.UInt32Value`): The maximum number of results to return in a single response page. Leverage the page tokens to iterate through the entire collection. This corresponds to the ``max_results`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.bigquery_v2.types.ListModelsResponse: """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_id, dataset_id, max_results]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") request = model.ListModelsRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_id is not None: request.project_id = project_id if dataset_id is not None: request.dataset_id = dataset_id if max_results is not None: request.max_results = max_results # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.list_models, default_timeout=600.0, client_info=DEFAULT_CLIENT_INFO, ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def patch_model(self, request: gcb_model.PatchModelRequest = None, *, project_id: str = None, dataset_id: str = None, model_id: str = None, model: gcb_model.Model = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> gcb_model.Model: r"""Patch specific fields in the specified model. Args: request (:class:`google.cloud.bigquery_v2.types.PatchModelRequest`): The request object. project_id (:class:`str`): Required. Project ID of the model to patch. This corresponds to the ``project_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset_id (:class:`str`): Required. Dataset ID of the model to patch. This corresponds to the ``dataset_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model_id (:class:`str`): Required. Model ID of the model to patch. This corresponds to the ``model_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model (:class:`google.cloud.bigquery_v2.types.Model`): Required. Patched model. Follows RFC5789 patch semantics. Missing fields are not updated. To clear a field, explicitly set to default value. This corresponds to the ``model`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.cloud.bigquery_v2.types.Model: """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_id, dataset_id, model_id, model]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") request = gcb_model.PatchModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_id is not None: request.project_id = project_id if dataset_id is not None: request.dataset_id = dataset_id if model_id is not None: request.model_id = model_id if model is not None: request.model = model # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.patch_model, default_timeout=600.0, client_info=DEFAULT_CLIENT_INFO, ) # Send the request. response = await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response async def delete_model(self, request: model.DeleteModelRequest = None, *, project_id: str = None, dataset_id: str = None, model_id: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> None: r"""Deletes the model specified by modelId from the dataset. Args: request (:class:`google.cloud.bigquery_v2.types.DeleteModelRequest`): The request object. project_id (:class:`str`): Required. Project ID of the model to delete. This corresponds to the ``project_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. dataset_id (:class:`str`): Required. Dataset ID of the model to delete. This corresponds to the ``dataset_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. model_id (:class:`str`): Required. Model ID of the model to delete. This corresponds to the ``model_id`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. has_flattened_params = any([project_id, dataset_id, model_id]) if request is not None and has_flattened_params: raise ValueError("If the `request` argument is set, then none of " "the individual field arguments should be set.") request = model.DeleteModelRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if project_id is not None: request.project_id = project_id if dataset_id is not None: request.dataset_id = dataset_id if model_id is not None: request.model_id = model_id # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = gapic_v1.method_async.wrap_method( self._client._transport.delete_model, default_timeout=600.0, client_info=DEFAULT_CLIENT_INFO, ) # Send the request. await rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-bigquery", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() __all__ = ( "ModelServiceAsyncClient", )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
88feb48981edab108611ba7b542047e3caf87f8d
ef5fde794c8bc24056f5b40579d840efa0693571
/ex9.py
1024755513c0a4272cd67a31c5a78c34aaa5067a
[]
no_license
chongduoduo/pythonbasic
11d7d348fb5fa22a636dc34af9d3bb7f9898ce9f
fb39d0d332dd0f75301604358c2c11addeb0ecf5
refs/heads/master
2021-01-12T17:22:23.288132
2016-12-21T09:35:24
2016-12-21T09:35:24
71,550,984
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# Here's some new strange stuff, remember type it exactly. days = "Mon Tue Wed Thu Fri Sat Sun" months = "Jan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug" print "Here are they days: ", days print "Here are the months: ", months print """ There's something going on here. With the three double-quotes. We'll be able to type as much as we like. Even 4 lines if we want, or 5, or 6. """
[ "mancao@186LMANCAO.ad.here.com" ]
mancao@186LMANCAO.ad.here.com
fbeb57daaa30b0d192be33757876869f9e7acc75
156c486bc35b95162b73b0ce4e7a6dd9bca95302
/retval.py
8af9acd28841f848a53365755960a7b521357562
[]
no_license
fangjian601/Loterry
98188e6d8c71f75f53163f7b37e34e70666b9684
1448a8786c9f2b7e84a2f4b8091dba7c24f882b4
refs/heads/master
2016-09-15T17:51:16.501974
2012-01-13T03:55:40
2012-01-13T03:55:40
3,161,375
0
0
null
null
null
null
UTF-8
Python
false
false
1,634
py
import json import logging import traceback logger = logging.getLogger("lottery") def return_value(**kwargs): global logger try: result = {} if 'status' in kwargs: result['status'] = kwargs['status'] else: result['status'] = -1 if result['status'] == 0: if 'val' in kwargs: result['val'] = kwargs['val'] else: result['val'] = None elif result['status'] == -1: result['err'] = {} if 'event' in kwargs: result['err']['event'] = kwargs['event'] else: result['err']['event'] = None if 'msg' in kwargs: result['err']['msg'] = kwargs['msg'] else: result['err']['msg'] = None if not ('json' in kwargs): kwargs['json'] = 1 if kwargs['json'] == 1: return json.dumps(result) else: result_str = None if result['status'] == 0: result_str = '''{"status": "%d", "val": "''' %(result['status']) + result['val'] + '''"}''' elif result['status'] == -1: result_str = '''{"status": "%d", "err": {"msg": "%s", "event": "%s"}}''' %(result['status'], result['err']['msg'], result['err']['event']) return result_str except: msg = traceback.format_exc() logger.error(msg) return '''{"status": -1, "err": {"msg": "return_value error", "event": "LIBS.RETVAL"}}'''
[ "superman601@126.com" ]
superman601@126.com
49ba31cebb80516a9e15a3a44e6dbb8bf93243a8
36d52637d0947472a87d6f9cb5ab9eb346f61878
/venv/bin/django-admin.py
6093234e2abfa316be14a2878aecd1137d1c757b
[]
no_license
diogoandrade1999/RestApiTPW
c8c14a4a2e1d442ef90867ccd304431a40226c3f
9af7ee8d3b712253f6f958474333d151d81acfe5
refs/heads/master
2022-03-29T19:49:45.479582
2019-12-18T15:13:24
2019-12-18T15:13:24
228,865,214
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
#!/home/diogo/Desktop/RestApiTPW/venv/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "diogo.andrade@ua.pt" ]
diogo.andrade@ua.pt
f742ee9c9d8e6f83bc86b8c21e11b729a4f4d129
6614bf94d54cf04aa4291b87123a180578d510f3
/setup.py
e5d214d55ab05ad82477ab4630963aa1dc1770c4
[]
no_license
kemey188/rugis
0396df70fc1f86598a2dbb2704a76078c5b030af
da0b399a2dfeb90e1adc5acfd13fe3d81ef8e930
refs/heads/master
2018-09-25T05:34:17.795976
2018-07-18T02:57:41
2018-07-18T02:57:41
115,926,823
0
0
null
null
null
null
UTF-8
Python
false
false
871
py
#!/usr/bin/env python import os import sys from distutils.core import setup, Extension os_macro = 'OS_MACOSX' if sys.platform == 'darwin' else 'OS_LINUX' extension = Extension( name='rugis', sources=[ "gpsconv.cc", "s2helper.cc", "radar.cc", "geo.cc", "rugis_python.cc" ], include_dirs=['/usr/lib','/usr/lib64','/usr/local/lib','3rdparty', '3rdparty/google','3rdparty/boost_1_58_0/include'], libraries=['s2', 'crypto'], library_dirs=['3rdparty/lib'], runtime_library_dirs=['.', './rugis_libs','/usr/lib','/usr/lib64','/usr/local/lib'], extra_compile_args=['-std=c++11', '-fno-wrapv', '-stdlib=libc++'], define_macros=[('NDEBUG', '1'), (os_macro, None)] ) setup( name="rugis", version='1.0', description='preprocess module for project radar', ext_modules=[extension])
[ "noreply@github.com" ]
noreply@github.com
3f0ee9146eb77381bdd91251c6707c87efd8b730
19b5dc6cd9bc20fa57e6a448ff422438faf97a92
/app.py
bfa07413e10f300ba996796225869ef0e44195c2
[]
no_license
marusia19/templates
da924694c86cfa3626a346043cd366833a43c9d4
eaddba6d85390f1adef5434fb0951489cc010ad8
refs/heads/master
2021-01-22T13:37:29.594582
2015-07-03T20:24:31
2015-07-03T20:24:31
38,508,329
0
0
null
null
null
null
UTF-8
Python
false
false
5,960
py
from flask import Flask from flask import render_template from flask import request from flask import redirect from pymongo import MongoClient, DESCENDING from bson import ObjectId import datetime import login_system import news_sorter from flask_login import login_required, login_user, logout_user, current_user import recommender DATABASE_NAME = 'summertime_webness' app = Flask(__name__) @app.route("/") def index(): filter_options = {} tag = request.args.get('tag') if tag: filter_options['tags'] = {'$in': tag.split(',')} news = app.db['news'].find(filter_options).sort([('time', DESCENDING)]) #sort news news = news_sorter.sort_news(news) return render_template("index.html", news=news) @app.route("/news", methods=['POST', 'GET']) @login_required def news_handler(): if request.method == "GET": # Get news' news = list(app.db['news'].find({})) recommended_news = recommender.recommend(current_user.data['name'], news) return render_template("news.html", news=recommended_news) else: title = request.form.get('title', '') text = request.form.get('text', '') tags = request.form.get('tags', '') tags = tags.split(',') tags = [tag.strip().lower() for tag in tags] # filter empty tags # tags = [tag for tag in tags if tag] new_tags= [] for tag in tags: if tag: new_tags.append(tag) tags = new_tags tags = list(set(tags)) new_post = { 'title': title, 'text': text, 'tags': tags, 'author': current_user.data['name'], 'time': datetime.datetime.utcnow(), 'likes': [], 'dislikes': [] } app.db['news'].insert(new_post) return redirect('/') @app.route('/news/<post_id>', methods=['GET','POST']) @login_required def news_post(post_id): if request.method == 'GET': return redirect('/') else: action = request.form.get('action') post = app.db['news'].find_one(ObjectId(post_id)) if action == 'like': likes = post['likes']\ # likes.append(current_user.data['name']) likes = list(set(likes)) # post['likes'] = likes app.db['news'].save(post) return redirect('/') @app.route("/users/<user_name>", methods=['GET','POST']) def profile(user_name): if request.method == "GET": #user = app.db['users'][user_name] user = app.db['users'].find({'name': user_name}).limit(1)[0] return render_template("user.html", user=user) else: full_name = request.form.get('full_name', '') skills = request.form.get('skills', '') position = request.form.get('position', '') photo = request.form.get('photo', '') password = request.form.get('password', '') # get user object #user = app.db['users'][user_name] user = app.db['users'].find({'name': user_name}).limit(1)[0] user['full_name'] = full_name user['position'] = position user['photo'] = photo user['skills'] = skills user['password'] = password app.db['users'].save(user) return redirect("/users/%s" % user_name) @app.route("/login", methods = ['GET', 'POST']) def login(): if request.method == 'GET': next_page = request.args.get('next', '/') return render_template("login.html", next_page=next_page) else: user_name = request.form.get('name' ,'') password = request.form.get('password', '') next_page = request.form.get('next_page', '/') # get user from DB users = app.db['users'].find({'name': user_name}).limit(1) # Did we find anyone in DB? if not users: return render_template("login.html", error=True) # Lets take the first one user = users[0] # check password if user and password == user['password']: # if password is correct, login user login_user(login_system.load_user(user_name)) return redirect(next_page) else: # if password is not correct, return error page return render_template("login.html", error=True) @app.route('/logout') @login_required def logout(): logout_user() return redirect('/') @app.route("/users/add") @login_required def add_user_page(): return render_template("add_user.html") @app.route("/users/<user_name>/edit") def edit_user(user_name): user = app.db['users'].find({'name': user_name}).limit(1)[0] return render_template("edit_user.html", user=user) @app.route("/users", methods=['GET', 'POST']) def users_handler(): if request.method == 'GET': users = app.db['users'].find() return render_template("users.html", users=users) elif request.method == 'POST': name = request.form.get('name', '') full_name = request.form.get('full_name', '') skills = request.form.get('skills', '') position = request.form.get('position', '') photo = request.form.get('photo', '') password = request.form.get('password', '') new_user = { 'name': name, 'full_name': full_name, "skills": skills, "position": position, "photo": photo, "password": password, } #app.db['users'][name] = new_user app.db['users'].insert(new_user) return redirect("/users/%s" % name) else: raise RuntimeError("Only POST and GET methods are supported") if __name__ == "__main__": app.db = MongoClient('wardoctor.nosoc.io', port=443)[DATABASE_NAME] login_system.init_login_system(app) app.run(debug=True) # style="background-image:url(https://pp.vk.me/c618426/v618426104/12476/CtRpXTwpsKk.jpg)"
[ "sergeeva.maria.nik@gmail.com" ]
sergeeva.maria.nik@gmail.com
a6743e5addcd58b500f621ff320a3c06ab63208f
a12155840b0f5b9c31d32353e9e5c28cf7cee161
/app/core/models.py
6f9a2f5f9e78afa49e3e91bac0d73d9e7d7eb24a
[ "MIT" ]
permissive
obuqwe/recipe_app_api
fa152a9815d50ba9d7561b64253767b61ed4035c
d3424eb171f7dc77c7d6a42afb93f8368e9dc65e
refs/heads/master
2020-05-09T21:53:36.501530
2019-05-07T15:41:15
2019-05-07T15:41:15
181,451,031
0
0
null
null
null
null
UTF-8
Python
false
false
1,048
py
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, \ PermissionsMixin class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email'
[ "mesisleo10@gmail.com" ]
mesisleo10@gmail.com
8fd88234986d81619c8a63de0ed1e13a8316b84d
9f1b345bb1852b00bba93ce3ab0b6d59973d2d97
/FTP_Project/tcp_client.py
90be2ccf6a202d17d138ec3958ed368358538609
[]
no_license
chidalgo001/FTP-Client-Server
2de8874581bc84b220f1562d417eaba38691cd08
d721f947cd7c9d673984cf3971a95dd983428663
refs/heads/master
2020-12-30T16:27:34.005859
2017-05-11T14:03:30
2017-05-11T14:03:30
90,985,557
1
0
null
null
null
null
UTF-8
Python
false
false
15,787
py
from socket import* import os , sys dir = os.getcwd() HOME = dir #--- will hold the dir for the root of the program ROOT = dir + "/ftpclient/ftproot/" #--- will hold the dir for the root of the ftpclient folder RECV_BUFFER = 1024 PORT = 2039 next_data_port = 1 DATA_PORT_MIN = 12000 DATA_PORT_MAX = 12499 CMD_QUIT = "QUIT" #--- quits the server CMD_HELP = "HELP" #--- displays help file CMD_LOGIN = "LOGIN" #--- logs in into server CMD_LOGOUT = "LOGOUT" #--- logs out current user CMD_LS = "LS" #--- displays contents of CWD CMD_DELETE = "DELETE" #--- deletes a specific file CMD_PWD = "PWD" #--- diplays the current working directory CMD_CON = "CONNECT" #--- connects to the server CMD_CDUP = "CDUP" #--- moves up in the directory CMD_CCD = "CCD" #--- changes the directory in the client side CMD_SCD = "SCD" #--- changes the directory in the server side CMD_RETR = "GET" #--- gets a file copy from server CWD into client CWD CMD_STOR = "PUT" #--- places a file copy from client CWD into server CWD CMD_TEST = "TEST" CMD_PORT = "PORT" def tcp_connection( addr , port , sock): sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) con = False try: sock.connect((addr , port )) con = True sock.send(addr.encode()) except ConnectionRefusedError: print("Connection Error. Try again!") con = False return sock , con def main(): dir = os.getcwd() root = dir + "/ftpclient/ftproot/" os.chdir(root) logged = False # Will keep track if there is a user logged on userName = '' # Will keep track of the user that is logged on connection = False # Will keep track if there is a connection made cmd = '' print("Welcome to the TCP Client\n") cSock = socket(AF_INET , SOCK_STREAM) while (cmd != CMD_QUIT ): command = input("\nFTP>> ") tokens = command.split() cmd , logged , cSock , userName , connection = evaluateCommands(tokens,logged,cSock,userName,connection) print("\nThank you for using FTP Client") def evaluateCommands( tokens , logged , sock , userName , connection): cmd = tokens[0].upper() if (cmd == CMD_CON): host = gethostname() host_address = gethostbyname(host) sock , connection = tcp_connection( '127.0.0.1' , PORT , sock ) if (connection == True): serverReply = sock.recv(RECV_BUFFER).decode() print("Server: " + str(serverReply) ) if (connection == False): cmd = '' return "" , logged , sock , userName , connection #------ if (cmd == CMD_QUIT): logged = False if( connection == True): sock.send( "QUIT".encode() ) return "QUIT" , logged , sock , userName , connection #------ if (cmd == CMD_HELP): temp = os.getcwd() os.chdir(HOME) try: file = open("ftpserver/conf/help.txt" , "r") line = file.readline() while (line != ''): print(line) line = file.readline() except FileNotFoundError: print("FIle not found") file.close() os.chdir(temp) return "" , logged , sock , userName , connection #----- if (cmd == CMD_LOGIN): reply = False if (connection == True): reply , logged , sock , userName =_login( tokens , logged , sock , userName ) else: print("Need a connection to login.") print("Try to connect first...") return reply , logged , sock , userName , connection #Logs out the current user if (cmd == CMD_LOGOUT): _logout(userName) logged = False userName = "" sock.send("LOGOUT".encode()) return "" , logged , sock , userName , connection # this will retuen the current directory in either the server or the client # User can select. if (cmd == CMD_PWD): if ( len(tokens) == 2): clientOrServer = tokens[1].lower() if(clientOrServer == 'client'): print("\nClient Current Working Dir: ") print(os.getcwd()) return "" , logged , sock , userName , connection if(clientOrServer == 'server' and connection == True): print("\nServer Current Working Dir: ") sock.send("PWD".encode()) reply = sock.recv(RECV_BUFFER).decode() reply_tokens = reply.split() if (reply_tokens[0] == "530"): print("Need to be logged in ") else: print(reply) return "" , logged , sock , userName , connection else: print("\n: cwd [ client ] || [ server ]. Please specify.") print("Also, there must be a server conenction in order to execute 'cwd [ server ]'") else: print("\n : cwd [ client ] | [ server ]. Please specify.") print("Also, there must be a server conenction in order to execute 'cwd [ server ]'") return "" , logged , sock , userName , connection if (cmd == CMD_CDUP): if ( len(tokens) == 2): clientOrServer = tokens[1].lower() if(clientOrServer == 'client'): os.chdir(ROOT) print("\nClient Current Working Dir: ") print(os.getcwd()) return "" , logged , sock , userName , connection if(clientOrServer == 'server' and connection == True): print("\nServer Current Working Dir: ") sock.send("CDUP".encode()) cwd = sock.recv(RECV_BUFFER).decode() print(cwd) return "" , logged , sock , userName , connection else: print("\nCWD works on [ client ] or [ server ].") print("Also, there must be a server conenction in order to get the CWD on [ server ]") else: print("\n : cwd [ client ] | [ server ]. Please specify.") print("Also, there must be a server conenction in order to execute 'cwd [ server ]'") return "" , logged , sock , userName , connection if (cmd == CMD_LS): if (logged == True): if ( len(tokens) ==1 ): ls = os.listdir(os.getcwd()) print("\nClient Dir: " + str(os.getcwd())) print("\n" + str(ls)) return "" , logged , sock , userName , connection else: cli_ser = tokens[1].lower() if(cli_ser == "client" ): ls = os.listdir(os.getcwd()) print("\nClient Dir: " + str(os.getcwd())) print("\n" + str(ls)) return "" , logged , sock , userName , connection if(cli_ser == "server" ): sock.send("LS".encode()) directory = sock.recv(RECV_BUFFER).decode() print("\nServer Ls: ") print("\n" + str(directory)) return "" , logged , sock , userName , connection print("Need to log in to navigate dirs.") return "" , logged , sock , userName , connection #--- changes the dir for client if (cmd == CMD_CCD): input = tokens[1] curdir = os.getcwd() dir = curdir + input os.chdir(dir) print(os.getcwd()) return "" , logged , sock , userName , connection if (cmd == CMD_RETR): file_to_open = tokens[1] if (connection == False and logged == False): print("\nThere needs to be a connecion to the server to use this command.") print("Please connect to the server") return "" , logged , sock , userName , connection data_channel = ftp_new_dataport(sock) #this should be connected when I reach here d_channel , addr = data_channel.accept() msg = "RETR " + file_to_open sock.send( msg.encode() ) file2 = open( file_to_open , "w") while True: file = d_channel.recv(RECV_BUFFER).decode() tokens = file.split() code = tokens[0] if(code == "150"): print("ERROR: File not found...") file2.close() os.remove(str(file_to_open)) return "" , logged , sock , userName , connection if(len(file) < RECV_BUFFER ): file2.write(file) break else: file2.write(file) file2.close() d_channel.close() print("\n File [ " + file_to_open + " ] has been transfered to the current working directory") print("from the remote server.\n") return "" , logged , sock , userName , connection if (cmd == CMD_STOR): if (connection == False and logged == False): print("\nThere needs to be a connecion to the server to use this command.") print("Please connect to the server") return "" , logged , sock , userName , connection file_to_open = tokens[1] try: f = open( file_to_open , "r" ) f.close() except FileNotFoundError: msg = "FIle [ " + file_to_open + " ] not found in your current directory" print(msg) return "" , logged , sock , userName , connection data_channel = ftp_new_dataport(sock) #this should be connected when I reach here d_channel , addr = data_channel.accept() msg = "STOR " + file_to_open sock.send( msg.encode() ) with open(file_to_open, 'r') as file_to_send: for data in file_to_send: d_channel.sendall(data.encode()) file_to_send.close() print("CLOSED FILE") d_channel.close() return "" , logged , sock , userName , connection if (cmd == CMD_SCD): if(len(tokens) == 2): dir_to_change = tokens[1] msg = "SCD " + dir_to_change sock.send(msg.encode()) reply = sock.recv(RECV_BUFFER).decode() print(reply) else: print("\nParameters for this command are SCD [ dir ] \nPlease try again.") return "" , logged , sock , userName , connection if (cmd == CMD_TEST): temp = os.getcwd() os.chdir(HOME) print(os.getcwd()) test_file = open("tests/file1.txt" , 'r') while (cmd != CMD_QUIT ): command = test_file.readline() tokens = command.split() cmd , logged , sock , userName , connection = evaluateCommands(tokens,logged,sock,userName,connection) test_file.close() print("Finished Test run!") os.chdir(temp) return "" , logged , sock , userName , connection #--- valid commands above this line else: print("Invalid Command.") return "" , logged , sock , userName , connection def _logout(userName): if(userName == ""): print("No user is logged on...") else: print("Loggin out " + userName + ".") logged = False def _login(tokens , logged , sock , userName ): user = '' pw = '' if(userName != ""): print("\nSession already in use...") print("Logout to change users.") return "" , logged , sock , userName else: if(len(tokens) == 1): user = input("Please Enter UserName: ") msg = "USER " + user sock.send(msg.encode()) pw = input("Please Enter Password: ") msg2 = "PASS " + pw sock.send(msg2.encode()) print("\nAttempting to connect user [ " + user + " ]") answer = sock.recv(RECV_BUFFER).decode() ans_tokens = answer.split() ans = ans_tokens[0] if(ans == "230"): userName = user print("\nLogin Successful! Welcome, " + userName + ".") user = userName dir = ROOT + user + "/" os.chdir(dir) logged = True else: print("Invalid username or password...") print("Try again!") return "" , logged , sock , userName if(len(tokens) == 3): user = tokens[1] pw = tokens[2] print("\nAttempting to connect user [ " + user + " ]") msg = "USER " + user sock.send(msg.encode()) msg = "PASS " + pw sock.send(msg.encode()) answer = sock.recv(RECV_BUFFER).decode() ans_tokens = answer.split() ans = ans_tokens[0] if(ans == "230"): userName = user print("Login Successful! Welcome, " + userName + ".") user = userName dir = ROOT + user + "/" os.chdir(dir) logged = True else: print("Invalid username or password...") print("Try again!") return answer , logged , sock , userName return "Invalid Login, try again" , logged , sock , userName def ftp_new_dataport(ftp_socket): global next_data_port dport = next_data_port next_data_port = next_data_port + 1 #for next next dport = (DATA_PORT_MIN + dport) % DATA_PORT_MAX print(("Preparing Data Port: 127.0.0.1 " + str(dport))) data_socket = socket(AF_INET, SOCK_STREAM) # reuse port data_socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) data_socket.bind(('127.0.0.1' , dport)) data_socket.listen( 1 ) ''' #the port requires the following #PORT IP PORT #however, it must be transmitted like this. #PORT 192,168,1,2,17,24 #where the first four octet are the ip and the last two form a port number. host_address_split = host_address.split('.') high_dport = str(dport // 256) #get high part low_dport = str(dport % 256) #similar to dport << 8 (left shift) port_argument_list = host_address_split + [high_dport,low_dport] port_arguments = ','.join(port_argument_list) ''' cmd_port_send = CMD_PORT + ' ' + str(dport) + '\r\n' print(cmd_port_send) try: ftp_socket.send(cmd_port_send.encode()) except socket.timeout: print("Socket timeout. Port may have been used recently. wait and try again!") return None except socket.error: print("Socket error. Try again") return None msg = ftp_socket.recv(RECV_BUFFER).decode() print(msg) return data_socket main()
[ "noreply@github.com" ]
noreply@github.com
826ff29b8209c97f97229d3a9b5855b40d325524
1a166165ab8287d01cbb377a13efdb5eff5dfef0
/sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/_generated/_azure_data_lake_storage_restapi.py
efb21f39026ffdd1e919cf6d1b8d713df2b94c91
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
manoj0806/azure-sdk-for-python
7a14b202ff80f528abd068bf50334e91001a9686
aab999792db1132232b2f297c76800590a901142
refs/heads/master
2023-04-19T16:11:31.984930
2021-04-29T23:19:49
2021-04-29T23:19:49
363,025,016
1
0
MIT
2021-04-30T04:23:35
2021-04-30T04:23:35
null
UTF-8
Python
false
false
2,804
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core import PipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from ._configuration import AzureDataLakeStorageRESTAPIConfiguration from .operations import ServiceOperations from .operations import FileSystemOperations from .operations import PathOperations from . import models class AzureDataLakeStorageRESTAPI(object): """Azure Data Lake Storage provides storage for Hadoop and other big data workloads. :ivar service: ServiceOperations operations :vartype service: azure.storage.filedatalake.operations.ServiceOperations :ivar file_system: FileSystemOperations operations :vartype file_system: azure.storage.filedatalake.operations.FileSystemOperations :ivar path: PathOperations operations :vartype path: azure.storage.filedatalake.operations.PathOperations :param url: The URL of the service account, container, or blob that is the targe of the desired operation. :type url: str """ def __init__( self, url, # type: str **kwargs # type: Any ): # type: (...) -> None base_url = '{url}' self._config = AzureDataLakeStorageRESTAPIConfiguration(url, **kwargs) self._client = PipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.service = ServiceOperations( self._client, self._config, self._serialize, self._deserialize) self.file_system = FileSystemOperations( self._client, self._config, self._serialize, self._deserialize) self.path = PathOperations( self._client, self._config, self._serialize, self._deserialize) def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> AzureDataLakeStorageRESTAPI self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
[ "noreply@github.com" ]
noreply@github.com
9c4556f4339c51fcec4b3a12839e0de40db73964
8c8149fd09091368eadb83ffbf68f9236a5bc654
/wedding-gallery/app/main/__init__.py
3fd2c5175f68d03bca9617a74f91fb7f2c3bb141
[]
no_license
supwr/anchor-loans-test-api
8fd1bb62cd20c8b1fbd105f45665f18949e636c7
1123d807b2ce260f522d99858cd4574ebe0d75e1
refs/heads/master
2020-05-18T16:47:16.185612
2019-05-02T07:42:35
2019-05-02T07:42:35
184,535,276
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
from flask import Flask, request, send_from_directory, render_template, abort import json from bson import json_util from main.controller.users_controller import users from main.controller.gallery_controller import gallery from flask_jwt_extended import JWTManager from main.database import mongo import os app = Flask(__name__, template_folder='view') app.config['JWT_SECRET_KEY'] = 'd53nwH!8KADsu+Rk' app.config['MONGO_DBNAME'] = 'wedding-gallery' app.config['MONGO_URI'] = 'mongodb://anchor-loans-mongo/wedding-gallery' app.config['UPLOAD_FOLDER'] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'public') app.config['ADMIN_ROLE'] = 'ADMIN' app.config['GUEST_ROLE'] = 'GUEST' jwt = JWTManager(app) mongo.init_app(app) @app.errorhandler(500) def internal_error(error): response = { "message": error.description } return json.dumps(response, default=json_util.default), 500, {'Content-Type': 'application/json; charset=utf-8'} @app.errorhandler(404) def not_found(error): response = { "message": "Page not found" } return json.dumps(response, default=json_util.default), 404, {'Content-Type': 'application/json; charset=utf-8'} @app.errorhandler(403) def forbidden(error): response = { "message": "You are not allowed to perform this operation" } return json.dumps(response, default=json_util.default), 403, {'Content-Type': 'application/json; charset=utf-8'} app.register_blueprint(users, url_prefix='/api/') app.register_blueprint(gallery, url_prefix='/api/')
[ "marcelo.rodriguespires@gmail.com" ]
marcelo.rodriguespires@gmail.com
f3a7f50f45d24de61d099e04f9c4ddfff584b706
068780d1035b349d846c81ed06d3f867368458a5
/myvariant/src/biothings/utils/dataload.py
8817330ca501c5458c3457db724d2fead6f4a530
[]
no_license
cyrus0824/myvariant.info_new
123ac84b29e505a7c72c28ae6501afdbff392b55
45b52891da35d68fd3570aef6a5e1f20ddc9c1ad
refs/heads/master
2021-01-10T12:44:59.943184
2016-01-26T19:55:55
2016-01-26T19:55:55
48,048,980
1
0
null
null
null
null
UTF-8
Python
false
false
5,443
py
from __future__ import print_function #from __future__ import unicode_literals import itertools import csv from utils.common import open_anyfile, is_str """ Utility functions for parsing flatfiles, mapping to JSON, cleaning. """ # remove keys whos values are ".", "-", "", "NA", "none", " " # and remove empty dictionaries def dict_sweep(d, vals=[".", "-", "", "NA", "none", " ", "Not Available", "unknown"]): """ @param d: a dictionary @param vals: a string or list of strings to sweep """ for key, val in d.items(): if val in vals: del d[key] elif isinstance(val, list): for item in val: if item in vals: val.remove(item) elif isinstance(item, dict): dict_sweep(item, vals) if len(val) == 0: del d[key] elif isinstance(val, dict): dict_sweep(val, vals) if len(val) == 0: del d[key] return d def to_number(val): """convert an input string to int/float.""" if is_str(val): try: return int(val) except ValueError: try: return float(val) except ValueError: pass return val def value_convert(d): """convert string numbers into integers or floats""" for key, val in d.items(): if isinstance(val, dict): value_convert(val) elif isinstance(val, list): d[key] = [to_number(x) for x in val] elif isinstance(val, tuple): d[key] = tuple([to_number(x) for x in val]) else: d[key] = to_number(val) return d # if dict value is a list of length 1, unlist def unlist(d): for key, val in d.items(): if isinstance(val, list): if len(val) == 1: d[key] = val[0] elif isinstance(val, dict): unlist(val) return d # split fields by sep into comma separated lists, strip. def list_split(d, sep): for key, val in d.items(): if isinstance(val, dict): list_split(val, sep) try: if len(val.split(sep)) > 1: d[key] = val.rstrip().rstrip(sep).split(sep) except (AttributeError): pass return d def id_strip(id_list): id_list = id_list.split("|") ids = [] for id in id_list: ids.append(id.rstrip().lstrip()) return ids def merge_duplicate_rows(rows, db): """ @param rows: rows to be grouped by @param db: database name, string """ rows = list(rows) first_row = rows[0] other_rows = rows[1:] for row in other_rows: for i in first_row[db]: if i in row[db]: if row[db][i] != first_row[db][i]: aa = first_row[db][i] if not isinstance(aa, list): aa = [aa] aa.append(row[db][i]) first_row[db][i] = aa else: continue return first_row def unique_ids(src_module): i = src_module.load_data() out = list(i) id_list = [a['_id'] for a in out if a] myset = set(id_list) print(len(out), "Documents produced") print(len(myset), "Unique IDs") return out def rec_handler(infile, block_end='\n', skip=0, include_block_end=False, as_list=False): '''A generator to return a record (block of text) at once from the infile. The record is separated by one or more empty lines by default. skip can be used to skip top n-th lines if include_block_end is True, the line matching block_end will also be returned. if as_list is True, return a list of lines in one record. ''' rec_separator = lambda line: line == block_end with open_anyfile(infile) as in_f: if skip: for i in range(skip): in_f.readline() for key, group in itertools.groupby(in_f, rec_separator): if not key: if include_block_end: _g = itertools.chain(group, (block_end,)) yield (list(_g) if as_list else ''.join(_g)) def tabfile_feeder(datafile, header=1, sep='\t', includefn=None, # coerce_unicode=True, # no need here because importing unicode_literals at the top assert_column_no=None): '''a generator for each row in the file.''' with open_anyfile(datafile) as in_f: reader = csv.reader(in_f, delimiter=sep) lineno = 0 try: for i in range(header): reader.next() lineno += 1 for ld in reader: if assert_column_no: if len(ld) != assert_column_no: err = "Unexpected column number:" \ " got {}, should be {}".format(len(ld), assert_column_no) raise ValueError(err) if not includefn or includefn(ld): lineno += 1 # if coerce_unicode: # yield [unicode(x, encoding='utf-8', errors='replace') for x in ld] # else: # yield ld yield ld except ValueError: print("Error at line number:", lineno) raise
[ "cyrus.afrasiabi@gmail.com" ]
cyrus.afrasiabi@gmail.com
06eb118e8879ca755ff7c592ecfb8c07b1333b91
553b34a101c54090e68f540d96369ac7d5774d95
/python/algo/src/minimum_cut.py
bf33b42a8714492e38de25c04a941877eafc0264
[ "MIT" ]
permissive
topliceanu/learn
fd124e1885b5c0bfea8587510b5eab79da629099
1c5b1433c3d6bfd834df35dee08607fcbdd9f4e3
refs/heads/master
2022-07-16T19:50:40.939933
2022-06-12T15:40:20
2022-06-12T15:40:20
21,684,180
26
12
MIT
2020-03-26T20:51:35
2014-07-10T07:22:17
JavaScript
UTF-8
Python
false
false
2,668
py
# -*- coding: utf-8 -*- import random from src.maximum_flow import ford_fulkerson_maximum_flow def pick_random_edge(graph): """ Returns a random edge from the given graph. """ edges = graph.get_edges() return random.choice(edges) def contract(graph, edge): """ Composes a new vertex from the ends of the given edge. All the resulting self-loop edges are removed. Args: graph: a data structure containg all data and operations. edge: a tuple of format (tail, head, value) Returns: The graph after contracting value. """ (tail, head, value) = graph.split_edge(edge) super_vertex = '{start}_{end}'.format(start=tail, end=head) # Remove individual vertices and add super-vertex. graph.rename_vertex(tail, super_vertex) graph.rename_vertex(head, super_vertex) return graph def randomized_cut(graph): """ Finds a cut in a given graph using the random contraction algorithm defined by David Karger in '93. NOTE! This algorithm modifies the graph in place, so make sure you clone it before compacting if you don't want your original graph modified. Args: graph: a data structure containg all data and operations. Returns: The compacted graph. """ while len(graph.get_vertices()) != 2: edge = pick_random_edge(graph) contract(graph, edge) return graph def minimum_cut(graph, tries): """ Finds the the minimum cut in the given graph after a running the randomized cut algorithm a given number of tries. Args: graph: a data structure containg all vertices, edges and supported operations. tries: int, number of times to try the randomized cut algorithm. Returns: cuts, list of cut edges which produce the minimum cut. """ min_cuts = [] for __ in xrange(tries): g = graph.clone() randomized_cut(g) [left_super_vertex, right_super_vertex] = g.get_vertices() left_vertices = set(left_super_vertex.split('_')) right_vertices = set(right_super_vertex.split('_')) cuts = [] for left_vertex in left_vertices: right_neighbours = set(graph.neighbours(left_vertex))\ .intersection(right_vertices) for right_vertex in right_neighbours: cuts.append((left_vertex, right_vertex)) if (len(min_cuts) == 0 or len(min_cuts) > len(cuts)): min_cuts = cuts return min_cuts def minimum_cut_using_maximum_flow(graph, start, end): """ Solve the minimum cut problem by reducing it to maximum flow. """ # TODO
[ "alexandru.topliceanu@gmail.com" ]
alexandru.topliceanu@gmail.com
134635314de03d47eab274af2e570ea7234fd720
0b1df575fcddee7abbce853bf2f38466cc0ced10
/Python/01_introduction/04_arithmetic_operators.py
0a4a2291db616ead79d264439a1a474a16d7e9bd
[ "Apache-2.0" ]
permissive
droideck/hacker_rank
b85bf31abaafc67eb877e7a37384c436fe71432d
6f150ede01de07968b26a4bf89cec15fa39bcf9b
refs/heads/master
2021-01-18T22:19:30.711457
2016-11-17T10:05:34
2016-11-17T10:05:34
72,424,397
0
0
null
null
null
null
UTF-8
Python
false
false
184
py
#!/bin/python3 a = int(input()) b = int(input()) if (a >= 1) and (a <= 10**10) and \ (b >= 1) and (b <= 10**10): print(str(a + b)) print(str(a - b)) print(str(a * b))
[ "simon.pichugin@gmail.com" ]
simon.pichugin@gmail.com
e52f6e4abfd00051cf9f6fc93ce637f9a796a083
514d20002899ee240508141f8e6124919c414ad2
/owhbv4/owhbv4_import_owhb2.py
bbe6cf23751ae90996fb3f37de09205127a6641b
[]
no_license
pluzorminuz/pluz-owws
6b06dbf5dd6c2fd22e25d6ea88263b82583b6f9f
35dcd4205d5764e75964f10f1245ca5bd9e59350
refs/heads/main
2023-04-09T14:12:03.159884
2021-04-02T10:51:26
2021-04-02T10:51:26
321,260,904
0
0
null
null
null
null
UTF-8
Python
false
false
12,682
py
import bpy import decimal D = decimal.Decimal import math import os import fnmatch THIS_BLENDFILE_DIR = bpy.path.abspath('//') f5 = D('100000') f4 = D('10000') f0 = D('1') class DataEntry: def __init__(self, type, pos, rolled_pos, delay, delay_raw, dmg, slot, scale): self.type = type self.pos = pos self.rolled_pos = rolled_pos self.delay = delay self.delay_raw = delay_raw self.dmg = dmg self.slot = slot self.scale = scale def __str__(self): print() print('Type:',self.type) print('True Pos:', self.pos) print('Rolled Pos:', self.rolled_pos) print('Attack Delay:', self.delay) print('Attack Delay (Raw):', self.delay_raw) print('Damage Received:', self.dmg) print('Slot:', self.slot) print('Scale:', self.scale) return '' def find(pattern, path): result = [] for root, dirs, files in os.walk(path): for name in files: if fnmatch.fnmatch(name, pattern): result.append(os.path.join(name)) break # don't do recursively return result def new_collection(name='New Collection', parent=None): # does the collection already exists? if name in bpy.data.collections: print('Collection [',name,'] already exists.',sep='') return bpy.data.collections[name] else: # if no specified parent colletion, then use the master collection new_coll = bpy.data.collections.new(name) if parent == None: parent_coll = bpy.context.scene.collection print(parent_coll) # if specified else: # try to check if the parent collection exists # if parent is of type string if isinstance(parent, str): if parent in bpy.data.collections: parent_coll = bpy.data.collections[parent] else: parent_coll = new_collection(parent) # parent is a collection else: parent_coll = parent parent_coll.children.link(new_coll) return new_coll def nearest_mult_of(num,mult): round = D(str(num)) round = round / D(str(mult)) round = round.quantize(D('1'), rounding=ROUND_HALF_EVEN) round = round * D(str(mult)) return round def ow_coord_conv_decimal(string,factor): temp = string.split('; ') return (D(temp[0])/factor,-D(temp[2])/factor,D(temp[1])/factor) def ow_coord_conv_decimal154(string,factor): temp = string temp = temp.replace('(','') temp = temp.replace(')','') temp = temp.split('; ') return (D(temp[0])/factor,-D(temp[2])/factor,D(temp[1])/factor) def ow_coord_array_conv154(line,factor): # given a raw OWWS RAW array (string), convert to an array of world coords if line == '0': return [] elif line == '[]': return [] else: array = [] temp = line temp = temp.replace('[','') temp = temp.replace(']','') temp = temp.replace(');(','):(') temp = temp.split(':') for item in temp: array.append(ow_coord_conv_decimal154(item,factor)) return array def ow_coord_conv_decimal154_mod(string,factor,offset,mod): temp = string temp = temp.replace('(','') temp = temp.replace(')','') temp = temp.split('; ') x = D(temp[0])/factor y = -D(temp[2])/factor z = D(temp[1])/factor x_trans = x + offset x_mult = x_trans / mod x_mult = x_mult.quantize(D(1),rounding=ROUND_FLOOR) x_new = x-(x_mult * mod) return (x_new, y, z) def ow_coord_array_conv154_mod(line,factor,offset,mod): # given a raw OWWS RAW array (string), convert to an array of world coords if line == '0': return [] elif line == '[]': return [] else: array = [] temp = line temp = temp.replace('[','') temp = temp.replace(']','') temp = temp.replace(');(','):(') temp = temp.split(':') for item in temp: array.append(ow_coord_conv_decimal154_mod(item,factor,offset,mod)) return array def ow_facdir_conv(string,factor): unit = ow_coord_conv_decimal(string,factor) return unit def add_vector(a,b): return (a[0]+b[0],a[1]+b[1],a[2]+b[2]) def create_empty_dir(pos,dir,name,coll): o = bpy.data.objects.new(name,None) coll.objects.link(o) o.empty_display_size = 2 o.empty_display_type = 'SINGLE_ARROW' o.location = pos o.rotation_euler = dir def create_empty(pos,name='Empty',coll=bpy.context.scene.collection,type='PLAIN_AXES'): o = bpy.data.objects.new(name,None) coll.objects.link(o) o.empty_display_size = 2 o.empty_display_type = type o.location = pos def create_path(ob_name,coll,coords): curveData = bpy.data.curves.new(ob_name, type='CURVE') curveData.dimensions = '3D' curveData.resolution_u = 2 polyline = curveData.splines.new('BEZIER') polyline.bezier_points.add(len(coords)-1) for i, coord in enumerate(coords): polyline.bezier_points[i].co = coord polyline.bezier_points[i].handle_right = coord polyline.bezier_points[i].handle_left = coord curveOB = bpy.data.objects.new(ob_name, curveData) coll.objects.link(curveOB) def point_cloud(coords, coll=bpy.context.scene.collection, ob_name='Point Cloud', edges=[], faces=[]): # Create new mesh and a new object me = bpy.data.meshes.new(ob_name) ob = bpy.data.objects.new(ob_name, me) # Make a mesh from a list of vertices/edges/faces me.from_pydata(coords, edges, faces) # Display name and update the mesh #ob.show_name = True me.update() coll.objects.link(ob) return ob def ow_coord_array_conv(line): array = [] temp = line temp = temp.replace('{','') temp = temp.replace('}','') temp = temp.split('); ') for item in temp: temp1 = item temp1 = temp1.replace('(','') temp1 = temp1.replace(')','') array.append(ow_coord_conv_decimal(temp1,factor)) return array def ow_integer_array_conv(line): temp = line temp = temp.replace('{','') temp = temp.replace('}','') temp = temp.split('; ') array = [item for item in temp] return array def ow_integer_array_conv154(line): if line == '0': return [] elif line == '[]': return [] else: temp = line temp = temp.replace('[','') temp = temp.replace(']','') temp = temp.split(';') array = [item for item in temp] return array def ow_coord_conv_decimal_alf_mod(string,factor,offset,mod): temp = string temp = temp.replace('(','') temp = temp.replace(')','') temp = temp.split(', ') x = D(temp[0])/factor y = -D(temp[2])/factor z = D(temp[1])/factor x_trans = x + offset x_mult = x_trans / mod x_mult = x_mult.quantize(D('1'),rounding=ROUND_FLOOR) x_new = x-(x_mult * mod) return (x_new, y, z) def ow_coord_conv_decimal_alf_multi(string,factor,mod): temp = string temp = temp.replace('(','') temp = temp.replace(')','') temp = temp.split(', ') x = D(temp[0])/factor y = -D(temp[2])/factor z = D(temp[1])/factor x_trans = x + (offset * D('0.5')) x_mult = x_trans / mod x_mult = x_mult.quantize(D('1'),rounding=ROUND_FLOOR) x_new = x-(x_mult * mod) return (x_new, y, z) def ow_coord_conv_decimal_alf(string,factor): temp = string temp = temp.replace('(','') temp = temp.replace(')','') temp = temp.split(', ') return (D(temp[0])/factor, -D(temp[2])/factor, D(temp[1])/factor) def ow_coord_array_conv_alf_mod(input_array,factor,offset,mod): # given an ALF parsed array of coord, convert to an array of decimals array = [] for item in input_array: array.append(ow_coord_conv_decimal_alf_mod(item,factor,offset,mod)) return array def floatToDecimal(input, factor): return D(input) / factor def owCoordToDecimalVec(input, factor): temp = input temp = temp.replace('(','') temp = temp.replace(')','') temp = temp.split('; ') return (D(temp[0])/factor, -D(temp[2])/factor, D(temp[1])/factor) def owConv_arrayOfFloat(input, factor): if input == '0': return [] elif input == '[]': return [] else: temp = input temp = temp.replace('[','') temp = temp.replace(']','') temp = temp.split(';') return [floatToDecimal(item, factor) for item in temp] def owConv_arrayOfVectors(input, factor): if input == '0': return [] elif input == '[]': return [] else: temp = input temp = temp.replace('[','') temp = temp.replace(']','') temp = temp.replace(');(','):(') temp = temp.split(':') return [owCoordToDecimalVec(item, factor) for item in temp] def floatToInt(input): return D(int(input)) def owConv_arrayOfInt(input): if input == '0': return [] elif input == '[]': return [] else: temp = input temp = temp.replace('[','') temp = temp.replace(']','') temp = temp.split(';') return [floatToInt(item) for item in temp] def scalarMultVec(scalar, vec): return (scalar*vec[0], scalar*vec[1], scalar*vec[2]) this_coll = bpy.context.scene.collection #scan_index = 'doomfistuppercut_2a' scan_index = 'extremeres' offset = D('2.5') mod = D('5') filelist = find(scan_index + '.owhb2', THIS_BLENDFILE_DIR) if filelist == []: print('No file match! Exiting...') else: acc_file_len = 0 data = [] for file in filelist: f = open(THIS_BLENDFILE_DIR + file,'r') data.extend(f.readlines()[2:]) f.close() print(file,len(data)-acc_file_len) acc_file_len = len(data) del acc_file_len data = [line.split(',') for line in data] # [0] timestamp # [1] variable target # [2] 0: l_hit_store array of (float * f5) # [3] 1: r_hit_store array of (float * f5) # [4] 2: thisscan_resolution_copy (float * f5) # [5] 3: thisslice_x_copy vector of (float * f5) # [6] 4: thisslice_y_bounds_copy array of 2 int's # [7] 5: scan_y_batchsize int # [8] 6: scan_axis array of 3 vectors * f0 # [9] 7: thisscan_extract_axis 1 vector * f0 # [10] 8: thisscan_limits_int array of 4 int's # [19] 17: loop_i # [20] 18: thisscan_limits_raw # [21] 19: thisscan_resolution # [22] 20: scan_origin # [23] 21: thisscan_batch_y_start # [24] 22: thisscan_cur_x # [25] 23: thisscan_cur_y # [26] 24: thisslice_x print(data[0][8]) for i in range(len(data)): data[i][2] = owConv_arrayOfFloat(data[i][2], f5) data[i][3] = owConv_arrayOfFloat(data[i][3], f5) data[i][4] = floatToDecimal(data[i][4], f5) data[i][5] = owCoordToDecimalVec(data[i][5], f5) data[i][6] = owConv_arrayOfInt(data[i][6]) data[i][7] = floatToInt(data[i][7]) data[i][8] = owConv_arrayOfVectors(data[i][8], f0) data[i][9] = owCoordToDecimalVec(data[i][9], f0) data[i][10] = owConv_arrayOfInt(data[i][10]) # to reconstruct the ray cast hit point # x + y + z # x = thisslice_x_copy (line[5]) # y = thisslice_y_bounds_copy[0] * loop_i * resolution (line[6] * i * line[4]) # z = thisscan_extract_axis * line[2][i]/[3][i] (line[9] * [line[2][i]) this_hb_data = [] for line in data: this_x = line[5] thisline_resolution = line[4] thisline_extract_axis = line[9] thisline_y_axis = line[8][1] thisline_starting_y = line[6][0] i = D('0') for number in line[2]: # l hit store this_y = scalarMultVec(thisline_resolution * (thisline_starting_y + i), thisline_y_axis) this_z = scalarMultVec(number, thisline_extract_axis) i += D('1') this_hb_data.append( add_vector(this_x, add_vector(this_y,this_z)) ) i = D('0') for number in line[3]: # r hit store this_y = scalarMultVec(thisline_resolution * (thisline_starting_y + i), thisline_y_axis) this_z = scalarMultVec(number, thisline_extract_axis) i += D('1') this_hb_data.append( add_vector(this_x, add_vector(this_y,this_z)) ) hit_pc = point_cloud(this_hb_data, this_coll, ob_name=scan_index+' Raw')
[ "63382500+pluzorminuz@users.noreply.github.com" ]
63382500+pluzorminuz@users.noreply.github.com
fbea031940ce24c438b127acbfb5063daaa52c3b
792efdc5d6e43c9e5597371d1d8b675e527ae9ad
/server.py
66c1911e923baa28ca4b255ff7c7e85476ab8f5b
[]
no_license
lindemanswork/bowling-game
57d0d45327d7392c78e5aee741302d20d0e46f02
de8fa64fbef387bcc6072b8876800bd8b1a15f27
refs/heads/master
2020-06-19T01:03:52.186180
2016-11-28T19:52:35
2016-11-28T19:52:35
74,930,135
0
0
null
2016-11-28T02:35:55
2016-11-28T02:35:55
null
UTF-8
Python
false
false
213
py
from pymongo import MongoClient def get_db(): client = MongoClient('mongodb://heroku_hxb7k9t8:4plphtk310q4t1f6cdbagftega@ds033106.mlab.com:33106/heroku_hxb7k9t8') db = client.heroku_hxb7k9t8 return db
[ "spothorse9.lucy@gmail.com" ]
spothorse9.lucy@gmail.com
3e3c445e3345d5edfc6acb24ebfa57aaa2674a73
a684cabb6db764055494e744752599c2d978f26b
/Lista 2/1j.py
b969a87cc78888a12e027889c8eacb938bf949d0
[]
no_license
jarelio/FUP
c603c2264d160aca2a2e8a6dc7ba3af2baf6c04c
78555fe49e9046937483f7e4fcc6f1f135746d50
refs/heads/master
2020-04-17T04:53:04.097058
2019-01-17T18:06:38
2019-01-17T18:06:38
166,250,981
0
0
null
null
null
null
UTF-8
Python
false
false
166
py
numero = float(input("Digite um número: ")) if (numero%3==0): print("Este número é múltiplo de 3") else: print("Este número não é múltiplo de 3 ")
[ "jareliofilho@gmail.com" ]
jareliofilho@gmail.com
d7d665b31302f408522f3bbb16e092e476bc808b
a6d7b62e52506e2137710dc1970265395f418cf0
/base_entity/migrations/0005_auto_20170927_1137.py
572a618b5c92bdba171cc07a8e92c6628cb5e26e
[]
no_license
wizcarder/wizcard-server
e5c192325b7313a9253c73c9600133432eb355c7
f69ba06f20a5be3701a9c0b9b040ef0fdf474266
refs/heads/master
2021-03-30T17:57:49.844868
2018-06-09T08:47:37
2018-06-09T08:47:37
27,246,626
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('base_entity', '0004_auto_20170923_2319'), ] operations = [ migrations.CreateModel( name='BaseEntityComponentsOwner', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('is_creator', models.BooleanField(default=True)), ], ), migrations.RemoveField( model_name='baseentitycomponentsuser', name='base_entity_component', ), migrations.RemoveField( model_name='baseentitycomponentsuser', name='user', ), migrations.RemoveField( model_name='baseentity', name='engagements', ), migrations.AddField( model_name='baseentitycomponent', name='engagements', field=models.OneToOneField(related_name='engagements_baseentitycomponent_related', null=True, to='base_entity.EntityEngagementStats'), ), migrations.AlterField( model_name='baseentity', name='created', field=models.DateTimeField(auto_now_add=True, null=True), ), migrations.AlterField( model_name='baseentity', name='modified', field=models.DateTimeField(auto_now=True, null=True), ), migrations.AlterField( model_name='baseentitycomponent', name='entity_type', field=models.CharField(default=b'EVT', max_length=3, choices=[(b'EVT', b'Event'), (b'CMP', b'Campaign'), (b'TBL', b'Table'), (b'WZC', b'Wizcard'), (b'SPK', b'Speaker'), (b'SPN', b'Sponsor'), (b'COW', b'Coowner'), (b'ATI', b'AttendeeInvitee'), (b'EXI', b'ExhibitorInvitee'), (b'MED', b'Media'), (b'COW', b'Coowner'), (b'AGN', b'Agenda'), (b'AGI', b'AgendaItem')]), ), migrations.AlterField( model_name='baseentitycomponent', name='owners', field=models.ManyToManyField(related_name='owners_baseentitycomponent_related', through='base_entity.BaseEntityComponentsOwner', to=settings.AUTH_USER_MODEL), ), migrations.DeleteModel( name='BaseEntityComponentsUser', ), migrations.AddField( model_name='baseentitycomponentsowner', name='base_entity_component', field=models.ForeignKey(to='base_entity.BaseEntityComponent'), ), migrations.AddField( model_name='baseentitycomponentsowner', name='owner', field=models.ForeignKey(to=settings.AUTH_USER_MODEL), ), migrations.AlterUniqueTogether( name='baseentitycomponentsowner', unique_together=set([('base_entity_component', 'owner')]), ), ]
[ "ubuntu@ip-172-31-28-47.ap-south-1.compute.internal" ]
ubuntu@ip-172-31-28-47.ap-south-1.compute.internal
fe515d63f16e31fca3ec46d721b6100f81025ade
522f01770aa6dcc4cf628ced5ed9e248e8a7c528
/jin10/settings.py
849e9bf4850b43d902634fc2db47777168cab2c2
[]
no_license
bopo/jin10
bb9ce60e53560508e684b886d9ec358aeac2b499
594e219920a3ab46639212d7e587389a609ea66c
refs/heads/master
2021-01-19T13:39:02.688693
2016-09-20T12:01:25
2016-09-20T12:01:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,139
py
# -*- coding: utf-8 -*- # Scrapy settings for jin10 project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'jin10' SPIDER_MODULES = ['jin10.spiders'] NEWSPIDER_MODULE = 'jin10.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'jin10 (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True LOG_LEVEL = 'INFO' # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'jin10.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'jin10.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'jin10.pipelines.Jin10Pipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html # AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "daulgas.tang@sachsen.cc" ]
daulgas.tang@sachsen.cc
3bc48ad57dbf84c0d65a2c59a2f654b60f5b1089
a98bc512be9b9691200c6a0cc33a5fb7b4053c13
/com.ppc.Bot/devices/thermostat/thermostat_honeywell_lyric.py
4fc7ab8f7dd9ec9b7fd8517681898b5f9c38d9cf
[ "Apache-2.0" ]
permissive
30s/botlab
c21682ed2c9aefc9cba688c6a8c136e9f969adc9
f7617147b65521a66ad88cdbc175176021a7a486
refs/heads/master
2020-04-04T18:39:00.776636
2018-10-04T04:56:32
2018-10-04T04:56:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,179
py
''' Created on March 27, 2017 This file is subject to the terms and conditions defined in the file 'LICENSE.txt', which is part of this source code package. @author: David Moss ''' # Device Model # https://presence.atlassian.net/wiki/display/devices/Thermostat from devices.thermostat.thermostat import ThermostatDevice # Set the default rounding to 3 numbers. from decimal import * getcontext().prec = 1 class ThermostatHoneywellLyricDevice(ThermostatDevice): """Honeywell Lyric Thermostat Device""" # List of Device Types this class is compatible with DEVICE_TYPES = [4230] # Minimum setpoint in Celsius MIN_SETPOINT_C = 7.0 # Maximum setpoint in Celsius MAX_SETPOINT_C = 29.0 def get_device_type_name(self, language): """ :return: the name of this device type in the given language, for example, "Entry Sensor" """ # NOTE: Device type name return _("Honeywell Lyric Thermostat") def set_system_mode(self, botengine, system_mode, reliably=False): """ Set the system mode :param botengine: :param system_mode: :param reliably: True to keep retrying to get the command through :return: """ ThermostatDevice.set_system_mode(self, botengine, system_mode, reliably=False) def set_cooling_setpoint(self, botengine, setpoint_celsius, reliably=False): """ Set the cooling setpoint :param botengine: BotEngine environment :param setpoint_celsius: Absolute setpoint in Celsius :param reliably: True to keep retrying to get the command through """ ThermostatDevice.set_cooling_setpoint(self, botengine, setpoint_celsius, reliably=False) def set_heating_setpoint(self, botengine, setpoint_celsius, reliably=False): """ Set the heating set-point :param botengine: BotEngine environmnet :param setpoint_celsius: Temperature in Celsius :param reliably: True to keep retrying to get the command through """ ThermostatDevice.set_heating_setpoint(self, botengine, setpoint_celsius, reliably=False)
[ "dmoss@peoplepowerco.com" ]
dmoss@peoplepowerco.com
137eb82126f252ba550cbaa41ee96463bccc45fe
cde3ef1ee294b2bbeb44331debe5ba3f0c19bd9a
/getTrans.py
593025dd7f92cc216dae6902222eac4e702670be
[]
no_license
wuyu1492/pair-HMM-project
21485642ad7d99743b4f974840dffebdf5a47bca
0b87eb8ea4b2a9c5961958ff5686b22eb45540ce
refs/heads/master
2021-01-20T05:37:44.121776
2017-09-24T16:56:21
2017-09-24T16:56:21
101,459,745
0
0
null
2017-08-26T05:02:22
2017-08-26T03:24:26
Python
UTF-8
Python
false
false
640
py
import numpy as np """ def getPrior(base, haplo, Qbase): prior = np.zeros((len(base), len(haplo))) # initialize prior matrix #print(prior.shape) # check prior shape for i in range(0, len(base)): for j in range(0, len(haplo)): if base[i] == haplo[j]: prior[i][j] = 1-Qbase[i] else: prior[i][j] = Qbase[i] return prior """ def getTrans(Qi, Qd, Qg): qi = np.array(Qi) qd = np.array(Qd) qg = np.array(Qg) mm = 1.0 - (qi + qd) im = 1.0 - qg dm = im mi = qi ii = qg md = qd dd = qg return mm, im, dm, mi, ii, md, dd
[ "noreply@github.com" ]
noreply@github.com
3fdcf3ec812b8cd4991b70e219ec666356c0854c
7a63658141578f025fbe81e7c02784382d4ddfeb
/misc/approx_milestones.py
5f36a124a7e0371bda8a050020ffede2424108f0
[ "MIT" ]
permissive
barrettotte/Issue-Utils
05c996fde590693c26f253842498a9154adae22a
ae359f2bd2245d2bbba84cd80af46572ce155062
refs/heads/master
2020-12-10T12:42:18.615180
2020-06-16T02:07:20
2020-06-16T02:07:20
233,598,052
2
0
null
null
null
null
UTF-8
Python
false
false
1,967
py
# Attempt approximating the milestone an issue would have landed in # based on the completion date and some leftover data I found in my GitLab boards. import json from datetime import datetime,date,timedelta def main(): trello = [] date_fmt = "%Y-%m-%dT%H:%M:%S.%fZ" with open('export.json', 'r') as f: trello = json.load(f) # I only close issues on my 'Main' board, so hardcode index closed = sorted([c for c in trello[0]['issues'] if not c['is_open']], key=lambda i: i['completed_date']) lowest = datetime.strptime(closed[0]['completed_date'], date_fmt) new_cards,milestones = [],[] for card in trello[0]['issues']: if not card['is_open']: card_date = datetime.strptime(card['completed_date'], date_fmt) milestone = ((card_date - lowest).days // 7) + 1 print("{} {} {} -> milestone {}".format( card['identifier'], card['name'][:25].rjust(25,' '), card['completed_date'], milestone )) card['milestone_id'] = milestone card['due_date'] = str(lowest + timedelta(weeks=milestone)) milestones.append({ 'name': "Week {}".format(milestone), 'id': milestone }) new_cards.append(card) print("\nApproximated milestone for {} card(s)".format(len(closed))) print("Oldest card: {}".format(lowest)) # get unique milestones and calculate due dates unique_ms = sorted([dict(t) for t in {tuple(d.items()) for d in milestones}], key=lambda i: i['id']) for i,ms in enumerate(unique_ms): unique_ms[i]['due_date'] = str(lowest + timedelta(weeks=ms['id'])) trello[0]['milestones'] = unique_ms trello[0]['issues'] = sorted(new_cards, key=lambda i: i['milestone_id']) with open('export.json', 'w+') as f: f.write(json.dumps(trello, indent=2)) if __name__ == "__main__":main()
[ "barrettotte@gmail.com" ]
barrettotte@gmail.com
6cdd4ab3c27594dfd256c8dbc494d71ae2dfcf3f
6c641bb3be6949306dc7834de883a2e66a751eac
/analyze_historic_news_movement.py
9faf452fcf2b4cce8ea1d3018c3c3a514c0704b1
[]
no_license
andrewstevens59/python_machine_learning_samples
3117287d7d3539a3a8d80b28876d8162bdae4879
3d20a4b6f19265558aa4f5d1e8ef3592a068c0d0
refs/heads/master
2021-08-11T15:51:00.673757
2021-08-10T08:14:17
2021-08-10T08:14:17
120,370,709
1
0
null
null
null
null
UTF-8
Python
false
false
46,077
py
import sys import math from datetime import datetime from random import * import os.path import pickle from StringIO import StringIO from sklearn.cluster import KMeans from numpy import linalg as LA from bayes_opt import BayesianOptimization from datetime import timedelta import execute_news_signals from execute_news_signals import ModelType import time import datetime import calendar from dateutil import tz import requests import lxml.html as lh import json import copy import math import sys import re import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.datasets.samples_generator import make_blobs from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import cross_val_score import gzip, cPickle import string import random as rand import os from sklearn.cluster import SpectralClustering from sklearn.mixture import GaussianMixture from sklearn.linear_model import LinearRegression from sklearn import mixture from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn import ensemble from sklearn.metrics import r2_score from sklearn import svm from uuid import getnode as get_mac import socket import paramiko import json import enum import os import mysql.connector all_currency_pairs = [ "AUD_CAD", "CHF_JPY", "EUR_NZD", "GBP_JPY", "AUD_CHF", "EUR_AUD", "GBP_NZD", "USD_CAD", "AUD_JPY", "EUR_CAD", "GBP_USD", "USD_CHF", "AUD_NZD", "EUR_CHF", "EUR_USD", "NZD_CAD", "AUD_USD", "EUR_GBP", "GBP_AUD", "NZD_CHF", "CAD_CHF", "EUR_JPY", "GBP_CAD", "NZD_JPY", "CAD_JPY", "GBP_CHF", "NZD_USD", "USD_JPY" ] def load_time_series(symbol, year, is_bid_file): if get_mac() == 150538578859218: prefix = '/Users/andrewstevens/Downloads/economic_calendar/' else: prefix = '/root/trading_data/' from os import listdir from os.path import isfile, join onlyfiles = [f for f in listdir(prefix) if isfile(join(prefix, f))] pair = symbol[0:3] + symbol[4:7] for file in onlyfiles: if pair in file and 'Candlestick_1_Hour_BID' in file: break if pair not in file: return None with open(prefix + file) as f: content = f.readlines() # you may also want to remove whitespace characters like `\n` at the end of each line content = [x.strip() for x in content] from_zone = tz.gettz('America/New_York') to_zone = tz.tzutc() prices = [] times = [] volumes = [] content = content[1:] if year != None: start_time = calendar.timegm(datetime.datetime.strptime(str(year) + ".1.1 00:00:00", "%Y.%m.%d %H:%M:%S").timetuple()) end_time = calendar.timegm(datetime.datetime.strptime(str(year) + ".12.31 00:00:00", "%Y.%m.%d %H:%M:%S").timetuple()) for index in range(len(content)): toks = content[index].split(',') utc = datetime.datetime.strptime(toks[0], "%d.%m.%Y %H:%M:%S.%f") time = calendar.timegm(utc.timetuple()) if year == None or (time >= start_time and time < end_time): high = float(toks[2]) low = float(toks[3]) o_price = float(toks[1]) c_price = float(toks[4]) volume = float(toks[5]) if high != low or utc.weekday() in {4}: prices.append(c_price) times.append(time) volumes.append(volume) return prices, times, volumes class Order: def __init__(self): self.pair = "" self.dir = 0 self.open_price = 0 self.time = 0 self.readable_time = "" self.amount = 0 self.id = 0 self.side = 0 self.pnl = 0 self.max_pnl = 0 self.open_predict = 0 self.tp_price = 0 self.sl_price = 0 self.hold_time = 0 self.is_invert = False self.invert_num = 0 self.reduce_amount = 0 self.match_amount = 0 self.equity_factor = 0 def barrier_function(prev_releases, avg_probability_low_barrier, currency_pair, is_norm_prob, is_norm_base, auc_barrier_mult, is_low_barrier, max_barrier, currency_weights, max_release_time_delay): avg_dir = 0 avg_count = 0 aucs = [] probs = [] found = False time_delay_map = {} description_map = {} for release in prev_releases: time_stamp = release[2] relase_time = release[3] currency = release[0] barrier = release[4] ''' if is_low_barrier: prob = release[5] - avg_probability_low_barrier[barrier] else: key = str(barrier) + "_" + str(auc_barrier_mult) if key in avg_probability_high_barrier: prob = release[5] - avg_probability_high_barrier[key] else: prob = release[5] ''' if currency_weights != None and currency in currency_weights: currency_weight = currency_weights[currency] else: currency_weight = 1.0 if currency_weight < 0.01: continue if barrier in avg_probability_low_barrier: prob = release[5] - avg_probability_low_barrier[barrier] else: prob = release[5] auc = release[6] description = release[7] ''' key = str(time_stamp) + "_" + str(relase_time) if key not in time_delay_map: hours = calculate_time_diff(time_stamp, relase_time) time_delay_map[key] = hours else: hours = time_delay_map[key] if hours > max_release_time_delay: continue ''' if (currency != currency_pair[0:3] and currency != currency_pair[4:7] and is_relavent_currency == True): continue if barrier > max_barrier: continue if abs(prob - 0.5) < 0.5 - max(0, (auc - 0.5) * auc_barrier_mult) and is_low_barrier == False: continue if is_norm_prob: if prob > 0.5: prob = 1.0 else: prob = 0.0 if auc > 0.51: avg_dir += barrier * (prob - 0.5) * currency_weight if description not in description_map: description_map[description] = [] description_map[description].append(barrier * (prob - 0.5) * currency_weight) if is_norm_base: avg_count += abs(prob - 0.5) * currency_weight else: avg_count += (prob - 0.5) * currency_weight found = True exchange_rate = release[9] if found: for release in prev_releases: auc = release[6] prob = release[5] aucs.append(0.5) return avg_dir, avg_count, aucs, probs, description_map def time_decay_function_regression(prev_releases, avg_probability_low_barrier, currency_pair, is_norm_prob, is_norm_base, auc_barrier_mult, is_low_barrier, max_barrier, currency_weights, max_release_time_delay): avg_dir = 0 avg_count = 0 aucs = [] probs = [] found = False for release in prev_releases: time_stamp = release[2] relase_time = release[3] currency = release[0] barrier = release[4] prob = release[5] auc = release[6] if (currency != currency_pair[0:3] and currency != currency_pair[4:7] and is_relavent_currency == True): continue if barrier > max_barrier: continue if abs(prob) * auc_barrier_mult < auc and is_low_barrier == False: continue avg_dir += prob avg_count += 1 exchange_rate = release[9] if found: for release in prev_releases: auc = release[6] prob = release[5] aucs.append(0.5) return avg_dir, avg_count, aucs, probs def time_decay_function_binary(prev_releases, avg_probability_low_barrier, currency_pair, is_norm_prob, is_norm_base, auc_barrier_mult, is_low_barrier, max_barrier): avg_dir = 0 avg_count = 0 aucs = [] probs = [] found = False for release in prev_releases: time_stamp = release[2] relase_time = release[3] currency = release[0] barrier = release[4] if is_low_barrier: prob = release[5] - avg_probability_low_barrier[barrier] else: key = str(barrier) + "_" + str(auc_barrier_mult) if key in avg_probability_high_barrier: prob = release[5] - avg_probability_high_barrier[key] else: prob = release[5] auc = release[6] if (currency != currency_pair[0:3] and currency != currency_pair[4:7] and is_relavent_currency == True): continue if barrier > max_barrier: continue if abs(prob - 0.5) < 0.5 - max(0, (auc - 0.5) * auc_barrier_mult) and is_low_barrier == False: continue if is_norm_prob: if prob > 0.5: prob = 1.0 else: prob = 0.0 if auc > 0.51: avg_dir += 50 * (prob - 0.5) avg_count += 1 found = True exchange_rate = release[9] if found: for release in prev_releases: auc = release[6] prob = release[5] aucs.append(0.5) return avg_dir, avg_count, aucs, probs def calculate_time_diff(now_time, ts): date = datetime.datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') s = datetime.datetime.strptime(date, "%Y-%m-%d %H:%M:%S") date = datetime.datetime.utcfromtimestamp(now_time).strftime('%Y-%m-%d %H:%M:%S') e = datetime.datetime.strptime(date, "%Y-%m-%d %H:%M:%S") _diff = (e - s) while s < e: max_hour = 24 if s.day == e.day: max_hour = e.hour if s.weekday() in {4}: max_hour = 21 if s.weekday() in {4} and s.hour in {21, 22, 23}: hours = 1 _diff -= timedelta(hours=hours) elif s.weekday() in {5}: hours = max_hour - s.hour _diff -= timedelta(hours=hours) elif s.weekday() in {6} and s.hour < 21: hours = min(21, max_hour) - s.hour _diff -= timedelta(hours=hours) else: hours = max_hour - s.hour if hours == 0: break s += timedelta(hours=hours) return (_diff.total_seconds() / (60 * 60)) def is_valid_trading_period(ts): date = datetime.datetime.utcfromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') s = datetime.datetime.strptime(date, "%Y-%m-%d %H:%M:%S") if s.weekday() in {4} and s.hour in {21, 22, 23}: return False if s.weekday() in {5}: return False if s.weekday() in {6} and s.hour < 21: return False return True def linreg(X, Y): """ return a,b in solution to y = ax + b such that root mean square distance between trend line and original points is minimized """ N = len(X) Sx = Sy = Sxx = Syy = Sxy = 0.0 for x, y in zip(X, Y): Sx = Sx + x Sy = Sy + y Sxx = Sxx + x*x Syy = Syy + y*y Sxy = Sxy + x*y det = Sxx * N - Sx * Sx return (Sxy * N - Sy * Sx)/det, (Sxx * Sy - Sx * Sxy)/det def find_std(price_df, curr_time, lag): before_prices = price_df["prices"][price_df["times"] < curr_time].tail(lag).values.tolist() a, b = linreg(range(len(before_prices)),before_prices) return a, np.std([before_prices[index] - ((a * index) + b) for index in range(len(before_prices))]) def back_test(select_pair, adjust_factor, is_hedge, is_low_barrier, auc_barrier_mult, is_norm_base, is_any_barrier, is_relavent_currency, max_barrier, is_norm_prob, is_norm_signal, is_max_volatility, model_type, day_wait, avg_probability_high_barrier, max_pip_barrier, reward_risk_ratio, max_order_size, min_trade_volatility, currency_weights, max_pip_slippage, grad_mult, decay_frac): orders = [] curr_trade_dir = None ideal_position = 0 total_profit = 5000 min_profit = 0 max_profit = 0 pnl = 0 max_exposure = 0 prev_releases = [] curr_release_time = setup_rows[0][2] prev_time_stamp = setup_rows[0][2] last_order_time = 0 equity = [] equity_buffer = [] float_pnls = [] news_signal_frequency = [] pnls = [] pip_diffs = [] min_time = 99999999999999999 max_time = 0 max_equity = 0 hit_stop_loss_count = 0 for row in setup_rows: currency = row[0] currency_pair = row[1] time_stamp = row[2] if is_valid_trading_period(time_stamp) == False: continue min_time = min(min_time, time_stamp) max_time = max(max_time, time_stamp) if time_stamp != curr_release_time: #growth_factor = ((total_profit + pnl) / 5000) #growth_factor = 5000 growth_factor = 1.0 if select_pair[4:7] == "JPY": pip_size = 0.01 else: pip_size = 0.0001 curr_release_time = time_stamp current_price = prev_releases[0][9] prev_time_stamp = prev_releases[0][2] grad, std1 = find_std(price_df, prev_time_stamp, 24 * 20) grad /= pip_size std1 /= pip_size final_auc_barrier = auc_barrier_mult * (std1 / 100) if is_max_volatility: max_barrier = max(max_barrier, std1) if model_type == ModelType.barrier: avg_dir, avg_count, aucs, probs, description_map = barrier_function(prev_releases, avg_probability_high_barrier, currency_pair, is_norm_prob, is_norm_base, final_auc_barrier, is_low_barrier, max_barrier, currency_weights, 0) elif model_type == ModelType.time_regression: avg_dir, avg_count, aucs, probs = time_decay_function_regression(prev_releases, avg_probability_high_barrier, currency_pair, is_norm_prob, is_norm_base, final_auc_barrier, is_low_barrier, max_barrier, currency_weights, 0) elif model_type == ModelType.time_classification: avg_dir, avg_count, aucs, probs = time_decay_function_binary(prev_releases, avg_probability_high_barrier, currency_pair, is_norm_prob, is_norm_base, final_auc_barrier, is_low_barrier, max_barrier, currency_weights) avg_dir = 0 avg_count = 0 for description in description_map: avg_dir += np.mean(description_map[description]) avg_count += 1 prev_releases = [] pnl = 0 total_buy = 0 total_sell = 0 order_count = 0 total_amount = 0 for order in orders: if order.dir == (current_price > order.open_price): profit = (abs(order.open_price - current_price) - (pip_size * 5)) * order.amount else: profit = (-abs(order.open_price - current_price) - (pip_size * 5)) * order.amount pip_diff = (profit / pip_size) / order.amount if select_pair[4:7] == "JPY": profit /= 100 pip_diffs.append(abs(pip_diff)) order.max_pnl = max(order.max_pnl, profit) order.pnl = profit total_amount += order.amount pnl += profit total_amount += order.amount if order.dir: total_buy += order.amount else: total_sell += order.amount if len(orders) > 0: float_pnls.append(pnl) if len(float_pnls) > 1000: float_pnls = float_pnls[1:] ''' if (avg_dir > 0) == (grad > 0): std1 += abs(grad) * grad_mult ''' if abs(avg_count) > 0:# and (len(orders) == 0 or abs(exchange_rate - price_deltas[-1]) > pip_size * 10): equity.append(total_profit + pnl) if is_norm_signal: signal = avg_dir / abs(avg_count) else: signal = avg_dir signal = min(signal, max_order_size) signal = max(signal, -max_order_size) if abs(signal) > 0 and std1 > min_trade_volatility: news_signal_frequency.append(prev_time_stamp) while (prev_time_stamp - news_signal_frequency[0]) > 60 * 60 * 24 * 30: news_signal_frequency = news_signal_frequency[1:] news_signal_time_lapse = float(prev_time_stamp - news_signal_frequency[0]) news_signal_time_lapse /= (60 * 60 * 24 * 30) max_equity = max(max_equity, total_profit + pnl) if signal > 0: amount = abs(signal) * ((900000 * 0.0001 * growth_factor) + (0)) * 0.5 else: amount = -abs(signal) * ((900000 * 0.0001 * growth_factor) + (0)) * 0.5 if pnl > abs(np.mean(float_pnls)) * 1.2: for order in orders: pnls.append(order.pnl * (1.0 / order.growth_factor)) total_profit += pnl orders = [] pnl = 0 curr_trade_dir = total_buy < total_sell if len(orders) > 0: ideal_position = (ideal_position * (1 - decay_frac)) + (amount * decay_frac) delta_pos = ideal_position - (total_buy - total_sell) delta_fraction = abs(delta_pos) / abs(total_buy - total_sell) else: ideal_position = amount delta_pos = amount delta_fraction = 1.0 amount = abs(delta_pos) signal = delta_pos total_amount += amount if (delta_fraction > 0.1) and total_amount < (total_profit + pnl) * 50: if is_hedge == False: temp_orders = orders new_orders = [] else: temp_orders = [] new_orders = orders for curr_order in temp_orders: if (amount < 0) or ((signal > 0) == curr_order.trade_dir): new_orders.append(curr_order) continue if amount >= curr_order.amount: total_profit += curr_order.pnl amount -= curr_order.amount pnls.append(curr_order.pnl * (1.0 / order.growth_factor)) else: total_profit += curr_order.pnl * (amount / curr_order.amount) pnls.append(curr_order.pnl * (amount / curr_order.amount) * (1.0 / order.growth_factor)) curr_order.amount -= amount new_orders.append(curr_order) amount = -1 last_order_time = time_stamp orders = new_orders if amount > 0: order = Order() order.open_price = current_price order.trade_dir = signal > 0 order.amount = amount order.open_time = prev_time_stamp order.growth_factor = growth_factor curr_trade_dir = (signal > 0) if order.trade_dir: total_buy += amount else: total_sell += amount orders.append(order) max_exposure = max(max_exposure, total_amount / ((total_profit + pnl) * 50)) time_years = float(max_time - min_time) / (60 * 60 * 24 * 365) max_profit = max(max_profit, total_profit + pnl) min_profit = min(min_profit, total_profit + pnl - max_profit) between_df = price_df[(price_df["times"] >= prev_time_stamp) & (price_df["times"] <= curr_release_time)] between_prices = between_df["prices"].values.tolist() between_times = between_df["times"].values.tolist() total_buy = 0 total_sell = 0 for order in orders: if order.dir: total_buy += order.amount else: total_sell += order.amount # go over previous prices before release if len(between_prices) > 0: prev_price = between_prices[0] for between_price, between_time in zip(between_prices, between_times): if len(orders) == 0: break price_gap = (between_price - prev_price) / pip_size prev_price = between_price date = datetime.datetime.utcfromtimestamp(between_time).strftime('%Y-%m-%d %H:%M:%S') s = datetime.datetime.strptime(date, "%Y-%m-%d %H:%M:%S") min_order_time = 99999999999999999 inst_profit = 0 for order in orders: if order.dir == (between_price > order.open_price): profit = (abs(order.open_price - between_price) - (pip_size * 5)) * order.amount else: profit = (-abs(order.open_price - between_price) - (pip_size * 5)) * order.amount if select_pair[4:7] == "JPY": profit /= 100 order.pnl = profit min_order_time = min(min_order_time, order.open_time) inst_profit += order.pnl pnl = 0 new_orders = [] order_count = 0 for order in orders: if between_time < order.open_time: continue if order.dir == (between_price > order.open_price): profit = (abs(order.open_price - between_price) - (pip_size * 5)) * order.amount else: profit = (-abs(order.open_price - between_price) - (pip_size * 5)) * order.amount pip_diff = (profit / pip_size) / order.amount if select_pair[4:7] == "JPY": profit /= 100 order.pnl = profit max_time_diff = calculate_time_diff(between_time, min_order_time) is_weekend = (s.weekday() in {4} and s.hour >= 20) or (s.weekday() in {5}) if (((pip_diff < -max_pip_barrier) or (pip_diff > max_pip_barrier * reward_risk_ratio))) or max_time_diff > (24 * day_wait) / len(orders) or (len(orders) - order_count >= 10) or (inst_profit < -50 * growth_factor * adjust_factor) or (inst_profit > 50 * growth_factor * adjust_factor * reward_risk_ratio): total_profit += profit order_count += 1 limit_profit = max(-max_pip_barrier * order.amount, profit) limist_profit = min(max_pip_barrier * order.amount * reward_risk_ratio, profit) limit_profit = max(-50 * growth_factor * adjust_factor * 2, profit) limit_profit = min(50 * reward_risk_ratio * growth_factor * adjust_factor * 2, profit) pnls.append(limit_profit * (1.0 / order.growth_factor)) if profit < 0: hit_stop_loss_count += 1 continue pnl += profit new_orders.append(order) orders = new_orders equity_buffer.append(total_profit + pnl) # don't trade same direction as a loser next time if len(orders) == 0 and max(total_buy, total_sell) > 0: if pnl > 0: curr_trade_dir = total_buy < total_sell else: curr_trade_dir = total_buy > total_sell prev_releases.append(row) print "Sharpe", np.mean(pnls) / np.std(pnls) print "Samples", len(pnls) / time_years if abs(time_years) > 0: print time_stamp, total_profit + pnl, ((((total_profit + pnl - 5000) / 5000)) / time_years), time_years, len(orders), min_profit, max_exposure if len(pnls) == 0: return -100, [0], 0, 0, 0 return np.mean(pnls) / np.std(pnls), equity, float(hit_stop_loss_count) / len(pnls), np.mean(pnls), len(pnls) / time_years def search1(setting, is_relavent_currency, select_pair): pbounds = { 'adjust_factor': (setting["adjust_factor"], setting["adjust_factor"]), 'day_wait' : (setting["day_wait"], setting["day_wait"]), 'auc_barrier' : (setting["auc_barrier"], setting["auc_barrier"]), 'is_norm_signal' : (setting["is_norm_signal"], setting["is_norm_signal"]), 'max_barrier' : (50, 100), 'min_trade_volatility' : (setting["min_trade_volatility"], setting["min_trade_volatility"]), 'max_pip_barrier' : (setting["max_pip_barrier"], setting["max_pip_barrier"]), 'reward_risk_ratio' : (setting["reward_risk_ratio"], setting["reward_risk_ratio"]), 'max_order_size' : (setting["max_order_size"], setting["max_order_size"]), 'is_close_pos_trade' : (setting["is_close_pos_trade"], setting["is_close_pos_trade"]), 'max_pip_slippage' : (200, 200), 'AUD' : (0, 1), 'GBP' : (0, 1), 'CAD' : (0, 1), 'EUR' : (0, 1), 'NZD' : (0, 1), 'CHF' : (0, 1), 'USD' : (0, 1), 'JPY' : (0, 1), } if is_relavent_currency: for currency in ['AUD', 'GBP', 'CAD', 'EUR', 'NZD', 'CHF', 'USD', 'JPY']: if currency != select_pair[0:3] and currency != select_pair[4:7]: pbounds[currency] = (1, 1) return pbounds def search2(setting): pbounds = { 'adjust_factor': (setting["adjust_factor"], setting["adjust_factor"]), 'day_wait' : (0.5, setting["day_wait"]), 'auc_barrier' : (setting["auc_barrier"], setting["auc_barrier"]), 'is_norm_signal' : (setting["is_norm_signal"], setting["is_norm_signal"]), 'max_barrier' : (40, 100), 'min_trade_volatility' : (setting["min_trade_volatility"], setting["min_trade_volatility"]), 'max_pip_barrier' : (80, 220), 'reward_risk_ratio' : (setting["reward_risk_ratio"], setting["reward_risk_ratio"]), 'max_order_size' : (30, 180), 'is_close_pos_trade' : (setting["is_close_pos_trade"], setting["is_close_pos_trade"]), 'max_pip_slippage' : (200, 200), } return pbounds def search3(setting): if "min_trade_volatility" not in setting: setting["min_trade_volatility"] = 50 if "decay_frac" not in setting: setting["decay_frac"] = 0.5 pbounds = { 'adjust_factor': (setting["adjust_factor"], setting["adjust_factor"]), 'day_wait' : (500000, 500000), 'auc_barrier' : (0.1, 0.1), 'is_norm_signal' : (setting["is_norm_signal"], setting["is_norm_signal"]), 'max_barrier' : (setting["max_barrier"], setting["max_barrier"]), 'is_max_volatility' : (setting["is_max_volatility"], setting["is_max_volatility"]), 'max_pip_barrier' : (setting["max_pip_barrier"], setting["max_pip_barrier"]), 'reward_risk_ratio' : (setting["reward_risk_ratio"], setting["reward_risk_ratio"]), 'max_order_size' : (setting["max_order_size"], setting["max_order_size"]), 'min_trade_volatility' : (setting["min_trade_volatility"], setting["min_trade_volatility"]), 'max_pip_slippage' : (3.0, 3.0), 'grad_mult' : (1, 1), 'decay_frac' : (setting["decay_frac"], setting["decay_frac"]) } return pbounds def bayesian_optimization_output(setting, select_pair, is_relavent_currency, is_hedge, is_low_barrier, is_any_barrier, model_type, cursor): pbounds = search3(setting) #pbounds = search1(setting, is_relavent_currency, select_pair) all_sharpes = [] samples_set = [] def xgboost_hyper_param1(adjust_factor, day_wait, auc_barrier, is_norm_signal, max_barrier, is_max_volatility, max_pip_barrier, reward_risk_ratio, max_order_size, is_close_pos_trade, max_pip_slippage, AUD, GBP, CAD, EUR, NZD, CHF, USD, JPY): currency_weights = {} currency_weights['AUD'] = AUD currency_weights['GBP'] = GBP currency_weights['CAD'] = CAD currency_weights['EUR'] = EUR currency_weights['NZD'] = NZD currency_weights['CHF'] = CHF currency_weights['USD'] = USD currency_weights['JPY'] = JPY if AUD < 0.01: AUD = 0 if GBP < 0.01: GBP = 0 if CAD < 0.01: CAD = 0 if EUR < 0.01: EUR = 0 if NZD < 0.01: NZD = 0 if CHF < 0.01: CHF = 0 if USD < 0.01: USD = 0 if JPY < 0.01: JPY = 0 sharpe, equity_curve, stop_loss_ratio, mean_pnl, samples = back_test(select_pair, adjust_factor, is_hedge, is_low_barrier, auc_barrier, True, False, is_relavent_currency, max_barrier, False, is_norm_signal > 0.5, is_max_volatility > 0.5, model_type, day_wait, {}, max_pip_barrier, reward_risk_ratio, max_order_size, min_trade_volatility, currency_weights, 200) if samples < 10: return -1 all_sharpes.append(sharpe) samples_set.append(samples) return sharpe * max(1, (equity_curve[-1] / 5000)) def xgboost_hyper_param(adjust_factor, day_wait, auc_barrier, is_norm_signal, max_barrier, is_max_volatility, max_pip_barrier, reward_risk_ratio, max_order_size, min_trade_volatility, max_pip_slippage, grad_mult, decay_frac): if "currency_weights" in setting: currency_weights = setting["currency_weights"] else: currency_weights = None sharpe, equity_curve, stop_loss_ratio, mean_pnl, samples = back_test(select_pair, adjust_factor, is_hedge, is_low_barrier, auc_barrier, True, False, is_relavent_currency, max_barrier, False, is_norm_signal > 0.5, is_max_volatility > 0.5, model_type, day_wait, {}, max_pip_barrier, reward_risk_ratio, max_order_size, min_trade_volatility, currency_weights, max_pip_slippage, grad_mult, decay_frac) if samples < 10: return -1 all_sharpes.append(sharpe) samples_set.append(samples) return sharpe * max(1, (equity_curve[-1] / 5000)) optimizer = BayesianOptimization( f=xgboost_hyper_param, pbounds=pbounds, ) optimizer.maximize( init_points=4, n_iter=8, ) max_sharpe = max(all_sharpes) samples = [sample for sharpe, sample in zip(all_sharpes, samples_set) if sharpe >= max_sharpe] return optimizer.max['params'], optimizer.max['target'], max_sharpe, samples[0], np.mean(all_sharpes) model_type = sys.argv[3] if model_type == "barrier": model_type = ModelType.barrier elif model_type == "time_regression": model_type = ModelType.time_regression elif model_type == "time_classification": model_type = ModelType.time_classification def rank_data_size(): final_fitted_map = execute_news_signals.get_strategy_parameters(model_type) #final_fitted_map = pickle.load(open(str(model_type) + "_final_fitted_map.pickle", "rb")) for j in range(4): ranking = {} for i in [j]: s3 = [] for pair in final_fitted_map: if pair not in all_currency_pairs: continue if pair not in ranking: ranking[pair] = [] ranking[pair].append(final_fitted_map[pair][i]['sharpe'] / final_fitted_map[pair][i]['samples']) final_ranking = [] for pair in final_fitted_map: if pair not in all_currency_pairs: continue if final_fitted_map[pair+"_sample_num"] > 1202353: continue ranking[pair] = np.mean(ranking[pair]) final_ranking.append([ranking[pair], pair]) final_ranking = sorted(final_ranking, key=lambda x: x[0], reverse=True) print ([item[1] for item in final_ranking]) def check_sample_num(): for select_pair in all_currency_pairs: cnx = mysql.connector.connect(user='andstv48', password='Password81', host='mysql.newscaptial.com', database='newscapital') cursor = cnx.cursor() query = ("SELECT count(*), min(time_stamp), max(time_stamp) FROM historic_news_barrier_probs where \ currency_pair = '" + select_pair + "' and model_key='" + sys.argv[2] + "' order by time_stamp \ ") cursor.execute(query) for row1 in cursor: duration = float(row1[2] - row1[1]) / (60 * 60 * 24 * 365) print (select_pair, duration) def check_sample_num_regression(): for select_pair in all_currency_pairs: cnx = mysql.connector.connect(user='andstv48', password='Password81', host='mysql.newscaptial.com', database='newscapital') cursor = cnx.cursor() query = ("SELECT count(*), min(time_stamp), max(time_stamp) FROM historic_new_regression_probs where \ currency_pair = '" + select_pair + "' and model_key='R1' order by time_stamp \ ") cursor.execute(query) for row1 in cursor: count = row1[0] if count > 0: duration = float(row1[2] - row1[1]) / (60 * 60 * 24 * 365) if count > 0: print (select_pair, duration) #final_fitted_map = execute_news_signals.get_strategy_parameters(model_type) final_fitted_map = pickle.load(open(str(model_type) + "_final_fitted_map_currency.pickle", "rb")) if model_type == ModelType.barrier: select_pairs = all_currency_pairs elif model_type == ModelType.time_regression: select_pairs = ["NZD_USD", "GBP_USD", "GBP_CAD", "NZD_JPY", "AUD_CAD", "USD_CAD", "EUR_JPY", "GBP_AUD", "AUD_NZD", "AUD_USD", "AUD_JPY", "CHF_JPY", "EUR_GBP"]#EUR_NZD, GBP_NZD,EUR_CHF,NZD_CAD else: select_pairs = ["EUR_NZD", "GBP_NZD", "EUR_CHF", "NZD_CAD", "USD_CAD", "GBP_USD", "AUD_USD"] all_sharpes = [] for select_pair in all_currency_pairs: print (select_pair) ''' if select_pair in final_fitted_map: continue ''' cnx = mysql.connector.connect(user='andstv48', password='Password81', host='mysql.newscaptial.com', database='newscapital') cursor = cnx.cursor() query = ("SELECT count(*) FROM historic_news_barrier_probs where \ currency_pair = '" + select_pair + "' and model_key='" + sys.argv[2] + "' order by time_stamp \ ") cursor.execute(query) for row1 in cursor: sample_num = row1[0] ''' if sample_num == 0 or (select_pair + "_sample_num" in final_fitted_map and (sample_num == final_fitted_map[select_pair + "_sample_num"])): continue ''' prices, times, volumes = load_time_series(select_pair, None, True) buy_price_df = pd.DataFrame() buy_price_df['times'] = times buy_price_df["price_buy"] = prices buy_price_df["volume_buy"] = volumes buy_price_df.set_index('times', inplace=True) buy_price_df.fillna(method='ffill', inplace=True) prices, times, volumes = load_time_series(select_pair, None, False) sell_price_df = pd.DataFrame() sell_price_df['times'] = times sell_price_df["price_sell"] = prices sell_price_df["volume_sell"] = volumes sell_price_df.set_index('times', inplace=True) sell_price_df.fillna(method='ffill', inplace=True) price_df = buy_price_df.join(sell_price_df) price_df["prices"] = price_df.apply(lambda x: (x["price_buy"] + x["price_sell"]) * 0.5, axis=1) price_df.reset_index(inplace=True) def find_max_cutoff(percentile): prices = price_df["prices"].values.tolist() deltas = [prices[index] - prices[index-1] for index in range(1, len(prices))] gammas = [abs(deltas[index]) / abs(np.mean(deltas[index-24:index])) for index in range(24, len(deltas)) if abs(np.mean(deltas[index-24:index])) > 0] return np.percentile(gammas, percentile) query = ("SELECT avg(probability), barrier FROM historic_news_barrier_probs where \ currency_pair = '" + select_pair + "' and model_key='" + sys.argv[2] + "' group by barrier order by time_stamp \ ") cursor.execute(query) ''' avg_probability_high_barrier = {} for auc_barrier_mult in [1.0, 1.5, 2.0, 2.5]: query = ("SELECT avg(probability), barrier FROM historic_news_barrier_probs where \ currency_pair = '" + select_pair + "' and model_key='" + sys.argv[2] + "' AND abs(probability - 0.5) > 0.5 - ((auc - 0.5) * " + str(auc_barrier_mult) + ") group by barrier order by time_stamp \ ") cursor.execute(query) for row1 in cursor: avg_probability_high_barrier[str(row1[1]) + "_" + str(auc_barrier_mult)] = row1[0] - 0.5 print ("high barrier bias", np.mean(avg_probability_high_barrier.values()), auc_barrier_mult) print (avg_probability_high_barrier.keys()) ''' avg_probability_low_barrier = {} for row1 in cursor: avg_probability_low_barrier[row1[1]] = row1[0] - 0.5 print ("low barrier bias", np.mean(avg_probability_low_barrier.values())) query = ("SELECT * FROM historic_news_barrier_probs where \ currency_pair = '" + select_pair + "' and model_key='" + sys.argv[2] + "' order by time_stamp \ ") cursor.execute(query) print ("out") setup_rows = [] for row1 in cursor: setup_rows.append(row1) print len(setup_rows), "tot" # pickle.dump(setup_rows, open("rows" + select_pair + ".pickle", "wb")) #setup_rows = pickle.load(open("rows" + select_pair + ".pickle", "rb")) settings = [] aucs = execute_news_signals.get_strategy_parameters(ModelType.barrier)[select_pair] setting_offset = 0 for is_low_barrier in [False]: for is_hedge in [True, False]: for is_relavent_currency in [False, True]: print ("optimize original ", aucs[len(settings)]["target"]) setting = aucs[len(settings)] if "currency_weights" in setting: currency_weights = setting["currency_weights"] else: currency_weights = None ''' if len(setup_rows) != final_fitted_map[select_pair+"_sample_num"]: print ("recalulating optimal sharpe") sharpe, equity_curve, stop_loss_ratio, mean_pnl, samples = back_test(select_pair, setting["adjust_factor"], is_hedge, is_low_barrier, setting["auc_barrier"], True, False, is_relavent_currency, setting["max_barrier"], False, setting["is_norm_signal"], setting["is_reverse_trade"], model_type, setting["day_wait"], {}, setting["max_pip_barrier"], setting["reward_risk_ratio"], setting["max_order_size"], setting["is_close_pos_trade"], currency_weights, 100, 2000) target = sharpe * max(1, (equity_curve[-1] / 5000)) setting["sharpe"] = sharpe setting["target"] = target setting["samples"] = samples ''' params, target, sharpe, samples, mean_sharpe = bayesian_optimization_output(setting, select_pair, is_relavent_currency, is_hedge, is_low_barrier, False, model_type, cursor) if target > setting["target"] or (setting["samples"] < 10 and target > 0): all_sharpes.append(target) print ("Found Better") new_setting = { "is_low_barrier" : False, "is_any_barrier" : False, "is_hedge" : is_hedge, "decay_frac" : params['decay_frac'], "is_relavent_currency" : is_relavent_currency, "adjust_factor" : params['adjust_factor'], "max_barrier" : params['max_barrier'], "auc_barrier" : params['auc_barrier'], "day_wait" : params['day_wait'], "is_norm_signal" : params['is_norm_signal'] > 0.5, "is_max_volatility" : params['is_max_volatility'] > 0.5, "currency_pair" : select_pair, "max_pip_barrier" : params['max_pip_barrier'], "reward_risk_ratio" : params['reward_risk_ratio'], "max_order_size" : params['max_order_size'], "min_trade_volatility" : params['min_trade_volatility'], "samples" : samples, "sharpe" : sharpe, "target" : target, "mean_sharpe" : mean_sharpe, } currency_weights = {} for currency in ['AUD', 'GBP', 'CAD', 'EUR', 'NZD', 'CHF', 'USD', 'JPY']: if currency in params: currency_weights[currency] = params[currency] if len(currency_weights) == 0 and "currency_weights" in setting: currency_weights = setting["currency_weights"] new_setting['currency_weights'] = currency_weights settings.append(new_setting) else: all_sharpes.append(setting["sharpe"]) settings.append(setting) print ("Mean Sharpe Overall", np.mean(all_sharpes)) final_fitted_map[select_pair] = settings final_fitted_map[select_pair+"_sample_num"] = sample_num pickle.dump(final_fitted_map, open(str(model_type) + "_final_fitted_map_currency.pickle", "wb")) cursor.close() ''' plt.title("Best Adjust: " + str(best_adjust_factor)) plt.plot(best_equity_curve) plt.show() ''' default_stops = {False : [], True : []} default_auc_mults = [] default_norm_signals = [] default_wait_days = {False : [], True : []} for pair in final_fitted_map: if pair not in all_currency_pairs: continue print (pair) for setting in final_fitted_map[pair]: default_auc_mults.append(setting["auc_barrier"]) default_norm_signals.append(setting["is_norm_signal"]) default_stops[setting["is_hedge"]].append(setting["adjust_factor"]) default_wait_days[setting["is_hedge"]].append(setting["day_wait"]) print (len(default_norm_signals)) final_fitted_map["default_day_wait"] = {False : np.mean(default_wait_days[False]), True : np.mean(default_wait_days[True])} final_fitted_map["default_adjust"] = {False : np.mean(default_stops[False]), True : np.mean(default_stops[True])} final_fitted_map["default_auc_mult"] = np.mean(default_auc_mults) final_fitted_map["default_is_norm_signal"] = sum(default_norm_signals) > sum([(v == False) for v in default_norm_signals]) print (final_fitted_map) print ("Default Day Wait: ", final_fitted_map["default_day_wait"]) print ("Default Adjust: ", final_fitted_map["default_adjust"]) print ("Default AUC Mult: ", final_fitted_map["default_auc_mult"]) print ("Default default_is_norm_signal: ", final_fitted_map["default_is_norm_signal"]) ''' ('Mean Sharpe Overall', 4748.545318017648) ('Mean Return Overall', 4748.545318017648) ''' ''' Tere Sarah. If I could interest you, there are concerts at QPAC, mini golf (holly molly), theme parks, standard bar / restaurants, whale watching, movies. If you have time mid week or coming weekend for one - I'll organize, I would love to see you again.
[ "" ]
b384befc386278c815f59f3dda5b8684f78b7cb5
e2a5c001a4e18e61b1ae04db6d4da45c6a2af5ee
/Src/modulo_reduction.py
1f68021bfc0ec58518ca2b8490c4e9112b67a6fc
[ "MIT" ]
permissive
rstodden/verbal-multiword-expression-st11
77c1c1920a18e98becabb42288054bb894d2178e
768c453fb0d28c3e237c1b22522a319c1b157c1f
refs/heads/master
2020-03-25T21:27:26.983110
2018-08-10T19:56:32
2018-08-10T19:56:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,635
py
from __future__ import division from scipy.sparse import csr_matrix, save_npz import numpy import math from collections import Counter from param import XPParams class ModuloReduction(): @staticmethod def get_expected_cooc(total, count_feature, count_vector): """ return expected value """ if total == 0 or count_feature == 0 or count_vector == 0: return 0 return (count_vector*count_feature)/(total*total) @staticmethod def ppmi(count_cooc, expected_cooc): """ return pointwise mutual information. If count of observed or expected co-ooccurrences is 0 return 0. """ if count_cooc == 0 or expected_cooc == 0: ppmi = 0 else: ppmi = max(0, math.log(count_cooc/expected_cooc)) return ppmi @staticmethod def reduce_matrix_with_modulo(X, n_new_features, folder=None, training=False, calc_ppmi=False, new_y_number=None, twoD_feats=False): data = [] # contains all values rows = [] # contains all rownumbers of the data cols = [] # contains all colnumbers of the data #count_feature_dict = Counter() #count_vector_dict = Counter() count_feature_vec = numpy.zeros(n_new_features) #count_vector_vec = [] if twoD_feats and new_y_number != None: #output_matrix = numpy.zeros((X.shape[0], 1)) output_matrix = numpy.empty((X.shape[0], n_new_features, new_y_number)) for row_nr, vector in enumerate(X): new_data = numpy.zeros((n_new_features, new_y_number)) for col_nr, value in zip(vector.indices, vector.data): if value != 0: new_dimension_1 = abs(col_nr % n_new_features) new_dimension_2 = abs((col_nr * 7) % n_new_features) new_dimension_3 = abs((col_nr * 17) % n_new_features) new_dimension_4 = abs((col_nr * 37) % n_new_features) new_dimension_5 = abs((col_nr * 47) % n_new_features) new_y = abs(col_nr % new_y_number) new_data[new_dimension_1, new_y] += value new_data[new_dimension_2, new_y] += value new_data[new_dimension_3, new_y] += value new_data[new_dimension_4, new_y] += value new_data[new_dimension_5, new_y] += value #print(len(new_data[numpy.nonzero(new_data)])) if n_new_features > 500: new_dimension_6 = abs((col_nr * 67) % n_new_features) new_dimension_7 = abs((col_nr * 97) % n_new_features) new_dimension_8 = abs((col_nr * 107) % n_new_features) new_dimension_9 = abs((col_nr * 127) % n_new_features) new_dimension_10 = abs((col_nr * 137) % n_new_features) new_data[new_dimension_6, new_y] += value new_data[new_dimension_7, new_y] += value new_data[new_dimension_8, new_y] += value new_data[new_dimension_9, new_y] += value new_data[new_dimension_10, new_y] += value output_matrix[row_nr] = new_data #print(output_matrix) #output_matrix = csr_matrix(output_matrix) else: for row_nr, vector in enumerate(X): new_data = numpy.zeros(n_new_features) for col_nr, value in zip(vector.indices, vector.data): #print(value) if value != 0: new_dimension_1 = abs(col_nr % n_new_features) new_dimension_2 = abs((col_nr*7) % n_new_features) new_dimension_3 = abs((col_nr * 17) % n_new_features) new_dimension_4 = abs((col_nr * 37) % n_new_features) new_dimension_5 = abs((col_nr * 47) % n_new_features) new_data[new_dimension_1] += value new_data[new_dimension_2] += value new_data[new_dimension_3] += value new_data[new_dimension_4] += value new_data[new_dimension_5] += value if n_new_features > 500: new_dimension_6 = abs(col_nr*67 % n_new_features) new_dimension_7 = abs((col_nr*97) % n_new_features) new_dimension_8 = abs((col_nr * 107) % n_new_features) new_dimension_9 = abs((col_nr * 127) % n_new_features) new_dimension_10 = abs((col_nr * 137) % n_new_features) new_data[new_dimension_6] += value new_data[new_dimension_7] += value new_data[new_dimension_8] += value new_data[new_dimension_9] += value new_data[new_dimension_10] += value for nr_value, value in enumerate(new_data): #print(value) # add values to new_matrix if not zero if value != 0: data.append(value) # add new value if not 0 rows.append(row_nr) # add row number of current vector cols.append(nr_value) # add index of column/feature count_feature_vec[nr_value] += value # number 2 #count_vector_vec[row_nr] = sum(count_feature_vec) output_matrix = csr_matrix((data, (rows, cols)), shape=(X.shape[0], n_new_features)) #print("mod", output_matrix.toarray()) if calc_ppmi: #ppmi if training: dim =n_new_features output_matrix = output_matrix.toarray() vectorOfSumAllVectors = numpy.zeros(dim) sumAllComponents = 0 vecWeighted = numpy.zeros(shape=(output_matrix.shape[0], output_matrix.shape[1])) for vector in output_matrix: for i in range(dim): vectorOfSumAllVectors[i] += vector[i] for i in range(dim): sumAllComponents += vectorOfSumAllVectors[i] #print("sumAllComponents", sumAllComponents) for n, vector in enumerate(output_matrix): #if training == False: #print(vector) sumThisRow = sum(vector) for i in range(dim): pmi = 0 if vector[i] != 0: pmi = max(0,math.log(vector[i]*sumAllComponents)-math.log(sumThisRow*vectorOfSumAllVectors[i])) vecWeighted[n,i] = pmi #if not training: #print("vectorOfSumAllVectors", vectorOfSumAllVectors[i]) #print("sumThisRow", sumThisRow, "vector", vector[i]) #print("ppmi", vecWeighted) XPParams.vectorOfSumAllVectors = vectorOfSumAllVectors XPParams.sumAllComponents = sumAllComponents else: dim = n_new_features output_matrix = output_matrix.toarray() vectorOfSumAllVectors = XPParams.vectorOfSumAllVectors sumAllComponents = XPParams.sumAllComponents vecWeighted = numpy.zeros(shape=(output_matrix.shape[0], output_matrix.shape[1])) for n, vector in enumerate(output_matrix): # if training == False: # print(vector) sumThisRow = sum(vector) for i in range(dim): pmi = 0 if vector[i] != 0: pmi = max(0, math.log(vector[i] * sumAllComponents) - math.log( sumThisRow * vectorOfSumAllVectors[i])) #print(pmi) vecWeighted[n, i] = pmi # if not training: # print("vectorOfSumAllVectors", vectorOfSumAllVectors[i]) # print("sumThisRow", sumThisRow, "vector", vector[i]) #print("ppmi", vecWeighted) return csr_matrix(vecWeighted) else: return output_matrix # data_list_pmi = [] # rows_list_pmi = [] # cols_list_pmi = [] # """for row_nr, vector in enumerate(output_matrix): # count_vector = sum(vector.data) # for col_nr, value in zip(vector.indices, vector.data): # expected_cooc = get_expected_cooc(sum(output_matrix.data), count_feature_dict[col_nr], count_vector_dict[row_nr]) # ppmi_value = ppmi(value, expected_cooc) # data_list_pmi.append(ppmi_value) # add new value if not 0 # rows_list_pmi.append(row_nr) # add row number of current vector # cols_list_pmi.append(col_nr) # add index of column/feature""" # # total = sum(output_matrix.data) # number 1 # output_matrix = output_matrix.toarray() # for row_nr, vector in enumerate(output_matrix): # count_vector = sum(vector) # # for col_nr, value in enumerate(vector): # pmi=0 # if value != 0: # pmi = max(0,math.log(value * total)-math.log(count_vector * count_feature_vec[col_nr])) # # # print pmi # # #expected_cooc = get_expected_cooc(sum(output_matrix.data), count_feature_dict[col_nr], count_vector_dict[row_nr]) # #ppmi_value = ppmi(value, expected_cooc) # data_list_pmi.append(pmi) # add new value if not 0 # rows_list_pmi.append(row_nr) # add row number of current vector # cols_list_pmi.append(col_nr) # add index of column/feature""" # #print('vector', vector, row_nr, count_vector) # # output_matrix = csr_matrix((data_list_pmi, (rows_list_pmi, cols_list_pmi)), shape=(X.shape[0], n_new_features)) # return output_matrix
[ "regina.stodden@uni-duesseldorf.de" ]
regina.stodden@uni-duesseldorf.de
fdac9cb8328b1522e3c118d25ef7845b4fcb9edd
9fe9a586e9c0ae659e2dfe091d4ad0795d92fb7e
/backend/newsnetworks/views.py
a4c61e5455c0b73a2a6e65314de6ad42162a62dc
[]
no_license
JaeInK/Deep-Learning-Projects_Django-API
bd2ed34bd2212b83411c2b4d7b30f1731ecc38c3
87c98f8ef32594e080ddfb3ca3dc3be6fa74fe77
refs/heads/master
2020-03-09T19:34:58.323235
2018-04-10T16:18:38
2018-04-10T16:18:38
128,961,315
0
1
null
null
null
null
UTF-8
Python
false
false
3,473
py
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt from backend.settings import NEWS_DIR # from .scripts import newsnetworks_web import requests import pandas as pd import networkx as nx import os import sys import json import time sys.path.append(os.path.join(NEWS_DIR,'scripts/')) NET_DIC = {'child' : '소년법', 'coin': '가상화폐', 'clear': '적폐청산', 'cortax': '법인세', 'estate': '부동산', 'fulltime': '정규직', 'korea': '남북관계', 'macro': '거시경제', 'nuclear': '원자력발전소', 'wage': '최저임금'} # Create your views here. # @csrf_exempt # def networks_backup(request): # received_data = json.loads(request.body.decode('utf-8')) # dataset = received_data['dataset'] # edge_th = received_data['edge_threshold'] # deg_th = received_data['degree_threshold'] # max_sub_flag = received_data['max_subgraph'] # net_name = NET_DIC[dataset] # # pickle_path = os.path.join(pwd + '/data/' + str(dataset) + '_extracted_with_polarity.p') # st = time.time() # df = pd.read_pickle(pickle_path) # print("read_pickle opt elapsed: {} secons".format(time.time()-st)) # # G = nnw.NewsNetwork() # st = time.time() # G.read_file(df) # print("read_file opt elapsed: {} secons".format(time.time()-st)) # st = time.time() # G.pre_processing(edge_threshold = edge_th, deg_threshold = deg_th) # print("pre_processing opt elapsed: {} secons".format(time.time()-st)) # st = time.time() # if max_sub_flag: # max_sub = G.subgraph(max_subgraph = True) # G.set_node_link_attrs(max_sub) # # else: # G.set_node_link_attrs(edge_bold = 10) # print("set_node_link_attrs opt elapsed: {} secons".format(time.time()-st)) # st = time.time() # G_dict = G.get_node_link_data() # print("get_node_link_data opt elapsed: {} secons".format(time.time()-st)) # st = time.time() # network_info = G.get_network_attrs(net_name) # print("get_network_attrs opt elapsed: {} secons".format(time.time()-st)) # G_dict.update(network_info) # # return JsonResponse(G_dict) @csrf_exempt def networks(request): received_data = json.loads(request.body.decode('utf-8')) dataset = received_data['dataset'] edge_th = received_data['edge_threshold'] deg_th = received_data['degree_threshold'] max_sub_flag = received_data['max_subgraph'] net_name = NET_DIC[dataset] pickle_path = os.path.join('newsnetworks/data/' + str(dataset) + '.pickle') st = time.time() G = pd.read_pickle(pickle_path) print("read_pickle opt elapsed: {} secons".format(time.time()-st)) G.pre_processing(edge_threshold = edge_th, deg_threshold = deg_th) print("pre_processing opt elapsed: {} secons".format(time.time()-st)) st = time.time() if max_sub_flag: max_sub = G.subgraph(max_subgraph = True) G.set_node_link_attrs(max_sub) else: G.set_node_link_attrs(edge_bold = 10) print("set_node_link_attrs opt elapsed: {} secons".format(time.time()-st)) st = time.time() G_dict = G.get_node_link_data() print("get_node_link_data opt elapsed: {} secons".format(time.time()-st)) st = time.time() network_info = G.get_network_attrs(net_name) print("get_network_attrs opt elapsed: {} secons".format(time.time()-st)) G_dict.update(network_info) return JsonResponse(G_dict)
[ "gjames5809@gmail.com" ]
gjames5809@gmail.com
cf9c97731069aeb242a91dad70d726c9a8f4caba
e407cd1e873ef1a626a592ac22901a300f5be8f4
/.pycharm_helpers/python_stubs/-1840357896/_operator.py
6fba24788ffd6ca8c444f37cd0c640922bb2343e
[]
no_license
rpesce/oktetoProject
65f77cfd2d92e6372f32e6e3dbfb8ce038d1b45d
7dbddf3d85b040755b15f4e647894353d4e5a3c5
refs/heads/master
2023-03-31T12:03:49.419915
2020-05-13T19:37:49
2020-05-13T19:37:49
263,726,526
0
0
null
2021-03-20T03:57:35
2020-05-13T19:38:54
Python
UTF-8
Python
false
false
12,775
py
# encoding: utf-8 # module _operator # from (built-in) # by generator 1.147 """ Operator interface. This module exports a set of functions implemented in C corresponding to the intrinsic operators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function names are those used for special methods; variants without leading and trailing '__' are also provided for convenience. """ # no imports # functions def abs(a): # real signature unknown; restored from __doc__ """ Same as abs(a). """ pass def add(*args, **kwargs): # real signature unknown """ Same as a + b. """ pass def and_(*args, **kwargs): # real signature unknown """ Same as a & b. """ pass def concat(*args, **kwargs): # real signature unknown """ Same as a + b, for a and b sequences. """ pass def contains(*args, **kwargs): # real signature unknown """ Same as b in a (note reversed operands). """ pass def countOf(*args, **kwargs): # real signature unknown """ Return the number of times b occurs in a. """ pass def delitem(*args, **kwargs): # real signature unknown """ Same as del a[b]. """ pass def eq(*args, **kwargs): # real signature unknown """ Same as a == b. """ pass def floordiv(*args, **kwargs): # real signature unknown """ Same as a // b. """ pass def ge(*args, **kwargs): # real signature unknown """ Same as a >= b. """ pass def getitem(*args, **kwargs): # real signature unknown """ Same as a[b]. """ pass def gt(*args, **kwargs): # real signature unknown """ Same as a > b. """ pass def iadd(*args, **kwargs): # real signature unknown """ Same as a += b. """ pass def iand(*args, **kwargs): # real signature unknown """ Same as a &= b. """ pass def iconcat(*args, **kwargs): # real signature unknown """ Same as a += b, for a and b sequences. """ pass def ifloordiv(*args, **kwargs): # real signature unknown """ Same as a //= b. """ pass def ilshift(*args, **kwargs): # real signature unknown """ Same as a <<= b. """ pass def imatmul(*args, **kwargs): # real signature unknown """ Same as a @= b. """ pass def imod(*args, **kwargs): # real signature unknown """ Same as a %= b. """ pass def imul(*args, **kwargs): # real signature unknown """ Same as a *= b. """ pass def index(*args, **kwargs): # real signature unknown """ Same as a.__index__() """ pass def indexOf(*args, **kwargs): # real signature unknown """ Return the first index of b in a. """ pass def inv(*args, **kwargs): # real signature unknown """ Same as ~a. """ pass def invert(*args, **kwargs): # real signature unknown """ Same as ~a. """ pass def ior(*args, **kwargs): # real signature unknown """ Same as a |= b. """ pass def ipow(*args, **kwargs): # real signature unknown """ Same as a **= b. """ pass def irshift(*args, **kwargs): # real signature unknown """ Same as a >>= b. """ pass def isub(*args, **kwargs): # real signature unknown """ Same as a -= b. """ pass def is_(*args, **kwargs): # real signature unknown """ Same as a is b. """ pass def is_not(*args, **kwargs): # real signature unknown """ Same as a is not b. """ pass def itruediv(*args, **kwargs): # real signature unknown """ Same as a /= b. """ pass def ixor(*args, **kwargs): # real signature unknown """ Same as a ^= b. """ pass def le(*args, **kwargs): # real signature unknown """ Same as a <= b. """ pass def length_hint(*args, **kwargs): # real signature unknown """ Return an estimate of the number of items in obj. This is useful for presizing containers when building from an iterable. If the object supports len(), the result will be exact. Otherwise, it may over- or under-estimate by an arbitrary amount. The result will be an integer >= 0. """ pass def lshift(*args, **kwargs): # real signature unknown """ Same as a << b. """ pass def lt(*args, **kwargs): # real signature unknown """ Same as a < b. """ pass def matmul(*args, **kwargs): # real signature unknown """ Same as a @ b. """ pass def mod(*args, **kwargs): # real signature unknown """ Same as a % b. """ pass def mul(*args, **kwargs): # real signature unknown """ Same as a * b. """ pass def ne(*args, **kwargs): # real signature unknown """ Same as a != b. """ pass def neg(*args, **kwargs): # real signature unknown """ Same as -a. """ pass def not_(*args, **kwargs): # real signature unknown """ Same as not a. """ pass def or_(*args, **kwargs): # real signature unknown """ Same as a | b. """ pass def pos(*args, **kwargs): # real signature unknown """ Same as +a. """ pass def pow(*args, **kwargs): # real signature unknown """ Same as a ** b. """ pass def rshift(*args, **kwargs): # real signature unknown """ Same as a >> b. """ pass def setitem(*args, **kwargs): # real signature unknown """ Same as a[b] = c. """ pass def sub(*args, **kwargs): # real signature unknown """ Same as a - b. """ pass def truediv(*args, **kwargs): # real signature unknown """ Same as a / b. """ pass def truth(*args, **kwargs): # real signature unknown """ Return True if a is true, False otherwise. """ pass def xor(*args, **kwargs): # real signature unknown """ Same as a ^ b. """ pass def _compare_digest(*args, **kwargs): # real signature unknown """ Return 'a == b'. This function uses an approach designed to prevent timing analysis, making it appropriate for cryptography. a and b must both be of the same type: either str (ASCII only), or any bytes-like object. Note: If a and b are of different lengths, or if an error occurs, a timing attack could theoretically reveal information about the types and lengths of a and b--but not their values. """ pass # classes class attrgetter(object): """ attrgetter(attr, ...) --> attrgetter object Return a callable object that fetches the given attribute(s) from its operand. After f = attrgetter('name'), the call f(r) returns r.name. After g = attrgetter('name', 'date'), the call g(r) returns (r.name, r.date). After h = attrgetter('name.first', 'name.last'), the call h(r) returns (r.name.first, r.name.last). """ def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, attr, *more): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass class itemgetter(object): """ itemgetter(item, ...) --> itemgetter object Return a callable object that fetches the given item(s) from its operand. After f = itemgetter(2), the call f(r) returns r[2]. After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3]) """ def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, item, *more): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass class methodcaller(object): """ methodcaller(name, ...) --> methodcaller object Return a callable object that calls the given method on its operand. After f = methodcaller('name'), the call f(r) returns r.name(). After g = methodcaller('name', 'date', foo=1), the call g(r) returns r.name('date', foo=1). """ def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __init__(self, name, *more): # real signature unknown; restored from __doc__ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Return state information for pickling """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass class __loader__(object): """ Meta path import for built-in modules. All methods are either class or static methods to avoid the need to instantiate the class. """ @classmethod def create_module(cls, *args, **kwargs): # real signature unknown """ Create a built-in module """ pass @classmethod def exec_module(cls, *args, **kwargs): # real signature unknown """ Exec a built-in module """ pass @classmethod def find_module(cls, *args, **kwargs): # real signature unknown """ Find the built-in module. If 'path' is ever specified then the search is considered a failure. This method is deprecated. Use find_spec() instead. """ pass @classmethod def find_spec(cls, *args, **kwargs): # real signature unknown pass @classmethod def get_code(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have code objects. """ pass @classmethod def get_source(cls, *args, **kwargs): # real signature unknown """ Return None as built-in modules do not have source code. """ pass @classmethod def is_package(cls, *args, **kwargs): # real signature unknown """ Return False as built-in modules are never packages. """ pass @classmethod def load_module(cls, *args, **kwargs): # real signature unknown """ Load the specified module into sys.modules and return it. This method is deprecated. Use loader.exec_module instead. """ pass def module_repr(module): # reliably restored by inspect """ Return repr for the module. The method is deprecated. The import machinery does the job itself. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass __weakref__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """list of weak references to the object (if defined)""" __dict__ = None # (!) real value is "mappingproxy({'__module__': '_frozen_importlib', '__doc__': 'Meta path import for built-in modules.\\n\\n All methods are either class or static methods to avoid the need to\\n instantiate the class.\\n\\n ', 'module_repr': <staticmethod object at 0x7f7005ada430>, 'find_spec': <classmethod object at 0x7f7005ada460>, 'find_module': <classmethod object at 0x7f7005ada490>, 'create_module': <classmethod object at 0x7f7005ada4c0>, 'exec_module': <classmethod object at 0x7f7005ada4f0>, 'get_code': <classmethod object at 0x7f7005ada580>, 'get_source': <classmethod object at 0x7f7005ada610>, 'is_package': <classmethod object at 0x7f7005ada6a0>, 'load_module': <classmethod object at 0x7f7005ada6d0>, '__dict__': <attribute '__dict__' of 'BuiltinImporter' objects>, '__weakref__': <attribute '__weakref__' of 'BuiltinImporter' objects>})" # variables with complex values __spec__ = None # (!) real value is "ModuleSpec(name='_operator', loader=<class '_frozen_importlib.BuiltinImporter'>, origin='built-in')"
[ "robertopescee@hotmail.com" ]
robertopescee@hotmail.com
df9d5faf1848f56880a1bdaf4ed992a0c0b9543e
6aff8daa41526a8430267b1aecdfe0741b3115ac
/2-ModelComplexByArenaDispatcher/dispatcher/tests/api_samples.py
1b33c0e4678802fbcfe0626e6d956f02bcc2a632
[]
no_license
LAD-PUCRS/Arena_SARS-BCG
91a299365fdacdb3d0d8785b7ecbfebb0b138618
5fda0ef67608cc462dd1acda375f112dc472b04b
refs/heads/main
2023-07-19T11:59:11.561216
2021-08-24T23:06:50
2021-08-24T23:06:50
397,739,185
1
0
null
null
null
null
UTF-8
Python
false
false
5,936
py
import docker import os import time import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) # print("Reminder: Disabled Warnings") # https://docs.docker.com/engine/api/sdk/examples/ # https://docker-py.readthedocs.io/en/stable/ # Instantiate a connection # timeout (int) – Default timeout for API calls, in seconds. # ssl_version (int) – A valid SSL version. # assert_hostname (bool) – Verify the hostname of the server. # environment (dict) – The environment to read environment variables from. Default: the value of os.environ # credstore_env (dict) – Override environment variables when calling the credential store process. # client = docker.from_env(timeout=5) # client = docker.DockerClient(base_url='unix://var/run/docker.sock') # for container in client.containers.list(): # print(help(container)) # get_archive(path, chunk_size=2097152, encode_stream=False) # Retrieve a file or folder from the container in the form of a tar archive. # https://docker-py.readthedocs.io/en/stable/containers.html # Example: Dispatches 3 Containers and waits for all of them to complete their execution. # def prepare_unsafe_host(address): # client = docker.DockerClient(base_url='tcp://'+address+':2375') # client.images.pull("alpine:latest") # Same as pull('alpine',tag='latest') # return client client_cert = "./client-cert.pem" client_key = "./client-key.pem" def connect_host(address,port="2375",cert=None,key=None): tls_config=None if cert != None and key != None: tls_config = docker.tls.TLSConfig(client_cert=(cert, key)) if h == "127.0.0.1" or h == "localhost": return docker.DockerClient(base_url='unix://var/run/docker.sock',tls=tls_config) return docker.DockerClient(base_url='tcp://'+address+":"+port,tls=tls_config) def prepare_host(host): return 0 def send_job(): client.containers.run() # auto_remove= hosts = ["127.0.0.1"] # hosts = [{'address':'10.0.0.2','client':None}] # Lifecycle: # Run Job # Wait for it to complete # Export Logs # Export Zip # Delete container # mark as complete job_id = 0 if not os.path.exists('./output'): os.makedirs('./output') for h in hosts: # h['client'] = prepare_safe_host(h['address'],client_cert,client_key) # print(h['client']) client = connect_host(h) # print(client.images.list()) print("Create Container") container = client.containers.run("feliperubin/sample_app","python3 /app/job.py %d" % (job_id),detach=True,stdout=True,stderr=True) print("Wait to Finish Execution") while container.status != "exited": time.sleep(1) container.reload() print("Store Logs") with open('./output/job_%s_logs.txt' % (job_id),'w') as f: f.write(container.logs().decode('utf-8')) print("Downloading Data") bits, stat = container.get_archive("/app/output_%s.txt" % (job_id)) with open('./output/job_%s_data.tar' % (job_id),'wb') as f: for chunk in bits: f.write(chunk) print("Deleting Container") container.remove() job_id+=1 # container.logs() # complete = [] # incomplete = [] # for i in range(0,3): # container = client.containers.run("alpine",["echo","container %d completed" % (i)],detach=True) # incomplete.append(container) # while len(incomplete) > 0: # for container in incomplete: # if client.containers.get(container.id).status == "exited": # complete.append(container) # incomplete.remove(container) # print("Container %s Exited!" % (container.id)) # print("Incomplete List Length: ",len(incomplete)) # time.sleep(1) # image # image (str) – The image to run. # command (str or list) – The command to run in the container. # auto_remove (bool) – enable auto-removal of the container on daemon side when the container’s process exits. # cpu_count (int) – Number of usable CPUs (Windows only). # cpu_percent (int) – Usable percentage of the available CPUs (Windows only). # cpu_period (int) – The length of a CPU period in microseconds. # cpuset_cpus (str) – CPUs in which to allow execution (0-3, 0,1). # cpuset_mems (str) – Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems. # detach (bool) – Run container in the background and return a Container object. # device_cgroup_rules (list) – A list of cgroup rules to apply to the container. # dns (list) – Set custom DNS servers. # dns_opt (list) – Additional options to be added to the container’s resolv.conf file. # dns_search (list) – DNS search domains. # domainname (str or list) – Set custom DNS search domains. # entrypoint (str or list) – The entrypoint for the container. # environment (dict or list) – Environment variables to set inside the container, as a dictionary or a list of strings in the format ["SOMEVARIABLE=xxx"]. # healthcheck (dict) – Specify a test to perform to check that the container is healthy. # hostname (str) – Optional hostname for the container. # log_config (LogConfig) – Logging configuration. # mac_address (str) – MAC address to assign to the container. # mem_limit (int or str) – Memory limit. Accepts float values (which represent the memory limit of the created container in bytes) or a string with a units identification char (100000b, 1000k, 128m, 1g). If a string is specified without a units character, bytes are assumed as an intended unit. # mem_reservation (int or str) – Memory soft limit. # mem_swappiness (int) – Tune a container’s memory swappiness behavior. Accepts number between 0 and 100. # memswap_limit (str or int) – Maximum amount of memory + swap a container is allowed to consume. # name (str) – The name for this container. # nano_cpus (int) – CPU quota in units of 1e-9 CPUs. # remove (bool) – Remove the container when it has finished running. Default: False. # stdout (bool) – Return logs from STDOUT when detach=False. Default: True. # stderr (bool) – Return logs from STDERR when detach=False. Default: False.
[ "rafael.belle@pucrs.br" ]
rafael.belle@pucrs.br
d4b702f957ed4344c9bcab805a5053cb18e16353
e62dd824081de0f6b7b35a2731184d8b2c872b7d
/work/wallpaper/girl_report_proc.py
049eb62a0e6e7d81e1fa16d462a55d3130a22a06
[]
no_license
coblan/py2
d0231211452e8a27e41e6a85ab736538d0a66113
ecf743e027e9f15925e43f05c0b8a86bb88946db
refs/heads/master
2021-01-24T08:28:41.288136
2018-06-07T17:54:05
2018-06-07T17:54:05
69,465,492
0
0
null
null
null
null
UTF-8
Python
false
false
324
py
import json import re with open('two_month.json') as f: js = json.load(f) for img in js: if img.get('url'): mt = re.search('(.*)(\.\w+$)',img.get('url')) img['thumb'] = mt.group(1)+'-305x543'+mt.group(2) with open('two_month_normed.json','w') as f2: json.dump(js,f2)
[ "coblan@163.com" ]
coblan@163.com
06a67003d5b6ec09b973f26143121a05d9f0261f
d5468f9cc80f2de38e871e232fa85a1e9b61e9f5
/python練習/StudentCard_Composition/StuDateMain.py
ab50a8486f01eae88b438dfb0a7df0fd3c333f36
[]
no_license
SamSSY/ObjectAndClass
1cf46368c6301b61eb0e2d942b92a7d191dc6d90
13a3db7349df38a77806009ddfbb1e748f4ee453
refs/heads/master
2023-06-02T21:07:25.463620
2021-06-23T13:14:55
2021-06-23T13:14:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
from Date import Date from Student import Student s1 = Student("John", Date(6, 1, 1999), 90) s2 = Student("Marry", Date(10, 8, 1997), 80) name = input() month = int(input()) day = int(input()) year = int(input()) s1.setName(name) s2.setDate(Date(month, day, year)) s1.toString() s2.toString()
[ "45253893+hoopizs1452@users.noreply.github.com" ]
45253893+hoopizs1452@users.noreply.github.com
b8746dc8705106040ad856d569a30ce2862d9e49
f58610d2b189668574058ccf54071e65b275efe7
/step4_train_submissions.py
6b430c7e6c969352b120c38a8578ad23f8216632
[]
no_license
CyranoChen/deepluna
8a69419166ea71409fa9acc93536a3043231ebc7
93c8377910ff329f5ebb9526a5a2c7d2a95c4498
refs/heads/master
2021-01-01T06:56:06.610263
2017-07-18T03:59:15
2017-07-18T03:59:15
97,550,272
5
0
null
null
null
null
UTF-8
Python
false
false
16,312
py
import settings import helpers import sys import os import glob import pandas import numpy import SimpleITK import ntpath import math P_TH = 0.3 MAX_NODULE_COUNT = 10000 MIN_DISTANCE = 18 def get_distance(x1,y1,z1,x2,y2,z2): return math.sqrt((x1-x2)**2+(y1-y2)**2+(z1-z2)**2) #change world coordination to voxel space def voxel_to_world(voxel, origin, spacing): voxel = voxel * spacing voxel = voxel + origin return voxel def convert_csv_coord_to_world(): csv_path = settings.TIANCHI_NODULE_DETECTION_DIR + "predictions10_tianchi_val_fs_final/" df = pandas.read_csv(csv_path+"all_predictions_candidates_falsepos.csv") df_all_mhd = pandas.read_csv(settings.TIANCHI_RAW_SRC_DIR + "csv/val/all_mhd.csv") print("df_all_mhd count: ", len(df_all_mhd)) rows = [] for row_index, row in df.iterrows(): patient_id = row["patient_id"] print(patient_id) mhd = df_all_mhd[df_all_mhd["patient_id"] == patient_id] row["coord_x"] = float(row["coord_x"]*mhd["shape_x"]*mhd["spacing_x"])+float(mhd["origin_x"]) row["coord_y"] = float(row["coord_y"]*mhd["shape_y"]*mhd["spacing_y"])+float(mhd["origin_y"]) row["coord_z"] = float(row["coord_z"]*mhd["shape_z"]*mhd["spacing_z"])+float(mhd["origin_z"]) row["diameter_mm"] = round(float(row["diameter_mm"]) / float(mhd["spacing_x"]),4) rows.append(row) df = pandas.DataFrame(rows, columns=["patient_id", "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) df.to_csv(csv_path+"all_predictions_candidates_falsepos_world_coord.csv", index=False) def convert_nodules_coord_to_world(mhd, dir_name, magnification=1): patient_id = mhd["patient_id"] print("patient_id: ", patient_id) img_array_shape = [int(mhd["shape_x"]), int(mhd["shape_y"]), int(mhd["shape_z"])] print("Img array shape: ", img_array_shape) origin = [float(mhd["origin_x"]), float(mhd["origin_y"]), float(mhd["origin_z"])] print("Origin (x,y,z): ", origin) spacing = [float(mhd["spacing_x"]), float(mhd["spacing_y"]), float(mhd["spacing_z"])] print("Spacing (x,y,z): ", spacing) print("Direction: ", mhd["direction"]) # patient_img = helpers.load_patient_images(patient_id, settings.TIANCHI_EXTRACTED_IMAGE_DIR, "*_i.png", []) patient_img_shape = [int(img_array_shape[0]*spacing[0]/float(magnification)), int(img_array_shape[1]*spacing[1]/float(magnification)), int(img_array_shape[2]*spacing[2]/float(magnification))] print("patient_img shape: ", patient_img_shape) csv_path = settings.TIANCHI_NODULE_DETECTION_DIR + dir_name + "/" + patient_id + ".csv" print(csv_path) rows = [] if not os.path.exists(csv_path): return rows # pred_df_list = [] pred_nodules_df = pandas.read_csv(csv_path) # pred_df_list.append(pred_nodules_df) # pred_nodules_df = pandas.concat(pred_df_list, ignore_index=True) nodule_count = len(pred_nodules_df) print("nodule_count: ", nodule_count) nodule_count = 0 if len(pred_nodules_df) > 0: pred_nodules_df = pred_nodules_df.sort_values(by="nodule_chance", ascending=False) for row_index, row in pred_nodules_df.iterrows(): if float(row["nodule_chance"]) < P_TH: continue dia = float(row["diameter_mm"]) / spacing[0] # if dia < 3.0: # continue p_x = float(row["coord_x"])*patient_img_shape[0] p_y = float(row["coord_y"])*patient_img_shape[1] p_z = float(row["coord_z"])*patient_img_shape[2] x, y, z = [p_x+origin[0],p_y+origin[1],p_z+origin[2]] # z, y, x = voxel_to_world([p_z, p_y, p_x], origin[::-1], spacing[::-1]) row["coord_z"] = z row["coord_y"] = y row["coord_x"] = x row["diameter_mm"] = dia row["patient_id"] = patient_id rows.append(row) nodule_count += 1 if nodule_count >= MAX_NODULE_COUNT: break print(nodule_count) return rows def convert_all_nodules_coord_to_world(csv_dir_name, magnification=1): df_all_mhd = pandas.read_csv(settings.TIANCHI_RAW_SRC_DIR + "csv/val/all_mhd.csv") print("df_all_mhd count: ", len(df_all_mhd)) all_predictions_world_coord_csv = [] for index, mhd in df_all_mhd.iterrows(): # if mhd["patient_id"] != "LKDS-00006": # continue rows = convert_nodules_coord_to_world(mhd, csv_dir_name, magnification) all_predictions_world_coord_csv.extend(rows) df = pandas.DataFrame(all_predictions_world_coord_csv, columns=["patient_id", "anno_index", "coord_x", "coord_y", "coord_z", "diameter", "nodule_chance", "diameter_mm"]) dst_dir = settings.TIANCHI_NODULE_DETECTION_DIR + csv_dir_name + "/" df.to_csv(dst_dir + "all_predictions_world_coord.csv", index=False) def combine_nodule_predictions(dirs, train_set=True, nodule_th=0.5, extensions=[""]): print("Combining nodule predictions: ", "Train" if train_set else "Submission") if train_set: labels_df = pandas.read_csv("resources/val/seriesuids.csv") else: labels_df = pandas.read_csv("resources/test2/seriesuids.csv") # mass_df = pandas.read_csv(settings.BASE_DIR + "masses_predictions.csv") # mass_df.set_index(["patient_id"], inplace=True) # meta_df = pandas.read_csv(settings.BASE_DIR + "patient_metadata.csv") # meta_df.set_index(["patient_id"], inplace=True) data_rows = [] for index, row in labels_df.iterrows(): patient_id = row["id"] # mask = helpers.load_patient_images(patient_id, settings.EXTRACTED_IMAGE_DIR, "*_m.png") print(len(data_rows), " : ", patient_id) # if len(data_rows) > 19: # break # cancer_label = row["cancer"] # mass_pred = int(mass_df.loc[patient_id]["prediction"]) # meta_row = meta_df.loc[patient_id] # z_scale = meta_row["slice_thickness"] # x_scale = meta_row["spacingx"] # vendor_low = 1 if "1.2.276.0.28.3.145667764438817.42.13928" in meta_row["instance_id"] else 0 # vendor_high = 1 if "1.3.6.1.4.1.14519.5.2.1.3983.1600" in meta_row["instance_id"] else 0 # row_items = [cancer_label, 0, mass_pred, x_scale, z_scale, vendor_low, vendor_high] # mask.sum() row_items = [] # mask.sum() for magnification in [1, 1.5, 2]: pred_df_list = [] for extension in extensions: src_dir = settings.TIANCHI_NODULE_DETECTION_DIR + "predictions" + str(int(magnification * 10)) + extension + "/" pred_nodules_df = pandas.read_csv(src_dir + patient_id + ".csv") pred_nodules_df = pred_nodules_df[pred_nodules_df["diameter_mm"] > 0] pred_nodules_df = pred_nodules_df[pred_nodules_df["nodule_chance"] > nodule_th] pred_df_list.append(pred_nodules_df) pred_nodules_df = pandas.concat(pred_df_list, ignore_index=True) nodule_count = len(pred_nodules_df) nodule_max = 0 nodule_median = 0 nodule_chance = 0 nodule_sum = 0 coord_z = 0 second_largest = 0 nodule_wmax = 0 count_rows = [] coord_y = 0 coord_x = 0 if len(pred_nodules_df) > 0: max_index = pred_nodules_df["diameter_mm"].argmax max_row = pred_nodules_df.loc[max_index] nodule_max = round(max_row["diameter_mm"], 2) nodule_chance = round(max_row["nodule_chance"], 2) nodule_median = round(pred_nodules_df["diameter_mm"].median(), 2) nodule_wmax = round(nodule_max * nodule_chance, 2) coord_z = max_row["coord_z"] coord_y = max_row["coord_y"] coord_x = max_row["coord_x"] rows = [] for row_index, row in pred_nodules_df.iterrows(): dist = helpers.get_distance(max_row, row) if dist > 0.2: nodule_mal = row["diameter_mm"] if nodule_mal > second_largest: second_largest = nodule_mal rows.append(row) count_rows = [] for row in rows: ok = True for count_row in count_rows: dist = helpers.get_distance(count_row, row) if dist < 0.2: ok = False if ok: count_rows.append(row) nodule_count = len(count_rows) row_items += [nodule_max, nodule_chance, nodule_count, nodule_median, nodule_wmax, coord_z, second_largest, coord_y, coord_x] row_items.append(patient_id) data_rows.append(row_items) # , "x_scale", "z_scale", "vendor_low", "vendor_high" columns = [] for magnification in [1, 1.5, 2]: str_mag = str(int(magnification * 10)) columns.append("nodule_max_" + str_mag) # columns.append("nodule_chance_" + str_mag) columns.append("nodule_count_" + str_mag) columns.append("nodule_median_" + str_mag) columns.append("nodule_wmax_" + str_mag) columns.append("coord_z_" + str_mag) columns.append("second_largest_" + str_mag) columns.append("coord_y_" + str_mag) columns.append("coord_x_" + str_mag) columns.append("patient_id") res_df = pandas.DataFrame(data_rows, columns=columns) if not os.path.exists(settings.TIANCHI_NODULE_DETECTION_DIR + "submission/"): os.mkdir(settings.TIANCHI_NODULE_DETECTION_DIR + "submission/") target_path = settings.TIANCHI_NODULE_DETECTION_DIR + "submission/" + "submission" + extension + ".csv" res_df.to_csv(target_path, index=False) def filter_submission(): df_all_mhd = pandas.read_csv(settings.TIANCHI_RAW_SRC_DIR + "csv/test2/all_mhd.csv") print("df_all_mhd count: ", len(df_all_mhd)) df_nodules = pandas.read_csv(settings.TIANCHI_NODULE_DETECTION_DIR + "predictions10_tianchi_test2_fs_final/all_predictions_world_coord_merge.csv") rows = [] for index, mhd in df_all_mhd.iterrows(): patient_id = mhd["patient_id"] print(patient_id) df = df_nodules[df_nodules["seriesuid"] == patient_id] count = 0 if len(df) > 0: df = df.sort_values(by="probability", ascending=False) for index, row in df.iterrows(): # if row["diameter_mm"] < 3: # continue if row["probability"] < P_TH: continue rows.append(row) count +=1 if count >= 50: break print(count) res_df = pandas.DataFrame(rows, columns=["seriesuid","coordX", "coordY", "coordZ","probability"]) target_path = settings.TIANCHI_NODULE_DETECTION_DIR + "predictions10_tianchi_test2_fs_final/all_predictions_world_coord_merge_filter.csv" res_df.to_csv(target_path, index=False) def merge_submission(): #read the annotations.csv that contains the nodules info df_node = pandas.read_csv(settings.TIANCHI_NODULE_DETECTION_DIR + "predictions10_tianchi_test2_fs_final/all_predictions_world_coord.csv") df_node = df_node.dropna() seriesuids_csv = pandas.read_csv(settings.TIANCHI_RAW_SRC_DIR + "csv/test2/all_mhd.csv") seriesuids = seriesuids_csv['patient_id'].values x = [] y = [] z = [] p = [] user_id = [] uid_done = [] for seriesuid in seriesuids: if seriesuid in uid_done: continue uid_done.append(seriesuid) mini_node = df_node[df_node['patient_id'] == seriesuid] print(seriesuid) uid = mini_node["patient_id"].values node_x = mini_node["coord_x"].values node_y = mini_node["coord_y"].values node_z = mini_node["coord_z"].values probability = mini_node['nodule_chance'].values print(len(node_x)) mat = numpy.zeros([len(node_x),len(node_x)]) for i in range(len(node_x)): for j in range(len(node_x)): mat[i,j]=get_distance(node_x[i],node_y[i],node_z[i],node_x[j],node_y[j],node_z[j]) if i == j: mat[i,j] = 80 for i in range(len(node_x)): num = 1 print("node index: ",i) for j in range(len(node_x)): if mat[i,j] < MIN_DISTANCE: print("distance",mat[i,j]) num += 1 node_x[i] += node_x[j] node_y[i] += node_y[j] node_z[i] += node_z[j] probability[i] += probability[j] print(probability[i]) #if probability[j] > probability[i]: # probability[i] = probability[j] print('add one',j,node_x[j]) print('whole',node_x[i],num) node_x[i] /= num node_y[i] /= num node_z[i] /= num probability[i] /= num user_id.append(uid[i]) x.append(node_x[i]) y.append(node_y[i]) z.append(node_z[i]) p.append(probability[i]) print(node_x[i]) #raw_input() x1 = [] y1 = [] z1 = [] p1 = [] u = [] for i in range(len(x) -1): if get_distance(x[i],y[i],z[i],x[i+1],y[i+1],z[i+1]) < 3: x[i+1] = x[i]/2 + x[i+1]/2 y[i+1] = y[i]/2 + y[i+1]/2 z[i+1] = z[i]/2 + z[i+1]/2 p[i+1] = p[i]/2 + p[i+1]/2 else: x1.append(x[i]) y1.append(y[i]) z1.append(z[i]) p1.append(p[i]) u.append(user_id[i]) dataframe = pandas.DataFrame({'seriesuid':u,'coordX':x1,'coordY':y1,'coordZ':z1,'probability':p1}) #dataframe = pd.DataFrame({'seriesuid':user_id,'coordX':x,'coordY':y,'coordZ':z,'probability':p}) dataframe.to_csv(settings.TIANCHI_NODULE_DETECTION_DIR + "predictions10_tianchi_test2_fs_final/all_predictions_world_coord_merge.csv",index=False) if __name__ == "__main__": if False: combine_nodule_predictions(None, train_set=False, nodule_th=0.5, extensions=["_tianchi_test2_fs_final"]) if False: convert_csv_coord_to_world() if False: for magnification in [1, 1.5, 2]: convert_all_nodules_coord_to_world("predictions"+str(int(magnification*10))+"_tianchi_test2_fs_final", magnification) convert_all_nodules_coord_to_world("predictions"+str(int(magnification*10))+"_tianchi_test2_fs_final", magnification) if True: convert_all_nodules_coord_to_world("predictions"+str(int(1*10))+"_tianchi_val_fs_final_new", 1) if False: filter_submission() if False: merge_submission() # if False: # for model_variant in ["_luna16_fs", "_luna_posnegndsb_v1", "_luna_posnegndsb_v2"]: # print("Variant: ", model_variant) # if True: # combine_nodule_predictions(None, train_set=False, nodule_th=0.7, extensions=[model_variant]) # if True: # train_xgboost_on_combined_nodules(fixed_holdout=False, submission=True, submission_is_fixed_holdout=False, extension=model_variant) # train_xgboost_on_combined_nodules(fixed_holdout=True, extension=model_variant) # # combine_submissions(level=1, model_type="luna_posnegndsb") # combine_submissions(level=1, model_type="luna16_fs") # combine_submissions(level=1, model_type="daniel") # combine_submissions(level=2)
[ "cyrano@arsenalcn.com" ]
cyrano@arsenalcn.com
ef5c629c1605df9a425e6499d917baca39dd8517
ab509b0565c3831f6d3c28a7e3a07252b6a4fe16
/CSR_Blue_Tools/global_settings.py
72f65d81e2a78476004e77b9663fd53abbd2ab96
[]
no_license
JadenHuang/CSR_Blue_Tools
1763f5ff285973d0afbdb817526833f86c29634a
678919b10448bc4950c91488c29c453eeda4f589
refs/heads/master
2020-06-09T14:55:49.891538
2019-12-30T09:24:38
2019-12-30T09:24:38
193,455,503
1
0
null
null
null
null
UTF-8
Python
false
false
321
py
# -*- coding: utf-8 -*- from six import with_metaclass from .helpers import Singleton class g(with_metaclass(Singleton, object)): #class g: def __init__(self): self.debug = 0 self.station = '00000' self.serial = '000000000000' self.module = 'MAIN' self.CONFIG_FILE = "config/config.xml"
[ "jianxing217@126.com" ]
jianxing217@126.com
dbf94606df33bddfeb17c93651cda4f7ba15eac2
f25317ae4ca52e766d9c9a0e6ecee951dbd436fd
/gonote/urls.py
b2a200fd093177c54f381095aa0ff722d655b830
[]
no_license
uncle-T0ny/GoNote
bce76e86cfee7739e63cac6379ff4708936d6042
d8efb88b83d41a2403d825bd90c6b980384a4eca
refs/heads/master
2021-01-10T02:02:43.444288
2015-06-29T14:50:00
2015-06-29T14:50:00
36,979,148
1
0
null
null
null
null
UTF-8
Python
false
false
1,101
py
from django.conf.urls import include, url, patterns from django.contrib import admin from document.views import add_delete_file, get_file from folder.views import add_delete_folder, get_all_folders from gonote import settings from gonote.views import index, login_view, login, logout from note.views import get_all_notes, get_note, add_delete_note, get_note_files admin.autodiscover() urlpatterns = patterns('', url(r'^$', index), (r'^admin/logout/$', logout), url(r'^admin/', include(admin.site.urls)), (r'^login-page/$', login_view), (r'^login/$', login), (r'^logout/$', logout), url('', include('social.apps.django_app.urls', namespace='social')), (r'^notes/$', get_all_notes), (r'^note/(\d+)$', get_note), (r'^note/(\d+)/files/$', get_note_files), (r'^note/$', add_delete_note), (r'^folders/$', get_all_folders), (r'^folder/$', add_delete_folder), (r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT, 'show_indexes':True}), (r'^file/$', add_delete_file), (r'^file/(\d+)$', get_file), )
[ "r.uncleT0ny@gmail.com" ]
r.uncleT0ny@gmail.com
0e849db000cb801bd9ded84acc0a9701ad7449f3
4b0cf8ca64b4623927e130e9af33c8e81b69a05a
/myapp/views.py
521328b5a70a9feeb7a0fdcc6964dfca788e2a5f
[]
no_license
itminha123/mysite
6009b337363c1e1cb2d5259dc73ba6a27562591f
c577514993d3409e49fb31d705297942fd7f58b0
refs/heads/master
2020-03-23T19:08:24.129575
2018-07-23T03:18:41
2018-07-23T03:18:41
141,955,540
0
0
null
null
null
null
UTF-8
Python
false
false
1,615
py
from django.shortcuts import render from django.http import HttpResponse # from gpiozero import LED import json bookmarks = [{'site': 'naver', 'url': 'http://www.naver.com'}, {'site': 'daum', 'url': 'http://www.daum.net'}, {'site': 'google', 'url': 'http://www.google.com'}, ] def get_bookmarks(request): context = {'bookmarks': bookmarks} site = request.GET.get('site') url = request.GET.get('url') global bookmarks if site: bookmark = {'site': site, 'url': url} bookmarks.append(bookmark) return HttpResponse(json.dumps(context), content_type='application/json') def set_led(request): led = request.GET.get('led') # hw_led = LED(17) # if led == 'on': # hw_led.on() # elif led == 'off': # hw_led.off() context = {'led':led} return render(request, 'led.html', context) def bookmark_list(request): site = request.GET.get('site') url = request.GET.get('url') global bookmarks if site: bookmark = {'site': site, 'url': url} bookmarks.append(bookmark) context = {'bookmarks': bookmarks} return render(request, 'bookmarkList.html', context) def mem_ber_list(request): members = ['Song', 'Lee', 'Kim'] context = {'members':members} return render(request, 'memberList.html', context) def home(request): title = request.GET.get('title') aaa_param = request.GET.get('aaa') content = {'title': title, 'aaa':aaa_param, } return render(request, 'home.html', content) # Create your views here.
[ "itminha123" ]
itminha123
9036906fab7491c1ac445431dd9956327bdde9e6
eefc5f6e86c8c95c21ae64a67480882e4f0d5ea3
/hecuba/qthrift/__init__.py
b5c3c9ae2c06b8d4f5da70fae4fa3c73e52a815b
[ "Apache-2.0" ]
permissive
him-28/hecuba
11de348f63085fe858039f9e42d61191ac229755
d9dbc1c5ad728612c87bd601d9b03369fceedc92
refs/heads/master
2021-07-20T17:19:02.782661
2017-10-27T08:24:46
2017-10-27T08:24:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
66
py
__all__ = ['ttypes', 'constants', 'QbeastMaster', 'QbeastWorker']
[ "cesare.cugnasco@gmail.com" ]
cesare.cugnasco@gmail.com
a52b73942b4c31626805066da977628c224be70f
2fed1572162d09304972c5e0afd16c63d75d5858
/chip8/sound.py
7f985b4ce870334b212b1229c5aad1b7b6d5740c
[ "MIT" ]
permissive
weibell/python-chip8-emu
f290af1b8207c4490bd960071ee762dded2379c5
c60934dbda4f9f972aa5ec912616545b8e518893
refs/heads/master
2022-11-25T07:33:53.583338
2020-07-15T20:08:58
2020-07-15T20:08:58
275,413,098
1
0
null
null
null
null
UTF-8
Python
false
false
551
py
import os os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "" import pygame class Sound: beep: pygame.mixer.Sound is_playing: bool def __init__(self): pygame.mixer.init() self.beep = pygame.mixer.Sound("chip8/beep.wav") self.is_playing = False def update(self, sound_timer: int): if sound_timer > 0 and not self.is_playing: self.beep.play() self.is_playing = True elif sound_timer == 0 and self.is_playing: self.beep.stop() self.is_playing = False
[ "13382354+weibell@users.noreply.github.com" ]
13382354+weibell@users.noreply.github.com
c96b1858c2de9c2efbfff3b280563c848dbc4c13
e8c521a1faa67a41cbb45b3e070de837a30effd5
/regExpressForNom.py
38b64b442dbced74a59f9127fbe46541ce5552e5
[]
no_license
Mdayes27/assignment2
e15dd1e952587eb4522d143c601c010632bfa69d
c22f0d323d41d1b13463a07ae6e5f2f5fe7ed434
refs/heads/master
2020-07-31T15:05:33.740141
2019-09-24T17:37:49
2019-09-24T17:37:49
210,646,785
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
han = open('text2Read.py') for line in han: line = line.rstrip() wds = line.split() count = 0 if wds.endswith("ing"): count++ continue elif wds.endswith("or"): count++ continue elif wds.endswith("ee"): count++ continue elif wds.endswith("ion"): count++ continue print("The current count is ",count)
[ "mdayes22@byu.edu" ]
mdayes22@byu.edu
9a03d1da14ebcf56ad107007b030340184f2e25f
592a070ae66808c86df4c526cdb0bd04072dabee
/dokugaku/6/6-3.py
0ecd4fd0fe1d12d9b6ad088cc415e97a0021ea69
[]
no_license
masato-su/hangman
0d780557e1a63bc96043a911df42da86cb23222b
0d26d854de0850ab26e79220af31d509a4eada25
refs/heads/master
2020-05-02T21:32:06.400132
2019-03-28T15:16:17
2019-03-28T15:16:17
178,223,350
0
0
null
null
null
null
UTF-8
Python
false
false
65
py
result = "aldous Huxley was born in 1894".title() print(result);
[ "sudo1227@yahoo.co.jp" ]
sudo1227@yahoo.co.jp
00b97f79e17b4330dbcba0d3ba429c29cf57b151
c81d010c3943ea5db6154a45ddb3f8d4870e00d0
/Text-Analysis/code.py
c916468b8daa273c78908f9d87f0a2e81d654756
[ "MIT" ]
permissive
SatyapriyaChaudhari/ga-learner-dsmp-repo
971ad84fecaad395197363e57b50c8a800e508e5
a51711526705a563eb826449d46557c3f3ae8751
refs/heads/master
2020-04-08T09:19:57.292275
2019-05-01T06:46:07
2019-05-01T06:46:07
159,218,977
1
0
null
null
null
null
UTF-8
Python
false
false
3,357
py
# -------------- # import packages import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import re from nltk.corpus import stopwords from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score ,confusion_matrix # Code starts here # load data news = pd.read_csv(path) # subset data news = news[["TITLE", "CATEGORY"]] # distribution of classes dist = news.CATEGORY.value_counts() # display class distribution print("Distribution: \n", dist) # display data print(news.head()) # Code ends here # -------------- # Code starts here # stopwords stop = set(stopwords.words('english')) # retain only alphabets #re.compile('[^a-zA-Z]') news['TITLE'] = news['TITLE'].apply(lambda x: re.sub("[^a-zA-Z]", " ", x)) # convert to lowercase and tokenize news['TITLE'] = news['TITLE'].apply(lambda x: x.lower().split()) # remove stopwords news['TITLE'] = news['TITLE'].apply(lambda x: [i for i in x if i not in stop]) # join list elements news['TITLE'] = news['TITLE'].apply(lambda x: " ".join(x)) # split into training and test sets X_train, X_test, Y_train, Y_test = train_test_split(news["TITLE"], news["CATEGORY"], test_size = 0.2, random_state = 3) # Code ends here # -------------- # Code starts here # initialize count vectorizer count_vectorizer = CountVectorizer() # initialize tfidf vectorizer tfidf_vectorizer = TfidfVectorizer(ngram_range=(1,3)) # fit and transform with count vectorizer X_train_count = count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # fit and transform with tfidf vectorizer X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # Code ends here # -------------- # Code starts here # initialize multinomial naive bayes nb_1 = MultinomialNB() nb_2 = MultinomialNB() # fit on count vectorizer training data nb_1.fit(X_train_count, Y_train) # fit on tfidf vectorizer training data nb_2.fit(X_train_tfidf, Y_train) # accuracy with count vectorizer acc_count_nb = accuracy_score(nb_1.predict(X_test_count), Y_test) # accuracy with tfidf vectorizer acc_tfidf_nb = accuracy_score(nb_2.predict(X_test_tfidf), Y_test) # display accuracies print("Count Vectorizer Accuracy: ", acc_count_nb) print("TFIDF Vectorizer Accuracy: ", acc_tfidf_nb) # Code ends here # -------------- import warnings warnings.filterwarnings('ignore') # initialize logistic regression logreg_1 = OneVsRestClassifier(LogisticRegression(random_state=10)) logreg_2 = OneVsRestClassifier(LogisticRegression(random_state=10)) # fit on count vectorizer training data logreg_1.fit(X_train_count, Y_train) # fit on tfidf vectorizer training data logreg_2.fit(X_train_tfidf, Y_train) # accuracy with count vectorizer acc_count_logreg = accuracy_score(logreg_1.predict(X_test_count), Y_test) # accuracy with tfidf vectorizer acc_tfidf_logreg = accuracy_score(logreg_2.predict(X_test_tfidf), Y_test) # display accuracies print("Count Vectorizer Accuracy: ", acc_count_logreg) print("TFIDF Vectorizer Accuracy: ", acc_tfidf_logreg) # Code ends here
[ "satyapriya.chaudhari@gmail.com" ]
satyapriya.chaudhari@gmail.com
d2aa1db756fe5df542ebf0bf94cea699dd96ca62
846724efe734db14610a40be99a6e0f77bb55732
/arrows/notes/management/commands/create_notes.py
8aee4967fdb7f188f7aa0ecdcce7d0a400e51dfc
[]
no_license
HelenMaksimova/arrows
620ed1c8b00ef0ef9b751fbc9c26cd6db5ab36cc
d86c3f38350e665b280f2d9771e49ab647bc52b2
refs/heads/master
2023-08-24T17:02:40.955617
2021-10-02T22:45:03
2021-10-02T22:45:03
398,632,837
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
from django.core.management.base import BaseCommand from users.models import ArrowsUser from notes.models import Project, Note from random import choice, randint class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('count', nargs='?', type=int, default=5) def handle(self, *args, **options): Note.objects.all().delete() for idx in range(options.get('count')): project = choice(Project.objects.all()) user = choice(ArrowsUser.objects.all()) text = 'text-text-text-' * randint(1, 20) note = Note.objects.create( project=project, text=text, created_by_user=user ) print(f'Note with id {note.id} created') print('Complete')
[ "alnorda@gmail.com" ]
alnorda@gmail.com
560fc6848ea6ff069e9d4f0c2edcd412adf992e8
993cd331f65748fa7b55ed7dfeca909255aa38d0
/teting_dyn/urls.py
1a3e2f47bf6c37d9db7b79d563c2981bb7031636
[]
no_license
pavelKhat/testing-dyn_forms
4d794ae0dbebadd41a4bb96ffecc0612f571f29d
002dade7e82eebb4b93b67f7cc43e4b293a1a149
refs/heads/master
2020-03-25T15:15:24.627572
2018-08-09T14:07:28
2018-08-09T14:07:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
"""teting_dyn URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('app1/', include('app1.urls')), ]
[ "pavelkhat@gmail.com" ]
pavelkhat@gmail.com
f4dbb257bfe88751a5b86d2e942b52d4b7feea8b
8b1c17561bf34252b79f6c806981f7c6fb1c4221
/Algorithms-LeetCode/1-10/3. lengthoflongestsubstring.py
bb0885abcb38804cfae91588881f81bb413cdfff
[]
no_license
danebista/LeetCode-Algorithms
52c5ce77ae43eb9bcb1ce23c06062f5ebdc3170e
994b14123f07cbd0ad48b8163cb68a65ec8679ff
refs/heads/master
2023-05-21T05:00:50.333685
2021-06-13T09:37:56
2021-06-13T09:37:56
364,216,221
1
0
null
null
null
null
UTF-8
Python
false
false
496
py
""" Input: s = "abcabcbb" Output: 3 Explanation: The answer is "abc", with the length of 3. """ class Solution: def lengthOfLongestSubstring(self, s: str) -> int: sets=set() l=0 result=0 for r in range(len(s)): while s[r] in sets: sets.remove(s[l]) l=l+1 sets.add(s[r]) result= result if result>r-l+1 else r-l+1 return result
[ "bista.dinank@gmail.com" ]
bista.dinank@gmail.com
5a2f6e7eb2b719a8764503f9e5dbaecd6a39ae15
129d5f787569bd21c5acbd34889219493c3bd28f
/pytorch/pytorch-deeplab_v3_plus/DenseCRFLoss.py
73a0874ec937b0eb075bcb69d1e11901af38d085
[ "MIT" ]
permissive
Ahmadreza-Jeddi/rloss
bbc83744e450221eb4489dde6a4ab22cf018fbaa
ad28a6f49230ff5d80f4fcd038ecb6c4bd96b1c4
refs/heads/master
2021-10-09T19:19:04.172812
2021-09-27T03:50:29
2021-09-27T03:50:29
242,904,034
7
1
MIT
2020-02-25T03:50:19
2020-02-25T03:50:18
null
UTF-8
Python
false
false
2,810
py
import torch import torch.nn as nn from torch.autograd import Function from torch.autograd import Variable import torch.nn.functional as F import numpy as np import sys sys.path.append("../wrapper/bilateralfilter/build/lib.linux-x86_64-3.6") from bilateralfilter import bilateralfilter, bilateralfilter_batch from dataloaders.custom_transforms import denormalizeimage import time from multiprocessing import Pool import multiprocessing from itertools import repeat import pickle class DenseCRFLossFunction(Function): @staticmethod def forward(ctx, images, segmentations, sigma_rgb, sigma_xy, ROIs): ctx.save_for_backward(segmentations) ctx.N, ctx.K, ctx.H, ctx.W = segmentations.shape ROIs = ROIs.unsqueeze_(1).repeat(1,ctx.K,1,1) segmentations = torch.mul(segmentations.cuda(), ROIs.cuda()) ctx.ROIs = ROIs densecrf_loss = 0.0 images = images.numpy().flatten() segmentations = segmentations.cpu().numpy().flatten() AS = np.zeros(segmentations.shape, dtype=np.float32) bilateralfilter_batch(images, segmentations, AS, ctx.N, ctx.K, ctx.H, ctx.W, sigma_rgb, sigma_xy) densecrf_loss -= np.dot(segmentations, AS) # averaged by the number of images densecrf_loss /= ctx.N ctx.AS = np.reshape(AS, (ctx.N, ctx.K, ctx.H, ctx.W)) return Variable(torch.tensor([densecrf_loss]), requires_grad=True) @staticmethod def backward(ctx, grad_output): grad_segmentation = -2*grad_output*torch.from_numpy(ctx.AS)/ctx.N grad_segmentation=grad_segmentation.cuda() grad_segmentation = torch.mul(grad_segmentation, ctx.ROIs.cuda()) return None, grad_segmentation, None, None, None class DenseCRFLoss(nn.Module): def __init__(self, weight, sigma_rgb, sigma_xy, scale_factor): super(DenseCRFLoss, self).__init__() self.weight = weight self.sigma_rgb = sigma_rgb self.sigma_xy = sigma_xy self.scale_factor = scale_factor def forward(self, images, segmentations, ROIs): """ scale imag by scale_factor """ scaled_images = F.interpolate(images,scale_factor=self.scale_factor) scaled_segs = F.interpolate(segmentations,scale_factor=self.scale_factor,mode='bilinear',align_corners=False) scaled_ROIs = F.interpolate(ROIs.unsqueeze(1),scale_factor=self.scale_factor).squeeze(1) return self.weight*DenseCRFLossFunction.apply( scaled_images, scaled_segs, self.sigma_rgb, self.sigma_xy*self.scale_factor, scaled_ROIs) def extra_repr(self): return 'sigma_rgb={}, sigma_xy={}, weight={}, scale_factor={}'.format( self.sigma_rgb, self.sigma_xy, self.weight, self.scale_factor )
[ "m62tang@rsg-pc286.localnet" ]
m62tang@rsg-pc286.localnet
789f9bbf33252c5f8444b39894175a96e85ff453
f70dd2356260e84a3baebc68f0c49327ff1cb005
/outliers/enron_outliers.py
90715800719ce2049ecf8890cd425cf8f7ca34aa
[]
no_license
kmather73/ud120-ML-Project
04f91d4de859200d454e8701b0461bd3cef5a34f
b58452ae5d4105707731de56c567c60578b28514
refs/heads/master
2020-09-17T22:26:23.663962
2016-08-19T02:55:12
2016-08-19T02:55:12
66,047,988
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
#!/usr/bin/python import pickle import sys import matplotlib.pyplot sys.path.append("../tools/") from feature_format import featureFormat, targetFeatureSplit ### read in data dictionary, convert to numpy array data_dict = pickle.load( open("../final_project/final_project_dataset.pkl", "r") ) data_dict.pop( "TOTAL", 0 ) features = ["salary", "bonus"] data = featureFormat(data_dict, features) ### your code below for point in data: salary = point[0] bonus = point[1] matplotlib.pyplot.scatter( salary, bonus ) matplotlib.pyplot.xlabel("salary") matplotlib.pyplot.ylabel("bonus") matplotlib.pyplot.show() for k in data_dict: if "NaN" != data_dict[k]["salary"] and data_dict[k]["salary"] > 1e6: print k elif data_dict[k]["bonus"] != "NaN" != data_dict[k]["salary"] and data_dict[k]["bonus"] > 0.7*1e7: print k
[ "kmather73@gmail.com" ]
kmather73@gmail.com
942d41e63481adf5d1b9a7bfb848e7106e9eabad
18642e63abd4e5b935c5c60d8451857220dad2ca
/portfolio/models.py
cb0f68f1bd458cd8cb4381deb3be1f7be0adebed
[]
no_license
SravaniKV/Assign1p2
8cb24e8dfd4ca97c0b1fbf61ecec300326b8deeb
56ee638db6815c3707f596cc8158c78e8049926c
refs/heads/master
2021-06-30T08:17:13.198594
2017-09-18T21:53:45
2017-09-18T21:53:45
104,000,474
0
0
null
null
null
null
UTF-8
Python
false
false
3,654
py
#from django.db import models # Create your models here. from django.db import models from django.utils import timezone from django.contrib.auth.models import User from yahoo_finance import Share class Customer(models.Model): name = models.CharField(max_length=50) address = models.CharField(max_length=200) cust_number = models.IntegerField(blank=False, null=False) city = models.CharField(max_length=50) state = models.CharField(max_length=50) zipcode = models.CharField(max_length=10) email = models.EmailField(max_length=200) cell_phone = models.CharField(max_length=50) created_date = models.DateTimeField( default=timezone.now) updated_date = models.DateTimeField(auto_now_add=True) def created(self): self.created_date = timezone.now() self.save() def updated(self): self.updated_date = timezone.now() self.save() def __str__(self): return str(self.cust_number) class Investment(models.Model): customer = models.ForeignKey(Customer, related_name='investments') category = models.CharField(max_length=50) description = models.CharField(max_length=200) acquired_value = models.DecimalField(max_digits=10, decimal_places=2) acquired_date = models.DateField(default=timezone.now) recent_value = models.DecimalField(max_digits=10, decimal_places=2) recent_date = models.DateField(default=timezone.now, blank=True, null=True) def created(self): self.acquired_date = timezone.now() self.save() def updated(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.customer) def results_by_investment(self): return self.recent_value - self.acquired_value class Stock(models.Model): customer = models.ForeignKey(Customer, related_name='stocks') symbol = models.CharField(max_length=10) name = models.CharField(max_length=50) shares = models.DecimalField (max_digits=10, decimal_places=1) purchase_price = models.DecimalField(max_digits=10, decimal_places=2) purchase_date = models.DateField(default=timezone.now, blank=True, null=True) def created(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.customer) def initial_stock_value(self): return self.shares * self.purchase_price def current_stock_price(self): symbol_f=self.symbol data=Share(symbol_f) share_value=(data.get_open()) return share_value def current_stock_value(self): symbol_f=self.symbol data=Share(symbol_f) share_value=(data.get_open()) return float(share_value) * float(self.shares) class MutualFunds(models.Model): customer = models.ForeignKey(Customer, related_name='mutualfunds') category = models.CharField(max_length=50) description = models.CharField(max_length=200) units=models.DecimalField(max_digits=10,decimal_places=0) acquired_value = models.DecimalField(max_digits=10, decimal_places=2) acquired_date = models.DateField(default=timezone.now) recent_value = models.DecimalField(max_digits=10, decimal_places=2) recent_date = models.DateField(default=timezone.now, blank=True, null=True) def created(self): self.acquired_date = timezone.now() self.save() def updated(self): self.recent_date = timezone.now() self.save() def __str__(self): return str(self.customer) def results_by_mutualfunds(self): return self.recent_value - self.acquired_value
[ "venkatasravanikaka@unomaha.edu" ]
venkatasravanikaka@unomaha.edu
f83dfa728113a399cb36710ce43bfd39835c8799
9e716a625f7732359c34efc6e18b2a6b7664d413
/green_earth_app/admin.py
b393c8f0b8bce6becd8b14906210d1555013cf9d
[]
no_license
greenearthinc/mobileapp-prototype
1fe2e4bf18f7258a393c377e9d0b46bec5cf319d
22299fd01a1e7cdfa38ea40b845ebfd12eea5bc6
refs/heads/master
2020-07-11T11:32:56.993491
2019-08-26T17:40:17
2019-08-26T17:40:17
204,528,283
0
0
null
null
null
null
UTF-8
Python
false
false
4,306
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from sensor_models import iotCore from sensor_models import airCluster, waterCluster, lightCluster, robot, channel from user_models import serviceAccount, workerAccount from access_models import coreAccess from support_files import generate_key import random # Register your models here. from django.contrib.auth.models import User from support_files import publish_information def create_service_token(modeladmin, request, queryset): for q in queryset: username = "core_id_"+str(q.core_id) try: user= User.objects.get(username=username) except: key = generate_key() user = User.objects.create_user(username, '', key) user.save() new_account = serviceAccount() new_account.user = user new_account.access_token = key new_account.save() def run_nutrient_motors(modeladmin, request, queryset): publish_information("water_nutr", 0, 1) # 0 is empty value def simulate_farms(modeladmin, request, queryset): for q in queryset: id = q.core_id channel.objects.filter(core=q).delete() waterCluster.objects.filter(core=q).delete() airCluster.objects.filter(core=q).delete() lightCluster.objects.filter(core=q).delete() robot.objects.filter(core=q).delete() letter_combo = ["A", "B", "C", "D", "E", "F", "G", "H"] unique_value = 1 air = airCluster() air.joint_id = str(q.core_id) + "-" + str(1) air.core = q air.cluster_id = 1 air.humidity = 50 air.temperature = 26.0 air.tvoc = 200 air.co2 = 10 air.pessure = 101.3 air.save() i =0 while i < len(letter_combo): j = 1 while j <= 8: name = letter_combo[i] + str(j) new_channel = channel() new_channel.name = name new_channel.unique_id = str(q.core_id) + "-" + name new_channel.core = q water = waterCluster() water.joint_id = str(q.core_id) + "-" + str(unique_value) water.core = q water.cluster_id = str(unique_value) water.temperature = 25.0 water.conductivity = 0.6 water.ph = 7 v = int(random.random()*10) if v > 7: water.status_code = 1 water.save() light = lightCluster() light.joint_id = str(q.core_id) + "-" + str(unique_value) light.core = q light.cluster_id = str(unique_value) v = int(random.random()*10) if v < 7: light.status_code = 1 light.state = "ON" else: light.state = "OFF" light.status_code = 0 light.spectrum = 590 light.save() j += 1 unique_value += 1 new_channel.water = water new_channel.light = light new_channel.air = air new_channel.save() i += 1 cluster = robot() cluster.joint_id = str(q.core_id) + "-" + str(1) cluster.core = q cluster.cluster_id = 1 cluster.status = "Inspecting B6" cluster.save() @admin.register(channel) class adminChannel(admin.ModelAdmin): pass @admin.register(iotCore) class adminIotCore(admin.ModelAdmin): actions = [create_service_token, simulate_farms, run_nutrient_motors] @admin.register(airCluster) class adminAirCluster(admin.ModelAdmin): pass @admin.register(waterCluster) class adminWaterCluster(admin.ModelAdmin): pass @admin.register(lightCluster) class adminLightCluster(admin.ModelAdmin): pass @admin.register(robot) class adminRobot(admin.ModelAdmin): pass @admin.register(serviceAccount) class adminServiceAccount(admin.ModelAdmin): pass @admin.register(workerAccount) class adminWorkerAccount(admin.ModelAdmin): pass @admin.register(coreAccess) class adminCoreAccess(admin.ModelAdmin): pass
[ "noreply@github.com" ]
noreply@github.com
1d0b6383c33973c35589ec4404e85d7a6c72e8e8
8130c34d546c323d6d5d2ca6b4a67330af08828f
/.history/menu_app/models_20210105152309.py
ede59bfeb80ad64987ea4b2b9d2f75c6e48ba8a7
[]
no_license
lienusrob/final
ba2dad086fc97b21b537ef12df834dfadd222943
f2726e31f1d51450e4aed8c74021c33679957b28
refs/heads/master
2023-02-15T01:36:54.463034
2021-01-07T12:47:05
2021-01-07T12:47:05
327,279,792
0
0
null
null
null
null
UTF-8
Python
false
false
4,265
py
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse import random import string from datetime import date, datetime class ToppingsCategory(models.Model): name = models.CharField(max_length=100) type = models.CharField(max_length=100) description = models.TextField(max_length=100, blank=True, null=True, default='') def __str__(self): return self.name class Topping(models.Model): name = models.CharField(max_length=100) price = models.DecimalField(max_digits = 4, decimal_places=2, default=0) category = models.ForeignKey(ToppingsCategory, on_delete = models.PROTECT, default=None) def __str__(self): return self.name class ItemsCategory(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class MenuItem(models.Model): name = models.CharField(max_length=22) price = models.DecimalField(max_digits = 4, decimal_places=2) category = models.ForeignKey(ItemsCategory, on_delete = models.PROTECT) detail = models.TextField(max_length=1000, default = ' ') # toppings = models.ManyToManyField(Topping, blank=True) #image = models.ImageField(default=None, upload_to='', null=True, blank=True) def __str__(self): return self.name class Extras(models.Model): requests = models.TextField(max_length=400,) def __str__(self): return self.name class Cart (models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) current = models.BooleanField(default=True) date_ordered = models.DateTimeField(auto_now_add= True ) class CartItem (models.Model): add_item = models.ForeignKey(MenuItem, on_delete= models.CASCADE) quantity = models.IntegerField(default=0) cart = models.ForeignKey(Cart, on_delete= models.CASCADE) def __str__(self): return self.add_item.name #remove dont need class OrderItem(models.Model): item = models.ForeignKey(MenuItem, on_delete=models.SET_NULL, null=True) price = models.DecimalField(max_digits = 4, decimal_places=2, default=0) order_item_order = models.ForeignKey('menu_app.Order', on_delete=models.CASCADE, null=True) #toppings = models.ManyToManyField(Topping, blank=True) def __str__(self): return self.item.name def get_item_price(self): self.price = sum(topping.price for topping in self.toppings.all()) + self.item.price def get_all_topping_categories(self): categories = [] for topping in self.toppings.all(): if not topping.category in categories: categories.append(topping.category) return categories class Orders (models.Model): cart = models.ForeignKey(Cart, on_delete=models.CASCADE) placed = models.BooleanField(default=False) def __str__ (self): return self.cart.user.username #old need to remove class Order(models.Model): customer = models.ForeignKey(User, on_delete = models.CASCADE) date_ordered = models.DateTimeField(default=timezone.now) items = models.ManyToManyField(MenuItem) order_items = models.ManyToManyField(OrderItem) total = models.DecimalField(max_digits = 6, decimal_places=2, null=True) is_ordered = models.BooleanField(default=False) pickup_time = models.DateTimeField(default=timezone.now) special_instructions = models.TextField(max_length=256, blank=True) def __str__(self): return f'Order #{self.id} - {self.customer.username}' # # url to redirect to when submitting order form # def get_absolute_url(self): # return reverse('orders:order_detail', kwargs={'pk':self.pk}) # returns the sum of each item price in order and assigns it to self.total def get_order_total(self): self.total = sum(order_item.price for order_item in self.order_items.all()) def get_cart_items(self): return self.items.all() def generate_order_id(): date_str = date.today().strftime('%Y%m%d')[2:] + str(datetime.now().second) rand_str = "".join([random.choice(string.digits) for count in range(3)]) return date_str + rand_str # class Meta(): # ordering = ['-date_ordered']
[ "lienus.rob@hotmail.de" ]
lienus.rob@hotmail.de
eb4fe4d2438140d7da3760ede1e8840e63849c66
5ad84a7ec7269e63eecedc33072b5d7877530d60
/lib/exec.py
7aa57e49b853b8677d7bbe512055308c037e1c7f
[]
no_license
walkrain/python_base
d144da3df6cea02de76be11d55b5c87374a096bc
8e15ffecd42ba656be883fd80cc781958ba0e932
refs/heads/master
2020-05-27T19:15:22.415146
2015-05-19T00:20:33
2015-05-19T00:20:33
35,705,164
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
#!/usr/bin/python # Filename:exec.py exec 'print "hello world"' print eval('2*3')
[ "walkrain@126.com" ]
walkrain@126.com
36c1449fb9b44dcf2b01c472c97533b9f70ca5c6
f851122e51b760f454ba35a47223f373852b7b82
/main.py
c30a3e1497c258fc42a8dd0a17de56de9b03f435
[]
no_license
JustinGuerra/ThreadCheckerBot
eb95b7ea05daf316588bacf7a59fc3209195d454
2df761121255d223e02ec9c502b047cc2968b00a
refs/heads/master
2020-04-09T03:20:08.675795
2018-12-01T19:04:12
2018-12-01T19:04:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,768
py
import praw import operator import time import datetime from praw.models import Comment total_comments_processed = 0 def main(): reddit = praw.Reddit("ThreadCheckBot") #subreddit = reddit.subreddit("news") #submissions = subreddit.hot(limit=10) # for submission in submissions: #check_thread(reddit, submission) check_thread(reddit, reddit.submission(id='a1y03b')) def check_thread(reddit, submission): start_time = time.time() print("Checking Thread.") print("Thread Title: " + submission.title) print("Thread Id: " + submission.id) print("Grabbing all comments in thread...") all_comments_in_thread = get_all_comments(reddit, submission.id) print("Total Comments: " + str(len(all_comments_in_thread))) print("Getting all users in thread...") all_users_in_thread = get_all_unique_users(all_comments_in_thread) print("Total unique Users: " + str(len(all_users_in_thread))) top_subreddits = calculate_top_subreddits(all_users_in_thread) sorted_top_subreddits = sorted( top_subreddits.items(), key=operator.itemgetter(1)) for result in sorted_top_subreddits: if result[0] != submission.subreddit and result[1] >= 15: print("Current thread has suspicious activity.") print("Thread has over 20 percent of users from a specific subreddit") print(result.display_name + ": " + sorted_top_subreddits[result] + "%") print("Thread link: " + submission.permalink) runtime_in_seconds = int(round(time.time() - start_time)) minutes, seconds = divmod(runtime_in_seconds, 60) hours, minutes = divmod(minutes, 60) print("Processed Thread in " + str(hours) + "h " + str(minutes) + "m " + str(seconds) + "s") def calculate_top_subreddits(users): dict_of_primary_subreddits = {} print("Fetching top subreddits") user_counter = 0 for user in users: if user: start_time = time.time() if type(user).__name__ == "Redditor": top_subreddit = fetch_subreddit_in_position( user.comments.new(limit=None), 0) if top_subreddit in dict_of_primary_subreddits: dict_of_primary_subreddits[top_subreddit] += 1 else: dict_of_primary_subreddits[top_subreddit] = 1 user_counter += 1 print("Processed user " + str(user_counter) + " of " + str(len(users))) dict_of_subreddit_percentages = {} for subreddit in dict_of_primary_subreddits: percentage = ( dict_of_primary_subreddits[subreddit] / len(users)) * 100 dict_of_subreddit_percentages[subreddit] = percentage return dict_of_primary_subreddits def fetch_subreddit_in_position(comments, position): subreddit_numbers = {} global total_comments_processed comments_processed_for_user = 0 start_time = time.time() # Check each comment and grab the subreddit and increase tally for repeated subreddits for comment in comments: if comment: if type(comment).__name__ == "Comment": comment_date = datetime.datetime.utcfromtimestamp( comment.created_utc) compare_date = datetime.datetime.now() - datetime.timedelta(days=365) if(comment_date >= compare_date): if comment.subreddit in subreddit_numbers: subreddit_numbers[comment.subreddit] += 1 else: subreddit_numbers[comment.subreddit] = 1 comments_processed_for_user += 1 total_comments_processed += 1 sorted_subreddits = sorted( subreddit_numbers.items(), key=operator.itemgetter(1)) timeTook = time.time() - start_time print("Took " + str(timeTook) + " to process user") return sorted_subreddits[position][0] def get_all_unique_users(comments): users = list() for comment in comments: if type(comment).__name__ == "Comment": if comment.author not in users: users.append(comment.author) return users def get_sub_comments(comment, allComments): allComments.append(comment) if not hasattr(comment, "replies"): replies = comment.comments() else: replies = comment.replies for child in replies: get_sub_comments(child, allComments) def get_all_comments(r, submissionId): submission = r.submission(submissionId) comments = submission.comments commentsList = [] for comment in comments: get_sub_comments(comment, commentsList) return commentsList if __name__ == "__main__": main()
[ "danieljacobhix@gmail.com" ]
danieljacobhix@gmail.com
31291fea928eb8e023f65781c71fa4432037efea
ba1eff6535027c16b9e1d399b96e7853bc1514dc
/tests/test_16_userinfo_endpoint.py
03ec0337b9ec1fd4207b1850726eb13b7fc2b0da
[ "Apache-2.0" ]
permissive
sklemer1/oidcendpoint
09d06e4cf21113f74a78734cdd06c964aaed3c7d
bc2cd9222bd05aec7b7ba5c7c7f593c2143357f3
refs/heads/master
2020-03-30T12:24:20.500373
2018-10-04T13:42:31
2018-10-04T13:42:31
151,222,819
0
0
null
null
null
null
UTF-8
Python
false
false
5,738
py
import json import os import pytest import time from oidcmsg.key_jar import build_keyjar from oidcmsg.oidc import AccessTokenRequest from oidcmsg.oidc import AuthorizationRequest from oidcendpoint.client_authn import verify_client from oidcendpoint.oidc import userinfo from oidcendpoint.oidc.authorization import Authorization from oidcendpoint.oidc.provider_config import ProviderConfiguration from oidcendpoint.oidc.registration import Registration from oidcendpoint.oidc.token import AccessToken from oidcendpoint.authn_event import AuthnEvent from oidcendpoint.endpoint_context import EndpointContext from oidcendpoint.user_authn.authn_context import INTERNETPROTOCOLPASSWORD from oidcendpoint.user_info import UserInfo KEYDEFS = [ {"type": "RSA", "key": '', "use": ["sig"]}, {"type": "EC", "crv": "P-256", "use": ["sig"]} ] KEYJAR = build_keyjar(KEYDEFS)[1] RESPONSE_TYPES_SUPPORTED = [ ["code"], ["token"], ["id_token"], ["code", "token"], ["code", "id_token"], ["id_token", "token"], ["code", "token", "id_token"], ['none']] CAPABILITIES = { "response_types_supported": [" ".join(x) for x in RESPONSE_TYPES_SUPPORTED], "token_endpoint_auth_methods_supported": [ "client_secret_post", "client_secret_basic", "client_secret_jwt", "private_key_jwt"], "response_modes_supported": ['query', 'fragment', 'form_post'], "subject_types_supported": ["public", "pairwise"], "grant_types_supported": [ "authorization_code", "implicit", "urn:ietf:params:oauth:grant-type:jwt-bearer", "refresh_token"], "claim_types_supported": ["normal", "aggregated", "distributed"], "claims_parameter_supported": True, "request_parameter_supported": True, "request_uri_parameter_supported": True, } AUTH_REQ = AuthorizationRequest(client_id='client_1', redirect_uri='https://example.com/cb', scope=['openid'], state='STATE', response_type='code') TOKEN_REQ = AccessTokenRequest(client_id='client_1', redirect_uri='https://example.com/cb', state='STATE', grant_type='authorization_code', client_secret='hemligt') TOKEN_REQ_DICT = TOKEN_REQ.to_dict() BASEDIR = os.path.abspath(os.path.dirname(__file__)) def full_path(local_file): return os.path.join(BASEDIR, local_file) USERINFO = UserInfo(json.loads(open(full_path('users.json')).read())) def setup_session(endpoint_context, areq): authn_event = AuthnEvent(uid="uid", salt='salt', authn_info=INTERNETPROTOCOLPASSWORD, time_stamp=time.time()) sid = endpoint_context.sdb.create_authz_session(authn_event, areq, client_id='client_id') endpoint_context.sdb.do_sub(sid, '') return sid class TestEndpoint(object): @pytest.fixture(autouse=True) def create_endpoint(self): self.endpoint = userinfo.UserInfo(KEYJAR) conf = { "issuer": "https://example.com/", "password": "mycket hemligt", "token_expires_in": 600, "grant_expires_in": 300, "refresh_token_expires_in": 86400, "verify_ssl": False, "capabilities": CAPABILITIES, "jwks": { 'url_path': '{}/jwks.json', 'local_path': 'static/jwks.json', 'private_path': 'own/jwks.json' }, 'endpoint': { 'provider_config': { 'path': '{}/.well-known/openid-configuration', 'class': ProviderConfiguration, 'kwargs': {} }, 'registration': { 'path': '{}/registration', 'class': Registration, 'kwargs': {} }, 'authorization': { 'path': '{}/authorization', 'class': Authorization, 'kwargs': {} }, 'token': { 'path': '{}/token', 'class': AccessToken, 'kwargs': {} }, 'userinfo': { 'path': '{}/userinfo', 'class': userinfo.UserInfo, 'kwargs': {'db_file': 'users.json'} } }, 'client_authn': verify_client, "authentication": [{ 'acr': INTERNETPROTOCOLPASSWORD, 'name': 'NoAuthn', 'kwargs': {'user': 'diana'} }], 'template_dir': 'template' } endpoint_context = EndpointContext(conf, keyjar=KEYJAR) endpoint_context.cdb['client_1'] = { "client_secret": 'hemligt', "redirect_uris": [("https://example.com/cb", None)], "client_salt": "salted", 'token_endpoint_auth_method': 'client_secret_post', 'response_types': ['code', 'token', 'code id_token', 'id_token'] } self.endpoint = userinfo.UserInfo(endpoint_context) def test_init(self): assert self.endpoint def test_parse(self): session_id = setup_session(self.endpoint.endpoint_context, AUTH_REQ) _dic = self.endpoint.endpoint_context.sdb.upgrade_to_token( key=session_id) _req = self.endpoint.parse_request( {}, auth="Bearer {}".format(_dic['access_token'])) assert set(_req.keys()) == {'client_id', 'access_token'}
[ "roland@catalogix.se" ]
roland@catalogix.se
15df76003269acd982a7ce23366d7b3a40f22baf
122e1c1129b4488aa89c59c6d14e166f22d437ad
/CanchaAlToque/views.py
d7963d1a63897462d832cc0a43cc12b8bd214825
[]
no_license
jolu7432/ProjectoCanchaHero
100710ab31ec5ac49c7779a251eb30d24df5cb56
9f21535b2ff930a882989dfa113c429a63453a31
refs/heads/master
2021-01-01T04:25:24.482723
2016-04-16T21:20:56
2016-04-16T21:20:56
56,405,066
1
0
null
null
null
null
UTF-8
Python
false
false
386
py
from django.shortcuts import render from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render_to_response from django.template import RequestContext from django.views.decorators.csrf import csrf_exempt # Create your views here. @csrf_exempt def index(request): return render_to_response('index.html', context_instance=RequestContext(request))
[ "jorgeluis.tanos@exitco.biz" ]
jorgeluis.tanos@exitco.biz
d0a5b868d53ddcc88c056248836618359d2a331f
71030516166767491cf181f70665534083c36b13
/JPype-0.5.4.2/src/python/jpype/_pykeywords.py
d64b47282de2824701beb2e10cb490ff9ae1729d
[]
no_license
ct1104/fileservices
2e7a473785e464c9fdcc43ccc6e12c311235fb1a
7e993cb18933370ab83de7c9189c1d96371b7cd2
refs/heads/master
2020-03-17T01:35:35.308602
2018-05-19T07:32:29
2018-05-19T07:32:29
133,159,521
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
#***************************************************************************** # Copyright 2004-2008 Steve Menard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #***************************************************************************** import sets KEYWORDS = sets.Set( ( "del", "for", "is", "raise", "assert", "elif", "from", "lambda", "return", "break", "else", "global", "not", "try", "class", "except", "if", "or", "while", "continue", "exec", "import", "pass", "yield", "def", "finally", "in", "print", "as", "None" ))
[ "ct@guangdongjizhi.com" ]
ct@guangdongjizhi.com
46dfc22eb40865a48197d7f5ac0164222f4d45bc
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/fabric/nodetopolicy.py
73f41a28e62353875c97e455cded44de58073546
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
8,662
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class NodeToPolicy(Mo): meta = ClassMeta("cobra.model.fabric.NodeToPolicy") meta.isAbstract = True meta.moClassName = "fabricNodeToPolicy" meta.moClassName = "fabricNodeToPolicy" meta.rnFormat = "" meta.category = MoCategory.RELATIONSHIP_TO_LOCAL meta.label = "Super Class for Relation from Node to Fabric Policies Deployed on Node" meta.writeAccessMask = 0x0 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = False meta.isConfigurable = True meta.isDeletable = False meta.isContextRoot = False meta.childClasses.add("cobra.model.fabric.CreatedBy") meta.childNamesAndRnPrefix.append(("cobra.model.fabric.CreatedBy", "source-")) meta.superClasses.add("cobra.model.reln.Inst") meta.superClasses.add("cobra.model.reln.To") meta.concreteSubClasses.add("cobra.model.fabric.RsModulePolProfile") meta.concreteSubClasses.add("cobra.model.infra.RsToInterfacePolProfile") meta.concreteSubClasses.add("cobra.model.infra.RsToInterfaceSpPolProfile") meta.concreteSubClasses.add("cobra.model.infra.RsBndlGrp") meta.concreteSubClasses.add("cobra.model.fabric.RsPodPolGroup") meta.concreteSubClasses.add("cobra.model.infra.RsVpcBndlGrp") meta.concreteSubClasses.add("cobra.model.fabric.RsInterfacePolProfile") meta.concreteSubClasses.add("cobra.model.infra.RsModulePolProfile") meta.concreteSubClasses.add("cobra.model.fabric.RsNodeOverride") meta.concreteSubClasses.add("cobra.model.infra.RsToVsanEncapInstDef") meta.concreteSubClasses.add("cobra.model.fabric.RsCtrlrPolGroup") meta.concreteSubClasses.add("cobra.model.infra.RsInfraNodeOverride") meta.concreteSubClasses.add("cobra.model.fabric.RsNodePolGroup") meta.concreteSubClasses.add("cobra.model.infra.RsToVsanAttr") meta.concreteSubClasses.add("cobra.model.infra.RsToEncapInstDef") meta.concreteSubClasses.add("cobra.model.infra.RsNodePolGroup") meta.concreteSubClasses.add("cobra.model.infra.RsFexGrp") meta.concreteSubClasses.add("cobra.model.infra.RsInterfacePolProfile") meta.rnPrefixes = [ ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "deplSt", "deplSt", 15582, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("delivered", "delivered", 1) prop._addConstant("node-not-ready", "node-not-ready", 1073741824) prop._addConstant("none", "none", 0) prop._addConstant("not-registered-for-atg", "node-cannot-deploy-epg", 64) prop._addConstant("not-registered-for-fabric-ctrls", "node-not-controller", 16) prop._addConstant("not-registered-for-fabric-leafs", "node-not-leaf-for-fabric-policies", 4) prop._addConstant("not-registered-for-fabric-node-group", "node-not-registered-for-node-group-policies", 32) prop._addConstant("not-registered-for-fabric-oleafs", "node-not-capable-of-deploying-fabric-node-leaf-override", 2048) prop._addConstant("not-registered-for-fabric-ospines", "node-not-capable-of-deploying-fabric-node-spine-override", 4096) prop._addConstant("not-registered-for-fabric-pods", "node-has-not-joined-pod", 8) prop._addConstant("not-registered-for-fabric-spines", "node-not-spine", 2) prop._addConstant("not-registered-for-infra-leafs", "node-not-leaf-for-infra-policies", 128) prop._addConstant("not-registered-for-infra-oleafs", "node-not-capable-of-deploying-infra-node-leaf-override", 512) prop._addConstant("not-registered-for-infra-ospines", "node-not-capable-of-deploying-infra-node-spine-override", 1024) prop._addConstant("not-registered-for-infra-spines", "node-not-spine-for-infra-policies", 256) prop._addConstant("pod-misconfig", "node-belongs-to-different-pod", 8192) prop._addConstant("policy-deployment-failed", "policy-deployment-failed", 2147483648) meta.props.add("deplSt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "forceResolve", "forceResolve", 107, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = True prop.defaultValueStr = "yes" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("forceResolve", prop) prop = PropMeta("str", "rType", "rType", 106, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "mo" prop._addConstant("local", "local", 3) prop._addConstant("mo", "mo", 1) prop._addConstant("service", "service", 2) meta.props.add("rType", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "state", "state", 103, PropCategory.REGULAR) prop.label = "State" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "unformed" prop._addConstant("cardinality-violation", "cardinality-violation", 5) prop._addConstant("formed", "formed", 1) prop._addConstant("invalid-target", "invalid-target", 4) prop._addConstant("missing-target", "missing-target", 2) prop._addConstant("unformed", "unformed", 0) meta.props.add("state", prop) prop = PropMeta("str", "stateQual", "stateQual", 104, PropCategory.REGULAR) prop.label = "State Qualifier" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("default-target", "default-target", 2) prop._addConstant("mismatch-target", "mismatch-target", 1) prop._addConstant("none", "none", 0) meta.props.add("stateQual", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "tCl", "tCl", 101, PropCategory.REGULAR) prop.label = "Target-class" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("unspecified", "unspecified", 0) meta.props.add("tCl", prop) prop = PropMeta("str", "tDn", "tDn", 100, PropCategory.REGULAR) prop.label = "Target-dn" prop.isImplicit = True prop.isAdmin = True meta.props.add("tDn", prop) prop = PropMeta("str", "tType", "tType", 105, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "mo" prop._addConstant("all", "all", 2) prop._addConstant("mo", "mo", 1) prop._addConstant("name", "name", 0) meta.props.add("tType", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
[ "bkhoward@live.com" ]
bkhoward@live.com
7dde14eff394ecd809ab6474ad19919b9767a399
68666fa5932e3fb6f6f26155d02e932e7ff6de3c
/ECMA_python3.5/myMedicalModel/eval_attention.py
a3acdbf98cffba581587b427bdbde81aa29a4287
[]
no_license
yaopanyaopan/Chinese_medical
76f40200bd9f8969e80f6bc9644e352cde2daf63
df3fe00247a7b9e988f4f0baa0d371f29ae12b0e
refs/heads/master
2022-02-19T02:06:24.218300
2019-07-23T02:45:04
2019-07-23T02:45:04
198,338,635
1
0
null
null
null
null
UTF-8
Python
false
false
12,586
py
# coding=utf-8 import re import os import numpy as np import tensorflow as tf import tflearn from sklearn.utils import shuffle from myMedicalModel.myModelNolstm_HH import SelfAttentive from reader import load_csv, VocabDict import encode_window import diceEval import data_process from matplotlib import pyplot as plt from matplotlib.font_manager import FontProperties from myMedicalModel import processAllList ''' parse ''' tf.app.flags.DEFINE_integer('num_epochs',20, 'number of epochs to train') tf.app.flags.DEFINE_integer('batch_size', 1, 'batch size to train in one step') tf.app.flags.DEFINE_integer('labels', 2, 'number of label classes') tf.app.flags.DEFINE_integer('word_pad_length', 20, 'word pad length for training') tf.app.flags.DEFINE_integer('decay_step', 100, 'decay steps') tf.app.flags.DEFINE_float('learn_rate', 1e-3, 'learn rate for training optimization') tf.app.flags.DEFINE_boolean('shuffle', True, 'shuffle data FLAG') tf.app.flags.DEFINE_boolean('train', True, 'train mode FLAG') tf.app.flags.DEFINE_boolean('visualize', True, 'visualize FLAG') tf.app.flags.DEFINE_boolean('penalization', False, 'penalization FLAG') tf.app.flags.DEFINE_boolean('usePreVector', False, 'preVector FLAG') FLAGS = tf.app.flags.FLAGS num_epochs = FLAGS.num_epochs batch_size = FLAGS.batch_size tag_size = FLAGS.labels word_pad_length = FLAGS.word_pad_length lr = FLAGS.learn_rate usePreVector=FLAGS.usePreVector word_vecs=None TOKENIZER_RE = re.compile(r"[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\'\w\-]+", re.UNICODE) def token_parse(iterator): for value in iterator: return TOKENIZER_RE.findall(value) tokenizer = tflearn.data_utils.VocabularyProcessor(word_pad_length, tokenizer_fn=lambda tokens: [token_parse(x) for x in tokens]) label_dict = VocabDict() def plotMetrics(step_losses,epoch_lossacc,preName,preNum): pic_path = '../myMedicalModel/forTest/' steps = np.arange(0, len(step_losses), 1) plot_pic( title="Training epoch Loss", x_content=steps, y_content=step_losses, xlabel="Epochs", ylabel="Loss ", xlim=(0, steps[-1]), path=pic_path + "train_loss_"+preName+"_100_0.001_"+preNum+".svg" ) plot_pic( title="Training Epoch Acc", x_content=steps, y_content=epoch_lossacc, xlabel="Epochs", ylabel="Acc ", xlim=(0, steps[-1]), path=pic_path + "train_acc_"+preName+"_100_0.001_"+preNum+".svg" ) def plot_pic(title, x_content, y_content, xlabel, ylabel, xlim, path): print(" - [Info] Plotting metrics into picture " + path) plt.rcParams['font.sans-serif'] = ['Arial'] plt.rcParams['axes.unicode_minus'] = True plt.figure(figsize=(10, 5)) plt.grid(linestyle="--") plt.xlim(xlim) ax = plt.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.title(title, fontsize=14, fontweight='bold') plt.plot(x_content, y_content) plt.xlabel(xlabel, fontsize=13, fontweight='bold') plt.ylabel(ylabel, fontsize=13, fontweight='bold') plt.savefig(path, format='svg') plt.clf() def string_parser(arr, fit): if fit == False: return list(tokenizer.transform(arr)) else: return list(tokenizer.fit_transform(arr)) preNum='1' preName='QRJD' #69 medical_avg_count=[] x_label=[] allList=[] model = SelfAttentive() with tf.Session() as sess: #load train data print('load train data') words, tags = load_csv('../data/trainTCM/TCM_train_%s.csv'%preName, target_columns=[0], columns_to_ignore=None, target_dict=label_dict,usePreVector=usePreVector) # print('zz',words) vocab_list={} # zsy 判断是否适用预训练的词向量 start if usePreVector== True: input_iter = encode_window.create_document_iter(words) vocab = encode_window.encode_dictionary(input_iter) vocab_list = vocab.vocabulary_._mapping word_vecs = encode_window.load_bin_vec("../medicalVector/model/medicalCorpus_50d.model", vocab_list) word_input = encode_window.encode_word(words, vocab,word_pad_length) else: words = string_parser(words, fit=True) if FLAGS.shuffle == True: words, tags = shuffle(words, tags) word_input = tflearn.data_utils.pad_sequences(words, maxlen=word_pad_length) # print('vvv', word_input) # zsy 判断是否适用预训练的词向量 end # build graph model.build_graph(n=word_pad_length,usePreVector=usePreVector,vectors=word_vecs) # Downstream Application with tf.variable_scope('DownstreamApplication'): global_step = tf.Variable(0, trainable=False, name='global_step') learn_rate = tf.train.exponential_decay(lr, global_step, FLAGS.decay_step, 0.95, staircase=True) labels = tf.placeholder('float32', shape=[None, tag_size]) net = tflearn.fully_connected(model.M, 50, activation='relu') logits = tflearn.fully_connected(net, tag_size, activation=None) loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits), axis=1) loss = tf.reduce_mean(loss) params = tf.trainable_variables() #clipped_gradients = [tf.clip_by_value(x, -0.5, 0.5) for x in gradients] optimizer = tf.train.AdamOptimizer(learn_rate) # optimizer = tf.train.GradientDescentOptimizer(learn_rate) grad_and_vars = tf.gradients(loss, params) opt = optimizer.apply_gradients(zip( grad_and_vars, params), global_step=global_step) # Start Training sess.run(tf.global_variables_initializer()) total = len(word_input) step_print = int((total/batch_size) / 20) epoch_losslist=[] epoch_lossacc = [] if FLAGS.train == True: print('start training') for epoch_num in range(num_epochs): epoch_loss = 0 step_loss = 0 allnum = 0 epoch_acc = 0 for i in range(int(total/batch_size)): batch_input, batch_tags = (word_input[i*batch_size:(i+1)*batch_size], tags[i*batch_size:(i+1)*batch_size]) train_ops = [opt, loss, learn_rate, global_step,logits] if FLAGS.usePreVector== True: result = sess.run(train_ops, feed_dict={model.input_pl: batch_input, labels: batch_tags}) else: result = sess.run(train_ops, feed_dict={model.input_pl: batch_input, labels: batch_tags}) arr = result[4][0].tolist() # print(arr.index(max(arr)),batch_tags[0].index(max(batch_tags[0]))) if arr.index(max(arr))==batch_tags[0].index(max(batch_tags[0])): epoch_acc+=1 allnum+=1 step_loss += result[1] epoch_loss += result[1] print('***') print('epoch {%s}: (global_step: {%s}), Average Loss: {%s})'%(epoch_num,result[3],(epoch_loss/(total/batch_size)))) print('***\n') epoch_losslist.append(epoch_loss/(total/batch_size)) epoch_lossacc.append(float(epoch_acc)/allnum) saver = tf.train.Saver() saver.save(sess, '../myMedicalModel/forTest/0617_model_noLstmHH_r1_%s_epoches%s_num%s.ckpt'%(preName,FLAGS.num_epochs,preNum)) else: saver = tf.train.Saver() saver.restore(sess, '../myMedicalModel/forTest/0617_model_noLstmHH_r1_%s_epoches%s_num%s.ckpt'%(preName,FLAGS.num_epochs,preNum)) # plotMetrics(epoch_losslist,epoch_lossacc,preName,preNum) allDice=[] lenList=[] evalCount = 0 for a in range(1,51): a=float(a)/100 x_label.append(round(a,2)) print('start testing') words, tags = load_csv('../data/aprioriData/TCM_train_%s.csv' % preName, target_columns=[0], columns_to_ignore=None, target_dict=label_dict) words_with_index = string_parser(words, fit=True) word_input = tflearn.data_utils.pad_sequences(words_with_index, maxlen=word_pad_length) total = len(word_input) evalNum = total-1 rs = 0. #load evalData start evalData=[] evalCav='../data/evalData/%s_evaluate.csv'%preName evalList=data_process.read_csv(evalCav) for item in evalList: evalData.append(item) # load evalData end if FLAGS.visualize == True: f = open('../myMedicalModel/forTest/%s_visualizeTCM_%s_noLSTM_HH_epoches%s_r1_num%s.html'%(preName,preName,FLAGS.num_epochs,preNum), 'w') f.write('<html style="margin:0;padding:0;"><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><body style="margin:0;padding:0;">\n') for i in range(int(total/batch_size)): batch_input, batch_tags = (word_input[i*batch_size:(i+1)*batch_size], tags[i*batch_size:(i+1)*batch_size]) result = sess.run([logits, model.B,model.Q], feed_dict={model.input_pl: batch_input, labels: batch_tags}) #arr保存预测概率 arr = result[0] if not np.argmax(arr[0]): preClass=True else: preClass = False for j in range(len(batch_tags)): if np.argmax(batch_tags[j])==0: if np.argmax(arr[j]) == np.argmax(batch_tags[j]): evalCount+=1 rs+=np.sum(np.argmax(arr[j]) == np.argmax(batch_tags[j])) medicalList=[] if FLAGS.visualize == True: f.write('<div style="margin:15px;">\n') #result[1][0]保存的是方剂中每个药物对应的attention因子,具体result[1][0][k][j]取出 for k in range(len(result[1][0])): f.write('\t<p> —— 测试方剂 %s (类标:%s ; 预测类标:%s):—— </p>\n'%(i, tags[i],preClass)) f.write('<p style="margin:10px;font-family:SimHei">\n') ww = TOKENIZER_RE.findall(words[i*batch_size][0]) for j in range(word_pad_length): if result[1][0][k][j] <a: result[1][0][k][j]=0 alpha = "{:.2f}".format(result[1][0][k][j]) if len(ww) <= j: w = " " else: w = ww[j] if result[1][0][k][j]>=a: medicalList.append(w) f.write('\t<span style="margin-left:3px;background-color:rgba(255,0,0,%s)">%s</span>\n'%(alpha,w)) f.write('</p>\n') if i < evalNum: if preClass == True: print('配伍评估药组:', medicalList) allDice.append(diceEval.evalMedicalDice(medicalList, evalData)) allList.append(medicalList) lenList.append(len(medicalList)) else: allDice.append(0) if i < evalNum: f.write('\t<b>配伍评估药组: %s ,dice = %s</b>\n' % (','.join(medicalList),allDice[i])) f.write('</div>\n') if FLAGS.visualize == True: f.write('\t<p>Test accuracy: %s</p>\n' % (rs / total)) f.write('\t<p>该功效下%s个经典方剂(即测试集前%s个方剂) accuracy :%s</p>\n' % (evalNum,evalNum,evalCount / evalNum)) f.write('\t<p>该功效下%s个经典方剂 avg-dice : %s</p>\n' % (evalNum,sum(allDice)/evalNum)) f.write('</body></html>') f.close() print('Test accuracy(all test data): %s'%(rs/total)) print('该功效下%s个经典方剂(即测试集前%s个方剂)的accuracy评估:%s' % (evalNum,evalNum,evalCount / evalNum)) print('allDice,evalCount',allDice,evalCount) sumValue=0 for i in allDice[:evalCount]: sumValue+=i print('avg-dice:%s'%(sumValue/evalCount)) print('平均药味数:%s' % (sum(lenList) / evalCount)) medical_avg_count.append(sum(lenList) / evalCount) # print('lenList',lenList) # print('medical_avg_count',medical_avg_count) sess.close() font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) # 步骤二 plt.figure() plt.plot(x_label,medical_avg_count) plt.xlabel("自注意力阈值",fontproperties=font) plt.ylabel("平均配伍药味数",fontproperties=font) plt.title("不同阈值下平均药味数统计",fontproperties=font) plt.savefig("自注意力因子阈值设置0.1_0.5.jpg") plt.figure() plt.plot(x_label[:10],medical_avg_count[:10]) plt.xlabel("自注意力阈值",fontproperties=font) plt.ylabel("平均配伍药味数",fontproperties=font) plt.title("不同阈值下平均药味数统计",fontproperties=font) plt.savefig("自注意力因子阈值设置0.01_0.1.jpg") # processAllList.processAll(allList,'forTest') data_process.write_list_in_csv('a.csv',medical_avg_count) data_process.write_list_in_csv('b.csv',x_label)
[ "2968186105@qq.com" ]
2968186105@qq.com
88dbf7980b4c0dacaebc3668465441c1d408b2c5
116a2ae77f946858d97d9d950c7b360c603104d7
/boa/gen/scope.py
190dc118cd4caf77b703d939cbd053f2ace851da
[]
no_license
maxov/boa
641aa5503cbc58ea06c16260bcefc3ff9fa2f0f8
2bc35e2a5aee3d87ab3f05d234b6c732024d1d1f
refs/heads/master
2021-05-27T20:09:13.009161
2014-07-12T19:09:10
2014-07-12T19:09:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,322
py
from boa.gen.constants import BOA_MODULE_CONSTANT_NAME class Binding(object): # represents a binding of a name to a value def __init__(self, name, val): # create a binding object self.name = name self.val = val class Scope(object): # represents a scope with bindings def __init__(self): # create a scope object self.bindings = [] def binding(self, name, val): # add a bindings binding = self.get_binding(name) if binding is not None: binding.val = val else: self.add_binding(Binding(name, val)) def get_binding(self, name): # do I have this binding? for x in self.bindings: if x.name is name: return x return None def add_binding(self, binding): # add a binding self.bindings.append(binding) def refer(self, name): # get what a binding should be to referred as binding = self.get_binding(name) if binding: return binding.name #def declarations(self): # get the declarations #return 'var ' + ', '.join(x.name for x in self.bindings) if len(self.bindings) > 0 else '' class ModuleScope(Scope): # scope on the module level, or as python calls it, global level def refer(self, name): # a binding is referred to by the 'module' object binding = self.get_binding(name) if binding: return BOA_MODULE_CONSTANT_NAME + '.' + binding.name else: return BOA_MODULE_CONSTANT_NAME + '.' + name class LocalScope(Scope): # scope that has a parent scope or inherited scope def __init__(self, parent): # initialize with the parent scope super(LocalScope, self).__init__() self.parent = parent def get_binding(self, name): # do I have this binding? for x in self.bindings: if x.name is name: return x # check the parent's binding return self.parent.get_binding(name) def refer(self, name): # a binding is referred to by the local scope object binding = self.get_binding(name) if binding: return binding.name else: return self.parent.refer(name)
[ "max@ovsankin.com" ]
max@ovsankin.com
5b5b935227c53eccc8bd5e5cdbd56cb97c222c33
9dd729a238a97966d3c49af06f61450bd89dc00d
/accounts/tests/test_view_signup.py
bc38aafed2fba618e58cbff9d9fef1ebcc795b2e
[]
no_license
sigfrido64/asc-siw
5a449c4d73fb913019a75021d03a024110364f86
619cd82375ba3fa0829f62361fc850ae48635a1f
refs/heads/master
2022-07-22T23:10:51.705175
2019-02-10T22:00:45
2019-02-10T22:00:45
120,227,961
0
0
null
2022-07-06T19:26:38
2018-02-04T22:10:53
CSS
UTF-8
Python
false
false
2,802
py
# coding=utf-8 from django.contrib.auth.models import User from django.test import TestCase from django.urls import resolve, reverse from ..forms import SignUpForm from ..views import signup class SignUpTests(TestCase): fixtures = ['af'] def setUp(self): url = reverse('signup') self.response = self.client.get(url) def test_signup_status_code(self): self.assertEquals(self.response.status_code, 200) def test_signup_url_resolves_signup_view(self): view = resolve('/signup/') self.assertEquals(view.func, signup) def test_csrf(self): self.assertContains(self.response, 'csrfmiddlewaretoken') def test_contains_form(self): form = self.response.context.get('form') self.assertIsInstance(form, SignUpForm) def test_form_inputs(self): """ The view must contain five inputs: csrf, username, email, password1, password2 """ self.assertContains(self.response, '<input', 5) self.assertContains(self.response, 'type="text"', 1) self.assertContains(self.response, 'type="email"', 1) self.assertContains(self.response, 'type="password"', 2) class SuccessfulSignUpTests(TestCase): fixtures = ['af'] def setUp(self): url = reverse('signup') data = { 'username': 'john', 'email': 'john@doe.com', 'password1': 'abcdef123456', 'password2': 'abcdef123456' } self.response = self.client.post(url, data) self.home_url = reverse('home') def test_redirection(self): """ A valid form submission should redirect the user to the home page """ self.assertRedirects(self.response, self.home_url) def test_user_creation(self): self.assertTrue(User.objects.exists()) def test_user_authentication(self): """ Create a new request to an arbitrary page. The resulting response should now have an `user` to its context, after a successful sign up. """ response = self.client.get(self.home_url) user = response.context.get('user') self.assertTrue(user.is_authenticated) class InvalidSignUpTests(TestCase): fixtures = ['af'] def setUp(self): url = reverse('signup') self.response = self.client.post(url, {}) # submit an empty dictionary def test_signup_status_code(self): """ An invalid form submission should return to the same page """ self.assertEquals(self.response.status_code, 200) def test_form_errors(self): form = self.response.context.get('form') self.assertTrue(form.errors) def test_dont_create_user(self): self.assertFalse(User.objects.exists())
[ "sigfrido.pilone@gmail.com" ]
sigfrido.pilone@gmail.com
2b7b3f26a0a071871daa6d9510b94e09410413ec
5e2605c10d7ab7838d6a5caa09bf61381a70e055
/.venv/bin/pip
5a188b5c5f641c3fae63657357ed75ee726348b0
[]
no_license
sleekEagle/pcr_cloud
08d7eefce4836c1807a4cc806e61e8c9de9950bc
8a3f876e06d23e21979c25455d4adcb1880295df
refs/heads/master
2023-02-22T13:40:16.718241
2022-11-03T15:14:59
2022-11-03T15:14:59
217,382,660
1
0
null
null
null
null
UTF-8
Python
false
false
264
#!/home/sleekeagle/works/pcr/repo/pcr_cloud/.venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "lahirunuwanisme@gmail.com" ]
lahirunuwanisme@gmail.com
b1afda3e5255fc90f7617880094b5585b6f6f29f
20717dd660bfbaeb88311ea4d3527338cfc4d086
/checkout/models.py
df2f5f51923be694ffa5fd24998186846ccd5381
[]
no_license
Code-Institute-Submissions/auto-tints
8f6f8ddba8d3ec933078a4a3527c31ca6cf4dc92
fdde47397a12c04aacde24a806283d9dee1225be
refs/heads/main
2023-09-01T06:03:40.963429
2021-10-27T02:23:42
2021-10-27T02:23:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,694
py
import uuid from django.db import models from django.db.models import Sum from django.conf import settings from products.models import Product from django_countries.fields import CountryField from pages.models import UserProfile class Order(models.Model): order_number = models.CharField(max_length=32, null=False, editable=False) user_profile = models.ForeignKey(UserProfile, on_delete=models.SET_NULL, null=True, blank=True, related_name='orders') full_name = models.CharField(max_length=50, null=False, blank=False) email = models.EmailField(max_length=254, null=False, blank=False) phone_number = models.CharField(max_length=20, null=False, blank=False) country = CountryField(blank_label="Country *", null=False, blank=False) postcode = models.CharField(max_length=20, blank=True, null=True) town_or_city = models.CharField(max_length=40, null=False, blank=False) street_address1 = models.CharField(max_length=80, null=False, blank=False) street_address2 = models.CharField(max_length=80, blank=True, null=True) county = models.CharField(max_length=80, blank=True, null=True) date = models.DateTimeField(auto_now_add=True) delivery_cost = models.DecimalField(max_digits=6, decimal_places=2, null=False, default=0) order_total = models.DecimalField(max_digits=10, decimal_places=2, null=False, default=0) grand_total = models.DecimalField(max_digits=10, decimal_places=2, null=False, default=0) original_cart = models.TextField(null=False, blank=False, default='') stripe_pid = models.CharField(max_length=254, null=False, blank=False, default='') def _generate_order_number(self): """ Generate a unique order number """ return uuid.uuid4().hex.upper() def update_total(self): """ Update grand total each time a new item is added. """ self.order_total = self.lineitems.aggregate( Sum('lineitem_total'))['lineitem_total__sum'] or 0 self.grand_total = self.order_total + settings.DELIVERY_CHARGE self.delivery_cost = settings.DELIVERY_CHARGE self.save() def save(self, *args, **kwargs): """ Override the original save method to set the order number if it hasn't been set already. """ if not self.order_number: self.order_number = self._generate_order_number() super().save(*args, **kwargs) def __str__(self): return self.order_number class OrderLineItem(models.Model): order = models.ForeignKey(Order, null=False, blank=False, on_delete=models.CASCADE, related_name='lineitems') product = models.ForeignKey(Product, null=False, blank=False, on_delete=models.CASCADE) quantity = models.IntegerField(null=False, blank=False, default=0) lineitem_total = models.DecimalField(max_digits=6, decimal_places=2, null=False, blank=False, editable=False) def save(self, *args, **kwargs): """ Override the original save method to calculate total correctly if ordering multiple items. """ self.lineitem_total = self.product.price * self.quantity super().save(*args, **kwargs) def __str__(self): return f'SKU {self.product.sku} on order {self.order.order_number}'
[ "jakubmrowicki96@gmail.com" ]
jakubmrowicki96@gmail.com
b07204cd7cc358a55e848dff2fb18b8ff76f36b9
06eef71f28a395cbb9b2a6b3bb6ba8138318d054
/projectorGeom.py
18f3c0b1374365a8392ac20e5133d6a63aa83077
[]
no_license
Rookieokky/3d-display
c4408e64d2c42f8203aa5c54d4551d8a85bbf685
49dad5a539531b0f126fde95cc6e97d07b014a59
refs/heads/master
2021-05-30T15:54:09.315334
2014-07-01T04:18:44
2014-07-01T04:18:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,335
py
def computeGrid(scn, showGrid, size): import pointInside, makeCube, gridGeom, bpy, mathutils, imp imp.reload(pointInside) imp.reload(makeCube) imp.reload(gridGeom) xmax = size[0] ymax = size[1] zmax = size[2] table= [ [ 0 for i in range(xmax) ] for j in range(ymax) ] # rol, col for d1 in range(ymax): for d2 in range(xmax): # perform calculations x = d2 - ((xmax - 1)/2) y = d1 - ((ymax - 1)/2) z = gridGeom.helicoid_half(x, y, zmax) pt = mathutils.Vector((x, y, z)) table[d1][d2] = 0 for obj in bpy.data.objects: if obj.name != 'Lamp' and obj.name != 'Camera' and not 'grid' in obj.name: if pointInside.pointInsideMesh(obj, pt) == 1: table[d1][d2] = 1 break if showGrid: name = "grid" + str(d1) + "." + str(d2) grid_obj = makeCube.createCube(scn, (x, y, z), 0.5, name) # change color if table[d1][d2] == 1: mat = bpy.data.materials.new('visuals') mat.diffuse_color = (1.0, 0.3, 0.0) if len(grid_obj.data.materials) < 1: grid_obj.data.materials.append(mat) else: grid_obj.data.materials[0] = mat return table if __name__ == '__main__': import bpy scn = bpy.context.scene t = computeGrid(scn, True, (10,10,10)) print('results of grid:') print(t)
[ "babraham@appnexus.com" ]
babraham@appnexus.com
d498464e187eab0a0e5b7f34d9495f1fab2c8587
3b10be6f883547f44a67983e2b04be6d7808e007
/bin/evaluate-timelines
52cc720d01ce9fd4e999841bfb9dddd079f98449
[ "MIT" ]
permissive
natsudalkr/tilse
62f8ef9b4ab03202b8b603a62edaff80d291c97f
8b4fdb6077663c57f0923d4e68820ba3d73dafe7
refs/heads/master
2021-01-18T15:38:37.729296
2017-03-20T16:13:45
2017-03-20T16:13:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,982
#!/usr/bin/env python import argparse import logging import os import codecs from collections import defaultdict from tilse.data import timelines from tilse.evaluation import metrictests, rouge def get_scores(metric_desc, pred_tl, groundtruth, evaluator): if metric == "concat": return evaluator.evaluate_concat(pred_tl, groundtruth) elif metric == "agreement": return evaluator.evaluate_agreement(pred_tl, groundtruth) elif metric == "align_date_costs": return evaluator.evaluate_align_date_costs(pred_tl, groundtruth) elif metric == "align_date_content_costs": return evaluator.evaluate_align_date_content_costs(pred_tl, groundtruth) elif metric == "align_date_content_costs_many_to_one": return evaluator.evaluate_align_date_content_costs_many_to_one(pred_tl, groundtruth) logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(''message)s') parser = argparse.ArgumentParser(description="Evaluate timelines") parser.add_argument('-p', dest="predicted", type=str, help='Predicted timelines', required=True) parser.add_argument('-r', dest="reference", type=str, help='Reference timelines', required=True, nargs="*") parser.add_argument('-m', dest="metric", type=str, help='Metric to use', required=True) args = parser.parse_args() predicted = timelines.Timeline.from_file(codecs.open(args.predicted, "r", "utf-8", "replace")) reference = args.reference metric = args.metric temp_ref_tls = [] for filename in args.reference: temp_ref_tls.append( timelines.Timeline.from_file(codecs.open(filename, "r", "utf-8", "replace")) ) reference_timelines = timelines.GroundTruth(temp_ref_tls) evaluator = rouge.TimelineRougeEvaluator(measures=["rouge_1", "rouge_2"]) scores = get_scores(metric, predicted, reference_timelines, evaluator) print(scores)
[ "sebastian.martschat@gmail.com" ]
sebastian.martschat@gmail.com
81e637c137eb35264303fc69b8323a2a2287261a
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/6/o8-.py
9c6d0d0413aeff42ae26f9f44f8d70275e890256
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'o8-': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
6bd2dd8a1dc0c5152bff3d6838c8a6ca248dba0b
96e93d15c859b96d8627d32d5d1b8378cec63693
/database/migrations/20200628_01_cm3XQ-add-users.py
73a85452e62b9c6b603d64933f44a854633e9d98
[]
no_license
lekha/jeopardy
ebff871883b5956e6536f7b0c734c4d0bf0611af
e29694da68b7f73002279ede396b4dcb88db8119
refs/heads/master
2023-01-24T04:11:39.074244
2020-08-05T11:37:40
2020-08-05T11:38:05
131,525,151
0
0
null
2023-01-06T09:49:37
2018-04-29T19:55:53
Python
UTF-8
Python
false
false
2,890
py
""" Add users """ from yoyo import step __depends__ = {'20200621_02_tnF6J-add-team-and-game-models'} create_user_metadata = """ CREATE TABLE user_metadata_anonymous ( id BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT, created_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6), updated_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6), expire_ts DATETIME(6) NOT NULL ) CHARACTER SET utf8mb4; CREATE TABLE user_metadata_google ( id BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT, created_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6), updated_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6), subject VARCHAR(255) NOT NULL UNIQUE, email VARCHAR(255) NOT NULL, given_name VARCHAR(255), issuer VARCHAR(255) NOT NULL, family_name VARCHAR(255), name VARCHAR(255), locale VARCHAR(255), picture VARCHAR(255) ) CHARACTER SET utf8mb4; """ drop_user_metadata = """ DROP TABLE user_metadata_google; DROP TABLE user_metadata_anonymous; """ create_users = """ CREATE TABLE users ( id BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT, created_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6), updated_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6), display_name VARCHAR(255) NOT NULL, is_active BOOL NOT NULL DEFAULT 1, auth_provider ENUM("none", "google") NOT NULL, anonymous_metadata_id BIGINT, google_metadata_id BIGINT, CONSTRAINT fk_user_anonymous_metadata FOREIGN KEY (anonymous_metadata_id) REFERENCES user_metadata_anonymous (id) ON DELETE RESTRICT, CONSTRAINT fk_user_google_metadata FOREIGN KEY (google_metadata_id) REFERENCES user_metadata_google (id) ON DELETE RESTRICT ) CHARACTER SET utf8mb4; """ drop_users = "DROP TABLE users;" point_foreign_keys_to_users = """ ALTER TABLE games DROP FOREIGN KEY fk_games_players, ADD CONSTRAINT fk_games_users FOREIGN KEY (owner_id) REFERENCES users (id) ON DELETE CASCADE; DROP TABLE players; """ point_foreign_keys_to_players = """ ALTER TABLE games DROP FOREIGN KEY fk_games_users; CREATE TABLE players ( id BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT, created_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6), updated_ts DATETIME(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6), name VARCHAR(255) NOT NULL ) CHARACTER SET utf8mb4; INSERT INTO players (id, created_ts, updated_ts, name) SELECT id, created_ts, updated_ts, display_name FROM users; ALTER TABLE games ADD CONSTRAINT fk_games_players FOREIGN KEY (owner_id) REFERENCES players (id) ON DELETE CASCADE; """ steps = [ step(create_user_metadata, drop_user_metadata), step(create_users, drop_users), step(point_foreign_keys_to_users, point_foreign_keys_to_players), ]
[ "305097+lekha@users.noreply.github.com" ]
305097+lekha@users.noreply.github.com
48f6bf7eed3e7ed029e76a1561da9c2b9fd6b645
4488e3c26de4291da447d8251c491b43cb810f7c
/account_banking_payment_export/model/payment_mode.py
798c8ed20daab08128d6d0b68c1d1b223e11f9d5
[]
no_license
smart-solution/odoo-crm-80
b19592ce6e374c9c7b0a3198498930ffb1283018
85dfd0cc37f81bcba24d2a0091094708a262fe2c
refs/heads/master
2016-09-06T06:04:35.191924
2015-07-14T12:48:28
2015-07-14T12:48:28
33,174,511
1
0
null
null
null
null
UTF-8
Python
false
false
2,285
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2009 EduSense BV (<http://www.edusense.nl>). # (C) 2011 - 2013 Therp BV (<http://therp.nl>). # # All other contributions are (C) by their respective contributors # # All Rights Reserved # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import orm, fields class payment_mode(orm.Model): ''' Restoring the payment type from version 5, used to select the export wizard (if any) ''' _inherit = "payment.mode" def suitable_bank_types(self, cr, uid, payment_mode_id=None, context=None): """ Reinstates functional code for suitable bank type filtering. Current code in account_payment is disfunctional. """ res = [] payment_mode = self.browse( cr, uid, payment_mode_id, context) if (payment_mode and payment_mode.type and payment_mode.type.suitable_bank_types): res = [t.code for t in payment_mode.type.suitable_bank_types] return res _columns = { 'type': fields.many2one( 'payment.mode.type', 'Payment type', required=True, help='Select the Payment Type for the Payment Mode.' ), 'payment_order_type': fields.related( 'type', 'payment_order_type', readonly=True, type='selection', selection=[('payment', 'Payment'), ('debit', 'Direct debit')], string="Payment Order Type"), }
[ "fabian.semal@smartsolution.be" ]
fabian.semal@smartsolution.be
0da8f2ee1dac97eab30cc8d96672dac2ef752180
6253cb645eaa09c19645750946fbf1f0b0bc4fc7
/visualize.py
63a382f4eafd1c61bd21c3a5bbfb7491a587ff81
[]
no_license
Alevs2R/trajectory_planning
fb1c0da39b5b2cfcb7606302d36e2298bd026d5f
410c4e784efbeb518ba6cf565b39901dba79cf02
refs/heads/master
2020-04-05T16:44:26.590239
2018-11-26T13:06:44
2018-11-26T13:06:44
157,026,541
0
0
null
null
null
null
UTF-8
Python
false
false
2,317
py
import matplotlib.pyplot as plt import numpy as np from kinematics import forw_kin from robot_configuration import L def motion_plot(pos, v, acc): time = np.arange(0, v.shape[1] * 0.01 - 0.005, 0.01) plt.figure(1) plt.ylabel('position, rad') plt.xlabel('time, s') plt.title('joint positions') for i in range(0, v.shape[0]): plt.plot(time, pos[i, :], 'C'+str(i+1)) plt.savefig('plots/joint_positions.png') plt.show() plt.figure(2) plt.ylabel('velocity, rad') plt.xlabel('time, s') plt.title('joint velocities') for i in range(0, v.shape[0]): plt.plot(time, v[i, :], 'C'+str(i+1)) plt.savefig('plots/joint velocities.png') plt.show() plt.figure(3) plt.ylabel('rad/s^2') plt.xlabel('time, ms') plt.title('joint accelerations') cartesian_pos = np.zeros(shape=(3, pos.shape[1])) for i in range(0, v.shape[0]): plt.plot(time, acc[i, :], 'C'+str(i+1)) plt.savefig('plots/joint_accelerations.png') plt.show() for i in range(0, pos.shape[1]): cartesian_pos[:, i] = forw_kin(pos[:, i].flatten(), L) # plt.figure(4) # ax = plt.axes(projection='3d') # ax.set_xlabel('X axis') # ax.set_ylabel('Y axis') # ax.set_zlabel('Z axis') # ax.plot3D(cartesian_pos[0, :].flatten(), cartesian_pos[1, :].flatten(), cartesian_pos[2:, ].flatten(), 'gray') # plt.show() plt.figure(4) plt.ylabel('position, m') plt.xlabel('time, s') plt.title('X cartesian axis') plt.plot(time, cartesian_pos[0]) plt.ylim([-3, 10]) plt.savefig('plots/x_position.png') plt.show() plt.figure(5) plt.ylabel('position, m') plt.xlabel('time, s') plt.title('Y cartesian axis') plt.plot(time, cartesian_pos[1]) plt.ylim([-3, 7]) plt.savefig('plots/y_position.png') plt.show() plt.figure(6) plt.ylabel('position, m') plt.xlabel('time, s') plt.title('Z cartesian axis') plt.plot(time, cartesian_pos[2]) plt.ylim([-7, 2]) plt.savefig('plots/z_position.png') plt.show()
[ "a.evlampev@dooglys.com" ]
a.evlampev@dooglys.com
68a04c7e9e3f2d829fdc061ddb6ed9582d837f10
2879edc657c192002ae13fcdd3296b5127d1e9a2
/dp_eu_gdpr/models/eu_gdpr_log.py
525908b2a9f03769b92b73ab375830d007be58d5
[]
no_license
safiyaayoub/gdpr
9525892893afb49b97f70a032d5a6845a25a1b66
d640a4c4786ca461d7a8e384420134ce0be1971d
refs/heads/master
2022-11-07T16:00:58.096341
2020-06-23T13:49:28
2020-06-23T13:49:28
274,417,701
0
0
null
null
null
null
UTF-8
Python
false
false
905
py
# Copyright 2018-Today datenpol gmbh (<https://www.datenpol.at/>) # License OPL-1 or later (https://www.odoo.com/documentation/user/13.0/legal/licenses/licenses.html#licenses). from odoo import fields, models, _ class GDPRLog(models.Model): _name = 'eu.gdpr_log' _description = 'GDPR Log' _order = 'create_date DESC' name = fields.Char('Name', compute='_compute_name') date = fields.Datetime('Creation date', required=True, default=fields.Datetime.now()) user_id = fields.Many2one('res.users', 'User', required=True, default=lambda self: self._uid) operation = fields.Char('Operation') object = fields.Char('Object') dataset = fields.Char('Data Set') partner = fields.Char('Partner', help='Person who executed the operation (e. g. Customer)') note = fields.Char('Notes') def _compute_name(self): self.name = _('EU-GDPR Logentry #%s') % self.id
[ "noreply@github.com" ]
noreply@github.com
1858a3d914607191dbfee1f4dbec29d465bc1d45
07d6366ff64b98896d7cda1df9e0fe955339d5ab
/__main__.py
60ffdd669ba0dc79f5c8c4e768b531c778589fe0
[]
no_license
lwxted/takemehome
0e2980194c28332979c5110ac6ad46550422cfd3
5da25cb4db76d4bd8ce341ee0cfcf39fb25ad214
refs/heads/master
2021-01-21T05:00:38.042011
2016-06-22T22:20:13
2016-06-22T22:20:13
40,530,828
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import importlib import sys from takemehome.util.color_print import cprint def main(process_name, process_args): cprint.p('Importing module {}...'.format(process_name)) process_module = importlib.import_module('takemehome.processes.{}'.format(process_name)) process_class = getattr(process_module, process_name) if process_class: try: process_class.main(*process_args) except Exception, e: print process_class.usage() if __name__ == '__main__': if len(sys.argv) < 2: print 'Usage: invocation_routine <process_name> <process_args>' exit() main(sys.argv[1], sys.argv[2:])
[ "tedli@dropbox.com" ]
tedli@dropbox.com
43ca51fd48fed5140fdc3d3cd9190c260124a9b0
7298cc9d339852fac5afc598c30ac60c3f752af8
/python/tictactoe.py
1ed8cc57bf4fb9ff09fb7e77227942b834992da0
[ "MIT" ]
permissive
benshanahan1/coderepo
c94d6ade7a29324877633cf0591d12c775bff57a
d2389a764fa8936f638e556779dabd8b8febe390
refs/heads/master
2020-12-30T23:59:45.403106
2018-03-05T15:52:53
2018-03-05T15:52:53
80,560,746
0
0
null
null
null
null
UTF-8
Python
false
false
4,880
py
#!/usr/bin/env python # Simple Two-Player / Computer AI TicTacToe Game in Python. # Code by Benjamin Shanahan, 7 July 2015. # # Note that there is currently no checking for a TIE-GAME condition. class TicTacToe(object): def __init__(self, p1_name, p2_name): # Define defaults for resetting the game when done self.board_default = [["1", "2", "3"], ["4", "5", "6"], ["7", "8", "9"]] self.last_move_p_number_default = 2 self.last_move_loc_default = None self.reset() self.p1 = Player(p1_name, "x", 1, False) self.p2 = Player(p2_name, "o", 2, False) def draw(self): for idx, row in enumerate(self.board): print(" %s | %s | %s " % tuple(row)) if idx < 2: dash = "-" * 3 plus = "+" print((dash + plus)*2 + dash) else: pass def move(self, p, loc): # Find the coordinates of given loc in board and fill that space in based on player (p) for r, row in enumerate(self.board): for c, val in enumerate(row): if (val is loc): if (val is not self.p1.token) and (val is not self.p2.token): self.board[r][c] = self._player_num_to_token(p) self.last_move_p_number = p self.last_move_loc = loc return True else: return False return False def check(self): all_p1 = [self.p1.token]*3 all_p2 = [self.p2.token]*3 # Check rows for row in self.board: if row == all_p1: return self.p1 elif row == all_p2: return self.p2 # Check columns for col in range(1,3): res = [self.board[0][col], self.board[1][col], self.board[2][col]]; if res == all_p1: return self.p1 elif res == all_p2: return self.p2 # Check diagonals diag1 = [self.board[0][0], self.board[1][1], self.board[2][2]]; diag2 = [self.board[2][0], self.board[1][1], self.board[0][2]]; if diag1 == all_p1: return self.p1 elif diag1 == all_p2: return self.p2 elif diag2 == all_p1: return self.p1 elif diag2 == all_p2: return self.p2 return False # no win yet def current_player(self): return self.p1 if self.last_move_p_number is self.p2.number else self.p2 def previous_player(self): return self.p2 if self.last_move_p_number is self.p2.number else self.p1 def reset(self): from copy import deepcopy # create unique instance of list (list() is insufficient for multidimensional lists) self.board = deepcopy(self.board_default) self.last_move_p_number = deepcopy(self.last_move_p_number_default) self.last_move_loc = deepcopy(self.last_move_loc_default) # Private methods def _player_num_to_token(self, p): return self.p1.token if p is self.p1.number else self.p2.token def _player_name_to_num(self, p): return self.p1.number if p is self.p1.name else self.p2.number class Player(object): def __init__(self, name, token, number, is_ai=False): self.name = name.lower().capitalize() self.token = token self.number = number self.is_ai = is_ai self.last_move_loc = None self.wins = 0 self.losses = 0 def __str__(self): return "Player %s has %d wins and %d losses." % (self.name, self.wins, self.losses) def __eq__(self, other): if isinstance(other, self.__class__): return self.name == other.name else: return False def __ne__(self, other): return not self.__eq__(other) def name(self): return self.name def set_last_move_loc(self, loc): self.last_move_loc = loc def win(self): self.wins = self.wins + 1 def lose(self): self.losses = self.losses + 1 class Engine(object): def __init__(self): self.isplaying = True self.intro() def intro(self): print("Welcome to TicTacToe!") p1_name = input("Player 1, please type your name: ") p2_name = input("Player 2, please type your name: ") self.game = TicTacToe(p1_name, p2_name) print("%s will be '%s' and %s will be '%s'." % (self.game.p1.name, self.game.p1.token, self.game.p2.name, self.game.p2.token)) def start_game(self): self._start_loop() def _start_loop(self): while self.isplaying: self.game.draw() choice = input("%s, Where do you want to move? " % self.game.current_player().name) if self.game.move(self.game.current_player().number, choice): if self.game.check(): # check if this player has won the game self.game.draw() self.game.previous_player().win() self.game.current_player().lose() print("%s wins!" % self.game.previous_player().name) again = input("Would you like to play again (y/n)? ") if again.lower() != "y": self.isplaying = False else: self.game.reset() # reset game without affecting player information else: print("Invalid move, please choose another.") print("%s won %d times and %s won %d times!" % (self.game.previous_player().name, self.game.previous_player().wins, self.game.current_player().name, self.game.current_player().wins)) print("Thanks for playing!") # Start Game Engine engine = Engine() engine.start_game()
[ "benshanahan1@gmail.com" ]
benshanahan1@gmail.com
27c4b2a9bc058d641cab0c1ac907d55c0eeae4a2
5172b86d1731faa79931bbde708127beca803307
/semantic/classifier/vectorizer.py
94f8b713b4593211428f413ffc7670eb30f7b784
[]
no_license
amunra94/personal_web_site
1a7fda68b6bd21b4d9e6b9fdf195995abe6e1572
1d3d9e1f5c48793dde045524b6dbfbbac02847aa
refs/heads/master
2023-03-15T16:01:09.966065
2021-03-01T19:44:02
2021-03-01T19:44:02
343,096,355
0
0
null
null
null
null
UTF-8
Python
false
false
749
py
from sklearn.feature_extraction.text import HashingVectorizer import re import os import pickle _curr_dir = os.path.dirname(__file__) STOP_WORDS = pickle.load(open(os.path.join(_curr_dir,'pkl_objects','stopwords.pckl'), 'rb')) def tokenizer(text): text = re.sub('<[^>]*>', '', text) emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower()) text = re.sub('[\W]+', ' ', text.lower()) + ' '.join(emoticons).replace('-', '') tokenized = [word for word in text.split() if word not in STOP_WORDS] return tokenized _vect = HashingVectorizer(decode_error='ignore', n_features=2**21, preprocessor=None, tokenizer=tokenizer)
[ "root@arudnitskiy.ru" ]
root@arudnitskiy.ru
1d626c9dbdb41c344f8870b691bab05f897edafa
5864e86954a221d52d4fa83a607c71bacf201c5a
/dogma/items/fittableDogmaItem.py
8e70cbc858bb571171c14d42eeafc1040058e7eb
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
3,769
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\packages\dogma\items\fittableDogmaItem.py from dogma.dogmaLogging import * from baseDogmaItem import BaseDogmaItem from ccpProfile import TimedFunction import weakref class FittableDogmaItem(BaseDogmaItem): def __init__(self, *args, **kwargs): self._location = None self.lastStopTime = None BaseDogmaItem.__init__(self, *args, **kwargs) @property def location(self): if self._location: return self._location() @location.setter def location(self, location): if location is None: self._location = None else: self._location = weakref.ref(location) @property def ownerID(self): if self.location: return self.location.ownerID @ownerID.setter def ownerID(self, ownerID): if self.location and self.location.ownerID != ownerID: self.dogmaLocation.LogError('Setting ownerID on a FittableDogmaItem to something that disagrees with its location!', self.location.ownerID, ownerID) @TimedFunction('FittableDogmaItem::Unload') def Unload(self): BaseDogmaItem.Unload(self) if self.location: try: locationFittedItems = self.location.fittedItems except AttributeError: return if self.itemID in locationFittedItems: del locationFittedItems[self.itemID] elif self.itemID in self.dogmaLocation.itemsMissingLocation: del self.dogmaLocation.itemsMissingLocation[self.itemID] def SetLastStopTime(self, lastStopTime): self.lastStopTime = lastStopTime def IsActive(self): for effectID in self.activeEffects: if effectID == const.effectOnline: continue effect = self.dogmaLocation.GetEffect(effectID) if effect.effectCategory in (const.dgmEffActivation, const.dgmEffTarget): return True return False @TimedFunction('FittableDogmaItem::SetLocation') def SetLocation(self, locationID, location, flagID): if location is None: self.dogmaLocation.LogError('FittableDogmaItem.SetLocation :: Location dogma item is None') return if not self.IsValidFittingLocation(location): self.dogmaLocation.LogError('FittableDogmaItem.SetLocation :: Invalid fitting location') return oldData = self.GetLocationInfo() self.location = location self.flagID = flagID location.RegisterFittedItem(self, flagID) return oldData def IsValidFittingLocation(self, location): return False def UnsetLocation(self, locationDogmaItem): locationDogmaItem.UnregisterFittedItem(self) def GetShipID(self): if self.location: return self.location.itemID def GetPilot(self): if self.location: return self.location.GetPilot() def GetOtherID(self): otherID = None if self.location: otherID = self.location.subLocations.get(self.flagID, None) if otherID is None: other = self.dogmaLocation.GetChargeNonDB(self.location.itemID, self.flagID) if other is not None: otherID = other.itemID return otherID def SerializeForPropagation(self): retVal = BaseDogmaItem.SerializeForPropagation(self) retVal.lastStopTime = self.lastStopTime return retVal def UnpackPropagationData(self, propData, charID, shipID): BaseDogmaItem.UnpackPropagationData(self, propData, charID, shipID) self.SetLastStopTime(propData.lastStopTime)
[ "le02005@163.com" ]
le02005@163.com
486e379a1a9bebb38a6243372da39082c59dbe52
c3b00e74b51d3b7c7a46a63b8bf2b1d1c98d5f70
/algorithms/fibonacci_sequence.py
a3913a30f4fdf52083c2c7b9767aeea11f59cc09
[]
no_license
ajanzadeh/python_interview
8057fe2fc9f4da7bc7f96a20a808c279b2fd9110
91194e540467261604f72eae99ad0cdaf487eb11
refs/heads/master
2022-09-16T00:32:06.354326
2020-06-04T22:16:27
2020-06-04T22:16:27
260,756,645
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
0, 1, 1, 2, 3, 5, 8, 13, 21, def sequence(a,b,n): arr = [] arr.append(a) arr.append(b) for i in range(0,n): c = a+b arr.append(c) a = b b = c c = 0 resutl = " ,".join(map(str,arr)) return resutl print(sequence(0,1,20))
[ "arash@zenops.co.uk" ]
arash@zenops.co.uk
7c7405d5b792cd6f20e89b0b56489b366c8baecf
ba730380c8406b234202a6a19a9e5f01f6b66d25
/django/crud2/articles/views.py
4a9f35242edeef84e1211c795529a801b810b62b
[]
no_license
ssabum/note
3b0fd891ab7053997c7978298635e599b42a7659
47354aa55a87813dab66f2ff7a930f5313bffe7a
refs/heads/master
2023-06-19T03:03:02.398976
2021-07-09T15:09:42
2021-07-09T15:09:42
331,743,760
0
0
null
null
null
null
UTF-8
Python
false
false
2,151
py
from django.shortcuts import render, redirect from .models import Article # Create your views here. # READ def index(request): # 모든 게시글 조회 # articles = Article.objects.all()[::-1] # 파이썬 언어로 해결 articles = Article.objects.order_by('-updated_at') # DB 단에서 해결, 수정순으로 정렬 context = { 'articles': articles, } return render(request, 'articles/index.html', context) # CREATE def new(request): return render(request, 'articles/new.html') # CREATE def create(request): # POST 요청으로 들어온 사용자 데이터를 추출 title = request.POST.get('title') content = request.POST.get('content') # Article 모델 클래스를 기반으로 인스턴스를 생성 article = Article(title=title, content=content) # DB에 저장 article.save() # return render(request, 'articles/index.html') # return redirect('articles:index') return redirect('articles:detail', article.pk) # READ def detail(request, pk): article = Article.objects.get(pk=pk) context = { 'article': article, } return render(request, 'articles/detail.html', context) # DELETE # 발동조건: /articles/index/게시글번호/delete # 띠라서 POST만 삭제되게 만들어야 한다 def delete(request, pk): # 삭제할 데이터 불러오기 article = Article.objects.get(pk=pk) if request.method == 'POST': # 삭제 article.delete() # 메인페이지로 이동 return redirect('articles:index') else: return redirect('articles:detail', article.pk) # UPDATE def edit(request, pk): article = Article.objects.get(pk=pk) context = { 'article':article, } return render(request, 'articles/edit.html', context) def update(request, pk): # 수정할 게시글 불러오기 article = Article.objects.get(pk=pk) # 사용자가 건네준 데이터 추출 article.title = request.POST.get('title') article.content = request.POST.get('content') # DB에 저장 article.save() return redirect('articles:detail', article.pk)
[ "qqq960909@likelion.org" ]
qqq960909@likelion.org
1977596321f6c2fbccea688545e4eed977f15378
85a1c8f96b602d8b2646e315524231d39b643045
/hello_world.py
1224e4520b4eda8478b56a97bc4556ff8780ab0d
[]
no_license
ics3ur-1-2020/ICS3U-Unit-1-03-Python
eb05c72b667a464dfdc1685b95910360cef2427e
06390c9d7591b42adfc579934d3ecc4a0afc2a42
refs/heads/main
2023-01-23T09:56:27.253541
2020-11-20T16:48:05
2020-11-20T16:48:05
314,608,865
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
#!/usr/bin/env python3 # Created by: Mr. Coxall # Created on: June 2019 # This is the "Hello, World!" program, but with nice style def main(): # this function prints to console print("Hello, World!") if __name__ == "__main__": main()
[ "ubuntu@ip-172-31-55-204.ec2.internal" ]
ubuntu@ip-172-31-55-204.ec2.internal
ed74b4fbe497a9c5a4850fc2f58b830b5aef33aa
87f6f561408c5fb9dd93a4e95b39336a8fff843d
/kakuro.py
bd57b5ada1dd0bbc94e2365e58c3002d09f63929
[]
no_license
prolomova/kakuro
ee6d07b2e188df6fdd335a39e34fd51be0f2e9c1
a74c4a5b4d8353bffe7f8207def7f9818d5e2f95
refs/heads/master
2020-04-07T03:28:52.904556
2018-11-17T19:31:40
2018-11-17T19:31:40
158,016,940
0
0
null
null
null
null
UTF-8
Python
false
false
7,254
py
#!/usr/bin/env python3 """ Реализация решателя головоломки какуро """ import sys import re import argparse import slover def main(args): ''' Главная функция ''' parser = argparse.ArgumentParser() parser.add_argument('-c', '--count', required=False, type=int, help='This argument is a number of answers', default=1) parser.add_argument('-f', '--filename', required=False, type=str, help='This argument is a file name, without ' 'it you have to input data') parser.add_argument('-g', '--groups', nargs='+', required=False, help='This argument are the coordinates of ' 'cells whose values ​​are the same, ' 'groups must be separated by "/", x and y ' 'values must be separated by ",", ' 'coordinate values must be separated by spaces') namespace = parser.parse_args(args) groups = [] if namespace.groups is not None: groups.append([]) cell = 0 is_splited = False for item in namespace.groups: if item == ',': continue elif is_splited: groups[-1].append((cell, int(item))) is_splited = False elif re.search(re.compile(r'\d+,\d+'), item): coord = item.split(',') groups[-1].append((int(coord[0]), int(coord[1]))) elif re.search(re.compile(r'\d+,'), item): cell = int(item[:-1]) is_splited = True elif re.search(re.compile(r'\d+'), item): cell = int(item) is_splited = True elif item == '/': groups.append([]) count = namespace.count strings = read_data(namespace.filename) try: board = Board(strings) except FormatException as err: print(err, file=sys.stderr) sys.exit(1) ans = list(map(str, slover.start(board, count, groups))) if ans: for answer in ans: print(answer) print() sys.exit(0) sys.exit(1) def read_data(fname): """ Функция, которая считывает входные данные """ strings = [] open_file = None if fname is not None: open_file = open(fname) else: open_file = sys.stdin with open_file as file: while True: line = file.readline() if not line.rstrip(): break else: if line.strip() != "": strings.append(line.strip()) return strings class FormatException(Exception): """ Класс ошибки неправильного формата входных данных """ def __init__(self, msg, line): super(FormatException, self).__init__(msg, line) self.type = msg self.line = line def __str__(self): return "{}: line {}".format(self.type, self.line) class Cell: """ Класс, описывающий клетку поля """ def __init__(self, sum_vertical, sum_horizontal, cur_sum_vertical, cur_sum_horizontal): self.cur_sum_horizontal = cur_sum_horizontal self.sum_horizontal = sum_horizontal self.sum_vertical = sum_vertical self.cur_sum_vertical = cur_sum_vertical self.value = 0 def change_value(self, value, sum_horizontal, sum_vertical): """ Функция, изменяющая значение клетки """ self.cur_sum_horizontal = sum_horizontal + value - self.value self.cur_sum_vertical = sum_vertical + value - self.value self.value = value def __str__(self): return str(self.value) class Board: """ Класс, реализующий игровое поле """ CELL_FORMAT = re.compile(r'(\d+|X)/(\d+|X)') def __init__(self, file): self.board = self.read(self.CELL_FORMAT, file) @staticmethod def read(cell_format, f_data): """ Функция, считывающая данные в формат поля """ def check_format(sum_board, is_vertical): for i in range(height): curr_sum = -1 count = 0 for j in range(width): cell = sum_board[i][j] if is_vertical: cell = sum_board[j][i] if cell != '0': if curr_sum > (9 + 10 - count) * count / 2: raise FormatException( "Too large value of the sum", str(i + 1)) if cell != 'X': curr_sum = int(cell) if is_vertical: sum_board[j][i] = 'X' else: sum_board[i][j] = 'X' elif cell == '0': count += 1 if curr_sum <= 0: raise FormatException( "Insufficient value of the sum", str(i + 1)) if is_vertical: sum_board[j][i] = curr_sum else: sum_board[i][j] = curr_sum height = 0 width = len(f_data[0].split(',')) vertical_sum_board = [] horizontal_sum_board = [] for line in f_data: line_data = [i.strip() for i in line.split(',') if (i.strip() != '')] horizontal_sum_board.append([]) vertical_sum_board.append([]) for cell in line_data: if cell in ('', '\n'): continue found_cell = re.search(cell_format, cell) if found_cell is not None: horizontal_sum_board[height].append(found_cell.group(1)) vertical_sum_board[height].append(found_cell.group(2)) elif cell in ('X', '0'): horizontal_sum_board[height].append(cell) vertical_sum_board[height].append(cell) else: raise FormatException("Wrong char", height + 1) height += 1 check_format(horizontal_sum_board, False) check_format(vertical_sum_board, True) result = [] for i in range(height): result.append([]) for j in range(width): if vertical_sum_board[i][j] == 'X': result[i].append('X') else: result[i].append(Cell(vertical_sum_board[i][j], horizontal_sum_board[i][j], 0, 0)) return result def __str__(self): lines = [' '.join(map(str, self.board[i])) for i in range(len(self.board))] return '\n'.join(lines) if __name__ == '__main__': main(sys.argv[1:])
[ "prolomova2012@yandex.ru" ]
prolomova2012@yandex.ru
8bf8ae5a5303dec52b8c6726f0af144bdcc6f9a9
679de86de84c04d11627a306b2199cf9f8114b65
/mnist/start.py
823e4fe89602b424ccb4f3af8a53e2b07b03d2a5
[]
no_license
a2lin/dnn
e0a5e52012b8cefb927b62f085c8930137719cf3
74ba7dc28d4a84bf3a48ca1dc596c2390e0c8b5c
refs/heads/master
2021-01-06T20:40:04.003789
2017-08-07T05:38:22
2017-08-07T05:38:22
99,540,732
1
0
null
null
null
null
UTF-8
Python
false
false
122
py
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
[ "lin.alexander.2011@gmail.com" ]
lin.alexander.2011@gmail.com