hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
a289d9f60ab55aac5358d7c9a198ff79b014f668
2,590
py
Python
sd_material_ui/CircularProgress.py
Michael-fore/sd-material-ui
9496d02821c7a25c71fc9d03729f551432bf55f5
[ "MIT" ]
null
null
null
sd_material_ui/CircularProgress.py
Michael-fore/sd-material-ui
9496d02821c7a25c71fc9d03729f551432bf55f5
[ "MIT" ]
null
null
null
sd_material_ui/CircularProgress.py
Michael-fore/sd-material-ui
9496d02821c7a25c71fc9d03729f551432bf55f5
[ "MIT" ]
null
null
null
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class CircularProgress(Component): """A CircularProgress component. Material UI CircularProgress component Keyword arguments: - classes (dict; optional): The classes to be applied to this component. This keys in this object must be valid CSS rule names, and the values must be strings for the classnames to be assigned to each rule name Valid rule names are: root static indeterminate colorPrimary colorSecondary circle circleStatic circleIndeterminate circleDisableShrink. classes has the following type: dict containing keys 'root', 'static', 'indeterminate', 'colorPrimary', 'colorSecondary', 'circle', 'circleStatic', 'circleIndeterminate', 'circleDisableShrink'. Those keys have the following types: - root (string; optional) - static (string; optional) - indeterminate (string; optional) - colorPrimary (string; optional) - colorSecondary (string; optional) - circle (string; optional) - circleStatic (string; optional) - circleIndeterminate (string; optional) - circleDisableShrink (string; optional) - color (string; default 'inherit'): Override the progress's color - mode (default 'indeterminate'): The mode of show your progress, for now, will always be indeterminate - size (number; default 40): The diameter of the progress in pixels - style (dict; optional): Override the inline-style of the root element - thickness (number; default 3.5): Stroke width in pixels""" @_explicitize_args def __init__(self, classes=Component.UNDEFINED, color=Component.UNDEFINED, mode=Component.UNDEFINED, size=Component.UNDEFINED, style=Component.UNDEFINED, thickness=Component.UNDEFINED, innerStyle=Component.UNDEFINED, **kwargs): self._prop_names = ['classes', 'color', 'mode', 'size', 'style', 'thickness'] self._type = 'CircularProgress' self._namespace = 'sd_material_ui' self._valid_wildcard_attributes = [] self.available_properties = ['classes', 'color', 'mode', 'size', 'style', 'thickness'] self.available_wildcard_properties = [] _explicit_args = kwargs.pop('_explicit_args') _locals = locals() _locals.update(kwargs) # For wildcard attrs args = {k: _locals[k] for k in _explicit_args if k != 'children'} for k in []: if k not in args: raise TypeError( 'Required argument `' + k + '` was not specified.') super(CircularProgress, self).__init__(**args)
45.438596
231
0.708494
ed6ed1e9012a0538265e7fc65dda0cba3b6c04d3
895
py
Python
Example/Python/Subscribe.py
irkasper/MQL-CopyTrade
0f09794632319a9a755616ebcdf5c876cc1eb8c4
[ "MIT" ]
67
2019-04-26T07:17:55.000Z
2022-03-16T07:57:28.000Z
Example/Python/Subscribe.py
irkasper/MQL-CopyTrade
0f09794632319a9a755616ebcdf5c876cc1eb8c4
[ "MIT" ]
11
2019-08-13T14:41:43.000Z
2021-12-20T09:05:21.000Z
Example/Python/Subscribe.py
irkasper/MQL-CopyTrade
0f09794632319a9a755616ebcdf5c876cc1eb8c4
[ "MIT" ]
52
2019-04-22T02:00:57.000Z
2022-01-21T15:38:01.000Z
#!/usr/bin/env python import sys import time import zmq import numpy def main(): connect_to = "tcp://127.0.0.1:5559" topics = "" ctx = zmq.Context() s = ctx.socket(zmq.SUB) s.connect(connect_to) s.setsockopt(zmq.SUBSCRIBE, b'') try: while True: recv = s.recv_multipart() recvMsg = recv[0].decode("utf-8") message = recvMsg.split(" ") order = message[1].split("|") v_action = order[0] v_symbol = order[1] v_ticket = order[2] v_type = order[3] v_openprice = order[4] v_closeprice = order[5] v_lots = order[6] v_sl = order[7] v_tp = order[8] print("Action: ", v_action, ", Symbol: ", v_symbol) except KeyboardInterrupt: pass if __name__ == "__main__": main()
22.375
63
0.507263
593b6b72e619ee7bf1098ad9979a637b7b236ade
4,648
py
Python
repocracy/repo/migrations/0005_auto__add_unique_repository_slug.py
repocracy/repocracy
5ca22ae23ad9a2eae4bb4c712886aff634b8ad0e
[ "BSD-3-Clause" ]
1
2015-08-10T02:33:49.000Z
2015-08-10T02:33:49.000Z
repocracy/repo/migrations/0005_auto__add_unique_repository_slug.py
repocracy/repocracy
5ca22ae23ad9a2eae4bb4c712886aff634b8ad0e
[ "BSD-3-Clause" ]
null
null
null
repocracy/repo/migrations/0005_auto__add_unique_repository_slug.py
repocracy/repocracy
5ca22ae23ad9a2eae4bb4c712886aff634b8ad0e
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding unique constraint on 'Repository', fields ['slug'] db.create_unique('repo_repository', ['slug']) def backwards(self, orm): # Removing unique constraint on 'Repository', fields ['slug'] db.delete_unique('repo_repository', ['slug']) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'repo.repository': { 'Meta': {'object_name': 'Repository'}, 'claim_hash': ('django.db.models.fields.CharField', [], {'default': "'da39a3ee5e6b4b0d3255bfef95601890afd80709'", 'max_length': '40'}), 'fs_path': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'origin': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'origin_type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}) } } complete_apps = ['repo']
63.671233
182
0.567771
9125087e915f447445b00bd2c2db21f1ae06b671
21,040
py
Python
tools/accuracy_checker/accuracy_checker/metrics/reid.py
gnomonsis/open_model_zoo
72dbeb263cab19e7e232793246521e96f3821959
[ "Apache-2.0" ]
1
2020-08-06T23:08:32.000Z
2020-08-06T23:08:32.000Z
tools/accuracy_checker/accuracy_checker/metrics/reid.py
gnomonsis/open_model_zoo
72dbeb263cab19e7e232793246521e96f3821959
[ "Apache-2.0" ]
4
2021-04-30T21:21:07.000Z
2022-01-13T03:12:46.000Z
tools/accuracy_checker/accuracy_checker/metrics/reid.py
gnomonsis/open_model_zoo
72dbeb263cab19e7e232793246521e96f3821959
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings from collections import defaultdict, namedtuple import numpy as np from ..representation import ( ReIdentificationClassificationAnnotation, ReIdentificationAnnotation, ReIdentificationPrediction ) from ..config import BaseField, BoolField, NumberField from .metric import FullDatasetEvaluationMetric try: from sklearn.metrics import auc, precision_recall_curve except ImportError: auc, precision_recall_curve = None, None PairDesc = namedtuple('PairDesc', 'image1 image2 same') def _average_binary_score(binary_metric, y_true, y_score): def binary_target(y): return not (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1) if binary_target(y_true): return binary_metric(y_true, y_score) y_true = y_true.ravel() y_score = y_score.ravel() n_classes = y_score.shape[1] score = np.zeros((n_classes,)) for c in range(n_classes): y_true_c = y_true.take([c], axis=1).ravel() y_score_c = y_score.take([c], axis=1).ravel() score[c] = binary_metric(y_true_c, y_score_c) return score class CMCScore(FullDatasetEvaluationMetric): """ Cumulative Matching Characteristics (CMC) score. Config: annotation: reid annotation. prediction: predicted embeddings. top_k: number of k highest ranked samples to consider when matching. separate_camera_set: should identities from the same camera view be filtered out. single_gallery_shot: each identity has only one instance in the gallery. number_single_shot_repeats: number of repeats for single_gallery_shot setting. first_match_break: break on first matched gallery sample. """ __provider__ = 'cmc' annotation_types = (ReIdentificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'top_k': NumberField( value_type=int, min_value=1, default=1, optional=True, description="Number of k highest ranked samples to consider when matching." ), 'separate_camera_set': BoolField( optional=True, default=False, description="Should identities from the same camera view be filtered out." ), 'single_gallery_shot': BoolField( optional=True, default=False, description="Each identity has only one instance in the gallery." ), 'first_match_break': BoolField( optional=True, default=True, description="Break on first matched gallery sample." ), 'number_single_shot_repeats': NumberField( value_type=int, optional=True, default=10, description="Number of repeats for single_gallery_shot setting (required for CUHK)." ) }) return parameters def configure(self): self.top_k = self.get_value_from_config('top_k') self.separate_camera_set = self.get_value_from_config('separate_camera_set') self.single_gallery_shot = self.get_value_from_config('single_gallery_shot') self.first_match_break = self.get_value_from_config('first_match_break') self.number_single_shot_repeats = self.get_value_from_config('number_single_shot_repeats') def evaluate(self, annotations, predictions): dist_matrix = distance_matrix(annotations, predictions) if np.size(dist_matrix) == 0: warnings.warn('Gallery and query ids are not matched. CMC score can not be calculated.') return 0 gallery_cameras, gallery_pids, query_cameras, query_pids = get_gallery_query_pids(annotations) _cmc_score = eval_cmc( dist_matrix, query_pids, gallery_pids, query_cameras, gallery_cameras, self.separate_camera_set, self.single_gallery_shot, self.first_match_break, self.number_single_shot_repeats ) return _cmc_score[self.top_k - 1] class ReidMAP(FullDatasetEvaluationMetric): """ Mean Average Precision score. Config: annotation: reid annotation. prediction: predicted embeddings. interpolated_auc: should area under precision recall curve be computed using trapezoidal rule or directly. """ __provider__ = 'reid_map' annotation_types = (ReIdentificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'interpolated_auc': BoolField( optional=True, default=True, description="Should area under precision recall" " curve be computed using trapezoidal rule or directly." ) }) return parameters def configure(self): self.interpolated_auc = self.get_value_from_config('interpolated_auc') def evaluate(self, annotations, predictions): dist_matrix = distance_matrix(annotations, predictions) if np.size(dist_matrix) == 0: warnings.warn('Gallery and query ids are not matched. ReID mAP can not be calculated.') return 0 gallery_cameras, gallery_pids, query_cameras, query_pids = get_gallery_query_pids(annotations) return eval_map( dist_matrix, query_pids, gallery_pids, query_cameras, gallery_cameras, self.interpolated_auc ) class PairwiseAccuracy(FullDatasetEvaluationMetric): __provider__ = 'pairwise_accuracy' annotation_types = (ReIdentificationClassificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'min_score': BaseField( optional=True, default='train_median', description="Min score for determining that objects are different. " "You can provide value or use train_median value which will be calculated " "if annotations has training subset." ) }) return parameters def configure(self): self.min_score = self.get_value_from_config('min_score') def evaluate(self, annotations, predictions): embed_distances, pairs = get_embedding_distances(annotations, predictions) if not pairs: return np.nan min_score = self.min_score if min_score == 'train_median': train_distances, _train_pairs = get_embedding_distances(annotations, predictions, train=True) min_score = np.median(train_distances) embed_same_class = embed_distances < min_score accuracy = 0 for i, pair in enumerate(pairs): same_label = pair.same out_same = embed_same_class[i] correct_prediction = same_label and out_same or (not same_label and not out_same) if correct_prediction: accuracy += 1 return float(accuracy) / len(pairs) class PairwiseAccuracySubsets(FullDatasetEvaluationMetric): __provider__ = 'pairwise_accuracy_subsets' annotation_types = (ReIdentificationClassificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): params = super().parameters() params.update({ 'subset_number': NumberField( optional=True, min_value=1, value_type=int, default=10, description="Number of subsets for separating." ) }) return params def configure(self): self.subset_num = self.get_value_from_config('subset_number') config_copy = self.config.copy() if 'subset_number' in config_copy: config_copy.pop('subset_number') self.accuracy_metric = PairwiseAccuracy(config_copy, self.dataset) def evaluate(self, annotations, predictions): subset_results = [] first_images_annotations = list(filter( lambda annotation: (len(annotation.negative_pairs) > 0 or len(annotation.positive_pairs) > 0), annotations )) idx_subsets = self.make_subsets(self.subset_num, len(first_images_annotations)) for subset in range(self.subset_num): test_subset = self.get_subset(first_images_annotations, idx_subsets[subset]['test']) test_subset = self.mark_subset(test_subset, False) train_subset = self.get_subset(first_images_annotations, idx_subsets[subset]['train']) train_subset = self.mark_subset(train_subset) subset_result = self.accuracy_metric.evaluate(test_subset+train_subset, predictions) if not np.isnan(subset_result): subset_results.append(subset_result) return np.mean(subset_results) if subset_results else 0 @staticmethod def make_subsets(subset_num, dataset_size): subsets = [] if subset_num > dataset_size: raise ValueError('It is impossible to divide dataset on more than number of annotations subsets.') for subset in range(subset_num): lower_bnd = subset * dataset_size // subset_num upper_bnd = (subset + 1) * dataset_size // subset_num subset_test = [(lower_bnd, upper_bnd)] subset_train = [(0, lower_bnd), (upper_bnd, dataset_size)] subsets.append({'test': subset_test, 'train': subset_train}) return subsets @staticmethod def mark_subset(subset_annotations, train=True): for annotation in subset_annotations: annotation.metadata['train'] = train return subset_annotations @staticmethod def get_subset(container, subset_bounds): subset = [] for bound in subset_bounds: subset += container[bound[0]: bound[1]] return subset class FaceRecognitionTAFAPairMetric(FullDatasetEvaluationMetric): __provider__ = 'face_recognition_tafa_pair_metric' annotation_types = (ReIdentificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'threshold': NumberField( value_type=float, min_value=0, optional=False, description='Threshold value to identify pair of faces as matched' ) }) return parameters def configure(self): self.threshold = self.get_value_from_config('threshold') def submit_all(self, annotations, predictions): return self.evaluate(annotations, predictions) def evaluate(self, annotations, predictions): tp = fp = tn = fn = 0 pairs = regroup_pairs(annotations, predictions) for pair in pairs: # Dot product of embeddings prediction = np.dot(predictions[pair.image1].embedding, predictions[pair.image2].embedding) # Similarity scale-shift prediction = (prediction + 1) / 2 # Calculate metrics if pair.same: # Pairs that match if prediction > self.threshold: tp += 1 else: fp += 1 else: if prediction < self.threshold: tn += 1 else: fn += 1 return [(tp+tn) / (tp+fp+tn+fn)] class NormalizedEmbeddingAccuracy(FullDatasetEvaluationMetric): """ Accuracy score calculated with normalized embedding dot products """ __provider__ = 'normalized_embedding_accuracy' annotation_types = (ReIdentificationAnnotation, ) prediction_types = (ReIdentificationPrediction, ) def submit_all(self, annotations, predictions): return self.evaluate(annotations, predictions) def evaluate(self, annotations, predictions): true_positive = false_positive = 0 gallery_embeddings = extract_embeddings(annotations, predictions, query=False) query_start_idx = len(gallery_embeddings) for ann, pred in zip(annotations[query_start_idx:], predictions[query_start_idx:]): best_sim = 0 pred_person_id = -1 person_id = ann.person_id camera_id = ann.camera_id for j, gallery_embedding in enumerate(gallery_embeddings): gallery_person_id = annotations[j].person_id gallery_camera_id = annotations[j].camera_id if person_id == gallery_person_id and camera_id == gallery_camera_id: continue normalized_dot = np.linalg.norm(gallery_embedding) * np.linalg.norm(pred.embedding) sim = np.dot(gallery_embedding, pred.embedding) / normalized_dot if best_sim < sim: best_sim = sim pred_person_id = gallery_person_id if pred_person_id == ann.person_id: true_positive += 1 else: false_positive += 1 if (true_positive + false_positive) == 0: return [0] accuracy = true_positive / (true_positive + false_positive) return [accuracy] def regroup_pairs(annotations, predictions): image_indexes = {} for i, pred in enumerate(predictions): image_indexes[pred.identifier] = i pairs = [] for image1 in annotations: for image2 in image1.positive_pairs: if image2 in image_indexes: pairs.append(PairDesc(image_indexes[image1.identifier], image_indexes[image2], True)) for image2 in image1.negative_pairs: if image2 in image_indexes: pairs.append(PairDesc(image_indexes[image1.identifier], image_indexes[image2], False)) return pairs def extract_embeddings(annotation, prediction, query): embeddings = [pred.embedding for pred, ann in zip(prediction, annotation) if ann.query == query] return np.stack(embeddings) if embeddings else embeddings def get_gallery_query_pids(annotation): gallery_pids = np.asarray([ann.person_id for ann in annotation if not ann.query]) query_pids = np.asarray([ann.person_id for ann in annotation if ann.query]) gallery_cameras = np.asarray([ann.camera_id for ann in annotation if not ann.query]) query_cameras = np.asarray([ann.camera_id for ann in annotation if ann.query]) return gallery_cameras, gallery_pids, query_cameras, query_pids def distance_matrix(annotation, prediction): gallery_embeddings = extract_embeddings(annotation, prediction, query=False) query_embeddings = extract_embeddings(annotation, prediction, query=True) not_empty = np.size(gallery_embeddings) > 0 and np.size(query_embeddings) > 0 return 1. - np.matmul(gallery_embeddings, np.transpose(query_embeddings)).T if not_empty else [] def unique_sample(ids_dict, num): mask = np.zeros(num, dtype=np.bool) for indices in ids_dict.values(): mask[np.random.choice(indices)] = True return mask def eval_map(distance_mat, query_ids, gallery_ids, query_cams, gallery_cams, interpolated_auc=False): number_queries, _number_gallery = distance_mat.shape # Sort and find correct matches indices = np.argsort(distance_mat, axis=1) matches = (gallery_ids[indices] == query_ids[:, np.newaxis]) # type: np.ndarray # Compute AP for each query average_precisions = [] for query in range(number_queries): # Filter out the same id and same camera valid = (gallery_ids[indices[query]] != query_ids[query]) | (gallery_cams[indices[query]] != query_cams[query]) y_true = matches[query, valid] y_score = -distance_mat[query][indices[query]][valid] if not np.any(y_true): continue average_precisions.append(binary_average_precision(y_true, y_score, interpolated_auc=interpolated_auc)) if not average_precisions: raise RuntimeError("No valid query") return np.mean(average_precisions) def eval_cmc(distance_mat, query_ids, gallery_ids, query_cams, gallery_cams, separate_camera_set=False, single_gallery_shot=False, first_match_break=False, number_single_shot_repeats=10, top_k=100): number_queries, _number_gallery = distance_mat.shape if not single_gallery_shot: number_single_shot_repeats = 1 # Sort and find correct matches indices = np.argsort(distance_mat, axis=1) matches = gallery_ids[indices] == query_ids[:, np.newaxis] # type: np.ndarray # Compute CMC for each query ret = np.zeros(top_k) num_valid_queries = 0 for query in range(number_queries): valid = get_valid_subset( gallery_cams, gallery_ids, query, indices, query_cams, query_ids, separate_camera_set ) # type: np.ndarray if not np.any(matches[query, valid]): continue ids_dict = defaultdict(list) if single_gallery_shot: gallery_indexes = gallery_ids[indices[query][valid]] for j, x in zip(np.where(valid)[0], gallery_indexes): ids_dict[x].append(j) for _ in range(number_single_shot_repeats): if single_gallery_shot: # Randomly choose one instance for each id # required for correct validation on CUHK datasets # http://www.ee.cuhk.edu.hk/~xgwang/CUHK_identification.html sampled = (valid & unique_sample(ids_dict, len(valid))) index = np.nonzero(matches[query, sampled])[0] else: index = np.nonzero(matches[query, valid])[0] delta = 1. / (len(index) * number_single_shot_repeats) for j, k in enumerate(index): if k - j >= top_k: break if first_match_break: ret[k - j] += 1 break ret[k - j] += delta num_valid_queries += 1 if num_valid_queries == 0: raise RuntimeError("No valid query") return ret.cumsum() / num_valid_queries def get_valid_subset(gallery_cams, gallery_ids, query_index, indices, query_cams, query_ids, separate_camera_set): # Filter out the same id and same camera valid = ( (gallery_ids[indices[query_index]] != query_ids[query_index]) | (gallery_cams[indices[query_index]] != query_cams[query_index]) ) if separate_camera_set: # Filter out samples from same camera valid &= (gallery_cams[indices[query_index]] != query_cams[query_index]) return valid def get_embedding_distances(annotation, prediction, train=False): image_indexes = {} for i, pred in enumerate(prediction): image_indexes[pred.identifier] = i pairs = [] for image1 in annotation: if train != image1.metadata.get("train", False): continue if image1.identifier not in image_indexes: continue for image2 in image1.positive_pairs: if image2 in image_indexes: pairs.append(PairDesc(image_indexes[image1.identifier], image_indexes[image2], True)) for image2 in image1.negative_pairs: if image2 in image_indexes: pairs.append(PairDesc(image_indexes[image1.identifier], image_indexes[image2], False)) if pairs: embed1 = np.asarray([prediction[idx].embedding for idx, _, _ in pairs]) embed2 = np.asarray([prediction[idx].embedding for _, idx, _ in pairs]) return 0.5 * (1 - np.sum(embed1 * embed2, axis=1)), pairs return None, pairs def binary_average_precision(y_true, y_score, interpolated_auc=True): if auc is None: raise ValueError('please install sklearn') def _average_precision(y_true_, y_score_): precision, recall, _ = precision_recall_curve(y_true_, y_score_) if not interpolated_auc: # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve return -1 * np.sum(np.diff(recall) * np.array(precision)[:-1]) return auc(recall, precision) return _average_binary_score(_average_precision, y_true, y_score)
37.437722
120
0.661454
9733f996b779be2a85f947ae984f165778789c59
9,371
py
Python
tests/asyncio/test_h2.py
ampstat/hypercorn
6b1e1689cddfcf9e19a63bb701d6b37a5e9f9acd
[ "MIT" ]
null
null
null
tests/asyncio/test_h2.py
ampstat/hypercorn
6b1e1689cddfcf9e19a63bb701d6b37a5e9f9acd
[ "MIT" ]
null
null
null
tests/asyncio/test_h2.py
ampstat/hypercorn
6b1e1689cddfcf9e19a63bb701d6b37a5e9f9acd
[ "MIT" ]
null
null
null
import asyncio import json from typing import AsyncGenerator, Optional from unittest.mock import Mock import h2 import h11 import pytest from hypercorn.asyncio.h2 import H2Server from hypercorn.config import Config from hypercorn.typing import ASGIFramework from .helpers import MockTransport from ..helpers import chunked_response_framework, echo_framework, push_framework BASIC_HEADERS = [(":authority", "hypercorn"), (":scheme", "https")] BASIC_DATA = "index" FLOW_WINDOW_SIZE = 1 class MockConnection: def __init__( self, event_loop: asyncio.AbstractEventLoop, *, config: Config = Config(), framework: ASGIFramework = echo_framework, upgrade_request: Optional[h11.Request] = None, ) -> None: self.transport = MockTransport() self.server = H2Server( # type: ignore framework, event_loop, config, self.transport, upgrade_request=upgrade_request ) self.connection = h2.connection.H2Connection() if upgrade_request is not None: self.connection.initiate_upgrade_connection() else: self.connection.initiate_connection() def send_request(self, headers: list, settings: dict) -> int: self.connection.update_settings(settings) self.server.data_received(self.connection.data_to_send()) stream_id = self.connection.get_next_available_stream_id() self.connection.send_headers(stream_id, headers) self.server.data_received(self.connection.data_to_send()) return stream_id async def send_data(self, stream_id: int, data: bytes) -> None: self.connection.send_data(stream_id, data) self.server.data_received(self.connection.data_to_send()) await asyncio.sleep(0) # Yield to allow the server to process async def end_stream(self, stream_id: int) -> None: self.connection.end_stream(stream_id) self.server.data_received(self.connection.data_to_send()) await asyncio.sleep(0) # Yield to allow the server to process def close(self) -> None: self.connection.close_connection() self.server.data_received(self.connection.data_to_send()) async def get_events(self) -> AsyncGenerator[h2.events.Event, None]: while True: await self.transport.updated.wait() events = self.connection.receive_data(self.transport.data) self.transport.clear() for event in events: if isinstance(event, h2.events.ConnectionTerminated): self.transport.close() elif isinstance(event, h2.events.DataReceived): self.connection.acknowledge_received_data( event.flow_controlled_length, event.stream_id ) self.server.data_received(self.connection.data_to_send()) yield event if self.transport.closed.is_set(): break @pytest.mark.asyncio @pytest.mark.parametrize( "headers, body", [ (BASIC_HEADERS + [(":method", "GET"), (":path", "/")], ""), ( BASIC_HEADERS + [ (":method", "POST"), (":path", "/"), ("content-length", str(len(BASIC_DATA.encode()))), ], BASIC_DATA, ), ], ) async def test_request(headers: list, body: str, event_loop: asyncio.AbstractEventLoop) -> None: connection = MockConnection(event_loop) stream_id = connection.send_request(headers, {}) if body != "": await connection.send_data(stream_id, body.encode()) await connection.end_stream(stream_id) response_data = b"" async for event in connection.get_events(): if isinstance(event, h2.events.ResponseReceived): assert (b":status", b"200") in event.headers assert (b"server", b"hypercorn-h2") in event.headers assert b"date" in (header[0] for header in event.headers) elif isinstance(event, h2.events.DataReceived): response_data += event.data elif isinstance(event, h2.events.StreamEnded): connection.close() data = json.loads(response_data.decode()) assert data["request_body"] == body @pytest.mark.asyncio async def test_protocol_error(event_loop: asyncio.AbstractEventLoop) -> None: connection = MockConnection(event_loop) connection.server.data_received(b"broken nonsense\r\n\r\n") assert connection.transport.closed.is_set() # H2 just closes on error @pytest.mark.asyncio async def test_pipelining(event_loop: asyncio.AbstractEventLoop) -> None: connection = MockConnection(event_loop) streams = [ connection.send_request(BASIC_HEADERS + [(":method", "GET"), (":path", "/1")], {}), connection.send_request(BASIC_HEADERS + [(":method", "GET"), (":path", "/1")], {}), ] for stream_id in streams: await connection.end_stream(stream_id) responses = 0 async for event in connection.get_events(): if isinstance(event, h2.events.ResponseReceived): responses += 1 elif isinstance(event, h2.events.StreamEnded) and responses == 2: connection.close() assert responses == len(streams) @pytest.mark.asyncio async def test_server_sends_chunked(event_loop: asyncio.AbstractEventLoop) -> None: connection = MockConnection(event_loop, framework=chunked_response_framework) stream_id = connection.send_request(BASIC_HEADERS + [(":method", "GET"), (":path", "/")], {}) await connection.end_stream(stream_id) response_data = b"" async for event in connection.get_events(): if isinstance(event, h2.events.DataReceived): response_data += event.data elif isinstance(event, h2.events.StreamEnded): connection.close() assert response_data == b"chunked data" @pytest.mark.asyncio async def test_initial_keep_alive_timeout(event_loop: asyncio.AbstractEventLoop) -> None: config = Config() config.keep_alive_timeout = 0.01 server = H2Server(echo_framework, event_loop, config, Mock()) await asyncio.sleep(2 * config.keep_alive_timeout) server.transport.close.assert_called() # type: ignore @pytest.mark.asyncio async def test_post_response_keep_alive_timeout(event_loop: asyncio.AbstractEventLoop) -> None: config = Config() config.keep_alive_timeout = 0.01 connection = MockConnection(event_loop, config=config) stream_id = connection.send_request(BASIC_HEADERS + [(":method", "GET"), (":path", "/1")], {}) connection.server.pause_writing() await connection.end_stream(stream_id) await asyncio.sleep(2 * config.keep_alive_timeout) assert not connection.transport.closed.is_set() connection.server.resume_writing() await asyncio.sleep(2 * config.keep_alive_timeout) assert connection.transport.closed.is_set() events = [event async for event in connection.get_events()] assert isinstance(events[-1], h2.events.ConnectionTerminated) @pytest.mark.asyncio async def test_h2server_upgrade(event_loop: asyncio.AbstractEventLoop) -> None: upgrade_request = h11.Request(method="GET", target="/", headers=[("Host", "hypercorn")]) connection = MockConnection(event_loop, upgrade_request=upgrade_request) response_data = b"" async for event in connection.get_events(): if isinstance(event, h2.events.ResponseReceived): assert (b":status", b"200") in event.headers assert (b"server", b"hypercorn-h2") in event.headers assert b"date" in (header[0] for header in event.headers) elif isinstance(event, h2.events.DataReceived): response_data += event.data elif isinstance(event, h2.events.StreamEnded): connection.close() @pytest.mark.asyncio async def test_h2_flow_control(event_loop: asyncio.AbstractEventLoop) -> None: connection = MockConnection(event_loop) stream_id = connection.send_request( BASIC_HEADERS + [(":method", "GET"), (":path", "/")], {h2.settings.SettingCodes.INITIAL_WINDOW_SIZE: FLOW_WINDOW_SIZE}, ) await connection.end_stream(stream_id) async for event in connection.get_events(): if isinstance(event, h2.events.DataReceived): assert len(event.data) <= FLOW_WINDOW_SIZE elif isinstance(event, h2.events.StreamEnded): connection.close() @pytest.mark.asyncio async def test_h2_push(event_loop: asyncio.AbstractEventLoop) -> None: connection = MockConnection(event_loop, framework=push_framework) stream_id = connection.send_request(BASIC_HEADERS + [(":method", "GET"), (":path", "/")], {}) await connection.end_stream(stream_id) push_received = False streams_received = 0 async for event in connection.get_events(): if isinstance(event, h2.events.PushedStreamReceived): assert (b":path", b"/") in event.headers assert (b":method", b"GET") in event.headers assert (b":scheme", b"http") in event.headers assert (b":authority", b"hypercorn") in event.headers push_received = True elif isinstance(event, h2.events.StreamEnded): streams_received += 1 if streams_received == 2: connection.close() assert push_received
40.5671
98
0.669406
0e5edf3efeaca6210cbe54edd1f5982a25922c14
3,615
py
Python
jia/jia/query.py
joshblum/chronology
d730355a5686ebba9f1c8e369ba26a3080d9fa26
[ "MIT" ]
null
null
null
jia/jia/query.py
joshblum/chronology
d730355a5686ebba9f1c8e369ba26a3080d9fa26
[ "MIT" ]
null
null
null
jia/jia/query.py
joshblum/chronology
d730355a5686ebba9f1c8e369ba26a3080d9fa26
[ "MIT" ]
null
null
null
import copy import json import metis.core.query.aggregate import metis.core.query.value from flask import current_app from metis.core.query.aggregate import GroupBy from metis.core.query.condition import Condition from metis.core.query.operator import Aggregate from metis.core.query.operator import DataAccess from metis.core.query.operator import Filter from metis.core.query.operator import Limit from metis.core.query.operator import OrderBy from metis.core.query.operator import Project from metis.core.query.value import Constant from metis.core.query.value import Property def cpf(args, alias=None): if args['cpf_type'] == 'constant': try: constant = float(args['constant_value']) except: constant = args['constant_value'] return Constant(constant, alias=alias) elif args['cpf_type'] == 'property': return Property(args['property_name'], alias=alias) elif args['cpf_type'] == 'function': for i in range(len(args['function_args'])): args['function_args'][i] = cpf(args['function_args'][i]) module = metis.core.query.value func = args['function_name'] func_args = args['function_args'] return getattr(module, func)(func_args, alias=alias) else: raise ValueError("cpf_type must be constant, property, or function") def transform(query_plan, operands): fields = [cpf(operands['value'], alias=operands['newProperty'])] return Project(query_plan, fields, merge=True) def filter(query_plan, operands): condition = Condition(operands['op'], cpf(operands['lhs']), cpf(operands['rhs'])) return Filter(query_plan, condition) def agg_op(agg_type, agg_on, store_in): module = metis.core.query.aggregate op = agg_type agg_ons = [] if agg_on: agg_ons.append(agg_on) return getattr(module, op)(agg_ons, alias=store_in) def aggregate(query_plan, operands): aggregates = [] for agg in operands['aggregates']: cpf_type = agg['agg_on']['cpf_type'] property_name = agg['agg_on'].get('property_name') constant_value = agg['agg_on'].get('constant_value') empty = (cpf_type == 'property' and not property_name or cpf_type == 'constant' and not constant_value) if empty: agg_on_cpf = None else: agg_on_cpf = cpf(agg['agg_on']) aggregates.append(agg_op(agg['agg_type'], agg_on_cpf, agg['alias'])) groups = [] for group in operands['groups']: groups.append(cpf(group['field'], group['alias'])) group_by = GroupBy(groups) return Aggregate(query_plan, group_by, aggregates) def orderby(query_plan, operands): fields = [] for field in operands['fields']: fields.append(cpf(field['name'])) if operands['order']['type'] == 'asc': order = OrderBy.ResultOrder.ASCENDING else: order = OrderBy.ResultOrder.DESCENDING return OrderBy(query_plan, fields, order=order) def limit(query_plan, operands): return Limit(query_plan, int(operands['count'])) def create_metis_query_plan(query, start_time, end_time): query = copy.deepcopy(query) query_plan = { 'type': 'data_access', 'source': current_app.config['DATA_SOURCE_NAME'], 'stream': query['stream'], 'start_time': start_time, 'end_time': end_time, } operators = { 'transform': transform, 'filter': filter, 'aggregate': aggregate, 'orderby': orderby, 'limit': limit, } for step in query['steps']: operation = step['operation'] operator = operation['operator'] operands = operation['operands'] query_plan = operators[operator](query_plan, operands) return json.dumps({'plan': query_plan.to_dict()})
29.631148
72
0.698755
dea180e2c17aa0b8b1f43cce86919aa559182d5f
6,888
py
Python
edb/edgeql/compiler/typegen.py
kafein/edgedb
3cc4c5e6e11a6f25a82b061d7ba294deeb9ccb80
[ "Apache-2.0" ]
null
null
null
edb/edgeql/compiler/typegen.py
kafein/edgedb
3cc4c5e6e11a6f25a82b061d7ba294deeb9ccb80
[ "Apache-2.0" ]
null
null
null
edb/edgeql/compiler/typegen.py
kafein/edgedb
3cc4c5e6e11a6f25a82b061d7ba294deeb9ccb80
[ "Apache-2.0" ]
null
null
null
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """EdgeQL compiler type-related helpers.""" from __future__ import annotations from typing import * from edb import errors from edb.ir import ast as irast from edb.ir import typeutils as irtyputils from edb.ir import utils as irutils from edb.schema import abc as s_abc from edb.schema import pointers as s_pointers from edb.schema import types as s_types from edb.schema import utils as s_utils from edb.edgeql import ast as qlast from . import context from . import dispatch from . import schemactx from . import setgen def type_to_ql_typeref( t: s_types.Type, *, _name: Optional[str] = None, ctx: context.ContextLevel, ) -> qlast.TypeExpr: return s_utils.typeref_to_ast( ctx.env.schema, t, disambiguate_std='std' in ctx.modaliases, ) def ql_typeexpr_to_ir_typeref( ql_t: qlast.TypeExpr, *, ctx: context.ContextLevel) -> irast.TypeRef: stype = ql_typeexpr_to_type(ql_t, ctx=ctx) return irtyputils.type_to_typeref( ctx.env.schema, stype, cache=ctx.env.type_ref_cache ) def ql_typeexpr_to_type( ql_t: qlast.TypeExpr, *, ctx: context.ContextLevel) -> s_types.Type: types = _ql_typeexpr_to_type(ql_t, ctx=ctx) if len(types) > 1: return schemactx.get_union_type(types, ctx=ctx) else: return types[0] def _ql_typeexpr_to_type( ql_t: qlast.TypeExpr, *, ctx: context.ContextLevel) -> List[s_types.Type]: if isinstance(ql_t, qlast.TypeOf): with ctx.new() as subctx: # Use an empty scope tree, to avoid polluting things pointlessly subctx.path_scope = irast.ScopeTreeNode() ir_set = setgen.ensure_set(dispatch.compile(ql_t.expr, ctx=subctx), ctx=subctx) stype = setgen.get_set_type(ir_set, ctx=subctx) return [stype] elif isinstance(ql_t, qlast.TypeOp): if ql_t.op == '|': return (_ql_typeexpr_to_type(ql_t.left, ctx=ctx) + _ql_typeexpr_to_type(ql_t.right, ctx=ctx)) raise errors.UnsupportedFeatureError( f'type operator {ql_t.op!r} is not implemented', context=ql_t.context) elif isinstance(ql_t, qlast.TypeName): return [_ql_typename_to_type(ql_t, ctx=ctx)] else: raise errors.EdgeQLSyntaxError("Unexpected type expression", context=ql_t.context) def _ql_typename_to_type( ql_t: qlast.TypeName, *, ctx: context.ContextLevel) -> s_types.Type: if ql_t.subtypes: assert isinstance(ql_t.maintype, qlast.ObjectRef) coll = s_types.Collection.get_class(ql_t.maintype.name) ct: s_types.Type if issubclass(coll, s_abc.Tuple): t_subtypes = {} named = False for si, st in enumerate(ql_t.subtypes): if st.name: named = True type_name = st.name else: type_name = str(si) t_subtypes[type_name] = ql_typeexpr_to_type(st, ctx=ctx) ctx.env.schema, ct = coll.from_subtypes( ctx.env.schema, t_subtypes, {'named': named}) return ct else: a_subtypes = [] for st in ql_t.subtypes: a_subtypes.append(ql_typeexpr_to_type(st, ctx=ctx)) ctx.env.schema, ct = coll.from_subtypes(ctx.env.schema, a_subtypes) return ct else: return schemactx.get_schema_type(ql_t.maintype, ctx=ctx) @overload def ptrcls_from_ptrref( # NoQA: F811 ptrref: irast.PointerRef, *, ctx: context.ContextLevel, ) -> s_pointers.Pointer: ... @overload def ptrcls_from_ptrref( # NoQA: F811 ptrref: irast.TupleIndirectionPointerRef, *, ctx: context.ContextLevel, ) -> irast.TupleIndirectionLink: ... @overload def ptrcls_from_ptrref( # NoQA: F811 ptrref: irast.TypeIntersectionPointerRef, *, ctx: context.ContextLevel, ) -> irast.TypeIntersectionLink: ... @overload def ptrcls_from_ptrref( # NoQA: F811 ptrref: irast.BasePointerRef, *, ctx: context.ContextLevel, ) -> s_pointers.PointerLike: ... def ptrcls_from_ptrref( # NoQA: F811 ptrref: irast.BasePointerRef, *, ctx: context.ContextLevel, ) -> s_pointers.PointerLike: cached = ctx.env.ptr_ref_cache.get_ptrcls_for_ref(ptrref) if cached is not None: return cached ctx.env.schema, ptr = irtyputils.ptrcls_from_ptrref( ptrref, schema=ctx.env.schema) return ptr def collapse_type_intersection_rptr( ir_set: irast.Set, *, ctx: context.ContextLevel, ) -> Tuple[irast.Set, List[s_pointers.Pointer]]: ind_prefix, ind_ptrs = irutils.collapse_type_intersection(ir_set) if not ind_ptrs: return ir_set, [] rptr_specialization: Set[irast.PointerRef] = set() for ind_ptr in ind_ptrs: for ind_ptr in ind_ptrs: if ind_ptr.ptrref.rptr_specialization: rptr_specialization.update( ind_ptr.ptrref.rptr_specialization) elif ( not ind_ptr.ptrref.is_empty and ind_ptr.source.rptr is not None ): assert isinstance(ind_ptr.source.rptr.ptrref, irast.PointerRef) rptr_specialization.add(ind_ptr.source.rptr.ptrref) ptrs = [ptrcls_from_ptrref(ptrref, ctx=ctx) for ptrref in rptr_specialization] return ind_prefix, ptrs def type_to_typeref( t: s_types.Type, env: context.Environment, ) -> irast.TypeRef: schema = env.schema cache = env.type_ref_cache expr_type = t.get_expr_type(env.schema) include_descendants = ( expr_type is s_types.ExprType.Update or expr_type is s_types.ExprType.Delete ) include_ancestors = ( expr_type is s_types.ExprType.Insert or expr_type is s_types.ExprType.Update or expr_type is s_types.ExprType.Delete ) return irtyputils.type_to_typeref( schema, t, include_descendants=include_descendants, include_ancestors=include_ancestors, cache=cache, )
28.345679
79
0.651278
8c0fb8afa81907744cc59732a7aedac83c6f4745
342
py
Python
tests/test_demo.py
norlyakov/gino-aiohttp
2730bf2122dfceb61efddd6e00746fb1452ba905
[ "BSD-3-Clause" ]
80
2020-02-09T13:13:56.000Z
2022-03-30T06:53:13.000Z
tests/test_demo.py
norlyakov/gino-aiohttp
2730bf2122dfceb61efddd6e00746fb1452ba905
[ "BSD-3-Clause" ]
32
2020-05-11T20:35:06.000Z
2021-07-14T07:37:53.000Z
tests/test_demo.py
norlyakov/gino-aiohttp
2730bf2122dfceb61efddd6e00746fb1452ba905
[ "BSD-3-Clause" ]
24
2020-02-04T09:28:23.000Z
2022-03-11T21:01:36.000Z
import uuid def test(venv_client): assert venv_client.get("/users/1").status_code == 404 nickname = str(uuid.uuid4()) r = venv_client.post("/users", json=dict(name=nickname)) r.raise_for_status() r = r.json() assert ( venv_client.get("/users/{}".format(r["id"])).json()["nickname"] == nickname )
24.428571
71
0.602339
00e50c30ac915696007dd10a30f564e71d3d1f62
2,292
py
Python
src/musictag/mutagentagloader.py
lmdslyngl/lmdsmusic
376849d278374ffee0caf56073001cd2ba8ae463
[ "MIT" ]
null
null
null
src/musictag/mutagentagloader.py
lmdslyngl/lmdsmusic
376849d278374ffee0caf56073001cd2ba8ae463
[ "MIT" ]
3
2021-06-08T21:20:20.000Z
2022-03-12T00:24:37.000Z
src/musictag/mutagentagloader.py
lmdslyngl/lmdsmusic
376849d278374ffee0caf56073001cd2ba8ae463
[ "MIT" ]
null
null
null
import os from typing import Dict from logging import getLogger import mutagen from mutagen.id3 import ID3 from mutagen._vorbis import VCommentDict from mutagen.mp4 import MP4Tags from .util import TagLoaderException, str2int, get_or_default def load(file_path) -> Dict[str, str]: music_file = mutagen.File(file_path) if music_file is None: raise TagLoaderException("Unknown format media file.") tags = music_file.tags if isinstance(tags, ID3): tag_dict = _load_id3(tags) elif isinstance(tags, VCommentDict): tag_dict = _load_vcomment(tags) elif isinstance(tags, MP4Tags): tag_dict = _load_mp4_tags(tags) else: # タグが検出できなかったときは空文字列としておく tag_dict = { "title": "", "artist": "", "album": "", "year": 0 } tag_dict["duration"] = music_file.info.length if len(tag_dict["title"]) <= 0: # タグにタイトルが無かったときはファイル名で代用する filename = os.path.splitext(os.path.basename(file_path))[0] tag_dict["title"] = filename info_message = ( "Fallbacking to title is filename, " + "because failed to load tag in soundfile \"{}\"") info_message = info_message.format(filename) getLogger(__name__).info(info_message) return tag_dict def _load_id3(tag: ID3) -> Dict[str, str]: return { "title": str(get_or_default(tag, "TIT2")), "artist": str(get_or_default(tag, "TPE1")), "album": str(get_or_default(tag, "TALB")), "year": str2int(str(get_or_default(tag, "TDRC"))) } def _load_vcomment(tag: VCommentDict) -> Dict[str, str]: return { "title": _join_tag_list(tag, "title"), "artist": _join_tag_list(tag, "artist"), "album": _join_tag_list(tag, "album"), "year": str2int(get_or_default(tag, "date", ["0"])[0]) } def _load_mp4_tags(tag: MP4Tags) -> Dict[str, str]: return { "title": _join_tag_list(tag, "\xa9nam"), "artist": _join_tag_list(tag, "\xa9ART"), "album": _join_tag_list(tag, "\xa9alb"), "year": str2int(get_or_default(tag, "\xa9day", ["0"])[0]) } def _join_tag_list(tag_dict, tag_name): tag = get_or_default(tag_dict, tag_name, []) return "; ".join(tag)
28.65
67
0.617801
088b9fd37731b8ca69a5941d5ef4527257401c91
5,233
py
Python
gym/envs/classic_control/mountain_car.py
caffett/gym
a9126ace2488acfaa63544ad14859d530ee4ac76
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
gym/envs/classic_control/mountain_car.py
caffett/gym
a9126ace2488acfaa63544ad14859d530ee4ac76
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
gym/envs/classic_control/mountain_car.py
caffett/gym
a9126ace2488acfaa63544ad14859d530ee4ac76
[ "Python-2.0", "OLDAP-2.7" ]
null
null
null
""" http://incompleteideas.net/sutton/MountainCar/MountainCar1.cp permalink: https://perma.cc/6Z2N-PFWC """ import math import gym from gym import spaces from gym.utils import seeding import numpy as np from os import path import tensorflow as tf from tensorflow.keras.models import load_model ROOT = path.dirname(path.abspath(gym.__file__))+"/envs/env_approx/" from tensorflow.keras import backend as K class MountainCarEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 30 } def __init__(self): self.min_position = -1.2 self.max_position = 0.6 self.max_speed = 0.07 self.goal_position = 0.5 self.low = np.array([self.min_position, -self.max_speed]) self.high = np.array([self.max_position, self.max_speed]) self.viewer = None self.action_space = spaces.Discrete(3) self.observation_space = spaces.Box(self.low, self.high) self.initial_space = spaces.Box(low=np.array([-0.6, 0]), high=np.array([-0.4, 0]), dtype=np.float32) self.seed() self.reset() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action)) position, velocity = self.state velocity += (action-1)*0.001 + math.cos(3*position)*(-0.0025) velocity = np.clip(velocity, -self.max_speed, self.max_speed) position += velocity position = np.clip(position, self.min_position, self.max_position) if (position==self.min_position and velocity<0): velocity = 0 done = bool(position >= self.goal_position) reward = -1.0/200 self.state = (position, velocity) return np.array(self.state), reward, done, {} def reset(self, x0=None): if x0 is None: self.state = np.array([self.np_random.uniform(low=-0.6, high=-0.4), 0]) else: self.state = x0 return np.array(self.state) def approximator(self, x0, step, algo, reward_approx=True): model_name = "MountainCar-v0" if reward_approx: self.approx = load_model(ROOT+model_name+"/"+algo+"_ra_approx_1e+03_approx"+str(step)+".model") else: assert False new_model = tf.keras.Sequential() new_input = tf.keras.Input(tensor=tf.reshape(x0, (-1, len(self.state)))) new_model.add(new_input) for layer in self.approx.layers: new_model.add(layer) sess = K.get_session() return tf.reshape(new_model.output, (-1, 1)), sess def _height(self, xs): return np.sin(3 * xs)*.45+.55 def render(self, mode='human'): screen_width = 600 screen_height = 400 world_width = self.max_position - self.min_position scale = screen_width/world_width carwidth=40 carheight=20 if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.Viewer(screen_width, screen_height) xs = np.linspace(self.min_position, self.max_position, 100) ys = self._height(xs) xys = list(zip((xs-self.min_position)*scale, ys*scale)) self.track = rendering.make_polyline(xys) self.track.set_linewidth(4) self.viewer.add_geom(self.track) clearance = 10 l,r,t,b = -carwidth/2, carwidth/2, carheight, 0 car = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)]) car.add_attr(rendering.Transform(translation=(0, clearance))) self.cartrans = rendering.Transform() car.add_attr(self.cartrans) self.viewer.add_geom(car) frontwheel = rendering.make_circle(carheight/2.5) frontwheel.set_color(.5, .5, .5) frontwheel.add_attr(rendering.Transform(translation=(carwidth/4,clearance))) frontwheel.add_attr(self.cartrans) self.viewer.add_geom(frontwheel) backwheel = rendering.make_circle(carheight/2.5) backwheel.add_attr(rendering.Transform(translation=(-carwidth/4,clearance))) backwheel.add_attr(self.cartrans) backwheel.set_color(.5, .5, .5) self.viewer.add_geom(backwheel) flagx = (self.goal_position-self.min_position)*scale flagy1 = self._height(self.goal_position)*scale flagy2 = flagy1 + 50 flagpole = rendering.Line((flagx, flagy1), (flagx, flagy2)) self.viewer.add_geom(flagpole) flag = rendering.FilledPolygon([(flagx, flagy2), (flagx, flagy2-10), (flagx+25, flagy2-5)]) flag.set_color(.8,.8,0) self.viewer.add_geom(flag) pos = self.state[0] self.cartrans.set_translation((pos-self.min_position)*scale, self._height(pos)*scale) self.cartrans.set_rotation(math.cos(3 * pos)) return self.viewer.render(return_rgb_array = mode=='rgb_array') def close(self): if self.viewer: self.viewer.close() self.viewer = None
34.655629
108
0.618001
74362fe7e7f65405a3a77334ddf3398ed0dd9ec8
18,802
py
Python
scraper/unique_scraper.py
uvacw/avca
fa07fa6d05fc3b058c75278db1d984abac0e331c
[ "MIT" ]
1
2021-03-09T10:47:53.000Z
2021-03-09T10:47:53.000Z
scraper/unique_scraper.py
uvacw/avca
fa07fa6d05fc3b058c75278db1d984abac0e331c
[ "MIT" ]
null
null
null
scraper/unique_scraper.py
uvacw/avca
fa07fa6d05fc3b058c75278db1d984abac0e331c
[ "MIT" ]
null
null
null
# coding: utf-8 ## NOTE: This scraper illustrates how to collect images from websites for academic research ## THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import pickle import requests from bs4 import BeautifulSoup import time import random import datetime import logging import warnings import logging as logger import os from sqlalchemy import text def get_links(project, company, brand, main_url_id, url, domain, main_url, collect_links = 0, collect_images = 0, store_html = 0, level=0, links_collected = []): print(url) logger.info(str(url) + ' collected') headers={'User-Agent' : "Mozilla/5.0"} try: page = requests.get(url, headers=headers) soup = BeautifulSoup(page.text, 'html.parser') if store_html == 1: try: os.mkdir(company+'_'+brand) except: pass path = company+'_'+brand+'/' filename = url.replace('/','_').replace(':', '_') if len(filename) > 200: filename = filename[:200] with open(path+'html_'+filename+'.html', 'w') as f: f.write(page.text) base = soup.find_all('base', href=True) if len(base) > 0: base = base[0]['href'] else: base = None if collect_links == 1: links = [] if url[-1] == '/': url = url[:-1] for link in soup.find_all('a', href=True): sql = '''INSERT INTO 02_links_unique(project, company, brand, main_url_id, domain, level, link_full, link_source, link_text, link_url, status_followed, from_company) VALUES(''' link_source = url try: link_text = link.contents[0] except: link_text = '' link_url = link['href'] link_url = link_url.replace("javascript:window.open('","").replace("','_self')","").replace("')","").replace("'","") if link_url.startswith('http'): link_full = link_url elif link_url.startswith('/'): link_full = main_url + link_url elif link_url.startswith('./'): if link_source.endswith('/'): if base: link_full = base + link_url[2:] else: link_full = link_source + link_url[2:] else: if base: link_full = base + link_url[2:] else: new_source = link_source.split('/')[:-1] new_source = '/'.join(new_source) + '/' link_full = new_source + link_url[2:] elif link_url.startswith('#') == False: if link_url.startswith('javascript') == False: if link_url.startswith('whatsapp:') == False: if link_source.endswith('/'): if base: link_full = base + link_url else: link_full = link_source + link_url else: if base: link_full = base + link_url else: new_source = link_source.split('/')[:-1] new_source = '/'.join(new_source) + '/' link_full = new_source + link_url if link_full in links_collected: # print(link_full, 'collected already - skipping') pass else: if domain in link_full: from_company = '1' else: from_company = '0' status_followed = '0' sql += '''"'''+ project + '''", ''' sql += '''"'''+ company + '''", ''' sql += '''"'''+ brand + '''", ''' sql += '''"'''+ str(main_url_id) + '''", ''' sql += '''"'''+ domain + '''", ''' sql += '''"'''+ str(level) + '''", ''' sql += '''"'''+ link_full + '''", ''' sql += '''"'''+ link_source + '''", ''' sql += '''"'''+ str(link_text) + '''", ''' sql += '''"'''+ link_url + '''", ''' sql += '''"'''+ status_followed + '''", ''' sql += '''"'''+ from_company + '''")''' try: con.execute(sql) except Exception as e: try: sql = '''INSERT INTO 02_links(project, company, brand, main_url_id, domain, level, link_full, link_source, link_text, link_url, status_followed, from_company) VALUES(''' sql += '''"'''+ project + '''", ''' sql += '''"'''+ company + '''", ''' sql += '''"'''+ brand + '''", ''' sql += '''"'''+ str(main_url_id) + '''", ''' sql += '''"'''+ domain + '''", ''' sql += '''"'''+ str(level) + '''", ''' sql += '''"'''+ link_full + '''", ''' sql += '''"'''+ link_source + '''", ''' sql += '''"'''+ 'error_link_text' + '''", ''' sql += '''"'''+ link_url + '''", ''' sql += '''"'''+ status_followed + '''", ''' sql += '''"'''+ from_company + '''")''' logger.info(str(e)) logger.info(sql) except Exception as e: logger.info(str(e)) logger.info(sql) if collect_images == 1: pics = soup.find_all('img') for pic in pics: width = pic.get('width', 0) height = pic.get('height', 0) alt_text = pic.get('alt', '') link_url = pic.get('src', '') link_source = url if link_url.startswith('/'): img_link_full = main_url + link_url else: img_link_full = link_url status_downloaded = '0' sql = '''INSERT INTO 03_images(project, company, brand, main_url_id, domain, level, link_full, link_source, link_url, status_downloaded, image_height, image_width, image_alt) VALUES(''' sql += '''"'''+ project + '''", ''' sql += '''"'''+ company + '''", ''' sql += '''"'''+ brand + '''", ''' sql += '''"'''+ str(main_url_id) + '''", ''' sql += '''"'''+ domain + '''", ''' sql += '''"'''+ str(level) + '''", ''' sql += '''"'''+ img_link_full + '''", ''' sql += '''"'''+ link_source + '''", ''' sql += '''"'''+ link_url + '''", ''' sql += '''"'''+ status_downloaded + '''", ''' sql += str(width) + ''', ''' sql += str(height) + ''', ''' sql += '''"'''+ str(alt_text) + '''")''' # print(sql) try: con.execute(sql) except Exception as e: try: sql = '''INSERT INTO 03_images(project, company, brand, main_url_id, domain, level, link_full, link_source, link_url, status_downloaded, image_height, image_width, image_alt) VALUES(''' sql += '''"'''+ project + '''", ''' sql += '''"'''+ company + '''", ''' sql += '''"'''+ brand + '''", ''' sql += '''"'''+ str(main_url_id) + '''", ''' sql += '''"'''+ domain + '''", ''' sql += '''"'''+ str(level) + '''", ''' sql += '''"'''+ link_full + '''", ''' sql += '''"'''+ link_source + '''", ''' sql += '''"'''+ img_link_full + '''", ''' sql += '''"'''+ status_downloaded + '''", ''' sql += '''"'''+ str(width) + '''", ''' sql += '''"'''+ str(height) + '''", ''' sql += '''"'''+ str('error') + '''")''' con.execute(sql) except Exception as e: logger.info(str(e)) logger.info(sql) time.sleep(random.uniform(0.5,5)) except Exception as e: logger.info('error retrieving URL') logger.info(str(url)) logger.info(str(e)) return def run_scraper(project, company, brand, main_url_id, url, domain, main_url, collect_links = 0, collect_images = 0, store_html = 0, levels = 1, skip_level0=False): if skip_level0 == False: links_collected = get_links_collected(project, company, brand, status_followed = None, from_company = None) level = 0 get_links(project, company, brand, main_url_id, url, domain, main_url, collect_links = collect_links, collect_images = collect_images, store_html = store_html, level = level) sql = '''UPDATE 02_links SET status_followed = 1 WHERE link_full = "''' + url + '''"''' con.execute(sql) else: sql = '''SELECT level FROM 02_links WHERE project ="''' + project + '''" AND company = "'''+ company + '''" AND brand = "'''+ brand + '''" ORDER BY level DESC limit 1''' res_levels = con.execute(sql) level = 0 if res_levels[0][0] > 0: print('resuming at level', res_levels[0][0]) level = res_levels[0][0] -1 links_to_collect = get_links_collected(project, company, brand, status_followed = 0, from_company = 1) links_collected = get_links_collected(project, company, brand, status_followed = None, from_company = None) # In[ ]: while level < levels: links_to_collect = get_links_collected(project, company, brand, status_followed = 0, from_company = 1) logger.info(str('links_to_collect: ' + str(links_to_collect))) for link_full in links_to_collect: links_collected = get_links_collected(project, company, brand, status_followed = 1, from_company = None) logger.info(str('links_collected: ' + str(links_collected))) try: if link_full not in links_collected: if link_full.endswith('.pdf'): logger.info(str(link_full + ' skipped: PDF')) elif 'mailto:' in link_full: logger.info(str(link_full + ' skipped: email')) elif link_full.endswith('.exe'): logger.info(str(link_full + ' skipped: EXE')) else: get_links(project, company, brand, main_url_id, link_full, domain, main_url, collect_links = collect_links, collect_images = collect_images, store_html = store_html, level = level + 1) sql = '''UPDATE 02_links SET status_followed = 1 WHERE link_full = "''' + link_full + '''"''' con.execute(sql) else: logger.info(str(link_full + ' skipped: already collected')) except Exception as e: log_error(link_full, str(e)) logger.info(str(link_full + ' error')) level += 1 print('level', level, 'completed') def get_pending_company(project = None): if project: sql = '''SELECT id, project, company, brand, status, store_html, collect_links, collect_images, link_full, main_url, domain, levels, last_level_complete FROM 01_to_get WHERE status = "pending" AND levels - last_level_complete > 0 AND project = "'''+ project+'''" LIMIT 1''' else: sql = '''SELECT id, project, company, brand, status, store_html, collect_links, collect_images, link_full, main_url, domain, levels, last_level_complete FROM 01_to_get WHERE status = "pending" AND levels - last_level_complete > 0 LIMIT 1''' res = con.execute(sql) return res.cursor.fetchall() def update_status_url(id, status): sql = '''UPDATE 01_to_get SET status = "'''+ status+'''" WHERE id = ''' + str(id) con.execute(sql) def get_links_collected(project, company, brand, status_followed = None, from_company = None): if status_followed == None: if from_company == None: sql = '''SELECT link_full FROM 02_links WHERE project = "''' + project + '''" AND company = "''' + company + '''" AND brand = "'''+brand+'''"''' else: sql = '''SELECT link_full FROM 02_links WHERE project = "''' + project + '''" AND company = "''' + company + '''" AND brand = "'''+brand+'''" AND from_company = ''' + str(from_company) else: if from_company == None: sql = '''SELECT link_full FROM 02_links WHERE status_followed = ''' + str(status_followed) + ''' AND project = "''' + project + '''" AND company = "''' + company + '''" AND brand = "'''+brand+'''"''' else: sql = '''SELECT link_full FROM 02_links WHERE status_followed = ''' + str(status_followed) + ''' AND project = "''' + project + '''" AND company = "''' + company + '''" AND brand = "'''+brand+'''" AND from_company = ''' + str(from_company) res = con.execute(sql) res = [item[0] for item in res.cursor.fetchall()] return res def get_pending_links(project, company, brand, level): sql = '''SELECT link_full FROM 02_links_unique WHERE project = '{project}' AND company = '{company}' AND brand = '{brand}' AND level = {level} AND status_followed = 0 AND from_company = 1'''.format(**locals()) res = con.execute(sql) res = [item[0] for item in res.cursor.fetchall()] return res def get_collected_links(project, company, brand): sql = '''SELECT link_source FROM 02_links_unique WHERE project = '{project}' AND company = '{company}' AND brand = '{brand}' '''.format(**locals()) res = con.execute(sql) res = [item[0] for item in res.cursor.fetchall()] sql = '''SELECT link_full FROM 02_links_unique WHERE project = '{project}' AND company = '{company}' AND brand = '{brand}' '''.format(**locals()) res2 = con.execute(sql) res2 = [item[0] for item in res2.cursor.fetchall()] return list(set(res + res2)) def log_error(link_full, error): pass def process_scraper(): from db_alchemy_scraper import con global con try: logger.basicConfig(filename=str('log_' + str(datetime.datetime.utcnow().strftime("%Y-%m-%d_%H-%M-%S")))+'.log', level=logger.INFO) pending = get_pending_company() if len(pending) > 0: id, project, company, brand, status, store_html, collect_links, collect_images, link_full, main_url, domain, levels, last_level_complete = pending[0] logger.info('{id}, {project}, {company} levels {levels} last_level_complete: {last_level_complete}'.format(**locals())) links_to_collect = get_pending_links(project, company, brand, last_level_complete) if len(links_to_collect) == 0: print('no links to collect, adding main link to be sure') links_to_collect.append(link_full) update_status_url(id, 'ongoing') # print(links_collected) levelnew= last_level_complete + 1 for link_to_collect in links_to_collect: if link_to_collect.endswith('.pdf'): logger.info(str(link_full + ' skipped: PDF')) elif 'mailto:' in link_to_collect: logger.info(str(link_to_collect + ' skipped: email')) elif link_to_collect.endswith('.exe'): logger.info(str(link_to_collect + ' skipped: EXE')) elif link_to_collect.startswith('javascript'): logger.info(str(link_to_collect + ' skipped: java')) else: link_to_collect = link_to_collect.replace("'","") links_collected = get_collected_links(project, company, brand) # print(link_to_collect) get_links(project, company, brand, id, link_to_collect, domain, main_url, collect_links = collect_links, collect_images = collect_images, store_html = store_html, level=levelnew, links_collected = links_collected) con.execute('''UPDATE 02_links_unique SET status_followed = 1 WHERE link_full = '{link_to_collect}' '''.format(**locals())) print('{link_to_collect} completed'.format(**locals())) links_collected.append(link_to_collect) links_to_collect.remove(link_to_collect) total_collected = len(links_collected) total_to_collect = len(links_to_collect) print('completed {link_to_collect} - total links collected = {total_collected}, total links to be collected at this level = {total_to_collect}'.format(**locals())) logger.info('''{company} {brand} level {levelnew} completed'''.format(**locals())) con.execute('''UPDATE 01_to_get SET last_level_complete = {levelnew} WHERE project = "{project}" AND company = "{company}" AND brand = "{brand}" '''.format(**locals())) update_status_url(id, 'pending') else: print('nothing to do?') logger.info('nothing to do?') except Exception as e: print(link_to_collect) print(e) logger.info('failed') logger.info(str(e)) update_status_url(id, 'failed') return if __name__ == "__main__": process_scraper()
45.635922
463
0.49633
b02c9b2b34bb131d2b0e883df9cf5b8f5dffea42
4,194
py
Python
devserver.py
OpenCIOC/offlinetools
d73b151b1b17029b3d61fea23f3d09455fb04901
[ "Apache-2.0" ]
1
2018-01-31T04:39:30.000Z
2018-01-31T04:39:30.000Z
devserver.py
OpenCIOC/offlinetools
d73b151b1b17029b3d61fea23f3d09455fb04901
[ "Apache-2.0" ]
null
null
null
devserver.py
OpenCIOC/offlinetools
d73b151b1b17029b3d61fea23f3d09455fb04901
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import sys import os import io import logging.config # ========================================================================== # start of inlined methods from site.py to bootstrap site-packages directory # covered by PSF license from Python distribution # ========================================================================== def makepath(*paths): dir = os.path.join(*paths) try: dir = os.path.abspath(dir) except OSError: pass return dir, os.path.normcase(dir) def _init_pathinfo(): """Return a set containing all existing file system items from sys.path.""" d = set() for item in sys.path: try: if os.path.exists(item): _, itemcase = makepath(item) d.add(itemcase) except TypeError: continue return d def addpackage(sitedir, name, known_paths): """Process a .pth file within the site-packages directory: For each line in the file, either combine it with sitedir to a path and add that to known_paths, or execute it if it starts with 'import '. """ if known_paths is None: known_paths = _init_pathinfo() reset = True else: reset = False fullname = os.path.join(sitedir, name) try: f = io.TextIOWrapper(io.open_code(fullname)) except OSError: return with f: for n, line in enumerate(f): if line.startswith("#"): continue try: if line.startswith(("import ", "import\t")): exec(line) continue line = line.rstrip() dir, dircase = makepath(sitedir, line) if not dircase in known_paths and os.path.exists(dir): sys.path.append(dir) known_paths.add(dircase) except Exception: print("Error processing line {:d} of {}:\n".format(n+1, fullname), file=sys.stderr) import traceback for record in traceback.format_exception(*sys.exc_info()): for line in record.splitlines(): print(' '+line, file=sys.stderr) print("\nRemainder of file ignored", file=sys.stderr) break if reset: known_paths = None return known_paths def addsitedir(sitedir, known_paths=None): """Add 'sitedir' argument to sys.path if missing and handle .pth files in 'sitedir'""" if known_paths is None: known_paths = _init_pathinfo() reset = True else: reset = False sitedir, sitedircase = makepath(sitedir) if not sitedircase in known_paths: sys.path.append(sitedir) # Add path component known_paths.add(sitedircase) try: names = os.listdir(sitedir) except OSError: return names = [name for name in names if name.endswith(".pth")] for name in sorted(names): addpackage(sitedir, name, known_paths) if reset: known_paths = None return known_paths # ========================================================================== # end of inlined methods from site.py to bootstrap site-packages directory # covered by PSF license from Python distribution # ========================================================================== def main(): print(sys.path) app_dir = os.path.dirname(sys.executable) print(app_dir) paths = [app_dir] print(paths) addsitedir(os.path.join(app_dir, 'site-packages')) print(sys.path) sys.path[0:0] = paths print(sys.path) from paste.deploy import loadapp from paste.httpserver import serve import cryptography.hazmat.primitives.asymmetric.rsa # noqa import cryptography.hazmat.bindings.openssl.binding # noqa logging.config.fileConfig('development.ini') app = loadapp('config:development.ini', 'main', relative_to=os.getcwd(), global_conf={}) server = serve(app, port=8765, start_loop=False) print('starting server') server.serve_forever() if __name__ == '__main__': main()
32.015267
92
0.564855
45d84dbb971ec3a65164bb7cc53a658e5187e1c5
1,651
py
Python
google/cloud/identity_toolkit_v2/types/__init__.py
renovate-bot/python-identity-toolkit
ccf9b1bc538d1a3de90fcefd66465b947198a1a7
[ "Apache-2.0" ]
null
null
null
google/cloud/identity_toolkit_v2/types/__init__.py
renovate-bot/python-identity-toolkit
ccf9b1bc538d1a3de90fcefd66465b947198a1a7
[ "Apache-2.0" ]
null
null
null
google/cloud/identity_toolkit_v2/types/__init__.py
renovate-bot/python-identity-toolkit
ccf9b1bc538d1a3de90fcefd66465b947198a1a7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .account_management_service import ( FinalizeMfaEnrollmentRequest, FinalizeMfaEnrollmentResponse, StartMfaEnrollmentRequest, StartMfaEnrollmentResponse, WithdrawMfaRequest, WithdrawMfaResponse, ) from .authentication_service import ( FinalizeMfaSignInRequest, FinalizeMfaSignInResponse, StartMfaSignInRequest, StartMfaSignInResponse, ) from .mfa_info import ( AutoRetrievalInfo, FinalizeMfaPhoneRequestInfo, FinalizeMfaPhoneResponseInfo, StartMfaPhoneRequestInfo, StartMfaPhoneResponseInfo, ) __all__ = ( "FinalizeMfaEnrollmentRequest", "FinalizeMfaEnrollmentResponse", "StartMfaEnrollmentRequest", "StartMfaEnrollmentResponse", "WithdrawMfaRequest", "WithdrawMfaResponse", "FinalizeMfaSignInRequest", "FinalizeMfaSignInResponse", "StartMfaSignInRequest", "StartMfaSignInResponse", "AutoRetrievalInfo", "FinalizeMfaPhoneRequestInfo", "FinalizeMfaPhoneResponseInfo", "StartMfaPhoneRequestInfo", "StartMfaPhoneResponseInfo", )
30.018182
74
0.761357
c9d8e0f0274078183967b830fafe0657c684473c
2,029
py
Python
02_primes.py
deshmukhmayur/tcs-codevita6-round1
975bd639b187fa6897d2acf58611a7e793b4072d
[ "MIT" ]
null
null
null
02_primes.py
deshmukhmayur/tcs-codevita6-round1
975bd639b187fa6897d2acf58611a7e793b4072d
[ "MIT" ]
null
null
null
02_primes.py
deshmukhmayur/tcs-codevita6-round1
975bd639b187fa6897d2acf58611a7e793b4072d
[ "MIT" ]
1
2020-06-11T17:44:22.000Z
2020-06-11T17:44:22.000Z
''' Prime Numbers spelt with prime number of letters ''' WORDS = { 1: 'ONE', 2: 'TWO', 3: 'THREE', 4: 'FOUR', 5: 'FIVE', 6: 'SIX', 7: 'SEVEN', 8: 'EIGHT', 9: 'NINE', 0: '', 10: 'TEN', 11: 'ELEVEN', 12: 'TWELVE', 13: 'THIRTEEN', 14: 'FOURTEEN', 15: 'FIFTEEN', 16: 'SIXTEEN', 17: 'SEVENTEEN', 18: 'EIGHTEEN', 19: 'NINETEEN' } TENS = { 1: 'TEN', 2: 'TWENTY', 3: 'THIRTY', 4: 'FORTY', 5: 'FIFTY', 6: 'SIXTY', 7: 'SEVENTY', 8: 'EIGHTY', 9: 'NINETY' } def get_primes(n): numbers = set(range(n, 1, -1)) primes = [] while numbers: p = numbers.pop() primes.append(p) numbers.difference_update(set(range(p * 2, n + 1, p))) return primes def isPrimeWords(n): ''' Generate words for the given input number ''' ans = '' l = 0 def twoDigitNums(n): if n != '': # print('n', n) if int(n) > 19: return TENS[int(n[0])] + WORDS[int(n[1])] else: return WORDS[int(n)] return '' if len(n) < 5: n = '0' * (5 - len(n)) + n tens, h, th = n[-2:], n[-3], n[:-3] thousands = twoDigitNums(th) if thousands != '': ans += thousands + 'THOUSAND' hundreds = WORDS[int(h)] if hundreds != '': ans += hundreds + 'HUNDRED' units = twoDigitNums(tens) if units != '': if ans != '': ans += 'AND' + units else: ans += units # print(ans, len(ans)) if len(ans) in PRIMES: return True return False if __name__ == '__main__': N1, N2 = [int(x.strip()) for x in input().strip().split()] PRIMES = get_primes(N2) count = 0 for num in range(N1, N2 + 1): if num in PRIMES: if isPrimeWords(str(num)): count += 1 print(count)
19.509615
63
0.435683
33a22b0475647395bac9a2cb91e61be39872df70
6,073
py
Python
leapfrog/poll/vimeo.py
markpasc/leapfrog
fde06e10cb896936f3f6535bd3f31c64700a3c8d
[ "MIT" ]
3
2015-11-05T07:19:49.000Z
2020-10-07T08:50:28.000Z
leapfrog/poll/vimeo.py
markpasc/leapfrog
fde06e10cb896936f3f6535bd3f31c64700a3c8d
[ "MIT" ]
null
null
null
leapfrog/poll/vimeo.py
markpasc/leapfrog
fde06e10cb896936f3f6535bd3f31c64700a3c8d
[ "MIT" ]
null
null
null
from __future__ import division from datetime import datetime import json import logging import re import socket from urllib import urlencode from django.conf import settings import httplib2 import oauth2 as oauth from leapfrog.models import Account, Media, Person, Object, UserStream import leapfrog.poll.embedlam log = logging.getLogger(__name__) def call_vimeo(method, token=None, **kwargs): csr = oauth.Consumer(*settings.VIMEO_CONSUMER) http_url = 'http://vimeo.com/api/rest/v2?format=json&method=%s' % method if kwargs: http_url = '&'.join((http_url, urlencode(kwargs))) oauth_request = oauth.Request.from_consumer_and_token(csr, token, http_method='GET', http_url=http_url) oauth_sign_method = oauth.SignatureMethod_HMAC_SHA1() oauth_request.sign_request(oauth_sign_method, csr, token) oauth_signing_base = oauth_sign_method.signing_base(oauth_request, csr, token) oauth_header = oauth_request.to_header() h = httplib2.Http() h.follow_redirects = 0 normal_url = oauth_request.to_url() log.debug('Making request to URL %r', normal_url) try: resp, content = h.request(normal_url, method=oauth_request.method, headers=oauth_header) except socket.error, exc: raise leapfrog.poll.embedlam.RequestError("Request to %s could not complete: %s" % (uri, str(exc))) if resp.status == 502: raise leapfrog.poll.embedlam.RequestError("502 Bad Gateway making Vimeo request %s" % normal_url) if resp.status == 503: raise leapfrog.poll.embedlam.RequestError("503 Service Unavailable making Vimeo request %s" % normal_url) if resp.status == 500: raise leapfrog.poll.embedlam.RequestError("500 Server Error making Vimeo request %s" % normal_url) if resp.status == 404: raise leapfrog.poll.embedlam.RequestError("404 Not Found making Vimeo request %s, wtf" % normal_url) if resp.status != 200: raise ValueError("Unexpected response making Vimeo request %s: %d %s" % (normal_url, resp.status, resp.reason)) data = json.loads(content) if data['stat'] != 'fail': return data err = data['err'] if method == 'vimeo.videos.getSubscriptions' and err['msg'] == 'Internal error.': raise leapfrog.poll.embedlam.RequestError("Internal error getting Vimeo subscriptions (try again later?)") raise ValueError("Error retrieving data for %s call: %s: %s" % (method, err['msg'], err['expl'])) def account_for_vimeo_id(user_id, person=None): try: # TODO: update vimeo avatar pictures (but that requires fetching their people info speculatively) return Account.objects.get(service='vimeo.com', ident=user_id) except Account.DoesNotExist: pass # get vimeo data log.debug('Getting info on user %r', user_id) userdata = call_vimeo('vimeo.people.getInfo', user_id=user_id) persondata = userdata['person'] if person is None: portraits = persondata.get('portraits', {}).get('portrait') avatar = None if portraits is not None: portraits = sorted([portrait for portrait in portraits if int(portrait['height']) >= 75], key=lambda x: int(x['height'])) if portraits: portrait = portraits[0] avatar = Media( image_url=portrait['_content'], width=int(portrait['width']), height=int(portrait['height']), ) avatar.save() person = Person( display_name=persondata['display_name'], permalink_url=persondata['profileurl'], avatar=avatar, ) person.save() acc = Account( service='vimeo.com', ident=user_id, display_name=persondata.get('display_name', persondata.get('username', user_id)), person=person, ) acc.save() return acc def object_from_video_data(videodata): video_id = videodata['id'] try: return Object.objects.get(service='vimeo.com', foreign_id=video_id) except Object.DoesNotExist: pass author = account_for_vimeo_id(videodata['owner']['id']) permalink_url = [urldata['_content'] for urldata in videodata['urls']['url'] if urldata['type'] == 'video'][0] width, height = [int(videodata[key]) for key in ('width', 'height')] if width > 660: height = 660 * height / width width = 660 body = ("""<iframe src="http://player.vimeo.com/video/%s" width="%d" height="%d"></iframe>""" % (video_id, width, height)) obj = Object( service='vimeo.com', foreign_id=video_id, render_mode='mixed', title=videodata['title'], body=body, time=datetime.strptime(videodata['upload_date'], '%Y-%m-%d %H:%M:%S'), permalink_url=permalink_url, author=author, ) obj.save() return obj def object_from_url(url): mo = re.match(r'http://vimeo\.com/ (\d+)', url, re.MULTILINE | re.DOTALL | re.VERBOSE) if mo is None: return video_id = mo.group(1) videoresp = call_vimeo('vimeo.videos.getInfo', video_id=video_id) videodata = videoresp['video'][0] return object_from_video_data(videodata) def poll_vimeo(account): user = account.person.user if user is None: return token = oauth.Token(*account.authinfo.split(':')) try: subdata = call_vimeo('vimeo.videos.getSubscriptions', token=token, full_response='true') except leapfrog.poll.embedlam.RequestError: log.debug("An expected error occurred getting Vimeo subscriptions, tsk", exc_data=True) return for videodata in subdata['videos']['video']: try: obj = object_from_video_data(videodata) # TODO: save videos from "like" subscriptions as shares UserStream.objects.get_or_create(user=user, obj=obj, defaults={'time': obj.time, 'why_account': obj.author, 'why_verb': 'post'}) except Exception, exc: log.exception(exc)
35.30814
133
0.649597
ddd343eb59d86eeaf9845bf198051a9a5bf6b7e6
6,109
py
Python
nova/virt/hyperv/pathutils.py
nelsnelson/nova
826fe1cc6af2df291d5aaafdc5d498d626475d19
[ "Apache-2.0" ]
1
2015-02-26T03:23:49.000Z
2015-02-26T03:23:49.000Z
nova/virt/hyperv/pathutils.py
nelsnelson/nova
826fe1cc6af2df291d5aaafdc5d498d626475d19
[ "Apache-2.0" ]
null
null
null
nova/virt/hyperv/pathutils.py
nelsnelson/nova
826fe1cc6af2df291d5aaafdc5d498d626475d19
[ "Apache-2.0" ]
2
2015-06-17T13:24:55.000Z
2015-10-27T05:28:38.000Z
# Copyright 2013 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from os_win.utils import pathutils from oslo_config import cfg from nova import exception from nova.i18n import _ from nova.virt.hyperv import constants hyperv_opts = [ cfg.StrOpt('instances_path_share', default="", help='The name of a Windows share name mapped to the ' '"instances_path" dir and used by the resize feature ' 'to copy files to the target host. If left blank, an ' 'administrative share will be used, looking for the same ' '"instances_path" used locally'), ] CONF = cfg.CONF CONF.register_opts(hyperv_opts, 'hyperv') CONF.import_opt('instances_path', 'nova.compute.manager') ERROR_INVALID_NAME = 123 # NOTE(claudiub): part of the pre-existing PathUtils is nova-specific and # it does not belong in the os-win library. In order to ensure the same # functionality with the least amount of changes necessary, adding as a mixin # the os_win.pathutils.PathUtils class into this PathUtils. class PathUtils(pathutils.PathUtils): def get_instances_dir(self, remote_server=None): local_instance_path = os.path.normpath(CONF.instances_path) if remote_server: if CONF.hyperv.instances_path_share: path = CONF.hyperv.instances_path_share else: # Use an administrative share path = local_instance_path.replace(':', '$') return ('\\\\%(remote_server)s\\%(path)s' % {'remote_server': remote_server, 'path': path}) else: return local_instance_path def _get_instances_sub_dir(self, dir_name, remote_server=None, create_dir=True, remove_dir=False): instances_path = self.get_instances_dir(remote_server) path = os.path.join(instances_path, dir_name) try: if remove_dir: self.check_remove_dir(path) if create_dir: self.check_create_dir(path) return path except WindowsError as ex: if ex.winerror == ERROR_INVALID_NAME: raise exception.AdminRequired(_( "Cannot access \"%(instances_path)s\", make sure the " "path exists and that you have the proper permissions. " "In particular Nova-Compute must not be executed with the " "builtin SYSTEM account or other accounts unable to " "authenticate on a remote host.") % {'instances_path': instances_path}) raise def get_instance_migr_revert_dir(self, instance_name, create_dir=False, remove_dir=False): dir_name = '%s_revert' % instance_name return self._get_instances_sub_dir(dir_name, None, create_dir, remove_dir) def get_instance_dir(self, instance_name, remote_server=None, create_dir=True, remove_dir=False): return self._get_instances_sub_dir(instance_name, remote_server, create_dir, remove_dir) def _lookup_vhd_path(self, instance_name, vhd_path_func): vhd_path = None for format_ext in ['vhd', 'vhdx']: test_path = vhd_path_func(instance_name, format_ext) if self.exists(test_path): vhd_path = test_path break return vhd_path def lookup_root_vhd_path(self, instance_name): return self._lookup_vhd_path(instance_name, self.get_root_vhd_path) def lookup_configdrive_path(self, instance_name): configdrive_path = None for format_ext in constants.DISK_FORMAT_MAP: test_path = self.get_configdrive_path(instance_name, format_ext) if self.exists(test_path): configdrive_path = test_path break return configdrive_path def lookup_ephemeral_vhd_path(self, instance_name): return self._lookup_vhd_path(instance_name, self.get_ephemeral_vhd_path) def get_root_vhd_path(self, instance_name, format_ext): instance_path = self.get_instance_dir(instance_name) return os.path.join(instance_path, 'root.' + format_ext.lower()) def get_configdrive_path(self, instance_name, format_ext, remote_server=None): instance_path = self.get_instance_dir(instance_name, remote_server) return os.path.join(instance_path, 'configdrive.' + format_ext.lower()) def get_ephemeral_vhd_path(self, instance_name, format_ext): instance_path = self.get_instance_dir(instance_name) return os.path.join(instance_path, 'ephemeral.' + format_ext.lower()) def get_base_vhd_dir(self): return self._get_instances_sub_dir('_base') def get_export_dir(self, instance_name): dir_name = os.path.join('export', instance_name) return self._get_instances_sub_dir(dir_name, create_dir=True, remove_dir=True) def get_vm_console_log_paths(self, vm_name, remote_server=None): instance_dir = self.get_instance_dir(vm_name, remote_server) console_log_path = os.path.join(instance_dir, 'console.log') return console_log_path, console_log_path + '.1'
41.842466
79
0.641021
b4fe361be2385e11ed63fe65057ec4424631dcd4
6,116
py
Python
spektral/layers/pooling/mincut_pool.py
herman-nside/spektral
58bb524ec783f187145c3afe53db491dbc1f0ba0
[ "MIT" ]
2
2021-02-21T10:02:38.000Z
2021-02-21T10:02:43.000Z
spektral/layers/pooling/mincut_pool.py
herman-nside/spektral
58bb524ec783f187145c3afe53db491dbc1f0ba0
[ "MIT" ]
null
null
null
spektral/layers/pooling/mincut_pool.py
herman-nside/spektral
58bb524ec783f187145c3afe53db491dbc1f0ba0
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras import backend as K from tensorflow.keras.layers import Dense from spektral.layers import ops from spektral.layers.pooling.pool import Pool class MinCutPool(Pool): r""" A MinCut pooling layer from the paper > [Spectral Clustering with Graph Neural Networks for Graph Pooling](https://arxiv.org/abs/1907.00481)<br> > Filippo Maria Bianchi et al. **Mode**: batch. This layer computes a soft clustering \(\S\) of the input graphs using a MLP, and reduces graphs as follows: $$ \S = \textrm{MLP}(\X); \\ \A' = \S^\top \A \S; \X' = \S^\top \X; $$ where MLP is a multi-layer perceptron with softmax output. Two auxiliary loss terms are also added to the model: the _minCUT loss_ $$ - \frac{ \mathrm{Tr}(\S^\top \A \S) }{ \mathrm{Tr}(\S^\top \D \S) } $$ and the _orthogonality loss_ $$ \left\| \frac{\S^\top \S}{\| \S^\top \S \|_F} - \frac{\I_K}{\sqrt{K}} \right\|_F. $$ The layer can be used without a supervised loss, to compute node clustering simply by minimizing the two auxiliary losses. **Input** - Node features of shape `([batch], n_nodes, n_node_features)`; - Symmetrically normalized adjacency matrix of shape `([batch], n_nodes, n_nodes)`; **Output** - Reduced node features of shape `([batch], K, n_node_features)`; - Reduced adjacency matrix of shape `([batch], K, K)`; - If `return_mask=True`, the soft clustering matrix of shape `([batch], n_nodes, K)`. **Arguments** - `k`: number of nodes to keep; - `mlp_hidden`: list of integers, number of hidden units for each hidden layer in the MLP used to compute cluster assignments (if None, the MLP has only the output layer); - `mlp_activation`: activation for the MLP layers; - `return_mask`: boolean, whether to return the cluster assignment matrix; - `use_bias`: use bias in the MLP; - `kernel_initializer`: initializer for the weights of the MLP; - `bias_initializer`: initializer for the bias of the MLP; - `kernel_regularizer`: regularization applied to the weights of the MLP; - `bias_regularizer`: regularization applied to the bias of the MLP; - `kernel_constraint`: constraint applied to the weights of the MLP; - `bias_constraint`: constraint applied to the bias of the MLP; """ def __init__( self, k, mlp_hidden=None, mlp_activation="relu", return_mask=False, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs ): super().__init__( activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs ) self.k = k self.mlp_hidden = mlp_hidden if mlp_hidden else [] self.mlp_activation = mlp_activation self.return_mask = return_mask def build(self, input_shape): assert isinstance(input_shape, list) layer_kwargs = dict( kernel_initializer=self.kernel_initializer, bias_initializer=self.bias_initializer, kernel_regularizer=self.kernel_regularizer, bias_regularizer=self.bias_regularizer, kernel_constraint=self.kernel_constraint, bias_constraint=self.bias_constraint, ) mlp_layers = [] for i, channels in enumerate(self.mlp_hidden): mlp_layers.append(Dense(channels, self.mlp_activation, **layer_kwargs)) mlp_layers.append(Dense(self.k, "softmax", **layer_kwargs)) self.mlp = Sequential(mlp_layers) super().build(input_shape) def call(self, inputs): if len(inputs) == 3: X, A, I = inputs if K.ndim(I) == 2: I = I[:, 0] else: X, A = inputs I = None # Check if the layer is operating in batch mode (X and A have rank 3) batch_mode = K.ndim(X) == 3 # Compute cluster assignment matrix S = self.mlp(X) # MinCut regularization A_pooled = ops.matmul_at_b_a(S, A) num = tf.linalg.trace(A_pooled) D = ops.degree_matrix(A) den = tf.linalg.trace(ops.matmul_at_b_a(S, D)) + K.epsilon() cut_loss = -(num / den) if batch_mode: cut_loss = K.mean(cut_loss) self.add_loss(cut_loss) # Orthogonality regularization SS = ops.modal_dot(S, S, transpose_a=True) I_S = tf.eye(self.k, dtype=SS.dtype) ortho_loss = tf.norm( SS / tf.norm(SS, axis=(-1, -2), keepdims=True) - I_S / tf.norm(I_S), axis=(-1, -2), ) if batch_mode: ortho_loss = K.mean(ortho_loss) self.add_loss(ortho_loss) # Pooling X_pooled = ops.modal_dot(S, X, transpose_a=True) A_pooled = tf.linalg.set_diag( A_pooled, tf.zeros(K.shape(A_pooled)[:-1], dtype=A_pooled.dtype) ) # Remove diagonal A_pooled = ops.normalize_A(A_pooled) output = [X_pooled, A_pooled] if I is not None: I_mean = tf.math.segment_mean(I, I) I_pooled = ops.repeat(I_mean, tf.ones_like(I_mean) * self.k) output.append(I_pooled) if self.return_mask: output.append(S) return output @property def config(self): return { "k": self.k, "mlp_hidden": self.mlp_hidden, "mlp_activation": self.mlp_activation, "return_mask": self.return_mask, }
33.420765
110
0.609222
b3982753210db31ccd9d9ee5312c5065fa012c4b
22,065
py
Python
huobi/client/market.py
Reactive-Capital/huobi_Python
1ba61f50be514b42a9fa3c2fe5d894e496b042e5
[ "Apache-2.0" ]
null
null
null
huobi/client/market.py
Reactive-Capital/huobi_Python
1ba61f50be514b42a9fa3c2fe5d894e496b042e5
[ "Apache-2.0" ]
null
null
null
huobi/client/market.py
Reactive-Capital/huobi_Python
1ba61f50be514b42a9fa3c2fe5d894e496b042e5
[ "Apache-2.0" ]
null
null
null
from huobi.constant import * from huobi.model.market import * from huobi.utils import * from huobi.utils.input_checker import check_in_list class MarketClient(object): def __init__(self, **kwargs): """ Create the request client instance. :param kwargs: The option of request connection. api_key: The public key applied from Huobi. secret_key: The private key applied from Huobi. url: The URL name like "https://api.huobi.pro". init_log: to init logger """ self.__kwargs = kwargs def get_candlestick(self, symbol, period, size=200): """ Get the candlestick/kline for the specified symbol. The data number is 150 as default. :param symbol: The symbol, like "btcusdt". To query hb10, put "hb10" at here. (mandatory) :param period: The candlestick/kline interval, MIN1, MIN5, DAY1 etc. (mandatory) :param size: The start time of of requested candlestick/kline data. (optional) :return: The list of candlestick/kline data. """ check_symbol(symbol) check_should_not_none(period, "period") check_range(size, 1, 2000, "size") params = { "symbol": symbol, "period": period, "size": size } from huobi.service.market.get_candlestick import GetCandleStickService return GetCandleStickService(params).request(**self.__kwargs) def sub_candlestick(self, symbols: 'str', interval: 'CandlestickInterval', callback, error_handler): """ Subscribe candlestick/kline event. If the candlestick/kline is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param interval: The candlestick/kline interval, MIN1, MIN5, DAY1 etc. :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(candlestick_event: 'CandlestickEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(interval, "interval") check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, "interval" : interval, } from huobi.service.market.sub_candlestick import SubCandleStickService SubCandleStickService(params).subscribe(callback, error_handler, **self.__kwargs) def req_candlestick(self, symbols: 'str', interval: 'CandlestickInterval', callback, from_ts_second = None, end_ts_second = None, error_handler=None): """ Subscribe candlestick/kline event. If the candlestick/kline is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param interval: The candlestick/kline interval, MIN1, MIN5, DAY1 etc. :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(candlestick_event: 'CandlestickEvent'): pass :param from_ts_second : data from timestamp [it's second] :param end_ts_second : data util timestamp [it's second] :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(interval, "interval") check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, "interval" : interval, "from_ts_second" : from_ts_second, "end_ts_second" : end_ts_second } from huobi.service.market.req_candlestick import ReqCandleStickService ReqCandleStickService(params).subscribe(callback, error_handler, **self.__kwargs) def get_pricedepth(self, symbol: 'str', depth_type: 'str', depth_size: 'int' = None) -> PriceDepth: """ Get the Market Depth of a symbol. :param symbol: The symbol, like "btcusdt". (mandatory) :param depth_type: The tpye, like "step0" to "step5". (mandatory) :param depth_size(optional): The maximum number of Market Depth step0 requested. range [1 - 150], default is 150 The maximum number of Market Depth step1,step2,step3,step4,step5 requested. size is in [5, 10, 20], default is 20. :return: Market Depth data. """ check_symbol(symbol) check_in_list(depth_type, [DepthStep.STEP0, DepthStep.STEP1, DepthStep.STEP2, DepthStep.STEP3, DepthStep.STEP4, DepthStep.STEP5], "depth_type") params = { "symbol": symbol, "type": depth_type, # "depth": depth_size } from huobi.service.market.get_pricedepth import GetPriceDepthService ret_data = GetPriceDepthService(params).request(**self.__kwargs) if depth_size is not None: if (ret_data.bids is not None) and (len(ret_data.bids) > depth_size): ret_data.bids = ret_data.bids[0:depth_size] if (ret_data.asks is not None) and (len(ret_data.asks) > depth_size): ret_data.asks = ret_data.asks[0:depth_size] return ret_data @staticmethod def get_depth_step_list(): return [DepthStep.STEP0, DepthStep.STEP1, DepthStep.STEP2, DepthStep.STEP3, DepthStep.STEP4, DepthStep.STEP5] @staticmethod def get_valid_depth_step(value, defalut_value): step_list = MarketClient.get_depth_step_list() if value in step_list: return value else: return defalut_value def sub_pricedepth(self, symbols: 'str', depth_step: 'str', callback, error_handler=None): """ Subscribe price depth event. If the price depth is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param depth_step: The depth precision, string from step0 to step5. :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(price_depth_event: 'PriceDepthEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) new_step = MarketClient.get_valid_depth_step(value=depth_step, defalut_value=DepthStep.STEP0) check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, "step" : new_step, } from huobi.service.market.sub_pricedepth import SubPriceDepthService SubPriceDepthService(params).subscribe(callback, error_handler, **self.__kwargs) def sub_pricedepth_bbo(self, symbols: 'str', callback, error_handler=None): """ Subscribe price depth event. If the price depth is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(price_depth_event: 'PriceDepthEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, } from huobi.service.market.sub_pricedepth_bbo import SubPriceDepthBboService SubPriceDepthBboService(params).subscribe(callback, error_handler, **self.__kwargs) def req_pricedepth(self, symbols: 'str', depth_step: 'str', callback, error_handler=None): """ Subscribe price depth event. If the price depth is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param depth_step: The depth precision, string from step0 to step5. :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(price_depth_event: 'PriceDepthEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) new_step = MarketClient.get_valid_depth_step(value=depth_step, defalut_value=DepthStep.STEP0) check_should_not_none(callback, "callback") params = { "symbol_list": symbol_list, "step": new_step, } from huobi.service.market.req_pricedepth import ReqPriceDepthService ReqPriceDepthService(params).subscribe(callback, error_handler, **self.__kwargs) def get_market_detail(self, symbol: 'str') -> MarketDetail: """ Get trade statistics in 24 hours. :param symbol: The symbol, like "btcusdt". (mandatory) :return: Trade statistics. """ check_symbol(symbol) params = { "symbol": symbol, } from huobi.service.market.get_market_detail import GetMarketDetailService return GetMarketDetailService(params).request(**self.__kwargs) def sub_market_detail(self, symbols: 'str', callback, error_handler=None): """ Subscribe 24 hours trade statistics event. If statistics is generated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(trade_statistics_event: 'TradeStatisticsEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, } from huobi.service.market.sub_market_detail import SubMarketDetailService SubMarketDetailService(params).subscribe(callback, error_handler, **self.__kwargs) def req_market_detail(self, symbols: 'str', callback, error_handler=None): """ Subscribe 24 hours trade statistics event. If statistics is generated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(trade_statistics_event: 'TradeStatisticsEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(callback, "callback") params = { "symbol_list": symbol_list, } from huobi.service.market.req_market_detail import ReqMarketDetailService ReqMarketDetailService(params).subscribe(callback, error_handler, **self.__kwargs) def get_market_trade(self, symbol: 'str') -> list: """ Get the most recent trades with their price, volume and direction. :param symbol: The symbol, like "btcusdt". (mandatory) :return: The list of trade. """ check_symbol(symbol) params = { "symbol": symbol, } from huobi.service.market.get_market_trade import GetMarketTradeService return GetMarketTradeService(params).request(**self.__kwargs) def get_history_trade(self, symbol: 'str', size: 'int' = None) -> list: """ Get the most recent trades with their price, volume and direction. :param symbol: The symbol, like "btcusdt". (mandatory) :param size: The number of historical trade requested, range [1 - 2000] (optional) :return: The list of trade. """ check_symbol(symbol) check_range(size, 1, 2000, "size") params = { "symbol": symbol, "size" : size } from huobi.service.market.get_history_trade import GetHistoryTradeService return GetHistoryTradeService(params).request(**self.__kwargs) def sub_trade_detail(self, symbols: 'str', callback, error_handler=None): """ Subscribe price depth event. If the price depth is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(trade_event: 'TradeEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, } from huobi.service.market.sub_trade_detail import SubTradeDetailService SubTradeDetailService(params).subscribe(callback, error_handler, **self.__kwargs) def req_trade_detail(self, symbols: 'str', callback, error_handler=None): """ Subscribe price depth event. If the price depth is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(trade_event: 'TradeEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, } from huobi.service.market.req_trade_detail import ReqTradeDetailService ReqTradeDetailService(params).subscribe(callback, error_handler, **self.__kwargs) def get_market_detail_merged(self, symbol): check_symbol(symbol) params = { "symbol": symbol } from huobi.service.market.get_market_detail_merged import GetMarketDetailMergedService return GetMarketDetailMergedService(params).request(**self.__kwargs) def get_market_tickers(self) -> list: """ get market tickers :return: market ticker list. """ params = {} from huobi.service.market.get_market_tickers import GetMarketTickersService return GetMarketTickersService(params).request(**self.__kwargs) """ increase mbp(market by price) """ def sub_mbp_increase(self, symbols: 'str', levels: 'int', callback, error_handler=None): """ Subscribe mbp event. If the mbp is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param levels: level, 5,10,20,150. current only support 150 :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(price_depth_event: 'PriceDepthEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ check_should_not_none(symbols, "symbol") symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(levels, "levels") check_should_not_none(callback, "callback") params = { "symbol_list" : symbol_list, "levels" : levels } from huobi.service.market.sub_mbp_increase import SubMbpIncreaseService SubMbpIncreaseService(params).subscribe(callback, error_handler, **self.__kwargs) """ subscribe full mbp(market by price) """ def sub_mbp_full(self, symbols: 'str', levels: 'int', callback, error_handler=None): """ Subscribe full mbp event. If the mbp is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param levels: level, 5,10,20 :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(price_depth_event: 'PriceDepthEvent'): pass :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ check_should_not_none(symbols, "symbol") symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(levels, "levels") check_should_not_none(callback, "callback") params = { "symbol_list": symbol_list, "levels": levels } from huobi.service.market.sub_mbp_full import SubMbpFullService SubMbpFullService(params).subscribe(callback, error_handler, **self.__kwargs) def req_mbp(self, symbols: 'str', levels: 'int', callback, auto_close = True, error_handler=None): """ Subscribe mbp event. If the mbp is updated, server will send the data to client and onReceive in callback will be called. :param symbols: The symbols, like "btcusdt". Use comma to separate multi symbols, like "btcusdt,ethusdt". :param levels: level, 5,10,20,150. current only support 150 :param callback: The implementation is required. onReceive will be called if receive server's update. example: def callback(price_depth_event: 'PriceDepthEvent'): pass :param auto_close : close websocket connection after get data :param error_handler: The error handler will be called if subscription failed or error happen between client and Huobi server example: def error_handler(exception: 'HuobiApiException') pass :return: No return """ check_should_not_none(symbols, "symbol") symbol_list = symbols.split(",") check_symbol_list(symbol_list) check_should_not_none(levels, "levels") check_should_not_none(callback, "callback") params = { "symbol_list": symbol_list, "levels": levels } from huobi.service.market.req_mbp import ReqMbpService ReqMbpService(params).subscribe(callback, error_handler, **self.__kwargs)
44.485887
157
0.653705
87b623971f6ce4c2d43cab30e8be7cf30931d68c
3,692
py
Python
Sketches/JMB/mysite/settings.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
12
2015-10-20T10:22:01.000Z
2021-07-19T10:09:44.000Z
Sketches/JMB/mysite/settings.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
2
2015-10-20T10:22:55.000Z
2017-02-13T11:05:25.000Z
Sketches/JMB/mysite/settings.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
6
2015-03-09T12:51:59.000Z
2020-03-01T13:06:21.000Z
# -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Django settings for mysite project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS DATABASE_ENGINE = 'sqlite3' # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'ado_mssql'. DATABASE_NAME = '/home/jason/mysite/mysite.db' # Or path to database file if using sqlite3. DATABASE_USER = '' # Not used with sqlite3. DATABASE_PASSWORD = '' # Not used with sqlite3. DATABASE_HOST = '' # Set to empty string for localhost. Not used with sqlite3. DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3. # Local time zone for this installation. Choices can be found here: # http://www.postgresql.org/docs/8.1/static/datetime-keywords.html#DATETIME-TIMEZONE-SET-TABLE # although not all variations may be possible on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.w3.org/TR/REC-html40/struct/dirlang.html#langcodes # http://blogs.law.harvard.edu/tech/stories/storyReader$15 LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. # Example: "http://media.lawrence.com" MEDIA_URL = '' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/' # Make this unique, and don't share it with anybody. SECRET_KEY = 'bbfgxp&2+t&=yo!0@wey-_n4fcxhx8gdllmp%1s#%z85w_opv5' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.load_template_source', 'django.template.loaders.app_directories.load_template_source', # 'django.template.loaders.eggs.load_template_source', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.middleware.doc.XViewMiddleware', ) ROOT_URLCONF = 'mysite.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', "django.contrib.admin", 'mysite.polls' )
36.196078
111
0.728061
81b1d64161ef00d03f8a99a9d649d9d3942f4fcd
4,443
py
Python
fb_chat.py
ShivamSarodia/FB-Chat-Parser
bbeb6161e9555a20e0bee87520535345e3234c9b
[ "MIT" ]
11
2015-05-02T16:23:13.000Z
2021-08-31T03:39:39.000Z
fb_chat.py
ShivamSarodia/FB-Chat-Parser
bbeb6161e9555a20e0bee87520535345e3234c9b
[ "MIT" ]
2
2016-01-24T01:03:53.000Z
2017-08-22T22:45:05.000Z
fb_chat.py
ShivamSarodia/FB-Chat-Parser
bbeb6161e9555a20e0bee87520535345e3234c9b
[ "MIT" ]
2
2016-12-19T17:37:02.000Z
2017-02-27T19:09:03.000Z
from datetime import datetime import pickle def load_data(filename): """Return a Data object loaded from the given pickle file.""" with open(filename, "rb") as f: return pickle.load(f) class Data: def __init__(self, threads, me=None): self.threads = threads if me: self.me = me else: counts = {} # set 'me' as the most common sender in the threads for thread in self.threads: for mess in thread.messages: counts[mess.sender] = counts.get(mess.sender, 0) + 1 self.me = max(counts, key=lambda x: counts[x]) for thread in self.threads: thread.add_me(self.me) def query(self, *, indv=None, chat_name=None, members=None, first=True): """Query the threads in this chat data. indv (string) - Return the individual chat thread with this person. chat_name (string) - Return the chat thread with this name. member (iterable of names) - Return the chat thread with these members. first (bool) - If true, return only the longest match. Exactly one of indv, chat_name, and members may be specified. """ if [indv, chat_name, members].count(None) < 2: raise ValueError("Multiple query types may not be specified.") if indv: threads = [t for t in self.threads if t.name == indv and t.members == set((self.me, indv))] elif chat_name: threads = [t for t in self.threads if t.name == chat_name] elif members: members = set(members) members.add(self.me) threads = [t for t in self.threads if t.members == members] if first: return max(threads, key=len, default=None) else: return threads def __getitem__(self, key): return self.threads[key] def __iter__(self): return iter(self.threads) def __len__(self): return len(self.threads) class Thread: def __init__(self, name, messages, raw_members, filename): self.name = name self.filename = filename self.messages = messages self.me = None # We take the raw members and add everyone who spoke in the # chat to get the final members list. self.members = set(raw_members) for message in messages: self.members.add(message.sender) def add_me(self, me): """Add the given person as a member of this thread and as the self.me for this thread. This function is called automatically by the Data constructor, so that each individual thread has both you and the other people as members. """ self.me = me self.members.add(me) def query(self, *, sender=None, senders=None, start=datetime.min, end=datetime.max): """Query this thread's messages. start (datetime) - return only messages after this time (inclusive) end (datetime) - return only messages before this time (exclusive) sender (string) - return only messages by the given sender senders (iterable of strings) - return only messages by one of the given senders """ if sender and senders: raise ValueError("`sender` and `senders` cannot be simultaneously specified") if sender: senders = set([sender]) def condition(m): return (start <= m.time < end) and (not senders or m.sender in senders) return [m for m in self.messages if condition(m)] def get_my_messages(self): return self.query(sender=self.me) def __repr__(self): return "<Thread of {} named {}>".format( ", ".join(self.members), self.name) def __getitem__(self, key): return self.messages[key] def __iter__(self): return iter(self.messages) def __len__(self): return len(self.messages) class Message: def __init__(self, sender, text, time): self.sender = sender self.text = text self.time = time def __len__(self): return len(self.text) def __repr__(self): return "(" + str(self.time) + ") " + self.sender + ": " + self.text
29.818792
89
0.578438
e89f2792f7c5b9c6b7ebc32552b3d39d93730dd7
10,656
py
Python
spirecomm/ai/behaviours.py
joshmiller17/spirecomm
57e0d4e773e0e7accbfb4eb8f512f090432edb08
[ "MIT" ]
2
2019-08-24T15:52:51.000Z
2019-08-24T15:53:33.000Z
spirecomm/ai/behaviours.py
joshmiller17/spirecomm
57e0d4e773e0e7accbfb4eb8f512f090432edb08
[ "MIT" ]
61
2019-05-18T22:40:52.000Z
2019-08-24T14:10:51.000Z
spirecomm/ai/behaviours.py
joshmiller17/spirecomm
57e0d4e773e0e7accbfb4eb8f512f090432edb08
[ "MIT" ]
null
null
null
import py_trees import json from spirecomm.communication.action import * # This is the Template class from which all StS Behaviours inherit # It also includes the original comments for what should go in each method class DefaultBehaviour(py_trees.behaviour.Behaviour): def __init__(self, name, agent): """ Minimal one-time initialisation. A good rule of thumb is to only include the initialisation relevant for being able to insert this behaviour in a tree for offline rendering to dot graphs. Other one-time initialisation requirements should be met via the setup() method. """ super(DefaultBehaviour, self).__init__(name) self.agent = agent def log(self, msg, debug=4): self.agent.log(str(self.name) + " [" + str(self.__class__.__name__) + "]: " + msg, debug=debug) def setup(self): """ When is this called? This function should be either manually called by your program to setup this behaviour alone, or more commonly, via :meth:`~py_trees.behaviour.Behaviour.setup_with_descendants` or :meth:`~py_trees.trees.BehaviourTree.setup`, both of which will iterate over this behaviour, it's children (it's children's children ...) calling :meth:`~py_trees.behaviour.Behaviour.setup` on each in turn. If you have vital initialisation necessary to the success execution of your behaviour, put a guard in your :meth:`~py_trees.behaviour.Behaviour.initialise` method to protect against entry without having been setup. What to do here? Delayed one-time initialisation that would otherwise interfere with offline rendering of this behaviour in a tree to dot graph or validation of the behaviour's configuration. Good examples include: - Hardware or driver initialisation - Middleware initialisation (e.g. ROS pubs/subs/services) - A parallel checking for a valid policy configuration after children have been added or removed """ pass def initialise(self): """ When is this called? The first time your behaviour is ticked and anytime the status is not RUNNING thereafter. What to do here? Any initialisation you need before putting your behaviour to work. """ pass def update(self): """ When is this called? Every time your behaviour is ticked. What to do here? - Triggering, checking, monitoring. Anything...but do not block! - Set a feedback message - return a py_trees.common.Status.[RUNNING, SUCCESS, FAILURE] """ return py_trees.common.Status.SUCCESS def terminate(self, new_status): """ When is this called? Whenever your behaviour switches to a non-running state. - SUCCESS || FAILURE : your behaviour's work cycle has finished - INVALID : a higher priority branch has interrupted, or shutting down """ pass #like Sequence, but with a to_json method class SequenceBehaviour(py_trees.composites.Sequence): def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "SequenceBehaviour" attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret #like Selector, but with a to_json method class SelectorBehaviour(py_trees.composites.Selector): def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "SelectorBehaviour" attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret # A test-only class, returns the default logic of what the original AI would have done class TestBehaviour(DefaultBehaviour): def update(self): self.log("tick", debug=6) self.agent.cmd_queue.append(self.agent.default_logic(self.agent.blackboard.game)) return py_trees.common.Status.SUCCESS def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "TestBehaviour" attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"],agent) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret # Temporary behaviour, remove when behaviour tree is more fully realized # calls a custom function to handle complex logic for us class CustomBehaviour(DefaultBehaviour): def __init__(self, name, agent, function): super(CustomBehaviour, self).__init__(name, agent) self.function = function def update(self): self.agent.cmd_queue.append(getattr(self.agent, self.function)()) return py_trees.common.Status.SUCCESS def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "CustomBehaviour" attrDict["function"] = self.function attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"],agent,d["function"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret # Returns success iff a blackboard.game boolean is true # To invert this logic, set success=False: behaviour will then return true iff bool is false class BoolCheckBehaviour(DefaultBehaviour): def __init__(self, name, agent, boolean, success=True): super(BoolCheckBehaviour, self).__init__(name, agent) self.boolean = boolean self.success = success def update(self): value = getattr(self.agent.blackboard.game, self.boolean) ret = value if self.success else not value # invert bool if that's what we want to check retStr = "SUCCESS" if ret else "FAILURE" self.log(str(self.boolean) + " is " + str(value) + ": " + retStr, debug=6) return py_trees.common.Status.SUCCESS if ret else py_trees.common.Status.FAILURE def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "BoolCheckBehaviour" attrDict["boolean"] = self.boolean attrDict["success"] = self.success attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"],agent,d["boolean"],d["success"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret # Returns success iff values are equal # To invert this logic, set success=False: behaviour will then return true iff values are not equal class EqualityCheckBehaviour(BoolCheckBehaviour): def __init__(self, name, agent, first, second, success=True): super(EqualityCheckBehaviour, self).__init__(name, agent, first, success) self.first = first self.second = second def update(self): value = True if self.first == self.second else False ret = value if self.success else not value # invert bool if that's what we want to check retStr = "SUCCESS" if ret else "FAILURE" logStr = str(self.first) + " " if value: logStr += "== " else: logStr += "!= " logStr += str(self.second) + ": " + retStr self.log(logStr, debug=6) return py_trees.common.Status.SUCCESS if ret else py_trees.common.Status.FAILURE def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "EqualityCheckBehaviour" attrDict["first"] = self.first attrDict["second"] = self.second attrDict["success"] = self.success attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"],agent,d["first"],d["second"],d["success"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret # Like EqualityCheck, but the first value comes from game, second is given at init class CompareToConstBehaviour(EqualityCheckBehaviour): def __init__(self, name, agent, attr, static, success=True): super(CompareToConstBehaviour, self).__init__(name, agent, attr, static, success) self.attr = attr self.static = static def update(self): self.first = getattr(self.agent.blackboard.game, self.attr) return super().update() def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "CompareToConstBehaviour" attrDict["attr"] = self.attr attrDict["static"] = str(self.static) attrDict["success"] = self.success attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"],agent,d["attr"],d["static"],d["success"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret # The default ActionBehaviour, implemented by more complex action behaviours like Play # On update, it appends its action to the queue and returns SUCCESS class ActionBehaviour(DefaultBehaviour): def __init__(self, name, agent, action, params=[]): super(ActionBehaviour, self).__init__(name, agent) self.action = action self.params = params def update(self): action_class = globals()[self.action] command = action_class(*self.params) self.agent.cmd_queue.append(command) return py_trees.common.Status.SUCCESS def to_json(self): attrDict = {} attrDict["name"] = self.name attrDict["class"] = "ActionBehaviour" attrDict["action"] = self.action attrDict["params"] = self.params attrDict["children"] = [c.to_json() for c in self.iterate(direct_descendants=True) if c != self] return attrDict @classmethod def fromDict(cls,d,agent): ret = cls(d["name"],agent,d["action"],d["params"]) for child in d["children"]: childClass = child["class"] ret.add_child(classMap[childClass].fromDict(child,agent)) return ret classMap = {"SequenceBehaviour":SequenceBehaviour, \ "SelectorBehaviour":SelectorBehaviour, \ "TestBehaviour":TestBehaviour,\ "BoolCheckBehaviour":BoolCheckBehaviour, \ "EqualityCheckBehaviour":EqualityCheckBehaviour, \ "EqualityCheckBehaviour":EqualityCheckBehaviour, \ "CompareToConstBehaviour":CompareToConstBehaviour, \ "ActionBehaviour":ActionBehaviour}
33.093168
99
0.721471
0de9a6df4d0284cbd4c73853f307b0e39fd677fc
13,797
py
Python
tests/ignite/metrics/test_metrics_lambda.py
WrRan/ignite
00c79702b3c20e87168b93e73c250035a8d1d901
[ "BSD-3-Clause" ]
1
2020-09-18T18:28:30.000Z
2020-09-18T18:28:30.000Z
tests/ignite/metrics/test_metrics_lambda.py
alxlampe/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
[ "BSD-3-Clause" ]
null
null
null
tests/ignite/metrics/test_metrics_lambda.py
alxlampe/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
[ "BSD-3-Clause" ]
null
null
null
import os import numpy as np import pytest import torch from pytest import approx from sklearn.metrics import f1_score, precision_score, recall_score import ignite.distributed as idist from ignite.engine import Engine from ignite.metrics import Metric, MetricsLambda, Precision, Recall class ListGatherMetric(Metric): def __init__(self, index): super(ListGatherMetric, self).__init__() self.index = index def reset(self): self.list_ = None def update(self, output): self.list_ = output def compute(self): return self.list_[self.index] def test_metrics_lambda(): m0 = ListGatherMetric(0) m1 = ListGatherMetric(1) m2 = ListGatherMetric(2) def process_function(engine, data): return data engine = Engine(process_function) def plus(this, other): return this + other m0_plus_m1 = MetricsLambda(plus, m0, other=m1) m2_plus_2 = MetricsLambda(plus, m2, 2) m0_plus_m1.attach(engine, "m0_plus_m1") m2_plus_2.attach(engine, "m2_plus_2") engine.run([[1, 10, 100]]) assert engine.state.metrics["m0_plus_m1"] == 11 assert engine.state.metrics["m2_plus_2"] == 102 engine.run([[2, 20, 200]]) assert engine.state.metrics["m0_plus_m1"] == 22 assert engine.state.metrics["m2_plus_2"] == 202 # metrics are partially attached assert not m0.is_attached(engine) assert not m1.is_attached(engine) assert not m2.is_attached(engine) # a dependency is detached m0.detach(engine) # so the lambda metric is too assert not m0_plus_m1.is_attached(engine) # the lambda is attached again m0_plus_m1.attach(engine, "m0_plus_m1") assert m0_plus_m1.is_attached(engine) # metrics are always partially attached assert not m0.is_attached(engine) m0_plus_m1.detach(engine) assert not m0_plus_m1.is_attached(engine) # detached (and no longer partially attached) assert not m0.is_attached(engine) def test_metrics_lambda_reset(): m0 = ListGatherMetric(0) m1 = ListGatherMetric(1) m2 = ListGatherMetric(2) m0.update([1, 10, 100]) m1.update([1, 10, 100]) m2.update([1, 10, 100]) def fn(x, y, z, t): return 1 m = MetricsLambda(fn, m0, m1, z=m2, t=0) # initiating a new instance of MetricsLambda must reset # its argument metrics assert m0.list_ is None assert m1.list_ is None assert m2.list_ is None m0.update([1, 10, 100]) m1.update([1, 10, 100]) m2.update([1, 10, 100]) m.reset() assert m0.list_ is None assert m1.list_ is None assert m2.list_ is None def test_integration(): np.random.seed(1) n_iters = 10 batch_size = 10 n_classes = 10 y_true = np.arange(0, n_iters * batch_size, dtype="int64") % n_classes y_pred = 0.2 * np.random.rand(n_iters * batch_size, n_classes) for i in range(n_iters * batch_size): if np.random.rand() > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = np.random.randint(0, n_classes) y_pred[i, j] = 0.7 y_true_batch_values = iter(y_true.reshape(n_iters, batch_size)) y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes)) def update_fn(engine, batch): y_true_batch = next(y_true_batch_values) y_pred_batch = next(y_pred_batch_values) return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta ** 2) * p * r / (beta ** 2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) precision.attach(evaluator, "precision") recall.attach(evaluator, "recall") F1.attach(evaluator, "f1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) precision_true = precision_score(y_true, np.argmax(y_pred, axis=-1), average=None) recall_true = recall_score(y_true, np.argmax(y_pred, axis=-1), average=None) f1_true = f1_score(y_true, np.argmax(y_pred, axis=-1), average="macro") precision = state.metrics["precision"].numpy() recall = state.metrics["recall"].numpy() assert precision_true == approx(precision), "{} vs {}".format(precision_true, precision) assert recall_true == approx(recall), "{} vs {}".format(recall_true, recall) assert f1_true == approx(state.metrics["f1"]), "{} vs {}".format(f1_true, state.metrics["f1"]) def test_integration_ingredients_not_attached(): np.random.seed(1) n_iters = 10 batch_size = 10 n_classes = 10 y_true = np.arange(0, n_iters * batch_size, dtype="int64") % n_classes y_pred = 0.2 * np.random.rand(n_iters * batch_size, n_classes) for i in range(n_iters * batch_size): if np.random.rand() > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = np.random.randint(0, n_classes) y_pred[i, j] = 0.7 y_true_batch_values = iter(y_true.reshape(n_iters, batch_size)) y_pred_batch_values = iter(y_pred.reshape(n_iters, batch_size, n_classes)) def update_fn(engine, batch): y_true_batch = next(y_true_batch_values) y_pred_batch = next(y_pred_batch_values) return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) def Fbeta(r, p, beta): return torch.mean((1 + beta ** 2) * p * r / (beta ** 2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.attach(evaluator, "f1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) f1_true = f1_score(y_true, np.argmax(y_pred, axis=-1), average="macro") assert f1_true == approx(state.metrics["f1"]), "{} vs {}".format(f1_true, state.metrics["f1"]) def test_state_metrics(): y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) F1 = precision * recall * 2 / (precision + recall + 1e-20) F1 = MetricsLambda(lambda t: torch.mean(t).item(), F1) precision.attach(evaluator, "precision") recall.attach(evaluator, "recall") F1.attach(evaluator, "f1") def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = evaluator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set(["precision", "recall", "f1"]) def test_state_metrics_ingredients_not_attached(): y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y evaluator = Engine(update_fn) precision = Precision(average=False) recall = Recall(average=False) F1 = precision * recall * 2 / (precision + recall + 1e-20) F1 = MetricsLambda(lambda t: torch.mean(t).item(), F1) F1.attach(evaluator, "F1") def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = evaluator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set(["F1"]) def test_recursive_attachment(): def _test(composed_metric, metric_name, compute_true_value_fn): metrics = { metric_name: composed_metric, } y_pred = torch.randint(0, 2, size=(15, 10, 4)).float() y = torch.randint(0, 2, size=(15, 10, 4)).long() def update_fn(engine, batch): y_pred, y = batch return y_pred, y validator = Engine(update_fn) for name, metric in metrics.items(): metric.attach(validator, name) def data(y_pred, y): for i in range(y_pred.shape[0]): yield (y_pred[i], y[i]) d = data(y_pred, y) state = validator.run(d, max_epochs=1, epoch_length=y_pred.shape[0]) assert set(state.metrics.keys()) == set([metric_name,]) np_y_pred = y_pred.numpy().ravel() np_y = y.numpy().ravel() assert state.metrics[metric_name] == approx(compute_true_value_fn(np_y_pred, np_y)) precision_1 = Precision() precision_2 = Precision() summed_precision = precision_1 + precision_2 def compute_true_summed_precision(y_pred, y): p1 = precision_score(y, y_pred) p2 = precision_score(y, y_pred) return p1 + p2 _test(summed_precision, "summed precision", compute_true_value_fn=compute_true_summed_precision) precision_1 = Precision() precision_2 = Precision() mean_precision = (precision_1 + precision_2) / 2 def compute_true_mean_precision(y_pred, y): p1 = precision_score(y, y_pred) p2 = precision_score(y, y_pred) return (p1 + p2) * 0.5 _test(mean_precision, "mean precision", compute_true_value_fn=compute_true_mean_precision) precision_1 = Precision() precision_2 = Precision() some_metric = 2.0 + 0.2 * (precision_1 * precision_2 + precision_1 - precision_2) ** 0.5 def compute_true_somemetric(y_pred, y): p1 = precision_score(y, y_pred) p2 = precision_score(y, y_pred) return 2.0 + 0.2 * (p1 * p2 + p1 - p2) ** 0.5 _test(some_metric, "some metric", compute_true_somemetric) def _test_distrib_integration(device): rank = idist.get_rank() np.random.seed(12) n_iters = 10 batch_size = 10 n_classes = 10 def _test(): y_true = np.arange(0, n_iters * batch_size * idist.get_world_size(), dtype="int64") % n_classes y_pred = 0.2 * np.random.rand(n_iters * batch_size * idist.get_world_size(), n_classes) for i in range(n_iters * batch_size * idist.get_world_size()): if np.random.rand() > 0.4: y_pred[i, y_true[i]] = 1.0 else: j = np.random.randint(0, n_classes) y_pred[i, j] = 0.7 y_true = y_true.reshape(n_iters * idist.get_world_size(), batch_size) y_pred = y_pred.reshape(n_iters * idist.get_world_size(), batch_size, n_classes) def update_fn(engine, i): y_true_batch = y_true[i + rank * n_iters, ...] y_pred_batch = y_pred[i + rank * n_iters, ...] return torch.from_numpy(y_pred_batch), torch.from_numpy(y_true_batch) evaluator = Engine(update_fn) precision = Precision(average=False, device=device) recall = Recall(average=False, device=device) def Fbeta(r, p, beta): return torch.mean((1 + beta ** 2) * p * r / (beta ** 2 * p + r)).item() F1 = MetricsLambda(Fbeta, recall, precision, 1) F1.attach(evaluator, "f1") another_f1 = (1.0 + precision * recall * 2 / (precision + recall + 1e-20)).mean().item() another_f1.attach(evaluator, "ff1") data = list(range(n_iters)) state = evaluator.run(data, max_epochs=1) assert "f1" in state.metrics assert "ff1" in state.metrics f1_true = f1_score(y_true.ravel(), np.argmax(y_pred.reshape(-1, n_classes), axis=-1), average="macro") assert f1_true == approx(state.metrics["f1"]) assert 1.0 + f1_true == approx(state.metrics["ff1"]) for _ in range(5): _test() @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="Skip if no GPU") def test_distrib_gpu(local_rank, distributed_context_single_node_nccl): device = "cuda:{}".format(local_rank) _test_distrib_integration(device) @pytest.mark.distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") def test_distrib_cpu(local_rank, distributed_context_single_node_gloo): device = "cpu" _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_cpu(distributed_context_multi_node_gloo): device = "cpu" _test_distrib_integration(device) @pytest.mark.multinode_distributed @pytest.mark.skipif(not idist.has_native_dist_support, reason="Skip if no native dist support") @pytest.mark.skipif("GPU_MULTINODE_DISTRIB" not in os.environ, reason="Skip if not multi-node distributed") def test_multinode_distrib_gpu(distributed_context_multi_node_nccl): device = "cuda:{}".format(distributed_context_multi_node_nccl["local_rank"]) _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if NUM_TPU_WORKERS is in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_single_device_xla(): device = idist.device() _test_distrib_integration(device) def _test_distrib_xla_nprocs(index): device = idist.device() _test_distrib_integration(device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" not in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_distrib_xla_nprocs(xmp_executor): n = int(os.environ["NUM_TPU_WORKERS"]) xmp_executor(_test_distrib_xla_nprocs, args=(), nprocs=n)
32.463529
110
0.66297
49a3251372381015263ea8015c42012bbf58fad9
7,520
py
Python
synapse/replication/http/federation.py
rvleij/synapse
77d9357226687a177c865bcdeaa0e750612fc078
[ "Apache-2.0" ]
2
2020-04-30T18:38:02.000Z
2020-07-08T21:38:28.000Z
synapse/replication/http/federation.py
rvleij/synapse
77d9357226687a177c865bcdeaa0e750612fc078
[ "Apache-2.0" ]
null
null
null
synapse/replication/http/federation.py
rvleij/synapse
77d9357226687a177c865bcdeaa0e750612fc078
[ "Apache-2.0" ]
2
2020-03-03T18:34:52.000Z
2022-03-31T11:06:18.000Z
# -*- coding: utf-8 -*- # Copyright 2018 New Vector Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from twisted.internet import defer from synapse.events import event_type_from_format_version from synapse.events.snapshot import EventContext from synapse.http.servlet import parse_json_object_from_request from synapse.replication.http._base import ReplicationEndpoint from synapse.util.metrics import Measure logger = logging.getLogger(__name__) class ReplicationFederationSendEventsRestServlet(ReplicationEndpoint): """Handles events newly received from federation, including persisting and notifying. The API looks like: POST /_synapse/replication/fed_send_events/:txn_id { "events": [{ "event": { .. serialized event .. }, "internal_metadata": { .. serialized internal_metadata .. }, "rejected_reason": .., // The event.rejected_reason field "context": { .. serialized event context .. }, }], "backfilled": false """ NAME = "fed_send_events" PATH_ARGS = () def __init__(self, hs): super(ReplicationFederationSendEventsRestServlet, self).__init__(hs) self.store = hs.get_datastore() self.storage = hs.get_storage() self.clock = hs.get_clock() self.federation_handler = hs.get_handlers().federation_handler @staticmethod @defer.inlineCallbacks def _serialize_payload(store, event_and_contexts, backfilled): """ Args: store event_and_contexts (list[tuple[FrozenEvent, EventContext]]) backfilled (bool): Whether or not the events are the result of backfilling """ event_payloads = [] for event, context in event_and_contexts: serialized_context = yield context.serialize(event, store) event_payloads.append( { "event": event.get_pdu_json(), "event_format_version": event.format_version, "internal_metadata": event.internal_metadata.get_dict(), "rejected_reason": event.rejected_reason, "context": serialized_context, } ) payload = {"events": event_payloads, "backfilled": backfilled} return payload async def _handle_request(self, request): with Measure(self.clock, "repl_fed_send_events_parse"): content = parse_json_object_from_request(request) backfilled = content["backfilled"] event_payloads = content["events"] event_and_contexts = [] for event_payload in event_payloads: event_dict = event_payload["event"] format_ver = event_payload["event_format_version"] internal_metadata = event_payload["internal_metadata"] rejected_reason = event_payload["rejected_reason"] EventType = event_type_from_format_version(format_ver) event = EventType(event_dict, internal_metadata, rejected_reason) context = EventContext.deserialize( self.storage, event_payload["context"] ) event_and_contexts.append((event, context)) logger.info("Got %d events from federation", len(event_and_contexts)) await self.federation_handler.persist_events_and_notify( event_and_contexts, backfilled ) return 200, {} class ReplicationFederationSendEduRestServlet(ReplicationEndpoint): """Handles EDUs newly received from federation, including persisting and notifying. Request format: POST /_synapse/replication/fed_send_edu/:edu_type/:txn_id { "origin": ..., "content: { ... } } """ NAME = "fed_send_edu" PATH_ARGS = ("edu_type",) def __init__(self, hs): super(ReplicationFederationSendEduRestServlet, self).__init__(hs) self.store = hs.get_datastore() self.clock = hs.get_clock() self.registry = hs.get_federation_registry() @staticmethod def _serialize_payload(edu_type, origin, content): return {"origin": origin, "content": content} async def _handle_request(self, request, edu_type): with Measure(self.clock, "repl_fed_send_edu_parse"): content = parse_json_object_from_request(request) origin = content["origin"] edu_content = content["content"] logger.info("Got %r edu from %s", edu_type, origin) result = await self.registry.on_edu(edu_type, origin, edu_content) return 200, result class ReplicationGetQueryRestServlet(ReplicationEndpoint): """Handle responding to queries from federation. Request format: POST /_synapse/replication/fed_query/:query_type { "args": { ... } } """ NAME = "fed_query" PATH_ARGS = ("query_type",) # This is a query, so let's not bother caching CACHE = False def __init__(self, hs): super(ReplicationGetQueryRestServlet, self).__init__(hs) self.store = hs.get_datastore() self.clock = hs.get_clock() self.registry = hs.get_federation_registry() @staticmethod def _serialize_payload(query_type, args): """ Args: query_type (str) args (dict): The arguments received for the given query type """ return {"args": args} async def _handle_request(self, request, query_type): with Measure(self.clock, "repl_fed_query_parse"): content = parse_json_object_from_request(request) args = content["args"] logger.info("Got %r query", query_type) result = await self.registry.on_query(query_type, args) return 200, result class ReplicationCleanRoomRestServlet(ReplicationEndpoint): """Called to clean up any data in DB for a given room, ready for the server to join the room. Request format: POST /_synapse/replication/fed_query/:fed_cleanup_room/:txn_id {} """ NAME = "fed_cleanup_room" PATH_ARGS = ("room_id",) def __init__(self, hs): super(ReplicationCleanRoomRestServlet, self).__init__(hs) self.store = hs.get_datastore() @staticmethod def _serialize_payload(room_id, args): """ Args: room_id (str) """ return {} async def _handle_request(self, request, room_id): await self.store.clean_room_for_join(room_id) return 200, {} def register_servlets(hs, http_server): ReplicationFederationSendEventsRestServlet(hs).register(http_server) ReplicationFederationSendEduRestServlet(hs).register(http_server) ReplicationGetQueryRestServlet(hs).register(http_server) ReplicationCleanRoomRestServlet(hs).register(http_server)
30.569106
81
0.646277
c97afa5bbd903a0fbfacab455dd28e48366f14c4
744
py
Python
bobocep/rules/actions/no_action.py
r3w0p/bobocep
5f08348e9a2c3b0f92e935429d4f265c1693d26c
[ "MIT" ]
5
2019-09-02T13:19:48.000Z
2021-07-31T23:42:06.000Z
bobocep/rules/actions/no_action.py
r3w0p/bobocep
5f08348e9a2c3b0f92e935429d4f265c1693d26c
[ "MIT" ]
null
null
null
bobocep/rules/actions/no_action.py
r3w0p/bobocep
5f08348e9a2c3b0f92e935429d4f265c1693d26c
[ "MIT" ]
2
2020-11-05T07:53:37.000Z
2021-06-06T06:48:44.000Z
from bobocep.rules.actions.bobo_action import BoboAction from bobocep.rules.events.bobo_event import BoboEvent class NoAction(BoboAction): """ An action that does nothing and always returns the specified boolean value. :param name: The action name, defaults to an empty string. :type name: str, optional :param bool_return: The boolean value to always return when performing the action, defaults to True. :type bool_return: bool, optional """ def __init__(self, name: str = None, bool_return: bool = True) -> None: super().__init__(name=name) self._bool_return = bool_return def _perform_action(self, event: BoboEvent) -> bool: return self._bool_return
31
79
0.692204
b31999cc54b7dc28e81bb0ebef385bd3a558c0b2
173
py
Python
break and continue.py
karanjakhar/python-programs
316cd4e83ae39c1d1e70c2a5e8a9329641bad9e1
[ "MIT" ]
1
2019-09-02T15:56:38.000Z
2019-09-02T15:56:38.000Z
break and continue.py
karanjakhar/python-programs
316cd4e83ae39c1d1e70c2a5e8a9329641bad9e1
[ "MIT" ]
null
null
null
break and continue.py
karanjakhar/python-programs
316cd4e83ae39c1d1e70c2a5e8a9329641bad9e1
[ "MIT" ]
null
null
null
i=10 while(i>=1): print(i) i-=1 if(i>4): continue else: break while(i<16): if(i==13): break print(i) i+=1
11.533333
17
0.375723
28776a48ab65463747c86bd14be87ab4580d37ea
523
py
Python
logger_lesson/logger.py
farooq-teqniqly/pakt-complete-python-course
01717bbe97181f70c38166b3dc82ba7b00098430
[ "MIT" ]
null
null
null
logger_lesson/logger.py
farooq-teqniqly/pakt-complete-python-course
01717bbe97181f70c38166b3dc82ba7b00098430
[ "MIT" ]
null
null
null
logger_lesson/logger.py
farooq-teqniqly/pakt-complete-python-course
01717bbe97181f70c38166b3dc82ba7b00098430
[ "MIT" ]
null
null
null
import logging import time logger = logging.getLogger("logger_root") log_entry_format = "%(asctime)s %(levelname)-8s %(name)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(level=logging.DEBUG, format=log_entry_format) logging.Formatter.converter = time.gmtime logger.info("Here is some info...") logger.warning("WARNING!") logger.debug("Debug message.") logger.error("ERROR!") logger.critical("NOT GOOD!") child_logger = logging.getLogger("logger_root.child") child_logger.critical("Child logger info...")
29.055556
95
0.755258
961d77ce05265748a670c9e7548815fb7bbd72d8
489
py
Python
zerver/lib/user_agent.py
TylerPham2000/zulip
2e7aaba0dde5517b4a55cb0bd782f009be45e3ba
[ "Apache-2.0" ]
17,004
2015-09-25T18:27:24.000Z
2022-03-31T22:02:32.000Z
zerver/lib/user_agent.py
TylerPham2000/zulip
2e7aaba0dde5517b4a55cb0bd782f009be45e3ba
[ "Apache-2.0" ]
20,344
2015-09-25T19:02:42.000Z
2022-03-31T23:54:40.000Z
zerver/lib/user_agent.py
TylerPham2000/zulip
2e7aaba0dde5517b4a55cb0bd782f009be45e3ba
[ "Apache-2.0" ]
7,271
2015-09-25T18:48:39.000Z
2022-03-31T21:06:11.000Z
import re from typing import Dict # Warning: If you change this parsing, please test using # zerver/tests/test_decorators.py # And extend zerver/tests/fixtures/user_agents_unique with any new test cases pattern = re.compile( """^ (?P<name> [^/ ]* [^0-9/(]* ) (/ (?P<version> [^/ ]* ))? ([ /] .*)? $""", re.X, ) def parse_user_agent(user_agent: str) -> Dict[str, str]: match = pattern.match(user_agent) assert match is not None return match.groupdict()
24.45
77
0.629857
6f93d9b7385844241f750b700c4633c0ed16b0b9
974
py
Python
vitrage/evaluator/actions/base.py
mail2nsrajesh/vitrage
41f863bbb7568f70d347feeab8eaca13085f81ba
[ "Apache-2.0" ]
null
null
null
vitrage/evaluator/actions/base.py
mail2nsrajesh/vitrage
41f863bbb7568f70d347feeab8eaca13085f81ba
[ "Apache-2.0" ]
null
null
null
vitrage/evaluator/actions/base.py
mail2nsrajesh/vitrage
41f863bbb7568f70d347feeab8eaca13085f81ba
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 - Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. class ActionType(object): SET_STATE = 'set_state' RAISE_ALARM = 'raise_alarm' ADD_CAUSAL_RELATIONSHIP = 'add_causal_relationship' MARK_DOWN = 'mark_down' action_types = [ActionType.SET_STATE, ActionType.RAISE_ALARM, ActionType.ADD_CAUSAL_RELATIONSHIP, ActionType.MARK_DOWN] class ActionMode(object): DO = 'do' UNDO = 'undo'
30.4375
75
0.714579
c90d7be74d1fea13a78f253c16b7fdeaee791ba1
3,538
py
Python
src/cray/boa/__init__.py
Cray-HPE/boa
0718b5a1f40134f16b7279a93f545d9f5ca2b664
[ "MIT" ]
null
null
null
src/cray/boa/__init__.py
Cray-HPE/boa
0718b5a1f40134f16b7279a93f545d9f5ca2b664
[ "MIT" ]
2
2022-03-09T18:00:45.000Z
2022-03-29T18:54:52.000Z
src/cray/boa/__init__.py
Cray-HPE/boa
0718b5a1f40134f16b7279a93f545d9f5ca2b664
[ "MIT" ]
null
null
null
# # MIT License # # (C) Copyright 2019-2022 Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # import os PROTOCOL = "http" API_GW_DNSNAME = "api-gw-service-nmn.local" API_GW = "%s://%s/apis/" % (PROTOCOL, API_GW_DNSNAME) API_GW_SECURE = "%ss://%s/apis/" % (PROTOCOL, API_GW_DNSNAME) class BOAException(Exception): """ This is the base exception for all custom exceptions that can be raised from this application. """ class InvalidInput(BOAException): """ There are invalid inputs to the BOA Agent. """ class TransientException(BOAException): """ Transient Exceptions are exceptions that could recover over time as a function of services going temporarily offline. The expectation is that any Exception that is transient in nature can be re-attempted at a later point after required interfaces recover. """ class NontransientException(BOAException): """ Nontransient Exceptions are exceptions that are generally expected to fail each and every time for a given boot orchestration. During the course of excecution, any component that raises a nontransient exception will percolate to the top level of the application stack. The application will exit 0, to prevent Kubernetes from re-deploying the pod. """ class ServiceNotReady(TransientException): """ Raised when a service is not ready for interaction; this is used most frequently during preflight checks. For clarification purposes, this exception is still viable if a service is responding to requests, but has not reached the run or state level necessary to honor the request in question. """ class ServiceError(NontransientException): """ The service in question responded in a way that indicates the request made is not viable and it is not likely that the service will become viable given additional time or attempts without operator intervention. """ class ArtifactMissing(NontransientException): """ A boot artifact could not be located. """ class TooManyArtifacts(NontransientException): """ One and only one artifact was expected to be found. More than one artifact was found. """ def in_cluster(): """ Performs a check to determine if this software is running inside of a cluster. """ return "KUBERNETES_SERVICE_HOST" in os.environ if in_cluster(): PROTOCOL = "http" VERIFY = False else: PROTOCOL = "https" VERIFY = True
34.019231
82
0.738553
e331dbff1b94734440a927c02902e42c3f1c9cc7
876
py
Python
src/bookmark_parser.py
Oscarshu0719/cableav-web-crawler
dce1dea30939b3799df71b17cb3f6b805b82219d
[ "MIT" ]
15
2020-12-21T10:20:38.000Z
2022-03-17T05:17:09.000Z
src/bookmark_parser.py
287456405/cableav-web-crawler
dce1dea30939b3799df71b17cb3f6b805b82219d
[ "MIT" ]
3
2021-01-27T08:40:35.000Z
2021-01-29T00:31:40.000Z
src/bookmark_parser.py
287456405/cableav-web-crawler
dce1dea30939b3799df71b17cb3f6b805b82219d
[ "MIT" ]
8
2020-12-21T10:20:40.000Z
2021-12-03T02:31:12.000Z
# -*- coding: UTF-8 -*- import re from constants import BOOKMARK_PATH, PATTERN_BOOKMARK """ Usage: python bookmark_parser.py *path* Args: *path*: Chrome bookmark file. Notice: Export bookmarks from 'Bookmark manager'. """ def get_urls_from_html(path): with open(path, 'r', encoding='utf8') as file: html = file.readlines() pattern = re.compile(PATTERN_BOOKMARK) urls = list() for line in html: match = pattern.match(line.strip()) if match: urls.append(match.group(1)) with open(BOOKMARK_PATH, 'w') as file: bookmarks = '\n'.join(urls) file.write(bookmarks) if __name__ == '__main__': import sys assert len(sys.argv) == 2, 'Error: The number of arguments is incorrect.' path = sys.argv[1] get_urls_from_html(path)
21.9
77
0.59589
98dffc423083c815f9b8befdb30d8922e5a91576
1,651
py
Python
zipline/api.py
liudengfeng/zipline
01fdd51d83efeb3453e92b7d02c255a06eba49ac
[ "Apache-2.0" ]
6
2017-12-11T06:12:00.000Z
2019-05-23T17:39:10.000Z
zipline/api.py
liudengfeng/zipline
01fdd51d83efeb3453e92b7d02c255a06eba49ac
[ "Apache-2.0" ]
null
null
null
zipline/api.py
liudengfeng/zipline
01fdd51d83efeb3453e92b7d02c255a06eba49ac
[ "Apache-2.0" ]
1
2018-01-26T14:19:38.000Z
2018-01-26T14:19:38.000Z
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Note that part of the API is implemented in TradingAlgorithm as # methods (e.g. order). These are added to this namespace via the # decorator ``api_method`` inside of algorithm.py. from .finance.asset_restrictions import ( Restriction, StaticRestrictions, HistoricalRestrictions, RESTRICTION_STATES, ) from .finance import commission, execution, slippage, cancel_policy from .finance.cancel_policy import ( NeverCancel, EODCancel ) from .finance.slippage import ( FixedSlippage, FixedBasisPointsSlippage, VolumeShareSlippage, ) from .utils import math_utils, events from .utils.events import ( calendars, date_rules, time_rules ) __all__ = [ 'EODCancel', 'FixedSlippage', 'FixedBasisPointsSlippage', 'NeverCancel', 'VolumeShareSlippage', 'Restriction', 'StaticRestrictions', 'HistoricalRestrictions', 'RESTRICTION_STATES', 'cancel_policy', 'commission', 'date_rules', 'events', 'execution', 'math_utils', 'slippage', 'time_rules', 'calendars', ]
27.065574
74
0.721381
0ea057e33dca1f4a3b6964d86d76c4e3e8cef0ac
2,045
py
Python
mac/google-cloud-sdk/lib/surface/iot/devices/configs/list.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
mac/google-cloud-sdk/lib/surface/iot/devices/configs/list.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
4
2020-07-21T12:51:46.000Z
2022-01-22T10:29:25.000Z
mac/google-cloud-sdk/lib/surface/iot/devices/configs/list.py
bopopescu/cndw
ee432efef88a4351b355f3d6d5350defc7f4246b
[ "Apache-2.0" ]
1
2020-07-25T18:17:57.000Z
2020-07-25T18:17:57.000Z
# -*- coding: utf-8 -*- # # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to list configurations for a device.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.cloudiot import devices from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.iot import resource_args @base.ReleaseTracks(base.ReleaseTrack.BETA, base.ReleaseTrack.GA) class List(base.ListCommand): """List configs for a device. This command lists all available configurations in the history of the device. Up to 10 are kept; you may restrict the output to fewer via the `--limit` flag. """ detailed_help = { 'EXAMPLES': """\ To list the 3 latest configurations of a device in region 'us-central1', run: $ {command} --region=us-central1 --registry=my-registry --device=my-device --limit=3 """, } @staticmethod def Args(parser): parser.display_info.AddFormat( 'table(version, cloudUpdateTime, deviceAckTime)') base.URI_FLAG.RemoveFromParser(parser) base.PAGE_SIZE_FLAG.RemoveFromParser(parser) resource_args.AddDeviceResourceArg(parser, 'for which to list configs', positional=False) def Run(self, args): """Run the list command.""" client = devices.DeviceConfigsClient() device_ref = args.CONCEPTS.device.Parse() return client.List(device_ref, args.limit)
34.661017
96
0.719315
e1ee84f551836390f2ff2571629a339a8fd6924a
2,383
py
Python
eve_auth/tasks.py
bastianh/django-eve-auth
26d7440a41708d46b057f98d60dffe9705c03d8b
[ "BSD-2-Clause" ]
null
null
null
eve_auth/tasks.py
bastianh/django-eve-auth
26d7440a41708d46b057f98d60dffe9705c03d8b
[ "BSD-2-Clause" ]
null
null
null
eve_auth/tasks.py
bastianh/django-eve-auth
26d7440a41708d46b057f98d60dffe9705c03d8b
[ "BSD-2-Clause" ]
null
null
null
from __future__ import absolute_import from datetime import datetime, timezone import logging from celery import shared_task from celery.utils.log import get_task_logger from .utils.eveapi import eveapi logger2 = get_task_logger(__name__) logger = logging.getLogger(__name__) @shared_task def check_key(key_id): from .models import ApiKey, Character, Corporation api_model = ApiKey.objects.get(pk=key_id) account = eveapi.get_account_api(api_model=api_model) info, _, _ = account.key_info() api_model.key_type = info.get("type") api_model.access_mask = info.get("access_mask") api_model.status = "active" expires = info.get("expire_ts") if expires: api_model.expires = datetime.utcfromtimestamp(expires).replace(tzinfo=timezone.utc) else: api_model.expires = None api_model.updated = datetime.now(timezone.utc) if api_model.key_type in ['account', 'char']: for charid, chardata in info.get("characters", {}).items(): character = Character.get_or_create(character_id=charid, character_name=chardata.get('name')) api_model.characters.add(character) if api_model.key_type == "corp": corpinfo = list(info.get("characters").values())[0].get("corp") corp = Corporation.get_or_create(corporation_id=corpinfo.get("id"), corporation_name=corpinfo.get("name")) api_model.corporation = corp api_model.save() return 1 @shared_task def update_character_info(character_id): from .models import Character, Corporation, Alliance eve = eveapi.get_eve_api() try: character = Character.objects.get(id=character_id) except Character.DoesNotExist: return False info, _, _ = eve.character_info_from_id(char_id=character_id) corp = info.get("corp", {}) corpmodel = Corporation.get_or_create(corporation_id=corp.get("id"), corporation_name=corp.get("name")) character.corporation = corpmodel alliance_data = info.get("alliance", {}) if corpmodel.alliance_id != alliance_data.get("id"): corpmodel.alliance = Alliance.get_or_create(alliance_id=alliance_data.get("id"), alliance_name=alliance_data.get("name")) corpmodel.save() character.updated = datetime.utcnow().replace(tzinfo=timezone.utc) character.save() return True
33.097222
114
0.698699
f44450f3ad90b9eb54c11bc67a84a71a66681324
3,474
py
Python
darglint/parse/grammars/google_short_description.py
s-weigand/darglint
6bc5d764db86626a996de1ff50925f976bf1449e
[ "MIT" ]
405
2017-10-19T11:04:21.000Z
2022-03-23T07:58:40.000Z
darglint/parse/grammars/google_short_description.py
s-weigand/darglint
6bc5d764db86626a996de1ff50925f976bf1449e
[ "MIT" ]
186
2018-03-26T20:33:37.000Z
2022-03-20T22:47:54.000Z
darglint/parse/grammars/google_short_description.py
s-weigand/darglint
6bc5d764db86626a996de1ff50925f976bf1449e
[ "MIT" ]
43
2018-10-14T23:49:48.000Z
2022-02-10T12:39:16.000Z
# Generated on 2020-04-04 11:23:40.191231 from darglint.parse.grammar import ( BaseGrammar, P, ) from darglint.token import ( TokenType, ) from darglint.parse.identifiers import ( NoqaIdentifier, ) class ShortDescriptionGrammar(BaseGrammar): productions = [ P("short-description", ([], "word", "line", 0), ([], "word", "noqa-maybe", 0), ([NoqaIdentifier], "hash", "noqa", 0), ([NoqaIdentifier], "noqa-head", "noqa-statement1", 0), (TokenType.INDENT, 0), (TokenType.COLON, 0), (TokenType.HASH, 0), (TokenType.LPAREN, 0), (TokenType.RPAREN, 0), (TokenType.WORD, 0), (TokenType.RAISES, 0), (TokenType.ARGUMENTS, 0), (TokenType.ARGUMENT_TYPE, 0), (TokenType.RETURNS, 0), (TokenType.RETURN_TYPE, 0), (TokenType.YIELDS, 0), (TokenType.YIELD_TYPE, 0), (TokenType.VARIABLES, 0), (TokenType.VARIABLE_TYPE, 0), (TokenType.NOQA, 0), (TokenType.OTHER, 0), (TokenType.RECEIVES, 0), (TokenType.WARNS, 0), (TokenType.SEE, 0), (TokenType.ALSO, 0), (TokenType.NOTES, 0), (TokenType.EXAMPLES, 0), (TokenType.REFERENCES, 0), (TokenType.HEADER, 0)), P("line", ([], "word", "line", 0), ([], "word", "noqa-maybe", 0), ([NoqaIdentifier], "hash", "noqa", 0), ([NoqaIdentifier], "noqa-head", "noqa-statement1", 0), (TokenType.INDENT, 0), (TokenType.COLON, 0), (TokenType.HASH, 0), (TokenType.LPAREN, 0), (TokenType.RPAREN, 0), (TokenType.WORD, 0), (TokenType.RAISES, 0), (TokenType.ARGUMENTS, 0), (TokenType.ARGUMENT_TYPE, 0), (TokenType.RETURNS, 0), (TokenType.RETURN_TYPE, 0), (TokenType.YIELDS, 0), (TokenType.YIELD_TYPE, 0), (TokenType.VARIABLES, 0), (TokenType.VARIABLE_TYPE, 0), (TokenType.NOQA, 0), (TokenType.OTHER, 0), (TokenType.RECEIVES, 0), (TokenType.WARNS, 0), (TokenType.SEE, 0), (TokenType.ALSO, 0), (TokenType.NOTES, 0), (TokenType.EXAMPLES, 0), (TokenType.REFERENCES, 0), (TokenType.HEADER, 0)), P("word", (TokenType.COLON, 0), (TokenType.HASH, 0), (TokenType.INDENT, 0), (TokenType.LPAREN, 0), (TokenType.RPAREN, 0), (TokenType.WORD, 0), (TokenType.RAISES, 0), (TokenType.ARGUMENTS, 0), (TokenType.ARGUMENT_TYPE, 0), (TokenType.RETURNS, 0), (TokenType.RETURN_TYPE, 0), (TokenType.YIELDS, 0), (TokenType.YIELD_TYPE, 0), (TokenType.VARIABLES, 0), (TokenType.VARIABLE_TYPE, 0), (TokenType.NOQA, 0), (TokenType.OTHER, 0), (TokenType.RECEIVES, 0), (TokenType.WARNS, 0), (TokenType.SEE, 0), (TokenType.ALSO, 0), (TokenType.NOTES, 0), (TokenType.EXAMPLES, 0), (TokenType.REFERENCES, 0), (TokenType.HEADER, 0)), P("colon", (TokenType.COLON, 0)), P("hash", (TokenType.HASH, 0)), P("noqa", (TokenType.NOQA, 0)), P("noqa-maybe", ([NoqaIdentifier], "hash", "noqa", 0), ([NoqaIdentifier], "noqa-head", "noqa-statement1", 0)), P("noqa-head", ([], "hash", "noqa", 0)), P("words", ([], "word", "words", 0), (TokenType.COLON, 0), (TokenType.HASH, 0), (TokenType.INDENT, 0), (TokenType.LPAREN, 0), (TokenType.RPAREN, 0), (TokenType.WORD, 0), (TokenType.RAISES, 0), (TokenType.ARGUMENTS, 0), (TokenType.ARGUMENT_TYPE, 0), (TokenType.RETURNS, 0), (TokenType.RETURN_TYPE, 0), (TokenType.YIELDS, 0), (TokenType.YIELD_TYPE, 0), (TokenType.VARIABLES, 0), (TokenType.VARIABLE_TYPE, 0), (TokenType.NOQA, 0), (TokenType.OTHER, 0), (TokenType.RECEIVES, 0), (TokenType.WARNS, 0), (TokenType.SEE, 0), (TokenType.ALSO, 0), (TokenType.NOTES, 0), (TokenType.EXAMPLES, 0), (TokenType.REFERENCES, 0), (TokenType.HEADER, 0)), P("noqa-statement1", ([], "colon", "words", 0)), ] start = "short-description"
119.793103
779
0.661485
715de4bb93c4a15635052daabd7c11699f82b1d7
505
py
Python
PROC Monitor/lab.py
IRIDIUM-SUB/Sys_Course_Design
52ec96378e9f9c8d7dc366efcba154df3f1cbc67
[ "MIT" ]
null
null
null
PROC Monitor/lab.py
IRIDIUM-SUB/Sys_Course_Design
52ec96378e9f9c8d7dc366efcba154df3f1cbc67
[ "MIT" ]
null
null
null
PROC Monitor/lab.py
IRIDIUM-SUB/Sys_Course_Design
52ec96378e9f9c8d7dc366efcba154df3f1cbc67
[ "MIT" ]
null
null
null
import tkinter ''' win=tkinter.Tk() #构造窗体 my_frame = tkinter.Frame(win, relief="sunken") my_frame.pack() mylist=tkinter.Listbox(my_frame,width=100) #列表框 mylist.pack() for item in ["1","asdsa","asdsadsa","asdsadsad",1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77]: #插入内容 mylist.insert(tkinter.END,item) #从尾部插入 tkinter.Label(win, text="This", borderwidth=2, relief="groove").pack() win.mainloop() #进入消息循环 ''' d=list() p={'ss':"ojd",'sad':'daw'} for item in p: d.append((item,p[item])) print(set(d))
26.578947
96
0.663366
c3dba09a12f9596c49a33add17d65375a028eb87
9,619
py
Python
setup.py
cshivade/pytorchpipe
d8d92937de2ae7e23db1895c79a09ba47f5698e0
[ "Apache-2.0" ]
1
2021-09-03T07:49:42.000Z
2021-09-03T07:49:42.000Z
setup.py
cshivade/pytorchpipe
d8d92937de2ae7e23db1895c79a09ba47f5698e0
[ "Apache-2.0" ]
null
null
null
setup.py
cshivade/pytorchpipe
d8d92937de2ae7e23db1895c79a09ba47f5698e0
[ "Apache-2.0" ]
null
null
null
# Copyright (C) IBM Corporation 2018-2019 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Always prefer setuptools over distutils from setuptools import setup, find_packages from os import path,makedirs # io.open is needed for projects that support Python 2.7 # It ensures open() defaults to text mode with universal newlines, # and accepts an argument to specify the text encoding # Python 3 only projects can skip this import # from io import open here = path.abspath(path.dirname(__file__)) # Get path to configs. configs_path = path.join(here,"configs/") # Export path to config file in ~/.ptp/ folder. ptp_path = path.expanduser("~/.ptp/") # Make dir. makedirs(path.dirname(ptp_path), exist_ok=True) # Write path to configs. with open(path.join(ptp_path, "config.txt"),"w") as file: file.write(configs_path) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() # Arguments marked as "Required" below must be included for upload to PyPI. # Fields marked as "Optional" may be commented out. setup( # This is the name of your project. The first time you publish this # package, this name will be registered for you. It will determine how # users can install this project, e.g.: # # $ pip install sampleproject # # And where it will live on PyPI: https://pypi.org/project/sampleproject/ # # There are some restrictions on what makes a valid project name # specification here: # https://packaging.python.org/specifications/core-metadata/#name name='ptp', # Required # Versions should comply with PEP 440: # https://www.python.org/dev/peps/pep-0440/ # # For a discussion on single-sourcing the version across setup.py and the # project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.1', # Required # This is a one-line description or tagline of what your project does. This # corresponds to the "Summary" metadata field: # https://packaging.python.org/specifications/core-metadata/#summary description='PyTorchPipe: framework for building multi-modal PyTorch pipelines', # This is an optional longer description of your project that represents # the body of text which users will see when they visit PyPI. # # Often, this is the same as your README, so you can just read it in from # that file directly (as we have already done above) # # This field corresponds to the "Description" metadata field: # https://packaging.python.org/specifications/core-metadata/#description-optional long_description=long_description, # Optional # Denotes that our long_description is in Markdown; valid values are # text/plain, text/x-rst, and text/markdown # # Optional if long_description is written in reStructuredText (rst) but # required for plain-text or Markdown; if unspecified, "applications should # attempt to render [the long_description] as text/x-rst; charset=UTF-8 and # fall back to text/plain if it is not valid rst" (see link below) # # This field corresponds to the "Description-Content-Type" metadata field: # https://packaging.python.org/specifications/core-metadata/#description-content-type-optional long_description_content_type='text/markdown', # Optional (see note above) # This should be a valid link to your project's main homepage. # # This field corresponds to the "Home-Page" metadata field: # https://packaging.python.org/specifications/core-metadata/#home-page-optional url='https://github.com/IBM/pytorchpipe/', # Optional license='Apache 2.0', # This should be your name or the name of the organization which owns the # project. author='Tomasz Kornuta', # Optional # This should be a valid email address corresponding to the author listed # above. author_email='tkornuta@us.ibm.com', # Optional # Classifiers help users find your project by categorizing it. # # For a list of valid classifiers, see https://pypi.org/classifiers/ # This information is only used for searching & browsing projects on PyPI, not for installing projects # Checkout numpy: https://pypi.org/project/numpy/ classifiers=[ # Optional # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 0 - Pre Pre Alfa', # Indicate who your project is intended for 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', # Pick your license as you wish 'License :: OSI Approved :: Apache Software License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3.6', 'Operating System :: Linux', 'Topic :: Scientific/Engineering :: Artificial Intelligence' ], # This field adds keywords for your project which will appear on the # project page. What does your project relate to? # # Note that this is a string of words separated by whitespace, not a list. keywords='machine learning neural nets pytorch pipeline component problem model', # Optional # You can just specify package directories manually here if your project is # simple. Or you can use find_packages(). # # Alternatively, if you just want to distribute a single Python file, use # the `py_modules` argument instead as follows, which will expect a file # called `my_module.py` to exist: # # py_modules=["my_module"], # packages=find_packages(exclude=['docs', 'configs', 'build', 'experiments', 'scripts']), # Required # This field lists other packages that your project depends on to run. # Any package you put here will be installed by pip when your project is # installed, so they must be valid existing projects. # python_requires='~=3.6', # For an analysis of "install_requires" vs pip's requirements files see: # https://packaging.python.org/en/latest/requirements.html # Should not pin down version # It is not considered best practice to use install_requires to pin # dependencies to specific versions, or to specify sub-dependencies # (i.e. dependencies of your dependencies). This is overly-restrictive, # and prevents the user from gaining the benefit of dependency upgrades. install_requires=[ 'tqdm', 'nltk', 'pandas', 'pillow', #'torchtext', 'torchvision', 'torch', 'PyYAML', 'requests' ], # List additional groups of dependencies here (e.g. development # dependencies). Users will be able to install these using the "extras" # syntax, for example: # # $ pip install sampleproject[dev] # # Similar to `install_requires` above, these must be valid existing # projects. extras_require={ # Optional # 'dev': ['tensorflow', 'ipdb', 'tensorboard', 'visdom', 'tensorboardX'], # 'test': ['coverage'], }, # If there are data files included in your packages that need to be # installed, specify them here. # # If using Python 2.6 or earlier, then these have to be included in # MANIFEST.in as well. package_data={}, include_package_data=True, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # Optional # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # `pip` to create the appropriate form of executable for the target # platform. # # For example, the following would provide a command called `sample` which # executes the function `main` from this package when invoked: entry_points={ # Optional 'console_scripts': [ 'ptp-online-trainer=ptp.workers.online_trainer:main', 'ptp-processor=ptp.workers.processor:main', ] }, # List additional URLs that are relevant to your project as a dict. # # This field corresponds to the "Project-URL" metadata fields: # https://packaging.python.org/specifications/core-metadata/#project-url-multiple-use # # Examples listed include a pattern for specifying where the package tracks # issues, where the source is hosted, where to say thanks to the package # maintainers, and where to support the project financially. The key is # what's used to render the link text on PyPI. project_urls={ # Optional 'Source': 'https://github.com/tkornut/pytorchpipe/', }, )
41.461207
106
0.693627
48541a57e95f20c2caa073c82601fea68669d5e0
12,843
py
Python
build/lib/simplemediawiki.py
LucianNovo/WikiKrawl
8a6d150cba74b12c7c62cb2044c14816e190df79
[ "MIT" ]
2
2015-04-03T06:15:10.000Z
2022-03-12T15:37:36.000Z
simplemediawiki.py
LucianNovo/WikiKrawl
8a6d150cba74b12c7c62cb2044c14816e190df79
[ "MIT" ]
1
2019-09-24T09:56:52.000Z
2019-09-24T09:56:52.000Z
core/lib/wikipedia/simplemediawiki.py
vsilent/smarty-bot
963cba05433be14494ba339343c9903ccab3c37d
[ "MIT" ]
null
null
null
# python-simplemediawiki - Extremely low-level wrapper to the MediaWiki API # Copyright (C) 2011 Red Hat, Inc. # Primary maintainer: Ian Weller <iweller@redhat.com> # # This library is free software; you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # This library is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/>. """ :py:mod:`simplemediawiki` is an extremely low-level wrapper to the `MediaWiki API`_. It automatically handles cookies and gzip compression so that you can make basic calls to the API in the easiest and fastest way possible. It also provides a few functions to make day-to-day API access easier. To use this module, initialize a :py:class:`MediaWiki` object, passing it the URL of api.php for the wiki you want to work with. Calls go through :py:func:`MediaWiki.call`. A generic login wrapper as well as functions to determine limits and get a list of namespaces are provided for your convenience. >>> from simplemediawiki import MediaWiki >>> wiki = MediaWiki('http://en.wikipedia.org/w/api.php') >>> wiki.call({'action': 'query', 'prop': 'revisions', 'titles': 'Main Page'}) {u'query': {u'pages': {...}}} .. _`MediaWiki API`: http://www.mediawiki.org/wiki/API:Main_page """ import cookielib from datetime import datetime import gzip try: import simplejson as json except ImportError: import json from kitchen.text.converters import to_bytes from StringIO import StringIO import urllib import urllib2 __author__ = 'Ian Weller <iweller@redhat.com>' __version__ = '1.1.1' DEFAULT_UA = ('python-simplemediawiki/%s ' '+https://github.com/ianweller/python-simplemediawiki') \ % __version__ class MediaWiki(object): """ Create a new object to access a wiki via *api_url*. If you're interested in saving session data across multiple :py:class:`MediaWiki` objects, provide a filename *cookie_file* to where you want to save the cookies. Applications that use simplemediawiki should change the *user_agent* argument to something that can help identify the application if it is misbehaving. It's recommended to use :py:func:`build_user_agent` to create a `User-Agent`_ string that will be most helpful to server administrators. Wikimedia sites enforce using a correct User-Agent; you should read `Wikimedia's User-Agent policy`_ if you plan to be accessing those wikis. .. tip:: If a user of your application may not know how to get the correct API URL for their MediaWiki, you can try getting the right one with :py:func:`MediaWiki.normalize_api_url`. :param api_url: URL for the path to the API endpoint :param cookie_file: path to a :py:class:`cookielib.MozillaCookieJar` file :param user_agent: string sent as ``User-Agent`` header to web server .. _`User-Agent`: http://en.wikipedia.org/wiki/User_agent .. _`Wikimedia's User-Agent policy`: http://meta.wikimedia.org/wiki/User-Agent_policy """ _high_limits = None _namespaces = None _psuedo_namespaces = None def __init__(self, api_url, cookie_file=None, user_agent=DEFAULT_UA): self._api_url = api_url if cookie_file: self._cj = cookielib.MozillaCookieJar(cookie_file) try: self._cj.load() except IOError: self._cj.save() self._cj.load() else: self._cj = cookielib.CookieJar() self._opener = urllib2.build_opener( urllib2.HTTPCookieProcessor(self._cj) ) self._opener.addheaders = [('User-Agent', user_agent)] def _fetch_http(self, url, params): """ Standard HTTP request handler for this class with gzip and cookie support. This was separated out of :py:func:`MediaWiki.call` to make :py:func:`MediaWiki.normalize_api_url` useful. .. note:: This function should not be used. Use :py:func:`MediaWiki.call` instead. :param url: URL to send POST request to :param params: dictionary of query string parameters """ params['format'] = 'json' # urllib.urlencode expects str objects, not unicode fixed = dict([(to_bytes(b[0]), to_bytes(b[1])) for b in params.items()]) request = urllib2.Request(url, urllib.urlencode(fixed)) request.add_header('Accept-encoding', 'gzip') response = self._opener.open(request) if isinstance(self._cj, cookielib.MozillaCookieJar): self._cj.save() if response.headers.get('Content-Encoding') == 'gzip': compressed = StringIO(response.read()) gzipper = gzip.GzipFile(fileobj=compressed) data = gzipper.read() else: data = response.read() return data def call(self, params): """ Make an API call to the wiki. *params* is a dictionary of query string arguments. For example, to get basic information about the wiki, run: >>> wiki.call({'action': 'query', 'meta': 'siteinfo'}) which would make a call to ``http://domain/w/api.php?action=query&meta=siteinfo&format=json`` (except the query string would be sent in POST). :param params: dictionary of query string parameters :returns: dictionary containing API response """ return json.loads(self._fetch_http(self._api_url, params)) def normalize_api_url(self): """ Checks that the API URL used to initialize this object actually returns JSON. If it doesn't, make some educated guesses and try to find the correct URL. :returns: a valid API URL or ``None`` """ def tester(self, api_url): """ Attempts to fetch general information about the MediaWiki instance in order to test whether *api_url* will return JSON. """ data = self._fetch_http(api_url, {'action': 'query', 'meta': 'siteinfo'}) try: data_json = json.loads(data) return (data, data_json) except ValueError: return (data, None) data, data_json = tester(self, self._api_url) if data_json: return self._api_url else: # if there's an index.php in the URL, we might find the API if 'index.php' in self._api_url: test_api_url = self._api_url.split('index.php')[0] + 'api.php' print test_api_url test_data, test_data_json = tester(self, test_api_url) print (test_data, test_data_json) if test_data_json: self._api_url = test_api_url return self._api_url return None def login(self, user, passwd): """ Logs into the wiki with username *user* and password *passwd*. Returns ``True`` on successful login. :param user: username :param passwd: password :returns: ``True`` on successful login, otherwise ``False`` """ def do_login(self, user, passwd, token=None): """ Login function that handles CSRF protection (see `MediaWiki bug 23076`_). Returns ``True`` on successful login. .. _`MediaWiki bug 23076`: https://bugzilla.wikimedia.org/show_bug.cgi?id=23076 """ data = {'action': 'login', 'lgname': user, 'lgpassword': passwd} if token: data['lgtoken'] = token result = self.call(data) if result['login']['result'] == 'Success': self._high_limits = None return True elif result['login']['result'] == 'NeedToken' and not token: return do_login(self, user, passwd, result['login']['token']) else: return False return do_login(self, user, passwd) def logout(self): """ Logs out of the wiki. :returns: ``True`` """ data = {'action': 'logout'} self.call(data) self._high_limits = None return True def limits(self, low, high): """ Convenience function for determining appropriate limits in the API. If the (usually logged-in) client has the ``apihighlimits`` right, it will return *high*; otherwise it will return *low*. It's generally a good idea to use the highest limit possible; this reduces the amount of HTTP requests and therefore overhead. Read the API documentation for details on the limits for the function you are using. :param low: value to return if client does not have ``apihighlimits`` :param high: value to return if client has ``apihighlimits`` :returns: *low* or *high* """ if self._high_limits == None: result = self.call({'action': 'query', 'meta': 'userinfo', 'uiprop': 'rights'}) self._high_limits = 'apihighlimits' in \ result['query']['userinfo']['rights'] if self._high_limits: return high else: return low def namespaces(self, psuedo=True): """ Fetches a list of namespaces for this wiki and returns them as a dictionary of namespace IDs corresponding to namespace names. If *psuedo* is ``True``, the dictionary will also list psuedo-namespaces, which are the "Special:" and "Media:" namespaces (special because they have no content associated with them and their IDs are negative). :param psuedo: boolean to determine inclusion of psuedo-namespaces :returns: dictionary of namespace IDs and names """ if self._namespaces == None: result = self.call({'action': 'query', 'meta': 'siteinfo', 'siprop': 'namespaces'}) self._namespaces = {} self._psuedo_namespaces = {} for nsid in result['query']['namespaces']: if int(nsid) >= 0: self._namespaces[int(nsid)] = \ result['query']['namespaces'][nsid]['*'] else: self._psuedo_namespaces[int(nsid)] = \ result['query']['namespaces'][nsid]['*'] if psuedo: retval = {} retval.update(self._namespaces) retval.update(self._psuedo_namespaces) return retval else: return self._namespaces @staticmethod def parse_date(date): """ Converts `ISO 8601`_ dates generated by the MediaWiki API into :py:class:`datetime.datetime` objects. This will return a time in what your wiki thinks is UTC. Plan accordingly for bad server configurations. .. _`ISO 8601`: http://en.wikipedia.org/wiki/ISO_8601 :param date: string ISO 8601 date representation :returns: :py:class:`datetime.datetime` object """ # MediaWiki API dates are always of the format # YYYY-MM-DDTHH:MM:SSZ # (see $formats in wfTimestamp() in includes/GlobalFunctions.php) return datetime.strptime(date, '%Y-%m-%dT%H:%M:%SZ') def build_user_agent(application_name, version, url): """ Build a good User-Agent header string that can help server administrators contact you if your application is misbehaving. This string will also contain a reference to python-simplemediawiki. See the documentation for :py:class:`simplemediawiki.MediaWiki` for good reasons why you should use a custom User-Agent string for your application. :param application_name: your application's name :param version: your application's version :param url: a URL where smoeone can find information about your \ application or your email address :returns: User-Agent string """ return '%s/%s %s/%s (+%s)' % (application_name, version, 'python-simplemediawiki', __version__, url)
39.395706
79
0.615666
00501d3ddabc4475f90bfd6ce29bce3023f32081
4,248
py
Python
airflow/contrib/hooks/aws_glue_catalog_hook.py
FlyrInc/airflow-1
74b22337b45a1eb25585d52e35694e6b0eb81f03
[ "Apache-2.0" ]
1
2020-09-03T09:35:30.000Z
2020-09-03T09:35:30.000Z
airflow/contrib/hooks/aws_glue_catalog_hook.py
FlyrInc/airflow-1
74b22337b45a1eb25585d52e35694e6b0eb81f03
[ "Apache-2.0" ]
1
2019-03-27T02:21:36.000Z
2019-03-27T02:21:36.000Z
airflow/contrib/hooks/aws_glue_catalog_hook.py
FlyrInc/airflow-1
74b22337b45a1eb25585d52e35694e6b0eb81f03
[ "Apache-2.0" ]
2
2020-04-24T10:51:17.000Z
2020-05-26T01:50:29.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from airflow.contrib.hooks.aws_hook import AwsHook class AwsGlueCatalogHook(AwsHook): """ Interact with AWS Glue Catalog :param aws_conn_id: ID of the Airflow connection where credentials and extra configuration are stored :type aws_conn_id: str :param region_name: aws region name (example: us-east-1) :type region_name: str """ def __init__(self, aws_conn_id='aws_default', region_name=None, *args, **kwargs): self.region_name = region_name super(AwsGlueCatalogHook, self).__init__(aws_conn_id=aws_conn_id, *args, **kwargs) def get_conn(self): """ Returns glue connection object. """ self.conn = self.get_client_type('glue', self.region_name) return self.conn def get_partitions(self, database_name, table_name, expression='', page_size=None, max_items=None): """ Retrieves the partition values for a table. :param database_name: The name of the catalog database where the partitions reside. :type database_name: str :param table_name: The name of the partitions' table. :type table_name: str :param expression: An expression filtering the partitions to be returned. Please see official AWS documentation for further information. https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-GetPartitions :type expression: str :param page_size: pagination size :type page_size: int :param max_items: maximum items to return :type max_items: int :return: set of partition values where each value is a tuple since a partition may be composed of multiple columns. For example: ``{('2018-01-01','1'), ('2018-01-01','2')}`` """ config = { 'PageSize': page_size, 'MaxItems': max_items, } paginator = self.get_conn().get_paginator('get_partitions') response = paginator.paginate( DatabaseName=database_name, TableName=table_name, Expression=expression, PaginationConfig=config ) partitions = set() for page in response: for p in page['Partitions']: partitions.add(tuple(p['Values'])) return partitions def check_for_partition(self, database_name, table_name, expression): """ Checks whether a partition exists :param database_name: Name of hive database (schema) @table belongs to :type database_name: str :param table_name: Name of hive table @partition belongs to :type table_name: str :expression: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type expression: str :rtype: bool >>> hook = AwsGlueCatalogHook() >>> t = 'static_babynames_partitioned' >>> hook.check_for_partition('airflow', t, "ds='2015-01-01'") True """ partitions = self.get_partitions(database_name, table_name, expression, max_items=1) if partitions: return True else: return False
35.697479
137
0.627589
ef3b557b0aece96c72158903948d94d72d0380c9
15,092
py
Python
advanced_filters/forms.py
FreckleIOT/django-advanced-filters
fc4dd0b5f17051dad282eaca3482da7c9ef0ac70
[ "MIT" ]
null
null
null
advanced_filters/forms.py
FreckleIOT/django-advanced-filters
fc4dd0b5f17051dad282eaca3482da7c9ef0ac70
[ "MIT" ]
null
null
null
advanced_filters/forms.py
FreckleIOT/django-advanced-filters
fc4dd0b5f17051dad282eaca3482da7c9ef0ac70
[ "MIT" ]
null
null
null
import logging import operator from datetime import datetime as dt from pprint import pformat import django from django import forms from django.apps import apps from django.conf import settings from django.contrib import admin from django.contrib.admin.utils import get_fields_from_path from django.db.models import FieldDoesNotExist, Q from django.db.models.fields import DateField from django.forms.formsets import BaseFormSet, formset_factory from django.utils.functional import cached_property from django.utils.module_loading import import_string from django.utils.six.moves import range, reduce from django.utils.text import capfirst from django.utils.translation import ugettext_lazy as _ from .form_helpers import CleanWhiteSpacesMixin, VaryingTypeCharField from .models import AdvancedFilter # django < 1.9 support USE_VENDOR_DIR = django.VERSION >= (1, 9) logger = logging.getLogger('advanced_filters.forms') # select2 location can be modified via settings SELECT2_JS = getattr(settings, 'SELECT2_JS', 'select2/select2.min.js') SELECT2_CSS = getattr(settings, 'SELECT2_CSS', 'select2/select2.min.css') def date_to_string(timestamp): if timestamp: return dt.fromtimestamp(timestamp).strftime('%Y-%m-%d') else: return "" class AdvancedFilterQueryForm(CleanWhiteSpacesMixin, forms.Form): """ Build the query from field, operator and value """ OPERATORS = ( ("iexact", _("Equals")), ("icontains", _("Contains")), ("iregex", _("One of")), ("range", _("DateTime Range")), ("isnull", _("Is NULL")), ("istrue", _("Is TRUE")), ("isfalse", _("Is FALSE")), ("lt", _("Less Than")), ("gt", _("Greater Than")), ("lte", _("Less Than or Equal To")), ("gte", _("Greater Than or Equal To")), ) FIELD_CHOICES = ( ("_OR", _("Or (mark an or between blocks)")), ) field = forms.ChoiceField(required=True, widget=forms.Select( attrs={'class': 'query-field'}), label=_('Field')) operator = forms.ChoiceField( label=_('Operator'), required=True, choices=OPERATORS, initial="iexact", widget=forms.Select(attrs={'class': 'query-operator'})) value = VaryingTypeCharField(required=False, widget=forms.TextInput( attrs={'class': 'query-value'}), label=_('Value')) value_from = forms.DateTimeField(widget=forms.HiddenInput( attrs={'class': 'query-dt-from'}), required=False) value_to = forms.DateTimeField(widget=forms.HiddenInput( attrs={'class': 'query-dt-to'}), required=False) negate = forms.BooleanField(initial=False, required=False, label=_('Exclude')) def _build_field_choices(self, fields): """ Iterate over passed model fields tuple and update initial choices. """ return tuple(sorted( [(fquery, capfirst(fname)) for fquery, fname in fields.items()], key=lambda f: f[1].lower()) ) + self.FIELD_CHOICES def _build_query_dict(self, formdata=None): """ Take submitted data from form and create a query dict to be used in a Q object (or filter) """ if self.is_valid() and formdata is None: formdata = self.cleaned_data key = "{field}__{operator}".format(**formdata) if formdata['operator'] == "isnull": return {key: True} elif formdata['operator'] == "istrue": return {formdata['field']: True} elif formdata['operator'] == "isfalse": return {formdata['field']: False} return {key: formdata['value']} @staticmethod def _parse_query_dict(query_data, model): """ Take a list of query field dict and return data for form initialization """ operator = 'iexact' if query_data['field'] == '_OR': query_data['operator'] = operator return query_data parts = query_data['field'].split('__') if len(parts) < 2: field = parts[0] else: if parts[-1] in dict(AdvancedFilterQueryForm.OPERATORS).keys(): field = '__'.join(parts[:-1]) operator = parts[-1] else: field = query_data['field'] query_data['field'] = field mfield = get_fields_from_path(model, query_data['field']) if not mfield: raise Exception('Field path "%s" could not be followed to a field' ' in model %s', query_data['field'], model) else: mfield = mfield[-1] # get the field object if operator == "isnull": query_data['operator'] = "isnull" elif query_data['value'] is None: query_data['operator'] = "isnull" elif query_data['value'] is True: query_data['operator'] = "istrue" elif query_data['value'] is False: query_data['operator'] = "isfalse" else: if isinstance(mfield, DateField): # this is a date/datetime field query_data['operator'] = "range" # default else: query_data['operator'] = operator # default if isinstance(query_data.get('value'), list) and query_data['operator'] == 'range': date_from = date_to_string(query_data.get('value_from')) date_to = date_to_string(query_data.get('value_to')) query_data['value'] = ','.join([date_from, date_to]) return query_data def set_range_value(self, data): """ Validates date range by parsing into 2 datetime objects and validating them both. """ dtfrom = data.pop('value_from') dtto = data.pop('value_to') if dtfrom is dtto is None: self.errors['value'] = ['Date range requires values'] raise forms.ValidationError([]) data['value'] = (dtfrom, dtto) def clean(self): cleaned_data = super(AdvancedFilterQueryForm, self).clean() if cleaned_data.get('operator') == "range": if ('value_from' in cleaned_data and 'value_to' in cleaned_data): self.set_range_value(cleaned_data) elif (not (cleaned_data.get('field') == "_OR" or cleaned_data.get('operator') == "isnull" or cleaned_data.get('operator') == "istrue" or cleaned_data.get('operator') == "isfalse") and cleaned_data.get('value') == ''): logger.debug( "Errors validating advanced query filters: value " "is a required attribute") raise forms.ValidationError({'value': ["This field is required.", ]}) return cleaned_data def make_query(self, *args, **kwargs): """ Returns a Q object from the submitted form """ query = Q() # initial is an empty query query_dict = self._build_query_dict(self.cleaned_data) if 'negate' in self.cleaned_data and self.cleaned_data['negate']: query = query & ~Q(**query_dict) else: query = query & Q(**query_dict) return query def __init__(self, model_fields={}, readonly=False, *args, **kwargs): self.readonly = readonly super(AdvancedFilterQueryForm, self).__init__(*args, **kwargs) self.FIELD_CHOICES = self._build_field_choices(model_fields) self.fields['field'].choices = self.FIELD_CHOICES if not self.fields['field'].initial: self.fields['field'].initial = self.FIELD_CHOICES[0] self.fields['field'].disabled = self.readonly self.fields['operator'].disabled = self.readonly self.fields['value'].disabled = self.readonly self.fields['value_from'].disabled = self.readonly self.fields['value_to'].disabled = self.readonly self.fields['negate'].disabled = self.readonly class AdvancedFilterFormSet(BaseFormSet): """ """ fields = () extra_kwargs = {} def __init__(self, *args, **kwargs): self.model_fields = kwargs.pop('model_fields', {}) self.readonly = kwargs.pop('readonly', False) super(AdvancedFilterFormSet, self).__init__(*args, **kwargs) if self.forms: form = self.forms[0] self.fields = form.visible_fields() def get_form_kwargs(self, index): kwargs = super(AdvancedFilterFormSet, self).get_form_kwargs(index) kwargs['model_fields'] = self.model_fields kwargs['readonly'] = self.readonly return kwargs @cached_property def forms(self): # override the original property to include `model_fields` and `readonly` argument forms = [self._construct_form( i, model_fields=self.model_fields, readonly=self.readonly) for i in range(self.total_form_count())] forms.append(self.empty_form) # add initial empty form return forms AFQFormSet = formset_factory( AdvancedFilterQueryForm, formset=AdvancedFilterFormSet, extra=1, can_delete=True) AFQFormSetNoExtra = formset_factory( AdvancedFilterQueryForm, formset=AdvancedFilterFormSet, extra=0, can_delete=True) class AdvancedFilterForm(CleanWhiteSpacesMixin, forms.ModelForm): """ Form to save/edit advanced filter forms """ class Meta: model = AdvancedFilter fields = ('title', 'is_public') class Media: required_js = [ 'admin/js/%sjquery.min.js' % ('vendor/jquery/' if USE_VENDOR_DIR else ''), 'advanced-filters/jquery_adder.js', 'orig_inlines%s.js' % ('' if settings.DEBUG else '.min'), 'magnific-popup/jquery.magnific-popup.js', 'advanced-filters/advanced-filters.js', ] js = required_js + [SELECT2_JS] css = {'screen': [ SELECT2_CSS, 'advanced-filters/advanced-filters.css', 'magnific-popup/magnific-popup.css' ]} def get_fields_from_model(self, model, fields): """ Iterate over given <field> names (in "orm query" notation) and find the actual field given the initial <model>. If <field> is a tuple of the format ('field_name', 'Verbose name'), overwrite the field's verbose name with the given name for display purposes. """ model_fields = {} for field in fields: if isinstance(field, tuple) and len(field) == 2: field, verbose_name = field[0], field[1] else: try: model_field = get_fields_from_path(model, field)[-1] verbose_name = model_field.verbose_name except (FieldDoesNotExist, IndexError, TypeError) as e: logger.warn("AdvancedFilterForm: skip invalid field " "- %s", e) continue model_fields[field] = verbose_name return model_fields def __init__(self, *args, **kwargs): model_admin = kwargs.pop('model_admin', None) instance = kwargs.get('instance') extra_form = kwargs.pop('extra_form', False) self.readonly = kwargs.pop('readonly', False) # TODO: allow all fields to be determined by model filter_fields = kwargs.pop('filter_fields', None) if model_admin: self._model = model_admin.model elif instance and instance.model: # get existing instance model self._model = apps.get_model(*instance.model.split('.')) try: admin_instance = getattr(settings, 'ADVANCED_FILTERS_ADMIN_INSTANCE', None) if admin_instance: site = import_string(admin_instance).site else: site = admin.site model_admin = site._registry[self._model] except KeyError: logger.debug('No ModelAdmin registered for %s', self._model) else: raise Exception('Adding new AdvancedFilter from admin is ' 'not supported') self._filter_fields = filter_fields or getattr( model_admin, 'advanced_filter_fields', ()) super(AdvancedFilterForm, self).__init__(*args, **kwargs) # populate existing or empty forms formset data = None if len(args): data = args[0] elif kwargs.get('data'): data = kwargs.get('data') self.initialize_form(instance, self._model, data, extra_form) def clean(self): cleaned_data = super(AdvancedFilterForm, self).clean() if not self.fields_formset.is_valid(): logger.debug( "Errors validating advanced query filters: %s", pformat([(f.errors, f.non_field_errors()) for f in self.fields_formset.forms])) raise forms.ValidationError("Error validating filter forms") cleaned_data['model'] = "%s.%s" % (self._model._meta.app_label, self._model._meta.object_name) return cleaned_data @property def _non_deleted_forms(self): forms = [] for form in self.fields_formset.forms: if form in self.fields_formset.deleted_forms: continue # skip deleted forms when generating query forms.append(form) return forms def generate_query(self): """ Reduces multiple queries into a single usable query """ query = Q() ORed = [] for form in self._non_deleted_forms: if not hasattr(form, 'cleaned_data'): continue if form.cleaned_data['field'] == "_OR": ORed.append(query) query = Q() else: query = query & form.make_query() if ORed: if query: # add last query for OR if any ORed.append(query) query = reduce(operator.or_, ORed) return query def initialize_form(self, instance, model, data=None, extra=None): """ Takes a "finalized" query and generate it's form data """ model_fields = self.get_fields_from_model(model, self._filter_fields) forms = [] if instance: for field_data in instance.list_fields(): forms.append( AdvancedFilterQueryForm._parse_query_dict( field_data, model)) formset = AFQFormSetNoExtra if not extra else AFQFormSet self.fields_formset = formset( data=data, initial=forms or None, model_fields=model_fields, readonly=self.readonly ) def save(self, commit=True): self.instance.query = self.generate_query() self.instance.model = self.cleaned_data.get('model') return super(AdvancedFilterForm, self).save(commit)
38.896907
91
0.597403
51f4a0b974ef0151a0d337402095ba68312bf25c
463
py
Python
test/os_test.py
littlecharacter/AutoWork
feebb8459f889b7a9165073be8fd44ba544cbb35
[ "Apache-2.0" ]
null
null
null
test/os_test.py
littlecharacter/AutoWork
feebb8459f889b7a9165073be8fd44ba544cbb35
[ "Apache-2.0" ]
null
null
null
test/os_test.py
littlecharacter/AutoWork
feebb8459f889b7a9165073be8fd44ba544cbb35
[ "Apache-2.0" ]
null
null
null
import os import psutil import time import subprocess if __name__ == "__main__": pass # op_content = "/Applications/微信.app" # p = subprocess.Popen(op_content) # time.sleep(3) # p.terminate() # os.system(f'open \"{op_content}\"') # os.system("osascript -e 'tell application \"/Applications/微信.app\" to quit'") for pid in psutil.pids(): p = psutil.Process(pid) if p.name() == 'War3.exe': p.terminate()
23.15
83
0.602592
62ada1806ff717068dc400eb8843bfc3388928eb
1,301
py
Python
tests/test_sessions.py
kennethreitz/requests-async
213da681c13a79e2f6232920e61f2181d92daa3e
[ "Apache-2.0" ]
7
2019-03-22T10:48:42.000Z
2019-06-24T03:28:33.000Z
tests/test_sessions.py
Lt-grint/requests-async
b5147b15c67ca504fe35536c950fcca67da9d147
[ "Apache-2.0" ]
null
null
null
tests/test_sessions.py
Lt-grint/requests-async
b5147b15c67ca504fe35536c950fcca67da9d147
[ "Apache-2.0" ]
2
2019-04-15T09:59:52.000Z
2019-06-11T08:24:34.000Z
import asyncio import requests_async import pytest @pytest.mark.asyncio async def test_session(server): url = "http://127.0.0.1:8000/" with requests_async.Session() as session: response = await session.get(url) assert response.status_code == 200 assert response.json() == {"method": "GET", "url": url, "body": ""} response = await session.post(url) assert response.status_code == 200 assert response.json() == {"method": "POST", "url": url, "body": ""} response = await session.put(url) assert response.status_code == 200 assert response.json() == {"method": "PUT", "url": url, "body": ""} response = await session.patch(url) assert response.status_code == 200 assert response.json() == {"method": "PATCH", "url": url, "body": ""} response = await session.delete(url) assert response.status_code == 200 assert response.json() == {"method": "DELETE", "url": url, "body": ""} response = await session.options(url) assert response.status_code == 200 assert response.json() == {"method": "OPTIONS", "url": url, "body": ""} response = await session.head(url) assert response.status_code == 200 assert response.text == ""
34.236842
79
0.598002
8c708082f02fa3b39d8b345ddafd84f986fd9b76
5,697
py
Python
blabel/label_tools.py
kubaraczkowski/blabel
afbe6ecd7805ef83e24a52eb60476216c1086711
[ "MIT" ]
91
2018-11-07T09:03:44.000Z
2022-03-25T04:43:45.000Z
blabel/label_tools.py
kubaraczkowski/blabel
afbe6ecd7805ef83e24a52eb60476216c1086711
[ "MIT" ]
17
2019-09-20T11:31:52.000Z
2022-02-16T14:37:06.000Z
blabel/label_tools.py
kubaraczkowski/blabel
afbe6ecd7805ef83e24a52eb60476216c1086711
[ "MIT" ]
26
2019-09-20T11:20:17.000Z
2021-11-11T12:14:51.000Z
"""Utilities for label generation. """ import base64 from io import BytesIO import datetime import textwrap import qrcode import barcode as python_barcode from pystrich.datamatrix import DataMatrixEncoder from PIL import Image, ImageOps def now(fmt="%Y-%m-%d %H:%M"): """Display the current time. Default format is "year-month-day hour:minute" but another format can be provided (see ``datetime`` docs for date formatting). """ now = datetime.datetime.now() if fmt is not None: now = now.strftime(fmt) return now def pil_to_html_imgdata(img, fmt='PNG'): """Convert a PIL image into HTML-displayable data. The result is a string ```` which you can provide as a "src" parameter to a ``<img/>`` tag. Examples: --------- >>> data = pil_to_html_imgdata(my_pil_img) >>> html_data = '<img src="%s"/>' % data """ buffered = BytesIO() img.save(buffered, format=fmt) img_str = base64.b64encode(buffered.getvalue()) prefix = 'data:image/%s;charset=utf-8;base64,' % fmt.lower() return prefix + img_str.decode() def wrap(text, col_width): """Breaks the text into lines with at maximum 'col_width' characters.""" return "\n".join(textwrap.wrap(text, col_width)) def hiro_square(width='100%'): """Return a <svg/> string of a Hiro square to be included in HTML.""" svg= """ <svg height="%s" width="%s" version="1.1" viewBox="0 0 4 4" xmlns="http://www.w3.org/2000/svg"> <rect x="0" y="0" width="4" height="4" fill="#000" stroke-width="0"/> <rect x="1" y="1" width="2" height="2" fill="#fff" stroke-width="0"/> </svg> """ % (width, width) prefix = "data:image/svg+xml;charset=utf-8;base64," return prefix + base64.b64encode(svg.encode()).decode() def qr_code(data, optimize=20, fill_color="black", back_color="white", **qr_code_params): """Return a QR code's image data. Powered by the Python library ``qrcode``. See this library's documentation for more details. Parameters ---------- data Data to be encoded in the QR code. optimize Chunk length optimization setting. fill_color, back_color Colors to use for QRcode and its background. **qr_code_params Parameters of the ``qrcode.QRCode`` constructor, such as ``version``, ``error_correction``, ``box_size``, ``border``. Returns ------- image_base64_data A string ```` which you can provide as a "src" parameter to a ``<img/>`` tag. Examples: --------- >>> data = qr_code('egf45728') >>> html_data = '<img src="%s"/>' % data """ params = dict(box_size=5, border=0) params.update(qr_code_params) qr = qrcode.QRCode(**params) qr.add_data(data, optimize=20) qri = qr.make_image(fill_color=fill_color, back_color=back_color) return pil_to_html_imgdata(qri.get_image()) def datamatrix(data, cellsize=2, with_border=False): """Return a datamatrix's image data. Powered by the Python library ``pyStrich``. See this library's documentation for more details. Parameters ---------- data Data to be encoded in the datamatrix. cellsize size of the picture in inches (?). with_border If false, there will be no border or margin to the datamatrix image. Returns ------- image_base64_data A string ```` which you can provide as a "src" parameter to a ``<img/>`` tag. Examples: --------- >>> data = datamatrix('EGF') >>> html_data = '<img src="%s"/>' % data """ encoder = DataMatrixEncoder(data) img_data = encoder.get_imagedata(cellsize=cellsize) img = Image.open(BytesIO(img_data)) if not with_border: img = img.crop(ImageOps.invert(img).getbbox()) return pil_to_html_imgdata(img) def barcode(data, barcode_class='code128', fmt='png', **writer_options): """Return a barcode's image data. Powered by the Python library ``python-barcode``. See this library's documentation for more details. Parameters ---------- data Data to be encoded in the datamatrix. barcode_class Class/standard to use to encode the data. Different standards have different constraints. writer_options Various options for the writer to tune the appearance of the barcode (see python-barcode documentation). Returns ------- image_base64_data A string ```` which you can provide as a "src" parameter to a ``<img/>`` tag. Examples: --------- >>> data = barcode('EGF12134', barcode_class='code128') >>> html_data = '<img src="%s"/>' % data Examples of writer options: >>> { 'background': 'white', >>> 'font_size': 10, >>> 'foreground': 'black', >>> 'module_height': 15.0, >>> 'module_width': 0.2, >>> 'quiet_zone': 6.5, >>> 'text': '', >>> 'text_distance': 5.0, >>> 'write_text': True >>> } """ constructor = python_barcode.get_barcode_class(barcode_class) data = str(data).zfill(constructor.digits) writer = { 'svg': python_barcode.writer.ImageWriter, 'png':python_barcode.writer.ImageWriter }[fmt] barcode_img = constructor(data, writer=writer()) img = barcode_img.render(writer_options=writer_options) if fmt == 'png': return pil_to_html_imgdata(img, fmt='PNG') else: prefix = "data:image/svg+xml;charset=utf-8;base64," return prefix + base64.b64encode(img).decode()
29.518135
80
0.626821
188bd8feac21a8211dd02329d143c9e2016abd26
8,446
py
Python
src/learners/maddpg_learner.py
at-peter/epymarl
e84ee56f435e6fe69e9bb3297256a326f65b3b1f
[ "Apache-2.0" ]
null
null
null
src/learners/maddpg_learner.py
at-peter/epymarl
e84ee56f435e6fe69e9bb3297256a326f65b3b1f
[ "Apache-2.0" ]
null
null
null
src/learners/maddpg_learner.py
at-peter/epymarl
e84ee56f435e6fe69e9bb3297256a326f65b3b1f
[ "Apache-2.0" ]
null
null
null
import copy from components.episode_buffer import EpisodeBatch from modules.critics.maddpg import MADDPGCritic import torch as th from torch.optim import RMSprop, Adam from controllers.maddpg_controller import gumbel_softmax from modules.critics import REGISTRY as critic_registry class MADDPGLearner: def __init__(self, mac, scheme, logger, args): self.args = args self.n_agents = args.n_agents self.n_actions = args.n_actions self.logger = logger self.mac = mac self.target_mac = copy.deepcopy(self.mac) self.agent_params = list(mac.parameters()) self.critic = critic_registry[args.critic_type](scheme, args) self.target_critic = copy.deepcopy(self.critic) self.critic_params = list(self.critic.parameters()) self.agent_optimiser = Adam(params=self.agent_params, lr=self.args.lr) self.critic_optimiser = Adam(params=self.critic_params, lr=self.args.lr) self.log_stats_t = -self.args.learner_log_interval - 1 self.last_target_update_episode = 0 def train(self, batch: EpisodeBatch, t_env: int, episode_num: int): # Get the relevant quantities rewards = batch["reward"][:, :-1] actions = batch["actions_onehot"] terminated = batch["terminated"][:, :-1].float() rewards = rewards.unsqueeze(2).expand(-1, -1, self.n_agents, -1) terminated = terminated.unsqueeze(2).expand(-1, -1, self.n_agents, -1) mask = 1 - terminated batch_size = batch.batch_size if self.args.standardise_rewards: rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-5) # Train the critic inputs = self._build_inputs(batch) actions = actions.view(batch_size, -1, 1, self.n_agents * self.n_actions).expand(-1, -1, self.n_agents, -1) q_taken = self.critic(inputs[:, :-1], actions[:, :-1].detach()) q_taken = q_taken.view(batch_size, -1, 1) # Use the target actor and target critic network to compute the target q self.target_mac.init_hidden(batch.batch_size) target_actions = [] for t in range(1, batch.max_seq_length): agent_target_outs = self.target_mac.target_actions(batch, t) target_actions.append(agent_target_outs) target_actions = th.stack(target_actions, dim=1) # Concat over time target_actions = target_actions.view(batch_size, -1, 1, self.n_agents * self.n_actions).expand(-1, -1, self.n_agents, -1) target_vals = self.target_critic(inputs[:, 1:], target_actions.detach()) target_vals = target_vals.view(batch_size, -1, 1) targets = rewards.reshape(-1, 1) + self.args.gamma * (1 - terminated.reshape(-1, 1)) * target_vals.reshape(-1, 1) td_error = (q_taken.view(-1, 1) - targets.detach()) masked_td_error = td_error * mask.reshape(-1, 1) loss = (masked_td_error ** 2).mean() self.critic_optimiser.zero_grad() loss.backward() critic_grad_norm = th.nn.utils.clip_grad_norm_(self.critic_params, self.args.grad_norm_clip) self.critic_optimiser.step() # Train the actor self.mac.init_hidden(batch_size) pis = [] actions = [] for t in range(batch.max_seq_length-1): pi = self.mac.forward(batch, t=t).view(batch_size, 1, self.n_agents, -1) actions.append(gumbel_softmax(pi, hard=True)) pis.append(pi) actions = th.cat(actions, dim=1) actions = actions.view(batch_size, -1, 1, self.n_agents * self.n_actions).expand(-1, -1, self.n_agents, -1) new_actions = [] for i in range(self.n_agents): temp_action = th.split(actions[:, :, i, :], self.n_actions, dim=2) actions_i = [] for j in range(self.n_agents): if i == j: actions_i.append(temp_action[j]) else: actions_i.append(temp_action[j].detach()) actions_i = th.cat(actions_i, dim=-1) new_actions.append(actions_i.unsqueeze(2)) new_actions = th.cat(new_actions, dim=2) pis = th.cat(pis, dim=1) pis[pis==-1e10] = 0 pis = pis.reshape(-1, 1) q = self.critic(inputs[:, :-1], new_actions) q = q.reshape(-1, 1) mask = mask.reshape(-1, 1) # Compute the actor loss pg_loss = -(q * mask).mean() + self.args.reg * (pis ** 2).mean() # Optimise agents self.agent_optimiser.zero_grad() pg_loss.backward() agent_grad_norm = th.nn.utils.clip_grad_norm_(self.agent_params, self.args.grad_norm_clip) self.agent_optimiser.step() if self.args.target_update_interval_or_tau > 1 and (episode_num - self.last_target_update_episode) / self.args.target_update_interval_or_tau >= 1.0: self._update_targets_hard() self.last_target_update_episode = episode_num elif self.args.target_update_interval_or_tau <= 1.0: self._update_targets_soft(self.args.target_update_interval_or_tau) if t_env - self.log_stats_t >= self.args.learner_log_interval: self.logger.log_stat("critic_loss", loss.item(), t_env) self.logger.log_stat("critic_grad_norm", critic_grad_norm, t_env) self.logger.log_stat("agent_grad_norm", agent_grad_norm, t_env) mask_elems = mask.sum().item() self.logger.log_stat("td_error_abs", masked_td_error.abs().sum().item() / mask_elems, t_env) self.logger.log_stat("q_taken_mean", (q_taken).sum().item() / mask_elems, t_env) self.logger.log_stat("target_mean", targets.sum().item() / mask_elems, t_env) self.logger.log_stat("pg_loss", pg_loss.item(), t_env) self.logger.log_stat("agent_grad_norm", agent_grad_norm, t_env) self.log_stats_t = t_env def _build_inputs(self, batch, t=None): bs = batch.batch_size max_t = batch.max_seq_length if t is None else 1 ts = slice(None) if t is None else slice(t, t + 1) inputs = [] inputs.append(batch["state"][:, ts].unsqueeze(2).expand(-1, -1, self.n_agents, -1)) if self.args.obs_individual_obs: inputs.append(batch["obs"][:, ts]) # last actions if self.args.obs_last_action: if t == 0: inputs.append(th.zeros_like(batch["actions_onehot"][:, 0:1])) elif isinstance(t, int): inputs.append(batch["actions_onehot"][:, slice(t - 1, t)]) else: last_actions = th.cat([th.zeros_like(batch["actions_onehot"][:, 0:1]), batch["actions_onehot"][:, :-1]], dim=1) # last_actions = last_actions.view(bs, max_t, 1, -1).repeat(1, 1, self.n_agents, 1) inputs.append(last_actions) if self.args.obs_agent_id: inputs.append(th.eye(self.n_agents, device=batch.device).unsqueeze(0).unsqueeze(0).expand(bs, max_t, -1, -1)) inputs = th.cat(inputs, dim=-1) return inputs def _update_targets_hard(self): self.target_mac.load_state(self.mac) self.target_critic.load_state_dict(self.critic.state_dict()) def _update_targets_soft(self, tau): for target_param, param in zip(self.target_mac.parameters(), self.mac.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) def cuda(self): self.mac.cuda() self.target_mac.cuda() self.critic.cuda() self.target_critic.cuda() def save_models(self, path): self.mac.save_models(path) th.save(self.critic.state_dict(), "{}/critic.th".format(path)) th.save(self.agent_optimiser.state_dict(), "{}/agent_opt.th".format(path)) th.save(self.critic_optimiser.state_dict(), "{}/critic_opt.th".format(path)) def load_models(self, path): self.mac.load_models(path) # Not quite right but I don't want to save target networks self.target_mac.load_models(path) self.agent_optimiser.load_state_dict( th.load("{}/agent_opt.th".format(path), map_location=lambda storage, loc: storage))
45.654054
156
0.6287
6f80d3e9c779d6682b1cc587762ad462a45911e4
134
py
Python
dataservice/api/biospecimen/__init__.py
ConnorBarnhill/kf-api-dataservice
547df467a307788882469a25c947a14965a26336
[ "Apache-2.0" ]
6
2018-01-25T13:49:24.000Z
2020-03-07T16:25:09.000Z
dataservice/api/biospecimen/__init__.py
ConnorBarnhill/kf-api-dataservice
547df467a307788882469a25c947a14965a26336
[ "Apache-2.0" ]
369
2018-01-17T15:22:18.000Z
2022-03-10T19:14:56.000Z
dataservice/api/biospecimen/__init__.py
ConnorBarnhill/kf-api-dataservice
547df467a307788882469a25c947a14965a26336
[ "Apache-2.0" ]
3
2018-04-11T14:18:37.000Z
2018-10-31T19:09:48.000Z
from dataservice.api.biospecimen.resources import BiospecimenAPI from dataservice.api.biospecimen.resources import BiospecimenListAPI
44.666667
68
0.895522
746b3f8be8e0bfc2d11fd8fd8ea8717dcf33514e
129,224
py
Python
Lib/test/test_os.py
Golfist/cpython
c4750959acbfc3057f12aaec832483ba30898d1c
[ "PSF-2.0" ]
27
2017-04-21T14:57:04.000Z
2021-11-03T22:10:38.000Z
Lib/test/test_os.py
Golfist/cpython
c4750959acbfc3057f12aaec832483ba30898d1c
[ "PSF-2.0" ]
null
null
null
Lib/test/test_os.py
Golfist/cpython
c4750959acbfc3057f12aaec832483ba30898d1c
[ "PSF-2.0" ]
9
2017-04-26T14:14:05.000Z
2020-12-14T16:26:41.000Z
# As a test suite for the os module, this is woefully inadequate, but this # does add tests for a few functions which have been determined to be more # portable than they had been thought to be. import asynchat import asyncore import codecs import contextlib import decimal import errno import fractions import getpass import itertools import locale import mmap import os import pickle import shutil import signal import socket import stat import subprocess import sys import sysconfig import time import unittest import uuid import warnings from test import support try: import threading except ImportError: threading = None try: import resource except ImportError: resource = None try: import fcntl except ImportError: fcntl = None try: import _winapi except ImportError: _winapi = None try: import grp groups = [g.gr_gid for g in grp.getgrall() if getpass.getuser() in g.gr_mem] if hasattr(os, 'getgid'): process_gid = os.getgid() if process_gid not in groups: groups.append(process_gid) except ImportError: groups = [] try: import pwd all_users = [u.pw_uid for u in pwd.getpwall()] except (ImportError, AttributeError): all_users = [] try: from _testcapi import INT_MAX, PY_SSIZE_T_MAX except ImportError: INT_MAX = PY_SSIZE_T_MAX = sys.maxsize from test.support.script_helper import assert_python_ok from test.support import unix_shell root_in_posix = False if hasattr(os, 'geteuid'): root_in_posix = (os.geteuid() == 0) # Detect whether we're on a Linux system that uses the (now outdated # and unmaintained) linuxthreads threading library. There's an issue # when combining linuxthreads with a failed execv call: see # http://bugs.python.org/issue4970. if hasattr(sys, 'thread_info') and sys.thread_info.version: USING_LINUXTHREADS = sys.thread_info.version.startswith("linuxthreads") else: USING_LINUXTHREADS = False # Issue #14110: Some tests fail on FreeBSD if the user is in the wheel group. HAVE_WHEEL_GROUP = sys.platform.startswith('freebsd') and os.getgid() == 0 @contextlib.contextmanager def ignore_deprecation_warnings(msg_regex, quiet=False): with support.check_warnings((msg_regex, DeprecationWarning), quiet=quiet): yield def requires_os_func(name): return unittest.skipUnless(hasattr(os, name), 'requires os.%s' % name) class _PathLike(os.PathLike): def __init__(self, path=""): self.path = path def __str__(self): return str(self.path) def __fspath__(self): if isinstance(self.path, BaseException): raise self.path else: return self.path def create_file(filename, content=b'content'): with open(filename, "xb", 0) as fp: fp.write(content) # Tests creating TESTFN class FileTests(unittest.TestCase): def setUp(self): if os.path.lexists(support.TESTFN): os.unlink(support.TESTFN) tearDown = setUp def test_access(self): f = os.open(support.TESTFN, os.O_CREAT|os.O_RDWR) os.close(f) self.assertTrue(os.access(support.TESTFN, os.W_OK)) def test_closerange(self): first = os.open(support.TESTFN, os.O_CREAT|os.O_RDWR) # We must allocate two consecutive file descriptors, otherwise # it will mess up other file descriptors (perhaps even the three # standard ones). second = os.dup(first) try: retries = 0 while second != first + 1: os.close(first) retries += 1 if retries > 10: # XXX test skipped self.skipTest("couldn't allocate two consecutive fds") first, second = second, os.dup(second) finally: os.close(second) # close a fd that is open, and one that isn't os.closerange(first, first + 2) self.assertRaises(OSError, os.write, first, b"a") @support.cpython_only def test_rename(self): path = support.TESTFN old = sys.getrefcount(path) self.assertRaises(TypeError, os.rename, path, 0) new = sys.getrefcount(path) self.assertEqual(old, new) def test_read(self): with open(support.TESTFN, "w+b") as fobj: fobj.write(b"spam") fobj.flush() fd = fobj.fileno() os.lseek(fd, 0, 0) s = os.read(fd, 4) self.assertEqual(type(s), bytes) self.assertEqual(s, b"spam") @support.cpython_only # Skip the test on 32-bit platforms: the number of bytes must fit in a # Py_ssize_t type @unittest.skipUnless(INT_MAX < PY_SSIZE_T_MAX, "needs INT_MAX < PY_SSIZE_T_MAX") @support.bigmemtest(size=INT_MAX + 10, memuse=1, dry_run=False) def test_large_read(self, size): self.addCleanup(support.unlink, support.TESTFN) create_file(support.TESTFN, b'test') # Issue #21932: Make sure that os.read() does not raise an # OverflowError for size larger than INT_MAX with open(support.TESTFN, "rb") as fp: data = os.read(fp.fileno(), size) # The test does not try to read more than 2 GB at once because the # operating system is free to return less bytes than requested. self.assertEqual(data, b'test') def test_write(self): # os.write() accepts bytes- and buffer-like objects but not strings fd = os.open(support.TESTFN, os.O_CREAT | os.O_WRONLY) self.assertRaises(TypeError, os.write, fd, "beans") os.write(fd, b"bacon\n") os.write(fd, bytearray(b"eggs\n")) os.write(fd, memoryview(b"spam\n")) os.close(fd) with open(support.TESTFN, "rb") as fobj: self.assertEqual(fobj.read().splitlines(), [b"bacon", b"eggs", b"spam"]) def write_windows_console(self, *args): retcode = subprocess.call(args, # use a new console to not flood the test output creationflags=subprocess.CREATE_NEW_CONSOLE, # use a shell to hide the console window (SW_HIDE) shell=True) self.assertEqual(retcode, 0) @unittest.skipUnless(sys.platform == 'win32', 'test specific to the Windows console') def test_write_windows_console(self): # Issue #11395: the Windows console returns an error (12: not enough # space error) on writing into stdout if stdout mode is binary and the # length is greater than 66,000 bytes (or less, depending on heap # usage). code = "print('x' * 100000)" self.write_windows_console(sys.executable, "-c", code) self.write_windows_console(sys.executable, "-u", "-c", code) def fdopen_helper(self, *args): fd = os.open(support.TESTFN, os.O_RDONLY) f = os.fdopen(fd, *args) f.close() def test_fdopen(self): fd = os.open(support.TESTFN, os.O_CREAT|os.O_RDWR) os.close(fd) self.fdopen_helper() self.fdopen_helper('r') self.fdopen_helper('r', 100) def test_replace(self): TESTFN2 = support.TESTFN + ".2" self.addCleanup(support.unlink, support.TESTFN) self.addCleanup(support.unlink, TESTFN2) create_file(support.TESTFN, b"1") create_file(TESTFN2, b"2") os.replace(support.TESTFN, TESTFN2) self.assertRaises(FileNotFoundError, os.stat, support.TESTFN) with open(TESTFN2, 'r') as f: self.assertEqual(f.read(), "1") def test_open_keywords(self): f = os.open(path=__file__, flags=os.O_RDONLY, mode=0o777, dir_fd=None) os.close(f) def test_symlink_keywords(self): symlink = support.get_attribute(os, "symlink") try: symlink(src='target', dst=support.TESTFN, target_is_directory=False, dir_fd=None) except (NotImplementedError, OSError): pass # No OS support or unprivileged user # Test attributes on return values from os.*stat* family. class StatAttributeTests(unittest.TestCase): def setUp(self): self.fname = support.TESTFN self.addCleanup(support.unlink, self.fname) create_file(self.fname, b"ABC") @unittest.skipUnless(hasattr(os, 'stat'), 'test needs os.stat()') def check_stat_attributes(self, fname): result = os.stat(fname) # Make sure direct access works self.assertEqual(result[stat.ST_SIZE], 3) self.assertEqual(result.st_size, 3) # Make sure all the attributes are there members = dir(result) for name in dir(stat): if name[:3] == 'ST_': attr = name.lower() if name.endswith("TIME"): def trunc(x): return int(x) else: def trunc(x): return x self.assertEqual(trunc(getattr(result, attr)), result[getattr(stat, name)]) self.assertIn(attr, members) # Make sure that the st_?time and st_?time_ns fields roughly agree # (they should always agree up to around tens-of-microseconds) for name in 'st_atime st_mtime st_ctime'.split(): floaty = int(getattr(result, name) * 100000) nanosecondy = getattr(result, name + "_ns") // 10000 self.assertAlmostEqual(floaty, nanosecondy, delta=2) try: result[200] self.fail("No exception raised") except IndexError: pass # Make sure that assignment fails try: result.st_mode = 1 self.fail("No exception raised") except AttributeError: pass try: result.st_rdev = 1 self.fail("No exception raised") except (AttributeError, TypeError): pass try: result.parrot = 1 self.fail("No exception raised") except AttributeError: pass # Use the stat_result constructor with a too-short tuple. try: result2 = os.stat_result((10,)) self.fail("No exception raised") except TypeError: pass # Use the constructor with a too-long tuple. try: result2 = os.stat_result((0,1,2,3,4,5,6,7,8,9,10,11,12,13,14)) except TypeError: pass def test_stat_attributes(self): self.check_stat_attributes(self.fname) def test_stat_attributes_bytes(self): try: fname = self.fname.encode(sys.getfilesystemencoding()) except UnicodeEncodeError: self.skipTest("cannot encode %a for the filesystem" % self.fname) self.check_stat_attributes(fname) def test_stat_result_pickle(self): result = os.stat(self.fname) for proto in range(pickle.HIGHEST_PROTOCOL + 1): p = pickle.dumps(result, proto) self.assertIn(b'stat_result', p) if proto < 4: self.assertIn(b'cos\nstat_result\n', p) unpickled = pickle.loads(p) self.assertEqual(result, unpickled) @unittest.skipUnless(hasattr(os, 'statvfs'), 'test needs os.statvfs()') def test_statvfs_attributes(self): try: result = os.statvfs(self.fname) except OSError as e: # On AtheOS, glibc always returns ENOSYS if e.errno == errno.ENOSYS: self.skipTest('os.statvfs() failed with ENOSYS') # Make sure direct access works self.assertEqual(result.f_bfree, result[3]) # Make sure all the attributes are there. members = ('bsize', 'frsize', 'blocks', 'bfree', 'bavail', 'files', 'ffree', 'favail', 'flag', 'namemax') for value, member in enumerate(members): self.assertEqual(getattr(result, 'f_' + member), result[value]) # Make sure that assignment really fails try: result.f_bfree = 1 self.fail("No exception raised") except AttributeError: pass try: result.parrot = 1 self.fail("No exception raised") except AttributeError: pass # Use the constructor with a too-short tuple. try: result2 = os.statvfs_result((10,)) self.fail("No exception raised") except TypeError: pass # Use the constructor with a too-long tuple. try: result2 = os.statvfs_result((0,1,2,3,4,5,6,7,8,9,10,11,12,13,14)) except TypeError: pass @unittest.skipUnless(hasattr(os, 'statvfs'), "need os.statvfs()") def test_statvfs_result_pickle(self): try: result = os.statvfs(self.fname) except OSError as e: # On AtheOS, glibc always returns ENOSYS if e.errno == errno.ENOSYS: self.skipTest('os.statvfs() failed with ENOSYS') for proto in range(pickle.HIGHEST_PROTOCOL + 1): p = pickle.dumps(result, proto) self.assertIn(b'statvfs_result', p) if proto < 4: self.assertIn(b'cos\nstatvfs_result\n', p) unpickled = pickle.loads(p) self.assertEqual(result, unpickled) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") def test_1686475(self): # Verify that an open file can be stat'ed try: os.stat(r"c:\pagefile.sys") except FileNotFoundError: self.skipTest(r'c:\pagefile.sys does not exist') except OSError as e: self.fail("Could not stat pagefile.sys") @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") @unittest.skipUnless(hasattr(os, "pipe"), "requires os.pipe()") def test_15261(self): # Verify that stat'ing a closed fd does not cause crash r, w = os.pipe() try: os.stat(r) # should not raise error finally: os.close(r) os.close(w) with self.assertRaises(OSError) as ctx: os.stat(r) self.assertEqual(ctx.exception.errno, errno.EBADF) def check_file_attributes(self, result): self.assertTrue(hasattr(result, 'st_file_attributes')) self.assertTrue(isinstance(result.st_file_attributes, int)) self.assertTrue(0 <= result.st_file_attributes <= 0xFFFFFFFF) @unittest.skipUnless(sys.platform == "win32", "st_file_attributes is Win32 specific") def test_file_attributes(self): # test file st_file_attributes (FILE_ATTRIBUTE_DIRECTORY not set) result = os.stat(self.fname) self.check_file_attributes(result) self.assertEqual( result.st_file_attributes & stat.FILE_ATTRIBUTE_DIRECTORY, 0) # test directory st_file_attributes (FILE_ATTRIBUTE_DIRECTORY set) dirname = support.TESTFN + "dir" os.mkdir(dirname) self.addCleanup(os.rmdir, dirname) result = os.stat(dirname) self.check_file_attributes(result) self.assertEqual( result.st_file_attributes & stat.FILE_ATTRIBUTE_DIRECTORY, stat.FILE_ATTRIBUTE_DIRECTORY) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") def test_access_denied(self): # Default to FindFirstFile WIN32_FIND_DATA when access is # denied. See issue 28075. # os.environ['TEMP'] should be located on a volume that # supports file ACLs. fname = os.path.join(os.environ['TEMP'], self.fname) self.addCleanup(support.unlink, fname) create_file(fname, b'ABC') # Deny the right to [S]YNCHRONIZE on the file to # force CreateFile to fail with ERROR_ACCESS_DENIED. DETACHED_PROCESS = 8 subprocess.check_call( ['icacls.exe', fname, '/deny', 'Users:(S)'], creationflags=DETACHED_PROCESS ) result = os.stat(fname) self.assertNotEqual(result.st_size, 0) class UtimeTests(unittest.TestCase): def setUp(self): self.dirname = support.TESTFN self.fname = os.path.join(self.dirname, "f1") self.addCleanup(support.rmtree, self.dirname) os.mkdir(self.dirname) create_file(self.fname) def restore_float_times(state): with ignore_deprecation_warnings('stat_float_times'): os.stat_float_times(state) # ensure that st_atime and st_mtime are float with ignore_deprecation_warnings('stat_float_times'): old_float_times = os.stat_float_times(-1) self.addCleanup(restore_float_times, old_float_times) os.stat_float_times(True) def support_subsecond(self, filename): # Heuristic to check if the filesystem supports timestamp with # subsecond resolution: check if float and int timestamps are different st = os.stat(filename) return ((st.st_atime != st[7]) or (st.st_mtime != st[8]) or (st.st_ctime != st[9])) def _test_utime(self, set_time, filename=None): if not filename: filename = self.fname support_subsecond = self.support_subsecond(filename) if support_subsecond: # Timestamp with a resolution of 1 microsecond (10^-6). # # The resolution of the C internal function used by os.utime() # depends on the platform: 1 sec, 1 us, 1 ns. Writing a portable # test with a resolution of 1 ns requires more work: # see the issue #15745. atime_ns = 1002003000 # 1.002003 seconds mtime_ns = 4005006000 # 4.005006 seconds else: # use a resolution of 1 second atime_ns = 5 * 10**9 mtime_ns = 8 * 10**9 set_time(filename, (atime_ns, mtime_ns)) st = os.stat(filename) if support_subsecond: self.assertAlmostEqual(st.st_atime, atime_ns * 1e-9, delta=1e-6) self.assertAlmostEqual(st.st_mtime, mtime_ns * 1e-9, delta=1e-6) else: self.assertEqual(st.st_atime, atime_ns * 1e-9) self.assertEqual(st.st_mtime, mtime_ns * 1e-9) self.assertEqual(st.st_atime_ns, atime_ns) self.assertEqual(st.st_mtime_ns, mtime_ns) def test_utime(self): def set_time(filename, ns): # test the ns keyword parameter os.utime(filename, ns=ns) self._test_utime(set_time) @staticmethod def ns_to_sec(ns): # Convert a number of nanosecond (int) to a number of seconds (float). # Round towards infinity by adding 0.5 nanosecond to avoid rounding # issue, os.utime() rounds towards minus infinity. return (ns * 1e-9) + 0.5e-9 def test_utime_by_indexed(self): # pass times as floating point seconds as the second indexed parameter def set_time(filename, ns): atime_ns, mtime_ns = ns atime = self.ns_to_sec(atime_ns) mtime = self.ns_to_sec(mtime_ns) # test utimensat(timespec), utimes(timeval), utime(utimbuf) # or utime(time_t) os.utime(filename, (atime, mtime)) self._test_utime(set_time) def test_utime_by_times(self): def set_time(filename, ns): atime_ns, mtime_ns = ns atime = self.ns_to_sec(atime_ns) mtime = self.ns_to_sec(mtime_ns) # test the times keyword parameter os.utime(filename, times=(atime, mtime)) self._test_utime(set_time) @unittest.skipUnless(os.utime in os.supports_follow_symlinks, "follow_symlinks support for utime required " "for this test.") def test_utime_nofollow_symlinks(self): def set_time(filename, ns): # use follow_symlinks=False to test utimensat(timespec) # or lutimes(timeval) os.utime(filename, ns=ns, follow_symlinks=False) self._test_utime(set_time) @unittest.skipUnless(os.utime in os.supports_fd, "fd support for utime required for this test.") def test_utime_fd(self): def set_time(filename, ns): with open(filename, 'wb', 0) as fp: # use a file descriptor to test futimens(timespec) # or futimes(timeval) os.utime(fp.fileno(), ns=ns) self._test_utime(set_time) @unittest.skipUnless(os.utime in os.supports_dir_fd, "dir_fd support for utime required for this test.") def test_utime_dir_fd(self): def set_time(filename, ns): dirname, name = os.path.split(filename) dirfd = os.open(dirname, os.O_RDONLY) try: # pass dir_fd to test utimensat(timespec) or futimesat(timeval) os.utime(name, dir_fd=dirfd, ns=ns) finally: os.close(dirfd) self._test_utime(set_time) def test_utime_directory(self): def set_time(filename, ns): # test calling os.utime() on a directory os.utime(filename, ns=ns) self._test_utime(set_time, filename=self.dirname) def _test_utime_current(self, set_time): # Get the system clock current = time.time() # Call os.utime() to set the timestamp to the current system clock set_time(self.fname) if not self.support_subsecond(self.fname): delta = 1.0 else: # On Windows, the usual resolution of time.time() is 15.6 ms delta = 0.020 st = os.stat(self.fname) msg = ("st_time=%r, current=%r, dt=%r" % (st.st_mtime, current, st.st_mtime - current)) self.assertAlmostEqual(st.st_mtime, current, delta=delta, msg=msg) def test_utime_current(self): def set_time(filename): # Set to the current time in the new way os.utime(self.fname) self._test_utime_current(set_time) def test_utime_current_old(self): def set_time(filename): # Set to the current time in the old explicit way. os.utime(self.fname, None) self._test_utime_current(set_time) def get_file_system(self, path): if sys.platform == 'win32': root = os.path.splitdrive(os.path.abspath(path))[0] + '\\' import ctypes kernel32 = ctypes.windll.kernel32 buf = ctypes.create_unicode_buffer("", 100) ok = kernel32.GetVolumeInformationW(root, None, 0, None, None, None, buf, len(buf)) if ok: return buf.value # return None if the filesystem is unknown def test_large_time(self): # Many filesystems are limited to the year 2038. At least, the test # pass with NTFS filesystem. if self.get_file_system(self.dirname) != "NTFS": self.skipTest("requires NTFS") large = 5000000000 # some day in 2128 os.utime(self.fname, (large, large)) self.assertEqual(os.stat(self.fname).st_mtime, large) def test_utime_invalid_arguments(self): # seconds and nanoseconds parameters are mutually exclusive with self.assertRaises(ValueError): os.utime(self.fname, (5, 5), ns=(5, 5)) from test import mapping_tests class EnvironTests(mapping_tests.BasicTestMappingProtocol): """check that os.environ object conform to mapping protocol""" type2test = None def setUp(self): self.__save = dict(os.environ) if os.supports_bytes_environ: self.__saveb = dict(os.environb) for key, value in self._reference().items(): os.environ[key] = value def tearDown(self): os.environ.clear() os.environ.update(self.__save) if os.supports_bytes_environ: os.environb.clear() os.environb.update(self.__saveb) def _reference(self): return {"KEY1":"VALUE1", "KEY2":"VALUE2", "KEY3":"VALUE3"} def _empty_mapping(self): os.environ.clear() return os.environ # Bug 1110478 @unittest.skipUnless(unix_shell and os.path.exists(unix_shell), 'requires a shell') def test_update2(self): os.environ.clear() os.environ.update(HELLO="World") with os.popen("%s -c 'echo $HELLO'" % unix_shell) as popen: value = popen.read().strip() self.assertEqual(value, "World") @unittest.skipUnless(unix_shell and os.path.exists(unix_shell), 'requires a shell') def test_os_popen_iter(self): with os.popen("%s -c 'echo \"line1\nline2\nline3\"'" % unix_shell) as popen: it = iter(popen) self.assertEqual(next(it), "line1\n") self.assertEqual(next(it), "line2\n") self.assertEqual(next(it), "line3\n") self.assertRaises(StopIteration, next, it) # Verify environ keys and values from the OS are of the # correct str type. def test_keyvalue_types(self): for key, val in os.environ.items(): self.assertEqual(type(key), str) self.assertEqual(type(val), str) def test_items(self): for key, value in self._reference().items(): self.assertEqual(os.environ.get(key), value) # Issue 7310 def test___repr__(self): """Check that the repr() of os.environ looks like environ({...}).""" env = os.environ self.assertEqual(repr(env), 'environ({{{}}})'.format(', '.join( '{!r}: {!r}'.format(key, value) for key, value in env.items()))) def test_get_exec_path(self): defpath_list = os.defpath.split(os.pathsep) test_path = ['/monty', '/python', '', '/flying/circus'] test_env = {'PATH': os.pathsep.join(test_path)} saved_environ = os.environ try: os.environ = dict(test_env) # Test that defaulting to os.environ works. self.assertSequenceEqual(test_path, os.get_exec_path()) self.assertSequenceEqual(test_path, os.get_exec_path(env=None)) finally: os.environ = saved_environ # No PATH environment variable self.assertSequenceEqual(defpath_list, os.get_exec_path({})) # Empty PATH environment variable self.assertSequenceEqual(('',), os.get_exec_path({'PATH':''})) # Supplied PATH environment variable self.assertSequenceEqual(test_path, os.get_exec_path(test_env)) if os.supports_bytes_environ: # env cannot contain 'PATH' and b'PATH' keys try: # ignore BytesWarning warning with warnings.catch_warnings(record=True): mixed_env = {'PATH': '1', b'PATH': b'2'} except BytesWarning: # mixed_env cannot be created with python -bb pass else: self.assertRaises(ValueError, os.get_exec_path, mixed_env) # bytes key and/or value self.assertSequenceEqual(os.get_exec_path({b'PATH': b'abc'}), ['abc']) self.assertSequenceEqual(os.get_exec_path({b'PATH': 'abc'}), ['abc']) self.assertSequenceEqual(os.get_exec_path({'PATH': b'abc'}), ['abc']) @unittest.skipUnless(os.supports_bytes_environ, "os.environb required for this test.") def test_environb(self): # os.environ -> os.environb value = 'euro\u20ac' try: value_bytes = value.encode(sys.getfilesystemencoding(), 'surrogateescape') except UnicodeEncodeError: msg = "U+20AC character is not encodable to %s" % ( sys.getfilesystemencoding(),) self.skipTest(msg) os.environ['unicode'] = value self.assertEqual(os.environ['unicode'], value) self.assertEqual(os.environb[b'unicode'], value_bytes) # os.environb -> os.environ value = b'\xff' os.environb[b'bytes'] = value self.assertEqual(os.environb[b'bytes'], value) value_str = value.decode(sys.getfilesystemencoding(), 'surrogateescape') self.assertEqual(os.environ['bytes'], value_str) # On FreeBSD < 7 and OS X < 10.6, unsetenv() doesn't return a value (issue # #13415). @support.requires_freebsd_version(7) @support.requires_mac_ver(10, 6) def test_unset_error(self): if sys.platform == "win32": # an environment variable is limited to 32,767 characters key = 'x' * 50000 self.assertRaises(ValueError, os.environ.__delitem__, key) else: # "=" is not allowed in a variable name key = 'key=' self.assertRaises(OSError, os.environ.__delitem__, key) def test_key_type(self): missing = 'missingkey' self.assertNotIn(missing, os.environ) with self.assertRaises(KeyError) as cm: os.environ[missing] self.assertIs(cm.exception.args[0], missing) self.assertTrue(cm.exception.__suppress_context__) with self.assertRaises(KeyError) as cm: del os.environ[missing] self.assertIs(cm.exception.args[0], missing) self.assertTrue(cm.exception.__suppress_context__) class WalkTests(unittest.TestCase): """Tests for os.walk().""" # Wrapper to hide minor differences between os.walk and os.fwalk # to tests both functions with the same code base def walk(self, top, **kwargs): if 'follow_symlinks' in kwargs: kwargs['followlinks'] = kwargs.pop('follow_symlinks') return os.walk(top, **kwargs) def setUp(self): join = os.path.join self.addCleanup(support.rmtree, support.TESTFN) # Build: # TESTFN/ # TEST1/ a file kid and two directory kids # tmp1 # SUB1/ a file kid and a directory kid # tmp2 # SUB11/ no kids # SUB2/ a file kid and a dirsymlink kid # tmp3 # SUB21/ not readable # tmp5 # link/ a symlink to TESTFN.2 # broken_link # broken_link2 # broken_link3 # TEST2/ # tmp4 a lone file self.walk_path = join(support.TESTFN, "TEST1") self.sub1_path = join(self.walk_path, "SUB1") self.sub11_path = join(self.sub1_path, "SUB11") sub2_path = join(self.walk_path, "SUB2") sub21_path = join(sub2_path, "SUB21") tmp1_path = join(self.walk_path, "tmp1") tmp2_path = join(self.sub1_path, "tmp2") tmp3_path = join(sub2_path, "tmp3") tmp5_path = join(sub21_path, "tmp3") self.link_path = join(sub2_path, "link") t2_path = join(support.TESTFN, "TEST2") tmp4_path = join(support.TESTFN, "TEST2", "tmp4") broken_link_path = join(sub2_path, "broken_link") broken_link2_path = join(sub2_path, "broken_link2") broken_link3_path = join(sub2_path, "broken_link3") # Create stuff. os.makedirs(self.sub11_path) os.makedirs(sub2_path) os.makedirs(sub21_path) os.makedirs(t2_path) for path in tmp1_path, tmp2_path, tmp3_path, tmp4_path, tmp5_path: with open(path, "x") as f: f.write("I'm " + path + " and proud of it. Blame test_os.\n") if support.can_symlink(): os.symlink(os.path.abspath(t2_path), self.link_path) os.symlink('broken', broken_link_path, True) os.symlink(join('tmp3', 'broken'), broken_link2_path, True) os.symlink(join('SUB21', 'tmp5'), broken_link3_path, True) self.sub2_tree = (sub2_path, ["SUB21", "link"], ["broken_link", "broken_link2", "broken_link3", "tmp3"]) else: self.sub2_tree = (sub2_path, [], ["tmp3"]) os.chmod(sub21_path, 0) try: os.listdir(sub21_path) except PermissionError: self.addCleanup(os.chmod, sub21_path, stat.S_IRWXU) else: os.chmod(sub21_path, stat.S_IRWXU) os.unlink(tmp5_path) os.rmdir(sub21_path) del self.sub2_tree[1][:1] def test_walk_topdown(self): # Walk top-down. all = list(self.walk(self.walk_path)) self.assertEqual(len(all), 4) # We can't know which order SUB1 and SUB2 will appear in. # Not flipped: TESTFN, SUB1, SUB11, SUB2 # flipped: TESTFN, SUB2, SUB1, SUB11 flipped = all[0][1][0] != "SUB1" all[0][1].sort() all[3 - 2 * flipped][-1].sort() all[3 - 2 * flipped][1].sort() self.assertEqual(all[0], (self.walk_path, ["SUB1", "SUB2"], ["tmp1"])) self.assertEqual(all[1 + flipped], (self.sub1_path, ["SUB11"], ["tmp2"])) self.assertEqual(all[2 + flipped], (self.sub11_path, [], [])) self.assertEqual(all[3 - 2 * flipped], self.sub2_tree) def test_walk_prune(self, walk_path=None): if walk_path is None: walk_path = self.walk_path # Prune the search. all = [] for root, dirs, files in self.walk(walk_path): all.append((root, dirs, files)) # Don't descend into SUB1. if 'SUB1' in dirs: # Note that this also mutates the dirs we appended to all! dirs.remove('SUB1') self.assertEqual(len(all), 2) self.assertEqual(all[0], (str(walk_path), ["SUB2"], ["tmp1"])) all[1][-1].sort() all[1][1].sort() self.assertEqual(all[1], self.sub2_tree) def test_file_like_path(self): self.test_walk_prune(_PathLike(self.walk_path)) def test_walk_bottom_up(self): # Walk bottom-up. all = list(self.walk(self.walk_path, topdown=False)) self.assertEqual(len(all), 4, all) # We can't know which order SUB1 and SUB2 will appear in. # Not flipped: SUB11, SUB1, SUB2, TESTFN # flipped: SUB2, SUB11, SUB1, TESTFN flipped = all[3][1][0] != "SUB1" all[3][1].sort() all[2 - 2 * flipped][-1].sort() all[2 - 2 * flipped][1].sort() self.assertEqual(all[3], (self.walk_path, ["SUB1", "SUB2"], ["tmp1"])) self.assertEqual(all[flipped], (self.sub11_path, [], [])) self.assertEqual(all[flipped + 1], (self.sub1_path, ["SUB11"], ["tmp2"])) self.assertEqual(all[2 - 2 * flipped], self.sub2_tree) def test_walk_symlink(self): if not support.can_symlink(): self.skipTest("need symlink support") # Walk, following symlinks. walk_it = self.walk(self.walk_path, follow_symlinks=True) for root, dirs, files in walk_it: if root == self.link_path: self.assertEqual(dirs, []) self.assertEqual(files, ["tmp4"]) break else: self.fail("Didn't follow symlink with followlinks=True") def test_walk_bad_dir(self): # Walk top-down. errors = [] walk_it = self.walk(self.walk_path, onerror=errors.append) root, dirs, files = next(walk_it) self.assertEqual(errors, []) dir1 = 'SUB1' path1 = os.path.join(root, dir1) path1new = os.path.join(root, dir1 + '.new') os.rename(path1, path1new) try: roots = [r for r, d, f in walk_it] self.assertTrue(errors) self.assertNotIn(path1, roots) self.assertNotIn(path1new, roots) for dir2 in dirs: if dir2 != dir1: self.assertIn(os.path.join(root, dir2), roots) finally: os.rename(path1new, path1) @unittest.skipUnless(hasattr(os, 'fwalk'), "Test needs os.fwalk()") class FwalkTests(WalkTests): """Tests for os.fwalk().""" def walk(self, top, **kwargs): for root, dirs, files, root_fd in self.fwalk(top, **kwargs): yield (root, dirs, files) def fwalk(self, *args, **kwargs): return os.fwalk(*args, **kwargs) def _compare_to_walk(self, walk_kwargs, fwalk_kwargs): """ compare with walk() results. """ walk_kwargs = walk_kwargs.copy() fwalk_kwargs = fwalk_kwargs.copy() for topdown, follow_symlinks in itertools.product((True, False), repeat=2): walk_kwargs.update(topdown=topdown, followlinks=follow_symlinks) fwalk_kwargs.update(topdown=topdown, follow_symlinks=follow_symlinks) expected = {} for root, dirs, files in os.walk(**walk_kwargs): expected[root] = (set(dirs), set(files)) for root, dirs, files, rootfd in self.fwalk(**fwalk_kwargs): self.assertIn(root, expected) self.assertEqual(expected[root], (set(dirs), set(files))) def test_compare_to_walk(self): kwargs = {'top': support.TESTFN} self._compare_to_walk(kwargs, kwargs) def test_dir_fd(self): try: fd = os.open(".", os.O_RDONLY) walk_kwargs = {'top': support.TESTFN} fwalk_kwargs = walk_kwargs.copy() fwalk_kwargs['dir_fd'] = fd self._compare_to_walk(walk_kwargs, fwalk_kwargs) finally: os.close(fd) def test_yields_correct_dir_fd(self): # check returned file descriptors for topdown, follow_symlinks in itertools.product((True, False), repeat=2): args = support.TESTFN, topdown, None for root, dirs, files, rootfd in self.fwalk(*args, follow_symlinks=follow_symlinks): # check that the FD is valid os.fstat(rootfd) # redundant check os.stat(rootfd) # check that listdir() returns consistent information self.assertEqual(set(os.listdir(rootfd)), set(dirs) | set(files)) def test_fd_leak(self): # Since we're opening a lot of FDs, we must be careful to avoid leaks: # we both check that calling fwalk() a large number of times doesn't # yield EMFILE, and that the minimum allocated FD hasn't changed. minfd = os.dup(1) os.close(minfd) for i in range(256): for x in self.fwalk(support.TESTFN): pass newfd = os.dup(1) self.addCleanup(os.close, newfd) self.assertEqual(newfd, minfd) class BytesWalkTests(WalkTests): """Tests for os.walk() with bytes.""" def walk(self, top, **kwargs): if 'follow_symlinks' in kwargs: kwargs['followlinks'] = kwargs.pop('follow_symlinks') for broot, bdirs, bfiles in os.walk(os.fsencode(top), **kwargs): root = os.fsdecode(broot) dirs = list(map(os.fsdecode, bdirs)) files = list(map(os.fsdecode, bfiles)) yield (root, dirs, files) bdirs[:] = list(map(os.fsencode, dirs)) bfiles[:] = list(map(os.fsencode, files)) @unittest.skipUnless(hasattr(os, 'fwalk'), "Test needs os.fwalk()") class BytesFwalkTests(FwalkTests): """Tests for os.walk() with bytes.""" def fwalk(self, top='.', *args, **kwargs): for broot, bdirs, bfiles, topfd in os.fwalk(os.fsencode(top), *args, **kwargs): root = os.fsdecode(broot) dirs = list(map(os.fsdecode, bdirs)) files = list(map(os.fsdecode, bfiles)) yield (root, dirs, files, topfd) bdirs[:] = list(map(os.fsencode, dirs)) bfiles[:] = list(map(os.fsencode, files)) class MakedirTests(unittest.TestCase): def setUp(self): os.mkdir(support.TESTFN) def test_makedir(self): base = support.TESTFN path = os.path.join(base, 'dir1', 'dir2', 'dir3') os.makedirs(path) # Should work path = os.path.join(base, 'dir1', 'dir2', 'dir3', 'dir4') os.makedirs(path) # Try paths with a '.' in them self.assertRaises(OSError, os.makedirs, os.curdir) path = os.path.join(base, 'dir1', 'dir2', 'dir3', 'dir4', 'dir5', os.curdir) os.makedirs(path) path = os.path.join(base, 'dir1', os.curdir, 'dir2', 'dir3', 'dir4', 'dir5', 'dir6') os.makedirs(path) def test_mode(self): with support.temp_umask(0o002): base = support.TESTFN parent = os.path.join(base, 'dir1') path = os.path.join(parent, 'dir2') os.makedirs(path, 0o555) self.assertTrue(os.path.exists(path)) self.assertTrue(os.path.isdir(path)) if os.name != 'nt': self.assertEqual(stat.S_IMODE(os.stat(path).st_mode), 0o555) self.assertEqual(stat.S_IMODE(os.stat(parent).st_mode), 0o775) def test_exist_ok_existing_directory(self): path = os.path.join(support.TESTFN, 'dir1') mode = 0o777 old_mask = os.umask(0o022) os.makedirs(path, mode) self.assertRaises(OSError, os.makedirs, path, mode) self.assertRaises(OSError, os.makedirs, path, mode, exist_ok=False) os.makedirs(path, 0o776, exist_ok=True) os.makedirs(path, mode=mode, exist_ok=True) os.umask(old_mask) # Issue #25583: A drive root could raise PermissionError on Windows os.makedirs(os.path.abspath('/'), exist_ok=True) def test_exist_ok_s_isgid_directory(self): path = os.path.join(support.TESTFN, 'dir1') S_ISGID = stat.S_ISGID mode = 0o777 old_mask = os.umask(0o022) try: existing_testfn_mode = stat.S_IMODE( os.lstat(support.TESTFN).st_mode) try: os.chmod(support.TESTFN, existing_testfn_mode | S_ISGID) except PermissionError: raise unittest.SkipTest('Cannot set S_ISGID for dir.') if (os.lstat(support.TESTFN).st_mode & S_ISGID != S_ISGID): raise unittest.SkipTest('No support for S_ISGID dir mode.') # The os should apply S_ISGID from the parent dir for us, but # this test need not depend on that behavior. Be explicit. os.makedirs(path, mode | S_ISGID) # http://bugs.python.org/issue14992 # Should not fail when the bit is already set. os.makedirs(path, mode, exist_ok=True) # remove the bit. os.chmod(path, stat.S_IMODE(os.lstat(path).st_mode) & ~S_ISGID) # May work even when the bit is not already set when demanded. os.makedirs(path, mode | S_ISGID, exist_ok=True) finally: os.umask(old_mask) def test_exist_ok_existing_regular_file(self): base = support.TESTFN path = os.path.join(support.TESTFN, 'dir1') f = open(path, 'w') f.write('abc') f.close() self.assertRaises(OSError, os.makedirs, path) self.assertRaises(OSError, os.makedirs, path, exist_ok=False) self.assertRaises(OSError, os.makedirs, path, exist_ok=True) os.remove(path) def tearDown(self): path = os.path.join(support.TESTFN, 'dir1', 'dir2', 'dir3', 'dir4', 'dir5', 'dir6') # If the tests failed, the bottom-most directory ('../dir6') # may not have been created, so we look for the outermost directory # that exists. while not os.path.exists(path) and path != support.TESTFN: path = os.path.dirname(path) os.removedirs(path) @unittest.skipUnless(hasattr(os, 'chown'), "Test needs chown") class ChownFileTests(unittest.TestCase): @classmethod def setUpClass(cls): os.mkdir(support.TESTFN) def test_chown_uid_gid_arguments_must_be_index(self): stat = os.stat(support.TESTFN) uid = stat.st_uid gid = stat.st_gid for value in (-1.0, -1j, decimal.Decimal(-1), fractions.Fraction(-2, 2)): self.assertRaises(TypeError, os.chown, support.TESTFN, value, gid) self.assertRaises(TypeError, os.chown, support.TESTFN, uid, value) self.assertIsNone(os.chown(support.TESTFN, uid, gid)) self.assertIsNone(os.chown(support.TESTFN, -1, -1)) @unittest.skipUnless(len(groups) > 1, "test needs more than one group") def test_chown(self): gid_1, gid_2 = groups[:2] uid = os.stat(support.TESTFN).st_uid os.chown(support.TESTFN, uid, gid_1) gid = os.stat(support.TESTFN).st_gid self.assertEqual(gid, gid_1) os.chown(support.TESTFN, uid, gid_2) gid = os.stat(support.TESTFN).st_gid self.assertEqual(gid, gid_2) @unittest.skipUnless(root_in_posix and len(all_users) > 1, "test needs root privilege and more than one user") def test_chown_with_root(self): uid_1, uid_2 = all_users[:2] gid = os.stat(support.TESTFN).st_gid os.chown(support.TESTFN, uid_1, gid) uid = os.stat(support.TESTFN).st_uid self.assertEqual(uid, uid_1) os.chown(support.TESTFN, uid_2, gid) uid = os.stat(support.TESTFN).st_uid self.assertEqual(uid, uid_2) @unittest.skipUnless(not root_in_posix and len(all_users) > 1, "test needs non-root account and more than one user") def test_chown_without_permission(self): uid_1, uid_2 = all_users[:2] gid = os.stat(support.TESTFN).st_gid with self.assertRaises(PermissionError): os.chown(support.TESTFN, uid_1, gid) os.chown(support.TESTFN, uid_2, gid) @classmethod def tearDownClass(cls): os.rmdir(support.TESTFN) class RemoveDirsTests(unittest.TestCase): def setUp(self): os.makedirs(support.TESTFN) def tearDown(self): support.rmtree(support.TESTFN) def test_remove_all(self): dira = os.path.join(support.TESTFN, 'dira') os.mkdir(dira) dirb = os.path.join(dira, 'dirb') os.mkdir(dirb) os.removedirs(dirb) self.assertFalse(os.path.exists(dirb)) self.assertFalse(os.path.exists(dira)) self.assertFalse(os.path.exists(support.TESTFN)) def test_remove_partial(self): dira = os.path.join(support.TESTFN, 'dira') os.mkdir(dira) dirb = os.path.join(dira, 'dirb') os.mkdir(dirb) create_file(os.path.join(dira, 'file.txt')) os.removedirs(dirb) self.assertFalse(os.path.exists(dirb)) self.assertTrue(os.path.exists(dira)) self.assertTrue(os.path.exists(support.TESTFN)) def test_remove_nothing(self): dira = os.path.join(support.TESTFN, 'dira') os.mkdir(dira) dirb = os.path.join(dira, 'dirb') os.mkdir(dirb) create_file(os.path.join(dirb, 'file.txt')) with self.assertRaises(OSError): os.removedirs(dirb) self.assertTrue(os.path.exists(dirb)) self.assertTrue(os.path.exists(dira)) self.assertTrue(os.path.exists(support.TESTFN)) class DevNullTests(unittest.TestCase): def test_devnull(self): with open(os.devnull, 'wb', 0) as f: f.write(b'hello') f.close() with open(os.devnull, 'rb') as f: self.assertEqual(f.read(), b'') class URandomTests(unittest.TestCase): def test_urandom_length(self): self.assertEqual(len(os.urandom(0)), 0) self.assertEqual(len(os.urandom(1)), 1) self.assertEqual(len(os.urandom(10)), 10) self.assertEqual(len(os.urandom(100)), 100) self.assertEqual(len(os.urandom(1000)), 1000) def test_urandom_value(self): data1 = os.urandom(16) self.assertIsInstance(data1, bytes) data2 = os.urandom(16) self.assertNotEqual(data1, data2) def get_urandom_subprocess(self, count): code = '\n'.join(( 'import os, sys', 'data = os.urandom(%s)' % count, 'sys.stdout.buffer.write(data)', 'sys.stdout.buffer.flush()')) out = assert_python_ok('-c', code) stdout = out[1] self.assertEqual(len(stdout), 16) return stdout def test_urandom_subprocess(self): data1 = self.get_urandom_subprocess(16) data2 = self.get_urandom_subprocess(16) self.assertNotEqual(data1, data2) @unittest.skipUnless(hasattr(os, 'getrandom'), 'need os.getrandom()') class GetRandomTests(unittest.TestCase): @classmethod def setUpClass(cls): try: os.getrandom(1) except OSError as exc: if exc.errno == errno.ENOSYS: # Python compiled on a more recent Linux version # than the current Linux kernel raise unittest.SkipTest("getrandom() syscall fails with ENOSYS") else: raise def test_getrandom_type(self): data = os.getrandom(16) self.assertIsInstance(data, bytes) self.assertEqual(len(data), 16) def test_getrandom0(self): empty = os.getrandom(0) self.assertEqual(empty, b'') def test_getrandom_random(self): self.assertTrue(hasattr(os, 'GRND_RANDOM')) # Don't test os.getrandom(1, os.GRND_RANDOM) to not consume the rare # resource /dev/random def test_getrandom_nonblock(self): # The call must not fail. Check also that the flag exists try: os.getrandom(1, os.GRND_NONBLOCK) except BlockingIOError: # System urandom is not initialized yet pass def test_getrandom_value(self): data1 = os.getrandom(16) data2 = os.getrandom(16) self.assertNotEqual(data1, data2) # os.urandom() doesn't use a file descriptor when it is implemented with the # getentropy() function, the getrandom() function or the getrandom() syscall OS_URANDOM_DONT_USE_FD = ( sysconfig.get_config_var('HAVE_GETENTROPY') == 1 or sysconfig.get_config_var('HAVE_GETRANDOM') == 1 or sysconfig.get_config_var('HAVE_GETRANDOM_SYSCALL') == 1) @unittest.skipIf(OS_URANDOM_DONT_USE_FD , "os.random() does not use a file descriptor") class URandomFDTests(unittest.TestCase): @unittest.skipUnless(resource, "test requires the resource module") def test_urandom_failure(self): # Check urandom() failing when it is not able to open /dev/random. # We spawn a new process to make the test more robust (if getrlimit() # failed to restore the file descriptor limit after this, the whole # test suite would crash; this actually happened on the OS X Tiger # buildbot). code = """if 1: import errno import os import resource soft_limit, hard_limit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (1, hard_limit)) try: os.urandom(16) except OSError as e: assert e.errno == errno.EMFILE, e.errno else: raise AssertionError("OSError not raised") """ assert_python_ok('-c', code) def test_urandom_fd_closed(self): # Issue #21207: urandom() should reopen its fd to /dev/urandom if # closed. code = """if 1: import os import sys import test.support os.urandom(4) with test.support.SuppressCrashReport(): os.closerange(3, 256) sys.stdout.buffer.write(os.urandom(4)) """ rc, out, err = assert_python_ok('-Sc', code) def test_urandom_fd_reopened(self): # Issue #21207: urandom() should detect its fd to /dev/urandom # changed to something else, and reopen it. self.addCleanup(support.unlink, support.TESTFN) create_file(support.TESTFN, b"x" * 256) code = """if 1: import os import sys import test.support os.urandom(4) with test.support.SuppressCrashReport(): for fd in range(3, 256): try: os.close(fd) except OSError: pass else: # Found the urandom fd (XXX hopefully) break os.closerange(3, 256) with open({TESTFN!r}, 'rb') as f: new_fd = f.fileno() # Issue #26935: posix allows new_fd and fd to be equal but # some libc implementations have dup2 return an error in this # case. if new_fd != fd: os.dup2(new_fd, fd) sys.stdout.buffer.write(os.urandom(4)) sys.stdout.buffer.write(os.urandom(4)) """.format(TESTFN=support.TESTFN) rc, out, err = assert_python_ok('-Sc', code) self.assertEqual(len(out), 8) self.assertNotEqual(out[0:4], out[4:8]) rc, out2, err2 = assert_python_ok('-Sc', code) self.assertEqual(len(out2), 8) self.assertNotEqual(out2, out) @contextlib.contextmanager def _execvpe_mockup(defpath=None): """ Stubs out execv and execve functions when used as context manager. Records exec calls. The mock execv and execve functions always raise an exception as they would normally never return. """ # A list of tuples containing (function name, first arg, args) # of calls to execv or execve that have been made. calls = [] def mock_execv(name, *args): calls.append(('execv', name, args)) raise RuntimeError("execv called") def mock_execve(name, *args): calls.append(('execve', name, args)) raise OSError(errno.ENOTDIR, "execve called") try: orig_execv = os.execv orig_execve = os.execve orig_defpath = os.defpath os.execv = mock_execv os.execve = mock_execve if defpath is not None: os.defpath = defpath yield calls finally: os.execv = orig_execv os.execve = orig_execve os.defpath = orig_defpath class ExecTests(unittest.TestCase): @unittest.skipIf(USING_LINUXTHREADS, "avoid triggering a linuxthreads bug: see issue #4970") def test_execvpe_with_bad_program(self): self.assertRaises(OSError, os.execvpe, 'no such app-', ['no such app-'], None) def test_execv_with_bad_arglist(self): self.assertRaises(ValueError, os.execv, 'notepad', ()) self.assertRaises(ValueError, os.execv, 'notepad', []) self.assertRaises(ValueError, os.execv, 'notepad', ('',)) self.assertRaises(ValueError, os.execv, 'notepad', ['']) def test_execvpe_with_bad_arglist(self): self.assertRaises(ValueError, os.execvpe, 'notepad', [], None) self.assertRaises(ValueError, os.execvpe, 'notepad', [], {}) self.assertRaises(ValueError, os.execvpe, 'notepad', [''], {}) @unittest.skipUnless(hasattr(os, '_execvpe'), "No internal os._execvpe function to test.") def _test_internal_execvpe(self, test_type): program_path = os.sep + 'absolutepath' if test_type is bytes: program = b'executable' fullpath = os.path.join(os.fsencode(program_path), program) native_fullpath = fullpath arguments = [b'progname', 'arg1', 'arg2'] else: program = 'executable' arguments = ['progname', 'arg1', 'arg2'] fullpath = os.path.join(program_path, program) if os.name != "nt": native_fullpath = os.fsencode(fullpath) else: native_fullpath = fullpath env = {'spam': 'beans'} # test os._execvpe() with an absolute path with _execvpe_mockup() as calls: self.assertRaises(RuntimeError, os._execvpe, fullpath, arguments) self.assertEqual(len(calls), 1) self.assertEqual(calls[0], ('execv', fullpath, (arguments,))) # test os._execvpe() with a relative path: # os.get_exec_path() returns defpath with _execvpe_mockup(defpath=program_path) as calls: self.assertRaises(OSError, os._execvpe, program, arguments, env=env) self.assertEqual(len(calls), 1) self.assertSequenceEqual(calls[0], ('execve', native_fullpath, (arguments, env))) # test os._execvpe() with a relative path: # os.get_exec_path() reads the 'PATH' variable with _execvpe_mockup() as calls: env_path = env.copy() if test_type is bytes: env_path[b'PATH'] = program_path else: env_path['PATH'] = program_path self.assertRaises(OSError, os._execvpe, program, arguments, env=env_path) self.assertEqual(len(calls), 1) self.assertSequenceEqual(calls[0], ('execve', native_fullpath, (arguments, env_path))) def test_internal_execvpe_str(self): self._test_internal_execvpe(str) if os.name != "nt": self._test_internal_execvpe(bytes) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32ErrorTests(unittest.TestCase): def setUp(self): try: os.stat(support.TESTFN) except FileNotFoundError: exists = False except OSError as exc: exists = True self.fail("file %s must not exist; os.stat failed with %s" % (support.TESTFN, exc)) else: self.fail("file %s must not exist" % support.TESTFN) def test_rename(self): self.assertRaises(OSError, os.rename, support.TESTFN, support.TESTFN+".bak") def test_remove(self): self.assertRaises(OSError, os.remove, support.TESTFN) def test_chdir(self): self.assertRaises(OSError, os.chdir, support.TESTFN) def test_mkdir(self): self.addCleanup(support.unlink, support.TESTFN) with open(support.TESTFN, "x") as f: self.assertRaises(OSError, os.mkdir, support.TESTFN) def test_utime(self): self.assertRaises(OSError, os.utime, support.TESTFN, None) def test_chmod(self): self.assertRaises(OSError, os.chmod, support.TESTFN, 0) class TestInvalidFD(unittest.TestCase): singles = ["fchdir", "dup", "fdopen", "fdatasync", "fstat", "fstatvfs", "fsync", "tcgetpgrp", "ttyname"] #singles.append("close") #We omit close because it doesn't raise an exception on some platforms def get_single(f): def helper(self): if hasattr(os, f): self.check(getattr(os, f)) return helper for f in singles: locals()["test_"+f] = get_single(f) def check(self, f, *args): try: f(support.make_bad_fd(), *args) except OSError as e: self.assertEqual(e.errno, errno.EBADF) else: self.fail("%r didn't raise an OSError with a bad file descriptor" % f) @unittest.skipUnless(hasattr(os, 'isatty'), 'test needs os.isatty()') def test_isatty(self): self.assertEqual(os.isatty(support.make_bad_fd()), False) @unittest.skipUnless(hasattr(os, 'closerange'), 'test needs os.closerange()') def test_closerange(self): fd = support.make_bad_fd() # Make sure none of the descriptors we are about to close are # currently valid (issue 6542). for i in range(10): try: os.fstat(fd+i) except OSError: pass else: break if i < 2: raise unittest.SkipTest( "Unable to acquire a range of invalid file descriptors") self.assertEqual(os.closerange(fd, fd + i-1), None) @unittest.skipUnless(hasattr(os, 'dup2'), 'test needs os.dup2()') def test_dup2(self): self.check(os.dup2, 20) @unittest.skipUnless(hasattr(os, 'fchmod'), 'test needs os.fchmod()') def test_fchmod(self): self.check(os.fchmod, 0) @unittest.skipUnless(hasattr(os, 'fchown'), 'test needs os.fchown()') def test_fchown(self): self.check(os.fchown, -1, -1) @unittest.skipUnless(hasattr(os, 'fpathconf'), 'test needs os.fpathconf()') def test_fpathconf(self): self.check(os.pathconf, "PC_NAME_MAX") self.check(os.fpathconf, "PC_NAME_MAX") @unittest.skipUnless(hasattr(os, 'ftruncate'), 'test needs os.ftruncate()') def test_ftruncate(self): self.check(os.truncate, 0) self.check(os.ftruncate, 0) @unittest.skipUnless(hasattr(os, 'lseek'), 'test needs os.lseek()') def test_lseek(self): self.check(os.lseek, 0, 0) @unittest.skipUnless(hasattr(os, 'read'), 'test needs os.read()') def test_read(self): self.check(os.read, 1) @unittest.skipUnless(hasattr(os, 'readv'), 'test needs os.readv()') def test_readv(self): buf = bytearray(10) self.check(os.readv, [buf]) @unittest.skipUnless(hasattr(os, 'tcsetpgrp'), 'test needs os.tcsetpgrp()') def test_tcsetpgrpt(self): self.check(os.tcsetpgrp, 0) @unittest.skipUnless(hasattr(os, 'write'), 'test needs os.write()') def test_write(self): self.check(os.write, b" ") @unittest.skipUnless(hasattr(os, 'writev'), 'test needs os.writev()') def test_writev(self): self.check(os.writev, [b'abc']) def test_inheritable(self): self.check(os.get_inheritable) self.check(os.set_inheritable, True) @unittest.skipUnless(hasattr(os, 'get_blocking'), 'needs os.get_blocking() and os.set_blocking()') def test_blocking(self): self.check(os.get_blocking) self.check(os.set_blocking, True) class LinkTests(unittest.TestCase): def setUp(self): self.file1 = support.TESTFN self.file2 = os.path.join(support.TESTFN + "2") def tearDown(self): for file in (self.file1, self.file2): if os.path.exists(file): os.unlink(file) def _test_link(self, file1, file2): create_file(file1) os.link(file1, file2) with open(file1, "r") as f1, open(file2, "r") as f2: self.assertTrue(os.path.sameopenfile(f1.fileno(), f2.fileno())) def test_link(self): self._test_link(self.file1, self.file2) def test_link_bytes(self): self._test_link(bytes(self.file1, sys.getfilesystemencoding()), bytes(self.file2, sys.getfilesystemencoding())) def test_unicode_name(self): try: os.fsencode("\xf1") except UnicodeError: raise unittest.SkipTest("Unable to encode for this platform.") self.file1 += "\xf1" self.file2 = self.file1 + "2" self._test_link(self.file1, self.file2) @unittest.skipIf(sys.platform == "win32", "Posix specific tests") class PosixUidGidTests(unittest.TestCase): @unittest.skipUnless(hasattr(os, 'setuid'), 'test needs os.setuid()') def test_setuid(self): if os.getuid() != 0: self.assertRaises(OSError, os.setuid, 0) self.assertRaises(OverflowError, os.setuid, 1<<32) @unittest.skipUnless(hasattr(os, 'setgid'), 'test needs os.setgid()') def test_setgid(self): if os.getuid() != 0 and not HAVE_WHEEL_GROUP: self.assertRaises(OSError, os.setgid, 0) self.assertRaises(OverflowError, os.setgid, 1<<32) @unittest.skipUnless(hasattr(os, 'seteuid'), 'test needs os.seteuid()') def test_seteuid(self): if os.getuid() != 0: self.assertRaises(OSError, os.seteuid, 0) self.assertRaises(OverflowError, os.seteuid, 1<<32) @unittest.skipUnless(hasattr(os, 'setegid'), 'test needs os.setegid()') def test_setegid(self): if os.getuid() != 0 and not HAVE_WHEEL_GROUP: self.assertRaises(OSError, os.setegid, 0) self.assertRaises(OverflowError, os.setegid, 1<<32) @unittest.skipUnless(hasattr(os, 'setreuid'), 'test needs os.setreuid()') def test_setreuid(self): if os.getuid() != 0: self.assertRaises(OSError, os.setreuid, 0, 0) self.assertRaises(OverflowError, os.setreuid, 1<<32, 0) self.assertRaises(OverflowError, os.setreuid, 0, 1<<32) @unittest.skipUnless(hasattr(os, 'setreuid'), 'test needs os.setreuid()') def test_setreuid_neg1(self): # Needs to accept -1. We run this in a subprocess to avoid # altering the test runner's process state (issue8045). subprocess.check_call([ sys.executable, '-c', 'import os,sys;os.setreuid(-1,-1);sys.exit(0)']) @unittest.skipUnless(hasattr(os, 'setregid'), 'test needs os.setregid()') def test_setregid(self): if os.getuid() != 0 and not HAVE_WHEEL_GROUP: self.assertRaises(OSError, os.setregid, 0, 0) self.assertRaises(OverflowError, os.setregid, 1<<32, 0) self.assertRaises(OverflowError, os.setregid, 0, 1<<32) @unittest.skipUnless(hasattr(os, 'setregid'), 'test needs os.setregid()') def test_setregid_neg1(self): # Needs to accept -1. We run this in a subprocess to avoid # altering the test runner's process state (issue8045). subprocess.check_call([ sys.executable, '-c', 'import os,sys;os.setregid(-1,-1);sys.exit(0)']) @unittest.skipIf(sys.platform == "win32", "Posix specific tests") class Pep383Tests(unittest.TestCase): def setUp(self): if support.TESTFN_UNENCODABLE: self.dir = support.TESTFN_UNENCODABLE elif support.TESTFN_NONASCII: self.dir = support.TESTFN_NONASCII else: self.dir = support.TESTFN self.bdir = os.fsencode(self.dir) bytesfn = [] def add_filename(fn): try: fn = os.fsencode(fn) except UnicodeEncodeError: return bytesfn.append(fn) add_filename(support.TESTFN_UNICODE) if support.TESTFN_UNENCODABLE: add_filename(support.TESTFN_UNENCODABLE) if support.TESTFN_NONASCII: add_filename(support.TESTFN_NONASCII) if not bytesfn: self.skipTest("couldn't create any non-ascii filename") self.unicodefn = set() os.mkdir(self.dir) try: for fn in bytesfn: support.create_empty_file(os.path.join(self.bdir, fn)) fn = os.fsdecode(fn) if fn in self.unicodefn: raise ValueError("duplicate filename") self.unicodefn.add(fn) except: shutil.rmtree(self.dir) raise def tearDown(self): shutil.rmtree(self.dir) def test_listdir(self): expected = self.unicodefn found = set(os.listdir(self.dir)) self.assertEqual(found, expected) # test listdir without arguments current_directory = os.getcwd() try: os.chdir(os.sep) self.assertEqual(set(os.listdir()), set(os.listdir(os.sep))) finally: os.chdir(current_directory) def test_open(self): for fn in self.unicodefn: f = open(os.path.join(self.dir, fn), 'rb') f.close() @unittest.skipUnless(hasattr(os, 'statvfs'), "need os.statvfs()") def test_statvfs(self): # issue #9645 for fn in self.unicodefn: # should not fail with file not found error fullname = os.path.join(self.dir, fn) os.statvfs(fullname) def test_stat(self): for fn in self.unicodefn: os.stat(os.path.join(self.dir, fn)) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32KillTests(unittest.TestCase): def _kill(self, sig): # Start sys.executable as a subprocess and communicate from the # subprocess to the parent that the interpreter is ready. When it # becomes ready, send *sig* via os.kill to the subprocess and check # that the return code is equal to *sig*. import ctypes from ctypes import wintypes import msvcrt # Since we can't access the contents of the process' stdout until the # process has exited, use PeekNamedPipe to see what's inside stdout # without waiting. This is done so we can tell that the interpreter # is started and running at a point where it could handle a signal. PeekNamedPipe = ctypes.windll.kernel32.PeekNamedPipe PeekNamedPipe.restype = wintypes.BOOL PeekNamedPipe.argtypes = (wintypes.HANDLE, # Pipe handle ctypes.POINTER(ctypes.c_char), # stdout buf wintypes.DWORD, # Buffer size ctypes.POINTER(wintypes.DWORD), # bytes read ctypes.POINTER(wintypes.DWORD), # bytes avail ctypes.POINTER(wintypes.DWORD)) # bytes left msg = "running" proc = subprocess.Popen([sys.executable, "-c", "import sys;" "sys.stdout.write('{}');" "sys.stdout.flush();" "input()".format(msg)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) self.addCleanup(proc.stdout.close) self.addCleanup(proc.stderr.close) self.addCleanup(proc.stdin.close) count, max = 0, 100 while count < max and proc.poll() is None: # Create a string buffer to store the result of stdout from the pipe buf = ctypes.create_string_buffer(len(msg)) # Obtain the text currently in proc.stdout # Bytes read/avail/left are left as NULL and unused rslt = PeekNamedPipe(msvcrt.get_osfhandle(proc.stdout.fileno()), buf, ctypes.sizeof(buf), None, None, None) self.assertNotEqual(rslt, 0, "PeekNamedPipe failed") if buf.value: self.assertEqual(msg, buf.value.decode()) break time.sleep(0.1) count += 1 else: self.fail("Did not receive communication from the subprocess") os.kill(proc.pid, sig) self.assertEqual(proc.wait(), sig) def test_kill_sigterm(self): # SIGTERM doesn't mean anything special, but make sure it works self._kill(signal.SIGTERM) def test_kill_int(self): # os.kill on Windows can take an int which gets set as the exit code self._kill(100) def _kill_with_event(self, event, name): tagname = "test_os_%s" % uuid.uuid1() m = mmap.mmap(-1, 1, tagname) m[0] = 0 # Run a script which has console control handling enabled. proc = subprocess.Popen([sys.executable, os.path.join(os.path.dirname(__file__), "win_console_handler.py"), tagname], creationflags=subprocess.CREATE_NEW_PROCESS_GROUP) # Let the interpreter startup before we send signals. See #3137. count, max = 0, 100 while count < max and proc.poll() is None: if m[0] == 1: break time.sleep(0.1) count += 1 else: # Forcefully kill the process if we weren't able to signal it. os.kill(proc.pid, signal.SIGINT) self.fail("Subprocess didn't finish initialization") os.kill(proc.pid, event) # proc.send_signal(event) could also be done here. # Allow time for the signal to be passed and the process to exit. time.sleep(0.5) if not proc.poll(): # Forcefully kill the process if we weren't able to signal it. os.kill(proc.pid, signal.SIGINT) self.fail("subprocess did not stop on {}".format(name)) @unittest.skip("subprocesses aren't inheriting Ctrl+C property") def test_CTRL_C_EVENT(self): from ctypes import wintypes import ctypes # Make a NULL value by creating a pointer with no argument. NULL = ctypes.POINTER(ctypes.c_int)() SetConsoleCtrlHandler = ctypes.windll.kernel32.SetConsoleCtrlHandler SetConsoleCtrlHandler.argtypes = (ctypes.POINTER(ctypes.c_int), wintypes.BOOL) SetConsoleCtrlHandler.restype = wintypes.BOOL # Calling this with NULL and FALSE causes the calling process to # handle Ctrl+C, rather than ignore it. This property is inherited # by subprocesses. SetConsoleCtrlHandler(NULL, 0) self._kill_with_event(signal.CTRL_C_EVENT, "CTRL_C_EVENT") def test_CTRL_BREAK_EVENT(self): self._kill_with_event(signal.CTRL_BREAK_EVENT, "CTRL_BREAK_EVENT") @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32ListdirTests(unittest.TestCase): """Test listdir on Windows.""" def setUp(self): self.created_paths = [] for i in range(2): dir_name = 'SUB%d' % i dir_path = os.path.join(support.TESTFN, dir_name) file_name = 'FILE%d' % i file_path = os.path.join(support.TESTFN, file_name) os.makedirs(dir_path) with open(file_path, 'w') as f: f.write("I'm %s and proud of it. Blame test_os.\n" % file_path) self.created_paths.extend([dir_name, file_name]) self.created_paths.sort() def tearDown(self): shutil.rmtree(support.TESTFN) def test_listdir_no_extended_path(self): """Test when the path is not an "extended" path.""" # unicode self.assertEqual( sorted(os.listdir(support.TESTFN)), self.created_paths) # bytes self.assertEqual( sorted(os.listdir(os.fsencode(support.TESTFN))), [os.fsencode(path) for path in self.created_paths]) def test_listdir_extended_path(self): """Test when the path starts with '\\\\?\\'.""" # See: http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#maxpath # unicode path = '\\\\?\\' + os.path.abspath(support.TESTFN) self.assertEqual( sorted(os.listdir(path)), self.created_paths) # bytes path = b'\\\\?\\' + os.fsencode(os.path.abspath(support.TESTFN)) self.assertEqual( sorted(os.listdir(path)), [os.fsencode(path) for path in self.created_paths]) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") @support.skip_unless_symlink class Win32SymlinkTests(unittest.TestCase): filelink = 'filelinktest' filelink_target = os.path.abspath(__file__) dirlink = 'dirlinktest' dirlink_target = os.path.dirname(filelink_target) missing_link = 'missing link' def setUp(self): assert os.path.exists(self.dirlink_target) assert os.path.exists(self.filelink_target) assert not os.path.exists(self.dirlink) assert not os.path.exists(self.filelink) assert not os.path.exists(self.missing_link) def tearDown(self): if os.path.exists(self.filelink): os.remove(self.filelink) if os.path.exists(self.dirlink): os.rmdir(self.dirlink) if os.path.lexists(self.missing_link): os.remove(self.missing_link) def test_directory_link(self): os.symlink(self.dirlink_target, self.dirlink) self.assertTrue(os.path.exists(self.dirlink)) self.assertTrue(os.path.isdir(self.dirlink)) self.assertTrue(os.path.islink(self.dirlink)) self.check_stat(self.dirlink, self.dirlink_target) def test_file_link(self): os.symlink(self.filelink_target, self.filelink) self.assertTrue(os.path.exists(self.filelink)) self.assertTrue(os.path.isfile(self.filelink)) self.assertTrue(os.path.islink(self.filelink)) self.check_stat(self.filelink, self.filelink_target) def _create_missing_dir_link(self): 'Create a "directory" link to a non-existent target' linkname = self.missing_link if os.path.lexists(linkname): os.remove(linkname) target = r'c:\\target does not exist.29r3c740' assert not os.path.exists(target) target_is_dir = True os.symlink(target, linkname, target_is_dir) def test_remove_directory_link_to_missing_target(self): self._create_missing_dir_link() # For compatibility with Unix, os.remove will check the # directory status and call RemoveDirectory if the symlink # was created with target_is_dir==True. os.remove(self.missing_link) @unittest.skip("currently fails; consider for improvement") def test_isdir_on_directory_link_to_missing_target(self): self._create_missing_dir_link() # consider having isdir return true for directory links self.assertTrue(os.path.isdir(self.missing_link)) @unittest.skip("currently fails; consider for improvement") def test_rmdir_on_directory_link_to_missing_target(self): self._create_missing_dir_link() # consider allowing rmdir to remove directory links os.rmdir(self.missing_link) def check_stat(self, link, target): self.assertEqual(os.stat(link), os.stat(target)) self.assertNotEqual(os.lstat(link), os.stat(link)) bytes_link = os.fsencode(link) self.assertEqual(os.stat(bytes_link), os.stat(target)) self.assertNotEqual(os.lstat(bytes_link), os.stat(bytes_link)) def test_12084(self): level1 = os.path.abspath(support.TESTFN) level2 = os.path.join(level1, "level2") level3 = os.path.join(level2, "level3") self.addCleanup(support.rmtree, level1) os.mkdir(level1) os.mkdir(level2) os.mkdir(level3) file1 = os.path.abspath(os.path.join(level1, "file1")) create_file(file1) orig_dir = os.getcwd() try: os.chdir(level2) link = os.path.join(level2, "link") os.symlink(os.path.relpath(file1), "link") self.assertIn("link", os.listdir(os.getcwd())) # Check os.stat calls from the same dir as the link self.assertEqual(os.stat(file1), os.stat("link")) # Check os.stat calls from a dir below the link os.chdir(level1) self.assertEqual(os.stat(file1), os.stat(os.path.relpath(link))) # Check os.stat calls from a dir above the link os.chdir(level3) self.assertEqual(os.stat(file1), os.stat(os.path.relpath(link))) finally: os.chdir(orig_dir) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32JunctionTests(unittest.TestCase): junction = 'junctiontest' junction_target = os.path.dirname(os.path.abspath(__file__)) def setUp(self): assert os.path.exists(self.junction_target) assert not os.path.exists(self.junction) def tearDown(self): if os.path.exists(self.junction): # os.rmdir delegates to Windows' RemoveDirectoryW, # which removes junction points safely. os.rmdir(self.junction) def test_create_junction(self): _winapi.CreateJunction(self.junction_target, self.junction) self.assertTrue(os.path.exists(self.junction)) self.assertTrue(os.path.isdir(self.junction)) # Junctions are not recognized as links. self.assertFalse(os.path.islink(self.junction)) def test_unlink_removes_junction(self): _winapi.CreateJunction(self.junction_target, self.junction) self.assertTrue(os.path.exists(self.junction)) os.unlink(self.junction) self.assertFalse(os.path.exists(self.junction)) @support.skip_unless_symlink class NonLocalSymlinkTests(unittest.TestCase): def setUp(self): r""" Create this structure: base \___ some_dir """ os.makedirs('base/some_dir') def tearDown(self): shutil.rmtree('base') def test_directory_link_nonlocal(self): """ The symlink target should resolve relative to the link, not relative to the current directory. Then, link base/some_link -> base/some_dir and ensure that some_link is resolved as a directory. In issue13772, it was discovered that directory detection failed if the symlink target was not specified relative to the current directory, which was a defect in the implementation. """ src = os.path.join('base', 'some_link') os.symlink('some_dir', src) assert os.path.isdir(src) class FSEncodingTests(unittest.TestCase): def test_nop(self): self.assertEqual(os.fsencode(b'abc\xff'), b'abc\xff') self.assertEqual(os.fsdecode('abc\u0141'), 'abc\u0141') def test_identity(self): # assert fsdecode(fsencode(x)) == x for fn in ('unicode\u0141', 'latin\xe9', 'ascii'): try: bytesfn = os.fsencode(fn) except UnicodeEncodeError: continue self.assertEqual(os.fsdecode(bytesfn), fn) class DeviceEncodingTests(unittest.TestCase): def test_bad_fd(self): # Return None when an fd doesn't actually exist. self.assertIsNone(os.device_encoding(123456)) @unittest.skipUnless(os.isatty(0) and (sys.platform.startswith('win') or (hasattr(locale, 'nl_langinfo') and hasattr(locale, 'CODESET'))), 'test requires a tty and either Windows or nl_langinfo(CODESET)') def test_device_encoding(self): encoding = os.device_encoding(0) self.assertIsNotNone(encoding) self.assertTrue(codecs.lookup(encoding)) class PidTests(unittest.TestCase): @unittest.skipUnless(hasattr(os, 'getppid'), "test needs os.getppid") def test_getppid(self): p = subprocess.Popen([sys.executable, '-c', 'import os; print(os.getppid())'], stdout=subprocess.PIPE) stdout, _ = p.communicate() # We are the parent of our subprocess self.assertEqual(int(stdout), os.getpid()) def test_waitpid(self): args = [sys.executable, '-c', 'pass'] # Add an implicit test for PyUnicode_FSConverter(). pid = os.spawnv(os.P_NOWAIT, _PathLike(args[0]), args) status = os.waitpid(pid, 0) self.assertEqual(status, (pid, 0)) class SpawnTests(unittest.TestCase): def create_args(self, *, with_env=False, use_bytes=False): self.exitcode = 17 filename = support.TESTFN self.addCleanup(support.unlink, filename) if not with_env: code = 'import sys; sys.exit(%s)' % self.exitcode else: self.env = dict(os.environ) # create an unique key self.key = str(uuid.uuid4()) self.env[self.key] = self.key # read the variable from os.environ to check that it exists code = ('import sys, os; magic = os.environ[%r]; sys.exit(%s)' % (self.key, self.exitcode)) with open(filename, "w") as fp: fp.write(code) args = [sys.executable, filename] if use_bytes: args = [os.fsencode(a) for a in args] self.env = {os.fsencode(k): os.fsencode(v) for k, v in self.env.items()} return args @requires_os_func('spawnl') def test_spawnl(self): args = self.create_args() exitcode = os.spawnl(os.P_WAIT, args[0], *args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnle') def test_spawnle(self): args = self.create_args(with_env=True) exitcode = os.spawnle(os.P_WAIT, args[0], *args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnlp') def test_spawnlp(self): args = self.create_args() exitcode = os.spawnlp(os.P_WAIT, args[0], *args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnlpe') def test_spawnlpe(self): args = self.create_args(with_env=True) exitcode = os.spawnlpe(os.P_WAIT, args[0], *args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnv') def test_spawnv(self): args = self.create_args() exitcode = os.spawnv(os.P_WAIT, args[0], args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnve') def test_spawnve(self): args = self.create_args(with_env=True) exitcode = os.spawnve(os.P_WAIT, args[0], args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnvp') def test_spawnvp(self): args = self.create_args() exitcode = os.spawnvp(os.P_WAIT, args[0], args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnvpe') def test_spawnvpe(self): args = self.create_args(with_env=True) exitcode = os.spawnvpe(os.P_WAIT, args[0], args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnv') def test_nowait(self): args = self.create_args() pid = os.spawnv(os.P_NOWAIT, args[0], args) result = os.waitpid(pid, 0) self.assertEqual(result[0], pid) status = result[1] if hasattr(os, 'WIFEXITED'): self.assertTrue(os.WIFEXITED(status)) self.assertEqual(os.WEXITSTATUS(status), self.exitcode) else: self.assertEqual(status, self.exitcode << 8) @requires_os_func('spawnve') def test_spawnve_bytes(self): # Test bytes handling in parse_arglist and parse_envlist (#28114) args = self.create_args(with_env=True, use_bytes=True) exitcode = os.spawnve(os.P_WAIT, args[0], args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnl') def test_spawnl_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnl, os.P_NOWAIT, args[0]) self.assertRaises(ValueError, os.spawnl, os.P_NOWAIT, args[0], '') @requires_os_func('spawnle') def test_spawnle_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnle, os.P_NOWAIT, args[0], {}) self.assertRaises(ValueError, os.spawnle, os.P_NOWAIT, args[0], '', {}) @requires_os_func('spawnv') def test_spawnv_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], ()) self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], []) self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], ('',)) self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], ['']) @requires_os_func('spawnve') def test_spawnve_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], (), {}) self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], [], {}) self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], ('',), {}) self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], [''], {}) # The introduction of this TestCase caused at least two different errors on # *nix buildbots. Temporarily skip this to let the buildbots move along. @unittest.skip("Skip due to platform/environment differences on *NIX buildbots") @unittest.skipUnless(hasattr(os, 'getlogin'), "test needs os.getlogin") class LoginTests(unittest.TestCase): def test_getlogin(self): user_name = os.getlogin() self.assertNotEqual(len(user_name), 0) @unittest.skipUnless(hasattr(os, 'getpriority') and hasattr(os, 'setpriority'), "needs os.getpriority and os.setpriority") class ProgramPriorityTests(unittest.TestCase): """Tests for os.getpriority() and os.setpriority().""" def test_set_get_priority(self): base = os.getpriority(os.PRIO_PROCESS, os.getpid()) os.setpriority(os.PRIO_PROCESS, os.getpid(), base + 1) try: new_prio = os.getpriority(os.PRIO_PROCESS, os.getpid()) if base >= 19 and new_prio <= 19: raise unittest.SkipTest("unable to reliably test setpriority " "at current nice level of %s" % base) else: self.assertEqual(new_prio, base + 1) finally: try: os.setpriority(os.PRIO_PROCESS, os.getpid(), base) except OSError as err: if err.errno != errno.EACCES: raise if threading is not None: class SendfileTestServer(asyncore.dispatcher, threading.Thread): class Handler(asynchat.async_chat): def __init__(self, conn): asynchat.async_chat.__init__(self, conn) self.in_buffer = [] self.closed = False self.push(b"220 ready\r\n") def handle_read(self): data = self.recv(4096) self.in_buffer.append(data) def get_data(self): return b''.join(self.in_buffer) def handle_close(self): self.close() self.closed = True def handle_error(self): raise def __init__(self, address): threading.Thread.__init__(self) asyncore.dispatcher.__init__(self) self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.bind(address) self.listen(5) self.host, self.port = self.socket.getsockname()[:2] self.handler_instance = None self._active = False self._active_lock = threading.Lock() # --- public API @property def running(self): return self._active def start(self): assert not self.running self.__flag = threading.Event() threading.Thread.start(self) self.__flag.wait() def stop(self): assert self.running self._active = False self.join() def wait(self): # wait for handler connection to be closed, then stop the server while not getattr(self.handler_instance, "closed", False): time.sleep(0.001) self.stop() # --- internals def run(self): self._active = True self.__flag.set() while self._active and asyncore.socket_map: self._active_lock.acquire() asyncore.loop(timeout=0.001, count=1) self._active_lock.release() asyncore.close_all() def handle_accept(self): conn, addr = self.accept() self.handler_instance = self.Handler(conn) def handle_connect(self): self.close() handle_read = handle_connect def writable(self): return 0 def handle_error(self): raise @unittest.skipUnless(threading is not None, "test needs threading module") @unittest.skipUnless(hasattr(os, 'sendfile'), "test needs os.sendfile()") class TestSendfile(unittest.TestCase): DATA = b"12345abcde" * 16 * 1024 # 160 KB SUPPORT_HEADERS_TRAILERS = not sys.platform.startswith("linux") and \ not sys.platform.startswith("solaris") and \ not sys.platform.startswith("sunos") requires_headers_trailers = unittest.skipUnless(SUPPORT_HEADERS_TRAILERS, 'requires headers and trailers support') @classmethod def setUpClass(cls): cls.key = support.threading_setup() create_file(support.TESTFN, cls.DATA) @classmethod def tearDownClass(cls): support.threading_cleanup(*cls.key) support.unlink(support.TESTFN) def setUp(self): self.server = SendfileTestServer((support.HOST, 0)) self.server.start() self.client = socket.socket() self.client.connect((self.server.host, self.server.port)) self.client.settimeout(1) # synchronize by waiting for "220 ready" response self.client.recv(1024) self.sockno = self.client.fileno() self.file = open(support.TESTFN, 'rb') self.fileno = self.file.fileno() def tearDown(self): self.file.close() self.client.close() if self.server.running: self.server.stop() def sendfile_wrapper(self, sock, file, offset, nbytes, headers=[], trailers=[]): """A higher level wrapper representing how an application is supposed to use sendfile(). """ while 1: try: if self.SUPPORT_HEADERS_TRAILERS: return os.sendfile(sock, file, offset, nbytes, headers, trailers) else: return os.sendfile(sock, file, offset, nbytes) except OSError as err: if err.errno == errno.ECONNRESET: # disconnected raise elif err.errno in (errno.EAGAIN, errno.EBUSY): # we have to retry send data continue else: raise def test_send_whole_file(self): # normal send total_sent = 0 offset = 0 nbytes = 4096 while total_sent < len(self.DATA): sent = self.sendfile_wrapper(self.sockno, self.fileno, offset, nbytes) if sent == 0: break offset += sent total_sent += sent self.assertTrue(sent <= nbytes) self.assertEqual(offset, total_sent) self.assertEqual(total_sent, len(self.DATA)) self.client.shutdown(socket.SHUT_RDWR) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(len(data), len(self.DATA)) self.assertEqual(data, self.DATA) def test_send_at_certain_offset(self): # start sending a file at a certain offset total_sent = 0 offset = len(self.DATA) // 2 must_send = len(self.DATA) - offset nbytes = 4096 while total_sent < must_send: sent = self.sendfile_wrapper(self.sockno, self.fileno, offset, nbytes) if sent == 0: break offset += sent total_sent += sent self.assertTrue(sent <= nbytes) self.client.shutdown(socket.SHUT_RDWR) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() expected = self.DATA[len(self.DATA) // 2:] self.assertEqual(total_sent, len(expected)) self.assertEqual(len(data), len(expected)) self.assertEqual(data, expected) def test_offset_overflow(self): # specify an offset > file size offset = len(self.DATA) + 4096 try: sent = os.sendfile(self.sockno, self.fileno, offset, 4096) except OSError as e: # Solaris can raise EINVAL if offset >= file length, ignore. if e.errno != errno.EINVAL: raise else: self.assertEqual(sent, 0) self.client.shutdown(socket.SHUT_RDWR) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(data, b'') def test_invalid_offset(self): with self.assertRaises(OSError) as cm: os.sendfile(self.sockno, self.fileno, -1, 4096) self.assertEqual(cm.exception.errno, errno.EINVAL) def test_keywords(self): # Keyword arguments should be supported os.sendfile(out=self.sockno, offset=0, count=4096, **{'in': self.fileno}) if self.SUPPORT_HEADERS_TRAILERS: os.sendfile(self.sockno, self.fileno, offset=0, count=4096, headers=(), trailers=(), flags=0) # --- headers / trailers tests @requires_headers_trailers def test_headers(self): total_sent = 0 sent = os.sendfile(self.sockno, self.fileno, 0, 4096, headers=[b"x" * 512]) total_sent += sent offset = 4096 nbytes = 4096 while 1: sent = self.sendfile_wrapper(self.sockno, self.fileno, offset, nbytes) if sent == 0: break total_sent += sent offset += sent expected_data = b"x" * 512 + self.DATA self.assertEqual(total_sent, len(expected_data)) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(hash(data), hash(expected_data)) @requires_headers_trailers def test_trailers(self): TESTFN2 = support.TESTFN + "2" file_data = b"abcdef" self.addCleanup(support.unlink, TESTFN2) create_file(TESTFN2, file_data) with open(TESTFN2, 'rb') as f: os.sendfile(self.sockno, f.fileno(), 0, len(file_data), trailers=[b"1234"]) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(data, b"abcdef1234") @requires_headers_trailers @unittest.skipUnless(hasattr(os, 'SF_NODISKIO'), 'test needs os.SF_NODISKIO') def test_flags(self): try: os.sendfile(self.sockno, self.fileno, 0, 4096, flags=os.SF_NODISKIO) except OSError as err: if err.errno not in (errno.EBUSY, errno.EAGAIN): raise def supports_extended_attributes(): if not hasattr(os, "setxattr"): return False try: with open(support.TESTFN, "xb", 0) as fp: try: os.setxattr(fp.fileno(), b"user.test", b"") except OSError: return False finally: support.unlink(support.TESTFN) return True @unittest.skipUnless(supports_extended_attributes(), "no non-broken extended attribute support") # Kernels < 2.6.39 don't respect setxattr flags. @support.requires_linux_version(2, 6, 39) class ExtendedAttributeTests(unittest.TestCase): def _check_xattrs_str(self, s, getxattr, setxattr, removexattr, listxattr, **kwargs): fn = support.TESTFN self.addCleanup(support.unlink, fn) create_file(fn) with self.assertRaises(OSError) as cm: getxattr(fn, s("user.test"), **kwargs) self.assertEqual(cm.exception.errno, errno.ENODATA) init_xattr = listxattr(fn) self.assertIsInstance(init_xattr, list) setxattr(fn, s("user.test"), b"", **kwargs) xattr = set(init_xattr) xattr.add("user.test") self.assertEqual(set(listxattr(fn)), xattr) self.assertEqual(getxattr(fn, b"user.test", **kwargs), b"") setxattr(fn, s("user.test"), b"hello", os.XATTR_REPLACE, **kwargs) self.assertEqual(getxattr(fn, b"user.test", **kwargs), b"hello") with self.assertRaises(OSError) as cm: setxattr(fn, s("user.test"), b"bye", os.XATTR_CREATE, **kwargs) self.assertEqual(cm.exception.errno, errno.EEXIST) with self.assertRaises(OSError) as cm: setxattr(fn, s("user.test2"), b"bye", os.XATTR_REPLACE, **kwargs) self.assertEqual(cm.exception.errno, errno.ENODATA) setxattr(fn, s("user.test2"), b"foo", os.XATTR_CREATE, **kwargs) xattr.add("user.test2") self.assertEqual(set(listxattr(fn)), xattr) removexattr(fn, s("user.test"), **kwargs) with self.assertRaises(OSError) as cm: getxattr(fn, s("user.test"), **kwargs) self.assertEqual(cm.exception.errno, errno.ENODATA) xattr.remove("user.test") self.assertEqual(set(listxattr(fn)), xattr) self.assertEqual(getxattr(fn, s("user.test2"), **kwargs), b"foo") setxattr(fn, s("user.test"), b"a"*1024, **kwargs) self.assertEqual(getxattr(fn, s("user.test"), **kwargs), b"a"*1024) removexattr(fn, s("user.test"), **kwargs) many = sorted("user.test{}".format(i) for i in range(100)) for thing in many: setxattr(fn, thing, b"x", **kwargs) self.assertEqual(set(listxattr(fn)), set(init_xattr) | set(many)) def _check_xattrs(self, *args, **kwargs): self._check_xattrs_str(str, *args, **kwargs) support.unlink(support.TESTFN) self._check_xattrs_str(os.fsencode, *args, **kwargs) support.unlink(support.TESTFN) def test_simple(self): self._check_xattrs(os.getxattr, os.setxattr, os.removexattr, os.listxattr) def test_lpath(self): self._check_xattrs(os.getxattr, os.setxattr, os.removexattr, os.listxattr, follow_symlinks=False) def test_fds(self): def getxattr(path, *args): with open(path, "rb") as fp: return os.getxattr(fp.fileno(), *args) def setxattr(path, *args): with open(path, "wb", 0) as fp: os.setxattr(fp.fileno(), *args) def removexattr(path, *args): with open(path, "wb", 0) as fp: os.removexattr(fp.fileno(), *args) def listxattr(path, *args): with open(path, "rb") as fp: return os.listxattr(fp.fileno(), *args) self._check_xattrs(getxattr, setxattr, removexattr, listxattr) @unittest.skipUnless(hasattr(os, 'get_terminal_size'), "requires os.get_terminal_size") class TermsizeTests(unittest.TestCase): def test_does_not_crash(self): """Check if get_terminal_size() returns a meaningful value. There's no easy portable way to actually check the size of the terminal, so let's check if it returns something sensible instead. """ try: size = os.get_terminal_size() except OSError as e: if sys.platform == "win32" or e.errno in (errno.EINVAL, errno.ENOTTY): # Under win32 a generic OSError can be thrown if the # handle cannot be retrieved self.skipTest("failed to query terminal size") raise self.assertGreaterEqual(size.columns, 0) self.assertGreaterEqual(size.lines, 0) def test_stty_match(self): """Check if stty returns the same results stty actually tests stdin, so get_terminal_size is invoked on stdin explicitly. If stty succeeded, then get_terminal_size() should work too. """ try: size = subprocess.check_output(['stty', 'size']).decode().split() except (FileNotFoundError, subprocess.CalledProcessError): self.skipTest("stty invocation failed") expected = (int(size[1]), int(size[0])) # reversed order try: actual = os.get_terminal_size(sys.__stdin__.fileno()) except OSError as e: if sys.platform == "win32" or e.errno in (errno.EINVAL, errno.ENOTTY): # Under win32 a generic OSError can be thrown if the # handle cannot be retrieved self.skipTest("failed to query terminal size") raise self.assertEqual(expected, actual) class OSErrorTests(unittest.TestCase): def setUp(self): class Str(str): pass self.bytes_filenames = [] self.unicode_filenames = [] if support.TESTFN_UNENCODABLE is not None: decoded = support.TESTFN_UNENCODABLE else: decoded = support.TESTFN self.unicode_filenames.append(decoded) self.unicode_filenames.append(Str(decoded)) if support.TESTFN_UNDECODABLE is not None: encoded = support.TESTFN_UNDECODABLE else: encoded = os.fsencode(support.TESTFN) self.bytes_filenames.append(encoded) self.bytes_filenames.append(bytearray(encoded)) self.bytes_filenames.append(memoryview(encoded)) self.filenames = self.bytes_filenames + self.unicode_filenames def test_oserror_filename(self): funcs = [ (self.filenames, os.chdir,), (self.filenames, os.chmod, 0o777), (self.filenames, os.lstat,), (self.filenames, os.open, os.O_RDONLY), (self.filenames, os.rmdir,), (self.filenames, os.stat,), (self.filenames, os.unlink,), ] if sys.platform == "win32": funcs.extend(( (self.bytes_filenames, os.rename, b"dst"), (self.bytes_filenames, os.replace, b"dst"), (self.unicode_filenames, os.rename, "dst"), (self.unicode_filenames, os.replace, "dst"), (self.unicode_filenames, os.listdir, ), )) else: funcs.extend(( (self.filenames, os.listdir,), (self.filenames, os.rename, "dst"), (self.filenames, os.replace, "dst"), )) if hasattr(os, "chown"): funcs.append((self.filenames, os.chown, 0, 0)) if hasattr(os, "lchown"): funcs.append((self.filenames, os.lchown, 0, 0)) if hasattr(os, "truncate"): funcs.append((self.filenames, os.truncate, 0)) if hasattr(os, "chflags"): funcs.append((self.filenames, os.chflags, 0)) if hasattr(os, "lchflags"): funcs.append((self.filenames, os.lchflags, 0)) if hasattr(os, "chroot"): funcs.append((self.filenames, os.chroot,)) if hasattr(os, "link"): if sys.platform == "win32": funcs.append((self.bytes_filenames, os.link, b"dst")) funcs.append((self.unicode_filenames, os.link, "dst")) else: funcs.append((self.filenames, os.link, "dst")) if hasattr(os, "listxattr"): funcs.extend(( (self.filenames, os.listxattr,), (self.filenames, os.getxattr, "user.test"), (self.filenames, os.setxattr, "user.test", b'user'), (self.filenames, os.removexattr, "user.test"), )) if hasattr(os, "lchmod"): funcs.append((self.filenames, os.lchmod, 0o777)) if hasattr(os, "readlink"): if sys.platform == "win32": funcs.append((self.unicode_filenames, os.readlink,)) else: funcs.append((self.filenames, os.readlink,)) for filenames, func, *func_args in funcs: for name in filenames: try: if isinstance(name, (str, bytes)): func(name, *func_args) else: with self.assertWarnsRegex(DeprecationWarning, 'should be'): func(name, *func_args) except OSError as err: self.assertIs(err.filename, name, str(func)) except UnicodeDecodeError: pass else: self.fail("No exception thrown by {}".format(func)) class CPUCountTests(unittest.TestCase): def test_cpu_count(self): cpus = os.cpu_count() if cpus is not None: self.assertIsInstance(cpus, int) self.assertGreater(cpus, 0) else: self.skipTest("Could not determine the number of CPUs") class FDInheritanceTests(unittest.TestCase): def test_get_set_inheritable(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_inheritable(fd), False) os.set_inheritable(fd, True) self.assertEqual(os.get_inheritable(fd), True) @unittest.skipIf(fcntl is None, "need fcntl") def test_get_inheritable_cloexec(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_inheritable(fd), False) # clear FD_CLOEXEC flag flags = fcntl.fcntl(fd, fcntl.F_GETFD) flags &= ~fcntl.FD_CLOEXEC fcntl.fcntl(fd, fcntl.F_SETFD, flags) self.assertEqual(os.get_inheritable(fd), True) @unittest.skipIf(fcntl is None, "need fcntl") def test_set_inheritable_cloexec(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(fcntl.fcntl(fd, fcntl.F_GETFD) & fcntl.FD_CLOEXEC, fcntl.FD_CLOEXEC) os.set_inheritable(fd, True) self.assertEqual(fcntl.fcntl(fd, fcntl.F_GETFD) & fcntl.FD_CLOEXEC, 0) def test_open(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_inheritable(fd), False) @unittest.skipUnless(hasattr(os, 'pipe'), "need os.pipe()") def test_pipe(self): rfd, wfd = os.pipe() self.addCleanup(os.close, rfd) self.addCleanup(os.close, wfd) self.assertEqual(os.get_inheritable(rfd), False) self.assertEqual(os.get_inheritable(wfd), False) def test_dup(self): fd1 = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd1) fd2 = os.dup(fd1) self.addCleanup(os.close, fd2) self.assertEqual(os.get_inheritable(fd2), False) @unittest.skipUnless(hasattr(os, 'dup2'), "need os.dup2()") def test_dup2(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) # inheritable by default fd2 = os.open(__file__, os.O_RDONLY) try: os.dup2(fd, fd2) self.assertEqual(os.get_inheritable(fd2), True) finally: os.close(fd2) # force non-inheritable fd3 = os.open(__file__, os.O_RDONLY) try: os.dup2(fd, fd3, inheritable=False) self.assertEqual(os.get_inheritable(fd3), False) finally: os.close(fd3) @unittest.skipUnless(hasattr(os, 'openpty'), "need os.openpty()") def test_openpty(self): master_fd, slave_fd = os.openpty() self.addCleanup(os.close, master_fd) self.addCleanup(os.close, slave_fd) self.assertEqual(os.get_inheritable(master_fd), False) self.assertEqual(os.get_inheritable(slave_fd), False) class PathTConverterTests(unittest.TestCase): # tuples of (function name, allows fd arguments, additional arguments to # function, cleanup function) functions = [ ('stat', True, (), None), ('lstat', False, (), None), ('access', False, (os.F_OK,), None), ('chflags', False, (0,), None), ('lchflags', False, (0,), None), ('open', False, (0,), getattr(os, 'close', None)), ] def test_path_t_converter(self): str_filename = support.TESTFN if os.name == 'nt': bytes_fspath = bytes_filename = None else: bytes_filename = support.TESTFN.encode('ascii') bytes_fspath = _PathLike(bytes_filename) fd = os.open(_PathLike(str_filename), os.O_WRONLY|os.O_CREAT) self.addCleanup(support.unlink, support.TESTFN) self.addCleanup(os.close, fd) int_fspath = _PathLike(fd) str_fspath = _PathLike(str_filename) for name, allow_fd, extra_args, cleanup_fn in self.functions: with self.subTest(name=name): try: fn = getattr(os, name) except AttributeError: continue for path in (str_filename, bytes_filename, str_fspath, bytes_fspath): if path is None: continue with self.subTest(name=name, path=path): result = fn(path, *extra_args) if cleanup_fn is not None: cleanup_fn(result) with self.assertRaisesRegex( TypeError, 'should be string, bytes'): fn(int_fspath, *extra_args) if allow_fd: result = fn(fd, *extra_args) # should not fail if cleanup_fn is not None: cleanup_fn(result) else: with self.assertRaisesRegex( TypeError, 'os.PathLike'): fn(fd, *extra_args) @unittest.skipUnless(hasattr(os, 'get_blocking'), 'needs os.get_blocking() and os.set_blocking()') class BlockingTests(unittest.TestCase): def test_blocking(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_blocking(fd), True) os.set_blocking(fd, False) self.assertEqual(os.get_blocking(fd), False) os.set_blocking(fd, True) self.assertEqual(os.get_blocking(fd), True) class ExportsTests(unittest.TestCase): def test_os_all(self): self.assertIn('open', os.__all__) self.assertIn('walk', os.__all__) class TestScandir(unittest.TestCase): check_no_resource_warning = support.check_no_resource_warning def setUp(self): self.path = os.path.realpath(support.TESTFN) self.bytes_path = os.fsencode(self.path) self.addCleanup(support.rmtree, self.path) os.mkdir(self.path) def create_file(self, name="file.txt"): path = self.bytes_path if isinstance(name, bytes) else self.path filename = os.path.join(path, name) create_file(filename, b'python') return filename def get_entries(self, names): entries = dict((entry.name, entry) for entry in os.scandir(self.path)) self.assertEqual(sorted(entries.keys()), names) return entries def assert_stat_equal(self, stat1, stat2, skip_fields): if skip_fields: for attr in dir(stat1): if not attr.startswith("st_"): continue if attr in ("st_dev", "st_ino", "st_nlink"): continue self.assertEqual(getattr(stat1, attr), getattr(stat2, attr), (stat1, stat2, attr)) else: self.assertEqual(stat1, stat2) def check_entry(self, entry, name, is_dir, is_file, is_symlink): self.assertIsInstance(entry, os.DirEntry) self.assertEqual(entry.name, name) self.assertEqual(entry.path, os.path.join(self.path, name)) self.assertEqual(entry.inode(), os.stat(entry.path, follow_symlinks=False).st_ino) entry_stat = os.stat(entry.path) self.assertEqual(entry.is_dir(), stat.S_ISDIR(entry_stat.st_mode)) self.assertEqual(entry.is_file(), stat.S_ISREG(entry_stat.st_mode)) self.assertEqual(entry.is_symlink(), os.path.islink(entry.path)) entry_lstat = os.stat(entry.path, follow_symlinks=False) self.assertEqual(entry.is_dir(follow_symlinks=False), stat.S_ISDIR(entry_lstat.st_mode)) self.assertEqual(entry.is_file(follow_symlinks=False), stat.S_ISREG(entry_lstat.st_mode)) self.assert_stat_equal(entry.stat(), entry_stat, os.name == 'nt' and not is_symlink) self.assert_stat_equal(entry.stat(follow_symlinks=False), entry_lstat, os.name == 'nt') def test_attributes(self): link = hasattr(os, 'link') symlink = support.can_symlink() dirname = os.path.join(self.path, "dir") os.mkdir(dirname) filename = self.create_file("file.txt") if link: os.link(filename, os.path.join(self.path, "link_file.txt")) if symlink: os.symlink(dirname, os.path.join(self.path, "symlink_dir"), target_is_directory=True) os.symlink(filename, os.path.join(self.path, "symlink_file.txt")) names = ['dir', 'file.txt'] if link: names.append('link_file.txt') if symlink: names.extend(('symlink_dir', 'symlink_file.txt')) entries = self.get_entries(names) entry = entries['dir'] self.check_entry(entry, 'dir', True, False, False) entry = entries['file.txt'] self.check_entry(entry, 'file.txt', False, True, False) if link: entry = entries['link_file.txt'] self.check_entry(entry, 'link_file.txt', False, True, False) if symlink: entry = entries['symlink_dir'] self.check_entry(entry, 'symlink_dir', True, False, True) entry = entries['symlink_file.txt'] self.check_entry(entry, 'symlink_file.txt', False, True, True) def get_entry(self, name): path = self.bytes_path if isinstance(name, bytes) else self.path entries = list(os.scandir(path)) self.assertEqual(len(entries), 1) entry = entries[0] self.assertEqual(entry.name, name) return entry def create_file_entry(self, name='file.txt'): filename = self.create_file(name=name) return self.get_entry(os.path.basename(filename)) def test_current_directory(self): filename = self.create_file() old_dir = os.getcwd() try: os.chdir(self.path) # call scandir() without parameter: it must list the content # of the current directory entries = dict((entry.name, entry) for entry in os.scandir()) self.assertEqual(sorted(entries.keys()), [os.path.basename(filename)]) finally: os.chdir(old_dir) def test_repr(self): entry = self.create_file_entry() self.assertEqual(repr(entry), "<DirEntry 'file.txt'>") def test_fspath_protocol(self): entry = self.create_file_entry() self.assertEqual(os.fspath(entry), os.path.join(self.path, 'file.txt')) def test_fspath_protocol_bytes(self): bytes_filename = os.fsencode('bytesfile.txt') bytes_entry = self.create_file_entry(name=bytes_filename) fspath = os.fspath(bytes_entry) self.assertIsInstance(fspath, bytes) self.assertEqual(fspath, os.path.join(os.fsencode(self.path),bytes_filename)) def test_removed_dir(self): path = os.path.join(self.path, 'dir') os.mkdir(path) entry = self.get_entry('dir') os.rmdir(path) # On POSIX, is_dir() result depends if scandir() filled d_type or not if os.name == 'nt': self.assertTrue(entry.is_dir()) self.assertFalse(entry.is_file()) self.assertFalse(entry.is_symlink()) if os.name == 'nt': self.assertRaises(FileNotFoundError, entry.inode) # don't fail entry.stat() entry.stat(follow_symlinks=False) else: self.assertGreater(entry.inode(), 0) self.assertRaises(FileNotFoundError, entry.stat) self.assertRaises(FileNotFoundError, entry.stat, follow_symlinks=False) def test_removed_file(self): entry = self.create_file_entry() os.unlink(entry.path) self.assertFalse(entry.is_dir()) # On POSIX, is_dir() result depends if scandir() filled d_type or not if os.name == 'nt': self.assertTrue(entry.is_file()) self.assertFalse(entry.is_symlink()) if os.name == 'nt': self.assertRaises(FileNotFoundError, entry.inode) # don't fail entry.stat() entry.stat(follow_symlinks=False) else: self.assertGreater(entry.inode(), 0) self.assertRaises(FileNotFoundError, entry.stat) self.assertRaises(FileNotFoundError, entry.stat, follow_symlinks=False) def test_broken_symlink(self): if not support.can_symlink(): return self.skipTest('cannot create symbolic link') filename = self.create_file("file.txt") os.symlink(filename, os.path.join(self.path, "symlink.txt")) entries = self.get_entries(['file.txt', 'symlink.txt']) entry = entries['symlink.txt'] os.unlink(filename) self.assertGreater(entry.inode(), 0) self.assertFalse(entry.is_dir()) self.assertFalse(entry.is_file()) # broken symlink returns False self.assertFalse(entry.is_dir(follow_symlinks=False)) self.assertFalse(entry.is_file(follow_symlinks=False)) self.assertTrue(entry.is_symlink()) self.assertRaises(FileNotFoundError, entry.stat) # don't fail entry.stat(follow_symlinks=False) def test_bytes(self): self.create_file("file.txt") path_bytes = os.fsencode(self.path) entries = list(os.scandir(path_bytes)) self.assertEqual(len(entries), 1, entries) entry = entries[0] self.assertEqual(entry.name, b'file.txt') self.assertEqual(entry.path, os.fsencode(os.path.join(self.path, 'file.txt'))) @unittest.skipUnless(os.listdir in os.supports_fd, 'fd support for listdir required for this test.') def test_fd(self): self.assertIn(os.scandir, os.supports_fd) self.create_file('file.txt') expected_names = ['file.txt'] if support.can_symlink(): os.symlink('file.txt', os.path.join(self.path, 'link')) expected_names.append('link') fd = os.open(self.path, os.O_RDONLY) try: with os.scandir(fd) as it: entries = list(it) names = [entry.name for entry in entries] self.assertEqual(sorted(names), expected_names) self.assertEqual(names, os.listdir(fd)) for entry in entries: self.assertEqual(entry.path, entry.name) self.assertEqual(os.fspath(entry), entry.name) self.assertEqual(entry.is_symlink(), entry.name == 'link') if os.stat in os.supports_dir_fd: st = os.stat(entry.name, dir_fd=fd) self.assertEqual(entry.stat(), st) st = os.stat(entry.name, dir_fd=fd, follow_symlinks=False) self.assertEqual(entry.stat(follow_symlinks=False), st) finally: os.close(fd) def test_empty_path(self): self.assertRaises(FileNotFoundError, os.scandir, '') def test_consume_iterator_twice(self): self.create_file("file.txt") iterator = os.scandir(self.path) entries = list(iterator) self.assertEqual(len(entries), 1, entries) # check than consuming the iterator twice doesn't raise exception entries2 = list(iterator) self.assertEqual(len(entries2), 0, entries2) def test_bad_path_type(self): for obj in [1.234, {}, []]: self.assertRaises(TypeError, os.scandir, obj) def test_close(self): self.create_file("file.txt") self.create_file("file2.txt") iterator = os.scandir(self.path) next(iterator) iterator.close() # multiple closes iterator.close() with self.check_no_resource_warning(): del iterator def test_context_manager(self): self.create_file("file.txt") self.create_file("file2.txt") with os.scandir(self.path) as iterator: next(iterator) with self.check_no_resource_warning(): del iterator def test_context_manager_close(self): self.create_file("file.txt") self.create_file("file2.txt") with os.scandir(self.path) as iterator: next(iterator) iterator.close() def test_context_manager_exception(self): self.create_file("file.txt") self.create_file("file2.txt") with self.assertRaises(ZeroDivisionError): with os.scandir(self.path) as iterator: next(iterator) 1/0 with self.check_no_resource_warning(): del iterator def test_resource_warning(self): self.create_file("file.txt") self.create_file("file2.txt") iterator = os.scandir(self.path) next(iterator) with self.assertWarns(ResourceWarning): del iterator support.gc_collect() # exhausted iterator iterator = os.scandir(self.path) list(iterator) with self.check_no_resource_warning(): del iterator class TestPEP519(unittest.TestCase): # Abstracted so it can be overridden to test pure Python implementation # if a C version is provided. fspath = staticmethod(os.fspath) def test_return_bytes(self): for b in b'hello', b'goodbye', b'some/path/and/file': self.assertEqual(b, self.fspath(b)) def test_return_string(self): for s in 'hello', 'goodbye', 'some/path/and/file': self.assertEqual(s, self.fspath(s)) def test_fsencode_fsdecode(self): for p in "path/like/object", b"path/like/object": pathlike = _PathLike(p) self.assertEqual(p, self.fspath(pathlike)) self.assertEqual(b"path/like/object", os.fsencode(pathlike)) self.assertEqual("path/like/object", os.fsdecode(pathlike)) def test_pathlike(self): self.assertEqual('#feelthegil', self.fspath(_PathLike('#feelthegil'))) self.assertTrue(issubclass(_PathLike, os.PathLike)) self.assertTrue(isinstance(_PathLike(), os.PathLike)) def test_garbage_in_exception_out(self): vapor = type('blah', (), {}) for o in int, type, os, vapor(): self.assertRaises(TypeError, self.fspath, o) def test_argument_required(self): self.assertRaises(TypeError, self.fspath) def test_bad_pathlike(self): # __fspath__ returns a value other than str or bytes. self.assertRaises(TypeError, self.fspath, _PathLike(42)) # __fspath__ attribute that is not callable. c = type('foo', (), {}) c.__fspath__ = 1 self.assertRaises(TypeError, self.fspath, c()) # __fspath__ raises an exception. self.assertRaises(ZeroDivisionError, self.fspath, _PathLike(ZeroDivisionError())) # Only test if the C version is provided, otherwise TestPEP519 already tested # the pure Python implementation. if hasattr(os, "_fspath"): class TestPEP519PurePython(TestPEP519): """Explicitly test the pure Python implementation of os.fspath().""" fspath = staticmethod(os._fspath) if __name__ == "__main__": unittest.main()
37.218894
101
0.595006
97e48efb7eaa58c4d95781afdfddf4fc5c47ab58
11,364
py
Python
mw4/logic/camera/cameraAlpaca.py
mworion/MountWizzard4
4e06b29ec2ef70be40e114b911b7bdf2f858a4b1
[ "Apache-2.0" ]
16
2020-01-11T22:32:26.000Z
2022-03-31T15:18:14.000Z
mw4/logic/camera/cameraAlpaca.py
mworion/MountWizzard4
4e06b29ec2ef70be40e114b911b7bdf2f858a4b1
[ "Apache-2.0" ]
196
2020-01-16T13:56:01.000Z
2022-03-29T02:06:51.000Z
mw4/logic/camera/cameraAlpaca.py
mworion/MountWizzard4
4e06b29ec2ef70be40e114b911b7bdf2f858a4b1
[ "Apache-2.0" ]
6
2019-12-01T19:39:33.000Z
2021-05-27T13:14:20.000Z
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # # written in python3, (c) 2019-2021 by mworion # # Licence APL2.0 # ########################################################### # standard libraries # external packages import numpy as np from astropy.io import fits from PyQt5.QtTest import QTest # local imports from mountcontrol.convert import formatDstrToText from base.alpacaClass import AlpacaClass from base.tpool import Worker from base.transform import JNowToJ2000 class CameraAlpaca(AlpacaClass): """ """ __all__ = ['CameraAlpaca'] def __init__(self, app=None, signals=None, data=None): super().__init__(app=app, data=data, threadPool=app.threadPool) self.signals = signals self.data = data self.abortExpose = False def workerGetInitialConfig(self): """ :return: true for test purpose """ super().workerGetInitialConfig() self.getAndStoreAlpacaProperty('cameraxsize', 'CCD_INFO.CCD_MAX_X') self.getAndStoreAlpacaProperty('cameraysize', 'CCD_INFO.CCD_MAX_Y') self.getAndStoreAlpacaProperty('canfastreadout', 'CAN_FAST') self.getAndStoreAlpacaProperty('canabortexposure', 'CAN_ABORT') self.getAndStoreAlpacaProperty('cansetccdtemperature', 'CAN_SET_CCD_TEMPERATURE') self.getAndStoreAlpacaProperty('cangetcoolerpower', 'CAN_GET_COOLER_POWER') self.getAndStoreAlpacaProperty('pixelsizex', 'CCD_INFO.CCD_PIXEL_SIZE_X') self.getAndStoreAlpacaProperty('pixelsizey', 'CCD_INFO.CCD_PIXEL_SIZE_Y') self.getAndStoreAlpacaProperty('maxbinx', 'CCD_BINNING.HOR_BIN_MAX') self.getAndStoreAlpacaProperty('maxbiny', 'CCD_BINNING.VERT_BIN_MAX') self.getAndStoreAlpacaProperty('gainmax', 'CCD_INFO.GAIN_MAX') self.getAndStoreAlpacaProperty('gainmin', 'CCD_INFO.GAIN_MIN') self.getAndStoreAlpacaProperty('startx', 'CCD_FRAME.X') self.getAndStoreAlpacaProperty('starty', 'CCD_FRAME.Y') self.log.debug(f'Initial data: {self.data}') return True def workerPollData(self): """ :return: true for test purpose """ self.getAndStoreAlpacaProperty('binx', 'CCD_BINNING.HOR_BIN') self.getAndStoreAlpacaProperty('biny', 'CCD_BINNING.VERT_BIN') self.getAndStoreAlpacaProperty('camerastate', 'CAMERA.STATE') self.getAndStoreAlpacaProperty('gain', 'CCD_GAIN.GAIN') self.getAndStoreAlpacaProperty('offset', 'CCD_OFFSET.OFFSET') self.getAndStoreAlpacaProperty('fastreadout', 'READOUT_QUALITY.QUALITY_LOW', 'READOUT_QUALITY.QUALITY_HIGH') self.getAndStoreAlpacaProperty('ccdtemperature', 'CCD_TEMPERATURE.CCD_TEMPERATURE_VALUE') self.getAndStoreAlpacaProperty('cooleron', 'CCD_COOLER.COOLER_ON') self.getAndStoreAlpacaProperty('coolerpower', 'CCD_COOLER_POWER.CCD_COOLER_VALUE') return True def sendDownloadMode(self, fastReadout=False): """ setDownloadMode sets the readout speed of the camera :return: success """ canFast = self.data.get('CAN_FAST', False) if not canFast: return False if fastReadout: self.setAlpacaProperty('fastreadout', FastReadout=True) quality = 'High' if self.data.get('READOUT_QUALITY.QUALITY_HIGH', True) else 'Low' self.log.debug(f'Camera has readout quality entry: {quality}') return True def workerExpose(self, imagePath='', expTime=3, binning=1, fastReadout=True, posX=0, posY=0, width=1, height=1, focalLength=1, ): """ :param imagePath: :param expTime: :param binning: :param fastReadout: :param posX: :param posY: :param width: :param height: :param focalLength: :return: success """ self.sendDownloadMode(fastReadout=fastReadout) self.setAlpacaProperty('binx', BinX=int(binning)) self.setAlpacaProperty('biny', iBinY=int(binning)) self.setAlpacaProperty('startx', StartX=int(posX / binning)) self.setAlpacaProperty('starty', StartY=int(posY / binning)) self.setAlpacaProperty('numx', NumX=int(width / binning)) self.setAlpacaProperty('numy', NumX=int(width / binning)) isMount = self.app.deviceStat['mount'] if isMount: ra = self.app.mount.obsSite.raJNow dec = self.app.mount.obsSite.decJNow obsTime = self.app.mount.obsSite.timeJD if ra is not None and dec is not None and obsTime is not None: ra, dec = JNowToJ2000(ra, dec, obsTime) self.setAlpacaProperty('startexposure', Duration=expTime, Light=True) timeLeft = expTime while not self.getAlpacaProperty('imageready'): text = f'expose {timeLeft:3.0f} s' QTest.qWait(100) if timeLeft >= 0.1: timeLeft -= 0.1 else: timeLeft = 0 self.signals.message.emit(text) if self.abortExpose: break if not self.abortExpose: self.signals.integrated.emit() self.signals.message.emit('download') tmp = self.getAlpacaProperty('imagearray') if tmp is None: self.abortExpose = True else: data = np.array(tmp, dtype=np.uint16).transpose() if not self.abortExpose: self.signals.downloaded.emit() self.signals.message.emit('saving') hdu = fits.PrimaryHDU(data=data) header = hdu.header header.append(('OBJECT', 'SKY_OBJECT', 'default name from MW4')) header.append(('FRAME', 'Light', 'Modeling works with light frames')) header.append(('EQUINOX', 2000, 'All data is stored in J2000')) header.append(('PIXSIZE1', self.data['CCD_INFO.CCD_PIXEL_SIZE_X'] * binning)) header.append(('PIXSIZE2', self.data['CCD_INFO.CCD_PIXEL_SIZE_Y'] * binning)) header.append(('XPIXSZ', self.data['CCD_INFO.CCD_PIXEL_SIZE_X'] * binning)) header.append(('YPIXSZ', self.data['CCD_INFO.CCD_PIXEL_SIZE_Y'] * binning)) if focalLength: factor = binning / focalLength * 206.265 header.append(('FOCALLEN', focalLength, 'Data taken from driver or manual input')) else: factor = 1 header.append(('SCALE', self.data['CCD_INFO.CCD_PIXEL_SIZE_X'] * factor)) header.append(('XBINNING', binning, 'MW4 is using the same binning for x and y')) header.append(('YBINNING', binning, 'MW4 is using the same binning for x and y')) header.append(('EXPTIME', expTime)) header.append(('OBSERVER', 'MW4')) timeJD = self.app.mount.obsSite.timeJD header.append(('DATE-OBS', timeJD.tt_strftime('%Y-%m-%dT%H:%M:%S'), 'Time is UTC of mount')) header.append(('CCD-TEMP', self.data.get('CCD_TEMPERATURE.CCD_TEMPERATURE_VALUE', 0))) header.append(('SQM', self.app.skymeter.data.get('SKY_QUALITY.SKY_BRIGHTNESS', 0))) if isMount: header.append(('RA', ra._degrees, 'Float value in degree')) header.append(('DEC', dec.degrees, 'Float value in degree')) header.append(('TELESCOP', self.app.mount.firmware.product, 'Mount version from firmware')) lat = self.app.mount.obsSite.location.latitude header.append(('SITELAT', formatDstrToText(lat))) lon = self.app.mount.obsSite.location.longitude header.append(('SITELON', formatDstrToText(lon))) elev = self.app.mount.obsSite.location.elevation.m header.append(('SITEELEV', elev)) hdu.writeto(imagePath, overwrite=True, output_verify='silentfix+warn') self.log.info(f'Saved Image: [{imagePath}]') if self.abortExpose: imagePath = '' self.signals.saved.emit(imagePath) self.signals.exposeReady.emit() self.signals.message.emit('') return True def expose(self, imagePath='', expTime=3, binning=1, fastReadout=True, posX=0, posY=0, width=1, height=1, focalLength=1, ): """ :return: success """ self.abortExpose = False worker = Worker(self.workerExpose, imagePath=imagePath, expTime=expTime, binning=binning, fastReadout=fastReadout, posX=posX, posY=posY, width=width, height=height, focalLength=focalLength) self.threadPool.start(worker) return True def abort(self): """ :return: success """ if not self.deviceConnected: return False self.abortExpose = True canAbort = self.data.get('CAN_ABORT', False) if not canAbort: return False self.getAlpacaProperty('stopexposure') return True def sendCoolerSwitch(self, coolerOn=False): """ :param coolerOn: :return: success """ if not self.deviceConnected: return False self.setAlpacaProperty('cooleron', CoolerOn=coolerOn) return True def sendCoolerTemp(self, temperature=0): """ :param temperature: :return: success """ if not self.deviceConnected: return False canSetCCDTemp = self.data.get('CAN_SET_CCD_TEMPERATURE', False) if not canSetCCDTemp: return False self.setAlpacaProperty('setccdtemperature', SetCCDTemperature=temperature) return True def sendOffset(self, offset=0): """ :param offset: :return: success """ if not self.deviceConnected: return False self.setAlpacaProperty('offset', Offset=offset) return True def sendGain(self, gain=0): """ :param gain: :return: success """ if not self.deviceConnected: return False self.setAlpacaProperty('gain', Gain=gain) return True
36.191083
90
0.556582
4ce2a354338658947c4bdb4444d2c8634d1ed5d6
24,310
py
Python
opencolorio_config_aces/config/generation/common.py
michdolan/OpenColorIO-Config-ACES
5216c2a184e03529557993b7dc670d351aadddc7
[ "BSD-3-Clause" ]
null
null
null
opencolorio_config_aces/config/generation/common.py
michdolan/OpenColorIO-Config-ACES
5216c2a184e03529557993b7dc670d351aadddc7
[ "BSD-3-Clause" ]
null
null
null
opencolorio_config_aces/config/generation/common.py
michdolan/OpenColorIO-Config-ACES
5216c2a184e03529557993b7dc670d351aadddc7
[ "BSD-3-Clause" ]
null
null
null
# SPDX-License-Identifier: BSD-3-Clause # Copyright Contributors to the OpenColorIO Project. """ OpenColorIO Config Generation Common Objects ============================================ Defines various objects related to *OpenColorIO* config generation: - :class:`opencolorio_config_aces.VersionData` - :class:`opencolorio_config_aces.ConfigData` - :class:`opencolorio_config_aces.serialize_config_data` - :class:`opencolorio_config_aces.deserialize_config_data` - :func:`opencolorio_config_aces.validate_config` - :func:`opencolorio_config_aces.generate_config` """ import logging import PyOpenColorIO as ocio from collections.abc import Mapping from dataclasses import asdict, dataclass, field from typing import Union from opencolorio_config_aces.utilities import required from opencolorio_config_aces.config.generation import ( colorspace_factory, look_factory, named_transform_factory, view_transform_factory, ) __author__ = "OpenColorIO Contributors" __copyright__ = "Copyright Contributors to the OpenColorIO Project." __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "OpenColorIO Contributors" __email__ = "ocio-dev@lists.aswf.io" __status__ = "Production" __all__ = [ "VersionData", "ConfigData", "deserialize_config_data", "serialize_config_data", "validate_config", "generate_config", ] logger = logging.getLogger(__name__) @dataclass class VersionData: """ Define the data container for a two component version identifier. Parameters ---------- major : int, optional Major version number. minor : int, optional Minor version number. Attributes ---------- major minor """ major: int = 1 minor: int = 0 @dataclass class ConfigData: """ Define the data container for an *OpenColorIO* config. Parameters ---------- profile_version : VersionData, optional Config major and minor version, i.e. (1, 0) or (2, 0). description : unicode, optional Config description. search_path : list, optional Config search path. roles : dict Config roles, a dict of role and colorspace name. colorspaces : array_like Config colorspaces, an iterable of :attr:`PyOpenColorIO.ColorSpace` class instances or mappings to create them with :func:`opencolorio_config_aces.colorspace_factory` definition. named_transforms : array_like Config named transforms, an iterable of :attr:`PyOpenColorIO.NamedTransfom` class instances or mappings to create them with :func:`opencolorio_config_aces.named_transform_factory` definition. view_transforms : array_like, optional Config view transforms, an iterable of :attr:`PyOpenColorIO.ViewTransform` class instances or mappings to create them with :func:`opencolorio_config_aces.view_transform_factory` definition. looks : array_like, optional Config looks, an iterable of :attr:`PyOpenColorIO.Look` class instances or mappings to create them with :func:`opencolorio_config_aces.look_factory` definition. shared_views : array_like, optional Config shared views, an iterable of dicts of view, view transform, colorspace and rule names, iterable of looks and description. views : array_like, optional Config views, an iterable of dicts of display, view and colorspace names. active_displays : array_like, optional Config active displays, an iterable of display names. active_views : array_like, optional Config active displays, an iterable of view names. file_rules : array_like, optional Config file rules, a dict of file rules. viewing_rules : array_like, optional Config viewing rules, a dict of viewing rules. inactive_colorspaces : array_like, optional Config inactive colorspaces an iterable of colorspace names. default_view_transform : unicode, optional Name of the default view transform. Attributes ---------- schema_version profile_version description search_path roles colorspaces named_transforms view_transforms looks shared_views views active_displays active_views file_rules viewing_rules inactive_colorspaces default_view_transform """ schema_version: VersionData = VersionData(1, 0) profile_version: VersionData = VersionData(2, 0) description: str = ( 'An "OpenColorIO" config generated by "OpenColorIO-Config-ACES".' ) search_path: Union[list] = field(default_factory=list) roles: Union[dict] = field(default_factory=dict) colorspaces: Union[list] = field(default_factory=list) named_transforms: Union[list] = field(default_factory=list) view_transforms: Union[list] = field(default_factory=list) looks: Union[list] = field(default_factory=list) shared_views: Union[list] = field(default_factory=list) views: Union[list] = field(default_factory=list) active_displays: Union[list] = field(default_factory=list) active_views: Union[list] = field(default_factory=list) file_rules: Union[list] = field(default_factory=list) viewing_rules: Union[list] = field(default_factory=list) inactive_colorspaces: Union[list] = field(default_factory=list) default_view_transform: str = field(default_factory=str) @required("jsonpickle") def deserialize_config_data(path): """ Deserialize the *JSON* *OpenColorIO* config data container at given path. Parameters ---------- path : unicode *JSON* file path. Returns ------- ConfigData Deserialized *JSON* *OpenColorIO* config data container. """ import jsonpickle with open(path) as config_json: return ConfigData(**jsonpickle.decode(config_json.read())) # TODO: Implement schema verification support for serialized data. @required("jsonpickle") def serialize_config_data(data, path): """ Serialize the *OpenColorIO* config data container as a *JSON* file. Parameters ---------- data : ConfigData *OpenColorIO* config data container to serialize. path : unicode *JSON* file path. """ import jsonpickle with open(path, "w") as config_json: config_json.write(jsonpickle.encode(asdict(data), indent=2)) def validate_config(config): """ Validate given *OpenColorIO* config. Parameters ---------- config : Config *OpenColorIO* config to validate. Returns ------- bool Whether the *OpenColorIO* config is valid. """ try: config.validate() return True except Exception as error: logger.critical(error) return False def generate_config(data, config_name=None, validate=True, base_config=None): """ Generate the *OpenColorIO* config from given data. Parameters ---------- data : ConfigData *OpenColorIO* config data. config_name : unicode, optional *OpenColorIO* config file name, if given the config will be written to disk. validate : bool, optional Whether to validate the config. base_config : bool, optional *OpenColorIO* base config inherited for initial data. Returns ------- Config *OpenColorIO* config. """ if base_config is not None: config = base_config else: config = ocio.Config() config.setVersion( data.profile_version.major, data.profile_version.minor ) if data.description is not None: config.setDescription(data.description) for search_path in data.search_path: logger.debug(f'Adding "{search_path}".') config.addSearchPath(search_path) for role, colorspace in data.roles.items(): logger.debug(f'Adding "{colorspace}" colorspace as "{role}" role.') config.setRole(role, colorspace) for colorspace in data.colorspaces: if isinstance(colorspace, Mapping): colorspace = colorspace_factory(**colorspace) logger.debug(f'Adding "{colorspace.getName()}" colorspace.') config.addColorSpace(colorspace) for named_transform in data.named_transforms: if isinstance(named_transform, Mapping): named_transform = named_transform_factory(**named_transform) logger.debug(f'Adding "{named_transform.getName()}" named transform.') config.addNamedTransform(named_transform) for view_transform in data.view_transforms: if isinstance(view_transform, Mapping): view_transform = view_transform_factory(**view_transform) logger.debug(f'Adding "{view_transform.getName()}" view transform.') config.addViewTransform(view_transform) for look in data.looks: if isinstance(look, Mapping): look = look_factory(**look) logger.debug(f'Adding "{look.getName()}" look.') config.addLook(look) if data.profile_version.major >= 2: logger.debug(f'Disabling "{data.inactive_colorspaces}" colorspaces.') config.setInactiveColorSpaces(",".join(data.inactive_colorspaces)) for shared_view in data.shared_views: display_colorspace = shared_view.get( "display_colorspace", "<USE_DISPLAY_NAME>" ) looks = shared_view.get("looks") view_transform = shared_view.get("view_transform") rule = shared_view.get("rule") description = shared_view.get("description") view = shared_view["view"] logger.debug( f'Adding "{view}" shared view using "{view_transform}" ' f'view transform, "{display_colorspace}" display colorspace, ' f'"{looks}" looks, "{rule}" rule and "{description}"' f"description." ) config.addSharedView( view, view_transform, display_colorspace, looks, rule, description ) for view in data.views: display = view["display"] colorspace = view.get("colorspace") looks = view.get("looks") view_transform = view.get("view_transform") display_colorspace = view.get("display_colorspace") rule = view.get("rule") description = view.get("description") view = view["view"] if colorspace is not None: logger.debug( f'Adding "{view}" view to "{display}" display ' f'using "{colorspace}" colorspace.' ) config.addDisplayView(display, view, colorspace, looks) elif view_transform is not None and display_colorspace is not None: logger.debug( f'Adding "{view}" view to "{display}" display ' f'using "{view_transform}" view transform, ' f'"{display_colorspace}" display colorspace, ' f'"{rule}" rule and "{description}" description.' ) config.addDisplayView( display, view, view_transform, display_colorspace, looks, rule, description, ) else: logger.debug(f'Adding "{view}" view to "{display}" display.') config.addDisplaySharedView(display, view) if data.active_displays: logger.debug(f'Activating "{data.active_displays}" displays.') config.setActiveDisplays(",".join(data.active_displays)) if data.active_views: logger.debug(f'Activating "{data.active_views}" views.') config.setActiveViews(",".join(data.active_views)) if data.file_rules: file_rules = ocio.FileRules() rule_index = 0 for file_rule in reversed(data.file_rules): name = file_rule["name"] colorspace = file_rule["colorspace"] regex = file_rule.get("regex") pattern = file_rule.get("pattern") extension = file_rule.get("extension") if name == "Default": logger.debug( f'Setting "{name}" file rule with ' f'"{colorspace}" colorspace.' ) file_rules.setDefaultRuleColorSpace(colorspace) elif regex: logger.debug( f'Adding "{name}" file rule with ' f'"{regex}" regex pattern for ' f'"{colorspace}" colorspace.' ) file_rules.insertRule(rule_index, name, colorspace, regex) rule_index += 1 else: logger.debug( f'Adding "{name}" file rule with ' f'"{pattern}" pattern and "{extension}" extension ' f'for "{colorspace}" colorspace.' ) file_rules.insertRule( rule_index, name, colorspace, pattern, extension ) rule_index += 1 config.setFileRules(file_rules) if data.viewing_rules: viewing_rules = ocio.ViewingRules() for i, viewing_rule in enumerate(reversed(data.viewing_rules)): logger.warning("Inserting a viewing rule is not supported yet!") # viewing_rules.insertRule() config.setViewingRules(viewing_rules) if data.default_view_transform is not None: config.setDefaultViewTransformName(data.default_view_transform) if validate: validate_config(config) if config_name is not None: with open(config_name, "w") as file: file.write(config.serialize()) return config if __name__ == "__main__": import os import opencolorio_config_aces logging.basicConfig() logging.getLogger().setLevel(logging.INFO) build_directory = os.path.join( opencolorio_config_aces.__path__[0], "..", "build", "config", "common", "tests", ) logger.info(f'Using "{build_directory}" build directory...') if not os.path.exists(build_directory): os.makedirs(build_directory) # "OpenColorIO 1" configuration. colorspace_1 = {"name": "Gamut - sRGB", "family": "Gamut"} colorspace_2 = { "name": "CCTF - sRGB", "family": "CCTF", "description": ( 'WARNING: The sRGB "EOTF" is purposely incorrect and ' "only a placeholder!" ), "to_reference": { "transform_type": "ExponentTransform", "value": [2.2, 2.2, 2.2, 1], }, } colorspace_3 = { "name": "Colorspace - sRGB", "family": "Colorspace", "to_reference": { "transform_type": "ColorSpaceTransform", "src": "CCTF - sRGB", "dst": "Gamut - sRGB", }, } colorspace_4 = colorspace_factory( **{"name": "Utility - Raw", "family": "Utility", "is_data": True} ) _red_cdl_transform = ocio.CDLTransform() _red_cdl_transform.setSlope([0, 0, 0]) _red_cdl_transform.setOffset([1, 0, 0]) look_1 = look_factory("Look - Red", forward_transform=_red_cdl_transform) look_2 = { "name": "Look - Green", "forward_transform": { "transform_type": "CDLTransform", "slope": [0, 0, 0], "offset": [0, 1, 0], }, } _gain_cdl_transform = ocio.CDLTransform() _gain_cdl_transform.setSlope([0.5, 0.5, 0.5]) look_3 = { "name": "Look - Quarter Blue", "forward_transform": [ # Note the nested "GroupTransform"s. [ { "transform_type": "CDLTransform", "slope": [0, 0, 0], "offset": [0, 1, 0], }, _gain_cdl_transform, ], _gain_cdl_transform, ], } display_1 = { "name": "View - sRGB Monitor - sRGB", "family": "View", "base_colorspace": colorspace_3, } data = ConfigData( roles={ocio.ROLE_SCENE_LINEAR: "Gamut - sRGB"}, colorspaces=[ colorspace_1, colorspace_2, colorspace_3, colorspace_4, display_1, ], looks=[look_1, look_2, look_3], views=[ { "display": "sRGB Monitor", "view": "sRGB - sRGB", "colorspace": display_1["name"], }, { "display": "sRGB Monitor", "view": "Raw", "colorspace": colorspace_4.getName(), }, ], active_displays=["sRGB Monitor"], active_views=["sRGB - sRGB"], ) generate_config(data, os.path.join(build_directory, "config-v1.ocio")) # TODO: Pickling "PyOpenColorIO.ColorSpace" fails on early "PyOpenColorIO" # versions. try: serialize_config_data( data, os.path.join(build_directory, "config-v1.json") ) except TypeError as error: logger.critical(error) # "OpenColorIO 2" configuration. colorspace_1 = { "name": "ACES - ACES2065-1", "family": "ACES", "aliases": "lin_ap0", } colorspace_2 = { "name": "ACES - ACEScg", "family": "ACES", "to_reference": { "transform_type": "BuiltinTransform", "style": "ACEScg_to_ACES2065-1", }, "aliases": ["lin_ap1"], } colorspace_3 = { "name": "Gamut - sRGB", "family": "Gamut", "to_reference": { "transform_type": "MatrixTransform", "matrix": [ 0.4387956642, 0.3825367756, 0.1787151431, 0.0000000000, 0.0890560064, 0.8126211313, 0.0982957371, 0.0000000000, 0.0173063724, 0.1083658908, 0.8742745984, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 1.0000000000, ], }, } colorspace_4 = { "name": "CCTF - sRGB", "family": "CCTF", "to_reference": { "transform_type": "ExponentWithLinearTransform", "gamma": [2.4, 2.4, 2.4, 1], "offset": [0.055, 0.055, 0.055, 0], }, } colorspace_5 = { "name": "Utility - Raw", "family": "Utility", "is_data": True, } named_transform_1 = { "name": "+1 Stop", "family": "Exposure", "forward_transform": { "transform_type": "MatrixTransform", "matrix": [ 2.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 2.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 2.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 1.0000000000, ], }, } look_1 = { "name": "Look - Red", "forward_transform": { "transform_type": "CDLTransform", "slope": [0, 0, 0], "offset": [1, 0, 0], }, } interchange = {"name": "CIE-XYZ D65"} display_1 = { "name": "sRGB Monitor", "from_reference": { "transform_type": "BuiltinTransform", "style": "DISPLAY - CIE-XYZ-D65_to_sRGB", }, "reference_space": "REFERENCE_SPACE_DISPLAY", } display_2 = { "name": "ITU-R BT.1886 Monitor", "from_reference": { "transform_type": "BuiltinTransform", "style": "DISPLAY - CIE-XYZ-D65_to_REC.1886-REC.709", }, "reference_space": "REFERENCE_SPACE_DISPLAY", } view_transform_1 = { "name": "ACES Output - SDR Video - 1.0", "from_reference": { "transform_type": "BuiltinTransform", "style": "ACES-OUTPUT - ACES2065-1_to_CIE-XYZ-D65 - SDR-VIDEO_1.0", }, } view_transform_2 = { "name": "Output - No Tonescale", "from_reference": { "transform_type": "BuiltinTransform", "style": "UTILITY - ACES-AP0_to_CIE-XYZ-D65_BFD", }, } displays = (display_1, display_2) view_transforms = (view_transform_1, view_transform_2) shared_views = [ { "display": display["name"], "view": view_transform["name"], "view_transform": view_transform["name"], } for display in displays for view_transform in view_transforms ] data = ConfigData( profile_version=VersionData(2, 0), roles={ "aces_interchange": "ACES - ACES2065-1", "cie_xyz_d65_interchange": "CIE-XYZ D65", ocio.ROLE_DEFAULT: "ACES - ACES2065-1", ocio.ROLE_SCENE_LINEAR: colorspace_2["name"], }, colorspaces=[ colorspace_1, colorspace_2, colorspace_3, colorspace_4, colorspace_5, interchange, display_1, display_2, ], named_transforms=[named_transform_1], looks=[look_1], view_transforms=[view_transform_1, view_transform_2], inactive_colorspaces=["CIE-XYZ D65"], shared_views=shared_views, views=shared_views + [ { "display": display["name"], "view": "Raw", "colorspace": "Utility - Raw", } for display in displays ], active_displays=[display_1["name"], display_2["name"]], active_views=[ view_transform["name"] for view_transform in view_transforms ] + ["Raw"], file_rules=[ { "name": "Linear - sRGB", "colorspace": "Gamut - sRGB", "regex": "_[sS][rR][gG][bB]\\.([eE][xX][rR]|[hH][dD][rR])$", }, { "name": "EOTF - sRGB", "colorspace": "CCTF - sRGB", "regex": "_[sS][rR][gG][bB]\\.([pP][nN][gG]|[tT][iI][fF])$", }, {"name": "Default", "colorspace": "ACES - ACES2065-1"}, ], viewing_rules=[], ) config = generate_config( data, os.path.join(build_directory, "config-v2.ocio") ) # TODO: Pickling "PyOpenColorIO.ColorSpace" fails on early "PyOpenColorIO" # versions. try: serialize_config_data( data, os.path.join(build_directory, "config-v2.json") ) except TypeError as error: logger.critical(error) named_transform_2 = { "name": "-1 Stop", "family": "Exposure", "forward_transform": { "transform_type": "MatrixTransform", "matrix": [ -2.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, -2.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, -2.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000, 1.0000000000, ], }, } data = ConfigData(named_transforms=[named_transform_2]) generate_config( data, os.path.join(build_directory, "config-v2-with-named-transform.ocio"), base_config=config, ) # TODO: Pickling "PyOpenColorIO.ColorSpace" fails on early "PyOpenColorIO" # versions. try: serialize_config_data( data, os.path.join( build_directory, "config-v2-with-named-transform.json" ), ) except TypeError as error: logger.critical(error)
30.772152
79
0.574044
6062406330a254d802b58d272f8336120fb4129f
7,916
py
Python
taln2016/icsisumm-primary-sys34_v1/nltk/nltk-0.9.2/yaml/resolver.py
hectormartinez/rougexstem
32da9eab253cb88fc1882e59026e8b5b40900a25
[ "Apache-2.0" ]
null
null
null
taln2016/icsisumm-primary-sys34_v1/nltk/nltk-0.9.2/yaml/resolver.py
hectormartinez/rougexstem
32da9eab253cb88fc1882e59026e8b5b40900a25
[ "Apache-2.0" ]
null
null
null
taln2016/icsisumm-primary-sys34_v1/nltk/nltk-0.9.2/yaml/resolver.py
hectormartinez/rougexstem
32da9eab253cb88fc1882e59026e8b5b40900a25
[ "Apache-2.0" ]
null
null
null
__all__ = ['BaseResolver', 'Resolver'] from error import * from nodes import * import re class ResolverError(YAMLError): pass class BaseResolver(object): DEFAULT_SCALAR_TAG = u'tag:yaml.org,2002:str' DEFAULT_SEQUENCE_TAG = u'tag:yaml.org,2002:seq' DEFAULT_MAPPING_TAG = u'tag:yaml.org,2002:map' yaml_implicit_resolvers = {} yaml_path_resolvers = {} def __init__(self): self.resolver_exact_paths = [] self.resolver_prefix_paths = [] def add_implicit_resolver(cls, tag, regexp, first): if not 'yaml_implicit_resolvers' in cls.__dict__: cls.yaml_implicit_resolvers = cls.yaml_implicit_resolvers.copy() if first is None: first = [None] for ch in first: cls.yaml_implicit_resolvers.setdefault(ch, []).append((tag, regexp)) add_implicit_resolver = classmethod(add_implicit_resolver) def add_path_resolver(cls, tag, path, kind=None): if not 'yaml_path_resolvers' in cls.__dict__: cls.yaml_path_resolvers = cls.yaml_path_resolvers.copy() new_path = [] for element in path: if isinstance(element, (list, tuple)): if len(element) == 2: node_check, index_check = element elif len(element) == 1: node_check = element[0] index_check = True else: raise ResolverError("Invalid path element: %s" % element) else: node_check = None index_check = element if node_check is str: node_check = ScalarNode elif node_check is list: node_check = SequenceNode elif node_check is dict: node_check = MappingNode elif node_check not in [ScalarNode, SequenceNode, MappingNode] \ and not isinstance(node_check, basestring) \ and node_check is not None: raise ResolverError("Invalid node checker: %s" % node_check) if not isinstance(index_check, (basestring, int)) \ and index_check is not None: raise ResolverError("Invalid index checker: %s" % index_check) new_path.append((node_check, index_check)) if kind is str: kind = ScalarNode elif kind is list: kind = SequenceNode elif kind is dict: kind = MappingNode elif kind not in [ScalarNode, SequenceNode, MappingNode] \ and kind is not None: raise ResolverError("Invalid node kind: %s" % kind) cls.yaml_path_resolvers[tuple(new_path), kind] = tag add_path_resolver = classmethod(add_path_resolver) def descend_resolver(self, current_node, current_index): if not self.yaml_path_resolvers: return exact_paths = {} prefix_paths = [] if current_node: depth = len(self.resolver_prefix_paths) for path, kind in self.resolver_prefix_paths[-1]: if self.check_resolver_prefix(depth, path, kind, current_node, current_index): if len(path) > depth: prefix_paths.append((path, kind)) else: exact_paths[kind] = self.yaml_path_resolvers[path, kind] else: for path, kind in self.yaml_path_resolvers: if not path: exact_paths[kind] = self.yaml_path_resolvers[path, kind] else: prefix_paths.append((path, kind)) self.resolver_exact_paths.append(exact_paths) self.resolver_prefix_paths.append(prefix_paths) def ascend_resolver(self): if not self.yaml_path_resolvers: return self.resolver_exact_paths.pop() self.resolver_prefix_paths.pop() def check_resolver_prefix(self, depth, path, kind, current_node, current_index): node_check, index_check = path[depth-1] if isinstance(node_check, basestring): if current_node.tag != node_check: return elif node_check is not None: if not isinstance(current_node, node_check): return if index_check is True and current_index is not None: return if index_check in [False, None] and current_index is None: return if isinstance(index_check, basestring): if not (isinstance(current_index, ScalarNode) and index_check == current_index.value): return elif isinstance(index_check, int): if index_check != current_index: return return True def resolve(self, kind, value, implicit): if kind is ScalarNode and implicit[0]: if value == u'': resolvers = self.yaml_implicit_resolvers.get(u'', []) else: resolvers = self.yaml_implicit_resolvers.get(value[0], []) resolvers += self.yaml_implicit_resolvers.get(None, []) for tag, regexp in resolvers: if regexp.match(value): return tag implicit = implicit[1] if self.yaml_path_resolvers: exact_paths = self.resolver_exact_paths[-1] if kind in exact_paths: return exact_paths[kind] if None in exact_paths: return exact_paths[None] if kind is ScalarNode: return self.DEFAULT_SCALAR_TAG elif kind is SequenceNode: return self.DEFAULT_SEQUENCE_TAG elif kind is MappingNode: return self.DEFAULT_MAPPING_TAG class Resolver(BaseResolver): pass Resolver.add_implicit_resolver( u'tag:yaml.org,2002:bool', re.compile(ur'''^(?:yes|Yes|YES|no|No|NO |true|True|TRUE|false|False|FALSE |on|On|ON|off|Off|OFF)$''', re.X), list(u'yYnNtTfFoO')) Resolver.add_implicit_resolver( u'tag:yaml.org,2002:float', re.compile(ur'''^(?:[-+]?(?:[0-9][0-9_]*)?\.[0-9_]*(?:[eE][-+][0-9]+)? |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\.[0-9_]* |[-+]?\.(?:inf|Inf|INF) |\.(?:nan|NaN|NAN))$''', re.X), list(u'-+0123456789.')) Resolver.add_implicit_resolver( u'tag:yaml.org,2002:int', re.compile(ur'''^(?:[-+]?0b[0-1_]+ |[-+]?0[0-7_]+ |[-+]?(?:0|[1-9][0-9_]*) |[-+]?0x[0-9a-fA-F_]+ |[-+]?[1-9][0-9_]*(?::[0-5]?[0-9])+)$''', re.X), list(u'-+0123456789')) Resolver.add_implicit_resolver( u'tag:yaml.org,2002:merge', re.compile(ur'^(?:<<)$'), ['<']) Resolver.add_implicit_resolver( u'tag:yaml.org,2002:null', re.compile(ur'''^(?: ~ |null|Null|NULL | )$''', re.X), [u'~', u'n', u'N', u'']) Resolver.add_implicit_resolver( u'tag:yaml.org,2002:timestamp', re.compile(ur'''^(?:[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9] |[0-9][0-9][0-9][0-9] -[0-9][0-9]? -[0-9][0-9]? (?:[Tt]|[ \t]+)[0-9][0-9]? :[0-9][0-9] :[0-9][0-9] (?:\.[0-9]*)? (?:[ \t]*(?:Z|[-+][0-9][0-9]?(?::[0-9][0-9])?))?)$''', re.X), list(u'0123456789')) Resolver.add_implicit_resolver( u'tag:yaml.org,2002:value', re.compile(ur'^(?:=)$'), ['=']) # The following resolver is only for documentation purposes. It cannot work # because plain scalars cannot start with '!', '&', or '*'. Resolver.add_implicit_resolver( u'tag:yaml.org,2002:yaml', re.compile(ur'^(?:!|&|\*)$'), list(u'!&*'))
37.516588
82
0.541056
7e3aa5b537ce2ac7c92e8f19fe7c336ad045ef1d
9,456
py
Python
daedalus/PopulationSynthesis/static.py
niklomax/daedalus
4936f181050dc6c3eaf564b1a03e9f0b45396e39
[ "MIT" ]
4
2020-05-13T10:54:32.000Z
2021-12-17T11:00:42.000Z
daedalus/PopulationSynthesis/static.py
niklomax/daedalus
4936f181050dc6c3eaf564b1a03e9f0b45396e39
[ "MIT" ]
30
2022-02-14T11:21:04.000Z
2022-03-30T11:00:22.000Z
minos/PopulationSynthesis/static.py
Leeds-MRG/Minos
6273dc718a7a1e8513b0c31e26269ff8f9720ae1
[ "MIT" ]
2
2021-01-12T10:49:33.000Z
2021-01-20T13:11:36.000Z
""" Microsimulation by a sequence of microsynthesised populations """ import numpy as np import pandas as pd # from random import randint #import humanleague as hl import ukpopulation.nppdata as nppdata import ukpopulation.snppdata as snppdata import ukpopulation.customsnppdata as customsnppdata import ukpopulation.myedata as myedata import microsimulation.utils as utils import microsimulation.common as common class SequentialMicrosynthesis(common.Base): """ Static microsimulation based on a sequence of microsyntheses Performs a sequence of static microsyntheses using census data as a seed populations and mid-year-estimates as marginal constraints. This is the simplest microsimulation model and is intended as a comparison/calibration for Monte-Carlo based microsimulation """ def __init__(self, region, resolution, variant, is_custom=False, cache_dir="./cache", output_dir="./data", fast_mode=False): common.Base.__init__(self, region, resolution, cache_dir) self.output_dir = output_dir self.fast_mode = fast_mode self.variant = variant self.is_custom = is_custom # init the population (projections) modules self.mye_api = myedata.MYEData(cache_dir) self.npp_api = nppdata.NPPData(cache_dir) if self.is_custom: if variant not in customsnppdata.list_custom_projections(cache_dir): raise ValueError("Requested custom SNPP %s is not in the cache directory (%s)" % (variant, cache_dir)) print("Using custom SNPP variant %s" % variant) print("NOTE: assuming custom SNPP variant disables rescaling to national variant") self.snpp_api = customsnppdata.CustomSNPPData(variant, cache_dir) else: self.snpp_api = snppdata.SNPPData(cache_dir) # validation if not is_custom and self.variant not in nppdata.NPPData.VARIANTS: raise ValueError(self.variant + " is not a known projection variant") if not isinstance(self.fast_mode, bool): raise ValueError("fast mode should be boolean") # TODO enable 2001 ref year? # (down)load the census 2011 tables self.__get_census_data() def run(self, ref_year, target_year): """ Run the sequence """ # TODO enable 2001 ref year? if ref_year != 2011: raise ValueError("(census) reference year must be 2011") if target_year < 2001: raise ValueError("2001 is the earliest supported target year") if target_year > self.npp_api.max_year(): raise ValueError(str(self.npp_api.max_year()) + " is the current latest supported end year") if self.fast_mode: print("Running in fast mode. Rounded IPF populations may not exactly match the marginals") print("Starting microsynthesis sequence...") for year in utils.year_sequence(ref_year, target_year): out_file = self.output_dir + "/ssm_" + self.region + "_" + self.resolution + "_" + self.variant + "_" + str( year) + ".csv" # this is inconsistent with the household microsynth (batch script checks whether output exists) # TODO make them consistent? # With dynamic update of seed for now just recompute even if file exists # if not os.path.isfile(out_file): if year < self.snpp_api.min_year(self.region): source = " [MYE]" elif year <= self.snpp_api.max_year(self.region): source = " [SNPP]" else: source = " [XNPP]" print("Generating ", out_file, source, "... ", sep="", end="", flush=True) msynth = self.__microsynthesise(year) print("OK") msynth.to_csv(out_file, index_label="PID") def __microsynthesise(self, year): # LAD=self.region # Census/seed proportions for geography and ethnicity oa_prop = self.seed.sum((1, 2, 3)) / self.seed.sum() eth_prop = self.seed.sum((0, 1, 2)) / self.seed.sum() if year < self.snpp_api.min_year(self.region): age_sex = utils.create_age_sex_marginal(utils.adjust_pp_age(self.mye_api.filter(self.region, year)), self.region) elif year <= self.npp_api.max_year(): # Don't attempt to apply NPP variant if before the start of the NPP data, or it's a custom SNPP if year < self.npp_api.min_year() or self.is_custom: age_sex = utils.create_age_sex_marginal(utils.adjust_pp_age(self.snpp_api.filter(self.region, year)), self.region) else: age_sex = utils.create_age_sex_marginal( utils.adjust_pp_age(self.snpp_api.create_variant(self.variant, self.npp_api, self.region, year)), self.region) else: raise ValueError("Cannot microsimulate past NPP horizon year ({})", self.npp_api.max_year()) # convert proportions/probabilities to integer frequencies oa = hl.prob2IntFreq(oa_prop, age_sex.sum())["freq"] eth = hl.prob2IntFreq(eth_prop, age_sex.sum())["freq"] # combine the above into a 2d marginal using QIS-I and census 2011 or later data as the seed oa_eth = hl.qisi(self.seed.sum((1, 2)), [np.array([0]), np.array([1])], [oa, eth]) if not (isinstance(oa_eth, dict) and oa_eth["conv"]): raise RuntimeError("oa_eth did not converge") # now the full seeded microsynthesis if self.fast_mode: msynth = hl.ipf(self.seed, [np.array([0, 3]), np.array([1, 2])], [oa_eth["result"].astype(float), age_sex.astype(float)]) else: msynth = hl.qisi(self.seed, [np.array([0, 3]), np.array([1, 2])], [oa_eth["result"], age_sex]) if not msynth["conv"]: print(msynth) raise RuntimeError("msynth did not converge") # print(msynth["pop"]) if self.fast_mode: print("updating seed to", year, " ", end="") self.seed = msynth["result"] msynth["result"] = np.around(msynth["result"]).astype(int) else: print("updating seed to", year, " ", end="") self.seed = msynth["result"].astype(float) rawtable = hl.flatten(msynth["result"]) # , c("OA", "SEX", "AGE", "ETH")) # col names and remapped values table = pd.DataFrame(columns=["Area", "DC1117EW_C_SEX", "DC1117EW_C_AGE", "DC2101EW_C_ETHPUK11"]) table.Area = utils.remap(rawtable[0], self.geog_map) table.DC1117EW_C_SEX = utils.remap(rawtable[1], [1, 2]) table.DC1117EW_C_AGE = utils.remap(rawtable[2], range(1, 87)) table.DC2101EW_C_ETHPUK11 = utils.remap(rawtable[3], self.eth_map) # consistency checks (in fast mode just report discrepancies) self.__check(table, age_sex, oa_eth["result"]) return table def __check(self, table, age_sex, oa_eth): failures = [] # check area totals areas = oa_eth.sum(1) for i in range(0, len(areas)): if len(table[table.Area == self.geog_map[i]]) != areas[i]: failures.append("Area " + self.geog_map[i] + " total mismatch: " + str(len(table[table.Area == self.geog_map[i]])) + " vs " + str(areas[i])) # check ethnicity totals eths = oa_eth.sum(0) for i in range(0, len(eths)): if len(table[table.DC2101EW_C_ETHPUK11 == self.eth_map[i]]) != eths[i]: failures.append("Ethnicity " + str(self.eth_map[i]) + " total mismatch: " + str(len(table[table.DC2101EW_C_ETHPUK11 == self.eth_map[i]])) + " vs " + str(eths[i])) # check gender and age totals for sex in [0, 1]: for age in range(0, 86): # print( len(table[(table.DC1117EW_C_SEX == s+1) & (table.DC1117EW_C_AGE == a+1)]), age_sex[s,a]) if len(table[(table.DC1117EW_C_SEX == sex + 1) & (table.DC1117EW_C_AGE == age + 1)]) != age_sex[ sex, age]: failures.append("Age-gender " + str(age + 1) + "/" + str(sex + 1) + " total mismatch: " + str( len(table[(table.DC1117EW_C_SEX == sex + 1) & (table.DC1117EW_C_AGE == age + 1)])) + " vs " + str(age_sex[sex, age])) if failures and not self.fast_mode: print("\n".join(failures)) raise RuntimeError("Consistency checks failed, see log for further details") def __get_census_data(self): (dc1117, dc2101, dc6206) = self.get_census_data() # add children to adult-only table # dc6206ew_adj = self.append_children(dc1117, dc6206) # For now we drop NS-SEC (not clear if needed) dc6206_adj = None self.geog_map = dc1117.GEOGRAPHY_CODE.unique() self.eth_map = dc2101.C_ETHPUK11.unique() # self.nssec_map = dc6206ew_adj.C_NSSEC.unique() # TODO seed with microdata self.cen11 = utils.microsynthesise_seed(dc1117, dc2101, dc6206_adj) # seed defaults to census 11 data, updates as simulate past 2011 self.seed = self.cen11.astype(float)
45.461538
121
0.603955
6900fe08f4d8b068481d7dbed2105bc7d3a47b25
6,406
py
Python
localstack/utils/persistence.py
ninhkd/localstack
9a415e2067f6fafa3cdc9dd84f5b491b0b2a2acd
[ "Apache-2.0" ]
1
2020-09-27T06:56:06.000Z
2020-09-27T06:56:06.000Z
localstack/utils/persistence.py
ninhkd/localstack
9a415e2067f6fafa3cdc9dd84f5b491b0b2a2acd
[ "Apache-2.0" ]
null
null
null
localstack/utils/persistence.py
ninhkd/localstack
9a415e2067f6fafa3cdc9dd84f5b491b0b2a2acd
[ "Apache-2.0" ]
1
2020-08-07T12:49:58.000Z
2020-08-07T12:49:58.000Z
import os import re import json import base64 import traceback import requests import logging from six import add_metaclass from abc import ABCMeta, abstractmethod from localstack.config import DATA_DIR from localstack.utils.aws import aws_stack from localstack.utils.common import to_bytes, to_str from localstack.utils.bootstrap import is_api_enabled from localstack.services.generic_proxy import ProxyListener USE_SINGLE_DUMP_FILE = True if USE_SINGLE_DUMP_FILE: API_FILE_PATTERN = '{data_dir}/recorded_api_calls.json' else: API_FILE_PATTERN = '{data_dir}/{api}_api_calls.json' # Stack with flags to indicate whether we are currently re-playing API calls. # (We should not be re-playing and recording at the same time) CURRENTLY_REPLAYING = [] # file paths by API API_FILE_PATHS = {} # set up logger LOG = logging.getLogger(__name__) @add_metaclass(ABCMeta) class PersistingProxyListener(ProxyListener): """ This proxy listener could be extended by any API that wishes to record its requests and responses, via the existing persistence facility. """ SKIP_PERSISTENCE_TARGET_METHOD_REGEX = re.compile(r'.*\.List|.*\.Describe|.*\.Get') def return_response(self, method, path, data, headers, response, request_handler=None): res = super(PersistingProxyListener, self).return_response(method, path, data, headers, response, request_handler) if self.should_persist(method, path, data, headers, response): record(self.api_name(), to_str(method), to_str(path), data, headers, response) return res # noinspection PyMethodMayBeStatic,PyUnusedLocal def should_persist(self, method, path, data, headers, response): """ Every API listener may choose which endpoints should be persisted; The default behavior is persisting all calls with: - HTTP PUT / POST / DELETE methods - Successful response (non 4xx, 5xx) - Excluding methods with 'Describe', 'List', and 'Get' in the X-Amz-Target header :param method: The HTTP method name (e.g. 'GET', 'POST') :param path: The HTTP path (e.g. '/update') :param data: The request body :param headers: HTTP response headers :param response: HTTP response object :return: If True, will persist the current API call. :rtype bool """ target_method = headers.get('X-Amz-Target', '') skip_target_method = self.SKIP_PERSISTENCE_TARGET_METHOD_REGEX.match(target_method, re.I) return should_record(method) and response is not None and response.ok and skip_target_method is None @abstractmethod def api_name(self): """ This should return the name of the API we're operating against, e.g. 'sqs' """ raise NotImplementedError('Implement me') def should_record(method): """ Decide whether or not a given API call should be recorded (persisted to disk) """ return method in ['PUT', 'POST', 'DELETE'] def record(api, method=None, path=None, data=None, headers=None, response=None, request=None): """ Record a given API call to a persistent file on disk """ file_path = get_file_path(api) if CURRENTLY_REPLAYING or not file_path: return if request: method = method or request.method path = path or request.path headers = headers or request.headers data = data or request.data should_be_recorded = should_record(method) if not should_be_recorded: return try: if isinstance(data, dict): data = json.dumps(data) def get_recordable_data(request_data): if request_data or request_data in [u'', b'']: try: request_data = to_bytes(request_data) except Exception as ex: LOG.warning('Unable to call to_bytes: %s' % ex) request_data = to_str(base64.b64encode(request_data)) return request_data data = get_recordable_data(data) response_data = get_recordable_data('' if response is None else response.content) entry = { 'a': api, 'm': method, 'p': path, 'd': data, 'h': dict(headers), 'rd': response_data } with open(file_path, 'a') as dumpfile: dumpfile.write('%s\n' % json.dumps(entry)) except Exception as e: print('Error recording API call to persistent file: %s %s' % (e, traceback.format_exc())) def prepare_replay_data(command): data = command['d'] data = data and base64.b64decode(data) return data def replay_command(command): api = command['a'] if not is_api_enabled(api): return function = getattr(requests, command['m'].lower()) data = prepare_replay_data(command) endpoint = aws_stack.get_local_service_url(api) full_url = (endpoint[:-1] if endpoint.endswith('/') else endpoint) + command['p'] response = function(full_url, data=data, headers=command['h'], verify=False) return response def replay(api): file_path = get_file_path(api) if not file_path: return CURRENTLY_REPLAYING.append(True) count = 0 try: with open(file_path, 'r') as reader: for line in reader: if line.strip(): count += 1 command = json.loads(line) replay_command(command) finally: CURRENTLY_REPLAYING.pop(0) if count: LOG.info('Restored %s API calls from persistent file: %s' % (count, file_path)) def restore_persisted_data(apis): if USE_SINGLE_DUMP_FILE: return replay('_all_') apis = apis if isinstance(apis, list) else [apis] for api in apis: replay(api) # --------------- # HELPER METHODS # --------------- def get_file_path(api, create=True): if api not in API_FILE_PATHS: API_FILE_PATHS[api] = False if not DATA_DIR: return False file_path = API_FILE_PATTERN.format(data_dir=DATA_DIR, api=api) if create and not os.path.exists(file_path): with open(file_path, 'a'): os.utime(file_path, None) if os.path.exists(file_path): API_FILE_PATHS[api] = file_path return API_FILE_PATHS.get(api)
33.364583
108
0.645489
959b337839feb408e0ca14c539bdba98142b253c
1,572
py
Python
src/PythonClient.py
indiajoe/JuliaProcessingServer.jl
75e683902fc4db011a9ed811c39c3351140bbfc6
[ "TCP-wrappers" ]
null
null
null
src/PythonClient.py
indiajoe/JuliaProcessingServer.jl
75e683902fc4db011a9ed811c39c3351140bbfc6
[ "TCP-wrappers" ]
null
null
null
src/PythonClient.py
indiajoe/JuliaProcessingServer.jl
75e683902fc4db011a9ed811c39c3351140bbfc6
[ "TCP-wrappers" ]
null
null
null
#!/usr/bin/env python """ This script is to send numpy assray to the Julia server """ import socket import numpy as np import logging from cStringIO import StringIO PortOfServer = 8006 Array = np.random.random((3,4,5))*10 def get_RemoteProcessedData(DataCube,port,hostname="localhost"): """ Sends the DataCube to server at hostname:port and return the data received back from server """ client_socket = socket.socket() try: client_socket.connect((hostname,port)) except socket.error as e: logging.error('Unable to connect to Data Processing server {0}:{1}'.format(hostname,port)) raise logging.info('Sending ndarray of shape {0} to {1}:{2}'.format(DataCube.shape,hostname,port)) # Send the Array f = StringIO() np.save(f,DataCube) f.seek(0) client_socket.sendall(f.read()) f.close() # Now start reading back form the socket ultimate_buffer = "" while True: receiving_buffer = client_socket.recv(1024) if not receiving_buffer: break ultimate_buffer += receiving_buffer DataBack = np.load(StringIO(ultimate_buffer)) logging.info('Received back ndarray of shape {0}'.format(DataBack.shape)) client_socket.close() return DataBack print('Sending The following array') print(Array) ProcessedArray = get_RemoteProcessedData(Array,PortOfServer) print('Array Received back:') print(ProcessedArray)
34.173913
110
0.638041
2b2c4cf0a90c3d057f8f22b8501b11ab25bdb337
16,122
py
Python
Lib/test/test_ftplib.py
deadsnakes/python3.1
88d77610a7873c5161bfc15cd69557fc7697b1a3
[ "PSF-2.0" ]
null
null
null
Lib/test/test_ftplib.py
deadsnakes/python3.1
88d77610a7873c5161bfc15cd69557fc7697b1a3
[ "PSF-2.0" ]
null
null
null
Lib/test/test_ftplib.py
deadsnakes/python3.1
88d77610a7873c5161bfc15cd69557fc7697b1a3
[ "PSF-2.0" ]
null
null
null
"""Test script for ftplib module.""" # Modified by Giampaolo Rodola' to test FTP class and IPv6 environment import ftplib import threading import asyncore import asynchat import socket import io from unittest import TestCase from test import support from test.support import HOST # the dummy data returned by server over the data channel when # RETR, LIST and NLST commands are issued RETR_DATA = 'abcde12345\r\n' * 1000 LIST_DATA = 'foo\r\nbar\r\n' NLST_DATA = 'foo\r\nbar\r\n' class DummyDTPHandler(asynchat.async_chat): def __init__(self, conn, baseclass): asynchat.async_chat.__init__(self, conn) self.baseclass = baseclass self.baseclass.last_received_data = '' def handle_read(self): self.baseclass.last_received_data += self.recv(1024).decode('ascii') def handle_close(self): self.baseclass.push('226 transfer complete') self.close() def push(self, what): super(DummyDTPHandler, self).push(what.encode('ascii')) class DummyFTPHandler(asynchat.async_chat): def __init__(self, conn): asynchat.async_chat.__init__(self, conn) # tells the socket to handle urgent data inline (ABOR command) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_OOBINLINE, 1) self.set_terminator(b"\r\n") self.in_buffer = [] self.dtp = None self.last_received_cmd = None self.last_received_data = '' self.next_response = '' self.push('220 welcome') def collect_incoming_data(self, data): self.in_buffer.append(data) def found_terminator(self): line = b''.join(self.in_buffer).decode('ascii') self.in_buffer = [] if self.next_response: self.push(self.next_response) self.next_response = '' cmd = line.split(' ')[0].lower() self.last_received_cmd = cmd space = line.find(' ') if space != -1: arg = line[space + 1:] else: arg = "" if hasattr(self, 'cmd_' + cmd): method = getattr(self, 'cmd_' + cmd) method(arg) else: self.push('550 command "%s" not understood.' %cmd) def handle_error(self): raise def push(self, data): asynchat.async_chat.push(self, data.encode('ascii') + b'\r\n') def cmd_port(self, arg): addr = list(map(int, arg.split(','))) ip = '%d.%d.%d.%d' %tuple(addr[:4]) port = (addr[4] * 256) + addr[5] s = socket.create_connection((ip, port), timeout=10) self.dtp = DummyDTPHandler(s, baseclass=self) self.push('200 active data connection established') def cmd_pasv(self, arg): sock = socket.socket() sock.bind((self.socket.getsockname()[0], 0)) sock.listen(5) sock.settimeout(10) ip, port = sock.getsockname()[:2] ip = ip.replace('.', ','); p1 = port / 256; p2 = port % 256 self.push('227 entering passive mode (%s,%d,%d)' %(ip, p1, p2)) conn, addr = sock.accept() self.dtp = DummyDTPHandler(conn, baseclass=self) def cmd_eprt(self, arg): af, ip, port = arg.split(arg[0])[1:-1] port = int(port) s = socket.create_connection((ip, port), timeout=10) self.dtp = DummyDTPHandler(s, baseclass=self) self.push('200 active data connection established') def cmd_epsv(self, arg): sock = socket.socket(socket.AF_INET6) sock.bind((self.socket.getsockname()[0], 0)) sock.listen(5) sock.settimeout(10) port = sock.getsockname()[1] self.push('229 entering extended passive mode (|||%d|)' %port) conn, addr = sock.accept() self.dtp = DummyDTPHandler(conn, baseclass=self) def cmd_echo(self, arg): # sends back the received string (used by the test suite) self.push(arg) def cmd_user(self, arg): self.push('331 username ok') def cmd_pass(self, arg): self.push('230 password ok') def cmd_acct(self, arg): self.push('230 acct ok') def cmd_rnfr(self, arg): self.push('350 rnfr ok') def cmd_rnto(self, arg): self.push('250 rnto ok') def cmd_dele(self, arg): self.push('250 dele ok') def cmd_cwd(self, arg): self.push('250 cwd ok') def cmd_size(self, arg): self.push('250 1000') def cmd_mkd(self, arg): self.push('257 "%s"' %arg) def cmd_rmd(self, arg): self.push('250 rmd ok') def cmd_pwd(self, arg): self.push('257 "pwd ok"') def cmd_type(self, arg): self.push('200 type ok') def cmd_quit(self, arg): self.push('221 quit ok') self.close() def cmd_abor(self, arg): self.push('226 abor ok') def cmd_stor(self, arg): self.push('125 stor ok') def cmd_retr(self, arg): self.push('125 retr ok') self.dtp.push(RETR_DATA) self.dtp.close_when_done() def cmd_list(self, arg): self.push('125 list ok') self.dtp.push(LIST_DATA) self.dtp.close_when_done() def cmd_nlst(self, arg): self.push('125 nlst ok') self.dtp.push(NLST_DATA) self.dtp.close_when_done() class DummyFTPServer(asyncore.dispatcher, threading.Thread): handler = DummyFTPHandler def __init__(self, address, af=socket.AF_INET): threading.Thread.__init__(self) asyncore.dispatcher.__init__(self) self.create_socket(af, socket.SOCK_STREAM) self.bind(address) self.listen(5) self.active = False self.active_lock = threading.Lock() self.host, self.port = self.socket.getsockname()[:2] def start(self): assert not self.active self.__flag = threading.Event() threading.Thread.start(self) self.__flag.wait() def run(self): self.active = True self.__flag.set() while self.active and asyncore.socket_map: self.active_lock.acquire() asyncore.loop(timeout=0.1, count=1) self.active_lock.release() asyncore.close_all(ignore_all=True) def stop(self): assert self.active self.active = False self.join() def handle_accept(self): conn, addr = self.accept() self.handler = self.handler(conn) self.close() def handle_connect(self): self.close() handle_read = handle_connect def writable(self): return 0 def handle_error(self): raise class TestFTPClass(TestCase): def setUp(self): self.server = DummyFTPServer((HOST, 0)) self.server.start() self.client = ftplib.FTP(timeout=10) self.client.connect(self.server.host, self.server.port) def tearDown(self): self.client.close() self.server.stop() def test_getwelcome(self): self.assertEqual(self.client.getwelcome(), '220 welcome') def test_sanitize(self): self.assertEqual(self.client.sanitize('foo'), repr('foo')) self.assertEqual(self.client.sanitize('pass 12345'), repr('pass *****')) self.assertEqual(self.client.sanitize('PASS 12345'), repr('PASS *****')) def test_exceptions(self): self.assertRaises(ftplib.error_temp, self.client.sendcmd, 'echo 400') self.assertRaises(ftplib.error_temp, self.client.sendcmd, 'echo 499') self.assertRaises(ftplib.error_perm, self.client.sendcmd, 'echo 500') self.assertRaises(ftplib.error_perm, self.client.sendcmd, 'echo 599') self.assertRaises(ftplib.error_proto, self.client.sendcmd, 'echo 999') def test_all_errors(self): exceptions = (ftplib.error_reply, ftplib.error_temp, ftplib.error_perm, ftplib.error_proto, ftplib.Error, IOError, EOFError) for x in exceptions: try: raise x('exception not included in all_errors set') except ftplib.all_errors: pass def test_set_pasv(self): # passive mode is supposed to be enabled by default self.assertTrue(self.client.passiveserver) self.client.set_pasv(True) self.assertTrue(self.client.passiveserver) self.client.set_pasv(False) self.assertFalse(self.client.passiveserver) def test_voidcmd(self): self.client.voidcmd('echo 200') self.client.voidcmd('echo 299') self.assertRaises(ftplib.error_reply, self.client.voidcmd, 'echo 199') self.assertRaises(ftplib.error_reply, self.client.voidcmd, 'echo 300') def test_login(self): self.client.login() def test_acct(self): self.client.acct('passwd') def test_rename(self): self.client.rename('a', 'b') self.server.handler.next_response = '200' self.assertRaises(ftplib.error_reply, self.client.rename, 'a', 'b') def test_delete(self): self.client.delete('foo') self.server.handler.next_response = '199' self.assertRaises(ftplib.error_reply, self.client.delete, 'foo') def test_size(self): self.client.size('foo') def test_mkd(self): dir = self.client.mkd('/foo') self.assertEqual(dir, '/foo') def test_rmd(self): self.client.rmd('foo') def test_pwd(self): dir = self.client.pwd() self.assertEqual(dir, 'pwd ok') def test_quit(self): self.assertEqual(self.client.quit(), '221 quit ok') # Ensure the connection gets closed; sock attribute should be None self.assertEqual(self.client.sock, None) def test_abort(self): self.client.abort() def test_retrbinary(self): def callback(data): received.append(data.decode('ascii')) received = [] self.client.retrbinary('retr', callback) self.assertEqual(''.join(received), RETR_DATA) def test_retrlines(self): received = [] self.client.retrlines('retr', received.append) self.assertEqual(''.join(received), RETR_DATA.replace('\r\n', '')) def test_storbinary(self): f = io.BytesIO(RETR_DATA.encode('ascii')) self.client.storbinary('stor', f) self.assertEqual(self.server.handler.last_received_data, RETR_DATA) # test new callback arg flag = [] f.seek(0) self.client.storbinary('stor', f, callback=lambda x: flag.append(None)) self.assertTrue(flag) def test_storlines(self): f = io.BytesIO(RETR_DATA.replace('\r\n', '\n').encode('ascii')) self.client.storlines('stor', f) self.assertEqual(self.server.handler.last_received_data, RETR_DATA) # test new callback arg flag = [] f.seek(0) self.client.storlines('stor foo', f, callback=lambda x: flag.append(None)) self.assertTrue(flag) def test_nlst(self): self.client.nlst() self.assertEqual(self.client.nlst(), NLST_DATA.split('\r\n')[:-1]) def test_dir(self): l = [] self.client.dir(lambda x: l.append(x)) self.assertEqual(''.join(l), LIST_DATA.replace('\r\n', '')) def test_makeport(self): self.client.makeport() # IPv4 is in use, just make sure send_eprt has not been used self.assertEqual(self.server.handler.last_received_cmd, 'port') def test_makepasv(self): host, port = self.client.makepasv() conn = socket.create_connection((host, port), 10) conn.close() # IPv4 is in use, just make sure send_epsv has not been used self.assertEqual(self.server.handler.last_received_cmd, 'pasv') class TestIPv6Environment(TestCase): def setUp(self): self.server = DummyFTPServer((HOST, 0), af=socket.AF_INET6) self.server.start() self.client = ftplib.FTP() self.client.connect(self.server.host, self.server.port) def tearDown(self): self.client.close() self.server.stop() def test_af(self): self.assertEqual(self.client.af, socket.AF_INET6) def test_makeport(self): self.client.makeport() self.assertEqual(self.server.handler.last_received_cmd, 'eprt') def test_makepasv(self): host, port = self.client.makepasv() conn = socket.create_connection((host, port), 10) conn.close() self.assertEqual(self.server.handler.last_received_cmd, 'epsv') def test_transfer(self): def retr(): def callback(data): received.append(data.decode('ascii')) received = [] self.client.retrbinary('retr', callback) self.assertEqual(''.join(received), RETR_DATA) self.client.set_pasv(True) retr() self.client.set_pasv(False) retr() class TestTimeouts(TestCase): def setUp(self): self.evt = threading.Event() self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.settimeout(3) self.port = support.bind_port(self.sock) threading.Thread(target=self.server, args=(self.evt,self.sock)).start() # Wait for the server to be ready. self.evt.wait() self.evt.clear() ftplib.FTP.port = self.port def tearDown(self): self.evt.wait() def server(self, evt, serv): # This method sets the evt 3 times: # 1) when the connection is ready to be accepted. # 2) when it is safe for the caller to close the connection # 3) when we have closed the socket serv.listen(5) # (1) Signal the caller that we are ready to accept the connection. evt.set() try: conn, addr = serv.accept() except socket.timeout: pass else: conn.send(b"1 Hola mundo\n") # (2) Signal the caller that it is safe to close the socket. evt.set() conn.close() finally: serv.close() # (3) Signal the caller that we are done. evt.set() def testTimeoutDefault(self): # default -- use global socket timeout self.assertTrue(socket.getdefaulttimeout() is None) socket.setdefaulttimeout(30) try: ftp = ftplib.FTP("localhost") finally: socket.setdefaulttimeout(None) self.assertEqual(ftp.sock.gettimeout(), 30) self.evt.wait() ftp.close() def testTimeoutNone(self): # no timeout -- do not use global socket timeout self.assertTrue(socket.getdefaulttimeout() is None) socket.setdefaulttimeout(30) try: ftp = ftplib.FTP("localhost", timeout=None) finally: socket.setdefaulttimeout(None) self.assertTrue(ftp.sock.gettimeout() is None) self.evt.wait() ftp.close() def testTimeoutValue(self): # a value ftp = ftplib.FTP(HOST, timeout=30) self.assertEqual(ftp.sock.gettimeout(), 30) self.evt.wait() ftp.close() def testTimeoutConnect(self): ftp = ftplib.FTP() ftp.connect(HOST, timeout=30) self.assertEqual(ftp.sock.gettimeout(), 30) self.evt.wait() ftp.close() def testTimeoutDifferentOrder(self): ftp = ftplib.FTP(timeout=30) ftp.connect(HOST) self.assertEqual(ftp.sock.gettimeout(), 30) self.evt.wait() ftp.close() def testTimeoutDirectAccess(self): ftp = ftplib.FTP() ftp.timeout = 30 ftp.connect(HOST) self.assertEqual(ftp.sock.gettimeout(), 30) self.evt.wait() ftp.close() def test_main(): tests = [TestFTPClass, TestTimeouts] if socket.has_ipv6: try: DummyFTPServer((HOST, 0), af=socket.AF_INET6) except socket.error: pass else: tests.append(TestIPv6Environment) thread_info = support.threading_setup() try: support.run_unittest(*tests) finally: support.threading_cleanup(*thread_info) if __name__ == '__main__': test_main()
30.708571
82
0.607865
4d63af818381889409dd4ee964b413ffc8d6d8c0
10,829
py
Python
rllib/policy/torch_policy.py
eisber/ray
94a286ef1d8ad5a3093b7f996a811727fa0e2d3e
[ "Apache-2.0" ]
null
null
null
rllib/policy/torch_policy.py
eisber/ray
94a286ef1d8ad5a3093b7f996a811727fa0e2d3e
[ "Apache-2.0" ]
null
null
null
rllib/policy/torch_policy.py
eisber/ray
94a286ef1d8ad5a3093b7f996a811727fa0e2d3e
[ "Apache-2.0" ]
null
null
null
import numpy as np import time from ray.rllib.policy.policy import Policy, LEARNER_STATS_KEY from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils import try_import_torch from ray.rllib.utils.annotations import override, DeveloperAPI from ray.rllib.utils.tracking_dict import UsageTrackingDict from ray.rllib.utils.schedules import ConstantSchedule, PiecewiseSchedule torch, _ = try_import_torch() class TorchPolicy(Policy): """Template for a PyTorch policy and loss to use with RLlib. This is similar to TFPolicy, but for PyTorch. Attributes: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. config (dict): config of the policy model (TorchModel): Torch model instance dist_class (type): Torch action distribution class """ def __init__(self, observation_space, action_space, config, model, loss, action_distribution_class): """Build a policy from policy and loss torch modules. Note that model will be placed on GPU device if CUDA_VISIBLE_DEVICES is set. Only single GPU is supported for now. Arguments: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. config (dict): The Policy config dict. model (nn.Module): PyTorch policy module. Given observations as input, this module must return a list of outputs where the first item is action logits, and the rest can be any value. loss (func): Function that takes (policy, model, dist_class, train_batch) and returns a single scalar loss. action_distribution_class (ActionDistribution): Class for action distribution. """ super().__init__(observation_space, action_space, config) self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")) self.model = model.to(self.device) self.unwrapped_model = model # used to support DistributedDataParallel self._loss = loss self._optimizer = self.optimizer() self.dist_class = action_distribution_class # If set, means we are using distributed allreduce during learning. self.distributed_world_size = None @override(Policy) def compute_actions(self, obs_batch, state_batches=None, prev_action_batch=None, prev_reward_batch=None, info_batch=None, episodes=None, explore=True, timestep=None, **kwargs): with torch.no_grad(): input_dict = self._lazy_tensor_dict({ SampleBatch.CUR_OBS: obs_batch, }) if prev_action_batch: input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch if prev_reward_batch: input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch model_out = self.model(input_dict, state_batches, [1]) logits, state = model_out action_dist = self.dist_class(logits, self.model) # Try our Exploration, if any. if self.exploration: actions = self.exploration.get_action( model_out, self.model, action_dist, explore, timestep if timestep is not None else self.global_timestep) else: actions = action_dist.sample() input_dict[SampleBatch.ACTIONS] = actions return (actions.cpu().numpy(), [h.cpu().numpy() for h in state], self.extra_action_out(input_dict, state_batches, self.model, action_dist)) @override(Policy) def learn_on_batch(self, postprocessed_batch): train_batch = self._lazy_tensor_dict(postprocessed_batch) loss_out = self._loss(self, self.model, self.dist_class, train_batch) self._optimizer.zero_grad() loss_out.backward() info = {} info.update(self.extra_grad_process()) if self.distributed_world_size: grads = [] for p in self.model.parameters(): if p.grad is not None: grads.append(p.grad) start = time.time() if torch.cuda.is_available(): # Sadly, allreduce_coalesced does not work with CUDA yet. for g in grads: torch.distributed.all_reduce( g, op=torch.distributed.ReduceOp.SUM) else: torch.distributed.all_reduce_coalesced( grads, op=torch.distributed.ReduceOp.SUM) for p in self.model.parameters(): if p.grad is not None: p.grad /= self.distributed_world_size info["allreduce_latency"] = time.time() - start self._optimizer.step() info.update(self.extra_grad_info(train_batch)) return {LEARNER_STATS_KEY: info} @override(Policy) def compute_gradients(self, postprocessed_batch): train_batch = self._lazy_tensor_dict(postprocessed_batch) loss_out = self._loss(self, self.model, self.dist_class, train_batch) self._optimizer.zero_grad() loss_out.backward() grad_process_info = self.extra_grad_process() # Note that return values are just references; # calling zero_grad will modify the values grads = [] for p in self.model.parameters(): if p.grad is not None: grads.append(p.grad.data.cpu().numpy()) else: grads.append(None) grad_info = self.extra_grad_info(train_batch) grad_info.update(grad_process_info) return grads, {LEARNER_STATS_KEY: grad_info} @override(Policy) def apply_gradients(self, gradients): for g, p in zip(gradients, self.model.parameters()): if g is not None: p.grad = torch.from_numpy(g).to(self.device) self._optimizer.step() @override(Policy) def get_weights(self): return {k: v.cpu() for k, v in self.model.state_dict().items()} @override(Policy) def set_weights(self, weights): self.model.load_state_dict(weights) @override(Policy) def is_recurrent(self): return len(self.model.get_initial_state()) > 0 @override(Policy) def num_state_tensors(self): return len(self.model.get_initial_state()) @override(Policy) def get_initial_state(self): return [s.numpy() for s in self.model.get_initial_state()] def extra_grad_process(self): """Allow subclass to do extra processing on gradients and return processing info.""" return {} def extra_action_out(self, input_dict, state_batches, model, action_dist=None): """Returns dict of extra info to include in experience batch. Arguments: input_dict (dict): Dict of model input tensors. state_batches (list): List of state tensors. model (TorchModelV2): Reference to the model. action_dist (Distribution): Torch Distribution object to get log-probs (e.g. for already sampled actions). """ return {} def extra_grad_info(self, train_batch): """Return dict of extra grad info.""" return {} def optimizer(self): """Custom PyTorch optimizer to use.""" if hasattr(self, "config"): return torch.optim.Adam( self.model.parameters(), lr=self.config["lr"]) else: return torch.optim.Adam(self.model.parameters()) def _lazy_tensor_dict(self, postprocessed_batch): train_batch = UsageTrackingDict(postprocessed_batch) def convert(arr): if torch.is_tensor(arr): return arr.to(self.device) tensor = torch.from_numpy(np.asarray(arr)) if tensor.dtype == torch.double: tensor = tensor.float() return tensor.to(self.device) train_batch.set_get_interceptor(convert) return train_batch @override(Policy) def export_model(self, export_dir): """TODO: implement for torch. """ raise NotImplementedError @override(Policy) def export_checkpoint(self, export_dir): """TODO: implement for torch. """ raise NotImplementedError @DeveloperAPI class LearningRateSchedule: """Mixin for TFPolicy that adds a learning rate schedule.""" @DeveloperAPI def __init__(self, lr, lr_schedule): self.cur_lr = lr if lr_schedule is None: self.lr_schedule = ConstantSchedule(lr) else: self.lr_schedule = PiecewiseSchedule( lr_schedule, outside_value=lr_schedule[-1][-1]) @override(Policy) def on_global_var_update(self, global_vars): super(LearningRateSchedule, self).on_global_var_update(global_vars) self.cur_lr = self.lr_schedule.value(global_vars["timestep"]) @override(TorchPolicy) def optimizer(self): for p in self._optimizer.param_groups: p["lr"] = self.cur_lr return self._optimizer @DeveloperAPI class EntropyCoeffSchedule: """Mixin for TorchPolicy that adds entropy coeff decay.""" @DeveloperAPI def __init__(self, entropy_coeff, entropy_coeff_schedule): self.entropy_coeff = entropy_coeff if entropy_coeff_schedule is None: self.entropy_coeff_schedule = ConstantSchedule(entropy_coeff) else: # Allows for custom schedule similar to lr_schedule format if isinstance(entropy_coeff_schedule, list): self.entropy_coeff_schedule = PiecewiseSchedule( entropy_coeff_schedule, outside_value=entropy_coeff_schedule[-1][-1]) else: # Implements previous version but enforces outside_value self.entropy_coeff_schedule = PiecewiseSchedule( [[0, entropy_coeff], [entropy_coeff_schedule, 0.0]], outside_value=0.0) @override(Policy) def on_global_var_update(self, global_vars): super(EntropyCoeffSchedule, self).on_global_var_update(global_vars) self.entropy_coeff = self.entropy_coeff_schedule.value( global_vars["timestep"])
37.085616
79
0.614831
61523daa8578e69fbc093207761c283f79840f70
1,521
py
Python
instaphotos/migrations/0001_initial.py
LekamCharity/insta-IG
0302440df3b2029297af54eb9c56090f82232973
[ "MIT" ]
null
null
null
instaphotos/migrations/0001_initial.py
LekamCharity/insta-IG
0302440df3b2029297af54eb9c56090f82232973
[ "MIT" ]
null
null
null
instaphotos/migrations/0001_initial.py
LekamCharity/insta-IG
0302440df3b2029297af54eb9c56090f82232973
[ "MIT" ]
null
null
null
# Generated by Django 3.1.3 on 2020-12-02 09:28 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('profile_pic', models.ImageField(blank='true', upload_to='new_post/')), ('bio', models.TextField()), ('user', models.OneToOneField(default='', null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(blank=True, default='default.jpg', upload_to='new_post/')), ('title', models.CharField(default='', max_length=30)), ('caption', models.TextField(max_length=300)), ('user', models.ForeignKey(default='', null=True, on_delete=django.db.models.deletion.CASCADE, related_name='author', to=settings.AUTH_USER_MODEL)), ], ), ]
40.026316
164
0.608153
2cf36141692dd986988c8b9efd2d632ac1b36845
423
py
Python
swagger/swagger_server/test/__init__.py
mcclown/AutoReef.APIGateway
b77dd6e50beba3d0bb36dfc948e8514a7e5a425d
[ "MIT" ]
null
null
null
swagger/swagger_server/test/__init__.py
mcclown/AutoReef.APIGateway
b77dd6e50beba3d0bb36dfc948e8514a7e5a425d
[ "MIT" ]
5
2018-03-12T13:24:49.000Z
2018-03-12T13:37:14.000Z
swagger/swagger_server/test/__init__.py
mcclown/AutoReef.APIGateway
b77dd6e50beba3d0bb36dfc948e8514a7e5a425d
[ "MIT" ]
null
null
null
import logging import connexion from flask_testing import TestCase from swagger.swagger_server.encoder import JSONEncoder class BaseTestCase(TestCase): def create_app(self): logging.getLogger('connexion.operation').setLevel('ERROR') app = connexion.App(__name__, specification_dir='../swagger/') app.app.json_encoder = JSONEncoder app.add_api('swagger.yaml') return app.app
24.882353
70
0.723404
c47ad3a1d836bf9c4e3579766609192e22e791ff
10,968
py
Python
_nt.py
gndu91/Windows-Sound-Manager
cdcf7a0044aed14abf5a4c48babf8f7ce2ff4fab
[ "MIT" ]
null
null
null
_nt.py
gndu91/Windows-Sound-Manager
cdcf7a0044aed14abf5a4c48babf8f7ce2ff4fab
[ "MIT" ]
null
null
null
_nt.py
gndu91/Windows-Sound-Manager
cdcf7a0044aed14abf5a4c48babf8f7ce2ff4fab
[ "MIT" ]
null
null
null
# Code found in the Python Mailing List: # https://mail.python.org/pipermail/python-win32/2014-March/013080.html # Author: Tim Roberts timr at probo.com # Tested on my computer (Windows 10, Python 3.7, AMD64) import operator import random import unittest from ctypes.wintypes import BOOL import comtypes.client from comtypes import * try: import win32com except ImportError as e: raise ImportError( 'An error occurred while trying to import some packages.\n' 'Make sure pypiwin32 is installed (command: `pip install pypiwin32`)\n' f'Origin: {e!r}' ) MMDeviceApiLib = GUID('{2FDAAFA3-7523-4F66-9957-9D5E7FE698F6}') IID_IMMDevice = GUID('{D666063F-1587-4E43-81F1-B948E807363F}') IID_IMMDeviceEnumerator = GUID('{A95664D2-9614-4F35-A746-DE8DB63617E6}') CLSID_MMDeviceEnumerator = GUID('{BCDE0395-E52F-467C-8E3D-C4579291692E}') IID_IMMDeviceCollection = GUID('{0BD7A1BE-7A1A-44DB-8397-CC5392387B5E}') IID_IAudioEndpointVolume = GUID('{5CDF2C82-841E-4546-9722-0CF74078229A}') class IMMDeviceCollection(IUnknown): _iid_ = GUID('{0BD7A1BE-7A1A-44DB-8397-CC5392387B5E}') class IAudioEndpointVolume(IUnknown): _iid_ = GUID('{5CDF2C82-841E-4546-9722-0CF74078229A}') _methods_ = [ STDMETHOD(HRESULT, 'RegisterControlChangeNotify', []), STDMETHOD(HRESULT, 'UnregisterControlChangeNotify', []), STDMETHOD(HRESULT, 'GetChannelCount', []), COMMETHOD([], HRESULT, 'SetMasterVolumeLevel', (['in'], c_float, 'fLevelDB'), (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'SetMasterVolumeLevelScalar', (['in'], c_float, 'fLevelDB'), (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'GetMasterVolumeLevel', (['out', 'retval'], POINTER(c_float), 'pfLevelDB')), COMMETHOD([], HRESULT, 'GetMasterVolumeLevelScalar', (['out', 'retval'], POINTER(c_float), 'pfLevelDB')), COMMETHOD([], HRESULT, 'SetChannelVolumeLevel', (['in'], DWORD, 'nChannel'), (['in'], c_float, 'fLevelDB'), (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'SetChannelVolumeLevelScalar', (['in'], DWORD, 'nChannel'), (['in'], c_float, 'fLevelDB'), (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'GetChannelVolumeLevel', (['in'], DWORD, 'nChannel'), (['out', 'retval'], POINTER(c_float), 'pfLevelDB')), COMMETHOD([], HRESULT, 'GetChannelVolumeLevelScalar', (['in'], DWORD, 'nChannel'), (['out', 'retval'], POINTER(c_float), 'pfLevelDB')), COMMETHOD([], HRESULT, 'SetMute', (['in'], BOOL, 'bMute'), (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'GetMute', (['out', 'retval'], POINTER(BOOL), 'pbMute')), COMMETHOD([], HRESULT, 'GetVolumeStepInfo', (['out', 'retval'], POINTER(c_float), 'pnStep'), (['out', 'retval'], POINTER(c_float), 'pnStepCount')), COMMETHOD([], HRESULT, 'VolumeStepUp', (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'VolumeStepDown', (['in'], POINTER(GUID), 'pguidEventContext')), COMMETHOD([], HRESULT, 'QueryHardwareSupport', (['out', 'retval'], POINTER(DWORD), 'pdwHardwareSupportMask')), COMMETHOD([], HRESULT, 'GetVolumeRange', (['out', 'retval'], POINTER(c_float), 'pfMin'), (['out', 'retval'], POINTER(c_float), 'pfMax'), (['out', 'retval'], POINTER(c_float), 'pfIncr'))] class IMMDevice(IUnknown): _iid_ = GUID('{D666063F-1587-4E43-81F1-B948E807363F}') _methods_ = [ COMMETHOD([], HRESULT, 'Activate', (['in'], POINTER(GUID), 'iid'), (['in'], DWORD, 'dwClsCtx'), (['in'], POINTER(DWORD), 'pActivationParans'), (['out', 'retval'], POINTER(POINTER(IAudioEndpointVolume)), 'ppInterface')), STDMETHOD(HRESULT, 'OpenPropertyStore', []), STDMETHOD(HRESULT, 'GetId', []), STDMETHOD(HRESULT, 'GetState', [])] class IMMDeviceEnumerator(comtypes.IUnknown): _iid_ = GUID('{A95664D2-9614-4F35-A746-DE8DB63617E6}') _methods_ = [ COMMETHOD([], HRESULT, 'EnumAudioEndpoints', (['in'], DWORD, 'dataFlow'), (['in'], DWORD, 'dwStateMask'), (['out', 'retval'], POINTER(POINTER(IMMDeviceCollection)), 'ppDevices')), COMMETHOD([], HRESULT, 'GetDefaultAudioEndpoint', (['in'], DWORD, 'dataFlow'), (['in'], DWORD, 'role'), (['out', 'retval'], POINTER(POINTER(IMMDevice)), 'ppDevices'))] class AudioDevice: def __init__(self, dev): self.__device = dev @staticmethod def get_default_output_device(): """Return the default device. Warning: the device may not always be the default one, for instance, if the user connects/disconnects earphones.""" enumerator = comtypes.CoCreateInstance( CLSID_MMDeviceEnumerator, IMMDeviceEnumerator, comtypes.CLSCTX_INPROC_SERVER ) endpoint = enumerator.GetDefaultAudioEndpoint(0, 1) return AudioDevice(endpoint.Activate(IID_IAudioEndpointVolume, comtypes.CLSCTX_INPROC_SERVER, None)) @classmethod def sanitize_volume(cls, volume): volume = float(volume) if volume < 0: return 0 if volume > 100: return 100 return volume @property def current(self) -> float: """Return the current in percent.""" return round(self.__device.GetMasterVolumeLevelScalar() * 100) @current.setter def current(self, value: float): # TODO: Learn more about the `pguidEventContext` argument print('Set to', self.sanitize_volume(value)) self.__device.SetMasterVolumeLevelScalar(self.sanitize_volume(value) / 100, None) @property def mute(self): return bool(self.__device.GetMute()) @mute.setter def mute(self, value): self.__device.SetMute(bool(value), None) def increase(self): self.__device.VolumeStepUp(None) def decrease(self): self.__device.VolumeStepDown(None) def __iadd__(self, other): self.current = self.current + other return self def __isub__(self, other): self.current = self.current - other return self def __imul__(self, other): self.current = self.current * other return self def __idiv__(self, other): self.current = self.current / other return self def __imod__(self, other): self.current = self.current % other return self # TODO: Add rounding before we compare def __cmp__(self, other): return (self.current > other) - (other > self.current) def __gt__(self, other): return self.__cmp__(other) > 0 def __ge__(self, other): return self.__cmp__(other) >= 0 def __eq__(self, other): return self.__cmp__(other) == 0 def __ne__(self, other): return self.__cmp__(other) != 0 def __le__(self, other): return self.__cmp__(other) <= 0 def __lt__(self, other): return self.__cmp__(other) < 0 def __int__(self): return int(self.current) def __float__(self): return self.current def __bool__(self): return bool(int(self)) def __add__(self, other): return self.current + other def __sub__(self, other): return self.current - other def __mul__(self, other): return self.current * other def __truediv__(self, other): return operator.truediv(self.current, other) def __divmod__(self, other): return divmod(self.current, other) def __mod__(self, other): return self.current % other def __neg__(self): return -self.current def __abs__(self): """The volume is always positive""" return self.current def __radd__(self, other): return self.current + other def __rdiv__(self, other): return other / self.current def __rdivmod__(self, other): return divmod(other, self.current) def __rfloordiv__(self, other): return other // self.current def __rmod__(self, other): return operator.mod(other, self.current) def __rmul__(self, other): return self.current * other def __rsub__(self, other): return other - self.current __device = None def refresh_device(): """Refresh the current audio device.""" global __device __device = AudioDevice.get_default_output_device() def get_volume_device() -> AudioDevice: """ TODO: Force the device to be refreshed in a regular basis, for instance in the case a headphone is connected/disconnected TODO: Decide whether or not race conditions can be a problem :return: """ if __device is None: refresh_device() assert isinstance(__device, AudioDevice) return __device class Tests(unittest.TestCase): # TODO: Add more tests def test_operations(self): device = get_volume_device() assert 1 + device - 1 == device old = device.current device *= 1 self.assertEqual(device, old) device /= 1 self.assertEqual(device, old) device += 0 self.assertEqual(device, old) device -= 0 self.assertEqual(device, old) self.assertEqual(device - device, 0) self.assertEqual(device + device, device * 2) self.assertEqual(device + device, 2 * device) self.assertEqual(device % 100, old) for i in range(256): string = '\t'.join(( random.choice(('device', f'{random.random() * 1024}')), random.choice('+*/-%'), random.choice(('device', f'{(random.random()) * 1024}')))) print(string + ' = ' + str(eval(string))) self.assertEqual(eval(string), eval(string.replace('device', str(float(device))))) def test_setter(self): device = get_volume_device() old = device.current assert old == device.current device.current = old assert old == device.current assert old == device assert old + 1 == device + 1 assert old + 1 != device - 1 print(('%r' % device.current) + '%') device.current = 64 device.mute = 0 device += 1 print(('%r' % device.current) + '%') device += 1 print(repr(device.mute))
33.747692
108
0.591265
8bd28155c7551f3e6204599c3605beb018b92473
37,999
py
Python
scripts/python/catalyst/tests/test_build_isothermal.py
coelectrolyzer/cats
21f8e6f5f176767ec403ad2738c80a5a71fba959
[ "MIT" ]
null
null
null
scripts/python/catalyst/tests/test_build_isothermal.py
coelectrolyzer/cats
21f8e6f5f176767ec403ad2738c80a5a71fba959
[ "MIT" ]
null
null
null
scripts/python/catalyst/tests/test_build_isothermal.py
coelectrolyzer/cats
21f8e6f5f176767ec403ad2738c80a5a71fba959
[ "MIT" ]
null
null
null
''' Testing of building an isothermal model ''' import sys sys.path.append('../..') import unittest import pytest from catalyst.isothermal_monolith_catalysis import * import logging __author__ = "Austin Ladshaw" _log = logging.getLogger(__name__) # Start test class class TestBasicIsothermalCatalystBuild(): @pytest.fixture(scope="class") def isothermal_object(self): obj = Isothermal_Monolith_Simulator() return obj @pytest.fixture(scope="class") def isothermal_object_with_lists(self): obj = Isothermal_Monolith_Simulator() return obj @pytest.mark.build def test_add_dim(self, isothermal_object): obj = isothermal_object obj.add_axial_dim(0,5) assert hasattr(obj.model, 'z') assert isinstance(obj.model.z, ContinuousSet) @pytest.mark.build def test_add_dim_list(self, isothermal_object_with_lists): obj = isothermal_object_with_lists obj.add_axial_dim(point_list=[0,1,2,3,4,5]) assert hasattr(obj.model, 'z') assert isinstance(obj.model.z, ContinuousSet) assert len(obj.model.z) == 6 @pytest.mark.build def test_add_temporal_dim(self, isothermal_object): obj = isothermal_object obj.add_temporal_dim(0,20) assert hasattr(obj.model, 't') assert isinstance(obj.model.t, ContinuousSet) @pytest.mark.build def test_add_temporal_dim_list(self, isothermal_object_with_lists): obj = isothermal_object_with_lists obj.add_temporal_dim(point_list=[0,4,8,12,16,20]) assert hasattr(obj.model, 't') assert isinstance(obj.model.t, ContinuousSet) assert len(obj.model.t) == 6 @pytest.mark.build def test_add_age_set(self, isothermal_object): obj = isothermal_object obj.add_age_set("Unaged") assert hasattr(obj.model, 'age_set') assert isinstance(obj.model.age_set, Set) assert len(obj.model.age_set) == 1 @pytest.mark.build def test_add_age_set_list(self, isothermal_object_with_lists): obj = isothermal_object_with_lists obj.add_age_set(["Unaged", "2hr"]) assert hasattr(obj.model, 'age_set') assert isinstance(obj.model.age_set, Set) assert len(obj.model.age_set) == 2 @pytest.mark.build def test_add_temperature_set(self, isothermal_object): obj = isothermal_object obj.add_temperature_set("250C") assert hasattr(obj.model, 'T_set') assert isinstance(obj.model.T_set, Set) assert len(obj.model.T_set) == 1 assert hasattr(obj.model, 'T') assert isinstance(obj.model.T, Var) assert hasattr(obj.model, 'space_velocity') assert isinstance(obj.model.space_velocity, Var) assert hasattr(obj.model, 'v') assert isinstance(obj.model.v, Var) assert hasattr(obj.model, 'P') assert isinstance(obj.model.P, Var) assert hasattr(obj.model, 'Tref') assert isinstance(obj.model.Tref, Param) assert hasattr(obj.model, 'Pref') assert isinstance(obj.model.Pref, Param) assert hasattr(obj.model, 'rho') assert isinstance(obj.model.rho, Var) assert hasattr(obj.model, 'mu') assert isinstance(obj.model.mu, Var) assert hasattr(obj.model, 'Re') assert isinstance(obj.model.Re, Var) @pytest.mark.build def test_add_temperature_set_list(self, isothermal_object_with_lists): obj = isothermal_object_with_lists obj.add_temperature_set(["250C","300C"]) assert hasattr(obj.model, 'T_set') assert isinstance(obj.model.T_set, Set) assert len(obj.model.T_set) == 2 assert hasattr(obj.model, 'T') assert isinstance(obj.model.T, Var) assert hasattr(obj.model, 'space_velocity') assert isinstance(obj.model.space_velocity, Var) assert hasattr(obj.model, 'v') assert isinstance(obj.model.v, Var) assert hasattr(obj.model, 'P') assert isinstance(obj.model.P, Var) assert hasattr(obj.model, 'Tref') assert isinstance(obj.model.Tref, Param) assert hasattr(obj.model, 'Pref') assert isinstance(obj.model.Pref, Param) assert hasattr(obj.model, 'rho') assert isinstance(obj.model.rho, Var) assert hasattr(obj.model, 'mu') assert isinstance(obj.model.mu, Var) assert hasattr(obj.model, 'Re') assert isinstance(obj.model.Re, Var) @pytest.mark.build def test_add_gas_species(self, isothermal_object): obj = isothermal_object obj.add_gas_species("NH3") assert hasattr(obj.model, 'gas_set') assert isinstance(obj.model.gas_set, Set) assert len(obj.model.gas_set) == 1 assert hasattr(obj.model, 'Cb') assert isinstance(obj.model.Cb, Var) assert hasattr(obj.model, 'C') assert isinstance(obj.model.C, Var) assert hasattr(obj.model, 'dCb_dz') assert isinstance(obj.model.dCb_dz, DerivativeVar) assert hasattr(obj.model, 'dCb_dt') assert isinstance(obj.model.dCb_dt, DerivativeVar) assert hasattr(obj.model, 'dC_dt') assert isinstance(obj.model.dC_dt, DerivativeVar) assert hasattr(obj.model, 'km') assert isinstance(obj.model.km, Var) assert hasattr(obj.model, 'Dm') assert isinstance(obj.model.Dm, Param) assert hasattr(obj.model, 'Sc') assert isinstance(obj.model.Sc, Var) assert hasattr(obj.model, 'Sh') assert isinstance(obj.model.Sh, Var) @pytest.mark.build def test_add_gas_species_list(self, isothermal_object_with_lists): obj = isothermal_object_with_lists obj.add_gas_species(["NH3","NO"]) assert hasattr(obj.model, 'gas_set') assert isinstance(obj.model.gas_set, Set) assert len(obj.model.gas_set) == 2 assert hasattr(obj.model, 'Cb') assert isinstance(obj.model.Cb, Var) assert hasattr(obj.model, 'C') assert isinstance(obj.model.C, Var) assert hasattr(obj.model, 'dCb_dz') assert isinstance(obj.model.dCb_dz, DerivativeVar) assert hasattr(obj.model, 'dCb_dt') assert isinstance(obj.model.dCb_dt, DerivativeVar) assert hasattr(obj.model, 'dC_dt') assert isinstance(obj.model.dC_dt, DerivativeVar) assert hasattr(obj.model, 'km') assert isinstance(obj.model.km, Var) assert hasattr(obj.model, 'Dm') assert isinstance(obj.model.Dm, Param) assert hasattr(obj.model, 'Sc') assert isinstance(obj.model.Sc, Var) assert hasattr(obj.model, 'Sh') assert isinstance(obj.model.Sh, Var) @pytest.mark.build def test_add_surface_species(self, isothermal_object): obj = isothermal_object obj.add_surface_species("ZNH4") assert hasattr(obj.model, 'surf_set') assert isinstance(obj.model.surf_set, Set) assert len(obj.model.surf_set) == 1 assert hasattr(obj.model, 'q') assert isinstance(obj.model.q, Var) assert hasattr(obj.model, 'dq_dt') assert isinstance(obj.model.dq_dt, DerivativeVar) @pytest.mark.build def test_add_surface_species_list(self, isothermal_object_with_lists): obj = isothermal_object_with_lists obj.add_surface_species(["ZNH4","ZH"]) assert hasattr(obj.model, 'surf_set') assert isinstance(obj.model.surf_set, Set) assert len(obj.model.surf_set) == 2 assert hasattr(obj.model, 'q') assert isinstance(obj.model.q, Var) assert hasattr(obj.model, 'dq_dt') assert isinstance(obj.model.dq_dt, DerivativeVar) @pytest.mark.build def test_add_surface_sites(self, isothermal_object): obj = isothermal_object obj.add_surface_sites("ZH") assert hasattr(obj.model, 'site_set') assert isinstance(obj.model.site_set, Set) assert len(obj.model.site_set) == 1 assert hasattr(obj.model, 'S') assert isinstance(obj.model.S, Var) assert hasattr(obj.model, 'Smax') assert isinstance(obj.model.Smax, Param) assert hasattr(obj.model, 'u_S') assert isinstance(obj.model.u_S, Param) @pytest.mark.build def test_add_surface_sites_list(self): obj = Isothermal_Monolith_Simulator() obj.add_axial_dim(0,5) obj.add_temporal_dim(0,10) obj.add_age_set("Unaged") obj.add_temperature_set("250C") obj.add_gas_species("NH3") obj.add_surface_species("ZNH4") obj.add_surface_sites(["S1","S2"]) assert hasattr(obj.model, 'site_set') assert isinstance(obj.model.site_set, Set) assert len(obj.model.site_set) == 2 assert hasattr(obj.model, 'S') assert isinstance(obj.model.S, Var) assert hasattr(obj.model, 'Smax') assert isinstance(obj.model.Smax, Param) assert hasattr(obj.model, 'u_S') assert isinstance(obj.model.u_S, Param) @pytest.mark.build def test_add_reactions_equ(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists rxn_dict = {"r1": ReactionType.EquilibriumArrhenius} obj.add_reactions(rxn_dict) obj_with_lists.add_reactions(rxn_dict) assert hasattr(obj.model, 'all_rxns') assert isinstance(obj.model.all_rxns, Set) assert len(obj.model.all_rxns) == 1 assert hasattr(obj_with_lists.model, 'all_rxns') assert isinstance(obj_with_lists.model.all_rxns, Set) assert len(obj_with_lists.model.all_rxns) == 1 assert hasattr(obj.model, 'arrhenius_rxns') assert isinstance(obj.model.arrhenius_rxns, Set) assert len(obj.model.arrhenius_rxns) == 0 assert hasattr(obj_with_lists.model, 'arrhenius_rxns') assert isinstance(obj_with_lists.model.arrhenius_rxns, Set) assert len(obj_with_lists.model.arrhenius_rxns) == 0 assert hasattr(obj.model, 'equ_arrhenius_rxns') assert isinstance(obj.model.equ_arrhenius_rxns, Set) assert len(obj.model.equ_arrhenius_rxns) == 1 assert hasattr(obj_with_lists.model, 'equ_arrhenius_rxns') assert isinstance(obj_with_lists.model.equ_arrhenius_rxns, Set) assert len(obj_with_lists.model.equ_arrhenius_rxns) == 1 assert hasattr(obj.model, 'u_C') assert isinstance(obj.model.u_C, Param) assert hasattr(obj.model, 'u_q') assert isinstance(obj.model.u_q, Param) assert hasattr(obj_with_lists.model, 'u_C') assert isinstance(obj_with_lists.model.u_C, Param) assert hasattr(obj_with_lists.model, 'u_q') assert isinstance(obj_with_lists.model.u_q, Param) assert hasattr(obj.model, 'A') assert isinstance(obj.model.A, Var) assert hasattr(obj.model, 'B') assert isinstance(obj.model.B, Var) assert hasattr(obj.model, 'E') assert isinstance(obj.model.E, Var) assert hasattr(obj.model, 'Af') assert isinstance(obj.model.Af, Var) assert hasattr(obj.model, 'Ef') assert isinstance(obj.model.Ef, Var) assert hasattr(obj.model, 'dH') assert isinstance(obj.model.dH, Var) assert hasattr(obj.model, 'dS') assert isinstance(obj.model.dS, Var) assert hasattr(obj_with_lists.model, 'A') assert isinstance(obj_with_lists.model.A, Var) assert hasattr(obj_with_lists.model, 'B') assert isinstance(obj_with_lists.model.B, Var) assert hasattr(obj_with_lists.model, 'E') assert isinstance(obj_with_lists.model.E, Var) assert hasattr(obj_with_lists.model, 'Af') assert isinstance(obj_with_lists.model.Af, Var) assert hasattr(obj_with_lists.model, 'Ef') assert isinstance(obj_with_lists.model.Ef, Var) assert hasattr(obj_with_lists.model, 'dH') assert isinstance(obj_with_lists.model.dH, Var) assert hasattr(obj_with_lists.model, 'dS') assert isinstance(obj_with_lists.model.dS, Var) assert hasattr(obj.model, 'all_species_set') assert isinstance(obj.model.all_species_set, Set) assert len(obj.model.all_species_set) == 3 assert hasattr(obj_with_lists.model, 'all_species_set') assert isinstance(obj_with_lists.model.all_species_set, Set) assert len(obj_with_lists.model.all_species_set) == 4 assert hasattr(obj.model, 'rxn_orders') assert isinstance(obj.model.rxn_orders, Param) assert hasattr(obj_with_lists.model, 'rxn_orders') assert isinstance(obj_with_lists.model.rxn_orders, Param) @pytest.mark.unit def test_formfactor_calculations(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.set_bulk_porosity(0.3309) obj.set_cell_density(62) obj.set_washcoat_porosity(0.4) obj.set_reactor_radius(1) obj_with_lists.isMonolith = False obj_with_lists.model.dh.set_value(0.1) obj_with_lists.set_bulk_porosity(0.3309) obj_with_lists.set_cell_density(62) obj_with_lists.set_washcoat_porosity(0.4) obj_with_lists.set_reactor_radius(1) assert value(obj.model.eb) == 0.3309 assert value(obj.model.cell_density) == 62 assert value(obj_with_lists.model.eb) == 0.3309 assert value(obj_with_lists.model.cell_density) == 62 assert value(obj_with_lists.model.dh) == 0.1 assert value(obj_with_lists.model.Ga) == 6/0.1 assert pytest.approx(0.0777448, rel=1e-3) == value(obj.model.dh) assert pytest.approx(28.8159, rel=1e-3) == value(obj.model.Ga) obj_with_lists.isMonolith = True obj_with_lists.model.dh.set_value(value(obj.model.dh)) obj_with_lists.model.Ga.set_value(value(obj.model.Ga)) assert pytest.approx(0.0777448, rel=1e-3) == value(obj_with_lists.model.dh) assert pytest.approx(28.8159, rel=1e-3) == value(obj_with_lists.model.Ga) obj.set_space_velocity_all_runs(1000) obj_with_lists.set_space_velocity_all_runs(1000) @pytest.mark.unit def test_set_site_balance(self, isothermal_object): obj = isothermal_object obj.set_site_density("ZH","Unaged",0.1152619) site_data = {"mol_occupancy": {"ZNH4": 1}} obj.set_site_balance("ZH",site_data) assert value(obj.model.u_S["ZH","ZNH4"]) == 1 @pytest.mark.unit def test_set_reaction_info(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists rxn_dict = {"parameters": {"A": 250000, "E": 0, "A_lb": 2500, "A_ub": 2500000000, "E_lb": -1, "E_ub": 1, "dH": -54000, "dS": 30, "dH_lb": -55000, "dH_ub": -53000, "dS_lb": 20, "dS_ub": 40, }, "mol_reactants": {"ZH": 1, "NH3": 1}, "mol_products": {"ZNH4": 1}, "rxn_orders": {"ZH": 1, "NH3": 1, "ZNH4": 1} } obj.set_reaction_info("r1", rxn_dict) obj_with_lists.set_reaction_info("r1", rxn_dict) assert value(obj.model.Af["r1"].lb) == 2500 assert value(obj.model.Af["r1"].ub) == 2500000000 assert value(obj.model.Af["r1"]) == 250000 assert value(obj_with_lists.model.Af["r1"].lb) == 2500 assert value(obj_with_lists.model.Af["r1"].ub) == 2500000000 assert value(obj_with_lists.model.Af["r1"]) == 250000 assert value(obj.model.Ef["r1"].lb) == -1 assert value(obj.model.Ef["r1"].ub) == 1 assert value(obj.model.Ef["r1"]) == 0 assert value(obj_with_lists.model.Ef["r1"].lb) == -1 assert value(obj_with_lists.model.Ef["r1"].ub) == 1 assert value(obj_with_lists.model.Ef["r1"]) == 0 assert value(obj.model.dH["r1"].lb) == -55000 assert value(obj.model.dH["r1"].ub) == -53000 assert value(obj.model.dH["r1"]) == -54000 assert value(obj_with_lists.model.dH["r1"].lb) == -55000 assert value(obj_with_lists.model.dH["r1"].ub) == -53000 assert value(obj_with_lists.model.dH["r1"]) == -54000 assert value(obj.model.dS["r1"].lb) == 20 assert value(obj.model.dS["r1"].ub) == 40 assert value(obj.model.dS["r1"]) == 30 assert value(obj_with_lists.model.dS["r1"].lb) == 20 assert value(obj_with_lists.model.dS["r1"].ub) == 40 assert value(obj_with_lists.model.dS["r1"]) == 30 assert hasattr(obj.model, 'r1_reactants') assert isinstance(obj.model.r1_reactants, Set) assert len(obj.model.r1_reactants) == 2 assert hasattr(obj.model, 'r1_products') assert isinstance(obj.model.r1_products, Set) assert len(obj.model.r1_products) == 1 assert hasattr(obj_with_lists.model, 'r1_reactants') assert isinstance(obj_with_lists.model.r1_reactants, Set) assert len(obj_with_lists.model.r1_reactants) == 2 assert hasattr(obj_with_lists.model, 'r1_products') assert isinstance(obj_with_lists.model.r1_products, Set) assert len(obj_with_lists.model.r1_products) == 1 assert value(obj.model.u_C["NH3","r1",obj.model.z.first()]) == -1 assert value(obj.model.u_q["ZNH4","r1",obj.model.z.first()]) == 1 assert value(obj_with_lists.model.u_C["NH3","r1",obj_with_lists.model.z.first()]) == -1 assert value(obj_with_lists.model.u_q["ZNH4","r1",obj_with_lists.model.z.first()]) == 1 assert value(obj_with_lists.model.u_q["ZH","r1",obj_with_lists.model.z.first()]) == -1 assert value(obj.model.rxn_orders["r1","NH3"]) == 1 assert value(obj.model.rxn_orders["r1","ZH"]) == 1 assert value(obj.model.rxn_orders["r1","ZNH4"]) == 1 assert value(obj_with_lists.model.rxn_orders["r1","NH3"]) == 1 assert value(obj_with_lists.model.rxn_orders["r1","ZH"]) == 1 assert value(obj_with_lists.model.rxn_orders["r1","ZNH4"]) == 1 @pytest.mark.unit def test_set_isothermal_temp(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.set_isothermal_temp("Unaged","250C",250+273.15) obj_with_lists.set_isothermal_temp("Unaged","250C",250+273.15) obj_with_lists.set_isothermal_temp("2hr","250C",250+273.15) obj_with_lists.set_isothermal_temp("Unaged","300C",300+273.15) obj_with_lists.set_isothermal_temp("2hr","300C",300+273.15) assert value(obj.model.T["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) == 250+273.15 assert value(obj_with_lists.model.T["Unaged","250C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) == 250+273.15 assert value(obj_with_lists.model.T["2hr","250C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) == 250+273.15 assert value(obj_with_lists.model.T["Unaged","300C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) == 300+273.15 assert value(obj_with_lists.model.T["2hr","300C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) == 300+273.15 @pytest.mark.initialization def test_build_constraints(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.build_constraints() obj_with_lists.build_constraints() assert hasattr(obj.model, 'bulk_cons') assert isinstance(obj.model.bulk_cons, Constraint) assert hasattr(obj.model, 'pore_cons') assert isinstance(obj.model.pore_cons, Constraint) assert hasattr(obj.model, 'surf_cons') assert isinstance(obj.model.surf_cons, Constraint) assert hasattr(obj.model, 'site_cons') assert isinstance(obj.model.site_cons, Constraint) assert hasattr(obj_with_lists.model, 'bulk_cons') assert isinstance(obj_with_lists.model.bulk_cons, Constraint) assert hasattr(obj_with_lists.model, 'pore_cons') assert isinstance(obj_with_lists.model.pore_cons, Constraint) assert hasattr(obj_with_lists.model, 'surf_cons') assert isinstance(obj_with_lists.model.surf_cons, Constraint) @pytest.mark.initialization def test_discretization_fd(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.discretize_model(method=DiscretizationMethod.FiniteDifference, tstep=5,elems=5,colpoints=2) obj_with_lists.discretize_model(method=DiscretizationMethod.FiniteDifference, tstep=5,elems=5,colpoints=2) assert hasattr(obj.model, 'dCbdz_edge') assert isinstance(obj.model.dCbdz_edge, Constraint) assert hasattr(obj_with_lists.model, 'dCbdz_edge') assert isinstance(obj_with_lists.model.dCbdz_edge, Constraint) assert len(obj.model.t) == len(obj_with_lists.model.t) assert len(obj.model.z) == len(obj_with_lists.model.z) assert pytest.approx(111.63437198706396, rel=1e-3) == \ value(obj.model.P["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx( value(obj_with_lists.model.P["Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.P["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(28882.87336113903, rel=1e-3) == \ value(obj.model.v["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.v["Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.v["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(0.0006748820366629658, rel=1e-3) == \ value(obj.model.rho["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.rho["Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.rho["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(0.0002753695869940695, rel=1e-3) == \ value(obj.model.mu["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.mu["Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.mu["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(91.7218236329034, rel=1e-3) == \ value(obj.model.Re["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.Re["Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.Re["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(0.4129058808030342, rel=1e-3) == \ value(obj.model.Sc["NH3","Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.Sc["NH3","Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.Sc["NH3","Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(4.058710793831378, rel=1e-3) == \ value(obj.model.Sh["NH3","Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.Sh["NH3","Unaged","250C",obj_with_lists.model.z.first(), obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.Sh["NH3","Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(858.2004564100874, rel=1e-3) == \ value(obj.model.km["NH3","Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.km["NH3","Unaged","250C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]), rel=1e-3) == \ value(obj.model.km["NH3","Unaged","250C",obj.model.z.first(),obj.model.t.first()]) @pytest.mark.unit def test_set_initial_conditions(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.set_const_IC("NH3","Unaged","250C",0) obj.set_const_IC("ZNH4","Unaged","250C",0) obj_with_lists.set_const_IC_in_ppm("NH3","Unaged","250C",0) obj_with_lists.set_const_IC_in_ppm("NO","Unaged","250C",300) obj_with_lists.set_const_IC_in_ppm("NH3","2hr","250C",0) obj_with_lists.set_const_IC_in_ppm("NO","2hr","250C",300) obj_with_lists.set_const_IC_in_ppm("NH3","Unaged","300C",0) obj_with_lists.set_const_IC_in_ppm("NO","Unaged","300C",300) obj_with_lists.set_const_IC_in_ppm("NH3","2hr","300C",0) obj_with_lists.set_const_IC_in_ppm("NO","2hr","300C",300) obj_with_lists.set_const_IC("ZNH4","Unaged","250C",0) obj_with_lists.set_const_IC("ZH","Unaged","250C",0.1152619) obj_with_lists.set_const_IC("ZNH4","2hr","250C",0) obj_with_lists.set_const_IC("ZH","2hr","250C",0.0952619) obj_with_lists.set_const_IC("ZNH4","Unaged","300C",0) obj_with_lists.set_const_IC("ZH","Unaged","300C",0.1152619) obj_with_lists.set_const_IC("ZNH4","2hr","300C",0) obj_with_lists.set_const_IC("ZH","2hr","300C",0.0952619) assert pytest.approx(6.9762939977887255e-06, rel=1e-3) == \ value(obj_with_lists.model.Cb["NO","Unaged","250C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) assert pytest.approx(6.36770165740761e-06, rel=1e-3) == \ value(obj_with_lists.model.Cb["NO","Unaged","300C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) assert pytest.approx(6.9762939977887255e-06, rel=1e-3) == \ value(obj_with_lists.model.C["NO","Unaged","250C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) assert pytest.approx(6.36770165740761e-06, rel=1e-3) == \ value(obj_with_lists.model.C["NO","Unaged","300C", obj_with_lists.model.z.first(),obj_with_lists.model.t.first()]) assert pytest.approx(1e-20, rel=1e-3) == \ value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(1e-20, rel=1e-3) == \ value(obj.model.C["NH3","Unaged","250C", obj.model.z.first(),obj.model.t.first()]) @pytest.mark.unit def test_set_boundary_conditions(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.set_time_dependent_BC("NH3","Unaged","250C", time_value_pairs=[(4,6.9762939977887255e-06)], initial_value=0) obj_with_lists.set_time_dependent_BC_in_ppm("NH3","Unaged","250C", time_value_pairs=[(4,300)], initial_value=0) obj_with_lists.set_time_dependent_BC_in_ppm("NH3","2hr","250C", time_value_pairs=[(4,300)], initial_value=0) obj_with_lists.set_time_dependent_BC_in_ppm("NH3","Unaged","300C", time_value_pairs=[(4,300)], initial_value=0) obj_with_lists.set_time_dependent_BC_in_ppm("NH3","2hr","300C", time_value_pairs=[(4,300)], initial_value=0) obj_with_lists.set_const_BC("NO","Unaged","250C",6.9762939977887255e-06) obj_with_lists.set_const_BC_in_ppm("NO","2hr","250C",300) obj_with_lists.set_const_BC("NO","Unaged","300C",6.36770165740761e-06) obj_with_lists.set_const_BC_in_ppm("NO","2hr","300C",300) assert pytest.approx(6.9762939977887255e-06, rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.first(),4.0]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.first(),4.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.first(),4.0]) assert pytest.approx(value(obj_with_lists.model.Cb["NO","Unaged","250C", obj_with_lists.model.z.first(),4.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NO","2hr","250C", obj_with_lists.model.z.first(),4.0]) assert pytest.approx(value(obj_with_lists.model.Cb["NO","Unaged","300C", obj_with_lists.model.z.first(),4.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NO","2hr","300C", obj_with_lists.model.z.first(),4.0]) @pytest.mark.initialization def test_initialize_auto_scaling(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.initialize_auto_scaling() obj_with_lists.initialize_auto_scaling() assert hasattr(obj.model, 'scaling_factor') assert isinstance(obj.model.scaling_factor, Suffix) assert hasattr(obj_with_lists.model, 'scaling_factor') assert isinstance(obj_with_lists.model.scaling_factor, Suffix) @pytest.mark.solver def test_initialization_solve(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists (stat1, cond1) = obj.initialize_simulator() assert cond1 == TerminationCondition.optimal assert stat1 == SolverStatus.ok (stat2, cond2) = obj_with_lists.initialize_simulator() assert cond2 == TerminationCondition.optimal assert stat2 == SolverStatus.ok @pytest.mark.initialization def test_final_auto_scaling(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists obj.finalize_auto_scaling() obj_with_lists.finalize_auto_scaling() assert not hasattr(obj.model, 'obj') assert not hasattr(obj_with_lists.model, 'obj') @pytest.mark.solver def test_full_solve(self, isothermal_object, isothermal_object_with_lists): obj = isothermal_object obj_with_lists = isothermal_object_with_lists (stat1, cond1) = obj.run_solver() assert cond1 == TerminationCondition.optimal assert stat1 == SolverStatus.ok (stat2, cond2) = obj_with_lists.run_solver() assert cond2 == TerminationCondition.optimal assert stat2 == SolverStatus.ok assert pytest.approx(28882.87336113903, rel=1e-3) == \ value(obj.model.v["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj_with_lists.model.v["Unaged","250C",obj.model.z.first(),obj.model.t.first()]), rel=1e-3) == \ value(obj.model.v["Unaged","250C",obj.model.z.first(),obj.model.t.first()]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.last(),0.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.last(),0.0]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.last(),4.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.last(),4.0]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.last(),8.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.last(),8.0]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.last(),12.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.last(),12.0]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.last(),16.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.last(),16.0]) assert pytest.approx(value(obj.model.Cb["NH3","Unaged","250C", obj.model.z.last(),20.0]), rel=1e-3) == \ value(obj_with_lists.model.Cb["NH3","Unaged","250C", obj_with_lists.model.z.last(),20.0]) assert pytest.approx(value(obj.model.q["ZNH4","Unaged","250C", obj.model.z.last(),0.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZNH4","Unaged","250C", obj_with_lists.model.z.last(),0.0]) assert pytest.approx(value(obj.model.q["ZNH4","Unaged","250C", obj.model.z.last(),4.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZNH4","Unaged","250C", obj_with_lists.model.z.last(),4.0]) assert pytest.approx(value(obj.model.q["ZNH4","Unaged","250C", obj.model.z.last(),8.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZNH4","Unaged","250C", obj_with_lists.model.z.last(),8.0]) assert pytest.approx(value(obj.model.q["ZNH4","Unaged","250C", obj.model.z.last(),12.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZNH4","Unaged","250C", obj_with_lists.model.z.last(),12.0]) assert pytest.approx(value(obj.model.q["ZNH4","Unaged","250C", obj.model.z.last(),16.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZNH4","Unaged","250C", obj_with_lists.model.z.last(),16.0]) assert pytest.approx(value(obj.model.q["ZNH4","Unaged","250C", obj.model.z.last(),20.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZNH4","Unaged","250C", obj_with_lists.model.z.last(),20.0]) assert pytest.approx(value(obj.model.S["ZH","Unaged","250C", obj.model.z.last(),0.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZH","Unaged","250C", obj_with_lists.model.z.last(),0.0]) assert pytest.approx(value(obj.model.S["ZH","Unaged","250C", obj.model.z.last(),4.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZH","Unaged","250C", obj_with_lists.model.z.last(),4.0]) assert pytest.approx(value(obj.model.S["ZH","Unaged","250C", obj.model.z.last(),8.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZH","Unaged","250C", obj_with_lists.model.z.last(),8.0]) assert pytest.approx(value(obj.model.S["ZH","Unaged","250C", obj.model.z.last(),12.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZH","Unaged","250C", obj_with_lists.model.z.last(),12.0]) assert pytest.approx(value(obj.model.S["ZH","Unaged","250C", obj.model.z.last(),16.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZH","Unaged","250C", obj_with_lists.model.z.last(),16.0]) assert pytest.approx(value(obj.model.S["ZH","Unaged","250C", obj.model.z.last(),20.0]), rel=1e-3) == \ value(obj_with_lists.model.q["ZH","Unaged","250C", obj_with_lists.model.z.last(),20.0])
43.626866
132
0.609279
04e5e53bf10d135544089dd3f65440b068532eee
350
py
Python
django_pivot/tests/test_sqlite_settings.py
thatch/django-pivot
b230376b56d8cc2a11e8620f5a2950e5e171e747
[ "MIT" ]
187
2016-11-17T01:21:12.000Z
2022-03-19T11:51:03.000Z
django_pivot/tests/test_sqlite_settings.py
thatch/django-pivot
b230376b56d8cc2a11e8620f5a2950e5e171e747
[ "MIT" ]
22
2017-10-17T17:57:50.000Z
2022-02-11T03:29:27.000Z
django_pivot/tests/test_sqlite_settings.py
thatch/django-pivot
b230376b56d8cc2a11e8620f5a2950e5e171e747
[ "MIT" ]
15
2017-11-01T05:29:24.000Z
2022-02-24T23:09:52.000Z
BACKEND = 'sqlite' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } INSTALLED_APPS = ( 'django_pivot.tests.pivot', ) SITE_ID = 1, SECRET_KEY = 'secret' MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', )
15.909091
48
0.634286
568dbf50fde914c45f79fde0aece6c7a86a0f4ce
1,287
py
Python
aiida/cmdline/params/types/node.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
1
2016-09-12T10:51:00.000Z
2016-09-12T10:51:00.000Z
aiida/cmdline/params/types/node.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
17
2020-03-11T17:04:05.000Z
2020-05-01T09:34:45.000Z
aiida/cmdline/params/types/node.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """ Module to define the custom click param type for node """ from .identifier import IdentifierParamType class NodeParamType(IdentifierParamType): """ The ParamType for identifying Node entities or its subclasses """ name = 'Node' @property def orm_class_loader(self): """ Return the orm entity loader class, which should be a subclass of OrmEntityLoader. This class is supposed to be used to load the entity for a given identifier :return: the orm entity loader class for this ParamType """ from aiida.orm.utils.loaders import NodeEntityLoader return NodeEntityLoader
39
113
0.534577
c2cc176f7ed165eda293198e4d0d3cd69d5e9d8f
4,344
py
Python
2d_triangular/filling_1over3_BC_P_P/2d_triangular.py
ryuikaneko/tight_binding_shell_condition
37ed5f1497b6e757873831ea515a29e4a9f2e50e
[ "MIT" ]
null
null
null
2d_triangular/filling_1over3_BC_P_P/2d_triangular.py
ryuikaneko/tight_binding_shell_condition
37ed5f1497b6e757873831ea515a29e4a9f2e50e
[ "MIT" ]
null
null
null
2d_triangular/filling_1over3_BC_P_P/2d_triangular.py
ryuikaneko/tight_binding_shell_condition
37ed5f1497b6e757873831ea515a29e4a9f2e50e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding:utf-8 from __future__ import print_function import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def ene(kx,ky): return -2.0*(np.cos(kx)+np.cos(ky)+np.cos(kx+ky)) def calc_k_ene(Lx,Ly,BCx,BCy): if BCx == 'AP' or BCx == 'antiperiodic': xshift = 0.5 elif BCx == 'P' or BCx == 'periodic': xshift = 0.0 else: xshift = 0.0 if BCy == 'AP' or BCy == 'antiperiodic': yshift = 0.5 elif BCy == 'P' or BCy == 'periodic': yshift = 0.0 else: yshift = 0.0 list_kx = np.array([2.0*np.pi*((x+xshift)/Lx-float(Lx//2)/Lx) for x in range(Lx)]) list_ky = np.array([2.0*np.pi*((y+yshift)/Ly-float(Ly//2)/Ly) for y in range(Ly)]) list_enekxky = np.array([ene(kx,ky) for ky in list_ky for kx in list_kx]) list_intkxky = np.array([Lx*y+x for y in range(Ly) for x in range(Lx)]) return list_enekxky, list_intkxky, xshift, yshift def calc_shell_cond(Lx,Ly,BCx,BCy,filling_numer,filling_denom): filling = float(filling_numer)/float(filling_denom) numel = Lx*Ly*filling_numer//filling_denom list_enekxky, list_intkxky, xshift, yshift = calc_k_ene(Lx,Ly,BCx,BCy) list_ind = np.argsort(list_enekxky) list_sorted_enekxky = list_enekxky[list_ind] list_sorted_intkxky = list_intkxky[list_ind] chemipo = 0.5*(list_sorted_enekxky[numel] + list_sorted_enekxky[numel-1]) totene = np.sum(list_sorted_enekxky[:numel]) gap = list_sorted_enekxky[numel] - list_sorted_enekxky[numel-1] if np.abs(gap)>1e-10: shellcond = 'closed' else: shellcond = 'open' return filling, numel, chemipo, totene, gap, shellcond, \ list_sorted_enekxky, list_sorted_intkxky, xshift, yshift def main(): BCx = 'P' BCy = 'P' filling_numer = 1 # filling_denom = 2 filling_denom = 3 list_L = [] list_enedens = [] file = open("dat_2d_triangular",'w') file.write("# L filling(=n/2) BCx BCy num_electrons(=nup=ndown) chemi_potential ene ene_dens gap shell_cond\n") for L in range(6,60,6): Lx = L Ly = L filling, numel, chemipo, totene, gap, shellcond, \ list_enekxky, list_intkxky, xshift, yshift = \ calc_shell_cond(Lx,Ly,BCx,BCy,filling_numer,filling_denom) list_L.append(L) list_enedens.append(totene/Lx/Ly) file.write("{} {} {} {} {} {} {} {} {} {}\n".format(\ L,filling,BCx,BCy,numel,chemipo,totene,totene/Lx/Ly,gap,shellcond)) file.close() list_L = np.array(list_L) list_enedens = np.array(list_enedens) plt.xlabel("1/L^2") plt.ylabel("E/L^2") plt.plot(1.0/list_L**2,list_enedens,color='blue',marker='o',markerfacecolor='white') plt.savefig("fig_2d_triangular_enedens.png") plt.cla() plt.clf() L = 30 Lx = L Ly = L filling, numel, chemipo, totene, gap, shellcond, \ list_enekxky, list_intkxky, xshift, yshift = \ calc_shell_cond(Lx,Ly,BCx,BCy,filling_numer,filling_denom) list_intkx = list_intkxky%Lx list_intky = list_intkxky//Lx list_kx = (list_intkx.astype(np.float64)+xshift)/Lx-float(Lx//2)/Lx list_ky = (list_intky.astype(np.float64)+yshift)/Ly-float(Ly//2)/Ly plt.xlabel("kx/pi") plt.ylabel("ky/pi") plt.xticks([-0.5,-0.25,0,0.25,0.5]) plt.yticks([-0.5,-0.25,0,0.25,0.5]) plt.xlim(-0.55,0.55) plt.ylim(-0.55,0.55) ## https://stackoverflow.com/questions/17990845/how-to-equalize-the-scales-of-x-axis-and-y-axis-in-python-matplotlib # plt.axis('equal') plt.gca().set_aspect('equal',adjustable='box') plt.plot(list_kx,list_ky,color='blue',marker='o',\ markerfacecolor='white',linestyle='None') plt.plot(list_kx[:numel],list_ky[:numel],color='blue',marker='o',\ markerfacecolor='blue',linestyle='None') plt.savefig("fig_2d_triangular_fermisurface.png") plt.cla() plt.clf() L = 2**9 Lx = L Ly = L nbins = L//2 filling, numel, chemipo, totene, gap, shellcond, \ list_enekxky, list_intkxky, xshift, yshift = \ calc_shell_cond(Lx,Ly,BCx,BCy,filling_numer,filling_denom) plt.xlabel("E") plt.ylabel("DOS") plt.hist(list_enekxky-chemipo,bins=nbins,density=True) plt.savefig("fig_2d_triangular_dos.png") if __name__ == "__main__": main()
35.606557
116
0.642495
bde33fa7f6bb5ebaf5009e45cc3769409e98f2cf
2,492
py
Python
src/mem/probes/BaseMemProbe.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
135
2016-10-21T03:31:49.000Z
2022-03-25T01:22:20.000Z
src/mem/probes/BaseMemProbe.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
35
2017-03-10T17:57:46.000Z
2022-02-18T17:34:16.000Z
src/mem/probes/BaseMemProbe.py
mandaltj/gem5_chips
b9c0c602241ffda7851c1afb32fa01f295bb98fd
[ "BSD-3-Clause" ]
48
2016-12-08T12:03:13.000Z
2022-02-16T09:16:13.000Z
# Copyright (c) 2015 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Andreas Sandberg from m5.params import * from m5.proxy import * from m5.SimObject import SimObject class BaseMemProbe(SimObject): type = 'BaseMemProbe' abstract = True cxx_header = "mem/probes/base.hh" manager = VectorParam.SimObject(Parent.any, "Probe manager(s) to instrument") probe_name = Param.String("PktRequest", "Memory request probe to use")
49.84
74
0.775682
bc6d74ede8a803e44b6ddd29b2d9fce6eee1d6ce
1,088
py
Python
hotel/migrations/0003_feedback.py
ssd-course-project/hotel
3920fe522daceb2554d8850c62202988b745827b
[ "MIT" ]
null
null
null
hotel/migrations/0003_feedback.py
ssd-course-project/hotel
3920fe522daceb2554d8850c62202988b745827b
[ "MIT" ]
27
2019-03-10T05:59:58.000Z
2019-05-16T07:57:06.000Z
hotel/migrations/0003_feedback.py
ssd-course-project/hotel
3920fe522daceb2554d8850c62202988b745827b
[ "MIT" ]
null
null
null
# Generated by Django 2.0.13 on 2019-04-09 13:23 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('clients', '0001_initial'), ('hotel', '0002_auto_20190403_1917'), ] operations = [ migrations.CreateModel( name='Feedback', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Время создания')), ('rating', models.IntegerField(choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5')], default='5', verbose_name='Оценка')), ('text', models.TextField(verbose_name='Текст отзыва')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='clients.Client')), ], options={ 'verbose_name': 'Отзывы', 'verbose_name_plural': 'Отзывы', }, ), ]
36.266667
144
0.568015
7e17b4316da04d14f2e9c734941138762a5994a0
154,122
py
Python
greykite/tests/algo/forecast/silverkite/test_forecast_silverkite.py
briancpark/greykite
2f484978a7ed206ebd9356e02fc1fb881cd25205
[ "BSD-2-Clause" ]
null
null
null
greykite/tests/algo/forecast/silverkite/test_forecast_silverkite.py
briancpark/greykite
2f484978a7ed206ebd9356e02fc1fb881cd25205
[ "BSD-2-Clause" ]
null
null
null
greykite/tests/algo/forecast/silverkite/test_forecast_silverkite.py
briancpark/greykite
2f484978a7ed206ebd9356e02fc1fb881cd25205
[ "BSD-2-Clause" ]
null
null
null
import datetime from datetime import timedelta import matplotlib import numpy as np import modin.pandas as pd import pytest from pandas.util.testing import assert_frame_equal from greykite.algo.changepoint.adalasso.changepoint_detector import ChangepointDetector from greykite.algo.changepoint.adalasso.changepoints_utils import get_changepoint_dates_from_changepoints_dict from greykite.algo.forecast.silverkite.forecast_silverkite import SilverkiteForecast from greykite.algo.forecast.silverkite.forecast_simple_silverkite_helper import cols_interact from greykite.algo.forecast.silverkite.forecast_simple_silverkite_helper import generate_holiday_events from greykite.common.constants import ADJUSTMENT_DELTA_COL from greykite.common.constants import END_DATE_COL from greykite.common.constants import ERR_STD_COL from greykite.common.constants import EVENT_DF_LABEL_COL from greykite.common.constants import START_DATE_COL from greykite.common.constants import TIME_COL from greykite.common.constants import VALUE_COL from greykite.common.data_loader import DataLoader from greykite.common.evaluation import EvaluationMetricEnum from greykite.common.evaluation import calc_pred_err from greykite.common.features.adjust_anomalous_data import adjust_anomalous_data from greykite.common.features.normalize import normalize_df from greykite.common.features.timeseries_features import build_time_features_df from greykite.common.features.timeseries_features import fourier_series_multi_fcn from greykite.common.features.timeseries_features import get_changepoint_string from greykite.common.features.timeseries_features import get_evenly_spaced_changepoints_values from greykite.common.features.timeseries_features import get_fourier_col_name from greykite.common.features.timeseries_features import get_holidays from greykite.common.features.timeseries_impute import impute_with_lags from greykite.common.features.timeseries_lags import build_autoreg_df from greykite.common.features.timeseries_lags import build_autoreg_df_multi from greykite.common.python_utils import assert_equal from greykite.common.python_utils import get_pattern_cols from greykite.common.testing_utils import generate_anomalous_data from greykite.common.testing_utils import generate_df_for_tests from greykite.common.testing_utils import generate_df_with_holidays from greykite.common.testing_utils import generate_df_with_reg_for_tests from greykite.common.testing_utils import generic_test_adjust_anomalous_data from greykite.common.viz.timeseries_plotting_mpl import plt_compare_timeseries matplotlib.use("agg") # noqa: E402 import matplotlib.pyplot as plt # isort:skip @pytest.fixture def hourly_data(): """Generate 500 days of hourly data for tests""" return generate_df_for_tests( freq="H", periods=24 * 500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) @pytest.fixture def lagged_regressor_dict(): """Generate a dictionary of 3 lagged regressors with different dtypes""" return { "regressor1": { "lag_dict": {"orders": [1, 168]}, "agg_lag_dict": { "orders_list": [[168, 168 * 2, 168 * 3]], "interval_list": [(169, 168 * 2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()}, "regressor_bool": { "lag_dict": {"orders": [1, 168]}, "agg_lag_dict": { "orders_list": [[168, 168 * 2, 168 * 3]], "interval_list": [(169, 168 * 2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()}, "regressor_categ": { "lag_dict": {"orders": [1, 168]}, "series_na_fill_func": lambda s: s.bfill().ffill()}} def plt_comparison_forecast_vs_observed( fut_df, test_df, file_name=None, plt_title=""): """A local function for comparing forecasts with observed on test set. This function is only for tests here. Imports are delibrately put inside the function as the function will be run only selectively if user descides to make plots :param fut_df: pd.DataFrame dataframe with predictions expected to have a VALUE_COL at least :param test_df: pd.DataFrame dataframe which includes the observed values expected to have at least two columns: TIME_COL, VALUE_COL :param file_name: Optional[str] File name for the plot to be saved :param plt_title: str title of the plot, default: "" """ fut_df[TIME_COL] = test_df[TIME_COL] plt_compare_timeseries( df_dict={"obs": test_df, "forecast": fut_df}, time_col=TIME_COL, value_col=VALUE_COL, colors_dict={"obs": "red", "forecast": "green"}, plt_title=plt_title) if file_name is not None: plt.savefig(file_name) plt.close() def plt_check_ci(fut_df, test_df): """A local function for creating conf. interval plots within this test file. :param fut_df: pd.DataFrame the dataframe which includes future predictions in its VALUE_COL column :param test_df: pd.DataFrame the dataframe which includes true values in its VALUE_COL column """ # imports are done within the function as the function is not # automatically run when tests run import plotly from greykite.common.constants import ACTUAL_COL from greykite.common.constants import PREDICTED_COL from greykite.common.constants import PREDICTED_LOWER_COL from greykite.common.constants import PREDICTED_UPPER_COL from greykite.common.viz.timeseries_plotting import plot_forecast_vs_actual # splitting the ci column to create lower and upper columns ci_df = pd.DataFrame(fut_df["y_quantile_summary"].tolist()) assert ci_df.shape[1] == 2, "ci_df must have exactly two columns" ci_df.columns = [PREDICTED_LOWER_COL, PREDICTED_UPPER_COL] # adding necessary columns ci_df[ACTUAL_COL] = test_df["y"] ci_df[PREDICTED_COL] = fut_df["y"] ci_df[TIME_COL] = test_df[TIME_COL] fig = plot_forecast_vs_actual( df=ci_df, time_col=TIME_COL, actual_col=ACTUAL_COL, predicted_col=PREDICTED_COL, predicted_lower_col=PREDICTED_LOWER_COL, predicted_upper_col=PREDICTED_UPPER_COL, ylabel=VALUE_COL, train_end_date=None, title=None, actual_points_color="red", actual_points_size=2.0, forecast_curve_color="blue", actual_color_opacity=0.6, ci_band_color="rgba(0, 0, 200, 0.4)", ci_boundary_curve_color="rgb(56, 119, 166, 0.95)", # blue navy color with opacity of 0.95 ci_boundary_curve_width=0.5) plotly.offline.plot(fig) def test_forecast_silverkite_hourly(hourly_data): """Tests silverkite on hourly data with linear model fit""" train_df = hourly_data["train_df"] test_df = hourly_data["test_df"] fut_time_num = hourly_data["fut_time_num"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"]) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 assert trained_model["x_mat"]["ct1"][0] == 0 # this should be true when origin_for_time_vars=None """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ # with normalization trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"], normalize_method="min_max") fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 assert trained_model["x_mat"]["ct1"][0] == 0 # this should be true when origin_for_time_vars=None """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_hourly_regressor(): """Tests silverkite with regressors and random forest fit""" hourly_data = generate_df_with_reg_for_tests( freq="H", periods=24 * 500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) regressor_cols = ["regressor1", "regressor_bool", "regressor_categ"] train_df = hourly_data["train_df"].reset_index(drop=True) test_df = hourly_data["test_df"].reset_index(drop=True) fut_time_num = hourly_data["fut_time_num"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, training_fraction=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5], "seas_names": None}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"] + regressor_cols, fit_algorithm="rf", fit_algorithm_params={"min_samples_split": 3}) assert trained_model["ml_model"].min_samples_split == 3 # three equivalent ways of generating predictions result1 = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=test_df[regressor_cols]) result2 = silverkite.predict_no_sim( fut_df=test_df[[TIME_COL, VALUE_COL]], trained_model=trained_model, past_df=None, new_external_regressor_df=test_df[regressor_cols]) result3 = silverkite.predict_no_sim( fut_df=test_df[[TIME_COL, VALUE_COL] + regressor_cols], trained_model=trained_model, past_df=None, new_external_regressor_df=None) # checks for equality of contents, ignoring row/column order # `df` may contain extra columns not required by `silverkite.predict_n(_no_sim` # and VALUE_COL is the last column in `silverkite.predict_n(_no_sim` but the # original order in `df` is preserved assert_frame_equal(result1, result2, check_like=True) assert_frame_equal(result1, result3, check_like=True) err = calc_pred_err(test_df[VALUE_COL], result1[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 # checks to make sure the frequency is set properly assert np.array_equal(result1[TIME_COL].values, test_df[TIME_COL].values) """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_hourly_lagged_regressor(lagged_regressor_dict): """Tests silverkite with regressors and random forest fit""" hourly_data = generate_df_with_reg_for_tests( freq="H", periods=24 * 500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) train_df = hourly_data["train_df"].reset_index(drop=True) test_df = hourly_data["test_df"].reset_index(drop=True) fut_time_num = hourly_data["fut_time_num"] # Fits a model that only contains lagged regressors but no regressors silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, training_fraction=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5], "seas_names": None}), extra_pred_cols=["dow_hr", "ct1"], lagged_regressor_dict=lagged_regressor_dict) lagged_regressor_cols = trained_model["lagged_regressor_cols"] # Three equivalent ways of generating predictions result1 = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=test_df[lagged_regressor_cols]) result2 = silverkite.predict_no_sim( fut_df=test_df[[TIME_COL, VALUE_COL]], trained_model=trained_model, past_df=train_df[lagged_regressor_cols], new_external_regressor_df=test_df[lagged_regressor_cols]) result3 = silverkite.predict_no_sim( fut_df=test_df[[TIME_COL, VALUE_COL] + lagged_regressor_cols], trained_model=trained_model, past_df=train_df[lagged_regressor_cols], new_external_regressor_df=None) assert_frame_equal(result1, result2, check_like=True) assert_frame_equal(result1, result3, check_like=True) err = calc_pred_err(test_df[VALUE_COL], result1[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert round(err[enum.get_metric_name()], 1) == 0.8 enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 1) == 2.0 # Checks to make sure the frequency is set properly assert np.array_equal(result1[TIME_COL].values, test_df[TIME_COL].values) # Tests when no `new_external_regressor_df` is provided # If `min_lagged_regressor_order` (in this case 1) is greater than or equal to test_df.shape[0], # the prediction should run without any error even without `new_external_regressor_df` # and the following two should return identical results result4 = silverkite.predict_no_sim( fut_df=test_df[[TIME_COL, VALUE_COL]].head(1), trained_model=trained_model, past_df=train_df[lagged_regressor_cols], new_external_regressor_df=None) result5 = silverkite.predict_n_no_sim( fut_time_num=1, trained_model=trained_model, freq="H", new_external_regressor_df=None) assert_frame_equal(result4, result5, check_like=True) # Otherwise, if `min_lagged_regressor_order` is less than `fut_time_num` # Testing for Exception expected_match = ( "All columns in `lagged_regressor_cols` must appear in `df`") # lagged_regressor_cols is None with pytest.raises(ValueError, match=expected_match): silverkite.predict_no_sim( fut_df=test_df[[TIME_COL, VALUE_COL]].head(2), trained_model=trained_model, past_df=train_df[lagged_regressor_cols], new_external_regressor_df=None) def test_forecast_silverkite_freq(): """Tests forecast_silverkite at different frequencies""" # A wide variety of frequencies listed here: # https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases frequencies = [ "B", "W", "W-SAT", "W-TUE", "M", "SM", "MS", "SMS", "CBMS", "BM", "B", "Q", "QS", "BQS", "BQ-AUG", "Y", "YS", "AS-SEP", "BH", "T", "S"] periods = 50 train_frac = 0.8 train_test_thresh_index = int(periods * train_frac * 0.8) for freq in frequencies: df = generate_df_for_tests( freq=freq, periods=50, train_frac=0.8, train_start_date=datetime.datetime(2018, 5, 1)) train_df = df["train_df"] test_df = df["test_df"] fut_time_num = df["fut_time_num"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=train_df[TIME_COL][train_test_thresh_index], origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt"], changepoints_dict={ "method": "uniform", "n_changepoints": 2, "continuous_time_col": "ct1", "growth_func": lambda x: x}) changepoint_dates = get_changepoint_dates_from_changepoints_dict( changepoints_dict={ "method": "uniform", "n_changepoints": 2, "continuous_time_col": "ct1", "growth_func": lambda x: x}, df=train_df, time_col=TIME_COL ) changepoint_cols = get_pattern_cols(trained_model["pred_cols"], "^changepoint") assert len(changepoint_cols) == 2 string_format = get_changepoint_string(changepoint_dates) assert "changepoint0" + string_format[0] in trained_model["pred_cols"] assert "changepoint1" + string_format[1] in trained_model["pred_cols"] fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq=freq, new_external_regressor_df=None) # checks silverkite.predict_n(_no_sim fut_df_via_predict = silverkite.predict_no_sim( fut_df=test_df, trained_model=trained_model) assert_frame_equal( fut_df[[TIME_COL]], fut_df_via_predict[[TIME_COL]], check_like=True) assert_frame_equal( fut_df, fut_df_via_predict, check_like=True) def test_forecast_silverkite_changepoints(): """Tests forecast_silverkite on peyton manning data (with changepoints and missing values) """ dl = DataLoader() df_pt = dl.load_peyton_manning() silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=df_pt, time_col="ts", value_col="y", changepoints_dict={ "method": "auto", "yearly_seasonality_order": 6, "resample_freq": "2D", "actual_changepoint_min_distance": "100D", "potential_changepoint_distance": "50D", "no_changepoint_proportion_from_end": 0.3 } ) # "df" preserves the original indices assert_equal(trained_model["df"].index, df_pt.index) # "df_dropna" drops the correct indices assert_equal(trained_model["df_dropna"].index, df_pt.dropna().index) changepoint_values = trained_model["normalized_changepoint_values"] df_length = trained_model["x_mat"]["ct1"].iloc[-1] cp_distance = timedelta(days=100) / (pd.to_datetime(df_pt["ts"].iloc[-1]) - pd.to_datetime(df_pt["ts"].iloc[0])) # has change points assert len(changepoint_values) >= 0 # checks no change points at the end assert changepoint_values[-1] <= df_length * 0.7 # checks change point distance is at least "100D" min_cp_dist = min([changepoint_values[i] - changepoint_values[i - 1] for i in range(1, len(changepoint_values))]) assert min_cp_dist >= df_length * cp_distance # checks the number of change points is consistent with the change points detected by ChangepointDetector cd = ChangepointDetector() res = cd.find_trend_changepoints( df=df_pt, time_col="ts", value_col="y", yearly_seasonality_order=6, resample_freq="2D", actual_changepoint_min_distance="100D", potential_changepoint_distance="50D", no_changepoint_proportion_from_end=0.3 ) changepoint_dates = res["trend_changepoints"] assert len(changepoint_values) == len(changepoint_dates) def test_forecast_silverkite_seasonality_changepoints(): # test forecast_silverkite on peyton manning data dl = DataLoader() df_pt = dl.load_peyton_manning() silverkite = SilverkiteForecast() # seasonality changepoints is None if dictionary is not provided trained_model = silverkite.forecast( df=df_pt, time_col="ts", value_col="y", changepoints_dict={ "method": "auto" }, seasonality_changepoints_dict=None ) assert trained_model["seasonality_changepoint_dates"] is None assert trained_model["seasonality_changepoint_result"] is None # all test cases below include seasonality changepoint detection. # without trend change points trained_model = silverkite.forecast( df=df_pt, time_col="ts", value_col="y", changepoints_dict=None, seasonality_changepoints_dict={} ) assert trained_model["seasonality_changepoint_dates"] is not None assert trained_model["seasonality_changepoint_result"] is not None assert "weekly" in trained_model["seasonality_changepoint_dates"].keys() assert "yearly" in trained_model["seasonality_changepoint_dates"].keys() # with different seasonality change point parameters trained_model = silverkite.forecast( df=df_pt, time_col="ts", value_col="y", changepoints_dict={ "method": "auto" }, seasonality_changepoints_dict={ "no_changepoint_distance_from_end": "730D" } ) assert trained_model["seasonality_changepoint_dates"] is not None assert trained_model["seasonality_changepoint_result"] is not None assert "weekly" in trained_model["seasonality_changepoint_dates"].keys() assert "yearly" in trained_model["seasonality_changepoint_dates"].keys() no_changepoint_proportion_from_end = timedelta(days=730) / ( pd.to_datetime(df_pt["ts"].iloc[-1]) - pd.to_datetime(df_pt["ts"].iloc[0])) last_date_to_have_changepoint = pd.to_datetime(df_pt["ts"].iloc[int( df_pt.shape[0] * (1 - no_changepoint_proportion_from_end))]) for component in trained_model["seasonality_changepoint_dates"].keys(): if len(trained_model["seasonality_changepoint_dates"][component]) > 0: assert trained_model["seasonality_changepoint_dates"][component][-1] <= last_date_to_have_changepoint # tests forecasting the future pred = silverkite.predict_no_sim( fut_df=pd.DataFrame({ "ts": pd.date_range(start=df_pt["ts"].iloc[-1], periods=10, freq="D") }), trained_model=trained_model ) assert pred.shape[0] == 10 assert "y" in pred.columns def test_forecast_silverkite_hourly_changepoint_uniform(hourly_data): """Tests forecast_silverkite with uniform changepoints""" train_df = hourly_data["train_df"] test_df = hourly_data["test_df"] fut_time_num = hourly_data["fut_time_num"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr"], changepoints_dict={ "method": "uniform", "n_changepoints": 2, "continuous_time_col": "ct1", "growth_func": lambda x: x}) changepoint_dates = get_changepoint_dates_from_changepoints_dict( changepoints_dict={ "method": "uniform", "n_changepoints": 2, "continuous_time_col": "ct1", "growth_func": lambda x: x}, df=train_df, time_col=TIME_COL ) changepoint_cols = get_pattern_cols(trained_model["pred_cols"], "^changepoint") # checks that there are two changepoints assert len(changepoint_cols) == 2 assert "changepoint0" + pd.to_datetime(changepoint_dates[0]).strftime('_%Y_%m_%d_%H') \ in trained_model["pred_cols"] assert "changepoint1" + pd.to_datetime(changepoint_dates[1]).strftime('_%Y_%m_%d_%H') \ in trained_model["pred_cols"] fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) # checks predict_n fut_df_via_predict = silverkite.predict_no_sim( fut_df=test_df, trained_model=trained_model) assert_frame_equal( fut_df[[TIME_COL]], fut_df_via_predict[[TIME_COL]], check_like=True) assert_frame_equal( fut_df, fut_df_via_predict, check_like=True) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_hourly_changepoint_custom(hourly_data): """Tests forecast_silverkite with custom changepoints""" train_df = hourly_data["train_df"] test_df = hourly_data["test_df"] fut_time_num = hourly_data["fut_time_num"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr"], changepoints_dict={ "method": "custom", "dates": [train_df[TIME_COL][100], train_df[TIME_COL][500], train_df[TIME_COL][1000]], "continuous_time_col": "ct1", "growth_func": lambda x: x}) changepoint_dates = get_changepoint_dates_from_changepoints_dict( changepoints_dict={ "method": "custom", "dates": [train_df[TIME_COL][100], train_df[TIME_COL][500], train_df[TIME_COL][1000]], "continuous_time_col": "ct1", "growth_func": lambda x: x}, df=train_df, time_col=TIME_COL ) changepoint_cols = get_pattern_cols(trained_model["pred_cols"], "^changepoint") # checks that there are three changepoints assert len(changepoint_cols) == 3 assert "changepoint0" + pd.to_datetime(changepoint_dates[0]).strftime('_%Y_%m_%d_%H') \ in trained_model["pred_cols"] assert "changepoint1" + pd.to_datetime(changepoint_dates[1]).strftime('_%Y_%m_%d_%H') \ in trained_model["pred_cols"] assert "changepoint2" + pd.to_datetime(changepoint_dates[2]).strftime('_%Y_%m_%d_%H') \ in trained_model["pred_cols"] fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) # checks `silverkite.predict_n(_no_sim` fut_df_via_predict = silverkite.predict_no_sim( fut_df=test_df, trained_model=trained_model) assert_frame_equal( fut_df[[TIME_COL]], fut_df_via_predict[[TIME_COL]], check_like=True) assert_frame_equal( fut_df, fut_df_via_predict, check_like=True) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 def test_forecast_silverkite_hourly_changepoint_err(hourly_data): """Tests forecast_silverkite changepoint warnings and exceptions""" train_df = hourly_data["train_df"] silverkite = SilverkiteForecast() with pytest.raises( Exception, match="changepoint method must be specified"): silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr"], changepoints_dict={"n_changepoints": 2}) with pytest.raises( NotImplementedError, match="changepoint method.*not recognized"): silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr"], changepoints_dict={"method": "not implemented"}) with pytest.warns(Warning) as record: silverkite = SilverkiteForecast() silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr", "changepoint1:ct_sqrt"], changepoints_dict={ "method": "custom", "dates": ["2048-07-01-23"], "continuous_time_col": "ct1", "growth_func": lambda x: x }) assert "The following features in extra_pred_cols are removed for this training set:" \ " {'changepoint1:ct_sqrt'}." in record[0].message.args[0] def test_forecast_silverkite_with_autoreg(hourly_data): """Tests forecast_silverkite autoregression""" train_df = hourly_data["train_df"] test_df = hourly_data["test_df"][:168].reset_index(drop=True) # one week of data for testing test_past_df = train_df.copy() fut_time_num = test_df.shape[0] # we define a local function to apply `forecast_silverkite` # with and without autoregression def fit_forecast( autoreg_dict=None, test_past_df=None, simulation_based=False): silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow"], "period": [24.0, 7.0], "order": [1, 1], "seas_names": ["daily", "weekly"]}), autoreg_dict=autoreg_dict, simulation_based=simulation_based) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) return { "fut_df": fut_df, "trained_model": trained_model} # without autoregression fut_df = fit_forecast( autoreg_dict=None, test_past_df=None)["fut_df"] # with autoregression autoreg_dict = { "lag_dict": {"orders": [168]}, "agg_lag_dict": { "orders_list": [[168, 168 * 2, 168 * 3]], "interval_list": [(168, 168 * 2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()} fut_df_with_autoreg = fit_forecast( autoreg_dict=autoreg_dict, test_past_df=test_past_df)["fut_df"] # without autoregression err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 1) == 5.7 # with autoregression err = calc_pred_err(test_df[VALUE_COL], fut_df_with_autoreg[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 1) == 1.9 """ figs_path = "~/figs/" plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=figs_path + "forecast_without_autoreg.png", plt_title="without auto-regression") plt_comparison_forecast_vs_observed( fut_df=fut_df_with_autoreg, test_df=test_df, file_name=figs_path + "forecast_with_autoreg.png", plt_title="with auto-regression") """ # with autoregression option of "auto" forecast = fit_forecast( autoreg_dict="auto", test_past_df=test_past_df) fut_df_with_autoreg = forecast["fut_df"] trained_model = forecast["trained_model"] autoreg_dict = trained_model["autoreg_dict"] assert autoreg_dict["lag_dict"] == {"orders": [24, 25, 26]} assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[168, 336, 504]] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(24, 191), (192, 359)] assert trained_model["forecast_horizon"] == 24 err = calc_pred_err(test_df[VALUE_COL], fut_df_with_autoreg[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 1) == 2.5 # with autoregression option of "auto" and simulation based forecast = fit_forecast( autoreg_dict="auto", test_past_df=test_past_df, simulation_based=True) fut_df_with_autoreg = forecast["fut_df"] trained_model = forecast["trained_model"] autoreg_dict = trained_model["autoreg_dict"] assert autoreg_dict["lag_dict"] == {"orders": [1, 2, 3]} assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[168, 336, 504]] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(1, 168), (169, 336)] assert trained_model["forecast_horizon"] == 24 err = calc_pred_err(test_df[VALUE_COL], fut_df_with_autoreg[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 1) == 2.8 expected_match = "is not implemented" with pytest.raises(ValueError, match=expected_match): fit_forecast( autoreg_dict="non-existing-method", test_past_df=test_past_df, simulation_based=True) def test_forecast_silverkite_with_lagged_regressor(lagged_regressor_dict): """Tests forecast_silverkite with lagged regressors""" hourly_data = generate_df_with_reg_for_tests( freq="H", periods=24 * 500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) regressor_cols = ["regressor1", "regressor_bool", "regressor_categ"] train_df = hourly_data["train_df"].reset_index(drop=True) test_df = hourly_data["test_df"].reset_index(drop=True) fut_time_num = hourly_data["fut_time_num"] # we define a local function to apply `forecast_silverkite` # with and without lagged regressors def fit_forecast_with_regressor( regressor_cols=[], lagged_regressor_cols=[], lagged_regressor_dict=None, test_past_df=None): silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow"], "period": [24.0, 7.0], "order": [1, 1], "seas_names": ["daily", "weekly"]}), extra_pred_cols=["ct1"] + regressor_cols, lagged_regressor_dict=lagged_regressor_dict) all_extra_cols = regressor_cols for col in lagged_regressor_cols: if col not in all_extra_cols: all_extra_cols.append(col) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=test_df[all_extra_cols]) return { "fut_df": fut_df, "trained_model": trained_model} # without lagged regressors res = fit_forecast_with_regressor( regressor_cols=regressor_cols, lagged_regressor_cols=[], lagged_regressor_dict=None) fut_df = res["fut_df"] trained_model = res["trained_model"] # with lagged regressors res = fit_forecast_with_regressor( regressor_cols=regressor_cols, lagged_regressor_cols=regressor_cols, lagged_regressor_dict=lagged_regressor_dict) fut_df_with_lagged_regressor = res["fut_df"] trained_model_with_lagged_regressor = res["trained_model"] # with lagged regressors but no regressors res = fit_forecast_with_regressor( regressor_cols=[], lagged_regressor_cols=regressor_cols, lagged_regressor_dict=lagged_regressor_dict) fut_df_no_regressor = res["fut_df"] trained_model_no_regressor = res["trained_model"] # testing errors # without lagged regressors err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError e1 = err[enum.get_metric_name()] assert round(e1, 1) == 2.7 # with lagged regressors err = calc_pred_err(test_df[VALUE_COL], fut_df_with_lagged_regressor[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError e2 = err[enum.get_metric_name()] assert e2 > 0 and e2 / e1 < 0.8 # with lagged regressors but no regressors err = calc_pred_err(test_df[VALUE_COL], fut_df_no_regressor[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError e3 = err[enum.get_metric_name()] assert e3 > e2 # trained models assert trained_model["has_lagged_regressor_structure"] is False assert trained_model_with_lagged_regressor["has_lagged_regressor_structure"] is True assert trained_model_with_lagged_regressor["lagged_regressor_dict"] == lagged_regressor_dict assert trained_model_with_lagged_regressor["lagged_regressor_func"] is not None assert trained_model_with_lagged_regressor["min_lagged_regressor_order"] == 1 assert trained_model_with_lagged_regressor["max_lagged_regressor_order"] == 504 expected_pred_cols = [ 'ct1', 'regressor1', 'regressor_bool', 'regressor_categ', 'sin1_tod_daily', 'cos1_tod_daily', 'sin1_tow_weekly', 'cos1_tow_weekly'] expected_pred_cols_with_lagged_regressor = [ 'ct1', 'regressor1', 'regressor_bool', 'regressor_categ', 'sin1_tod_daily', 'cos1_tod_daily', 'sin1_tow_weekly', 'cos1_tow_weekly', 'regressor1_lag1', 'regressor1_lag168', 'regressor1_avglag_168_336_504', 'regressor1_avglag_169_to_336', 'regressor_bool_lag1', 'regressor_bool_lag168', 'regressor_bool_avglag_168_336_504', 'regressor_bool_avglag_169_to_336', 'regressor_categ_lag1', 'regressor_categ_lag168'] expected_pred_cols_no_regressor = [ 'ct1', 'sin1_tod_daily', 'cos1_tod_daily', 'sin1_tow_weekly', 'cos1_tow_weekly', 'regressor1_lag1', 'regressor1_lag168', 'regressor1_avglag_168_336_504', 'regressor1_avglag_169_to_336', 'regressor_bool_lag1', 'regressor_bool_lag168', 'regressor_bool_avglag_168_336_504', 'regressor_bool_avglag_169_to_336', 'regressor_categ_lag1', 'regressor_categ_lag168'] assert trained_model["pred_cols"] == expected_pred_cols assert trained_model_with_lagged_regressor["pred_cols"] == expected_pred_cols_with_lagged_regressor assert trained_model_no_regressor["pred_cols"] == expected_pred_cols_no_regressor trained_mape = trained_model["training_evaluation"]["MAPE"] trained_mape_with_lagged_regressor = trained_model_with_lagged_regressor["training_evaluation"]["MAPE"] trained_mape_no_regressor = trained_model_no_regressor["training_evaluation"]["MAPE"] assert round(trained_mape, 0) == 446 assert round(trained_mape_with_lagged_regressor, 0) == 337 assert round(trained_mape_no_regressor, 0) == 315 def test_forecast_silverkite_with_true_lagged_regressor(): """Tests efficacy of lagged regressor by a timeseries generated by a true lagged regressor""" n = 1000 date_list = pd.date_range( start=datetime.datetime(2018, 7, 1), periods=n, freq="D").tolist() regressor = pd.Series(np.round(np.sin(np.array(range(n))), 8)) lagged_regressor = regressor.shift(3).bfill().ffill() y = 10 + lagged_regressor df = pd.DataFrame({ "ts": date_list, "regressor1": regressor, "regressor1_lag": lagged_regressor, "y": y}) train_df = df.iloc[:800].reset_index(drop=True) test_df = df.iloc[800:].reset_index(drop=True) fut_time_num = test_df.shape[0] regressor_cols = ["regressor1"] lagged_regressor_dict = { "regressor1": {"lag_dict": {"orders": [3]}}} def fit_forecast_with_regressor( regressor_cols=[], lagged_regressor_cols=[], lagged_regressor_dict=None): silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=None, extra_pred_cols=["ct1"] + regressor_cols, lagged_regressor_dict=lagged_regressor_dict) all_extra_cols = regressor_cols for col in lagged_regressor_cols: if col not in all_extra_cols: all_extra_cols.append(col) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=test_df[all_extra_cols]) return { "fut_df": fut_df, "trained_model": trained_model} # with regressors but no lagged regressors res = fit_forecast_with_regressor( regressor_cols=regressor_cols, lagged_regressor_cols=[], lagged_regressor_dict=None) fut_df = res["fut_df"] trained_model = res["trained_model"] assert trained_model["pred_cols"] == ["ct1", "regressor1"] # with lagged regressors res = fit_forecast_with_regressor( regressor_cols=regressor_cols, lagged_regressor_cols=regressor_cols, lagged_regressor_dict=lagged_regressor_dict) fut_df_with_lagged_regressor = res["fut_df"] trained_model_with_lagged_regressor = res["trained_model"] assert trained_model_with_lagged_regressor["pred_cols"] == ["ct1", "regressor1", "regressor1_lag3"] # with lagged regressors but no regressors res = fit_forecast_with_regressor( regressor_cols=[], lagged_regressor_cols=regressor_cols, lagged_regressor_dict=lagged_regressor_dict) fut_df_no_regressor = res["fut_df"] trained_model_no_regressor = res["trained_model"] assert trained_model_no_regressor["pred_cols"] == ["ct1", "regressor1_lag3"] # checks lagged regressor efficacy by comparing prediction errors # with regressors but no lagged regressors err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError e1 = err[enum.get_metric_name()] # with lagged regressors err = calc_pred_err(test_df[VALUE_COL], fut_df_with_lagged_regressor[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError e2 = err[enum.get_metric_name()] # with lagged regressors but no regressors err = calc_pred_err(test_df[VALUE_COL], fut_df_no_regressor[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError e3 = err[enum.get_metric_name()] assert e2 < 0.1 * e1 assert e3 < 0.1 * e1 assert e2 < e3 def test_forecast_silverkite_2min(): """Tests silverkite on 2min data""" data = generate_df_for_tests( freq="2min", periods=24 * 30 * 20, train_frac=0.9, train_end_date=None, noise_std=0.1) train_df = data["train_df"] test_df = data["test_df"] fut_time_num = data["fut_time_num"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5], "seas_names": [None, "weekly", "yearly"]}), extra_pred_cols=["ct_sqrt", "dow_hr"]) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="2min", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.5 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 1.2 """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_with_weighted_col(): """Tests silverkite on 2min data""" data = generate_df_for_tests( freq="1D", periods=400, train_frac=0.9, train_end_date=None, noise_std=0.1) train_df = data["train_df"] test_df = data["test_df"] fut_time_num = data["fut_time_num"] silverkite = SilverkiteForecast() # Tests without weighted regression trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tow", "conti_year"], "period": [7.0, 1.0], "order": [5, 5], "seas_names": ["weekly", "yearly"]}), extra_pred_cols=["ct_sqrt", "dow_hr"], fit_algorithm="ridge", regression_weight_col=None) assert trained_model["regression_weight_col"] is None fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="1D", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 2) == 0.21 # Tests with weighted regression trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tow", "conti_year"], "period": [7.0, 1.0], "order": [5, 5], "seas_names": ["weekly", "yearly"]}), extra_pred_cols=["ct_sqrt", "dow_hr"], fit_algorithm="ridge", regression_weight_col="ct1") assert trained_model["regression_weight_col"] == "ct1" fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="1D", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError # The error is slightly smaller than before assert round(err[enum.get_metric_name()], 2) == 0.20 def test_forecast_silverkite_2min_with_uncertainty(): """Tests silverkite on 2min data""" res = generate_df_for_tests( freq="2min", periods=24 * 50 * 30, train_frac=0.8, train_end_date=None, noise_std=0.1) train_df = res["train_df"] test_df = res["test_df"][:24 * 30 * 7] fut_time_num = test_df.shape[0] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 3], "seas_names": [None, "weekly", "yearly"]}), extra_pred_cols=["ct_sqrt", "dow_hr"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}} ) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="2min", new_external_regressor_df=None) fut_df["y_true"] = test_df["y"] fut_df["inside_95_ci"] = fut_df.apply( lambda row: ( (row["y_true"] <= row["y_quantile_summary"][1]) and (row["y_true"] >= row["y_quantile_summary"][0])), axis=1) ci_coverage = 100.0 * fut_df["inside_95_ci"].mean() assert round(ci_coverage) == 91, ( "95 percent CI coverage is not as expected (91%)") err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.5 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 1.2 def test_forecast_silverkite_simulator(): """Tests silverkite simulator on hourly data with linear model fit""" data = generate_df_for_tests( freq="H", periods=100 * 30, train_frac=0.8, train_end_date=None, noise_std=0.3) train_df = data["train_df"] test_df = data["test_df"][:30 * 7] fut_df = test_df.copy() fut_df[VALUE_COL] = None silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}}) past_df = train_df[[TIME_COL, VALUE_COL]].copy() # simulations with error sim_df = silverkite.simulate( fut_df=fut_df, trained_model=trained_model, past_df=past_df, new_external_regressor_df=None, include_err=True) np.random.seed(123) assert sim_df[VALUE_COL].dtype == "float64" err = calc_pred_err(test_df[VALUE_COL], sim_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert round(err[enum.get_metric_name()], 2) == 0.97 enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 2) == 0.55 # simulations without errors sim_df = silverkite.simulate( fut_df=fut_df, trained_model=trained_model, past_df=past_df, new_external_regressor_df=None, include_err=False) np.random.seed(123) assert sim_df[VALUE_COL].dtype == "float64" err = calc_pred_err(test_df[VALUE_COL], sim_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert round(err[enum.get_metric_name()], 2) == 0.98 enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 2) == 0.47 # multiple simulations sim_df = silverkite.simulate_multi( fut_df=fut_df, trained_model=trained_model, sim_num=2, past_df=past_df, new_external_regressor_df=None, include_err=False) assert sim_df[VALUE_COL].dtype == "float64" assert sim_df.shape[0] == fut_df.shape[0] * 2 assert list(sim_df.columns) == [TIME_COL, VALUE_COL, "sim_label"] """ # making a plot of comparison between 10 simulations and observed sim_num = 10 sim_labels = [f"sim{i}" for i in range(sim_num)] colors_dict = {label: "grey" for label in sim_labels} df_dict = {} np.random.seed(123) for sim_label in sim_labels: sim_df = silverkite.simulate( fut_df=fut_df, trained_model=trained_model, past_df=train_df[[TIME_COL, VALUE_COL]].copy(), new_external_regressor_df=None, include_err=True) df_dict[sim_label] = sim_df df_dict.update({"obs": test_df}) colors_dict.update({"obs": "red"}) legends_dict = {"sim1": "sim", "obs": "obs"} from greykite.common.viz.timeseries_plotting import plt_compare_timeseries plt_compare_timeseries( df_dict=df_dict, time_col=TIME_COL, value_col=VALUE_COL, colors_dict=colors_dict, legends_dict=legends_dict, plt_title="", linewidth=1) from pathlib import Path import os import matplotlib.pyplot as plt directory = Path(__file__).parents[6] file_name = os.path.join( directory, "simulated_timeseries_vs_observed.png") plt.savefig(file_name) plt.close() """ def test_forecast_silverkite_simulator_exception(): """Tests silverkite simulator exception catch""" data = generate_df_for_tests( freq="H", periods=24 * 30, train_frac=0.8, train_end_date=None, noise_std=0.3) train_df = data["train_df"] test_df = data["test_df"][:7] fut_df = test_df.copy() fut_df[VALUE_COL] = None silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"], uncertainty_dict=None) past_df = train_df[[TIME_COL, VALUE_COL]].copy() # testing for Exception expected_match = ( "Error is requested via ") # `uncertainty_dict` is not passed to model. # Therefore raising exception is expected. with pytest.raises(ValueError, match=expected_match): silverkite.simulate( fut_df=fut_df, trained_model=trained_model, past_df=past_df, new_external_regressor_df=None, include_err=True) def test_forecast_silverkite_predict_via_sim(): """Tests silverkite simulator on hourly data with linear model fit""" data = generate_df_for_tests( freq="H", periods=100 * 30, train_frac=0.8, train_end_date=None, noise_std=0.3) train_df = data["train_df"] test_df = data["test_df"][:30 * 7] fut_df = test_df.copy() fut_df[VALUE_COL] = None silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}}) past_df = train_df[[TIME_COL, VALUE_COL]].copy() # predict via sim np.random.seed(123) fut_df = silverkite.predict_via_sim( fut_df=fut_df, trained_model=trained_model, past_df=past_df, new_external_regressor_df=None, sim_num=10, include_err=True) assert list(fut_df.columns) == [ TIME_COL, VALUE_COL, f"{VALUE_COL}_quantile_summary", ERR_STD_COL] err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert round(err[enum.get_metric_name()], 2) == 0.98 enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 2) == 0.48 """ import os from pathlib import Path directory = Path(__file__).parents[6] file_name = os.path.join( directory, "predict_silverkite_via_sim.png") plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=file_name) # to plot CIs plt_check_ci(fut_df=fut_df, test_df=test_df) """ def test_silverkite_predict(): """Testing ``predict_silverkite``""" data = generate_df_for_tests( freq="D", periods=300, train_frac=0.8, train_end_date=None, noise_std=3, remove_extra_cols=True, autoreg_coefs=[10] * 24, fs_coefs=[0.1, 1, 0.1], growth_coef=2.0) train_df = data["train_df"] test_df = data["test_df"] fut_df = test_df[:5].copy() fut_df[VALUE_COL] = None fut_df_with_gap = test_df[5:10].copy() fut_df_with_gap[VALUE_COL] = None fut_df_including_training = pd.concat( [train_df, fut_df], axis=0, ignore_index=True) fut_df_including_training[VALUE_COL] = None autoreg_dict = { "lag_dict": {"orders": list(range(7, 14))}, "agg_lag_dict": None, "series_na_fill_func": lambda s: s.bfill().ffill()} # These are the columns we expect to get from the predictions expected_fut_df_cols = [ TIME_COL, VALUE_COL, f"{VALUE_COL}_quantile_summary", ERR_STD_COL] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fit_algorithm="statsmodels_ols", fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [3, 5]}), extra_pred_cols=["ct1", "dow_hr"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}}, autoreg_dict=autoreg_dict) # ``fut_df`` does not include training data np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": 0, "len_after_training": 5, "len_gap": 0} assert predict_info["fut_df"].shape[0] == fut_df.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # ``fut_df`` includes training data predict_info = silverkite.predict( fut_df=fut_df_including_training, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": train_df.shape[0], "len_after_training": 5, "len_gap": 0} assert predict_info["fut_df"].shape[0] == fut_df_including_training.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # ``fut_df`` has a gap # In this case simulations will be invoked # This is because ``min_lag_order < forecast_horizon`` predict_info = silverkite.predict( fut_df=fut_df_with_gap, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert not predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 10 assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": 0, "len_after_training": 5, "len_gap": 5} assert predict_info["fut_df"].shape[0] == fut_df_with_gap.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols def test_predict_silverkite_with_regressors(): """Testing ``predict_silverkite`` in presence of regressors""" data = generate_df_with_reg_for_tests( freq="D", periods=500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) fut_time_num = 5 len_gap = 4 train_df = data["train_df"] test_df = data["test_df"] fut_df = test_df[:fut_time_num].reset_index(drop=True) fut_df[VALUE_COL] = None fut_df_with_gap = test_df[len_gap:(len_gap + fut_time_num)].copy() fut_df_with_gap[VALUE_COL] = None fut_df_including_training = pd.concat( [train_df, fut_df], axis=0, ignore_index=True) fut_df_including_training[VALUE_COL] = None regressor_cols = ["regressor1", "regressor_bool", "regressor_categ"] autoreg_dict = { "lag_dict": {"orders": list(range(7, 14))}, "agg_lag_dict": None, "series_na_fill_func": lambda s: s.bfill().ffill()} # These are the columns we expect to get from the predictions expected_fut_df_cols = [ TIME_COL, VALUE_COL, f"{VALUE_COL}_quantile_summary", ERR_STD_COL] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fit_algorithm="statsmodels_ols", fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [3, 5]}), extra_pred_cols=["ct1", "dow_hr"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}}, autoreg_dict=autoreg_dict) # (Case 1.a) ``fut_df`` does not include training data # regressors passed through ``fut_df`` np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == fut_time_num assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": 0, "len_after_training": fut_time_num, "len_gap": 0} assert predict_info["fut_df"].shape[0] == fut_df.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # (Case 1.b) ``fut_df`` does not include training data # regressors passed separately np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df[[TIME_COL]], trained_model=trained_model, past_df=None, new_external_regressor_df=fut_df[regressor_cols].copy(), sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == fut_time_num assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": 0, "len_after_training": fut_time_num, "len_gap": 0} assert predict_info["fut_df"].shape[0] == fut_df.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # (Case 2.a) ``fut_df`` includes training data. # Regressors passed through ``fut_df`` predict_info = silverkite.predict( fut_df=fut_df_including_training, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == fut_time_num assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": train_df.shape[0], "len_after_training": fut_time_num, "len_gap": 0} assert predict_info["fut_df"].shape[0] == fut_df_including_training.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # (Case 2.b) ``fut_df`` includes training data. # Regressors passed directly. predict_info = silverkite.predict( fut_df=fut_df_including_training[[TIME_COL]], trained_model=trained_model, past_df=None, new_external_regressor_df=fut_df_including_training[regressor_cols].copy(), sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == fut_time_num assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": train_df.shape[0], "len_after_training": fut_time_num, "len_gap": 0} assert predict_info["fut_df"].shape[0] == fut_df_including_training.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # (Case 3.a) ``fut_df`` has a gap. # Regressors passed through ``fut_df``. # In this case simulations will be invoked. # This is because ``min_lag_order < forecast_horizon``. predict_info = silverkite.predict( fut_df=fut_df_with_gap, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert not predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == len_gap + fut_time_num assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": 0, "len_after_training": fut_time_num, "len_gap": len_gap} assert predict_info["fut_df"].shape[0] == fut_df_with_gap.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols # (Case 3.b) ``fut_df`` has a gap. # Regressors passed directly # In this case simulations will be invoked. # This is because ``min_lag_order < forecast_horizon``. predict_info = silverkite.predict( fut_df=fut_df_with_gap[[TIME_COL]], trained_model=trained_model, past_df=None, new_external_regressor_df=fut_df_with_gap[regressor_cols].copy(), sim_num=5, include_err=None, force_no_sim=False, na_fill_func=lambda s: s.interpolate().bfill()) # Simple NA fill is used for easy to track testing assert not predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == len_gap + fut_time_num assert predict_info["min_lag_order"] == 7 assert predict_info["fut_df_info"]["forecast_partition_summary"] == { "len_before_training": 0, "len_within_training": 0, "len_after_training": fut_time_num, "len_gap": len_gap} assert predict_info["fut_df"].shape[0] == fut_df_with_gap.shape[0] assert list(predict_info["fut_df"].columns) == expected_fut_df_cols fut_df_gap = predict_info["fut_df_info"]["fut_df_gap"] expected_time_gaps = pd.date_range( start=train_df.tail(1)[TIME_COL].values[0] + pd.to_timedelta("1D"), periods=len_gap, freq="1D") expected_fut_df_gap = pd.DataFrame({ TIME_COL: expected_time_gaps, "regressor1": [test_df.iloc[len_gap]["regressor1"]]*len_gap, "regressor_bool": [test_df.iloc[len_gap]["regressor_bool"]]*len_gap, "regressor_categ": [test_df.iloc[len_gap]["regressor_categ"]]*len_gap }) expected_fut_df_gap[TIME_COL] = pd.to_datetime(expected_fut_df_gap[TIME_COL]) assert_frame_equal(fut_df_gap, expected_fut_df_gap) def test_predict_silverkite_with_lagged_regressors(): """Testing ``SilverkiteForecast.predict`` in presence of lagged regressors""" data = generate_df_with_reg_for_tests( freq="1D", periods=20 * 7, # short-term: 20 weeks of data remove_extra_cols=True, mask_test_actuals=True) regressor_cols = ["regressor1", "regressor2", "regressor_categ"] keep_cols = [TIME_COL, VALUE_COL] + regressor_cols train_df = data["train_df"][keep_cols] test_df = data["test_df"][keep_cols] fut_df = test_df.copy() # Specify 2 configurations of autoreg_dict # autoreg_dict1 would need simulation in predict phase # autoreg_dict2 does not need simulation in predict phase autoreg_dict1 = { "lag_dict": {"orders": [7]}, "agg_lag_dict": { "orders_list": [[7, 7*2, 7*3]], "interval_list": [(8, 7*2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()} autoreg_dict2 = { "lag_dict": {"orders": [28]}, "agg_lag_dict": { "orders_list": [], "interval_list": [(7*4 + 1, 7*5)]}, "series_na_fill_func": lambda s: s.bfill().ffill()} lagged_regressor_dict = { "regressor1": { "lag_dict": {"orders": [1, 2, 3]}, "agg_lag_dict": { "orders_list": [[7, 7 * 2, 7 * 3]], "interval_list": [(8, 7 * 2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()}, "regressor2": "auto" } fs_components_df = pd.DataFrame({ "name": ["tow", "conti_year"], "period": [7.0, 1.0], "order": [3, 0], "seas_names": ["weekly", None]}) # Has autoregression and simulation is used in predict phase silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, fit_algorithm="linear", fs_components_df=fs_components_df, extra_pred_cols=regressor_cols, autoreg_dict=autoreg_dict1, lagged_regressor_dict=lagged_regressor_dict) np.random.seed(123) result1 = silverkite.predict( fut_df=fut_df.head(10), # this is bigger than the minimal order in autoreg_dict1 trained_model=trained_model, past_df=train_df, new_external_regressor_df=None, force_no_sim=False) expected_lag_cols = [ "y_lag7", "y_avglag_7_14_21", "y_avglag_8_to_14", "regressor1_lag1", "regressor1_lag2", "regressor1_lag3", "regressor1_avglag_7_14_21", "regressor1_avglag_8_to_14", "regressor2_lag35", "regressor2_avglag_35_42_49", "regressor2_avglag_30_to_36"] assert set(expected_lag_cols).issubset(trained_model["pred_cols"]) assert result1["fut_df"].shape == (10, 2) assert result1["fut_df"].isna().sum().sum() == 0 # Has autoregression and simulation is not used in predict phase silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, fit_algorithm="linear", fs_components_df=fs_components_df, extra_pred_cols=regressor_cols, autoreg_dict=autoreg_dict2, lagged_regressor_dict=lagged_regressor_dict) np.random.seed(123) result2 = silverkite.predict( fut_df=fut_df, trained_model=trained_model, past_df=train_df, new_external_regressor_df=None, force_no_sim=False) expected_lag_cols = [ "y_lag28", "y_avglag_29_to_35", "regressor1_lag1", "regressor1_lag2", "regressor1_lag3", "regressor1_avglag_7_14_21", "regressor1_avglag_8_to_14", "regressor2_lag35", "regressor2_avglag_35_42_49", "regressor2_avglag_30_to_36"] assert set(expected_lag_cols).issubset(trained_model["pred_cols"]) assert result2["fut_df"].shape == (27, 2) assert result2["fut_df"].isna().sum().sum() == 0 # No autoregression silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, fit_algorithm="linear", fs_components_df=fs_components_df, extra_pred_cols=regressor_cols, autoreg_dict=None, lagged_regressor_dict=lagged_regressor_dict) np.random.seed(123) result3 = silverkite.predict( fut_df=fut_df, trained_model=trained_model, past_df=train_df, new_external_regressor_df=None, force_no_sim=False) expected_lag_cols = [ "regressor1_lag1", "regressor1_lag2", "regressor1_lag3", "regressor1_avglag_7_14_21", "regressor1_avglag_8_to_14", "regressor2_lag35", "regressor2_avglag_35_42_49", "regressor2_avglag_30_to_36"] assert set(expected_lag_cols).issubset(trained_model["pred_cols"]) assert result3["fut_df"].shape == (27, 2) assert result3["fut_df"].isna().sum().sum() == 0 def test_predict_silverkite_exceptions(): """Testing ``predict_silverkite``""" data = generate_df_for_tests( freq="D", periods=300, train_frac=0.8, train_end_date=None, noise_std=3, remove_extra_cols=True, autoreg_coefs=[10] * 24, fs_coefs=[0.1, 1, 0.1], growth_coef=2.0) train_df = data["train_df"] test_df = data["test_df"] fut_df = test_df.copy() fut_df[VALUE_COL] = None fut_df_with_before_training = train_df[[TIME_COL]] fut_df_with_before_training[TIME_COL] = ( fut_df_with_before_training[TIME_COL] - datetime.timedelta(days=1)) autoreg_dict = { "lag_dict": {"orders": list(range(7, 14))}, "agg_lag_dict": None, "series_na_fill_func": lambda s: s.bfill().ffill()} uncertainty_dict = { "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}} silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fit_algorithm="statsmodels_ols", fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct1", "dow_hr"], uncertainty_dict=uncertainty_dict, autoreg_dict=autoreg_dict) # Trains a model with uncertainty trained_model_no_uncertainty = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fit_algorithm="statsmodels_ols", fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}), extra_pred_cols=["ct1", "dow_hr"], uncertainty_dict=None, autoreg_dict=autoreg_dict) # Checks Exception for ``include_err = True`` while no uncertainty in the model expected_match = "However model does not support uncertainty. " with pytest.raises(ValueError, match=expected_match): silverkite.predict( fut_df=fut_df, trained_model=trained_model_no_uncertainty, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=True, force_no_sim=False) expected_match = "cannot have timestamps occurring before the training data" with pytest.raises(ValueError, match=expected_match): silverkite.predict( fut_df=fut_df_with_before_training, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) expected_match = "must be a dataframe of non-zero size" with pytest.raises(ValueError, match=expected_match): silverkite.predict( fut_df=fut_df.iloc[0:0], trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) expected_match = "which is what ``trained_model`` considers to be the time column" with pytest.raises(ValueError, match=expected_match): fut_df0 = fut_df[[TIME_COL]] fut_df0.columns = ["dummy_ts"] silverkite.predict( fut_df=fut_df0, trained_model=trained_model, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) def test_predict_silverkite_compare_various_ways(): """Testing various ways to perform prediction using silverkite model. Make sure predictions match when expected.""" data = generate_df_for_tests( freq="H", periods=24 * 300, train_frac=0.8, train_end_date=None, noise_std=3, remove_extra_cols=True, autoreg_coefs=[10] * 24, fs_coefs=[0.1, 1, 0.1], growth_coef=2.0) train_df = data["train_df"] test_df = data["test_df"][:5] fut_df = test_df.copy() fut_df[VALUE_COL] = None # With autoregression with min lag = 2 autoreg_dict_recent_lag = { "lag_dict": {"orders": list(range(1, 3))}, "agg_lag_dict": None, "series_na_fill_func": lambda s: s.bfill().ffill()} # With autoregression with min lag = 168 autoreg_dict_old_lag_only = { "lag_dict": None, "agg_lag_dict": { "orders_list": [[168, 168 * 2]], "interval_list": [(168, 168 * 2)]}, "series_na_fill_func": lambda s: s.bfill().ffill()} silverkite = SilverkiteForecast() def fit_silverkite(autoreg_dict): return silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fit_algorithm="statsmodels_ols", fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [3, 5]}), extra_pred_cols=["ct1", "dow_hr"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}}, autoreg_dict=autoreg_dict) trained_model_old_lag_only = fit_silverkite( autoreg_dict=autoreg_dict_old_lag_only) trained_model_with_recent_lag = fit_silverkite( autoreg_dict=autoreg_dict_recent_lag) trained_model_no_autoreg = fit_silverkite(autoreg_dict=None) # (Case 1) First the case with autoregression with old lag only # In this case we expect that no sim approach will be triggered # by ``silverkite.predict_n(``, and ``predict_silverkite``, # because ``min_lag_order`` is 2 while forecast horizon is 24 np.random.seed(123) fut_df_with_ar = silverkite.predict_n_no_sim( fut_time_num=test_df.shape[0], trained_model=trained_model_old_lag_only, freq="1H", new_external_regressor_df=None) # Directly using `silverkite.predict_n(` which will use simulations. # We expect the same result as above. np.random.seed(123) predict_info = silverkite.predict_n( fut_time_num=test_df.shape[0], trained_model=trained_model_old_lag_only, freq="1H", new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 168 fut_df_with_ar_2 = predict_info["fut_df"] # Uses ``predict_silverkite`` np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df, trained_model=trained_model_old_lag_only, past_df=train_df[[TIME_COL, VALUE_COL]].copy(), new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 168 fut_df_with_ar_3 = predict_info["fut_df"] # Checks the case where `past_df` is not passed np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df.copy(), trained_model=trained_model_old_lag_only, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 168 fut_df_with_ar_4 = predict_info["fut_df"] # We expect to get the exact same future predictions using three above calls assert_frame_equal( fut_df_with_ar[[TIME_COL, VALUE_COL]], fut_df_with_ar_2[[TIME_COL, VALUE_COL]]) assert_frame_equal( fut_df_with_ar[[TIME_COL, VALUE_COL]], fut_df_with_ar_3[[TIME_COL, VALUE_COL]]) assert_frame_equal( fut_df_with_ar[[TIME_COL, VALUE_COL]], fut_df_with_ar_4[[TIME_COL, VALUE_COL]]) assert list(fut_df_with_ar.columns) == [ TIME_COL, VALUE_COL, f"{VALUE_COL}_quantile_summary", ERR_STD_COL] # (Case 2) The case with short autoregression # In this case we expect that via_sim approach will be triggered # by ``silverkite.predict_n(``, and ``predict_silverkite`` # because ``min_lag_order`` is 168*2 while forecast horizon is 24 np.random.seed(123) fut_df_with_ar = silverkite.predict_n_via_sim( fut_time_num=test_df.shape[0], trained_model=trained_model_with_recent_lag, freq="1H", new_external_regressor_df=None, sim_num=5, include_err=None) # Directly uses ``silverkite.predict_n(`` which will use simulations. # We expect the same result as above. np.random.seed(123) predict_info = silverkite.predict_n( fut_time_num=test_df.shape[0], trained_model=trained_model_with_recent_lag, freq="1H", new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert not predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 1 fut_df_with_ar_2 = predict_info["fut_df"] # Uses ``predict_silverkite`` np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df.copy(), trained_model=trained_model_with_recent_lag, past_df=train_df[[TIME_COL, VALUE_COL]].copy(), new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert not predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 1 fut_df_with_ar_3 = predict_info["fut_df"] # Checks the case when`past_df` is not passed. np.random.seed(123) predict_info = silverkite.predict( fut_df=fut_df, trained_model=trained_model_with_recent_lag, past_df=None, new_external_regressor_df=None, sim_num=5, include_err=None, force_no_sim=False) assert not predict_info["simulations_not_used"] assert predict_info["fut_df_info"]["inferred_forecast_horizon"] == 5 assert predict_info["min_lag_order"] == 1 fut_df_with_ar_4 = predict_info["fut_df"] # We expect to get the exact same future predictions using three above calls assert_frame_equal( fut_df_with_ar[[TIME_COL, VALUE_COL]], fut_df_with_ar_2[[TIME_COL, VALUE_COL]]) assert_frame_equal( fut_df_with_ar[[TIME_COL, VALUE_COL]], fut_df_with_ar_3[[TIME_COL, VALUE_COL]]) assert_frame_equal( fut_df_with_ar[[TIME_COL, VALUE_COL]], fut_df_with_ar_4[[TIME_COL, VALUE_COL]]) assert list(fut_df_with_ar.columns) == [ TIME_COL, VALUE_COL, f"{VALUE_COL}_quantile_summary", ERR_STD_COL] # (Case 3) Tests the cases with no AR fut_df_no_ar = silverkite.predict_n_no_sim( fut_time_num=test_df.shape[0], trained_model=trained_model_no_autoreg, freq="1H", new_external_regressor_df=None) # Directly calculated via ``silverkite.predict_n(`` predict_info = silverkite.predict_n( fut_time_num=test_df.shape[0], trained_model=trained_model_no_autoreg, freq="1H", new_external_regressor_df=None) fut_df_no_ar2 = predict_info["fut_df"] # Directly calculated via ``predict_silverkite`` predict_info = silverkite.predict( fut_df=fut_df.copy(), trained_model=trained_model_no_autoreg, past_df=train_df[[TIME_COL, VALUE_COL]].copy(), new_external_regressor_df=None, sim_num=10, include_err=None, force_no_sim=False) fut_df_no_ar3 = predict_info["fut_df"] # We expect to get the exact same future predictions using three above calls assert_frame_equal( fut_df_no_ar[[TIME_COL, VALUE_COL]], fut_df_no_ar2[[TIME_COL, VALUE_COL]]) assert_frame_equal( fut_df_no_ar[[TIME_COL, VALUE_COL]], fut_df_no_ar3[[TIME_COL, VALUE_COL]]) err = calc_pred_err(test_df[VALUE_COL], fut_df_with_ar[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] == pytest.approx(114.2, rel=1e-2) err = calc_pred_err(test_df[VALUE_COL], fut_df_no_ar[VALUE_COL]) enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] == pytest.approx(59.8, rel=1e-2) """ import os from pathlib import Path directory = Path(__file__).parents[6] file_name = os.path.join( directory, "silverkite.predict_n(_via_sim.png") plt_compare_timeseries( df_dict={ "train data last part": train_df[-(24*60):], "test data": test_df, "forecast AR/sim": fut_df_with_ar_sim, "forecast no AR": fut_df_no_ar}, time_col=TIME_COL, value_col=VALUE_COL, colors_dict={ "train data last part": "orange", "test data": "red", "forecast AR/sim": "green", "forecast no AR": "olive"}, plt_title="") if file_name is not None: plt.savefig(file_name) plt.close() # to plot CIs plt_check_ci(fut_df=fut_df_with_ar_sim, test_df=test_df) plt_check_ci(fut_df=fut_df_no_ar, test_df=test_df) """ def test_silverkite_predict_n_include_err_exception(): """Testing for exception for `include_err=True` while uncertainty is not passsed""" data = generate_df_for_tests( freq="H", periods=24 * 300, train_frac=0.8, train_end_date=None, noise_std=3, remove_extra_cols=True, autoreg_coefs=[10] * 24, fs_coefs=[0.1, 1, 0.1], growth_coef=2.0) train_df = data["train_df"] test_df = data["test_df"] fut_df = test_df.copy() fut_df[VALUE_COL] = None silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [0, 1]}), extra_pred_cols=[], uncertainty_dict=None, autoreg_dict=None) expected_match = "However model does not support uncertainty. " with pytest.raises(ValueError, match=expected_match): silverkite.predict_n( fut_time_num=test_df.shape[0], trained_model=trained_model, freq="1H", new_external_regressor_df=None, sim_num=5, include_err=True, force_no_sim=False) with pytest.raises(ValueError, match=expected_match): silverkite.predict( fut_df=fut_df, trained_model=trained_model, new_external_regressor_df=None, sim_num=5, include_err=True, force_no_sim=False) def test_forecast_silverkite_simulator_regressor(): """Tests silverkite simulator with regressors""" data = generate_df_with_reg_for_tests( freq="D", periods=500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) regressor_cols = ["regressor1", "regressor_bool", "regressor_categ"] train_df = data["train_df"].reset_index(drop=True) test_df = data["test_df"].reset_index(drop=True) silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, training_fraction=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [3, 5], "seas_names": None}), extra_pred_cols=["ct_sqrt", "dow_hr", "ct1"] + regressor_cols, fit_algorithm="linear", uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}}) past_df = train_df[[TIME_COL, VALUE_COL]].copy() sim_df = silverkite.simulate( fut_df=test_df[[TIME_COL, VALUE_COL]], trained_model=trained_model, past_df=past_df, new_external_regressor_df=test_df[regressor_cols], include_err=True) assert sim_df[VALUE_COL].dtype == "float64" err = calc_pred_err(test_df[VALUE_COL], sim_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert round(err[enum.get_metric_name()], 2) == 0.56 enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 2) == 2.83 # predict via sim np.random.seed(123) fut_df = silverkite.predict_via_sim( fut_df=test_df[[TIME_COL, VALUE_COL]], trained_model=trained_model, past_df=past_df, new_external_regressor_df=test_df[regressor_cols], sim_num=10, include_err=True) assert list(fut_df.columns) == [ TIME_COL, VALUE_COL, f"{VALUE_COL}_quantile_summary", ERR_STD_COL] assert sim_df[VALUE_COL].dtype == "float64" err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert round(err[enum.get_metric_name()], 2) == 0.65 enum = EvaluationMetricEnum.RootMeanSquaredError assert round(err[enum.get_metric_name()], 2) == 2.35 """ plt_comparison_forecast_vs_observed( fut_df=sim_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_with_holidays_hourly(): """Tests silverkite with holidays and seasonality interactions""" res = generate_df_with_holidays(freq="H", periods=24 * 700) train_df = res["train_df"] test_df = res["test_df"] fut_time_num = res["fut_time_num"] # generate holidays countries = ["US", "India"] event_df_dict = get_holidays(countries, year_start=2015, year_end=2025) for country in countries: event_df_dict[country][EVENT_DF_LABEL_COL] = country + "_holiday" # custom seasonality names fourier_col1 = get_fourier_col_name( k=1, col_name="tod", function_name="sin", seas_name="daily") fourier_col2 = get_fourier_col_name( k=1, col_name="tod", function_name="cos", seas_name="daily") fourier_col3 = get_fourier_col_name(1, "conti_year", function_name="cos") silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col="ts", value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5], "seas_names": ["daily", "weekly", None]}), extra_pred_cols=["ct_sqrt", "dow_hr", f"events_US*{fourier_col1}", f"events_US*{fourier_col2}", f"events_US*{fourier_col3}"], daily_event_df_dict=event_df_dict) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_with_holidays_effect(): """Tests silverkite, modeling a separate effect per holiday (instead of per holiday+country as in test_forecast_silverkite_with_holidays_hourly) """ res = generate_df_with_holidays(freq="H", periods=24 * 700) train_df = res["train_df"] test_df = res["test_df"] fut_time_num = res["fut_time_num"] # generate holidays countries = ["US", "India"] holidays_to_model_separately = [ "New Year's Day", "Christmas Day", "Independence Day", "Thanksgiving", "Labor Day", "Memorial Day", "Veterans Day"] event_df_dict = generate_holiday_events( countries=countries, holidays_to_model_separately=holidays_to_model_separately, year_start=2015, year_end=2025, pre_num=0, post_num=0) # constant event effect at daily level event_cols = [f"Q('events_{key}')" for key in event_df_dict.keys()] # different hourly seasonality on weekends. # fs_* matches the specification to "fs_components_df" interaction_cols = cols_interact( static_col="is_weekend", fs_name="tod", fs_order=3, fs_seas_name="daily") extra_pred_cols = ["ct_sqrt", "dow_hr"] + event_cols + interaction_cols silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col="ts", value_col=VALUE_COL, train_test_thresh=datetime.datetime(2019, 6, 1), origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5], "seas_names": ["daily", "weekly", None]}), extra_pred_cols=extra_pred_cols, daily_event_df_dict=event_df_dict) fut_df = silverkite.predict_n_no_sim( fut_time_num=fut_time_num, trained_model=trained_model, freq="H", new_external_regressor_df=None) err = calc_pred_err(test_df[VALUE_COL], fut_df[VALUE_COL]) enum = EvaluationMetricEnum.Correlation assert err[enum.get_metric_name()] > 0.3 enum = EvaluationMetricEnum.RootMeanSquaredError assert err[enum.get_metric_name()] < 6.0 """ plt_comparison_forecast_vs_observed( fut_df=fut_df, test_df=test_df, file_name=None) """ def test_forecast_silverkite_train_test_thresh_error(hourly_data): df = hourly_data["df"] last_time_available = max(df[TIME_COL]) train_test_thresh = datetime.datetime(2020, 7, 1) with pytest.raises(ValueError) as record: silverkite = SilverkiteForecast() silverkite.forecast( df=df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=datetime.datetime(2020, 7, 1), origin_for_time_vars=None, fs_components_df=pd.DataFrame({ "name": ["tod", "tow", "conti_year"], "period": [24.0, 7.0, 1.0], "order": [3, 0, 5]}) ) assert f"Input timestamp for the parameter 'train_test_threshold' " \ f"({train_test_thresh}) exceeds the maximum available " \ f"timestamp of the time series ({last_time_available})." \ f"Please pass a value within the range." in record[0].message.args[0] def test_forecast_silverkite_with_imputation(): """Tests ``forecast_silverkite`` with imputations""" df = pd.DataFrame({ "ts": len(pd.date_range(start="1/1/2018", end="3/14/2018")), "y": list(range(70)) + [np.nan]*3}) silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, training_fraction=None, origin_for_time_vars=None, fs_components_df=None, impute_dict={ "func": impute_with_lags, "params": {"orders": [7]}}) impute_info = trained_model["impute_info"] assert impute_info["initial_missing_num"] == 3 assert impute_info["final_missing_num"] == 0 imputed_df = impute_info["df"] assert list(imputed_df["y"].values) == ( list(range(70)) + [63, 64, 65]) def test_forecast_silverkite_with_adjust_anomalous(): """Tests ``forecast_silverkite`` with anomalous_data``""" anomalous_data = generate_anomalous_data() anomaly_df = anomalous_data["anomaly_df"] df = anomalous_data["df"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, training_fraction=None, origin_for_time_vars=None, fs_components_df=None, adjust_anomalous_dict={ "func": adjust_anomalous_data, "params": { "anomaly_df": anomaly_df, "start_date_col": START_DATE_COL, "end_date_col": END_DATE_COL, "adjustment_delta_col": ADJUSTMENT_DELTA_COL, "filter_by_dict": {"platform": "MOBILE"}}}) adj_df_info = trained_model["adjust_anomalous_info"] adj_values = pd.Series([np.nan, np.nan, 2., 6., 7., 8., 6., 7., 8., 9.]) generic_test_adjust_anomalous_data( value_col=VALUE_COL, adj_df_info=adj_df_info, adj_values=adj_values) def test_silverkite_partition_fut_df(): """Tests ``partition_fut_df``""" freq = "1D" data = generate_df_for_tests( freq=freq, periods=500, train_frac=0.8, train_end_date=None, noise_std=0.1) train_df = data["train_df"] test_df = data["test_df"] all_df = data["df"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [3, 3], "seas_names": [None, "yearly"]}), extra_pred_cols=["ct_sqrt", "dow_hr"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}} ) # The case where ``fut_df`` is only future data and with no gaps fut_df = test_df[[TIME_COL, VALUE_COL]] fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [True] * fut_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == 0 assert fut_df_stats["fut_df_after_training"].shape[0] == fut_df.shape[0] assert fut_df_stats["fut_df_gap"] is None assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == fut_df.shape[0] assert np.all(fut_df_stats["index_after_training_original"] == [True] * fut_df.shape[0]) assert fut_df_stats["missing_periods_num"] == 0 assert fut_df_stats["inferred_forecast_horizon"] == fut_df.shape[0] # The case where ``fut_df`` is only future data and with gaps fut_df = test_df[[TIME_COL, VALUE_COL]][2:] fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [True] * fut_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == 0 assert fut_df_stats["fut_df_after_training"].shape[0] == fut_df.shape[0] assert fut_df_stats["fut_df_gap"].shape[0] == 2 assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == fut_df.shape[0] + 2 assert np.all(fut_df_stats["index_after_training_original"] == [False] * 2 + [True] * fut_df.shape[0]) assert fut_df_stats["missing_periods_num"] == 2 assert fut_df_stats["inferred_forecast_horizon"] == fut_df.shape[0] + 2 # The case where ``fut_df`` is only part of the training data (no gaps as a result) fut_df = train_df[[TIME_COL, VALUE_COL]][2:] fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [True] * fut_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [False] * fut_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == fut_df.shape[0] assert fut_df_stats["fut_df_after_training"].shape[0] == 0 assert fut_df_stats["fut_df_gap"] is None assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == 0 assert fut_df_stats["index_after_training_original"] == [] assert fut_df_stats["missing_periods_num"] == 0 assert fut_df_stats["inferred_forecast_horizon"] == 0 # The case where ``fut_df`` has both training and future timestamps # and the data has regular time increments fut_df = all_df.copy() fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [True] * train_df.shape[0] + [False] * test_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [False] * train_df.shape[0] + [True] * test_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == train_df.shape[0] assert fut_df_stats["fut_df_after_training"].shape[0] == test_df.shape[0] assert fut_df_stats["fut_df_gap"] is None assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == test_df.shape[0] assert fut_df_stats["index_after_training_original"] == [True] * test_df.shape[0] assert fut_df_stats["missing_periods_num"] == 0 assert fut_df_stats["inferred_forecast_horizon"] == test_df.shape[0] # The case where both training and future timestamps appear and we have a gap # Therefore ``fut_df`` is not a regular increment series fut_df = pd.concat( [train_df, test_df[5:]], axis=0, ignore_index=True) # The original length of the future timestamps fut_length = test_df.shape[0] - 5 with pytest.warns(Warning) as record: fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert "does not have regular time increments" in record[0].message.args[0] assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [True] * train_df.shape[0] + [False] * fut_length) assert np.all(fut_df_stats["index_after_training"] == [False] * train_df.shape[0] + [True] * fut_length) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == train_df.shape[0] assert fut_df_stats["fut_df_after_training"].shape[0] == fut_length assert fut_df_stats["fut_df_gap"].shape[0] == 5 assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == test_df.shape[0] assert fut_df_stats["index_after_training_original"] == [False] * 5 + [True] * fut_length assert fut_df_stats["missing_periods_num"] == 5 assert fut_df_stats["inferred_forecast_horizon"] == test_df.shape[0] def test_partition_fut_df_monthly(): """Tests ``partition_fut_df`` with monthly data""" freq = "MS" data = generate_df_for_tests( freq=freq, periods=60, train_frac=0.8, train_end_date=None, noise_std=0.1) train_df = data["train_df"] test_df = data["test_df"] all_df = data["df"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["conti_year"], "period": [1.0], "order": [3], "seas_names": ["yearly"]}), extra_pred_cols=["ct_sqrt"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}} ) # The case where ``fut_df`` is only future data and with no gaps fut_df = test_df[[TIME_COL, VALUE_COL]] fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 * 31 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 * 31 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [True] * fut_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == 0 assert fut_df_stats["fut_df_after_training"].shape[0] == fut_df.shape[0] assert fut_df_stats["fut_df_gap"] is None assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == fut_df.shape[0] assert np.all(fut_df_stats["index_after_training_original"] == [True] * fut_df.shape[0]) assert fut_df_stats["missing_periods_num"] == 0 assert fut_df_stats["inferred_forecast_horizon"] == fut_df.shape[0] # The case where ``fut_df`` is only future data and with gaps fut_df = test_df[[TIME_COL, VALUE_COL]][2:] fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 * 31 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 * 31 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [True] * fut_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == 0 assert fut_df_stats["fut_df_after_training"].shape[0] == fut_df.shape[0] assert fut_df_stats["fut_df_gap"].shape[0] == 2 assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == fut_df.shape[0] + 2 assert np.all(fut_df_stats["index_after_training_original"] == [False] * 2 + [True] * fut_df.shape[0]) assert fut_df_stats["missing_periods_num"] == 2 assert fut_df_stats["inferred_forecast_horizon"] == fut_df.shape[0] + 2 # The case where ``fut_df`` is only part of the training data (no gaps as a result) fut_df = train_df[[TIME_COL, VALUE_COL]][2:] fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 * 31 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 * 31 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [True] * fut_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [False] * fut_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == fut_df.shape[0] assert fut_df_stats["fut_df_after_training"].shape[0] == 0 assert fut_df_stats["fut_df_gap"] is None assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == 0 assert fut_df_stats["index_after_training_original"] == [] assert fut_df_stats["missing_periods_num"] == 0 assert fut_df_stats["inferred_forecast_horizon"] == 0 # The case where ``fut_df`` has both training and future timestamps # and the data has consistent freq fut_df = all_df.copy() fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 * 31 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 * 31 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [True] * train_df.shape[0] + [False] * test_df.shape[0]) assert np.all(fut_df_stats["index_after_training"] == [False] * train_df.shape[0] + [True] * test_df.shape[0]) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == train_df.shape[0] assert fut_df_stats["fut_df_after_training"].shape[0] == test_df.shape[0] assert fut_df_stats["fut_df_gap"] is None assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == test_df.shape[0] assert fut_df_stats["index_after_training_original"] == [True] * test_df.shape[0] assert fut_df_stats["missing_periods_num"] == 0 assert fut_df_stats["inferred_forecast_horizon"] == test_df.shape[0] # The case where both training and future timestamps appear and we have a gap # Therefore ``fut_df`` has a gap fut_df = pd.concat( [train_df, test_df[5:]], axis=0, ignore_index=True) # The original length of the future timestamps fut_length = test_df.shape[0] - 5 with pytest.warns(Warning) as record: fut_df_stats = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) assert "does not have regular time increments" in record[0].message.args[0] assert fut_df_stats["fut_freq_in_secs"] == 24 * 3600 * 31 assert fut_df_stats["training_freq_in_secs"] == 24 * 3600 * 31 assert np.all(fut_df_stats["index_before_training"] == [False] * fut_df.shape[0]) assert np.all(fut_df_stats["index_within_training"] == [True] * train_df.shape[0] + [False] * fut_length) assert np.all(fut_df_stats["index_after_training"] == [False] * train_df.shape[0] + [True] * fut_length) assert fut_df_stats["fut_df_before_training"].shape[0] == 0 assert fut_df_stats["fut_df_within_training"].shape[0] == train_df.shape[0] assert fut_df_stats["fut_df_after_training"].shape[0] == fut_length assert fut_df_stats["fut_df_gap"].shape[0] == 5 assert fut_df_stats["fut_df_after_training_expanded"].shape[0] == test_df.shape[0] assert fut_df_stats["index_after_training_original"] == [False] * 5 + [True] * fut_length assert fut_df_stats["missing_periods_num"] == 5 assert fut_df_stats["inferred_forecast_horizon"] == test_df.shape[0] def test_partition_fut_df_exceptions(): """Tests exceptions ``partition_fut_df``""" freq = "1D" data = generate_df_for_tests( freq=freq, periods=500, train_frac=0.8, train_end_date=None, noise_std=0.1) train_df = data["train_df"] silverkite = SilverkiteForecast() trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, train_test_thresh=None, origin_for_time_vars=2018, fs_components_df=pd.DataFrame({ "name": ["tod", "conti_year"], "period": [24.0, 1.0], "order": [3, 3], "seas_names": [None, "yearly"]}), extra_pred_cols=["ct_sqrt", "dow_hr"], uncertainty_dict={ "uncertainty_method": "simple_conditional_residuals", "params": { "conditional_cols": ["dow_hr"], "quantiles": [0.025, 0.975], "quantile_estimation_method": "normal_fit", "sample_size_thresh": 20, "small_sample_size_method": "std_quantiles", "small_sample_size_quantile": 0.98}} ) expected_match = "must be increasing in time" with pytest.raises(ValueError, match=expected_match): fut_df = train_df[[TIME_COL, VALUE_COL]].iloc[[3, 2, 1]] silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) expected_match = "The most immediate time in the future is off" with pytest.raises(ValueError, match=expected_match): fut_df = train_df[[TIME_COL]].copy() last_training_date = max(fut_df[TIME_COL]) t0 = last_training_date + datetime.timedelta(days=0.5) fut_df_after_training = pd.DataFrame({TIME_COL: [t0]}) fut_df = pd.concat( [fut_df, fut_df_after_training], axis=0, ignore_index=True) silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq) def test_predict_silverkite_with_autoreg_horizon_1(hourly_data): """Tests forecast_silverkite autoregression""" train_df = hourly_data["train_df"] silverkite = SilverkiteForecast() # Trains model with autoregression. trained_model = silverkite.forecast( df=train_df, time_col=TIME_COL, value_col=VALUE_COL, autoreg_dict="auto" ) # Generates future df with horizon 1. freq = "H" dates = pd.date_range( start=trained_model["last_date_for_fit"], periods=2, freq=freq) dates = dates[dates > trained_model["last_date_for_fit"]] # drops values up to last_date_for_fit fut_df = pd.DataFrame({trained_model["time_col"]: dates.tolist()}) # Makes sure ``partition_fut_df`` handles horizon 1 correctly. res = silverkite.partition_fut_df( fut_df=fut_df, trained_model=trained_model, freq=freq ) assert res["fut_freq_in_secs"] is None # Runs ``predict_silverkite`` and expects no error. silverkite.predict( fut_df=fut_df, trained_model=trained_model ) def test_build_silverkite_features(): """A basic testing of build_silverkite_features and input validation""" silverkite = SilverkiteForecast() daily_event_df_dict = get_holidays(["US"], year_start=2015, year_end=2025) # simple test with pytest.warns(None) as record: df = generate_df_for_tests( freq="D", periods=20) explan_df = silverkite._SilverkiteForecast__build_silverkite_features( df=df["train_df"], time_col=TIME_COL, origin_for_time_vars=2017, daily_event_df_dict=daily_event_df_dict, changepoint_values=None, continuous_time_col=None, growth_func=None, fs_func=None) assert list(explan_df[:3]["ct1"].round(4).values) == [1.4959, 1.4986, 1.5014] assert list(explan_df[:3]["dow"].values) == [7, 1, 2] assert list(explan_df[:3]["hour"].values) == [0, 0, 0] assert len(record) == 0 # no warnings # warning message for greater than daily data with pytest.warns(Warning) as record: df = generate_df_for_tests( freq="W", periods=20) explan_df = silverkite._SilverkiteForecast__build_silverkite_features( df=df["train_df"], time_col=TIME_COL, origin_for_time_vars=2017, daily_event_df_dict=daily_event_df_dict, changepoint_values=None, continuous_time_col=None, growth_func=None, fs_func=None) assert list(explan_df[:3]["ct1"].round(4).values) == [1.4959, 1.5151, 1.5342] assert list(explan_df[:3]["dow"].values) == [7, 7, 7] assert list(explan_df[:3]["hour"].values) == [0, 0, 0] assert ("The granularity of data is larger than daily. " "Ensure the daily events data match the timestamps" in record[0].message.args[0]) # works for a single period df = generate_df_for_tests( freq="W", periods=1) explan_df = silverkite._SilverkiteForecast__build_silverkite_features( df=df["train_df"], time_col=TIME_COL, origin_for_time_vars=2017, daily_event_df_dict=daily_event_df_dict, changepoint_values=None, continuous_time_col=None, growth_func=None, fs_func=None) assert explan_df.shape[0] == 1 def test_build_silverkite_features2(): """Detailed testing of build_silverkite_features with holidays, changepoints, fourier series, regressor """ silverkite = SilverkiteForecast() hourly_data = generate_df_with_reg_for_tests( freq="H", periods=24 * 500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) df = hourly_data["train_df"] regressor_cols = ["regressor1", "regressor_bool", "regressor_categ"] time_features_df = build_time_features_df( df[TIME_COL], conti_year_origin=2017) changepoint_values = get_evenly_spaced_changepoints_values( time_features_df, continuous_time_col="ct1", n_changepoints=2) fs_func = fourier_series_multi_fcn( col_names=["tod", "tow", "toy"], periods=[24.0, 7.0, 1.0], orders=[3, 0, 5], seas_names=None ) # generate holidays countries = ["US", "India"] daily_event_df_dict = get_holidays(countries, year_start=2015, year_end=2025) for country in countries: daily_event_df_dict[country][EVENT_DF_LABEL_COL] = country + "_holiday" explan_df = silverkite._SilverkiteForecast__build_silverkite_features( df=df, time_col=TIME_COL, origin_for_time_vars=2017, daily_event_df_dict=daily_event_df_dict, changepoint_values=changepoint_values, continuous_time_col="ct1", growth_func=lambda x: x, fs_func=fs_func) assert list(explan_df[:3]["ct1"].round(4).values) == [1.4959, 1.4960, 1.4961] assert list(explan_df[:3]["hour"].values) == [0, 1, 2] assert list(explan_df[:3]["dow_hr"].values) == ["7_00", "7_01", "7_02"] # check regressors assert_frame_equal(explan_df[regressor_cols], df[regressor_cols]) # check change points ind = explan_df["ct1"] > changepoint_values[0] assert list(explan_df.loc[ind]["changepoint0"][:3].round(6).values) == ( [0.000114, 0.000228, 0.000342]), "change points data is incorrect" # check holidays ind = explan_df["conti_year"] >= 2019 assert list(explan_df.loc[ind][:10]["events_US"].values) == ( ["US_holiday"] * 10), "holiday data is incorrect" # check fourier series assert list(explan_df["sin1_tod"][:3].round(6).values) == ( [0.000000, 0.258819, 0.500000]), "fourier series data is incorrect" def test_build_autoreg_features(hourly_data): """Testing of build_autoreg_features with autoreg_func""" silverkite = SilverkiteForecast() past_df = hourly_data["train_df"] df = hourly_data["test_df"] df.index = pd.RangeIndex(start=10, stop=10+df.shape[0], step=1) # non-default index autoreg_info = build_autoreg_df( value_col="y", lag_dict={"orders": [1, 168]}, agg_lag_dict={ "orders_list": [[168, 168 * 2, 168 * 3]], "interval_list": [(168, 168 * 2)]}, series_na_fill_func=None) # no filling of NAs autoreg_func = autoreg_info["build_lags_func"] autoreg_df = silverkite._SilverkiteForecast__build_autoreg_features( df=df, value_col=VALUE_COL, autoreg_func=autoreg_func, phase="fit", past_df=past_df) assert_equal(autoreg_df.index, df.index) assert None not in df.columns expected_cols = [ "y_lag1", "y_lag168", "y_avglag_168_336_504", "y_avglag_168_to_336"] assert list(autoreg_df.columns) == expected_cols, ( "expected column names for lag data do not appear in obtained feature df") expected_autoreg_df = pd.DataFrame({ "y_lag1": [6.0, 4.3], "y_lag168": [0.9, 1.8], "y_avglag_168_336_504": [3.3, 3.4], "y_avglag_168_to_336": [3.4, 3.4]}, index=df.index[:2]) obtained_autoreg_df = autoreg_df[expected_cols][:2].round(1) # Expected lag data must appear in the result dataframe assert_frame_equal(expected_autoreg_df, obtained_autoreg_df) # Expected lag1 value must come from last element of `past_df`. # Last value in `past_df` should appear as lag1 for first value in `df`. expected_lag1_value = round(past_df.tail(1)["y"].values[0], 1) assert obtained_autoreg_df["y_lag1"].values[0] == expected_lag1_value # Testing for Exception expected_match = ( "At 'predict' phase, if autoreg_func is not None," " 'past_df' and 'value_col' must be provided to `build_autoreg_features`") # value_col is None with pytest.raises(ValueError, match=expected_match): silverkite._SilverkiteForecast__build_autoreg_features( df=df, value_col=None, autoreg_func=autoreg_func, phase="predict", past_df=past_df) # past_df is None with pytest.raises(ValueError, match=expected_match): silverkite._SilverkiteForecast__build_autoreg_features( df=df, value_col=VALUE_COL, autoreg_func=autoreg_func, phase="predict", past_df=None) def test_build_lagged_regressor_features(lagged_regressor_dict): """Testing of build_lagged_regressor_features with lagged_regressor_func""" hourly_data = generate_df_with_reg_for_tests( freq="H", periods=24 * 500, train_start_date=datetime.datetime(2018, 7, 1), conti_year_origin=2018) silverkite = SilverkiteForecast() past_df = hourly_data["train_df"] df = hourly_data["test_df"] df.index = pd.RangeIndex(start=10, stop=10+df.shape[0], step=1) # non-default index regressor_cols = ["regressor1", "regressor_bool", "regressor_categ"] lagged_regressor_components = build_autoreg_df_multi(value_lag_info_dict=lagged_regressor_dict) lagged_regressor_func = lagged_regressor_components["autoreg_func"] lagged_regressor_orig_col_names = lagged_regressor_components["autoreg_orig_col_names"] assert set(lagged_regressor_orig_col_names).difference(regressor_cols) == set() lagged_regressor_df = silverkite._SilverkiteForecast__build_lagged_regressor_features( df=df, lagged_regressor_cols=lagged_regressor_orig_col_names, lagged_regressor_func=lagged_regressor_func, phase="fit", past_df=past_df) assert_equal(lagged_regressor_df.index, df.index) assert None not in df.columns expected_cols = [ 'regressor1_lag1', 'regressor1_lag168', 'regressor1_avglag_168_336_504', 'regressor1_avglag_169_to_336', 'regressor_bool_lag1', 'regressor_bool_lag168', 'regressor_bool_avglag_168_336_504', 'regressor_bool_avglag_169_to_336', 'regressor_categ_lag1', 'regressor_categ_lag168'] assert list(lagged_regressor_df.columns) == expected_cols, ( "expected column names for lag data do not appear in obtained feature df") obtained_lagged_regressor_df = lagged_regressor_df[expected_cols][:2].round(1) expected_lagged_regressor_df = pd.DataFrame({ "regressor1_lag1": [1.1, 0.2], "regressor1_lag168": [1.5, 2.3], "regressor1_avglag_168_336_504": [1.3, 1.7], "regressor1_avglag_169_to_336": [2.1, 2.1], "regressor_bool_lag1": [True, True], "regressor_bool_lag168": [False, True], "regressor_bool_avglag_168_336_504": [0.3, 0.7], "regressor_bool_avglag_169_to_336": [0.7, 0.7], "regressor_categ_lag1": ["c2", "c2"], "regressor_categ_lag168": ["c3", "c3"]}, index=df.index[:2]) # Expected lag data must appear in the result dataframe assert_frame_equal(expected_lagged_regressor_df, obtained_lagged_regressor_df) # Expected lag1 value must come from last element of `past_df`. # Last value in `past_df` should appear as lag1 for first value in `df`. expected_lag1_value1 = round(past_df.tail(1)["regressor1"].values[0], 1) expected_lag1_value2 = past_df.tail(1)["regressor_bool"].values[0] expected_lag1_value3 = past_df.tail(1)["regressor_categ"].values[0] assert obtained_lagged_regressor_df["regressor1_lag1"].values[0] == expected_lag1_value1 assert obtained_lagged_regressor_df["regressor_bool_lag1"].values[0] == expected_lag1_value2 assert obtained_lagged_regressor_df["regressor_categ_lag1"].values[0] == expected_lag1_value3 # Testing for Exception expected_match = ( "At 'predict' phase, if lagged_regressor_func is not None," " 'past_df' and 'lagged_regressor_cols' must be provided to " "`build_lagged_regressor_features`") # lagged_regressor_cols is None with pytest.raises(ValueError, match=expected_match): silverkite._SilverkiteForecast__build_lagged_regressor_features( df=df, lagged_regressor_cols=None, lagged_regressor_func=lagged_regressor_func, phase="predict", past_df=past_df) # past_df is None with pytest.raises(ValueError, match=expected_match): silverkite._SilverkiteForecast__build_lagged_regressor_features( df=df, lagged_regressor_cols=regressor_cols, lagged_regressor_func=lagged_regressor_func, phase="predict", past_df=None) def test_get_default_autoreg_dict(): """Testing ``get_default_autoreg_dict``.""" # Daily, horizon 1 days silverkite = SilverkiteForecast() autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1, forecast_horizon=1) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 7 assert autoreg_dict["lag_dict"]["orders"] == [1, 2, 3] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(1, 7), (8, 7*2)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[7, 7*2, 7*3]] # Daily, horizon 3 days autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1, forecast_horizon=3) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 7 assert autoreg_dict["lag_dict"]["orders"] == [3, 4, 5] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(3, 9), (10, 16)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[7, 7*2, 7*3]] # Daily, horizon 7 autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1, forecast_horizon=7) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 7 assert autoreg_dict["lag_dict"]["orders"] == [7, 8, 9] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(7, 13), (14, 20)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[7, 7*2, 7*3]] # Daily, horizon 30 autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1, forecast_horizon=30) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 35 assert autoreg_dict["lag_dict"]["orders"] == [30, 31, 32] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(30, 36), (37, 43)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[7*5, 7*6, 7*7]] # Daily, horizon 90 autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1, forecast_horizon=90) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 91 assert autoreg_dict is None # Daily, horizon 3 days, simulation based autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1, forecast_horizon=3, simulation_based=True) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 7 assert autoreg_dict["lag_dict"]["orders"] == [1, 2, 3] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(1, 7), (8, 14)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[7, 7*2, 7*3]] # Hourly, horizon 1 hour autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1/24, forecast_horizon=1) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 24*7 assert autoreg_dict["lag_dict"]["orders"] == [1, 2, 3] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(1, 24*7), (24*7+1, 24*7*2)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*7*2, 24*7*3]] # Hourly, horizon 24 hours autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1/24, forecast_horizon=24) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 24*7 assert autoreg_dict["lag_dict"]["orders"] == [24, 25, 26] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(24, 24*8-1), (24*8, 24*15-1)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*7*2, 24*7*3]] # Hourly, horizon 24 hours, simulation based autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1/24, forecast_horizon=24, simulation_based=True) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 24*7 assert autoreg_dict["lag_dict"]["orders"] == [1, 2, 3] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(1, 24*7), (24*7+1, 24*7*2)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*7*2, 24*7*3]] # Hourly, horizon 4 hours, simulation based autoreg_info = silverkite._SilverkiteForecast__get_default_autoreg_dict( freq_in_days=1/24, forecast_horizon=4, simulation_based=True) autoreg_dict = autoreg_info["autoreg_dict"] proper_order = autoreg_info["proper_order"] assert proper_order == 24*7 assert autoreg_dict["lag_dict"]["orders"] == [1, 2, 3] assert autoreg_dict["agg_lag_dict"]["interval_list"] == [(1, 24*7), (24*7+1, 24*7*2)] assert autoreg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*7*2, 24*7*3]] def test_get_default_lagged_regressor_dict(): """Testing ``get_default_lagged_regressor_dict``.""" # Hourly, horizon 1 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1/24, forecast_horizon=1) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 24*7 assert lag_reg_dict["lag_dict"]["orders"] == [1] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(1, 24*7)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*14, 24*21]] # Hourly, horizon 2 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1/24, forecast_horizon=2) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 24*7 assert lag_reg_dict["lag_dict"]["orders"] == [24*7] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(2, 24*7+1)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*14, 24*21]] # Hourly, horizon 24 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1/24, forecast_horizon=24) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 24*7 assert lag_reg_dict["lag_dict"]["orders"] == [24*7] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(24, 24*8-1)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[24*7, 24*14, 24*21]] # Hourly, horizon 24*8 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1/24, forecast_horizon=24*8) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 24*14 assert lag_reg_dict["lag_dict"]["orders"] == [24*14] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(24*8, 24*15-1)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[24*14, 24*21, 24*28]] # Hourly, horizon 24*31 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1/24, forecast_horizon=24*31) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 24*35 assert lag_reg_dict is None # Daily, horizon 1 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1, forecast_horizon=1) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 7 assert lag_reg_dict["lag_dict"]["orders"] == [1] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(1, 7)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[7, 14, 21]] # Daily, horizon 2 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1, forecast_horizon=2) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 7 assert lag_reg_dict["lag_dict"]["orders"] == [7] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(2, 8)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[7, 14, 21]] # Daily, horizon 7 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1, forecast_horizon=7) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 7 assert lag_reg_dict["lag_dict"]["orders"] == [7] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(7, 13)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[7, 14, 21]] # Daily, horizon 8 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1, forecast_horizon=8) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 14 assert lag_reg_dict["lag_dict"]["orders"] == [14] assert lag_reg_dict["agg_lag_dict"]["interval_list"] == [(8, 14)] assert lag_reg_dict["agg_lag_dict"]["orders_list"] == [[14, 21, 28]] # Daily, horizon 31 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=1, forecast_horizon=31) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order == 35 assert lag_reg_dict is None # Weekly, horizon 1 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=7, forecast_horizon=1) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order is None assert lag_reg_dict["lag_dict"]["orders"] == [1] assert lag_reg_dict["agg_lag_dict"] is None # Weekly, horizon 4 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=7, forecast_horizon=4) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order is None assert lag_reg_dict["lag_dict"]["orders"] == [4] assert lag_reg_dict["agg_lag_dict"] is None # Weekly, horizon 5 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=7, forecast_horizon=5) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order is None assert lag_reg_dict is None # Monthly, horizon 1 silverkite = SilverkiteForecast() lag_reg_info = silverkite._SilverkiteForecast__get_default_lagged_regressor_dict( freq_in_days=30, forecast_horizon=1) lag_reg_dict = lag_reg_info["lag_reg_dict"] proper_order = lag_reg_info["proper_order"] assert proper_order is None assert lag_reg_dict["lag_dict"]["orders"] == [1] assert lag_reg_dict["agg_lag_dict"] is None def test_normalize_changepoint_values(): silverkite = SilverkiteForecast() df = pd.DataFrame({ "ct1": np.arange(0.01, 2.01, 0.01), "some_col1": np.random.randn(200), "some_col2": np.random.randn(200) }) changepoint_values = np.array([0.88, 1.52]) # tests min_max normalize_result = normalize_df( df=df, method="min_max" ) pred_cols = normalize_result["keep_cols"] normalize_df_func = normalize_result["normalize_df_func"] normalized_changepoint_values = silverkite._SilverkiteForecast__normalize_changepoint_values( changepoint_values=changepoint_values, pred_cols=pred_cols, continuous_time_col="ct1", normalize_df_func=normalize_df_func ) assert all(np.round(normalized_changepoint_values, 2) == np.array([0.44, 0.76])) # tests statistical normalize_result = normalize_df( df=df, method="statistical" ) pred_cols = normalize_result["keep_cols"] normalize_df_func = normalize_result["normalize_df_func"] normalized_changepoint_values = silverkite._SilverkiteForecast__normalize_changepoint_values( changepoint_values=changepoint_values, pred_cols=pred_cols, continuous_time_col="ct1", normalize_df_func=normalize_df_func ) assert all(np.round(normalized_changepoint_values, 2) == np.array([-0.22, 0.89])) # tests None changepoint_values normalized_changepoint_values = silverkite._SilverkiteForecast__normalize_changepoint_values( changepoint_values=None, pred_cols=pred_cols, continuous_time_col="ct1", normalize_df_func=normalize_df_func ) assert normalized_changepoint_values is None # tests None normalize function normalized_changepoint_values = silverkite._SilverkiteForecast__normalize_changepoint_values( changepoint_values=changepoint_values, pred_cols=pred_cols, continuous_time_col="ct1", normalize_df_func=None ) assert all(normalized_changepoint_values == changepoint_values) def test_remove_fourier_col_with_collinearity(): silverkite = SilverkiteForecast() fourier_cols = [ "sin1_tow_weekly", "cos1_tow_weekly", "sin2_tow_weekly", "cos2_tow_weekly", "sin3_tow_weekly", "cos3_tow_weekly", "sin4_tow_weekly", "cos4_tow_weekly", # to be removed because of weekly order 3 cosine "sin8_tow_weekly", # to be removed because weekly period is 7 "cos8_tow_weekly", # to be removed because weekly period is 7 "sin1_tom_monthly", # to be removed because of quarterly order 3 "cos1_tom_monthly", # to be removed because of quarterly order 3 "sin2_tom_monthly", "cos2_tom_monthly", "sin1_ct1_quarterly", # to be removed because of yearly order 4 "cos1_ct1_quarterly", # to be removed because of yearly order 4 "sin2_ct1_quarterly", # to be removed because of yearly order 8 "cos2_ct1_quarterly", # to be removed because of yearly order 8 "sin3_ct1_quarterly", "cos3_ct1_quarterly", "sin1_ct1_yearly", "cos1_ct1_yearly", "sin2_ct1_yearly", "cos2_ct1_yearly", "sin3_ct1_yearly", "cos3_ct1_yearly", "sin4_ct1_yearly", "cos4_ct1_yearly", "sin5_ct1_yearly", "cos5_ct1_yearly", "sin6_ct1_yearly", "cos6_ct1_yearly", "sin7_ct1_yearly", "cos7_ct1_yearly", "sin8_ct1_yearly", "cos8_ct1_yearly" ] expected_cols = [ "sin1_tow_weekly", "cos1_tow_weekly", "sin2_tow_weekly", "cos2_tow_weekly", "sin3_tow_weekly", "cos3_tow_weekly", "sin4_tow_weekly", "sin2_tom_monthly", "cos2_tom_monthly", "sin3_ct1_quarterly", "cos3_ct1_quarterly", "sin1_ct1_yearly", "cos1_ct1_yearly", "sin2_ct1_yearly", "cos2_ct1_yearly", "sin3_ct1_yearly", "cos3_ct1_yearly", "sin4_ct1_yearly", "cos4_ct1_yearly", "sin5_ct1_yearly", "cos5_ct1_yearly", "sin6_ct1_yearly", "cos6_ct1_yearly", "sin7_ct1_yearly", "cos7_ct1_yearly", "sin8_ct1_yearly", "cos8_ct1_yearly" ] removed_cols = [ "sin1_ct1_quarterly", "cos1_ct1_quarterly", "sin2_ct1_quarterly", "cos2_ct1_quarterly", "sin1_tom_monthly", "cos1_tom_monthly", "cos4_tow_weekly", "sin8_tow_weekly", "cos8_tow_weekly" ] with pytest.warns(UserWarning) as record: cols = silverkite._SilverkiteForecast__remove_fourier_col_with_collinearity(fourier_cols) assert f"The following Fourier series terms are removed due to collinearity:\n{removed_cols}" in record[0].message.args[0] assert cols == expected_cols # Tests monthly terms removal with yearly seasonality only. fourier_cols = [ "sin1_tom_monthly", # to be removed because of yearly order 12 "cos1_tom_monthly", # to be removed because of yearly order 12 "sin2_tom_monthly", "cos2_tom_monthly", "sin1_ct1_yearly", "cos1_ct1_yearly", "sin2_ct1_yearly", "cos2_ct1_yearly", "sin3_ct1_yearly", "cos3_ct1_yearly", "sin4_ct1_yearly", "cos4_ct1_yearly", "sin5_ct1_yearly", "cos5_ct1_yearly", "sin6_ct1_yearly", "cos6_ct1_yearly", "sin7_ct1_yearly", "cos7_ct1_yearly", "sin8_ct1_yearly", "cos8_ct1_yearly", "sin9_ct1_yearly", "cos9_ct1_yearly", "sin10_ct1_yearly", "cos10_ct1_yearly", "sin11_ct1_yearly", "cos11_ct1_yearly", "sin12_ct1_yearly", "cos12_ct1_yearly" ] expected_cols = [ "sin2_tom_monthly", "cos2_tom_monthly", "sin1_ct1_yearly", "cos1_ct1_yearly", "sin2_ct1_yearly", "cos2_ct1_yearly", "sin3_ct1_yearly", "cos3_ct1_yearly", "sin4_ct1_yearly", "cos4_ct1_yearly", "sin5_ct1_yearly", "cos5_ct1_yearly", "sin6_ct1_yearly", "cos6_ct1_yearly", "sin7_ct1_yearly", "cos7_ct1_yearly", "sin8_ct1_yearly", "cos8_ct1_yearly", "sin9_ct1_yearly", "cos9_ct1_yearly", "sin10_ct1_yearly", "cos10_ct1_yearly", "sin11_ct1_yearly", "cos11_ct1_yearly", "sin12_ct1_yearly", "cos12_ct1_yearly" ] removed_cols = [ "sin1_tom_monthly", "cos1_tom_monthly", ] with pytest.warns(UserWarning) as record: cols = silverkite._SilverkiteForecast__remove_fourier_col_with_collinearity(fourier_cols) assert f"The following Fourier series terms are removed due to collinearity:\n{removed_cols}" in record[0].message.args[0] assert cols == expected_cols def test_remove_fourier_col_with_collinearity_and_interaction(): silverkite = SilverkiteForecast() extra_pred_cols = [ "a", "b:c" "d:cos3_tow_weekly", "d:cos4_tow_weekly" "cos4_tow_weekly:cos3_tow_weekly" ] fs_cols = [ "cos1_tow_weekly", "cos2_tow_weekly", "cos3_tow_weekly" ] removed_cols = [ "d:cos4_tow_weekly" "cos4_tow_weekly:cos3_tow_weekly" ] with pytest.warns(UserWarning) as record: output = silverkite._SilverkiteForecast__remove_fourier_col_with_collinearity_and_interaction( extra_pred_cols=extra_pred_cols, fs_cols=fs_cols ) assert (f"The following interaction terms are removed:\n{removed_cols}\n" f"due to the removal of the corresponding Fourier series terms." in record[0].message.args[0]) expected_output = [ "a", "b:c" "d:cos3_tow_weekly" ] assert output == expected_output
37.710301
130
0.657414
2b07c02968b627100df8ed249950c0b4bb15146f
57
py
Python
netxlib/linux/cpu.py
vargyropoulos/netxlib
c0f05edf2e7800353a6628beca8dc661b05e885e
[ "MIT" ]
null
null
null
netxlib/linux/cpu.py
vargyropoulos/netxlib
c0f05edf2e7800353a6628beca8dc661b05e885e
[ "MIT" ]
null
null
null
netxlib/linux/cpu.py
vargyropoulos/netxlib
c0f05edf2e7800353a6628beca8dc661b05e885e
[ "MIT" ]
null
null
null
# write a cpu check (from container) # maybe system load
19
36
0.736842
2589a18d11c4307461adcd39755d2673671e66b1
1,845
py
Python
train_agent.py
turalnovruzov/tictactoe-ai
d07939ea4e27320cdda28d36bfc50bf89c3b1833
[ "MIT" ]
null
null
null
train_agent.py
turalnovruzov/tictactoe-ai
d07939ea4e27320cdda28d36bfc50bf89c3b1833
[ "MIT" ]
null
null
null
train_agent.py
turalnovruzov/tictactoe-ai
d07939ea4e27320cdda28d36bfc50bf89c3b1833
[ "MIT" ]
null
null
null
import argparse from qagent import QAgent def check_episodes(episodes): """ Checks the validity of the episodes command line argument """ episodes = int(episodes) if episodes < 0: raise argparse.ArgumentTypeError(f'{episodes} is an invalid episodes value') return episodes def check_alpha(alpha): """ Checks the validity of the alpha command line argument """ alpha = float(alpha) if alpha <= 0: raise argparse.ArgumentTypeError(f'{alpha} is an invalid alpha value') return alpha def check_epsilon(epsilon): """ Checks the validity of the epsilon command line argument """ epsilon = float(epsilon) if not (0 <= epsilon <= 1): raise argparse.ArgumentTypeError(f'{epsilon} is an invalid epsilon value') return epsilon # Argument parser parser = argparse.ArgumentParser() parser.add_argument('episodes', type=check_episodes, help='Number of games to train.') parser.add_argument('-f', type=str, default='Q.pkl', metavar='FILEPATH', dest='filepath', help='Full or relative path of a file in which the agent is (to be) stored. Defaults to \"Q.pkl\"') parser.add_argument('-l', dest='load', action='store_true', help='Load agent from file.') parser.add_argument('-a', type=check_alpha, dest='alpha', metavar='ALPHA', default=0.5, help='Learning rate. Must be float and strictly grater than 0. Defaults to 0.5.') parser.add_argument('-e', type=check_epsilon, dest='epsilon', metavar='EPSILON', default=0.1, help='Epsilon randomness value. Must be float and between and including 0 and 1. Defaults to 0.1.') args = parser.parse_args() agent = QAgent(alpha=args.alpha, epsilon=args.epsilon) if args.load: agent.load(args.filepath) agent.train(args.episodes) agent.save(args.filepath)
34.811321
119
0.686721
cf4fc4f0f7309c2f727842e07f319798c4a6de35
2,973
py
Python
q1.py
GeoffNN/RL_TP1
46b95f8b7c462bf132a7b4480ef1c641ce584479
[ "Unlicense" ]
null
null
null
q1.py
GeoffNN/RL_TP1
46b95f8b7c462bf132a7b4480ef1c641ce584479
[ "Unlicense" ]
null
null
null
q1.py
GeoffNN/RL_TP1
46b95f8b7c462bf132a7b4480ef1c641ce584479
[ "Unlicense" ]
null
null
null
from scipy.stats import bernoulli, randint import numpy as np class TreeCut: def __init__(self, growth_param=5, replanting_cost=30, linear_wood_value=10, maintenance_cost=3, max_height=40, proba_of_dying=.1, sappling_height=1, gamma=1. / (1 + 0.05)): self.growth_param = growth_param self.replanting_cost = replanting_cost self.linear_wood_value = linear_wood_value self.maintenance_cost = maintenance_cost self.max_height = max_height self.proba_of_dying = proba_of_dying self.sappling_height = sappling_height self.gamma = gamma self.states = range(self.max_height + 1) self.number_of_actions = 2 self.death = 0 self.dead_index = 0 self.no_cut = 0 self.cut = 1 self.dynamics, self.reward = self.tree_MDP() def tree_sim(self, cur_state, action): if cur_state is self.death: if action is self.cut: next_state = self.sappling_height reward = -self.replanting_cost else: next_state = self.death reward = 0 else: if action is self.cut: next_state = self.sappling_height reward = self.linear_wood_value * cur_state - self.replanting_cost else: tree_is_dying = bernoulli.rvs(self.proba_of_dying) if tree_is_dying: next_state = self.death reward = -self.maintenance_cost else: next_state = randint.rvs(cur_state, self.max_height + 1) reward = -self.maintenance_cost return next_state, reward def tree_MDP(self): dynamics = np.zeros((self.max_height + 1, self.max_height + 1, self.number_of_actions)) rewards = np.zeros((self.max_height + 1, self.number_of_actions)) dynamics[:, self.sappling_height, self.cut] = np.array([1] * (self.max_height + 1)) dynamics[self.dead_index, self.dead_index, self.no_cut] = 1 dynamics[self.max_height, self.max_height, self.no_cut] = 1 - self.proba_of_dying dynamics[1:, self.dead_index, self.no_cut] = self.proba_of_dying for cur_state in range(1, self.max_height): for next_state in range(cur_state, self.max_height + 1): dynamics[cur_state, next_state, self.no_cut] = (1 - self.proba_of_dying) * 1. / ( self.max_height - cur_state + 1) rewards[self.dead_index, :] = [0, -self.replanting_cost] rewards[1:, self.no_cut] = [-self.maintenance_cost for k in range(self.max_height)] rewards[1:, self.cut] = [self.linear_wood_value * cur_state - self.replanting_cost for cur_state in range(1, self.max_height + 1)] return dynamics, rewards
43.086957
108
0.592667
a1ba1e846fb9586ecbf0ccdddc9a44d5403dcf97
2,033
py
Python
model-optimizer/extensions/front/onnx/rnn_ext.py
monroid/openvino
8272b3857ef5be0aaa8abbf7bd0d5d5615dc40b6
[ "Apache-2.0" ]
2,406
2020-04-22T15:47:54.000Z
2022-03-31T10:27:37.000Z
model-optimizer/extensions/front/onnx/rnn_ext.py
thomas-yanxin/openvino
031e998a15ec738c64cc2379d7f30fb73087c272
[ "Apache-2.0" ]
4,948
2020-04-22T15:12:39.000Z
2022-03-31T18:45:42.000Z
model-optimizer/extensions/front/onnx/rnn_ext.py
thomas-yanxin/openvino
031e998a15ec738c64cc2379d7f30fb73087c272
[ "Apache-2.0" ]
991
2020-04-23T18:21:09.000Z
2022-03-31T18:40:57.000Z
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from extensions.ops.RNN import RNN from mo.front.extractor import FrontExtractorOp from mo.front.onnx.extractors.utils import onnx_attr class RNNFrontExtractor(FrontExtractorOp): op = 'RNN' enabled = True @classmethod def extract(cls, node): direction = onnx_attr(node, 'direction', 's', b'forward').decode().lower() activation_alpha = onnx_attr(node, 'activation_alpha', 'floats', default=None, dst_type=lambda x: np.array(x, dtype=np.float32)) activation_beta = onnx_attr(node, 'activation_beta', 'floats', default=None, dst_type=lambda x: np.array(x, dtype=np.float32)) activations = onnx_attr(node, 'activations', 'strings', default=['tanh', 'tanh'] if direction == 'bidirectional' else ['tanh'], dst_type=lambda x: list(map(lambda s: s.decode(encoding="utf-8").lower(), list(x)))) clip = onnx_attr(node, 'clip', 'f', default=None) # Since pytorch generates ONNX bidirectional RNN models with only one activation, duplicating activation if direction == 'bidirectional' and len(activations) == 1: activations.append(activations[0]) attrs = { 'batch_dim': 1, 'sequence_dim': 0, 'blobs_wrb': True, 'has_num_directions': True, 'num_layers': 1, 'format': 'onnx', 'multilayers': False, 'gate_order': [0], # ONNX attrs 'activation_alpha': activation_alpha, 'activation_beta': activation_beta, 'activations': activations, 'clip': clip, 'direction': direction, 'hidden_size': np.array(onnx_attr(node, 'hidden_size', 'i'), dtype=np.int64), } RNN.update_node_stat(node, attrs) return cls.enabled
38.358491
116
0.586326
27fc36fd128eabd72d201a101b2c634a5ba15ece
48
py
Python
math/freecodecamp/program.py
spideynolove/Other-repo
34066f177994415d031183ab9dd219d787e6e13a
[ "MIT" ]
null
null
null
math/freecodecamp/program.py
spideynolove/Other-repo
34066f177994415d031183ab9dd219d787e6e13a
[ "MIT" ]
null
null
null
math/freecodecamp/program.py
spideynolove/Other-repo
34066f177994415d031183ab9dd219d787e6e13a
[ "MIT" ]
null
null
null
import numpy as np print("Hello freecodecamp!")
16
28
0.770833
891a7a6e323babc58f18690310620efbf32108fd
383
py
Python
lab/migrations/0015_labcode_test.py
bernardobgam/edtech_experiment
88a64b925b6692261649418260a0bdf7b4a5a9d1
[ "MIT" ]
null
null
null
lab/migrations/0015_labcode_test.py
bernardobgam/edtech_experiment
88a64b925b6692261649418260a0bdf7b4a5a9d1
[ "MIT" ]
8
2020-06-05T23:56:56.000Z
2022-03-12T00:02:52.000Z
lab/migrations/0015_labcode_test.py
bernardobgam/edtech_experiment
88a64b925b6692261649418260a0bdf7b4a5a9d1
[ "MIT" ]
null
null
null
# Generated by Django 2.1.1 on 2019-09-08 00:38 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lab', '0014_labprogress_receipt'), ] operations = [ migrations.AddField( model_name='labcode', name='test', field=models.BooleanField(default=False), ), ]
20.157895
53
0.5953
0aa5963dfc4cc777826f7f7daa4ff69ff518541f
6,846
py
Python
scripts/fast_parameters.py
divadnauj-GB/nvbitfi
8f7e48a4ffd3f8e819c5fc0891fb62422080aa15
[ "Apache-2.0" ]
null
null
null
scripts/fast_parameters.py
divadnauj-GB/nvbitfi
8f7e48a4ffd3f8e819c5fc0891fb62422080aa15
[ "Apache-2.0" ]
null
null
null
scripts/fast_parameters.py
divadnauj-GB/nvbitfi
8f7e48a4ffd3f8e819c5fc0891fb62422080aa15
[ "Apache-2.0" ]
null
null
null
# set parameters for fi # it is an easier way to set all parameters for SASSIFI, it is the same as setting it on specific_param.py from os import environ benchmark = environ['BENCHMARK'] NVBITFI_HOME = environ['NVBITFI_HOME'] THRESHOLD_JOBS = int(environ['FAULTS']) ADDITIONAL_PARAMETERS = environ['ADDITIONAL_PARAMETERS'] all_apps = { 'simple_add': [ NVBITFI_HOME + '/test-apps/simple_add', # workload directory 'simple_add', # binary name NVBITFI_HOME + '/test-apps/simple_add/', # path to the binary file 2, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'lava_mp': [ NVBITFI_HOME + '/test-apps/lava_mp', # workload directory 'lava_mp', # binary name NVBITFI_HOME + '/test-apps/lava_mp/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'gemm': [ NVBITFI_HOME + '/test-apps/gemm', # workload directory 'gemm', # binary name NVBITFI_HOME + '/test-apps/gemm/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'bfs': [ NVBITFI_HOME + '/test-apps/bfs', # workload directory 'cudaBFS', # binary name NVBITFI_HOME + '/test-apps/bfs/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'accl': [ NVBITFI_HOME + '/test-apps/accl', # workload directory 'cudaACCL', # binary name NVBITFI_HOME + '/test-apps/accl/', # path to the binary file 1, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'mergesort': [ NVBITFI_HOME + '/test-apps/mergesort', # workload directory 'mergesort', # binary name NVBITFI_HOME + '/test-apps/mergesort/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'quicksort': [ NVBITFI_HOME + '/test-apps/quicksort', # workload directory 'quicksort', # binary name NVBITFI_HOME + '/test-apps/quicksort/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'hotspot': [ NVBITFI_HOME + '/test-apps/hotspot', # workload directory 'hotspot', # binary name NVBITFI_HOME + '/test-apps/hotspot/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'darknet_v2': [ NVBITFI_HOME + '/test-apps/darknet_v2', # workload directory 'darknet_v2', # binary name NVBITFI_HOME + '/test-apps/darknet_v2/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'darknet_v3': [ NVBITFI_HOME + '/test-apps/darknet_v3', # workload directory 'darknet_v3_single', # binary name NVBITFI_HOME + '/test-apps/darknet_v3/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'darknet_rubens': [ NVBITFI_HOME + '/test-apps/darknet_rubens', # workload directory 'darknet', # binary name NVBITFI_HOME + '/test-apps/darknet_rubens/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'gaussian': [ NVBITFI_HOME + '/test-apps/gaussian', # workload directory 'cudaGaussian', # binary name NVBITFI_HOME + '/test-apps/gaussian/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'lud': [ NVBITFI_HOME + '/test-apps/lud', # workload directory 'cudaLUD', # binary name NVBITFI_HOME + '/test-apps/lud/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'nw': [ NVBITFI_HOME + '/test-apps/nw', # workload directory 'nw', # binary name NVBITFI_HOME + '/test-apps/nw/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'cfd': [ NVBITFI_HOME + '/test-apps/cfd', # workload directory 'cfd', # binary name NVBITFI_HOME + '/test-apps/cfd/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'trip_hotspot': [ NVBITFI_HOME + '/test-apps/trip_hotspot', # workload directory 'trip_hotspot', # binary name NVBITFI_HOME + '/test-apps/trip_hotspot/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'trip_mxm': [ NVBITFI_HOME + '/test-apps/trip_mxm', # workload directory 'trip_mxm', # binary name NVBITFI_HOME + '/test-apps/trip_mxm/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'trip_lava': [ NVBITFI_HOME + '/test-apps/trip_lava', # workload directory 'trip_lava', # binary name NVBITFI_HOME + '/test-apps/trip_lava/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'darknet_lenet': [ NVBITFI_HOME + '/test-apps/darknet_lenet', # workload directory 'darknet', # binary name NVBITFI_HOME + '/test-apps/darknet_lenet/', # path to the binary file 3, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], 'py_faster_rcnn': [ NVBITFI_HOME + '/test-apps/py_faster_rcnn', # workload directory 'py_faster_rcnn.py', # binary name '/home/carol/radiation-benchmarks/src/cuda/py-faster-rcnn/', # path to the binary file 5, # expected runtime ADDITIONAL_PARAMETERS, ], 'trip_micro': [ NVBITFI_HOME + '/test-apps/trip_micro', # workload directory # 'cuda_micro-add_single', # binary name # 'cuda_micro-mul_single', # binary name 'cuda_micro-fma_single', # binary name NVBITFI_HOME + '/test-apps/trip_micro/', # path to the binary file 20, # expected runtime ADDITIONAL_PARAMETERS # additional parameters to the run.sh ], } apps = {benchmark: all_apps[benchmark]}
37.823204
106
0.620508
1e2ba857ed3f3b3cd8f0476b85731a6405079248
36,365
py
Python
visitor-counter/venv/Lib/site-packages/flask_sqlalchemy/__init__.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
null
null
null
visitor-counter/venv/Lib/site-packages/flask_sqlalchemy/__init__.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
8
2020-06-06T01:02:06.000Z
2022-03-12T00:24:13.000Z
visitor-counter/venv/Lib/site-packages/flask_sqlalchemy/__init__.py
justnclrk/Python
0922961cbd94694a69ae8132a5c33baf552d8d89
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ flask_sqlalchemy ~~~~~~~~~~~~~~~~ Adds basic SQLAlchemy support to your application. :copyright: (c) 2014 by Armin Ronacher, Daniel Neuhäuser. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import functools import os import sys from timeit import Timer import warnings from math import ceil from operator import itemgetter from threading import Lock import sqlalchemy from flask import _app_ctx_stack, abort, current_app, request from flask.signals import Namespace from sqlalchemy import event, inspect, orm from sqlalchemy.engine.url import make_url from sqlalchemy.ext.declarative import DeclarativeMeta, declarative_base from sqlalchemy.orm.exc import UnmappedClassError from sqlalchemy.orm.session import Session as SessionBase from flask_sqlalchemy.model import Model from ._compat import itervalues, string_types, to_str, xrange from .model import DefaultMeta __version__ = '2.3.2' # the best timer function for the platform time_func = Timer _signals = Namespace() models_committed = _signals.signal('models-committed') before_models_committed = _signals.signal('before-models-committed') def _make_table(db): def _make_table(*args, **kwargs): if len(args) > 1 and isinstance(args[1], db.Column): args = (args[0], db.metadata) + args[1:] info = kwargs.pop('info', None) or {} info.setdefault('bind_key', None) kwargs['info'] = info return sqlalchemy.Table(*args, **kwargs) return _make_table def _set_default_query_class(d, cls): if 'query_class' not in d: d['query_class'] = cls def _wrap_with_default_query_class(fn, cls): @functools.wraps(fn) def newfn(*args, **kwargs): _set_default_query_class(kwargs, cls) if "backref" in kwargs: backref = kwargs['backref'] if isinstance(backref, string_types): backref = (backref, {}) _set_default_query_class(backref[1], cls) return fn(*args, **kwargs) return newfn def _include_sqlalchemy(obj, cls): for module in sqlalchemy, sqlalchemy.orm: for key in module.__all__: if not hasattr(obj, key): setattr(obj, key, getattr(module, key)) # Note: obj.Table does not attempt to be a SQLAlchemy Table class. obj.Table = _make_table(obj) obj.relationship = _wrap_with_default_query_class(obj.relationship, cls) obj.relation = _wrap_with_default_query_class(obj.relation, cls) obj.dynamic_loader = _wrap_with_default_query_class( obj.dynamic_loader, cls) obj.event = event class _DebugQueryTuple(tuple): statement = property(itemgetter(0)) parameters = property(itemgetter(1)) start_time = property(itemgetter(2)) end_time = property(itemgetter(3)) context = property(itemgetter(4)) @property def duration(self): return self.end_time - self.start_time def __repr__(self): return '<query statement="%s" parameters=%r duration=%.03f>' % ( self.statement, self.parameters, self.duration) def _calling_context(app_path): frm = sys._getframe(1) while frm.f_back is not None: name = frm.f_globals.get('__name__') if name and (name == app_path or name.startswith(app_path + '.')): funcname = frm.f_code.co_name return '%s:%s (%s)' % (frm.f_code.co_filename, frm.f_lineno, funcname) frm = frm.f_back return '<unknown>' class SignallingSession(SessionBase): """The signalling session is the default session that Flask-SQLAlchemy uses. It extends the default session system with bind selection and modification tracking. If you want to use a different session you can override the :meth:`SQLAlchemy.create_session` function. .. versionadded:: 2.0 .. versionadded:: 2.1 The `binds` option was added, which allows a session to be joined to an external transaction. """ def __init__(self, db, autocommit=False, autoflush=True, **options): #: The application that this session belongs to. self.app = app = db.get_app() track_modifications = app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] bind = options.pop('bind', None) or db.engine binds = options.pop('binds', db.get_binds(app)) if track_modifications is None or track_modifications: _SessionSignalEvents.register(self) SessionBase.__init__(self, autocommit=autocommit, autoflush=autoflush, bind=bind, binds=binds, **options) def get_bind(self, mapper=None, clause=None): # mapper is None if someone tries to just get a connection if mapper is not None: info = getattr(mapper.mapped_table, 'info', {}) bind_key = info.get('bind_key') if bind_key is not None: state = get_state(self.app) return state.db.get_engine(self.app, bind=bind_key) return SessionBase.get_bind(self, mapper, clause) class _SessionSignalEvents(object): @classmethod def register(cls, session): if not hasattr(session, '_model_changes'): session._model_changes = {} event.listen(session, 'before_flush', cls.record_ops) event.listen(session, 'before_commit', cls.record_ops) event.listen(session, 'before_commit', cls.before_commit) event.listen(session, 'after_commit', cls.after_commit) event.listen(session, 'after_rollback', cls.after_rollback) @classmethod def unregister(cls, session): if hasattr(session, '_model_changes'): del session._model_changes event.remove(session, 'before_flush', cls.record_ops) event.remove(session, 'before_commit', cls.record_ops) event.remove(session, 'before_commit', cls.before_commit) event.remove(session, 'after_commit', cls.after_commit) event.remove(session, 'after_rollback', cls.after_rollback) @staticmethod def record_ops(session, flush_context=None, instances=None): try: d = session._model_changes except AttributeError: return for targets, operation in ((session.new, 'insert'), (session.dirty, 'update'), (session.deleted, 'delete')): for target in targets: state = inspect(target) key = state.identity_key if state.has_identity else id(target) d[key] = (target, operation) @staticmethod def before_commit(session): try: d = session._model_changes except AttributeError: return if d: before_models_committed.send(session.app, changes=list(d.values())) @staticmethod def after_commit(session): try: d = session._model_changes except AttributeError: return if d: models_committed.send(session.app, changes=list(d.values())) d.clear() @staticmethod def after_rollback(session): try: d = session._model_changes except AttributeError: return d.clear() class _EngineDebuggingSignalEvents(object): """Sets up handlers for two events that let us track the execution time of queries.""" def __init__(self, engine, import_name): self.engine = engine self.app_package = import_name def register(self): event.listen(self.engine, 'before_cursor_execute', self.before_cursor_execute) event.listen(self.engine, 'after_cursor_execute', self.after_cursor_execute) def before_cursor_execute(self, conn, cursor, statement, parameters, context, executemany): if current_app: context._query_start_time = Timer def after_cursor_execute(self, conn, cursor, statement, parameters, context, executemany): if current_app: try: queries = _app_ctx_stack.top.sqlalchemy_queries except AttributeError: queries = _app_ctx_stack.top.sqlalchemy_queries = [] queries.append( _DebugQueryTuple( (statement, parameters, context._query_start_time, Timer, _calling_context(self.app_package)))) def get_debug_queries(): """In debug mode Flask-SQLAlchemy will log all the SQL queries sent to the database. This information is available until the end of request which makes it possible to easily ensure that the SQL generated is the one expected on errors or in unittesting. If you don't want to enable the DEBUG mode for your unittests you can also enable the query recording by setting the ``'SQLALCHEMY_RECORD_QUERIES'`` config variable to `True`. This is automatically enabled if Flask is in testing mode. The value returned will be a list of named tuples with the following attributes: `statement` The SQL statement issued `parameters` The parameters for the SQL statement `start_time` / `end_time` Time the query started / the results arrived. Please keep in mind that the timer function used depends on your platform. These values are only useful for sorting or comparing. They do not necessarily represent an absolute timestamp. `duration` Time the query took in seconds `context` A string giving a rough estimation of where in your application query was issued. The exact format is undefined so don't try to reconstruct filename or function name. """ return getattr(_app_ctx_stack.top, 'sqlalchemy_queries', []) class Pagination(object): """Internal helper class returned by :meth:`BaseQuery.paginate`. You can also construct it from any other SQLAlchemy query object if you are working with other libraries. Additionally it is possible to pass `None` as query object in which case the :meth:`prev` and :meth:`next` will no longer work. """ def __init__(self, query, page, per_page, total, items): #: the unlimited query object that was used to create this #: pagination object. self.query = query #: the current page number (1 indexed) self.page = page #: the number of items to be displayed on a page. self.per_page = per_page #: the total number of items matching the query self.total = total #: the items for the current page self.items = items @property def pages(self): """The total number of pages""" if self.per_page == 0: pages = 0 else: pages = int(ceil(self.total / float(self.per_page))) return pages def prev(self, error_out=False): """Returns a :class:`Pagination` object for the previous page.""" assert self.query is not None, 'a query object is required ' \ 'for this method to work' return self.query.paginate(self.page - 1, self.per_page, error_out) @property def prev_num(self): """Number of the previous page.""" if not self.has_prev: return None return self.page - 1 @property def has_prev(self): """True if a previous page exists""" return self.page > 1 def next(self, error_out=False): """Returns a :class:`Pagination` object for the next page.""" assert self.query is not None, 'a query object is required ' \ 'for this method to work' return self.query.paginate(self.page + 1, self.per_page, error_out) @property def has_next(self): """True if a next page exists.""" return self.page < self.pages @property def next_num(self): """Number of the next page""" if not self.has_next: return None return self.page + 1 def iter_pages(self, left_edge=2, left_current=2, right_current=5, right_edge=2): """Iterates over the page numbers in the pagination. The four parameters control the thresholds how many numbers should be produced from the sides. Skipped page numbers are represented as `None`. This is how you could render such a pagination in the templates: .. sourcecode:: html+jinja {% macro render_pagination(pagination, endpoint) %} <div class=pagination> {%- for page in pagination.iter_pages() %} {% if page %} {% if page != pagination.page %} <a href="{{ url_for(endpoint, page=page) }}">{{ page }}</a> {% else %} <strong>{{ page }}</strong> {% endif %} {% else %} <span class=ellipsis>…</span> {% endif %} {%- endfor %} </div> {% endmacro %} """ last = 0 for num in xrange(1, self.pages + 1): if num <= left_edge or \ (num > self.page - left_current - 1 and \ num < self.page + right_current) or \ num > self.pages - right_edge: if last + 1 != num: yield None yield num last = num class BaseQuery(orm.Query): """SQLAlchemy :class:`~sqlalchemy.orm.query.Query` subclass with convenience methods for querying in a web application. This is the default :attr:`~Model.query` object used for models, and exposed as :attr:`~SQLAlchemy.Query`. Override the query class for an individual model by subclassing this and setting :attr:`~Model.query_class`. """ def get_or_404(self, ident): """Like :meth:`get` but aborts with 404 if not found instead of returning ``None``.""" rv = self.get(ident) if rv is None: abort(404) return rv def first_or_404(self): """Like :meth:`first` but aborts with 404 if not found instead of returning ``None``.""" rv = self.first() if rv is None: abort(404) return rv def paginate(self, page=None, per_page=None, error_out=True, max_per_page=None): """Returns ``per_page`` items from page ``page``. If ``page`` or ``per_page`` are ``None``, they will be retrieved from the request query. If ``max_per_page`` is specified, ``per_page`` will be limited to that value. If there is no request or they aren't in the query, they default to 1 and 20 respectively. When ``error_out`` is ``True`` (default), the following rules will cause a 404 response: * No items are found and ``page`` is not 1. * ``page`` is less than 1, or ``per_page`` is negative. * ``page`` or ``per_page`` are not ints. When ``error_out`` is ``False``, ``page`` and ``per_page`` default to 1 and 20 respectively. Returns a :class:`Pagination` object. """ if request: if page is None: try: page = int(request.args.get('page', 1)) except (TypeError, ValueError): if error_out: abort(404) page = 1 if per_page is None: try: per_page = int(request.args.get('per_page', 20)) except (TypeError, ValueError): if error_out: abort(404) per_page = 20 else: if page is None: page = 1 if per_page is None: per_page = 20 if max_per_page is not None: per_page = min(per_page, max_per_page) if page < 1: if error_out: abort(404) else: page = 1 if per_page < 0: if error_out: abort(404) else: per_page = 20 items = self.limit(per_page).offset((page - 1) * per_page).all() if not items and page != 1 and error_out: abort(404) # No need to count if we're on the first page and there are fewer # items than we expected. if page == 1 and len(items) < per_page: total = len(items) else: total = self.order_by(None).count() return Pagination(self, page, per_page, total, items) class _QueryProperty(object): def __init__(self, sa): self.sa = sa def __get__(self, obj, type): try: mapper = orm.class_mapper(type) if mapper: return type.query_class(mapper, session=self.sa.session()) except UnmappedClassError: return None def _record_queries(app): if app.debug: return True rq = app.config['SQLALCHEMY_RECORD_QUERIES'] if rq is not None: return rq return bool(app.config.get('TESTING')) class _EngineConnector(object): def __init__(self, sa, app, bind=None): self._sa = sa self._app = app self._engine = None self._connected_for = None self._bind = bind self._lock = Lock() def get_uri(self): if self._bind is None: return self._app.config['SQLALCHEMY_DATABASE_URI'] binds = self._app.config.get('SQLALCHEMY_BINDS') or () assert self._bind in binds, \ 'Bind %r is not specified. Set it in the SQLALCHEMY_BINDS ' \ 'configuration variable' % self._bind return binds[self._bind] def get_engine(self): with self._lock: uri = self.get_uri() echo = self._app.config['SQLALCHEMY_ECHO'] if (uri, echo) == self._connected_for: return self._engine info = make_url(uri) options = {'convert_unicode': True} self._sa.apply_pool_defaults(self._app, options) self._sa.apply_driver_hacks(self._app, info, options) if echo: options['echo'] = echo self._engine = rv = sqlalchemy.create_engine(info, **options) if _record_queries(self._app): _EngineDebuggingSignalEvents(self._engine, self._app.import_name).register() self._connected_for = (uri, echo) return rv def get_state(app): """Gets the state for the application""" assert 'sqlalchemy' in app.extensions, \ 'The sqlalchemy extension was not registered to the current ' \ 'application. Please make sure to call init_app() first.' return app.extensions['sqlalchemy'] class _SQLAlchemyState(object): """Remembers configuration for the (db, app) tuple.""" def __init__(self, db): self.db = db self.connectors = {} class SQLAlchemy(object): """This class is used to control the SQLAlchemy integration to one or more Flask applications. Depending on how you initialize the object it is usable right away or will attach as needed to a Flask application. There are two usage modes which work very similarly. One is binding the instance to a very specific Flask application:: app = Flask(__name__) db = SQLAlchemy(app) The second possibility is to create the object once and configure the application later to support it:: db = SQLAlchemy() def create_app(): app = Flask(__name__) db.init_app(app) return app The difference between the two is that in the first case methods like :meth:`create_all` and :meth:`drop_all` will work all the time but in the second case a :meth:`flask.Flask.app_context` has to exist. By default Flask-SQLAlchemy will apply some backend-specific settings to improve your experience with them. As of SQLAlchemy 0.6 SQLAlchemy will probe the library for native unicode support. If it detects unicode it will let the library handle that, otherwise do that itself. Sometimes this detection can fail in which case you might want to set ``use_native_unicode`` (or the ``SQLALCHEMY_NATIVE_UNICODE`` configuration key) to ``False``. Note that the configuration key overrides the value you pass to the constructor. This class also provides access to all the SQLAlchemy functions and classes from the :mod:`sqlalchemy` and :mod:`sqlalchemy.orm` modules. So you can declare models like this:: class User(db.Model): username = db.Column(db.String(80), unique=True) pw_hash = db.Column(db.String(80)) You can still use :mod:`sqlalchemy` and :mod:`sqlalchemy.orm` directly, but note that Flask-SQLAlchemy customizations are available only through an instance of this :class:`SQLAlchemy` class. Query classes default to :class:`BaseQuery` for `db.Query`, `db.Model.query_class`, and the default query_class for `db.relationship` and `db.backref`. If you use these interfaces through :mod:`sqlalchemy` and :mod:`sqlalchemy.orm` directly, the default query class will be that of :mod:`sqlalchemy`. .. admonition:: Check types carefully Don't perform type or `isinstance` checks against `db.Table`, which emulates `Table` behavior but is not a class. `db.Table` exposes the `Table` interface, but is a function which allows omission of metadata. The ``session_options`` parameter, if provided, is a dict of parameters to be passed to the session constructor. See :class:`~sqlalchemy.orm.session.Session` for the standard options. .. versionadded:: 0.10 The `session_options` parameter was added. .. versionadded:: 0.16 `scopefunc` is now accepted on `session_options`. It allows specifying a custom function which will define the SQLAlchemy session's scoping. .. versionadded:: 2.1 The `metadata` parameter was added. This allows for setting custom naming conventions among other, non-trivial things. .. versionadded:: 3.0 The `query_class` parameter was added, to allow customisation of the query class, in place of the default of :class:`BaseQuery`. The `model_class` parameter was added, which allows a custom model class to be used in place of :class:`Model`. .. versionchanged:: 3.0 Utilise the same query class across `session`, `Model.query` and `Query`. """ #: Default query class used by :attr:`Model.query` and other queries. #: Customize this by passing ``query_class`` to :func:`SQLAlchemy`. #: Defaults to :class:`BaseQuery`. Query = None def __init__(self, app=None, use_native_unicode=True, session_options=None, metadata=None, query_class=BaseQuery, model_class=Model): self.use_native_unicode = use_native_unicode self.Query = query_class self.session = self.create_scoped_session(session_options) self.Model = self.make_declarative_base(model_class, metadata) self._engine_lock = Lock() self.app = app _include_sqlalchemy(self, query_class) if app is not None: self.init_app(app) @property def metadata(self): """The metadata associated with ``db.Model``.""" return self.Model.metadata def create_scoped_session(self, options=None): """Create a :class:`~sqlalchemy.orm.scoping.scoped_session` on the factory from :meth:`create_session`. An extra key ``'scopefunc'`` can be set on the ``options`` dict to specify a custom scope function. If it's not provided, Flask's app context stack identity is used. This will ensure that sessions are created and removed with the request/response cycle, and should be fine in most cases. :param options: dict of keyword arguments passed to session class in ``create_session`` """ if options is None: options = {} scopefunc = options.pop('scopefunc', _app_ctx_stack.__ident_func__) options.setdefault('query_cls', self.Query) return orm.scoped_session(self.create_session(options), scopefunc=scopefunc) def create_session(self, options): """Create the session factory used by :meth:`create_scoped_session`. The factory **must** return an object that SQLAlchemy recognizes as a session, or registering session events may raise an exception. Valid factories include a :class:`~sqlalchemy.orm.session.Session` class or a :class:`~sqlalchemy.orm.session.sessionmaker`. The default implementation creates a ``sessionmaker`` for :class:`SignallingSession`. :param options: dict of keyword arguments passed to session class """ return orm.sessionmaker(class_=SignallingSession, db=self, **options) def make_declarative_base(self, model, metadata=None): """Creates the declarative base that all models will inherit from. :param model: base model class (or a tuple of base classes) to pass to :func:`~sqlalchemy.ext.declarative.declarative_base`. Or a class returned from ``declarative_base``, in which case a new base class is not created. :param: metadata: :class:`~sqlalchemy.MetaData` instance to use, or none to use SQLAlchemy's default. .. versionchanged 2.3.0:: ``model`` can be an existing declarative base in order to support complex customization such as changing the metaclass. """ if not isinstance(model, DeclarativeMeta): model = declarative_base(cls=model, name='Model', metadata=metadata, metaclass=DefaultMeta) # if user passed in a declarative base and a metaclass for some reason, # make sure the base uses the metaclass if metadata is not None and model.metadata is not metadata: model.metadata = metadata if not getattr(model, 'query_class', None): model.query_class = self.Query model.query = _QueryProperty(self) return model def init_app(self, app): """This callback can be used to initialize an application for the use with this database setup. Never use a database in the context of an application not initialized that way or connections will leak. """ if ('SQLALCHEMY_DATABASE_URI' not in app.config and 'SQLALCHEMY_BINDS' not in app.config): warnings.warn( 'Neither SQLALCHEMY_DATABASE_URI nor SQLALCHEMY_BINDS is set. ' 'Defaulting SQLALCHEMY_DATABASE_URI to "sqlite:///:memory:".') app.config.setdefault('SQLALCHEMY_DATABASE_URI', 'sqlite:///:memory:') app.config.setdefault('SQLALCHEMY_BINDS', None) app.config.setdefault('SQLALCHEMY_NATIVE_UNICODE', None) app.config.setdefault('SQLALCHEMY_ECHO', False) app.config.setdefault('SQLALCHEMY_RECORD_QUERIES', None) app.config.setdefault('SQLALCHEMY_POOL_SIZE', None) app.config.setdefault('SQLALCHEMY_POOL_TIMEOUT', None) app.config.setdefault('SQLALCHEMY_POOL_RECYCLE', None) app.config.setdefault('SQLALCHEMY_MAX_OVERFLOW', None) app.config.setdefault('SQLALCHEMY_COMMIT_ON_TEARDOWN', False) track_modifications = app.config.setdefault( 'SQLALCHEMY_TRACK_MODIFICATIONS', None) if track_modifications is None: warnings.warn( FSADeprecationWarning( 'SQLALCHEMY_TRACK_MODIFICATIONS adds significant overhead and ' 'will be disabled by default in the future. Set it to True ' 'or False to suppress this warning.')) app.extensions['sqlalchemy'] = _SQLAlchemyState(self) @app.teardown_appcontext def shutdown_session(response_or_exc): if app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN']: if response_or_exc is None: self.session.commit() self.session.remove() return response_or_exc def apply_pool_defaults(self, app, options): def _setdefault(optionkey, configkey): value = app.config[configkey] if value is not None: options[optionkey] = value _setdefault('pool_size', 'SQLALCHEMY_POOL_SIZE') _setdefault('pool_timeout', 'SQLALCHEMY_POOL_TIMEOUT') _setdefault('pool_recycle', 'SQLALCHEMY_POOL_RECYCLE') _setdefault('max_overflow', 'SQLALCHEMY_MAX_OVERFLOW') def apply_driver_hacks(self, app, info, options): """This method is called before engine creation and used to inject driver specific hacks into the options. The `options` parameter is a dictionary of keyword arguments that will then be used to call the :func:`sqlalchemy.create_engine` function. The default implementation provides some saner defaults for things like pool sizes for MySQL and sqlite. Also it injects the setting of `SQLALCHEMY_NATIVE_UNICODE`. """ if info.drivername.startswith('mysql'): info.query.setdefault('charset', 'utf8') if info.drivername != 'mysql+gaerdbms': options.setdefault('pool_size', 10) options.setdefault('pool_recycle', 7200) elif info.drivername == 'sqlite': pool_size = options.get('pool_size') detected_in_memory = False if info.database in (None, '', ':memory:'): detected_in_memory = True from sqlalchemy.pool import StaticPool options['poolclass'] = StaticPool if 'connect_args' not in options: options['connect_args'] = {} options['connect_args']['check_same_thread'] = False # we go to memory and the pool size was explicitly set # to 0 which is fail. Let the user know that if pool_size == 0: raise RuntimeError('SQLite in memory database with an ' 'empty queue not possible due to data ' 'loss.') # if pool size is None or explicitly set to 0 we assume the # user did not want a queue for this sqlite connection and # hook in the null pool. elif not pool_size: from sqlalchemy.pool import NullPool options['poolclass'] = NullPool # if it's not an in memory database we make the path absolute. if not detected_in_memory: info.database = os.path.join(app.root_path, info.database) unu = app.config['SQLALCHEMY_NATIVE_UNICODE'] if unu is None: unu = self.use_native_unicode if not unu: options['use_native_unicode'] = False @property def engine(self): """Gives access to the engine. If the database configuration is bound to a specific application (initialized with an application) this will always return a database connection. If however the current application is used this might raise a :exc:`RuntimeError` if no application is active at the moment. """ return self.get_engine() def make_connector(self, app=None, bind=None): """Creates the connector for a given state and bind.""" return _EngineConnector(self, self.get_app(app), bind) def get_engine(self, app=None, bind=None): """Returns a specific engine.""" app = self.get_app(app) state = get_state(app) with self._engine_lock: connector = state.connectors.get(bind) if connector is None: connector = self.make_connector(app, bind) state.connectors[bind] = connector return connector.get_engine() def get_app(self, reference_app=None): """Helper method that implements the logic to look up an application.""" if reference_app is not None: return reference_app if current_app: return current_app._get_current_object() if self.app is not None: return self.app raise RuntimeError( 'No application found. Either work inside a view function or push' ' an application context. See' ' http://flask-sqlalchemy.pocoo.org/contexts/.') def get_tables_for_bind(self, bind=None): """Returns a list of all tables relevant for a bind.""" result = [] for table in itervalues(self.Model.metadata.tables): if table.info.get('bind_key') == bind: result.append(table) return result def get_binds(self, app=None): """Returns a dictionary with a table->engine mapping. This is suitable for use of sessionmaker(binds=db.get_binds(app)). """ app = self.get_app(app) binds = [None] + list(app.config.get('SQLALCHEMY_BINDS') or ()) retval = {} for bind in binds: engine = self.get_engine(app, bind) tables = self.get_tables_for_bind(bind) retval.update(dict((table, engine) for table in tables)) return retval def _execute_for_all_tables(self, app, bind, operation, skip_tables=False): app = self.get_app(app) if bind == '__all__': binds = [None] + list(app.config.get('SQLALCHEMY_BINDS') or ()) elif isinstance(bind, string_types) or bind is None: binds = [bind] else: binds = bind for bind in binds: extra = {} if not skip_tables: tables = self.get_tables_for_bind(bind) extra['tables'] = tables op = getattr(self.Model.metadata, operation) op(bind=self.get_engine(app, bind), **extra) def create_all(self, bind='__all__', app=None): """Creates all tables. .. versionchanged:: 0.12 Parameters were added """ self._execute_for_all_tables(app, bind, 'create_all') def drop_all(self, bind='__all__', app=None): """Drops all tables. .. versionchanged:: 0.12 Parameters were added """ self._execute_for_all_tables(app, bind, 'drop_all') def reflect(self, bind='__all__', app=None): """Reflects tables from the database. .. versionchanged:: 0.12 Parameters were added """ self._execute_for_all_tables(app, bind, 'reflect', skip_tables=True) def __repr__(self): return '<%s engine=%r>' % (self.__class__.__name__, self.engine.url if self.app or current_app else None) class _BoundDeclarativeMeta(DefaultMeta): def __init__(cls, name, bases, d): warnings.warn(FSADeprecationWarning( '"_BoundDeclarativeMeta" has been renamed to "DefaultMeta". The' ' old name will be removed in 3.0.'), stacklevel=3) super(_BoundDeclarativeMeta, cls).__init__(name, bases, d) class FSADeprecationWarning(DeprecationWarning): pass warnings.simplefilter('always', FSADeprecationWarning)
36.621349
123
0.612705
a305eaaef0b2c4406156c21bb56dd19b134c118c
104
py
Python
DescriptiveStatistics/mode.py
sv549/statscalc
338be993adf33f8e835990a67f401214931d4c3f
[ "MIT" ]
null
null
null
DescriptiveStatistics/mode.py
sv549/statscalc
338be993adf33f8e835990a67f401214931d4c3f
[ "MIT" ]
null
null
null
DescriptiveStatistics/mode.py
sv549/statscalc
338be993adf33f8e835990a67f401214931d4c3f
[ "MIT" ]
null
null
null
import statistics class Mode: @staticmethod def mode(num): return statistics.mode(num)
14.857143
35
0.673077
db9e094810abeaf242cc10be1c67b6019ec23a5a
132
py
Python
code/otherStrats/kjhSkewedRandom2.py
kjh618/carykh-prisoners-dilemma-tournament
e44821eeaf4c6d824e0278370d51fab76adf543a
[ "MIT" ]
1
2021-07-01T10:41:28.000Z
2021-07-01T10:41:28.000Z
code/otherStrats/kjhSkewedRandom2.py
kjh618/carykh-prisoners-dilemma-tournament
e44821eeaf4c6d824e0278370d51fab76adf543a
[ "MIT" ]
null
null
null
code/otherStrats/kjhSkewedRandom2.py
kjh618/carykh-prisoners-dilemma-tournament
e44821eeaf4c6d824e0278370d51fab76adf543a
[ "MIT" ]
null
null
null
import random def strategy(history, memory): if random.random() < 0.2: return 1, None else: return 0, None
16.5
30
0.590909
d916438cc9417c23078abb93f65f74db9f37a4ae
9,925
py
Python
datalad/support/tests/test_fileinfo.py
christinerogers/datalad
8b91f3767b45371e213aa7ade146a290a13c00f2
[ "MIT" ]
null
null
null
datalad/support/tests/test_fileinfo.py
christinerogers/datalad
8b91f3767b45371e213aa7ade146a290a13c00f2
[ "MIT" ]
null
null
null
datalad/support/tests/test_fileinfo.py
christinerogers/datalad
8b91f3767b45371e213aa7ade146a290a13c00f2
[ "MIT" ]
null
null
null
# ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test file info getters""" import os.path as op import datalad.utils as ut from datalad.tests.utils import ( assert_dict_equal, assert_equal, assert_in, assert_not_in, assert_raises, known_failure_githubci_win, with_tempfile, ) from datalad.distribution.dataset import Dataset from datalad.support.gitrepo import GitRepo from datalad.tests.utils import ( assert_repo_status, get_convoluted_situation, ) @known_failure_githubci_win @with_tempfile def test_get_content_info(path): repo = GitRepo(path) assert_equal(repo.get_content_info(), {}) # an invalid reference causes an exception assert_raises(ValueError, repo.get_content_info, ref='HEAD') ds = get_convoluted_situation(path) repopath = ds.repo.pathobj assert_equal(ds.repo.pathobj, repopath) assert_equal(ds.pathobj, ut.Path(path)) # verify general rules on fused info records that are incrementally # assembled: for git content info, amended with annex info on 'HEAD' # (to get the last commited stage and with it possibly vanished # content), and lastly annex info wrt to the present worktree, to # also get info on added/staged content # this fuses the info reported from # - git ls-files # - git annex findref HEAD # - git annex find --include '*' for f, r in ds.repo.annexstatus().items(): if f.match('*_untracked'): assert(r.get('gitshasum', None) is None) if f.match('*_deleted'): assert(not f.exists() and not f.is_symlink() is None) if f.match('subds_*'): assert(r['type'] == 'dataset' if r.get('gitshasum', None) else 'directory') if f.match('file_*'): # which one exactly depends on many things assert_in(r['type'], ('file', 'symlink')) if f.match('file_ingit*'): assert(r['type'] == 'file') elif '.datalad' not in f.parts and not f.match('.git*') and \ r.get('gitshasum', None) and not f.match('subds*'): # this should be known to annex, one way or another # regardless of whether things add deleted or staged # or anything inbetween assert_in('key', r, f) assert_in('keyname', r, f) assert_in('backend', r, f) assert_in('bytesize', r, f) # no duplication with path assert_not_in('file', r, f) # query full untracked report res = ds.repo.get_content_info() assert_in(repopath.joinpath('dir_untracked', 'file_untracked'), res) assert_not_in(repopath.joinpath('dir_untracked'), res) # query for compact untracked report res = ds.repo.get_content_info(untracked='normal') assert_not_in(repopath.joinpath('dir_untracked', 'file_untracked'), res) assert_in(repopath.joinpath('dir_untracked'), res) # query no untracked report res = ds.repo.get_content_info(untracked='no') assert_not_in(repopath.joinpath('dir_untracked', 'file_untracked'), res) assert_not_in(repopath.joinpath('dir_untracked'), res) # git status integrity status = ds.repo.status() for t in ('subds', 'file'): for s in ('untracked', 'added', 'deleted', 'clean', 'ingit_clean', 'dropped_clean', 'modified', 'ingit_modified'): for l in ('', ut.PurePosixPath('subdir', '')): if t == 'subds' and 'ingit' in s or 'dropped' in s: # invalid combination continue if t == 'subds' and s == 'deleted': # same as subds_unavailable -> clean continue p = repopath.joinpath(l, '{}_{}'.format(t, s)) assert p.match('*_{}'.format(status[p]['state'])), p if t == 'subds': assert_in(status[p]['type'], ('dataset', 'directory'), p) else: assert_in(status[p]['type'], ('file', 'symlink'), p) # git annex status integrity annexstatus = ds.repo.annexstatus() for t in ('file',): for s in ('untracked', 'added', 'deleted', 'clean', 'ingit_clean', 'dropped_clean', 'modified', 'ingit_modified'): for l in ('', ut.PurePosixPath('subdir', '')): p = repopath.joinpath(l, '{}_{}'.format(t, s)) if s in ('untracked', 'ingit_clean', 'ingit_modified'): # annex knows nothing about these things assert_not_in('key', annexstatus[p]) continue assert_in('key', annexstatus[p]) # dear future, # if the next one fails, git-annex might have changed the # nature of the path that are being reported by # `annex find --json` # when this was written `hashir*` was a native path, but # `file` was a POSIX path assert_equal(annexstatus[p]['has_content'], 'dropped' not in s) # check the different subds evaluation modes someds = Dataset(ds.pathobj / 'subds_modified' / 'someds') dirtyds_path = someds.pathobj / 'dirtyds' assert_not_in( 'state', someds.repo.status(eval_submodule_state='no')[dirtyds_path] ) assert_equal( 'clean', someds.repo.status(eval_submodule_state='commit')[dirtyds_path]['state'] ) assert_equal( 'modified', someds.repo.status(eval_submodule_state='full')[dirtyds_path]['state'] ) @with_tempfile def test_compare_content_info(path): # TODO remove when `create` is RF to return the new Dataset ds = Dataset(path).create() assert_repo_status(path) # for a clean repo HEAD and worktree query should yield identical results # minus a 'bytesize' report that is readily available for HEAD, but would # not a stat call per file for the worktree, and is not done ATM wt = ds.repo.get_content_info(ref=None) assert_dict_equal( wt, {f: {k: v for k, v in p.items() if k != 'bytesize'} for f, p in ds.repo.get_content_info(ref='HEAD').items()} ) @with_tempfile def test_subds_path(path): # a dataset with a subdataset with a file, all neatly tracked ds = Dataset(path).create() subds = ds.create('sub') assert_repo_status(path) with (subds.pathobj / 'some.txt').open('w') as f: f.write(u'test') ds.save(recursive=True) assert_repo_status(path) # querying the toplevel dataset repo for a subdspath should # report the subdataset record in the dataset # (unlike `git status`, which is silent for subdataset paths), # but definitely not report the subdataset as deleted # https://github.com/datalad/datalad-revolution/issues/17 stat = ds.repo.status(paths=[op.join('sub', 'some.txt')]) assert_equal(list(stat.keys()), [subds.repo.pathobj]) assert_equal(stat[subds.repo.pathobj]['state'], 'clean') @with_tempfile def test_report_absent_keys(path): ds = Dataset(path).create() # create an annexed file testfile = ds.pathobj / 'dummy' testfile.write_text(u'nothing') ds.save() # present in a full report and in a partial report # based on worktree of HEAD ref for ai in ( ds.repo.get_content_annexinfo(eval_availability=True), ds.repo.get_content_annexinfo( paths=['dummy'], eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', paths=['dummy'], eval_availability=True)): assert_in(testfile, ai) assert_equal(ai[testfile]['has_content'], True) # drop the key, not available anywhere else ds.drop('dummy', check=False) # does not change a thing, except the key is gone for ai in ( ds.repo.get_content_annexinfo(eval_availability=True), ds.repo.get_content_annexinfo( paths=['dummy'], eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', eval_availability=True), ds.repo.get_content_annexinfo( ref='HEAD', paths=['dummy'], eval_availability=True)): assert_in(testfile, ai) assert_equal(ai[testfile]['has_content'], False) @with_tempfile def test_annexinfo_init(path): ds = Dataset(path).create() foo = ds.pathobj / "foo" foo_cont = b"foo content" foo.write_bytes(foo_cont) bar = ds.pathobj / "bar" bar.write_text(u"bar content") ds.save() # Custom init limits report, with original dict getting updated. cinfo_custom_init = ds.repo.get_content_annexinfo( init={foo: {"bytesize": 0, "this-is-surely-only-here": "right?"}}) assert_not_in(bar, cinfo_custom_init) assert_in(foo, cinfo_custom_init) assert_equal(cinfo_custom_init[foo]["bytesize"], len(foo_cont)) assert_equal(cinfo_custom_init[foo]["this-is-surely-only-here"], "right?") # "git" injects get_content_info() values. cinfo_init_git = ds.repo.get_content_annexinfo(init="git") assert_in("gitshasum", cinfo_init_git[foo]) # init=None, on the other hand, does not. cinfo_init_none = ds.repo.get_content_annexinfo(init=None) assert_in(foo, cinfo_init_none) assert_in(bar, cinfo_init_none) assert_not_in("gitshasum", cinfo_init_none[foo])
38.173077
87
0.605239
f4c2a42c0d069841009e30e8a8b799327c8ef1c3
6,963
py
Python
get_translations.py
nomad-vagabond/BookDict
e2f17ef0db32854ad7b9fabe6a2179cc88376d40
[ "MIT" ]
null
null
null
get_translations.py
nomad-vagabond/BookDict
e2f17ef0db32854ad7b9fabe6a2179cc88376d40
[ "MIT" ]
null
null
null
get_translations.py
nomad-vagabond/BookDict
e2f17ef0db32854ad7b9fabe6a2179cc88376d40
[ "MIT" ]
null
null
null
import json, random, time, re, os import lingvo_api _sleeptimes = [1,3,10,30,60] def translate_words_recursive(words, dumpfile, srclang='En', dstlang='Uk', stime_idx=0): if stime_idx > 4: return translations = [] delayed = [] stimes = [st for st in _sleeptimes[:stime_idx+1]] for i, word in enumerate(words): print(i, word) if i == 300: print("Sleeping for 1 minute...") time.sleep(60) time.sleep(0.5) translation = lingvo_api.get_translation(word, srclang=srclang, dstlang=dstlang) if type(translation) is int: print('Server says:', translation) if translation == 429: for j, stime in enumerate(stimes): print("waiting for %d seconds" %stime) time.sleep(stime) translation = lingvo_api.get_translation(word, srclang=srclang, dstlang=dstlang) if type(translation) is int: print('Server says:', translation) if translation == 429 and j == len(stimes)-1: delayed.append(word) else: # translations.append(translation) trans_json = json.dumps(translation, indent=4, ensure_ascii=False) with open(dumpfile, 'a') as transdump: transdump.write(trans_json + ',\n') break else: trans_json = json.dumps(translation, indent=4, ensure_ascii=False) with open(dumpfile, 'a') as transdump: transdump.write(trans_json + ',\n') print("len(delayed):", len(delayed)) translate_words_recursive(delayed, dumpfile, srclang=srclang, dstlang=dstlang, stime_idx=stime_idx+1) def load_words(wordsfile, store_familiar=True, famfile="./vocabulary/familiar/familiar_words.rst"): unfamiliar = [] familiar = [] if store_familiar: try: with open(famfile) as fam: familiar = fam.readlines() except: pass with open(wordsfile) as words_file: words = words_file.readlines() for word in words: if word[:2] == '..': familiar.append(word[3:]) else: unfamiliar.append(word.strip('\n')) if store_familiar: familiar = sorted(list(set(familiar))) with open(famfile, 'w') as fam: for famword in familiar: fam.write(famword) print("Total number of unfamiliar words in book is %d" %len(unfamiliar)) return unfamiliar def translate(words, dumpfile, srclang='En', dstlang='Uk'): with open(dumpfile, 'w') as transdump: transdump.write('') # translate_words(words[:1000]) translate_words_recursive(words, dumpfile, srclang=srclang, dstlang=dstlang) with open(dumpfile, 'r+') as transdump: tolist = "[\n" + transdump.read()[:-2] + "\n]" transdump.seek(0, 0) transdump.write(tolist) def build_dictionary(dumpfile, dictfile, blocknum=9, sortwords='a', insertline=True): with open(dumpfile) as transdump: translations = json.loads(transdump.read()) items = [] for item in translations: line = item['Heading'] + " - " + item['Translation'] items.append(line) items = list(set(items)) if sortwords == 'a': items = sorted(items) elif sortwords == 'r': random.shuffle(items) if insertline: addchar = '\n\n' else: addchar = '' if not blocknum: blocknum = len(items) + 1 bn = 1 with open(dictfile, 'w') as worddict: i = j = 0 blockwords = [] for line in items: word_trans = line.split(' - ') word = "**" + word_trans[0] + "**" if len(blockwords) == 0: worddict.write("## Block " + str(bn) + "\n\n") blockwords.append(word) worddict.write(word + ' - ' + word_trans[1] + addchar) if (i == blocknum) or (j == len(items)-1): # if j == 3: worddict.write('---\n\n') random.shuffle(blockwords) for bword in blockwords: worddict.write(bword + addchar) worddict.write('---\n\n') i = 0 blockwords = [] bn += 1 i += 1 j += 1 print("Dictionary is successfully built.") if __name__ == '__main__': # print('Enter path to book file. (Currently only .epub format is supported)') # book = input() wordsfile = "./vocabulary/Dragon's Egg.rst" words = load_words(wordsfile=wordsfile, store_familiar=True) bookname = re.findall('.*/(.*)\.', wordsfile)[0] dumpfile = './vocabulary/' + bookname + ".json" if os.path.exists(dumpfile): print("""Translations are already recieved. If you would like to recieve them again delete <bookname>.json file first.""") else: random.shuffle(words) # print(words) # print(len(words)) translate(words, dumpfile, srclang='En', dstlang='Ru') dictfile = './vocabulary/' + bookname + ".md" build_dictionary(dumpfile, dictfile, sortwords='r') # DEPRECATED # def translate_words(words, wordnum=0, dumpfile="translations.txt"): # translations = [] # _sleeptimes = [3,10,30,60] # if wordnum: # stop = wordnum # else: # stop = len(words) - wordnum # # print("stop:", stop) # for i, word in enumerate(words): # if i == stop: # break # translation = lingvo_api.get_translation(word) # if type(translation) is int: # print(translation) # if translation == 429: # for stime in _sleeptimes: # time.sleep(stime) # translation = lingvo_api.get_translation(word) # if type(translation) is not int: # break # translations.append(translation) # with io.open(dumpfile, 'w', encoding='utf8') as transdump: # translations_json = json.dumps(translations, sort_keys=True, # indent=4, ensure_ascii=False) # transdump.write(translations_json) # # with io.open(dumpfile, 'w', encoding='utf8') as transdump: # # for item in translations: # # transdump.write(translations_json)
33.315789
89
0.516588
c82d5ed3d1a674e3cb8da2971712b339e678778f
4,285
py
Python
isovar/nucleotide_counts.py
carnivorouspeanut/isovar_comp
74fcc12ef52d08eb4cfa85bdcda8903970babbda
[ "Apache-2.0" ]
null
null
null
isovar/nucleotide_counts.py
carnivorouspeanut/isovar_comp
74fcc12ef52d08eb4cfa85bdcda8903970babbda
[ "Apache-2.0" ]
null
null
null
isovar/nucleotide_counts.py
carnivorouspeanut/isovar_comp
74fcc12ef52d08eb4cfa85bdcda8903970babbda
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2016-2018. Mount Sinai School of Medicine # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division, absolute_import import numpy as np from .dna import ( dna_nucleotide_to_index, index_to_dna_nucleotide, ) from .read_helpers import ( make_prefix_suffix_pairs, get_single_allele_from_reads, ) def nucleotide_counts(variant_reads): """ Count the number of times {A, C, T, G} occur at each position to the left and right of the variant. Parameters ---------- variant_reads : list of AlleleRead objects Expected to all contain the same variant allele. Returns a tuple with the following elements: - a matrix with four rows and as many columns as the sum of the longest prefix preceding the variant, the longest suffix after the variant and the number of variant nucleotids. - the column indices for the variant nucleotides """ variant_seq = get_single_allele_from_reads(variant_reads) prefix_suffix_pairs = make_prefix_suffix_pairs(variant_reads) n_reads = len(prefix_suffix_pairs) max_prefix_length = max(len(p) for (p, _) in prefix_suffix_pairs) max_suffix_length = max(len(s) for (_, s) in prefix_suffix_pairs) n_variant_nucleotides = len(variant_seq) n_cols = max_prefix_length + max_suffix_length + n_variant_nucleotides counts = np.zeros((4, n_cols), dtype=int) variant_column_indices = [] # first fill in the variant nucleotide counts, since they'll # be invariant across all the supporting reads for i, nucleotide in enumerate(variant_seq): variant_col_idx = max_prefix_length + i variant_column_indices.append(variant_col_idx) row_idx = dna_nucleotide_to_index[dna_nucleotide_to_index] counts[row_idx, variant_col_idx] = n_reads for p, s in prefix_suffix_pairs: for i, prefix_col_idx in enumerate(range( max_prefix_length - len(p), max_prefix_length)): row_idx = dna_nucleotide_to_index[p[i]] counts[row_idx, prefix_col_idx] += 1 for i, suffix_col_idx in enumerate(range( max_prefix_length + n_variant_nucleotides, max_prefix_length + n_variant_nucleotides + len(s))): row_idx = dna_nucleotide_to_index[s[i]] counts[row_idx, suffix_col_idx] += 1 return counts, variant_column_indices def most_common_nucleotides(partitioned_read_sequences): """ Find the most common nucleotide at each offset to the left and right of a variant. Parameters ---------- partitioned_read_sequences : list of tuples Each tuple has three elements: - sequence before mutant nucleotides - mutant nucleotides - sequence after mutant nucleotides Returns a tuple with the following elements: - nucleotide sequence from most common nucleotide at each offset relative to the variant - an array of counts indicating how many reads supported this nucleotide - an array of counts for all the *other* nucleotides at that position """ counts, variant_column_indices = nucleotide_counts( partitioned_read_sequences) max_count_per_column = counts.max(axis=0) assert len(max_count_per_column) == counts.shape[1] max_nucleotide_index_per_column = np.argmax(counts, axis=0) assert len(max_nucleotide_index_per_column) == counts.shape[1] nucleotides = [ index_to_dna_nucleotide[idx] for idx in max_nucleotide_index_per_column ] other_nucleotide_counts = counts.sum(axis=0) - max_count_per_column return "".join(nucleotides), max_count_per_column, other_nucleotide_counts
37.920354
80
0.711785
a778c6d74e22a7ddaae5415945df773f99194e15
16,799
py
Python
sample_apps/python/QueryExample.py
jmgray24/amazon-timestream-tools
7c7b80b56c9435cc00e029d8c59d6c19c19b3ad3
[ "MIT-0" ]
143
2020-10-01T03:18:02.000Z
2022-03-28T18:17:17.000Z
sample_apps/python/QueryExample.py
jmgray24/amazon-timestream-tools
7c7b80b56c9435cc00e029d8c59d6c19c19b3ad3
[ "MIT-0" ]
36
2020-10-02T17:31:09.000Z
2022-03-13T18:45:31.000Z
sample_apps/python/QueryExample.py
jmgray24/amazon-timestream-tools
7c7b80b56c9435cc00e029d8c59d6c19c19b3ad3
[ "MIT-0" ]
106
2020-10-01T13:46:36.000Z
2022-03-28T18:17:10.000Z
from Constant import DATABASE_NAME, TABLE_NAME, ONE_GB_IN_BYTES class QueryExample: HOSTNAME = "host-24Gju" def __init__(self, client): self.client = client self.paginator = client.get_paginator('query') # See records ingested into this table so far SELECT_ALL = f"SELECT * FROM {DATABASE_NAME}.{TABLE_NAME}" # 1. Find the average, p90, p95, and p99 CPU utilization for a specific EC2 host over the past 2 hours. QUERY_1 = f""" SELECT region, az, hostname, BIN(time, 15s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization, ROUND(APPROX_PERCENTILE(measure_value::double, 0.9), 2) AS p90_cpu_utilization, ROUND(APPROX_PERCENTILE(measure_value::double, 0.95), 2) AS p95_cpu_utilization, ROUND(APPROX_PERCENTILE(measure_value::double, 0.99), 2) AS p99_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND hostname = '{HOSTNAME}' AND time > ago(2h) GROUP BY region, hostname, az, BIN(time, 15s) ORDER BY binned_timestamp ASC """ # 2. Identify EC2 hosts with CPU utilization that is higher by 10% or more compared to the average # CPU utilization of the entire fleet for the past 2 hours. QUERY_2 = f""" WITH avg_fleet_utilization AS ( SELECT COUNT(DISTINCT hostname) AS total_host_count, AVG(measure_value::double) AS fleet_avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND time > ago(2h) ), avg_per_host_cpu AS ( SELECT region, az, hostname, AVG(measure_value::double) AS avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY region, az, hostname ) SELECT region, az, hostname, avg_cpu_utilization, fleet_avg_cpu_utilization FROM avg_fleet_utilization, avg_per_host_cpu WHERE avg_cpu_utilization > 1.1 * fleet_avg_cpu_utilization ORDER BY avg_cpu_utilization DESC """ # 3. Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past 2 hours. QUERY_3 = f""" SELECT BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization, hostname FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND hostname = '{HOSTNAME}' AND time > ago(2h) GROUP BY hostname, BIN(time, 30s) ORDER BY binned_timestamp ASC """ # 4. Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past 2 hours, # filling in the missing values using linear interpolation. QUERY_4 = f""" WITH binned_timeseries AS ( SELECT hostname, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND hostname = '{HOSTNAME}' AND time > ago(2h) GROUP BY hostname, BIN(time, 30s) ), interpolated_timeseries AS ( SELECT hostname, INTERPOLATE_LINEAR( CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization), SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS interpolated_avg_cpu_utilization FROM binned_timeseries GROUP BY hostname ) SELECT time, ROUND(value, 2) AS interpolated_cpu FROM interpolated_timeseries CROSS JOIN UNNEST(interpolated_avg_cpu_utilization) """ # 5. Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past 2 hours, # filling in the missing values using interpolation based on the last observation carried forward. QUERY_5 = f""" WITH binned_timeseries AS ( SELECT hostname, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND hostname = '{HOSTNAME}' AND time > ago(2h) GROUP BY hostname, BIN(time, 30s) ), interpolated_timeseries AS ( SELECT hostname, INTERPOLATE_LOCF( CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization), SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS interpolated_avg_cpu_utilization FROM binned_timeseries GROUP BY hostname ) SELECT time, ROUND(value, 2) AS interpolated_cpu FROM interpolated_timeseries CROSS JOIN UNNEST(interpolated_avg_cpu_utilization) """ # 6. Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past 2 hours, # filling in the missing values using interpolation based on a constant value. QUERY_6 = f""" WITH binned_timeseries AS ( SELECT hostname, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND hostname = '{HOSTNAME}' AND time > ago(2h) GROUP BY hostname, BIN(time, 30s) ), interpolated_timeseries AS ( SELECT hostname, INTERPOLATE_FILL( CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization), SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s), 10.0) AS interpolated_avg_cpu_utilization FROM binned_timeseries GROUP BY hostname ) SELECT time, ROUND(value, 2) AS interpolated_cpu FROM interpolated_timeseries CROSS JOIN UNNEST(interpolated_avg_cpu_utilization) """ # 7. Find the average CPU utilization binned at 30 second intervals for a specific EC2 host over the past 2 hours, # filling in the missing values using cubic spline interpolation. QUERY_7 = f""" WITH binned_timeseries AS ( SELECT hostname, BIN(time, 30s) AS binned_timestamp, ROUND(AVG(measure_value::double), 2) AS avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND hostname = '{HOSTNAME}' AND time > ago(2h) GROUP BY hostname, BIN(time, 30s) ), interpolated_timeseries AS ( SELECT hostname, INTERPOLATE_SPLINE_CUBIC( CREATE_TIME_SERIES(binned_timestamp, avg_cpu_utilization), SEQUENCE(min(binned_timestamp), max(binned_timestamp), 15s)) AS interpolated_avg_cpu_utilization FROM binned_timeseries GROUP BY hostname ) SELECT time, ROUND(value, 2) AS interpolated_cpu FROM interpolated_timeseries CROSS JOIN UNNEST(interpolated_avg_cpu_utilization) """ # 8. Find the average CPU utilization binned at 30 second intervals for all EC2 hosts over the past 2 hours, # filling in the missing values using last observation carry forward interpolation. QUERY_8 = f""" WITH per_host_min_max_timestamp AS ( SELECT hostname, min(time) as min_timestamp, max(time) as max_timestamp FROM {DATABASE_NAME}.{TABLE_NAME} WHERE measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY hostname ), interpolated_timeseries AS ( SELECT m.hostname, INTERPOLATE_LOCF( CREATE_TIME_SERIES(time, measure_value::double), SEQUENCE(MIN(ph.min_timestamp), MAX(ph.max_timestamp), 1s)) as interpolated_avg_cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} m INNER JOIN per_host_min_max_timestamp ph ON m.hostname = ph.hostname WHERE measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY m.hostname ) SELECT hostname, AVG(cpu_utilization) AS avg_cpu_utilization FROM interpolated_timeseries CROSS JOIN UNNEST(interpolated_avg_cpu_utilization) AS t (time, cpu_utilization) GROUP BY hostname ORDER BY avg_cpu_utilization DESC """ # 9. Find the percentage of measurements with CPU utilization above 70% for a specific EC2 host # over the past 2 hours, filling in the missing values using linear interpolation. QUERY_9 = f""" WITH time_series_view AS ( SELECT INTERPOLATE_LINEAR( CREATE_TIME_SERIES(time, ROUND(measure_value::double,2)), SEQUENCE(min(time), max(time), 10s)) AS cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE hostname = '{HOSTNAME}' AND measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY hostname ) SELECT FILTER(cpu_utilization, x -> x.value > 70.0) AS cpu_above_threshold, REDUCE(FILTER(cpu_utilization, x -> x.value > 70.0), 0, (s, x) -> s + 1, s -> s) AS count_cpu_above_threshold, ROUND(REDUCE(cpu_utilization, CAST(ROW(0, 0) AS ROW(count_high BIGINT, count_total BIGINT)), (s, x) -> CAST(ROW(s.count_high + IF(x.value > 70.0, 1, 0), s.count_total + 1) AS ROW(count_high BIGINT, count_total BIGINT)), s -> IF(s.count_total = 0, NULL, CAST(s.count_high AS DOUBLE) / s.count_total)), 4) AS fraction_cpu_above_threshold FROM time_series_view """ # 10. List the measurements with CPU utilization lower than 75% for a specific EC2 host over the past 2 hours, # filling in the missing values using linear interpolation. QUERY_10 = f""" WITH time_series_view AS ( SELECT min(time) AS oldest_time, INTERPOLATE_LINEAR(CREATE_TIME_SERIES(time, ROUND(measure_value::double, 2)), SEQUENCE(min(time), max(time), 10s)) AS cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE hostname = '{HOSTNAME}' AND measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY hostname ) SELECT FILTER(cpu_utilization, x -> x.value < 75 AND x.time > oldest_time + 1m) FROM time_series_view """ # 11. Find the total number of measurements with of CPU utilization of 0% for a specific EC2 host # over the past 2 hours, filling in the missing values using linear interpolation. QUERY_11 = f""" WITH time_series_view AS ( SELECT INTERPOLATE_LINEAR(CREATE_TIME_SERIES(time, ROUND(measure_value::double, 2)), SEQUENCE(min(time), max(time), 10s)) AS cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE hostname = '{HOSTNAME}' AND measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY hostname ) SELECT REDUCE(cpu_utilization, DOUBLE '0.0', (s, x) -> s + 1, s -> s) AS count_cpu FROM time_series_view """ # 12. Find the average CPU utilization for a specific EC2 host over the past 2 hours, # filling in the missing values using linear interpolation. QUERY_12 = f""" WITH time_series_view AS ( SELECT INTERPOLATE_LINEAR(CREATE_TIME_SERIES(time, ROUND(measure_value::double, 2)), SEQUENCE(min(time), max(time), 10s)) AS cpu_utilization FROM {DATABASE_NAME}.{TABLE_NAME} WHERE hostname = '{HOSTNAME}' AND measure_name = 'cpu_utilization' AND time > ago(2h) GROUP BY hostname ) SELECT REDUCE(cpu_utilization, CAST(ROW(0.0, 0) AS ROW(sum DOUBLE, count INTEGER)), (s, x) -> CAST(ROW(x.value + s.sum, s.count + 1) AS ROW(sum DOUBLE, count INTEGER)), s -> IF(s.count = 0, NULL, s.sum / s.count)) AS avg_cpu FROM time_series_view """ queries = [QUERY_1, QUERY_2, QUERY_3, QUERY_4, QUERY_5, QUERY_6, QUERY_7, QUERY_8, QUERY_9, QUERY_10, QUERY_11, QUERY_12] def run_all_queries(self): for query_id in range(len(self.queries)): print("Running query [%d] : [%s]" % (query_id + 1, self.queries[query_id])) self.run_query(self.queries[query_id]) def run_query(self, query_string): try: page_iterator = self.paginator.paginate(QueryString=query_string) for page in page_iterator: self._parse_query_result(page) except Exception as err: print("Exception while running query:", err) def _parse_query_result(self, query_result): query_status = query_result["QueryStatus"] progress_percentage = query_status["ProgressPercentage"] print(f"Query progress so far: {progress_percentage}%") bytes_scanned = float(query_status["CumulativeBytesScanned"]) / ONE_GB_IN_BYTES print(f"Data scanned so far: {bytes_scanned} GB") bytes_metered = float(query_status["CumulativeBytesMetered"]) / ONE_GB_IN_BYTES print(f"Data metered so far: {bytes_metered} GB") column_info = query_result['ColumnInfo'] print("Metadata: %s" % column_info) print("Data: ") for row in query_result['Rows']: print(self._parse_row(column_info, row)) def _parse_row(self, column_info, row): data = row['Data'] row_output = [] for j in range(len(data)): info = column_info[j] datum = data[j] row_output.append(self._parse_datum(info, datum)) return "{%s}" % str(row_output) def _parse_datum(self, info, datum): if datum.get('NullValue', False): return "%s=NULL" % info['Name'], column_type = info['Type'] # If the column is of TimeSeries Type if 'TimeSeriesMeasureValueColumnInfo' in column_type: return self._parse_time_series(info, datum) # If the column is of Array Type elif 'ArrayColumnInfo' in column_type: array_values = datum['ArrayValue'] return "%s=%s" % (info['Name'], self._parse_array(info['Type']['ArrayColumnInfo'], array_values)) # If the column is of Row Type elif 'RowColumnInfo' in column_type: row_column_info = info['Type']['RowColumnInfo'] row_values = datum['RowValue'] return self._parse_row(row_column_info, row_values) # If the column is of Scalar Type else: return self._parse_column_name(info) + datum['ScalarValue'] def _parse_time_series(self, info, datum): time_series_output = [] for data_point in datum['TimeSeriesValue']: time_series_output.append("{time=%s, value=%s}" % (data_point['Time'], self._parse_datum(info['Type']['TimeSeriesMeasureValueColumnInfo'], data_point['Value']))) return "[%s]" % str(time_series_output) def _parse_array(self, array_column_info, array_values): array_output = [] for datum in array_values: array_output.append(self._parse_datum(array_column_info, datum)) return "[%s]" % str(array_output) def run_query_with_multiple_pages(self, limit): query_with_limit = self.SELECT_ALL + " LIMIT " + str(limit) print("Starting query with multiple pages : " + query_with_limit) self.run_query(query_with_limit) def cancel_query(self): print("Starting query: " + self.SELECT_ALL) result = self.client.query(QueryString=self.SELECT_ALL) print("Cancelling query: " + self.SELECT_ALL) try: self.client.cancel_query(QueryId=result['QueryId']) print("Query has been successfully cancelled") except Exception as err: print("Cancelling query failed:", err) @staticmethod def _parse_column_name(info): if 'Name' in info: return info['Name'] + "=" else: return ""
45.898907
121
0.61843
31d8af533c5c69ec3d9046807a13c6a98041aeaf
2,238
py
Python
src/Application/PythonScriptModule/pymodules_old/simiangrid/auth.py
antont/tundra
5c9b0a3957071f08ab425dff701cdbb34f9e1868
[ "Apache-2.0" ]
null
null
null
src/Application/PythonScriptModule/pymodules_old/simiangrid/auth.py
antont/tundra
5c9b0a3957071f08ab425dff701cdbb34f9e1868
[ "Apache-2.0" ]
null
null
null
src/Application/PythonScriptModule/pymodules_old/simiangrid/auth.py
antont/tundra
5c9b0a3957071f08ab425dff701cdbb34f9e1868
[ "Apache-2.0" ]
null
null
null
#httplib was ok and httplib2 especially had nice api, but they don't work thru proxies and stuff #-- curl is the most robust thing #import httplib import curl #a high level wrapper over pycurl bindings import json import hashlib #only 'cause has a hardcoded pwd here now - for real this comes from connection or launcher try: import naali except ImportError: naali = None #so that can test standalone too, without Naali else: import circuits class SimiangridAuthentication(circuits.BaseComponent): pass #put disconnecting to on_exit here to not leave old versions while reloading url = "http://localhost/Grid/" c = curl.Curl() def simiangrid_auth(url, username, md5hex): params = {'RequestMethod': 'AuthorizeIdentity', 'Identifier': username, 'Type': 'md5hash', 'Credential': md5hex} rdata = c.post(url, params) print rdata r = json.loads(rdata) #http://code.google.com/p/openmetaverse/wiki/AuthorizeIdentity success = r.get('Success', False) #NOTE: docs say reply should have Success:false upon failure. #however in my test run it doesn't just the Message of missing/invalid creds #this code works for that too. return success def on_connect(conn_id, userconn): print userconn.GetLoginData() username = userconn.GetProperty("username") username = username.replace('_', ' ') #XXX HACK: tundra login doesn't allow spaces, whereas simiangrid frontend demands them pwd = userconn.GetProperty("password") md5hex = hashlib.md5(pwd).hexdigest() success = simiangrid_auth(url, username, md5hex) print "Authentication success:", success, "for", conn_id, userconn if not success: userconn.DenyConnection() if naali is not None: s = naali.server if s.IsAboutToStart(): s.connect("UserAboutToConnect(int, UserConnection*)", on_connect) print "simiangrid/auth.py running on server - hooked to authorize connections" else: on_connect(17, {'username': "Lady Tron", 'password': "They only want you when you're seventeen"}) """ { "Success":true, "UserID":"fe5f5ac3-7b28-4276-ae50-133db72040f0" } Authentication success: True """
33.909091
128
0.693476
98e0c84112a2ae32aee84a4cb48cdfe7b569ef38
4,646
py
Python
tests/test_helper.py
yiskw713/pytorch_template
cfff5da9bd87da81ecbe05bb53397c5414a63163
[ "MIT" ]
10
2020-11-20T05:51:14.000Z
2021-12-07T00:49:10.000Z
tests/test_helper.py
pqy000/plant-recognition
40028c213b4ba3fbb20de35d12252e136e40b5bf
[ "MIT" ]
4
2021-01-25T15:42:25.000Z
2021-05-25T00:05:11.000Z
tests/test_helper.py
pqy000/plant-recognition
40028c213b4ba3fbb20de35d12252e136e40b5bf
[ "MIT" ]
2
2020-11-26T07:16:45.000Z
2021-09-22T02:45:31.000Z
import copy import numpy as np import pytest import torch import torch.optim as optim from pytest_mock import MockFixture from torchvision import transforms from src.libs.dataset import get_dataloader from src.libs.helper import do_one_iteration, evaluate, train from src.libs.loss_fn import get_criterion from src.libs.models import get_model @pytest.fixture() def sample(): img = torch.randn(2, 3, 112, 112) class_id = torch.tensor([0, 1]).long() label = ["daisy", "dandelion"] return {"img": img, "class_id": class_id, "label": label} @pytest.fixture() def model_optimizer(): model = get_model("resnet18", 5) optimizer = optim.Adam(model.parameters(), lr=0.0003) return (model, optimizer) @pytest.fixture() def criterion(): return get_criterion() def test_do_one_iteration1(sample, model_optimizer, criterion): # check iteration for training model, optimizer = model_optimizer original_model = copy.deepcopy(model) batch_size, loss, acc1, gt, pred = do_one_iteration( sample, model, criterion, "cpu", "train", optimizer ) assert batch_size == 2 assert loss > 0 assert 0 <= acc1 <= 100.0 assert np.all(gt == np.array([0, 1])) assert pred.shape == (2,) # check if models have the same weights # https://discuss.pytorch.org/t/check-if-models-have-same-weights/4351 for key_item1, key_item2 in zip( model.state_dict().items(), original_model.state_dict().items() ): # if the weights are completely identical, training does not work. assert not torch.equal(key_item1[1], key_item2[1]) def test_do_one_iteration2(sample, model_optimizer, criterion): # check iteration for evaluation model, optimizer = model_optimizer original_model = copy.deepcopy(model) model.eval() batch_size, loss, acc1, gt, pred = do_one_iteration( sample, model, criterion, "cpu", "evaluate" ) assert batch_size == 2 assert loss > 0 assert 0 <= acc1 <= 100.0 assert np.all(gt == np.array([0, 1])) assert pred.shape == (2,) # check if models have the same weights # https://discuss.pytorch.org/t/check-if-models-have-same-weights/4351 for key_item1, key_item2 in zip( model.state_dict().items(), original_model.state_dict().items() ): # if the weights are completely identical, training does not work. assert torch.equal(key_item1[1], key_item2[1]) def test_do_one_iteration3(sample, model_optimizer, criterion): model, optimizer = model_optimizer with pytest.raises(ValueError): do_one_iteration(sample, model, criterion, "cpu", "test") with pytest.raises(ValueError): do_one_iteration(sample, model, criterion, "cpu", "train") def test_train(mocker: MockFixture, model_optimizer, criterion): model, optimizer = model_optimizer mocker.patch("src.libs.helper.do_one_iteration").return_value = ( 2, 0.1, 50.0, np.array([0, 1]), np.array([1, 1]), ) loader = get_dataloader( "pytest", "train", batch_size=2, shuffle=False, num_workers=1, pin_memory=False, drop_last=True, transform=transforms.Compose( [ transforms.Resize((224, 224)), transforms.ToTensor(), ] ), ) # make small dataset loader.dataset.df = loader.dataset.df[:10] loss, acc1, f1s = train( loader, model, criterion, optimizer, 0, "cpu", interval_of_progress=1 ) assert model.training assert loss == 0.1 assert acc1 == 50.0 assert 0 <= f1s <= 1.0 def test_evaluate(mocker: MockFixture, model_optimizer, criterion): model, _ = model_optimizer mocker.patch("src.libs.helper.do_one_iteration").return_value = ( 2, 0.1, 50.0, np.array([0, 1]), np.array([1, 1]), ) loader = get_dataloader( "pytest", "test", batch_size=2, shuffle=False, num_workers=1, pin_memory=False, drop_last=False, transform=transforms.Compose( [ transforms.Resize((224, 224)), transforms.ToTensor(), ] ), ) # make small dataset loader.dataset.df = loader.dataset.df[:10] n_classes = loader.dataset.get_n_classes() loss, acc1, f1s, c_matrix = evaluate(loader, model, criterion, "cpu") assert not model.training assert loss == 0.1 assert acc1 == 50.0 assert 0 <= f1s <= 1.0 assert c_matrix.shape == (n_classes, n_classes)
26.855491
77
0.632587
51eb618624f4c40d4755f6f0ba09568d41cab000
2,665
py
Python
commands/chat.py
zbylyrcxr/DennisMUD
cb9be389e3be3e267fd78b1520ed2902941742da
[ "MIT" ]
2
2022-02-21T17:55:03.000Z
2022-02-22T06:25:04.000Z
commands/chat.py
zbylyrcxr/DennisMUD
cb9be389e3be3e267fd78b1520ed2902941742da
[ "MIT" ]
3
2022-02-09T18:18:29.000Z
2022-03-07T08:15:54.000Z
commands/chat.py
zbylyrcxr/DennisMUD
cb9be389e3be3e267fd78b1520ed2902941742da
[ "MIT" ]
1
2022-03-07T08:10:59.000Z
2022-03-07T08:10:59.000Z
####################### # Dennis MUD # # chat.py # # Copyright 2018-2020 # # Michael D. Reiley # ####################### # ********** # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # ********** from lib.color import * NAME = "chat" CATEGORIES = ["messaging"] SPECIAL_ALIASES = ['#'] USAGE = "chat <message>" DESCRIPTION = """Send a message to the general chat. General chat messages are seen by all online users who have chat enabled and are not ignoring you. You must also have chat enabled to send a message. Wizards cannot be ignored. Ex. `chat Hello everyone!` Ex2. `#Hello everyone!`""" def COMMAND(console, args): # Perform initial checks. if not COMMON.check(NAME, console, args, argmin=1): return False # Make sure chat is enabled. if not console.user["chat"]["enabled"]: console.msg("{0}: Chat must be enabled first.".format(NAME)) return False # Send our message to all users who have chat enabled and aren't ignoring us. for u in console.router.users: if console.router.users[u]["console"].user and console.router.users[u]["console"].user["chat"]["enabled"]: if not console.user["name"] in console.router.users[u]["console"].user["chat"]["ignored"]: console.router.users[u]["console"].msg(mcolor(CBMAG,"(Chat) " + console.user["name"] + ": " + ' '.join(args),console.router.users[u]["console"].user["colors"])) if CONFIG["ircgateway"]["enabled"]: ircmsg="(Chat) " + console.user["name"] + ": " + ' '.join(args) console.router.f.p.say(CONFIG["ircgateway"]["channel"],ircmsg) # Finished. return True
41.640625
176
0.677298
691f0fc5d2d2d8ff4451f536dd0082e4fc03141d
4,849
py
Python
src/assets/handle/TSSStageHandle.py
5trobl/oaisys
e52e3b0e64e5c4f57963e4aabb07946930f62299
[ "MIT" ]
null
null
null
src/assets/handle/TSSStageHandle.py
5trobl/oaisys
e52e3b0e64e5c4f57963e4aabb07946930f62299
[ "MIT" ]
1
2021-11-22T15:42:37.000Z
2021-11-22T15:42:37.000Z
src/assets/handle/TSSStageHandle.py
5trobl/oaisys
e52e3b0e64e5c4f57963e4aabb07946930f62299
[ "MIT" ]
null
null
null
# blender imports import bpy # utility imports import numpy as np import csv import random import importlib from src.TSSBase import TSSBase class TSSStageHandle(TSSBase): """docstring for TSSStageHandle""" def __init__(self): super(TSSStageHandle, self).__init__() # class vars ################################################################################################### self._stage_list = [] # list of stage [list] self._stage_obj_list = [] # list of stage nodes [list] self._stage_dict = {} # dict of stages [dict] ############################################################################################ end of class vars # def reset_module(self): """ reset all local vars Args: None Returns: None """ # reset all stages ############################################################################################ for stage in self._stage_obj_list: # reset sensor stage.reset_module() # maybe obsolete in future versions del stage ##################################################################################### end of reset all stages # self.reset_base() self._stage_list = [] self._stage_obj_list = [] self._stage_dict = {} def create(self,materials): """ create function Args: materials: list of all materials [list] Returns: None """ self._create_stages(cfg=self._cfg["STAGES"], general_cfg=self._cfg["GENERAL"], materials=materials) def update_after_meshes(self): """ update mesh function Args: None Returns: None """ for stage in self._stage_obj_list: stage.update_after_meshes() def _create_stages(self,cfg,general_cfg,materials): """ create function Args: cfg: list of stage cfgs [list] general_cfg: general cfg [dict] materials: list of all materials [list] Returns: None """ for ii, stage in enumerate(cfg): try: # import module and create class ####################################################################### _module_name = "src.assets.stages." + stage["type"] _module = importlib.import_module(_module_name) _class = getattr(_module, stage["type"]) _stage = _class() ################################################################ end of import module and create class # # set pass params and create pass ###################################################################### # set general cfg _stage.set_general_cfg(cfg=general_cfg) # save name of stage stage["stageParams"]['name'] = stage["name"] # update stage cfg _stage.update_cfg(cfg=stage["stageParams"]) # create material _stage.create() # return desired material _material = _stage.get_desired_material() ############################################################### end of set pass params and create pass # if _material: if _material in materials: _stage.apply_material(material=materials[_material]) else: raise Exception("Material not found!") # add pass to list self._stage_obj_list.append(_stage) self._stage_list.append(_stage.get_stage()) self._stage_dict[stage["name"]]=_stage.get_stage() except ImportError: # manage import error raise Exception("Cannot add stage") return -1 return 0 def get_stages(self): """ get all stages Args: None Returns: list of stage [list] """ return self._stage_list def get_stage_objs(self): """ get all stage objects Args: None Returns: list of stage objects [list] """ return self._stage_obj_list def get_stage_dict(self): """ get all stage dict Args: None Returns: list of stage dict [dict] """ return self._stage_dict
30.689873
120
0.427098
80bf0cff254853870b23c1c734f115e68731333c
5,501
py
Python
esrally/utils/net.py
tomcallahan/rally
4d05fa88ea0920ec1f3178c3705201a53f6420db
[ "Apache-2.0" ]
null
null
null
esrally/utils/net.py
tomcallahan/rally
4d05fa88ea0920ec1f3178c3705201a53f6420db
[ "Apache-2.0" ]
null
null
null
esrally/utils/net.py
tomcallahan/rally
4d05fa88ea0920ec1f3178c3705201a53f6420db
[ "Apache-2.0" ]
null
null
null
import logging import os import certifi import urllib3 import urllib.error from esrally import exceptions __HTTP = None logger = logging.getLogger("rally.net") def init(): global __HTTP proxy_url = os.getenv("http_proxy") if proxy_url and len(proxy_url) > 0: logger.info("Rally connects via proxy URL [%s] to the Internet (picked up from the environment variable [http_proxy])." % proxy_url) __HTTP = urllib3.ProxyManager(proxy_url, cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) else: logger.info("Rally connects directly to the Internet (no proxy support).") __HTTP = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) class Progress: def __init__(self, msg, accuracy=0): from esrally.utils import console self.p = console.progress() # if we don't show a decimal sign, the maximum width is 3 (max value is 100 (%)). Else its 3 + 1 (for the decimal point) # the accuracy that the user requested. total_width = 3 if accuracy == 0 else 4 + accuracy # sample formatting string: [%5.1f%%] for an accuracy of 1 self.percent_format = "[%%%d.%df%%%%]" % (total_width, accuracy) self.msg = msg def __call__(self, bytes_read, bytes_total): from esrally.utils import convert completed = bytes_read / bytes_total total_as_mb = convert.bytes_to_human_string(bytes_total) self.p.print("%s (%s total size)" % (self.msg, total_as_mb), self.percent_format % (completed * 100)) def finish(self): self.p.finish() def download(url, local_path, expected_size_in_bytes=None, progress_indicator=None): """ Downloads a single file from a URL to the provided local path. :param url: The remote URL specifying one file that should be downloaded. May be either a HTTP or HTTPS URL. :param local_path: The local file name of the file that should be downloaded. :param expected_size_in_bytes: The expected file size in bytes if known. It will be used to verify that all data have been downloaded. :param progress_indicator A callable that can be use to report progress to the user. It is expected to take two parameters ``bytes_read`` and ``total_bytes``. If not provided, no progress is shown. Note that ``total_bytes`` is derived from the ``Content-Length`` header and not from the parameter ``expected_size_in_bytes``. """ tmp_data_set_path = local_path + ".tmp" try: with __http().request("GET", url, preload_content=False, retries=10, timeout=urllib3.Timeout(connect=45, read=240)) as r, open(tmp_data_set_path, "wb") as out_file: if r.status > 299: raise urllib.error.HTTPError(url, r.status, "", None, None) # noinspection PyBroadException try: size_from_content_header = int(r.getheader("Content-Length")) except BaseException: size_from_content_header = None chunk_size = 2 ** 16 bytes_read = 0 for chunk in r.stream(chunk_size): out_file.write(chunk) bytes_read += len(chunk) if progress_indicator and size_from_content_header: progress_indicator(bytes_read, size_from_content_header) except BaseException: if os.path.isfile(tmp_data_set_path): os.remove(tmp_data_set_path) raise else: download_size = os.path.getsize(tmp_data_set_path) if expected_size_in_bytes is not None and download_size != expected_size_in_bytes: if os.path.isfile(tmp_data_set_path): os.remove(tmp_data_set_path) raise exceptions.DataError("Download of [%s] is corrupt. Downloaded [%d] bytes but [%d] bytes are expected. Please retry." % (local_path, download_size, expected_size_in_bytes)) os.rename(tmp_data_set_path, local_path) def retrieve_content_as_string(url): with __http().request("GET", url, timeout=urllib3.Timeout(connect=45, read=240)) as response: return response.read().decode("utf-8") def has_internet_connection(): try: # We connect to Github anyway later on so we use that to avoid touching too much different remote endpoints. probing_url = "https://github.com/" logger.debug("Checking for internet connection against [%s]" % probing_url) # We do a HTTP request here to respect the HTTP proxy setting. If we'd open a plain socket connection we circumvent the # proxy and erroneously conclude we don't have an Internet connection. response = __http().request("GET", probing_url, timeout=2.0) status = response.status logger.debug("Probing result is HTTP status [%s]" % str(status)) return status == 200 except BaseException: return False def __http(): if not __HTTP: init() return __HTTP def resolve(hostname_or_ip): if hostname_or_ip and hostname_or_ip.startswith("127"): return hostname_or_ip import socket addrinfo = socket.getaddrinfo(hostname_or_ip, 22, 0, 0, socket.IPPROTO_TCP) for family, socktype, proto, canonname, sockaddr in addrinfo: # we're interested in the IPv4 address if family == socket.AddressFamily.AF_INET: ip, _ = sockaddr if ip[:3] != "127": return ip return None
42.643411
140
0.662061
9aee3dc438168bc2e52ef58786d1e6a60f5a2420
12,209
py
Python
facenet_pytorch/models/utils/detect_face.py
ashvah/facial-attributes-recognition
1d0ecef47f68dfa8673d479ea585a0873c2bdcfd
[ "MIT" ]
1
2022-03-02T09:02:56.000Z
2022-03-02T09:02:56.000Z
facenet_pytorch/models/utils/detect_face.py
ashvah/facial-attributes-recognition
1d0ecef47f68dfa8673d479ea585a0873c2bdcfd
[ "MIT" ]
null
null
null
facenet_pytorch/models/utils/detect_face.py
ashvah/facial-attributes-recognition
1d0ecef47f68dfa8673d479ea585a0873c2bdcfd
[ "MIT" ]
null
null
null
import torch from torch.nn.functional import interpolate from torchvision.transforms import functional as F from torchvision.ops.boxes import batched_nms from PIL import Image import numpy as np import os import math # OpenCV is optional, but required if using numpy arrays instead of PIL try: import cv2 except: pass def fixed_batch_process(im_data, model): batch_size = 512 out = [] for i in range(0, len(im_data), batch_size): batch = im_data[i:(i + batch_size)] out.append(model(batch)) return tuple(torch.cat(v, dim=0) for v in zip(*out)) def detect_face(imgs, minsize, pnet, rnet, onet, threshold, factor, device): if isinstance(imgs, (np.ndarray, torch.Tensor)): if isinstance(imgs, np.ndarray): imgs = torch.as_tensor(imgs.copy(), device=device) if isinstance(imgs, torch.Tensor): imgs = torch.as_tensor(imgs, device=device) if len(imgs.shape) == 3: imgs = imgs.unsqueeze(0) else: if not isinstance(imgs, (list, tuple)): imgs = [imgs] if any(img.size != imgs[0].size for img in imgs): raise Exception("MTCNN batch processing only compatible with equal-dimension images.") imgs = np.stack([np.uint8(img) for img in imgs]) imgs = torch.as_tensor(imgs.copy(), device=device) model_dtype = next(pnet.parameters()).dtype imgs = imgs.permute(0, 3, 1, 2).type(model_dtype) batch_size = len(imgs) h, w = imgs.shape[2:4] m = 12.0 / minsize minl = min(h, w) minl = minl * m # Create scale pyramid scale_i = m scales = [] while minl >= 12: scales.append(scale_i) scale_i = scale_i * factor minl = minl * factor # First stage boxes = [] image_inds = [] scale_picks = [] all_i = 0 offset = 0 for scale in scales: im_data = imresample(imgs, (int(h * scale + 1), int(w * scale + 1))) im_data = (im_data - 127.5) * 0.0078125 reg, probs = pnet(im_data) boxes_scale, image_inds_scale = generateBoundingBox(reg, probs[:, 1], scale, threshold[0]) boxes.append(boxes_scale) image_inds.append(image_inds_scale) pick = batched_nms(boxes_scale[:, :4], boxes_scale[:, 4], image_inds_scale, 0.5) scale_picks.append(pick + offset) offset += boxes_scale.shape[0] boxes = torch.cat(boxes, dim=0) image_inds = torch.cat(image_inds, dim=0) scale_picks = torch.cat(scale_picks, dim=0) # NMS within each scale + image boxes, image_inds = boxes[scale_picks], image_inds[scale_picks] # NMS within each image pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7) boxes, image_inds = boxes[pick], image_inds[pick] regw = boxes[:, 2] - boxes[:, 0] regh = boxes[:, 3] - boxes[:, 1] qq1 = boxes[:, 0] + boxes[:, 5] * regw qq2 = boxes[:, 1] + boxes[:, 6] * regh qq3 = boxes[:, 2] + boxes[:, 7] * regw qq4 = boxes[:, 3] + boxes[:, 8] * regh boxes = torch.stack([qq1, qq2, qq3, qq4, boxes[:, 4]]).permute(1, 0) boxes = rerec(boxes) y, ey, x, ex = pad(boxes, w, h) # Second stage if len(boxes) > 0: im_data = [] for k in range(len(y)): if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1): img_k = imgs[image_inds[k], :, (y[k] - 1):ey[k], (x[k] - 1):ex[k]].unsqueeze(0) im_data.append(imresample(img_k, (24, 24))) im_data = torch.cat(im_data, dim=0) im_data = (im_data - 127.5) * 0.0078125 # This is equivalent to out = rnet(im_data) to avoid GPU out of memory. out = fixed_batch_process(im_data, rnet) out0 = out[0].permute(1, 0) out1 = out[1].permute(1, 0) score = out1[1, :] ipass = score > threshold[1] boxes = torch.cat((boxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1) image_inds = image_inds[ipass] mv = out0[:, ipass].permute(1, 0) # NMS within each image pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7) boxes, image_inds, mv = boxes[pick], image_inds[pick], mv[pick] boxes = bbreg(boxes, mv) boxes = rerec(boxes) # Third stage points = torch.zeros(0, 5, 2, device=device) if len(boxes) > 0: y, ey, x, ex = pad(boxes, w, h) im_data = [] for k in range(len(y)): if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1): img_k = imgs[image_inds[k], :, (y[k] - 1):ey[k], (x[k] - 1):ex[k]].unsqueeze(0) im_data.append(imresample(img_k, (48, 48))) im_data = torch.cat(im_data, dim=0) im_data = (im_data - 127.5) * 0.0078125 # This is equivalent to out = onet(im_data) to avoid GPU out of memory. out = fixed_batch_process(im_data, onet) out0 = out[0].permute(1, 0) out1 = out[1].permute(1, 0) out2 = out[2].permute(1, 0) score = out2[1, :] points = out1 ipass = score > threshold[2] points = points[:, ipass] boxes = torch.cat((boxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1) image_inds = image_inds[ipass] mv = out0[:, ipass].permute(1, 0) w_i = boxes[:, 2] - boxes[:, 0] + 1 h_i = boxes[:, 3] - boxes[:, 1] + 1 points_x = w_i.repeat(5, 1) * points[:5, :] + boxes[:, 0].repeat(5, 1) - 1 points_y = h_i.repeat(5, 1) * points[5:10, :] + boxes[:, 1].repeat(5, 1) - 1 points = torch.stack((points_x, points_y)).permute(2, 1, 0) boxes = bbreg(boxes, mv) # NMS within each image using "Min" strategy # pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7) pick = batched_nms_numpy(boxes[:, :4], boxes[:, 4], image_inds, 0.7, 'Min') boxes, image_inds, points = boxes[pick], image_inds[pick], points[pick] boxes = boxes.cpu().numpy() points = points.cpu().numpy() image_inds = image_inds.cpu() batch_boxes = [] batch_points = [] for b_i in range(batch_size): b_i_inds = np.where(image_inds == b_i) batch_boxes.append(boxes[b_i_inds].copy()) batch_points.append(points[b_i_inds].copy()) batch_boxes, batch_points = np.array(batch_boxes), np.array(batch_points) return batch_boxes, batch_points def bbreg(boundingbox, reg): if reg.shape[1] == 1: reg = torch.reshape(reg, (reg.shape[2], reg.shape[3])) w = boundingbox[:, 2] - boundingbox[:, 0] + 1 h = boundingbox[:, 3] - boundingbox[:, 1] + 1 b1 = boundingbox[:, 0] + reg[:, 0] * w b2 = boundingbox[:, 1] + reg[:, 1] * h b3 = boundingbox[:, 2] + reg[:, 2] * w b4 = boundingbox[:, 3] + reg[:, 3] * h boundingbox[:, :4] = torch.stack([b1, b2, b3, b4]).permute(1, 0) return boundingbox def generateBoundingBox(reg, probs, scale, thresh): stride = 2 cellsize = 12 reg = reg.permute(1, 0, 2, 3) mask = probs >= thresh mask_inds = mask.nonzero() image_inds = mask_inds[:, 0] score = probs[mask] reg = reg[:, mask].permute(1, 0) bb = mask_inds[:, 1:].type(reg.dtype).flip(1) q1 = ((stride * bb + 1) / scale).floor() q2 = ((stride * bb + cellsize - 1 + 1) / scale).floor() boundingbox = torch.cat([q1, q2, score.unsqueeze(1), reg], dim=1) return boundingbox, image_inds def nms_numpy(boxes, scores, threshold, method): if boxes.size == 0: return np.empty((0, 3)) x1 = boxes[:, 0].copy() y1 = boxes[:, 1].copy() x2 = boxes[:, 2].copy() y2 = boxes[:, 3].copy() s = scores area = (x2 - x1 + 1) * (y2 - y1 + 1) I = np.argsort(s) pick = np.zeros_like(s, dtype=np.int16) counter = 0 while I.size > 0: i = I[-1] pick[counter] = i counter += 1 idx = I[0:-1] xx1 = np.maximum(x1[i], x1[idx]).copy() yy1 = np.maximum(y1[i], y1[idx]).copy() xx2 = np.minimum(x2[i], x2[idx]).copy() yy2 = np.minimum(y2[i], y2[idx]).copy() w = np.maximum(0.0, xx2 - xx1 + 1).copy() h = np.maximum(0.0, yy2 - yy1 + 1).copy() inter = w * h if method == 'Min': o = inter / np.minimum(area[i], area[idx]) else: o = inter / (area[i] + area[idx] - inter) I = I[np.where(o <= threshold)] pick = pick[:counter].copy() return pick def batched_nms_numpy(boxes, scores, idxs, threshold, method): device = boxes.device if boxes.numel() == 0: return torch.empty((0,), dtype=torch.int64, device=device) # strategy: in order to perform NMS independently per class. # we add an offset to all the boxes. The offset is dependent # only on the class idx, and is large enough so that boxes # from different classes do not overlap max_coordinate = boxes.max() offsets = idxs.to(boxes) * (max_coordinate + 1) boxes_for_nms = boxes + offsets[:, None] boxes_for_nms = boxes_for_nms.cpu().numpy() scores = scores.cpu().numpy() keep = nms_numpy(boxes_for_nms, scores, threshold, method) return torch.as_tensor(keep, dtype=torch.long, device=device) def pad(boxes, w, h): boxes = boxes.trunc().int().cpu().numpy() x = boxes[:, 0] y = boxes[:, 1] ex = boxes[:, 2] ey = boxes[:, 3] x[x < 1] = 1 y[y < 1] = 1 ex[ex > w] = w ey[ey > h] = h return y, ey, x, ex def rerec(bboxA): h = bboxA[:, 3] - bboxA[:, 1] w = bboxA[:, 2] - bboxA[:, 0] l = torch.max(w, h) bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5 bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5 bboxA[:, 2:4] = bboxA[:, :2] + l.repeat(2, 1).permute(1, 0) return bboxA def imresample(img, sz): im_data = interpolate(img, size=sz, mode="area") return im_data def crop_resize(img, box, image_size): if isinstance(img, np.ndarray): img = img[box[1]:box[3], box[0]:box[2]] out = cv2.resize( img, (image_size, image_size), interpolation=cv2.INTER_AREA ).copy() elif isinstance(img, torch.Tensor): img = img[box[1]:box[3], box[0]:box[2]] out = imresample( img.permute(2, 0, 1).unsqueeze(0).float(), (image_size, image_size) ).byte().squeeze(0).permute(1, 2, 0) else: out = img.crop(box).copy().resize((image_size, image_size), Image.BILINEAR) return out def save_img(img, path): if isinstance(img, np.ndarray): cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) else: img.save(path) def get_size(img): if isinstance(img, (np.ndarray, torch.Tensor)): return img.shape[1::-1] else: return img.size def extract_face(img, box, image_size=160, margin=0, save_path=None): """Extract face + margin from PIL Image given bounding box. Arguments: img {PIL.Image} -- A PIL Image. box {numpy.ndarray} -- Four-element bounding box. image_size {int} -- Output image size in pixels. The image will be square. margin {int} -- Margin to add to bounding box, in terms of pixels in the final image. Note that the application of the margin differs slightly from the davidsandberg/facenet repo, which applies the margin to the original image before resizing, making the margin dependent on the original image size. save_path {str} -- Save path for extracted face image. (default: {None}) Returns: torch.tensor -- tensor representing the extracted face. """ margin = [ margin * (box[2] - box[0]) / (image_size - margin), margin * (box[3] - box[1]) / (image_size - margin), ] raw_image_size = get_size(img) box = [ int(max(box[0] - margin[0] / 2, 0)), int(max(box[1] - margin[1] / 2, 0)), int(min(box[2] + margin[0] / 2, raw_image_size[0])), int(min(box[3] + margin[1] / 2, raw_image_size[1])), ] face = crop_resize(img, box, image_size) if save_path is not None: os.makedirs(os.path.dirname(save_path) + "/", exist_ok=True) save_img(face, save_path) face = F.to_tensor(np.float32(face)) return face
32.298942
99
0.572037
8c11e3c8ecf97965b022398c3d9ee90fd33eebff
1,666
py
Python
src/library/forms.py
klown/clusive
3c89dae967dfe190c2cdf269915c6ace968d1bfb
[ "bzip2-1.0.6" ]
null
null
null
src/library/forms.py
klown/clusive
3c89dae967dfe190c2cdf269915c6ace968d1bfb
[ "bzip2-1.0.6" ]
null
null
null
src/library/forms.py
klown/clusive
3c89dae967dfe190c2cdf269915c6ace968d1bfb
[ "bzip2-1.0.6" ]
null
null
null
import logging from django import forms from library.models import Book from roster.models import Period, ClusiveUser logger = logging.getLogger(__name__) class UploadForm(forms.Form): file = forms.FileField(label='File') class MetadataForm(forms.ModelForm): cover = forms.FileField(required=False, label='Choose new image...') cover.widget.attrs.update({'accept': 'image/*'}) use_orig_cover = forms.BooleanField(label='Use this', required=False, initial=False) use_orig_cover.widget.attrs.update({'class': 'usethis-cover'}) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.label_suffix = '' class Meta: model = Book fields = ['title', 'author', 'description'] widgets = { 'title': forms.TextInput(attrs={'placeholder': 'Content title'}), 'author': forms.TextInput(attrs={'placeholder': 'Author of the content'}), 'description': forms.Textarea(attrs={'placeholder': 'Provide a brief description to show on the Library page.'}), } class PeriodModelMultipleChoiceField(forms.ModelMultipleChoiceField): def label_from_instance(self, period): return period.name class ShareForm(forms.Form): periods = PeriodModelMultipleChoiceField( widget=forms.CheckboxSelectMultiple(), queryset=Period.objects.all(), required=False) def __init__(self, *args, **kwargs): clusive_user : ClusiveUser clusive_user = kwargs.pop('user') super().__init__(*args, **kwargs) periods = clusive_user.periods.all() self.fields['periods'].queryset = periods
30.290909
125
0.669268
5ebb9069060617a57ae7350b891eed25887f7d32
2,568
py
Python
invitation/migrations/0002_auto_20200211_2020.py
tiagocordeiro/django-easy-party
6e10a0e325e2cbc90426f48546f37bc60b0ec6b7
[ "MIT" ]
null
null
null
invitation/migrations/0002_auto_20200211_2020.py
tiagocordeiro/django-easy-party
6e10a0e325e2cbc90426f48546f37bc60b0ec6b7
[ "MIT" ]
184
2020-01-31T19:43:31.000Z
2022-03-18T16:09:50.000Z
invitation/migrations/0002_auto_20200211_2020.py
tiagocordeiro/django-easy-party
6e10a0e325e2cbc90426f48546f37bc60b0ec6b7
[ "MIT" ]
1
2020-01-29T17:51:47.000Z
2020-01-29T17:51:47.000Z
# Generated by Django 3.0.3 on 2020-02-11 23:20 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('invitation', '0001_initial'), ] operations = [ migrations.CreateModel( name='InviteCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, verbose_name='Nome')), ('description', models.TextField(verbose_name='Descrição')), ], options={ 'verbose_name': 'categoria', 'verbose_name_plural': 'categorias', }, ), migrations.CreateModel( name='InviteTemplate', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, verbose_name='criado em')), ('modified', models.DateTimeField(auto_now=True, verbose_name='modificado em')), ('active', models.BooleanField(default=True, verbose_name='ativo')), ('name', models.CharField(max_length=50, verbose_name='Nome')), ('description', models.TextField(blank=True, null=True, verbose_name='Descrição')), ('background_image', models.ImageField(blank=True, upload_to='', verbose_name='Background')), ('title_font', models.FileField(blank=True, upload_to='', verbose_name='Fonte do título')), ('body_font', models.FileField(blank=True, upload_to='', verbose_name='Fonte do corpo')), ('title_text', models.CharField(default='Título', max_length=100, verbose_name='Título')), ('body_text', models.TextField(default='Corpo do texto', verbose_name='Corpo do texto')), ('invite_data', models.TextField(blank=True, null=True, verbose_name='invite_data')), ('categories', models.ManyToManyField(to='invitation.InviteCategory')), ], options={ 'verbose_name': 'modelo', 'verbose_name_plural': 'modelos', }, ), migrations.AddField( model_name='invite', name='invite_template', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='invitation.InviteTemplate'), ), ]
47.555556
136
0.593847
9758bf355c05862b26bd3e91b0c0f1c77f1e1de4
11,566
py
Python
src/interventions_labeling_lib/compared_terms_finder.py
MariyaIvanina/usaid_data_processing
a57d51f83f4ffbe36368589c6ccb1238d6390699
[ "Apache-2.0" ]
3
2021-09-20T10:07:07.000Z
2021-12-11T13:33:40.000Z
src/interventions_labeling_lib/compared_terms_finder.py
MariyaIvanina/usaid_data_processing
a57d51f83f4ffbe36368589c6ccb1238d6390699
[ "Apache-2.0" ]
null
null
null
src/interventions_labeling_lib/compared_terms_finder.py
MariyaIvanina/usaid_data_processing
a57d51f83f4ffbe36368589c6ccb1238d6390699
[ "Apache-2.0" ]
null
null
null
import nltk from allennlp.predictors.predictor import Predictor from text_processing import text_normalizer import re import spacy from interventions_labeling_lib import hearst_pattern_finder from interventions_labeling_lib import hyponym_statistics import os import pickle from text_processing import concepts_merger nlp = spacy.load('en_core_web_sm') class ComparedTermsFinder: def __init__(self,search_engine_inverted_index, abbreviation_resolver, folder_to_save_temp_res): self.predictor = Predictor.from_path("https://s3-us-west-2.amazonaws.com/allennlp/models/srl-model-2018.05.25.tar.gz") self.filter_words = ["compare","compares","compared","comparing"] self.hyp_stat = hyponym_statistics.HyponymStatistics({},search_engine_inverted_index, abbreviation_resolver,{},{}) self.hearst_pattern = hearst_pattern_finder.HearstPatterns(for_finding_comparison = True) self.folder_to_save_temp_res = folder_to_save_temp_res def find_compared_terms_in_sentence(self, parse_sentence): for pair in parse_sentence: if text_normalizer.contain_verb_form(pair["verb"].lower(), self.filter_words): first_part = "" second_part = "" verb = "" description = pair["description"] for m in re.finditer("\[(ARG|V).*?:.*?\]", description): if "ARG2" in m.group(0): second_part = m.group(0).split(":")[1][:-1].strip() if "ARG1" in m.group(0): first_part = m.group(0).split(":")[1][:-1].strip() return first_part, second_part, pair["verb"], pair["description"] return "", "","","" def break_phrase_into_parts(self, text): parts = text.split("and") first_part, second_part = "", "" if len(parts[0].split()) == 1 and len(parts[1].split()) > 1: first_part = parts[0].strip() + " " + " ".join(parts[1].split()[1:]).strip() second_part = parts[1].strip() elif len(parts[1].split()) == 1: first_part = parts[0].strip() second_part = parts[1].strip() return first_part, second_part def clean_pattern_words(self, text): return self.hyp_stat.clean_concept(self.hearst_pattern.clean_hyponym_term(text.replace("NP_","").replace("_"," "))) def clean_result(self, text, search_engine_inverted_index): cleaned_text = self.hearst_pattern.clean_hyponym_term(text) if len(cleaned_text.split()) < 4: return self.hyp_stat.clean_concept(cleaned_text) np_text = self.hearst_pattern.replace_np_sequences(text).replace("_of_", " of NP_") for phr in nlp(np_text).noun_chunks: cleaned_text = self.clean_pattern_words(phr.text) if cleaned_text == "": continue freq_percent = len(search_engine_inverted_index.find_articles_with_keywords([cleaned_text],threshold=1.0, extend_with_abbreviations=False))/search_engine_inverted_index.total_articles_number if len(set([tag.text for tag in phr.rights]).intersection(set(["of", "in"]))) > 0 and freq_percent > 0.01: continue if freq_percent < 0.01: return cleaned_text for phr in nlp(np_text).noun_chunks: cleaned_text = self.clean_pattern_words(phr.text) if cleaned_text != "": return cleaned_text return cleaned_text def find_raw_compared_items_sentence_parsing(self, articles_df, search_engine_inverted_index): res_all = {} all_articles = search_engine_inverted_index.find_articles_with_keywords(self.filter_words, threshold = 1.0, extend_with_abbreviations = False) cnt = 0 for i in all_articles: try: if i not in res_all: res_all[i] = [] cnt += 1 if cnt % 500 == 0: print("%d artciles processed"%cnt) sentences = [text_normalizer.remove_accented_chars(articles_df["title"].values[i].lower()\ if articles_df["title"].values[i].isupper() else articles_df["title"].values[i])] sentences.extend(nltk.sent_tokenize(text_normalizer.remove_accented_chars(articles_df["abstract"].values[i]))) for sentence in sentences: if text_normalizer.has_word_in_sentence(sentence, self.filter_words): parse_sentence = self.predictor.predict(sentence=sentence)["verbs"] first_part, second_part, verb, description = self.find_compared_terms_in_sentence(parse_sentence) for v in parse_sentence: res = {} for m in re.finditer("\[(ARG|V).*?:.*?\]", v["description"]): tag = m.group(0).split(":")[0][1:].strip() tag_text = m.group(0).split(":")[1][:-1].strip() if tag not in res: res[tag] = [] res[tag].append(tag_text) for tag in res: for arg in res[tag]: if verb in arg and tag != "V" and (first_part == "" or first_part not in arg or (first_part in arg and nlp(arg.split()[0])[0].tag_ == "IN")): search_tag = "ARG1" if tag == "ARGV-TMP": search_tag = "ARG0" if re.search("ARG\d+", tag): search_tag = "ARG" + str(int(re.search("\d+", tag).group(0))-1) if search_tag in res: first_part = res[search_tag][0] break if first_part == "": for m in re.finditer("\[(ARG|V).*?:.*?\]", description): if "ARG1" in m.group(0): first_part = m.group(0).split(":")[1][:-1].strip() break if (" and " in first_part and second_part == "") or (" and " in second_part and first_part == ""): first_part, second_part = self.break_phrase_into_parts(first_part + second_part) res_all[i].append((sentence, first_part, second_part)) except KeyboardInterrupt: raise except Exception as err: print("error occured for %d article"%i) print(err) return res_all def clean_found_compared_items(self, res_all, search_engine_inverted_index): res_all_cleaned = {} for i in res_all: res_all_cleaned[i] = [] for part in res_all[i]: res_all_cleaned[i].append((self.clean_result(part[1], search_engine_inverted_index).strip(), self.clean_result(part[2], search_engine_inverted_index).strip())) return res_all_cleaned def fill_compared_items(self, articles_df, search_engine_inverted_index): if not os.path.exists(self.folder_to_save_temp_res): os.makedirs(self.folder_to_save_temp_res) if os.path.exists(os.path.join(self.folder_to_save_temp_res, "res_all.pickle")): res_all = pickle.load(open(os.path.join(self.folder_to_save_temp_res, "res_all.pickle"), "rb")) else: res_all = self.find_raw_compared_items_sentence_parsing(articles_df, search_engine_inverted_index) pickle.dump(res_all, open(os.path.join(self.folder_to_save_temp_res, "res_all.pickle"),"wb")) if os.path.exists(os.path.join(self.folder_to_save_temp_res, "res_all_cleaned.pickle")): res_all_cleaned = pickle.load(open(os.path.join(self.folder_to_save_temp_res, "res_all_cleaned.pickle"), "rb")) else: res_all_cleaned = self.clean_found_compared_items(res_all, search_engine_inverted_index) pickle.dump(res_all_cleaned, open(os.path.join(self.folder_to_save_temp_res, "res_all_cleaned.pickle"),"wb")) if os.path.exists(os.path.join(self.folder_to_save_temp_res, "res_all_patterns.pickle")): res_all_patterns = pickle.load(open(os.path.join(self.folder_to_save_temp_res, "res_all_patterns.pickle"),"rb")) else: res_all_patterns = self.find_compared_items_via_patterns(articles_df, search_engine_inverted_index) pickle.dump(res_all_patterns, open(os.path.join(self.folder_to_save_temp_res, "res_all_patterns.pickle"),"wb")) common_res = self.merge_results(res_all_patterns, res_all_cleaned, search_engine_inverted_index) articles_df["compared_terms"] = "" for i in range(len(articles_df)): articles_df["compared_terms"].values[i] = [] if i in res_all_cleaned: for term in res_all_cleaned[i]: articles_df["compared_terms"].values[i].extend([t.strip() for t in term if t.strip() != ""]) if i in res_all_patterns: for term in res_all_patterns[i]: if term.strip() != "": articles_df["compared_terms"].values[i].append(term.strip()) return articles_df def merge_results(self, res_all_patterns, res_all_cleaned, search_engine_inverted_index): common_res = {} for i in res_all_cleaned: for term in res_all_cleaned[i]: if i not in common_res: common_res[i] = [] common_res[i].extend([t.strip() for t in term if t.strip() != ""]) for i in res_all_patterns: for term in res_all_patterns[i]: if i not in common_res: common_res[i] = [] if term.strip() != "": common_res[i].append(term.strip()) _concepts_merger = concepts_merger.ConceptsMerger(5) for i in common_res: for term in common_res[i]: _concepts_merger.add_item_to_dict(term, i) _concepts_merger.merge_concepts(search_engine_inverted_index) for i in common_res: new_list = [] for term in common_res[i]: new_list.append(_concepts_merger.new_mapping[term] if term in _concepts_merger.new_mapping else term) common_res[i] = new_list return common_res def find_compared_items_via_patterns(self, articles_df, search_engine_inverted_index): res_all = {} cnt = 0 for i in search_engine_inverted_index.find_articles_with_keywords(["comparison"], threshold = 1.0, extend_with_abbreviations = False): cnt += 1 if cnt %500 == 0: print("%d articles processed"%cnt) if i not in res_all: title = text_normalizer.remove_accented_chars(articles_df["title"].values[i].lower()\ if articles_df["title"].values[i].isupper() else articles_df["title"].values[i]) abstract = text_normalizer.remove_accented_chars(articles_df["abstract"].values[i]) res_all[i] = [self.hyp_stat.clean_concept(expr) for expr in self.hearst_pattern.find_compared_items(title + " . " + abstract)] return res_all
55.07619
202
0.5894
089c0b65db07ff5f470083b045737b16426f4f24
1,060
py
Python
python/loanStreetClient.py
McGuire00/LoanStreet
8a87e7de87e09e2181cb8fd50f15d1d65d631d87
[ "MIT" ]
null
null
null
python/loanStreetClient.py
McGuire00/LoanStreet
8a87e7de87e09e2181cb8fd50f15d1d65d631d87
[ "MIT" ]
null
null
null
python/loanStreetClient.py
McGuire00/LoanStreet
8a87e7de87e09e2181cb8fd50f15d1d65d631d87
[ "MIT" ]
null
null
null
import requests # home page # http://localhost:3000/ def get_home_page(link): """performs a GET request to the / endpoint """ # returns message: "Welcome" get = requests.get(link) print(get.text) # get_info("http://localhost:3000/") def get_all_loans(link): """ performs a GET request to the /api/loans endpoint """ get = requests.get(link) print(get.json()) def get_loan_by_id(link): """performs a GET request to the /api/loans/:{insert loanId here} endpoint """ get = requests.get(link) print(get.text) def update_loan_by_id(link, data): """performs a PUT request to the /api/loans/:{insert loanId here} endpoint """ put = requests.put(link, json=data) print(put.text) def delete_loan_by_id(link): """performs a DELETE request to the /api/loans/:{insert loanId here} endpoint """ delete = requests.delete(link) print(delete.text) def submit_new_loan(link, data): """performs a POST request to the / endpoint """ post = requests.post(link, json=data) print(post.text)
23.555556
85
0.667925
fb7b9d68d63444d6433a979e0b4ab9f5b4ec151e
16,764
py
Python
mcpi_e/minecraft.py
stoneskin/mcpi_e
9c9bd1c1c20f8b117ecb97af9893f251237d2329
[ "MIT" ]
2
2020-05-23T18:20:34.000Z
2021-10-09T09:09:13.000Z
mcpi_e/minecraft.py
stoneskin/mcpi_e
9c9bd1c1c20f8b117ecb97af9893f251237d2329
[ "MIT" ]
null
null
null
mcpi_e/minecraft.py
stoneskin/mcpi_e
9c9bd1c1c20f8b117ecb97af9893f251237d2329
[ "MIT" ]
2
2021-03-07T10:40:23.000Z
2021-11-07T14:36:40.000Z
from .connection import Connection from .vec3 import Vec3 from .event import BlockEvent, ChatEvent, ProjectileEvent from .entity import Entity from .block import Block import math from .util import flatten import sys from .logger import * import mcpi_e.settings as settings """ Minecraft PI low level api v0.1_1 Note: many methods have the parameter *arg. This solution makes it simple to allow different types, and variable number of arguments. The actual magic is a mix of flatten_parameters() and __iter__. Example: A Cube class could implement __iter__ to work in Minecraft.setBlocks(c, id). (Because of this, it's possible to "erase" arguments. CmdPlayer removes entityId, by injecting [] that flattens to nothing) @author: Aron Nieminen, Mojang AB""" """ Updated to include functionality provided by RaspberryJuice: - getBlocks() - getDirection() - getPitch() - getRotation() - getPlayerEntityId() - pollChatPosts() - setSign() - spawnEntity() - getEntities() - removeEntity() - removeEntityType() """ def intFloor(*args): return [int(math.floor(x)) for x in flatten(args)] class CmdPositioner: """Methods for setting and getting positions""" def __init__(self, connection, packagePrefix): self.conn = connection self.pkg = packagePrefix def getPos(self, id): """Get entity position (entityId:int) => Vec3""" s = self.conn.sendReceive(self.pkg + b".getPos", id) return Vec3(*list(map(float, s.split(",")))) def setPos(self, id, *args): """Set entity position (entityId:int, x,y,z)""" self.conn.send(self.pkg + b".setPos", id, args) def getTilePos(self, id): """Get entity tile position (entityId:int) => Vec3""" s = self.conn.sendReceive(self.pkg + b".getTile", id) return Vec3(*list(map(int, s.split(",")))) def setTilePos(self, id, *args): """Set entity tile position (entityId:int) => Vec3""" self.conn.send(self.pkg + b".setTile", id, intFloor(*args)) def setDirection(self, id, *args): """Set entity direction (entityId:int, x,y,z)""" self.conn.send(self.pkg + b".setDirection", id, args) def getDirection(self, id): """Get entity direction (entityId:int) => Vec3""" s = self.conn.sendReceive(self.pkg + b".getDirection", id) return Vec3(*map(float, s.split(","))) def setRotation(self, id, yaw): """Set entity rotation (entityId:int, yaw)""" self.conn.send(self.pkg + b".setRotation", id, yaw) def getRotation(self, id): """get entity rotation (entityId:int) => float""" return float(self.conn.sendReceive(self.pkg + b".getRotation", id)) def setPitch(self, id, pitch): """Set entity pitch (entityId:int, pitch)""" self.conn.send(self.pkg + b".setPitch", id, pitch) def getPitch(self, id): """get entity pitch (entityId:int) => float""" return float(self.conn.sendReceive(self.pkg + b".getPitch", id)) def setting(self, setting, status): """Set a player setting (setting, status). keys: autojump""" self.conn.send(self.pkg + b".setting", setting, 1 if bool(status) else 0) class CmdEntity(CmdPositioner): """Methods for entities""" def __init__(self, connection): CmdPositioner.__init__(self, connection, b"entity") def getName(self, id): """Get the list name of the player with entity id => [name:str] Also can be used to find name of entity if entity is not a player.""" return self.conn.sendReceive(b"entity.getName", id) def getEntities(self, id, distance=10, typeId=-1): """Return a list of entities near entity (playerEntityId:int, distanceFromPlayerInBlocks:int, typeId:int) => [[entityId:int,entityTypeId:int,entityTypeName:str,posX:float,posY:float,posZ:float]]""" """If distanceFromPlayerInBlocks:int is not specified then default 10 blocks will be used""" s = self.conn.sendReceive(b"entity.getEntities", id, distance, typeId) entities = [e for e in s.split("|") if e] return [ [int(n.split(",")[0]), int(n.split(",")[1]), n.split(",")[2], float(n.split(",")[3]), float(n.split(",")[4]), float(n.split(",")[5])] for n in entities] def removeEntities(self, id, distance=10, typeId=-1): """Remove entities all entities near entity (playerEntityId:int, distanceFromPlayerInBlocks:int, typeId:int, ) => (removedEntitiesCount:int)""" """If distanceFromPlayerInBlocks:int is not specified then default 10 blocks will be used""" return int(self.conn.sendReceive(b"entity.removeEntities", id, distance, typeId)) def pollBlockHits(self, *args): """Only triggered by sword => [BlockEvent]""" s = self.conn.sendReceive(b"entity.events.block.hits", intFloor(args)) events = [e for e in s.split("|") if e] return [BlockEvent.Hit(*list(map(int, e.split(",")))) for e in events] def pollChatPosts(self, *args): """Triggered by posts to chat => [ChatEvent]""" s = self.conn.sendReceive(b"entity.events.chat.posts", intFloor(args)) events = [e for e in s.split("|") if e] return [ChatEvent.Post(int(e[:e.find(",")]), e[e.find(",") + 1:]) for e in events] def pollProjectileHits(self, *args): """Only triggered by projectiles => [BlockEvent]""" s = self.conn.sendReceive(b"entity.events.projectile.hits", intFloor(args)) events = [e for e in s.split("|") if e] results = [] for e in events: info = e.split(",") results.append(ProjectileEvent.Hit( int(info[0]), int(info[1]), int(info[2]), int(info[3]), info[4], info[5])) return results def clearEvents(self, *args): """Clear the entities events""" self.conn.send(b"entity.events.clear", intFloor(args)) class CmdPlayer(CmdPositioner): """Methods for the host (Raspberry Pi) player""" def __init__(self, connection,playerId): CmdPositioner.__init__(self, connection, b"player") self.conn = connection self.playerId=playerId def getPos(self): return CmdPositioner.getPos(self, self.playerId) def setPos(self, *args): return CmdPositioner.setPos(self, self.playerId, args) def getTilePos(self): return CmdPositioner.getTilePos(self, self.playerId) def setTilePos(self, *args): return CmdPositioner.setTilePos(self, self.playerId, args) def setDirection(self, *args): return CmdPositioner.setDirection(self, self.playerId, args) def getDirection(self): return CmdPositioner.getDirection(self, self.playerId) def setRotation(self, yaw): return CmdPositioner.setRotation(self,self.playerId, yaw) def getRotation(self): return CmdPositioner.getRotation(self, self.playerId) def setPitch(self, pitch): return CmdPositioner.setPitch(self, self.playerId, pitch) def getPitch(self): return CmdPositioner.getPitch(self, self.playerId) def getEntities(self, distance=10, typeId=-1): """Return a list of entities near entity (distanceFromPlayerInBlocks:int, typeId:int) => [[entityId:int,entityTypeId:int,entityTypeName:str,posX:float,posY:float,posZ:float]]""" """If distanceFromPlayerInBlocks:int is not specified then default 10 blocks will be used""" s = self.conn.sendReceive(b"player.getEntities", distance, typeId) entities = [e for e in s.split("|") if e] return [ [int(n.split(",")[0]), int(n.split(",")[1]), n.split(",")[2], float(n.split(",")[3]), float(n.split(",")[4]), float(n.split(",")[5])] for n in entities] def removeEntities(self, distance=10, typeId=-1): """Remove entities all entities near entity (distanceFromPlayerInBlocks:int, typeId:int, ) => (removedEntitiesCount:int)""" """If distanceFromPlayerInBlocks:int is not specified then default 10 blocks will be used""" return int(self.conn.sendReceive(b"player.removeEntities", distance, typeId)) def pollBlockHits(self): """Only triggered by sword => [BlockEvent]""" s = self.conn.sendReceive(b"player.events.block.hits") events = [e for e in s.split("|") if e] return [BlockEvent.Hit(*list(map(int, e.split(",")))) for e in events] def pollChatPosts(self): """Triggered by posts to chat => [ChatEvent]""" s = self.conn.sendReceive(b"player.events.chat.posts") events = [e for e in s.split("|") if e] return [ChatEvent.Post(int(e[:e.find(",")]), e[e.find(",") + 1:]) for e in events] def pollProjectileHits(self): """Only triggered by projectiles => [BlockEvent]""" s = self.conn.sendReceive(b"player.events.projectile.hits") events = [e for e in s.split("|") if e] results = [] for e in events: info = e.split(",") results.append(ProjectileEvent.Hit( int(info[0]), int(info[1]), int(info[2]), int(info[3]), info[4], info[5])) return results def clearEvents(self): """Clear the players events""" self.conn.send(b"player.events.clear") class CmdPlayerEntity(CmdPlayer): """ use entity to build a player """ def __init__(self, connection,playerId): CmdPositioner.__init__(self, connection, b"entity") self.conn = connection self.playerId=playerId def getPos(self): return CmdPositioner.getPos(self, self.playerId) class CmdCamera: def __init__(self, connection): self.conn = connection def setNormal(self, *args): """Set camera mode to normal Minecraft view ([entityId])""" self.conn.send(b"camera.mode.setNormal", args) def setFixed(self): """Set camera mode to fixed view""" self.conn.send(b"camera.mode.setFixed") def setFollow(self, *args): """Set camera mode to follow an entity ([entityId])""" self.conn.send(b"camera.mode.setFollow", args) def setPos(self, *args): """Set camera entity position (x,y,z)""" self.conn.send(b"camera.setPos", args) class CmdEvents: """Events""" def __init__(self, connection): self.conn = connection def clearAll(self): """Clear all old events""" self.conn.send(b"events.clear") def pollBlockHits(self): """Only triggered by sword => [BlockEvent]""" s = self.conn.sendReceive(b"events.block.hits") events = [e for e in s.split("|") if e] return [BlockEvent.Hit(*list(map(int, e.split(",")))) for e in events] def pollChatPosts(self): """Triggered by posts to chat => [ChatEvent]""" s = self.conn.sendReceive(b"events.chat.posts") events = [e for e in s.split("|") if e] return [ChatEvent.Post(int(e[:e.find(",")]), e[e.find(",") + 1:]) for e in events] def pollProjectileHits(self): """Only triggered by projectiles => [BlockEvent]""" s = self.conn.sendReceive(b"events.projectile.hits") events = [e for e in s.split("|") if e] results = [] for e in events: info = e.split(",") results.append(ProjectileEvent.Hit( int(info[0]), int(info[1]), int(info[2]), int(info[3]), info[4], info[5])) return results class Minecraft: """The main class to interact with a running instance of Minecraft Pi.""" def __init__(self, connection,playerId): self.conn = connection self.camera = CmdCamera(connection) self.entity = CmdEntity(connection) self.cmdplayer = CmdPlayer(connection,playerId) self.player=CmdPlayerEntity(connection,playerId) self.events = CmdEvents(connection) self.playerId= playerId self.settings=settings def getBlock(self, *args): """Get block (x,y,z) => id:int""" return int(self.conn.sendReceive(b"world.getBlock", intFloor(args))) def getBlockWithData(self, *args): """Get block with data (x,y,z) => Block""" ans = self.conn.sendReceive(b"world.getBlockWithData", intFloor(args)) return Block(*list(map(int, ans.split(",")))) def getBlocks(self, *args): """Get a cuboid of blocks (x0,y0,z0,x1,y1,z1) => [id:int]""" s = self.conn.sendReceive(b"world.getBlocks", intFloor(args)) return map(int, s.split(",")) def setBlock(self, *args): """Set block (x,y,z,id,[data])""" self.conn.send(b"world.setBlock", intFloor(args)) def setBlocks(self, *args): """Set a cuboid of blocks (x0,y0,z0,x1,y1,z1,id,[data])""" self.conn.send(b"world.setBlocks", intFloor(args)) def setSign(self, *args): """Set a sign (x,y,z,id,data,[line1,line2,line3,line4]) Wall signs (id=68) require data for facing direction 2=north, 3=south, 4=west, 5=east Standing signs (id=63) require data for facing rotation (0-15) 0=south, 4=west, 8=north, 12=east @author: Tim Cummings https://www.triptera.com.au/wordpress/""" lines = [] flatargs = [] for arg in flatten(args): flatargs.append(arg) for flatarg in flatargs[5:]: lines.append(flatarg.replace(",",";").replace(")","]").replace("(","[")) self.conn.send(b"world.setSign",intFloor(flatargs[0:5]) + lines) def spawnEntity(self, *args): """Spawn entity (x,y,z,id)""" return int(self.conn.sendReceive(b"world.spawnEntity", args)) def getHeight(self, *args): """Get the height of the world (x,z) => int""" return int(self.conn.sendReceive(b"world.getHeight", intFloor(args))) def getPlayerEntityIds(self): """Get the entity ids of the connected players => [id:int]""" ids = self.conn.sendReceive(b"world.getPlayerIds") return list(map(int, ids.split("|"))) def getPlayerEntityId(self, name): """Get the entity id of the named player => [id:int]""" return int(self.conn.sendReceive(b"world.getPlayerId", name)) def saveCheckpoint(self): """Save a checkpoint that can be used for restoring the world""" self.conn.send(b"world.checkpoint.save") def restoreCheckpoint(self): """Restore the world state to the checkpoint""" self.conn.send(b"world.checkpoint.restore") def postToChat(self, msg): """Post a message to the game chat""" self.conn.send(b"chat.post", msg) def setting(self, setting, status): """Set a world setting (setting, status). keys: world_immutable, nametags_visible""" self.conn.send(b"world.setting", setting, 1 if bool(status) else 0) def getEntityTypes(self): """Return a list of Entity objects representing all the entity types in Minecraft""" s = self.conn.sendReceive(b"world.getEntityTypes") types = [t for t in s.split("|") if t] return [Entity(int(e[:e.find(",")]), e[e.find(",") + 1:]) for e in types] def getEntities(self, typeId=-1): """Return a list of all currently loaded entities (EntityType:int) => [[entityId:int,entityTypeId:int,entityTypeName:str,posX:float,posY:float,posZ:float]]""" s = self.conn.sendReceive(b"world.getEntities", typeId) entities = [e for e in s.split("|") if e] return [[int(n.split(",")[0]), int(n.split(",")[1]), n.split(",")[2], float(n.split(",")[3]), float(n.split(",")[4]), float(n.split(",")[5])] for n in entities] def removeEntity(self, id): """Remove entity by id (entityId:int) => (removedEntitiesCount:int)""" return int(self.conn.sendReceive(b"world.removeEntity", int(id))) def removeEntities(self, typeId=-1): """Remove entities all currently loaded Entities by type (typeId:int) => (removedEntitiesCount:int)""" return int(self.conn.sendReceive(b"world.removeEntities", typeId)) @staticmethod def create(address = "localhost", port = 4711,playerName=""): log("Running Python version:"+sys.version) conn=Connection(address, port) playerId=[] if playerName!="": playerId= int(conn.sendReceive(b"world.getPlayerId", playerName)) log("get {} playerid={}".format(playerName, playerId)) return Minecraft(conn,playerId) #settings if __name__ == "__main__": #initSettings() mc = Minecraft.create() mc.postToChat("Hello, Minecraft!")
40.788321
205
0.617872
f7bdded42b6ce80fcb118efc440779f27dcd7ec2
1,488
py
Python
tests/test_empty_repo.py
BB-Open/datenadler_rdf4j
b63df5292b99a0f49b455b6728246c59d7a8b0d7
[ "MIT" ]
2
2021-12-29T17:59:46.000Z
2022-01-29T07:50:57.000Z
tests/test_empty_repo.py
BB-Open/datenadler_rdf4j
b63df5292b99a0f49b455b6728246c59d7a8b0d7
[ "MIT" ]
null
null
null
tests/test_empty_repo.py
BB-Open/datenadler_rdf4j
b63df5292b99a0f49b455b6728246c59d7a8b0d7
[ "MIT" ]
null
null
null
from http import HTTPStatus from unittest import TestCase from pyrdf4j.api_graph import APIGraph from pyrdf4j.errors import URINotReachable from pyrdf4j.rdf4j import RDF4J from tests.constants import AUTH, RDF4J_BASE_TEST class TestEmpty(TestCase): def setUp(self): self.rdf4j = RDF4J(RDF4J_BASE_TEST) self.rdf4j.create_repository('test_bulk_load', auth=AUTH['admin'], overwrite=True, repo_type='native') self.response_code_ok = HTTPStatus.OK def tearDown(self): sparql_endpoint = self.rdf4j.drop_repository('test_bulk_load', auth=AUTH['admin'], accept_not_exist=True) def test_empty(self): response = self.rdf4j.bulk_load_from_uri( 'test_bulk_load', 'https://opendata.potsdam.de/api/v2/catalog/exports/ttl', 'application/x-turtle', auth=AUTH['admin'], ) response = self.rdf4j.empty_repository('test_bulk_load', auth=AUTH['admin']) QUERY = "CONSTRUCT {?s ?o ?p} WHERE {?s ?o ?p}" response = self.rdf4j.get_triple_data_from_query( 'test_bulk_load', QUERY, auth=AUTH['viewer'], ) self.assertTrue('Potsdam' not in response.decode('utf-8')) class TestEmptyGraph(TestEmpty): def setUp(self): self.rdf4j = RDF4J(RDF4J_BASE_TEST, api=APIGraph) self.rdf4j.create_repository('test_bulk_load', auth=AUTH['admin'], overwrite=True) self.response_code_ok = HTTPStatus.NO_CONTENT
33.818182
113
0.672715
21add1500c80472f2d12983dadb27d14be7b7fbd
21,915
py
Python
src/lib/model/networks/dla.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
475
2021-03-13T16:33:36.000Z
2022-03-30T06:00:39.000Z
src/lib/model/networks/dla.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
50
2021-03-17T04:48:20.000Z
2022-03-08T13:55:32.000Z
src/lib/model/networks/dla.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
98
2021-03-14T12:12:49.000Z
2022-03-19T16:19:13.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import math import logging import numpy as np from os.path import join import torch from torch import nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from .base_model import BaseModel try: from .DCNv2.dcn_v2 import DCN except: print('import DCN failed') DCN = None BN_MOMENTUM = 0.1 logger = logging.getLogger(__name__) def get_model_url(data='imagenet', name='dla34', hash='ba72cf86'): return join('http://dl.yf.io/dla/models', data, '{}-{}.pth'.format(name, hash)) def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, dilation=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=dilation, bias=False, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.stride = stride def forward(self, x, residual=None): if residual is None: residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 2 def __init__(self, inplanes, planes, stride=1, dilation=1): super(Bottleneck, self).__init__() expansion = Bottleneck.expansion bottle_planes = planes // expansion self.conv1 = nn.Conv2d(inplanes, bottle_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) self.bn2 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM) self.conv3 = nn.Conv2d(bottle_planes, planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.stride = stride def forward(self, x, residual=None): if residual is None: residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += residual out = self.relu(out) return out class BottleneckX(nn.Module): expansion = 2 cardinality = 32 def __init__(self, inplanes, planes, stride=1, dilation=1): super(BottleneckX, self).__init__() cardinality = BottleneckX.cardinality # dim = int(math.floor(planes * (BottleneckV5.expansion / 64.0))) # bottle_planes = dim * cardinality bottle_planes = planes * cardinality // 32 self.conv1 = nn.Conv2d(inplanes, bottle_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM) self.conv2 = nn.Conv2d(bottle_planes, bottle_planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation, groups=cardinality) self.bn2 = nn.BatchNorm2d(bottle_planes, momentum=BN_MOMENTUM) self.conv3 = nn.Conv2d(bottle_planes, planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.stride = stride def forward(self, x, residual=None): if residual is None: residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += residual out = self.relu(out) return out class Root(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, residual): super(Root, self).__init__() self.conv = nn.Conv2d( in_channels, out_channels, 1, stride=1, bias=False, padding=(kernel_size - 1) // 2) self.bn = nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.residual = residual def forward(self, *x): children = x x = self.conv(torch.cat(x, 1)) x = self.bn(x) if self.residual: x += children[0] x = self.relu(x) return x class Tree(nn.Module): def __init__(self, levels, block, in_channels, out_channels, stride=1, level_root=False, root_dim=0, root_kernel_size=1, dilation=1, root_residual=False): super(Tree, self).__init__() if root_dim == 0: root_dim = 2 * out_channels if level_root: root_dim += in_channels if levels == 1: self.tree1 = block(in_channels, out_channels, stride, dilation=dilation) self.tree2 = block(out_channels, out_channels, 1, dilation=dilation) else: self.tree1 = Tree(levels - 1, block, in_channels, out_channels, stride, root_dim=0, root_kernel_size=root_kernel_size, dilation=dilation, root_residual=root_residual) self.tree2 = Tree(levels - 1, block, out_channels, out_channels, root_dim=root_dim + out_channels, root_kernel_size=root_kernel_size, dilation=dilation, root_residual=root_residual) if levels == 1: self.root = Root(root_dim, out_channels, root_kernel_size, root_residual) self.level_root = level_root self.root_dim = root_dim self.downsample = None self.project = None self.levels = levels if stride > 1: self.downsample = nn.MaxPool2d(stride, stride=stride) if in_channels != out_channels: self.project = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM) ) def forward(self, x, residual=None, children=None): children = [] if children is None else children bottom = self.downsample(x) if self.downsample else x residual = self.project(bottom) if self.project else bottom if self.level_root: children.append(bottom) x1 = self.tree1(x, residual) if self.levels == 1: x2 = self.tree2(x1) x = self.root(x2, x1, *children) else: children.append(x1) x = self.tree2(x1, children=children) return x class DLA(nn.Module): def __init__(self, levels, channels, num_classes=1000, block=BasicBlock, residual_root=False, linear_root=False, opt=None): super(DLA, self).__init__() self.channels = channels self.num_classes = num_classes self.base_layer = nn.Sequential( nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), nn.BatchNorm2d(channels[0], momentum=BN_MOMENTUM), nn.ReLU(inplace=True)) self.level0 = self._make_conv_level( channels[0], channels[0], levels[0]) self.level1 = self._make_conv_level( channels[0], channels[1], levels[1], stride=2) self.level2 = Tree(levels[2], block, channels[1], channels[2], 2, level_root=False, root_residual=residual_root) self.level3 = Tree(levels[3], block, channels[2], channels[3], 2, level_root=True, root_residual=residual_root) self.level4 = Tree(levels[4], block, channels[3], channels[4], 2, level_root=True, root_residual=residual_root) self.level5 = Tree(levels[5], block, channels[4], channels[5], 2, level_root=True, root_residual=residual_root) def _make_level(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes: downsample = nn.Sequential( nn.MaxPool2d(stride, stride=stride), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(planes, momentum=BN_MOMENTUM), ) layers = [] layers.append(block(inplanes, planes, stride, downsample=downsample)) for i in range(1, blocks): layers.append(block(inplanes, planes)) return nn.Sequential(*layers) def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1): modules = [] for i in range(convs): modules.extend([ nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), nn.BatchNorm2d(planes, momentum=BN_MOMENTUM), nn.ReLU(inplace=True)]) inplanes = planes return nn.Sequential(*modules) def forward(self, x, pre_img=None, pre_hm=None): y = [] x = self.base_layer(x) if pre_img is not None: x = x + self.pre_img_layer(pre_img) if pre_hm is not None: x = x + self.pre_hm_layer(pre_hm) for i in range(6): x = getattr(self, 'level{}'.format(i))(x) y.append(x) return y def load_pretrained_model(self, data='imagenet', name='dla34', hash='ba72cf86'): # fc = self.fc if name.endswith('.pth'): model_weights = torch.load(data + name) else: model_url = get_model_url(data, name, hash) model_weights = model_zoo.load_url(model_url) num_classes = len(model_weights[list(model_weights.keys())[-1]]) self.fc = nn.Conv2d( self.channels[-1], num_classes, kernel_size=1, stride=1, padding=0, bias=True) self.load_state_dict(model_weights, strict=False) # self.fc = fc def dla34(pretrained=True, **kwargs): # DLA-34 model = DLA([1, 1, 1, 2, 2, 1], [16, 32, 64, 128, 256, 512], block=BasicBlock, **kwargs) if pretrained: model.load_pretrained_model( data='imagenet', name='dla34', hash='ba72cf86') else: print('Warning: No ImageNet pretrain!!') return model def dla102(pretrained=None, **kwargs): # DLA-102 Bottleneck.expansion = 2 model = DLA([1, 1, 1, 3, 4, 1], [16, 32, 128, 256, 512, 1024], block=Bottleneck, residual_root=True, **kwargs) if pretrained: model.load_pretrained_model( data='imagenet', name='dla102', hash='d94d9790') return model def dla46_c(pretrained=None, **kwargs): # DLA-46-C Bottleneck.expansion = 2 model = DLA([1, 1, 1, 2, 2, 1], [16, 32, 64, 64, 128, 256], block=Bottleneck, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla46_c', hash='2bfd52c3') return model def dla46x_c(pretrained=None, **kwargs): # DLA-X-46-C BottleneckX.expansion = 2 model = DLA([1, 1, 1, 2, 2, 1], [16, 32, 64, 64, 128, 256], block=BottleneckX, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla46x_c', hash='d761bae7') return model def dla60x_c(pretrained=None, **kwargs): # DLA-X-60-C BottleneckX.expansion = 2 model = DLA([1, 1, 1, 2, 3, 1], [16, 32, 64, 64, 128, 256], block=BottleneckX, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla60x_c', hash='b870c45c') return model def dla60(pretrained=None, **kwargs): # DLA-60 Bottleneck.expansion = 2 model = DLA([1, 1, 1, 2, 3, 1], [16, 32, 128, 256, 512, 1024], block=Bottleneck, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla60', hash='24839fc4') return model def dla60x(pretrained=None, **kwargs): # DLA-X-60 BottleneckX.expansion = 2 model = DLA([1, 1, 1, 2, 3, 1], [16, 32, 128, 256, 512, 1024], block=BottleneckX, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla60x', hash='d15cacda') return model def dla102x(pretrained=None, **kwargs): # DLA-X-102 BottleneckX.expansion = 2 model = DLA([1, 1, 1, 3, 4, 1], [16, 32, 128, 256, 512, 1024], block=BottleneckX, residual_root=True, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla102x', hash='ad62be81') return model def dla102x2(pretrained=None, **kwargs): # DLA-X-102 64 BottleneckX.cardinality = 64 model = DLA([1, 1, 1, 3, 4, 1], [16, 32, 128, 256, 512, 1024], block=BottleneckX, residual_root=True, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla102x2', hash='262837b6') return model def dla169(pretrained=None, **kwargs): # DLA-169 Bottleneck.expansion = 2 model = DLA([1, 1, 2, 3, 5, 1], [16, 32, 128, 256, 512, 1024], block=Bottleneck, residual_root=True, **kwargs) if pretrained is not None: model.load_pretrained_model( data='imagenet', name='dla169', hash='0914e092') return model class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x def fill_fc_weights(layers): for m in layers.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: nn.init.constant_(m.bias, 0) def fill_up_weights(up): w = up.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] class Conv(nn.Module): def __init__(self, chi, cho): super(Conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(chi, cho, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(cho, momentum=BN_MOMENTUM), nn.ReLU(inplace=True)) def forward(self, x): return self.conv(x) class GlobalConv(nn.Module): def __init__(self, chi, cho, k=7, d=1): super(GlobalConv, self).__init__() gcl = nn.Sequential( nn.Conv2d(chi, cho, kernel_size=(k, 1), stride=1, bias=False, dilation=d, padding=(d * (k // 2), 0)), nn.Conv2d(cho, cho, kernel_size=(1, k), stride=1, bias=False, dilation=d, padding=(0, d * (k // 2)))) gcr = nn.Sequential( nn.Conv2d(chi, cho, kernel_size=(1, k), stride=1, bias=False, dilation=d, padding=(0, d * (k // 2))), nn.Conv2d(cho, cho, kernel_size=(k, 1), stride=1, bias=False, dilation=d, padding=(d * (k // 2), 0))) fill_fc_weights(gcl) fill_fc_weights(gcr) self.gcl = gcl self.gcr = gcr self.act = nn.Sequential( nn.BatchNorm2d(cho, momentum=BN_MOMENTUM), nn.ReLU(inplace=True) ) def forward(self, x): x = self.gcl(x) + self.gcr(x) x = self.act(x) return x class DeformConv(nn.Module): def __init__(self, chi, cho): super(DeformConv, self).__init__() self.actf = nn.Sequential( nn.BatchNorm2d(cho, momentum=BN_MOMENTUM), nn.ReLU(inplace=True) ) self.conv = DCN(chi, cho, kernel_size=(3,3), stride=1, padding=1, dilation=1, deformable_groups=1) def forward(self, x): x = self.conv(x) x = self.actf(x) return x class IDAUp(nn.Module): def __init__(self, o, channels, up_f, node_type=(DeformConv, DeformConv)): super(IDAUp, self).__init__() for i in range(1, len(channels)): c = channels[i] f = int(up_f[i]) proj = node_type[0](c, o) node = node_type[1](o, o) up = nn.ConvTranspose2d(o, o, f * 2, stride=f, padding=f // 2, output_padding=0, groups=o, bias=False) fill_up_weights(up) setattr(self, 'proj_' + str(i), proj) setattr(self, 'up_' + str(i), up) setattr(self, 'node_' + str(i), node) def forward(self, layers, startp, endp): for i in range(startp + 1, endp): upsample = getattr(self, 'up_' + str(i - startp)) project = getattr(self, 'proj_' + str(i - startp)) layers[i] = upsample(project(layers[i])) node = getattr(self, 'node_' + str(i - startp)) layers[i] = node(layers[i] + layers[i - 1]) class DLAUp(nn.Module): def __init__(self, startp, channels, scales, in_channels=None, node_type=DeformConv): super(DLAUp, self).__init__() self.startp = startp if in_channels is None: in_channels = channels self.channels = channels channels = list(channels) scales = np.array(scales, dtype=int) for i in range(len(channels) - 1): j = -i - 2 setattr(self, 'ida_{}'.format(i), IDAUp(channels[j], in_channels[j:], scales[j:] // scales[j], node_type=node_type)) scales[j + 1:] = scales[j] in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]] def forward(self, layers): out = [layers[-1]] # start with 32 for i in range(len(layers) - self.startp - 1): ida = getattr(self, 'ida_{}'.format(i)) ida(layers, len(layers) -i - 2, len(layers)) out.insert(0, layers[-1]) return out class Interpolate(nn.Module): def __init__(self, scale, mode): super(Interpolate, self).__init__() self.scale = scale self.mode = mode def forward(self, x): x = F.interpolate(x, scale_factor=self.scale, mode=self.mode, align_corners=False) return x DLA_NODE = { 'dcn': (DeformConv, DeformConv), 'gcn': (Conv, GlobalConv), 'conv': (Conv, Conv), } class DLASeg(BaseModel): def __init__(self, num_layers, heads, head_convs, opt): super(DLASeg, self).__init__( heads, head_convs, 1, 64 if num_layers == 34 else 128, opt=opt) down_ratio=4 self.opt = opt self.node_type = DLA_NODE[opt.dla_node] print('Using node type:', self.node_type) self.first_level = int(np.log2(down_ratio)) self.last_level = 5 self.base = globals()['dla{}'.format(num_layers)]( pretrained=(opt.load_model == ''), opt=opt) channels = self.base.channels scales = [2 ** i for i in range(len(channels[self.first_level:]))] self.dla_up = DLAUp( self.first_level, channels[self.first_level:], scales, node_type=self.node_type) out_channel = channels[self.first_level] self.ida_up = IDAUp( out_channel, channels[self.first_level:self.last_level], [2 ** i for i in range(self.last_level - self.first_level)], node_type=self.node_type) def img2feats(self, x): x = self.base(x) x = self.dla_up(x) y = [] for i in range(self.last_level - self.first_level): y.append(x[i].clone()) self.ida_up(y, 0, len(y)) return [y[-1]] def imgpre2feats(self, x, pre_img=None, pre_hm=None): x = self.base(x, pre_img, pre_hm) x = self.dla_up(x) y = [] for i in range(self.last_level - self.first_level): y.append(x[i].clone()) self.ida_up(y, 0, len(y)) return [y[-1]] def img2feats_prev(self, x): x = self.base(x) x = self.dla_up(x) y = [] for i in range(self.last_level - self.first_level): y.append(x[i].clone()) self.ida_up(y, 0, len(y)) return [y[-1].detach()]
34.620853
106
0.559115
6557955fd8e4636a144792b64b4cc0e636a5d7c0
1,462
py
Python
WeatherStationSensorsReader/sensors/rainfall_sensor.py
weather-station-project/weather-station-sensors-reader
cda7902ee382248b41d14b9a2c0543817decbb4a
[ "MIT" ]
null
null
null
WeatherStationSensorsReader/sensors/rainfall_sensor.py
weather-station-project/weather-station-sensors-reader
cda7902ee382248b41d14b9a2c0543817decbb4a
[ "MIT" ]
null
null
null
WeatherStationSensorsReader/sensors/rainfall_sensor.py
weather-station-project/weather-station-sensors-reader
cda7902ee382248b41d14b9a2c0543817decbb4a
[ "MIT" ]
null
null
null
import logging from gpiozero import Button from health_check.health_check_file_manager import register_success_for_class_into_health_check_file from sensors.sensor import Sensor class RainfallSensor(Sensor): """Represents the sensor which measures rainfall""" BUCKET_SIZE_IN_MM = 0.2794 def __init__(self, rain_gauge_port_number): self.button = Button(pin=rain_gauge_port_number) self.button.when_pressed = self.get_reading super().__init__() logging.debug(msg=f'[{self.__class__.__name__}] Started on the port "{rain_gauge_port_number}".') def add_value_to_readings(self): # This sensor does not need to read async as the method when_pressed is the one which does it pass def get_reading(self): logging.debug(msg=f'[{self.__class__.__name__}] Pressed.') self.readings.append(1) def get_readings_average(self): try: self.getting_readings = True sensor_name = self.__class__.__name__ logging.debug(msg=f'[{sensor_name}] Getting amount of rain from the value "{len(self.readings)}"') average = self.get_average() register_success_for_class_into_health_check_file(class_name=sensor_name) return average finally: del self.readings[:] self.getting_readings = False def get_average(self): return [len(self.readings) * self.BUCKET_SIZE_IN_MM]
31.782609
110
0.690834
22d1234329d8dc4f29fe9fde42889fb6ec7a06d3
2,823
py
Python
GunsApp/app.py
rabest265/GunViolence
dbe51d40fb959f624d482619549f6e21a80409d3
[ "CNRI-Python", "OML" ]
null
null
null
GunsApp/app.py
rabest265/GunViolence
dbe51d40fb959f624d482619549f6e21a80409d3
[ "CNRI-Python", "OML" ]
null
null
null
GunsApp/app.py
rabest265/GunViolence
dbe51d40fb959f624d482619549f6e21a80409d3
[ "CNRI-Python", "OML" ]
null
null
null
from flask import Flask, render_template, redirect, jsonify from flask_pymongo import PyMongo from datetime import datetime import json import os # from bson.json_util import loads # Create an instance of Flask app = Flask(__name__) # Use PyMongo to establish Mongo connection MONGO_URI = os.environ.get('MONGO_URI') if not MONGO_URI: MONGO_URI = "mongodb://localhost:27017/guns" app.config['MONGO_URI'] = MONGO_URI mongo = PyMongo(app) # Define shooting list ShootList = ["mass shooting", "no injuries", "injuries only", "some dead"] # ShootList = ["mass shooting"] @app.route("/") def home(): return render_template("index.html", ShootList = ShootList) @app.route("/maps") def charts(): return render_template("maps.html", ShootList = ShootList) @app.route("/benchmark") def bench(): return render_template("benchmark.html", ShootList = ShootList) @app.route("/interactive_chart") def intercharts(): return render_template("interactive_chart.html", ShootList = ShootList) @app.route("/wordcloud") def wordcloud(): return render_template("wordcloud.html", ShootList = ShootList) @app.route("/jsonifiedcities") def jsonifiedcities(): citylist = [] cityinfo = mongo.db.cities.find() for city in cityinfo: del city["_id"] citylist.append(city) return jsonify(citylist) @app.route("/jsonifiedguns") def jsonifiedguns(): gunlist = [] guninfo = mongo.db.guns.find() for gun in guninfo: del gun["_id"] if gun["shoot_type"] in ShootList: gunlist.append(gun) return jsonify(gunlist) @app.route("/jsonifiedguns/<yr>") def jsonifiedgunsy(yr): gunlist = [] if(yr=="all"): guninfo = mongo.db.guns.find() else: guninfo = mongo.db.guns.find({ "year": int(yr) }) for gun in guninfo: del gun["_id"] if gun["shoot_type"] in ShootList: gunlist.append(gun) # print(len(gunlist)) return jsonify(gunlist) @app.route("/jsonifiedstates") def jsonifiedstates(): statelist = [] stateinfo = mongo.db.states.find() for state in stateinfo: del state["_id"] statelist.append(state) return jsonify(statelist) @app.route("/jsonifiedsummary") def jsonifiedsummary(): summarylist = [] summaryinfo = mongo.db.guns_summary.find() for shoot_type in summaryinfo: del shoot_type["_id"] summarylist.append(shoot_type) return jsonify(summarylist) @app.route("/jsonifiedstatesummary") def jsonifiedstatesummary(): statesummarylist = [] statesummaryinfo = mongo.db.state_summary.find() for shoot_type in statesummaryinfo: del shoot_type["_id"] statesummarylist.append(shoot_type) return jsonify(statesummarylist) if __name__ == "__main__": app.run(debug=True)
26.138889
75
0.676585
e99f43bdc9b2e5bc8f245ccbff0d79feef5b358d
6,076
py
Python
2021/python/day-05.py
tadhg-ohiggins/advent-of-code
d0f113955940e69cbe0953607f62862f8a8bb830
[ "CC0-1.0" ]
1
2021-12-04T18:09:44.000Z
2021-12-04T18:09:44.000Z
2021/python/day-05.py
tadhg-ohiggins/advent-of-code
d0f113955940e69cbe0953607f62862f8a8bb830
[ "CC0-1.0" ]
null
null
null
2021/python/day-05.py
tadhg-ohiggins/advent-of-code
d0f113955940e69cbe0953607f62862f8a8bb830
[ "CC0-1.0" ]
null
null
null
from collections import Counter from functools import partial import aoc from tadhg_utils import ( splitstrip, splitstriplines, lmap, lconcat, lcompact, ) INPUT, TEST = aoc.get_inputs(__file__) TA1 = 5 TA2 = 12 A1 = 6311 A2 = 19929 def parse_line(line): coords = splitstrip(line, "->") raw_points = [lmap(int, splitstrip(coord, ",")) for coord in coords] points = lmap(lambda x: aoc.Point(*x), raw_points) return points def make_line(instr): a, b = instr points = set() if a.x == b.x: if a.y < b.y: fills = range(a.y, b.y + 1) for n in fills: points.add(aoc.Point(x=a.x, y=n)) elif a.y > b.y: fills = range(b.y, a.y + 1) for n in fills: points.add(aoc.Point(x=a.x, y=n)) else: points.add(aoc.Point(x=a.x, y=a.y)) elif a.y == b.y: if a.x < b.x: fills = range(a.x, b.x + 1) for n in fills: points.add(aoc.Point(x=n, y=a.y)) elif a.x > b.x: fills = range(b.x, a.x + 1) for n in fills: points.add(aoc.Point(x=n, y=a.y)) else: points.add(aoc.Point(x=a.x, y=a.y)) return points def make_line_diag(instr): a, b = instr points = set() if a.x == b.x: if a.y < b.y: fills = range(a.y, b.y + 1) for n in fills: points.add(aoc.Point(x=a.x, y=n)) elif a.y > b.y: fills = range(b.y, a.y + 1) for n in fills: points.add(aoc.Point(x=a.x, y=n)) else: points.add(aoc.Point(x=a.x, y=a.y)) elif a.y == b.y: if a.x < b.x: fills = range(a.x, b.x + 1) for n in fills: points.add(aoc.Point(x=n, y=a.y)) elif a.x > b.x: fills = range(b.x, a.x + 1) for n in fills: points.add(aoc.Point(x=n, y=a.y)) else: points.add(aoc.Point(x=a.x, y=a.y)) else: curr = a points.add(curr) while curr != b: if curr.x < b.x: curr = curr + aoc.Point(1, 0) elif curr.x > b.x: curr = curr - aoc.Point(1, 0) if curr.y < b.y: curr = curr + aoc.Point(0, 1) elif curr.y > b.y: curr = curr - aoc.Point(0, 1) points.add(curr) return points def detect_overlap(lines): llines = lmap(list, lines) counted = Counter(lconcat(llines)) overone = {k: v for k, v in counted.items() if v >= 2} return len(overone) def process_one(data): lines = lcompact(lmap(make_line, data)) count = detect_overlap(lines) return count def process_two(data): lines = lcompact(lmap(make_line_diag, data)) count = detect_overlap(lines) return count def cli_main() -> None: input_funcs = [splitstriplines, partial(lmap, parse_line)] data = aoc.load_and_process_input(INPUT, input_funcs) aoc.run_tests(TEST, TA1, TA2, A1, input_funcs, process_one, process_two) result_one = process_one(data) result_two = process_two(data) aoc.finish(result_one, A1, result_two, A2) if __name__ == "__main__": cli_main() """ --- Day 5: Hydrothermal Venture --- You come across a field of hydrothermal vents on the ocean floor! These vents constantly produce large, opaque clouds, so it would be best to avoid them if possible. They tend to form in lines; the submarine helpfully produces a list of nearby lines of vents (your puzzle input) for you to review. For example: 0,9 -> 5,9 8,0 -> 0,8 9,4 -> 3,4 2,2 -> 2,1 7,0 -> 7,4 6,4 -> 2,0 0,9 -> 2,9 3,4 -> 1,4 0,0 -> 8,8 5,5 -> 8,2 Each line of vents is given as a line segment in the format x1,y1 -> x2,y2 where x1,y1 are the coordinates of one end the line segment and x2,y2 are the coordinates of the other end. These line segments include the points at both ends. In other words: An entry like 1,1 -> 1,3 covers points 1,1, 1,2, and 1,3. An entry like 9,7 -> 7,7 covers points 9,7, 8,7, and 7,7. For now, only consider horizontal and vertical lines: lines where either x1 = x2 or y1 = y2. So, the horizontal and vertical lines from the above list would produce the following diagram: .......1.. ..1....1.. ..1....1.. .......1.. .112111211 .......... .......... .......... .......... 222111.... In this diagram, the top left corner is 0,0 and the bottom right corner is 9,9. Each position is shown as the number of lines which cover that point or . if no line covers that point. The top-left pair of 1s, for example, comes from 2,2 -> 2,1; the very bottom row is formed by the overlapping lines 0,9 -> 5,9 and 0,9 -> 2,9. To avoid the most dangerous areas, you need to determine the number of points where at least two lines overlap. In the above example, this is anywhere in the diagram with a 2 or larger - a total of 5 points. Consider only horizontal and vertical lines. At how many points do at least two lines overlap? Your puzzle answer was 6311. --- Part Two --- Unfortunately, considering only horizontal and vertical lines doesn't give you the full picture; you need to also consider diagonal lines. Because of the limits of the hydrothermal vent mapping system, the lines in your list will only ever be horizontal, vertical, or a diagonal line at exactly 45 degrees. In other words: An entry like 1,1 -> 3,3 covers points 1,1, 2,2, and 3,3. An entry like 9,7 -> 7,9 covers points 9,7, 8,8, and 7,9. Considering all lines from the above example would now produce the following diagram: 1.1....11. .111...2.. ..2.1.111. ...1.2.2.. .112313211 ...1.2.... ..1...1... .1.....1.. 1.......1. 222111.... You still need to determine the number of points where at least two lines overlap. In the above example, this is still anywhere in the diagram with a 2 or larger - now a total of 12 points. Consider all of the lines. At how many points do at least two lines overlap? Your puzzle answer was 19929. """
27.493213
79
0.597597
150aefabe4df5271deca4e75545c64a03ae64d8c
14,282
py
Python
learning/pg_agent.py
arihant72600/DeepMimic
c8cda14662bfa23737c6c648507da66ac392314b
[ "MIT" ]
null
null
null
learning/pg_agent.py
arihant72600/DeepMimic
c8cda14662bfa23737c6c648507da66ac392314b
[ "MIT" ]
null
null
null
learning/pg_agent.py
arihant72600/DeepMimic
c8cda14662bfa23737c6c648507da66ac392314b
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf import torch import torch.nn as nn import torch.nn.functional as F import copy from learning.tf_agent import TFAgent from learning.solvers.mpi_solver import MPISolver import learning.tf_util as TFUtil import learning.nets.net_builder as NetBuilder from learning.tf_distribution_gaussian_diag import TFDistributionGaussianDiag import learning.rl_util as RLUtil from util.logger import Logger import util.mpi_util as MPIUtil import util.math_util as MathUtil from env.action_space import ActionSpace from env.env import Env ''' Policy Gradient Agent ''' class PGAgentTorch(nn.Module): def __init__(self): super(PGAgentTorch, self).__init__() class PGAgent(TFAgent): NAME = 'PG' ACTOR_NET_KEY = 'ActorNet' ACTOR_STEPSIZE_KEY = 'ActorStepsize' ACTOR_MOMENTUM_KEY = 'ActorMomentum' ACTOR_WEIGHT_DECAY_KEY = 'ActorWeightDecay' ACTOR_INIT_OUTPUT_SCALE_KEY = 'ActorInitOutputScale' CRITIC_NET_KEY = 'CriticNet' CRITIC_STEPSIZE_KEY = 'CriticStepsize' CRITIC_MOMENTUM_KEY = 'CriticMomentum' CRITIC_WEIGHT_DECAY_KEY = 'CriticWeightDecay' MAIN_SCOPE = "main" EXP_ACTION_FLAG = 1 << 0 def __init__(self, world, id, json_data): self._exp_action = False super().__init__(world, id, json_data) return def reset(self): super().reset() self._exp_action = False return def _check_action_space(self): action_space = self.get_action_space() return action_space == ActionSpace.Continuous def _load_params(self, json_data): super()._load_params(json_data) self.val_min, self.val_max = self._calc_val_bounds(self.discount) self.val_fail, self.val_succ = self._calc_term_vals(self.discount) return def _build_nets(self, json_data): assert self.ACTOR_NET_KEY in json_data assert self.CRITIC_NET_KEY in json_data actor_net_name = json_data[self.ACTOR_NET_KEY] critic_net_name = json_data[self.CRITIC_NET_KEY] actor_init_output_scale = 1 if (self.ACTOR_INIT_OUTPUT_SCALE_KEY not in json_data) else json_data[self.ACTOR_INIT_OUTPUT_SCALE_KEY] s_size = self.get_state_size() g_size = self.get_goal_size() a_size = self.get_action_size() # setup input tensors self._s_ph = tf.placeholder(tf.float32, shape=[None, s_size], name="s") # observations self._tar_val_ph = tf.placeholder(tf.float32, shape=[None], name="tar_val") # target value s self._adv_ph = tf.placeholder(tf.float32, shape=[None], name="adv") # advantage self._a_ph = tf.placeholder(tf.float32, shape=[None, a_size], name="a") # target actions self._g_ph = tf.placeholder(tf.float32, shape=([None, g_size] if self.has_goal() else None), name="g") # goals with tf.variable_scope(self.MAIN_SCOPE): self._norm_a_pd_tf = self._build_net_actor(actor_net_name, self._get_actor_inputs(), actor_init_output_scale) self._critic_tf = self._build_net_critic(critic_net_name, self._get_critic_inputs()) if (self.actor_tf != None): Logger.print('Built actor net: ' + actor_net_name) if (self.critic_tf != None): Logger.print('Built critic net: ' + critic_net_name) sample_norm_a_tf = self._norm_a_pd_tf.sample() self._sample_a_tf = self._a_norm.unnormalize_tf(sample_norm_a_tf) self._sample_a_logp_tf = self._norm_a_pd_tf.logp(sample_norm_a_tf) mode_norm_a_tf = self._norm_a_pd_tf.get_mode() self._mode_a_tf = self._a_norm.unnormalize_tf(mode_norm_a_tf) self._mode_a_logp_tf = self._norm_a_pd_tf.logp(mode_norm_a_tf) norm_tar_a_tf = self._a_norm.normalize_tf(self._a_tf) self._a_logp_tf = self._norm_a_pd_tf.logp(norm_tar_a_tf) return def _build_losses(self, json_data): actor_bound_loss_weight = 10.0 actor_weight_decay = 0 if (self.ACTOR_WEIGHT_DECAY_KEY not in json_data) else json_data[self.ACTOR_WEIGHT_DECAY_KEY] critic_weight_decay = 0 if (self.CRITIC_WEIGHT_DECAY_KEY not in json_data) else json_data[self.CRITIC_WEIGHT_DECAY_KEY] val_diff = self._tar_val_tf - self._critic_tf self._critic_loss_tf = 0.5 * tf.reduce_mean(tf.square(val_diff)) if (critic_weight_decay != 0): self._critic_loss_tf += critic_weight_decay * self._weight_decay_loss(self.MAIN_SCOPE + '/critic') self._actor_loss_tf = self._adv_ph * self._a_logp_tf self._actor_loss_tf = -tf.reduce_mean(self._actor_loss_tf) if (actor_bound_loss_weight != 0.0): self._actor_loss_tf += actor_bound_loss_weight * self._build_action_bound_loss(self._norm_a_pd_tf) if (actor_weight_decay != 0): self.actor_loss_tf += actor_weight_decay * self._weight_decay_loss(self.MAIN_SCOPE + '/actor') return def _build_solvers(self, json_data): actor_stepsize = 0.001 if (self.ACTOR_STEPSIZE_KEY not in json_data) else json_data[self.ACTOR_STEPSIZE_KEY] actor_momentum = 0.9 if (self.ACTOR_MOMENTUM_KEY not in json_data) else json_data[self.ACTOR_MOMENTUM_KEY] critic_stepsize = 0.01 if (self.CRITIC_STEPSIZE_KEY not in json_data) else json_data[self.CRITIC_STEPSIZE_KEY] critic_momentum = 0.9 if (self.CRITIC_MOMENTUM_KEY not in json_data) else json_data[self.CRITIC_MOMENTUM_KEY] critic_vars = self._tf_vars(self.MAIN_SCOPE + '/critic') critic_opt = tf.train.MomentumOptimizer(learning_rate=critic_stepsize, momentum=critic_momentum) self._critic_grad_tf = tf.gradients(self._critic_loss_tf, critic_vars) self._critic_solver = MPISolver(self.sess, critic_opt, critic_vars) actor_vars = self._tf_vars(self.MAIN_SCOPE + '/actor') actor_opt = tf.train.MomentumOptimizer(learning_rate=actor_stepsize, momentum=actor_momentum) self._actor_grad_tf = tf.gradients(self._actor_loss_tf, actor_vars) self._actor_solver = MPISolver(self.sess, actor_opt, actor_vars) return def _build_net_actor(self, net_name, input_tfs, init_output_scale, reuse=False): with tf.variable_scope('actor', reuse=reuse): h = NetBuilder.build_net(net_name, input_tfs, reuse) std_type = TFDistributionGaussianDiag.StdType.Default a_size = self.get_action_size() mean_kernel_init = tf.random_uniform_initializer(minval=-init_output_scale, maxval=init_output_scale) mean_bias_init = tf.zeros_initializer() logstd_kernel_init = tf.random_uniform_initializer(minval=-init_output_scale, maxval=init_output_scale) logstd_bias_init = np.log(self.exp_params_curr.noise) * np.ones(a_size) logstd_bias_init = logstd_bias_init.astype(np.float32) norm_a_pd_tf = TFDistributionGaussianDiag(input=h, dim=a_size, std_type=std_type, mean_kernel_init=mean_kernel_init, mean_bias_init=mean_bias_init, logstd_kernel_init=logstd_kernel_init, logstd_bias_init=logstd_bias_init, reuse=reuse) return norm_a_pd_tf def _build_net_critic(self, net_name, input_tfs, reuse=False): out_size = 1 with tf.variable_scope('critic', reuse=reuse): h = NetBuilder.build_net(net_name, input_tfs, reuse) val_tf = tf.layers.dense(inputs=h, units=out_size, activation=None, kernel_initializer=tf.contrib.layers.xavier_initializer(), reuse=reuse) val_tf = tf.squeeze(val_tf, axis=-1) return val_tf def _get_actor_inputs(self): norm_s_tf = self._s_norm.normalize_tf(self._s_ph) input_tfs = [norm_s_tf] if (self.has_goal()): norm_g_tf = self._g_norm.normalize_tf(self._g_ph) input_tfs += [norm_g_tf] return input_tfs def _get_critic_inputs(self): norm_s_tf = self._s_norm.normalize_tf(self._s_ph) input_tfs = [norm_s_tf] if (self.has_goal()): norm_g_tf = self._g_norm.normalize_tf(self._g_ph) input_tfs += [norm_g_tf] return input_tfs def _build_action_bound_loss(self, norm_a_pd_tf): norm_a_bound_min = self._a_norm.normalize(self._a_bound_min) norm_a_bound_max = self._a_norm.normalize(self._a_bound_max) if (isinstance(norm_a_pd_tf, TFDistributionGaussianDiag)): logstd_min = -np.inf logstd_max = np.inf norm_a_logstd_min = logstd_min * np.ones_like(norm_a_bound_min) norm_a_logstd_max = logstd_max * np.ones_like(norm_a_bound_max) norm_a_bound_min = np.concatenate([norm_a_bound_min, norm_a_logstd_min], axis=-1) norm_a_bound_max = np.concatenate([norm_a_bound_max, norm_a_logstd_max], axis=-1) a_bound_loss = norm_a_pd_tf.param_bound_loss(norm_a_bound_min, norm_a_bound_max) return a_bound_loss def _initialize_vars(self): super()._initialize_vars() self._sync_solvers() return def _sync_solvers(self): self._actor_solver.sync() self._critic_solver.sync() return def _decide_action(self, s, g): with self.sess.as_default(), self.graph.as_default(): self._exp_action = self._enable_stoch_policy() and MathUtil.flip_coin(self.exp_params_curr.rate) a, logp = self._eval_actor(s, g, self._exp_action) a = a[0] logp = logp[0] return a, logp def _enable_stoch_policy(self): return self.enable_training and (self._mode == self.Mode.TRAIN or self._mode == self.Mode.TRAIN_END) def _eval_actor(self, s, g, exp_action): s = np.reshape(s, [-1, self.get_state_size()]) g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None feed = { self._s_ph : s, self._g_ph : g } if (exp_action): run_tfs = [self._sample_a_tf, self._sample_a_logp_tf] else: run_tfs = [self._mode_a_tf, self._mode_a_logp_tf] a, logp = self.sess.run(run_tfs, feed_dict=feed) return a, logp def _eval_critic(self, s, g): s = np.reshape(s, [-1, self.get_state_size()]) g = np.reshape(g, [-1, self.get_goal_size()]) if self.has_goal() else None feed = { self._s_ph : s, self._g_ph : g } val = self.sess.run(self._critic_tf, feed_dict=feed) return val def _record_flags(self): flags = int(0) if (self._exp_action): flags = flags | self.EXP_ACTION_FLAG return flags def _train_step(self): super()._train_step() critic_loss = self._update_critic() actor_loss = self._update_actor() critic_loss = MPIUtil.reduce_avg(critic_loss) actor_loss = MPIUtil.reduce_avg(actor_loss) critic_stepsize = self.critic_solver.get_stepsize() actor_stepsize = self.actor_solver.get_stepsize() self.logger.log_tabular('Critic_Loss', critic_loss) self.logger.log_tabular('Critic_Stepsize', critic_stepsize) self.logger.log_tabular('Actor_Loss', actor_loss) self.logger.log_tabular('Actor_Stepsize', actor_stepsize) return def _update_critic(self): idx = self.replay_buffer.sample(self._local_mini_batch_size) s = self.replay_buffer.get('states', idx) g = self.replay_buffer.get('goals', idx) if self.has_goal() else None tar_vals = self._calc_updated_vals(idx) tar_vals = np.clip(tar_vals, self.val_min, self.val_max) feed = { self._s_ph: s, self._g_ph: g, self._tar_val_ph: tar_vals } loss, grads = self.sess.run([self.critic_loss_tf, self.critic_grad_tf], feed) self.critic_solver.update(grads) return loss def _update_actor(self): key = self.EXP_ACTION_FLAG idx = self.replay_buffer.sample_filtered(self._local_mini_batch_size, key) has_goal = self.has_goal() s = self.replay_buffer.get('states', idx) g = self.replay_buffer.get('goals', idx) if has_goal else None a = self.replay_buffer.get('actions', idx) V_new = self._calc_updated_vals(idx) V_old = self._eval_critic(s, g) adv = V_new - V_old feed = { self._s_ph: s, self._g_ph: g, self._a_ph: a, self._adv_ph: adv } loss, grads = self.sess.run([self._actor_loss_tf, self._actor_grad_tf], feed) self._actor_solver.update(grads) return loss def _calc_updated_vals(self, idx): r = self.replay_buffer.get('rewards', idx) if self.discount == 0: new_V = r else: next_idx = self.replay_buffer.get_next_idx(idx) s_next = self.replay_buffer.get('states', next_idx) g_next = self.replay_buffer.get('goals', next_idx) if self.has_goal() else None is_end = self.replay_buffer.is_path_end(idx) is_fail = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Fail) is_succ = self.replay_buffer.check_terminal_flag(idx, Env.Terminate.Succ) is_fail = np.logical_and(is_end, is_fail) is_succ = np.logical_and(is_end, is_succ) V_next = self._eval_critic(s_next, g_next) V_next[is_fail] = self.val_fail V_next[is_succ] = self.val_succ new_V = r + self.discount * V_next return new_V def _log_val(self, s, g): val = self._eval_critic(s, g) norm_val = (1.0 - self.discount) * val self.world.env.log_val(self.id, norm_val[0]) return def _build_replay_buffer(self, buffer_size): super()._build_replay_buffer(buffer_size) self.replay_buffer.add_filter_key(self.EXP_ACTION_FLAG) return
39.128767
139
0.658171
873fdbd0f5f40d1993f95429144f65c1f494c5d2
1,128
py
Python
perceiver/tokenizer.py
felixyu7/perceiver-io-1
895f09e75e5a4b5e90dfef5d3a86ea26c2f48f4e
[ "Apache-2.0" ]
null
null
null
perceiver/tokenizer.py
felixyu7/perceiver-io-1
895f09e75e5a4b5e90dfef5d3a86ea26c2f48f4e
[ "Apache-2.0" ]
null
null
null
perceiver/tokenizer.py
felixyu7/perceiver-io-1
895f09e75e5a4b5e90dfef5d3a86ea26c2f48f4e
[ "Apache-2.0" ]
null
null
null
from typing import Iterable from tokenizers import decoders, Tokenizer from tokenizers.models import WordPiece from tokenizers.normalizers import Normalizer, Sequence, Lowercase, StripAccents, NFD from tokenizers.pre_tokenizers import Whitespace from tokenizers.trainers import WordPieceTrainer PAD_TOKEN = '[PAD]' PAD_TOKEN_ID = 0 UNK_TOKEN = '[UNK]' UNK_TOKEN_ID = 1 MASK_TOKEN = '[MASK]' MASK_TOKEN_ID = 2 SPECIAL_TOKENS = [PAD_TOKEN, UNK_TOKEN, MASK_TOKEN] def load_tokenizer(path): return Tokenizer.from_file(path) def save_tokenizer(tokenizer: Tokenizer, path): tokenizer.save(path) def train_tokenizer(tokenizer: Tokenizer, data: Iterable[str], vocab_size): trainer = WordPieceTrainer(vocab_size=vocab_size, special_tokens=SPECIAL_TOKENS) tokenizer.train_from_iterator(data, trainer) def create_tokenizer(*normalizer: Normalizer): tokenizer = Tokenizer(WordPiece(unk_token=UNK_TOKEN)) tokenizer.normalizer = Sequence(list(normalizer) + [NFD(), Lowercase(), StripAccents()]) tokenizer.pre_tokenizer = Whitespace() tokenizer.decoder = decoders.WordPiece() return tokenizer
27.512195
92
0.781915
077030d214f19b1bdeff2b6afe9b9fcaed2aefe0
1,756
py
Python
differential_game_exp.py
Faiz/mapr2
30fb37e1807d47f3678b5cab80ac60c74c4e37f7
[ "Apache-2.0" ]
1
2021-09-03T16:33:12.000Z
2021-09-03T16:33:12.000Z
differential_game_exp.py
Faiz/mapr2
30fb37e1807d47f3678b5cab80ac60c74c4e37f7
[ "Apache-2.0" ]
null
null
null
differential_game_exp.py
Faiz/mapr2
30fb37e1807d47f3678b5cab80ac60c74c4e37f7
[ "Apache-2.0" ]
null
null
null
from pgagent import PGAgent from maci.environments.differential_game import DifferentialGame import numpy as np import tensorflow as tf GAME_NAME = "ma_softq" AGENT_NUM = 2 MOVING_WINDOW_LEN = 5 # 5 mini batches => 5 * T, 500 games. def play_differential_game(alpha=0.001, beta=0.001, discount=0.9, num_agents=2, episodes=100, iteration=1000): agents = [] env = DifferentialGame(game_name=GAME_NAME, agent_num=AGENT_NUM) for i in range(num_agents): agents.append(PGAgent(i)) device_config = tf.ConfigProto() with tf.Session(config=device_config) as sess: for _ in range(iteration): _ = [agent.start_new_batch() for agent in agents] for _ in range(episodes): states = env.reset() actions = np.array([ agent.act(state) for state, agent in zip(states, agents) ]) # print(actions) state_primes, rewards, _, _ = env.step(actions) print(rewards) for agent_id, agent in enumerate(agents): agent.save_history( [ tf.reshape(states[agent_id], [-1, 1]), actions[agent_id], actions[1 - agent_id], state_primes[agent_id], rewards[agent_id], ] ) # update P-tsi for each agent. _ = [agent.update_P(MOVING_WINDOW_LEN) for agent in agents] # update the parameters. _ = [agent.update_params() for agent in agents] if __name__ == "__main__": # tf.enable_eager_execution() play_differential_game()
39.909091
110
0.553531
a1551adfa9824ecb4452145e307ce8dfe0f2443b
1,195
py
Python
mini_lambda/__init__.py
semiversus/python-mini-lambda
35ec4b6304b08ffd28939ffef7ead6b150dc1525
[ "BSD-3-Clause" ]
null
null
null
mini_lambda/__init__.py
semiversus/python-mini-lambda
35ec4b6304b08ffd28939ffef7ead6b150dc1525
[ "BSD-3-Clause" ]
null
null
null
mini_lambda/__init__.py
semiversus/python-mini-lambda
35ec4b6304b08ffd28939ffef7ead6b150dc1525
[ "BSD-3-Clause" ]
null
null
null
from mini_lambda.utils_init import __remove_all_external_symbols, __get_all_submodules_symbols __PACKAGE_NAME = 'mini_lambda' __SUBMODULES_TO_EXPORT = ['base', 'generated', 'generated2', 'goodies', 'goodies_generated', 'main'] # TODO we could rather rely on a regexp mechanism # (1) allow users to do # import <package> as p and then p.<symbol> __all__ = __get_all_submodules_symbols(__PACKAGE_NAME, __SUBMODULES_TO_EXPORT) # Note: this is one way to do it, but it would be simpler to check the names in globals() at the end of this file. # (2) allow users to do # from <package> import <symbol> # # The following works, but unfortunately IDE like pycharm do not understand from mini_lambda.base import * from mini_lambda.generated import * from mini_lambda.goodies_generated import * from mini_lambda.main import * from mini_lambda.main import _ from mini_lambda.generated2 import * from mini_lambda.goodies import * # remove all symbols that were imported above but do not belong in this package __remove_all_external_symbols(__PACKAGE_NAME, globals()) # Otherwise exhaustive list would be required, which is sad # ... # print(__all__) # print(globals().keys()) # print('Done')
35.147059
114
0.774895
ff480f58b6b4d3a83998b31cad918cebee147fdc
2,287
py
Python
ravens/plot.py
YunchuZhang/Learning-to-use-different-tools-for-objects-rearrangement
3759664cd77b5810834937c478a9a44ad36ac90c
[ "Apache-2.0" ]
1
2022-03-20T19:03:02.000Z
2022-03-20T19:03:02.000Z
ravens/plot.py
YunchuZhang/Learning-to-use-different-tools-for-objects-rearrangement
3759664cd77b5810834937c478a9a44ad36ac90c
[ "Apache-2.0" ]
null
null
null
ravens/plot.py
YunchuZhang/Learning-to-use-different-tools-for-objects-rearrangement
3759664cd77b5810834937c478a9a44ad36ac90c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Ravens Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to plot training results.""" import os import pickle from absl import app from absl import flags import numpy as np from ravens.utils import utils import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_string('root_dir', '.', '') flags.DEFINE_bool('disp', True, 'Whether to display the environment.') flags.DEFINE_string('task', 'insertion', 'The task to run.') flags.DEFINE_string('agent', 'transporter', 'The agent to run.') flags.DEFINE_integer('n_demos', 100, 'Number of demos to run.') def main(unused_argv): name = f'{FLAGS.task}-{FLAGS.agent}-{FLAGS.n_demos}-' print(name) # Load and print results to console. path = FLAGS.root_dir print(path) curve = [] for fname in sorted(tf.io.gfile.listdir(path)): fname = os.path.join(path, fname) if name in fname and '.pkl' in fname: n_steps = int(fname[(fname.rfind('-') + 1):-4]) data = pickle.load(open(fname, 'rb')) rewards = [] for reward, _ in data: rewards.append(reward) score = np.mean(rewards) std = np.std(rewards) print(f' {n_steps} steps:\t{score:.1f}%\t± {std:.1f}%') curve.append((n_steps, score, std)) # Plot results over training steps. title = f'{FLAGS.agent} on {FLAGS.task} w/ {FLAGS.n_demos} demos' ylabel = 'Testing Task Success (%)' xlabel = '# of Training Steps' if FLAGS.disp: logs = {} curve = np.array(curve) print(curve) logs[name] = (curve[:, 0], curve[:, 1], curve[:, 2]) fname = os.path.join(path, f'{name}-plot.png') utils.plot(fname, title, ylabel, xlabel, data=logs, ylim=[0, 1]) print(f'Done. Plot image saved to: {fname}') if __name__ == '__main__': app.run(main)
31.763889
74
0.675557
0c204e70cb10f2db4c018111a27532d82126da7d
5,235
py
Python
flask-sp/flask_sp/saml/metadata.py
ThePalaceProject/circulation-saml-test
3c150e7d162b41c661ec99d70977b64ce90eb24b
[ "MIT" ]
null
null
null
flask-sp/flask_sp/saml/metadata.py
ThePalaceProject/circulation-saml-test
3c150e7d162b41c661ec99d70977b64ce90eb24b
[ "MIT" ]
null
null
null
flask-sp/flask_sp/saml/metadata.py
ThePalaceProject/circulation-saml-test
3c150e7d162b41c661ec99d70977b64ce90eb24b
[ "MIT" ]
null
null
null
import logging import os import click from defusedxml.lxml import fromstring from flask.cli import with_appcontext from onelogin.saml2.constants import OneLogin_Saml2_Constants from onelogin.saml2.idp_metadata_parser import OneLogin_Saml2_IdPMetadataParser from onelogin.saml2.utils import OneLogin_Saml2_Utils from onelogin.saml2.xml_utils import OneLogin_Saml2_XML from flask_sp.db import IdentityProviderMetadata, get_db class MetadataManager: IN_COMMON_METADATA_SERVICE_URL = 'http://md.incommon.org/InCommon/InCommon-metadata-idp-only.xml' ENTITY_DESCRIPTOR_XPATH = '//md:EntityDescriptor' IDP_DESCRIPTOR_XPATH = './md:IDPSSODescriptor' ENTITY_ID_ATTRIBUTE = 'entityID' DISPLAY_NAME_XPATH = './md:Extensions/mdui:UIInfo/mdui:DisplayName' def __init__(self): self._logger = logging.getLogger(__name__) OneLogin_Saml2_Constants.NS_PREFIX_MDUI = 'mdui' OneLogin_Saml2_Constants.NS_MDUI = 'urn:oasis:names:tc:SAML:metadata:ui' OneLogin_Saml2_Constants.NSMAP[OneLogin_Saml2_Constants.NS_PREFIX_MDUI] = OneLogin_Saml2_Constants.NS_MDUI def _fetch_metadata(self): self._logger.info('Started fetching metadata from InCommon Metadata service') metadata = OneLogin_Saml2_IdPMetadataParser.get_metadata(self.IN_COMMON_METADATA_SERVICE_URL) self._logger.info('Finished fetching metadata from InCommon Metadata service') return metadata def _convert_string_to_xml_dom(self, metadata): self._logger.info('Started converting string containing IdP metadata into XML DOM') metadata_dom = fromstring(metadata, forbid_dtd=True) self._logger.info('Finished converting string containing IdP metadata into XML DOM') return metadata_dom def _parse_metadata_dom(self, metadata_dom): entity_descriptor_nodes = OneLogin_Saml2_XML.query(metadata_dom, self.ENTITY_DESCRIPTOR_XPATH) idps = [] for entity_descriptor_node in entity_descriptor_nodes: idp_descriptor_nodes = OneLogin_Saml2_XML.query(entity_descriptor_node, self.IDP_DESCRIPTOR_XPATH) for idp_descriptor_node in idp_descriptor_nodes: idp_entity_id = entity_descriptor_node.get(self.ENTITY_ID_ATTRIBUTE, None) display_name_node = OneLogin_Saml2_XML.query(idp_descriptor_node, self.DISPLAY_NAME_XPATH) if not display_name_node: continue display_name = display_name_node[0].text idp = IdentityProviderMetadata(idp_entity_id, display_name, entity_descriptor_node) idps.append(idp) return idps def _fetch_local_idps(self, local_metadata_path): local_idp_metadata_file = local_metadata_path with open(local_idp_metadata_file) as file: metadata = file.read() metadata_dom = self._convert_string_to_xml_dom(metadata) yield from self._parse_metadata_dom(metadata_dom) def fetch_idps(self, local_metadata_path): test_idps = [] self._logger.info('Started fetching local IdPs') try: for idp in self._fetch_local_idps(local_metadata_path): test_idps.append(idp) except: self._logger.exception('An unexpected error occurred during fetching local IdPs') self._logger.info(f'Successfully fetched {len(test_idps)} local IdPs') in_common_idps = [] # self._logger.info('Started fetching IdPs from InCommon Metadata Service') # try: # metadata = self._fetch_metadata() # metadata_dom = self._convert_string_to_xml_dom(metadata) # # for idp in self._parse_metadata_dom(metadata_dom): # in_common_idps.append(idp) # except: # self._logger.exception( # 'An unexpected exception occurred during fetching IdP metadata from InCommon Metadata service') # raise # # self._logger.info('Successfully fetched {0} IdPs from In Common Metadata Service'.format(len(in_common_idps))) idps = test_idps + in_common_idps return idps def init_metadata(local_metadata_path): click.echo('Deleting the existing metadata...') db = get_db() idps = IdentityProviderMetadata.query.all() for idp in idps: db.session.delete(idp) db.session.commit() click.echo('The existing metadata has been deleted') metadata_manager = MetadataManager() click.echo('Fetching metadata...') idps = metadata_manager.fetch_idps(local_metadata_path) click.echo(f'Fetched {len(idps)} IdPs') db.session.add_all(idps) db.session.commit() click.echo(f'Saved {len(idps)} IdPs to the database') @click.command('init-metadata') @with_appcontext @click.argument('local_metadata_path') def init_metadata_command(local_metadata_path): """Adds metadata to the database :param local_metadata_path: Absolute path to the XML file containing IdP metadata :type local_metadata_path: string """ init_metadata(local_metadata_path) def init_app(app): # app.before_first_request(init_metadata) app.cli.add_command(init_metadata_command)
33.557692
120
0.714613
605b688b3056264f3939673855c721718b4004e9
251
py
Python
grpc_benchmark/multiple_clients.py
mpetyx/python-rpc-frameworks-comparison
5b69a5aef1f8ead2fb88e744b6b1787b27165898
[ "MIT" ]
null
null
null
grpc_benchmark/multiple_clients.py
mpetyx/python-rpc-frameworks-comparison
5b69a5aef1f8ead2fb88e744b6b1787b27165898
[ "MIT" ]
null
null
null
grpc_benchmark/multiple_clients.py
mpetyx/python-rpc-frameworks-comparison
5b69a5aef1f8ead2fb88e744b6b1787b27165898
[ "MIT" ]
null
null
null
__author__ = 'mpetyx (Michael Petychakis)' __version__ = "1.0.0" __maintainer__ = "Michael Petychakis" __email__ = "hello@apilama.com" __status__ = "Production" from client import Client for number in range(1,100000): Client().squareRoot(number)
25.1
42
0.752988