hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
2b3e31697255a8a75c6e99f73eedb9d930e36533
522
py
Python
task003.py
lessunc/python-guanabara
5c4c41eb46cc1742fdf36e3dc3c830a189344fad
[ "MIT" ]
32
2018-12-09T00:44:20.000Z
2022-03-11T19:28:53.000Z
task003.py
lessunc/python-guanabara
5c4c41eb46cc1742fdf36e3dc3c830a189344fad
[ "MIT" ]
null
null
null
task003.py
lessunc/python-guanabara
5c4c41eb46cc1742fdf36e3dc3c830a189344fad
[ "MIT" ]
4
2019-01-21T08:04:29.000Z
2020-06-01T14:27:15.000Z
#coding: utf-8 #------------------------------------------------------------------- # Um programa que recebe dois valores e retorna a soma entre eles. #------------------------------------------------------------------- # Somando no Python - Exercício #003 #------------------------------------------------------------------- n1 = int(input('Digite um valor: ')) n2 = int(input('Digite outro valor: ')) soma = n1 + n2 print('--' * 22) print('A soma entre o valor {} e {} é {}.'.format(n1, n2, soma)) print('--' * 22)
32.625
68
0.377395
13f68dd0fe0df8ec273db94cd2007f608eeaec88
18,859
py
Python
SMPyBandits/main.py
balbok0/SMPyBandits
c8ff765687989e0c20ab42c2e2e1d8440923225b
[ "MIT" ]
309
2018-03-03T22:07:59.000Z
2022-03-26T08:15:58.000Z
SMPyBandits/main.py
balbok0/SMPyBandits
c8ff765687989e0c20ab42c2e2e1d8440923225b
[ "MIT" ]
125
2018-02-27T22:54:03.000Z
2021-11-05T10:50:15.000Z
SMPyBandits/main.py
balbok0/SMPyBandits
c8ff765687989e0c20ab42c2e2e1d8440923225b
[ "MIT" ]
60
2018-04-30T20:54:24.000Z
2022-02-21T22:41:46.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Script to load the config, run the simulations, and plot them. """ from __future__ import division, print_function # Python 2 compatibility __author__ = "Lilian Besson" __version__ = "0.9" # Generic imports import sys from os import mkdir, getenv import os.path import importlib # Backup evaluation object import pickle # Local imports configuration_module = None try: from save_configuration_for_reproducibility import save_configuration_for_reproducibility from Environment import Evaluator, notify, start_tracemalloc, display_top_tracemalloc # Import a configuration file for arg in sys.argv: if "configuration" in arg: filename = arg.replace('.py', '') dirname, module_name = os.path.dirname(filename), os.path.basename(filename) sys.path.insert(0, dirname) print("Reading argument from command line, importing the configuration module from arg = {} (module = {} in directory {})...".format(arg, module_name, dirname)) configuration_module = importlib.import_module(module_name) if configuration_module is None: import configuration as configuration_module except ImportError: from SMPyBandits.save_configuration_for_reproducibility import save_configuration_for_reproducibility from SMPyBandits.Environment import Evaluator, notify, start_tracemalloc, display_top_tracemalloc for arg in sys.argv: if "configuration" in arg: filename = arg.replace('.py', '') dirname, module_name = os.path.dirname(filename), os.path.basename(filename) sys.path.insert(0, dirname) print("Reading argument from command line, importing the configuration module from arg = {} (module = {} in directory {})...".format(arg, module_name, dirname)) configuration_module = importlib.import_module('.{}'.format(module_name), package='SMPyBandits') if configuration_module is None: import SMPyBandits.configuration as configuration_module # Get the configuration dictionnary configuration = configuration_module.configuration # For instance, call SLEEP=12h to delay the simulation for 12hours if getenv('SLEEP', 'False') != 'False': from subprocess import call SLEEP = str(getenv('SLEEP')) print("\nSleeping for", SLEEP, "seconds before starting the simulation...") # DEBUG call(["sleep", SLEEP]) # more general print("Done Sleeping for", SLEEP, "seconds... Now I can start the simulation...") USE_PICKLE = False #: Should we save the Evaluator object to a .pickle file at the end of the simulation? USE_HD5 = True #: Should we save the data to a .hdf5 file at the end of the simulation? # Parameters for the plots (where to save them) and what to draw PLOT_DIR = getenv('PLOT_DIR', 'plots') #: Directory for the plots semilogx = False #: Plot in semilogx by default? semilogy = False #: Plot in semilogy by default? loglog = False #: Plot in loglog by default? meanReward = True #: Plot mean regret ? normalizedRegret = True #: Plot instantaneous regret? plotSTD = True #: Plot regret with a STD? plotSTD = False #: Plot regret with a STD? plotMaxMin = True #: Plot +- max - min (amplitude) for regret. plotMaxMin = False #: Plot +- max - min (amplitude) for regret. saveallfigs = False #: Save all the figures ? saveallfigs = True # XXX dont keep it like this when experimenting # Parameters for the Evaluator object finalRanksOnAverage = True #: Use an average instead of the last value for the final ranking of the tested policies averageOn = 1e-2 #: Average the final rank on the 1% last time steps #: Whether to do the plots or not do_plots = True if getenv('NOPLOTS', 'False') == 'True' and __name__ == '__main__': print("====> TURNING NOPLOTS MODE ON <=====") do_plots = False #: Whether to show plots, one by one, or not at all and just save them interactive = True # XXX dont keep it like this interactive = False #: Debug the memory consumption? Using :func:`Environment.memory_consumption.display_top_tracemalloc`. debug_memory = False if getenv('DEBUG', 'False') == 'True' and __name__ == '__main__': print("====> TURNING DEBUG MODE ON <=====") saveallfigs, interactive = False, True if getenv('DEBUGMEMORY', 'False') == 'True' and __name__ == '__main__': print("====> TURNING DEBUGMEMORY MODE ON <=====") debug_memory = True if getenv('SAVEALL', 'False') == 'True' and __name__ == '__main__': print("====> SAVING FIGURES <=====") saveallfigs = True import matplotlib as mpl FIGSIZE = (19.80, 10.80) #: Figure size, in inches! # FIGSIZE = (16, 9) #: Figure size, in inches! mpl.rcParams['figure.figsize'] = FIGSIZE if getenv('XKCD', 'False') == 'True' and interactive and not saveallfigs: import matplotlib.pyplot as plt plt.xkcd() # XXX turn on XKCD-like style ?! cf. http://matplotlib.org/xkcd/ for more details # FIXED try to switch to a non interactive backend when running without DEBUG=True # https://matplotlib.org/api/matplotlib_configuration_api.html?highlight=matplotlib%20use#matplotlib.use if not interactive: import matplotlib print("Warning: Non interactive simulations, switching from '{}' backend to 'agg'...".format(matplotlib.get_backend())) # DEBUG matplotlib.use("agg", warn=True, force=True) if interactive: import seaborn as sns sns.set(context="talk", style="whitegrid", palette="hls", font="sans-serif", font_scale=0.65) import matplotlib as mpl # Configure size for axes and x and y labels mpl.rcParams['axes.labelsize'] = "x-small" mpl.rcParams['xtick.labelsize'] = "xx-small" mpl.rcParams['ytick.labelsize'] = "xx-small" mpl.rcParams['figure.titlesize'] = "x-small" if __name__ == '__main__': # Update configuration configuration['showplot'] = interactive if os.path.isdir(PLOT_DIR): print("{}/ is already a directory here...".format(PLOT_DIR)) elif os.path.isfile(PLOT_DIR): raise ValueError("[ERROR] {} is a file, cannot use it as a directory !".format(PLOT_DIR)) else: mkdir(PLOT_DIR) evaluation = Evaluator(configuration, finalRanksOnAverage=finalRanksOnAverage, averageOn=averageOn) # Start the evaluation and then print final ranking and plot, for each environment N = len(evaluation.envs) for envId, env in enumerate(evaluation.envs): # # Plot histogram for rewards for that env # if do_plots and interactive: # env.plotHistogram(evaluation.horizon * evaluation.repetitions) # (almost) unique hash from the configuration hashvalue = abs(hash((tuple(configuration.keys()), tuple([(len(k) if isinstance(k, (dict, tuple, list)) else k) for k in configuration.values()])))) if debug_memory: start_tracemalloc() # DEBUG # --- Also plotting the history of means if interactive: evaluation.plotHistoryOfMeans(envId) # XXX To plot without saving # Evaluate just that env evaluation.startOneEnv(envId, env) # Display the final regrets and rankings for that env evaluation.printLastRegrets(envId) evaluation.printFinalRanking(envId, moreAccurate=True) evaluation.printRunningTimes(envId) evaluation.printMemoryConsumption(envId) evaluation.printNumberOfCPDetections(envId) if debug_memory: display_top_tracemalloc() # DEBUG # Sub folder with a useful name subfolder = "SP__K{}_T{}_N{}__{}_algos".format(env.nbArms, configuration['horizon'], configuration['repetitions'], len(configuration['policies'])) plot_dir = os.path.join(PLOT_DIR, subfolder) # Get the name of the output file imagename = "main____env{}-{}_{}".format(envId + 1, N, hashvalue) mainfig = os.path.join(plot_dir, imagename) savefig = mainfig picklename = mainfig + '.pickle' h5pyname = mainfig + '.hdf5' if saveallfigs: # Create the sub folder if os.path.isdir(plot_dir): print("{} is already a directory here...".format(plot_dir)) elif os.path.isfile(plot_dir): raise ValueError("[ERROR] {} is a file, cannot use it as a directory !".format(plot_dir)) else: mkdir(plot_dir) # --- DONE Copy (save) the current full configuration file to this folder as configuration__hashvalue.py # --- DONE Save just the configuration to a minimalist python file # TODO do the same on other main_*.py scripts save_configuration_for_reproducibility( configuration=configuration, configuration_module=configuration_module, plot_dir=plot_dir, hashvalue="env{}-{}_{}".format(envId + 1, N, hashvalue), main_name="main.py", ) # --- Save it to a pickle file if USE_PICKLE: with open(picklename, 'wb') as picklefile: print("Saving the Evaluator 'evaluation' objet to", picklename, "...") pickle.dump(evaluation, picklefile, pickle.HIGHEST_PROTOCOL) # --- Save it to a HD5 file if USE_HD5: evaluation.saveondisk(h5pyname) if not do_plots: continue # XXX don't use break, it exit the loop on different environments # --- Also plotting the history of means if saveallfigs: savefig = mainfig.replace('main', 'main_HistoryOfMeans') print(" - Plotting the history of means, and saving the plot to {} ...".format(savefig)) evaluation.plotHistoryOfMeans(envId, savefig=savefig) # XXX To save the figure else: evaluation.plotHistoryOfMeans(envId) # XXX To plot without saving # --- Also plotting the boxplot of last regrets if saveallfigs: savefig = mainfig.replace('main', 'main_BoxPlotRegret') evaluation.plotLastRegrets(envId, boxplot=True, savefig=savefig) else: evaluation.plotLastRegrets(envId, boxplot=True) # XXX To plot without saving # --- Also plotting the running times if saveallfigs: savefig = mainfig.replace('main', 'main_RunningTimes') print(" - Plotting the running times, and saving the plot to {} ...".format(savefig)) evaluation.plotRunningTimes(envId, savefig=savefig) # XXX To save the figure else: evaluation.plotRunningTimes(envId) # XXX To plot without saving # --- Also plotting the memory consumption if saveallfigs: savefig = mainfig.replace('main', 'main_MemoryConsumption') print(" - Plotting the memory consumption, and saving the plot to {} ...".format(savefig)) evaluation.plotMemoryConsumption(envId, savefig=savefig) # XXX To save the figure else: evaluation.plotMemoryConsumption(envId) # XXX To plot without saving # --- Also plotting the number of detected change-points if saveallfigs: savefig = mainfig.replace('main', 'main_NumberOfCPDetections') print(" - Plotting the memory consumption, and saving the plot to {} ...".format(savefig)) evaluation.plotNumberOfCPDetections(envId, savefig=savefig) # XXX To save the figure else: evaluation.plotNumberOfCPDetections(envId) # XXX To plot without saving if meanReward: if saveallfigs: savefig = mainfig.replace('main', 'main_MeanRewards') print(" - Plotting the mean rewards, and saving the plot to {} ...".format(savefig)) evaluation.plotRegrets(envId, savefig=savefig, semilogx=semilogx, semilogy=semilogy, loglog=loglog, meanReward=True) # XXX To save the figure else: evaluation.plotRegrets(envId, semilogx=semilogx, semilogy=semilogy, loglog=loglog, meanReward=True) # XXX To plot without saving # --- Also plotting the regret if saveallfigs: print(" - Plotting the cumulative rewards, and saving the plot to {} ...".format(savefig)) savefig = mainfig evaluation.plotRegrets(envId, savefig=savefig, moreAccurate=True) # XXX To save the figure savefig = mainfig.replace('main', 'main_LessAccurate') evaluation.plotRegrets(envId, savefig=savefig, moreAccurate=False) # XXX To save the figure savefig = mainfig.replace('main', 'main_BestArmPulls') print(" - Plotting the probability of picking the best arm, and saving the plot to {} ...".format(savefig)) # --- Also plotting the probability of picking the best arm evaluation.plotBestArmPulls(envId, savefig=savefig) # XXX To save the figure # if configuration['horizon'] >= 1000: # savefig = mainfig.replace('main', 'main_semilogx') # evaluation.plotRegrets(envId, savefig=savefig, semilogx=True) # XXX To save the figure savefig = mainfig.replace('main', 'main_semilogy') evaluation.plotRegrets(envId, savefig=savefig, semilogy=True) # XXX To save the figure if configuration['horizon'] >= 1000: savefig = mainfig.replace('main', 'main_loglog') evaluation.plotRegrets(envId, savefig=savefig, loglog=True) # XXX To save the figure if configuration['repetitions'] > 1: if plotSTD: savefig = savefig.replace('main', 'main_STD') evaluation.plotRegrets(envId, savefig=savefig, semilogx=semilogx, semilogy=semilogy, loglog=loglog, plotSTD=True) # XXX To save the figure if plotMaxMin: savefig = savefig.replace('main', 'main_MaxMin') evaluation.plotRegrets(envId, savefig=savefig, semilogx=semilogx, semilogy=semilogy, loglog=loglog, plotMaxMin=True) # XXX To save the figure else: evaluation.plotRegrets(envId, moreAccurate=True) # XXX To plot without saving evaluation.plotRegrets(envId, moreAccurate=False) # XXX To plot without saving # --- Also plotting the probability of picking the best arm evaluation.plotBestArmPulls(envId) # XXX To plot without saving # if configuration['horizon'] >= 1000: # evaluation.plotRegrets(envId, semilogx=True) # XXX To plot without saving evaluation.plotRegrets(envId, semilogy=True) # XXX To plot without saving if configuration['horizon'] >= 1000: evaluation.plotRegrets(envId, loglog=True) if configuration['repetitions'] > 1: if plotSTD: evaluation.plotRegrets(envId, semilogx=semilogx, semilogy=semilogy, loglog=loglog, plotSTD=True) # XXX To plot without saving if plotMaxMin: evaluation.plotRegrets(envId, semilogx=semilogx, semilogy=semilogy, loglog=loglog, plotMaxMin=True) # XXX To plot without saving if normalizedRegret: if saveallfigs: savefig = mainfig.replace('main', 'main_Normalized') print(" - Plotting the mean rewards, and saving the plot to {} ...".format(savefig)) evaluation.plotRegrets(envId, savefig=savefig, semilogx=semilogx, semilogy=semilogy, loglog=loglog, normalizedRegret=True) # XXX To save the figure if configuration['repetitions'] > 1: if plotSTD: savefig = savefig.replace('main', 'main_STD') evaluation.plotRegrets(envId, savefig=savefig, semilogx=semilogx, semilogy=semilogy, loglog=loglog, normalizedRegret=True, plotSTD=True) # XXX To save the figure if plotMaxMin: savefig = savefig.replace('main', 'main_MaxMin') evaluation.plotRegrets(envId, savefig=savefig, semilogx=semilogx, semilogy=semilogy, loglog=loglog, normalizedRegret=True, plotMaxMin=True) # XXX To save the figure else: evaluation.plotRegrets(envId, semilogx=semilogx, semilogy=semilogy, loglog=loglog, normalizedRegret=True) # XXX To plot without saving if configuration['repetitions'] > 1: if plotSTD: evaluation.plotRegrets(envId, semilogx=semilogx, semilogy=semilogy, loglog=loglog, normalizedRegret=True, plotSTD=True) # XXX To plot without saving if plotMaxMin: evaluation.plotRegrets(envId, semilogx=semilogx, semilogy=semilogy, loglog=loglog, normalizedRegret=True, plotMaxMin=True) # XXX To plot without saving # --- Also plotting the histograms of regrets if saveallfigs: savefig = mainfig.replace('main', 'main_HistogramsRegret') evaluation.plotLastRegrets(envId, subplots=False, savefig=savefig) print(" - Plotting the histograms of regrets, and saving the plot to {} ...".format(savefig)) # for sharex, sharey in product([True, False], repeat=2): # XXX 3 out of 4 were UGLY! for sharex, sharey in [(True, False)]: savefig = mainfig.replace('main', 'main_HistogramsRegret{}{}'.format( "_shareX" if sharex else "", "_shareY" if sharey else "", )) print(" and saving the plot to {} ...".format(savefig)) evaluation.plotLastRegrets(envId, savefig=savefig, sharex=sharex, sharey=sharey) # XXX To save the figure print(" - Plotting the histograms of regrets for each algorithm separately, and saving the plots ...") savefig = mainfig.replace('main', 'main_HistogramsRegret') print(" and saving the plot to {} ...".format(savefig)) evaluation.plotLastRegrets(envId, all_on_separate_figures=True, savefig=savefig) # XXX To save the figure else: evaluation.plotLastRegrets(envId, subplots=False) # XXX To plot without saving # for sharex, sharey in product([True, False], repeat=2): # XXX 3 out of 4 were UGLY! for sharex, sharey in [(True, False)]: evaluation.plotLastRegrets(envId, sharex=sharex, sharey=sharey) # XXX To plot without saving # evaluation.plotLastRegrets(envId, all_on_separate_figures=True) # XXX To plot without saving if saveallfigs: print("\n\n==> To see the figures, do :\neog", os.path.join(plot_dir, "main*{}.png".format(hashvalue))) # DEBUG # Done print("Done for simulations main.py ...") notify("Done for simulations main.py ...")
53.424929
189
0.651678
c8f41bcb84c03c892e260b0958c2977b8768ccad
4,193
py
Python
paradrop/daemon/paradrop/lib/misc/procmon.py
lhartung/paradrop-test
22a491bf3198bf61bcabaedfaecde5b9be97e76f
[ "Apache-2.0" ]
1
2018-03-22T13:04:19.000Z
2018-03-22T13:04:19.000Z
paradrop/daemon/paradrop/lib/misc/procmon.py
VegetableChook/Paradrop
a38e1773877d5b136c3b626edd8c033a12b43e56
[ "Apache-2.0" ]
7
2021-03-18T20:54:50.000Z
2022-03-11T23:27:40.000Z
paradrop/daemon/paradrop/lib/misc/procmon.py
lhartung/paradrop-test
22a491bf3198bf61bcabaedfaecde5b9be97e76f
[ "Apache-2.0" ]
null
null
null
""" The ProcessMonitor class ensures that a service is running and that its pid file is consistent. This addresses an issue we have had with Docker on Ubuntu Snappy, where its pid file sometimes persists and prevents the service from starting. """ import glob import os import subprocess import time import psutil class ProcessMonitor(object): # Specify allowed corrective actions, which we can change when running # locally to disable rebooting, for example. # # TODO: Implement a more general module for checking system health and # applying corrective action. allowedActions = set(["restart", "reboot"]) def __init__(self, service, cmdstring=None, pidfile=None, action="restart"): """ service: service name (used to restart it). cmdstring: string to look for in running command name (e.g. "docker") pidfile: None or path to look for pid file(s). Bash-style globbing is supported, e.g. "/var/snap/docker/*/run/docker.pid". action: "restart" the service or "reboot" the machine """ self.service = service self.action = action if cmdstring is not None: self.cmdstring = cmdstring else: self.cmdstring = service if pidfile is not None: self.pidfiles = [ pidfile ] else: self.pidfiles = [ "/var/snap/{service}/current/run/{service}.pid".format(service=service)] def check(self): """ Check that the service is running and consistent with pid file(s). Returns True or False. """ # Set of pids (strings) where the command string matches what we are # looking for. detected_pids = set() # Set of pids (strings) that are both running processes and found in # pid files. consistent_pids = set() # Search for running processes that match our command string. for proc in psutil.process_iter(): try: if self.cmdstring in proc.name(): detected_pids.add(str(proc.pid)) # We could also get psutil.ZombieProcess or # psutil.AccessDenied. We want those to be logged. except psutil.NoSuchProcess: pass # Search for pid file(s) and check consistency. for pidfile in self.pidfiles: for path in glob.iglob(pidfile): with open(path, 'r') as source: pid = source.read().strip() if pid in detected_pids: consistent_pids.add(pid) else: # Delete the stale pid file. os.remove(path) return len(consistent_pids) > 0 def restart(self): """ Restart the service. """ if self.action == "restart": cmd = ["snappy", "service", self.service, "restart"] else: cmd = ["shutdown", "-r", "now"] if self.action in ProcessMonitor.allowedActions: print("Running \"{}\" to fix {}".format(" ".join(cmd), self.service)) return subprocess.call(cmd) else: print("Warning: would run \"{}\" to fix {}, but not allowed.".format( " ".join(cmd), self.service)) def ensureReady(self, delay=5, tries=3): """ Look through checking and restarting the service until it is ready or the maximum number of tries has been reached. delay: time delay (seconds) between retries. tries: maximum number of restart-wait-check cycles. """ ready = self.check() if ready: return True for t in range(tries): time.sleep(delay) ready = self.check() if ready: return True else: self.restart() time.sleep(delay) return self.check() dockerMonitor = ProcessMonitor("docker", action="reboot") containerdMonitor = ProcessMonitor("docker-containerd", pidfile="/var/snap/docker/current/run/docker/libcontainerd/docker-containerd.pid", action="reboot")
32.253846
90
0.584307
1957f5e26bdf58278258a8b7f2912801d0fefd20
2,204
py
Python
pytests/tuqquery/tuq_queryworkbench.py
pavithra-mahamani/testrunner
d204491caa23f1fbe90505646534ed7810d96289
[ "Apache-2.0" ]
null
null
null
pytests/tuqquery/tuq_queryworkbench.py
pavithra-mahamani/testrunner
d204491caa23f1fbe90505646534ed7810d96289
[ "Apache-2.0" ]
null
null
null
pytests/tuqquery/tuq_queryworkbench.py
pavithra-mahamani/testrunner
d204491caa23f1fbe90505646534ed7810d96289
[ "Apache-2.0" ]
1
2020-07-24T07:15:59.000Z
2020-07-24T07:15:59.000Z
import time from TestInput import TestInputSingleton from basetestcase import BaseTestCase from couchbase_helper.documentgenerator import BlobGenerator from membase.api.rest_client import RestConnection class QueryWorkbenchTests(BaseTestCase): n1ql_port =8093 _input = TestInputSingleton.input num_items = _input.param("items", 100) _value_size = _input.param("value_size", 256) gen_create = BlobGenerator('loadOne', 'loadOne', _value_size, end=num_items) #bucket and ram quota buckets_ram = { "CUSTOMER": 100, "DISTRICT": 100, "HISTORY": 100, "ITEM": 100, "NEW_ORDER": 100, "ORDERS": 100, "ORDER_LINE": 100} #"default:": 100} def setUp(self): super(QueryWorkbenchTests, self).setUp() server = self.master if self.input.tuq_client and "client" in self.input.tuq_client: server = self.tuq_client self.rest = RestConnection(server) #self.rest.delete_bucket("default") time.sleep(20) # drop and recreate buckets for i, bucket_name in enumerate(self.buckets_ram.keys()): self.rest.create_bucket(bucket=bucket_name, ramQuotaMB=int(self.buckets_ram[bucket_name]), replicaNumber=0, proxyPort=11218+i) self.log.info(self.servers[0]) #bucket = self.src_cluster.get_bucket_by_name(bucket_name) time.sleep(20) #self.rest.create_bucket(bucket="default", #ramQuotaMB=int(self.buckets_ram["default"]), #replicaNumber=0, #proxyPort=11218) self._load_all_buckets(self, self.servers[0], self.gen_create, "create", 0) #time.sleep(20) def tearDown(self): super(QueryWorkbenchTests, self).tearDown() def test_describe(self): for bucket_name in self.rest.get_buckets(): query = "infer %s" % bucket_name self.log.info(query) result = self.rest.query_tool(query, self.n1ql_port) self.log.info(result)
38.666667
83
0.598457
fb7b33920348c9d6df96f724df004fb8546536df
3,490
py
Python
Algorithms/problem28/main28.py
lrussell21/ICPC_Template_Code
0aa5f202c17e2fd8101821685c9ce459a15e2f96
[ "MIT" ]
null
null
null
Algorithms/problem28/main28.py
lrussell21/ICPC_Template_Code
0aa5f202c17e2fd8101821685c9ce459a15e2f96
[ "MIT" ]
null
null
null
Algorithms/problem28/main28.py
lrussell21/ICPC_Template_Code
0aa5f202c17e2fd8101821685c9ce459a15e2f96
[ "MIT" ]
null
null
null
import os from collections import defaultdict # Used Tarjan's algorithm mentioned in class. # Got it from here https://www.geeksforgeeks.org/tarjan-algorithm-find-strongly-connected-components/ class Graph: def __init__(self,vertices): #No. of vertices self.V= vertices # default dictionary to store graph self.graph = defaultdict(list) self.Time = 0 self.outputnums = [] self.scc = 0 # function to add an edge to graph def addEdge(self,u,v): self.graph[u].append(v) def tarjansUtil(self,u, low, disc, stackMember, st): # Initialize discovery time and low value disc[u] = self.Time low[u] = self.Time self.Time += 1 stackMember[u] = True st.append(u) # Go through all vertices adjacent to this for v in self.graph[u]: # If v is not visited yet, then recur for it if disc[v] == -1 : self.tarjansUtil(v, low, disc, stackMember, st) # Check if the subtree rooted with v has a connection to # one of the ancestors of u # Case 1 (per above discussion on Disc and Low value) low[u] = min(low[u], low[v]) elif stackMember[v] == True: '''Update low value of 'u' only if 'v' is still in stack (i.e. it's a back edge, not cross edge). Case 2 (per above discussion on Disc and Low value) ''' low[u] = min(low[u], disc[v]) outputNums = [] # head node found, pop the stack and print an SCC w = -1 #To store stack extracted vertices if low[u] == disc[u]: while w != u: w = st.pop() self.outputnums.append(w) stackMember[w] = False self.scc += 1 def tarjans(self): # Mark all the vertices as not visited # and Initialize parent and visited, # and ap(articulation point) arrays disc = [-1] * (self.V + 1) low = [-1] * (self.V + 1) stackMember = [False] * (self.V + 1) st =[] # Call the recursive helper function # to find articulation points # in DFS tree rooted with vertex 'i' for i in range(self.V): if disc[i] == -1: self.tarjansUtil(i, low, disc, stackMember, st) def main(): filename = "/input.txt" dir_path = os.path.dirname(__file__) f = open(str(dir_path) + filename) numInput = f.readlines() nodes = 0 listOfArrays = [] firstLineSkip = True for x in numInput: if firstLineSkip: nodes = x.strip().split() nodes = int(nodes[0]) print(nodes) firstLineSkip = False continue listOfArrays.append(list(map(int,x.strip().split()))) print(listOfArrays) g = Graph(nodes) for edge in listOfArrays: g.addEdge(edge[0], edge[1]) g.tarjans() print(g.scc - 1) # File Output filename = "/output.txt" dir_path = os.path.dirname(__file__) filewrite = open(str(dir_path) + filename, 'w') filewrite.write(str(g.scc - 1)) if __name__== "__main__": main()
28.842975
101
0.513467
cc44b83a7d2676115a908689ca484abe77d6af67
687
py
Python
15/15_xjf.py
kbcao/leetcode
b7d90d3141546b353dd80a99864f4bc0578a7c63
[ "MIT" ]
null
null
null
15/15_xjf.py
kbcao/leetcode
b7d90d3141546b353dd80a99864f4bc0578a7c63
[ "MIT" ]
null
null
null
15/15_xjf.py
kbcao/leetcode
b7d90d3141546b353dd80a99864f4bc0578a7c63
[ "MIT" ]
null
null
null
class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: dic, res = {}, [] for n in nums: dic.setdefault(n, 0) dic[n] += 1 nums = list(dic.keys()) nums.sort() for i in range(len(nums)): n1 = nums[i] if n1 > 0: break if dic[n1] > (2 if n1 == 0 else 1) and n1 * -2 in dic: res.append([n1, n1, n1 * -2]) for j in range(i + 1, len(nums)): n2, n3 = nums[j], -n1 - nums[j] if n3 < n2: break if n3 in dic and (dic[n3] > 1 or n2 != n3): res.append([n1, n2, n3]) return res
36.157895
66
0.413392
51d3892b97ab7b5bf7a0cd844028e5a069ddbadf
56,772
py
Python
rampwf/externals/tabulate.py
gregoire-colin/ramp_workflow
12512a3192bcc515c2da956a6a6704849cdadeee
[ "BSD-3-Clause" ]
null
null
null
rampwf/externals/tabulate.py
gregoire-colin/ramp_workflow
12512a3192bcc515c2da956a6a6704849cdadeee
[ "BSD-3-Clause" ]
1
2020-01-18T09:47:03.000Z
2020-01-20T15:33:11.000Z
rampwf/externals/tabulate.py
lucyleeow/ramp-workflow
0bd6f7bbea65255fd964ddefcb21fe628ab1abbc
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Pretty-print tabular data.""" from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple, Iterable from platform import python_version_tuple from signal import signal, SIGPIPE, SIG_DFL import re import math if python_version_tuple()[0] < "3": from itertools import izip_longest from functools import partial _none_type = type(None) _bool_type = bool _int_type = int _long_type = long _float_type = float _text_type = unicode _binary_type = str def _is_file(f): return isinstance(f, file) else: from itertools import zip_longest as izip_longest from functools import reduce, partial _none_type = type(None) _bool_type = bool _int_type = int _long_type = int _float_type = float _text_type = str _binary_type = bytes basestring = str import io def _is_file(f): return isinstance(f, io.IOBase) try: import wcwidth # optional wide-character (CJK) support except ImportError: wcwidth = None __all__ = ["tabulate", "tabulate_formats", "simple_separated_format"] __version__ = "0.8.3" # minimum extra space in headers MIN_PADDING = 2 # Whether or not to preserve leading/trailing whitespace in data. PRESERVE_WHITESPACE = False _DEFAULT_FLOATFMT="g" _DEFAULT_MISSINGVAL="" # if True, enable wide-character (CJK) support WIDE_CHARS_MODE = wcwidth is not None Line = namedtuple("Line", ["begin", "hline", "sep", "end"]) DataRow = namedtuple("DataRow", ["begin", "sep", "end"]) # A table structure is suppposed to be: # # --- lineabove --------- # headerrow # --- linebelowheader --- # datarow # --- linebewteenrows --- # ... (more datarows) ... # --- linebewteenrows --- # last datarow # --- linebelow --------- # # TableFormat's line* elements can be # # - either None, if the element is not used, # - or a Line tuple, # - or a function: [col_widths], [col_alignments] -> string. # # TableFormat's *row elements can be # # - either None, if the element is not used, # - or a DataRow tuple, # - or a function: [cell_values], [col_widths], [col_alignments] -> string. # # padding (an integer) is the amount of white space around data values. # # with_header_hide: # # - either None, to display all table elements unconditionally, # - or a list of elements not to be displayed if the table has column headers. # TableFormat = namedtuple("TableFormat", ["lineabove", "linebelowheader", "linebetweenrows", "linebelow", "headerrow", "datarow", "padding", "with_header_hide"]) def _pipe_segment_with_colons(align, colwidth): """Return a segment of a horizontal line with optional colons which indicate column's alignment (as in `pipe` output format).""" w = colwidth if align in ["right", "decimal"]: return ('-' * (w - 1)) + ":" elif align == "center": return ":" + ('-' * (w - 2)) + ":" elif align == "left": return ":" + ('-' * (w - 1)) else: return '-' * w def _pipe_line_with_colons(colwidths, colaligns): """Return a horizontal line with optional colons to indicate column's alignment (as in `pipe` output format).""" segments = [_pipe_segment_with_colons(a, w) for a, w in zip(colaligns, colwidths)] return "|" + "|".join(segments) + "|" def _mediawiki_row_with_attrs(separator, cell_values, colwidths, colaligns): alignment = { "left": '', "right": 'align="right"| ', "center": 'align="center"| ', "decimal": 'align="right"| ' } # hard-coded padding _around_ align attribute and value together # rather than padding parameter which affects only the value values_with_attrs = [' ' + alignment.get(a, '') + c + ' ' for c, a in zip(cell_values, colaligns)] colsep = separator*2 return (separator + colsep.join(values_with_attrs)).rstrip() def _textile_row_with_attrs(cell_values, colwidths, colaligns): cell_values[0] += ' ' alignment = { "left": "<.", "right": ">.", "center": "=.", "decimal": ">." } values = (alignment.get(a, '') + v for a, v in zip(colaligns, cell_values)) return '|' + '|'.join(values) + '|' def _html_begin_table_without_header(colwidths_ignore, colaligns_ignore): # this table header will be suppressed if there is a header row return "\n".join(["<table>", "<tbody>"]) def _html_row_with_attrs(celltag, cell_values, colwidths, colaligns): alignment = { "left": '', "right": ' style="text-align: right;"', "center": ' style="text-align: center;"', "decimal": ' style="text-align: right;"' } values_with_attrs = ["<{0}{1}>{2}</{0}>".format(celltag, alignment.get(a, ''), c) for c, a in zip(cell_values, colaligns)] rowhtml = "<tr>" + "".join(values_with_attrs).rstrip() + "</tr>" if celltag == "th": # it's a header row, create a new table header rowhtml = "\n".join(["<table>", "<thead>", rowhtml, "</thead>", "<tbody>"]) return rowhtml def _moin_row_with_attrs(celltag, cell_values, colwidths, colaligns, header=''): alignment = { "left": '', "right": '<style="text-align: right;">', "center": '<style="text-align: center;">', "decimal": '<style="text-align: right;">' } values_with_attrs = ["{0}{1} {2} ".format(celltag, alignment.get(a, ''), header+c+header) for c, a in zip(cell_values, colaligns)] return "".join(values_with_attrs)+"||" def _latex_line_begin_tabular(colwidths, colaligns, booktabs=False): alignment = { "left": "l", "right": "r", "center": "c", "decimal": "r" } tabular_columns_fmt = "".join([alignment.get(a, "l") for a in colaligns]) return "\n".join(["\\begin{tabular}{" + tabular_columns_fmt + "}", "\\toprule" if booktabs else "\hline"]) LATEX_ESCAPE_RULES = {r"&": r"\&", r"%": r"\%", r"$": r"\$", r"#": r"\#", r"_": r"\_", r"^": r"\^{}", r"{": r"\{", r"}": r"\}", r"~": r"\textasciitilde{}", "\\": r"\textbackslash{}", r"<": r"\ensuremath{<}", r">": r"\ensuremath{>}"} def _latex_row(cell_values, colwidths, colaligns, escrules=LATEX_ESCAPE_RULES): def escape_char(c): return escrules.get(c, c) escaped_values = ["".join(map(escape_char, cell)) for cell in cell_values] rowfmt = DataRow("", "&", "\\\\") return _build_simple_row(escaped_values, rowfmt) def _rst_escape_first_column(rows, headers): def escape_empty(val): if isinstance(val, (_text_type, _binary_type)) and not val.strip(): return ".." else: return val new_headers = list(headers) new_rows = [] if headers: new_headers[0] = escape_empty(headers[0]) for row in rows: new_row = list(row) if new_row: new_row[0] = escape_empty(row[0]) new_rows.append(new_row) return new_rows, new_headers _table_formats = {"simple": TableFormat(lineabove=Line("", "-", " ", ""), linebelowheader=Line("", "-", " ", ""), linebetweenrows=None, linebelow=Line("", "-", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=["lineabove", "linebelow"]), "plain": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "grid": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("+", "=", "+", "+"), linebetweenrows=Line("+", "-", "+", "+"), linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "fancy_grid": TableFormat(lineabove=Line("â•’", "â•", "╤", "â••"), linebelowheader=Line("╞", "â•", "╪", "â•¡"), linebetweenrows=Line("├", "─", "┼", "┤"), linebelow=Line("╘", "â•", "â•§", "â•›"), headerrow=DataRow("│", "│", "│"), datarow=DataRow("│", "│", "│"), padding=1, with_header_hide=None), "pipe": TableFormat(lineabove=_pipe_line_with_colons, linebelowheader=_pipe_line_with_colons, linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=["lineabove"]), "orgtbl": TableFormat(lineabove=None, linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "jira": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("||", "||", "||"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "presto": TableFormat(lineabove=None, linebelowheader=Line("", "-", "+", ""), linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", ""), datarow=DataRow("", "|", ""), padding=1, with_header_hide=None), "psql": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "rst": TableFormat(lineabove=Line("", "=", " ", ""), linebelowheader=Line("", "=", " ", ""), linebetweenrows=None, linebelow=Line("", "=", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "mediawiki": TableFormat(lineabove=Line("{| class=\"wikitable\" style=\"text-align: left;\"", "", "", "\n|+ <!-- caption -->\n|-"), linebelowheader=Line("|-", "", "", ""), linebetweenrows=Line("|-", "", "", ""), linebelow=Line("|}", "", "", ""), headerrow=partial(_mediawiki_row_with_attrs, "!"), datarow=partial(_mediawiki_row_with_attrs, "|"), padding=0, with_header_hide=None), "moinmoin": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=partial(_moin_row_with_attrs,"||",header="'''"), datarow=partial(_moin_row_with_attrs,"||"), padding=1, with_header_hide=None), "youtrack": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("|| ", " || ", " || "), datarow=DataRow("| ", " | ", " |"), padding=1, with_header_hide=None), "html": TableFormat(lineabove=_html_begin_table_without_header, linebelowheader="", linebetweenrows=None, linebelow=Line("</tbody>\n</table>", "", "", ""), headerrow=partial(_html_row_with_attrs, "th"), datarow=partial(_html_row_with_attrs, "td"), padding=0, with_header_hide=["lineabove"]), "latex": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "latex_raw": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=partial(_latex_row, escrules={}), datarow=partial(_latex_row, escrules={}), padding=1, with_header_hide=None), "latex_booktabs": TableFormat(lineabove=partial(_latex_line_begin_tabular, booktabs=True), linebelowheader=Line("\\midrule", "", "", ""), linebetweenrows=None, linebelow=Line("\\bottomrule\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "tsv": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "\t", ""), datarow=DataRow("", "\t", ""), padding=0, with_header_hide=None), "textile": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("|_. ", "|_.", "|"), datarow=_textile_row_with_attrs, padding=1, with_header_hide=None)} tabulate_formats = list(sorted(_table_formats.keys())) # The table formats for which multiline cells will be folded into subsequent # table rows. The key is the original format specified at the API. The value is # the format that will be used to represent the original format. multiline_formats = { "plain": "plain", "simple": "simple", "grid": "grid", "fancy_grid": "fancy_grid", "pipe": "pipe", "orgtbl": "orgtbl", "jira": "jira", "presto": "presto", "psql": "psql", "rst": "rst", } # TODO: Add multiline support for the remaining table formats: # - mediawiki: Replace \n with <br> # - moinmoin: TBD # - youtrack: TBD # - html: Replace \n with <br> # - latex*: Use "makecell" package: In header, replace X\nY with # \thead{X\\Y} and in data row, replace X\nY with \makecell{X\\Y} # - tsv: TBD # - textile: Replace \n with <br/> (must be well-formed XML) _multiline_codes = re.compile(r"\r|\n|\r\n") _multiline_codes_bytes = re.compile(b"\r|\n|\r\n") _invisible_codes = re.compile(r"\x1b\[\d+[;\d]*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes _invisible_codes_bytes = re.compile(b"\x1b\[\d+[;\d]*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes def simple_separated_format(separator): """Construct a simple TableFormat with columns separated by a separator. >>> tsv = simple_separated_format("\\t") ; \ tabulate([["foo", 1], ["spam", 23]], tablefmt=tsv) == 'foo \\t 1\\nspam\\t23' True """ return TableFormat(None, None, None, None, headerrow=DataRow('', separator, ''), datarow=DataRow('', separator, ''), padding=0, with_header_hide=None) def _isconvertible(conv, string): try: n = conv(string) return True except (ValueError, TypeError): return False def _isnumber(string): """ >>> _isnumber("123.45") True >>> _isnumber("123") True >>> _isnumber("spam") False >>> _isnumber("123e45678") False >>> _isnumber("inf") True """ if not _isconvertible(float, string): return False elif isinstance(string, (_text_type, _binary_type)) and ( math.isinf(float(string)) or math.isnan(float(string))): return string.lower() in ['inf', '-inf', 'nan'] return True def _isint(string, inttype=int): """ >>> _isint("123") True >>> _isint("123.45") False """ return type(string) is inttype or\ (isinstance(string, _binary_type) or isinstance(string, _text_type))\ and\ _isconvertible(inttype, string) def _isbool(string): """ >>> _isbool(True) True >>> _isbool("False") True >>> _isbool(1) False """ return type(string) is _bool_type or\ (isinstance(string, (_binary_type, _text_type))\ and\ string in ("True", "False")) def _type(string, has_invisible=True, numparse=True): """The least generic type (type(None), int, float, str, unicode). >>> _type(None) is type(None) True >>> _type("foo") is type("") True >>> _type("1") is type(1) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True """ if has_invisible and \ (isinstance(string, _text_type) or isinstance(string, _binary_type)): string = _strip_invisible(string) if string is None: return _none_type elif hasattr(string, "isoformat"): # datetime.datetime, date, and time return _text_type elif _isbool(string): return _bool_type elif _isint(string) and numparse: return int elif _isint(string, _long_type) and numparse: return int elif _isnumber(string) and numparse: return float elif isinstance(string, _binary_type): return _binary_type else: return _text_type def _afterpoint(string): """Symbols after a decimal point, -1 if the string lacks the decimal point. >>> _afterpoint("123.45") 2 >>> _afterpoint("1001") -1 >>> _afterpoint("eggs") -1 >>> _afterpoint("123e45") 2 """ if _isnumber(string): if _isint(string): return -1 else: pos = string.rfind(".") pos = string.lower().rfind("e") if pos < 0 else pos if pos >= 0: return len(string) - pos - 1 else: return -1 # no point else: return -1 # not a number def _padleft(width, s): """Flush right. >>> _padleft(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430' True """ fmt = "{0:>%ds}" % width return fmt.format(s) def _padright(width, s): """Flush left. >>> _padright(6, '\u044f\u0439\u0446\u0430') == '\u044f\u0439\u0446\u0430 ' True """ fmt = "{0:<%ds}" % width return fmt.format(s) def _padboth(width, s): """Center string. >>> _padboth(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430 ' True """ fmt = "{0:^%ds}" % width return fmt.format(s) def _padnone(ignore_width, s): return s def _strip_invisible(s): "Remove invisible ANSI color codes." if isinstance(s, _text_type): return re.sub(_invisible_codes, "", s) else: # a bytestring return re.sub(_invisible_codes_bytes, "", s) def _visible_width(s): """Visible width of a printed string. ANSI color codes are removed. >>> _visible_width('\x1b[31mhello\x1b[0m'), _visible_width("world") (5, 5) """ # optional wide-character support if wcwidth is not None and WIDE_CHARS_MODE: len_fn = wcwidth.wcswidth else: len_fn = len if isinstance(s, _text_type) or isinstance(s, _binary_type): return len_fn(_strip_invisible(s)) else: return len_fn(_text_type(s)) def _is_multiline(s): if isinstance(s, _text_type): return bool(re.search(_multiline_codes, s)) else: # a bytestring return bool(re.search(_multiline_codes_bytes, s)) def _multiline_width(multiline_s, line_width_fn=len): """Visible width of a potentially multiline content.""" return max(map(line_width_fn, re.split("[\r\n]", multiline_s))) def _choose_width_fn(has_invisible, enable_widechars, is_multiline): """Return a function to calculate visible cell width.""" if has_invisible: line_width_fn = _visible_width elif enable_widechars: # optional wide-character support if available line_width_fn = wcwidth.wcswidth else: line_width_fn = len if is_multiline: width_fn = lambda s: _multiline_width(s, line_width_fn) else: width_fn = line_width_fn return width_fn def _align_column_choose_padfn(strings, alignment, has_invisible): if alignment == "right": if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padleft elif alignment == "center": if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padboth elif alignment == "decimal": if has_invisible: decimals = [_afterpoint(_strip_invisible(s)) for s in strings] else: decimals = [_afterpoint(s) for s in strings] maxdecimals = max(decimals) strings = [s + (maxdecimals - decs) * " " for s, decs in zip(strings, decimals)] padfn = _padleft elif not alignment: padfn = _padnone else: if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padright return strings, padfn def _align_column(strings, alignment, minwidth=0, has_invisible=True, enable_widechars=False, is_multiline=False): """[string] -> [padded_string]""" strings, padfn = _align_column_choose_padfn(strings, alignment, has_invisible) width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline) s_widths = list(map(width_fn, strings)) maxwidth = max(max(s_widths), minwidth) # TODO: refactor column alignment in single-line and multiline modes if is_multiline: if not enable_widechars and not has_invisible: padded_strings = [ "\n".join([padfn(maxwidth, s) for s in ms.splitlines()]) for ms in strings] else: # enable wide-character width corrections s_lens = [max((len(s) for s in re.split("[\r\n]", ms))) for ms in strings] visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)] # wcswidth and _visible_width don't count invisible characters; # padfn doesn't need to apply another correction padded_strings = ["\n".join([padfn(w, s) for s in (ms.splitlines() or ms)]) for ms, w in zip(strings, visible_widths)] else: # single-line cell values if not enable_widechars and not has_invisible: padded_strings = [padfn(maxwidth, s) for s in strings] else: # enable wide-character width corrections s_lens = list(map(len, strings)) visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)] # wcswidth and _visible_width don't count invisible characters; # padfn doesn't need to apply another correction padded_strings = [padfn(w, s) for s, w in zip(strings, visible_widths)] return padded_strings def _more_generic(type1, type2): types = { _none_type: 0, _bool_type: 1, int: 2, float: 3, _binary_type: 4, _text_type: 5 } invtypes = { 5: _text_type, 4: _binary_type, 3: float, 2: int, 1: _bool_type, 0: _none_type } moregeneric = max(types.get(type1, 5), types.get(type2, 5)) return invtypes[moregeneric] def _column_type(strings, has_invisible=True, numparse=True): """The least generic type all column values are convertible to. >>> _column_type([True, False]) is _bool_type True >>> _column_type(["1", "2"]) is _int_type True >>> _column_type(["1", "2.3"]) is _float_type True >>> _column_type(["1", "2.3", "four"]) is _text_type True >>> _column_type(["four", '\u043f\u044f\u0442\u044c']) is _text_type True >>> _column_type([None, "brux"]) is _text_type True >>> _column_type([1, 2, None]) is _int_type True >>> import datetime as dt >>> _column_type([dt.datetime(1991,2,19), dt.time(17,35)]) is _text_type True """ types = [_type(s, has_invisible, numparse) for s in strings ] return reduce(_more_generic, types, _bool_type) def _format(val, valtype, floatfmt, missingval="", has_invisible=True): """Format a value accoding to its type. Unicode is supported: >>> hrow = ['\u0431\u0443\u043a\u0432\u0430', '\u0446\u0438\u0444\u0440\u0430'] ; \ tbl = [['\u0430\u0437', 2], ['\u0431\u0443\u043a\u0438', 4]] ; \ good_result = '\\u0431\\u0443\\u043a\\u0432\\u0430 \\u0446\\u0438\\u0444\\u0440\\u0430\\n------- -------\\n\\u0430\\u0437 2\\n\\u0431\\u0443\\u043a\\u0438 4' ; \ tabulate(tbl, headers=hrow) == good_result True """ if val is None: return missingval if valtype in [int, _text_type]: return "{0}".format(val) elif valtype is _binary_type: try: return _text_type(val, "ascii") except TypeError: return _text_type(val) elif valtype is float: is_a_colored_number = has_invisible and isinstance(val, (_text_type, _binary_type)) if is_a_colored_number: raw_val = _strip_invisible(val) formatted_val = format(float(raw_val), floatfmt) return val.replace(raw_val, formatted_val) else: return format(float(val), floatfmt) else: return "{0}".format(val) def _align_header(header, alignment, width, visible_width, is_multiline=False, width_fn=None): "Pad string header to width chars given known visible_width of the header." if is_multiline: header_lines = re.split(_multiline_codes, header) padded_lines = [_align_header(h, alignment, width, width_fn(h)) for h in header_lines] return "\n".join(padded_lines) # else: not multiline ninvisible = len(header) - visible_width width += ninvisible if alignment == "left": return _padright(width, header) elif alignment == "center": return _padboth(width, header) elif not alignment: return "{0}".format(header) else: return _padleft(width, header) def _prepend_row_index(rows, index): """Add a left-most index column.""" if index is None or index is False: return rows if len(index) != len(rows): print('index=', index) print('rows=', rows) raise ValueError('index must be as long as the number of data rows') rows = [[v]+list(row) for v,row in zip(index, rows)] return rows def _bool(val): "A wrapper around standard bool() which doesn't throw on NumPy arrays" try: return bool(val) except ValueError: # val is likely to be a numpy array with many elements return False def _normalize_tabular_data(tabular_data, headers, showindex="default"): """Transform a supported data type to a list of lists, and a list of headers. Supported tabular data types: * list-of-lists or another iterable of iterables * list of named tuples (usually used with headers="keys") * list of dicts (usually used with headers="keys") * list of OrderedDicts (usually used with headers="keys") * 2D NumPy arrays * NumPy record arrays (usually used with headers="keys") * dict of iterables (usually used with headers="keys") * pandas.DataFrame (usually used with headers="keys") The first row can be used as headers if headers="firstrow", column indices can be used as headers if headers="keys". If showindex="default", show row indices of the pandas.DataFrame. If showindex="always", show row indices for all types of data. If showindex="never", don't show row indices for all types of data. If showindex is an iterable, show its values as row indices. """ try: bool(headers) is_headers2bool_broken = False except ValueError: # numpy.ndarray, pandas.core.index.Index, ... is_headers2bool_broken = True headers = list(headers) index = None if hasattr(tabular_data, "keys") and hasattr(tabular_data, "values"): # dict-like and pandas.DataFrame? if hasattr(tabular_data.values, "__call__"): # likely a conventional dict keys = tabular_data.keys() rows = list(izip_longest(*tabular_data.values())) # columns have to be transposed elif hasattr(tabular_data, "index"): # values is a property, has .index => it's likely a pandas.DataFrame (pandas 0.11.0) keys = list(tabular_data) if tabular_data.index.name is not None: if isinstance(tabular_data.index.name, list): keys[:0] = tabular_data.index.name else: keys[:0] = [tabular_data.index.name] vals = tabular_data.values # values matrix doesn't need to be transposed # for DataFrames add an index per default index = list(tabular_data.index) rows = [list(row) for row in vals] else: raise ValueError("tabular data doesn't appear to be a dict or a DataFrame") if headers == "keys": headers = list(map(_text_type,keys)) # headers should be strings else: # it's a usual an iterable of iterables, or a NumPy array rows = list(tabular_data) if (headers == "keys" and not rows): # an empty table (issue #81) headers = [] elif (headers == "keys" and hasattr(tabular_data, "dtype") and getattr(tabular_data.dtype, "names")): # numpy record array headers = tabular_data.dtype.names elif (headers == "keys" and len(rows) > 0 and isinstance(rows[0], tuple) and hasattr(rows[0], "_fields")): # namedtuple headers = list(map(_text_type, rows[0]._fields)) elif (len(rows) > 0 and isinstance(rows[0], dict)): # dict or OrderedDict uniq_keys = set() # implements hashed lookup keys = [] # storage for set if headers == "firstrow": firstdict = rows[0] if len(rows) > 0 else {} keys.extend(firstdict.keys()) uniq_keys.update(keys) rows = rows[1:] for row in rows: for k in row.keys(): #Save unique items in input order if k not in uniq_keys: keys.append(k) uniq_keys.add(k) if headers == 'keys': headers = keys elif isinstance(headers, dict): # a dict of headers for a list of dicts headers = [headers.get(k, k) for k in keys] headers = list(map(_text_type, headers)) elif headers == "firstrow": if len(rows) > 0: headers = [firstdict.get(k, k) for k in keys] headers = list(map(_text_type, headers)) else: headers = [] elif headers: raise ValueError('headers for a list of dicts is not a dict or a keyword') rows = [[row.get(k) for k in keys] for row in rows] elif (headers == "keys" and hasattr(tabular_data, "description") and hasattr(tabular_data, "fetchone") and hasattr(tabular_data, "rowcount")): # Python Database API cursor object (PEP 0249) # print tabulate(cursor, headers='keys') headers = [column[0] for column in tabular_data.description] elif headers == "keys" and len(rows) > 0: # keys are column indices headers = list(map(_text_type, range(len(rows[0])))) # take headers from the first row if necessary if headers == "firstrow" and len(rows) > 0: if index is not None: headers = [index[0]] + list(rows[0]) index = index[1:] else: headers = rows[0] headers = list(map(_text_type, headers)) # headers should be strings rows = rows[1:] headers = list(map(_text_type,headers)) rows = list(map(list,rows)) # add or remove an index column showindex_is_a_str = type(showindex) in [_text_type, _binary_type] if showindex == "default" and index is not None: rows = _prepend_row_index(rows, index) elif isinstance(showindex, Iterable) and not showindex_is_a_str: rows = _prepend_row_index(rows, list(showindex)) elif showindex == "always" or (_bool(showindex) and not showindex_is_a_str): if index is None: index = list(range(len(rows))) rows = _prepend_row_index(rows, index) elif showindex == "never" or (not _bool(showindex) and not showindex_is_a_str): pass # pad with empty headers for initial columns if necessary if headers and len(rows) > 0: nhs = len(headers) ncols = len(rows[0]) if nhs < ncols: headers = [""]*(ncols - nhs) + headers return rows, headers def tabulate(tabular_data, headers=(), tablefmt="simple", floatfmt=_DEFAULT_FLOATFMT, numalign="decimal", stralign="left", missingval=_DEFAULT_MISSINGVAL, showindex="default", disable_numparse=False): """Format a fixed width table for pretty printing. >>> print(tabulate([[1, 2.34], [-56, "8.999"], ["2", "10001"]])) --- --------- 1 2.34 -56 8.999 2 10001 --- --------- The first required argument (`tabular_data`) can be a list-of-lists (or another iterable of iterables), a list of named tuples, a dictionary of iterables, an iterable of dictionaries, a two-dimensional NumPy array, NumPy record array, or a Pandas' dataframe. Table headers ------------- To print nice column headers, supply the second argument (`headers`): - `headers` can be an explicit list of column headers - if `headers="firstrow"`, then the first row of data is used - if `headers="keys"`, then dictionary keys or column indices are used Otherwise a headerless table is produced. If the number of headers is less than the number of columns, they are supposed to be names of the last columns. This is consistent with the plain-text format of R and Pandas' dataframes. >>> print(tabulate([["sex","age"],["Alice","F",24],["Bob","M",19]], ... headers="firstrow")) sex age ----- ----- ----- Alice F 24 Bob M 19 By default, pandas.DataFrame data have an additional column called row index. To add a similar column to all other types of data, use `showindex="always"` or `showindex=True`. To suppress row indices for all types of data, pass `showindex="never" or `showindex=False`. To add a custom row index column, pass `showindex=some_iterable`. >>> print(tabulate([["F",24],["M",19]], showindex="always")) - - -- 0 F 24 1 M 19 - - -- Column alignment ---------------- `tabulate` tries to detect column types automatically, and aligns the values properly. By default it aligns decimal points of the numbers (or flushes integer numbers to the right), and flushes everything else to the left. Possible column alignments (`numalign`, `stralign`) are: "right", "center", "left", "decimal" (only for `numalign`), and None (to disable alignment). Table formats ------------- `floatfmt` is a format specification used for columns which contain numeric data with a decimal point. This can also be a list or tuple of format strings, one per column. `None` values are replaced with a `missingval` string (like `floatfmt`, this can also be a list of values for different columns): >>> print(tabulate([["spam", 1, None], ... ["eggs", 42, 3.14], ... ["other", None, 2.7]], missingval="?")) ----- -- ---- spam 1 ? eggs 42 3.14 other ? 2.7 ----- -- ---- Various plain-text table formats (`tablefmt`) are supported: 'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst', 'mediawiki', 'latex', 'latex_raw' and 'latex_booktabs'. Variable `tabulate_formats` contains the list of currently supported formats. "plain" format doesn't use any pseudographics to draw tables, it separates columns with a double space: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "plain")) strings numbers spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="plain")) spam 41.9999 eggs 451 "simple" format is like Pandoc simple_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "simple")) strings numbers --------- --------- spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="simple")) ---- -------- spam 41.9999 eggs 451 ---- -------- "grid" is similar to tables produced by Emacs table.el package or Pandoc grid_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "grid")) +-----------+-----------+ | strings | numbers | +===========+===========+ | spam | 41.9999 | +-----------+-----------+ | eggs | 451 | +-----------+-----------+ >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="grid")) +------+----------+ | spam | 41.9999 | +------+----------+ | eggs | 451 | +------+----------+ "fancy_grid" draws a grid using box-drawing characters: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "fancy_grid")) â•’â•â•â•â•â•â•â•â•â•â•â•╤â•â•â•â•â•â•â•â•â•â•â•â•• │ strings │ numbers │ ╞â•â•â•â•â•â•â•â•â•â•â•╪â•â•â•â•â•â•â•â•â•â•â•â•¡ │ spam │ 41.9999 │ ├───────────┼───────────┤ │ eggs │ 451 │ ╘â•â•â•â•â•â•â•â•â•â•â•â•§â•â•â•â•â•â•â•â•â•â•â•â•› "pipe" is like tables in PHP Markdown Extra extension or Pandoc pipe_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "pipe")) | strings | numbers | |:----------|----------:| | spam | 41.9999 | | eggs | 451 | "presto" is like tables produce by the Presto CLI: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "presto")) strings | numbers -----------+----------- spam | 41.9999 eggs | 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="pipe")) |:-----|---------:| | spam | 41.9999 | | eggs | 451 | "orgtbl" is like tables in Emacs org-mode and orgtbl-mode. They are slightly different from "pipe" format by not using colons to define column alignment, and using a "+" sign to indicate line intersections: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "orgtbl")) | strings | numbers | |-----------+-----------| | spam | 41.9999 | | eggs | 451 | >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="orgtbl")) | spam | 41.9999 | | eggs | 451 | "rst" is like a simple table format from reStructuredText; please note that reStructuredText accepts also "grid" tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "rst")) ========= ========= strings numbers ========= ========= spam 41.9999 eggs 451 ========= ========= >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="rst")) ==== ======== spam 41.9999 eggs 451 ==== ======== "mediawiki" produces a table markup used in Wikipedia and on other MediaWiki-based sites: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="mediawiki")) {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- ! strings !! align="right"| numbers |- | spam || align="right"| 41.9999 |- | eggs || align="right"| 451 |} "html" produces HTML markup: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="html")) <table> <thead> <tr><th>strings </th><th style="text-align: right;"> numbers</th></tr> </thead> <tbody> <tr><td>spam </td><td style="text-align: right;"> 41.9999</td></tr> <tr><td>eggs </td><td style="text-align: right;"> 451 </td></tr> </tbody> </table> "latex" produces a tabular environment of LaTeX document markup: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex")) \\begin{tabular}{lr} \\hline spam & 41.9999 \\\\ eggs & 451 \\\\ \\hline \\end{tabular} "latex_raw" is similar to "latex", but doesn't escape special characters, such as backslash and underscore, so LaTeX commands may embedded into cells' values: >>> print(tabulate([["spam$_9$", 41.9999], ["\\\\emph{eggs}", "451.0"]], tablefmt="latex_raw")) \\begin{tabular}{lr} \\hline spam$_9$ & 41.9999 \\\\ \\emph{eggs} & 451 \\\\ \\hline \\end{tabular} "latex_booktabs" produces a tabular environment of LaTeX document markup using the booktabs.sty package: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex_booktabs")) \\begin{tabular}{lr} \\toprule spam & 41.9999 \\\\ eggs & 451 \\\\ \\bottomrule \end{tabular} Number parsing -------------- By default, anything which can be parsed as a number is a number. This ensures numbers represented as strings are aligned properly. This can lead to weird results for particular strings such as specific git SHAs e.g. "42992e1" will be parsed into the number 429920 and aligned as such. To completely disable number parsing (and alignment), use `disable_numparse=True`. For more fine grained control, a list column indices is used to disable number parsing only on those columns e.g. `disable_numparse=[0, 2]` would disable number parsing only on the first and third columns. """ if tabular_data is None: tabular_data = [] list_of_lists, headers = _normalize_tabular_data( tabular_data, headers, showindex=showindex) # empty values in the first column of RST tables should be escaped (issue #82) # "" should be escaped as "\\ " or ".." if tablefmt == 'rst': list_of_lists, headers = _rst_escape_first_column(list_of_lists, headers) # optimization: look for ANSI control codes once, # enable smart width functions only if a control code is found plain_text = '\t'.join(['\t'.join(map(_text_type, headers))] + \ ['\t'.join(map(_text_type, row)) for row in list_of_lists]) has_invisible = re.search(_invisible_codes, plain_text) enable_widechars = wcwidth is not None and WIDE_CHARS_MODE if tablefmt in multiline_formats and _is_multiline(plain_text): tablefmt = multiline_formats.get(tablefmt, tablefmt) is_multiline = True else: is_multiline = False width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline) # format rows and columns, convert numeric values to strings cols = list(izip_longest(*list_of_lists)) numparses = _expand_numparse(disable_numparse, len(cols)) coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)] if isinstance(floatfmt, basestring): #old version float_formats = len(cols) * [floatfmt] # just duplicate the string to use in each column else: # if floatfmt is list, tuple etc we have one per column float_formats = list(floatfmt) if len(float_formats) < len(cols): float_formats.extend( (len(cols)-len(float_formats)) * [_DEFAULT_FLOATFMT] ) if isinstance(missingval, basestring): missing_vals = len(cols) * [missingval] else: missing_vals = list(missingval) if len(missing_vals) < len(cols): missing_vals.extend( (len(cols)-len(missing_vals)) * [_DEFAULT_MISSINGVAL] ) cols = [[_format(v, ct, fl_fmt, miss_v, has_invisible) for v in c] for c, ct, fl_fmt, miss_v in zip(cols, coltypes, float_formats, missing_vals)] # align columns aligns = [numalign if ct in [int,float] else stralign for ct in coltypes] minwidths = [width_fn(h) + MIN_PADDING for h in headers] if headers else [0]*len(cols) cols = [_align_column(c, a, minw, has_invisible, enable_widechars, is_multiline) for c, a, minw in zip(cols, aligns, minwidths)] if headers: # align headers and add headers t_cols = cols or [['']] * len(headers) t_aligns = aligns or [stralign] * len(headers) minwidths = [max(minw, max(width_fn(cl) for cl in c)) for minw, c in zip(minwidths, t_cols)] headers = [_align_header(h, a, minw, width_fn(h), is_multiline, width_fn) for h, a, minw in zip(headers, t_aligns, minwidths)] rows = list(zip(*cols)) else: minwidths = [max(width_fn(cl) for cl in c) for c in cols] rows = list(zip(*cols)) if not isinstance(tablefmt, TableFormat): tablefmt = _table_formats.get(tablefmt, _table_formats["simple"]) return _format_table(tablefmt, headers, rows, minwidths, aligns, is_multiline) def _expand_numparse(disable_numparse, column_count): """ Return a list of bools of length `column_count` which indicates whether number parsing should be used on each column. If `disable_numparse` is a list of indices, each of those indices are False, and everything else is True. If `disable_numparse` is a bool, then the returned list is all the same. """ if isinstance(disable_numparse, Iterable): numparses = [True] * column_count for index in disable_numparse: numparses[index] = False return numparses else: return [not disable_numparse] * column_count def _pad_row(cells, padding): if cells: pad = " "*padding padded_cells = [pad + cell + pad for cell in cells] return padded_cells else: return cells def _build_simple_row(padded_cells, rowfmt): "Format row according to DataRow format without padding." begin, sep, end = rowfmt return (begin + sep.join(padded_cells) + end).rstrip() def _build_row(padded_cells, colwidths, colaligns, rowfmt): "Return a string which represents a row of data cells." if not rowfmt: return None if hasattr(rowfmt, "__call__"): return rowfmt(padded_cells, colwidths, colaligns) else: return _build_simple_row(padded_cells, rowfmt) def _append_basic_row(lines, padded_cells, colwidths, colaligns, rowfmt): lines.append(_build_row(padded_cells, colwidths, colaligns, rowfmt)) return lines def _append_multiline_row(lines, padded_multiline_cells, padded_widths, colaligns, rowfmt, pad): colwidths = [w - 2*pad for w in padded_widths] cells_lines = [c.splitlines() for c in padded_multiline_cells] nlines = max(map(len, cells_lines)) # number of lines in the row # vertically pad cells where some lines are missing cells_lines = [(cl + [' '*w]*(nlines - len(cl))) for cl, w in zip(cells_lines, colwidths)] lines_cells = [[cl[i] for cl in cells_lines] for i in range(nlines)] for ln in lines_cells: padded_ln = _pad_row(ln, pad) _append_basic_row(lines, padded_ln, colwidths, colaligns, rowfmt) return lines def _build_line(colwidths, colaligns, linefmt): "Return a string which represents a horizontal line." if not linefmt: return None if hasattr(linefmt, "__call__"): return linefmt(colwidths, colaligns) else: begin, fill, sep, end = linefmt cells = [fill*w for w in colwidths] return _build_simple_row(cells, (begin, sep, end)) def _append_line(lines, colwidths, colaligns, linefmt): lines.append(_build_line(colwidths, colaligns, linefmt)) return lines def _format_table(fmt, headers, rows, colwidths, colaligns, is_multiline): """Produce a plain-text representation of the table.""" lines = [] hidden = fmt.with_header_hide if (headers and fmt.with_header_hide) else [] pad = fmt.padding headerrow = fmt.headerrow padded_widths = [(w + 2*pad) for w in colwidths] if is_multiline: pad_row = lambda row, _: row # do it later, in _append_multiline_row append_row = partial(_append_multiline_row, pad=pad) else: pad_row = _pad_row append_row = _append_basic_row padded_headers = pad_row(headers, pad) padded_rows = [pad_row(row, pad) for row in rows] if fmt.lineabove and "lineabove" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.lineabove) if padded_headers: append_row(lines, padded_headers, padded_widths, colaligns, headerrow) if fmt.linebelowheader and "linebelowheader" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.linebelowheader) if padded_rows and fmt.linebetweenrows and "linebetweenrows" not in hidden: # initial rows with a line below for row in padded_rows[:-1]: append_row(lines, row, padded_widths, colaligns, fmt.datarow) _append_line(lines, padded_widths, colaligns, fmt.linebetweenrows) # the last row without a line below append_row(lines, padded_rows[-1], padded_widths, colaligns, fmt.datarow) else: for row in padded_rows: append_row(lines, row, padded_widths, colaligns, fmt.datarow) if fmt.linebelow and "linebelow" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.linebelow) if headers or rows: return "\n".join(lines) else: # a completely empty table return "" def _main(): """\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -o FILE, --output FILE print table to FILE (default: stdout) -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -F FPFMT, --float FPFMT floating point number format (default: g) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_raw, latex_booktabs, tsv (default: simple) """ import getopt import sys import textwrap usage = textwrap.dedent(_main.__doc__) try: opts, args = getopt.getopt(sys.argv[1:], "h1o:s:F:f:", ["help", "header", "output", "sep=", "float=", "format="]) except getopt.GetoptError as e: print(e) print(usage) sys.exit(2) headers = [] floatfmt = _DEFAULT_FLOATFMT tablefmt = "simple" sep = r"\s+" outfile = "-" for opt, value in opts: if opt in ["-1", "--header"]: headers = "firstrow" elif opt in ["-o", "--output"]: outfile = value elif opt in ["-F", "--float"]: floatfmt = value elif opt in ["-f", "--format"]: if value not in tabulate_formats: print("%s is not a supported table format" % value) print(usage) sys.exit(3) tablefmt = value elif opt in ["-s", "--sep"]: sep = value elif opt in ["-h", "--help"]: print(usage) sys.exit(0) files = [sys.stdin] if not args else args with (sys.stdout if outfile == "-" else open(outfile, "w")) as out: for f in files: if f == "-": f = sys.stdin if _is_file(f): _pprint_file(f, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out) else: with open(f) as fobj: _pprint_file(fobj, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out) def _pprint_file(fobject, headers, tablefmt, sep, floatfmt, file): rows = fobject.readlines() table = [re.split(sep, r.rstrip()) for r in rows if r.strip()] print(tabulate(table, headers, tablefmt, floatfmt=floatfmt), file=file) if __name__ == "__main__": signal(SIGPIPE, SIG_DFL) _main()
37.423863
197
0.554005
5ceb7f1247afc7244865cebe4f94ecf65cbf1186
1,050
py
Python
code/findMotifs_std.py
NIEHS/P-MACD
82fa36f6ccbdccb63985d28b0c41c9084b9e2b18
[ "MIT" ]
2
2021-06-02T20:34:27.000Z
2021-09-06T22:36:10.000Z
code/findMotifs_std.py
NIEHS/P-MACD
82fa36f6ccbdccb63985d28b0c41c9084b9e2b18
[ "MIT" ]
null
null
null
code/findMotifs_std.py
NIEHS/P-MACD
82fa36f6ccbdccb63985d28b0c41c9084b9e2b18
[ "MIT" ]
2
2021-04-03T00:31:13.000Z
2022-01-31T15:40:29.000Z
# source("/home/klimczakl/projects/yeast/context/findMotif.py") motifs2Find = ("A", "T", "G", "C", "Cg", "cG", "tC[at]", "[at]Ga", "tCa", "tGa", "tCt", "aGa", "tC", "Ga", "tC[atc]", "[atg]Ga", "cC", "Gg", "[at][ag]C", "G[ct][at]", "Cc", "gG", "[at]A", "T[at]") findTitles = ("A", "T", "G", "C", "Cg", "cG", "tCw", "wGa", "tCa", "tGa", "tCt", "aGa", "tC", "Ga", "tCh", "dGa", "cC", "Gg", "wrC", "Gyw", "Cc", "gG", "wA", "Tw") # for countMotifs.R motifs2Count = ("a", "t", "g", "c", "cg", "tc[at]", "[at]ga", "tca", "tga", "tct", "aga", "tc", "ga", "tc[atc]", "[atg]ga", "cc", "gg", "[at][ag]c", "g[ct][at]", "cc", "gg", "[at]a", "t[at]") countTitles = ("a", "t", "g", "c", "cg", "tcw", "wga", "tca", "tga", "tct", "aga", "tc", "ga", "tch", "dga", "cc", "gg", "wrc", "gyw", "cc", "gg", "wa", "tw") #countTitles = map(lambda x: x+"_counts", countTitles) countTitles = tuple([x+"_counts" for x in countTitles]) apobecTitles = ("tC_mutation", "tC_mutation_to_G", "tC_mutation_to_T", "APOBEC_mutation", "APOBEC_mutation_to_G", "APOBEC_mutation_to_T")
70
196
0.510476
ba0fd526145ad558ee6ebc5b0dd7389c50904a77
1,048
py
Python
src/features/utils.py
jejjohnson/2019_rbig_rs
00df5c623d55895e0b43a4130bb6c601fae84890
[ "MIT" ]
2
2020-05-15T17:31:39.000Z
2021-03-16T08:49:33.000Z
src/features/utils.py
jejjohnson/rbig_eo
00df5c623d55895e0b43a4130bb6c601fae84890
[ "MIT" ]
null
null
null
src/features/utils.py
jejjohnson/rbig_eo
00df5c623d55895e0b43a4130bb6c601fae84890
[ "MIT" ]
null
null
null
from typing import Tuple, Optional from sklearn.utils import check_random_state import numpy as np import pandas as pd def move_variables(df: pd.DataFrame, variable: str) -> pd.DataFrame: # cond1 = df['variable1'] == variable cond = df["variable2"] == variable df.loc[cond, ["variable2", "variable1"]] = df.loc[ cond, ["variable1", "variable2"], ["rbig_H_x", "rbig_H_y"] ].values return df def subset_data( X: np.ndarray, subsample: Optional[int] = None, random_state: int = 123, ) -> Tuple[np.ndarray, np.ndarray]: idx = subset_indices(X, subsample, random_state) return X[subset_indices, :] def subset_indices( X: np.ndarray, subsample: Optional[int] = None, random_state: int = 123, ) -> Tuple[np.ndarray, np.ndarray]: if subsample is not None and subsample < X.shape[0]: rng = check_random_state(random_state) indices = np.arange(X.shape[0]) subset_indices = rng.permutation(indices)[:subsample] return subset_indices else: return None
29.942857
76
0.664122
6d9bb4eb303b83893aa650e1904ae6dc87060c4a
1,215
py
Python
mmaction/core/bbox/transforms.py
rlleshi/mmaction2
6993693f178b1a59e5eb07f1a3db484d5e5de61a
[ "Apache-2.0" ]
1,870
2020-07-11T09:33:46.000Z
2022-03-31T13:21:36.000Z
mmaction/core/bbox/transforms.py
rlleshi/mmaction2
6993693f178b1a59e5eb07f1a3db484d5e5de61a
[ "Apache-2.0" ]
1,285
2020-07-11T11:18:57.000Z
2022-03-31T08:41:17.000Z
mmaction/core/bbox/transforms.py
rlleshi/mmaction2
6993693f178b1a59e5eb07f1a3db484d5e5de61a
[ "Apache-2.0" ]
557
2020-07-11T09:51:57.000Z
2022-03-31T13:21:35.000Z
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np def bbox2result(bboxes, labels, num_classes, thr=0.01): """Convert detection results to a list of numpy arrays. Args: bboxes (Tensor): shape (n, 4) labels (Tensor): shape (n, #num_classes) num_classes (int): class number, including background class thr (float): The score threshold used when converting predictions to detection results Returns: list(ndarray): bbox results of each class """ if bboxes.shape[0] == 0: return list(np.zeros((num_classes - 1, 0, 5), dtype=np.float32)) bboxes = bboxes.cpu().numpy() labels = labels.cpu().numpy() # We only handle multilabel now assert labels.shape[-1] > 1 scores = labels # rename for clarification thr = (thr, ) * num_classes if isinstance(thr, float) else thr assert scores.shape[1] == num_classes assert len(thr) == num_classes result = [] for i in range(num_classes - 1): where = scores[:, i + 1] > thr[i + 1] result.append( np.concatenate((bboxes[where, :4], scores[where, i + 1:i + 2]), axis=1)) return result
31.973684
76
0.609053
442f248390deb58225429480c3870eec42baf24a
1,956
py
Python
kms/api-client/iam_add_member.py
apecr/python-docs-samples
26b581bb6ce148e13a9c7f2cd801f138b8aa8412
[ "Apache-2.0" ]
1
2020-06-04T16:50:49.000Z
2020-06-04T16:50:49.000Z
kms/api-client/iam_add_member.py
apecr/python-docs-samples
26b581bb6ce148e13a9c7f2cd801f138b8aa8412
[ "Apache-2.0" ]
null
null
null
kms/api-client/iam_add_member.py
apecr/python-docs-samples
26b581bb6ce148e13a9c7f2cd801f138b8aa8412
[ "Apache-2.0" ]
1
2020-05-29T20:33:18.000Z
2020-05-29T20:33:18.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # [START kms_iam_add_member] def iam_add_member(project_id, location_id, key_ring_id, key_id, member): """ Add an IAM member to a resource. Args: project_id (string): Google Cloud project ID (e.g. 'my-project'). location_id (string): Cloud KMS location (e.g. 'us-east1'). key_ring_id (string): ID of the Cloud KMS key ring (e.g. 'my-key-ring'). key_id (string): ID of the key to use (e.g. 'my-key'). member (string): Member to add (e.g. 'user:foo@example.com') Returns: Policy: Updated Cloud IAM policy. """ # Import the client library. from google.cloud import kms # Create the client. client = kms.KeyManagementServiceClient() # Build the resource name. resource_name = client.crypto_key_path(project_id, location_id, key_ring_id, key_id) # The resource name could also be a key ring. # resource_name = client.key_ring_path(project_id, location_id, key_ring_id); # Get the current policy. policy = client.get_iam_policy(resource_name) # Add the member to the policy. policy.bindings.add( role='roles/cloudkms.cryptoKeyEncrypterDecrypter', members=[member]) # Save the updated IAM policy. updated_policy = client.set_iam_policy(resource_name, policy) print('Added {} to {}'.format(member, resource_name)) return updated_policy # [END kms_iam_add_member]
34.315789
88
0.699898
c11ab33609bc91c53b27be3ea3a51967a0ded354
3,703
py
Python
gaphor/plugins/diagramexport/gaphorconvert.py
bertob/gaphor
a1d6f8dd8c878f299980bba6c055436148573274
[ "Apache-2.0" ]
null
null
null
gaphor/plugins/diagramexport/gaphorconvert.py
bertob/gaphor
a1d6f8dd8c878f299980bba6c055436148573274
[ "Apache-2.0" ]
null
null
null
gaphor/plugins/diagramexport/gaphorconvert.py
bertob/gaphor
a1d6f8dd8c878f299980bba6c055436148573274
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import optparse import os import re import sys from gaphor.application import Session from gaphor.core.modeling import Diagram from gaphor.storage import storage def pkg2dir(package): """Return directory path from package class.""" name = [] while package: name.insert(0, package.name) package = package.package return "/".join(name) def parse_options(argv): usage = "usage: %prog [options] file1 file2..." parser = optparse.OptionParser(usage=usage) parser.add_option( "-v", "--verbose", dest="verbose", action="store_true", help="verbose output" ) parser.add_option( "-u", "--use-underscores", dest="underscores", action="store_true", help="use underscores instead of spaces for output filenames", ) parser.add_option( "-d", "--dir", dest="dir", metavar="directory", help="output to directory" ) parser.add_option( "-f", "--format", dest="format", metavar="format", help="output file format, default pdf", default="pdf", choices=["pdf", "svg", "png"], ) parser.add_option( "-r", "--regex", dest="regex", metavar="regex", help="process diagrams which name matches given regular expression;" " name includes package name; regular expressions are case insensitive", ) options, args = parser.parse_args(argv) if not args: parser.print_help() return options, args def main(argv=sys.argv[1:]): options, args = parse_options(argv) def message(msg): if options.verbose: print(msg, file=sys.stderr) session = Session( services=[ "event_manager", "component_registry", "element_factory", "element_dispatcher", "modeling_language", "diagram_export", ] ) factory = session.get_service("element_factory") modeling_language = session.get_service("modeling_language") diagram_export = session.get_service("diagram_export") name_re = None if options.regex: name_re = re.compile(options.regex, re.I) # we should have some gaphor files to be processed at this point for model in args: message(f"loading model {model}") storage.load(model, factory, modeling_language) message("ready for rendering") for diagram in factory.select(Diagram): odir = pkg2dir(diagram.package) # just diagram name dname = diagram.name # full diagram name including package path pname = f"{odir}/{dname}" if options.underscores: odir = odir.replace(" ", "_") dname = dname.replace(" ", "_") if name_re and not name_re.search(pname): message(f"skipping {pname}") continue if options.dir: odir = f"{options.dir}/{odir}" outfilename = f"{odir}/{dname}.{options.format}" if not os.path.exists(odir): message(f"creating dir {odir}") os.makedirs(odir) message(f"rendering: {pname} -> {outfilename}...") if options.format == "pdf": diagram_export.save_pdf(outfilename, diagram) elif options.format == "svg": diagram_export.save_svg(outfilename, diagram) elif options.format == "png": diagram_export.save_png(outfilename, diagram) else: raise RuntimeError(f"Unknown file format: {options.format}")
27.634328
85
0.57872
568e6944a5e1535e5d348279515c04c37c3f89bc
10,224
py
Python
blowdrycss/unitparser.py
acnagy/test-blowdrycss
bd9603dc87dc304b811213e3e6c3c97afa7f5966
[ "MIT" ]
null
null
null
blowdrycss/unitparser.py
acnagy/test-blowdrycss
bd9603dc87dc304b811213e3e6c3c97afa7f5966
[ "MIT" ]
null
null
null
blowdrycss/unitparser.py
acnagy/test-blowdrycss
bd9603dc87dc304b811213e3e6c3c97afa7f5966
[ "MIT" ]
null
null
null
# python 2 from __future__ import absolute_import # builtins from string import digits # custom import blowdrycss_settings as settings __author__ = 'chad nelson' __project__ = 'blowdrycss' class UnitParser(object): """ **Used in these cases:** - No units are provided and default units need to be added to make it valid css. - The user wants their pixel (px) based units to be converted to em or root em (rem) so that their page scales / zooms properly. **Assumption:** The value provided already has negative signs and decimal points. There are no dashes or underscores present in the value e.g. -1.25 can be processed, but n1_25 cannot be processed. **Contains a ``default_property_units_dict``** which maps property names to their default units. **Note:** Shorthand properties are not supported. **Why do I want to use em (named after the sound for the letter 'M') or root em (rem)?:** *Because your webpage will scale with browser and device size.* | .. http://snook.ca/archives/html_and_css/font-size-with-rem https://css-tricks.com/rems-ems/ **What does (em) actually stand for?:** **Source:** W3C -- http://www.w3.org/WAI/GL/css2em.htm The foremost tool for writing scalable style sheets is the "em" unit, and it therefore goes on top of the list of guidelines that we will compile throughout this chapter: use ems to make scalable style sheets. Named after the letter "M", the em unit has a long-standing tradition in typography where it has been used to measure horizontal widths. ... In CSS, the em unit is a general unit for measuring lengths, for example page margins and padding around elements. You can use it both horizontally and vertically, and this shocks traditional typographers who always have used em exclusively for horizontal measurements. By extending the em unit to also work vertically, it has become a very powerful unit - so powerful that you seldom have to use other length units. **Source:** Wikipedia -- https://en.wikipedia.org/wiki/Em_%28typography%29 An em is a unit in the field of typography, equal to the currently specified point size. For example, one em in a 16-point typeface is 16 points. Therefore, this unit is the same for all typefaces at a given point size. """ def __init__(self, property_name=''): self.property_name = property_name self.allowed = set(digits + '-.px') # Reference: http://www.w3.org/TR/CSS21/propidx.html # Extracted all properties containing Values of <angle>, <percentage>, <length>, <time>, <frequency> # IDEA: Build webscraper that auto-extracts these. May not be deterministic enough. Would need to build a # Page based on the standard that includes all property name/value combos. self.default_property_units_dict = { # Number of possible values: 'background-position': '%', # single or double # 'border': 'px', # single Shorthand Property unit addition Not implemented 'border-top': 'px', # single 'border-right': 'px', # single 'border-bottom': 'px', # single 'border-left': 'px', # single 'border-spacing': 'px', # single 'border-width': 'px', # single 'border-top-width': 'px', # single 'border-right-width': 'px', # single 'border-bottom-width': 'px', # single 'border-left-width': 'px', # single 'border-radius': 'px', # single 'border-top-left-radius': 'px', # single 'border-top-right-radius': 'px', # single 'border-bottom-right-radius': 'px', # single 'border-bottom-left-radius': 'px', 'elevation': 'deg', # single # 'font': 'px', # single Shorthand Property unit addition Not implemented 'font-size': 'px', # single 'height': 'px', # single 'max-height': 'px', # single 'min-height': 'px', # single 'letter-spacing': 'px', # single 'word-spacing': 'px', # single 'line-height': 'px', # single 'top': 'px', # single 'right': 'px', # single 'bottom': 'px', # single 'left': 'px', # single 'margin': 'px', # single, double, quadruple 'margin-top': 'px', # single 'margin-right': 'px', # single 'margin-bottom': 'px', # single 'margin-left': 'px', # single # 'outline': 'px', # single Shorthand Property unit addition Not implemented 'outline-width': 'px', # single 'padding': 'px', # single, double, quadruple 'padding-top': 'px', # single 'padding-right': 'px', # single 'padding-bottom': 'px', # single 'padding-left': 'px', # single 'pause': 'ms', # single, double 'pause-after': 'ms', # single 'pause-before': 'ms', # single 'pitch': 'Hz', # single 'text-indent': 'px', # single 'text-shadow': 'px', # single, double, triple 'vertical-align': '%', # single 'volume': '%', # single 'width': 'px', # single 'max-width': 'px', # single 'min-width': 'px', # single } def default_units(self): """ Returns the default units "if any" for the assigned ``self.property_name``. :return: (*str*) -- Returns default units for the assigned ``self.property_name`` if they exist. Otherwise, return an empty string ``''``. """ if self.property_name in self.default_property_units_dict: return self.default_property_units_dict[self.property_name] else: return '' def add_units(self, property_value=''): """ If the property_name requires units, then apply the default units defined in default_property_units_dict. **Rules:** - If use_em is False apply the default units for the property name by looking it up in default_property_units_dict. - Unit that have default units of ``px`` are converted to ``em`` if use_em is True. - If ``property_value`` has multiple property values, then split it apart. - If the value already has units, then pass it through unchanged. - The value provided shall possess negative signs and decimal points. - Mixed units are allowed, but **not recommended**. - Values shall only contain [] e.g. -1.25 can be processed, but n1_25 cannot be processed. :type property_value: str :param property_value: A string containing one or more space delimited alphanumeric characters. :return: (str) -- Returns the property value with the default or converted units added. >>> # Convert 'px' to 'em' >>> unit_parser = UnitParser(property_name='padding', use_em=True) >>> unit_parser.add_units('1 2 1 2') 0.0625em 0.125em 0.0625em 0.125em >>> # Use default units >>> unit_parser.use_em = False >>> unit_parser.add_units('1 2 1 2') 1px 2px 1px 2px >>> # Values already have units or are not parsable pass through >>> # True produces the same output. >>> unit_parser.use_em = False >>> unit_parser.add_units('55zp') 55zp >>> unit_parser.add_units('17rem') 17rem >>> # Unitless ``property_name`` >>> # causes ``property_value`` to pass through. >>> unit_parser.property_name = 'font-weight' >>> unit_parser.add_units('200') 200 >>> # Mixed units cases - Not a Recommended Practice, >>> # but represent valid CSS. Be careful. >>> unit_parser.use_em = False >>> unit_parser.add_units('5em 6 5em 6') 5em 6px 5em 6px >>> unit_parser.use_em = True >>> unit_parser.add_units('1em 100 4cm 9rem') 1em 6.25em 4cm 9rem """ new_value = [] try: default_units = self.default_property_units_dict[self.property_name] # See if property_name has units. for val in property_value.split(): # single, double and quadruple if set(val) <= self.allowed: val = val.replace('px', '') # Handle 'px' units case. if settings.use_em and default_units == 'px': # Convert units if required. new_value.append(settings.px_to_em(pixels=val)) else: new_value.append(val + default_units) # Use default units. else: new_value.append(val) # Pass through and ignore value. property_value = ' '.join(new_value) # Put the new values back together. except KeyError: pass # Property is unitless. return property_value
46.899083
119
0.529245
b175bf3a54036468fe2e1be5e6519961a9d42b20
23,213
py
Python
tests/fnet/test_modeling_fnet.py
techthiyanes/transformers
705d65368fb28246534ef636fe62c008f4fb2682
[ "Apache-2.0" ]
2
2021-11-25T13:27:29.000Z
2022-02-25T19:21:19.000Z
tests/fnet/test_modeling_fnet.py
techthiyanes/transformers
705d65368fb28246534ef636fe62c008f4fb2682
[ "Apache-2.0" ]
1
2022-03-26T12:10:11.000Z
2022-03-26T12:10:11.000Z
tests/fnet/test_modeling_fnet.py
techthiyanes/transformers
705d65368fb28246534ef636fe62c008f4fb2682
[ "Apache-2.0" ]
1
2022-01-12T14:45:41.000Z
2022-01-12T14:45:41.000Z
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch FNet model. """ import unittest from typing import Dict, List, Tuple from transformers import FNetConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_tokenizers, require_torch, slow, torch_device from ..test_configuration_common import ConfigTester from ..test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetModel, FNetTokenizerFast, ) from transformers.models.fnet.modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetBasicFourierTransform, is_scipy_available, ) # Override ConfigTester class FNetConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) if self.has_text_modality: self.parent.assertTrue(hasattr(config, "vocab_size")) self.parent.assertTrue(hasattr(config, "hidden_size")) self.parent.assertTrue(hasattr(config, "num_hidden_layers")) class FNetModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels def get_config(self): return FNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, tpu_short_seq_length=self.seq_length, ) @require_torch def create_and_check_fourier_transform(self, config): hidden_states = floats_tensor([self.batch_size, self.seq_length, config.hidden_size]) transform = FNetBasicFourierTransform(config) fftn_output = transform(hidden_states) config.use_tpu_fourier_optimizations = True if is_scipy_available(): transform = FNetBasicFourierTransform(config) dft_output = transform(hidden_states) config.max_position_embeddings = 4097 transform = FNetBasicFourierTransform(config) fft_output = transform(hidden_states) if is_scipy_available(): self.parent.assertTrue(torch.allclose(fftn_output[0][0], dft_output[0][0], atol=1e-4)) self.parent.assertTrue(torch.allclose(fft_output[0][0], dft_output[0][0], atol=1e-4)) self.parent.assertTrue(torch.allclose(fftn_output[0][0], fft_output[0][0], atol=1e-4)) def create_and_check_model(self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels): model = FNetModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): model = FNetForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): model = FNetForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_next_sentence_prediction( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): model = FNetForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, token_type_ids=token_type_ids, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): model = FNetForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = FNetForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = FNetForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = FNetForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids} return config, inputs_dict @require_torch class FNetModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = ( ( FNetModel, FNetForPreTraining, FNetForMaskedLM, FNetForNextSentencePrediction, FNetForMultipleChoice, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, ) if is_torch_available() else () ) # Skip Tests test_pruning = False test_head_masking = False test_pruning = False # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict # Overriden Tests def test_attention_outputs(self): pass def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.", ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) # tuple_inputs = self._prepare_for_class(inputs_dict, model_class) # dict_inputs = self._prepare_for_class(inputs_dict, model_class) # check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) def setUp(self): self.model_tester = FNetModelTester(self) self.config_tester = FNetConfigTester(self, config_class=FNetConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in FNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FNetModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class FNetModelIntegrationTest(unittest.TestCase): @slow def test_inference_for_masked_lm(self): """ For comparison: 1. Modify the pre-training model `__call__` to skip computing metrics and return masked_lm_output like so: ``` ... sequence_output, pooled_output = EncoderModel( self.config, random_seed=self.random_seed, name="encoder")( input_ids, input_mask, type_ids, deterministic=deterministic) masked_lm_output = nn.Dense( self.config.d_emb, kernel_init=default_kernel_init, name="predictions_dense")( sequence_output) masked_lm_output = nn.gelu(masked_lm_output) masked_lm_output = nn.LayerNorm( epsilon=LAYER_NORM_EPSILON, name="predictions_layer_norm")( masked_lm_output) masked_lm_logits = layers.OutputProjection( kernel=self._get_embedding_table(), name="predictions_output")( masked_lm_output) next_sentence_logits = layers.OutputProjection( n_out=2, kernel_init=default_kernel_init, name="classification")( pooled_output) return masked_lm_logits ... ``` 2. Run the following: >>> import jax.numpy as jnp >>> import sentencepiece as spm >>> from flax.training import checkpoints >>> from f_net.models import PreTrainingModel >>> from f_net.configs.pretraining import get_config, ModelArchitecture >>> pretrained_params = checkpoints.restore_checkpoint('./f_net/f_net_checkpoint', None) # Location of original checkpoint >>> pretrained_config = get_config() >>> pretrained_config.model_arch = ModelArchitecture.F_NET >>> vocab_filepath = "./f_net/c4_bpe_sentencepiece.model" # Location of the sentence piece model >>> tokenizer = spm.SentencePieceProcessor() >>> tokenizer.Load(vocab_filepath) >>> with pretrained_config.unlocked(): >>> pretrained_config.vocab_size = tokenizer.GetPieceSize() >>> tokens = jnp.array([[0, 1, 2, 3, 4, 5]]) >>> type_ids = jnp.zeros_like(tokens, dtype="i4") >>> attention_mask = jnp.ones_like(tokens) # Dummy. This gets deleted inside the model. >>> flax_pretraining_model = PreTrainingModel(pretrained_config) >>> pretrained_model_params = freeze(pretrained_params['target']) >>> flax_model_outputs = flax_pretraining_model.apply({"params": pretrained_model_params}, tokens, attention_mask, type_ids, None, None, None, None, deterministic=True) >>> masked_lm_logits[:, :3, :3] """ model = FNetForMaskedLM.from_pretrained("google/fnet-base") model.to(torch_device) input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) output = model(input_ids)[0] vocab_size = 32000 expected_shape = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-1.7819, -7.7384, -7.5002], [-3.4746, -8.5943, -7.7762], [-3.2052, -9.0771, -8.3468]]], device=torch_device, ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow @require_tokenizers def test_inference_long_sentence(self): model = FNetForMaskedLM.from_pretrained("google/fnet-base") model.to(torch_device) tokenizer = FNetTokenizerFast.from_pretrained("google/fnet-base") inputs = tokenizer( "the man worked as a [MASK].", "this is his [MASK].", return_tensors="pt", padding="max_length", max_length=512, ) inputs = {k: v.to(torch_device) for k, v in inputs.items()} logits = model(**inputs).logits predictions_mask_1 = tokenizer.decode(logits[0, 6].topk(5).indices) predictions_mask_2 = tokenizer.decode(logits[0, 12].topk(5).indices) self.assertEqual(predictions_mask_1.split(" "), ["man", "child", "teacher", "woman", "model"]) self.assertEqual(predictions_mask_2.split(" "), ["work", "wife", "job", "story", "name"]) @slow def test_inference_for_next_sentence_prediction(self): model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base") model.to(torch_device) input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) output = model(input_ids)[0] expected_shape = torch.Size((1, 2)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[-0.2234, -0.0226]], device=torch_device) self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4)) @slow def test_inference_model(self): model = FNetModel.from_pretrained("google/fnet-base") model.to(torch_device) input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device) output = model(input_ids)[0] expected_shape = torch.Size((1, 6, model.config.hidden_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[4.1541, -0.1051, -0.1667], [-0.9144, 0.2939, -0.0086], [-0.8472, -0.7281, 0.0256]]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
41.525939
315
0.669711
1a128d5e56766edad28c97b713d77d3b3ef8da02
67
py
Python
mapping/enable/primitives/api.py
nmichaud/enable-mapping
421aae6c3c700406df0f2438cec190daf5074084
[ "BSD-3-Clause" ]
1
2019-04-22T16:36:06.000Z
2019-04-22T16:36:06.000Z
mapping/enable/primitives/api.py
pombreda/enable-mapping
421aae6c3c700406df0f2438cec190daf5074084
[ "BSD-3-Clause" ]
null
null
null
mapping/enable/primitives/api.py
pombreda/enable-mapping
421aae6c3c700406df0f2438cec190daf5074084
[ "BSD-3-Clause" ]
2
2015-04-14T10:06:03.000Z
2020-10-03T03:56:47.000Z
from geo_circle import GeoCircle from geo_marker import GeoMarker
16.75
32
0.865672
a267239e4373e2ae20914c31d23d992c10ead5af
365
py
Python
Python/Skrypty/Python - Szkolenie_11-2015/przyklady_rec_python/pickler.py
Elzei/show-off
fd6c46480160d795a7c1c833a798f3d49eddf144
[ "MIT" ]
null
null
null
Python/Skrypty/Python - Szkolenie_11-2015/przyklady_rec_python/pickler.py
Elzei/show-off
fd6c46480160d795a7c1c833a798f3d49eddf144
[ "MIT" ]
null
null
null
Python/Skrypty/Python - Szkolenie_11-2015/przyklady_rec_python/pickler.py
Elzei/show-off
fd6c46480160d795a7c1c833a798f3d49eddf144
[ "MIT" ]
null
null
null
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import pickle class MyContainer(object): def __init__(self, data): self._data = data def get_data(self): return self._data d1 = MyContainer([2, 5, 4, 3, [ 12, 3, 5 ], 32, { 'a': 12, 'b': 43}]) with open('/tmp/pickle_data.dat', "wb") as f: p = pickle.Pickler(f, 2) p.dump(d1)
16.590909
69
0.561644
0104993a0b4d2816985e9cb2c62962b04fe0f7c6
1,251
py
Python
userbot/plugins/fleaveme_IQ.py
noornoor600/telethon-iraq
f958af26e8686f432760ae9b0fce90b94d1d731a
[ "Apache-2.0" ]
2
2022-02-27T11:39:58.000Z
2022-02-27T11:40:00.000Z
userbot/plugins/fleaveme_IQ.py
ForSimo/Telethon
70b6169d367321af55e74589482699b0e90e3c0f
[ "Apache-2.0" ]
null
null
null
userbot/plugins/fleaveme_IQ.py
ForSimo/Telethon
70b6169d367321af55e74589482699b0e90e3c0f
[ "Apache-2.0" ]
null
null
null
#redit: @KLANR """Emoji Available Commands: .fleave""" from telethon import events import asyncio @borg.on(events.NewMessage(pattern=r"\.(.*)", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 1 animation_ttl = range(0, 17) input_str = event.pattern_match.group(1) if input_str == "fleave": await event.edit(input_str) animation_chars = [ "⬛⬛⬛\n⬛⬛⬛\n⬛⬛⬛", "⬛⬛⬛\n⬛🔄⬛\n⬛⬛⬛", "⬛⬆️⬛\n⬛🔄⬛\n⬛⬛⬛", "⬛⬆️↗️\n⬛🔄⬛\n⬛⬛⬛", "⬛⬆️↗️\n⬛🔄➡️\n⬛⬛⬛", "⬛⬆️↗️\n⬛🔄➡️\n⬛⬛↘️", "⬛⬆️↗️\n⬛🔄➡️\n⬛⬇️↘️", "⬛⬆️↗️\n⬛🔄➡️\n↙️⬇️↘️", "⬛⬆️↗️\n⬅️🔄➡️\n↙️⬇️↘️", "↖️⬆️↗️\n⬅️🔄➡️\n↙️⬇️↘️", "**Chat Message Exported To** `./Inpu/`", "**Chat Message Exported To** `./Inpu/homework/`", "**Chat Message Exported To** `./Inpu/homework/groupchat.txt`", "__Legend is leaving this chat.....! Gaand Marao Bc..__", "__Legend is leaving this chat.....! Gaand Marao Bc..__" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 17])
21.20339
75
0.453237
50840b1c592e2ed25c9ef59a755b548812ce851a
18,790
py
Python
lib/googlecloudsdk/calliope/exceptions.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/calliope/exceptions.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/calliope/exceptions.py
kustodian/google-cloud-sdk
b6bae4137d4b58030adb3dcb1271216dfb19f96d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2013 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Exceptions that can be thrown by calliope tools. The exceptions in this file, and those that extend them, can be thrown by the Run() function in calliope tools without worrying about stack traces littering the screen in CLI mode. In interpreter mode, they are not caught from within calliope. """ from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import errno from functools import wraps import os import sys from googlecloudsdk.api_lib.util import exceptions as api_exceptions from googlecloudsdk.core import exceptions as core_exceptions from googlecloudsdk.core import log from googlecloudsdk.core import properties from googlecloudsdk.core.console import console_attr from googlecloudsdk.core.console import console_attr_os import six def NewErrorFromCurrentException(error, *args): """Creates a new error based on the current exception being handled. If no exception is being handled, a new error with the given args is created. If there is a current exception, the original exception is first logged (to file only). A new error is then created with the same args as the current one. Args: error: The new error to create. *args: The standard args taken by the constructor of Exception for the new exception that is created. If None, the args from the exception currently being handled will be used. Returns: The generated error exception. """ (_, current_exception, _) = sys.exc_info() # Log original exception details and traceback to the log file if we are # currently handling an exception. if current_exception: file_logger = log.file_only_logger file_logger.error('Handling the source of a tool exception, ' 'original details follow.') file_logger.exception(current_exception) if args: return error(*args) elif current_exception: return error(*current_exception.args) return error('An unknown error has occurred') # TODO(b/32328530): Remove ToolException when the last ref is gone class ToolException(core_exceptions.Error): """ToolException is for Run methods to throw for non-code-bug errors. Attributes: command_name: The dotted group and command name for the command that threw this exception. This value is set by calliope. """ @staticmethod def FromCurrent(*args): return NewErrorFromCurrentException(ToolException, *args) class ExitCodeNoError(core_exceptions.Error): """A special exception for exit codes without error messages. If this exception is raised, it's identical in behavior to returning from the command code, except the overall exit code will be different. """ class FailedSubCommand(core_exceptions.Error): """Exception capturing a subcommand which did sys.exit(code).""" def __init__(self, cmd, code): super(FailedSubCommand, self).__init__( 'Failed command: [{0}] with exit code [{1}]'.format( ' '.join(cmd), code), exit_code=code) def RaiseErrorInsteadOf(error, *error_types): """A decorator that re-raises as an error. If any of the error_types are raised in the decorated function, this decorator will re-raise as an error. Args: error: Exception, The new exception to raise. *error_types: [Exception], A list of exception types that this decorator will watch for. Returns: The decorated function. """ def Wrap(func): """Wrapper function for the decorator.""" @wraps(func) def TryFunc(*args, **kwargs): try: return func(*args, **kwargs) except error_types: core_exceptions.reraise(NewErrorFromCurrentException(error)) return TryFunc return Wrap # TODO(b/32328530): Remove RaiseToolExceptionInsteadOf when the last ref is gone def RaiseToolExceptionInsteadOf(*error_types): """A decorator that re-raises as ToolException.""" return RaiseErrorInsteadOf(ToolException, *error_types) def _TruncateToLineWidth(string, align, width, fill=''): """Truncate string to line width, right aligning at align. Examples (assuming a screen width of 10): >>> _TruncateToLineWidth('foo', 0) 'foo' >>> # Align to the beginning. Should truncate the end. ... _TruncateToLineWidth('0123456789abcdef', 0) '0123456789' >>> _TruncateToLineWidth('0123456789abcdef', 0, fill='...') '0123456...' >>> # Align to the end. Should truncate the beginning. ... _TruncateToLineWidth('0123456789abcdef', 16) '6789abcdef' >>> _TruncateToLineWidth('0123456789abcdef', 16, fill='...') '...9abcdef' >>> # Align to the middle (note: the index is toward the end of the string, ... # because this function right-aligns to the given index). ... # Should truncate the begnining and end. ... _TruncateToLineWidth('0123456789abcdef', 12) '23456789ab' >>> _TruncateToLineWidth('0123456789abcdef', 12, fill='...') '...5678...' Args: string: string to truncate align: index to right-align to width: maximum length for the resulting string fill: if given, indicate truncation with this string. Must be shorter than terminal width / 2. Returns: str, the truncated string Raises: ValueError, if provided fill is too long for the terminal. """ if len(fill) >= width // 2: # Either the caller provided a fill that's way too long, or the user has a # terminal that's way too narrow. In either case, we aren't going to be able # to make this look nice, but we don't want to throw an error because that # will mask the original error. log.warning('Screen not wide enough to display correct error message.') return string if len(string) <= width: return string if align > width: string = fill + string[align-width+len(fill):] if len(string) <= width: return string string = string[:width-len(fill)] + fill return string _MARKER = '^ invalid character' def _NonAsciiIndex(s): """Returns the index of the first non-ascii char in s, -1 if all ascii.""" if isinstance(s, six.text_type): for i, c in enumerate(s): try: c.encode('ascii') except (AttributeError, UnicodeError): return i else: for i, b in enumerate(s): try: b.decode('ascii') except (AttributeError, UnicodeError): return i return -1 # pylint: disable=g-doc-bad-indent def _FormatNonAsciiMarkerString(args): r"""Format a string that will mark the first non-ASCII character it contains. Example: >>> args = ['command.py', '--foo=\xce\x94'] >>> _FormatNonAsciiMarkerString(args) == ( ... 'command.py --foo=\u0394\n' ... ' ^ invalid character' ... ) True Args: args: The arg list for the command executed Returns: unicode, a properly formatted string with two lines, the second of which indicates the non-ASCII character in the first. Raises: ValueError: if the given string is all ASCII characters """ # pos is the position of the first non-ASCII character in ' '.join(args) pos = 0 for arg in args: first_non_ascii_index = _NonAsciiIndex(arg) if first_non_ascii_index >= 0: pos += first_non_ascii_index break # this arg was all ASCII; add 1 for the ' ' between args pos += len(arg) + 1 else: raise ValueError( 'The command line is composed entirely of ASCII characters.') # Make a string that, when printed in parallel, will point to the non-ASCII # character marker_string = ' ' * pos + _MARKER # Make sure that this will still print out nicely on an odd-sized screen align = len(marker_string) args_string = ' '.join( [console_attr.SafeText(arg) for arg in args]) width, _ = console_attr_os.GetTermSize() fill = '...' if width < len(_MARKER) + len(fill): # It's hopeless to try to wrap this and make it look nice. Preserve it in # full for logs and so on. return '\n'.join((args_string, marker_string)) # If len(args_string) < width < len(marker_string) (ex:) # # args_string = 'command BAD' # marker_string = ' ^ invalid character' # width = len('----------------') # # then the truncation can give a result like the following: # # args_string = 'command BAD' # marker_string = ' ^ invalid character' # # (This occurs when args_string is short enough to not be truncated, but # marker_string is long enough to be truncated.) # # ljust args_string to make it as long as marker_string before passing to # _TruncateToLineWidth, which will yield compatible truncations. rstrip at the # end to get rid of the new trailing spaces. formatted_args_string = _TruncateToLineWidth(args_string.ljust(align), align, width, fill=fill).rstrip() formatted_marker_string = _TruncateToLineWidth(marker_string, align, width) return '\n'.join((formatted_args_string, formatted_marker_string)) class InvalidCharacterInArgException(ToolException): """InvalidCharacterInArgException is for non-ASCII CLI arguments.""" def __init__(self, args, invalid_arg): self.invalid_arg = invalid_arg cmd = os.path.basename(args[0]) if cmd.endswith('.py'): cmd = cmd[:-3] args = [cmd] + args[1:] super(InvalidCharacterInArgException, self).__init__( 'Failed to read command line argument [{0}] because it does ' 'not appear to be valid 7-bit ASCII.\n\n' '{1}'.format( console_attr.SafeText(self.invalid_arg), _FormatNonAsciiMarkerString(args))) class BadArgumentException(ToolException): """For arguments that are wrong for reason hard to summarize.""" def __init__(self, argument_name, message): super(BadArgumentException, self).__init__( 'Invalid value for [{0}]: {1}'.format(argument_name, message)) self.argument_name = argument_name # TODO(b/35938745): Eventually use api_exceptions.HttpException exclusively. class HttpException(api_exceptions.HttpException): """HttpException is raised whenever the Http response status code != 200. See api_lib.util.exceptions.HttpException for full documentation. """ class InvalidArgumentException(ToolException): """InvalidArgumentException is for malformed arguments.""" def __init__(self, parameter_name, message): super(InvalidArgumentException, self).__init__( 'Invalid value for [{0}]: {1}'.format(parameter_name, message)) self.parameter_name = parameter_name class ConflictingArgumentsException(ToolException): """ConflictingArgumentsException arguments that are mutually exclusive.""" def __init__(self, *parameter_names): super(ConflictingArgumentsException, self).__init__( 'arguments not allowed simultaneously: ' + ', '.join(parameter_names)) self.parameter_names = parameter_names class UnknownArgumentException(ToolException): """UnknownArgumentException is for arguments with unexpected values.""" def __init__(self, parameter_name, message): super(UnknownArgumentException, self).__init__( 'Unknown value for [{0}]: {1}'.format(parameter_name, message)) self.parameter_name = parameter_name class RequiredArgumentException(ToolException): """An exception for when a usually optional argument is required in this case. """ def __init__(self, parameter_name, message): super(RequiredArgumentException, self).__init__( 'Missing required argument [{0}]: {1}'.format(parameter_name, message)) self.parameter_name = parameter_name class OneOfArgumentsRequiredException(ToolException): """An exception for when one of usually optional arguments is required. """ def __init__(self, parameters, message): super(OneOfArgumentsRequiredException, self).__init__( 'One of arguments [{0}] is required: {1}'.format( ', '.join(parameters), message)) self.parameters = parameters class MinimumArgumentException(ToolException): """An exception for when one of several arguments is required.""" def __init__(self, parameter_names, message=None): if message: message = ': {}'.format(message) else: message = '' super(MinimumArgumentException, self).__init__( 'One of [{0}] must be supplied{1}.'.format( ', '.join(['{0}'.format(p) for p in parameter_names]), message) ) class BadFileException(ToolException): """BadFileException is for problems reading or writing a file.""" # pylint: disable=g-import-not-at-top, Delay the import of this because # importing store is relatively expensive. def _GetTokenRefreshError(exc): from googlecloudsdk.core.credentials import store return store.TokenRefreshError(exc) # In general, lower level libraries should be catching exceptions and re-raising # exceptions that extend core.Error so nice error messages come out. There are # some error classes that want to be handled as recoverable errors, but cannot # import the core_exceptions module (and therefore the Error class) for various # reasons (e.g. circular dependencies). To work around this, we keep a list of # known "friendly" error types, which we handle in the same way as core.Error. # Additionally, we provide an alternate exception class to convert the errors # to which may add additional information. We use strings here so that we don't # have to import all these libraries all the time, just to be able to handle the # errors when they come up. Only add errors here if there is no other way to # handle them. _KNOWN_ERRORS = { 'apitools.base.py.exceptions.HttpError': HttpException, 'googlecloudsdk.calliope.parser_errors.ArgumentError': lambda x: None, 'googlecloudsdk.core.util.files.Error': lambda x: None, 'httplib.ResponseNotReady': core_exceptions.NetworkIssueError, # Same error but different location on PY3. 'http.client.ResponseNotReady': core_exceptions.NetworkIssueError, 'oauth2client.client.AccessTokenRefreshError': _GetTokenRefreshError, 'ssl.SSLError': core_exceptions.NetworkIssueError, 'socket.error': core_exceptions.NetworkIssueError, } def _GetExceptionName(cls): """Returns the exception name used as index into _KNOWN_ERRORS from type.""" return cls.__module__ + '.' + cls.__name__ _SOCKET_ERRNO_NAMES = { 'EADDRINUSE', 'EADDRNOTAVAIL', 'EAFNOSUPPORT', 'EBADMSG', 'ECOMM', 'ECONNABORTED', 'ECONNREFUSED', 'ECONNRESET', 'EDESTADDRREQ', 'EHOSTDOWN', 'EHOSTUNREACH', 'EISCONN', 'EMSGSIZE', 'EMULTIHOP', 'ENETDOWN', 'ENETRESET', 'ENETUNREACH', 'ENOBUFS', 'ENOPROTOOPT', 'ENOTCONN', 'ENOTSOCK', 'ENOTUNIQ', 'EOPNOTSUPP', 'EPFNOSUPPORT', 'EPROTO', 'EPROTONOSUPPORT', 'EPROTOTYPE', 'EREMCHG', 'EREMOTEIO', 'ESHUTDOWN', 'ESOCKTNOSUPPORT', 'ETIMEDOUT', 'ETOOMANYREFS', } def _IsSocketError(exc): """Returns True if exc is a socket error exception.""" # I've a feeling we're not in python 2 anymore. PEP 3151 eliminated module # specific exceptions in favor of builtin exceptions like OSError. Good # for some things, bad for others. For instance, this brittle errno check # for "network" errors. We use names because errnos are system dependent. return errno.errorcode[exc.errno] in _SOCKET_ERRNO_NAMES def ConvertKnownError(exc): """Convert the given exception into an alternate type if it is known. Searches backwards through Exception type hierarchy until it finds a match. Args: exc: Exception, the exception to convert. Returns: (exception, bool), exception is None if this is not a known type, otherwise a new exception that should be logged. The boolean is True if the error should be printed, or False to just exit without printing. """ if isinstance(exc, ExitCodeNoError): return exc, False elif isinstance(exc, core_exceptions.Error): return exc, True known_err = None classes = [type(exc)] processed = set([]) # To avoid circular dependencies while classes: cls = classes.pop(0) processed.add(cls) name = _GetExceptionName(cls) if name == 'builtins.OSError' and _IsSocketError(exc): known_err = core_exceptions.NetworkIssueError else: known_err = _KNOWN_ERRORS.get(name) if known_err: break bases = [bc for bc in cls.__bases__ if bc not in processed and issubclass(bc, Exception)] classes.extend([base for base in bases if base is not Exception]) if not known_err: # This is not a known error type return None, True # If there is no known exception just return the original exception. new_exc = known_err(exc) return (new_exc, True) if new_exc else (exc, True) def HandleError(exc, command_path, known_error_handler=None): """Handles an error that occurs during command execution. It calls ConvertKnownError to convert exceptions to known types before processing. If it is a known type, it is printed nicely as as error. If not, it is raised as a crash. Args: exc: Exception, The original exception that occurred. command_path: str, The name of the command that failed (for error reporting). known_error_handler: f(): A function to report the current exception as a known error. """ known_exc, print_error = ConvertKnownError(exc) if known_exc: _LogKnownError(known_exc, command_path, print_error) # Uncaught errors will be handled in gcloud_main. if known_error_handler: known_error_handler() if properties.VALUES.core.print_handled_tracebacks.GetBool(): core_exceptions.reraise(exc) _Exit(known_exc) else: # Make sure any uncaught exceptions still make it into the log file. log.debug(console_attr.SafeText(exc), exc_info=sys.exc_info()) core_exceptions.reraise(exc) def _LogKnownError(known_exc, command_path, print_error): msg = '({0}) {1}'.format( console_attr.SafeText(command_path), console_attr.SafeText(known_exc)) log.debug(msg, exc_info=sys.exc_info()) if print_error: log.error(msg) def _Exit(exc): """This method exists so we can mock this out during testing to not exit.""" # exit_code won't be defined in the KNOWN_ERRORs classes sys.exit(getattr(exc, 'exit_code', 1))
34.796296
80
0.714476
e9ce0845f3b552a47981f84f1c94393045958930
8,804
py
Python
tests/tensortrade/orders/test_broker.py
Kukunin/tensortrade
c5b5c40232a334d9b38359eab0c0ce0e4c9e43ed
[ "Apache-2.0" ]
6
2020-03-05T14:49:01.000Z
2022-02-28T01:55:50.000Z
tests/tensortrade/orders/test_broker.py
Machine-Learning-Labs/tensortrade
3fe7793a6c1d3d7bfe772166578f624f3f572eca
[ "Apache-2.0" ]
null
null
null
tests/tensortrade/orders/test_broker.py
Machine-Learning-Labs/tensortrade
3fe7793a6c1d3d7bfe772166578f624f3f572eca
[ "Apache-2.0" ]
null
null
null
import pytest import unittest.mock as mock from tensortrade.orders import Broker, OrderStatus, Order, OrderSpec from tensortrade.orders.criteria import Stop from tensortrade.wallets import Wallet, Portfolio from tensortrade.trades import TradeSide, TradeType from tensortrade.instruments import USD, BTC, Quantity @mock.patch('tensortrade.exchanges.Exchange') def test_init(mock_exchange_class): exchange = mock_exchange_class.return_value broker = Broker(exchange) assert broker assert broker.exchanges == [exchange] assert broker.unexecuted == [] assert broker.executed == {} assert broker.trades == {} exchanges = [ mock_exchange_class.return_value, mock_exchange_class.return_value, mock_exchange_class.return_value ] broker = Broker(exchanges) assert broker assert broker.exchanges == exchanges assert broker.unexecuted == [] assert broker.executed == {} assert broker.trades == {} @mock.patch('tensortrade.orders.Order') @mock.patch('tensortrade.exchanges.Exchange') def test_submit(mock_order_class, mock_exchange_class): exchange = mock_exchange_class.return_value broker = Broker(exchange) order = mock_order_class.return_value assert broker.unexecuted == [] broker.submit(order) assert order in broker.unexecuted @mock.patch('tensortrade.orders.Order') @mock.patch('tensortrade.exchanges.Exchange') def test_cancel_unexecuted_order(mock_order_class, mock_exchange_class): exchange = mock_exchange_class.return_value broker = Broker(exchange) order = mock_order_class.return_value order.cancel = mock.Mock(return_value=None) order.status = OrderStatus.PENDING broker.submit(order) assert order in broker.unexecuted broker.cancel(order) assert order not in broker.unexecuted order.cancel.assert_called_once_with(exchange) @mock.patch('tensortrade.orders.Order') @mock.patch('tensortrade.exchanges.Exchange') def test_cancel_executed_order(mock_order_class, mock_exchange_class): exchange = mock_exchange_class.return_value broker = Broker(exchange) order = mock_order_class.return_value order.cancel = mock.Mock(return_value=None) broker.submit(order) assert order in broker.unexecuted order.status = OrderStatus.OPEN with pytest.raises(Warning): broker.cancel(order) order.status = OrderStatus.PARTIALLY_FILLED with pytest.raises(Warning): broker.cancel(order) order.status = OrderStatus.FILLED with pytest.raises(Warning): broker.cancel(order) order.status = OrderStatus.CANCELLED with pytest.raises(Warning): broker.cancel(order) @mock.patch('tensortrade.orders.Order') @mock.patch('tensortrade.exchanges.Exchange') def test_update_on_single_exchange_with_single_order(mock_order_class, mock_exchange_class): exchange = mock_exchange_class.return_value broker = Broker(exchange) order = mock_order_class.return_value order.id = "fake_id" order.is_executable_on = mock.Mock(side_effect=[False, True]) order.attach = mock.Mock(return_value=None) broker.submit(order) # Test order does not execute on first update broker.update() assert order in broker.unexecuted assert order.id not in broker.executed # Test order does execute on second update broker.update() assert order not in broker.unexecuted assert order.id in broker.executed order.attach.assert_called_once_with(broker) @mock.patch('tensortrade.exchanges.Exchange') def test_update_on_single_exchange_with_multiple_orders(mock_exchange_class): exchange = mock_exchange_class.return_value exchange.id = "fake_exchange_id" wallets = [Wallet(exchange, 10000 * USD), Wallet(exchange, 0 * BTC)] portfolio = Portfolio(USD, wallets) broker = Broker(exchange) # Submit order 1 o1 = Order(side=TradeSide.BUY, trade_type=TradeType.MARKET, pair=USD / BTC, quantity=5200.00 * USD, portfolio=portfolio, price=7000.00) o1.is_executable_on = mock.MagicMock(side_effect=[False, True]) broker.submit(o1) # Submit order 2 o2 = Order(side=TradeSide.BUY, trade_type=TradeType.MARKET, pair=USD / BTC, quantity=230.00 * USD, portfolio=portfolio, price=7300.00) o2.is_executable_on = mock.MagicMock(side_effect=[True, False]) broker.submit(o2) # No updates have been made yet assert o1 in broker.unexecuted and o1 not in broker.executed assert o2 in broker.unexecuted and o2 not in broker.executed # First update broker.update() assert o1 in broker.unexecuted and o1.id not in broker.executed assert o2 not in broker.unexecuted and o2.id in broker.executed # Second update broker.update() assert o1 not in broker.unexecuted and o1.id in broker.executed assert o2 not in broker.unexecuted and o2.id in broker.executed @mock.patch('tensortrade.exchanges.Exchange') @mock.patch('tensortrade.trades.Trade') def test_on_fill(mock_trade_class, mock_exchange_class): exchange = mock_exchange_class.return_value exchange.id = "fake_exchange_id" broker = Broker(exchange) wallets = [Wallet(exchange, 10000 * USD), Wallet(exchange, 0 * BTC)] portfolio = Portfolio(USD, wallets) order = Order(side=TradeSide.BUY, trade_type=TradeType.MARKET, pair=USD / BTC, quantity=5200.00 * USD, portfolio=portfolio, price=7000.00) order.attach(broker) order.execute(exchange) broker._executed[order.id] = order trade = mock_trade_class.return_value trade.size = 5197.00 trade.commission = 3.00 * USD trade.order_id = order.id assert order.status == OrderStatus.OPEN order.fill(exchange, trade) assert order.status == OrderStatus.FILLED assert order.remaining_size == 0 assert trade in broker.trades[order.id] @mock.patch('tensortrade.exchanges.Exchange') @mock.patch('tensortrade.trades.Trade') def test_on_fill_with_complex_order(mock_trade_class, mock_exchange_class): exchange = mock_exchange_class.return_value exchange.id = "fake_exchange_id" broker = Broker(exchange) wallets = [Wallet(exchange, 10000 * USD), Wallet(exchange, 0 * BTC)] portfolio = Portfolio(USD, wallets) side = TradeSide.BUY order = Order(side=TradeSide.BUY, trade_type=TradeType.MARKET, pair=USD / BTC, quantity=5200.00 * USD, portfolio=portfolio, price=7000.00) risk_criteria = Stop("down", 0.03) ^ Stop("up", 0.02) risk_management = OrderSpec(side=TradeSide.SELL if side == TradeSide.BUY else TradeSide.BUY, trade_type=TradeType.MARKET, pair=USD / BTC, criteria=risk_criteria) order += risk_management order.attach(broker) order.execute(exchange) broker._executed[order.id] = order # Execute fake trade price = 7000.00 scale = order.price / price commission = 3.00 * USD base_size = scale * order.size - commission.size trade = mock_trade_class.return_value trade.order_id = order.id trade.size = base_size trade.price = price trade.commission = commission base_wallet = portfolio.get_wallet(exchange.id, USD) quote_wallet = portfolio.get_wallet(exchange.id, BTC) base_size = trade.size + trade.commission.size quote_size = (order.price / trade.price) * (trade.size / trade.price) base_wallet -= Quantity(USD, size=base_size, path_id=order.path_id) quote_wallet += Quantity(BTC, size=quote_size, path_id=order.path_id) assert trade.order_id in broker.executed.keys() assert trade not in broker.trades assert broker.unexecuted == [] order.fill(exchange, trade) assert order.remaining_size == 0 assert trade in broker.trades[order.id] assert broker.unexecuted != [] @mock.patch('tensortrade.exchanges.Exchange') def test_reset(mock_exchange_class): exchange = mock_exchange_class.return_value exchange.id = "fake_exchange_id" broker = Broker(exchange) broker._unexecuted = [78, 98, 100] broker._executed = {'a': 1, 'b': 2} broker._trades = {'a': 2, 'b': 3} broker.reset() assert broker.unexecuted == [] assert broker.executed == {} assert broker.trades == {}
29.249169
96
0.677079
94292bbe36047d5efe647010767d8fd6a0f692e4
1,403
py
Python
setup.py
metaist/attrbox
68c595f58e641f6e8ab1d5eb0bd163819823dd25
[ "MIT" ]
null
null
null
setup.py
metaist/attrbox
68c595f58e641f6e8ab1d5eb0bd163819823dd25
[ "MIT" ]
null
null
null
setup.py
metaist/attrbox
68c595f58e641f6e8ab1d5eb0bd163819823dd25
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 """Install library package.""" # native from pathlib import Path import site import sys # lib from setuptools import setup, find_namespace_packages # pkg pkg = {} here = Path(__file__).parent.resolve() exec( # pylint: disable=exec-used (here / "src" / "attrbox" / "__about__.py").open(encoding="utf-8").read(), pkg ) # See: https://github.com/pypa/pip/issues/7953 site.ENABLE_USER_SITE = "--user" in sys.argv[1:] # See: https://github.com/pypa/pipenv/issues/1911 # See: https://caremad.io/posts/2013/07/setup-vs-requirement/ setup( python_requires=">=3.8", name="attrbox", version=pkg["__version__"], description=pkg["__doc__"].split("\n")[0], long_description=(here / "README.md").read_text(encoding="utf-8"), long_description_content_type="text/markdown", license=pkg["__license__"], author=pkg["__author__"], author_email=pkg["__email__"], url=pkg["__url__"], download_url=pkg["__url__"], package_dir={"": "src"}, packages=find_namespace_packages(where="src"), install_requires=["setuptools"], keywords=["attr", "attributes", "dict", "list"], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: OS Independent", ], )
28.06
82
0.655738
69602341b98c1a1c9600bbf47271386f31dbffb5
2,065
py
Python
autorest/python/emsapi/models/adi_ems_web_api_v2_dto_ems_profile_ems_profile.py
ge-flight-analytics/ems-api-wrappers
5e787e0cbc72e7a3b06fa83ff6ba07968231f89c
[ "MIT" ]
2
2017-02-20T18:32:02.000Z
2018-08-01T11:45:29.000Z
autorest/python/emsapi/models/adi_ems_web_api_v2_dto_ems_profile_ems_profile.py
ge-flight-analytics/ems-api-wrappers
5e787e0cbc72e7a3b06fa83ff6ba07968231f89c
[ "MIT" ]
10
2017-02-20T16:17:04.000Z
2019-04-02T16:52:49.000Z
autorest/python/emsapi/models/adi_ems_web_api_v2_dto_ems_profile_ems_profile.py
ge-flight-analytics/ems-api-wrappers
5e787e0cbc72e7a3b06fa83ff6ba07968231f89c
[ "MIT" ]
2
2017-02-18T23:22:20.000Z
2017-02-20T19:35:38.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class AdiEmsWebApiV2DtoEmsProfileEmsProfile(Model): """Represents an APM (Automated Parameter Measurement) profile in an EMS system. :param profile_id: The local identifier for a profile :type profile_id: int :param profile_guid: The unique identifier of a profile in the system :type profile_guid: str :param profile_name: The name of the profile :type profile_name: str :param library: Flag for if a profile is a library profile :type library: bool :param current_version: The version of the profile :type current_version: int :param path: Path to the profile's location :type path: str """ _validation = { 'profile_id': {'required': True}, 'profile_guid': {'required': True}, 'profile_name': {'required': True}, 'library': {'required': True}, 'current_version': {'required': True}, 'path': {'required': True}, } _attribute_map = { 'profile_id': {'key': 'profileId', 'type': 'int'}, 'profile_guid': {'key': 'profileGuid', 'type': 'str'}, 'profile_name': {'key': 'profileName', 'type': 'str'}, 'library': {'key': 'library', 'type': 'bool'}, 'current_version': {'key': 'currentVersion', 'type': 'int'}, 'path': {'key': 'path', 'type': 'str'}, } def __init__(self, profile_id, profile_guid, profile_name, library, current_version, path): super(AdiEmsWebApiV2DtoEmsProfileEmsProfile, self).__init__() self.profile_id = profile_id self.profile_guid = profile_guid self.profile_name = profile_name self.library = library self.current_version = current_version self.path = path
37.545455
95
0.599031
37920055d0056c7586e982605ed94ee9ce144795
242
py
Python
03/get_entropy.py
MarBry111/KiBIF
06cc6d969323045b38a52831a695d13bb5ebc2ab
[ "MIT" ]
null
null
null
03/get_entropy.py
MarBry111/KiBIF
06cc6d969323045b38a52831a695d13bb5ebc2ab
[ "MIT" ]
null
null
null
03/get_entropy.py
MarBry111/KiBIF
06cc6d969323045b38a52831a695d13bb5ebc2ab
[ "MIT" ]
null
null
null
import struct import time import os t = 0.5 T = 100 for ii in range(int(T*60/t)): time.sleep(t) #os.system('cat /proc/sys/kernel/random/entropy_avail') os.system('cat /proc/sys/kernel/random/entropy_avail >> ~/Desktop/entropy.txt')
16.133333
80
0.698347
dbe01842bebe419900324ef00b06f3f69ed5c950
4,771
py
Python
rlmolecule/alphazero/alphazero.py
dmdu/rlmolecule
5c9187775ef99ea6a06992788116754b1b308a8c
[ "BSD-3-Clause" ]
null
null
null
rlmolecule/alphazero/alphazero.py
dmdu/rlmolecule
5c9187775ef99ea6a06992788116754b1b308a8c
[ "BSD-3-Clause" ]
null
null
null
rlmolecule/alphazero/alphazero.py
dmdu/rlmolecule
5c9187775ef99ea6a06992788116754b1b308a8c
[ "BSD-3-Clause" ]
null
null
null
import logging import math import numpy as np from rlmolecule.alphazero.alphazero_problem import AlphaZeroProblem from rlmolecule.alphazero.alphazero_vertex import AlphaZeroVertex from rlmolecule.mcts.mcts import MCTS from rlmolecule.mcts.mcts_vertex import MCTSVertex from rlmolecule.tree_search.graph_search_state import GraphSearchState from rlmolecule.tree_search.reward import Reward logger = logging.getLogger(__name__) class AlphaZero(MCTS): """ This class defines the interface for implementing AlphaZero-based games within this framework. Such a game overrides the abstract methods below with application-specific implementations. AlphaZeroGame interacts with AlphaZeroVertex. See AlphaZeroVertex for more details. """ def __init__(self, problem: AlphaZeroProblem, min_reward: float = 0.0, pb_c_base: float = 1.0, pb_c_init: float = 1.25, dirichlet_noise: bool = True, dirichlet_alpha: float = 1.0, dirichlet_x: float = 0.25, **kwargs) -> None: """ Constructor. :param min_reward: Minimum reward to return for invalid actions :param pb_c_base: :param pb_c_init: :param dirichlet_noise: whether to add dirichlet noise :param dirichlet_alpha: dirichlet 'shape' parameter. Larger values spread out probability over more moves. :param dirichlet_x: percentage to favor dirichlet noise vs. prior estimation. Smaller means less noise """ super().__init__(problem, vertex_class=AlphaZeroVertex, **kwargs) self._min_reward: float = min_reward self._pb_c_base: float = pb_c_base self._pb_c_init: float = pb_c_init self._dirichlet_noise: bool = dirichlet_noise self._dirichlet_alpha: float = dirichlet_alpha self._dirichlet_x: float = dirichlet_x @property def problem(self) -> AlphaZeroProblem: # noinspection PyTypeChecker return self._problem def _accumulate_path_data(self, vertex: MCTSVertex, path: []): children = vertex.children visit_sum = sum(child.visit_count for child in children) child_visits = [(child, child.visit_count / visit_sum) for child in children] path.append((vertex, child_visits)) def _evaluate( self, search_path: [AlphaZeroVertex], ) -> Reward: """ Expansion step of AlphaZero, overrides MCTS evaluate step. Estimates the value of a leaf vertex. """ assert len(search_path) > 0, 'Invalid attempt to evaluate an empty search path.' leaf = search_path[-1] self._expand(leaf) children = leaf.children if len(children) == 0: return self.problem.reward_wrapper(leaf) # get value estimate and child priors value, child_priors = self.problem.get_value_and_policy(leaf) # Store prior values for child vertices predicted from the policy network, and add dirichlet noise as # specified in the game configuration. prior_array: np.ndarray = np.array([child_priors[child] for child in children]) if self._dirichlet_noise: random_state = np.random.RandomState() noise = random_state.dirichlet(np.ones_like(prior_array) * self._dirichlet_alpha) prior_array = prior_array * (1 - self._dirichlet_x) + (noise * self._dirichlet_x) child_priors = prior_array.tolist() normalization_factor = sum(child_priors) leaf.child_priors = {child: prior / normalization_factor for child, prior in zip(children, child_priors)} return self.problem.reward_class(scaled_reward=value) def run(self, *args, **kwargs) -> ([], float): path, reward = MCTS.run(self, *args, **kwargs) self.problem.store_search_statistics(path, reward) return path, reward def _ucb_score(self, parent: AlphaZeroVertex, child: AlphaZeroVertex) -> float: """ A modified upper confidence bound score for the vertices value, incorporating the prior prediction. :param child: Vertex for which the UCB score is desired :return: UCB score for the given child """ child_priors = parent.child_priors if child_priors is None: return math.inf pb_c = np.log((parent.visit_count + self._pb_c_base + 1) / self._pb_c_base) + self._pb_c_init pb_c *= np.sqrt(parent.visit_count) / (child.visit_count + 1) prior_score = pb_c * child_priors[child] return prior_score + child.value def _make_new_vertex(self, state: GraphSearchState) -> AlphaZeroVertex: return AlphaZeroVertex(state)
40.777778
114
0.673653
1c317c6f990469410000fc123e1ab7a1df626cbd
314
py
Python
LC/70.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
2
2018-02-24T17:20:02.000Z
2018-02-24T17:25:43.000Z
LC/70.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
null
null
null
LC/70.py
szhu3210/LeetCode_Solutions
64747eb172c2ecb3c889830246f3282669516e10
[ "MIT" ]
null
null
null
class Solution(object): dict={1:1, 2:2} def climbStairs(self, n): """ :type n: int :rtype: int """ if n in self.dict: return self.dict[n] else: self.dict[n] = self.climbStairs(n-2) + njh return self.dict[n]
26.166667
74
0.43949
4527fbaf17dcc4265c1148afd93472cbb2c8112c
7,325
py
Python
mmseg/core/evaluation/class_names.py
weiyx16/mmsegmentation
6d35d76195f173fbc6b119a7d7815e67d78024c6
[ "Apache-2.0" ]
18
2022-03-28T12:36:21.000Z
2022-03-31T10:47:07.000Z
mmseg/core/evaluation/class_names.py
weiyx16/mmsegmentation
6d35d76195f173fbc6b119a7d7815e67d78024c6
[ "Apache-2.0" ]
13
2022-02-15T20:05:18.000Z
2022-02-15T20:05:21.000Z
mmseg/core/evaluation/class_names.py
weiyx16/mmsegmentation
6d35d76195f173fbc6b119a7d7815e67d78024c6
[ "Apache-2.0" ]
4
2022-03-28T14:19:41.000Z
2022-03-30T08:06:55.000Z
# Copyright (c) OpenMMLab. All rights reserved. import mmcv def cityscapes_classes(): """Cityscapes class names for external use.""" return [ 'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle' ] def ade_classes(): """ADE20K class names for external use.""" return [ 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', 'clock', 'flag' ] def voc_classes(): """Pascal VOC class names for external use.""" return [ 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] def cityscapes_palette(): """Cityscapes palette for external use.""" return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]] def ade_palette(): """ADE20K palette for external use.""" return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]] def voc_palette(): """Pascal VOC palette for external use.""" return [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]] dataset_aliases = { 'cityscapes': ['cityscapes'], 'ade': ['ade', 'ade20k'], 'voc': ['voc', 'pascal_voc', 'voc12', 'voc12aug'] } def get_classes(dataset): """Get class names of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_classes()') else: raise ValueError(f'Unrecognized dataset: {dataset}') else: raise TypeError(f'dataset must a str, but got {type(dataset)}') return labels def get_palette(dataset): """Get class palette (RGB) of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_palette()') else: raise ValueError(f'Unrecognized dataset: {dataset}') else: raise TypeError(f'dataset must a str, but got {type(dataset)}') return labels
47.564935
79
0.484642
5de8398b704d04047899f2ed2ed5eff0cf9f95aa
1,371
py
Python
src/models/activity_paper.py
mirgee/thesis_project
296f292a84fe4756374d87c81e657ac991766a60
[ "MIT" ]
null
null
null
src/models/activity_paper.py
mirgee/thesis_project
296f292a84fe4756374d87c81e657ac991766a60
[ "MIT" ]
2
2020-03-24T17:03:19.000Z
2020-03-31T03:19:19.000Z
src/models/activity_paper.py
mirgee/thesis_project
296f292a84fe4756374d87c81e657ac991766a60
[ "MIT" ]
null
null
null
from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense, BatchNormalization from keras.models import Sequential from keras import optimizers from keras import initializers # From 'Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for # Activity Recognition' paper def activity_model(): model = Sequential() ki = initializers.RandomNormal() model.add(Conv2D(16, (3, 3), activation='relu', input_shape=(image_height,image_width,num_channels), kernel_initializer=ki)) model.add(Conv2D(16, (3, 3), activation='relu', kernel_initializer=ki)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer=ki)) model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer=ki)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu', kernel_initializer=ki)) model.add(Dropout(0.5)) model.add(Dense(2, activation='softmax')) model.compile(optimizer=optimizers.Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=1e-8, decay=0.0, amsgrad=False), loss='binary_crossentropy', metrics=['accuracy']) return model
45.7
119
0.706054
32e0425be109268a570067cd95b0b8a86ca6bf4d
199
py
Python
controller/test_op.py
airlovelq/flask-frame
86a97522a6eff4e34f0cd5c131ebf68f7c78390a
[ "Apache-2.0" ]
null
null
null
controller/test_op.py
airlovelq/flask-frame
86a97522a6eff4e34f0cd5c131ebf68f7c78390a
[ "Apache-2.0" ]
null
null
null
controller/test_op.py
airlovelq/flask-frame
86a97522a6eff4e34f0cd5c131ebf68f7c78390a
[ "Apache-2.0" ]
null
null
null
from .base_op import BaseOp class TestOp(BaseOp): def __init__(self, **kwargs): super().__init__(**kwargs) def test(self, msg): return self._database.get_user_by_id(user_id)
24.875
53
0.673367
f18c0483ef053224feda41a53b5a7770de9e095f
2,373
py
Python
examples/fetch.py
adbenitez/fbchat
8052b818de5de9682f6d64405579ad640cd657ee
[ "BSD-3-Clause" ]
1
2020-08-06T00:51:25.000Z
2020-08-06T00:51:25.000Z
examples/fetch.py
adbenitez/fbchat
8052b818de5de9682f6d64405579ad640cd657ee
[ "BSD-3-Clause" ]
null
null
null
examples/fetch.py
adbenitez/fbchat
8052b818de5de9682f6d64405579ad640cd657ee
[ "BSD-3-Clause" ]
null
null
null
from itertools import islice from fbchat import Client from fbchat.models import * client = Client("<email>", "<password>") # Fetches a list of all users you're currently chatting with, as `User` objects users = client.fetchAllUsers() print("users' IDs: {}".format([user.uid for user in users])) print("users' names: {}".format([user.name for user in users])) # If we have a user id, we can use `fetchUserInfo` to fetch a `User` object user = client.fetchUserInfo("<user id>")["<user id>"] # We can also query both mutiple users together, which returns list of `User` objects users = client.fetchUserInfo("<1st user id>", "<2nd user id>", "<3rd user id>") print("user's name: {}".format(user.name)) print("users' names: {}".format([users[k].name for k in users])) # `searchForUsers` searches for the user and gives us a list of the results, # and then we just take the first one, aka. the most likely one: user = client.searchForUsers("<name of user>")[0] print("user ID: {}".format(user.uid)) print("user's name: {}".format(user.name)) print("user's photo: {}".format(user.photo)) print("Is user client's friend: {}".format(user.is_friend)) # Fetches a list of the 20 top threads you're currently chatting with threads = client.fetchThreadList() # Fetches the next 10 threads threads += client.fetchThreadList(offset=20, limit=10) print("Threads: {}".format(threads)) # Gets the last 10 messages sent to the thread messages = client.fetchThreadMessages(thread_id="<thread id>", limit=10) # Since the message come in reversed order, reverse them messages.reverse() # Prints the content of all the messages for message in messages: print(message.text) # If we have a thread id, we can use `fetchThreadInfo` to fetch a `Thread` object thread = client.fetchThreadInfo("<thread id>")["<thread id>"] print("thread's name: {}".format(thread.name)) print("thread's type: {}".format(thread.type)) # `searchForThreads` searches works like `searchForUsers`, but gives us a list of threads instead thread = client.searchForThreads("<name of thread>")[0] print("thread's name: {}".format(thread.name)) print("thread's type: {}".format(thread.type)) # Here should be an example of `getUnread` # Print image url for 20 last images from thread. images = client.fetchThreadImages("<thread id>") for image in islice(image, 20): print(image.large_preview_url)
33.9
97
0.719343
277594fdad58a976f3b0de7bf2e8d6864cfe83ac
2,850
py
Python
SMS-Back-End/microservicio1/APIDB/aprovisionadorDBCrudo.py
mresti/StudentsManagementSystem
a1d67af517379b249630cac70a55bdfd9f77c54a
[ "Apache-2.0" ]
null
null
null
SMS-Back-End/microservicio1/APIDB/aprovisionadorDBCrudo.py
mresti/StudentsManagementSystem
a1d67af517379b249630cac70a55bdfd9f77c54a
[ "Apache-2.0" ]
null
null
null
SMS-Back-End/microservicio1/APIDB/aprovisionadorDBCrudo.py
mresti/StudentsManagementSystem
a1d67af517379b249630cac70a55bdfd9f77c54a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- #Fichero que cargará de contenido la base de datos para pruebas o cualquier otro menester. import MySQLdb db = MySQLdb.connect(host="localhost", user="root", passwd="root", db="smm"); cursor = db.cursor() MAX=5 #Aprovisionamos de contenido la tabla Alumnos ''' Esquema de la tabla: CREATE TABLE Alumno( nombre CHAR(20), dni CHAR(9), direccion CHAR(100), localidad CHAR(50), provincia CHAR(50), fecha_nacimiento DATE, telefono CHAR(50), PRIMARY KEY (dni) ); ''' for i in range(0,MAX): nombre='\'Alumno'+str(i)+'\'' dni=str(i) direccion='\'Direccion'+str(i)+'\'' localidad='\'Localidad'+str(i)+'\'' provincia='\'Provincia'+str(i)+'\'' fecha_nac='\'1988-10-'+str(i+1)+'\'' telefono='\''+str(i)+str(i)+str(i)+str(i)+'\'' query="INSERT INTO Alumno VALUES("+nombre+","+dni+","+direccion+","+localidad+","+provincia+","+fecha_nac+","+telefono+");" print query salida = cursor.execute(query); #Ejecutamos la acción db.commit() ###### Aprovisionamos de contenido la tabla Profesor ''' Esquema de la tabla: CREATE TABLE Profesor( nombre CHAR(20), dni CHAR(9), direccion CHAR(100), localidad CHAR(50), provincia CHAR(50), fecha_nacimiento CHAR(50), telefonoA CHAR(50), telefonoB CHAR(50), PRIMARY KEY (dni) ); ''' for i in range(0, MAX): nombre='\'Profesor'+str(i)+'\'' dni=str(i) direccion='\'Direccion'+str(i)+'\'' localidad='\'Localidad'+str(i)+'\'' provincia='\'Provincia'+str(i)+'\'' fecha_nac='\'1988-10-'+str(i+1)+'\'' telefonoA='\''+str(i)+str(i)+str(i)+str(i)+'\'' telefonoB='\''+str(i)+str(i)+str(i)+str(i)+'\'' query="INSERT INTO Profesor VALUES("+nombre+","+dni+","+direccion+","+localidad+","+provincia+","+fecha_nac+","+telefonoA+","+telefonoB+");" print query salida = cursor.execute(query); #Ejecutamos la acción db.commit() ######Aprovisionamos de contenido la tabla Asignatura ''' Esquema de la tabla: CREATE TABLE Asignatura( id CHAR(10), nombre CHAR(20), PRIMARY KEY (id) ); ''' for i in range(0, MAX): id='\''+str(i)+'\'' nombre='\'Asignatura'+str(i)+'\'' query="INSERT INTO Asignatura VALUES("+id+","+nombre+");" print query salida = cursor.execute(query); #Ejecutamos la acción db.commit() ######Aprovisionamos de contenido la tabla Curso ''' Esquema de la tabla: CREATE TABLE Curso( curso INT(1), grupo CHAR(1), nivel CHAR(20), PRIMARY KEY (curso) ); ''' for i in range(0, MAX): curso='\''+str(i+1)+'\'' #curso 1º :1 grupo='\''+str(i)+'\'' #grupo B :B nivel='\'Nivel'+str(i)+'\'' #nivel ESO: ESO query="INSERT INTO Curso VALUES("+curso+","+grupo+","+nivel+");" print query salida = cursor.execute(query); #Ejecutamos la acción db.commit() #Cerramos la conexión cursor.close() db.close()
24.358974
144
0.614035
b2039665fd176be713ad304e6c5ecfb6d43592a4
92
py
Python
.history/myblog/admin_20200416025918.py
abhinavmarwaha/demo-django-blog
c80a7d825e44d7e1589d9272c3583764562a2515
[ "MIT" ]
null
null
null
.history/myblog/admin_20200416025918.py
abhinavmarwaha/demo-django-blog
c80a7d825e44d7e1589d9272c3583764562a2515
[ "MIT" ]
null
null
null
.history/myblog/admin_20200416025918.py
abhinavmarwaha/demo-django-blog
c80a7d825e44d7e1589d9272c3583764562a2515
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Post class PostAdmin(admin.ModelAdmin)
23
33
0.836957
0887893cdb5abb36440f8755024552eea744deff
172
py
Python
app/__main__.py
heaptracetechnology/github
7b7eaddf2e2eec4d28855c81d68ded65dc05cc09
[ "MIT" ]
null
null
null
app/__main__.py
heaptracetechnology/github
7b7eaddf2e2eec4d28855c81d68ded65dc05cc09
[ "MIT" ]
null
null
null
app/__main__.py
heaptracetechnology/github
7b7eaddf2e2eec4d28855c81d68ded65dc05cc09
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from . import app from . import api from . import graphql from . import login from . import webhooks if __name__ == '__main__': app.api.run()
15.636364
26
0.656977
92ae209efc825a19636a0334eb49d982509a2f72
28,081
py
Python
Guidelet/GuideletLib/Guidelet.py
basharbme/SlicerIGT
00ff9bf070d538d5c713bfc375f544ee4e8033bc
[ "BSD-3-Clause" ]
1
2019-07-10T02:43:48.000Z
2019-07-10T02:43:48.000Z
Guidelet/GuideletLib/Guidelet.py
rprueckl/SlicerIGT
00ff9bf070d538d5c713bfc375f544ee4e8033bc
[ "BSD-3-Clause" ]
null
null
null
Guidelet/GuideletLib/Guidelet.py
rprueckl/SlicerIGT
00ff9bf070d538d5c713bfc375f544ee4e8033bc
[ "BSD-3-Clause" ]
null
null
null
import os from __main__ import vtk, qt, ctk, slicer import logging import time # fix unicode error by aliasing str as unicode in Python 3 if slicer.app.majorVersion >= 5 or (slicer.app.majorVersion >= 4 and slicer.app.minorVersion >= 11): unicode = str from .UltraSound import UltraSound class Guidelet(object): @staticmethod def showToolbars(show): # Show/hide all existing toolbars for toolbar in slicer.util.mainWindow().findChildren('QToolBar'): toolbar.setVisible(show) # Prevent sequence browser toolbar showing up automatically # when a sequence is loaded. # (put in try block because Sequence Browser module is not always installed) try: slicer.modules.sequencebrowser.autoShowToolBar = show except: pass @staticmethod def showPythonConsole(show): slicer.util.mainWindow().pythonConsole().parent().setVisible(show) @staticmethod def showMenuBar(show): for menubar in slicer.util.mainWindow().findChildren('QMenuBar'): menubar.setVisible(show) @staticmethod def onGenericCommandResponseReceived(commandId, responseNode): if responseNode: logging.debug("Response from PLUS: {0}".format(responseNode.GetText(0))) else: logging.debug("Timeout. Command Id: {0}".format(commandId)) # Guidelet layout name definitions VIEW_ULTRASOUND = unicode("Ultrasound") VIEW_ULTRASOUND_3D = unicode("Ultrasound + 3D") VIEW_3D_ULTRASOUND = unicode("3D + Ultrasound") VIEW_ULTRASOUND_CAM_3D = unicode("Ultrasound + Webcam + 3D") VIEW_ULTRASOUND_DUAL_3D = unicode("Ultrasound + Dual 3D") VIEW_3D = unicode("3D") VIEW_DUAL_3D = unicode("Dual 3D") VIEW_TRIPLE_3D = unicode("Triple 3D") VIEW_TRIPLE_3D_PARALLEL = unicode("Triple 3D Parallel") VIEW_QUAD_3D = unicode("Quad 3D") def __init__(self, parent, logic, configurationName='Default', sliceletDockWidgetPosition = qt.Qt.LeftDockWidgetArea): logging.debug('Guidelet.__init__') self.sliceletDockWidgetPosition = sliceletDockWidgetPosition self.parent = parent self.logic = logic self.configurationName = configurationName self.parameterNodeObserver = None self.parameterNode = self.logic.getParameterNode() self.layoutManager = slicer.app.layoutManager() self.layoutNameToIdMap = {} self.layoutNameToSelectCallbackMap = {} self.defaultLayoutName = self.VIEW_ULTRASOUND self.logic.updateParameterNodeFromSettings(self.parameterNode, self.configurationName) self.setAndObserveParameterNode(self.parameterNode) self.ultrasound = self.getUltrasoundClass() self.fitUltrasoundImageToViewOnConnect = True self.setupConnectorNode() self.sliceletDockWidget = qt.QDockWidget(self.parent) self.mainWindow=slicer.util.mainWindow() self.sliceletDockWidget.setParent(self.mainWindow) self.mainWindow.addDockWidget(self.sliceletDockWidgetPosition, self.sliceletDockWidget) self.sliceletPanel = qt.QFrame(self.sliceletDockWidget) self.sliceletPanelLayout = qt.QVBoxLayout(self.sliceletPanel) self.sliceletDockWidget.setWidget(self.sliceletPanel) self.topPanelLayout = qt.QGridLayout(self.sliceletPanel) self.sliceletPanelLayout.addLayout(self.topPanelLayout) self.setupTopPanel() self.setupFeaturePanelList() self.setupAdvancedPanel() self.setupAdditionalPanel() self.addConnectorObservers() self.setupConnections() self.sliceletDockWidget.setStyleSheet(self.loadStyleSheet()) def showModulePanel(self, show): modulePanelDockWidget = slicer.util.mainWindow().findChildren('QDockWidget','PanelDockWidget')[0] modulePanelDockWidget.setVisible(show) if show: mainWindow=slicer.util.mainWindow() if self.sliceletDockWidgetPosition == qt.Qt.LeftDockWidgetArea: mainWindow.tabifyDockWidget(self.sliceletDockWidget, modulePanelDockWidget) self.sliceletDockWidget.setFeatures(qt.QDockWidget.DockWidgetClosable+qt.QDockWidget.DockWidgetMovable+qt.QDockWidget.DockWidgetFloatable) else: if self.sliceletDockWidgetPosition == qt.Qt.LeftDockWidgetArea: # Prevent accidental closing or undocking of the slicelet's left panel self.sliceletDockWidget.setFeatures(0) def setupTopPanel(self): """ Reimplement this function and put widgets in self.topPanelLayout (QGridLayout) """ pass def loadStyleSheet(self): moduleDir = os.path.dirname(__file__) style = self.parameterNode.GetParameter('StyleSheet') styleFile = os.path.join(moduleDir, 'Resources', 'StyleSheets', style) f = qt.QFile(styleFile) if not f.exists(): logging.debug("Unable to load stylesheet, file not found") return "" else: f.open(qt.QFile.ReadOnly | qt.QFile.Text) ts = qt.QTextStream(f) stylesheet = ts.readAll() return stylesheet def setupFeaturePanelList(self): featurePanelList = self.createFeaturePanels() self.collapsibleButtonGroup = qt.QButtonGroup() for panel in featurePanelList: self.collapsibleButtonGroup.addButton(panel) def getUltrasoundClass(self): return UltraSound(self) def preCleanup(self): self.sliceletDockWidget.setWidget(None) self.sliceletPanel = None self.mainWindow.removeDockWidget(self.sliceletDockWidget) self.sliceletDockWidget = None self.ultrasound.preCleanup() self.disconnect() def createFeaturePanels(self): self.ultrasoundCollapsibleButton, self.ultrasoundLayout, self.procedureLayout = self.ultrasound.setupPanel(self.sliceletPanelLayout) self.advancedCollapsibleButton = ctk.ctkCollapsibleButton() featurePanelList = [self.ultrasoundCollapsibleButton, self.advancedCollapsibleButton] return featurePanelList def setupAdvancedPanel(self): logging.debug('setupAdvancedPanel') self.advancedCollapsibleButton.setProperty('collapsedHeight', 20) self.advancedCollapsibleButton.text = "Settings" self.sliceletPanelLayout.addWidget(self.advancedCollapsibleButton) self.advancedLayout = qt.QFormLayout(self.advancedCollapsibleButton) self.advancedLayout.setContentsMargins(12, 4, 4, 4) self.advancedLayout.setSpacing(4) # Layout selection combo box self.viewSelectorComboBox = qt.QComboBox(self.advancedCollapsibleButton) self.advancedLayout.addRow("Layout: ", self.viewSelectorComboBox) self.registerDefaultGuideletLayouts() self.selectView(self.VIEW_ULTRASOUND_3D) # OpenIGTLink connector node selection self.linkInputSelector = slicer.qMRMLNodeComboBox() self.linkInputSelector.nodeTypes = ("vtkMRMLIGTLConnectorNode", "") self.linkInputSelector.selectNodeUponCreation = True self.linkInputSelector.addEnabled = False self.linkInputSelector.removeEnabled = True self.linkInputSelector.noneEnabled = False self.linkInputSelector.showHidden = False self.linkInputSelector.showChildNodeTypes = False self.linkInputSelector.setMRMLScene( slicer.mrmlScene ) self.linkInputSelector.setToolTip( "Select connector node" ) self.advancedLayout.addRow("OpenIGTLink connector: ", self.linkInputSelector) self.showFullSlicerInterfaceButton = qt.QPushButton() self.showFullSlicerInterfaceButton.setText("Show 3D Slicer user interface") self.advancedLayout.addRow(self.showFullSlicerInterfaceButton) self.showGuideletFullscreenButton = qt.QPushButton() self.showGuideletFullscreenButton.setText("Show Guidelet in full screen") self.advancedLayout.addRow(self.showGuideletFullscreenButton) self.saveSceneButton = qt.QPushButton() self.saveSceneButton.setText("Save Guidelet scene") self.advancedLayout.addRow(self.saveSceneButton) self.saveDirectoryLineEdit = ctk.ctkPathLineEdit() node = self.logic.getParameterNode() sceneSaveDirectory = node.GetParameter('SavedScenesDirectory') self.saveDirectoryLineEdit.currentPath = sceneSaveDirectory self.saveDirectoryLineEdit.filters = ctk.ctkPathLineEdit.Dirs self.saveDirectoryLineEdit.options = ctk.ctkPathLineEdit.DontUseSheet self.saveDirectoryLineEdit.options = ctk.ctkPathLineEdit.ShowDirsOnly self.saveDirectoryLineEdit.showHistoryButton = False self.saveDirectoryLineEdit.setMinimumWidth(100) self.saveDirectoryLineEdit.setMaximumWidth(500) saveLabel = qt.QLabel() saveLabel.setText("Save scene directory:") hbox = qt.QHBoxLayout() hbox.addWidget(saveLabel) hbox.addWidget(self.saveDirectoryLineEdit) self.advancedLayout.addRow(hbox) self.exitButton = qt.QPushButton() self.exitButton.setText("Exit") self.advancedLayout.addRow(self.exitButton) def setupAdditionalPanel(self): pass def registerLayout(self, layoutName, layoutId, layoutXmlDescription, layoutSelectCallback=None): if (type(layoutName) != str and type(layoutName) != unicode) or len(layoutName) < 1: logging.error('Failed to register layout, because layout name must be a non-empty string. Got ' + repr(layoutName)) return False if not isinstance(layoutId, int): logging.error('Failed to register layout named ' + str(layoutName) + ', because given layout ID is not an integer. Got ' + str(layoutId)) return False if layoutName in self.layoutNameToIdMap: logging.error('Failed to register layout, because a layout with name ' + str(layoutName) + ' is already registered') return False layoutLogic = self.layoutManager.layoutLogic() if not isinstance(layoutId, slicer.vtkMRMLLayoutNode.SlicerLayout) and layoutLogic.GetLayoutNode().IsLayoutDescription(layoutId): logging.error('Failed to register layout, because a layout with ID ' + str(layoutId) + ' is already registered. Try to choose a larger number') return False logging.info('Registering layout ' + str(layoutName) + ', ' + str(layoutId)) # Remember layout self.layoutNameToIdMap[layoutName] = layoutId self.layoutNameToSelectCallbackMap[layoutName] = layoutSelectCallback # Add layout to view selector combobox self.viewSelectorComboBox.addItem(layoutName) # Register layout to layout logic if not layoutLogic.GetLayoutNode().IsLayoutDescription(layoutId): layoutLogic.GetLayoutNode().AddLayoutDescription(layoutId, layoutXmlDescription) return True def registerDefaultGuideletLayouts(self): # Common customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"2\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">2</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_DUAL_3D, 503, customLayout, self.hideUltrasoundSliceIn3DView) customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLSliceNode\" singletontag=\"Red\">" " <property name=\"orientation\" action=\"default\">Axial</property>" " <property name=\"viewlabel\" action=\"default\">R</property>" " <property name=\"viewcolor\" action=\"default\">#F34A33</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_ULTRASOUND_3D, 504, customLayout, self.delayedFitAndShowUltrasoundSliceIn3dView) customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"2\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">2</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLSliceNode\" singletontag=\"Red\">" " <property name=\"orientation\" action=\"default\">Axial</property>" " <property name=\"viewlabel\" action=\"default\">R</property>" " <property name=\"viewcolor\" action=\"default\">#F34A33</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_ULTRASOUND_DUAL_3D, 505, customLayout, self.delayedFitAndShowUltrasoundSliceIn3dView) customLayout = ( "<layout type=\"vertical\" split=\"true\" >" " <item>" " <layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"2\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">2</property>" " </view>" " </item>" " </layout>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"3\">" " <property name=\"viewlabel\" action=\"default\">3</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_TRIPLE_3D, 506, customLayout, self.hideUltrasoundSliceIn3DView) customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <layout type=\"vertical\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLSliceNode\" singletontag=\"Red\">" " <property name=\"orientation\" action=\"default\">Axial</property>" " <property name=\"viewlabel\" action=\"default\">R</property>" " <property name=\"viewcolor\" action=\"default\">#F34A33</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLSliceNode\" singletontag=\"Yellow\">" " <property name=\"orientation\" action=\"default\">Sagittal</property>" " <property name=\"viewlabel\" action=\"default\">Y</property>" " <property name=\"viewcolor\" action=\"default\">#F34A33</property>" " </view>" " </item>" " </layout>" " </item>" "</layout>") self.registerLayout(self.VIEW_ULTRASOUND_CAM_3D, 507, customLayout, self.delayedFitAndShowUltrasoundSliceIn3dView) customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLSliceNode\" singletontag=\"Red\">" " <property name=\"orientation\" action=\"default\">Axial</property>" " <property name=\"viewlabel\" action=\"default\">R</property>" " <property name=\"viewcolor\" action=\"default\">#F34A33</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_3D_ULTRASOUND, 508, customLayout, self.delayedFitAndShowUltrasoundSliceIn3dView) customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"2\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">2</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"3\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">3</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_TRIPLE_3D_PARALLEL, 509, customLayout, self.hideUltrasoundSliceIn3DView) customLayout = ( "<layout type=\"horizontal\" split=\"false\" >" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"1\">" " <property name=\"viewlabel\" action=\"default\">1</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"2\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">2</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"3\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">3</property>" " </view>" " </item>" " <item>" " <view class=\"vtkMRMLViewNode\" singletontag=\"4\" type=\"secondary\">" " <property name=\"viewlabel\" action=\"default\">4</property>" " </view>" " </item>" "</layout>") self.registerLayout(self.VIEW_QUAD_3D, 510, customLayout, self.hideUltrasoundSliceIn3DView) # Add existing Slicer layouts with callbacks layoutNode = self.layoutManager.layoutLogic().GetLayoutNode() ultrasoundViewId = slicer.vtkMRMLLayoutNode.SlicerLayoutOneUpRedSliceView self.registerLayout(self.VIEW_ULTRASOUND, ultrasoundViewId, \ layoutNode.GetLayoutDescription(ultrasoundViewId), self.delayedFitAndHideUltrasoundSliceIn3dView) threeDViewId = slicer.vtkMRMLLayoutNode.SlicerLayoutOneUp3DView self.registerLayout(self.VIEW_3D, threeDViewId, \ layoutNode.GetLayoutDescription(threeDViewId), self.showUltrasoundSliceIn3DView) def onSceneLoaded(self): """ Derived classes can override this function """ pass def setupScene(self): """ setup feature scene """ self.ultrasound.setupScene() def onSaveDirectoryPreferencesChanged(self): sceneSaveDirectory = str(self.saveDirectoryLineEdit.currentPath) self.logic.updateSettings({'SavedScenesDirectory' : sceneSaveDirectory}, self.configurationName) node = self.logic.getParameterNode() self.logic.updateParameterNodeFromUserPreferences(node, {'SavedScenesDirectory' : sceneSaveDirectory}) def onSaveSceneClicked(self):#common # # save the mrml scene to a temp directory, then zip it # qt.QApplication.setOverrideCursor(qt.Qt.WaitCursor) node = self.logic.getParameterNode() sceneSaveDirectory = node.GetParameter('SavedScenesDirectory') sceneSaveDirectory = sceneSaveDirectory + "/" + self.logic.moduleName + "-" + time.strftime("%Y%m%d-%H%M%S") logging.info("Saving scene to: {0}".format(sceneSaveDirectory)) if not os.access(sceneSaveDirectory, os.F_OK): os.makedirs(sceneSaveDirectory) applicationLogic = slicer.app.applicationLogic() if applicationLogic.SaveSceneToSlicerDataBundleDirectory(sceneSaveDirectory, None): logging.info("Scene saved to: {0}".format(sceneSaveDirectory)) else: logging.error("Scene saving failed") qt.QApplication.restoreOverrideCursor() slicer.util.showStatusMessage("Saved!", 2000) def onExitButtonClicked(self): mainwindow = slicer.util.mainWindow() mainwindow.close() def setupConnections(self): logging.debug('Guidelet.setupConnections()') self.ultrasoundCollapsibleButton.connect('toggled(bool)', self.onUltrasoundPanelToggled) self.ultrasound.setupConnections() #advanced settings panel self.showFullSlicerInterfaceButton.connect('clicked()', self.onShowFullSlicerInterfaceClicked) self.showGuideletFullscreenButton.connect('clicked()', self.onShowGuideletFullscreenButton) self.saveSceneButton.connect('clicked()', self.onSaveSceneClicked) self.linkInputSelector.connect("nodeActivated(vtkMRMLNode*)", self.onConnectorNodeActivated) self.viewSelectorComboBox.connect('activated(int)', self.onViewSelect) self.exitButton.connect('clicked()', self.onExitButtonClicked) self.saveDirectoryLineEdit.connect('currentPathChanged(QString)', self.onSaveDirectoryPreferencesChanged) def disconnect(self): self.removeConnectorObservers() # Remove observer to old parameter node self.removeParameterNodeObserver() self.ultrasoundCollapsibleButton.disconnect('toggled(bool)', self.onUltrasoundPanelToggled) #advanced settings panel self.showFullSlicerInterfaceButton.disconnect('clicked()', self.onShowFullSlicerInterfaceClicked) self.showGuideletFullscreenButton.disconnect('clicked()', self.onShowGuideletFullscreenButton) self.saveSceneButton.disconnect('clicked()', self.onSaveSceneClicked) self.linkInputSelector.disconnect("nodeActivated(vtkMRMLNode*)", self.onConnectorNodeActivated) self.viewSelectorComboBox.disconnect('activated(int)', self.onViewSelect) self.exitButton.disconnect('clicked()', self.onExitButtonClicked) self.saveDirectoryLineEdit.disconnect('currentPathChanged(QString)', self.onSaveDirectoryPreferencesChanged) def showFullScreen(self): # We hide all toolbars, etc. which is inconvenient as a default startup setting, # therefore disable saving of window setup. settings = qt.QSettings() settings.setValue('MainWindow/RestoreGeometry', 'false') self.showToolbars(False) self.showModulePanel(False) self.showMenuBar(False) self.showPythonConsole(False) self.sliceletDockWidget.show() mainWindow=slicer.util.mainWindow() mainWindow.showFullScreen() def onShowFullSlicerInterfaceClicked(self): self.showToolbars(True) self.showModulePanel(True) self.showMenuBar(True) slicer.util.mainWindow().showMaximized() # Save current state settings = qt.QSettings() settings.setValue('MainWindow/RestoreGeometry', 'true') def onShowGuideletFullscreenButton(self): self.showFullScreen() def executeCommand(self, command, commandResponseCallback): command.SetCommandAttribute('Name', command.GetCommandName()) command.RemoveObservers(slicer.vtkSlicerOpenIGTLinkCommand.CommandCompletedEvent) command.AddObserver(slicer.vtkSlicerOpenIGTLinkCommand.CommandCompletedEvent, commandResponseCallback) self.connectorNode.SendCommand(command) def setAndObserveParameterNode(self, parameterNode): if parameterNode == self.parameterNode and self.parameterNodeObserver: # no change and node is already observed return # Remove observer to old parameter node self.removeParameterNodeObserver() # Set and observe new parameter node self.parameterNode = parameterNode if self.parameterNode: self.parameterNodeObserver = self.parameterNode.AddObserver(vtk.vtkCommand.ModifiedEvent, self.onParameterNodeModified) # Update GUI self.updateGUIFromParameterNode() def removeParameterNodeObserver(self): if self.parameterNode and self.parameterNodeObserver: self.parameterNode.RemoveObserver(self.parameterNodeObserver) self.parameterNodeObserver = None def onParameterNodeModified(self, observer, eventid): logging.debug('onParameterNodeModified') self.updateGUIFromParameterNode() def updateGUIFromParameterNode(self):#TODO parameterNode = self.parameterNode if not parameterNode: return def setupConnectorNode(self): logging.info("setupConnectorNode") self.connectorNodeObserverTagList = [] self.connectorNodeConnected = False self.connectorNode = self.ultrasound.createPlusConnector() self.connectorNode.Start() def onConnectorNodeConnected(self, caller, event, force=False): logging.info("onConnectorNodeConnected") # Multiple notifications may be sent when connecting/disconnecting, # so we just if we know about the state change already if self.connectorNodeConnected and not force: return self.connectorNodeConnected = True self.ultrasound.onConnectorNodeConnected() if self.fitUltrasoundImageToViewOnConnect: self.delayedFitUltrasoundImageToView(3000) def onConnectorNodeDisconnected(self, caller, event, force=False): logging.info("onConnectorNodeDisconnected") # Multiple notifications may be sent when connecting/disconnecting, # so we just if we know about the state change already if not self.connectorNodeConnected and not force: return self.connectorNodeConnected = False self.ultrasound.onConnectorNodeDisconnected() def onConnectorNodeActivated(self): logging.debug('onConnectorNodeActivated') self.removeConnectorObservers() # Start using new connector. self.connectorNode = self.linkInputSelector.currentNode() if not self.connectorNode: logging.warning('No connector node found!') return self.addConnectorObservers() def removeConnectorObservers(self): # Clean up observers to old connector. if self.connectorNode and self.connectorNodeObserverTagList: for tag in self.connectorNodeObserverTagList: self.connectorNode.RemoveObserver(tag) self.connectorNodeObserverTagList = [] def addConnectorObservers(self): # Force initial update if self.connectorNode.GetState() == slicer.vtkMRMLIGTLConnectorNode.StateConnected: self.onConnectorNodeConnected(None, None, True) else: self.onConnectorNodeDisconnected(None, None, True) # Add observers for connect/disconnect events events = [[slicer.vtkMRMLIGTLConnectorNode.ConnectedEvent, self.onConnectorNodeConnected], [slicer.vtkMRMLIGTLConnectorNode.DisconnectedEvent, self.onConnectorNodeDisconnected]] for tagEventHandler in events: connectorNodeObserverTag = self.connectorNode.AddObserver(tagEventHandler[0], tagEventHandler[1]) self.connectorNodeObserverTagList.append(connectorNodeObserverTag) def showUltrasoundSliceIn3DView(self): self.setUltrasoundSliceVisibilityIn3dView(True) def hideUltrasoundSliceIn3DView(self): self.setUltrasoundSliceVisibilityIn3dView(False) def setUltrasoundSliceVisibilityIn3dView(self, visible): redNode = slicer.mrmlScene.GetNodeByID('vtkMRMLSliceNodeRed') if visible: redNode.SetSliceVisible(1) else: redNode.SetSliceVisible(0) def fitUltrasoundImageToView(self): redWidget = self.layoutManager.sliceWidget('Red') redWidget.sliceController().fitSliceToBackground() def delayedFitUltrasoundImageToView(self, delayMsec=500): qt.QTimer.singleShot(delayMsec, self.fitUltrasoundImageToView) def delayedFitAndShowUltrasoundSliceIn3dView(self): self.delayedFitUltrasoundImageToView() self.showUltrasoundSliceIn3DView() def delayedFitAndHideUltrasoundSliceIn3dView(self): self.delayedFitUltrasoundImageToView() self.hideUltrasoundSliceIn3DView() def selectView(self, viewName): index = self.viewSelectorComboBox.findText(viewName) if index == -1: index = 0 self.viewSelectorComboBox.setCurrentIndex(index) self.onViewSelect(index) def onViewSelect(self, layoutIndex): layoutName = self.viewSelectorComboBox.currentText logging.debug('onViewSelect: {0}'.format(layoutName)) if layoutName not in self.layoutNameToIdMap: logging.error('Layout called ' + str(layoutName) + ' has not been registered to the guidelet') return layoutId = self.layoutNameToIdMap[layoutName] callback = self.layoutNameToSelectCallbackMap[layoutName] self.layoutManager.setLayout(layoutId) callback() def onUltrasoundPanelToggled(self, toggled): logging.debug('onUltrasoundPanelToggled: {0}'.format(toggled)) if not toggled: # deactivate placement mode interactionNode = slicer.app.applicationLogic().GetInteractionNode() interactionNode.SetCurrentInteractionMode(interactionNode.ViewTransform) return self.showDefaultView() def showDefaultView(self): self.selectView(self.defaultLayoutName) # Red only layout by default
40.57948
149
0.712083
84958f398cb4096fd9d491ac28249cf18157a758
1,171
py
Python
python/plots/plot_event.py
billy000400/ImageTrk
085817e5ab76f3f753a8075bec54f5604a5c9b3d
[ "MIT" ]
null
null
null
python/plots/plot_event.py
billy000400/ImageTrk
085817e5ab76f3f753a8075bec54f5604a5c9b3d
[ "MIT" ]
1
2021-01-03T08:57:34.000Z
2021-01-03T23:41:22.000Z
python/plots/plot_event.py
billy000400/ImageTrk
085817e5ab76f3f753a8075bec54f5604a5c9b3d
[ "MIT" ]
null
null
null
import sys from pathlib import Path import numpy as np from matplotlib import pyplot as plt util_dir = Path.cwd().parent.joinpath('Utility') sys.path.insert(1, str(util_dir)) from Information import * from HitGenerators import Event track_dir = Path("../../tracks") db_files = [track_dir.joinpath('train_CeEndpoint-mix.db')] # dist, db_files, hitNumCut=20): gen = Event(db_files, 10) windowNum = 100 trackNums = [] for idx in range(windowNum): sys.stdout.write(t_info(f'Parsing windows {idx+1}/{windowNum}', special='\r')) if idx+1 == windowNum: sys.stdout.write('\n') sys.stdout.flush() hit_all, track_all = gen.generate(mode='eval') fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for trkIdx, hitIdcPdgId in track_all.items(): hitIdc = hitIdcPdgId[0:-1] hits = [hit_all[hitIdx] for hitIdx in hitIdc] xs = [coord[0] for coord in hits] ys = [coord[1] for coord in hits] zs = [coord[2] for coord in hits] ax.scatter(xs, zs, ys, alpha=1, label=trkIdx) ax.legend() ax.set(xlim=[-810, 810], ylim=[-1600, 1600], zlim=[-810, 810]) plt.show() plt.close()
27.232558
82
0.649018
384d856e8183dea6702c32e0bd60e0367df90cdf
1,126
py
Python
rundeck/defaults.py
otupman/rundeckrun
ca78bc7e9fb1becf940c949e20b820af89f9cecc
[ "Apache-2.0" ]
49
2015-01-21T10:07:16.000Z
2021-11-15T11:43:19.000Z
rundeck/defaults.py
otupman/rundeckrun
ca78bc7e9fb1becf940c949e20b820af89f9cecc
[ "Apache-2.0" ]
19
2015-01-21T10:18:42.000Z
2019-10-04T03:32:32.000Z
rundeck/defaults.py
otupman/rundeckrun
ca78bc7e9fb1becf940c949e20b820af89f9cecc
[ "Apache-2.0" ]
32
2015-09-09T04:58:39.000Z
2022-03-17T10:10:25.000Z
""" :summary: Default values :license: Apache License, Version 2.0 :author: Mark LaPerriere :contact: rundeckrun@mindmind.com :copyright: Mark LaPerriere 2015 """ __docformat__ = "restructuredtext en" def enum(name, *sequential, **named): values = dict(zip(sequential, range(len(sequential))), **named) values['values'] = list(values.values()) values['keys'] = list(values.keys()) return type(name, (), values) Status = enum( 'Status', RUNNING='running', SUCCEEDED='succeeded', FAILED='failed', ABORTED='aborted', SKIPPED='skipped', PENDING='pending' ) DupeOption = enum( 'DupeOption', SKIP='skip', CREATE='create', UPDATE='update' ) UuidOption = enum( 'UuidOption', PRESERVE='preserve', REMOVE='remove' ) JobDefFormat = enum( 'JobDefFormat', XML='xml', YAML='yaml' ) ExecutionOutputFormat = enum( 'ExecutionOutputFormat', TEXT='text', **dict(zip(JobDefFormat.keys, JobDefFormat.values)) ) RUNDECK_API_VERSION = 11 GET = 'get' POST = 'post' DELETE = 'delete' JOB_RUN_TIMEOUT = 60 JOB_RUN_INTERVAL = 3
19.084746
67
0.645648
f77244a584ed40646735855711930fa9229515da
3,550
py
Python
homeassistant/components/ness_alarm/alarm_control_panel.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
23
2017-11-15T21:03:53.000Z
2021-03-29T21:33:48.000Z
homeassistant/components/ness_alarm/alarm_control_panel.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
9
2022-01-27T06:32:10.000Z
2022-03-31T07:07:51.000Z
homeassistant/components/ness_alarm/alarm_control_panel.py
itewk/home-assistant
769cf19052f8c9ef374d8ba8ae7705ccc7bf4cf4
[ "Apache-2.0" ]
10
2018-01-01T00:12:51.000Z
2021-12-21T23:08:05.000Z
"""Support for Ness D8X/D16X alarm panel.""" import logging from nessclient import ArmingState import homeassistant.components.alarm_control_panel as alarm from homeassistant.components.alarm_control_panel.const import ( SUPPORT_ALARM_ARM_AWAY, SUPPORT_ALARM_ARM_HOME, SUPPORT_ALARM_TRIGGER, ) from homeassistant.const import ( STATE_ALARM_ARMED_AWAY, STATE_ALARM_ARMING, STATE_ALARM_DISARMED, STATE_ALARM_PENDING, STATE_ALARM_TRIGGERED, ) from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from . import DATA_NESS, SIGNAL_ARMING_STATE_CHANGED _LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Ness Alarm alarm control panel devices.""" if discovery_info is None: return device = NessAlarmPanel(hass.data[DATA_NESS], "Alarm Panel") async_add_entities([device]) class NessAlarmPanel(alarm.AlarmControlPanel): """Representation of a Ness alarm panel.""" def __init__(self, client, name): """Initialize the alarm panel.""" self._client = client self._name = name self._state = None async def async_added_to_hass(self): """Register callbacks.""" async_dispatcher_connect( self.hass, SIGNAL_ARMING_STATE_CHANGED, self._handle_arming_state_change ) @property def name(self): """Return the name of the device.""" return self._name @property def should_poll(self): """Return the polling state.""" return False @property def code_format(self): """Return the regex for code format or None if no code is required.""" return alarm.FORMAT_NUMBER @property def state(self): """Return the state of the device.""" return self._state @property def supported_features(self) -> int: """Return the list of supported features.""" return SUPPORT_ALARM_ARM_HOME | SUPPORT_ALARM_ARM_AWAY | SUPPORT_ALARM_TRIGGER async def async_alarm_disarm(self, code=None): """Send disarm command.""" await self._client.disarm(code) async def async_alarm_arm_away(self, code=None): """Send arm away command.""" await self._client.arm_away(code) async def async_alarm_arm_home(self, code=None): """Send arm home command.""" await self._client.arm_home(code) async def async_alarm_trigger(self, code=None): """Send trigger/panic command.""" await self._client.panic(code) @callback def _handle_arming_state_change(self, arming_state): """Handle arming state update.""" if arming_state == ArmingState.UNKNOWN: self._state = None elif arming_state == ArmingState.DISARMED: self._state = STATE_ALARM_DISARMED elif arming_state == ArmingState.ARMING: self._state = STATE_ALARM_ARMING elif arming_state == ArmingState.EXIT_DELAY: self._state = STATE_ALARM_ARMING elif arming_state == ArmingState.ARMED: self._state = STATE_ALARM_ARMED_AWAY elif arming_state == ArmingState.ENTRY_DELAY: self._state = STATE_ALARM_PENDING elif arming_state == ArmingState.TRIGGERED: self._state = STATE_ALARM_TRIGGERED else: _LOGGER.warning("Unhandled arming state: %s", arming_state) self.async_schedule_update_ha_state()
30.869565
86
0.68338
2f1d8d40dd3ee600424a9d83658a463e94a5f2d9
566
py
Python
fair/forcing/ozone_st.py
OMS-NetZero/FAIR-pro
61b068858a043c21916f5e73bedd91eec0d27c57
[ "Apache-2.0" ]
4
2017-09-26T12:04:04.000Z
2020-04-16T16:29:06.000Z
fair/forcing/ozone_st.py
OMS-NetZero/FAIR-pro
61b068858a043c21916f5e73bedd91eec0d27c57
[ "Apache-2.0" ]
16
2017-06-17T07:42:50.000Z
2018-07-27T16:01:03.000Z
fair/forcing/ozone_st.py
OMS-NetZero/FAIR-pro
61b068858a043c21916f5e73bedd91eec0d27c57
[ "Apache-2.0" ]
2
2017-07-04T12:06:23.000Z
2017-07-04T12:07:41.000Z
import numpy as np from ..constants import cl_atoms, br_atoms, fracrel def magicc(C_ODS, C0, eta1=-1.46030698e-5, eta2=2.05401270e-3, eta3=1.03143308): Cl = np.array(cl_atoms.aslist) Br = np.array(br_atoms.aslist) FC = np.array(fracrel.aslist) EESC = (np.sum(Cl * 1000.*(C_ODS-C0) * FC/FC[0]) + 45*np.sum(Br * 1000.*(C_ODS-C0) * FC/FC[0])) * FC[0] # EESC takes ODS concentrations in ppb, we provide ppt. EESC = np.max((EESC,0)) F = eta1 * (eta2 * EESC) ** eta3 return F
24.608696
65
0.565371
3befa25b4a4efeb95aefb397ce5b2c674720a76d
414
py
Python
EstruturaSequencial/exercicio8.py
EugenioAntunes/lista-de-exercicios
4f19d30b502da064171d7d148b4e235e253fe992
[ "MIT" ]
null
null
null
EstruturaSequencial/exercicio8.py
EugenioAntunes/lista-de-exercicios
4f19d30b502da064171d7d148b4e235e253fe992
[ "MIT" ]
null
null
null
EstruturaSequencial/exercicio8.py
EugenioAntunes/lista-de-exercicios
4f19d30b502da064171d7d148b4e235e253fe992
[ "MIT" ]
null
null
null
''' 8.Faça um Programa que pergunte quanto você ganha por hora e o número de horas trabalhadas no mês. Calcule e mostre o total do seu salário no referido mês. ''' valor_hora = float(input('Valor da hora: ')) qunt_hora = int(input('Quantidade de horas trabalhadas: ')) def salario(valor_hora, qunt_hora): return valor_hora * qunt_hora print('O seu salário este mes será de ', salario(valor_hora, qunt_hora))
41.4
156
0.746377
6532f4b9ca309604bb35641c5de385784d406c75
17,771
py
Python
mgetool/imports.py
MGEdata/mgetool
6f5a46b47c7abe58b26727080de4b82e76746112
[ "BSD-3-Clause" ]
1
2021-12-28T09:27:10.000Z
2021-12-28T09:27:10.000Z
mgetool/imports.py
boliqq07/mgetool
6f5a46b47c7abe58b26727080de4b82e76746112
[ "BSD-3-Clause" ]
null
null
null
mgetool/imports.py
boliqq07/mgetool
6f5a46b47c7abe58b26727080de4b82e76746112
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python3.7 # -*- coding: utf-8 -*- # @Time  : 2019/7/29 19:47 # @Author : Administrator # @Software: PyCharm # @License: BSD 3-Clause """ Notes: import data simply. # Just a copy from xenonpy for pictures use skimage.io.ImageCollection """ import copy import glob import os import re import shutil from collections import defaultdict from functools import partial from pathlib import Path from warnings import warn import joblib import pandas as pd import requests from skimage import io from tqdm import tqdm from mgetool.tool import def_pwd, parallelize class Call(object): """ Call file in paths. When there are four files in pwd path: (file1.csv, file2.csv, file3.txt, file4.png) Examples --------- >>> call = Call(".",backend="csv") >>> file1 = call.file1 >>> file2 = call.file2 >>> call = Call(".",backend="txt") >>> file = call.file3 """ @staticmethod def extension(index_col=0): read_csv = partial(pd.read_csv, index_col=index_col) read_excel = partial(pd.read_excel, index_col=index_col) extension = dict( pkl_pd=('pkl_pd', pd.read_pickle), csv=('csv', read_csv), xlsx=('xlsx', read_excel), pkl_sk=('pkl_sk', joblib.load), png=("png", io.imread), jpg=("jpg", io.imread), ) return extension __re__ = re.compile(r'[\s\-.]') def __init__(self, *paths, backend='pkl_pd', prefix_with_upper=None, index_col=0): """ Parameters ---------- paths:list list of path backend:str default imported type to show prefix_with_upper:str prefix_with_upper for all file add to file in this code to escape same name index_col: use the first column as index in table. """ self._backend = backend self.index_col = index_col self._files = None self.__extension__ = self.extension(index_col) if len(paths) == 0: self._paths = ('.',) else: self._paths = paths if not prefix_with_upper: prefix_with_upper = () self._prefix = prefix_with_upper self._make_index(prefix_with_upper=prefix_with_upper) def _make_index(self, *, prefix_with_upper): def make(path_): patten = self.__extension__[self._backend][0] files = glob.glob(str(path_ / ('*.' + patten))) def _nest(_f): f_ = _f return lambda s: s.__extension__[s._backend][1](f_) for f in files: # selection data_cluster f = Path(f).resolve() parent = re.split(r'[\\/]', str(f.parent))[-1] # parent = str(f.parent).split('\\/')[-1] fn = f.name[:-(1 + len(patten))] fn = self.__re__.sub('_', fn) if prefix_with_upper: fn = '_'.join([parent, fn]) if fn in self._files: warn("file %s with x_name %s already bind to %s and will be ignored" % (str(f), fn, self._files[fn]), RuntimeWarning) else: self._files[fn] = str(f) setattr(self.__class__, fn, property(_nest(str(f)))) self._files = defaultdict(str) for path in self._paths: path = Path(path).expanduser().absolute() if not path.exists(): raise RuntimeError('%s not exists' % str(path)) make(path) @classmethod def from_http(cls, url, save_to, *, filename=None, chunk_size=256 * 1024, params=None, **kwargs): """ Get file object via a http request. Parameters ---------- url: str The resource url. save_to: str The path of a path to save the downloaded object into it. filename: str, optional Specific the file x_name when saving. Set to ``None`` (default) to use a inferred x_name from http header. chunk_size: int, optional Chunk size. params: any, optional Parameters will be passed to ``requests.get`` function. See Also: `requests <http://docs.python-requests.org/>`_ kwargs: dict, optional Pass to ``requests.get`` function as the ``kwargs`` parameters. Returns ------- str File path contains file x_name. """ r = requests.get(url, params, **kwargs) r.raise_for_status() if not filename: if 'filename' in r.headers: filename = r.headers['filename'] else: filename = url.split('/')[-1] if isinstance(save_to, str): save_to = Path(save_to) if not isinstance(save_to, Path) or not save_to.is_dir(): raise RuntimeError('%s is not a legal path or not point to a path' % save_to) file_ = str(save_to / filename) with open(file_, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if chunk: # filter out keep-alive new chunks f.write(chunk) return file_ def __repr__(self): cont_ls = ['<{}> includes:'.format(self.__class__.__name__)] for k, v in self._files.items(): cont_ls.append('"{}": {}'.format(k, v)) return '\n'.join(cont_ls) def csv(self): return Call(*self._paths, backend='csv', prefix_with_upper=self._prefix, index_col=self.index_col) def pickle_pd(self): return Call(*self._paths, backend='pkl_pd', prefix_with_upper=self._prefix, index_col=self.index_col) def pickle_sk(self): return Call(*self._paths, backend='pkl_sk', prefix_with_upper=self._prefix, index_col=self.index_col) def xlsx(self): return Call(*self._paths, backend='xlsx', prefix_with_upper=self._prefix, index_col=self.index_col) def png(self): return Call(*self._paths, backend='png', prefix_with_upper=self._prefix, index_col=self.index_col) def jpg(self): return Call(*self._paths, backend='jpg', prefix_with_upper=self._prefix, index_col=self.index_col) def __call__(self, *args, **kwargs): return self.__extension__[self._backend][1](*args, **kwargs) def __getattr__(self, name): """ Returns sub-dataset. Parameters ---------- name: str Dataset x_name. Returns ------- spath """ if name in self.__extension__: return self.__class__(*self._paths, backend=name, prefix_with_upper=self._prefix) else: raise AttributeError("'%s' object has no attribute '%s'" % (self.__class__.__name__, name)) def check_file(spath, file_path, suffix=None): os.chdir(file_path) # print(os.path.abspath(os.curdir)) all_file = os.listdir('.') files = [] for f in all_file: if os.path.isdir(f): ff = os.path.join(file_path, f) files.extend(check_file(spath, ff, suffix=suffix)) os.chdir(file_path) else: if not suffix: che = True elif suffix == "": che = "" == os.path.splitext(f)[1] else: che = "".join((".", suffix)) == os.path.splitext(f)[1] if che: rel_path = file_path.replace(spath, "") parents = re.split(r'[\\/]', str(rel_path)) files.append([parents, f]) else: pass return files class BatchFile: r""" Search files and filter files and re-site files. Examples --------- >>> a = BatchFile(".") >>> a.filter_dir_name("a") >>> a.filter_file_name("2") >>> print(a.file_list) ... #copy the file to new path and keep the dir structure >>> a.to_path(r"C:\Users\Admin\Desktop\d2",flatten=False) #copy the file to new path, flatten the file and add the dir name on file: dirname_1_filename. >>> a.to_path(r"C:\Users\Admin\Desktop\d2", add_dir=[-1], flatten=True) #copy the file to new path, flatten the file and add the dir name on file: dirname_2_dirname_1_filename. >>> a.to_path(r"C:\Users\Admin\Desktop\d2", add_dir=[-2,-1], flatten=True) """ def __init__(self, path=None, suffix=None): """ Parameters ---------- path:str total dir of all file suffix:str suffix of file Examples: .txt """ path = def_pwd(path) self.path = path parents = re.split(r'[\\/]', str(path)) self.parents = parents self.file_list = check_file(path, path, suffix=suffix) self.init_file = tuple(self.file_list) self.file_list_merge = [] self.file_list_merge_new = [] self.file_dir = [] def filter_file_name(self, include=None, exclude=None): """ Parameters ---------- include:str get the filename with include str such as hold "ast_tep" with "ast" string exclude: str delete the filename with exclude str such as hold "ast_cap" and delete "ast_tep" with "tep" str, """ if include is None and exclude is None: return assert include != [] assert exclude != [] if isinstance(include, str): include = [include, ] if isinstance(exclude, str): exclude = [exclude, ] file_list_filter = [] for file_i in self.file_list: name = file_i[1] if include and not exclude: if any([i in name for i in include]): file_list_filter.append(file_i) elif not include and exclude: if not any([i in name for i in exclude]): file_list_filter.append(file_i) elif include and exclude: if any([i in name for i in include]) and not any([i in name for i in exclude]): file_list_filter.append(file_i) else: raise TypeError("one of include, exclude must be str or list of str") self.file_list = file_list_filter def filter_dir_name(self, include=None, exclude=None, layer=-1): """ Filter the dir(and its sub_file). Parameters ---------- include:str,list of str get the filename with include str such as hold "ast_tep" with "ast" string exclude: str, list of str delete the filename with exclude str such as hold "ast_cap" and delete "ast_tep" with "tep" str, layer:int,list if list, check the sum name of the layers. Filter dir with target layer,all the dir should contain the sublayer! Examples: for /home, /home/ast, -1 /home/ast/eag, -2 /home/ast/eag/kgg, -3 """ if include is None and exclude is None: return assert include != [] assert exclude != [] if isinstance(include, str): include = [include, ] if isinstance(exclude, str): exclude = [exclude, ] file_list_filter = [] for file_i in self.file_list: try: if isinstance(layer, int): layer = [layer, ] if isinstance(layer, list): name = [file_i[0][i] for i in layer] else: name = file_i[0] name = "".join(name) if include and not exclude: if any([i in name for i in include]): file_list_filter.append(file_i) elif not include and exclude: if not any([i in name for i in exclude]): file_list_filter.append(file_i) elif include and exclude: if any([i in name for i in include]) and not any([i in name for i in exclude]): file_list_filter.append(file_i) else: raise TypeError("one of include, exclude must be str or list of str") except IndexError: pass self.file_list = file_list_filter def merge(self, path=None, flatten=False, add_dir="3-layer", refresh_file_list=True, pop=0): """ Merge dir and file name together. Parameters ---------- path:str new path flatten:True flatten the filtered file. if flatten is dict, the key is the specific dir name,and value is True. Examples: flatten = {"asp":True} add_dir:int,list add the top dir_name to file to escape same name file. only valid for flatten=True refresh_file_list:bool refresh file_list or not. pop: int (negative) pop the last n layer. default =0 used for copy by dir rather than files. just used for flatten=False Returns ------- new filename Args: refresh_file_list: refresh_file_list: """ if not path: path = self.path flatten = False if not add_dir: add_dir = [] elif add_dir == "3-layer": add_dir = [-1, -2, -3] if isinstance(add_dir, int): add_dir = [add_dir, ] if flatten is not False: assert pop == 0 assert pop <= 0 file_list_merge = [] for file_i in self.file_list: site = copy.copy(file_i[0]) if isinstance(flatten, dict): site = [site[_] for _ in add_dir] site_c = "" for i, j in enumerate(site): i -= len(site) if i in flatten.keys(): if flatten[i] in [True, "layer", "dir", "folder", 1, "s"]: site_c += "".join((j, "/")) else: site_c += "".join((j, "_")) else: site_c += "".join((j, "_")) site_c = re.split(r'[\\/]', str(site_c)) site_c[-1] += file_i[1] file_list_merge.append(os.path.join(path, *site_c)) elif flatten: site = [site[_] for _ in add_dir] site.append(file_i[1]) site = "_".join(site) file_list_merge.append(os.path.join(path, site)) else: site.append(file_i[1]) if pop != 0: site = site[:pop] namei = os.path.join(path, *site) if len(file_list_merge) == 0 or namei != file_list_merge[-1]: file_list_merge.append(namei) if refresh_file_list: self.file_list_merge = file_list_merge fdir = list(set([os.path.dirname(i) for i in file_list_merge])) fdir.sort() self.file_dir = fdir return file_list_merge def to_path(self, new_path, flatten=False, add_dir="3-layer", pop=0, n_jobs=1): """ Parameters ---------- new_path:str new path flatten:bool,dict flatten the filtered file. if flatten is dict, the key is the specific dir name,and value is True. Examples: flatten = {"asp":True} add_dir:list, int add the top dir_name to file to escape same name file. only valid for flatten=True pop: int (negative) pop the last n layer. default =0 used for copy by dir rather than files. just used for flatten=False n_jobs:int n_jobs Returns ------- file in path. """ self.file_list_merge = self.merge(pop=pop) new_path = def_pwd(new_path) self.file_list_merge_new = self.merge(path=new_path, flatten=flatten, add_dir=add_dir, refresh_file_list=False, pop=pop) if len(set(self.file_list_merge_new)) < len(set(self.file_list_merge)): raise UserWarning("There are same name files after flatten folders. " "you can change add_dir to add difference prefix to files", ) if n_jobs != 1: parallelize(n_jobs, self.copy_user, zip(self.file_list_merge, self.file_list_merge_new, ), mode="j", respective=False) else: for ij in tqdm(list(zip(self.file_list_merge, self.file_list_merge_new))): self.copy_user(ij) @staticmethod def copy_user(k): i, j = k if os.path.isdir(i): shutil.copytree(i, j) else: path_i = os.path.split(j)[0] if not os.path.exists(path_i): os.makedirs(path_i) shutil.copy(i, j) # if __name__ == "__main__": # others please use shutil # shutil.copytree() # a = BatchFile(r"C:\Users\wangchangxin\Desktop\d1") # a.filter_dir_name("a", layer=-1) # a.filter_file_name("2") # a.to_path(r"C:\Users\wangchangxin\Desktop\d2", add_dir=[-2, -1], flatten=True) # bf = BatchFile(r"/home/iap13/wcx/CHG") # bf.filter_dir_name(include="Mo") # filenames = bf.file_list
32.193841
109
0.533622
985c9f7b13b348633d97babe0fd8230b8c09c946
2,018
py
Python
pontoon/insights/models.py
dothq/pontoon
fa85710f56e50d500e6bf8e6c82626ce64440a62
[ "BSD-3-Clause" ]
1
2021-10-03T20:48:42.000Z
2021-10-03T20:48:42.000Z
pontoon/insights/models.py
dothq/pontoon
fa85710f56e50d500e6bf8e6c82626ce64440a62
[ "BSD-3-Clause" ]
14
2021-06-05T00:09:20.000Z
2021-09-03T01:48:36.000Z
pontoon/insights/models.py
dothq/pontoon
fa85710f56e50d500e6bf8e6c82626ce64440a62
[ "BSD-3-Clause" ]
null
null
null
from datetime import timedelta from django.db import models from django.utils import timezone from pontoon.base.models import AggregatedStats def active_users_default(): return { "managers": 0, "reviewers": 0, "contributors": 0, } class InsightsSnapshot(AggregatedStats, models.Model): created_at = models.DateField(default=timezone.now) # Active users total_managers = models.PositiveIntegerField(default=0) total_reviewers = models.PositiveIntegerField(default=0) total_contributors = models.PositiveIntegerField(default=0) active_users_last_12_months = models.JSONField(default=active_users_default) active_users_last_6_months = models.JSONField(default=active_users_default) active_users_last_3_months = models.JSONField(default=active_users_default) active_users_last_month = models.JSONField(default=active_users_default) # Unreviewed lifespan unreviewed_suggestions_lifespan = models.DurationField(default=timedelta) # Translation activity completion = models.FloatField() human_translations = models.PositiveIntegerField(default=0) machinery_translations = models.PositiveIntegerField(default=0) new_source_strings = models.PositiveIntegerField(default=0) # Review activity peer_approved = models.PositiveIntegerField(default=0) self_approved = models.PositiveIntegerField(default=0) rejected = models.PositiveIntegerField(default=0) new_suggestions = models.PositiveIntegerField(default=0) class Meta: abstract = True class LocaleInsightsSnapshot(InsightsSnapshot): locale = models.ForeignKey("base.Locale", models.CASCADE) class ProjectInsightsSnapshot(InsightsSnapshot): project = models.ForeignKey("base.Project", models.CASCADE) class ProjectLocaleInsightsSnapshot(AggregatedStats): project_locale = models.ForeignKey("base.ProjectLocale", models.CASCADE) created_at = models.DateField(default=timezone.now) completion = models.FloatField()
34.20339
80
0.777502
479a0f434cfdf5d2c2915f8fa16ad9980e630b8c
4,904
py
Python
constance/backends/database/__init__.py
Anders-Linden/django-constance
41762b3dd6a9194c4d062261246d95ddb3677d7e
[ "BSD-3-Clause" ]
null
null
null
constance/backends/database/__init__.py
Anders-Linden/django-constance
41762b3dd6a9194c4d062261246d95ddb3677d7e
[ "BSD-3-Clause" ]
null
null
null
constance/backends/database/__init__.py
Anders-Linden/django-constance
41762b3dd6a9194c4d062261246d95ddb3677d7e
[ "BSD-3-Clause" ]
null
null
null
from django.core.cache import caches from django.http import request from django.contrib.sites.shortcuts import get_current_site from django.core.cache.backends.locmem import LocMemCache from django.core.exceptions import ImproperlyConfigured from django.db import ( IntegrityError, OperationalError, ProgrammingError, transaction, ) from django.db.models.signals import post_save from .. import Backend from ... import settings, signals, config class DatabaseBackend(Backend): def __init__(self): from .models import Constance self._model = Constance self._prefix = settings.DATABASE_PREFIX self._autofill_timeout = settings.DATABASE_CACHE_AUTOFILL_TIMEOUT self._autofill_cachekey = 'autofilled' if not self._model._meta.installed: raise ImproperlyConfigured( "The constance.backends.database app isn't installed " "correctly. Make sure it's in your INSTALLED_APPS setting.") if settings.DATABASE_CACHE_BACKEND: self._cache = caches[settings.DATABASE_CACHE_BACKEND] if isinstance(self._cache, LocMemCache): raise ImproperlyConfigured( "The CONSTANCE_DATABASE_CACHE_BACKEND setting refers to a " "subclass of Django's local-memory backend (%r). Please " "set it to a backend that supports cross-process caching." % settings.DATABASE_CACHE_BACKEND) else: self._cache = None self.autofill() # Clear simple cache. post_save.connect(self.clear, sender=self._model) def add_prefix(self, key): return "%s%s" % (self._prefix, key) def autofill(self): if not self._autofill_timeout or not self._cache: return full_cachekey = self.add_prefix(self._autofill_cachekey) if self._cache.get(full_cachekey): return autofill_values = {} autofill_values[full_cachekey] = 1 for key, value in self.mget(settings.CONFIG): autofill_values[self.add_prefix(key)] = value self._cache.set_many(autofill_values, timeout=self._autofill_timeout) def mget(self, keys): if not keys: return keys = {self.add_prefix(key): key for key in keys} try: stored = self._model._default_manager.filter(site=get_current_site(request)).filter(key__in=keys) for const in stored: yield keys[const.key], const.value except (OperationalError, ProgrammingError): pass def get(self, key): key = self.add_prefix(key) if self._cache: value = self._cache.get(key) if value is None: self.autofill() value = self._cache.get(key) else: value = None if value is None: try: value = self._model._default_manager.get(key=key, site=get_current_site(request)).value except (OperationalError, ProgrammingError, self._model.DoesNotExist): pass else: if self._cache: self._cache.add(key, value) return value def set(self, key, value): key = self.add_prefix(key) created = False queryset = self._model._default_manager.filter(site=get_current_site(request)).all() # Set _for_write attribute as get_or_create method does # https://github.com/django/django/blob/2.2.11/django/db/models/query.py#L536 queryset._for_write = True try: constance = queryset.get(key=key, site=get_current_site(request)) except (OperationalError, ProgrammingError): # database is not created, noop return except self._model.DoesNotExist: try: with transaction.atomic(using=queryset.db): queryset.create(key=key, value=value, site=get_current_site(request)) created = True except IntegrityError as error: # Allow concurrent writes constance = queryset.get(key=key, site=get_current_site(request)) if not created: old_value = constance.value constance.value = value constance.save() else: old_value = None if self._cache: self._cache.set(key, value) signals.config_updated.send( sender=config, key=key, old_value=old_value, new_value=value ) def clear(self, sender, instance, created, **kwargs): if self._cache and not created: keys = [self.add_prefix(k) for k in settings.CONFIG] keys.append(self.add_prefix(self._autofill_cachekey)) self._cache.delete_many(keys) self.autofill()
37.151515
109
0.618679
1ea9e1c3a17d30ac35b053d4e2563897802a1f5d
360
py
Python
desktop.py
babyabdul/GUI_Tkinter
7c2bf09fede95d22a90da786f55dfd2052b8f87f
[ "MIT" ]
null
null
null
desktop.py
babyabdul/GUI_Tkinter
7c2bf09fede95d22a90da786f55dfd2052b8f87f
[ "MIT" ]
null
null
null
desktop.py
babyabdul/GUI_Tkinter
7c2bf09fede95d22a90da786f55dfd2052b8f87f
[ "MIT" ]
null
null
null
from tkinter import * root = Tk() #1. Creating a label Widget myLabek1 = Label(root, text="Hello From TKinter") myLabek2 = Label(root, text="My name is Abdul Rafik") myLabel3 = Label(root, text="") # 2.Showing it onto screen myLabek1.grid(row=0, column=0) myLabek2.grid(row=1, column=5) myLabel3.grid(row=1, column=1) root.mainloop()
20
54
0.672222
b8027c36538607548a4aeda994432706ea9cf9de
3,633
py
Python
yandex/cloud/mdb/kafka/v1/common_pb2.py
korsar182/python-sdk
873bf2a9b136a8f2faae72e86fae1f5b5c3d896a
[ "MIT" ]
36
2018-12-23T13:51:50.000Z
2022-03-25T07:48:24.000Z
yandex/cloud/mdb/kafka/v1/common_pb2.py
korsar182/python-sdk
873bf2a9b136a8f2faae72e86fae1f5b5c3d896a
[ "MIT" ]
15
2019-02-28T04:55:09.000Z
2022-03-06T23:17:24.000Z
yandex/cloud/mdb/kafka/v1/common_pb2.py
korsar182/python-sdk
873bf2a9b136a8f2faae72e86fae1f5b5c3d896a
[ "MIT" ]
18
2019-02-23T07:10:57.000Z
2022-03-28T14:41:08.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: yandex/cloud/mdb/kafka/v1/common.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='yandex/cloud/mdb/kafka/v1/common.proto', package='yandex.cloud.mdb.kafka.v1', syntax='proto3', serialized_options=b'\n\035yandex.cloud.api.mdb.kafka.v1ZCgithub.com/yandex-cloud/go-genproto/yandex/cloud/mdb/kafka/v1;kafka', create_key=_descriptor._internal_create_key, serialized_pb=b'\n&yandex/cloud/mdb/kafka/v1/common.proto\x12\x19yandex.cloud.mdb.kafka.v1*\xe2\x01\n\x0f\x43ompressionType\x12 \n\x1c\x43OMPRESSION_TYPE_UNSPECIFIED\x10\x00\x12!\n\x1d\x43OMPRESSION_TYPE_UNCOMPRESSED\x10\x01\x12\x19\n\x15\x43OMPRESSION_TYPE_ZSTD\x10\x02\x12\x18\n\x14\x43OMPRESSION_TYPE_LZ4\x10\x03\x12\x1b\n\x17\x43OMPRESSION_TYPE_SNAPPY\x10\x04\x12\x19\n\x15\x43OMPRESSION_TYPE_GZIP\x10\x05\x12\x1d\n\x19\x43OMPRESSION_TYPE_PRODUCER\x10\x06\x42\x64\n\x1dyandex.cloud.api.mdb.kafka.v1ZCgithub.com/yandex-cloud/go-genproto/yandex/cloud/mdb/kafka/v1;kafkab\x06proto3' ) _COMPRESSIONTYPE = _descriptor.EnumDescriptor( name='CompressionType', full_name='yandex.cloud.mdb.kafka.v1.CompressionType', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_UNCOMPRESSED', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_ZSTD', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_LZ4', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_SNAPPY', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_GZIP', index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='COMPRESSION_TYPE_PRODUCER', index=6, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=70, serialized_end=296, ) _sym_db.RegisterEnumDescriptor(_COMPRESSIONTYPE) CompressionType = enum_type_wrapper.EnumTypeWrapper(_COMPRESSIONTYPE) COMPRESSION_TYPE_UNSPECIFIED = 0 COMPRESSION_TYPE_UNCOMPRESSED = 1 COMPRESSION_TYPE_ZSTD = 2 COMPRESSION_TYPE_LZ4 = 3 COMPRESSION_TYPE_SNAPPY = 4 COMPRESSION_TYPE_GZIP = 5 COMPRESSION_TYPE_PRODUCER = 6 DESCRIPTOR.enum_types_by_name['CompressionType'] = _COMPRESSIONTYPE _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
39.48913
585
0.784476
e0ea9c53ed365f420bf3f60807d3393e9a519ec5
239
py
Python
unzip_all/unzip_all.py
samuelyeungkc/PythonToolBox
fba65bd87239ede54e9a206cd4a90344723d619d
[ "MIT" ]
null
null
null
unzip_all/unzip_all.py
samuelyeungkc/PythonToolBox
fba65bd87239ede54e9a206cd4a90344723d619d
[ "MIT" ]
null
null
null
unzip_all/unzip_all.py
samuelyeungkc/PythonToolBox
fba65bd87239ede54e9a206cd4a90344723d619d
[ "MIT" ]
null
null
null
import os import subprocess list = os.listdir(".") unzipped = [] for f in list: if f != __file__ and f.endswith(".zip"): subprocess.call(["unzip", f]) unzipped.append(f) print "Unzipped file : " + str(unzipped) print os.listdir(".")
19.916667
41
0.661088
92946d8d839cf10a23473640c52b39d653738fdd
1,647
py
Python
tests/TestScripts/testConfigureDisable.py
sketchylizard/Catch2
c9df70e34e631ca22dad6480a13a65c24034a4af
[ "BSL-1.0" ]
62
2021-09-21T18:58:02.000Z
2022-03-07T02:17:43.000Z
tests/TestScripts/testConfigureDisable.py
sketchylizard/Catch2
c9df70e34e631ca22dad6480a13a65c24034a4af
[ "BSL-1.0" ]
8
2017-11-03T12:08:09.000Z
2017-11-03T12:08:10.000Z
tests/TestScripts/testConfigureDisable.py
sketchylizard/Catch2
c9df70e34e631ca22dad6480a13a65c24034a4af
[ "BSL-1.0" ]
null
null
null
#!/usr/bin/env python3 # Copyright Catch2 Authors # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # https://www.boost.org/LICENSE_1_0.txt) # SPDX-License-Identifier: BSL-1.0 from ConfigureTestsCommon import configure_and_build, run_and_return_output import os import re import sys """ Tests the CMake configure option for CATCH_CONFIG_DISABLE Requires 2 arguments, path folder where the Catch2's main CMakeLists.txt exists, and path to where the output files should be stored. """ if len(sys.argv) != 3: print('Wrong number of arguments: {}'.format(len(sys.argv))) print('Usage: {} catch2-top-level-dir base-build-output-dir'.format(sys.argv[0])) exit(1) catch2_source_path = os.path.abspath(sys.argv[1]) build_dir_path = os.path.join(os.path.abspath(sys.argv[2]), 'CMakeConfigTests', 'Disable') configure_and_build(catch2_source_path, build_dir_path, [("CATCH_CONFIG_DISABLE", "ON"), # We need to turn off WERROR, because the compilers # can see that the various variables inside test cases # are set but unused. ("CATCH_ENABLE_WERROR", "OFF")]) stdout, _ = run_and_return_output(os.path.join(build_dir_path, 'tests'), 'SelfTest', ['--allow-running-no-tests']) summary_line = 'No tests ran' if not summary_line in stdout: print("Could not find '{}' in the stdout".format(summary_line)) print('stdout: "{}"'.format(stdout)) exit(2)
33.612245
90
0.645416
5c6c0dd154f2cbf7f644c35c4a7bf94ea93eac69
259
py
Python
app.py
Orange9887/taxSystem
2ebf51826f1f997c999581613a7a1ce12cae8397
[ "Apache-2.0" ]
null
null
null
app.py
Orange9887/taxSystem
2ebf51826f1f997c999581613a7a1ce12cae8397
[ "Apache-2.0" ]
null
null
null
app.py
Orange9887/taxSystem
2ebf51826f1f997c999581613a7a1ce12cae8397
[ "Apache-2.0" ]
null
null
null
from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello World!' @app.route('/') def hello_world(): return 'Hello World1!' if __name__ == '__main__': app.run() if __name__ == '__main__': app.run()
12.333333
26
0.621622
f0c362fe516a7bc9b5fe0168a106fab58a691ca3
12,176
py
Python
yellowbox/extras/webserver/webserver.py
bharel/Yellowbox
d397d878ccd074af21f552cb1375714ba97e9e22
[ "MIT" ]
1
2020-08-07T20:02:12.000Z
2020-08-07T20:02:12.000Z
yellowbox/extras/webserver/webserver.py
bharel/yellowbox
d397d878ccd074af21f552cb1375714ba97e9e22
[ "MIT" ]
null
null
null
yellowbox/extras/webserver/webserver.py
bharel/yellowbox
d397d878ccd074af21f552cb1375714ba97e9e22
[ "MIT" ]
null
null
null
from __future__ import annotations from contextlib import contextmanager from threading import Lock, Thread from time import sleep from typing import ContextManager, Iterator, Mapping, Optional, Union, overload from requests import ConnectionError, HTTPError, get from starlette.applications import Starlette from starlette.responses import PlainTextResponse from starlette.routing import Route, WebSocketRoute from uvicorn import Config, Server from yellowbox import YellowService from yellowbox.extras.webserver.class_endpoint import HTTPEndpointTemplate, WSEndpointTemplate from yellowbox.extras.webserver.endpoints import ( HTTP_SIDE_EFFECT, METHODS, WS_SIDE_EFFECT, MockHTTPEndpoint, MockWSEndpoint, http_endpoint, ws_endpoint ) from yellowbox.retry import RetrySpec from yellowbox.utils import docker_host_name class HandlerError(Exception): """ An exception occurred while handling an endpoint in the webserver thread """ class WebServer(YellowService): """ An easy-to-modify HTTP and websocket server, wrapping a starlette application """ _PORT_ACCESS_MAX_RETRIES = 100 # the maximum number of attempts to make when accessing a binding port. Each attempt # has an interval of 0.01 seconds _CLASS_ENDPOINT_TEMPLATES: Mapping[str, Union[HTTPEndpointTemplate, WSEndpointTemplate]] = {} def __init__(self, name: str, port: Optional[int] = None, **kwargs): """ Args: name: the name of the service port: the port to bind to when serving, default will bind to an available port **kwargs: forwarded to the uvicorn configuration. """ self.__name__ = name self._app = Starlette(debug=True) self._route_lock = Lock() # since the main thread won't catch errors in handlers, this class will store any error raised while handling, # and raise them in the main thread as soon as we can self._pending_exception: Optional[Exception] = None if 'log_config' not in kwargs: kwargs['log_config'] = None kwargs.setdefault('host', '0.0.0.0') self._port = port config = Config(self._app, **kwargs, port=self._port) self._server = Server(config) self._serve_thread = Thread(name=f'{name}_thread', target=self._server.run) @property def port(self) -> Optional[int]: """ Returns: The port the service is bound to, if the service is binding to anything. Notes: Will only return None if the port was not provided during construction and the service thread is not running If the service is starting up, this property will block until the port is binded, or raise an error if blocked for longer than 1 second. """ if self._port or not self._serve_thread.is_alive(): return self._port for _ in range(self._PORT_ACCESS_MAX_RETRIES): servers = getattr(self._server, 'servers', None) if servers: sockets = getattr(servers[0], 'sockets', None) if sockets: socket = sockets[0] break sleep(0.01) else: raise RuntimeError('timed out when getting binding port') self._port = socket.getsockname()[1] return self._port @overload def add_http_endpoint(self, endpoint: MockHTTPEndpoint) -> MockHTTPEndpoint: ... @overload def add_http_endpoint(self, methods: METHODS, rule_string: str, side_effect: HTTP_SIDE_EFFECT, *, auto_read_body: bool = True, forbid_implicit_head_verb: bool = True, name: str = None) \ -> MockHTTPEndpoint: ... def add_http_endpoint(self, *args, **kwargs) -> MockHTTPEndpoint: """ Add an http endpoint to the server Args: *args: either a single mock http endpoint, or parameters forwarded to http_endpoint construct one **kwargs: forwarded to http_endpoint to construct an endpoint Returns: the http endpoint added to the server """ self._raise_from_pending() if len(args) == 1 and not kwargs: ep, = args else: ep = http_endpoint(*args, **kwargs) if ep.owner is not None: raise RuntimeError('an endpoint cannot be added twice') with self._route_lock: self._app.routes.append( ep.route() ) ep.owner = self return ep def remove_http_endpoint(self, endpoint: MockHTTPEndpoint): """ Remove an http endpoint previously added to the server Args: endpoint: the endpoint to remove """ self._raise_from_pending() if endpoint.owner is not self: raise RuntimeError('endpoint is not added to the server') with self._route_lock: for i, route in enumerate(self._app.router.routes): if isinstance(route, Route) and route.endpoint == endpoint.get: break else: raise RuntimeError('endpoint is not found in the server') self._app.router.routes.pop(i) endpoint.owner = None @overload def patch_http_endpoint(self, endpoint: MockHTTPEndpoint) -> ContextManager[MockHTTPEndpoint]: ... @overload def patch_http_endpoint(self, methods: METHODS, rule_string: str, side_effect: HTTP_SIDE_EFFECT, *, auto_read_body: bool = True, forbid_implicit_head_verb: bool = True, name: str = None) \ -> ContextManager[MockHTTPEndpoint]: ... @contextmanager # type:ignore[misc] def patch_http_endpoint(self, *args, **kwargs) -> Iterator[MockHTTPEndpoint]: """ A context manager to add and then remove an http endpoint Args: *args: forwarded to self.add_http_endpoint **kwargs: forwarded to self.add_http_endpoint Returns: The temporarily added endpoint """ ep = self.add_http_endpoint(*args, **kwargs) try: yield ep finally: self.remove_http_endpoint(ep) @overload def add_ws_endpoint(self, endpoint: MockWSEndpoint) -> MockWSEndpoint: ... @overload def add_ws_endpoint(self, rule_string: str, side_effect: WS_SIDE_EFFECT, *, name: str = None) -> MockWSEndpoint: ... def add_ws_endpoint(self, *args, **kwargs): """ Add a websocket endpoint to the server Args: *args: either a single mock ws endpoint, or parameters forwarded to ws_endpoint construct one **kwargs: forwarded to ws_endpoint to construct an endpoint Returns: the websocket endpoint added to the server """ self._raise_from_pending() if len(args) == 1 and not kwargs: ep, = args else: ep = ws_endpoint(*args, **kwargs) if ep.owner is not None: raise RuntimeError('an endpoint cannot be added twice') with self._route_lock: self._app.routes.append( WebSocketRoute(ep.rule_string, ep.endpoint, name=ep.__name__) ) ep.owner = self return ep def remove_ws_endpoint(self, endpoint: MockWSEndpoint): """ Remove a websocket endpoint previously added to the server Args: endpoint: the endpoint to remove """ self._raise_from_pending() if endpoint.owner is not self: raise RuntimeError('endpoint is not added to the server') with self._route_lock: for i, route in enumerate(self._app.router.routes): if isinstance(route, WebSocketRoute) and route.app == endpoint.endpoint: break else: raise RuntimeError('endpoint is not found in the server') self._app.router.routes.pop(i) endpoint.owner = None @overload def patch_ws_endpoint(self, endpoint: MockWSEndpoint) -> ContextManager[MockWSEndpoint]: ... @overload def patch_ws_endpoint(self, rule_string: str, side_effect: WS_SIDE_EFFECT, *, name: str = None)\ -> ContextManager[MockWSEndpoint]: ... @contextmanager # type:ignore[misc] def patch_ws_endpoint(self, *args, **kwargs): """ A context manager to add and then remove a ws endpoint Args: *args: forwarded to self.add_ws_endpoint **kwargs: forwarded to self.add_ws_endpoint Returns: The temporarily added endpoint """ ep = self.add_ws_endpoint(*args, **kwargs) try: yield ep finally: self.remove_ws_endpoint(ep) def local_url(self, schema: Optional[str] = 'http') -> str: """ Get the url to access this server from the local machine Args: schema: the optional schema of the url, defaults to http """ if schema is None: return f'localhost:{self.port}' return f'{schema}://localhost:{self.port}' def container_url(self, schema='http') -> str: """ Get the url to access this server from a docker container running in the local machine Args: schema: the optional schema of the url, defaults to http """ if schema is None: return f'{docker_host_name}:{self.port}' return f'{schema}://{docker_host_name}:{self.port}' def start(self, retry_spec: Optional[RetrySpec] = None) -> WebServer: if self._serve_thread.is_alive(): raise RuntimeError('thread cannot be started twice') self._serve_thread.start() with self.patch_http_endpoint('GET', '/__yellowbox/ping', side_effect=PlainTextResponse('')): retry_spec = retry_spec or RetrySpec(interval=0.1, timeout=5) retry_spec.retry( lambda: get(self.local_url() + '/__yellowbox/ping').raise_for_status(), (ConnectionError, HTTPError) ) # add all the class endpoints for name, template in type(self)._CLASS_ENDPOINT_TEMPLATES.items(): ep: Union[MockHTTPEndpoint, MockWSEndpoint] if isinstance(template, HTTPEndpointTemplate): ep = template.construct(self) self.add_http_endpoint(ep) else: assert isinstance(template, WSEndpointTemplate) ep = template.construct(self) self.add_ws_endpoint(ep) setattr(self, name, ep) return super().start() def stop(self): self._server.should_exit = True self._serve_thread.join() super().stop() self._raise_from_pending() def is_alive(self) -> bool: self._raise_from_pending() return self._serve_thread.is_alive() def _raise_from_pending(self): # if there is a pending exception, this will raise it if self._pending_exception: pending = self._pending_exception self._pending_exception = None raise HandlerError() from pending def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) _cls_endpoints = {} for base in cls.__bases__: base_http_templates = getattr(base, '_CLASS_ENDPOINT_TEMPLATES', None) if base_http_templates: overlapping_keys = base_http_templates.keys() & _cls_endpoints.keys() if overlapping_keys: raise TypeError(f'overlapping cls endpoints: {overlapping_keys}') _cls_endpoints.update(base_http_templates) for k, v in vars(cls).items(): if isinstance(v, (HTTPEndpointTemplate, WSEndpointTemplate)): if k in _cls_endpoints: raise TypeError(f'cls endpoint {k} already defined') _cls_endpoints[k] = v cls._CLASS_ENDPOINT_TEMPLATES = _cls_endpoints
37.235474
120
0.620894
c882caa8a1bf937b8d42e3e5d4b4f79a49d8f4a6
970
py
Python
samples/python_durable_bindings/DurableOrchestrationTrigger/__init__.py
msarm/azure-functions-durable-python
8ecd30574502f34332e9e61d269f79a3fd66b666
[ "MIT" ]
9
2019-08-16T15:37:51.000Z
2020-05-12T17:33:50.000Z
samples/python_durable_bindings/DurableOrchestrationTrigger/__init__.py
msarm/azure-functions-durable-python
8ecd30574502f34332e9e61d269f79a3fd66b666
[ "MIT" ]
7
2019-07-26T00:24:20.000Z
2020-01-29T16:30:06.000Z
samples/python_durable_bindings/DurableOrchestrationTrigger/__init__.py
msarm/azure-functions-durable-python
8ecd30574502f34332e9e61d269f79a3fd66b666
[ "MIT" ]
11
2019-07-22T17:40:47.000Z
2020-06-24T14:43:18.000Z
import logging import azure.functions as func import azure.durable_functions as df def generator_function(context): outputs = [] task1 = yield context.df.callActivity("DurableActivity", "One") logging.warn(f"!!!task1: {task1}") task2 = yield context.df.callActivity("DurableActivity", "Two") logging.warn(f"!!!task2: {task2}") task3 = yield context.df.callActivity("DurableActivity", "Three") logging.warn(f"!!!task3: {task3}") outputs.append(task1) outputs.append(task2) outputs.append(task3) return outputs def main(context: str): logging.warn("Durable Orchestration Trigger: " + context) orchestrate = df.Orchestrator.create(generator_function) logging.warn("!!!type(orchestrate) " + str(type(orchestrate))) result = orchestrate(context) logging.warn("!!!serialized json : " + result) logging.warn("!!!type(result) " + str(type(result))) return result
28.529412
70
0.663918
3d380ff0385206b1628eb8afe98892d7b36dd5de
20,268
py
Python
tensorflow/lite/testing/zip_test_utils.py
leike666666/tensorflow
a3fd0ddfcb716be124e95b51e96e6c1e4507ef64
[ "Apache-2.0" ]
2
2021-08-03T18:03:33.000Z
2021-08-03T18:03:49.000Z
tensorflow/lite/testing/zip_test_utils.py
leike666666/tensorflow
a3fd0ddfcb716be124e95b51e96e6c1e4507ef64
[ "Apache-2.0" ]
2
2021-08-25T16:14:24.000Z
2022-02-10T02:58:17.000Z
tensorflow/lite/testing/zip_test_utils.py
leike666666/tensorflow
a3fd0ddfcb716be124e95b51e96e6c1e4507ef64
[ "Apache-2.0" ]
1
2017-11-27T02:55:11.000Z
2017-11-27T02:55:11.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils for make_zip tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import operator import os import re import string import traceback import zipfile import numpy as np from six import StringIO # pylint: disable=g-import-not-at-top import tensorflow as tf from google.protobuf import text_format from tensorflow.lite.testing import generate_examples_report as report_lib from tensorflow.lite.testing import string_util_wrapper from tensorflow.python.framework import graph_util as tf_graph_util # A map from names to functions which make test cases. _MAKE_TEST_FUNCTIONS_MAP = {} # A decorator to register the make test functions. # Usage: # All the make_*_test should be registered. Example: # @register_make_test_function() # def make_conv_tests(options): # # ... # If a function is decorated by other decorators, it's required to specify the # name explicitly. Example: # @register_make_test_function(name="make_unidirectional_sequence_lstm_tests") # @test_util.enable_control_flow_v2 # def make_unidirectional_sequence_lstm_tests(options): # # ... def register_make_test_function(name=None): def decorate(function, name=name): if name is None: name = function.__name__ _MAKE_TEST_FUNCTIONS_MAP[name] = function return decorate def get_test_function(test_function_name): """Get the test function according to the test function name.""" if test_function_name not in _MAKE_TEST_FUNCTIONS_MAP: return None return _MAKE_TEST_FUNCTIONS_MAP[test_function_name] RANDOM_SEED = 342 TF_TYPE_INFO = { tf.float32: (np.float32, "FLOAT"), tf.float16: (np.float16, "FLOAT"), tf.int32: (np.int32, "INT32"), tf.uint8: (np.uint8, "QUANTIZED_UINT8"), tf.int16: (np.int16, "QUANTIZED_INT16"), tf.int64: (np.int64, "INT64"), tf.bool: (np.bool, "BOOL"), tf.string: (np.string_, "STRING"), } class ExtraTocoOptions(object): """Additional toco options besides input, output, shape.""" def __init__(self): # Whether to ignore control dependency nodes. self.drop_control_dependency = False # Allow custom ops in the toco conversion. self.allow_custom_ops = False # Rnn states that are used to support rnn / lstm cells. self.rnn_states = None # Split the LSTM inputs from 5 inoputs to 18 inputs for TFLite. self.split_tflite_lstm_inputs = None # The inference input type passed to TFLiteConvert. self.inference_input_type = None # The inference output type passed to TFLiteConvert. self.inference_output_type = None def create_tensor_data(dtype, shape, min_value=-100, max_value=100): """Build tensor data spreading the range [min_value, max_value).""" if dtype in TF_TYPE_INFO: dtype = TF_TYPE_INFO[dtype][0] if dtype in (tf.float32, tf.float16): value = (max_value - min_value) * np.random.random_sample(shape) + min_value elif dtype in (tf.int32, tf.uint8, tf.int64, tf.int16): value = np.random.randint(min_value, max_value + 1, shape) elif dtype == tf.bool: value = np.random.choice([True, False], size=shape) elif dtype == np.string_: # Not the best strings, but they will do for some basic testing. letters = list(string.ascii_uppercase) return np.random.choice(letters, size=shape).astype(dtype) return np.dtype(dtype).type(value) if np.isscalar(value) else value.astype( dtype) def create_scalar_data(dtype, min_value=-100, max_value=100): """Build scalar tensor data range from min_value to max_value exclusively.""" if dtype in TF_TYPE_INFO: dtype = TF_TYPE_INFO[dtype][0] if dtype in (tf.float32, tf.float16): value = (max_value - min_value) * np.random.random() + min_value elif dtype in (tf.int32, tf.uint8, tf.int64, tf.int16): value = np.random.randint(min_value, max_value + 1) return np.array(value, dtype=dtype) def freeze_graph(session, outputs): """Freeze the current graph. Args: session: Tensorflow sessions containing the graph outputs: List of output tensors Returns: The frozen graph_def. """ return tf_graph_util.convert_variables_to_constants( session, session.graph.as_graph_def(), [x.op.name for x in outputs]) def format_result(t): """Convert a tensor to a format that can be used in test specs.""" if t.dtype.kind not in [np.dtype(np.string_).kind, np.dtype(np.object_).kind]: # Output 9 digits after the point to ensure the precision is good enough. values = ["{:.9f}".format(value) for value in list(t.flatten())] return ",".join(values) else: return string_util_wrapper.SerializeAsHexString(t.flatten()) def write_examples(fp, examples): """Given a list `examples`, write a text format representation. The file format is csv like with a simple repeated pattern. We would ike to use proto here, but we can't yet due to interfacing with the Android team using this format. Args: fp: File-like object to write to. examples: Example dictionary consiting of keys "inputs" and "outputs" """ def write_tensor(fp, x): """Write tensor in file format supported by TFLITE example.""" fp.write("dtype,%s\n" % x.dtype) fp.write("shape," + ",".join(map(str, x.shape)) + "\n") fp.write("values," + format_result(x) + "\n") fp.write("test_cases,%d\n" % len(examples)) for example in examples: fp.write("inputs,%d\n" % len(example["inputs"])) for i in example["inputs"]: write_tensor(fp, i) fp.write("outputs,%d\n" % len(example["outputs"])) for i in example["outputs"]: write_tensor(fp, i) def write_test_cases(fp, model_name, examples): """Given a dictionary of `examples`, write a text format representation. The file format is protocol-buffer-like, even though we don't use proto due to the needs of the Android team. Args: fp: File-like object to write to. model_name: Filename where the model was written to, relative to filename. examples: Example dictionary consiting of keys "inputs" and "outputs" """ fp.write("load_model: %s\n" % os.path.basename(model_name)) for example in examples: fp.write("reshape {\n") for t in example["inputs"]: fp.write(" input: \"" + ",".join(map(str, t.shape)) + "\"\n") fp.write("}\n") fp.write("invoke {\n") for t in example["inputs"]: fp.write(" input: \"" + format_result(t) + "\"\n") for t in example["outputs"]: fp.write(" output: \"" + format_result(t) + "\"\n") fp.write(" output_shape: \"" + ",".join([str(dim) for dim in t.shape]) + "\"\n") fp.write("}\n") def get_input_shapes_map(input_tensors): """Gets a map of input names to shapes. Args: input_tensors: List of input tensor tuples `(name, shape, type)`. Returns: {string : list of integers}. """ input_arrays = [tensor[0] for tensor in input_tensors] input_shapes_list = [] for _, shape, _ in input_tensors: dims = None if shape: dims = [dim.value for dim in shape.dims] input_shapes_list.append(dims) input_shapes = { name: shape for name, shape in zip(input_arrays, input_shapes_list) if shape } return input_shapes def _normalize_output_name(output_name): """Remove :0 suffix from tensor names.""" return output_name.split(":")[0] if output_name.endswith( ":0") else output_name # How many test cases we may have in a zip file. Too many test cases will # slow down the test data generation process. _MAX_TESTS_PER_ZIP = 500 def make_zip_of_tests(options, test_parameters, make_graph, make_test_inputs, extra_toco_options=ExtraTocoOptions(), use_frozen_graph=False, expected_tf_failures=0): """Helper to make a zip file of a bunch of TensorFlow models. This does a cartestian product of the dictionary of test_parameters and calls make_graph() for each item in the cartestian product set. If the graph is built successfully, then make_test_inputs() is called to build expected input/output value pairs. The model is then converted to tflite with toco, and the examples are serialized with the tflite model into a zip file (2 files per item in the cartesian product set). Args: options: An Options instance. test_parameters: Dictionary mapping to lists for each parameter. e.g. `{"strides": [[1,3,3,1], [1,2,2,1]], "foo": [1.2, 1.3]}` make_graph: function that takes current parameters and returns tuple `[input1, input2, ...], [output1, output2, ...]` make_test_inputs: function taking `curr_params`, `session`, `input_tensors`, `output_tensors` and returns tuple `(input_values, output_values)`. extra_toco_options: Additional toco options. use_frozen_graph: Whether or not freeze graph before toco converter. expected_tf_failures: Number of times tensorflow is expected to fail in executing the input graphs. In some cases it is OK for TensorFlow to fail because the one or more combination of parameters is invalid. Raises: RuntimeError: if there are converter errors that can't be ignored. """ zip_path = os.path.join(options.output_path, options.zip_to_output) parameter_count = 0 for parameters in test_parameters: parameter_count += functools.reduce( operator.mul, [len(values) for values in parameters.values()]) all_parameter_count = parameter_count if options.multi_gen_state: all_parameter_count += options.multi_gen_state.parameter_count if not options.no_tests_limit and all_parameter_count > _MAX_TESTS_PER_ZIP: raise RuntimeError( "Too many parameter combinations for generating '%s'.\n" "There are at least %d combinations while the upper limit is %d.\n" "Having too many combinations will slow down the tests.\n" "Please consider splitting the test into multiple functions.\n" % (zip_path, all_parameter_count, _MAX_TESTS_PER_ZIP)) if options.multi_gen_state: options.multi_gen_state.parameter_count = all_parameter_count # TODO(aselle): Make this allow multiple inputs outputs. if options.multi_gen_state: archive = options.multi_gen_state.archive else: archive = zipfile.PyZipFile(zip_path, "w") zip_manifest = [] convert_report = [] toco_errors = 0 processed_labels = set() if options.make_edgetpu_tests: extra_toco_options.inference_input_type = tf.uint8 extra_toco_options.inference_output_type = tf.uint8 # Only count parameters when fully_quantize is True. parameter_count = 0 for parameters in test_parameters: if True in parameters.get("fully_quantize", []): parameter_count += functools.reduce(operator.mul, [ len(values) for key, values in parameters.items() if key != "fully_quantize" ]) label_base_path = zip_path if options.multi_gen_state: label_base_path = options.multi_gen_state.label_base_path for parameters in test_parameters: keys = parameters.keys() for curr in itertools.product(*parameters.values()): label = label_base_path.replace(".zip", "_") + (",".join( "%s=%r" % z for z in sorted(zip(keys, curr))).replace(" ", "")) if label[0] == "/": label = label[1:] if label in processed_labels: # Do not populate data for the same label more than once. It will cause # errors when unzipping. continue processed_labels.add(label) param_dict = dict(zip(keys, curr)) if options.make_edgetpu_tests and not param_dict.get( "fully_quantize", False): continue def generate_inputs_outputs(tflite_model_binary, min_value=0, max_value=255): """Generate input values and output values of the given tflite model. Args: tflite_model_binary: A serialized flatbuffer as a string. min_value: min value for the input tensor. max_value: max value for the input tensor. Returns: (input_values, output_values): input values and output values built. """ interpreter = tf.lite.Interpreter(model_content=tflite_model_binary) interpreter.allocate_tensors() input_details = interpreter.get_input_details() input_values = [] for input_detail in input_details: input_value = create_tensor_data( input_detail["dtype"], input_detail["shape"], min_value=min_value, max_value=max_value) interpreter.set_tensor(input_detail["index"], input_value) input_values.append(input_value) interpreter.invoke() output_details = interpreter.get_output_details() output_values = [] for output_detail in output_details: output_values.append(interpreter.get_tensor(output_detail["index"])) return input_values, output_values def build_example(label, param_dict_real): """Build the model with parameter values set in param_dict_real. Args: label: Label of the model (i.e. the filename in the zip). param_dict_real: Parameter dictionary (arguments to the factories make_graph and make_test_inputs) Returns: (tflite_model_binary, report) where tflite_model_binary is the serialized flatbuffer as a string and report is a dictionary with keys `toco_log` (log of toco conversion), `tf_log` (log of tf conversion), `toco` (a string of success status of the conversion), `tf` (a string success status of the conversion). """ np.random.seed(RANDOM_SEED) report = {"toco": report_lib.NOTRUN, "tf": report_lib.FAILED} # Build graph report["tf_log"] = "" report["toco_log"] = "" tf.compat.v1.reset_default_graph() with tf.device("/cpu:0"): try: inputs, outputs = make_graph(param_dict_real) except (tf.errors.UnimplementedError, tf.errors.InvalidArgumentError, ValueError): report["tf_log"] += traceback.format_exc() return None, report sess = tf.compat.v1.Session() try: baseline_inputs, baseline_outputs = ( make_test_inputs(param_dict_real, sess, inputs, outputs)) except (tf.errors.UnimplementedError, tf.errors.InvalidArgumentError, ValueError): report["tf_log"] += traceback.format_exc() return None, report report["toco"] = report_lib.FAILED report["tf"] = report_lib.SUCCESS # Convert graph to toco input_tensors = [(input_tensor.name.split(":")[0], input_tensor.shape, input_tensor.dtype) for input_tensor in inputs] output_tensors = [_normalize_output_name(out.name) for out in outputs] # pylint: disable=g-long-ternary graph_def = freeze_graph( sess, tf.global_variables() + inputs + outputs) if use_frozen_graph else sess.graph_def if "split_tflite_lstm_inputs" in param_dict_real: extra_toco_options.split_tflite_lstm_inputs = param_dict_real[ "split_tflite_lstm_inputs"] tflite_model_binary, toco_log = options.tflite_convert_function( options, graph_def, input_tensors, output_tensors, extra_toco_options=extra_toco_options, test_params=param_dict_real) report["toco"] = ( report_lib.SUCCESS if tflite_model_binary is not None else report_lib.FAILED) report["toco_log"] = toco_log if options.save_graphdefs: archive.writestr(label + ".pbtxt", text_format.MessageToString(graph_def), zipfile.ZIP_DEFLATED) if tflite_model_binary: if options.make_edgetpu_tests: # Set proper min max values according to input dtype. baseline_inputs, baseline_outputs = generate_inputs_outputs( tflite_model_binary, min_value=0, max_value=255) archive.writestr(label + ".bin", tflite_model_binary, zipfile.ZIP_DEFLATED) example = {"inputs": baseline_inputs, "outputs": baseline_outputs} example_fp = StringIO() write_examples(example_fp, [example]) archive.writestr(label + ".inputs", example_fp.getvalue(), zipfile.ZIP_DEFLATED) example_fp2 = StringIO() write_test_cases(example_fp2, label + ".bin", [example]) archive.writestr(label + "_tests.txt", example_fp2.getvalue(), zipfile.ZIP_DEFLATED) zip_manifest.append(label + "\n") return tflite_model_binary, report _, report = build_example(label, param_dict) if report["toco"] == report_lib.FAILED: ignore_error = False if not options.known_bugs_are_errors: for pattern, bug_number in options.known_bugs.items(): if re.search(pattern, label): print("Ignored converter error due to bug %s" % bug_number) ignore_error = True if not ignore_error: toco_errors += 1 print("-----------------\nconverter error!\n%s\n-----------------\n" % report["toco_log"]) convert_report.append((param_dict, report)) if not options.no_conversion_report: report_io = StringIO() report_lib.make_report_table(report_io, zip_path, convert_report) if options.multi_gen_state: archive.writestr("report_" + options.multi_gen_state.test_name + ".html", report_io.getvalue()) else: archive.writestr("report.html", report_io.getvalue()) if options.multi_gen_state: options.multi_gen_state.zip_manifest.extend(zip_manifest) else: archive.writestr("manifest.txt", "".join(zip_manifest), zipfile.ZIP_DEFLATED) # Log statistics of what succeeded total_conversions = len(convert_report) tf_success = sum( 1 for x in convert_report if x[1]["tf"] == report_lib.SUCCESS) toco_success = sum( 1 for x in convert_report if x[1]["toco"] == report_lib.SUCCESS) percent = 0 if tf_success > 0: percent = float(toco_success) / float(tf_success) * 100. tf.compat.v1.logging.info( ("Archive %s Considered %d graphs, %d TF evaluated graphs " " and %d TOCO converted graphs (%.1f%%"), zip_path, total_conversions, tf_success, toco_success, percent) tf_failures = parameter_count - tf_success if tf_failures / parameter_count > 0.8: raise RuntimeError(("Test for '%s' is not very useful. " "TensorFlow fails in %d percent of the cases.") % (zip_path, int(100 * tf_failures / parameter_count))) if not options.make_edgetpu_tests and tf_failures != expected_tf_failures: raise RuntimeError(("Expected TF to fail %d times while generating '%s', " "but that happened %d times") % (expected_tf_failures, zip_path, tf_failures)) if not options.ignore_converter_errors and toco_errors > 0: raise RuntimeError("Found %d errors while generating toco models" % toco_errors)
37.120879
80
0.667357
bfbe662442307b6d1c359f9d2e939fc870461f2c
2,624
py
Python
shape_bruteforce/training.py
ahmedkhalf/Shape-Bruteforce
4a9c205c9777c07a1fa7ecf7f4b27549b2d7dc7a
[ "MIT" ]
2
2020-07-27T15:02:57.000Z
2022-03-12T02:41:02.000Z
shape_bruteforce/training.py
ahmedkhalf/Shape-Bruteforce
4a9c205c9777c07a1fa7ecf7f4b27549b2d7dc7a
[ "MIT" ]
null
null
null
shape_bruteforce/training.py
ahmedkhalf/Shape-Bruteforce
4a9c205c9777c07a1fa7ecf7f4b27549b2d7dc7a
[ "MIT" ]
null
null
null
import random import math import cairo import numpy as np import tqdm from shape_bruteforce import shapes class Image: def __init__(self, width, height): self.width = width self.height = height self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height) self.ctx = cairo.Context(self.surface) def draw_background(self, r, g, b, a=1.0): self.ctx.set_source_rgba(r, g, b, a) self.ctx.rectangle(0, 0, self.width, self.height) self.ctx.fill() def copy_image(self, img): self.ctx.set_source_surface(img.surface) self.ctx.paint() def to_array(self): buf = self.surface.get_data() array = np.ndarray(shape=(self.height, self.width, 4), dtype=np.uint8, buffer=buf) return array class Training: def __init__(self, target): self.th, self.tw = target.shape[0:2] # target height, target width self.target = target.astype("float") # to make error function work self.parent = Image(self.tw, self.th) self.parent.draw_background(0, 0, 0) def mse(self, img): arr = img.to_array() return float(np.square(np.subtract(arr, self.target)).mean()) def add_random_circle(self, img): child = Image(self.tw, self.th) child.copy_image(img) child.ctx.set_source_rgba(random.random(), random.random(), random.random(), random.random()) child.ctx.arc( random.uniform(0, self.tw), random.uniform(0, self.th), # x, y random.uniform(0, (self.tw + self.th) / 2 / 2), # radius 0, 2 * math.pi) child.ctx.fill() return child def train(self, shape_count=256, gens_per_shape=2000): pbar = tqdm.trange(shape_count) for i in pbar: best_child = self.add_random_circle(self.parent) best_child_fit = self.mse(best_child) for j in range(gens_per_shape): child = self.add_random_circle(self.parent) child_fit = self.mse(child) if child_fit < best_child_fit: best_child = child best_child_fit = child_fit pbar.set_description("ERR " + str(int(best_child_fit))) self.parent = best_child if __name__ == "__main__": from shape_bruteforce import utils target = utils.load_image("mona-lisa.jpg") target = utils.resize_image(target, 64) target = utils.normalize_image(target) trainer = Training(target) trainer.train() arr = trainer.parent.to_array() utils.show_image(arr)
32
101
0.61471
a20ea0117cb13cb33ce797f281755d892050b2ea
2,094
py
Python
pierre-feuille-ciseaux.py
xeorion/pierre-feuille-ciseaux
abc880dcc4c2290765d606854b168793e640164e
[ "CC0-1.0" ]
null
null
null
pierre-feuille-ciseaux.py
xeorion/pierre-feuille-ciseaux
abc880dcc4c2290765d606854b168793e640164e
[ "CC0-1.0" ]
null
null
null
pierre-feuille-ciseaux.py
xeorion/pierre-feuille-ciseaux
abc880dcc4c2290765d606854b168793e640164e
[ "CC0-1.0" ]
null
null
null
#Voici un petit pierre, feuille, ciseaux. Créé le 21/11/2021 import numpy as np #on importe la blibliothèque qui nous permet de faire un choix aléatoire pour l'ordianateur choix=['pierre', 'feuille', 'ciseaux'] #on initialise une variable listant les différents choix possibles pour l'ordinateur gg='Bravo, vous avez gagnez' # à afficher si le joueur gagne nope="Désolé, c'est perdu. ;)" # à afficher si le joueur perd eql="Egalité, on recommence ?" # à affiher en cas d'égalité nbtour=int(input("Nombre de tour")) #on demande au joueur le nombre de tour qu'il voudrait faire ppc=0 #on initialise la variable des points du joueur pj=0 #on initialise la variable des point de l'ordinateur for k in range(0,nbtour): #boule for qui tournera jusqu'à que nbtour soient effectués cj=input("pierre, feuille, ou ciseaux ?") #on demande au joueur qu'est-ce qu'il veut jouer if cj=='pierre': # si le joueur joue pierre if np.random.choice(choix)=='pierre': #si l'ordinateur joue pierre print(eql) # afficher eql (phrase d'égalité) elif np.random.choice(choix)=='feuille': #sinon, si l'ordinateur joue la feuille print(nope) #afficher nope (phrase de défaite) ppc+=1 # ajouter 1 aux points de l'ordinateur else: #sinon print(gg) #afficher gg (phrase de victoire) pj+=1 #ajouter 1 aux points du joueur elif cj=='feuille': if np.random.choice(choix)=='feuille': print(eql) elif np.random.choice(choix)=='ciseaux': print(nope) ppc+=1 else: print(gg) pj+=1 elif cj=='ciseaux': if np.random.choice(choix)=='ciseaux': print(eql) elif np.random.choice(choix)=='pierre': print(nope) ppc+=1 else: print(gg) pj+=1 else: pass if pj==ppc: #si le joueur et l'ordinateur ont le même nombre de point print(f"Vous avez une égalité de point(s) de {pj}.") #afficher égalité et nombre de point (pj) elif pj>ppc: print(f"Vous avez {pj} point(s) et la machine a {ppc} point(s), bravo !") else: print(f"Vous avez {pj} point(s) et la machine a {ppc} point(s), dommage !")
38.777778
123
0.680038
56bc55b0350bab8733573425a2e63ed484c5752c
2,260
py
Python
tests/e2e/test_running_cluster_monitoring_with_persistent_storage.py
jhutar/ocs-ci
da604424550ffa4af0bd1cfc4447a539a85164e6
[ "MIT" ]
null
null
null
tests/e2e/test_running_cluster_monitoring_with_persistent_storage.py
jhutar/ocs-ci
da604424550ffa4af0bd1cfc4447a539a85164e6
[ "MIT" ]
null
null
null
tests/e2e/test_running_cluster_monitoring_with_persistent_storage.py
jhutar/ocs-ci
da604424550ffa4af0bd1cfc4447a539a85164e6
[ "MIT" ]
null
null
null
import logging import pytest from ocs_ci.ocs.ocp import OCP from ocs_ci.framework.testlib import tier1, E2ETest from ocs_ci.ocs.resources.pvc import delete_pvcs from ocs_ci.ocs.monitoring import ( create_configmap_cluster_monitoring_pod, validate_pvc_created_and_bound_on_monitoring_pods, validate_pvc_are_mounted_on_monitoring_pods, validate_monitoring_pods_are_respinned_and_running_state, get_list_pvc_objs_created_on_monitoring_pods ) from tests.fixtures import ( create_rbd_storageclass, create_ceph_block_pool, create_rbd_secret ) logger = logging.getLogger(__name__) ocp = OCP('v1', 'ConfigMap', 'openshift-monitoring') @pytest.fixture() def test_fixture(request): """ Setup and teardown """ self = request.node.cls def finalizer(): teardown(self) request.addfinalizer(finalizer) def teardown(self): """ Delete pvc and config map created """ assert ocp.delete(resource_name='cluster-monitoring-config') pvc_obj_list = get_list_pvc_objs_created_on_monitoring_pods() assert delete_pvcs(pvc_obj_list) @pytest.mark.usefixtures( create_rbd_secret.__name__, create_ceph_block_pool.__name__, create_rbd_storageclass.__name__, test_fixture.__name__ ) class TestRunningClusterMonitoringWithPersistentStorage(E2ETest): """ Configure the persistent volume claim on monitoring """ pods_list = ['prometheus-k8s-0', 'prometheus-k8s-1', 'alertmanager-main-0', 'alertmanager-main-1', 'alertmanager-main-2'] @tier1 def test_running_cluster_mointoring_with_persistent_stoarge(self): """ A test case to configure the persistent volume on monitoring pods """ # Create configmap cluster-monitoring-config create_configmap_cluster_monitoring_pod(self.sc_obj.name) # Validate the pods are respinned and in running state validate_monitoring_pods_are_respinned_and_running_state( self.pods_list ) # Validate the pvc is created on monitoring pods validate_pvc_created_and_bound_on_monitoring_pods() # Validate the pvc are mounted on pods validate_pvc_are_mounted_on_monitoring_pods(self.pods_list)
28.974359
73
0.738053
8369f46a608b102cf95e62939ee8f97e34633932
7,267
py
Python
tests/test_snap.py
aalexanderkevin/midtrans-python-client
b026075d2a38f86c96627d16d60cc02ebd3ed9b2
[ "MIT" ]
null
null
null
tests/test_snap.py
aalexanderkevin/midtrans-python-client
b026075d2a38f86c96627d16d60cc02ebd3ed9b2
[ "MIT" ]
null
null
null
tests/test_snap.py
aalexanderkevin/midtrans-python-client
b026075d2a38f86c96627d16d60cc02ebd3ed9b2
[ "MIT" ]
null
null
null
import pytest from .helpers import is_str from .context import midtransclient import datetime from pprint import pprint reused_order_id = "py-midtransclient-test-"+str(datetime.datetime.now()).replace(" ", "").replace(":", "") def test_snap_class(): snap = generate_snap_instance() methods = dir(snap) assert "create_transaction" in methods assert "create_transaction_token" in methods assert "create_transaction_redirect_url" in methods assert is_str(snap.api_config.server_key) assert is_str(snap.api_config.client_key) def test_snap_create_transaction_min(): snap = generate_snap_instance() param = generate_param_min() param['transaction_details']['order_id'] = reused_order_id transaction = snap.create_transaction(param) assert isinstance(transaction, dict) assert is_str(transaction['token']) assert is_str(transaction['redirect_url']) def test_snap_create_transaction_max(): snap = generate_snap_instance() param = generate_param_max() transaction = snap.create_transaction(param) assert isinstance(transaction, dict) assert is_str(transaction['token']) assert is_str(transaction['redirect_url']) def test_snap_create_transaction_token(): snap = generate_snap_instance() param = generate_param_min() token = snap.create_transaction_token(param) assert is_str(token) def test_snap_create_transaction_redirect_url(): snap = generate_snap_instance() param = generate_param_min() redirect_url = snap.create_transaction_redirect_url(param) assert is_str(redirect_url) def test_snap_status_fail_404(): snap = generate_snap_instance() err = '' try: response = snap.transactions.status('non-exist-order-id') except Exception as e: err = e assert 'MidtransAPIError' in err.__class__.__name__ assert '404' in err.message assert 'exist' in err.message def test_snap_request_fail_401(): snap = generate_snap_instance() snap.api_config.server_key='' param = generate_param_min() err = '' try: transaction = snap.create_transaction(param) except Exception as e: err = e assert 'MidtransAPIError' in err.__class__.__name__ assert '401' in err.message assert 'unauthorized' in err.message def test_snap_request_fail_empty_param(): snap = generate_snap_instance() param = None err = '' try: transaction = snap.create_transaction(param) except Exception as e: err = e assert 'MidtransAPIError' in err.__class__.__name__ assert '400' in err.message assert 'is required' in err.message def test_snap_request_fail_zero_gross_amount(): snap = generate_snap_instance() param = generate_param_min() param['transaction_details']['gross_amount'] = 0 err = '' try: transaction = snap.create_transaction(param) except Exception as e: err = e assert 'MidtransAPIError' in err.__class__.__name__ def test_snap_exception_MidtransAPIError(): snap = generate_snap_instance() snap.api_config.server_key='' param = generate_param_min() err = '' try: transaction = snap.create_transaction(param) except Exception as e: err = e assert 'MidtransAPIError' in err.__class__.__name__ assert is_str(err.message) assert isinstance(err.api_response_dict, dict) assert isinstance(err.http_status_code,int) # ======== HELPER FUNCTIONS BELOW ======== # def generate_snap_instance(): snap = midtransclient.Snap(is_production=False, server_key='SB-Mid-server-GwUP_WGbJPXsDzsNEBRs8IYA', client_key='SB-Mid-client-61XuGAwQ8Bj8LxSS') return snap def generate_param_min(): return { "transaction_details": { "order_id": "py-midtransclient-test-"+datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "gross_amount": 200000 }, "credit_card":{ "secure" : True } } def generate_param_max(): return { "transaction_details": { "order_id": "py-midtransclient-test-"+datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "gross_amount": 10000 }, "item_details": [{ "id": "ITEM1", "price": 10000, "quantity": 1, "name": "Midtrans Bear", "brand": "Midtrans", "category": "Toys", "merchant_name": "Midtrans" }], "customer_details": { "first_name": "John", "last_name": "Watson", "email": "test@example.com", "phone": "+628123456", "billing_address": { "first_name": "John", "last_name": "Watson", "email": "test@example.com", "phone": "081 2233 44-55", "address": "Sudirman", "city": "Jakarta", "postal_code": "12190", "country_code": "IDN" }, "shipping_address": { "first_name": "John", "last_name": "Watson", "email": "test@example.com", "phone": "0 8128-75 7-9338", "address": "Sudirman", "city": "Jakarta", "postal_code": "12190", "country_code": "IDN" } }, "enabled_payments": ["credit_card", "mandiri_clickpay", "cimb_clicks","bca_klikbca", "bca_klikpay", "bri_epay", "echannel", "indosat_dompetku","mandiri_ecash", "permata_va", "bca_va", "bni_va", "other_va", "gopay","kioson", "indomaret", "gci", "danamon_online"], "credit_card": { "secure": True, "channel": "migs", "bank": "bca", "installment": { "required": False, "terms": { "bni": [3, 6, 12], "mandiri": [3, 6, 12], "cimb": [3], "bca": [3, 6, 12], "offline": [6, 12] } }, "whitelist_bins": [ "48111111", "41111111" ] }, "bca_va": { "va_number": "12345678911", "free_text": { "inquiry": [ { "en": "text in English", "id": "text in Bahasa Indonesia" } ], "payment": [ { "en": "text in English", "id": "text in Bahasa Indonesia" } ] } }, "bni_va": { "va_number": "12345678" }, "permata_va": { "va_number": "1234567890", "recipient_name": "SUDARSONO" }, "callbacks": { "finish": "https://demo.midtrans.com" }, "expiry": { "start_time": "2020-12-20 18:11:08 +0700", "unit": "minutes", "duration": 1 }, "custom_field1": "custom field 1 content", "custom_field2": "custom field 2 content", "custom_field3": "custom field 3 content" }
32.882353
270
0.562818
08d15b9c17723f4a0c65eef69635972c7a21108c
1,340
py
Python
aa2020/python/plot_shortest_path_tree.py
gianlucacovini/opt4ds
c8927ad36cace51c501527b2f8e8e93857c80d95
[ "MIT" ]
14
2020-03-04T18:02:47.000Z
2022-02-27T17:40:09.000Z
aa2020/python/plot_shortest_path_tree.py
gianlucacovini/opt4ds
c8927ad36cace51c501527b2f8e8e93857c80d95
[ "MIT" ]
1
2021-03-23T11:47:24.000Z
2021-03-28T12:23:21.000Z
aa2020/python/plot_shortest_path_tree.py
mathcoding/opt4ds
42904fd56c18a83fd5ff6f068bbd20b055a40734
[ "MIT" ]
7
2020-03-12T23:41:21.000Z
2022-03-03T13:41:29.000Z
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 11:14:53 2020 @author: Gualandi """ import networkx as nx import matplotlib.pyplot as plt Ls = [('a', 'b', 5), ('a', 'c', 3), ('a', 'd', 3), ('b', 'c', 2), ('b', 'd', 5), ('c', 'e', 2), ('c', 'd', 3), ('d', 'e', 2), ('d', 'f', 3), ('e', 'g', 3), ('f', 'c', 4), ('g', 'f', 2)] Cs = dict([((i,j),c) for i,j,c in Ls]) As = [(i,j) for i,j,_ in Ls] # NetworkX Digraph G = nx.DiGraph() G.add_edges_from(As) val_map = {'g': 0.5714285714285714, 'a': 0.0} values = [val_map.get(node, 0.2) for node in G.nodes()] # Specify the edges you want here red_edges = [('e', 'g'), ('b', 'c'), ('c', 'e'), ('f', 'c'), ('d', 'e'), ('a', 'c')] black_edges = [edge for edge in G.edges() if edge not in red_edges] # Need to create a layout when doing # separate calls to draw nodes and edges pos = nx.kamada_kawai_layout(G) nx.draw_networkx_nodes(G, pos, cmap=plt.get_cmap('coolwarm'), node_color = values, node_size = 400) nx.draw_networkx_labels(G, pos) nx.draw_networkx_edges(G, pos, edgelist=red_edges, lw=2, edge_color='r', arrows=True) nx.draw_networkx_edges(G, pos, edgelist=black_edges, arrows=True) nx.draw_networkx_edge_labels(G, pos, edge_labels=Cs) plt.savefig("ShortestPathGraph.pdf", bbox_inches='tight') plt.show()
29.130435
84
0.578358
e7681b697a99068749e1c13b5d99139a9495e0ff
14,891
py
Python
oslo-modules/oslo_db/sqlalchemy/engines.py
esse-io/zen-common
8ede82ab81bad53c3b947084b812c44e329f159b
[ "Apache-2.0" ]
null
null
null
oslo-modules/oslo_db/sqlalchemy/engines.py
esse-io/zen-common
8ede82ab81bad53c3b947084b812c44e329f159b
[ "Apache-2.0" ]
null
null
null
oslo-modules/oslo_db/sqlalchemy/engines.py
esse-io/zen-common
8ede82ab81bad53c3b947084b812c44e329f159b
[ "Apache-2.0" ]
null
null
null
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Core SQLAlchemy connectivity routines. """ import itertools import logging import os import re import time import six import sqlalchemy from sqlalchemy import event from sqlalchemy import exc from sqlalchemy import pool from sqlalchemy.sql.expression import select from oslo_db._i18n import _LW from oslo_db import exception from oslo_db.sqlalchemy import exc_filters from oslo_db.sqlalchemy import utils LOG = logging.getLogger(__name__) def _thread_yield(dbapi_con, con_record): """Ensure other greenthreads get a chance to be executed. If we use eventlet.monkey_patch(), eventlet.greenthread.sleep(0) will execute instead of time.sleep(0). Force a context switch. With common database backends (eg MySQLdb and sqlite), there is no implicit yield caused by network I/O since they are implemented by C libraries that eventlet cannot monkey patch. """ time.sleep(0) def _connect_ping_listener(connection, branch): """Ping the server at connection startup. Ping the server at transaction begin and transparently reconnect if a disconnect exception occurs. """ if branch: return # turn off "close with result". This can also be accomplished # by branching the connection, however just setting the flag is # more performant and also doesn't get involved with some # connection-invalidation awkardness that occurs (see # https://bitbucket.org/zzzeek/sqlalchemy/issue/3215/) save_should_close_with_result = connection.should_close_with_result connection.should_close_with_result = False try: # run a SELECT 1. use a core select() so that # any details like that needed by Oracle, DB2 etc. are handled. connection.scalar(select([1])) except exception.DBConnectionError: # catch DBConnectionError, which is raised by the filter # system. # disconnect detected. The connection is now # "invalid", but the pool should be ready to return # new connections assuming they are good now. # run the select again to re-validate the Connection. connection.scalar(select([1])) finally: connection.should_close_with_result = save_should_close_with_result def _setup_logging(connection_debug=0): """setup_logging function maps SQL debug level to Python log level. Connection_debug is a verbosity of SQL debugging information. 0=None(default value), 1=Processed only messages with WARNING level or higher 50=Processed only messages with INFO level or higher 100=Processed only messages with DEBUG level """ if connection_debug >= 0: logger = logging.getLogger('sqlalchemy.engine') if connection_debug >= 100: logger.setLevel(logging.DEBUG) elif connection_debug >= 50: logger.setLevel(logging.INFO) else: logger.setLevel(logging.WARNING) def create_engine(sql_connection, sqlite_fk=False, mysql_sql_mode=None, idle_timeout=3600, connection_debug=0, max_pool_size=None, max_overflow=None, pool_timeout=None, sqlite_synchronous=True, connection_trace=False, max_retries=10, retry_interval=10, thread_checkin=True, logging_name=None): """Return a new SQLAlchemy engine.""" url = sqlalchemy.engine.url.make_url(sql_connection) engine_args = { "pool_recycle": idle_timeout, 'convert_unicode': True, 'connect_args': {}, 'logging_name': logging_name } _setup_logging(connection_debug) _init_connection_args( url, engine_args, sqlite_fk=sqlite_fk, max_pool_size=max_pool_size, max_overflow=max_overflow, pool_timeout=pool_timeout ) engine = sqlalchemy.create_engine(url, **engine_args) _init_events( engine, mysql_sql_mode=mysql_sql_mode, sqlite_synchronous=sqlite_synchronous, sqlite_fk=sqlite_fk, thread_checkin=thread_checkin, connection_trace=connection_trace ) # register alternate exception handler exc_filters.register_engine(engine) # register engine connect handler event.listen(engine, "engine_connect", _connect_ping_listener) # initial connect + test # NOTE(viktors): the current implementation of _test_connection() # does nothing, if max_retries == 0, so we can skip it if max_retries: test_conn = _test_connection(engine, max_retries, retry_interval) test_conn.close() return engine @utils.dispatch_for_dialect('*', multiple=True) def _init_connection_args( url, engine_args, max_pool_size=None, max_overflow=None, pool_timeout=None, **kw): pool_class = url.get_dialect().get_pool_class(url) if issubclass(pool_class, pool.QueuePool): if max_pool_size is not None: engine_args['pool_size'] = max_pool_size if max_overflow is not None: engine_args['max_overflow'] = max_overflow if pool_timeout is not None: engine_args['pool_timeout'] = pool_timeout @_init_connection_args.dispatch_for("sqlite") def _init_connection_args(url, engine_args, **kw): pool_class = url.get_dialect().get_pool_class(url) # singletonthreadpool is used for :memory: connections; # replace it with StaticPool. if issubclass(pool_class, pool.SingletonThreadPool): engine_args["poolclass"] = pool.StaticPool engine_args['connect_args']['check_same_thread'] = False @_init_connection_args.dispatch_for("postgresql") def _init_connection_args(url, engine_args, **kw): if 'client_encoding' not in url.query: # Set encoding using engine_args instead of connect_args since # it's supported for PostgreSQL 8.*. More details at: # http://docs.sqlalchemy.org/en/rel_0_9/dialects/postgresql.html engine_args['client_encoding'] = 'utf8' @_init_connection_args.dispatch_for("mysql") def _init_connection_args(url, engine_args, **kw): if 'charset' not in url.query: engine_args['connect_args']['charset'] = 'utf8' @_init_connection_args.dispatch_for("mysql+mysqlconnector") def _init_connection_args(url, engine_args, **kw): # mysqlconnector engine (<1.0) incorrectly defaults to # raise_on_warnings=True # https://bitbucket.org/zzzeek/sqlalchemy/issue/2515 if 'raise_on_warnings' not in url.query: engine_args['connect_args']['raise_on_warnings'] = False @_init_connection_args.dispatch_for("mysql+mysqldb") @_init_connection_args.dispatch_for("mysql+oursql") def _init_connection_args(url, engine_args, **kw): # Those drivers require use_unicode=0 to avoid performance drop due # to internal usage of Python unicode objects in the driver # http://docs.sqlalchemy.org/en/rel_0_9/dialects/mysql.html if 'use_unicode' not in url.query: if six.PY3: engine_args['connect_args']['use_unicode'] = 1 else: engine_args['connect_args']['use_unicode'] = 0 @utils.dispatch_for_dialect('*', multiple=True) def _init_events(engine, thread_checkin=True, connection_trace=False, **kw): """Set up event listeners for all database backends.""" _add_process_guards(engine) if connection_trace: _add_trace_comments(engine) if thread_checkin: sqlalchemy.event.listen(engine, 'checkin', _thread_yield) @_init_events.dispatch_for("mysql") def _init_events(engine, mysql_sql_mode=None, **kw): """Set up event listeners for MySQL.""" if mysql_sql_mode is not None: @sqlalchemy.event.listens_for(engine, "connect") def _set_session_sql_mode(dbapi_con, connection_rec): cursor = dbapi_con.cursor() cursor.execute("SET SESSION sql_mode = %s", [mysql_sql_mode]) @sqlalchemy.event.listens_for(engine, "first_connect") def _check_effective_sql_mode(dbapi_con, connection_rec): if mysql_sql_mode is not None: _set_session_sql_mode(dbapi_con, connection_rec) cursor = dbapi_con.cursor() cursor.execute("SHOW VARIABLES LIKE 'sql_mode'") realmode = cursor.fetchone() if realmode is None: LOG.warning(_LW('Unable to detect effective SQL mode')) else: realmode = realmode[1] LOG.debug('MySQL server mode set to %s', realmode) if 'TRADITIONAL' not in realmode.upper() and \ 'STRICT_ALL_TABLES' not in realmode.upper(): LOG.warning( _LW( "MySQL SQL mode is '%s', " "consider enabling TRADITIONAL or STRICT_ALL_TABLES"), realmode) @_init_events.dispatch_for("sqlite") def _init_events(engine, sqlite_synchronous=True, sqlite_fk=False, **kw): """Set up event listeners for SQLite. This includes several settings made on connections as they are created, as well as transactional control extensions. """ def regexp(expr, item): reg = re.compile(expr) return reg.search(six.text_type(item)) is not None @sqlalchemy.event.listens_for(engine, "connect") def _sqlite_connect_events(dbapi_con, con_record): # Add REGEXP functionality on SQLite connections dbapi_con.create_function('regexp', 2, regexp) if not sqlite_synchronous: # Switch sqlite connections to non-synchronous mode dbapi_con.execute("PRAGMA synchronous = OFF") # Disable pysqlite's emitting of the BEGIN statement entirely. # Also stops it from emitting COMMIT before any DDL. # below, we emit BEGIN ourselves. # see http://docs.sqlalchemy.org/en/rel_0_9/dialects/\ # sqlite.html#serializable-isolation-savepoints-transactional-ddl dbapi_con.isolation_level = None if sqlite_fk: # Ensures that the foreign key constraints are enforced in SQLite. dbapi_con.execute('pragma foreign_keys=ON') @sqlalchemy.event.listens_for(engine, "begin") def _sqlite_emit_begin(conn): # emit our own BEGIN, checking for existing # transactional state if 'in_transaction' not in conn.info: conn.execute("BEGIN") conn.info['in_transaction'] = True @sqlalchemy.event.listens_for(engine, "rollback") @sqlalchemy.event.listens_for(engine, "commit") def _sqlite_end_transaction(conn): # remove transactional marker conn.info.pop('in_transaction', None) def _test_connection(engine, max_retries, retry_interval): if max_retries == -1: attempts = itertools.count() else: attempts = six.moves.range(max_retries) # See: http://legacy.python.org/dev/peps/pep-3110/#semantic-changes for # why we are not using 'de' directly (it can be removed from the local # scope). de_ref = None for attempt in attempts: try: return engine.connect() except exception.DBConnectionError as de: msg = _LW('SQL connection failed. %s attempts left.') LOG.warning(msg, max_retries - attempt) time.sleep(retry_interval) de_ref = de else: if de_ref is not None: six.reraise(type(de_ref), de_ref) def _add_process_guards(engine): """Add multiprocessing guards. Forces a connection to be reconnected if it is detected as having been shared to a sub-process. """ @sqlalchemy.event.listens_for(engine, "connect") def connect(dbapi_connection, connection_record): connection_record.info['pid'] = os.getpid() @sqlalchemy.event.listens_for(engine, "checkout") def checkout(dbapi_connection, connection_record, connection_proxy): pid = os.getpid() if connection_record.info['pid'] != pid: LOG.debug(_LW( "Parent process %(orig)s forked (%(newproc)s) with an open " "database connection, " "which is being discarded and recreated."), {"newproc": pid, "orig": connection_record.info['pid']}) connection_record.connection = connection_proxy.connection = None raise exc.DisconnectionError( "Connection record belongs to pid %s, " "attempting to check out in pid %s" % (connection_record.info['pid'], pid) ) def _add_trace_comments(engine): """Add trace comments. Augment statements with a trace of the immediate calling code for a given statement. """ import os import sys import traceback target_paths = set([ os.path.dirname(sys.modules['oslo_db'].__file__), os.path.dirname(sys.modules['sqlalchemy'].__file__) ]) try: skip_paths = set([ os.path.dirname(sys.modules['oslo_db.tests'].__file__), ]) except KeyError: skip_paths = set() @sqlalchemy.event.listens_for(engine, "before_cursor_execute", retval=True) def before_cursor_execute(conn, cursor, statement, parameters, context, executemany): # NOTE(zzzeek) - if different steps per DB dialect are desirable # here, switch out on engine.name for now. stack = traceback.extract_stack() our_line = None for idx, (filename, line, method, function) in enumerate(stack): for tgt in skip_paths: if filename.startswith(tgt): break else: for tgt in target_paths: if filename.startswith(tgt): our_line = idx break if our_line: break if our_line: trace = "; ".join( "File: %s (%s) %s" % ( line[0], line[1], line[2] ) # include three lines of context. for line in stack[our_line - 3:our_line] ) statement = "%s -- %s" % (statement, trace) return statement, parameters
35.454762
79
0.665704
001d2b53fb66094a41d034ab82c4992d3f4992ea
3,575
py
Python
vg_analyze_relationships.py
MeMAD-project/statistic-tools
6257d3913b4a359516dd93a89730ca4e3bf0565b
[ "MIT" ]
1
2020-06-10T11:17:00.000Z
2020-06-10T11:17:00.000Z
vg_analyze_relationships.py
MeMAD-project/statistical-tools
6257d3913b4a359516dd93a89730ca4e3bf0565b
[ "MIT" ]
null
null
null
vg_analyze_relationships.py
MeMAD-project/statistical-tools
6257d3913b4a359516dd93a89730ca4e3bf0565b
[ "MIT" ]
null
null
null
import sys import analysis_funs as va import argparse def main(args): print("Loading relationships data from: {}".format(args.relationships_json)) data = va.load_json(args.relationships_json) assert len(data) == 108077 print("=" * 80) if args.rel_counts: print("Count all relationships (verbs and non-verbs):") print("=" * 80) rels, subjs, objs = va.count_relationships(data, va.human_synsets) va.plot_and_output_csv(rels, ['relationship name', 'relationship synset'], 40, "Relationships with people as subjects", 'relationships/rel_subj_people', batch=True) va.plot_and_output_csv(subjs, ['subject name', ' subject synset'], 40, "Subjects with people as subjects", 'relationships/subj_subj_people', batch=True) va.plot_and_output_csv(objs, ['object name', 'object synset'], 40, "Objects with people as subjects", 'relationships/obj_subj_people', batch=True) print("=" * 80) print("Count verb-only relationships:") print("=" * 80) rels, subjs, objs = va.count_relationships(data, va.human_synsets, verbs=True) va.plot_and_output_csv(rels, ['relationship name', 'relationship synset'], 40, "Relationships with people as subjects, verbs only", 'relationships/rel_subj_people_verbs', batch=True) va.plot_and_output_csv(subjs, ['subject name', ' subject synset'], 40, "Subjects with people as subjects, verbs only", 'relationships/subj_subj_people_verbs', batch=True) va.plot_and_output_csv(objs, ['object name', 'object synset'], 40, "Objects with people as subjects, verbs only", 'relationships/obj_subj_people_verbs', batch=True) print("=" * 80) counts, indices = va.stats_on_humans_in_relationships(data) print("=" * 80) print("Plotting venn diagrams...") print("=" * 80) va.plot_venn(counts['rels']['all'], ['Human subjects', 'Human objects', 'Other'], 'Relationships with humans as subjects or objects', filename='relationships/venn_rels_all', batch=True) va.plot_venn(counts['rels']['verbs'], ['Human subjects', 'Human objects', 'Other'], "Relationships with humans as subjects or objects,\nverbs only", filename='relationships/venn_rels_verbs', batch=True) va.plot_venn(counts['imgs']['all'], ['Human subjects', 'Human objects', 'Other'], 'Images with humans as subjects or objects', filename='relationships/venn_imgs_all', batch=True) va.plot_venn(counts['imgs']['verbs'], ['Human subjects', 'Human objects', 'Other'], "Images with humans as subjects or objects,\nverbs only", filename='relationships/venn_imgs_verbs', batch=True) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--relationships_json', type=str, help='location of Visual Genome relationships JSON file') parser.add_argument('--rel_counts', action='store_true', help='Count different types of relationships, ' 'otherwise show summary stats only') args = parser.parse_args() main(args=args)
44.135802
87
0.593287
a9965939b0e0fc629e29e9ff3a0bb6a34a23ddaf
347
py
Python
Classes/TP2/Lat-long/lat_long-v2.py
LuisPereira23/PL-2021
951190835d8989e3afda1fd0f8f9ef08f5d85e07
[ "MIT" ]
null
null
null
Classes/TP2/Lat-long/lat_long-v2.py
LuisPereira23/PL-2021
951190835d8989e3afda1fd0f8f9ef08f5d85e07
[ "MIT" ]
null
null
null
Classes/TP2/Lat-long/lat_long-v2.py
LuisPereira23/PL-2021
951190835d8989e3afda1fd0f8f9ef08f5d85e07
[ "MIT" ]
null
null
null
import re latLong = re.compile(r'(^\([+\-]?([1-8]?[0-9](\.[0-9]+)?|90(\.0+)?), [+\-]?((([1-9]?[0-9]|1[0-7][0-9])(\.[0-9]+)?)|180(\.0+)?)\)$)') n = int(input()) for i in range(n): linha = input() res = latLong.search(linha) if(res): print(res) print("VALIDO") else: print(linha) print("Invalido")
21.6875
132
0.43804
a37017aeea4d3700f8a5d481a1f64b45645a38f6
6,420
py
Python
aiida/backends/sqlalchemy/migrations/versions/a6048f0ffca8_update_linktypes.py
astamminger/aiida_core
b01ad8236f21804f273c9d2a0365ecee62255cbb
[ "BSD-2-Clause" ]
null
null
null
aiida/backends/sqlalchemy/migrations/versions/a6048f0ffca8_update_linktypes.py
astamminger/aiida_core
b01ad8236f21804f273c9d2a0365ecee62255cbb
[ "BSD-2-Clause" ]
null
null
null
aiida/backends/sqlalchemy/migrations/versions/a6048f0ffca8_update_linktypes.py
astamminger/aiida_core
b01ad8236f21804f273c9d2a0365ecee62255cbb
[ "BSD-2-Clause" ]
1
2018-12-21T11:10:09.000Z
2018-12-21T11:10:09.000Z
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Updating link types - This is a copy of the Django migration script Revision ID: a6048f0ffca8 Revises: Create Date: 2017-10-17 10:51:23.327195 """ from alembic import op from sqlalchemy.sql import text # revision identifiers, used by Alembic. revision = 'a6048f0ffca8' down_revision = '70c7d732f1b2' branch_labels = None depends_on = None def upgrade(): conn = op.get_bind() # I am first migrating the wrongly declared returnlinks out of # the InlineCalculations. # This bug is reported #628 https://github.com/aiidateam/aiida_core/issues/628 # There is an explicit check in the code of the inline calculation # ensuring that the calculation returns UNSTORED nodes. # Therefore, no cycle can be created with that migration! # # this command: # 1) selects all links that # - joins an InlineCalculation (or subclass) as input # - joins a Data (or subclass) as output # - is marked as a returnlink. # 2) set for these links the type to 'createlink' stmt1 = text(""" UPDATE db_dblink set type='createlink' WHERE db_dblink.id IN ( SELECT db_dblink_1.id FROM db_dbnode AS db_dbnode_1 JOIN db_dblink AS db_dblink_1 ON db_dblink_1.input_id = db_dbnode_1.id JOIN db_dbnode AS db_dbnode_2 ON db_dblink_1.output_id = db_dbnode_2.id WHERE db_dbnode_1.type LIKE 'calculation.inline.%' AND db_dbnode_2.type LIKE 'data.%' AND db_dblink_1.type = 'returnlink' ) """) conn.execute(stmt1) # Now I am updating the link-types that are null because of either an export and subsequent import # https://github.com/aiidateam/aiida_core/issues/685 # or because the link types don't exist because the links were added before the introduction of link types. # This is reported here: https://github.com/aiidateam/aiida_core/issues/687 # # The following sql statement: # 1) selects all links that # - joins Data (or subclass) or Code as input # - joins Calculation (or subclass) as output. This includes WorkCalculation, InlineCalcuation, JobCalculations... # - has no type (null) # 2) set for these links the type to 'inputlink' stmt2 = text(""" UPDATE db_dblink set type='inputlink' where id in ( SELECT db_dblink_1.id FROM db_dbnode AS db_dbnode_1 JOIN db_dblink AS db_dblink_1 ON db_dblink_1.input_id = db_dbnode_1.id JOIN db_dbnode AS db_dbnode_2 ON db_dblink_1.output_id = db_dbnode_2.id WHERE ( db_dbnode_1.type LIKE 'data.%' or db_dbnode_1.type = 'code.Code.' ) AND db_dbnode_2.type LIKE 'calculation.%' AND ( db_dblink_1.type = null OR db_dblink_1.type = '') ); """) conn.execute(stmt2) # # The following sql statement: # 1) selects all links that # - join JobCalculation (or subclass) or InlineCalculation as input # - joins Data (or subclass) as output. # - has no type (null) # 2) set for these links the type to 'createlink' stmt3 = text(""" UPDATE db_dblink set type='createlink' where id in ( SELECT db_dblink_1.id FROM db_dbnode AS db_dbnode_1 JOIN db_dblink AS db_dblink_1 ON db_dblink_1.input_id = db_dbnode_1.id JOIN db_dbnode AS db_dbnode_2 ON db_dblink_1.output_id = db_dbnode_2.id WHERE db_dbnode_2.type LIKE 'data.%' AND ( db_dbnode_1.type LIKE 'calculation.job.%' OR db_dbnode_1.type = 'calculation.inline.InlineCalculation.' ) AND ( db_dblink_1.type = null OR db_dblink_1.type = '') ) """) conn.execute(stmt3) # The following sql statement: # 1) selects all links that # - join WorkCalculation as input. No subclassing was introduced so far, so only one type string is checked for. # - join Data (or subclass) as output. # - has no type (null) # 2) set for these links the type to 'returnlink' stmt4 = text(""" UPDATE db_dblink set type='returnlink' where id in ( SELECT db_dblink_1.id FROM db_dbnode AS db_dbnode_1 JOIN db_dblink AS db_dblink_1 ON db_dblink_1.input_id = db_dbnode_1.id JOIN db_dbnode AS db_dbnode_2 ON db_dblink_1.output_id = db_dbnode_2.id WHERE db_dbnode_2.type LIKE 'data.%' AND db_dbnode_1.type = 'calculation.work.WorkCalculation.' AND ( db_dblink_1.type = null OR db_dblink_1.type = '') ) """) conn.execute(stmt4) # Now I update links that are CALLS: # The following sql statement: # 1) selects all links that # - join WorkCalculation as input. No subclassing was introduced so far, so only one type string is checked for. # - join Calculation (or subclass) as output. Includes JobCalculation and WorkCalculations and all subclasses. # - has no type (null) # 2) set for these links the type to 'calllink' stmt5 = text(""" UPDATE db_dblink set type='calllink' where id in ( SELECT db_dblink_1.id FROM db_dbnode AS db_dbnode_1 JOIN db_dblink AS db_dblink_1 ON db_dblink_1.input_id = db_dbnode_1.id JOIN db_dbnode AS db_dbnode_2 ON db_dblink_1.output_id = db_dbnode_2.id WHERE db_dbnode_1.type = 'calculation.work.WorkCalculation.' AND db_dbnode_2.type LIKE 'calculation.%' AND ( db_dblink_1.type = null OR db_dblink_1.type = '') ) """) conn.execute(stmt5) def downgrade(): print "There is no downgrade for the link types"
45.211268
120
0.614953
a3e346c11ade601676eb14a61f45c970e1f2887e
593
py
Python
webempresa/pages/migrations/0003_auto_20190924_1131.py
FelixCastillo798/web-empresa-curso-django-2
26d24e62175160cf8e1b57f411361b17e5fdcc20
[ "Apache-2.0" ]
null
null
null
webempresa/pages/migrations/0003_auto_20190924_1131.py
FelixCastillo798/web-empresa-curso-django-2
26d24e62175160cf8e1b57f411361b17e5fdcc20
[ "Apache-2.0" ]
null
null
null
webempresa/pages/migrations/0003_auto_20190924_1131.py
FelixCastillo798/web-empresa-curso-django-2
26d24e62175160cf8e1b57f411361b17e5fdcc20
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.0.2 on 2019-09-24 16:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pages', '0002_auto_20190920_1958'), ] operations = [ migrations.AlterModelOptions( name='page', options={'ordering': ['order', 'title'], 'verbose_name': 'pagina', 'verbose_name_plural': 'paginas'}, ), migrations.AddField( model_name='page', name='order', field=models.SmallIntegerField(default=0, verbose_name='Orden'), ), ]
25.782609
113
0.588533
0afbb9809034c9265c2172633d0222221386eb73
16,170
py
Python
src/data_loader/loader.py
zsscode/MGP-AttTCN
7659af8c69204a3ad557f22593ea0027ee3003a5
[ "MIT" ]
null
null
null
src/data_loader/loader.py
zsscode/MGP-AttTCN
7659af8c69204a3ad557f22593ea0027ee3003a5
[ "MIT" ]
null
null
null
src/data_loader/loader.py
zsscode/MGP-AttTCN
7659af8c69204a3ad557f22593ea0027ee3003a5
[ "MIT" ]
1
2020-09-01T12:17:36.000Z
2020-09-01T12:17:36.000Z
import os import pickle import sys import tensorflow as tf # appending head path cwd = os.path.dirname(os.path.abspath(__file__)) head = os.path.abspath(os.path.join(cwd, os.pardir, os.pardir)) sys.path.append(head) from src.utils.debug import t_print from src.data_loader.utils import reduce_data, new_indices, pad_raw_data, all_horizons, separating_and_resampling class DataGenerator: def __init__(self, no_mc_samples=10, max_no_dtpts=None, min_no_dtpts=None, batch_size=10, fast_load=False, to_save=False, debug=False, fixed_idx_per_class=False, features=None): t_print("DataGenerator -- init") cwd = os.path.dirname(os.path.abspath(__file__)) self.head = os.path.abspath(os.path.join(cwd, os.pardir, os.pardir)) self.no_mc_samples = no_mc_samples self.max_no_dtpts = max_no_dtpts self.min_no_dtpts = min_no_dtpts self.debug = debug """ Data loader for MIMIC III data preprocessed according to """ if fast_load: self.fast_load(features) else: self.long_load(to_save, features) # data = [Y, T, ind_K_D, ind_T, len_T, X, len_X, labels, static, classes, ids, ind_Y] # data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] if debug == False: # remove IDs & debugging cat self.train_data = self.train_data[:-2] self.val_data = self.val_data[:-2] self.test_data = self.test_data[:-2] # data = [Y, T, ind_K_D, ind_T, len_T, X, len_X, labels, static, classes] # data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # separating two prediction classes self.train_case_data, self.train_control_data = separating_and_resampling(self.train_data) self.len_data = len(self.train_case_data) self.train_case_idx = np.arange(len(self.train_case_data[-1])) self.train_control_idx = np.arange(len(self.train_control_data[-1])) self.val_idx = np.arange(len(self.val_data[-1])) # creating a small dev set if fixed_idx_per_class: self.idx_per_class = np.asarray( [[343, 3476, 4378, 1297, 2695, 1498, 1119, 2788, 5468, 5217, 3505, 5441, 3895, 4177, 5678, 1108, 5739, 1510, 7, 5055], [5311, 2932, 2091, 6683, 568, 6851, 6273, 2796, 4336, 5342, 3150, 1835, 7040, 7106, 3495, 2538, 6053, 2949, 64, 2382], [1976, 2652, 4208, 1472, 3718, 4287, 3972, 2683, 1112, 2083, 3960, 5617, 403, 6244, 4370, 886, 3416, 5687, 5226, 6358], [2597, 1086, 6930, 286, 2492, 3794, 21, 1794, 4680, 4477, 6460, 6293, 4636, 4788, 5134, 6544, 7139, 2516, 2617, 351], [2812, 1503, 1677, 6553, 6333, 7023, 4310, 5546, 7054, 4522, 4473, 1218, 422, 242, 6286, 944, 109, 4896, 3611, 4737], [4837, 3445, 4256, 465, 2720, 7117, 2665, 4109, 590, 5680, 2672, 6070, 5697, 3772, 4219, 1298, 6515, 2965, 1788, 3352], [5496, 1159, 3029, 4189, 848, 4778, 2966, 4159, 2101, 6102, 4191, 7135, 349, 7003, 483, 4068, 4420, 2885, 2103, 2460]] ) else: self.idx_per_class = np.zeros((7, batch_size * 2), dtype=np.int32) for k in range(7): self.idx_per_class[k] = np.random.choice(np.where(self.val_data[9] == k)[0], min(batch_size * 2, len(np.where(self.val_data[9] == k)[0])), replace=False, p=None) # list of patients present at horizon 6 # train self.late_case_patients = list(self.train_case_data[10][self.train_case_data[9] == 6]) self.late_control_patients = list(self.train_control_data[10][self.train_control_data[9] == 6]) self.later_case_patients = list(self.train_case_data[10][self.train_case_data[9] == 6]) # val self.late_val_patients = list(self.val_data[10][self.val_data[9] == 6]) late_val_pat_id = [self.val_data[10][i] in self.late_val_patients for i in range(len(self.val_data[9]))] self.late_val_pat_id = np.where(late_val_pat_id)[0] self.horizon0_val_patients = np.where(late_val_pat_id & (self.val_data[9] == 0))[0] def apply_reshuffle(self): """ Function linked to training class: the dataset is reshuffled at the beginning of each epoch the training class reshuffles the indices, then calls 'apply_reshuffle' to reshuffle the dataset itself """ self.train_case_data = [self.train_case_data[i][self.train_case_idx] for i in range(self.len_data)] self.train_control_data = [self.train_control_data[i][self.train_control_idx] for i in range(self.len_data)] late_case_pat_id = [self.train_case_data[10][i] in self.late_case_patients for i in range(len(self.train_case_data[9]))] late_control_pat_id = [self.train_control_data[10][i] in self.late_control_patients for i in range(len(self.train_control_data[9]))] self.late_case_pat_id = np.where(late_case_pat_id)[0] self.late_control_pat_id = np.where(late_control_pat_id)[0] self.horizon0_case_patients = np.where(late_case_pat_id & (self.train_case_data[9] == 0))[0] self.horizon0_control_patients = np.where(late_control_pat_id & (self.train_control_data[9] == 0))[0] def next_batch(self, batch_size, batch, loss='uni', alignment=-1, time_window=25, late=False, horizon0=False): # first: create new dataset if late: data = [np.concatenate((self.train_case_data[i][self.late_case_pat_id[batch * batch_size: (batch + 1) * batch_size]], self.train_control_data[i][self.late_control_pat_id[batch * batch_size: (batch + 1) * batch_size]])) for i in range(self.len_data)] elif horizon0: data = [np.concatenate((self.train_case_data[i][self.horizon0_case_patients[batch * batch_size: (batch + 1) * batch_size]], self.train_control_data[i][self.horizon0_control_patients[batch * batch_size: ( batch + 1) * batch_size]])) for i in range(self.len_data)] else: data = [np.concatenate((self.train_case_data[i][batch * batch_size: (batch + 1) * batch_size], self.train_control_data[i][batch * batch_size: (batch + 1) * batch_size])) for i in range(self.len_data)] # then reshuffle it idx = np.random.choice(np.arange(len(data[4])), len(data[4]), replace=False) data = [data[i][idx] for i in range(self.len_data)] output = self.extract_data(data) if loss == 'uni': yield output else: output[7] = self.expand_labels(output[7], alignment=alignment, time_window=time_window) yield output def next_batch_dev_small(self, batch): data = [self.val_data[i][self.idx_per_class[batch]] for i in range(len(self.val_data))] yield self.extract_data(data) def next_batch_dev_all(self, batch_size, batch, late=False, horizon0=False): if late: data = [self.val_data[i][self.late_val_pat_id[batch * batch_size: (batch + 1) * batch_size]] for i in range(len(self.val_data))] """ elif horizon0: data = [self.val_data[i][self.horizon0_val_patients[batch * batch_size: (batch + 1) * batch_size]] for i in range(len(self.val_data))] """ else: data = [self.val_data[i][batch * batch_size: (batch + 1) * batch_size] for i in range(len(self.val_data))] yield self.extract_data(data) def next_batch_test_all(self, batch_size, batch, late=False, horizon0=False): data = [self.test_data[i][batch * batch_size: (batch + 1) * batch_size] for i in range(len(self.test_data))] yield self.extract_data(data) def extract_data(self, data): # data = [Y, T, ind_K_D, ind_T, num_distinct_Y, X, num_distinct_X, labels, static, classes] # data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # second: extract # list of datapoints collected per patient Y = data[0] Y = tf.convert_to_tensor(Y, dtype=tf.float32, name='Y') # list of corresponding timestamps T = data[1] T = tf.convert_to_tensor(T, dtype=tf.float32, name="T") # indices of feature corresponding to each datapoint ind_K_D = data[2] ind_K_D = tf.convert_to_tensor(ind_K_D, dtype=tf.int32, name="ind_K_D") ind_T = data[3] ind_T = tf.convert_to_tensor(ind_T, dtype=tf.int32, name="ind_T") # output to be predicted labels = data[7] # list of target timestamps to interpolate X = data[5] X = tf.convert_to_tensor(X, dtype=tf.float32, name="X") # counts num_distinct_X = data[6] num_distinct_X = tf.convert_to_tensor(num_distinct_X, dtype=tf.int32, name="num_distinct_X") num_distinct_Y = data[4] num_distinct_Y = tf.convert_to_tensor(num_distinct_Y, dtype=tf.int32, name="num_distinct_Y") # static data static = data[8] static = tf.convert_to_tensor(static, dtype=tf.float32, name="static") # classes classes = data[9] # repeat for all MC samples classes = np.repeat(classes, self.no_mc_samples) labels = np.repeat(labels, self.no_mc_samples) labels = tf.convert_to_tensor(labels, dtype=tf.int32, name="labels") if self.debug: return Y, T, ind_K_D, ind_T, num_distinct_Y, X, num_distinct_X, static, labels, classes, data[10] else: return Y, T, ind_K_D, ind_T, num_distinct_Y, X, num_distinct_X, static, labels, classes def expand_labels(self, y, alignment=-1, time_window=25): y_broad = tf.expand_dims(tf.broadcast_to(tf.expand_dims(y, -1), [y.shape[0], 12 - (alignment + 1)]), -1) labelled_time = tf.concat([y_broad, 1 - y_broad], -1) early_time = tf.concat([tf.zeros([y.shape[0], time_window - labelled_time.shape[1], 1], dtype=tf.int32), tf.ones([y.shape[0], time_window - labelled_time.shape[1], 1], dtype=tf.int32)], -1) return tf.concat([early_time, labelled_time], 1) def fast_load(self, features): try: All = {} if features is None: date = "19-08-12" else: date = '19-08-30-{}'.format(features) for split in ["train", "val", "test"]: path = head + "/data/{}/{}-prep-data-min{}-max{}.pkl".format(split, date, self.min_no_dtpts, self.max_no_dtpts) with open(path, "rb") as f: All[split] = pickle.load(f) self.train_data = All["train"] self.val_data = All["val"] self.test_data = All["test"] except: self.long_load(True, features=features) def long_load(self, to_save, features): t_print("DataGenerator -- loading data") if features is None: path = self.head + "/data/train/GP_prep_v2.pkl" with open(path, "rb") as f: self.train_data = pickle.load(f) path = self.head + "/data/val/GP_prep_v2.pkl" with open(path, "rb") as f: self.val_data = pickle.load(f) path = self.head + "/data/test/GP_prep_v2.pkl" with open(path, "rb") as f: self.test_data = pickle.load(f) else: path = self.head + "/data/train/GP_prep_{}_v2.pkl".format(features) with open(path, "rb") as f: self.train_data = pickle.load(f) path = self.head + "/data/val/GP_prep_{}_v2.pkl".format(features) with open(path, "rb") as f: self.val_data = pickle.load(f) path = self.head + "/data/test/GP_prep_{}_v2.pkl".format(features) with open(path, "rb") as f: self.test_data = pickle.load(f) # shorten TS too long self.train_data, no = reduce_data(self.train_data, n_max=self.max_no_dtpts) self.val_data, no = reduce_data(self.val_data, n_max=self.max_no_dtpts) self.test_data, no = reduce_data(self.test_data, n_max=self.max_no_dtpts) # pad data to have same shape self.train_data = pad_raw_data(self.train_data) self.val_data = pad_raw_data(self.val_data) self.test_data = pad_raw_data(self.test_data) # augment data to cater for all prediction horizons self.train_data = all_horizons(self.train_data) self.val_data = all_horizons(self.val_data) self.test_data = all_horizons(self.test_data) # remove TS too short temp = [] self.train_data, no = reduce_data(self.train_data, n_min=self.min_no_dtpts) temp.append(no) self.val_data, no = reduce_data(self.val_data, n_min=self.min_no_dtpts) temp.append(no) self.test_data, no = reduce_data(self.test_data, n_min=self.min_no_dtpts) temp.append(no) t_print("""Removed patients out of the bound {4} < no_datapoints < {0}. Train removed: {1} Train remaining: {5} Val removed: {2} Val remaining: {6} Test removed: {3} Test remaining: {7}""".format(self.max_no_dtpts, temp[0], temp[1], temp[2], self.min_no_dtpts, len(self.train_data[4]), len(self.val_data[4]), len(self.test_data[4]))) del temp # extract new indices self.train_data = new_indices(self.train_data) self.val_data = new_indices(self.val_data) self.test_data = new_indices(self.test_data) # new data format # data = [Y, T, ind_K_D, ind_T, len_T, X, len_X, labels, static, classes, ids, ind_Y] # data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] if to_save: All = {"train": self.train_data, "val": self.val_data, "test": self.test_data} if features is None: date = "19-08-12" else: date = '19-08-30-{}'.format(features) for split in ["train", "val", "test"]: path = head + "/data/{}/{}-prep-data-min{}-max{}.pkl".format(split, date, self.min_no_dtpts, self.max_no_dtpts) with open(path, "wb") as f: pickle.dump(All[split], f)
53.016393
133
0.54026
a2ccb17ecf6e2e53b98e52198074a94a115ae93f
633
py
Python
contrib/qt_translations.py
zero24x/billiecoin
1b943b84aa687136edeb6c1fa258705a99157463
[ "MIT" ]
3
2020-02-06T11:26:43.000Z
2020-03-29T16:16:30.000Z
contrib/qt_translations.py
zero24x/billiecoin
1b943b84aa687136edeb6c1fa258705a99157463
[ "MIT" ]
null
null
null
contrib/qt_translations.py
zero24x/billiecoin
1b943b84aa687136edeb6c1fa258705a99157463
[ "MIT" ]
3
2020-01-30T20:11:16.000Z
2021-08-09T05:59:05.000Z
#!/usr/bin/env python # Helpful little script that spits out a comma-separated list of # language codes for Qt icons that should be included # in binary Billiecoin Core distributions import glob import os import re import sys if len(sys.argv) != 3: sys.exit("Usage: %s $QTDIR/translations $BILLIECOINDIR/src/qt/locale"%sys.argv[0]) d1 = sys.argv[1] d2 = sys.argv[2] l1 = set([ re.search(r'qt_(.*).qm', f).group(1) for f in glob.glob(os.path.join(d1, 'qt_*.qm')) ]) l2 = set([ re.search(r'billiecoin_(.*).qm', f).group(1) for f in glob.glob(os.path.join(d2, 'billiecoin_*.qm')) ]) print ",".join(sorted(l1.intersection(l2)))
27.521739
114
0.688784
c14f5244df62e3be421bf19941eea7e7fbb8fb3e
1,786
py
Python
molecool/visualize.py
molssi-workshops/molecool
e875876e8333b1ae5f97c2f8907836b861264e50
[ "BSD-3-Clause" ]
null
null
null
molecool/visualize.py
molssi-workshops/molecool
e875876e8333b1ae5f97c2f8907836b861264e50
[ "BSD-3-Clause" ]
1
2021-09-17T18:19:04.000Z
2021-09-17T18:19:04.000Z
molecool/visualize.py
molssi-workshops/molecool
e875876e8333b1ae5f97c2f8907836b861264e50
[ "BSD-3-Clause" ]
null
null
null
""" Functions for visualization of molecules. """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from .atom_data import atom_colors def draw_molecule(coordinates, symbols, draw_bonds=None, save_location=None, dpi=300): # Draw a picture of a molecule using matplotlib. # Create figure fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Get colors - based on atom name colors = [] for atom in symbols: colors.append(atom_colors[atom]) size = np.array(plt.rcParams['lines.markersize'] ** 2)*200/(len(coordinates)) ax.scatter(coordinates[:,0], coordinates[:,1], coordinates[:,2], marker="o", edgecolors='k', facecolors=colors, alpha=1, s=size) # Draw bonds if draw_bonds: for atoms, bond_length in draw_bonds.items(): atom1 = atoms[0] atom2 = atoms[1] ax.plot(coordinates[[atom1,atom2], 0], coordinates[[atom1,atom2], 1], coordinates[[atom1,atom2], 2], color='k') # Save figure if save_location: plt.savefig(save_location, dpi=dpi, graph_min=0, graph_max=2) return ax def bond_histogram(bond_list, save_location=None, dpi=300, graph_min=0, graph_max=2): # Draw a histogram of bond lengths based on a bond_list (output from build_bond_list function) lengths = [] for atoms, bond_length in bond_list.items(): lengths.append(bond_length) bins = np.linspace(graph_min, graph_max) fig = plt.figure() ax = fig.add_subplot(111) plt.xlabel('Bond Length (angstrom)') plt.ylabel('Number of Bonds') ax.hist(lengths, bins=bins) # Save figure if save_location: plt.savefig(save_location, dpi=dpi) return ax
25.514286
98
0.655655
4c56bb1eccef5f9d87378c531608b9d2152a7365
2,828
py
Python
Algorithms_medium/1429. First Unique Number.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
4
2020-08-11T20:45:15.000Z
2021-03-12T00:33:34.000Z
Algorithms_medium/1429. First Unique Number.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
null
null
null
Algorithms_medium/1429. First Unique Number.py
VinceW0/Leetcode_Python_solutions
09e9720afce21632372431606ebec4129eb79734
[ "Xnet", "X11" ]
null
null
null
""" 1429. First Unique Number Medium You have a queue of integers, you need to retrieve the first unique integer in the queue. Implement the FirstUnique class: FirstUnique(int[] nums) Initializes the object with the numbers in the queue. int showFirstUnique() returns the value of the first unique integer of the queue, and returns -1 if there is no such integer. void add(int value) insert value to the queue. Example 1: Input: ["FirstUnique","showFirstUnique","add","showFirstUnique","add","showFirstUnique","add","showFirstUnique"] [[[2,3,5]],[],[5],[],[2],[],[3],[]] Output: [null,2,null,2,null,3,null,-1] Explanation: FirstUnique firstUnique = new FirstUnique([2,3,5]); firstUnique.showFirstUnique(); // return 2 firstUnique.add(5); // the queue is now [2,3,5,5] firstUnique.showFirstUnique(); // return 2 firstUnique.add(2); // the queue is now [2,3,5,5,2] firstUnique.showFirstUnique(); // return 3 firstUnique.add(3); // the queue is now [2,3,5,5,2,3] firstUnique.showFirstUnique(); // return -1 Example 2: Input: ["FirstUnique","showFirstUnique","add","add","add","add","add","showFirstUnique"] [[[7,7,7,7,7,7]],[],[7],[3],[3],[7],[17],[]] Output: [null,-1,null,null,null,null,null,17] Explanation: FirstUnique firstUnique = new FirstUnique([7,7,7,7,7,7]); firstUnique.showFirstUnique(); // return -1 firstUnique.add(7); // the queue is now [7,7,7,7,7,7,7] firstUnique.add(3); // the queue is now [7,7,7,7,7,7,7,3] firstUnique.add(3); // the queue is now [7,7,7,7,7,7,7,3,3] firstUnique.add(7); // the queue is now [7,7,7,7,7,7,7,3,3,7] firstUnique.add(17); // the queue is now [7,7,7,7,7,7,7,3,3,7,17] firstUnique.showFirstUnique(); // return 17 Example 3: Input: ["FirstUnique","showFirstUnique","add","showFirstUnique"] [[[809]],[],[809],[]] Output: [null,809,null,-1] Explanation: FirstUnique firstUnique = new FirstUnique([809]); firstUnique.showFirstUnique(); // return 809 firstUnique.add(809); // the queue is now [809,809] firstUnique.showFirstUnique(); // return -1 Constraints: 1 <= nums.length <= 10^5 1 <= nums[i] <= 10^8 1 <= value <= 10^8 At most 50000 calls will be made to showFirstUnique and add. """ class FirstUnique: def __init__(self, nums: List[int]): self.unique = {} self.total = set() for n in nums: self.add(n) def showFirstUnique(self) -> int: return next(iter(self.unique), -1) def add(self, value: int) -> None: if value in self.total: self.unique.pop(value, 1) else: self.total.add(value) self.unique[value] = 1 # Your FirstUnique object will be instantiated and called as such: # obj = FirstUnique(nums) # param_1 = obj.showFirstUnique() # obj.add(value)
31.076923
125
0.641089
f5a35cfc9b81c0c6a6c195f2fbc4735513435ff4
1,033
py
Python
profiling/bspline_point_calculation.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
515
2017-01-25T05:46:52.000Z
2022-03-29T09:52:27.000Z
profiling/bspline_point_calculation.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
417
2017-01-25T10:01:17.000Z
2022-03-29T09:22:04.000Z
profiling/bspline_point_calculation.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
149
2017-02-01T15:52:02.000Z
2022-03-17T10:33:38.000Z
# Copyright (c) 2020, Manfred Moitzi # License: MIT License from typing import Iterable import time import ezdxf from pathlib import Path import math from ezdxf.math import global_bspline_interpolation, linspace from ezdxf.render import random_3d_path DIR = Path("~/Desktop/Outbox").expanduser() path = list(random_3d_path(100, max_step_size=10, max_heading=math.pi * 0.8)) spline = global_bspline_interpolation(path) def profile_bspline_point_new(count, spline): for _ in range(count): for t in linspace(0, 1.0, 100): spline.point(t) def profile_bspline_derivatives_new(count, spline): for _ in range(count): list(spline.derivatives(t=linspace(0, 1.0, 100))) def profile(text, func, *args): t0 = time.perf_counter() func(*args) t1 = time.perf_counter() print(f"{text} {t1 - t0:.3f}s") profile("B-spline point new 300x: ", profile_bspline_point_new, 300, spline) profile( "B-spline derivatives new 300x: ", profile_bspline_derivatives_new, 300, spline, )
24.595238
77
0.712488
6ca1963479ff1683b88dfd03c218e1a40b956b67
173
py
Python
pacote-download/CursoemVideo/ex066.py
pemedeiros/python-CeV
e34eebdfd6f5cf254a9ad1ce076083c735f68f28
[ "MIT" ]
null
null
null
pacote-download/CursoemVideo/ex066.py
pemedeiros/python-CeV
e34eebdfd6f5cf254a9ad1ce076083c735f68f28
[ "MIT" ]
null
null
null
pacote-download/CursoemVideo/ex066.py
pemedeiros/python-CeV
e34eebdfd6f5cf254a9ad1ce076083c735f68f28
[ "MIT" ]
null
null
null
c = s = 0 while True: n = int(input('Digite um número(999 para parar): ')) if n == 999: break c += 1 s += n print(f'A soma dos {c} números foi {s}')
19.222222
56
0.508671
c723fb4c711526c86b4199ba294c9f333a4f5b74
930
py
Python
view_breadcrumbs/generic/delete.py
sveetch/django-view-breadcrumbs
95943340b6cf5ffa98b73aa8fa553d96cd57c6fe
[ "BSD-3-Clause" ]
29
2020-10-17T05:28:52.000Z
2022-03-10T21:14:06.000Z
view_breadcrumbs/generic/delete.py
sveetch/django-view-breadcrumbs
95943340b6cf5ffa98b73aa8fa553d96cd57c6fe
[ "BSD-3-Clause" ]
225
2020-08-17T13:21:41.000Z
2022-03-31T11:58:50.000Z
view_breadcrumbs/generic/delete.py
sveetch/django-view-breadcrumbs
95943340b6cf5ffa98b73aa8fa553d96cd57c6fe
[ "BSD-3-Clause" ]
5
2021-04-24T21:30:21.000Z
2021-11-01T20:28:19.000Z
from django.urls import reverse from ..utils import action_view_name, classproperty from .list import ListBreadcrumbMixin class DeleteBreadcrumbMixin(ListBreadcrumbMixin): @classproperty def delete_view_name(self): return action_view_name( model=self.model, action=self.delete_view_suffix, app_name=self.app_name, full=False, ) @property def __delete_view_name(self): return action_view_name( model=self.model, action=self.detail_view_suffix, app_name=self.app_name ) def delete_view_url(self, instance): if self.breadcrumb_use_pk: return reverse( self.__delete_view_name, kwargs={self.pk_url_kwarg: instance.pk} ) return reverse( self.__delete_view_name, kwargs={self.slug_url_kwarg: getattr(instance, self.slug_field)}, )
28.181818
84
0.648387
38719afcc01b477ec643c795a4d82dada574aa33
2,156
py
Python
mak/libs/pyxx/cxx/grammar/template/name.py
bugengine/BugEngine
1b3831d494ee06b0bd74a8227c939dd774b91226
[ "BSD-3-Clause" ]
4
2015-05-13T16:28:36.000Z
2017-05-24T15:34:14.000Z
mak/libs/pyxx/cxx/grammar/template/name.py
bugengine/BugEngine
1b3831d494ee06b0bd74a8227c939dd774b91226
[ "BSD-3-Clause" ]
null
null
null
mak/libs/pyxx/cxx/grammar/template/name.py
bugengine/BugEngine
1b3831d494ee06b0bd74a8227c939dd774b91226
[ "BSD-3-Clause" ]
1
2017-03-21T08:28:07.000Z
2017-03-21T08:28:07.000Z
""" simple-template-id: template-name < template-argument-list? > template-id: simple-template-id operator-function-id < template-argument-list? > literal-operator-id < template-argument-list? > template-name: identifier template-argument-list: template-argument ...? template-argument-list , template-argument ...? template-argument: constant-expression type-id id-expression typename-specifier: typename nested-name-specifier identifier typename nested-name-specifier template? simple-template-id """ import glrp from ...parser import cxx98 from be_typing import TYPE_CHECKING @glrp.rule('simple-template-id : template-name [split]"<" template-argument-list? ">"') @cxx98 def simple_template_id(self, p): # type: (CxxParser, glrp.Production) -> None pass @glrp.rule('template-id[split] : [split]simple-template-id') @glrp.rule('template-id : operator-function-id [split]"<" template-argument-list? ">"') @glrp.rule('template-id : literal-operator-id [split]"<" template-argument-list? ">"') @cxx98 def template_id(self, p): # type: (CxxParser, glrp.Production) -> None pass @glrp.rule('template-name[split] : [split]"identifier"') @cxx98 def template_name(self, p): # type: (CxxParser, glrp.Production) -> None pass @glrp.rule('template-argument-list : template-argument "..."?') @glrp.rule('template-argument-list : template-argument-list "," template-argument "..."?') @cxx98 def template_argument_list(self, p): # type: (CxxParser, glrp.Production) -> None pass @glrp.rule('template-argument : constant-expression') @glrp.rule('template-argument : type-id') @glrp.rule('template-argument[split] : id-expression') @cxx98 def template_argument(self, p): # type: (CxxParser, glrp.Production) -> None pass @glrp.rule('typename-specifier : [split]typename nested-name-specifier "identifier"') @glrp.rule('typename-specifier : [split]typename nested-name-specifier "template"? simple-template-id') @cxx98 def typename_specifier(self, p): # type: (CxxParser, glrp.Production) -> None pass if TYPE_CHECKING: from ...parser import CxxParser
26.617284
103
0.707328
b5ff7d8bc8ffb893045f23875c17c07ae96def75
1,038
py
Python
tripleoclient/tests/v1/overcloud_ffwd_upgrade/fakes.py
cloudnull/python-tripleoclient
93952566d6615deb2c81467df7743d872ff77e8d
[ "Apache-2.0" ]
null
null
null
tripleoclient/tests/v1/overcloud_ffwd_upgrade/fakes.py
cloudnull/python-tripleoclient
93952566d6615deb2c81467df7743d872ff77e8d
[ "Apache-2.0" ]
null
null
null
tripleoclient/tests/v1/overcloud_ffwd_upgrade/fakes.py
cloudnull/python-tripleoclient
93952566d6615deb2c81467df7743d872ff77e8d
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from tripleoclient.tests import fakes class TestFFWDUpgradePrepare(fakes.FakePlaybookExecution): def setUp(self): super(TestFFWDUpgradePrepare, self).setUp() class TestFFWDUpgradeRun(fakes.FakePlaybookExecution): def setUp(self): super(TestFFWDUpgradeRun, self).setUp() class TestFFWDUpgradeConverge(fakes.FakePlaybookExecution): def setUp(self): super(TestFFWDUpgradeConverge, self).setUp()
29.657143
77
0.739884
795eb767d48958deae999ffe011691cd57517ba6
1,451
py
Python
Codementor.io/GarethDwyer/apps/flask-crud-app/bookmanager.py
nitin-cherian/Webapps
fbfbef6cb22fc742ee66460268afe6ff7834faa1
[ "MIT" ]
1
2017-11-22T08:56:06.000Z
2017-11-22T08:56:06.000Z
Codementor.io/GarethDwyer/apps/flask-crud-app/bookmanager.py
nitin-cherian/Webapps
fbfbef6cb22fc742ee66460268afe6ff7834faa1
[ "MIT" ]
null
null
null
Codementor.io/GarethDwyer/apps/flask-crud-app/bookmanager.py
nitin-cherian/Webapps
fbfbef6cb22fc742ee66460268afe6ff7834faa1
[ "MIT" ]
null
null
null
# bookmanager.py import os from flask import Flask, render_template, request, redirect from flask_sqlalchemy import SQLAlchemy project_dir = os.path.dirname(os.path.abspath(__file__)) database_file = "sqlite:///{}".format(os.path.join(project_dir, "bookdatabase.db")) app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = database_file db = SQLAlchemy(app) class Book(db.Model): title = db.Column(db.String(80), unique=True, nullable=False, primary_key=True) def __repr__(self): return "<Title>: {}".format(self.title) @app.route("/", methods=['GET', 'POST']) def home(): added = False if request.form: title = request.form.get('title') book = Book(title=title) db.session.add(book) db.session.commit() added = True books = Book.query.all() return render_template('home.html', books=books, added=added) @app.route("/update", methods=['POST']) def update(): new_title = request.form.get('new-title') old_title = request.form.get('old-title') book = Book.query.filter_by(title=old_title).first() book.title = new_title db.session.commit() return redirect('/') @app.route("/delete", methods=['POST']) def delete(): title = request.form.get('title') book = Book.query.filter_by(title=title).first() db.session.delete(book) db.session.commit() return redirect('/') if __name__ == '__main__': app.run(debug=True)
25.017241
83
0.665748
36f1d988ebf12f6af33a2f9420d4202e3693dc32
342
py
Python
pydash/Dash/Properties/Components.py
ensomniac/dash
5a5cabd1a1d057015dd1446b6b1000af1e521355
[ "MIT" ]
null
null
null
pydash/Dash/Properties/Components.py
ensomniac/dash
5a5cabd1a1d057015dd1446b6b1000af1e521355
[ "MIT" ]
null
null
null
pydash/Dash/Properties/Components.py
ensomniac/dash
5a5cabd1a1d057015dd1446b6b1000af1e521355
[ "MIT" ]
null
null
null
#!/usr/bin/python # # 2022 Ryan Martin, ryan@ensomniac.com # Andrew Stet, stetandrew@gmail.com import os import sys from Dash.Properties.Configuration import Configuration class Components(Configuration): def __init__(self, dash_context_asset_path): Configuration.__init__(self, dash_context_asset_path, "configuration")
22.8
78
0.77193
39fa63cbbe0404392afbf01b3659827d53536475
2,897
py
Python
file/fetch_data_tse_party_members.py
gabrielacaesar/partei-brasilien
356a139b495949b00afaa70f78e15631f8dbadbd
[ "MIT" ]
null
null
null
file/fetch_data_tse_party_members.py
gabrielacaesar/partei-brasilien
356a139b495949b00afaa70f78e15631f8dbadbd
[ "MIT" ]
null
null
null
file/fetch_data_tse_party_members.py
gabrielacaesar/partei-brasilien
356a139b495949b00afaa70f78e15631f8dbadbd
[ "MIT" ]
null
null
null
"""" This script downloads and format some data from TSE website. The first objective with this data is to obtain a list of members of parties in Brazil. In july 2017, the data available in TSE website contained information about membership and disfellowship in brazilian parties of each state. The data is available in csv format. On TSE's website, you have to filter choosing party and state. The csv files from TSE contain headers. All the csv files present the same header, which we have translated below, so more people can access and reuse the code of Serenata Project. with @HugoLnx and @jtemporal """ import pandas as pd import numpy as np import os import urllib import zipfile import glob import codecs from tempfile import mkdtemp TEMP_PATH = "./temp" if not os.path.exists(TEMP_PATH): os.makedirs(TEMP_PATH) FILENAME_PREFIX = 'filiados_{}_{}.zip' TSE_PARTYMEMBERS_STATE_URL = 'http://agencia.tse.jus.br/estatistica/sead/eleitorado/filiados/uf/' TODAY = pd.datetime.today().date() OUTPUT_FILENAME = TODAY.isoformat() + '-tse-partymembers.xz' OUTPUT_DATASET_PATH = os.path.join('data', OUTPUT_FILENAME) # the array with parties has considered all mentioned on TSE's website until 21/07/2017 party_list = ["DEM", "NOVO", "PEN", "PC_DO_B", "PCB", "PCO", "PDT", "PHS", "PMDB", "PMB", "PMN", "PP", "PPL", "PPS", "PR", "PRB", "PROS", "PRP", "PRTB", "PSB", "PSC", "PSD", "PSDB", "PSDC", "PSL", "PSOL", "PSTU", "PT", "PT_DO_B", "PTB", "PTC", "PTN", "PV", "REDE", "SD"] #state_list = ["RS", "SC", "PR", "RJ", "SP", "ES", "MG", "GO", "DF", "TO", "MS", "MT", "AM", "AC", # "RO", "RR", "PA", "AP", "MA", "AL", "PI", "RN", "PE", "CE", "SE", "BA", "PB"] #party_list = ["DEM", "NOVO"] state_list = ["RS"] # Download files for party in party_list: for state in state_list: filename = FILENAME_PREFIX.format(party.lower(), state.lower()) file_url = TSE_PARTYMEMBERS_STATE_URL + filename print(file_url) output_file = os.path.join(TEMP_PATH, filename) print(output_file) urllib.request.urlretrieve(file_url, output_file) # Unzip downloaded files for party in party_list: for state in state_list: filename = FILENAME_PREFIX.format(party.lower(), state.lower()) file_path = os.path.join(TEMP_PATH, filename) print(file_path) zip_ref = zipfile.ZipFile(file_path, 'r') zip_ref.extractall(TEMP_PATH) zip_ref.close() csv_pattern = os.path.join(TEMP_PATH, "aplic/sead/lista_filiados/uf/filiados_*.csv") csv_files = glob.glob(csv_pattern) f = codecs.open("./filiadosRS.csv", "w", "iso8859-1") f2 = codecs.open(csv_files[0], "r", "iso8859-1") f.write(f2.readlines()[0]) f2.close() for csv_path in csv_files: csv_file = codecs.open(csv_path, "r", "iso8859-1") data = csv_file.readlines()[1:] f.write("".join(data)) csv_file.close() f.close()
35.329268
180
0.672075
53e49c5c4427d89ef236180fd2b3b978003aa968
1,395
py
Python
tests/groups/test_views.py
uktrade/directory-cms
8c8d13ce29ea74ddce7a40f3dd29c8847145d549
[ "MIT" ]
6
2018-03-20T11:19:07.000Z
2021-10-05T07:53:11.000Z
tests/groups/test_views.py
uktrade/directory-cms
8c8d13ce29ea74ddce7a40f3dd29c8847145d549
[ "MIT" ]
802
2018-02-05T14:16:13.000Z
2022-02-10T10:59:21.000Z
tests/groups/test_views.py
uktrade/directory-cms
8c8d13ce29ea74ddce7a40f3dd29c8847145d549
[ "MIT" ]
6
2019-01-22T13:19:37.000Z
2019-07-01T10:35:26.000Z
import pytest from django.conf import settings from django.urls import reverse from groups.models import GroupInfo @pytest.mark.django_db def test_group_info_modal_only_available_to_authenticated_users(client): response = client.get(reverse('group-info')) assert response.status_code == 302 assert response.url.startswith(settings.LOGIN_URL) @pytest.mark.django_db def test_group_info_modal_shows_unlimited_visibility_groups_only( admin_client, groups_with_info ): url = reverse('group-info') response = admin_client.get(url) assert response.status_code == 200 # Visbility is set to 'unrestricted' for all groups in `groups_with_info`, # so the same groups should be diplayed expected_items = tuple(group.info for group in groups_with_info) actual_items = tuple(response.context['queryset']) assert actual_items == expected_items # Check that expected groups are actually rendered modal_html = response.json()['html'] for item in expected_items: assert '<dt>' + item.name_singular + '</dt>' in modal_html assert '<dd>' + item.role_match_description + '</dd>' in modal_html # Change the visibility of groups and try again GroupInfo.objects.all().update( visibility=GroupInfo.VISIBILITY_MANAGERS_ONLY) response = admin_client.get(url) assert response.context['queryset'].exists() is False
34.875
78
0.74552
310bdc6709c2e41934f9b1c8dc4fa1af1c65912e
44,505
py
Python
python/ccxt/bitbay.py
caoshitong369/ccxt
e0f183448bbf8f95e84c71e5f185404dabab3955
[ "MIT" ]
3
2020-06-02T10:48:48.000Z
2022-03-12T20:46:01.000Z
python/ccxt/bitbay.py
caoshitong369/ccxt
e0f183448bbf8f95e84c71e5f185404dabab3955
[ "MIT" ]
3
2020-09-08T00:13:39.000Z
2021-05-08T20:05:48.000Z
python/ccxt/bitbay.py
caoshitong369/ccxt
e0f183448bbf8f95e84c71e5f185404dabab3955
[ "MIT" ]
1
2020-03-16T03:22:17.000Z
2020-03-16T03:22:17.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import InvalidNonce class bitbay(Exchange): def describe(self): return self.deep_extend(super(bitbay, self).describe(), { 'id': 'bitbay', 'name': 'BitBay', 'countries': ['MT', 'EU'], # Malta 'rateLimit': 1000, 'has': { 'CORS': True, 'withdraw': True, 'fetchMyTrades': True, 'fetchOpenOrders': True, }, 'urls': { 'referral': 'https://auth.bitbay.net/ref/jHlbB4mIkdS1', 'logo': 'https://user-images.githubusercontent.com/1294454/27766132-978a7bd8-5ece-11e7-9540-bc96d1e9bbb8.jpg', 'www': 'https://bitbay.net', 'api': { 'public': 'https://bitbay.net/API/Public', 'private': 'https://bitbay.net/API/Trading/tradingApi.php', 'v1_01Public': 'https://api.bitbay.net/rest', 'v1_01Private': 'https://api.bitbay.net/rest', }, 'doc': [ 'https://bitbay.net/public-api', 'https://bitbay.net/en/private-api', 'https://bitbay.net/account/tab-api', 'https://github.com/BitBayNet/API', 'https://docs.bitbay.net/v1.0.1-en/reference', ], 'fees': 'https://bitbay.net/en/fees', }, 'api': { 'public': { 'get': [ '{id}/all', '{id}/market', '{id}/orderbook', '{id}/ticker', '{id}/trades', ], }, 'private': { 'post': [ 'info', 'trade', 'cancel', 'orderbook', 'orders', 'transfer', 'withdraw', 'history', 'transactions', ], }, 'v1_01Public': { 'get': [ 'trading/ticker', 'trading/ticker/{symbol}', 'trading/stats', 'trading/orderbook/{symbol}', 'trading/transactions/{symbol}', 'trading/candle/history/{symbol}/{resolution}', ], }, 'v1_01Private': { 'get': [ 'payments/withdrawal/{detailId}', 'payments/deposit/{detailId}', 'trading/offer', 'trading/config/{symbol}', 'trading/history/transactions', 'balances/BITBAY/history', 'balances/BITBAY/balance', 'fiat_cantor/rate/{baseId}/{quoteId}', 'fiat_cantor/history', ], 'post': [ 'trading/offer/{symbol}', 'trading/config/{symbol}', 'balances/BITBAY/balance', 'balances/BITBAY/balance/transfer/{source}/{destination}', 'fiat_cantor/exchange', ], 'delete': [ 'trading/offer/{symbol}/{id}/{side}/{price}', ], 'put': [ 'balances/BITBAY/balance/{id}', ], }, }, 'fees': { 'trading': { 'maker': 0.3 / 100, 'taker': 0.0043, }, 'funding': { 'withdraw': { 'BTC': 0.0009, 'LTC': 0.005, 'ETH': 0.00126, 'LSK': 0.2, 'BCH': 0.0006, 'GAME': 0.005, 'DASH': 0.001, 'BTG': 0.0008, 'PLN': 4, 'EUR': 1.5, }, }, }, 'exceptions': { '400': ExchangeError, # At least one parameter wasn't set '401': InvalidOrder, # Invalid order type '402': InvalidOrder, # No orders with specified currencies '403': InvalidOrder, # Invalid payment currency name '404': InvalidOrder, # Error. Wrong transaction type '405': InvalidOrder, # Order with self id doesn't exist '406': InsufficientFunds, # No enough money or crypto # code 407 not specified are not specified in their docs '408': InvalidOrder, # Invalid currency name '501': AuthenticationError, # Invalid public key '502': AuthenticationError, # Invalid sign '503': InvalidNonce, # Invalid moment parameter. Request time doesn't match current server time '504': ExchangeError, # Invalid method '505': AuthenticationError, # Key has no permission for self action '506': AuthenticationError, # Account locked. Please contact with customer service # codes 507 and 508 are not specified in their docs '509': ExchangeError, # The BIC/SWIFT is required for self currency '510': ExchangeError, # Invalid market name 'FUNDS_NOT_SUFFICIENT': InsufficientFunds, 'OFFER_FUNDS_NOT_EXCEEDING_MINIMUMS': InvalidOrder, 'OFFER_NOT_FOUND': OrderNotFound, }, }) def fetch_markets(self, params={}): response = self.v1_01PublicGetTradingTicker(params) # # { # status: 'Ok', # items: { # 'BSV-USD': { # market: { # code: 'BSV-USD', # first: {currency: 'BSV', minOffer: '0.00035', scale: 8}, # second: {currency: 'USD', minOffer: '5', scale: 2} # }, # time: '1557569762154', # highestBid: '52.31', # lowestAsk: '62.99', # rate: '63', # previousRate: '51.21', # }, # }, # } # result = [] items = self.safe_value(response, 'items') keys = list(items.keys()) for i in range(0, len(keys)): key = keys[i] item = items[key] market = self.safe_value(item, 'market', {}) first = self.safe_value(market, 'first', {}) second = self.safe_value(market, 'second', {}) baseId = self.safe_string(first, 'currency') quoteId = self.safe_string(second, 'currency') id = baseId + quoteId base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote precision = { 'amount': self.safe_integer(first, 'scale'), 'price': self.safe_integer(second, 'scale'), } # todo: check that the limits have ben interpreted correctly # todo: parse the fees page result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'precision': precision, 'active': None, 'fee': None, 'limits': { 'amount': { 'min': self.safe_float(first, 'minOffer'), 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_float(second, 'minOffer'), 'max': None, }, }, 'info': item, }) return result def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = {} response = self.v1_01PrivateGetTradingOffer(self.extend(request, params)) items = self.safe_value(response, 'items', []) return self.parse_orders(items, None, since, limit, {'status': 'open'}) def parse_order(self, order, market=None): # # { # market: 'ETH-EUR', # offerType: 'Sell', # id: '93d3657b-d616-11e9-9248-0242ac110005', # currentAmount: '0.04', # lockedAmount: '0.04', # rate: '280', # startAmount: '0.04', # time: '1568372806924', # postOnly: False, # hidden: False, # mode: 'limit', # receivedAmount: '0.0', # firstBalanceId: '5b816c3e-437c-4e43-9bef-47814ae7ebfc', # secondBalanceId: 'ab43023b-4079-414c-b340-056e3430a3af' # } # marketId = self.safe_string(order, 'market') symbol = None if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] else: baseId, quoteId = marketId.split('-') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote if symbol is None: if market is not None: symbol = market['symbol'] timestamp = self.safe_integer(order, 'time') amount = self.safe_float(order, 'startAmount') remaining = self.safe_float(order, 'currentAmount') filled = None if amount is not None: if remaining is not None: filled = max(0, amount - remaining) return { 'id': self.safe_string(order, 'id'), 'info': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': None, 'symbol': symbol, 'type': self.safe_string(order, 'mode'), 'side': self.safe_string_lower(order, 'offerType'), 'price': self.safe_float(order, 'rate'), 'amount': amount, 'cost': None, 'filled': filled, 'remaining': remaining, 'average': None, 'fee': None, 'trades': None, } def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = {} if symbol: markets = [self.market_id(symbol)] request['markets'] = markets query = {'query': self.json(self.extend(request, params))} response = self.v1_01PrivateGetTradingHistoryTransactions(query) # # { # status: 'Ok', # totalRows: '67', # items: [ # { # id: 'b54659a0-51b5-42a0-80eb-2ac5357ccee2', # market: 'BTC-EUR', # time: '1541697096247', # amount: '0.00003', # rate: '4341.44', # initializedBy: 'Sell', # wasTaker: False, # userAction: 'Buy', # offerId: 'bd19804a-6f89-4a69-adb8-eb078900d006', # commissionValue: null # }, # ] # } # items = self.safe_value(response, 'items') result = self.parse_trades(items, None, since, limit) if symbol is None: return result return self.filter_by_symbol(result, symbol) def fetch_balance(self, params={}): self.load_markets() response = self.v1_01PrivateGetBalancesBITBAYBalance(params) balances = self.safe_value(response, 'balances') if balances is None: raise ExchangeError(self.id + ' empty balance response ' + self.json(response)) result = {'info': response} for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['used'] = self.safe_float(balance, 'lockedFunds') account['free'] = self.safe_float(balance, 'availableFunds') result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() request = { 'id': self.market_id(symbol), } orderbook = self.publicGetIdOrderbook(self.extend(request, params)) return self.parse_order_book(orderbook) def fetch_ticker(self, symbol, params={}): self.load_markets() request = { 'id': self.market_id(symbol), } ticker = self.publicGetIdTicker(self.extend(request, params)) timestamp = self.milliseconds() baseVolume = self.safe_float(ticker, 'volume') vwap = self.safe_float(ticker, 'vwap') quoteVolume = None if baseVolume is not None and vwap is not None: quoteVolume = baseVolume * vwap last = self.safe_float(ticker, 'last') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'max'), 'low': self.safe_float(ticker, 'min'), 'bid': self.safe_float(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'ask'), 'askVolume': None, 'vwap': vwap, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': self.safe_float(ticker, 'average'), 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def fetch_ledger(self, code=None, since=None, limit=None, params={}): balanceCurrencies = [] if code is not None: currency = self.currency(code) balanceCurrencies.append(currency['id']) request = { 'balanceCurrencies': balanceCurrencies, } if since is not None: request['fromTime'] = since if limit is not None: request['limit'] = limit request = self.extend(request, params) response = self.v1_01PrivateGetBalancesBITBAYHistory({'query': self.json(request)}) items = response['items'] return self.parse_ledger(items, None, since, limit) def parse_ledger_entry(self, item, currency=None): # # FUNDS_MIGRATION # { # "historyId": "84ea7a29-7da5-4de5-b0c0-871e83cad765", # "balance": { # "id": "821ec166-cb88-4521-916c-f4eb44db98df", # "currency": "LTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "LTC" # }, # "detailId": null, # "time": 1506128252968, # "type": "FUNDS_MIGRATION", # "value": 0.0009957, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.0009957, "available": 0.0009957, "locked": 0}, # "change": {"total": 0.0009957, "available": 0.0009957, "locked": 0} # } # # CREATE_BALANCE # { # "historyId": "d0fabd8d-9107-4b5e-b9a6-3cab8af70d49", # "balance": { # "id": "653ffcf2-3037-4ebe-8e13-d5ea1a01d60d", # "currency": "BTG", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTG" # }, # "detailId": null, # "time": 1508895244751, # "type": "CREATE_BALANCE", # "value": 0, # "fundsBefore": {"total": null, "available": null, "locked": null}, # "fundsAfter": {"total": 0, "available": 0, "locked": 0}, # "change": {"total": 0, "available": 0, "locked": 0} # } # # BITCOIN_GOLD_FORK # { # "historyId": "2b4d52d3-611c-473d-b92c-8a8d87a24e41", # "balance": { # "id": "653ffcf2-3037-4ebe-8e13-d5ea1a01d60d", # "currency": "BTG", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTG" # }, # "detailId": null, # "time": 1508895244778, # "type": "BITCOIN_GOLD_FORK", # "value": 0.00453512, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.00453512, "available": 0.00453512, "locked": 0}, # "change": {"total": 0.00453512, "available": 0.00453512, "locked": 0} # } # # ADD_FUNDS # { # "historyId": "3158236d-dae5-4a5d-81af-c1fa4af340fb", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "8e83a960-e737-4380-b8bb-259d6e236faa", # "time": 1520631178816, # "type": "ADD_FUNDS", # "value": 0.628405, # "fundsBefore": {"total": 0.00453512, "available": 0.00453512, "locked": 0}, # "fundsAfter": {"total": 0.63294012, "available": 0.63294012, "locked": 0}, # "change": {"total": 0.628405, "available": 0.628405, "locked": 0} # } # # TRANSACTION_PRE_LOCKING # { # "historyId": "e7d19e0f-03b3-46a8-bc72-dde72cc24ead", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1520706403868, # "type": "TRANSACTION_PRE_LOCKING", # "value": -0.1, # "fundsBefore": {"total": 0.63294012, "available": 0.63294012, "locked": 0}, # "fundsAfter": {"total": 0.63294012, "available": 0.53294012, "locked": 0.1}, # "change": {"total": 0, "available": -0.1, "locked": 0.1} # } # # TRANSACTION_POST_OUTCOME # { # "historyId": "c4010825-231d-4a9c-8e46-37cde1f7b63c", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "bf2876bc-b545-4503-96c8-ef4de8233876", # "time": 1520706404032, # "type": "TRANSACTION_POST_OUTCOME", # "value": -0.01771415, # "fundsBefore": {"total": 0.63294012, "available": 0.53294012, "locked": 0.1}, # "fundsAfter": {"total": 0.61522597, "available": 0.53294012, "locked": 0.08228585}, # "change": {"total": -0.01771415, "available": 0, "locked": -0.01771415} # } # # TRANSACTION_POST_INCOME # { # "historyId": "7f18b7af-b676-4125-84fd-042e683046f6", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": "f5fcb274-0cc7-4385-b2d3-bae2756e701f", # "time": 1520706404035, # "type": "TRANSACTION_POST_INCOME", # "value": 628.78, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 628.78, "available": 628.78, "locked": 0}, # "change": {"total": 628.78, "available": 628.78, "locked": 0} # } # # TRANSACTION_COMMISSION_OUTCOME # { # "historyId": "843177fa-61bc-4cbf-8be5-b029d856c93b", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": "f5fcb274-0cc7-4385-b2d3-bae2756e701f", # "time": 1520706404050, # "type": "TRANSACTION_COMMISSION_OUTCOME", # "value": -2.71, # "fundsBefore": {"total": 766.06, "available": 766.06, "locked": 0}, # "fundsAfter": {"total": 763.35,"available": 763.35, "locked": 0}, # "change": {"total": -2.71, "available": -2.71, "locked": 0} # } # # TRANSACTION_OFFER_COMPLETED_RETURN # { # "historyId": "cac69b04-c518-4dc5-9d86-e76e91f2e1d2", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1520714886425, # "type": "TRANSACTION_OFFER_COMPLETED_RETURN", # "value": 0.00000196, # "fundsBefore": {"total": 0.00941208, "available": 0.00941012, "locked": 0.00000196}, # "fundsAfter": {"total": 0.00941208, "available": 0.00941208, "locked": 0}, # "change": {"total": 0, "available": 0.00000196, "locked": -0.00000196} # } # # WITHDRAWAL_LOCK_FUNDS # { # "historyId": "03de2271-66ab-4960-a786-87ab9551fc14", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "6ad3dc72-1d6d-4ec2-8436-ca43f85a38a6", # "time": 1522245654481, # "type": "WITHDRAWAL_LOCK_FUNDS", # "value": -0.8, # "fundsBefore": {"total": 0.8, "available": 0.8, "locked": 0}, # "fundsAfter": {"total": 0.8, "available": 0, "locked": 0.8}, # "change": {"total": 0, "available": -0.8, "locked": 0.8} # } # # WITHDRAWAL_SUBTRACT_FUNDS # { # "historyId": "b0308c89-5288-438d-a306-c6448b1a266d", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "6ad3dc72-1d6d-4ec2-8436-ca43f85a38a6", # "time": 1522246526186, # "type": "WITHDRAWAL_SUBTRACT_FUNDS", # "value": -0.8, # "fundsBefore": {"total": 0.8, "available": 0, "locked": 0.8}, # "fundsAfter": {"total": 0, "available": 0, "locked": 0}, # "change": {"total": -0.8, "available": 0, "locked": -0.8} # } # # TRANSACTION_OFFER_ABORTED_RETURN # { # "historyId": "b1a3c075-d403-4e05-8f32-40512cdd88c0", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1522512298662, # "type": "TRANSACTION_OFFER_ABORTED_RETURN", # "value": 0.0564931, # "fundsBefore": {"total": 0.44951311, "available": 0.39302001, "locked": 0.0564931}, # "fundsAfter": {"total": 0.44951311, "available": 0.44951311, "locked": 0}, # "change": {"total": 0, "available": 0.0564931, "locked": -0.0564931} # } # # WITHDRAWAL_UNLOCK_FUNDS # { # "historyId": "0ed569a2-c330-482e-bb89-4cb553fb5b11", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "0c7be256-c336-4111-bee7-4eb22e339700", # "time": 1527866360785, # "type": "WITHDRAWAL_UNLOCK_FUNDS", # "value": 0.05045, # "fundsBefore": {"total": 0.86001578, "available": 0.80956578, "locked": 0.05045}, # "fundsAfter": {"total": 0.86001578, "available": 0.86001578, "locked": 0}, # "change": {"total": 0, "available": 0.05045, "locked": -0.05045} # } # # TRANSACTION_COMMISSION_RETURN # { # "historyId": "07c89c27-46f1-4d7a-8518-b73798bf168a", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": null, # "time": 1528304043063, # "type": "TRANSACTION_COMMISSION_RETURN", # "value": 0.6, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.6, "available": 0.6, "locked": 0}, # "change": {"total": 0.6, "available": 0.6, "locked": 0} # } # timestamp = self.safe_integer(item, 'time') balance = self.safe_value(item, 'balance', {}) currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) change = self.safe_value(item, 'change', {}) amount = self.safe_float(change, 'total') direction = 'in' if amount < 0: direction = 'out' amount = -amount id = self.safe_string(item, 'historyId') # there are 2 undocumented api calls: (v1_01PrivateGetPaymentsDepositDetailId and v1_01PrivateGetPaymentsWithdrawalDetailId) # that can be used to enrich the transfers with txid, address etc(you need to use info.detailId as a parameter) referenceId = self.safe_string(item, 'detailId') type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) fundsBefore = self.safe_value(item, 'fundsBefore', {}) before = self.safe_float(fundsBefore, 'total') fundsAfter = self.safe_value(item, 'fundsAfter', {}) after = self.safe_float(fundsAfter, 'total') return { 'info': item, 'id': id, 'direction': direction, 'account': None, 'referenceId': referenceId, 'referenceAccount': None, 'type': type, 'currency': code, 'amount': amount, 'before': before, 'after': after, 'status': 'ok', 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': None, } def parse_ledger_entry_type(self, type): types = { 'ADD_FUNDS': 'transaction', 'BITCOIN_GOLD_FORK': 'transaction', 'CREATE_BALANCE': 'transaction', 'FUNDS_MIGRATION': 'transaction', 'WITHDRAWAL_LOCK_FUNDS': 'transaction', 'WITHDRAWAL_SUBTRACT_FUNDS': 'transaction', 'WITHDRAWAL_UNLOCK_FUNDS': 'transaction', 'TRANSACTION_COMMISSION_OUTCOME': 'fee', 'TRANSACTION_COMMISSION_RETURN': 'fee', 'TRANSACTION_OFFER_ABORTED_RETURN': 'trade', 'TRANSACTION_OFFER_COMPLETED_RETURN': 'trade', 'TRANSACTION_POST_INCOME': 'trade', 'TRANSACTION_POST_OUTCOME': 'trade', 'TRANSACTION_PRE_LOCKING': 'trade', } return self.safe_string(types, type, type) def parse_trade(self, trade, market=None): # # createOrder trades # # { # "rate": "0.02195928", # "amount": "0.00167952" # } # # fetchMyTrades(private) # # { # amount: "0.29285199", # commissionValue: "0.00125927", # id: "11c8203a-a267-11e9-b698-0242ac110007", # initializedBy: "Buy", # market: "ETH-EUR", # offerId: "11c82038-a267-11e9-b698-0242ac110007", # rate: "277", # time: "1562689917517", # userAction: "Buy", # wasTaker: True, # } # # fetchTrades(public) # # { # id: 'df00b0da-e5e0-11e9-8c19-0242ac11000a', # t: '1570108958831', # a: '0.04776653', # r: '0.02145854', # ty: 'Sell' # } # timestamp = self.safe_integer_2(trade, 'time', 't') userAction = self.safe_string(trade, 'userAction') side = 'buy' if (userAction == 'Buy') else 'sell' wasTaker = self.safe_value(trade, 'wasTaker') takerOrMaker = None if wasTaker is not None: takerOrMaker = 'taker' if wasTaker else 'maker' price = self.safe_float_2(trade, 'rate', 'r') amount = self.safe_float_2(trade, 'amount', 'a') cost = None if amount is not None: if price is not None: cost = price * amount feeCost = self.safe_float(trade, 'commissionValue') marketId = self.safe_string(trade, 'market') base = None quote = None symbol = None if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] base = market['base'] quote = market['quote'] else: baseId, quoteId = marketId.split('-') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote if market is not None: if symbol is None: symbol = market['symbol'] if base is None: base = market['base'] fee = None if feeCost is not None: feeCcy = base if (side == 'buy') else quote fee = { 'currency': feeCcy, 'cost': feeCost, } order = self.safe_string(trade, 'offerId') # todo: check self logic type = None if order is not None: type = 'limit' if order else 'market' return { 'id': self.safe_string(trade, 'id'), 'order': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'takerOrMaker': takerOrMaker, 'fee': fee, 'info': trade, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, } if since is not None: request['fromTime'] = since - 1 # result does not include exactly `since` time therefore decrease by 1 if limit is not None: request['limit'] = limit # default - 10, max - 300 response = self.v1_01PublicGetTradingTransactionsSymbol(self.extend(request, params)) items = self.safe_value(response, 'items') return self.parse_trades(items, symbol, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'offerType': side, 'amount': amount, 'mode': type, } if type == 'limit': request['rate'] = price response = self.v1_01PrivatePostTradingOfferSymbol(self.extend(request, params)) # # unfilled(open order) # # { # status: 'Ok', # completed: False, # can deduce status from here # offerId: 'ce9cc72e-d61c-11e9-9248-0242ac110005', # transactions: [], # can deduce order info from here # } # # filled(closed order) # # { # "status": "Ok", # "offerId": "942a4a3e-e922-11e9-8c19-0242ac11000a", # "completed": True, # "transactions": [ # { # "rate": "0.02195928", # "amount": "0.00167952" # }, # { # "rate": "0.02195928", # "amount": "0.00167952" # }, # { # "rate": "0.02196207", # "amount": "0.27704177" # } # ] # } # # partially-filled(open order) # # { # "status": "Ok", # "offerId": "d0ebefab-f4d7-11e9-8c19-0242ac11000a", # "completed": False, # "transactions": [ # { # "rate": "0.02106404", # "amount": "0.0019625" # }, # { # "rate": "0.02106404", # "amount": "0.0019625" # }, # { # "rate": "0.02105901", # "amount": "0.00975256" # } # ] # } # timestamp = self.milliseconds() # the real timestamp is missing in the response id = self.safe_string(response, 'offerId') completed = self.safe_value(response, 'completed', False) status = 'closed' if completed else 'open' filled = 0 cost = None transactions = self.safe_value(response, 'transactions') trades = None if transactions is not None: trades = self.parse_trades(transactions, market, None, None, { 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'side': side, 'type': type, 'orderId': id, }) cost = 0 for i in range(0, len(trades)): filled = self.sum(filled, trades[i]['amount']) cost = self.sum(cost, trades[i]['cost']) remaining = amount - filled return { 'id': id, 'info': response, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': float(price), 'amount': float(amount), 'cost': cost, 'filled': filled, 'remaining': remaining, 'average': None, 'fee': None, 'trades': trades, } def cancel_order(self, id, symbol=None, params={}): side = self.safe_string(params, 'side') if side is None: raise ExchangeError(self.id + ' cancelOrder() requires a `side` parameter("buy" or "sell")') price = self.safe_value(params, 'price') if price is None: raise ExchangeError(self.id + ' cancelOrder() requires a `price` parameter(float or string)') self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'id': id, 'side': side, 'price': price, } # {status: 'Fail', errors: ['NOT_RECOGNIZED_OFFER_TYPE']} -- if required params are missing # {status: 'Ok', errors: []} return self.v1_01PrivateDeleteTradingOfferSymbolIdSidePrice(self.extend(request, params)) def is_fiat(self, currency): fiatCurrencies = { 'USD': True, 'EUR': True, 'PLN': True, } return self.safe_value(fiatCurrencies, currency, False) def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) self.load_markets() method = None currency = self.currency(code) request = { 'currency': currency['id'], 'quantity': amount, } if self.is_fiat(code): method = 'privatePostWithdraw' # request['account'] = params['account'] # they demand an account number # request['express'] = params['express'] # whatever it means, they don't explain # request['bic'] = '' else: method = 'privatePostTransfer' if tag is not None: address += '?dt=' + str(tag) request['address'] = address response = getattr(self, method)(self.extend(request, params)) return { 'info': response, 'id': None, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] if api == 'public': query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) + '.json' if query: url += '?' + self.urlencode(query) elif api == 'v1_01Public': query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) if query: url += '?' + self.urlencode(query) elif api == 'v1_01Private': self.check_required_credentials() query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) nonce = str(self.milliseconds()) payload = None if method != 'POST': if query: url += '?' + self.urlencode(query) payload = self.apiKey + nonce elif body is None: body = self.json(query) payload = self.apiKey + nonce + body headers = { 'Request-Timestamp': nonce, 'Operation-Id': self.uuid(), 'API-Key': self.apiKey, 'API-Hash': self.hmac(self.encode(payload), self.encode(self.secret), hashlib.sha512), 'Content-Type': 'application/json', } else: self.check_required_credentials() body = self.urlencode(self.extend({ 'method': path, 'moment': self.nonce(), }, params)) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'API-Key': self.apiKey, 'API-Hash': self.hmac(self.encode(body), self.encode(self.secret), hashlib.sha512), } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if 'code' in response: # # bitbay returns the integer 'success': 1 key from their private API # or an integer 'code' value from 0 to 510 and an error message # # {'success': 1, ...} # {'code': 502, 'message': 'Invalid sign'} # {'code': 0, 'message': 'offer funds not exceeding minimums'} # # 400 At least one parameter wasn't set # 401 Invalid order type # 402 No orders with specified currencies # 403 Invalid payment currency name # 404 Error. Wrong transaction type # 405 Order with self id doesn't exist # 406 No enough money or crypto # 408 Invalid currency name # 501 Invalid public key # 502 Invalid sign # 503 Invalid moment parameter. Request time doesn't match current server time # 504 Invalid method # 505 Key has no permission for self action # 506 Account locked. Please contact with customer service # 509 The BIC/SWIFT is required for self currency # 510 Invalid market name # code = self.safe_string(response, 'code') # always an integer feedback = self.id + ' ' + body exceptions = self.exceptions if code in self.exceptions: raise exceptions[code](feedback) else: raise ExchangeError(feedback) elif 'status' in response: # # {"status":"Fail","errors":["OFFER_FUNDS_NOT_EXCEEDING_MINIMUMS"]} # status = self.safe_string(response, 'status') if status == 'Fail': errors = self.safe_value(response, 'errors') feedback = self.id + ' ' + self.json(response) for i in range(0, len(errors)): error = errors[i] if error in self.exceptions: raise self.exceptions[error](feedback) raise ExchangeError(feedback)
40.718207
132
0.469003
335d349c493109f3d1b7529de06909067996fd5c
5,499
py
Python
kerMIT/kerMIT/explain/genericMultiLayer_LRP.py
ART-Group-it/kerMIT
ff309ce3154c5292602c53cd19633d789bf759e2
[ "MIT" ]
1
2020-07-03T13:29:12.000Z
2020-07-03T13:29:12.000Z
kerMIT/kerMIT/explain/genericMultiLayer_LRP.py
ART-Group-it/kerMIT
ff309ce3154c5292602c53cd19633d789bf759e2
[ "MIT" ]
null
null
null
kerMIT/kerMIT/explain/genericMultiLayer_LRP.py
ART-Group-it/kerMIT
ff309ce3154c5292602c53cd19633d789bf759e2
[ "MIT" ]
1
2020-05-07T17:16:41.000Z
2020-05-07T17:16:41.000Z
import torch #### INIZIO DARIO #activation = {} def get_activation(name, activation): def hook(model, input, output): activation[name] = output.detach() return hook def getWeightAnBiasByName(model, layer_name): # weight, bias = _, _ weight, bias = None, None for name, param in model.named_parameters(): if name == layer_name + '.weight' and param.requires_grad: weight = param.data elif name == layer_name + '.bias' and param.requires_grad: bias = param.data return weight, bias def lrp_linear_torch(hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor=0.0, debug=False): """ LRP for a linear layer with input dim D and output dim M. Args: - hin: forward pass input, of shape (D,) - w: connection weights, of shape (D, M) - b: biases, of shape (M,) - hout: forward pass output, of shape (M,) (unequal to np.dot(w.T,hin)+b if more than one incoming layer!) - Rout: relevance at layer output, of shape (M,) - bias_nb_units: total number of connected lower-layer units (onto which the bias/stabilizer contribution is redistributed for sanity check) - eps: stabilizer (small positive number) - bias_factor: set to 1.0 to check global relevance conservation, otherwise use 0.0 to ignore bias/stabilizer redistribution (recommended) Returns: - Rin: relevance at layer input, of shape (D,) """ sign_out = torch.where(hout.cpu() >= 0, torch.Tensor([1.]), torch.Tensor([-1.])).view(1, -1) # shape (1, M) numer = (w * hin.view(-1, 1)).cpu() + ( bias_factor * (b.view(1, -1) * 1. + eps * sign_out * 1.) / bias_nb_units) # shape (D, M) # Note: here we multiply the bias_factor with both the bias b and the stabilizer eps since in fact # using the term (b[na,:]*1. + eps*sign_out*1.) / bias_nb_units in the numerator is only useful for sanity check # (in the initial paper version we were using (bias_factor*b[na,:]*1. + eps*sign_out*1.) / bias_nb_units instead) denom = hout.view(1, -1) + (eps * sign_out * 1.) # shape (1, M) message = (numer / denom) * Rout.view(1, -1) # shape (D, M) Rin = message.sum(axis=1) # shape (D,) if debug: print("local diff: ", Rout.sum() - Rin.sum()) # Note: # - local layer relevance conservation if bias_factor==1.0 and bias_nb_units==D (i.e. when only one incoming layer) # - global network relevance conservation if bias_factor==1.0 and bias_nb_units set accordingly to the total number of lower-layer connections # -> can be used for sanity check return Rin def prepare_single_pass(model, activation, start_layer, end_layer, isFirstCompute = True): hout = activation[start_layer].reshape(-1) if end_layer != None: hin = activation[end_layer].reshape(-1).cpu() else: hin = None w, b = getWeightAnBiasByName(model, start_layer) w = w.reshape(w.shape[1], w.shape[0]) bias_nb_units = b.shape[0] eps = 0.001 # eps = 0.2 bias_factor = 1.0 if isFirstCompute: mask = torch.zeros(hout.shape[0]) mask[torch.argmax(hout)] = hout[torch.argmax(hout)] Rout = torch.Tensor(mask).cpu() else: Rout = None return hin, w.cpu(), b.cpu(), hout.cpu(), Rout, bias_nb_units, eps, bias_factor ##### FMZ Trying an intuition def compute_LRP_FFNN(model, activation, layer_names, on_demand_embedding_matrix, single_test, demux_layer=None, demux_span=(None, None)): isFirstCompute = True for i in range(len(layer_names) - 1): print(layer_names[i], layer_names[i + 1]) hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor = prepare_single_pass(model, activation, layer_names[i], layer_names[i + 1], isFirstCompute) if not isFirstCompute: Rout = Rin Rin = lrp_linear_torch(hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor) # Handling the demultiplexing of the transformer and the distributed structure encoder MLP # and isolating the contribution for the distributed structure encoder MLP if demux_layer != None and demux_layer == layer_names[i]: Rin = Rin[demux_span[0], demux_span[1]] isFirstCompute = False # compute the last layer _, w, b, hout, Rout, bias_nb_units, eps, bias_factor = prepare_single_pass(model, activation, layer_names[-1], None, isFirstCompute) # Handling the demultiplexing of the transformer and the distributed structure encoder MLP # and isolating the contribution for the distributed structure encoder MLP if not isFirstCompute: Rout = Rin if demux_layer != None and demux_layer == layer_names[-1]: print(Rout) print(w.shape) # Rout = Rout[demux_span[0],demux_span[1]] w = w[demux_span[0]:demux_span[1]] hin = single_test.reshape(-1).cpu() # FMZ Rin = lrp_linear_torch(hin, w, b, hout, Rout, bias_nb_units, eps, bias_factor, debug=False) # print(on_demand_embedding_matrix.shape) # print(w.shape) Rin = lrp_linear_torch(hin, torch.matmul(on_demand_embedding_matrix, w), b, hout, Rout, bias_nb_units, eps, bias_factor, debug=False) return Rin #### FINE DARIO
44.346774
146
0.626659
b4ca080ffaec77847ca5ae2bafcc13bd4ee79e42
963
py
Python
wueevents/webapi/tests/test_private_api_tests.py
suspect22/wueevents
c8fb54c76da74d1c553418d04ea38cda810913ab
[ "MIT" ]
null
null
null
wueevents/webapi/tests/test_private_api_tests.py
suspect22/wueevents
c8fb54c76da74d1c553418d04ea38cda810913ab
[ "MIT" ]
null
null
null
wueevents/webapi/tests/test_private_api_tests.py
suspect22/wueevents
c8fb54c76da74d1c553418d04ea38cda810913ab
[ "MIT" ]
null
null
null
from django.test import TestCase from rest_framework.test import APIClient from django.urls import reverse from django.contrib.auth import get_user_model class PrivateApiTests(TestCase): """Holds all API Tests which will doesn't require authenticated Users""" API_ENDPOINT_WEBSITE = reverse("webapi:website-list") def setUp(self): self.apiClient = APIClient() self.authenticatedUser = get_user_model().objects.create_user( username="testuser", email="testemail@bla.com", password="TestPassword123" ) self.apiClient.force_authenticate(self.authenticatedUser) def test_create_website(self): pass def test_create_website_with_invalid_values(self): pass def test_create_scheduled_element(self): pass def test_create_scheduled_element_with_invalid_values(self): pass def tearDown(self): self.authenticatedUser.delete()
27.514286
76
0.707165
ef855ddae8558366409489bae703fdc1f3d38f6e
9,869
py
Python
c-deps/krb5/src/tests/t_proxy.py
Yangjxxxxx/ZNBase
dcf993b73250dd5cb63041f4d9cf098941f67b2b
[ "MIT", "BSD-3-Clause" ]
null
null
null
c-deps/krb5/src/tests/t_proxy.py
Yangjxxxxx/ZNBase
dcf993b73250dd5cb63041f4d9cf098941f67b2b
[ "MIT", "BSD-3-Clause" ]
null
null
null
c-deps/krb5/src/tests/t_proxy.py
Yangjxxxxx/ZNBase
dcf993b73250dd5cb63041f4d9cf098941f67b2b
[ "MIT", "BSD-3-Clause" ]
null
null
null
from k5test import * # Skip this test if we're missing proxy functionality or parts of the proxy. if runenv.tls_impl == 'no': skip_rest('HTTP proxy tests', 'TLS build support not enabled') try: from paste import httpserver except: skip_rest('HTTP proxy tests', 'Python paste module not found') try: import kdcproxy except: skip_rest('HTTP proxy tests', 'Python kdcproxy module not found') # Construct a krb5.conf fragment configuring the client to use a local proxy # server. proxysubjectpem = os.path.join(srctop, 'tests', 'dejagnu', 'proxy-certs', 'proxy-subject.pem') proxysanpem = os.path.join(srctop, 'tests', 'dejagnu', 'proxy-certs', 'proxy-san.pem') proxyidealpem = os.path.join(srctop, 'tests', 'dejagnu', 'proxy-certs', 'proxy-ideal.pem') proxywrongpem = os.path.join(srctop, 'tests', 'dejagnu', 'proxy-certs', 'proxy-no-match.pem') proxybadpem = os.path.join(srctop, 'tests', 'dejagnu', 'proxy-certs', 'proxy-badsig.pem') proxyca = os.path.join(srctop, 'tests', 'dejagnu', 'proxy-certs', 'ca.pem') proxyurl = 'https://localhost:$port5/KdcProxy' proxyurlupcase = 'https://LocalHost:$port5/KdcProxy' proxyurl4 = 'https://127.0.0.1:$port5/KdcProxy' proxyurl6 = 'https://[::1]:$port5/KdcProxy' unanchored_krb5_conf = {'realms': {'$realm': { 'kdc': proxyurl, 'kpasswd_server': proxyurl}}} anchored_name_krb5_conf = {'realms': {'$realm': { 'kdc': proxyurl, 'kpasswd_server': proxyurl, 'http_anchors': 'FILE:%s' % proxyca}}} anchored_upcasename_krb5_conf = {'realms': {'$realm': { 'kdc': proxyurlupcase, 'kpasswd_server': proxyurlupcase, 'http_anchors': 'FILE:%s' % proxyca}}} anchored_kadmin_krb5_conf = {'realms': {'$realm': { 'kdc': proxyurl, 'admin_server': proxyurl, 'http_anchors': 'FILE:%s' % proxyca}}} anchored_ipv4_krb5_conf = {'realms': {'$realm': { 'kdc': proxyurl4, 'kpasswd_server': proxyurl4, 'http_anchors': 'FILE:%s' % proxyca}}} kpasswd_input = (password('user') + '\n' + password('user') + '\n' + password('user') + '\n') def start_proxy(realm, keycertpem): proxy_conf_path = os.path.join(realm.testdir, 'kdcproxy.conf') proxy_exec_path = os.path.join(srctop, 'util', 'paste-kdcproxy.py') conf = open(proxy_conf_path, 'w') conf.write('[%s]\n' % realm.realm) conf.write('kerberos = kerberos://localhost:%d\n' % realm.portbase) conf.write('kpasswd = kpasswd://localhost:%d\n' % (realm.portbase + 2)) conf.close() realm.env['KDCPROXY_CONFIG'] = proxy_conf_path cmd = [sys.executable, proxy_exec_path, str(realm.server_port()), keycertpem] return realm.start_server(cmd, sentinel='proxy server ready') # Fail: untrusted issuer and hostname doesn't match. mark('untrusted issuer, hostname mismatch') output("running pass 1: issuer not trusted and hostname doesn't match\n") realm = K5Realm(krb5_conf=unanchored_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxywrongpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Fail: untrusted issuer, host name matches subject. mark('untrusted issuer, hostname subject match') output("running pass 2: subject matches, issuer not trusted\n") realm = K5Realm(krb5_conf=unanchored_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxysubjectpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Fail: untrusted issuer, host name matches subjectAltName. mark('untrusted issuer, hostname SAN match') output("running pass 3: subjectAltName matches, issuer not trusted\n") realm = K5Realm(krb5_conf=unanchored_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxysanpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Fail: untrusted issuer, certificate signature is bad. mark('untrusted issuer, bad signature') output("running pass 4: subject matches, issuer not trusted\n") realm = K5Realm(krb5_conf=unanchored_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxybadpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Fail: trusted issuer but hostname doesn't match. mark('trusted issuer, hostname mismatch') output("running pass 5: issuer trusted but hostname doesn't match\n") realm = K5Realm(krb5_conf=anchored_name_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxywrongpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Succeed: trusted issuer and host name matches subject. mark('trusted issuer, hostname subject match') output("running pass 6: issuer trusted, subject matches\n") realm = K5Realm(krb5_conf=anchored_name_krb5_conf, start_kadmind=True, get_creds=False) proxy = start_proxy(realm, proxysubjectpem) realm.kinit(realm.user_princ, password=password('user')) realm.run([kvno, realm.host_princ]) realm.run([kpasswd, realm.user_princ], input=kpasswd_input) stop_daemon(proxy) realm.stop() # Succeed: trusted issuer and host name matches subjectAltName. mark('trusted issuer, hostname SAN match') output("running pass 7: issuer trusted, subjectAltName matches\n") realm = K5Realm(krb5_conf=anchored_name_krb5_conf, start_kadmind=True, get_creds=False) proxy = start_proxy(realm, proxysanpem) realm.kinit(realm.user_princ, password=password('user')) realm.run([kvno, realm.host_princ]) realm.run([kpasswd, realm.user_princ], input=kpasswd_input) stop_daemon(proxy) realm.stop() # Fail: certificate signature is bad. mark('bad signature') output("running pass 8: issuer trusted and subjectAltName matches, sig bad\n") realm = K5Realm(krb5_conf=anchored_name_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxybadpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Fail: trusted issuer but IP doesn't match. mark('trusted issuer, IP mismatch') output("running pass 9: issuer trusted but no name matches IP\n") realm = K5Realm(krb5_conf=anchored_ipv4_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxywrongpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Fail: trusted issuer, but subject does not match. mark('trusted issuer, IP mismatch (hostname in subject)') output("running pass 10: issuer trusted, but subject does not match IP\n") realm = K5Realm(krb5_conf=anchored_ipv4_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxysubjectpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Succeed: trusted issuer and host name matches subjectAltName. mark('trusted issuer, IP SAN match') output("running pass 11: issuer trusted, subjectAltName matches IP\n") realm = K5Realm(krb5_conf=anchored_ipv4_krb5_conf, start_kadmind=True, get_creds=False) proxy = start_proxy(realm, proxysanpem) realm.kinit(realm.user_princ, password=password('user')) realm.run([kvno, realm.host_princ]) realm.run([kpasswd, realm.user_princ], input=kpasswd_input) stop_daemon(proxy) realm.stop() # Fail: certificate signature is bad. mark('bad signature (IP hostname)') output("running pass 12: issuer trusted, names don't match, signature bad\n") realm = K5Realm(krb5_conf=anchored_ipv4_krb5_conf, get_creds=False, create_host=False) proxy = start_proxy(realm, proxybadpem) realm.kinit(realm.user_princ, password=password('user'), expected_code=1) stop_daemon(proxy) realm.stop() # Succeed: trusted issuer and host name matches subject, using kadmin # configuration to find kpasswdd. mark('trusted issuer, hostname subject match (kadmin)') output("running pass 13: issuer trusted, subject matches\n") realm = K5Realm(krb5_conf=anchored_kadmin_krb5_conf, start_kadmind=True, get_creds=False, create_host=False) proxy = start_proxy(realm, proxysubjectpem) realm.run([kpasswd, realm.user_princ], input=kpasswd_input) stop_daemon(proxy) realm.stop() # Succeed: trusted issuer and host name matches subjectAltName, using # kadmin configuration to find kpasswdd. mark('trusted issuer, hostname SAN match (kadmin)') output("running pass 14: issuer trusted, subjectAltName matches\n") realm = K5Realm(krb5_conf=anchored_kadmin_krb5_conf, start_kadmind=True, get_creds=False, create_host=False) proxy = start_proxy(realm, proxysanpem) realm.run([kpasswd, realm.user_princ], input=kpasswd_input) stop_daemon(proxy) realm.stop() # Succeed: trusted issuer and host name matches subjectAltName (give or take # case). mark('trusted issuer, hostname SAN case-insensitive match') output("running pass 15: issuer trusted, subjectAltName case-insensitive\n") realm = K5Realm(krb5_conf=anchored_upcasename_krb5_conf, start_kadmind=True, get_creds=False, create_host=False) proxy = start_proxy(realm, proxysanpem) realm.run([kpasswd, realm.user_princ], input=kpasswd_input) stop_daemon(proxy) realm.stop() success('MS-KKDCP proxy')
43.09607
78
0.704124
8a9ebb7da56f301be015af6363fcaa5ebdbaa02c
5,545
py
Python
pypyr/pipelinerunner.py
mofm/pypyr
f417f69ba9a607d8a93019854105cfbc4dc9c36d
[ "Apache-2.0" ]
1
2021-12-30T20:47:18.000Z
2021-12-30T20:47:18.000Z
pypyr/pipelinerunner.py
mofm/pypyr
f417f69ba9a607d8a93019854105cfbc4dc9c36d
[ "Apache-2.0" ]
null
null
null
pypyr/pipelinerunner.py
mofm/pypyr
f417f69ba9a607d8a93019854105cfbc4dc9c36d
[ "Apache-2.0" ]
null
null
null
"""pypyr pipeline runner. This is the entrypoint for the pypyr API. Use run() to run a pipeline. """ # can remove __future__ once py 3.10 the lowest supported version from __future__ import annotations import logging from os import PathLike from pypyr.context import Context from pypyr.pipeline import Pipeline logger = logging.getLogger(__name__) def run( pipeline_name: str, args_in: list[str] | None = None, parse_args: bool | None = None, dict_in: dict | None = None, groups: list[str] | None = None, success_group: str | None = None, failure_group: str | None = None, loader: str | None = None, py_dir: str | bytes | PathLike | None = None ) -> Context: """Run a pipeline. pypyr's entrypoint. Call me if you want to run a pypyr pipeline from your own code. If you want to run a pipeline exactly like the cli does, use args_in to pass a list of str arguments for the pipeline's context_parser. If you already have a dict-like structure you want to use to initialize context, use dict_in instead. If you provide dict_in and no args_in, pypyr will assume you mean not to run the context_parser on the pipeline (parse_args=False) - if you do want to run the context_parser in this case, explicitly set parse_args=True. If you're invoking pypyr from your own application via the API, it's your responsibility to set up and configure logging. If you just want to replicate the log handlers & formatters that the pypyr cli uses, you can call pypyr.log.logger.set_root_logger() once and only once before invoking run() for every pipeline you want to run. Be aware that pypyr adds a NOTIFY - 25 custom log-level and notify() function to logging. {pipeline_name}.yaml should resolve from the current working directory if you are using the default file loader. You only need to specify py_dir if your pipeline relies on custom modules that are NOT installed in the current Python environment. For convenience, pypyr allows pipeline authors to use ad hoc python modules that are not installed in the current environment by looking for these in py_dir 1st. Regardless of whether you set py_dir or not, be aware that if you are using the default file loader, pypyr will also add the pipeline's immediate parent directory to sys.path (only if it's not been added already), so that each pipeline can reference ad hoc modules relative to itself in the filesystem. Therefore you do NOT need to set py_dir if your ad hoc custom modules are relative to the pipeline itself. If your pipelines are only using built-in functionality, you don't need to set py_dir. Example: Run ./dir/pipe-name.yaml, resolve ad hoc custom modules from the current directory and initialize context with dict {'a': 'b'}: context = run('dir/pipe-name', dict_in={'a': 'b'}, py_dir=Path.cwd()) Args: pipeline_name (str): Name of pipeline, sans .yaml at end. args_in (list[str]): All the input arguments after the pipeline name from cli. parse_args (bool): run context_parser in pipeline. Default True. dict_in (dict): Dict-like object to initialize the Context. groups: (list[str]): Step-group names to run in pipeline. Default is ['steps']. success_group (str): Step-group name to run on success completion. Default is on_success. failure_group: (str): Step-group name to run on pipeline failure. Default is on_failure. loader (str): optional. Absolute name of pipeline loader module. If not specified will use pypyr.loaders.file. py_dir (Path-like): Custom python modules resolve from this dir. Returns: pypyr.context.Context(): The pypyr context as it is after the pipeline completes. """ logger.debug("starting pypyr") parse_input = _get_parse_input(parse_args=parse_args, args_in=args_in, dict_in=dict_in) context = Context(dict_in) if dict_in else Context() pipeline = Pipeline(name=pipeline_name, context_args=args_in, parse_input=parse_input, loader=loader, groups=groups, success_group=success_group, failure_group=failure_group, py_dir=py_dir) pipeline.run(context) logger.debug("pypyr done") return context def _get_parse_input(parse_args, args_in, dict_in): """Return default for parse_input. This is to decide if context_parser should run or not. To make it easy on an API consumer, default behavior is ALWAYS to run parser UNLESS dict_in initializes context and there is no args_in. If dict_in specified, but no args_in: False If dict_in specified, AND args_in too: True If no dict_in specified, but args_in is: True If no dict_in AND no args_in: True If parse_args explicitly set, always honor its value. Args: parse_args (bool): Whether to run context parser. args_in (list[str]): String arguments as passed from the cli. dict_in (dict): Initialize context with this dict. Returns: Boolean. True if should parse input. """ if parse_args is None: return not (args_in is None and dict_in is not None) return parse_args
38.241379
79
0.676826
3292ba661c9beb7131e7285f0de31ecb1e6e3e19
480
py
Python
Intermediate/sending.py
Fernal73/LearnPython3
5288017c0dbf95633b84f1e6324f00dec6982d36
[ "MIT" ]
1
2021-12-17T11:03:13.000Z
2021-12-17T11:03:13.000Z
Intermediate/sending.py
Fernal73/LearnPython3
5288017c0dbf95633b84f1e6324f00dec6982d36
[ "MIT" ]
1
2020-02-05T00:14:43.000Z
2020-02-06T09:22:49.000Z
Intermediate/sending.py
Fernal73/LearnPython3
5288017c0dbf95633b84f1e6324f00dec6982d36
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Infinite looper with send.""" def infinite_looper(objects): """Loop indefinitely.""" count = 0 while True: if count >= len(objects): count = 0 message = yield objects[count] if message is not None: count = 0 if message < 0 else message else: count += 1 X = infinite_looper("A string with some words") print(next(X)) print(X.send(9)) print(X.send(12)) print(X.send(-10))
20.869565
49
0.577083
8afe9e58590fc7520b54516894082d7dd1aa3d3a
303
py
Python
configs/hpt-pretrain/resisc-ucmerced/imagenet_r50_supervised_resisc_50000it_basetrain/5000-iters.py
Berkeley-Data/OpenSelfSup
221191b88d891de57725b149caf237ffef72e529
[ "Apache-2.0" ]
null
null
null
configs/hpt-pretrain/resisc-ucmerced/imagenet_r50_supervised_resisc_50000it_basetrain/5000-iters.py
Berkeley-Data/OpenSelfSup
221191b88d891de57725b149caf237ffef72e529
[ "Apache-2.0" ]
6
2021-03-11T05:35:54.000Z
2021-04-03T22:25:11.000Z
configs/hpt-pretrain/resisc-ucmerced/imagenet_r50_supervised_resisc_50000it_basetrain/5000-iters.py
Berkeley-Data/OpenSelfSup
221191b88d891de57725b149caf237ffef72e529
[ "Apache-2.0" ]
1
2021-07-04T00:47:46.000Z
2021-07-04T00:47:46.000Z
_base_="../base-resisc-ucmerced-config.py" # this will merge with the parent model=dict(pretrained='work_dirs/hpt-pretrain/resisc/imagenet_r50_supervised_basetrain/50000-iters/imagenet_r50_supervised_resisc_50000it.pth') # epoch related total_iters=5000 checkpoint_config = dict(interval=total_iters)
33.666667
143
0.838284
6a3ec4b49d6d7efc3b1c93e2bf9f9469544c47a9
13,345
py
Python
src/roslibpy/comm/comm_cli.py
kikass13/roslibpy
e090c01906e076f95d75f9d7890cd55279544746
[ "MIT" ]
null
null
null
src/roslibpy/comm/comm_cli.py
kikass13/roslibpy
e090c01906e076f95d75f9d7890cd55279544746
[ "MIT" ]
null
null
null
src/roslibpy/comm/comm_cli.py
kikass13/roslibpy
e090c01906e076f95d75f9d7890cd55279544746
[ "MIT" ]
null
null
null
from __future__ import print_function import logging import math from System import Action from System import Array from System import ArraySegment from System import Byte from System import TimeSpan from System import Uri from System import UriBuilder from System.Net.WebSockets import ClientWebSocket from System.Net.WebSockets import WebSocketCloseStatus from System.Net.WebSockets import WebSocketMessageType from System.Net.WebSockets import WebSocketReceiveResult from System.Net.WebSockets import WebSocketState from System.Text import Encoding from System.Threading import CancellationToken from System.Threading import CancellationTokenSource from System.Threading import ManualResetEventSlim from System.Threading import SemaphoreSlim from System.Threading import Thread from System.Threading.Tasks import Task from ..event_emitter import EventEmitterMixin from . import RosBridgeException from . import RosBridgeProtocol LOGGER = logging.getLogger('roslibpy') RECEIVE_CHUNK_SIZE = 1024 SEND_CHUNK_SIZE = 1024 class CliRosBridgeProtocol(RosBridgeProtocol): """Implements the ROS Bridge protocol on top of CLI WebSockets. This implementation is mainly intended to be used on IronPython implementations and makes use of the Tasks library of .NET for most internal scheduling and cancellation signals.""" def __init__(self, factory, socket, *args, **kwargs): super(CliRosBridgeProtocol, self).__init__(*args, **kwargs) self.factory = factory self.socket = socket # According to docs, exactly one send and one receive is supported on each ClientWebSocket object in parallel. # https://msdn.microsoft.com/en-us/library/system.net.websockets.clientwebsocket.receiveasync(v=vs.110).aspx # So we configure the semaphore to allow for 2 concurrent requests # User-code might still end up in a race if multiple requests are triggered from different threads self.semaphore = SemaphoreSlim(2) def on_open(self, task): """Triggered when the socket connection has been established. This will kick-start the listening thread.""" LOGGER.info('Connection to ROS MASTER ready.') self.factory.ready(self) self.factory.manager.call_in_thread(self.start_listening) def receive_chunk_async(self, task_result, context): """Handle the reception of a message chuck asynchronously.""" try: if task_result: result = task_result.Result if result.MessageType == WebSocketMessageType.Close: LOGGER.info('WebSocket connection closed: [Code=%s] Description=%s', result.CloseStatus, result.CloseStatusDescription) return self.send_close() else: chunk = Encoding.UTF8.GetString(context['buffer'], 0, result.Count) context['content'].append(chunk) # Signal the listener thread if we're done parsing chunks if result.EndOfMessage: # NOTE: Once we reach the end of the message # we release the lock (Semaphore) self.semaphore.Release() # And signal the manual reset event context['mre'].Set() return task_result # NOTE: We will enter the lock (Semaphore) at the start of receive # to make sure we're accessing the socket read/writes at most from # two threads, one for receiving and one for sending if not task_result: self.semaphore.Wait(self.factory.manager.cancellation_token) receive_task = self.socket.ReceiveAsync(ArraySegment[Byte]( context['buffer']), self.factory.manager.cancellation_token) receive_task.ContinueWith.Overloads[Action[Task[WebSocketReceiveResult], object], object]( self.receive_chunk_async, context) except Exception: error_message = 'Exception on receive_chunk_async, processing will be aborted' if task_result: error_message += '; Task status: {}, Inner exception: {}'.format(task_result.Status, task_result.Exception) LOGGER.exception(error_message) raise def start_listening(self): """Starts listening asynchronously while the socket is open. The inter-thread synchronization between this and the async reception threads is sync'd with a manual reset event.""" try: LOGGER.debug( 'About to start listening, socket state: %s', self.socket.State) while self.socket and self.socket.State == WebSocketState.Open: mre = ManualResetEventSlim(False) content = [] buffer = Array.CreateInstance(Byte, RECEIVE_CHUNK_SIZE) self.receive_chunk_async(None, dict( buffer=buffer, content=content, mre=mre)) LOGGER.debug('Waiting for messages...') try: mre.Wait(self.factory.manager.cancellation_token) except SystemError: LOGGER.debug('Cancelation detected on listening thread, exiting...') break try: message_payload = ''.join(content) LOGGER.debug('Message reception completed|<pre>%s</pre>', message_payload) self.on_message(message_payload) except Exception: LOGGER.exception('Exception on start_listening while trying to handle message received.' + 'It could indicate a bug in user code on message handlers. Message skipped.') except Exception: LOGGER.exception( 'Exception on start_listening, processing will be aborted') raise finally: LOGGER.debug('Leaving the listening thread') def send_close(self): """Trigger the closure of the websocket indicating normal closing process.""" if self.socket: close_task = self.socket.CloseAsync( WebSocketCloseStatus.NormalClosure, '', CancellationToken.None) # noqa: E999 (disable flake8 error, which incorrectly parses None as the python keyword) self.factory.emit('close', self) # NOTE: Make sure reconnets are possible. # Reconnection needs to be handled on a higher layer. return close_task def send_chunk_async(self, task_result, message_data): """Send a message chuck asynchronously.""" try: if not task_result: self.semaphore.Wait(self.factory.manager.cancellation_token) message_buffer, message_length, chunks_count, i = message_data offset = SEND_CHUNK_SIZE * i is_last_message = (i == chunks_count - 1) if is_last_message: count = message_length - offset else: count = SEND_CHUNK_SIZE message_chunk = ArraySegment[Byte](message_buffer, offset, count) LOGGER.debug('Chunk %d of %d|From offset=%d, byte count=%d, Is last=%s', i + 1, chunks_count, offset, count, str(is_last_message)) task = self.socket.SendAsync( message_chunk, WebSocketMessageType.Text, is_last_message, self.factory.manager.cancellation_token) if not is_last_message: task.ContinueWith(self.send_chunk_async, [ message_buffer, message_length, chunks_count, i + 1]) else: # NOTE: If we've reached the last chunck of the message # we can release the lock (Semaphore) again. task.ContinueWith(lambda _res: self.semaphore.Release()) return task except Exception: LOGGER.exception('Exception while on send_chunk_async') raise def send_message(self, payload): """Start sending a message over the websocket asynchronously.""" if self.socket.State != WebSocketState.Open: raise RosBridgeException( 'Connection is not open. Socket state: %s' % self.socket.State) try: message_buffer = Encoding.UTF8.GetBytes(payload) message_length = len(message_buffer) chunks_count = int(math.ceil(float(message_length) / SEND_CHUNK_SIZE)) send_task = self.send_chunk_async( None, [message_buffer, message_length, chunks_count, 0]) return send_task except Exception: LOGGER.exception('Exception while sending message') raise def dispose(self, *args): """Dispose the resources held by this protocol instance, i.e. socket.""" self.factory.manager.terminate() if self.socket: self.socket.Dispose() self.socket = None LOGGER.debug('Websocket disposed') def __del__(self): """Dispose correctly the connection.""" self.dispose() class CliRosBridgeClientFactory(EventEmitterMixin): """Factory to create instances of the ROS Bridge protocol built on top of .NET WebSockets.""" def __init__(self, url, *args, **kwargs): super(CliRosBridgeClientFactory, self).__init__(*args, **kwargs) self._manager = CliEventLoopManager() self.proto = None self.url = url @property def is_connected(self): """Indicate if the WebSocket connection is open or not. Returns: bool: True if WebSocket is connected, False otherwise. """ return self.proto and self.proto.socket and self.proto.socket.State == WebSocketState.Open def connect(self): """Establish WebSocket connection to the ROS server defined for this factory. Returns: async_task: The async task for the connection. """ LOGGER.debug('Started to connect...') socket = ClientWebSocket() socket.Options.KeepAliveInterval = TimeSpan.FromSeconds(5) connect_task = socket.ConnectAsync( self.url, self.manager.cancellation_token) protocol = CliRosBridgeProtocol(self, socket) connect_task.ContinueWith(protocol.on_open) return connect_task def ready(self, proto): self.proto = proto self.emit('ready', proto) def on_ready(self, callback): if self.proto: callback(self.proto) else: self.once('ready', callback) @property def manager(self): """Get an instance of the event loop manager for this factory.""" return self._manager @classmethod def create_url(cls, host, port=None, is_secure=False): if port is None: return Uri(host) else: scheme = 'wss' if is_secure else 'ws' builder = UriBuilder(scheme, host, port) return builder.Uri class CliEventLoopManager(object): """Manage the main event loop using .NET threads. For the time being, this implementation is pretty light and mostly relies on .NET async doing "the right thing(tm)" with a sprinkle of threading here and there. """ def __init__(self): self._init_cancellation() self._disconnect_event = ManualResetEventSlim(False) def _init_cancellation(self): """Initialize the cancellation source and token.""" self.cancellation_token_source = CancellationTokenSource() self.cancellation_token = self.cancellation_token_source.Token self.cancellation_token.Register(lambda: LOGGER.debug('Started token cancelation')) def run(self): """Kick-starts a non-blocking event loop. In this implementation, this is a no-op.""" pass def run_forever(self): """Kick-starts a blocking loop while the ROS client is connected.""" self._disconnect_event.Wait(self.cancellation_token) LOGGER.debug('Received disconnect event on main loop') def call_later(self, delay, callback): """Call the given function after a certain period of time has passed. Args: delay (:obj:`int`): Number of seconds to wait before invoking the callback. callback (:obj:`callable`): Callable function to be invoked when the delay has elapsed. """ # NOTE: Maybe there's a more elegant way of doing this def closure(): Thread.Sleep(delay * 1000) callback() Task.Factory.StartNew(closure, self.cancellation_token) def call_in_thread(self, callback): """Call the given function on a thread. Args: callback (:obj:`callable`): Callable function to be invoked in a thread. """ Task.Factory.StartNew(callback, self.cancellation_token) def terminate(self): """Signals the termination of the main event loop.""" self._disconnect_event.Set() if self.cancellation_token_source: self.cancellation_token_source.Cancel() # Renew to allow re-connects self._init_cancellation()
39.25
169
0.638891
54589df1b49c587a653ef88179415c9d1ff34413
1,382
py
Python
twitter/direct_message.py
kwnktks0515/Twitter_with_Python
80dff5e0f0080a7e5b64dfa134f2e33aba0ed5f8
[ "MIT" ]
null
null
null
twitter/direct_message.py
kwnktks0515/Twitter_with_Python
80dff5e0f0080a7e5b64dfa134f2e33aba0ed5f8
[ "MIT" ]
null
null
null
twitter/direct_message.py
kwnktks0515/Twitter_with_Python
80dff5e0f0080a7e5b64dfa134f2e33aba0ed5f8
[ "MIT" ]
null
null
null
"""direct_messages""" from twitter.core import DirectMessageData class DirectMessages: """direct_messages""" def __init__(self, twitter): self.twitter = twitter def get(self, params): """Hello""" url = "direct_messages" result = self.twitter.get(url, params=params) result.data = [DirectMessageData(url, text) for text in result.texts] return result def sent(self, params): """Hello""" url = "/".join(["direct_messages", "sent"]) result = self.twitter.get(url, params=params) result.data = [DirectMessageData(url, text) for text in result.texts] return result def show(self, params): """Hello""" url = "/".join(["direct_messages", "show"]) result = self.twitter.get(url, params=params) result.data = [DirectMessageData(url, result.texts)] return result def destroy(self, params): """Hello""" url = "/".join(["direct_messages", "destroy"]) result = self.twitter.post(url, params=params) result.data = [DirectMessageData(url, result.texts)] return result def new(self, params): """Hello""" url = "/".join(["direct_messages", "new"]) result = self.twitter.post(url, params=params) result.data = [DirectMessageData(url, result.texts)] return result
36.368421
77
0.600579
beb5fc7736a00a037c2b289e0d9642bcded557ae
11,571
py
Python
auctions/views.py
nmk0462/commerce
a5dee3a63d986bf8630cccc859f372133d5084f9
[ "MIT" ]
14
2020-07-26T07:45:54.000Z
2022-03-31T00:05:58.000Z
auctions/views.py
nmk0462/commerce
a5dee3a63d986bf8630cccc859f372133d5084f9
[ "MIT" ]
null
null
null
auctions/views.py
nmk0462/commerce
a5dee3a63d986bf8630cccc859f372133d5084f9
[ "MIT" ]
17
2020-07-20T06:22:12.000Z
2021-04-12T11:12:09.000Z
from django.contrib.auth import authenticate, login, logout from django.db import IntegrityError from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render,redirect from django.urls import reverse from django.contrib.auth.decorators import login_required from .models import User,Bid,Listing,Comment,Watchlist,Closedbid,Alllisting from datetime import datetime def index(request): items=Listing.objects.all() try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request, "auctions/index.html",{ "items":items, "wcount":wcount }) def categories(request): items=Listing.objects.raw("SELECT * FROM auctions_listing GROUP BY category") try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/categpage.html",{ "items": items, "wcount":wcount }) def category(request,category): catitems = Listing.objects.filter(category=category) try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/category.html",{ "items":catitems, "cat":category, "wcount":wcount }) def create(request): try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/create.html",{ "wcount":wcount }) def submit(request): if request.method == "POST": listtable = Listing() now = datetime.now() dt = now.strftime(" %d %B %Y %X ") listtable.owner = request.user.username listtable.title = request.POST.get('title') listtable.description = request.POST.get('description') listtable.price = request.POST.get('price') listtable.category = request.POST.get('category') if request.POST.get('link'): listtable.link = request.POST.get('link') else : listtable.link = "https://wallpaperaccess.com/full/1605486.jpg" listtable.time = dt listtable.save() all = Alllisting() items = Listing.objects.all() for i in items: try: if Alllisting.objects.get(listingid=i.id): pass except: all.listingid=i.id all.title = i.title all.description = i.description all.link = i.link all.save() return redirect('index') else: return redirect('index') def listingpage(request,id): try: item = Listing.objects.get(id=id) except: return redirect('index') try: comments = Comment.objects.filter(listingid=id) except: comments = None if request.user.username: try: if Watchlist.objects.get(user=request.user.username,listingid=id): added=True except: added = False try: l = Listing.objects.get(id=id) if l.owner == request.user.username : owner=True else: owner=False except: return redirect('index') else: added=False owner=False try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/listingpage.html",{ "i":item, "error":request.COOKIES.get('error'), "errorgreen":request.COOKIES.get('errorgreen'), "comments":comments, "added":added, "owner":owner, "wcount":wcount }) def bidsubmit(request,listingid): current_bid = Listing.objects.get(id=listingid) current_bid=current_bid.price if request.method == "POST": user_bid = int(request.POST.get("bid")) if user_bid > current_bid: listing_items = Listing.objects.get(id=listingid) listing_items.price = user_bid listing_items.save() try: if Bid.objects.filter(id=listingid): bidrow = Bid.objects.filter(id=listingid) bidrow.delete() bidtable = Bid() bidtable.user=request.user.username bidtable.title = listing_items.title bidtable.listingid = listingid bidtable.bid = user_bid bidtable.save() except: bidtable = Bid() bidtable.user=request.user.username bidtable.title = listing_items.title bidtable.listingid = listingid bidtable.bid = user_bid bidtable.save() response = redirect('listingpage',id=listingid) response.set_cookie('errorgreen','bid successful!!!',max_age=3) return response else : response = redirect('listingpage',id=listingid) response.set_cookie('error','Bid should be greater than current price',max_age=3) return response else: return redirect('index') def cmntsubmit(request,listingid): if request.method == "POST": now = datetime.now() dt = now.strftime(" %d %B %Y %X ") c = Comment() c.comment = request.POST.get('comment') c.user = request.user.username c.time = dt c.listingid = listingid c.save() return redirect('listingpage',id=listingid) else : return redirect('index') def addwatchlist(request,listingid): if request.user.username: w = Watchlist() w.user = request.user.username w.listingid = listingid w.save() return redirect('listingpage',id=listingid) else: return redirect('index') def removewatchlist(request,listingid): if request.user.username: try: w = Watchlist.objects.get(user=request.user.username,listingid=listingid) w.delete() return redirect('listingpage',id=listingid) except: return redirect('listingpage',id=listingid) else: return redirect('index') def watchlistpage(request,username): if request.user.username: try: w = Watchlist.objects.filter(user=username) items = [] for i in w: items.append(Listing.objects.filter(id=i.listingid)) try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/watchlistpage.html",{ "items":items, "wcount":wcount }) except: try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/watchlistpage.html",{ "items":None, "wcount":wcount }) else: return redirect('index') def closebid(request,listingid): if request.user.username: try: listingrow = Listing.objects.get(id=listingid) except: return redirect('index') cb = Closedbid() title = listingrow.title cb.owner = listingrow.owner cb.listingid = listingid try: bidrow = Bid.objects.get(listingid=listingid,bid=listingrow.price) cb.winner = bidrow.user cb.winprice = bidrow.bid cb.save() bidrow.delete() except: cb.winner = listingrow.owner cb.winprice = listingrow.price cb.save() try: if Watchlist.objects.filter(listingid=listingid): watchrow = Watchlist.objects.filter(listingid=listingid) watchrow.delete() else: pass except: pass try: crow = Comment.objects.filter(listingid=listingid) crow.delete() except: pass try: brow = Bid.objects.filter(listingid=listingid) brow.delete() except: pass try: cblist=Closedbid.objects.get(listingid=listingid) except: cb.owner = listingrow.owner cb.winner = listingrow.owner cb.listingid = listingid cb.winprice = listingrow.price cb.save() cblist=Closedbid.objects.get(listingid=listingid) listingrow.delete() try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,"auctions/winningpage.html",{ "cb":cblist, "title":title, "wcount":wcount }) else: return redirect('index') def mywinnings(request): if request.user.username: items=[] try: wonitems = Closedbid.objects.filter(winner=request.user.username) for w in wonitems: items.append(Alllisting.objects.filter(listingid=w.listingid)) except: wonitems = None items = None try: w = Watchlist.objects.filter(user=request.user.username) wcount=len(w) except: wcount=None return render(request,'auctions/mywinnings.html',{ "items":items, "wcount":wcount, "wonitems":wonitems }) else: return redirect('index') def login_view(request): if request.method == "POST": # Attempt to sign user in username = request.POST["username"] password = request.POST["password"] user = authenticate(request, username=username, password=password) # Check if authentication successful if user is not None: login(request, user) return HttpResponseRedirect(reverse("index")) else: return render(request, "auctions/login.html", { "message": "Invalid username and/or password." }) else: return render(request, "auctions/login.html") def logout_view(request): logout(request) return HttpResponseRedirect(reverse("index")) def register(request): if request.method == "POST": username = request.POST["username"] email = request.POST["email"] # Ensure password matches confirmation password = request.POST["password"] confirmation = request.POST["confirmation"] if password != confirmation: return render(request, "auctions/register.html", { "message": "Passwords must match." }) # Attempt to create new user try: user = User.objects.create_user(username, email, password) user.save() except IntegrityError: return render(request, "auctions/register.html", { "message": "Username already taken." }) login(request, user) return HttpResponseRedirect(reverse("index")) else: return render(request, "auctions/register.html")
31.188679
93
0.566762
c67cb2bf07b7878ad6b6c2c0426dd128f3b75435
166
py
Python
models3CwProject/models3CwProblem1App/views.py
cs-fullstack-2019-spring/django-models3-cw-MelaatiJ
cba6396f46f959b9b89fe22430de541aee164e60
[ "Apache-2.0" ]
null
null
null
models3CwProject/models3CwProblem1App/views.py
cs-fullstack-2019-spring/django-models3-cw-MelaatiJ
cba6396f46f959b9b89fe22430de541aee164e60
[ "Apache-2.0" ]
null
null
null
models3CwProject/models3CwProblem1App/views.py
cs-fullstack-2019-spring/django-models3-cw-MelaatiJ
cba6396f46f959b9b89fe22430de541aee164e60
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render # Create your views here. from django.http import HttpResponse from .models import Book def printAll(): def filtergte():
10.375
36
0.753012
11977ff74b22671df42367f516ff86357300e1a4
782
py
Python
tests/keras2onnx_applications/model_source/densenet_1/tensorflow_backend.py
pbeukema/tensorflow-onnx
a8d5a3cc72d24ca18d64572588ad06490940a230
[ "Apache-2.0" ]
1,473
2018-03-16T02:47:33.000Z
2022-03-31T03:43:52.000Z
tests/keras2onnx_applications/model_source/densenet_1/tensorflow_backend.py
pbeukema/tensorflow-onnx
a8d5a3cc72d24ca18d64572588ad06490940a230
[ "Apache-2.0" ]
1,208
2018-03-14T09:58:49.000Z
2022-03-31T17:56:20.000Z
tests/keras2onnx_applications/model_source/densenet_1/tensorflow_backend.py
pbeukema/tensorflow-onnx
a8d5a3cc72d24ca18d64572588ad06490940a230
[ "Apache-2.0" ]
350
2018-04-03T03:48:40.000Z
2022-03-30T11:23:55.000Z
# SPDX-License-Identifier: Apache-2.0 # From https://github.com/titu1994/DenseNet/blob/master/tensorflow_backend.py # Modifications Copyright (c) Microsoft. import tensorflow as tf from mock_keras2onnx.proto import keras from keras.backend import tensorflow_backend as KTF from keras.backend.common import image_data_format py_all = all def depth_to_space(input, scale, data_format=None): ''' Uses phase shift algorithm to convert channels/depth for spatial resolution ''' if data_format is None: data_format = image_data_format() if data_format == 'channels_first': data_format = 'NCHW' else: data_format = 'NHWC' data_format = data_format.lower() out = tf.depth_to_space(input, scale, data_format=data_format) return out
28.962963
87
0.742967
eff0d3faf7c5f0777b777317268bb2c83bc43a5e
6,694
py
Python
dialogs/contact_to_infected.py
Maxwingber/corobot
a959e0deba734d3900d7b8a826b3fb56964db4c6
[ "MIT" ]
null
null
null
dialogs/contact_to_infected.py
Maxwingber/corobot
a959e0deba734d3900d7b8a826b3fb56964db4c6
[ "MIT" ]
null
null
null
dialogs/contact_to_infected.py
Maxwingber/corobot
a959e0deba734d3900d7b8a826b3fb56964db4c6
[ "MIT" ]
2
2020-03-22T11:38:54.000Z
2020-03-24T11:11:56.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from datetime import time from typing import List from botbuilder.dialogs import ( WaterfallDialog, WaterfallStepContext, DialogTurnResult, ComponentDialog) from botbuilder.dialogs.prompts import ChoicePrompt, PromptOptions, ConfirmPrompt, NumberPrompt, DateTimePrompt from botbuilder.dialogs.choices import Choice, FoundChoice from botbuilder.core import MessageFactory, UserState from data_models import UserProfile class ContactsSelectionDialog(ComponentDialog): def __init__(self, dialog_id: str = None): super(ContactsSelectionDialog, self).__init__( dialog_id or ContactsSelectionDialog.__name__ ) self.add_dialog( WaterfallDialog( WaterfallDialog.__name__, [ self.confirm_confirmedcasecontact_step, self.date_confirmedcasecontact_step, self.confirm_suspectedcasecontact_step, self.date_suspectedcasecontact_step, self.contacts_dates_step] ) ) self.add_dialog(ChoicePrompt(ChoicePrompt.__name__)) self.add_dialog( NumberPrompt(NumberPrompt.__name__) ) self.add_dialog(ConfirmPrompt(ConfirmPrompt.__name__)) self.add_dialog(DateTimePrompt(DateTimePrompt.__name__)) self.initial_dialog_id = WaterfallDialog.__name__ async def confirm_confirmedcasecontact_step( self, step_context: WaterfallStepContext ) -> DialogTurnResult: await step_context.context.send_activity( MessageFactory.text( "Finden wir heraus, ob Sie engen Kontakt zu einem bestätigten Covid-19-Fall hatten.") ) #time.sleep(1) await step_context.context.send_activity( MessageFactory.text( f"Als enger Kontakt gilt Kontakt von Angesicht zu Angesicht länger als 15 Minuten, oder direkter, physischer Kontakt (Berührung, Händeschütteln, Küssen), oder Kontakt mit oder Austausch von Körperflüssigkeiten, oder Teilen einer Wohnung.") ) #time.sleep(2) return await step_context.prompt( ChoicePrompt.__name__, PromptOptions( choices=[Choice("Ja"), Choice("Nein")], prompt=MessageFactory.text("Hatten Sie engen Kontakt zu einem **bestätigten Covid-19-Fall**?") ), ) async def date_confirmedcasecontact_step( self, step_context: WaterfallStepContext ) -> DialogTurnResult: print("[DEBUG] Received by German choice prompt: " + step_context.result.value) if step_context.result.value == "Ja": # User said "yes" so we will be prompting for the date of their contact. # WaterfallStep always finishes with the end of the Waterfall or with another dialog, # here it is a Prompt Dialog. return await step_context.prompt( DateTimePrompt.__name__, PromptOptions( prompt=MessageFactory.text("An welchem Tag hatten Sie das letzte Mal Kontakt? Bitte nennen Sie es im Format TT.MM.JJJJ (z.B. 03.03.2020)."), ), ) # User said "no" so we will skip the next step. Give 00000000 as the date and asks whether there was contact to a suspected case. return await step_context.next(None) async def confirm_suspectedcasecontact_step( self, step_context: WaterfallStepContext ) -> DialogTurnResult: # Set the last contact date to a confirmed case to what they entered in response to the name prompt. self.FIRST_DATE = "value-firstDate" if step_context.result: step_context.values[self.FIRST_DATE] = str(step_context.result[0].value) else: step_context.values[self.FIRST_DATE] = None print("[DEBUG] First date is " + str(step_context.values[self.FIRST_DATE])) await step_context.context.send_activity( MessageFactory.text( "Finden wir heraus, ob Sie engen Kontakt zu einem Covid-19-Verdachtsfall hatten.") ) #time.sleep(1) await step_context.context.send_activity( MessageFactory.text( f"Als enger Kontakt gilt Kontakt von Angesicht zu Angesicht länger als 15 Minuten, oder direkter, physischer Kontakt (Berührung, Händeschütteln, Küssen), oder Kontakt mit oder Austausch von Körperflüssigkeiten, oder Teilen einer Wohnung.") ) #time.sleep(2) return await step_context.prompt( ChoicePrompt.__name__, PromptOptions( choices=[Choice("Ja"), Choice("Nein")], prompt=MessageFactory.text("Hatten Sie engen Kontakt zu einem **Covid-19-Verdachtsfall**?") ), ) async def date_suspectedcasecontact_step( self, step_context: WaterfallStepContext ) -> DialogTurnResult: print("[DEBUG] Received by German choice prompt: " + step_context.result.value) if step_context.result.value == "Ja": # User said "yes" so we will be prompting for the date of their contact. # WaterfallStep always finishes with the end of the Waterfall or with another dialog, # here it is a Prompt Dialog. return await step_context.prompt( DateTimePrompt.__name__, PromptOptions( prompt=MessageFactory.text("An welchem Tag hatten Sie das letzte Mal Kontakt? Bitte nennen Sie es im Format TT.MM.JJJJ (z.B. 03.03.2020)."), ), ) # User said "no" so we will skip the next step. Give 00000000 as the date and asks whether there was contact to a suspected case. return await step_context.next(None) async def contacts_dates_step( self, step_context: WaterfallStepContext ) -> DialogTurnResult: # Set the last contact date to a confirmed case to what they entered in response to the name prompt. self.SECOND_DATE = "value-secondDate" if not step_context.result == None: step_context.values[self.SECOND_DATE] = str(step_context.result[0].value) else: step_context.values[self.SECOND_DATE] = None print("[DEBUG] Second date is " + str(step_context.values[self.SECOND_DATE])) dates = [step_context.values[self.FIRST_DATE], step_context.values[self.SECOND_DATE]] print("[DEBUG] The dates are " + str(dates[0]) + " and " + str(dates[1])) return await step_context.end_dialog(dates)
44.039474
255
0.655363
8f5f488da6ad8704cb411e23fc770e1456f58843
1,826
py
Python
lambdas/stepfunctions/CTE_InvokeCreateAccountFn/src/main.py
meh485/aws-sdlc-controltower-extension
ce08b639bd97a0b017aa67e5d9697b7177e77539
[ "Apache-2.0" ]
null
null
null
lambdas/stepfunctions/CTE_InvokeCreateAccountFn/src/main.py
meh485/aws-sdlc-controltower-extension
ce08b639bd97a0b017aa67e5d9697b7177e77539
[ "Apache-2.0" ]
null
null
null
lambdas/stepfunctions/CTE_InvokeCreateAccountFn/src/main.py
meh485/aws-sdlc-controltower-extension
ce08b639bd97a0b017aa67e5d9697b7177e77539
[ "Apache-2.0" ]
null
null
null
# (c) 2021 Amazon Web Services, Inc. or its affiliates. All Rights Reserved. # This AWS Content is provided subject to the terms of the AWS Customer Agreement # available at http://aws.amazon.com/agreement or other written agreement between # Customer and Amazon Web Services, Inc. import json import logging import cfnresponse import boto3 logging.basicConfig() logger = logging.getLogger() logging.getLogger("botocore").setLevel(logging.ERROR) logger.setLevel(logging.INFO) def lambda_handler(event, context): """This function will initiate the AWS Step Function for building an AWS Account. Args: event (dict): Event information passed in by the CloudFormation from the Custom Resource context (object): Lambda Function context information Returns: N/A """ print(json.dumps(event)) response_body = dict() sfn_client = boto3.client('stepfunctions') resource_properties = event["ResourceProperties"] state_machine_arn = resource_properties["CreateAccountSfn"] if event['RequestType'] == "Delete": cfnresponse.send( event=event, context=context, responseStatus=cfnresponse.SUCCESS, responseData=response_body ) else: try: logger.info(f"Invoking State Machine: {state_machine_arn} with input: {event}") sfn_client.start_execution( stateMachineArn=state_machine_arn, input=json.dumps(event) ) except Exception as e: logger.error(e, exc_info=True) response_body['ERROR'] = str(e) cfnresponse.send( event=event, context=context, responseStatus=cfnresponse.FAILED, responseData=response_body )
31.482759
96
0.653341
d0073ef87352146884b7f9d622563379f32e3c90
3,988
py
Python
tests/test_exceptions.py
gouttegd/click-shell
a6b4f5c712c569897f4aeb4d76504740e3b63be1
[ "BSD-3-Clause" ]
null
null
null
tests/test_exceptions.py
gouttegd/click-shell
a6b4f5c712c569897f4aeb4d76504740e3b63be1
[ "BSD-3-Clause" ]
null
null
null
tests/test_exceptions.py
gouttegd/click-shell
a6b4f5c712c569897f4aeb4d76504740e3b63be1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # incenp.click_shell - A shell extension for Click # Copyright © 2021 Niall Byrne # Copyright © 2021 Damien Goutte-Gattat # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of click-shell nor the names of its contributors # may be used to endorse or promote products derived from this # software without specific prior permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import click import pytest from unittest.mock import patch, Mock from incenp.click_shell.exceptions import ClickShellCleanExit, ClickShellUncleanExit from incenp.click_shell.core import Shell, get_invoke @pytest.fixture() def mock_cli_command(): shell = Shell() @shell.command() def mock_command(): pass return mock_command @patch('click.Command.main') def test_unclean_exit_default_code(m_main, mock_cli_command): expected_error_code = ClickShellUncleanExit.default_error_code m_main.side_effect = ClickShellUncleanExit("Boom!") invoke = get_invoke(mock_cli_command) with pytest.raises(SystemExit) as exc: invoke(Mock(), "mock args") assert exc.value.args[0] == expected_error_code @patch('click.Command.main') def test_unclean_exit_specific_code(m_main, mock_cli_command): expected_error_code = 127 m_main.side_effect = ClickShellUncleanExit("Boom!", expected_error_code) invoke = get_invoke(mock_cli_command) with pytest.raises(SystemExit) as exc: invoke(Mock(), "mock args") assert exc.value.args[0] == expected_error_code @patch('click.Command.main') def test_clean_exit(m_main, mock_cli_command): m_main.side_effect = ClickShellCleanExit("Boom!") invoke = get_invoke(mock_cli_command) with pytest.raises(SystemExit) as exc: invoke(Mock(), "mock args") assert exc.value.args[0] == 0 @patch('click.Command.main') def test_normal_sys_exit(m_main, mock_cli_command): m_main.side_effect = SystemExit("Boom!") invoke = get_invoke(mock_cli_command) invoke(Mock(), "mock args") @patch('click.Command.main') def test_click_exception(m_main, mock_cli_command): m_main.side_effect = click.ClickException("Boom!") invoke = get_invoke(mock_cli_command) invoke(Mock(), "mock args") @patch('click.Command.main') def test_click_abort(m_main, mock_cli_command): m_main.side_effect = click.Abort("Boom!") invoke = get_invoke(mock_cli_command) invoke(Mock(), "mock args") @patch('click.Command.main') @patch('traceback.print_exception') def test_regular_exception(m_trace, m_main, mock_cli_command): m_main.side_effect = Exception("Boom!") invoke = get_invoke(mock_cli_command) invoke(Mock(), "mock args") m_trace.assert_called_once_with(Exception, m_main.side_effect, None)
32.422764
84
0.754012
3c61a27331a27e5283b40ddf9da7ea69c2deabc2
1,329
py
Python
middleware.py
davidbetz/middleware
1f6b0dce915099e8ff85ab5f433e70b96e1424a1
[ "MIT" ]
null
null
null
middleware.py
davidbetz/middleware
1f6b0dce915099e8ff85ab5f433e70b96e1424a1
[ "MIT" ]
null
null
null
middleware.py
davidbetz/middleware
1f6b0dce915099e8ff85ab5f433e70b96e1424a1
[ "MIT" ]
null
null
null
import types class Middleware(): def __init__(self, action=None): self._action = action def read(self, context, *args): return [context[_] for _ in args] def write(self, context, **kwargs): context.update(kwargs) def execute(self, mwa, context): if self._action is not None: self._action(mwa, context) else: self.process(mwa, context) class Handler(): def __init__(self, **kwargs): self.middleware_array = [] self._context = kwargs or {} def __getitem__(self, name): try: return self._context[name] except: return None def __setitem__(self, name, value): self._context[name] = value def set(self, middleware_array): for middleware in middleware_array: self.add(middleware) def add(self, middleware): if isinstance(middleware, types.FunctionType): self.middleware_array.append(middleware) else: self.middleware_array.append(middleware().create()) def execute(self): iteration = iter(self.middleware_array) try: wm = next(iteration) while wm is not None: wm = wm(iteration, self._context) except StopIteration: pass
25.557692
63
0.585403
c79f72116981a076fae5d5414fea2ba429a637cb
10,369
py
Python
estimators/tabular_bayes_dice.py
SnowflyLXF/FedDICE
a63a3233037e37ae27d6c130f37ffc4b92190d5e
[ "Apache-2.0" ]
null
null
null
estimators/tabular_bayes_dice.py
SnowflyLXF/FedDICE
a63a3233037e37ae27d6c130f37ffc4b92190d5e
[ "Apache-2.0" ]
null
null
null
estimators/tabular_bayes_dice.py
SnowflyLXF/FedDICE
a63a3233037e37ae27d6c130f37ffc4b92190d5e
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v2 as tf from tf_agents.specs import tensor_spec from tf_agents.policies import tf_policy from typing import Any, Callable, Iterable, Optional, Sequence, Text, Tuple, Union import dice_rl.data.dataset as dataset_lib import dice_rl.utils.common as common_lib import dice_rl.estimators.estimator as estimator_lib class TabularBayesDice(object): """Robust policy evaluation.""" def __init__(self, dataset_spec, gamma: Union[float, tf.Tensor], reward_fn: Callable = None, solve_for_state_action_ratio: bool = True, nu_learning_rate: Union[float, tf.Tensor] = 0.1, zeta_learning_rate: Union[float, tf.Tensor] = 0.1, kl_regularizer: Union[float, tf.Tensor] = 1., eps_std: Union[float, tf.Tensor] = 1): """Initializes the solver. Args: dataset_spec: The spec of the dataset that will be given. gamma: The discount factor to use. reward_fn: A function that takes in an EnvStep and returns the reward for that step. If not specified, defaults to just EnvStep.reward. solve_for_state_action_ratio: Whether to solve for state-action density ratio. Defaults to True. When solving an environment with a large state/action space (taxi), better to set this to False to avoid OOM issues. nu_learning_rate: Learning rate for nu. zeta_learning_rate: Learning rate for zeta. kl_regularizer: Regularization constant for D_kl(q || p). eps_std: epsilon standard deviation for sampling from the posterior. """ self._dataset_spec = dataset_spec self._gamma = gamma if reward_fn is None: reward_fn = lambda env_step: env_step.reward self._reward_fn = reward_fn self._kl_regularizer = kl_regularizer self._eps_std = eps_std self._solve_for_state_action_ratio = solve_for_state_action_ratio if (not self._solve_for_state_action_ratio and not self._dataset_spec.has_log_probability()): raise ValueError('Dataset must contain log-probability when ' 'solve_for_state_action_ratio is False.') # Get number of states/actions. observation_spec = self._dataset_spec.observation action_spec = self._dataset_spec.action if not common_lib.is_categorical_spec(observation_spec): raise ValueError('Observation spec must be discrete and bounded.') self._num_states = observation_spec.maximum + 1 if not common_lib.is_categorical_spec(action_spec): raise ValueError('Action spec must be discrete and bounded.') self._num_actions = action_spec.maximum + 1 self._dimension = ( self._num_states * self._num_actions if self._solve_for_state_action_ratio else self._num_states) self._td_residuals = np.zeros([self._dimension, self._dimension]) self._total_weights = np.zeros([self._dimension]) self._initial_weights = np.zeros([self._dimension]) self._nu_optimizer = tf.keras.optimizers.Adam(nu_learning_rate) self._zeta_optimizer = tf.keras.optimizers.Adam(zeta_learning_rate) # Initialize variational Bayes parameters self._nu_mu = tf.Variable(tf.zeros([self._dimension])) self._nu_log_sigma = tf.Variable(tf.zeros([self._dimension])) self._prior_mu = tf.Variable(tf.zeros([self._dimension]), trainable=True) self._prior_log_sigma = tf.Variable( tf.zeros([self._dimension]), trainable=False) def _get_index(self, state, action): if self._solve_for_state_action_ratio: return state * self._num_actions + action else: return state def prepare_dataset(self, dataset: dataset_lib.OffpolicyDataset, target_policy: tf_policy.TFPolicy): episodes, valid_steps = dataset.get_all_episodes() tfagents_episodes = dataset_lib.convert_to_tfagents_timestep(episodes) for episode_num in range(tf.shape(valid_steps)[0]): # Precompute probabilites for this episode. this_episode = tf.nest.map_structure(lambda t: t[episode_num], episodes) first_step = tf.nest.map_structure(lambda t: t[0], this_episode) this_tfagents_episode = dataset_lib.convert_to_tfagents_timestep( this_episode) episode_target_log_probabilities = target_policy.distribution( this_tfagents_episode).action.log_prob(this_episode.action) episode_target_probs = target_policy.distribution( this_tfagents_episode).action.probs_parameter() for step_num in range(tf.shape(valid_steps)[1] - 1): this_step = tf.nest.map_structure(lambda t: t[episode_num, step_num], episodes) next_step = tf.nest.map_structure( lambda t: t[episode_num, step_num + 1], episodes) if this_step.is_last() or not valid_steps[episode_num, step_num]: continue weight = 1.0 nu_index = self._get_index(this_step.observation, this_step.action) self._td_residuals[nu_index, nu_index] += -weight self._total_weights[nu_index] += weight policy_ratio = 1.0 if not self._solve_for_state_action_ratio: policy_ratio = tf.exp(episode_target_log_probabilities[step_num] - this_step.get_log_probability()) # Need to weight next nu by importance weight. next_weight = ( weight if self._solve_for_state_action_ratio else policy_ratio * weight) next_probs = episode_target_probs[step_num + 1] for next_action, next_prob in enumerate(next_probs): next_nu_index = self._get_index(next_step.observation, next_action) self._td_residuals[next_nu_index, nu_index] += ( next_prob * self._gamma * next_weight) initial_probs = episode_target_probs[0] for initial_action, initial_prob in enumerate(initial_probs): initial_nu_index = self._get_index(first_step.observation, initial_action) self._initial_weights[initial_nu_index] += weight * initial_prob self._initial_weights = tf.cast(self._initial_weights, tf.float32) self._total_weights = tf.cast(self._total_weights, tf.float32) self._td_residuals = self._td_residuals / np.sqrt( 1e-8 + self._total_weights)[None, :] self._td_errors = tf.cast( np.dot(self._td_residuals, self._td_residuals.T), tf.float32) self._td_residuals = tf.cast(self._td_residuals, tf.float32) @tf.function def train_step(self, regularizer: float = 1e-6): # Solve primal form min (1-g) * E[nu0] + E[(B nu - nu)^2]. with tf.GradientTape() as tape: nu_sigma = tf.sqrt(tf.exp(self._nu_log_sigma)) eps = tf.random.normal(tf.shape(nu_sigma), 0, self._eps_std) nu = self._nu_mu + nu_sigma * eps init_nu_loss = tf.einsum('m,m', (1 - self._gamma) * self._initial_weights, nu) residuals = tf.einsum('n,nm->m', nu, self._td_residuals) bellman_loss = 0.5 * tf.einsum('m,m', residuals, residuals) prior_sigma = tf.sqrt(tf.exp(self._prior_log_sigma)) prior_var = tf.square(prior_sigma) prior_var = 1. neg_kl = (0.5 * (1. - 2. * tf.math.log(prior_sigma / nu_sigma + 1e-8) - (self._nu_mu - self._prior_mu)**2 / prior_var - nu_sigma**2 / prior_var)) loss = init_nu_loss + bellman_loss - self._kl_regularizer * neg_kl grads = tape.gradient(loss, [ self._nu_mu, self._nu_log_sigma, self._prior_mu, self._prior_log_sigma ]) self._nu_optimizer.apply_gradients( zip(grads, [ self._nu_mu, self._nu_log_sigma, self._prior_mu, self._prior_log_sigma ])) return loss def estimate_average_reward(self, dataset: dataset_lib.OffpolicyDataset, target_policy: tf_policy.TFPolicy, num_samples=100): """Estimates value (average per-step reward) of policy. The estimation is based on solved values of zeta, so one should call solve() before calling this function. Args: dataset: The dataset to sample experience from. target_policy: The policy whose value we want to estimate. num_samples: number of posterior samples. Returns: A tensor with num_samples samples of estimated average per-step reward of the target policy. """ nu_sigma = tf.sqrt(tf.exp(self._nu_log_sigma)) eps = tf.random.normal( tf.concat([[num_samples], tf.shape(nu_sigma)], axis=-1), 0, self._eps_std) nu = self._nu_mu + nu_sigma * eps self._zeta = ( tf.einsum('bn,nm->bm', nu, self._td_residuals) / tf.math.sqrt(1e-8 + self._total_weights)) def weight_fn(env_step): index = self._get_index(env_step.observation, env_step.action) zeta = tf.gather( self._zeta, tf.tile(index[None, :], [num_samples, 1]), batch_dims=1) policy_ratio = 1.0 if not self._solve_for_state_action_ratio: tfagents_timestep = dataset_lib.convert_to_tfagents_timestep(env_step) target_log_probabilities = target_policy.distribution( tfagents_timestep).action.log_prob(env_step.action) policy_ratio = tf.exp(target_log_probabilities - env_step.get_log_probability()) return tf.cast(zeta * policy_ratio, tf.float32) return estimator_lib.get_fullbatch_average( dataset, limit=None, by_steps=True, reward_fn=self._reward_fn, weight_fn=weight_fn)
43.024896
82
0.681647
de0574698f6a399dd13b607b34aaa00de2df1bdd
5,341
py
Python
mysite/settings.py
JenMart/Nat-Poll-App
db4f1a7a31930d78a5fa509045ade395179b49ec
[ "BSD-3-Clause" ]
null
null
null
mysite/settings.py
JenMart/Nat-Poll-App
db4f1a7a31930d78a5fa509045ade395179b49ec
[ "BSD-3-Clause" ]
null
null
null
mysite/settings.py
JenMart/Nat-Poll-App
db4f1a7a31930d78a5fa509045ade395179b49ec
[ "BSD-3-Clause" ]
null
null
null
import os # Django settings for mysite project. DEBUG = True TEMPLATE_DEBUG = DEBUG BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # print("pip1") ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: # 'USER': '', # 'PASSWORD': '', # 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. # 'PORT': '', # Set to empty string for default. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'Europe/Zurich' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '05=^qgbhg3!6-dzb6#&2j^jmh-2fgc%22!z_!w*&8iy_m$2*$*' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'mysite.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'mysite.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(BASE_DIR, 'templates'), ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', 'polls' ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
32.969136
129
0.692754
8ed88856632ec51212d0c68880e23da60c53a623
4,889
py
Python
alipay/aop/api/domain/KoubeiCateringKmsBakingSyncModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/KoubeiCateringKmsBakingSyncModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/KoubeiCateringKmsBakingSyncModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.KmsBakingCheckDTO import KmsBakingCheckDTO from alipay.aop.api.domain.KmsBakingInventoryDTO import KmsBakingInventoryDTO from alipay.aop.api.domain.KmsBakingPromotionDTO import KmsBakingPromotionDTO class KoubeiCateringKmsBakingSyncModel(object): def __init__(self): self._action = None self._check_data = None self._inventory_data = None self._promotion_data = None self._shop_id = None self._type = None @property def action(self): return self._action @action.setter def action(self, value): self._action = value @property def check_data(self): return self._check_data @check_data.setter def check_data(self, value): if isinstance(value, KmsBakingCheckDTO): self._check_data = value else: self._check_data = KmsBakingCheckDTO.from_alipay_dict(value) @property def inventory_data(self): return self._inventory_data @inventory_data.setter def inventory_data(self, value): if isinstance(value, list): self._inventory_data = list() for i in value: if isinstance(i, KmsBakingInventoryDTO): self._inventory_data.append(i) else: self._inventory_data.append(KmsBakingInventoryDTO.from_alipay_dict(i)) @property def promotion_data(self): return self._promotion_data @promotion_data.setter def promotion_data(self, value): if isinstance(value, list): self._promotion_data = list() for i in value: if isinstance(i, KmsBakingPromotionDTO): self._promotion_data.append(i) else: self._promotion_data.append(KmsBakingPromotionDTO.from_alipay_dict(i)) @property def shop_id(self): return self._shop_id @shop_id.setter def shop_id(self, value): self._shop_id = value @property def type(self): return self._type @type.setter def type(self, value): self._type = value def to_alipay_dict(self): params = dict() if self.action: if hasattr(self.action, 'to_alipay_dict'): params['action'] = self.action.to_alipay_dict() else: params['action'] = self.action if self.check_data: if hasattr(self.check_data, 'to_alipay_dict'): params['check_data'] = self.check_data.to_alipay_dict() else: params['check_data'] = self.check_data if self.inventory_data: if isinstance(self.inventory_data, list): for i in range(0, len(self.inventory_data)): element = self.inventory_data[i] if hasattr(element, 'to_alipay_dict'): self.inventory_data[i] = element.to_alipay_dict() if hasattr(self.inventory_data, 'to_alipay_dict'): params['inventory_data'] = self.inventory_data.to_alipay_dict() else: params['inventory_data'] = self.inventory_data if self.promotion_data: if isinstance(self.promotion_data, list): for i in range(0, len(self.promotion_data)): element = self.promotion_data[i] if hasattr(element, 'to_alipay_dict'): self.promotion_data[i] = element.to_alipay_dict() if hasattr(self.promotion_data, 'to_alipay_dict'): params['promotion_data'] = self.promotion_data.to_alipay_dict() else: params['promotion_data'] = self.promotion_data if self.shop_id: if hasattr(self.shop_id, 'to_alipay_dict'): params['shop_id'] = self.shop_id.to_alipay_dict() else: params['shop_id'] = self.shop_id if self.type: if hasattr(self.type, 'to_alipay_dict'): params['type'] = self.type.to_alipay_dict() else: params['type'] = self.type return params @staticmethod def from_alipay_dict(d): if not d: return None o = KoubeiCateringKmsBakingSyncModel() if 'action' in d: o.action = d['action'] if 'check_data' in d: o.check_data = d['check_data'] if 'inventory_data' in d: o.inventory_data = d['inventory_data'] if 'promotion_data' in d: o.promotion_data = d['promotion_data'] if 'shop_id' in d: o.shop_id = d['shop_id'] if 'type' in d: o.type = d['type'] return o
33.951389
90
0.58785
3b9980b4f20896863b64a6a254bc36480c5cd72f
369
py
Python
tests/env_test.py
geirem/pyconfig
e99693b7bc0acb3fe6b82acd29e8724336f95c43
[ "CC0-1.0" ]
1
2020-05-15T16:22:36.000Z
2020-05-15T16:22:36.000Z
tests/env_test.py
geirem/pyconfig
e99693b7bc0acb3fe6b82acd29e8724336f95c43
[ "CC0-1.0" ]
9
2020-05-14T08:31:48.000Z
2021-04-22T12:35:15.000Z
tests/env_test.py
geirem/pyconfig
e99693b7bc0acb3fe6b82acd29e8724336f95c43
[ "CC0-1.0" ]
null
null
null
import envyconfig def test_use_default_when_env_var_is_not_defined(): config = envyconfig.load('fixtures/basic_env.yaml') assert config['foo'] == 'bar' def test_with_env_var(monkeypatch): expected = 'some string' monkeypatch.setenv("TESTENVVAR", expected) config = envyconfig.load('fixtures/basic_env.yaml') assert config['foo'] == expected
26.357143
55
0.731707
694a848915959c4dcd606cc035b174b5bab5a86f
247
py
Python
configs/_base_/schedules/bdd100k.py
XDong18/mmclassification
115c39ed4673d9cdd7b5f543482c1038f0c77ab5
[ "Apache-2.0" ]
null
null
null
configs/_base_/schedules/bdd100k.py
XDong18/mmclassification
115c39ed4673d9cdd7b5f543482c1038f0c77ab5
[ "Apache-2.0" ]
null
null
null
configs/_base_/schedules/bdd100k.py
XDong18/mmclassification
115c39ed4673d9cdd7b5f543482c1038f0c77ab5
[ "Apache-2.0" ]
null
null
null
# optimizer optimizer = dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='step', step=[80, 110]) runner = dict(type='EpochBasedRunner', max_epochs=120)
35.285714
73
0.744939
52059a9bbb955841c9d27ed207fea9f0791af8e7
3,737
py
Python
venv/Lib/site-packages/traits/observation/tests/test_parsing.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
1
2022-01-18T17:56:51.000Z
2022-01-18T17:56:51.000Z
venv/Lib/site-packages/traits/observation/tests/test_parsing.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
null
null
null
venv/Lib/site-packages/traits/observation/tests/test_parsing.py
richung99/digitizePlots
6b408c820660a415a289726e3223e8f558d3e18b
[ "MIT" ]
null
null
null
# (C) Copyright 2005-2021 Enthought, Inc., Austin, TX # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in LICENSE.txt and may be redistributed only under # the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! import unittest from traits.observation.parsing import parse from traits.observation.expression import ( dict_items, list_items, metadata, set_items, trait, ) class TestParsingSeriesJoin(unittest.TestCase): def test_join(self): actual = parse("a.b.c") expected = trait("a").trait("b").trait("c") self.assertEqual(actual, expected) def test_join_with_colon(self): actual = parse("a:b:c") expected = trait("a", False).trait("b", False).trait("c") self.assertEqual(actual, expected) class TestParsingOr(unittest.TestCase): def test_or_with_commas(self): actual = parse("a,b,c") expected = trait("a") | trait("b") | trait("c") self.assertEqual(actual, expected) def test_or_with_join_nested(self): actual = parse("a.b.c,d.e") expected = ( trait("a").trait("b").trait("c") | trait("d").trait("e") ) self.assertEqual(actual, expected) class TestParsingGroup(unittest.TestCase): def test_grouped_or(self): actual = parse("root.[left,right]") expected = trait("root").then(trait("left") | trait("right")) self.assertEqual(actual, expected) def test_grouped_or_extended(self): actual = parse("root.[left,right].value") expected = ( trait("root").then( trait("left") | trait("right")).trait("value") ) self.assertEqual(actual, expected) def test_multi_branch_then_or_apply_notify_flag_to_last_item(self): actual = parse("root.[a.b.c.d,value]:g") expected = ( trait("root").then( trait("a").trait("b").trait("c").trait("d", False) | trait("value", False) ).trait("g") ) self.assertEqual(actual, expected) class TestParsingMetadata(unittest.TestCase): def test_metadata(self): actual = parse("+name") expected = metadata("name", notify=True) self.assertEqual(actual, expected) def test_metadata_notify_false(self): actual = parse("+name:+attr") expected = metadata("name", notify=False).metadata("attr", notify=True) self.assertEqual(actual, expected) class TestParsingTrait(unittest.TestCase): def test_simple_trait(self): actual = parse("a") expected = trait("a") self.assertEqual(actual, expected) def test_trait_not_notifiy(self): actual = parse("a:b") expected = trait("a", notify=False).trait("b") self.assertEqual(actual, expected) class TestParsingItems(unittest.TestCase): def test_items(self): actual = parse("items") expected = ( trait("items", optional=True) | dict_items(optional=True) | list_items(optional=True) | set_items(optional=True) ) self.assertEqual(actual, expected) def test_items_not_notify(self): actual = parse("items:attr") expected = ( trait("items", notify=False, optional=True) | dict_items(notify=False, optional=True) | list_items(notify=False, optional=True) | set_items(notify=False, optional=True) ).trait("attr") self.assertEqual(actual, expected)
29.65873
79
0.617875
4637a2fcc729a0ac7bffc55f7cf1462f4f2814c1
36
py
Python
passenger_wsgi.py
ericmuh/recruitment-system
d9964e7c48ac8af74995e28f489135c1d8f940be
[ "MIT" ]
null
null
null
passenger_wsgi.py
ericmuh/recruitment-system
d9964e7c48ac8af74995e28f489135c1d8f940be
[ "MIT" ]
null
null
null
passenger_wsgi.py
ericmuh/recruitment-system
d9964e7c48ac8af74995e28f489135c1d8f940be
[ "MIT" ]
null
null
null
from recruit.wsgi import application
36
36
0.888889
6b94fed0eaad7d5e1f484a2ba802733b7fb8beb2
1,081
py
Python
main.py
flaviuvadan/explore-rl
9748038612872b90776675ed5db6272dbc6e5843
[ "MIT" ]
null
null
null
main.py
flaviuvadan/explore-rl
9748038612872b90776675ed5db6272dbc6e5843
[ "MIT" ]
null
null
null
main.py
flaviuvadan/explore-rl
9748038612872b90776675ed5db6272dbc6e5843
[ "MIT" ]
null
null
null
""" Main file """ import gym import numpy as np import rl if __name__ == '__main__': env = gym.make('CartPole-v1') observation_space = env.observation_space.shape[0] action_space = env.action_space.n model = rl.Model(observation_space, action_space) while True: current_state = env.reset() current_state = np.reshape(current_state, (1, observation_space)) while True: env.render() action = model.get_action(current_state) next_state, reward, done, info = env.step(action) print('state info: ', next_state) # penalize for being far from the center and a big pole angle reward = reward - 2 * (abs(next_state[0]) + abs(next_state[2])) if not done else -reward print(reward) print() next_state = np.reshape(next_state, (1, observation_space)) model.store(current_state, action, reward, next_state, done) current_state = next_state if done: break model.learn()
33.78125
100
0.601295
47a069db03b12de2c7e16a2e5347d2d87c24dfd5
189
py
Python
tests/web_platform/CSS2/normal_flow/test_block_in_inline_remove_004_nosplit_ref.py
jonboland/colosseum
cbf974be54fd7f6fddbe7285704cfaf7a866c5c5
[ "BSD-3-Clause" ]
71
2015-04-13T09:44:14.000Z
2019-03-24T01:03:02.000Z
tests/web_platform/CSS2/normal_flow/test_block_in_inline_remove_004_nosplit_ref.py
jonboland/colosseum
cbf974be54fd7f6fddbe7285704cfaf7a866c5c5
[ "BSD-3-Clause" ]
35
2019-05-06T15:26:09.000Z
2022-03-28T06:30:33.000Z
tests/web_platform/CSS2/normal_flow/test_block_in_inline_remove_004_nosplit_ref.py
jonboland/colosseum
cbf974be54fd7f6fddbe7285704cfaf7a866c5c5
[ "BSD-3-Clause" ]
139
2015-05-30T18:37:43.000Z
2019-03-27T17:14:05.000Z
from tests.utils import W3CTestCase class TestBlockInInlineRemove004NosplitRef(W3CTestCase): vars().update(W3CTestCase.find_tests(__file__, 'block-in-inline-remove-004-nosplit-ref'))
31.5
93
0.814815
179065f80bfad5b59e29beb11633f0dd3b63cff5
2,026
py
Python
helpers/RulesStuff/stringParser v1.py
thejeswi/BobGoesToJail
ac8a6e4242446634837d6166158fc5401c2818ac
[ "MIT" ]
3
2018-08-20T14:14:01.000Z
2020-06-15T17:39:24.000Z
helpers/RulesStuff/stringParser v1.py
thejeswi/BobGoesToJail
ac8a6e4242446634837d6166158fc5401c2818ac
[ "MIT" ]
null
null
null
helpers/RulesStuff/stringParser v1.py
thejeswi/BobGoesToJail
ac8a6e4242446634837d6166158fc5401c2818ac
[ "MIT" ]
1
2020-06-15T17:39:26.000Z
2020-06-15T17:39:26.000Z
import re from nltk import ParentedTree import os clear = lambda: os.system('clear') parsedSent = """(ROOT (SBAR (IN If) (S (S (NP (DT the) (NN perpetrator)) (VP (VBZ exceeds) (S (NP (NP (DT the) (NNS limits)) (PP (IN of) (NP (JJ necessary) (NN defense)))) (ADJP (JJ due) (PP (TO to) (NP (NN confusion) (, ,) (NN fear) (CC or) (NN fright))))))) (, ,) (RB then) (S (NP (PRP he)) (VP (MD shall) (RB not) (VP (VB be) (VP (VBN punished))))))))""" def toNLTKtree(str): newTree = ParentedTree.fromstring(str) return newTree def removeWP(tree = parsedSent): tree = str(tree) tree = " ".join(" ".join(tree.split("\n")).split()) return tree def ifThereIsNo(tree, toNotMatch): for node in tree: if type(node) is ParentedTree: if re.match(toNotMatch, str(node.label())): return False return True def tagChanger(TreeString, SubTreeString, toChange, newValue): TreeString = removeWP(str(TreeString)) SubTreeString = removeWP(str(SubTreeString)) fixedSubTreeString = re.sub(toChange, newValue, SubTreeString, 1) return toNLTKtree(re.sub(re.escape(SubTreeString), fixedSubTreeString, TreeString, 1)) def findUnary(parent, found=None): if found: return found for node in parent: if type(node) is ParentedTree: if node.label() == 'Unary': continue if node.label() == 'NP': if ifThereIsNo(node, "VP|Unary"): found = node found = findUnary(node, found) return found def toUnary(inputTree = toNLTKtree(parsedSent)): while findUnary(inputTree): unaryStr = removeWP(str(findUnary(inputTree))) inputTree = tagChanger(inputTree, unaryStr, "NP", "Unary") return inputTree print toUnary()
28.138889
90
0.549852
dd450678db82fd00235bdd3f3c18c332b950dfd4
991
py
Python
examples/double_pendulum/double_pendulum_with_rrt.py
echoix/pyro
787920cb14e3669bc65c530fd8f91d4277a24279
[ "MIT" ]
null
null
null
examples/double_pendulum/double_pendulum_with_rrt.py
echoix/pyro
787920cb14e3669bc65c530fd8f91d4277a24279
[ "MIT" ]
null
null
null
examples/double_pendulum/double_pendulum_with_rrt.py
echoix/pyro
787920cb14e3669bc65c530fd8f91d4277a24279
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Nov 12 20:28:17 2018 @author: Alexandre """ ############################################################################### import numpy as np ############################################################################### from pyro.dynamic import pendulum from pyro.planning import randomtree ############################################################################### sys = pendulum.DoublePendulum() x_start = np.array([-3.14,0,0,0]) x_goal = np.array([0,0,0,0]) planner = randomtree.RRT( sys , x_start ) t = 10 planner.u_options = [ np.array([-t,-t]), np.array([-t,+t]), np.array([+t,-t]), np.array([+t,+t]), np.array([ 0,+t]), np.array([ 0,-t]), np.array([ 0, 0]), np.array([+t, 0]), np.array([-t, 0]) ] planner.goal_radius = 0.8 planner.find_path_to_goal( x_goal ) planner.plot_tree() planner.plot_open_loop_solution() sys.animate_simulation()
23.595238
79
0.440969
6ab47373375712721a009a8cb6961d509bc5ea80
1,607
py
Python
python/server.template.py
Saevon/Recipes
ab8ca9b5244805d545da2dd1d80d249f1ec6057d
[ "MIT" ]
null
null
null
python/server.template.py
Saevon/Recipes
ab8ca9b5244805d545da2dd1d80d249f1ec6057d
[ "MIT" ]
null
null
null
python/server.template.py
Saevon/Recipes
ab8ca9b5244805d545da2dd1d80d249f1ec6057d
[ "MIT" ]
null
null
null
#!/usr/bin/python import bottle app = bottle.Bottle() @app.route('/<filename:path>') def hive_js(filename): ''' Allows access to any file in the static directory ''' return bottle.static_file(filename, root="static") ################################################## # Settings & Stratup ################################################## app_settings = { 'debug': True, 'host': 'localhost', 'port': 7070, 'quiet': True, } from optparse import OptionParser app_parser = OptionParser(usage="usage: %prog [host] [options]") app_parser.add_option( "-p", "--port", dest="port", ) app_parser.add_option( "-v", "--debug", "--verbose", dest="debug", action="store_true", ) app_parser.add_option( "-q", "--quiet", dest="debug", action="store_false", ) def parse_options(): ''' Reads any commandline options, returning a final dict of options ''' (options, args) = app_parser.parse_args() if len(args) > 1: app_parser.error("Too many arguments") elif len(args) == 1: app_settings['host'] = args[0] # Remove any unset options, using the defaults defined earlier instead options = vars(options) options = dict((key, options[key]) for key in options if options[key] is not None) return options if __name__ == '__main__': app_settings.update(parse_options()) # Debug only settings go here if app_settings["debug"]: bottle.debug(True) app_settings.update({ 'reloader': True, 'quiet': False, }) app.run(**app_settings)
21.144737
86
0.580585
2b406dacc5caa7e87c9c2fc4c193de1a6444d2ee
2,178
py
Python
workshop_2018/workshop_2018.py
rudolphpienaar/pl-workshop-2018
1b4c6a3b04e93b034e378d78c4e4875320855f7a
[ "MIT" ]
null
null
null
workshop_2018/workshop_2018.py
rudolphpienaar/pl-workshop-2018
1b4c6a3b04e93b034e378d78c4e4875320855f7a
[ "MIT" ]
null
null
null
workshop_2018/workshop_2018.py
rudolphpienaar/pl-workshop-2018
1b4c6a3b04e93b034e378d78c4e4875320855f7a
[ "MIT" ]
null
null
null
# _ # workshop_2018 ds app # # (c) 2016 Fetal-Neonatal Neuroimaging & Developmental Science Center # Boston Children's Hospital # # http://childrenshospital.org/FNNDSC/ # dev@babyMRI.org # import os # import the Chris app superclass from chrisapp.base import ChrisApp class Workshop_2018(ChrisApp): """ An app to showcase making a plugin. """ AUTHORS = 'FNNDSC (dev@babyMRI.org)' SELFPATH = os.path.dirname(os.path.abspath(__file__)) SELFEXEC = os.path.basename(__file__) EXECSHELL = 'python3' TITLE = 'Funky Workshop app' CATEGORY = 'Fun' TYPE = 'ds' DESCRIPTION = 'An app to showcase making a plugin' DOCUMENTATION = 'http://wiki' VERSION = '0.1' LICENSE = 'Opensource (MIT)' MAX_NUMBER_OF_WORKERS = 1 # Override with integer value MIN_NUMBER_OF_WORKERS = 1 # Override with integer value MAX_CPU_LIMIT = '' # Override with millicore value as string, e.g. '2000m' MIN_CPU_LIMIT = '' # Override with millicore value as string, e.g. '2000m' MAX_MEMORY_LIMIT = '' # Override with string, e.g. '1Gi', '2000Mi' MIN_MEMORY_LIMIT = '' # Override with string, e.g. '1Gi', '2000Mi' MIN_GPU_LIMIT = 0 # Override with the minimum number of GPUs, as an integer, for your plugin MAX_GPU_LIMIT = 0 # Override with the maximum number of GPUs, as an integer, for your plugin # Fill out this with key-value output descriptive info (such as an output file path # relative to the output dir) that you want to save to the output meta file when # called with the --saveoutputmeta flag OUTPUT_META_DICT = {} def define_parameters(self): """ Define the CLI arguments accepted by this plugin app. """ def run(self, options): """ Define the code to be run by this plugin app. """ print('Hello, world!') # ENTRYPOINT if __name__ == "__main__": app = Workshop_2018() app.launch()
34.571429
105
0.59596