hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
dd648f873c9e0b7a1a62eebe81b3f595a28bde5d
2,944
py
Python
datadog_checks_dev/datadog_checks/dev/tooling/github.py
justinsousa/integrations-core
223e337492a04de517bc35ec85ddf921108fd8d2
[ "BSD-3-Clause" ]
2
2019-05-28T03:48:29.000Z
2019-07-05T07:05:58.000Z
datadog_checks_dev/datadog_checks/dev/tooling/github.py
justinsousa/integrations-core
223e337492a04de517bc35ec85ddf921108fd8d2
[ "BSD-3-Clause" ]
4
2019-07-03T02:53:19.000Z
2019-07-10T14:52:14.000Z
datadog_checks_dev/datadog_checks/dev/tooling/github.py
justinsousa/integrations-core
223e337492a04de517bc35ec85ddf921108fd8d2
[ "BSD-3-Clause" ]
1
2020-01-15T16:58:51.000Z
2020-01-15T16:58:51.000Z
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os import re import requests from .constants import CHANGELOG_LABEL_PREFIX API_URL = 'https://api.github.com' PR_ENDPOINT = API_URL + '/repos/DataDog/{}/pulls/{}' DEFAULT_REPO = 'integrations-core' PR_PATTERN = re.compile(r'\(#(\d+)\)') # match something like `(#1234)` and return `1234` in a group def get_auth_info(config=None): """ See if a personal access token was passed """ gh_config = (config or {}).get('github', {}) user = gh_config.get('user') or os.getenv('DD_GITHUB_USER') token = gh_config.get('token') or os.getenv('DD_GITHUB_TOKEN') if user and token: return user, token def get_pr_labels(pr_payload): labels = [] for label in pr_payload.get('labels') or []: name = label.get('name') if name: labels.append(name) return labels def get_pr_milestone(pr_payload): return (pr_payload.get('milestone') or {}).get('title', '') def get_changelog_types(pr_payload): """ Fetch the labels from the PR and process the ones related to the changelog. """ changelog_labels = [] for name in get_pr_labels(pr_payload): if name.startswith(CHANGELOG_LABEL_PREFIX): # only add the name, e.g. for `changelog/Added` it's just `Added` changelog_labels.append(name.split(CHANGELOG_LABEL_PREFIX)[1]) return changelog_labels def get_pr(pr_num, config=None, repo=DEFAULT_REPO, raw=False): """ Get the payload for the given PR number. Let exceptions bubble up. """ response = requests.get(PR_ENDPOINT.format(repo, pr_num), auth=get_auth_info(config)) if raw: return response else: response.raise_for_status() return response.json() def get_pr_from_hash(commit_hash, repo, config=None, raw=False): response = requests.get( 'https://api.github.com/search/issues?q=sha:{}+repo:DataDog/{}'.format(commit_hash, repo), auth=get_auth_info(config), ) if raw: return response else: response.raise_for_status() return response.json() def from_contributor(pr_payload): """ If the PR comes from a fork, we can safely assumed it's from an external contributor. """ try: return pr_payload.get('head', {}).get('repo', {}).get('fork') is True except Exception: return False def parse_pr_number(log_line): match = re.search(PR_PATTERN, log_line) if match: return match.group(1) def parse_pr_numbers(git_log_lines): """ Parse PR numbers from commit messages. At GitHub those have the format: `here is the message (#1234)` being `1234` the PR number. """ prs = [] for line in git_log_lines: pr_number = parse_pr_number(line) if pr_number: prs.append(pr_number) return prs
26.285714
101
0.650815
233ed42d7a88f5cc5491fcb61f22fc58088f76b6
809
py
Python
Mundos/Mundo 2/Aulas/Aula 15/ex069.py
NicolasdeLimaAlves/Curso-de-Python
4987a2c8075a76f676aa69bfd968fdf8d1c7fa52
[ "MIT" ]
null
null
null
Mundos/Mundo 2/Aulas/Aula 15/ex069.py
NicolasdeLimaAlves/Curso-de-Python
4987a2c8075a76f676aa69bfd968fdf8d1c7fa52
[ "MIT" ]
null
null
null
Mundos/Mundo 2/Aulas/Aula 15/ex069.py
NicolasdeLimaAlves/Curso-de-Python
4987a2c8075a76f676aa69bfd968fdf8d1c7fa52
[ "MIT" ]
null
null
null
dezoito = homens = mulher = cont = 0 while True: print('=' * 20) idade = int(input('Idade: ')) sexo = str(input('Sexo [M/F] ')).upper().strip() while sexo != 'F' and sexo != 'M': sexo = str(input('Sexo [M/F] ')).upper().strip() print('=' * 20) continuar = str(input('Quer continuar? [S/N] ')).upper().strip() while continuar != 'S' and continuar != 'N': continuar = str(input('Quer continuar? [S/N] ')).upper().strip() if idade > 18: dezoito += 1 if sexo == 'M': homens += 1 if sexo == 'F' and idade < 20: mulher += 1 if continuar == 'N': break print('=' * 32) print(f'{dezoito} pessoas tem mais de 18 anos') print(f'{homens} homens foram cadastrados') print(f'{mulher} mulheres tem menos de 20 anos') print('=' * 32)
33.708333
72
0.546354
c36cb162b80a75b78ee916804eb325df2bfc0bde
1,535
py
Python
src/components/TesteLista.py
Vini-Dev-Py/Bot-ML
f1dfda7a43940a7ada707ccaa9dde486b3c5ddd3
[ "MIT" ]
null
null
null
src/components/TesteLista.py
Vini-Dev-Py/Bot-ML
f1dfda7a43940a7ada707ccaa9dde486b3c5ddd3
[ "MIT" ]
null
null
null
src/components/TesteLista.py
Vini-Dev-Py/Bot-ML
f1dfda7a43940a7ada707ccaa9dde486b3c5ddd3
[ "MIT" ]
null
null
null
from tkinter import * from tkinter import messagebox from tkinter import ttk import functools jan = Tk() jan.title("Bot Mercado Envios") jan.geometry("800x300") jan.configure(background="#2b2b2b") jan.resizable(width=False, height=False) jan.iconbitmap(default="C:\programas\Programaçâo\GitHub\Bot-ML\Bot-ML\images\LogoIcon.ico") logo = PhotoImage(file="C:\programas\Programaçâo\GitHub\Bot-ML\Bot-ML\images\logo.png") messagebox.showinfo("Hello World !", "Seja Bem-Vindo ") LeftFrame = Frame(jan, width=220, height=500, bg="#FF8C00", relief="raise") LeftFrame.pack(side=LEFT) RightFrame = Frame(jan, width=575, height=500, bg="#4f4f4f", relief="raise") RightFrame.pack(side=RIGHT) Caixas = Label(RightFrame, text="Total De Caixas:", font=("Century Gothic", 20), bg="#4f4f4f", fg="Black") Caixas.place(x=5, y=10) CaixasEntry = ttk.Entry(RightFrame, width=53) CaixasEntry.place(x=230, y=25) Lote = Label(RightFrame, text="Nº Do Lote:", font=("Century Gothic", 20), bg="#4f4f4f", fg="Black") Lote.place(x=5, y=75) LoteEntry = ttk.Entry(RightFrame, width=53) LoteEntry.place(x=230, y=90) Valores = Label(RightFrame, text="Codigos Lidos: ", font=("Century Gothic", 20), bg="#4f4f4f", fg="Black") Valores.place(x=5, y=140) ValoresEntry = Text(RightFrame, width=40, height=5) # ValoresEntry.config(state=state) ValoresEntry.place(x=230, y=155) def lote(): Lote = LoteEntry.get() print(Lote) ConfButton = ttk.Button(RightFrame, text="Adicionar Lista", width= 30, command=lote) ConfButton.place(x=5, y=190) jan.mainloop()
30.7
106
0.725081
e91183e5e27770e36ca47c2edda313ffafc57452
924
py
Python
codelab/urls.py
mrdulin/django-codelab
b7ff9746fb3be9dc5de90e81e1c604b3aeea692d
[ "MIT" ]
null
null
null
codelab/urls.py
mrdulin/django-codelab
b7ff9746fb3be9dc5de90e81e1c604b3aeea692d
[ "MIT" ]
2
2021-06-09T18:43:26.000Z
2021-06-10T19:25:38.000Z
codelab/urls.py
mrdulin/django-codelab
b7ff9746fb3be9dc5de90e81e1c604b3aeea692d
[ "MIT" ]
1
2021-09-27T10:55:07.000Z
2021-09-27T10:55:07.000Z
"""codelab URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ # path('polls/', include('polls.urls')), path('learning_logs/', include('learning_logs.urls')), path('users/', include('users.urls', namespace='users')), path('admin/', admin.site.urls), ]
36.96
77
0.695887
96145eecbc5783606145557ab731fa5f91eb42f9
429
py
Python
src/rl/core/recording_policy.py
djjh/reinforcement-learning-labs
22706dab9e7f16e364ee4ed79c0bd67a343e5b08
[ "MIT" ]
1
2019-10-06T11:45:52.000Z
2019-10-06T11:45:52.000Z
src/rl/core/recording_policy.py
djjh/reinforcement-learning-labs
22706dab9e7f16e364ee4ed79c0bd67a343e5b08
[ "MIT" ]
null
null
null
src/rl/core/recording_policy.py
djjh/reinforcement-learning-labs
22706dab9e7f16e364ee4ed79c0bd67a343e5b08
[ "MIT" ]
null
null
null
class RecordingPolicy: def __init__(self, policy): self._policy = policy self._probabilities = [] def action(self, observation, deterministic): action, probability_distribution = self._policy.step(observation, deterministic) self._probabilities.append(probability_distribution.probabilities()) return action def get_probabilities(self): return self._probabilities
26.8125
88
0.706294
298b1dbf4c8e09777df2474ffe5966e6df40ad58
4,670
py
Python
utils.py
cometa/cometa-dronek
63b4da12200a9cbcadd08523062df85ca423ff41
[ "Apache-2.0" ]
4
2016-11-16T18:06:21.000Z
2022-03-22T00:05:04.000Z
utils.py
cometa/cometa-dronekit
63b4da12200a9cbcadd08523062df85ca423ff41
[ "Apache-2.0" ]
null
null
null
utils.py
cometa/cometa-dronekit
63b4da12200a9cbcadd08523062df85ca423ff41
[ "Apache-2.0" ]
null
null
null
""" Utility functions Cometa agent for DroneKit. Author: Marco Graziano """ __license__ = """ Copyright 2016 Visible Energy Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math from dronekit import LocationGlobal, LocationGlobalRelative def check_rpc_msg(req): ret = False id = None k = req.keys() # check presence of required id attribute if 'id' in k: id = req['id'] else: return ret, id # check object length if (len(k) != 4): return ret, id # check presence of required attributes if (not 'jsonrpc' in k) or (not 'method' in k) or (not 'params' in k): return ret, id # check for version if req['jsonrpc'] != "2.0": return ret, id # valid request return True,id def isanumber(x): try: int(x) except ValueError: try: float(x) except ValueError: return False return True """ Functions to make it easy to convert between the different frames-of-reference. In particular these make it easy to navigate in terms of "metres from the current position" when using commands that take absolute positions in decimal degrees. The methods are approximations only, and may be less accurate over longer distances, and when close to the Earth's poles. Specifically, it provides: * get_location_meters - Get LocationGlobal (decimal degrees) at distance (m) North & East of a given LocationGlobal. * get_distance_meters - Get the distance between two LocationGlobal objects in metres * get_bearing - Get the bearing in degrees to a LocationGlobal """ def get_location_meters(original_location, dNorth, dEast): """ Returns a LocationGlobal object containing the latitude/longitude `dNorth` and `dEast` meters from the specified `original_location`. The returned LocationGlobal has the same `alt` value as `original_location`. The function is useful when you want to move the vehicle around specifying locations relative to the current vehicle position. The algorithm is relatively accurate over small distances (10m within 1km) except close to the poles. For more information see: http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-latitude-longitude-by-some-amount-of-meters """ earth_radius = 6378137.0 #Radius of "spherical" earth #Coordinate offsets in radians dLat = dNorth/earth_radius dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180)) #New position in decimal degrees newlat = original_location.lat + (dLat * 180/math.pi) newlon = original_location.lon + (dLon * 180/math.pi) if type(original_location) is LocationGlobal: targetlocation=LocationGlobal(newlat, newlon,original_location.alt) elif type(original_location) is LocationGlobalRelative: targetlocation=LocationGlobalRelative(newlat, newlon,original_location.alt) else: raise Exception("Invalid Location object passed") return targetlocation; def get_distance_meters(aLocation1, aLocation2): """ Returns the ground distance in meters between two LocationGlobal objects. This method is an approximation, and will not be accurate over large distances and close to the earth's poles. It comes from the ArduPilot test code: https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py """ dlat = aLocation2.lat - aLocation1.lat dlong = aLocation2.lon - aLocation1.lon return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5 def get_bearing(aLocation1, aLocation2): """ Returns the bearing between the two LocationGlobal objects passed as parameters. This method is an approximation, and may not be accurate over large distances and close to the earth's poles. It comes from the ArduPilot test code: https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py """ off_x = aLocation2.lon - aLocation1.lon off_y = aLocation2.lat - aLocation1.lat bearing = 90.00 + math.atan2(-off_y, off_x) * 57.2957795 if bearing < 0: bearing += 360.00 return bearing;
37.36
118
0.721842
3bd5d3d72b33aebfee289e904c35da2b81d68355
6,930
py
Python
backend/t1d_regimen_29628/settings.py
crowdbotics-apps/t1d-regimen-29628
531beffb60980649a8a3a2a48c62ac37143c2f18
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/t1d_regimen_29628/settings.py
crowdbotics-apps/t1d-regimen-29628
531beffb60980649a8a3a2a48c62ac37143c2f18
[ "FTL", "AML", "RSA-MD" ]
26
2021-08-15T19:19:10.000Z
2022-01-30T15:31:33.000Z
backend/t1d_regimen_29628/settings.py
crowdbotics-apps/t1d-regimen-29628
531beffb60980649a8a3a2a48c62ac37143c2f18
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" Django settings for t1d_regimen_29628 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ import logging from modules.manifest import get_modules env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 't1d_regimen_29628.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 't1d_regimen_29628.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
29.615385
112
0.731025
28fbb87e51c6b6aa8255dc8105338490fdfa27ae
1,591
py
Python
utils/builder/register_builder/riscv/BootPriority.py
jeremybennett/force-riscv
a5222a3b3fa8a0b9464204056ddca148f16b7e49
[ "Apache-2.0" ]
null
null
null
utils/builder/register_builder/riscv/BootPriority.py
jeremybennett/force-riscv
a5222a3b3fa8a0b9464204056ddca148f16b7e49
[ "Apache-2.0" ]
null
null
null
utils/builder/register_builder/riscv/BootPriority.py
jeremybennett/force-riscv
a5222a3b3fa8a0b9464204056ddca148f16b7e49
[ "Apache-2.0" ]
1
2020-06-17T09:37:45.000Z
2020-06-17T09:37:45.000Z
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR # FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # #************************************************************************************************** # BootPriority.py # # This file defines the BootPriority helper class. #************************************************************************************************** #************************************************************************************************** # The boot priority class defines helper methods associated with boot priority. #************************************************************************************************** class BootPriority: ## Returns the appropriate boot priority based on the name and type of register provided along # with if the register is write only def getBootPriority(aName = None, aType = None, aWriteOnly = 0): #if aType is this_particular_type: #return a_particular_boot_priority #if aName is this_particular_name: #return a_particular_boot_priority return 1
45.457143
99
0.553111
ee81e4de860e7f4394b6a08e73c8dd0408db2e08
4,914
py
Python
setup.py
ninjapapa/SMV2
42cf9f176c3ec0bed61f66fbf859c18d97027dd6
[ "Apache-2.0" ]
null
null
null
setup.py
ninjapapa/SMV2
42cf9f176c3ec0bed61f66fbf859c18d97027dd6
[ "Apache-2.0" ]
34
2022-02-26T04:27:34.000Z
2022-03-29T23:05:47.000Z
setup.py
ninjapapa/SMV2
42cf9f176c3ec0bed61f66fbf859c18d97027dd6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Template from: https://github.com/kennethreitz/setup.py/blob/master/setup.py # Local test -- inside of a clean virtualenv: # pip install . # pip install .[pyspark] -- to test with pyspark support # Packing Background # # 1) the "name" section indicates the name of our package as referenced on pypi and is # referred to in the documentation as the "root package" # 2) the MANIFEST.in file indicates what files should be uploaded to PyPi during the upload # upload step. They dictate the contents of the wheel and source distribution (i.e. .zip file) # that forms the distribution. This behavior is enabled by "include_package_data=True" # 3) the "packages" list indicates what packages -- i.e. directories -- should be created inside # python's site-packages directory. Any entry with a "." indicates to create a subdirectory # (e.g. 'smv.target' means create a target directory inside of the site-packages/smv directory) # 3) the "packages_data" dict ties together the MANIFEST to the "packages" section. # the keys of the "packages_data" dict indicate the location (i.e. directory or subdirectory) # to copy (i.e. install) files into. An empty section ('') indicates the "root package" as specifed # by the "name" section. Any name with a dot indicates a sub-directory (e.g. smv.target # means copy into the the subdirectory smv/target). # The values of the packages dict indicate which files should be copies from the MANIFEST into the # directory specified by the "key" # Instructions for adding new files to the distribution: # # 1. If the directory is to be within an existing sub-package, then the only thing you need # to do is make sure the contents are refernced inside of the MANIFEST.in file, and ignore # the rest of these instructions # 2. If the addition is of a NEW directory in the release "root", then declare # it as an smv sub-package in the "packages" section. Then add the contents you # want to appear in the release to the MANIFEST.in file. Finally, add an entry # to the package_dir section indicating which smv sub-package should receive the # new files added to the MANIFEST.in import io import os import sys import setuptools here = os.path.abspath(os.path.dirname(__file__)) def read_file(path_from_root): with io.open(os.path.join(here, path_from_root), encoding='utf-8') as f: return f.read().strip() # Package meta-data. NAME = 'smv' DESCRIPTION = 'A modular framework for creating applications in Apache Spark' URL = 'https://github.com/TresAmigosSD/SMV' EMAIL = 'bzhangusc@live.com' AUTHOR = 'Bo Zhang, Ali Tajeldin, Kai Chen, Lane Barlow, Guangning Yu' REQUIRES_PYTHON = '>=2.7' VERSION = read_file('.smv_version') # Sounds like wheel or twine don't like our README # README_CONTENTS = read_file('README.md') # What packages are required for this module to be executed? requirements_file_path = os.path.join("tools", "requirements.txt") requirements_file_as_list = read_file(requirements_file_path).split('\n') # What packages are optional? # this is that powers the pip install smv[pyspark] syntax EXTRAS = { 'pyspark': ['pyspark'], } # Where the magic happens: setuptools.setup( name=NAME, version=VERSION, description=DESCRIPTION, # long_description=README_CONTENTS, # long_description_content_type='text/markdown', author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, tests_require=['sphinx', 'tox'], # Need to call find_packages so that newly introduced # sub-packages will be included packages=setuptools.find_packages( "src/main/python", exclude=['test_support', 'scripts'] ) + [ 'smv.target', 'smv.docker', 'smv.docs', 'smv.tools', 'smv.src', ], # https://docs.python.org/2/distutils/setupscript.html#listing-whole-packages package_dir={ '':'src/main/python', 'smv.target': 'target/scala-2.11', 'smv.docker': 'docker', 'smv.docs': 'docs', 'smv.tools': 'tools', 'smv.src': 'src', }, include_package_data=True, scripts=[ 'tools/smv-shell', 'tools/smv-server', 'tools/smv-init', 'tools/smv-jupyter', 'tools/smv-pytest', 'tools/spark-install', 'tools/_env.sh', ], install_requires=requirements_file_as_list, extras_require=EXTRAS, license='Apache License, Version 2.0', classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: Implementation :: CPython', ], )
39
102
0.691494
4e6782fee2b4ab668818ec5a146cb452f4d16ab8
32
py
Python
prototype/test/pythonvm_book/test_var.py
zoloypzuo/ZeloPy
43d9242a509737fe1bb66deba73aa9e749b53c62
[ "MIT" ]
null
null
null
prototype/test/pythonvm_book/test_var.py
zoloypzuo/ZeloPy
43d9242a509737fe1bb66deba73aa9e749b53c62
[ "MIT" ]
null
null
null
prototype/test/pythonvm_book/test_var.py
zoloypzuo/ZeloPy
43d9242a509737fe1bb66deba73aa9e749b53c62
[ "MIT" ]
null
null
null
a = 1 b = a + 1 print a print b
6.4
9
0.53125
a410e0c7908a60d6d35ee95578adbd994db73052
1,059
py
Python
tensorflow_datasets/image/cassava_test.py
Ir1d/datasets
2a04ce5208e53bcf9b5acacf690bb7446285176e
[ "Apache-2.0" ]
2
2020-06-09T10:44:36.000Z
2020-06-09T10:44:46.000Z
tensorflow_datasets/image/cassava_test.py
Ir1d/datasets
2a04ce5208e53bcf9b5acacf690bb7446285176e
[ "Apache-2.0" ]
null
null
null
tensorflow_datasets/image/cassava_test.py
Ir1d/datasets
2a04ce5208e53bcf9b5acacf690bb7446285176e
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for cassava leaf dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow_datasets import testing from tensorflow_datasets.image import cassava class CassavaTest(testing.DatasetBuilderTestCase): DATASET_CLASS = cassava.Cassava SPLITS = { "train": 5, "test": 5, "validation": 5, } if __name__ == "__main__": testing.test_main()
28.621622
74
0.75543
42159a9181a336e965306fbe80d3cb84bb3829c2
624
py
Python
cerberus/__init__.py
peterdemin/cerberus
895d8ba16c48d7f6d0f95229f8443b4793324ca0
[ "0BSD" ]
null
null
null
cerberus/__init__.py
peterdemin/cerberus
895d8ba16c48d7f6d0f95229f8443b4793324ca0
[ "0BSD" ]
null
null
null
cerberus/__init__.py
peterdemin/cerberus
895d8ba16c48d7f6d0f95229f8443b4793324ca0
[ "0BSD" ]
null
null
null
""" Extensible validation for Python dictionaries. :copyright: 2012-2016 by Nicola Iarocci. :license: ISC, see LICENSE for more details. Full documentation is available at http://python-cerberus.org/ """ from __future__ import absolute_import from cerberus.validator import Validator, DocumentError from cerberus.schema import (rules_set_registry, schema_registry, Registry, SchemaError) __version__ = "1.1" __all__ = [ DocumentError.__name__, Registry.__name__, SchemaError.__name__, Validator.__name__, 'schema_registry', 'rules_set_registry' ]
22.285714
75
0.711538
9b88bf47000e0cbaf15c3a966db8f252e88735cf
5,202
py
Python
configs/swin/cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py
rahulmangalampalli/UniverseNet
49622e0e8a9672829ebb57979fbae89c36f15c6c
[ "Apache-2.0" ]
null
null
null
configs/swin/cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py
rahulmangalampalli/UniverseNet
49622e0e8a9672829ebb57979fbae89c36f15c6c
[ "Apache-2.0" ]
null
null
null
configs/swin/cascade_mask_rcnn_swin_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco.py
rahulmangalampalli/UniverseNet
49622e0e8a9672829ebb57979fbae89c36f15c6c
[ "Apache-2.0" ]
null
null
null
_base_ = [ '../_base_/models/cascade_mask_rcnn_swin_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, ape=False, drop_path_rate=0.2, patch_norm=True, use_checkpoint=False), neck=dict(in_channels=[96, 192, 384, 768]), roi_head=dict(bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict( type='AutoAugment', policies=[[ dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict( type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict( type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict( type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ]]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) })) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunner', max_epochs=36) fp16 = dict(loss_scale='dynamic')
36.893617
78
0.502499
dba8f04dfbdd5d15a40c5f9de42e68bc2676ac2d
3,447
py
Python
carbonserver/tests/api/routers/test_users.py
nikhil153/codecarbon
b3cc0cc29abd4b82e39699695d535351e86f1ec0
[ "MIT" ]
346
2020-11-11T02:27:03.000Z
2022-03-30T12:43:21.000Z
carbonserver/tests/api/routers/test_users.py
nikhil153/codecarbon
b3cc0cc29abd4b82e39699695d535351e86f1ec0
[ "MIT" ]
163
2020-11-10T18:57:38.000Z
2022-03-30T14:44:53.000Z
carbonserver/tests/api/routers/test_users.py
nikhil153/codecarbon
b3cc0cc29abd4b82e39699695d535351e86f1ec0
[ "MIT" ]
57
2020-11-11T02:26:15.000Z
2022-03-30T14:36:39.000Z
from unittest import mock import pytest from container import ServerContainer from fastapi import FastAPI, status from fastapi.testclient import TestClient from carbonserver.api.infra.repositories.repository_users import SqlAlchemyRepository from carbonserver.api.routers import users from carbonserver.api.schemas import User API_KEY = "U5W0EUP9y6bBENOnZWJS0g" USER_ID_1 = "f52fe339-164d-4c2b-a8c0-f562dfce066d" USER_ID_2 = "e52fe339-164d-4c2b-a8c0-f562dfce066d" USER_1 = { "id": USER_ID_1, "name": "Gontran Bonheur", "email": "xyz@email.com", "api_key": API_KEY, "organizations": [], "teams": [], "is_active": True, } USER_2 = { "id": USER_ID_2, "name": "Jonnhy Monnay", "email": "1234+1@email.fr", "api_key": API_KEY, "organizations": [], "teams": [], "is_active": True, } USER_TO_CREATE = { "name": "Gontran Bonheur", "email": "xyz@email.com", "password": "pwd", } USER_WITH_BAD_EMAIL = { "name": "Gontran Bonheur", "email": "xyz", "password": "pwd", } @pytest.fixture def custom_test_server(): container = ServerContainer() container.wire(modules=[users]) app = FastAPI() app.container = container app.include_router(users.router) yield app @pytest.fixture def client(custom_test_server): yield TestClient(custom_test_server) def test_create_user(client, custom_test_server): repository_mock = mock.Mock(spec=SqlAlchemyRepository) expected_user = USER_1 repository_mock.create_user.return_value = User(**expected_user) with custom_test_server.container.user_repository.override(repository_mock): response = client.post("/user", json=USER_TO_CREATE) actual_user = response.json() assert response.status_code == status.HTTP_201_CREATED assert actual_user == expected_user def test_create_user_with_bad_email_fails_at_http_layer(client): response = client.post("/user", json=USER_WITH_BAD_EMAIL) actual_response = response.json() assert response.status_code == status.HTTP_422_UNPROCESSABLE_ENTITY assert actual_response["detail"][0]["type"] == "value_error.email" def test_list_users_list_all_existing_users_with_200(client, custom_test_server): repository_mock = mock.Mock(spec=SqlAlchemyRepository) expected_user = USER_1 expected_user_2 = USER_2 expected_user_list = [expected_user, expected_user_2] repository_mock.list_users.return_value = [ User(**expected_user), User(**expected_user_2), ] with custom_test_server.container.user_repository.override(repository_mock): response = client.get("/users") actual_user_list = response.json() assert response.status_code == status.HTTP_200_OK assert actual_user_list == expected_user_list def test_get_user_by_id_returns_correct_user_with_correct_id( client, custom_test_server ): repository_mock = mock.Mock(spec=SqlAlchemyRepository) expected_user = USER_1 repository_mock.get_user_by_id.return_value = User(**expected_user) container_mock = mock.Mock(spec=ServerContainer) container_mock.db.return_value = True with custom_test_server.container.user_repository.override(repository_mock): response = client.get("/user/get_user_by_id/", params={"user_id": USER_ID_1}) actual_user = response.json() assert response.status_code == status.HTTP_200_OK assert actual_user == expected_user
28.966387
85
0.731651
d4b45b772bdc865fc91f9d58a59bb76869bb2a20
1,589
py
Python
tests/test_python_claml.py
thehyve/python_claml
60126f8cea2ec9aaf0e8292a584ac3316514e241
[ "MIT" ]
7
2019-05-14T07:57:53.000Z
2021-06-07T08:00:04.000Z
tests/test_python_claml.py
thehyve/python_claml
60126f8cea2ec9aaf0e8292a584ac3316514e241
[ "MIT" ]
1
2021-02-21T13:10:41.000Z
2021-02-21T13:10:41.000Z
tests/test_python_claml.py
thehyve/python_claml
60126f8cea2ec9aaf0e8292a584ac3316514e241
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tests for `python_claml` module. """ import os import time import pytest from python_claml import claml from python_claml.claml_types import ClaML class TestPythonClaml(object): @classmethod def setup_class(cls): pass def test_small_file(self): start = time.perf_counter() contents = open('resources/test.xml', 'r').read() mid = time.perf_counter() classification: ClaML = claml.CreateFromDocument(contents) end = time.perf_counter() with open('test.log', 'a') as log_file: log_file.write('Test 1 took {} s, reading: {}, parsing: {}\n'.format( end - start, mid - start, end - mid )) assert classification is not None large_test_file = 'resources/icd10gm2019syst_claml_20180921.xml' @pytest.mark.skipif(not os.path.isfile(large_test_file), reason="large test file not available") def test_large_file(self): start = time.perf_counter() contents = open(TestPythonClaml.large_test_file, 'r').read() mid = time.perf_counter() classification = claml.CreateFromDocument(contents) end = time.perf_counter() with open('test.log', 'a') as log_file: log_file.write('Test 2 took {} s, reading: {}, parsing: {}\n'.format( end - start, mid - start, end - mid )) assert classification is not None @classmethod def teardown_class(cls): pass
28.375
100
0.599119
48013279547f576b5b3e116cb96874164aa5a7d9
50
py
Python
topic/tests.py
reBiocoder/my_hubu
19dbfc12d9e5ee509b3cc70826eafa6a5014f21a
[ "MIT" ]
6
2020-05-02T11:08:39.000Z
2021-07-20T02:55:47.000Z
topic/tests.py
reBiocoder/my_hubu
19dbfc12d9e5ee509b3cc70826eafa6a5014f21a
[ "MIT" ]
8
2020-06-06T01:45:02.000Z
2022-03-12T00:24:54.000Z
topic/tests.py
reBiocoder/my_hubu
19dbfc12d9e5ee509b3cc70826eafa6a5014f21a
[ "MIT" ]
3
2020-05-04T00:36:46.000Z
2021-02-15T09:49:44.000Z
import datetime print(datetime.datetime.now())
16.666667
30
0.76
89657b38b6b80349e44070a879f64149a26c0931
59
py
Python
ioos_qc/__init__.py
glos/ioos_qc
17e69ad582275be7ad0f5a2af40c11d810b344e8
[ "Apache-2.0" ]
null
null
null
ioos_qc/__init__.py
glos/ioos_qc
17e69ad582275be7ad0f5a2af40c11d810b344e8
[ "Apache-2.0" ]
null
null
null
ioos_qc/__init__.py
glos/ioos_qc
17e69ad582275be7ad0f5a2af40c11d810b344e8
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 __version__ = "2.0.0"
14.75
21
0.661017
177b3a6ad417be25d5ae7917714c90e30a7e2dde
5,012
py
Python
runners/mlcube_docker/mlcube_docker/docker_run.py
fridex/mlcube
5e11557d39066b3fc0b90eee360580ad74c925c7
[ "Apache-2.0" ]
null
null
null
runners/mlcube_docker/mlcube_docker/docker_run.py
fridex/mlcube
5e11557d39066b3fc0b90eee360580ad74c925c7
[ "Apache-2.0" ]
null
null
null
runners/mlcube_docker/mlcube_docker/docker_run.py
fridex/mlcube
5e11557d39066b3fc0b90eee360580ad74c925c7
[ "Apache-2.0" ]
null
null
null
import logging import os import typing from mlcube.common import mlcube_metadata logger = logging.getLogger(__name__) class DockerRun(object): def __init__(self, mlcube: mlcube_metadata.MLCube): """Docker Runner. Args: mlcube (mlcube_metadata.MLCube): MLCube specification including platform configuration for Docker. """ self.mlcube: mlcube_metadata.MLCube = mlcube @staticmethod def get_env_variables() -> dict: env_vars = {} for proxy_var in ('http_proxy', 'https_proxy'): if os.environ.get(proxy_var, None) is not None: env_vars[proxy_var] = os.environ[proxy_var] return env_vars def image_exists(self, image_name: str) -> bool: """Check if docker image exists. Args: image_name (str): Name of a docker image. Returns: True if image exists, else false. """ return self._run_or_die(f"docker inspect --type=image {image_name} > /dev/null 2>&1", die_on_error=False) == 0 def configure(self): """Build Docker Image on a current host.""" image_name: str = self.mlcube.platform.container.image # According to MLCube specs (?), build directory is {mlcube.root}/build that contains all files to build MLCube. # Dockerfiles are built taking into account that {mlcube.root}/build is the context (build) directory. build_path: str = self.mlcube.build_path docker_file: str = os.path.join(build_path, 'Dockerfile') if not os.path.exists(docker_file): cmd: str = f"docker pull {image_name}" else: env_args = ' '.join([f"--build-arg {var}={name}" for var, name in DockerRun.get_env_variables().items()]) cmd: str = f"docker build {env_args} -t {image_name} -f {docker_file} {build_path}" logger.info(cmd) self._run_or_die(cmd) def run(self): """Run a cube.""" image_name: str = self.mlcube.platform.container.image if not self.image_exists(image_name): logger.warning("Docker image (%s) does not exist. Running 'configure' phase.", image_name) self.configure() # The 'mounts' dictionary maps host path to container path mounts, args = self._generate_mounts_and_args() print(f"mounts={mounts}, args={args}") volumes_str = ' '.join(['--volume {}:{}'.format(t[0], t[1]) for t in mounts.items()]) runtime: str = self.mlcube.platform.container.runtime runtime_arg = "--runtime=" + runtime if runtime is not None else "" env_args = ' '.join([f"-e {var}={name}" for var, name in DockerRun.get_env_variables().items()]) # Let's assume singularity containers provide entry point in the right way. args = ' '.join(args) cmd = f"docker run --rm {runtime_arg} --net=host --privileged=true {volumes_str} {env_args} {image_name} {args}" logger.info(cmd) self._run_or_die(cmd) def _generate_mounts_and_args(self) -> typing.Tuple[dict, list]: mounts, args = {}, [self.mlcube.invoke.task_name] def _create(binding_: dict, input_specs_: dict): # name: parameter name, path: parameter value for name, path in binding_.items(): path = path.replace('$WORKSPACE', self.mlcube.workspace_path) path_type = input_specs_[name] if path_type == 'directory': os.makedirs(path, exist_ok=True) mounts[path] = mounts.get( path, '/mlcube_io{}/{}'.format(len(mounts), os.path.basename(path)) ) args.append('--{}={}'.format(name, mounts[path])) elif path_type == 'file': file_path, file_name = os.path.split(path) os.makedirs(file_path, exist_ok=True) mounts[file_path] = mounts.get( file_path, '/mlcube_io{}/{}'.format(len(mounts), file_path) ) args.append('--{}={}'.format(name, mounts[file_path] + '/' + file_name)) else: raise RuntimeError(f"Invalid path type: '{path_type}'") _create(self.mlcube.invoke.input_binding, self.mlcube.task.inputs) _create(self.mlcube.invoke.output_binding, self.mlcube.task.outputs) return mounts, args def _run_or_die(self, cmd: str, die_on_error: bool = True) -> int: """Execute shell command. Args: cmd(str): Command to execute. die_on_error (bool): If true and shell returns non-zero exit status, raise RuntimeError. Returns: Exit code. """ print(cmd) return_code: int = os.system(cmd) if return_code != 0 and die_on_error: raise RuntimeError('Command failed: {}'.format(cmd)) return return_code
42.117647
120
0.591181
3abdd6d1b07fa4cb7e009702de5ed680b15a5cdf
1,174
py
Python
solardatatools/plotting.py
tadatoshi/solar-data-tools
51b3e1ac2d1daefef88b8f110c42db42da3ba952
[ "BSD-2-Clause" ]
null
null
null
solardatatools/plotting.py
tadatoshi/solar-data-tools
51b3e1ac2d1daefef88b8f110c42db42da3ba952
[ "BSD-2-Clause" ]
null
null
null
solardatatools/plotting.py
tadatoshi/solar-data-tools
51b3e1ac2d1daefef88b8f110c42db42da3ba952
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ''' Plotting Module ''' import numpy as np import matplotlib.pyplot as plt import seaborn as sns def plot_2d(D, figsize=(12, 6), units='kW', clear_days=None): if D is not None: with sns.axes_style("white"): fig, ax = plt.subplots(nrows=1, figsize=figsize) foo = ax.imshow(D, cmap='hot', interpolation='none', aspect='auto', vmin=0) ax.set_title('Measured power') plt.colorbar(foo, ax=ax, label=units) ax.set_xlabel('Day number') ax.set_yticks([]) ax.set_ylabel('(sunset) Time of day (sunrise)') if clear_days is not None: xlim = ax.get_xlim() ylim = ax.get_ylim() use_day = clear_days days = np.arange(D.shape[1]) y1 = np.ones_like(days[use_day]) * D.shape[0] * .99 ax.scatter(days[use_day], y1, marker='|', color='yellow', s=2) ax.scatter(days[use_day], .995*y1, marker='|', color='yellow', s=2) ax.set_xlim(*xlim) ax.set_ylim(*ylim) return fig else: return
33.542857
87
0.524702
50efc70f361d69fb5b9bf5423a84622027145947
372
py
Python
src/hrl/__init__.py
skugele/hrl-algorithms
5a444132b9a3e4ccfbdc15a10a9e1311ae0bf228
[ "MIT" ]
null
null
null
src/hrl/__init__.py
skugele/hrl-algorithms
5a444132b9a3e4ccfbdc15a10a9e1311ae0bf228
[ "MIT" ]
null
null
null
src/hrl/__init__.py
skugele/hrl-algorithms
5a444132b9a3e4ccfbdc15a10a9e1311ae0bf228
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from pkg_resources import get_distribution, DistributionNotFound try: # Change here if project is renamed and does not equal the package name dist_name = 'hrl-algorithms/' __version__ = get_distribution(dist_name).version except DistributionNotFound: __version__ = 'unknown' finally: del get_distribution, DistributionNotFound
31
75
0.763441
a0fb5c17c53881cc5c1fdd4a3fd5dc49b72e4048
193
py
Python
yuno/objects/__init__.py
Animenosekai/yuno
bcc48f7ceda022e26392e653c03606d3f5f66806
[ "MIT" ]
1
2022-02-25T13:39:18.000Z
2022-02-25T13:39:18.000Z
yuno/objects/__init__.py
Animenosekai/yuno
bcc48f7ceda022e26392e653c03606d3f5f66806
[ "MIT" ]
null
null
null
yuno/objects/__init__.py
Animenosekai/yuno
bcc48f7ceda022e26392e653c03606d3f5f66806
[ "MIT" ]
null
null
null
""" Objects Defining objects imitating the behavior of Python's built-in objects but linked to the database. """ from yuno.objects.dict import YunoDict from yuno.objects.list import YunoList
21.444444
96
0.792746
89d658331720148606f0b15c150f54b1cbd68fe7
1,885
py
Python
datawarehouse/edw_migrations/versions/101cfb715b9a_dimrequesttypes.py
bcgov/foi-reporting
25856ce87b668df964ddd16ac7459fae4aa6a7c5
[ "Apache-2.0" ]
null
null
null
datawarehouse/edw_migrations/versions/101cfb715b9a_dimrequesttypes.py
bcgov/foi-reporting
25856ce87b668df964ddd16ac7459fae4aa6a7c5
[ "Apache-2.0" ]
3
2022-01-05T18:01:41.000Z
2022-02-08T21:51:32.000Z
datawarehouse/edw_migrations/versions/101cfb715b9a_dimrequesttypes.py
bcgov/foi-reporting
25856ce87b668df964ddd16ac7459fae4aa6a7c5
[ "Apache-2.0" ]
null
null
null
"""dimRequestTypes Revision ID: 101cfb715b9a Revises: 2e97ccf78659 Create Date: 2022-01-26 23:07:13.900897 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '101cfb715b9a' down_revision = '2e97ccf78659' branch_labels = None depends_on = None def upgrade(): op.create_table('dimRequestTypes', sa.Column('requesttypeid', sa.Integer(), nullable=False), sa.Column('requesttypename', sa.VARCHAR(length=3000)), sa.Column('requesttypecode', sa.VARCHAR(length=4)), sa.Column('createddate', sa.DateTime()), sa.Column('modifieddate', sa.DateTime()), sa.Column('priority', sa.VARCHAR(length=3000)), sa.Column('casetype', sa.CHAR(length=1)), sa.Column('acttype', sa.CHAR(length=1)), sa.Column('acttypename', sa.VARCHAR(length=50)), sa.Column('cdelete', sa.CHAR(length=1)), sa.Column('siretentionpolicyid', sa.Integer()), sa.Column('cIsconsultation', sa.CHAR(length=1)), sa.Column('cIslitigation', sa.CHAR(length=1)), sa.Column('timultitracktype', sa.Integer()), sa.Column('tiprocessingdays', sa.Integer()), sa.Column('tisimpleprocessingdays', sa.Integer()), sa.Column('ticomplexprocessingdays', sa.Integer()), sa.Column('tiexpediteprocessingdays', sa.Integer()), sa.Column('csimpleprocessingdays', sa.CHAR(length=1)), sa.Column('ccomplexprocessingdays', sa.CHAR(length=1)), sa.Column('cexpediteprocessingdays', sa.CHAR(length=1)), sa.Column('cshowinhomepage', sa.CHAR(length=1)), sa.Column('cactsubtype', sa.CHAR(length=1)), sa.Column('tiapplicablesection', sa.Integer()), sa.Column('cactive', sa.CHAR(length=1)), sa.Column('cconsultationtype', sa.CHAR(length=1)), sa.Column('cenableapprovalpackage', sa.CHAR(length=1)), sa.Column('iduplicatesearchoptions', sa.Integer()), sa.PrimaryKeyConstraint('requesttypeid') ) def downgrade(): op.drop_table('dimRequestTypes')
34.272727
59
0.720955
1b34338a697d3b7abe747c0737bb60ed45835918
69
py
Python
variables.py
HrishikV/Ineuron_bankbot_internship
eb044d0047e2ad3cb6c9e69476e23bab7f6074be
[ "MIT" ]
null
null
null
variables.py
HrishikV/Ineuron_bankbot_internship
eb044d0047e2ad3cb6c9e69476e23bab7f6074be
[ "MIT" ]
null
null
null
variables.py
HrishikV/Ineuron_bankbot_internship
eb044d0047e2ad3cb6c9e69476e23bab7f6074be
[ "MIT" ]
null
null
null
i = 0 intent = "" output_type = -2 cust_id = None check = False c = 0
11.5
16
0.623188
a9f2ede825260d8cca809432410dbc8c47f836f7
634
py
Python
projectmanager/migrations/0004_auto_20200924_1549.py
leonolan2020/phoenix
b5956a7003e548f01255cbd5d0d76cfd0ac77a81
[ "MIT" ]
1
2020-09-19T21:56:40.000Z
2020-09-19T21:56:40.000Z
projectmanager/migrations/0004_auto_20200924_1549.py
leonolan2020/phoenix
b5956a7003e548f01255cbd5d0d76cfd0ac77a81
[ "MIT" ]
null
null
null
projectmanager/migrations/0004_auto_20200924_1549.py
leonolan2020/phoenix
b5956a7003e548f01255cbd5d0d76cfd0ac77a81
[ "MIT" ]
5
2020-09-18T18:53:03.000Z
2020-10-21T14:42:00.000Z
# Generated by Django 3.1 on 2020-09-24 12:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projectmanager', '0003_auto_20200924_1537'), ] operations = [ migrations.AlterField( model_name='project', name='status', field=models.CharField(choices=[('پیش فرض', 'پیش فرض'), ('در حال انجام', 'در حال انجام'), ('آماده سازی اولیه', 'آماده سازی اولیه'), ('انجام شده', 'انجام شده'), ('تحویل شده', 'تحویل شده'), ('درحال آنالیز', 'درحال آنالیز')], default='پیش فرض', max_length=50, verbose_name='status'), ), ]
33.368421
292
0.615142
56a4fcf895d52c24d1b1d984d9354c0efb86dda1
449
py
Python
practicas/implementaciones/02/practice2.py
memoherreraacosta/robot_vision
fa73ab234bcea0b0a7b2411364dbb4cca27c3d56
[ "MIT" ]
null
null
null
practicas/implementaciones/02/practice2.py
memoherreraacosta/robot_vision
fa73ab234bcea0b0a7b2411364dbb4cca27c3d56
[ "MIT" ]
null
null
null
practicas/implementaciones/02/practice2.py
memoherreraacosta/robot_vision
fa73ab234bcea0b0a7b2411364dbb4cca27c3d56
[ "MIT" ]
null
null
null
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('elephants.png', 0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) magnitude_spectrum = 20*np.log(np.abs(fshift)) plt.subplot(121), plt.imshow(img, cmap='gray') plt.title('ElephantsDream.mp4'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show()
32.071429
63
0.719376
72da0ab2e1f4688cc4a22343a790ff7b7445e24f
4,454
py
Python
src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py
bopopescu/sage-5
9d85b34956ca2edd55af307f99c5d3859acd30bf
[ "BSL-1.0" ]
5
2015-01-04T07:15:06.000Z
2022-03-04T15:15:18.000Z
src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py
bopopescu/sage-5
9d85b34956ca2edd55af307f99c5d3859acd30bf
[ "BSL-1.0" ]
null
null
null
src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py
bopopescu/sage-5
9d85b34956ca2edd55af307f99c5d3859acd30bf
[ "BSL-1.0" ]
10
2016-09-28T13:12:40.000Z
2022-02-12T09:28:34.000Z
""" Local Density Interfaces """ ## // This is needed in the filter for primitivity... ## #include "../max-min.h" from sage.rings.arith import valuation from sage.rings.rational_field import QQ def local_density(self, p, m): """ Gives the local density -- should be called by the user. =) NOTE: This screens for imprimitive forms, and puts the quadratic form in local normal form, which is a *requirement* of the routines performing the computations! INPUT: `p` -- a prime number > 0 `m` -- an integer OUTPUT: a rational number EXAMPLES:: sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1,1]) ## NOTE: This is already in local normal form for *all* primes p! sage: Q.local_density(p=2, m=1) 1 sage: Q.local_density(p=3, m=1) 8/9 sage: Q.local_density(p=5, m=1) 24/25 sage: Q.local_density(p=7, m=1) 48/49 sage: Q.local_density(p=11, m=1) 120/121 """ n = self.dim() if (n == 0): raise TypeError, "Oops! We currently don't handle 0-dim'l forms. =(" ## Find the local normal form and p-scale of Q -- Note: This uses the valuation ordering of local_normal_form. ## TO DO: Write a separate p-scale and p-norm routines! Q_local = self.local_normal_form(p) if n == 1: p_valuation = valuation(Q_local[0,0], p) else: p_valuation = min(valuation(Q_local[0,0], p), valuation(Q_local[0,1], p)) ## If m is less p-divisible than the matrix, return zero if ((m != 0) and (valuation(m,p) < p_valuation)): ## Note: The (m != 0) condition protects taking the valuation of zero. return QQ(0) ## If the form is imprimitive, rescale it and call the local density routine p_adjustment = QQ(1) / p**p_valuation m_prim = QQ(m) / p**p_valuation Q_prim = Q_local.scale_by_factor(p_adjustment) ## Return the densities for the reduced problem return Q_prim.local_density_congruence(p, m_prim) def local_primitive_density(self, p, m): """ Gives the local primitive density -- should be called by the user. =) NOTE: This screens for imprimitive forms, and puts the quadratic form in local normal form, which is a *requirement* of the routines performing the computations! INPUT: `p` -- a prime number > 0 `m` -- an integer OUTPUT: a rational number EXAMPLES:: sage: Q = QuadraticForm(ZZ, 4, range(10)) sage: Q[0,0] = 5 sage: Q[1,1] = 10 sage: Q[2,2] = 15 sage: Q[3,3] = 20 sage: Q Quadratic form in 4 variables over Integer Ring with coefficients: [ 5 1 2 3 ] [ * 10 5 6 ] [ * * 15 8 ] [ * * * 20 ] sage: Q.theta_series(20) 1 + 2*q^5 + 2*q^10 + 2*q^14 + 2*q^15 + 2*q^16 + 2*q^18 + O(q^20) sage: Q.local_normal_form(2) Quadratic form in 4 variables over Integer Ring with coefficients: [ 0 1 0 0 ] [ * 0 0 0 ] [ * * 0 1 ] [ * * * 0 ] sage: Q.local_primitive_density(2, 1) 3/4 sage: Q.local_primitive_density(5, 1) 24/25 sage: Q.local_primitive_density(2, 5) 3/4 sage: Q.local_density(2, 5) 3/4 """ n = self.dim() if (n == 0): raise TypeError, "Oops! We currently don't handle 0-dim'l forms. =(" ## Find the local normal form and p-scale of Q -- Note: This uses the valuation ordering of local_normal_form. ## TO DO: Write a separate p-scale and p-norm routines! Q_local = self.local_normal_form(p) if n == 1: p_valuation = valuation(Q_local[0,0], p) else: p_valuation = min(valuation(Q_local[0,0], p), valuation(Q_local[0,1], p)) ## If m is less p-divisible than the matrix, return zero if ((m != 0) and (valuation(m,p) < p_valuation)): ## Note: The (m != 0) condition protects taking the valuation of zero. return QQ(0) ## If the form is imprimitive, rescale it and call the local density routine p_adjustment = QQ(1) / p**p_valuation m_prim = QQ(m) / p**p_valuation Q_prim = Q_local.scale_by_factor(p_adjustment) ## Return the densities for the reduced problem return Q_prim.local_primitive_density_congruence(p, m_prim)
30.29932
126
0.585092
71e214cbb7ea76158e7a4602445ff09fc18fc5e6
953
py
Python
framework/framework/branch/standard_branch.py
StepaTa/vkbottle
3b04a5343380cbabe782151e7cb1c1645a9fa9ce
[ "MIT" ]
null
null
null
framework/framework/branch/standard_branch.py
StepaTa/vkbottle
3b04a5343380cbabe782151e7cb1c1645a9fa9ce
[ "MIT" ]
null
null
null
framework/framework/branch/standard_branch.py
StepaTa/vkbottle
3b04a5343380cbabe782151e7cb1c1645a9fa9ce
[ "MIT" ]
null
null
null
from vkbottle.framework.framework.rule import AbstractMessageRule from enum import Enum class Branch: branch_name: str branch_kwargs: dict def __init__(self, branch_name: str, **pass_to_branch): self.branch_name = branch_name self.branch_kwargs = pass_to_branch class ExitBranch: pass class BranchCheckupKey(Enum): PEER_ID = "peer_id" FROM_ID = "from_id" class ImmutableBranchData: def __init__(self, name: str, **kwargs): self.name: str = name self.data = kwargs def __call__(self) -> dict: return {"name": self.name, **self.data} def __repr__(self): return f"<Branch ImmutableBranchData name={self.name} data={self.data}>" def rule_disposal(*rules: AbstractMessageRule): disposal = [] def wrapper(func): for rule in rules: rule.create(func) disposal.append(rule) return func, disposal return wrapper
21.177778
80
0.657922
848ca830045512f85e1693ff67b0d2f5a13d8bb2
32,615
py
Python
test/unit/obj/test_ssync_sender.py
ucsc-hp-group/swift
d6f1cb851d256ceffdff6d61513f42005e7ddcec
[ "Apache-2.0" ]
2
2016-01-26T14:31:04.000Z
2016-01-26T14:31:08.000Z
test/unit/obj/test_ssync_sender.py
ucsc-hp-group/swift
d6f1cb851d256ceffdff6d61513f42005e7ddcec
[ "Apache-2.0" ]
null
null
null
test/unit/obj/test_ssync_sender.py
ucsc-hp-group/swift
d6f1cb851d256ceffdff6d61513f42005e7ddcec
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import os import shutil import StringIO import tempfile import time import unittest import eventlet import mock from swift.common import exceptions, utils from swift.obj import ssync_sender, diskfile from test.unit import DebugLogger class FakeReplicator(object): def __init__(self, testdir): self.logger = mock.MagicMock() self.conn_timeout = 1 self.node_timeout = 2 self.http_timeout = 3 self.network_chunk_size = 65536 self.disk_chunk_size = 4096 conf = { 'devices': testdir, 'mount_check': 'false', } self._diskfile_mgr = diskfile.DiskFileManager(conf, DebugLogger()) class NullBufferedHTTPConnection(object): def __init__(*args, **kwargs): pass def putrequest(*args, **kwargs): pass def putheader(*args, **kwargs): pass def endheaders(*args, **kwargs): pass def getresponse(*args, **kwargs): pass class FakeResponse(object): def __init__(self, chunk_body=''): self.status = 200 self.close_called = False if chunk_body: self.fp = StringIO.StringIO( '%x\r\n%s\r\n0\r\n\r\n' % (len(chunk_body), chunk_body)) def close(self): self.close_called = True class FakeConnection(object): def __init__(self): self.sent = [] self.closed = False def send(self, data): self.sent.append(data) def close(self): self.closed = True class TestSender(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() self.testdir = os.path.join(self.tmpdir, 'tmp_test_ssync_sender') self.replicator = FakeReplicator(self.testdir) self.sender = ssync_sender.Sender(self.replicator, None, None, None) def tearDown(self): shutil.rmtree(self.tmpdir, ignore_errors=1) def _make_open_diskfile(self, device='dev', partition='9', account='a', container='c', obj='o', body='test', extra_metadata=None): object_parts = account, container, obj req_timestamp = utils.normalize_timestamp(time.time()) df = self.sender.daemon._diskfile_mgr.get_diskfile(device, partition, *object_parts) content_length = len(body) etag = hashlib.md5(body).hexdigest() with df.create() as writer: writer.write(body) metadata = { 'X-Timestamp': req_timestamp, 'Content-Length': content_length, 'ETag': etag, } if extra_metadata: metadata.update(extra_metadata) writer.put(metadata) df.open() return df def test_call_catches_MessageTimeout(self): def connect(self): exc = exceptions.MessageTimeout(1, 'test connect') # Cancels Eventlet's raising of this since we're about to do it. exc.cancel() raise exc with mock.patch.object(ssync_sender.Sender, 'connect', connect): node = dict(ip='1.2.3.4', port=5678, device='sda1') job = dict(partition='9') self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] self.assertFalse(self.sender()) call = self.replicator.logger.error.mock_calls[0] self.assertEqual( call[1][:-1], ('%s:%s/%s/%s %s', '1.2.3.4', 5678, 'sda1', '9')) self.assertEqual(str(call[1][-1]), '1 second: test connect') def test_call_catches_ReplicationException(self): def connect(self): raise exceptions.ReplicationException('test connect') with mock.patch.object(ssync_sender.Sender, 'connect', connect): node = dict(ip='1.2.3.4', port=5678, device='sda1') job = dict(partition='9') self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] self.assertFalse(self.sender()) call = self.replicator.logger.error.mock_calls[0] self.assertEqual( call[1][:-1], ('%s:%s/%s/%s %s', '1.2.3.4', 5678, 'sda1', '9')) self.assertEqual(str(call[1][-1]), 'test connect') def test_call_catches_other_exceptions(self): node = dict(ip='1.2.3.4', port=5678, device='sda1') job = dict(partition='9') self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] self.sender.connect = 'cause exception' self.assertFalse(self.sender()) call = self.replicator.logger.exception.mock_calls[0] self.assertEqual( call[1], ('%s:%s/%s/%s EXCEPTION in replication.Sender', '1.2.3.4', 5678, 'sda1', '9')) def test_call_catches_exception_handling_exception(self): node = dict(ip='1.2.3.4', port=5678, device='sda1') job = None # Will cause inside exception handler to fail self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] self.sender.connect = 'cause exception' self.assertFalse(self.sender()) self.replicator.logger.exception.assert_called_once_with( 'EXCEPTION in replication.Sender') def test_call_calls_others(self): self.sender.suffixes = ['abc'] self.sender.connect = mock.MagicMock() self.sender.missing_check = mock.MagicMock() self.sender.updates = mock.MagicMock() self.sender.disconnect = mock.MagicMock() self.assertTrue(self.sender()) self.sender.connect.assert_called_once_with() self.sender.missing_check.assert_called_once_with() self.sender.updates.assert_called_once_with() self.sender.disconnect.assert_called_once_with() def test_call_calls_others_returns_failure(self): self.sender.suffixes = ['abc'] self.sender.connect = mock.MagicMock() self.sender.missing_check = mock.MagicMock() self.sender.updates = mock.MagicMock() self.sender.disconnect = mock.MagicMock() self.sender.failures = 1 self.assertFalse(self.sender()) self.sender.connect.assert_called_once_with() self.sender.missing_check.assert_called_once_with() self.sender.updates.assert_called_once_with() self.sender.disconnect.assert_called_once_with() def test_connect_send_timeout(self): self.replicator.conn_timeout = 0.01 node = dict(ip='1.2.3.4', port=5678, device='sda1') job = dict(partition='9') self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] def putrequest(*args, **kwargs): eventlet.sleep(0.1) with mock.patch.object( ssync_sender.bufferedhttp.BufferedHTTPConnection, 'putrequest', putrequest): self.assertFalse(self.sender()) call = self.replicator.logger.error.mock_calls[0] self.assertEqual( call[1][:-1], ('%s:%s/%s/%s %s', '1.2.3.4', 5678, 'sda1', '9')) self.assertEqual(str(call[1][-1]), '0.01 seconds: connect send') def test_connect_receive_timeout(self): self.replicator.node_timeout = 0.02 node = dict(ip='1.2.3.4', port=5678, device='sda1') job = dict(partition='9') self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] class FakeBufferedHTTPConnection(NullBufferedHTTPConnection): def getresponse(*args, **kwargs): eventlet.sleep(0.1) with mock.patch.object( ssync_sender.bufferedhttp, 'BufferedHTTPConnection', FakeBufferedHTTPConnection): self.assertFalse(self.sender()) call = self.replicator.logger.error.mock_calls[0] self.assertEqual( call[1][:-1], ('%s:%s/%s/%s %s', '1.2.3.4', 5678, 'sda1', '9')) self.assertEqual(str(call[1][-1]), '0.02 seconds: connect receive') def test_connect_bad_status(self): self.replicator.node_timeout = 0.02 node = dict(ip='1.2.3.4', port=5678, device='sda1') job = dict(partition='9') self.sender = ssync_sender.Sender(self.replicator, node, job, None) self.sender.suffixes = ['abc'] class FakeBufferedHTTPConnection(NullBufferedHTTPConnection): def getresponse(*args, **kwargs): response = FakeResponse() response.status = 503 return response with mock.patch.object( ssync_sender.bufferedhttp, 'BufferedHTTPConnection', FakeBufferedHTTPConnection): self.assertFalse(self.sender()) call = self.replicator.logger.error.mock_calls[0] self.assertEqual( call[1][:-1], ('%s:%s/%s/%s %s', '1.2.3.4', 5678, 'sda1', '9')) self.assertEqual(str(call[1][-1]), 'Expected status 200; got 503') def test_readline_newline_in_buffer(self): self.sender.response_buffer = 'Has a newline already.\r\nOkay.' self.assertEqual(self.sender.readline(), 'Has a newline already.\r\n') self.assertEqual(self.sender.response_buffer, 'Okay.') def test_readline_buffer_exceeds_network_chunk_size_somehow(self): self.replicator.network_chunk_size = 2 self.sender.response_buffer = '1234567890' self.assertEqual(self.sender.readline(), '1234567890') self.assertEqual(self.sender.response_buffer, '') def test_readline_at_start_of_chunk(self): self.sender.response = FakeResponse() self.sender.response.fp = StringIO.StringIO('2\r\nx\n\r\n') self.assertEqual(self.sender.readline(), 'x\n') def test_readline_chunk_with_extension(self): self.sender.response = FakeResponse() self.sender.response.fp = StringIO.StringIO( '2 ; chunk=extension\r\nx\n\r\n') self.assertEqual(self.sender.readline(), 'x\n') def test_readline_broken_chunk(self): self.sender.response = FakeResponse() self.sender.response.fp = StringIO.StringIO('q\r\nx\n\r\n') self.assertRaises( exceptions.ReplicationException, self.sender.readline) self.assertTrue(self.sender.response.close_called) def test_readline_terminated_chunk(self): self.sender.response = FakeResponse() self.sender.response.fp = StringIO.StringIO('b\r\nnot enough') self.assertRaises( exceptions.ReplicationException, self.sender.readline) self.assertTrue(self.sender.response.close_called) def test_readline_all(self): self.sender.response = FakeResponse() self.sender.response.fp = StringIO.StringIO('2\r\nx\n\r\n0\r\n\r\n') self.assertEqual(self.sender.readline(), 'x\n') self.assertEqual(self.sender.readline(), '') self.assertEqual(self.sender.readline(), '') def test_readline_all_trailing_not_newline_termed(self): self.sender.response = FakeResponse() self.sender.response.fp = StringIO.StringIO( '2\r\nx\n\r\n3\r\n123\r\n0\r\n\r\n') self.assertEqual(self.sender.readline(), 'x\n') self.assertEqual(self.sender.readline(), '123') self.assertEqual(self.sender.readline(), '') self.assertEqual(self.sender.readline(), '') def test_missing_check_timeout(self): self.sender.connection = FakeConnection() self.sender.connection.send = lambda d: eventlet.sleep(1) self.sender.daemon.node_timeout = 0.01 self.assertRaises(exceptions.MessageTimeout, self.sender.missing_check) def test_missing_check_has_empty_suffixes(self): def yield_hashes(device, partition, suffixes=None): if device != 'dev' or partition != '9' or suffixes != [ 'abc', 'def']: yield # Just here to make this a generator raise Exception( 'No match for %r %r %r' % (device, partition, suffixes)) self.sender.connection = FakeConnection() self.sender.job = {'device': 'dev', 'partition': '9'} self.sender.suffixes = ['abc', 'def'] self.sender.response = FakeResponse( chunk_body=( ':MISSING_CHECK: START\r\n' ':MISSING_CHECK: END\r\n')) self.sender.daemon._diskfile_mgr.yield_hashes = yield_hashes self.sender.missing_check() self.assertEqual( ''.join(self.sender.connection.sent), '17\r\n:MISSING_CHECK: START\r\n\r\n' '15\r\n:MISSING_CHECK: END\r\n\r\n') self.assertEqual(self.sender.send_list, []) def test_missing_check_has_suffixes(self): def yield_hashes(device, partition, suffixes=None): if device == 'dev' and partition == '9' and suffixes == [ 'abc', 'def']: yield ( '/srv/node/dev/objects/9/abc/' '9d41d8cd98f00b204e9800998ecf0abc', '9d41d8cd98f00b204e9800998ecf0abc', '1380144470.00000') yield ( '/srv/node/dev/objects/9/def/' '9d41d8cd98f00b204e9800998ecf0def', '9d41d8cd98f00b204e9800998ecf0def', '1380144472.22222') yield ( '/srv/node/dev/objects/9/def/' '9d41d8cd98f00b204e9800998ecf1def', '9d41d8cd98f00b204e9800998ecf1def', '1380144474.44444') else: raise Exception( 'No match for %r %r %r' % (device, partition, suffixes)) self.sender.connection = FakeConnection() self.sender.job = {'device': 'dev', 'partition': '9'} self.sender.suffixes = ['abc', 'def'] self.sender.response = FakeResponse( chunk_body=( ':MISSING_CHECK: START\r\n' ':MISSING_CHECK: END\r\n')) self.sender.daemon._diskfile_mgr.yield_hashes = yield_hashes self.sender.missing_check() self.assertEqual( ''.join(self.sender.connection.sent), '17\r\n:MISSING_CHECK: START\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf0abc 1380144470.00000\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf0def 1380144472.22222\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf1def 1380144474.44444\r\n\r\n' '15\r\n:MISSING_CHECK: END\r\n\r\n') self.assertEqual(self.sender.send_list, []) def test_missing_check_far_end_disconnect(self): def yield_hashes(device, partition, suffixes=None): if device == 'dev' and partition == '9' and suffixes == ['abc']: yield ( '/srv/node/dev/objects/9/abc/' '9d41d8cd98f00b204e9800998ecf0abc', '9d41d8cd98f00b204e9800998ecf0abc', '1380144470.00000') else: raise Exception( 'No match for %r %r %r' % (device, partition, suffixes)) self.sender.connection = FakeConnection() self.sender.job = {'device': 'dev', 'partition': '9'} self.sender.suffixes = ['abc'] self.sender.daemon._diskfile_mgr.yield_hashes = yield_hashes self.sender.response = FakeResponse(chunk_body='\r\n') exc = None try: self.sender.missing_check() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), 'Early disconnect') self.assertEqual( ''.join(self.sender.connection.sent), '17\r\n:MISSING_CHECK: START\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf0abc 1380144470.00000\r\n\r\n' '15\r\n:MISSING_CHECK: END\r\n\r\n') def test_missing_check_far_end_disconnect2(self): def yield_hashes(device, partition, suffixes=None): if device == 'dev' and partition == '9' and suffixes == ['abc']: yield ( '/srv/node/dev/objects/9/abc/' '9d41d8cd98f00b204e9800998ecf0abc', '9d41d8cd98f00b204e9800998ecf0abc', '1380144470.00000') else: raise Exception( 'No match for %r %r %r' % (device, partition, suffixes)) self.sender.connection = FakeConnection() self.sender.job = {'device': 'dev', 'partition': '9'} self.sender.suffixes = ['abc'] self.sender.daemon._diskfile_mgr.yield_hashes = yield_hashes self.sender.response = FakeResponse( chunk_body=':MISSING_CHECK: START\r\n') exc = None try: self.sender.missing_check() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), 'Early disconnect') self.assertEqual( ''.join(self.sender.connection.sent), '17\r\n:MISSING_CHECK: START\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf0abc 1380144470.00000\r\n\r\n' '15\r\n:MISSING_CHECK: END\r\n\r\n') def test_missing_check_far_end_unexpected(self): def yield_hashes(device, partition, suffixes=None): if device == 'dev' and partition == '9' and suffixes == ['abc']: yield ( '/srv/node/dev/objects/9/abc/' '9d41d8cd98f00b204e9800998ecf0abc', '9d41d8cd98f00b204e9800998ecf0abc', '1380144470.00000') else: raise Exception( 'No match for %r %r %r' % (device, partition, suffixes)) self.sender.connection = FakeConnection() self.sender.job = {'device': 'dev', 'partition': '9'} self.sender.suffixes = ['abc'] self.sender.daemon._diskfile_mgr.yield_hashes = yield_hashes self.sender.response = FakeResponse(chunk_body='OH HAI\r\n') exc = None try: self.sender.missing_check() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), "Unexpected response: 'OH HAI'") self.assertEqual( ''.join(self.sender.connection.sent), '17\r\n:MISSING_CHECK: START\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf0abc 1380144470.00000\r\n\r\n' '15\r\n:MISSING_CHECK: END\r\n\r\n') def test_missing_check_send_list(self): def yield_hashes(device, partition, suffixes=None): if device == 'dev' and partition == '9' and suffixes == ['abc']: yield ( '/srv/node/dev/objects/9/abc/' '9d41d8cd98f00b204e9800998ecf0abc', '9d41d8cd98f00b204e9800998ecf0abc', '1380144470.00000') else: raise Exception( 'No match for %r %r %r' % (device, partition, suffixes)) self.sender.connection = FakeConnection() self.sender.job = {'device': 'dev', 'partition': '9'} self.sender.suffixes = ['abc'] self.sender.response = FakeResponse( chunk_body=( ':MISSING_CHECK: START\r\n' '0123abc\r\n' ':MISSING_CHECK: END\r\n')) self.sender.daemon._diskfile_mgr.yield_hashes = yield_hashes self.sender.missing_check() self.assertEqual( ''.join(self.sender.connection.sent), '17\r\n:MISSING_CHECK: START\r\n\r\n' '33\r\n9d41d8cd98f00b204e9800998ecf0abc 1380144470.00000\r\n\r\n' '15\r\n:MISSING_CHECK: END\r\n\r\n') self.assertEqual(self.sender.send_list, ['0123abc']) def test_updates_timeout(self): self.sender.connection = FakeConnection() self.sender.connection.send = lambda d: eventlet.sleep(1) self.sender.daemon.node_timeout = 0.01 self.assertRaises(exceptions.MessageTimeout, self.sender.updates) def test_updates_empty_send_list(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' ':UPDATES: END\r\n')) self.sender.updates() self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_unexpected_response_lines1(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( 'abc\r\n' ':UPDATES: START\r\n' ':UPDATES: END\r\n')) exc = None try: self.sender.updates() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), "Unexpected response: 'abc'") self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_unexpected_response_lines2(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' 'abc\r\n' ':UPDATES: END\r\n')) exc = None try: self.sender.updates() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), "Unexpected response: 'abc'") self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_is_deleted(self): device = 'dev' part = '9' object_parts = ('a', 'c', 'o') df = self._make_open_diskfile(device, part, *object_parts) object_hash = utils.hash_path(*object_parts) delete_timestamp = utils.normalize_timestamp(time.time()) df.delete(delete_timestamp) self.sender.connection = FakeConnection() self.sender.job = {'device': device, 'partition': part} self.sender.node = {} self.sender.send_list = [object_hash] self.sender.send_delete = mock.MagicMock() self.sender.send_put = mock.MagicMock() self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' ':UPDATES: END\r\n')) self.sender.updates() self.sender.send_delete.assert_called_once_with( '/a/c/o', delete_timestamp) self.assertEqual(self.sender.send_put.mock_calls, []) # note that the delete line isn't actually sent since we mock # send_delete; send_delete is tested separately. self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_put(self): device = 'dev' part = '9' object_parts = ('a', 'c', 'o') df = self._make_open_diskfile(device, part, *object_parts) object_hash = utils.hash_path(*object_parts) expected = df.get_metadata() self.sender.connection = FakeConnection() self.sender.job = {'device': device, 'partition': part} self.sender.node = {} self.sender.send_list = [object_hash] self.sender.send_delete = mock.MagicMock() self.sender.send_put = mock.MagicMock() self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' ':UPDATES: END\r\n')) self.sender.updates() self.assertEqual(self.sender.send_delete.mock_calls, []) self.assertEqual(1, len(self.sender.send_put.mock_calls)) args, _kwargs = self.sender.send_put.call_args path, df = args self.assertEqual(path, '/a/c/o') self.assert_(isinstance(df, diskfile.DiskFile)) self.assertEqual(expected, df.get_metadata()) # note that the put line isn't actually sent since we mock send_put; # send_put is tested separately. self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_read_response_timeout_start(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' ':UPDATES: END\r\n')) orig_readline = self.sender.readline def delayed_readline(): eventlet.sleep(1) return orig_readline() self.sender.readline = delayed_readline self.sender.daemon.http_timeout = 0.01 self.assertRaises(exceptions.MessageTimeout, self.sender.updates) def test_updates_read_response_disconnect_start(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse(chunk_body='\r\n') exc = None try: self.sender.updates() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), 'Early disconnect') self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_read_response_unexp_start(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( 'anything else\r\n' ':UPDATES: START\r\n' ':UPDATES: END\r\n')) exc = None try: self.sender.updates() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), "Unexpected response: 'anything else'") self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_read_response_timeout_end(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' ':UPDATES: END\r\n')) orig_readline = self.sender.readline def delayed_readline(): rv = orig_readline() if rv == ':UPDATES: END\r\n': eventlet.sleep(1) return rv self.sender.readline = delayed_readline self.sender.daemon.http_timeout = 0.01 self.assertRaises(exceptions.MessageTimeout, self.sender.updates) def test_updates_read_response_disconnect_end(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' '\r\n')) exc = None try: self.sender.updates() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), 'Early disconnect') self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_updates_read_response_unexp_end(self): self.sender.connection = FakeConnection() self.sender.send_list = [] self.sender.response = FakeResponse( chunk_body=( ':UPDATES: START\r\n' 'anything else\r\n' ':UPDATES: END\r\n')) exc = None try: self.sender.updates() except exceptions.ReplicationException as err: exc = err self.assertEqual(str(exc), "Unexpected response: 'anything else'") self.assertEqual( ''.join(self.sender.connection.sent), '11\r\n:UPDATES: START\r\n\r\n' 'f\r\n:UPDATES: END\r\n\r\n') def test_send_delete_timeout(self): self.sender.connection = FakeConnection() self.sender.connection.send = lambda d: eventlet.sleep(1) self.sender.daemon.node_timeout = 0.01 exc = None try: self.sender.send_delete('/a/c/o', '1381679759.90941') except exceptions.MessageTimeout as err: exc = err self.assertEqual(str(exc), '0.01 seconds: send_delete') def test_send_delete(self): self.sender.connection = FakeConnection() self.sender.send_delete('/a/c/o', '1381679759.90941') self.assertEqual( ''.join(self.sender.connection.sent), '30\r\n' 'DELETE /a/c/o\r\n' 'X-Timestamp: 1381679759.90941\r\n' '\r\n\r\n') def test_send_put_initial_timeout(self): df = self._make_open_diskfile() df._disk_chunk_size = 2 self.sender.connection = FakeConnection() self.sender.connection.send = lambda d: eventlet.sleep(1) self.sender.daemon.node_timeout = 0.01 exc = None try: self.sender.send_put('/a/c/o', df) except exceptions.MessageTimeout as err: exc = err self.assertEqual(str(exc), '0.01 seconds: send_put') def test_send_put_chunk_timeout(self): df = self._make_open_diskfile() self.sender.connection = FakeConnection() self.sender.daemon.node_timeout = 0.01 one_shot = [None] def mock_send(data): try: one_shot.pop() except IndexError: eventlet.sleep(1) self.sender.connection.send = mock_send exc = None try: self.sender.send_put('/a/c/o', df) except exceptions.MessageTimeout as err: exc = err self.assertEqual(str(exc), '0.01 seconds: send_put chunk') def test_send_put(self): body = 'test' extra_metadata = {'Some-Other-Header': 'value'} df = self._make_open_diskfile(body=body, extra_metadata=extra_metadata) expected = dict(df.get_metadata()) expected['body'] = body expected['chunk_size'] = len(body) self.sender.connection = FakeConnection() self.sender.send_put('/a/c/o', df) self.assertEqual( ''.join(self.sender.connection.sent), '82\r\n' 'PUT /a/c/o\r\n' 'Content-Length: %(Content-Length)s\r\n' 'ETag: %(ETag)s\r\n' 'Some-Other-Header: value\r\n' 'X-Timestamp: %(X-Timestamp)s\r\n' '\r\n' '\r\n' '%(chunk_size)s\r\n' '%(body)s\r\n' % expected) def test_disconnect_timeout(self): self.sender.connection = FakeConnection() self.sender.connection.send = lambda d: eventlet.sleep(1) self.sender.daemon.node_timeout = 0.01 self.sender.disconnect() self.assertEqual(''.join(self.sender.connection.sent), '') self.assertTrue(self.sender.connection.closed) def test_disconnect(self): self.sender.connection = FakeConnection() self.sender.disconnect() self.assertEqual(''.join(self.sender.connection.sent), '0\r\n\r\n') self.assertTrue(self.sender.connection.closed) if __name__ == '__main__': unittest.main()
39.247894
79
0.591384
502cf0af7c80f1a285d57c93338c3a09afdf4eb5
11,270
py
Python
framework/CodeInterfaces/PHISICS/FissionYieldParser.py
sonatsen/raven
30764491e7ecaa16de2a4e0ddab3bc9e169e5f95
[ "Apache-2.0" ]
2
2019-10-11T15:59:10.000Z
2021-04-08T18:23:57.000Z
framework/CodeInterfaces/PHISICS/FissionYieldParser.py
sonatsen/raven
30764491e7ecaa16de2a4e0ddab3bc9e169e5f95
[ "Apache-2.0" ]
1
2018-03-27T13:06:00.000Z
2018-03-27T13:06:00.000Z
framework/CodeInterfaces/PHISICS/FissionYieldParser.py
sonatsen/raven
30764491e7ecaa16de2a4e0ddab3bc9e169e5f95
[ "Apache-2.0" ]
1
2017-08-29T16:09:13.000Z
2017-08-29T16:09:13.000Z
""" Created on June 25th, 2017 @author: rouxpn """ from __future__ import division, print_function, unicode_literals, absolute_import import warnings warnings.simplefilter('default', DeprecationWarning) import os import re from decimal import Decimal class FissionYieldParser(): """ Parses the PHISICS xml fission yield file and replaces the nominal values by the perturbed values. """ def __init__(self, inputFiles, workingDir, **pertDict): """ Constructor. @ In, inputFiles, string, xml fission yield file. @ In, workingDir, string, absolute path to the working directory @ In, pertDict, dictionary, dictionary of perturbed variables @ Out, None """ self.allYieldList = [] # all the fis. yield families in fast and thermal spectrum self.inputFiles = inputFiles self.spectrum = ['Thermal', 'Fast'] # Possible spectrum found in the library. self.typeOfSpectrum = None # Flag. Takes the value of one of the possible spectrum, depending what line of the file is parsed self.isotopeList = [] # Fission products having a fission yield defined self.spectrumNumbering = { } # Keys: type of spectrum (fast or thermal), values: numbering dictionary self.listedYieldDict = {} # Nested dictionary of perturbed variables self.pertYieldDict = self.scientificNotation( pertDict) # Perturbed variables # open the unperturbed file openInputFile = open(self.inputFiles, "r") lines = openInputFile.readlines() openInputFile.close() self.characterizeLibrary(lines) self.isotopeList = list(set( self.isotopeList)) # Removes all the repetion in the isotope list self.numberOfIsotopes = len(self.isotopeList) self.fileReconstruction() # Puts the perturbed variables in a dictionary self.printInput( workingDir, lines ) # Replaces the the nominal values by the perturbed one and print in a file def scientificNotation(self, pertDict): """ Converts the numerical values into a scientific notation. @ In, pertDict, dictionary, perturbed variables @ Out, pertDict, dictionary, perturbed variables in scientific format """ for key, value in pertDict.items(): pertDict[key] = '%.3E' % Decimal(str(value)) return pertDict def characterizeLibrary(self,lines): """ Characterizes the structure of the library. Teaches the type of decay available for the fast spectrum family and thermal family. @ In, lines, list, unperturbed input file lines @ Out, None """ concatenateYieldList = [] for line in lines: if re.match(r'(.*?)Thermal Fission Yield', line): self.typeOfSpectrum = self.spectrum[0] elif re.match(r'(.*?)Fast Fission Yield', line): self.typeOfSpectrum = self.spectrum[1] if (re.match(r'(.*?)\w+(-?)\d+\s+\w+\s+\w(-?)\d+\s+\w', line) and any(s in "FY" for s in line)): # create dynamic column detector count = 0 FYgroup = [ ] # reset the counter and the dictionary numbering if new colum sequence is detected numbering = {} line = re.sub(r'FY', r'', line) splitStringYieldType = line.upper().split() for i in splitStringYieldType: FYgroup.append( i.replace('-', '') ) # get the fission yield group's names (U235, Pu239 etc.) and remove the dash in those IDs concatenateYieldList = concatenateYieldList + FYgroup # concatenate all the possible yield type (including repetition among actinides and FP) self.allYieldList = list(set(concatenateYieldList)) for i in range( len(splitStringYieldType )): # assign the column position of the given yield types count = count + 1 numbering[FYgroup[ i]] = count # assign the column position of the given Yield types splitStringYieldType[i] = re.sub(r'(.*?)(\w+)(-)(\d+M?)', r'\1\2\4', splitStringYieldType[i]) if self.typeOfSpectrum == self.spectrum[0]: self.spectrumNumbering[self.spectrum[0]] = numbering if self.typeOfSpectrum == self.spectrum[1]: self.spectrumNumbering[self.spectrum[1]] = numbering numbering[splitStringYieldType[i]] = count if re.match(r'(.*?)\s+\D+(-?)\d+(M?)\s+\d+.\d', line) or re.match( r'(.*?)ALPHA\s+\d+.\d', line): isotopeLines = line.split() self.isotopeList.append(isotopeLines[0]) def matrixPrinter(self, line, outfile, spectra): """ Prints the perturbed decay matrix in the outfile. @ In, lines, list, unperturbed input file lines @ In, outfile, file object, output file in file object format @ In, spectra, integer, indicates if the yields are related to a thermal spectrum (0) or a fast spectrum (1) @ Out, None """ isotopeCounter = 0 if re.search(r'END\s+', line): return line = line.strip() line = line.upper().split() line[0] = re.sub(r'(.*?)(\w+)(-)(\d+M?)', r'\1\2\4', line[0]) # remove the dashes in isotope names spectraUpper = spectra.upper() try: for fissionProductID in self.listedYieldDict[spectraUpper].keys(): for actinideID in self.listedYieldDict[spectraUpper][ fissionProductID].keys(): if line[0] == fissionProductID: typeOfYieldPerturbed = [] self.spectrumUpperCase = [x.upper() for x in self.spectrum] typeOfYieldPerturbed = self.listedYieldDict.get( spectraUpper).get(fissionProductID).keys() for i in range(len(typeOfYieldPerturbed)): try: if self.listedYieldDict.get(spectraUpper).get( fissionProductID).get(typeOfYieldPerturbed[i]) != {}: line[self.spectrumNumbering.get(spectra).get( typeOfYieldPerturbed[i])] = str( self.listedYieldDict.get(spectraUpper).get( fissionProductID).get(typeOfYieldPerturbed[i])) print (line[self.spectrumNumbering.get(spectra).get( typeOfYieldPerturbed[i])]) except TypeError: raise Exception( 'Make sure the fission yields you are perturbing have existing values in the unperturbed fission yield library' ) except KeyError: pass # pass you pertub 'FAST': {u'ZN67': {u'U235': '5.659E+00'}} only, the case 'THERMAL': {u'ZN67': {u'U235': '5.659E+00'}} ignored in the line for fissionProductID in self.listedYieldDict[spectraUpper].keys() (because non existent) try: isotopeCounter = isotopeCounter + 1 line[0] = "{0:<7s}".format(line[0]) i = 1 while i <= len( self.spectrumNumbering.get(spectra) ): # while i is smaller than the number of columns that represents the number of fission yield families try: line[i] = "{0:<11s}".format(line[i]) i = i + 1 except IndexError: i = i + 1 outfile.writelines(' ' + ''.join( line[0:len(self.spectrumNumbering.get(spectra)) + 1]) + "\n") if isotopeCounter == self.numberOfIsotopes: for lineInput in lines: lineStripped = lineInput.strip() except KeyError: raise Exception( 'Make sure the fission yields you are perturbing have existing values in the unperturbed fission yield library' ) def hardcopyPrinter(self, spectra, lines): """ Prints the hardcopied information at the begining of the xml file. @ In, spectra, integer, indicates if the yields are related to a thermal spectrum (0) or a fast spectrum (1) @ In, lines, list, unperturbed input file lines @ Out, None """ flag = 0 matrixFlag = 0 with open(self.inputFiles, 'a+') as outfile: for line in lines: if not line.split(): continue if re.search(r'' + self.spectrum[1] + ' Fission Yield ' , line.strip()) and spectra == self.spectrum[1]: # find the line- END Fast Fission Yield (2) flag = 2 if flag == 2: if re.match(r'(.*?)\w+(-?)\d+\s+\w+\s+\w(-?)\d+\s+\w',line.strip()) and spectra == self.spectrum[1] and matrixFlag == 0: outfile.writelines(line) matrixFlag = 4 elif matrixFlag == 4: self.matrixPrinter(line, outfile, spectra) else: outfile.writelines(line) if (re.match(r'(.*?)' + self.spectrum[0], line.strip()) and spectra == self.spectrum[0]): # find the line- Thermal Fission Yield (1) flag = 1 if flag == 1: if re.search(r'Fast Fission Yield ', line) : # find the line- END Fast Fission Yield (2) outfile.writelines('END ') flag = 2 break if re.match(r'(.*?)\w+(-?)\d+\s+\w+\s+\w(-?)\d+\s+\w', line.strip()) and spectra == self.spectrum[0] and matrixFlag == 0: # find the line U-235 FY U-238 FY (last hardcopied line) outfile.writelines(line) matrixFlag = 3 elif matrixFlag == 3: self.matrixPrinter(line, outfile, spectra) else: outfile.writelines(line) outfile.close() def fileReconstruction(self): """ Converts the formatted dictionary pertdict -> {'FY|THERMAL|U235|XE135':1.30}. into a dictionary of dictionaries that has the format -> {'FY':{'THERMAL':{'U235':{'XE135':1.30}}}} @ In, None @ Out, None """ fissioningActinide = [] resultingFP = [] spectrumType = [] for key in self.pertYieldDict.keys(): splittedYieldKeywords = key.split('|') spectrumType.append(splittedYieldKeywords[1]) fissioningActinide.append(splittedYieldKeywords[2]) resultingFP.append(splittedYieldKeywords[3]) for i in range(len(spectrumType)): self.listedYieldDict[spectrumType[i]] = {} for j in range(len(resultingFP)): self.listedYieldDict[spectrumType[i]][resultingFP[j]] = { } # declare all the dictionaries for k in range(len(fissioningActinide)): self.listedYieldDict[spectrumType[i]][resultingFP[j]][ fissioningActinide[k]] = {} for yieldTypeKey, yieldValue in self.pertYieldDict.items(): self.listedYieldDict[yieldTypeKey.split('|')[1]][yieldTypeKey.split('|')[ 3]][yieldTypeKey.split('|')[2]] = yieldValue def printInput(self, workingDir, lines): """ Prints out the pertubed fission yield library into a .dat file. The workflow is: open a new file with a dummy name; parse the unperturbed library; print the line in the dummy and replace with perturbed variables if necessary, Change the name of the dummy file. @ In, workingDir, string, path to working directory @ In, lines, list, unperturbed input file lines @ Out, None """ if os.path.exists(self.inputFiles): os.remove(self.inputFiles) # remove the file if was already existing for spectra in self.spectrum: self.hardcopyPrinter(spectra, lines) with open(self.inputFiles, 'a') as outfile: outfile.writelines(' end')
44.545455
240
0.622981
5dad84f28380998f22f560c059b6ad7b404bf737
978
py
Python
devgram/users/models.py
smc0210/devgram
de7dd2b00f546e3c0ef69a14388870d8f1edfee8
[ "MIT" ]
null
null
null
devgram/users/models.py
smc0210/devgram
de7dd2b00f546e3c0ef69a14388870d8f1edfee8
[ "MIT" ]
16
2020-02-12T00:51:19.000Z
2022-03-11T23:20:09.000Z
devgram/users/models.py
smc0210/devgram
de7dd2b00f546e3c0ef69a14388870d8f1edfee8
[ "MIT" ]
1
2018-04-18T04:32:53.000Z
2018-04-18T04:32:53.000Z
from django.contrib.auth.models import AbstractUser from django.db import models from django.urls import reverse from django.utils.translation import ugettext_lazy as _ class User(AbstractUser): """ User Model """ GENDER_CHOICES = ( ('mail', 'Male'), ('female', 'Female'), ('not-specified', 'Not specified') ) # First Name and Last Name do not cover name patterns # around the globe. name = models.CharField(_("Name of User"), blank=True, max_length=255) website = models.URLField(null=True) bio = models.TextField(null=True) phone = models.CharField(max_length=140, null=True) gender = models.CharField(max_length=80, choices=GENDER_CHOICES, null=True) followers = models.ManyToManyField("self") following = models.ManyToManyField("self") def __str__(self): return self.username def get_absolute_url(self): return reverse("users:detail", kwargs={"username": self.username})
30.5625
79
0.686094
e3927f66b99afcb8db3d8333e0b424c1b3b3e2e5
2,105
py
Python
connect.py
staticfloat/SidewalkWebpage
6138d24101a8d4288b0126c008314bfd8592f29f
[ "MIT" ]
60
2016-02-12T14:33:05.000Z
2022-03-11T21:33:52.000Z
connect.py
staticfloat/SidewalkWebpage
6138d24101a8d4288b0126c008314bfd8592f29f
[ "MIT" ]
2,292
2016-02-24T18:07:04.000Z
2022-03-28T22:51:08.000Z
connect.py
staticfloat/SidewalkWebpage
6138d24101a8d4288b0126c008314bfd8592f29f
[ "MIT" ]
26
2016-04-08T20:55:09.000Z
2022-03-09T08:40:17.000Z
import os from os.path import expanduser import boto3 import psycopg2 import psycopg2.extras from sqlalchemy import create_engine def connect_to_mturk(): # Get key from an external file secret_key = {} with open("rootkey.csv") as myfile: for line in myfile: name, var = line.partition("=")[::2] secret_key[name.strip()] = str(var.strip()) # Setup mTurk parameters #host = 'https://mturk-requester-sandbox.us-east-1.amazonaws.com/' host = 'https://mturk-requester.us-east-1.amazonaws.com' region_name = 'us-east-1' aws_access_key_id = secret_key["AWSAccessKeyId"] aws_secret_access_key = secret_key["AWSSecretKey"] mturk = boto3.client('mturk', endpoint_url=host, region_name=region_name, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ) # Sample line of code to get account balance [$10,000.00] print mturk.get_account_balance()['AvailableBalance'] return mturk def connect_to_db(): home = expanduser("~") file_path = home + "/.pgpass" with open(file_path) as filename: arr = [] for line in filename: l = line.strip() if l[0] != '#': arr = l.split(":") dbhost = arr[0] dbport = arr[1] dbname = arr[2] dbuser = arr[3] dbpass = arr[4] # Format of the connection string: dialect+driver://username:password@host:port/database connection_str = ('postgresql://' + dbuser + ':' + dbpass + '@' + dbhost + ':' + dbport + '/' + dbname) print connection_str engine = create_engine(connection_str) conn = psycopg2.connect("dbname=" + dbname + " user=" + dbuser + " host=" + dbhost + " port=" + dbport + " password=" + dbpass + "") return conn, engine
31.893939
96
0.542043
fcf6b6d29e9e0b700c9287948ee666b3d44edc80
1,972
py
Python
BRUCE_SENSE/util/test_visual_dumper.py
Westwood-Robotics/BRUCE_SENSE
b44f5c9f6dc9c76fee94d0cdc9e7eb11159a2220
[ "Apache-2.0" ]
2
2022-02-04T03:21:47.000Z
2022-02-07T19:00:04.000Z
BRUCE_SENSE/util/test_visual_dumper.py
Westwood-Robotics/BRUCE_SENSE
b44f5c9f6dc9c76fee94d0cdc9e7eb11159a2220
[ "Apache-2.0" ]
null
null
null
BRUCE_SENSE/util/test_visual_dumper.py
Westwood-Robotics/BRUCE_SENSE
b44f5c9f6dc9c76fee94d0cdc9e7eb11159a2220
[ "Apache-2.0" ]
1
2022-03-03T01:04:34.000Z
2022-03-03T01:04:34.000Z
import matplotlib.pyplot as plt import matplotlib.animation as animation import time from bruce_sense import Manager s = Manager.SENSOR(port='COM7', baudrate=2000000) fig = plt.figure() ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) ts = [] rs = [] ps = [] ys = [] rxs = [] rys = [] rzs = [] ddxs = [] ddys = [] ddzs = [] ddxs_nog = [] ddys_nog = [] ddzs_nog = [] t0 = time.time() data = {} def animate(i, ts, rs, ps, ys, rxs, rys, rzs, ddxs, ddys, ddzs, ddxs_nog, ddys_nog, ddzs_nog): data = s.get_dump()[0] ts.append(time.time() - t0) ddxs_nog.append(data[6]) ddys_nog.append(data[7]) ddzs_nog.append(data[8]) ddxs.append(data[0]) ddys.append(data[1]) ddzs.append(data[2]) rxs.append(data[3]) rys.append(data[4]) rzs.append(data[5]) rs.append(data[9]) ps.append(data[10]) ys.append(data[11]) ax1.clear() ax2.clear() ax3.clear() ax4.clear() ax1.plot(ts[-100:], rs[-100:], label='roll (x)') ax1.plot(ts[-100:], ps[-100:], label='pitch (y)') #ax1.plot(ts[-100:], ys[-100:], label='yaw (z)') ax1.legend(loc='upper left') ax2.plot(ts[-100:], rxs[-100:], label='du (x)') ax2.plot(ts[-100:], rys[-100:], label='dv (y)') ax2.plot(ts[-100:], rzs[-100:], label='dw (z)') ax2.legend(loc='upper left') ax3.plot(ts[-100:], ddxs[-100:], label='ddx') ax3.plot(ts[-100:], ddys[-100:], label='ddy') ax3.plot(ts[-100:], ddzs[-100:], label='ddz') ax3.legend(loc='upper left') ax4.plot(ts[-100:], ddxs_nog[-100:], label='ddx_no_g') ax4.plot(ts[-100:], ddys_nog[-100:], label='ddy_no_g') ax4.plot(ts[-100:], ddzs_nog[-100:], label='ddz_no_g') ax4.legend(loc='upper left') ani = animation.FuncAnimation(fig, animate, fargs = (ts, rs, ps, ys, rxs, rys, rzs, ddxs, ddys, ddzs, ddxs_nog, ddys_nog, ddzs_nog), interval = 1) plt.show()
26.293333
121
0.583671
9a84ef271873d86499080f43e7975fbb2eafccc2
6,217
py
Python
tutorials/Tutorial8_Preprocessing.py
SjSnowball/haystack
bb066c0a2c10253cf2bf7eb8cc829f1a0edde84d
[ "Apache-2.0" ]
4,544
2019-11-14T11:57:49.000Z
2022-03-31T17:41:18.000Z
tutorials/Tutorial8_Preprocessing.py
SjSnowball/haystack
bb066c0a2c10253cf2bf7eb8cc829f1a0edde84d
[ "Apache-2.0" ]
1,679
2020-01-14T15:55:58.000Z
2022-03-31T20:55:25.000Z
tutorials/Tutorial8_Preprocessing.py
SjSnowball/haystack
bb066c0a2c10253cf2bf7eb8cc829f1a0edde84d
[ "Apache-2.0" ]
820
2019-11-27T13:01:42.000Z
2022-03-31T12:54:34.000Z
""" Preprocessing Haystack includes a suite of tools to extract text from different file types, normalize white space and split text into smaller pieces to optimize retrieval. These data preprocessing steps can have a big impact on the systems performance and effective handling of data is key to getting the most out of Haystack. Ultimately, Haystack pipelines expect data to be provided as a list documents in the following dictionary format: docs = [ { 'text': DOCUMENT_TEXT_HERE, 'meta': {'name': DOCUMENT_NAME, ...} }, ... ] This tutorial will show you all the tools that Haystack provides to help you cast your data into the right format. """ # Here are the imports we need from haystack.file_converter.txt import TextConverter from haystack.file_converter.pdf import PDFToTextConverter from haystack.file_converter.docx import DocxToTextConverter from haystack.preprocessor.utils import convert_files_to_dicts, fetch_archive_from_http from haystack.preprocessor.preprocessor import PreProcessor def tutorial8_preprocessing(): # This fetches some sample files to work with doc_dir = "data/preprocessing_tutorial" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/preprocessing_tutorial.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) """ ## Converters Haystack's converter classes are designed to help you turn files on your computer into the documents that can be processed by the Haystack pipeline. There are file converters for txt, pdf, docx files as well as a converter that is powered by Apache Tika. The parameter `valid_langugages` does not convert files to the target language, but checks if the conversion worked as expected. For converting PDFs, try changing the encoding to UTF-8 if the conversion isn't great. """ # Here are some examples of how you would use file converters converter = TextConverter(remove_numeric_tables=True, valid_languages=["en"]) doc_txt = converter.convert(file_path="data/preprocessing_tutorial/classics.txt", meta=None) converter = PDFToTextConverter(remove_numeric_tables=True, valid_languages=["en"]) doc_pdf = converter.convert(file_path="data/preprocessing_tutorial/bert.pdf", meta=None) converter = DocxToTextConverter(remove_numeric_tables=False, valid_languages=["en"]) doc_docx = converter.convert(file_path="data/preprocessing_tutorial/heavy_metal.docx", meta=None) # Haystack also has a convenience function that will automatically apply the right converter to each file in a directory. all_docs = convert_files_to_dicts(dir_path="data/preprocessing_tutorial") """ ## PreProcessor The PreProcessor class is designed to help you clean text and split text into sensible units. File splitting can have a very significant impact on the system's performance. Have a look at the [Preprocessing](https://haystack.deepset.ai/docs/latest/preprocessingmd) and [Optimization](https://haystack.deepset.ai/docs/latest/optimizationmd) pages on our website for more details. """ # This is a default usage of the PreProcessor. # Here, it performs cleaning of consecutive whitespaces # and splits a single large document into smaller documents. # Each document is up to 1000 words long and document breaks cannot fall in the middle of sentences # Note how the single document passed into the document gets split into 5 smaller documents preprocessor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=False, split_by="word", split_length=1000, split_respect_sentence_boundary=True ) docs_default = preprocessor.process(doc_txt) print(f"n_docs_input: 1\nn_docs_output: {len(docs_default)}") """ ## Cleaning - `clean_empty_lines` will normalize 3 or more consecutive empty lines to be just a two empty lines - `clean_whitespace` will remove any whitespace at the beginning or end of each line in the text - `clean_header_footer` will remove any long header or footer texts that are repeated on each page ## Splitting By default, the PreProcessor will respect sentence boundaries, meaning that documents will not start or end midway through a sentence. This will help reduce the possibility of answer phrases being split between two documents. This feature can be turned off by setting `split_respect_sentence_boundary=False`. """ # Not respecting sentence boundary vs respecting sentence boundary preprocessor_nrsb = PreProcessor(split_respect_sentence_boundary=False) docs_nrsb = preprocessor_nrsb.process(doc_txt) print("RESPECTING SENTENCE BOUNDARY") end_text = docs_default[0]["content"][-50:] print("End of document: \"..." + end_text + "\"") print() print("NOT RESPECTING SENTENCE BOUNDARY") end_text_nrsb = docs_nrsb[0]["content"][-50:] print("End of document: \"..." + end_text_nrsb + "\"") """ A commonly used strategy to split long documents, especially in the field of Question Answering, is the sliding window approach. If `split_length=10` and `split_overlap=3`, your documents will look like this: - doc1 = words[0:10] - doc2 = words[7:17] - doc3 = words[14:24] - ... You can use this strategy by following the code below. """ # Sliding window approach preprocessor_sliding_window = PreProcessor( split_overlap=3, split_length=10, split_respect_sentence_boundary=False ) docs_sliding_window = preprocessor_sliding_window.process(doc_txt) doc1 = docs_sliding_window[0]["content"][:200] doc2 = docs_sliding_window[1]["content"][:100] doc3 = docs_sliding_window[2]["content"][:100] print("Document 1: \"" + doc1 + "...\"") print("Document 2: \"" + doc2 + "...\"") print("Document 3: \"" + doc3 + "...\"") if __name__ == "__main__": tutorial8_preprocessing() # This Haystack script was made with love by deepset in Berlin, Germany # Haystack: https://github.com/deepset-ai/haystack # deepset: https://deepset.ai/
40.633987
154
0.731703
d3286bf109363d2a4fa05797bcba3dd0fd23443d
1,445
py
Python
setup.py
wayfair-tremor/tremor-mkdocs-lexer
6fcaf67d4aac42eb5f65840095937fc6bfaa2808
[ "Apache-2.0" ]
1
2021-02-06T23:16:42.000Z
2021-02-06T23:16:42.000Z
setup.py
wayfair-tremor/tremor-mkdocs-lexer
6fcaf67d4aac42eb5f65840095937fc6bfaa2808
[ "Apache-2.0" ]
null
null
null
setup.py
wayfair-tremor/tremor-mkdocs-lexer
6fcaf67d4aac42eb5f65840095937fc6bfaa2808
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Setup tremor-mkdocs-lexer.""" from setuptools import setup, find_packages entry_points = ''' [pygments.lexers] tremor=tremor_mkdocs_lexer:TremorLexer trickle=tremor_mkdocs_lexer:TrickleLexer ''' setup( name='tremor-mkdocs-lexer', version='0.8.0', description='Pygments lexer package for tremor-script v0.8+ and tremor-query v0.8+', author='Darach Ennis', author_email='dennis[at]wayfair.com', url='https://github.com/tremor-rs/tremor-mkdocs-lexer', packages=find_packages(), entry_points=entry_points, install_requires=[ 'Pygments>=2.3.1' ], zip_safe=True, license='Apache License', classifiers=[ 'Development Status :: 8 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Text Processing :: Filters', 'Topic :: Text Processing :: Markup :: HTML' ] )
33.604651
88
0.631834
1379ad8d81d3c415732257ed30ac2123aeb19444
257
py
Python
output/models/nist_data/atomic/any_uri/schema_instance/nistschema_sv_iv_atomic_any_uri_min_length_3_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/any_uri/schema_instance/nistschema_sv_iv_atomic_any_uri_min_length_3_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/any_uri/schema_instance/nistschema_sv_iv_atomic_any_uri_min_length_3_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.nist_data.atomic.any_uri.schema_instance.nistschema_sv_iv_atomic_any_uri_min_length_3_xsd.nistschema_sv_iv_atomic_any_uri_min_length_3 import NistschemaSvIvAtomicAnyUriMinLength3 __all__ = [ "NistschemaSvIvAtomicAnyUriMinLength3", ]
42.833333
197
0.894942
5040c221b5d40e6ad3df7af83c4bb29f3c334626
10,171
py
Python
models/mnist_lenet_fs.py
IsaacChanghau/DeepNaryECOC
08981309e21cf4d7519a36b034d35741c7fe0bf5
[ "MIT" ]
3
2020-12-14T02:21:02.000Z
2021-03-17T14:23:04.000Z
models/mnist_lenet_fs.py
IsaacChanghau/DeepNaryECOC
08981309e21cf4d7519a36b034d35741c7fe0bf5
[ "MIT" ]
null
null
null
models/mnist_lenet_fs.py
IsaacChanghau/DeepNaryECOC
08981309e21cf4d7519a36b034d35741c7fe0bf5
[ "MIT" ]
null
null
null
import os import numpy as np import tensorflow as tf from utils.logger import get_logger, Progbar from utils.prepro_text import remap_labels, dense_to_one_hot from utils.data_funcs import compute_ensemble_accuracy def mnist_lenet(inputs, training=False, reuse=tf.AUTO_REUSE, name="lenet"): # used for mnist with tf.variable_scope(name, reuse=reuse, dtype=tf.float32): x = tf.reshape(inputs, shape=[-1, 28, 28, 1]) # first convolutional layer conv1 = tf.layers.conv2d(x, filters=32, kernel_size=(3, 3), padding="same", activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_uniform_initializer(), name="conv1", reuse=tf.AUTO_REUSE, bias_initializer=tf.constant_initializer(0.05)) pool1 = tf.layers.max_pooling2d(conv1, pool_size=(2, 2), strides=(2, 2), padding="same", name="max_pool1") drop1 = tf.layers.dropout(pool1, rate=0.5, training=training, name="dropout1") # second convolutional layer conv2 = tf.layers.conv2d(drop1, filters=64, kernel_size=(3, 3), padding="same", activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_uniform_initializer(), name="conv2", reuse=tf.AUTO_REUSE, bias_initializer=tf.constant_initializer(0.05)) pool2 = tf.layers.max_pooling2d(conv2, pool_size=(2, 2), strides=(2, 2), padding="same", name="max_pool2") drop2 = tf.layers.dropout(pool2, rate=0.5, training=training, name="dropout2") # third convolutional layer conv3 = tf.layers.conv2d(drop2, filters=128, kernel_size=(3, 3), padding="same", activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_uniform_initializer(), name="conv3", reuse=tf.AUTO_REUSE, bias_initializer=tf.constant_initializer(0.05)) pool3 = tf.layers.max_pooling2d(conv3, pool_size=(2, 2), strides=(2, 2), padding="same", name="max_pool3") drop3 = tf.layers.dropout(pool3, rate=0.5, training=training, name="dropout3") # flatten features = tf.layers.flatten(drop3, name="flatten") return features def fc_layer(features, labels, label_size, training=False, reuse=tf.AUTO_REUSE, name="fc_layer"): with tf.variable_scope(name, reuse=reuse, dtype=tf.float32): # first dense layer dense1 = tf.layers.dense(features, units=512, activation=tf.nn.relu, use_bias=True, reuse=tf.AUTO_REUSE, name="dense1") dense1_drop = tf.layers.dropout(dense1, rate=0.5, training=training, name="dense_dropout") # second dense layer logits = tf.layers.dense(dense1_drop, units=label_size, activation=None, use_bias=True, reuse=tf.AUTO_REUSE, name="logits") cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=labels)) pred_labels = tf.argmax(logits, 1) return pred_labels, cost class MnistLeNet: def __init__(self, num_class, num_classifier, nary_ecoc, ckpt_path): self.ckpt_path, self.num_class = ckpt_path, num_class self.num_classifier = num_classifier self.nary_ecoc = nary_ecoc if not os.path.exists(self.ckpt_path): os.makedirs(self.ckpt_path) self.logger = get_logger(self.ckpt_path + "log.txt") self.batch_size, self.epochs, self.lr, self.lr_decay = 200, 10, 0.001, 0.9 with tf.Graph().as_default(): self._build_model() self.logger.info("total params: {}".format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) self._init_session() def _init_session(self): sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True self.sess = tf.Session(config=sess_config) self.saver = tf.train.Saver(max_to_keep=1) self.sess.run(tf.global_variables_initializer()) def save_session(self, steps): self.saver.save(self.sess, self.ckpt_path + "mnist_lenet", global_step=steps) def restore_last_session(self): ckpt = tf.train.get_checkpoint_state(self.ckpt_path) if ckpt and ckpt.model_checkpoint_path: self.saver.restore(self.sess, ckpt.model_checkpoint_path) else: raise ValueError("No pre-trained model at {}".format(self.ckpt_path)) def close_session(self): self.sess.close() def _get_feed_dict(self, images, labels, training=False): feed_dict = {self.inputs: images} for i in range(self.num_classifier): feed_dict[self.labels[i]] = labels[i] feed_dict[self.training] = training return feed_dict def _build_model(self): # add placeholders self.inputs = tf.placeholder(tf.float32, shape=[None, 784], name="input_images") self.labels = [] for i in range(self.num_classifier): self.labels.append(tf.placeholder(tf.float32, shape=(None, self.num_class), name="labels_%d" % i)) self.training = tf.placeholder(tf.bool, shape=[], name="is_training") # build model x = tf.reshape(self.inputs, shape=[-1, 28, 28, 1]) features = mnist_lenet(x, self.training) self.pred_labels = [] self.cost = [] for i in range(self.num_classifier): pred_labels, loss = fc_layer(features, self.labels[i], self.num_class, self.training, name="fc_%d" % i) pred_labels = tf.expand_dims(pred_labels, axis=-1) self.pred_labels.append(pred_labels) self.cost.append(loss) self.pred_labels = tf.concat(self.pred_labels, axis=-1) self.cost = tf.add_n(self.cost) # build optimizer and training operation optimizer = tf.train.RMSPropOptimizer(self.lr, decay=self.lr_decay) self.train_op = optimizer.minimize(self.cost) def train(self, train_dataset, test_dataset): global_test_acc = 0.0 global_step = 0 test_imgs, test_labels = test_dataset.images, test_dataset.labels self.logger.info("start training...") for epoch in range(1, self.epochs + 1): self.logger.info("Epoch {}/{}:".format(epoch, self.epochs)) num_batches = train_dataset.num_examples // self.batch_size prog = Progbar(target=num_batches) prog.update(0, [("Global Step", 0), ("Train Loss", 0.0), ("Train Acc", 0.0), ("Test Loss", 0.0), ("Test Acc", 0.0)]) for i in range(num_batches): global_step += 1 train_imgs, train_labels = train_dataset.next_batch(self.batch_size) b_labels = [] for j in range(self.num_classifier): ecoc_array = self.nary_ecoc[:, j] b_lbs = remap_labels(train_labels.copy(), ecoc_array) b_lbs = dense_to_one_hot(b_lbs, self.num_class) b_labels.append(b_lbs) feed_dict = self._get_feed_dict(train_imgs, b_labels, True) _, pred_labels, loss = self.sess.run([self.train_op, self.pred_labels, self.cost], feed_dict=feed_dict) acc = compute_ensemble_accuracy(pred_labels, self.nary_ecoc, train_labels) if global_step % 100 == 0: y_labels = [] for j in range(self.num_classifier): ecoc_array = self.nary_ecoc[:, j] b_lbs = remap_labels(test_labels.copy(), ecoc_array) b_lbs = dense_to_one_hot(b_lbs, self.num_class) y_labels.append(b_lbs) feed_dict = self._get_feed_dict(test_imgs, y_labels) test_pred_labels, test_loss = self.sess.run([self.pred_labels, self.cost], feed_dict=feed_dict) test_acc = compute_ensemble_accuracy(test_pred_labels, self.nary_ecoc, test_labels) prog.update(i + 1, [("Global Step", int(global_step)), ("Train Loss", loss), ("Train Acc", acc), ("Test Loss", test_loss), ("Test Acc", test_acc)]) if test_acc > global_test_acc: global_test_acc = test_acc self.save_session(global_step) else: prog.update(i + 1, [("Global Step", int(global_step)), ("Train Loss", loss), ("Train Acc", acc)]) y_labels = [] for j in range(self.num_classifier): ecoc_array = self.nary_ecoc[:, j] b_lbs = remap_labels(test_labels.copy(), ecoc_array) b_lbs = dense_to_one_hot(b_lbs, self.num_class) y_labels.append(b_lbs) feed_dict = self._get_feed_dict(test_imgs, y_labels) test_pred_labels, test_loss = self.sess.run([self.pred_labels, self.cost], feed_dict=feed_dict) test_acc = compute_ensemble_accuracy(test_pred_labels, self.nary_ecoc, test_labels) self.logger.info("Epoch: {}, Global Step: {}, Test Loss: {}, Test Accuracy: {}".format( epoch, global_step, test_loss, test_acc)) def test(self, test_dataset, print_info=True): self.restore_last_session() test_imgs, test_labels = test_dataset.images, test_dataset.labels y_labels = [] for j in range(self.num_classifier): ecoc_array = self.nary_ecoc[:, j] b_lbs = remap_labels(test_labels.copy(), ecoc_array) b_lbs = dense_to_one_hot(b_lbs, self.num_class) y_labels.append(b_lbs) feed_dict = self._get_feed_dict(test_imgs, y_labels) pred_labels, test_loss = self.sess.run([self.pred_labels, self.cost], feed_dict=feed_dict) test_acc = compute_ensemble_accuracy(pred_labels, self.nary_ecoc, test_dataset.labels) if print_info: self.logger.info(" -- Test Loss: {}, Test Accuracy: {}".format(test_loss, test_acc)) return pred_labels
55.884615
119
0.618818
6a2d74f7cb79c48ea083ae55b989865d95e197eb
55
py
Python
lotes/urls.py
20191-ads/glotes_serve
ed48a1b69f051e9f4f017aeef879a782e28be346
[ "MIT" ]
null
null
null
lotes/urls.py
20191-ads/glotes_serve
ed48a1b69f051e9f4f017aeef879a782e28be346
[ "MIT" ]
null
null
null
lotes/urls.py
20191-ads/glotes_serve
ed48a1b69f051e9f4f017aeef879a782e28be346
[ "MIT" ]
null
null
null
from django.urls import path urlpatterns = [ ]
6.875
28
0.636364
aa811f4e6f71a05f3c54c626af3b1711f61ebc40
1,134
py
Python
Active/CodeForces/ContestFetcher.py
pawan-nirpal-031/Algorithms-And-ProblemSolving
24ce9649345dabe7275920f6912e410efc2c8e84
[ "Apache-2.0" ]
2
2021-03-05T08:40:01.000Z
2021-04-25T13:58:42.000Z
Active/CodeForces/ContestFetcher.py
pawan-nirpal-031/Algorithms-And-ProblemSolving
24ce9649345dabe7275920f6912e410efc2c8e84
[ "Apache-2.0" ]
null
null
null
Active/CodeForces/ContestFetcher.py
pawan-nirpal-031/Algorithms-And-ProblemSolving
24ce9649345dabe7275920f6912e410efc2c8e84
[ "Apache-2.0" ]
null
null
null
import requests url = "http://codeforces.com/api" options = '/contest.list' link = 'http://codeforces.com/contest/' data = requests.get(url+options) data = data.json() Div3 = 'Div. 3' Div2 = 'Div. 2' Educational = 'Educational' Contests = {Div3:"Divison_3.txt",Div2:"Divison_2.txt",Educational:"Educational_Round.txt"} def CodeforcesContestFetcher(contest_name,contest_links,data): if(data['status']=='OK'): data = data['result'] for cont in data: if (contest_name in cont['name']): contest_links.append(int(cont['id'])) contest_links.sort() links_file = open(Contests[contest_name],"w+") num = 1 if(len(contest_links)==0): print("Unable to fetch links, aborting... ") return for cont in contest_links: links_file.write(str(num)+" : "+link+str(cont)+'\n') num+=1 links_file.close() else : print("Unexpected error occured, try after a few moments") Div3Contest = [] Div2Contest = [] EducationalContest = [] CodeforcesContestFetcher(Div2,Div3Contest,data)
22.235294
90
0.614638
117139075a55fb54b4e4798bfec70734e858c36e
36
py
Python
datasets/__init__.py
tonysy/clockwork-fcn
19a413e705df091344d1136df1389646be76001a
[ "BSD-4-Clause-UC" ]
162
2016-08-24T05:46:45.000Z
2022-03-14T08:16:42.000Z
datasets/__init__.py
tonysy/clockwork-fcn
19a413e705df091344d1136df1389646be76001a
[ "BSD-4-Clause-UC" ]
11
2016-11-10T03:42:58.000Z
2019-12-10T19:59:56.000Z
datasets/__init__.py
tonysy/clockwork-fcn
19a413e705df091344d1136df1389646be76001a
[ "BSD-4-Clause-UC" ]
61
2016-08-24T05:46:46.000Z
2021-01-09T19:47:42.000Z
# Datasets for clockwork train/eval
18
35
0.805556
62e98a7dee3461912c6cc7c7b9f82bb96f830013
50,191
py
Python
angr/state_plugins/symbolic_memory.py
AkshaySG14/582proj-angr
8c17fcd31332ec115ed01666a6c8229620d1faa1
[ "BSD-2-Clause" ]
1
2020-05-09T13:11:41.000Z
2020-05-09T13:11:41.000Z
angr/state_plugins/symbolic_memory.py
AkshaySG14/582proj-angr
8c17fcd31332ec115ed01666a6c8229620d1faa1
[ "BSD-2-Clause" ]
null
null
null
angr/state_plugins/symbolic_memory.py
AkshaySG14/582proj-angr
8c17fcd31332ec115ed01666a6c8229620d1faa1
[ "BSD-2-Clause" ]
1
2020-05-09T13:15:26.000Z
2020-05-09T13:15:26.000Z
from collections import defaultdict import logging import itertools l = logging.getLogger(name=__name__) import claripy from ..storage.memory import SimMemory, DUMMY_SYMBOLIC_READ_VALUE from ..storage.paged_memory import SimPagedMemory from ..storage.memory_object import SimMemoryObject from ..sim_state_options import SimStateOptions from ..misc.ux import once DEFAULT_MAX_SEARCH = 8 class MultiwriteAnnotation(claripy.Annotation): @property def eliminatable(self): return False @property def relocateable(self): return True def _multiwrite_filter(mem, ast): #pylint:disable=unused-argument # this is a huge hack, but so is the whole multiwrite crap return any(isinstance(a, MultiwriteAnnotation) for a in ast._uneliminatable_annotations) class SimSymbolicMemory(SimMemory): #pylint:disable=abstract-method _CONCRETIZATION_STRATEGIES = [ 'symbolic', 'symbolic_approx', 'any', 'any_approx', 'max', 'max_approx', 'symbolic_nonzero', 'symbolic_nonzero_approx', 'norepeats' ] _SAFE_CONCRETIZATION_STRATEGIES = [ 'symbolic', 'symbolic_approx' ] def __init__( self, memory_backer=None, permissions_backer=None, mem=None, memory_id="mem", endness=None, abstract_backer=False, check_permissions=None, read_strategies=None, write_strategies=None, stack_region_map=None, generic_region_map=None ): SimMemory.__init__(self, endness=endness, abstract_backer=abstract_backer, stack_region_map=stack_region_map, generic_region_map=generic_region_map ) self.id = memory_id if check_permissions is None: check_permissions = self.category == 'mem' self.mem = SimPagedMemory( memory_backer=memory_backer, permissions_backer=permissions_backer, check_permissions=check_permissions ) if mem is None else mem # set up the strategies self.read_strategies = read_strategies self.write_strategies = write_strategies # # Lifecycle management # @SimMemory.memo def copy(self, _): """ Return a copy of the SimMemory. """ #l.debug("Copying %d bytes of memory with id %s." % (len(self.mem), self.id)) c = type(self)( mem=self.mem.branch(), memory_id=self.id, endness=self.endness, abstract_backer=self._abstract_backer, read_strategies=[ s.copy() for s in self.read_strategies ], write_strategies=[ s.copy() for s in self.write_strategies ], stack_region_map=self._stack_region_map, generic_region_map=self._generic_region_map ) return c # # Merging stuff # def _changes_to_merge(self, others): changed_bytes = set() for o in others: # pylint:disable=redefined-outer-name changed_bytes |= self.changed_bytes(o) return changed_bytes def merge(self, others, merge_conditions, common_ancestor=None): # pylint: disable=unused-argument """ Merge this SimMemory with the other SimMemory """ changed_bytes = self._changes_to_merge(others) l.info("Merging %d bytes", len(changed_bytes)) l.info("... %s has changed bytes %s", self.id, changed_bytes) self.read_strategies = self._merge_strategies(self.read_strategies, *[ o.read_strategies for o in others ]) self.write_strategies = self._merge_strategies(self.write_strategies, *[ o.write_strategies for o in others ]) merged_bytes = self._merge(others, changed_bytes, merge_conditions=merge_conditions) return len(merged_bytes) > 0 @staticmethod def _merge_strategies(*strategy_lists): if len(set(len(sl) for sl in strategy_lists)) != 1: raise SimMergeError("unable to merge memories with amounts of strategies") merged_strategies = [ ] for strategies in zip(*strategy_lists): if len(set(s.__class__ for s in strategies)) != 1: raise SimMergeError("unable to merge memories with different types of strategies") unique = list(set(strategies)) if len(unique) > 1: unique[0].merge(unique[1:]) merged_strategies.append(unique[0]) return merged_strategies def widen(self, others): changed_bytes = self._changes_to_merge(others) l.info("Memory %s widening bytes %s", self.id, changed_bytes) self._merge(others, changed_bytes, is_widening=True) return len(changed_bytes) > 0 def _merge(self, others, changed_bytes, merge_conditions=None, is_widening=False): all_memories = [self] + others if merge_conditions is None: merge_conditions = [ None ] * len(all_memories) merged_to = None merged_objects = set() merged_bytes = set() for b in sorted(changed_bytes): if merged_to is not None and not b >= merged_to: l.info("merged_to = %d ... already merged byte 0x%x", merged_to, b) continue l.debug("... on byte 0x%x", b) memory_objects = [] unconstrained_in = [] # first get a list of all memory objects at that location, and # all memories that don't have those bytes for sm, fv in zip(all_memories, merge_conditions): if b in sm.mem: l.info("... present in %s", fv) memory_objects.append((sm.mem[b], fv)) else: l.info("... not present in %s", fv) unconstrained_in.append((sm, fv)) mos = set(mo for mo,_ in memory_objects) mo_bases = set(mo.base for mo, _ in memory_objects) mo_lengths = set(mo.length for mo, _ in memory_objects) if not unconstrained_in and not (mos - merged_objects): continue # first, optimize the case where we are dealing with the same-sized memory objects if len(mo_bases) == 1 and len(mo_lengths) == 1 and not unconstrained_in: our_mo = self.mem[b] to_merge = [(mo.object, fv) for mo, fv in memory_objects] # Update `merged_to` mo_base = list(mo_bases)[0] merged_to = mo_base + list(mo_lengths)[0] merged_val = self._merge_values( to_merge, memory_objects[0][0].length, is_widening=is_widening ) if options.ABSTRACT_MEMORY in self.state.options: # merge check for abstract memory if not to_merge[0][0].uninitialized and self.state.solver.backends.vsa.identical(merged_val, to_merge[0][0]): continue # do the replacement new_object = self.mem.replace_memory_object(our_mo, merged_val) merged_objects.add(new_object) merged_objects.update(mos) merged_bytes.add(b) else: # get the size that we can merge easily. This is the minimum of # the size of all memory objects and unallocated spaces. min_size = min([mo.length - (b - mo.base) for mo, _ in memory_objects]) for um, _ in unconstrained_in: for i in range(0, min_size): if b + i in um: min_size = i break merged_to = b + min_size l.info("... determined minimum size of %d", min_size) # Now, we have the minimum size. We'll extract/create expressions of that # size and merge them extracted = [(mo.bytes_at(b, min_size), fv) for mo, fv in memory_objects] if min_size != 0 else [] created = [ (self.get_unconstrained_bytes("merge_uc_%s_%x" % (uc.id, b), min_size * self.state.arch.byte_width), fv) for uc, fv in unconstrained_in ] to_merge = extracted + created merged_val = self._merge_values(to_merge, min_size, is_widening=is_widening) if options.ABSTRACT_MEMORY in self.state.options: # merge check for abstract memory if (not unconstrained_in or not unconstrained_in[0][0] is self) \ and self.state.solver.backends.vsa.identical(merged_val, to_merge[0][0]): continue self.store(b, merged_val, endness='Iend_BE', inspect=False) # do not convert endianness again merged_bytes.add(b) return merged_bytes def set_state(self, state): super(SimSymbolicMemory, self).set_state(state) self.mem.state = state._get_weakref() if self.state is not None: if self.read_strategies is None: self._create_default_read_strategies() if self.write_strategies is None: self._create_default_write_strategies() def _create_default_read_strategies(self): self.read_strategies = [ ] if options.APPROXIMATE_MEMORY_INDICES in self.state.options: # first, we try to resolve the read address by approximation self.read_strategies.append( concretization_strategies.SimConcretizationStrategyRange(1024, exact=False), ) # then, we try symbolic reads, with a maximum width of a kilobyte self.read_strategies.append( concretization_strategies.SimConcretizationStrategyRange(1024) ) if options.CONSERVATIVE_READ_STRATEGY not in self.state.options: # finally, we concretize to any one solution self.read_strategies.append( concretization_strategies.SimConcretizationStrategyAny(), ) def _create_default_write_strategies(self): self.write_strategies = [ ] if options.APPROXIMATE_MEMORY_INDICES in self.state.options: if options.SYMBOLIC_WRITE_ADDRESSES not in self.state.options: # we try to resolve a unique solution by approximation self.write_strategies.append( concretization_strategies.SimConcretizationStrategySingle(exact=False), ) else: # we try a solution range by approximation self.write_strategies.append( concretization_strategies.SimConcretizationStrategyRange(128, exact=False) ) if options.SYMBOLIC_WRITE_ADDRESSES in self.state.options: # we try to find a range of values self.write_strategies.append( concretization_strategies.SimConcretizationStrategyRange(128) ) else: # we try to find a range of values, but only for ASTs annotated with the multiwrite annotation self.write_strategies.append(concretization_strategies.SimConcretizationStrategyRange( 128, filter=_multiwrite_filter )) # finally, we just grab the maximum solution if options.CONSERVATIVE_WRITE_STRATEGY not in self.state.options: self.write_strategies.append( concretization_strategies.SimConcretizationStrategyMax() ) # # Symbolicizing! # def make_symbolic(self, name, addr, length=None): """ Replaces `length` bytes starting at `addr` with a symbolic variable named name. Adds a constraint equaling that symbolic variable to the value previously at `addr`, and returns the variable. """ l.debug("making %s bytes symbolic", length) if isinstance(addr, str): addr, length = self.state.arch.registers[addr] else: if length is None: raise Exception("Unspecified length!") r = self.load(addr, length) v = self.get_unconstrained_bytes(name, r.size()) self.store(addr, v) self.state.add_constraints(r == v) l.debug("... eq constraints: %s", r == v) return v # # Address concretization # def _resolve_size_range(self, size): if not self.state.solver.symbolic(size): i = self.state.solver.eval(size) if i > self._maximum_concrete_size: raise SimMemoryLimitError("Concrete size %d outside of allowable limits" % i) return i, i if options.APPROXIMATE_MEMORY_SIZES in self.state.options: max_size_approx = self.state.solver.max_int(size, exact=True) min_size_approx = self.state.solver.min_int(size, exact=True) if max_size_approx < self._maximum_symbolic_size_approx: return min_size_approx, max_size_approx max_size = self.state.solver.max_int(size) min_size = self.state.solver.min_int(size) if min_size > self._maximum_symbolic_size: self.state.history.add_event('memory_limit', message="Symbolic size %d outside of allowable limits" % min_size, size=size) if options.BEST_EFFORT_MEMORY_STORING not in self.state.options: raise SimMemoryLimitError("Symbolic size %d outside of allowable limits" % min_size) else: min_size = self._maximum_symbolic_size return min_size, min(max_size, self._maximum_symbolic_size) # # Concretization strategies # def _apply_concretization_strategies(self, addr, strategies, action): """ Applies concretization strategies on the address until one of them succeeds. """ # we try all the strategies in order for s in strategies: # first, we trigger the SimInspect breakpoint and give it a chance to intervene e = addr self.state._inspect( 'address_concretization', BP_BEFORE, address_concretization_strategy=s, address_concretization_action=action, address_concretization_memory=self, address_concretization_expr=e, address_concretization_add_constraints=True ) s = self.state._inspect_getattr('address_concretization_strategy', s) e = self.state._inspect_getattr('address_concretization_expr', addr) # if the breakpoint None'd out the strategy, we skip it if s is None: continue # let's try to apply it! try: a = s.concretize(self, e) except SimUnsatError: a = None # trigger the AFTER breakpoint and give it a chance to intervene self.state._inspect( 'address_concretization', BP_AFTER, address_concretization_result=a ) a = self.state._inspect_getattr('address_concretization_result', a) # return the result if not None! if a is not None: return a # well, we tried raise SimMemoryAddressError( "Unable to concretize address for %s with the provided strategies." % action ) def concretize_write_addr(self, addr, strategies=None): """ Concretizes an address meant for writing. :param addr: An expression for the address. :param strategies: A list of concretization strategies (to override the default). :returns: A list of concrete addresses. """ if isinstance(addr, int): return [ addr ] elif not self.state.solver.symbolic(addr): return [ self.state.solver.eval(addr) ] strategies = self.write_strategies if strategies is None else strategies return self._apply_concretization_strategies(addr, strategies, 'store') def concretize_read_addr(self, addr, strategies=None): """ Concretizes an address meant for reading. :param addr: An expression for the address. :param strategies: A list of concretization strategies (to override the default). :returns: A list of concrete addresses. """ if isinstance(addr, int): return [ addr ] elif not self.state.solver.symbolic(addr): return [ self.state.solver.eval(addr) ] strategies = self.read_strategies if strategies is None else strategies return self._apply_concretization_strategies(addr, strategies, 'load') def normalize_address(self, addr, is_write=False): return self.concretize_read_addr(addr) # # Memory reading # def _fill_missing(self, addr, num_bytes, inspect=True, events=True): if self.category == 'reg': name = "reg_%s" % (self.state.arch.translate_register_name(addr)) else: name = "%s_%x" % (self.id, addr) all_missing = [ self.get_unconstrained_bytes( name, min(self.mem._page_size, num_bytes)*self.state.arch.byte_width, source=i, inspect=inspect, events=events, key=self.variable_key_prefix + (addr,), eternal=False) # :( for i in range(addr, addr+num_bytes, self.mem._page_size) ] if all_missing: is_mem = self.category == 'mem' and \ options.ZERO_FILL_UNCONSTRAINED_MEMORY not in self.state.options and \ options.SYMBOL_FILL_UNCONSTRAINED_MEMORY not in self.state.options is_reg = self.category == 'reg' and \ options.ZERO_FILL_UNCONSTRAINED_REGISTERS not in self.state.options and \ options.SYMBOL_FILL_UNCONSTRAINED_REGISTERS not in self.state.options if is_mem or is_reg: if once('mem_fill_warning'): l.warning("The program is accessing memory or registers with an unspecified value. " "This could indicate unwanted behavior.") l.warning("angr will cope with this by generating an unconstrained symbolic variable and continuing. " "You can resolve this by:") l.warning("1) setting a value to the initial state") l.warning("2) adding the state option ZERO_FILL_UNCONSTRAINED_{MEMORY,REGISTERS}, " "to make unknown regions hold null") l.warning("3) adding the state option SYMBOL_FILL_UNCONSTRAINED_{MEMORY_REGISTERS}, " "to suppress these messages.") if is_mem: refplace_str = "unknown" if not self.state._ip.symbolic: refplace_int = self.state.solver.eval(self.state._ip) refplace_int_s = "%#x" % refplace_int if self.state.project: refplace_str = self.state.project.loader.describe_addr(refplace_int) else: refplace_int_s = repr(self.state._ip) l.warning("Filling memory at %#x with %d unconstrained bytes referenced from %s (%s)", addr, num_bytes, refplace_int_s, refplace_str) else: if addr == self.state.arch.ip_offset: refplace_int_s = "0" refplace_str = "symbolic" else: refplace_str = "unknown" if not self.state._ip.symbolic: refplace_int = self.state.solver.eval(self.state._ip) refplace_int_s = "%#x" % refplace_int if self.state.project: refplace_str = self.state.project.loader.describe_addr(refplace_int) else: refplace_int_s = repr(self.state._ip) reg_str = self.state.arch.translate_register_name(addr, size=num_bytes) l.warning("Filling register %s with %d unconstrained bytes referenced from %s (%s)", reg_str, num_bytes, refplace_int_s, refplace_str) # this is an optimization to ensure most operations in the future will deal with leaf ASTs (instead of reversed # ASTs) if self.category == 'reg' and self.state.arch.register_endness == 'Iend_LE': all_missing = [ a.reversed for a in all_missing ] elif self.category == 'file': # file data has to be big-endian pass elif self.category != 'reg' and self.state.arch.memory_endness == 'Iend_LE': # endianness of memory data all_missing = [ a.reversed for a in all_missing ] b = self.state.solver.Concat(*all_missing) if len(all_missing) > 1 else all_missing[0] if events: self.state.history.add_event('uninitialized', memory_id=self.id, addr=addr, size=num_bytes) default_mo = SimMemoryObject(b, addr, byte_width=self.state.arch.byte_width) self.state.scratch.push_priv(True) self.mem.store_memory_object(default_mo, overwrite=False) self.state.scratch.pop_priv() return default_mo def _read_from(self, addr, num_bytes, inspect=True, events=True, ret_on_segv=False): return self.mem.load(addr, num_bytes) def _load(self, dst, size, condition=None, fallback=None, inspect=True, events=True, ret_on_segv=False): if self.state.solver.symbolic(size): l.warning("Concretizing symbolic length. Much sad; think about implementing.") # for now, we always load the maximum size _, max_size = self._resolve_size_range(size) if options.ABSTRACT_MEMORY not in self.state.options and self.state.solver.symbolic(size): self.state.add_constraints(size == max_size, action=True) if max_size == 0: self.state.history.add_event('memory_limit', message="0-length read") size = max_size if self.state.solver.symbolic(dst) and options.AVOID_MULTIVALUED_READS in self.state.options: return [ ], self.get_unconstrained_bytes("symbolic_read_unconstrained", size*self.state.arch.byte_width), [ ] if type(dst) is int: dst = claripy.BVV(dst, 64) dst = claripy.SignExt(64 - len(dst), dst) read_value = self.mem.load(dst, size) return [dst], read_value, [] def _find(self, start, what, max_search=None, max_symbolic_bytes=None, default=None, step=1, disable_actions=False, inspect=True, chunk_size=None): if max_search is None: max_search = DEFAULT_MAX_SEARCH if isinstance(start, int): start = self.state.solver.BVV(start, self.state.arch.bits) constraints = [ ] remaining_symbolic = max_symbolic_bytes seek_size = len(what)//self.state.arch.byte_width symbolic_what = self.state.solver.symbolic(what) l.debug("Search for %d bytes in a max of %d...", seek_size, max_search) chunk_start = 0 if chunk_size is None: chunk_size = max(0x100, seek_size + 0x80) chunk = self.load(start, chunk_size, endness="Iend_BE", disable_actions=disable_actions, inspect=inspect) cases = [ ] match_indices = [ ] offsets_matched = [ ] # Only used in static mode byte_width = self.state.arch.byte_width no_singlevalue_opt = options.SYMBOLIC_MEMORY_NO_SINGLEVALUE_OPTIMIZATIONS in self.state.options cond_prefix = [ ] if options.MEMORY_FIND_STRICT_SIZE_LIMIT in self.state.options: cond_falseness_test = self.state.solver.is_false else: cond_falseness_test = lambda cond: cond.is_false() for i in itertools.count(step=step): l.debug("... checking offset %d", i) if i > max_search - seek_size: l.debug("... hit max size") break if remaining_symbolic is not None and remaining_symbolic == 0: l.debug("... hit max symbolic") break if i - chunk_start > chunk_size - seek_size: l.debug("loading new chunk") chunk_start += chunk_size - seek_size + 1 chunk = self.load(start+chunk_start, chunk_size, endness="Iend_BE", ret_on_segv=True, disable_actions=disable_actions, inspect=inspect) chunk_off = i-chunk_start b = chunk[chunk_size*byte_width - chunk_off*byte_width - 1 : chunk_size*byte_width - chunk_off*byte_width - seek_size*byte_width] condition = b == what if not cond_falseness_test(condition): if no_singlevalue_opt and cond_prefix: condition = claripy.And(*(cond_prefix + [condition])) cases.append([condition, claripy.BVV(i, len(start))]) match_indices.append(i) if b.symbolic and no_singlevalue_opt: # in tracing mode, we need to make sure that all previous bytes are not equal to what cond_prefix.append(b != what) if self.state.mode == 'static': si = b._model_vsa what_si = what._model_vsa if isinstance(si, claripy.vsa.StridedInterval): if not si.intersection(what_si).is_empty: offsets_matched.append(start + i) if si.identical(what_si): break if si.cardinality != 1: if remaining_symbolic is not None: remaining_symbolic -= 1 else: # Comparison with other types (like IfProxy or ValueSet) is not supported if remaining_symbolic is not None: remaining_symbolic -= 1 else: # other modes (e.g. symbolic mode) if not b.symbolic and not symbolic_what and self.state.solver.eval(b) == self.state.solver.eval(what): l.debug("... found concrete") break else: if b.symbolic and remaining_symbolic is not None: remaining_symbolic -= 1 if self.state.mode == 'static': r = self.state.solver.ESI(self.state.arch.bits) for off in offsets_matched: r = r.union(off) constraints = [ ] return r, constraints, match_indices else: if default is None: l.debug("... no default specified") default = 0 constraints += [ self.state.solver.Or(*[ c for c,_ in cases]) ] #l.debug("running ite_cases %s, %s", cases, default) r = self.state.solver.ite_cases(cases, default - start) + start return r, constraints, match_indices def __contains__(self, dst): return dst in self.mem def was_written_to(self, dst): if isinstance(dst, int): addr = dst elif self.state.solver.symbolic(dst): l.warning("Currently unable to do SimMemory.was_written_to on symbolic variables.") return False else: addr = self.state.solver.eval(dst) return self.mem.contains_no_backer(addr) # # Writes # def _store(self, req): l.debug("Doing a store...") req._adjust_condition(self.state) max_bytes = req.data.length//self.state.arch.byte_width if req.size is None: req.size = max_bytes if self.state.solver.symbolic(req.size): if options.AVOID_MULTIVALUED_WRITES in self.state.options: return req if options.CONCRETIZE_SYMBOLIC_WRITE_SIZES in self.state.options: new_size = self.state.solver.eval(req.size) self.state.add_constraints(req.size == new_size) req.size = new_size if self.state.solver.symbolic(req.addr) and options.AVOID_MULTIVALUED_WRITES in self.state.options: return req if not self.state.solver.symbolic(req.size) and self.state.solver.eval(req.size) > req.data.length//self.state.arch.byte_width: raise SimMemoryError("Not enough data for requested storage size (size: {}, data: {})".format(req.size, req.data)) if self.state.solver.symbolic(req.size): self.state.add_constraints(self.state.solver.ULE(req.size, max_bytes)) # # store it!!! # req.size = self.state.solver.eval(req.size) req.stored_values = [] condition = req.condition # if (self.category == 'mem' and options.SIMPLIFY_MEMORY_WRITES in self.state.options) or ( # self.category == 'reg' and options.SIMPLIFY_REGISTER_WRITES in self.state.options): # req.data = self.state.solver.simplify(req.data) if req.endness == "Iend_LE" or (req.endness is None and self.endness == "Iend_LE"): req.data = req.data.reversed if type(req.addr) is int: req.addr = claripy.BVV(req.addr, 64) req.addr = claripy.SignExt(64 - len(req.addr), req.addr) req.stored_values = [req.data] self.mem.store(req.addr, req.data, req.size) l.debug("... done") req.completed = True return req def _insert_memory_object(self, value, address, size): if self.category == 'mem': self.state.scratch.dirty_addrs.update(range(address, address+size)) self.mem.store(address, value, size) def _store_fully_concrete(self, address, size, data, endness, condition): if type(size) is not int: size = self.state.solver.eval(size) if size < data.length//self.state.arch.byte_width: data = data[len(data)-1:len(data)-size*self.state.arch.byte_width:] if condition is not None: try: original_value = self._read_from(address, size) except Exception as ex: raise ex if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_value = original_value.reversed conditional_value = self.state.solver.If(condition, data, original_value) else: conditional_value = data return [ dict(value=conditional_value, addr=address, size=size) ] def _store_symbolic_size(self, address, size, data, endness, condition): address = self.state.solver.eval(address) max_bytes = data.length//self.state.arch.byte_width original_value = self._read_from(address, max_bytes) if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_value = original_value.reversed befores = original_value.chop(bits=self.state.arch.byte_width) afters = data.chop(bits=self.state.arch.byte_width) stored_value = self.state.solver.Concat(*[ self.state.solver.If(self.state.solver.UGT(size, i), a, b) for i, (a, b) in enumerate(zip(afters, befores)) ]) conditional_value = self.state.solver.If(condition, stored_value, original_value) if condition is not None else stored_value return [ dict(value=conditional_value, addr=address, size=max_bytes) ] def _store_symbolic_addr(self, address, addresses, size, data, endness, condition): size = self.state.solver.eval(size) segments = self._get_segments(addresses, size) if condition is None: condition = claripy.BoolV(True) original_values = [ self._read_from(segment['start'], segment['size']) for segment in segments ] if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_values = [ ov.reversed for ov in original_values ] stored_values = [] for segment, original_value in zip(segments, original_values): conditional_value = original_value for opt in segment['options']: if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): high = ((opt['idx']+segment['size']) * self.state.arch.byte_width)-1 low = opt['idx']*self.state.arch.byte_width else: high = len(data) - 1 - (opt['idx']*self.state.arch.byte_width) low = len(data) - ((opt['idx']+segment['size']) *self.state.arch.byte_width) data_slice = data[high:low] conditional_value = self.state.solver.If(self.state.solver.And(address == segment['start']-opt['idx'], condition), data_slice, conditional_value) stored_values.append(dict(value=conditional_value, addr=segment['start'], size=segment['size'])) return stored_values def flush_pages(self, whitelist): flushed_regions = self.mem.flush_pages(whitelist) if self.state.has_plugin('unicorn'): for addr, length in flushed_regions: self.state.unicorn.uncache_region(addr, length) @staticmethod def _create_segment(addr, size, s_options, idx, segments): segment = dict(start=addr, size=size, options=s_options) segments.insert(idx, segment) @staticmethod def _split_segment(addr, segments): s_idx = SimSymbolicMemory._get_segment_index(addr, segments) segment = segments[s_idx] if segment['start'] == addr: return s_idx assert segment['start'] < addr < segment['start'] + segment['size'] size_prev = addr - segment['start'] size_next = segment['size'] - size_prev assert size_prev != 0 and size_next != 0 segments.pop(s_idx) SimSymbolicMemory._create_segment(segment['start'], size_prev, segment['options'], s_idx, segments) SimSymbolicMemory._create_segment(addr, size_next, [{"idx": opt["idx"] + size_prev} for opt in segment['options']], s_idx + 1, segments) return s_idx + 1 @staticmethod def _add_segments_overlap(idx, addr, segments): for i in range(idx, len(segments)): segment = segments[i] if addr < segment['start'] + segment['size']: segments[i]["options"].append({"idx": segment['start'] - addr}) @staticmethod def _get_segment_index(addr, segments): for i, segment in enumerate(segments): if segment['start'] <= addr < segment['start'] + segment['size']: return i return -1 @staticmethod def _get_segments(addrs, size): segments = [] highest = 0 for addr in addrs: if addr < highest: idx = SimSymbolicMemory._split_segment(addr, segments) SimSymbolicMemory._create_segment(highest, addr + size - highest, [], len(segments), segments) SimSymbolicMemory._add_segments_overlap(idx, addr, segments) else: SimSymbolicMemory._create_segment(addr, size, [{'idx': 0}], len(segments), segments) highest = addr + size return segments def _store_fully_symbolic(self, address, addresses, size, data, endness, condition): stored_values = [ ] byte_dict = defaultdict(list) max_bytes = data.length//self.state.arch.byte_width if condition is None: condition = claripy.BoolV(True) # chop data into byte-chunks original_values = [self._read_from(a, max_bytes) for a in addresses] if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_values = [ ov.reversed for ov in original_values ] data_bytes = data.chop(bits=self.state.arch.byte_width) for a, fv in zip(addresses, original_values): original_bytes = fv.chop(self.state.arch.byte_width) for index, (d_byte, o_byte) in enumerate(zip(data_bytes, original_bytes)): # create a dict of all all possible values for a certain address byte_dict[a+index].append((a, index, d_byte, o_byte)) for byte_addr in sorted(byte_dict.keys()): write_list = byte_dict[byte_addr] # If this assertion fails something is really wrong! assert all(v[3] is write_list[0][3] for v in write_list) conditional_value = write_list[0][3] for a, index, d_byte, o_byte in write_list: # create the ast for each byte conditional_value = self.state.solver.If(self.state.solver.And(address == a, size > index, condition), d_byte, conditional_value) stored_values.append(dict(value=conditional_value, addr=byte_addr, size=1)) return stored_values def _store_with_merge(self, req): req._adjust_condition(self.state) dst = req.addr cnt = req.data size = req.size endness = req.endness req.stored_values = [ ] if options.ABSTRACT_MEMORY not in self.state.options: raise SimMemoryError('store_with_merge is not supported without abstract memory.') l.debug("Doing a store with merging...") addrs = self.concretize_write_addr(dst) if len(addrs) == 1: l.debug("... concretized to 0x%x", addrs[0]) else: l.debug("... concretized to %d values", len(addrs)) if size is None: # Full length length = len(cnt) else: raise NotImplementedError() for addr in addrs: # First we load old values old_val = self._read_from(addr, length // self.state.arch.byte_width) assert isinstance(old_val, claripy.Bits) # FIXME: This is a big hack def is_reversed(o): if isinstance(o, claripy.Bits) and o.op == 'Reverse': return True return False def can_be_reversed(o): om = o._model_vsa if isinstance(om, claripy.vsa.StridedInterval) and om.is_integer: return True return False if endness == 'Iend_LE': cnt = cnt.reversed reverse_it = False if is_reversed(cnt): if is_reversed(old_val): cnt = cnt.args[0] old_val = old_val.args[0] reverse_it = True elif can_be_reversed(old_val): cnt = cnt.args[0] reverse_it = True if isinstance(old_val, (int, claripy.bv.BVV)): merged_val = self.state.solver.SI(bits=len(old_val), to_conv=old_val) else: merged_val = old_val merged_val = merged_val.union(cnt) if reverse_it: merged_val = merged_val.reversed # Write the new value self.store(addr, merged_val, size=size) req.stored_values.append(merged_val) req.completed = True # TODO: revisit the following lines req.constraints = [ ] return req def get_unconstrained_bytes(self, name, bits, source=None, key=None, inspect=True, events=True, **kwargs): """ Get some consecutive unconstrained bytes. :param name: Name of the unconstrained variable :param bits: Size of the unconstrained variable :param source: Where those bytes are read from. Currently it is only used in under-constrained symbolic execution so that we can track the allocation depth. :return: The generated variable """ if self.category == 'mem' and options.ZERO_FILL_UNCONSTRAINED_MEMORY in self.state.options: return self.state.solver.BVV(0, bits) elif self.category == 'reg' and options.ZERO_FILL_UNCONSTRAINED_REGISTERS in self.state.options: return self.state.solver.BVV(0, bits) elif options.SPECIAL_MEMORY_FILL in self.state.options and self.state._special_memory_filler is not None: return self.state._special_memory_filler(name, bits, self.state) else: if options.UNDER_CONSTRAINED_SYMEXEC in self.state.options: if source is not None and type(source) is int: alloc_depth = self.state.uc_manager.get_alloc_depth(source) kwargs['uc_alloc_depth'] = 0 if alloc_depth is None else alloc_depth + 1 r = self.state.solver.Unconstrained(name, bits, key=key, inspect=inspect, events=events, **kwargs) return r # Unconstrain a byte def unconstrain_byte(self, addr, inspect=True, events=True): unconstrained_byte = self.get_unconstrained_bytes("%s_unconstrain_%#x" % (self.id, addr), self.state.arch.byte_width, inspect=inspect, events=events, key=('manual_unconstrain', addr)) self.store(addr, unconstrained_byte) # Replaces the differences between self and other with unconstrained bytes. def unconstrain_differences(self, other): changed_bytes = self.changed_bytes(other) l.debug("Will unconstrain %d %s bytes", len(changed_bytes), self.id) for b in changed_bytes: self.unconstrain_byte(b) @staticmethod def _is_uninitialized(a): return getattr(a._model_vsa, 'uninitialized', False) def _merge_values(self, to_merge, merged_size, is_widening=False): if options.ABSTRACT_MEMORY in self.state.options: if self.category == 'reg' and self.state.arch.register_endness == 'Iend_LE': should_reverse = True elif self.state.arch.memory_endness == 'Iend_LE': should_reverse = True else: should_reverse = False merged_val = to_merge[0][0] if should_reverse: merged_val = merged_val.reversed for tm,_ in to_merge[1:]: if should_reverse: tm = tm.reversed if self._is_uninitialized(tm): continue if is_widening: l.info("Widening %s %s...", merged_val, tm) merged_val = merged_val.widen(tm) l.info('... Widened to %s', merged_val) else: l.info("Merging %s %s...", merged_val, tm) merged_val = merged_val.union(tm) l.info("... Merged to %s", merged_val) if should_reverse: merged_val = merged_val.reversed else: merged_val = self.state.solver.BVV(0, merged_size*self.state.arch.byte_width) for tm,fv in to_merge: merged_val = self.state.solver.If(fv, tm, merged_val) return merged_val def dbg_print(self, indent=0): """ Print out debugging information. """ lst = [] more_data = False for i, addr in enumerate(self.mem.keys()): lst.append(addr) if i >= 20: more_data = True break for addr in sorted(lst): data = self.mem[addr] if isinstance(data, SimMemoryObject): memobj = data print("%s%xh: (%s)[%d]" % (" " * indent, addr, memobj, addr - memobj.base)) else: print("%s%xh: <default data>" % (" " * indent, addr)) if more_data: print("%s..." % (" " * indent)) def _copy_contents(self, dst, src, size, condition=None, src_memory=None, dst_memory=None, inspect=True, disable_actions=False): src_memory = self if src_memory is None else src_memory dst_memory = self if dst_memory is None else dst_memory _,max_size = self._resolve_size_range(size) if max_size == 0: return None, [ ] data = src_memory.load(src, max_size, inspect=inspect, disable_actions=disable_actions) dst_memory.store(dst, data, size=size, condition=condition, inspect=inspect, disable_actions=disable_actions) return data # # Things that are actually handled by SimPagedMemory # def changed_bytes(self, other): """ Gets the set of changed bytes between self and `other`. :param other: The other :class:`SimSymbolicMemory`. :returns: A set of differing bytes """ return self.mem.changed_bytes(other.mem) def replace_all(self, old, new): """ Replaces all instances of expression old with expression new. :param old: A claripy expression. Must contain at least one named variable (to make to make it possible to use the name index for speedup) :param new: The new variable to replace it with """ return self.mem.replace_all(old, new) def addrs_for_name(self, n): """ Returns addresses that contain expressions that contain a variable named `n`. """ return self.mem.addrs_for_name(n) def addrs_for_hash(self, h): """ Returns addresses that contain expressions that contain a variable with the hash of `h`. """ return self.mem.addrs_for_hash(h) def replace_memory_object(self, old, new_content): """ Replaces the memory object 'old' with a new memory object containing 'new_content'. :param old: A SimMemoryObject (i.e., one from memory_objects_for_hash() or memory_objects_for_name()) :param new_content: the content (claripy expression) for the new memory object """ return self.mem.replace_memory_object(old, new_content) def memory_objects_for_name(self, n): """ Returns a set of SimMemoryObjects that contain expressions that contain a variable with the name of n. This is useful for replacing those values, in one fell swoop, with replace_memory_object(), even if they've been partially overwritten. """ return self.mem.memory_objects_for_name(n) def memory_objects_for_hash(self, n): """ Returns a set of SimMemoryObjects that contain expressions that contain a variable with the hash of h. This is useful for replacing those values, in one fell swoop, with replace_memory_object(), even if they've been partially overwritten. """ return self.mem.memory_objects_for_hash(n) def permissions(self, addr, permissions=None): """ Retrieve the permissions of the page at address `addr`. :param addr: address to get the page permissions :param permissions: Integer or BVV to optionally set page permissions to :return: AST representing the permissions on the page """ out = self.mem.permissions(addr, permissions) # if unicorn is in play and we've marked a page writable, it must be uncached if permissions is not None and self.state.solver.is_true(permissions & 2 == 2): if self.state.has_plugin('unicorn'): p = self.mem._get_page(self.mem._page_id(addr)) self.state.unicorn.uncache_region(p._page_addr, p._page_size) return out def map_region(self, addr, length, permissions, init_zero=False): """ Map a number of pages at address `addr` with permissions `permissions`. :param addr: address to map the pages at :param length: length in bytes of region to map, will be rounded upwards to the page size :param permissions: AST of permissions to map, will be a bitvalue representing flags :param init_zero: Initialize page with zeros """ l.info("Mapping [%#x, %#x] as %s", addr, addr + length - 1, permissions) return self.mem.map_region(addr, length, permissions, init_zero=init_zero) def unmap_region(self, addr, length): """ Unmap a number of pages at address `addr` :param addr: address to unmap the pages at :param length: length in bytes of region to map, will be rounded upwards to the page size """ if self.state.has_plugin('unicorn'): self.state.unicorn.uncache_region(addr, length) return self.mem.unmap_region(addr, length) # Register state options SimStateOptions.register_option("symbolic_ip_max_targets", int, default=256, description="The maximum number of concrete addresses a symbolic instruction pointer " "can be concretized to." ) SimStateOptions.register_option("jumptable_symbolic_ip_max_targets", int, default=16384, description="The maximum number of concrete addresses a symbolic instruction pointer " "can be concretized to if it is part of a jump table." ) from angr.sim_state import SimState SimState.register_default('sym_memory', SimSymbolicMemory) from ..errors import SimUnsatError, SimMemoryError, SimMemoryLimitError, SimMemoryAddressError, SimMergeError from .. import sim_options as options from .inspect import BP_AFTER, BP_BEFORE from .. import concretization_strategies
42.248316
161
0.601303
dc26cf8e04fb7f045bbea843193fbc83a61e4c91
7,696
py
Python
crae.py
scotty110/ANN-code
05ae6094dfe98c1c9fd0feb87ffb0c0c5206502a
[ "MIT" ]
null
null
null
crae.py
scotty110/ANN-code
05ae6094dfe98c1c9fd0feb87ffb0c0c5206502a
[ "MIT" ]
null
null
null
crae.py
scotty110/ANN-code
05ae6094dfe98c1c9fd0feb87ffb0c0c5206502a
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow.contrib.rnn import * import numpy as np import functools #import image_handler as image_handler import image_split_loader as isl import os """ THIS MODEL WORKS """ def lazy_property(function): ''' Danijar Hafner: https://danijar.com/ https://gist.github.com/danijar ''' attribute = '_cache_' + function.__name__ @property @functools.wraps(function) def decorator(self): if not hasattr(self, attribute): setattr(self, attribute, function(self)) return getattr(self, attribute) return decorator class videoPredictor: ''' TensorFlow Model for a 2D convolutional autoencoder. ''' def __init__(self, time_steps=9, patch_size=8, alpha=0.002, debug=False): ''' Defining Tensorflow model properties Inputs: TODO alpha - learning rate for optimizer ''' #Feed parameters self.time_steps = time_steps self.patch_size = patch_size self.input_rnn = tf.placeholder(tf.float32, shape=[None, self.time_steps, self.patch_size, self.patch_size], name='rnn_input') self.true_image = tf.placeholder(tf.float32, shape=[None, self.patch_size, self.patch_size], name='uncompressed') self.alpha = alpha self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') self.debug = debug #Model pieces self.rnnNetwork self.error self.optimizer #for Running init = tf.global_variables_initializer() self.saver = tf.train.Saver() config = tf.ConfigProto(device_count = {'GPU': 0}) #self.supervisor = tf.train.Supervisor(logdir="/tmp/model_logs", saver=self.saver, save_model_secs=600) self.sess = tf.Session(config=config) #self.sess = (self.supervisor).managed_session() self.sess.run(init) @lazy_property def rnnNetwork(self): '''' Our rnn portion of code ''' with tf.name_scope('input_processing'): #Orig input shape: [batch_size, time_step, pixel_values] input_layer = self.input_rnn #Reshape so patch become a vector input_layer = tf.reshape( input_layer, shape=[-1,self.time_steps*self.patch_size**2,1] ) #input_layer = tf.transpose(input_layer, perm=[1,0,2] ) input_layer_shape = tf.shape(input_layer) num_steps = tf.shape(input_layer)[1] batch_size = tf.shape(input_layer)[0] if(self.debug): print "num steps: ", num_steps print "batch size: ", batch_size print "input layer shape: ", input_layer.get_shape().as_list() with tf.name_scope('rnn_cell'): #cell = BasicLSTMCell( self.patch_size**2, forget_bias=0.0, state_is_tuple=True, reuse=False) cell = BasicRNNCell( 1024, reuse=False) #will need to chang in the future state = cell.zero_state(batch_size,dtype=tf.float32) rnn_output, state = tf.nn.dynamic_rnn(cell, input_layer, initial_state=state, time_major=False, dtype=tf.float32) if self.debug: print "rnn output shape: ", rnn_output.get_shape().as_list() print "rnn output[0] shape: ", rnn_output[0].get_shape().as_list() print "rnn state shape: ", state with tf.name_scope("Reshape_final"): output = tf.reshape(rnn_output[0], [batch_size, self.patch_size, self.patch_size] ) if(self.debug): print "output shape: ", output.get_shape().as_list() return output @lazy_property def optimizer(self): ''' The optimizer to use for our autoencoder, using MSE as loss function ''' # predictions - predicted output of model # labels - ground truth output tensor, needs to be same dimension as predictions loss = tf.losses.mean_squared_error( predictions=self.rnnNetwork, labels=self.true_image ) optimize = tf.train.AdamOptimizer( self.alpha ) optimizer = optimize.minimize(loss, global_step=self.global_step) return optimizer @lazy_property def error(self): ''' Calculates the l2 error of the encoder during training. ''' # Function API: https://www.tensorflow.org/api_docs/python/tf/global_norm error = tf.losses.mean_squared_error( predictions=self.rnnNetwork, labels=self.true_image ) return error def train(self, image_compressed, image_raw, counter=0, batch_size=1, loop=1): ''' Trains model on X data ''' #Create training X,Y,count = self.createTrainingData(image_compressed, image_raw, batch_size=batch_size, counter=counter) for j in range(0,X.shape[0]): for i in range(0,loop): self.sess.run( self.optimizer, feed_dict={self.input_rnn:X[j][:], self.true_image:Y[j][:]} ) del X del Y #print "Done Training" return count def evaluate(self, image_compressed, image_raw, batch_size=1, counter=0): ''' Calcs MSE for model on X data ''' mse = 0 X,Y,count = self.createTrainingData(image_compressed, image_raw, batch_size=batch_size, counter=counter) #print "made it this far" for j in range(0,X.shape[0]): mse = mse + self.sess.run( self.error, feed_dict={self.input_rnn:X[j][:], self.true_image:Y[j][:]} ) del X del Y return mse def createTrainingData(self, image_compressed, image_raw, batch_size=1, counter=0): #create training data X,Y,count = isl.nextbatch(batch_size=batch_size, comp_file_array=image_compressed, raw_file_array=image_raw, starting_point=counter) return X,Y,count def save(self, checkpoint_directory): ''' Saves tensorflow session Inputs: checkpoint_directory - directory and file where to save model information too (no file extensions) ''' #saver = tf.train.Saver() self.saver.save(self.sess, checkpoint_directory, global_step=self.global_step ) return True def load(self, checkpoint_directory): ''' Loads checkpoint file for tensorflow model. Inputs: checkpoint_directory - directory and file where to load model information from (no file extensions) ''' #saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(os.path.dirname(checkpoint_directory)) if ckpt and ckpt.model_checkpoint_path: self.saver.restore(self.sess, ckpt.model_checkpoint_path) return True #saver.restore(self.sess, checkpoint_directory ) return False def runner(self, image_compressed_dir, image_raw_dir, model_loc="./test_chp", loop=1, batch_size=2, epochs=10): ''' Runs model, inclueds checkpointing features ''' loop = 1 comp_files = isl.processDir(dirname=image_compressed_dir) raw_files = isl.processDir(dirname=image_raw_dir) #Need to add loop for taining over whole data set for count_i in range(epochs+1): #print "Batch size: ", batch_size #print "counter: ", count_i #print "len of files: ", len(comp_files), len(raw_files) for j in range(0, len(comp_files), batch_size): self.train(image_compressed=comp_files, image_raw=raw_files, counter=j, batch_size=batch_size, loop=loop) if count_i%5==0: for j in range(0, len(comp_files), batch_size): mse = self.evaluate(image_compressed=comp_files, image_raw=raw_files, batch_size=batch_size, counter=j) print( "summed MSE is: ", (mse) ) self.save(checkpoint_directory=model_loc) #model.load(checkpoint_directory="/home/scott/Documents/Code/checkpoint_test/tester") return 1 ''' Other Help: https://www.tensorflow.org/tutorials/layers https://www.tensorflow.org/api_docs/python/tf/cond https://stackoverflow.com/questions/34959853/how-to-make-an-if-statement-using-a-boolean-tensor https://www.tensorflow.org/versions/r0.12/how_tos/supervisor/ '''
35.62963
136
0.689969
2e75443b879718b3d2aeefb97db693a47728e297
11,185
py
Python
salt/utils/raetevent.py
l2ol33rt/salt
ff68bbd9f4bda992a3e039822fb32f141e94347c
[ "Apache-2.0" ]
1
2022-02-09T06:40:14.000Z
2022-02-09T06:40:14.000Z
salt/utils/raetevent.py
dv-trading/salt
f5d4334178c50d0dfcd205d5a7fb9cfb27fd369e
[ "Apache-2.0" ]
null
null
null
salt/utils/raetevent.py
dv-trading/salt
f5d4334178c50d0dfcd205d5a7fb9cfb27fd369e
[ "Apache-2.0" ]
4
2020-11-04T06:28:05.000Z
2022-02-09T10:54:49.000Z
# -*- coding: utf-8 -*- ''' Manage events This module is used to manage events via RAET ''' # pylint: disable=3rd-party-module-not-gated # Import python libs from __future__ import absolute_import import os import logging import time from collections import MutableMapping # Import salt libs import salt.payload import salt.loader import salt.state import salt.utils.event from salt.utils import kinds from salt import transport from salt import syspaths from raet import raeting, nacling from raet.lane.stacking import LaneStack from raet.lane.yarding import RemoteYard # Import 3rd-party libs import salt.ext.six as six log = logging.getLogger(__name__) class RAETEvent(object): ''' The base class used to manage salt events ''' def __init__(self, node, sock_dir=None, listen=True, opts=None): ''' Set up the stack and remote yard ''' self.node = node # application kind see kinds.APPL_KIND_NAMES self.sock_dir = sock_dir if opts is None: opts = {} self.opts = opts self.stack = None self.ryn = 'manor' # remote yard name self.connected = False self.cpub = False self.__prep_stack(listen) def __prep_stack(self, listen): ''' Prepare the stack objects ''' if not self.stack: if hasattr(transport, 'jobber_stack') and transport.jobber_stack: self.stack = transport.jobber_stack else: self.stack = transport.jobber_stack = self._setup_stack(ryn=self.ryn) log.debug("RAETEvent Using Jobber Stack at = {0}\n".format(self.stack.ha)) if listen: self.subscribe() def _setup_stack(self, ryn='manor'): kind = self.opts.get('__role', '') # opts optional for master if kind: # not all uses of Raet SaltEvent has opts defined if kind not in kinds.APPL_KINDS: emsg = ("Invalid application kind = '{0}' for RAET SaltEvent.".format(kind)) log.error(emsg + "\n") raise ValueError(emsg) if kind != self.node: emsg = ("Mismatch between node = '{0}' and kind = '{1}' in " "RAET SaltEvent.".format(self.node, kind)) log.error(emsg + '\n') raise ValueError(emsg) if self.node in [kinds.APPL_KIND_NAMES[kinds.applKinds.master], kinds.APPL_KIND_NAMES[kinds.applKinds.syndic]]: # []'master', 'syndic'] lanename = 'master' elif self.node in [kinds.APPL_KIND_NAMES[kinds.applKinds.minion], kinds.APPL_KIND_NAMES[kinds.applKinds.caller]]: # ['minion', 'caller'] role = self.opts.get('id', '') # opts required for minion if not role: emsg = ("Missing role required to setup RAET SaltEvent.") log.error(emsg + "\n") raise ValueError(emsg) if not kind: emsg = "Missing kind required to setup RAET SaltEvent." log.error(emsg + '\n') raise ValueError(emsg) lanename = "{0}_{1}".format(role, kind) else: emsg = ("Unsupported application node kind '{0}' for RAET SaltEvent.".format(self.node)) log.error(emsg + '\n') raise ValueError(emsg) name = 'event' + nacling.uuid(size=18) cachedir = self.opts.get('cachedir', os.path.join(syspaths.CACHE_DIR, self.node)) stack = LaneStack( name=name, lanename=lanename, sockdirpath=self.sock_dir) stack.Pk = raeting.PackKind.pack.value stack.addRemote(RemoteYard(stack=stack, lanename=lanename, name=ryn, dirpath=self.sock_dir)) return stack def subscribe(self, tag=None): ''' Included for compat with zeromq events, not required ''' if not self.connected: self.connect_pub() def unsubscribe(self, tag=None): ''' Included for compat with zeromq events, not required ''' return def connect_pub(self): ''' Establish the publish connection ''' try: route = {'dst': (None, self.ryn, 'event_req'), 'src': (None, self.stack.local.name, None)} msg = {'route': route} self.stack.transmit(msg, self.stack.nameRemotes[self.ryn].uid) self.stack.serviceAll() self.connected = True self.cpub = True except Exception: pass def connect_pull(self, timeout=1000): ''' Included for compat with zeromq events, not required ''' return @classmethod def unpack(cls, raw, serial=None): ''' Included for compat with zeromq events, not required ''' return raw def get_event(self, wait=5, tag='', match_type=None, full=False, no_block=None, auto_reconnect=False): ''' Get a single publication. IF no publication available THEN block for up to wait seconds AND either return publication OR None IF no publication available. IF wait is 0 then block forever. ''' if not self.connected: self.connect_pub() start = time.time() while True: self.stack.serviceAll() if self.stack.rxMsgs: msg, sender = self.stack.rxMsgs.popleft() if 'tag' not in msg and 'data' not in msg: # Invalid event, how did this get here? continue if not msg['tag'].startswith(tag): # Not what we are looking for, throw it away continue if full: return msg else: return msg['data'] if start + wait < time.time(): return None time.sleep(0.01) def get_event_noblock(self): ''' Get the raw event msg without blocking or any other niceties ''' if not self.connected: self.connect_pub() self.stack.serviceAll() if self.stack.rxMsgs: msg, sender = self.stack.rxMsgs.popleft() if 'tag' not in msg and 'data' not in msg: # Invalid event, how did this get here? return None return msg def iter_events(self, tag='', full=False, auto_reconnect=False): ''' Creates a generator that continuously listens for events ''' while True: data = self.get_event(tag=tag, full=full, auto_reconnect=auto_reconnect) if data is None: continue yield data def fire_event(self, data, tag, timeout=1000): ''' Send a single event into the publisher with paylod dict "data" and event identifier "tag" ''' # Timeout is retained for compat with zeromq events if not str(tag): # no empty tags allowed raise ValueError('Empty tag.') if not isinstance(data, MutableMapping): # data must be dict raise ValueError('Dict object expected, not \'{0}\'.'.format(data)) route = {'dst': (None, self.ryn, 'event_fire'), 'src': (None, self.stack.local.name, None)} msg = {'route': route, 'tag': tag, 'data': data} self.stack.transmit(msg, self.stack.nameRemotes[self.ryn].uid) self.stack.serviceAll() def fire_ret_load(self, load): ''' Fire events based on information in the return load ''' if load.get('retcode') and load.get('fun'): # Minion fired a bad retcode, fire an event if load['fun'] in salt.utils.event.SUB_EVENT: try: for tag, data in six.iteritems(load.get('return', {})): data['retcode'] = load['retcode'] tags = tag.split('_|-') if data.get('result') is False: self.fire_event( data, '{0}.{1}'.format(tags[0], tags[-1])) # old dup event data['jid'] = load['jid'] data['id'] = load['id'] data['success'] = False data['return'] = 'Error: {0}.{1}'.format(tags[0], tags[-1]) data['fun'] = load['fun'] data['user'] = load['user'] self.fire_event( data, salt.utils.event.tagify([load['jid'], 'sub', load['id'], 'error', load['fun']], 'job')) except Exception: pass def close_pub(self): ''' Here for compatability ''' return def destroy(self): if hasattr(self, 'stack'): self.stack.server.close() class MasterEvent(RAETEvent): ''' Create a master event management object ''' def __init__(self, opts, sock_dir, listen=True): super(MasterEvent, self).__init__('master', opts=opts, sock_dir=sock_dir, listen=listen) class PresenceEvent(MasterEvent): def __init__(self, opts, sock_dir, listen=True, state=None): self.state = state super(PresenceEvent, self).__init__(opts=opts, sock_dir=sock_dir, listen=listen) def connect_pub(self): ''' Establish the publish connection ''' try: route = {'dst': (None, self.ryn, 'presence_req'), 'src': (None, self.stack.local.name, None)} msg = {'route': route} if self.state: msg['data'] = {'state': self.state} self.stack.transmit(msg, self.stack.nameRemotes[self.ryn].uid) self.stack.serviceAll() self.connected = True except Exception: pass class StatsEvent(MasterEvent): def __init__(self, opts, sock_dir, tag, estate=None, listen=True): super(StatsEvent, self).__init__(opts=opts, sock_dir=sock_dir, listen=listen) self.tag = tag self.estate = estate def connect_pub(self): ''' Establish the publish connection ''' try: route = {'dst': (self.estate, None, 'stats_req'), 'src': (None, self.stack.local.name, None)} msg = {'route': route, 'tag': self.tag} self.stack.transmit(msg, self.stack.nameRemotes[self.ryn].uid) self.stack.serviceAll() self.connected = True except Exception: pass
35.062696
100
0.526777
9f68c4e23ea59fefb1ab5f291793069bff71e8b3
5,921
py
Python
catkin_ws/devel/lib/python2.7/dist-packages/vision_msgs/msg/_BoundingBox2D.py
Colin1245/ROS-Theory-Application-Shenlan
49986c83a2c73c7ab4310fd3f010e1b6bc0de786
[ "Apache-2.0" ]
null
null
null
catkin_ws/devel/lib/python2.7/dist-packages/vision_msgs/msg/_BoundingBox2D.py
Colin1245/ROS-Theory-Application-Shenlan
49986c83a2c73c7ab4310fd3f010e1b6bc0de786
[ "Apache-2.0" ]
null
null
null
catkin_ws/devel/lib/python2.7/dist-packages/vision_msgs/msg/_BoundingBox2D.py
Colin1245/ROS-Theory-Application-Shenlan
49986c83a2c73c7ab4310fd3f010e1b6bc0de786
[ "Apache-2.0" ]
null
null
null
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from vision_msgs/BoundingBox2D.msg. Do not edit.""" import codecs import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import geometry_msgs.msg class BoundingBox2D(genpy.Message): _md5sum = "9ab41e2a4c8627735e5091a9abd68b02" _type = "vision_msgs/BoundingBox2D" _has_header = False # flag to mark the presence of a Header object _full_text = """# A 2D bounding box that can be rotated about its center. # All dimensions are in pixels, but represented using floating-point # values to allow sub-pixel precision. If an exact pixel crop is required # for a rotated bounding box, it can be calculated using Bresenham's line # algorithm. # The 2D position (in pixels) and orientation of the bounding box center. geometry_msgs/Pose2D center # The size (in pixels) of the bounding box surrounding the object relative # to the pose of its center. float64 size_x float64 size_y ================================================================================ MSG: geometry_msgs/Pose2D # Deprecated # Please use the full 3D pose. # In general our recommendation is to use a full 3D representation of everything and for 2D specific applications make the appropriate projections into the plane for their calculations but optimally will preserve the 3D information during processing. # If we have parallel copies of 2D datatypes every UI and other pipeline will end up needing to have dual interfaces to plot everything. And you will end up with not being able to use 3D tools for 2D use cases even if they're completely valid, as you'd have to reimplement it with different inputs and outputs. It's not particularly hard to plot the 2D pose or compute the yaw error for the Pose message and there are already tools and libraries that can do this for you. # This expresses a position and orientation on a 2D manifold. float64 x float64 y float64 theta """ __slots__ = ['center','size_x','size_y'] _slot_types = ['geometry_msgs/Pose2D','float64','float64'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: center,size_x,size_y :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(BoundingBox2D, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.center is None: self.center = geometry_msgs.msg.Pose2D() if self.size_x is None: self.size_x = 0. if self.size_y is None: self.size_y = 0. else: self.center = geometry_msgs.msg.Pose2D() self.size_x = 0. self.size_y = 0. def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_5d().pack(_x.center.x, _x.center.y, _x.center.theta, _x.size_x, _x.size_y)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ if python3: codecs.lookup_error("rosmsg").msg_type = self._type try: if self.center is None: self.center = geometry_msgs.msg.Pose2D() end = 0 _x = self start = end end += 40 (_x.center.x, _x.center.y, _x.center.theta, _x.size_x, _x.size_y,) = _get_struct_5d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_5d().pack(_x.center.x, _x.center.y, _x.center.theta, _x.size_x, _x.size_y)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ if python3: codecs.lookup_error("rosmsg").msg_type = self._type try: if self.center is None: self.center = geometry_msgs.msg.Pose2D() end = 0 _x = self start = end end += 40 (_x.center.x, _x.center.y, _x.center.theta, _x.size_x, _x.size_y,) = _get_struct_5d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_5d = None def _get_struct_5d(): global _struct_5d if _struct_5d is None: _struct_5d = struct.Struct("<5d") return _struct_5d
38.2
471
0.684344
74fdefa3206508648c8bf951faa05af38d303c11
3,603
py
Python
server/data/ingest_1000.py
OpenDataAnalytics/resonanteco
eb326e4af6d899ed5dc89d1b99e0f3a439c46959
[ "Apache-2.0" ]
4
2019-07-02T13:52:36.000Z
2020-02-14T07:12:12.000Z
server/data/ingest_1000.py
OpenDataAnalytics/resonanteco
eb326e4af6d899ed5dc89d1b99e0f3a439c46959
[ "Apache-2.0" ]
1
2019-07-03T00:00:00.000Z
2019-07-11T02:18:47.000Z
server/data/ingest_1000.py
OpenDataAnalytics/resonanteco
eb326e4af6d899ed5dc89d1b99e0f3a439c46959
[ "Apache-2.0" ]
null
null
null
import csv from girder_client import GirderClient import requests import json import os import re import sys def lookup_envo_number(envo): with open('envo_lookup.json', 'r') as f: lookup_table = json.load(f) if envo in lookup_table: return lookup_table[envo] response = requests.get('https://www.ebi.ac.uk/ols/api/select', params={'q': envo}) json_response = response.json() try: label = json_response['response']['docs'][0]['label'] lookup_table[envo] = label return label except IndexError: return None def thatFormatReader(taxon_oid, text): dic = {'taxon_oid': taxon_oid} for line in text.splitlines()[3:]: splits = line.split(' ') key = splits[0] if key: valueStr = splits[-1].strip() try: value = float(valueStr) except ValueError: value = valueStr dic[key] = value return dic def parseTable(directory, filename): taxon_oid = re.search('([0-9]{2,})', filename).groups()[0] with open(os.path.join(directory, filename), 'r') as myfile: return thatFormatReader(taxon_oid, myfile.read()) def get_table_list_for_oid(oid): tables = [] with open("File_Name-SP_ID_Mapping.txt") as search: for line in search: if oid in line.strip(): tables.append(line.split()[0]) return tables def create_item_from_row(row, directory, gc): if not row[7]: return print("Ingesting {}".format(row[0])) parent = gc.resourceLookup('collection/ResonantEco/datasets/JGI') item = gc.createItem(parent['_id'], row[0], reuseExisting=True) latitude = None longitude = None try: latitude = float(row[60]) longitude = float(row[59]) except: pass metadata = { 'latitude': latitude, 'longitude': longitude, 'source': 'JGI' } metadata['timestamp'] = row[48] metadata['name'] = row[1] metadata['biome'] = lookup_envo_number(row[5]) metadata['feature'] = lookup_envo_number(row[6]) metadata['material'] = lookup_envo_number(row[7]) metadata['omics'] = row[20].lower() table7 = {} table8 = {} table9 = {} for filename in get_table_list_for_oid(row[8]): if 'Table_7' in filename: table7 = parseTable(directory, filename) elif 'Table_8' in filename: table8 = parseTable(directory, filename) elif 'Table_9' in filename: table9 = parseTable(directory, filename) gc.addMetadataToItem( item['_id'], { 'meta': metadata, 'table7': table7, 'table8': table8, 'table9': table9 } ) def create_items_from_csv(path, data_dir, gc): with open(path) as csvfile: reader = csv.reader(csvfile, delimiter=',') next(reader) for row in reader: create_item_from_row(row, data_dir, gc) if __name__ == '__main__': if len(sys.argv) < 5: sys.exit('Sample call: python ingest.py ./data localhost 8080 admin letmein') data_dir = sys.argv[1] host = sys.argv[2] port = sys.argv[3] user = sys.argv[4] password = sys.argv[5] gc = GirderClient(apiUrl='http://{}:{}/api/v1'.format(host, port)) gc.authenticate(user, password) create_items_from_csv('./jgi_data/NMDC_metadata_datasets - NMDC_datasets_metadata.csv', data_dir, gc) # with open("envo_lookup.json", "w") as f: # f.write(json.dumps(lookup_table))
28.824
105
0.597558
da3673fc4521a9e6c0aabd973991ce535fa43349
416
py
Python
is_valid/is_decodable_json_where.py
nandoflorestan/transvalid
4e0adbaad35188312189112cac0c4f187116b4b9
[ "MIT" ]
4
2017-10-11T14:04:35.000Z
2019-03-29T08:38:09.000Z
is_valid/is_decodable_json_where.py
nandoflorestan/transvalid
4e0adbaad35188312189112cac0c4f187116b4b9
[ "MIT" ]
1
2021-06-17T19:12:15.000Z
2021-06-17T19:12:15.000Z
is_valid/is_decodable_json_where.py
Daanvdk/is_valid
615c5ae1999095cba398af6ae041a472769857f8
[ "MIT" ]
1
2021-06-05T18:06:49.000Z
2021-06-05T18:06:49.000Z
import json from .is_decodable_where import is_decodable_where from .is_json_where import is_json_where class is_decodable_json_where(is_decodable_where): def __init__( self, predicate, loader=json.loads, encoding='utf-8', errors='strict' ): return super().__init__( is_json_where(predicate, loader=loader), encoding=encoding, errors=errors, )
24.470588
77
0.677885
32fd121d66dd69a9547689ee8c56200e3f51b4e4
2,936
py
Python
octavia/amphorae/backends/health_daemon/status_message.py
zjchao/octavia
e07031fa78604568c6e2112cb4cb147661bc57d7
[ "Apache-2.0" ]
null
null
null
octavia/amphorae/backends/health_daemon/status_message.py
zjchao/octavia
e07031fa78604568c6e2112cb4cb147661bc57d7
[ "Apache-2.0" ]
null
null
null
octavia/amphorae/backends/health_daemon/status_message.py
zjchao/octavia
e07031fa78604568c6e2112cb4cb147661bc57d7
[ "Apache-2.0" ]
1
2021-12-27T13:18:38.000Z
2021-12-27T13:18:38.000Z
# Copyright 2014 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import binascii import hashlib import hmac import json import zlib from oslo_log import log as logging from oslo_utils import secretutils from octavia.common import exceptions LOG = logging.getLogger(__name__) hash_algo = hashlib.sha256 hash_len = 32 hex_hash_len = 64 def to_hex(byte_array): return binascii.hexlify(byte_array).decode() def encode_obj(obj): json_bytes = json.dumps(obj).encode('utf-8') binary_array = zlib.compress(json_bytes, 9) return binary_array def decode_obj(binary_array): json_str = zlib.decompress(binary_array).decode('utf-8') obj = json.loads(json_str) return obj def wrap_envelope(obj, key, hex=True): payload = encode_obj(obj) hmc = get_hmac(payload, key, hex=hex) envelope = payload + hmc return envelope def unwrap_envelope(envelope, key): """A backward-compatible way to get data. We may still receive package from amphorae that are using digest() instead of hexdigest() """ try: return get_payload(envelope, key, hex=True) except Exception: return get_payload(envelope, key, hex=False) def get_payload(envelope, key, hex=True): len = hex_hash_len if hex else hash_len payload = envelope[:-len] expected_hmc = envelope[-len:] calculated_hmc = get_hmac(payload, key, hex=hex) if not secretutils.constant_time_compare(expected_hmc, calculated_hmc): LOG.warning( 'calculated hmac(hex=%(hex)s): %(s1)s not equal to msg hmac: ' '%(s2)s dropping packet', { 'hex': hex, 's1': to_hex(calculated_hmc), 's2': to_hex(expected_hmc) } ) fmt = 'calculated hmac: {0} not equal to msg hmac: {1} dropping packet' raise exceptions.InvalidHMACException(fmt.format( to_hex(calculated_hmc), to_hex(expected_hmc))) obj = decode_obj(payload) return obj def get_hmac(payload, key, hex=True): """Get digest for the payload. The hex param is for backward compatibility, so the package data sent from the existing amphorae can still be checked in the previous approach. """ hmc = hmac.new(key.encode("utf-8"), payload, hashlib.sha256) return hmc.hexdigest().encode("utf-8") if hex else hmc.digest()
29.959184
79
0.684946
ea7787caeef8cdf78dfed953bd54966edcd2ae6e
150
py
Python
deepstreampy/constants/call_state.py
sapid/deepstreampy-twisted
78025141bb0ac3aadc248d68f9273bf8993fc3d4
[ "MIT" ]
null
null
null
deepstreampy/constants/call_state.py
sapid/deepstreampy-twisted
78025141bb0ac3aadc248d68f9273bf8993fc3d4
[ "MIT" ]
null
null
null
deepstreampy/constants/call_state.py
sapid/deepstreampy-twisted
78025141bb0ac3aadc248d68f9273bf8993fc3d4
[ "MIT" ]
null
null
null
INITIAL = 'INITIAL' CONNECTING = 'CONNECTING' ESTABLISHED = 'ESTABLISHED' ACCEPTED = 'ACCEPTED' DECLINED = 'DECLINED' ENDED = 'ENDED' ERROR = 'ERROR'
18.75
27
0.72
e8d5a54cad8dd99ce3f7dc275ba97f4ec74cba45
84,732
py
Python
azure_compute/komand_azure_compute/actions/info_vm/schema.py
xhennessy-r7/insightconnect-plugins
59268051313d67735b5dd3a30222eccb92aca8e9
[ "MIT" ]
null
null
null
azure_compute/komand_azure_compute/actions/info_vm/schema.py
xhennessy-r7/insightconnect-plugins
59268051313d67735b5dd3a30222eccb92aca8e9
[ "MIT" ]
null
null
null
azure_compute/komand_azure_compute/actions/info_vm/schema.py
xhennessy-r7/insightconnect-plugins
59268051313d67735b5dd3a30222eccb92aca8e9
[ "MIT" ]
null
null
null
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Input: MODE = "mode" RESOURCEGROUP = "resourceGroup" SUBSCRIPTIONID = "subscriptionId" VM = "vm" class Output: ID = "id" LOCATION = "location" NAME = "name" PROPERTIES = "properties" TAGS = "tags" TYPE = "type" VMID = "vmId" class InfoVmInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "mode": { "type": "string", "title": "Mode", "description": "This mode get information of model view or instance view or both", "default": "modelViewAndInstanceView", "enum": [ "modelView", "instanceView", "modelViewAndInstanceView" ], "order": 4 }, "resourceGroup": { "type": "string", "title": "Resource Group", "description": "The resource group that will contain the virtual machine", "order": 2 }, "subscriptionId": { "type": "string", "title": "Subscription ID", "description": "The identifier of your subscription", "order": 1 }, "vm": { "type": "string", "title": "Name of Virtual Machine", "description": "The name of the virtual machine", "order": 3 } }, "required": [ "subscriptionId", "resourceGroup", "vm" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class InfoVmOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "id": { "type": "string", "title": "ID", "description": "ID", "order": 7 }, "location": { "type": "string", "title": "Location", "description": "Location", "order": 5 }, "name": { "type": "string", "title": "Name", "description": "Name", "order": 1 }, "properties": { "$ref": "#/definitions/properties", "title": "Properties", "description": "Properties", "order": 4 }, "tags": { "$ref": "#/definitions/tags", "title": "Tags", "description": "Tags", "order": 2 }, "type": { "type": "string", "title": "Type", "description": "Type", "order": 6 }, "vmId": { "type": "string", "title": "VM ID", "description": "VM ID", "order": 3 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "availabilitySet": { "type": "object", "title": "availabilitySet", "properties": { "id": { "type": "string", "title": "ID", "description": "Specifies the resource ID", "order": 1 } } }, "bootDiagnostics": { "type": "object", "title": "bootDiagnostics", "properties": { "enabled": { "type": "boolean", "title": "Enabled", "description": "Specifies if the boot diagnostics is enabled", "order": 1 }, "storageUri": { "type": "string", "title": "Storage Uri", "description": "Uri of the storage account to use for placing the console output and screenshot", "order": 2 } } }, "diagnosticsProfile": { "type": "object", "title": "diagnosticsProfile", "properties": { "bootDiagnostics": { "$ref": "#/definitions/bootDiagnostics", "title": "Boot Diagnostics", "description": "Boot diagnostics is a debugging feature which allows you to view console Output and screenshot to diagnose vm status", "order": 1 } }, "definitions": { "bootDiagnostics": { "type": "object", "title": "bootDiagnostics", "properties": { "enabled": { "type": "boolean", "title": "Enabled", "description": "Specifies if the boot diagnostics is enabled", "order": 1 }, "storageUri": { "type": "string", "title": "Storage Uri", "description": "Uri of the storage account to use for placing the console output and screenshot", "order": 2 } } } } }, "hardwareProfile": { "type": "object", "title": "hardwareProfile", "properties": { "vmSize": { "type": "string", "title": "VM Size", "description": "Specifies the size of the virtual machine", "order": 1 } } }, "imageReference": { "type": "object", "title": "imageReference", "properties": { "id": { "type": "string", "title": "Image Reference", "description": "Specifies the resource identifier of a virtual machine image in your subscription", "order": 1 }, "offer": { "type": "string", "title": "Offer", "description": "Specifies the offer of the platform image or marketplace image used to create the virtual machine", "order": 2 }, "publisher": { "type": "string", "title": "Publisher", "description": "Specifies the publisher of the platform image or marketplace image used to create the virtual machine", "order": 3 }, "sku": { "type": "string", "title": "SKU", "description": "Specifies the sku of the platform image or marketplace image used to create the virtual machine", "order": 4 }, "version": { "type": "string", "title": "Version", "description": "Specifies the version of the platform image or marketplace image used to create the virtual machine", "order": 5 } } }, "linuxConfiguration": { "type": "object", "title": "linuxConfiguration", "properties": { "disablePasswordAuthentication": { "type": "boolean", "title": "Disable Password Authentication", "description": "Specifies whether password authentication should be disabled", "order": 1 }, "ssh": { "$ref": "#/definitions/ssh", "title": "SSH", "description": "Specifies a collection of keys to be placed on the virtual machine", "order": 2 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "networkProfile": { "type": "object", "title": "networkProfile", "properties": { "networkInterfaces": { "type": "array", "title": "Network Interfaces", "description": "Specifies the list of resource ids for the network interfaces associated with the virtual machine", "items": { "$ref": "#/definitions/availabilitySet" }, "order": 1 } }, "definitions": { "availabilitySet": { "type": "object", "title": "availabilitySet", "properties": { "id": { "type": "string", "title": "ID", "description": "Specifies the resource ID", "order": 1 } } } } }, "osDisk": { "type": "object", "title": "osDisk", "properties": { "caching": { "type": "string", "title": "Caching", "description": "Specifies the caching requirements", "order": 1 }, "createOption": { "type": "string", "title": "Create Option", "description": "Specifies how the virtual machine should be created", "order": 2 }, "managedDisk": { "$ref": "#/definitions/managedDisk", "title": "Managed Disk", "description": "Specified the identifier and optional storage account type for the disk", "order": 3 }, "name": { "type": "string", "title": "Name", "description": "Specifies the disk name", "order": 4 }, "osType": { "type": "string", "title": "OS Type", "description": "This property allows you to specify the type of the os that is included in the disk if creating a vm from user-image or a specialized vhd", "order": 5 }, "vhd": { "$ref": "#/definitions/vhd", "title": "VHD", "description": "Specifies the uri of the location in storage where the vhd for the virtual machine should be placed", "order": 6 } }, "definitions": { "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } } } }, "osProfile": { "type": "object", "title": "osProfile", "properties": { "adminPassword": { "type": "string", "title": "Admin Password", "description": "Specifies the password of the administrator account", "order": 1 }, "adminUsername": { "type": "string", "title": "Admin UserName", "description": "Specifies the name of the administrator account", "order": 2 }, "computerName": { "type": "string", "title": "Computer Name", "description": "Specifies the host os name of the virtual machine", "order": 3 }, "customData": { "type": "string", "title": "Custom Data", "description": "Specifies a base-64 encoded string of custom data", "order": 4 }, "linuxConfiguration": { "$ref": "#/definitions/linuxConfiguration", "title": "Linux Configuration", "description": "Specifies the linux operating system settings on the virtual machine", "order": 7 }, "secrets": { "type": "array", "title": "Secrets", "description": "Specifies set of certificates that should be installed onto the virtual machine", "items": { "type": "object" }, "order": 5 }, "windowsConfiguration": { "$ref": "#/definitions/windowsConfiguration", "title": "Windows Configuration", "description": "Specifies windows operating system settings on the virtual machine", "order": 6 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "linuxConfiguration": { "type": "object", "title": "linuxConfiguration", "properties": { "disablePasswordAuthentication": { "type": "boolean", "title": "Disable Password Authentication", "description": "Specifies whether password authentication should be disabled", "order": 1 }, "ssh": { "$ref": "#/definitions/ssh", "title": "SSH", "description": "Specifies a collection of keys to be placed on the virtual machine", "order": 2 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } }, "windowsConfiguration": { "type": "object", "title": "windowsConfiguration", "properties": { "additionalUnattendContent": { "$ref": "#/definitions/additionalUnattendContent", "title": "Additional Unattend Content", "description": "Specifies additional xml formatted information that can be included in the unattend.xml file, which is used by windows setup", "order": 1 }, "enableAutomaticUpdates": { "type": "boolean", "title": "Enable Automatic Updates", "description": "Indicates whether virtual machine is enabled for automatic updates", "order": 2 }, "provisionVMAgent": { "type": "boolean", "title": "Provision VM Agent", "description": "Indicates whether virtual machine agent should be provisioned on the virtual machine", "order": 3 }, "winRM": { "$ref": "#/definitions/winRM", "title": "Win RM", "description": "Specifies the windows remote management listeners, this enables remote windows powershell", "order": 4 }, "winrRMListener": { "$ref": "#/definitions/listeners", "title": "WinrRM Listener", "description": "Contains configuration settings for the windows remote management service on the virtual machine", "order": 5 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } } } } } }, "properties": { "type": "object", "title": "properties", "properties": { "availabilitySet": { "$ref": "#/definitions/availabilitySet", "title": "Availability Set", "description": "The availability set that contains the virtual machine", "order": 1 }, "diagnosticsProfile": { "$ref": "#/definitions/diagnosticsProfile", "title": "Diagnostics Profile", "description": "Specifies the boot diagnostic settings state", "order": 2 }, "hardwareProfile": { "$ref": "#/definitions/hardwareProfile", "title": "Hardware Profile", "description": "Specifies the hardware settings for the virtual machine", "order": 3 }, "networkProfile": { "$ref": "#/definitions/networkProfile", "title": "Network Profile", "description": "Specifies the network interfaces of the virtual machine", "order": 4 }, "osProfile": { "$ref": "#/definitions/osProfile", "title": "OS Profile", "description": "Specifies the operating system settings for the virtual machine", "order": 5 }, "provisioningState": { "type": "string", "title": "Provisioning State", "description": "Specifies the provisioned state of the virtual machine", "order": 6 }, "storageProfile": { "$ref": "#/definitions/storageProfile", "title": "Storage Profile", "description": "Specifies the storage settings for the virtual machine disks", "order": 7 }, "vmId": { "type": "string", "title": "Virtual Machine ID", "description": "The vm unique id", "order": 8 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "availabilitySet": { "type": "object", "title": "availabilitySet", "properties": { "id": { "type": "string", "title": "ID", "description": "Specifies the resource ID", "order": 1 } } }, "bootDiagnostics": { "type": "object", "title": "bootDiagnostics", "properties": { "enabled": { "type": "boolean", "title": "Enabled", "description": "Specifies if the boot diagnostics is enabled", "order": 1 }, "storageUri": { "type": "string", "title": "Storage Uri", "description": "Uri of the storage account to use for placing the console output and screenshot", "order": 2 } } }, "diagnosticsProfile": { "type": "object", "title": "diagnosticsProfile", "properties": { "bootDiagnostics": { "$ref": "#/definitions/bootDiagnostics", "title": "Boot Diagnostics", "description": "Boot diagnostics is a debugging feature which allows you to view console Output and screenshot to diagnose vm status", "order": 1 } }, "definitions": { "bootDiagnostics": { "type": "object", "title": "bootDiagnostics", "properties": { "enabled": { "type": "boolean", "title": "Enabled", "description": "Specifies if the boot diagnostics is enabled", "order": 1 }, "storageUri": { "type": "string", "title": "Storage Uri", "description": "Uri of the storage account to use for placing the console output and screenshot", "order": 2 } } } } }, "hardwareProfile": { "type": "object", "title": "hardwareProfile", "properties": { "vmSize": { "type": "string", "title": "VM Size", "description": "Specifies the size of the virtual machine", "order": 1 } } }, "imageReference": { "type": "object", "title": "imageReference", "properties": { "id": { "type": "string", "title": "Image Reference", "description": "Specifies the resource identifier of a virtual machine image in your subscription", "order": 1 }, "offer": { "type": "string", "title": "Offer", "description": "Specifies the offer of the platform image or marketplace image used to create the virtual machine", "order": 2 }, "publisher": { "type": "string", "title": "Publisher", "description": "Specifies the publisher of the platform image or marketplace image used to create the virtual machine", "order": 3 }, "sku": { "type": "string", "title": "SKU", "description": "Specifies the sku of the platform image or marketplace image used to create the virtual machine", "order": 4 }, "version": { "type": "string", "title": "Version", "description": "Specifies the version of the platform image or marketplace image used to create the virtual machine", "order": 5 } } }, "linuxConfiguration": { "type": "object", "title": "linuxConfiguration", "properties": { "disablePasswordAuthentication": { "type": "boolean", "title": "Disable Password Authentication", "description": "Specifies whether password authentication should be disabled", "order": 1 }, "ssh": { "$ref": "#/definitions/ssh", "title": "SSH", "description": "Specifies a collection of keys to be placed on the virtual machine", "order": 2 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "networkProfile": { "type": "object", "title": "networkProfile", "properties": { "networkInterfaces": { "type": "array", "title": "Network Interfaces", "description": "Specifies the list of resource ids for the network interfaces associated with the virtual machine", "items": { "$ref": "#/definitions/availabilitySet" }, "order": 1 } }, "definitions": { "availabilitySet": { "type": "object", "title": "availabilitySet", "properties": { "id": { "type": "string", "title": "ID", "description": "Specifies the resource ID", "order": 1 } } } } }, "osDisk": { "type": "object", "title": "osDisk", "properties": { "caching": { "type": "string", "title": "Caching", "description": "Specifies the caching requirements", "order": 1 }, "createOption": { "type": "string", "title": "Create Option", "description": "Specifies how the virtual machine should be created", "order": 2 }, "managedDisk": { "$ref": "#/definitions/managedDisk", "title": "Managed Disk", "description": "Specified the identifier and optional storage account type for the disk", "order": 3 }, "name": { "type": "string", "title": "Name", "description": "Specifies the disk name", "order": 4 }, "osType": { "type": "string", "title": "OS Type", "description": "This property allows you to specify the type of the os that is included in the disk if creating a vm from user-image or a specialized vhd", "order": 5 }, "vhd": { "$ref": "#/definitions/vhd", "title": "VHD", "description": "Specifies the uri of the location in storage where the vhd for the virtual machine should be placed", "order": 6 } }, "definitions": { "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } } } }, "osProfile": { "type": "object", "title": "osProfile", "properties": { "adminPassword": { "type": "string", "title": "Admin Password", "description": "Specifies the password of the administrator account", "order": 1 }, "adminUsername": { "type": "string", "title": "Admin UserName", "description": "Specifies the name of the administrator account", "order": 2 }, "computerName": { "type": "string", "title": "Computer Name", "description": "Specifies the host os name of the virtual machine", "order": 3 }, "customData": { "type": "string", "title": "Custom Data", "description": "Specifies a base-64 encoded string of custom data", "order": 4 }, "linuxConfiguration": { "$ref": "#/definitions/linuxConfiguration", "title": "Linux Configuration", "description": "Specifies the linux operating system settings on the virtual machine", "order": 7 }, "secrets": { "type": "array", "title": "Secrets", "description": "Specifies set of certificates that should be installed onto the virtual machine", "items": { "type": "object" }, "order": 5 }, "windowsConfiguration": { "$ref": "#/definitions/windowsConfiguration", "title": "Windows Configuration", "description": "Specifies windows operating system settings on the virtual machine", "order": 6 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "linuxConfiguration": { "type": "object", "title": "linuxConfiguration", "properties": { "disablePasswordAuthentication": { "type": "boolean", "title": "Disable Password Authentication", "description": "Specifies whether password authentication should be disabled", "order": 1 }, "ssh": { "$ref": "#/definitions/ssh", "title": "SSH", "description": "Specifies a collection of keys to be placed on the virtual machine", "order": 2 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } }, "windowsConfiguration": { "type": "object", "title": "windowsConfiguration", "properties": { "additionalUnattendContent": { "$ref": "#/definitions/additionalUnattendContent", "title": "Additional Unattend Content", "description": "Specifies additional xml formatted information that can be included in the unattend.xml file, which is used by windows setup", "order": 1 }, "enableAutomaticUpdates": { "type": "boolean", "title": "Enable Automatic Updates", "description": "Indicates whether virtual machine is enabled for automatic updates", "order": 2 }, "provisionVMAgent": { "type": "boolean", "title": "Provision VM Agent", "description": "Indicates whether virtual machine agent should be provisioned on the virtual machine", "order": 3 }, "winRM": { "$ref": "#/definitions/winRM", "title": "Win RM", "description": "Specifies the windows remote management listeners, this enables remote windows powershell", "order": 4 }, "winrRMListener": { "$ref": "#/definitions/listeners", "title": "WinrRM Listener", "description": "Contains configuration settings for the windows remote management service on the virtual machine", "order": 5 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } } } } } }, "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } }, "storageProfile": { "type": "object", "title": "storageProfile", "properties": { "dataDisks": { "type": "array", "title": "Data Disks", "description": "Specifies the parameters that are used to add a data disk to a virtual machine", "items": { "type": "object" }, "order": 1 }, "imageReference": { "$ref": "#/definitions/imageReference", "title": "Image Reference", "description": "Specifies information about the image to use", "order": 2 }, "osDisk": { "$ref": "#/definitions/osDisk", "title": "OS Disk", "description": "Specifies information about the operating system disk used by the virtual machine", "order": 3 } }, "definitions": { "imageReference": { "type": "object", "title": "imageReference", "properties": { "id": { "type": "string", "title": "Image Reference", "description": "Specifies the resource identifier of a virtual machine image in your subscription", "order": 1 }, "offer": { "type": "string", "title": "Offer", "description": "Specifies the offer of the platform image or marketplace image used to create the virtual machine", "order": 2 }, "publisher": { "type": "string", "title": "Publisher", "description": "Specifies the publisher of the platform image or marketplace image used to create the virtual machine", "order": 3 }, "sku": { "type": "string", "title": "SKU", "description": "Specifies the sku of the platform image or marketplace image used to create the virtual machine", "order": 4 }, "version": { "type": "string", "title": "Version", "description": "Specifies the version of the platform image or marketplace image used to create the virtual machine", "order": 5 } } }, "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "osDisk": { "type": "object", "title": "osDisk", "properties": { "caching": { "type": "string", "title": "Caching", "description": "Specifies the caching requirements", "order": 1 }, "createOption": { "type": "string", "title": "Create Option", "description": "Specifies how the virtual machine should be created", "order": 2 }, "managedDisk": { "$ref": "#/definitions/managedDisk", "title": "Managed Disk", "description": "Specified the identifier and optional storage account type for the disk", "order": 3 }, "name": { "type": "string", "title": "Name", "description": "Specifies the disk name", "order": 4 }, "osType": { "type": "string", "title": "OS Type", "description": "This property allows you to specify the type of the os that is included in the disk if creating a vm from user-image or a specialized vhd", "order": 5 }, "vhd": { "$ref": "#/definitions/vhd", "title": "VHD", "description": "Specifies the uri of the location in storage where the vhd for the virtual machine should be placed", "order": 6 } }, "definitions": { "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } }, "windowsConfiguration": { "type": "object", "title": "windowsConfiguration", "properties": { "additionalUnattendContent": { "$ref": "#/definitions/additionalUnattendContent", "title": "Additional Unattend Content", "description": "Specifies additional xml formatted information that can be included in the unattend.xml file, which is used by windows setup", "order": 1 }, "enableAutomaticUpdates": { "type": "boolean", "title": "Enable Automatic Updates", "description": "Indicates whether virtual machine is enabled for automatic updates", "order": 2 }, "provisionVMAgent": { "type": "boolean", "title": "Provision VM Agent", "description": "Indicates whether virtual machine agent should be provisioned on the virtual machine", "order": 3 }, "winRM": { "$ref": "#/definitions/winRM", "title": "Win RM", "description": "Specifies the windows remote management listeners, this enables remote windows powershell", "order": 4 }, "winrRMListener": { "$ref": "#/definitions/listeners", "title": "WinrRM Listener", "description": "Contains configuration settings for the windows remote management service on the virtual machine", "order": 5 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } } } } } }, "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } }, "ssh": { "type": "object", "title": "ssh", "properties": { "publicKeys": { "type": "array", "title": "Public Keys", "description": "Specifies a collection of keys to be placed on the virtual machine", "items": { "$ref": "#/definitions/publicKeys" }, "order": 1 } }, "definitions": { "publicKeys": { "type": "object", "title": "publicKeys", "properties": { "keyData": { "type": "string", "title": "Key Data", "description": "SSH public key certificate used to authenticate with the vm through ssh", "order": 1 }, "path": { "type": "string", "title": "Path", "description": "Specifies the full path on the created VM where ssh public key is stored", "order": 2 } } } } }, "storageProfile": { "type": "object", "title": "storageProfile", "properties": { "dataDisks": { "type": "array", "title": "Data Disks", "description": "Specifies the parameters that are used to add a data disk to a virtual machine", "items": { "type": "object" }, "order": 1 }, "imageReference": { "$ref": "#/definitions/imageReference", "title": "Image Reference", "description": "Specifies information about the image to use", "order": 2 }, "osDisk": { "$ref": "#/definitions/osDisk", "title": "OS Disk", "description": "Specifies information about the operating system disk used by the virtual machine", "order": 3 } }, "definitions": { "imageReference": { "type": "object", "title": "imageReference", "properties": { "id": { "type": "string", "title": "Image Reference", "description": "Specifies the resource identifier of a virtual machine image in your subscription", "order": 1 }, "offer": { "type": "string", "title": "Offer", "description": "Specifies the offer of the platform image or marketplace image used to create the virtual machine", "order": 2 }, "publisher": { "type": "string", "title": "Publisher", "description": "Specifies the publisher of the platform image or marketplace image used to create the virtual machine", "order": 3 }, "sku": { "type": "string", "title": "SKU", "description": "Specifies the sku of the platform image or marketplace image used to create the virtual machine", "order": 4 }, "version": { "type": "string", "title": "Version", "description": "Specifies the version of the platform image or marketplace image used to create the virtual machine", "order": 5 } } }, "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "osDisk": { "type": "object", "title": "osDisk", "properties": { "caching": { "type": "string", "title": "Caching", "description": "Specifies the caching requirements", "order": 1 }, "createOption": { "type": "string", "title": "Create Option", "description": "Specifies how the virtual machine should be created", "order": 2 }, "managedDisk": { "$ref": "#/definitions/managedDisk", "title": "Managed Disk", "description": "Specified the identifier and optional storage account type for the disk", "order": 3 }, "name": { "type": "string", "title": "Name", "description": "Specifies the disk name", "order": 4 }, "osType": { "type": "string", "title": "OS Type", "description": "This property allows you to specify the type of the os that is included in the disk if creating a vm from user-image or a specialized vhd", "order": 5 }, "vhd": { "$ref": "#/definitions/vhd", "title": "VHD", "description": "Specifies the uri of the location in storage where the vhd for the virtual machine should be placed", "order": 6 } }, "definitions": { "managedDisk": { "type": "object", "title": "managedDisk", "properties": { "Id": { "type": "string", "title": "ID", "description": "Specifies the resource identifier of the managed disk", "order": 1 }, "storageAccountType": { "type": "string", "title": "Storage Account Type", "description": "Specifies the storage account type for the managed disk", "order": 2 } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } } } }, "tags": { "type": "object", "title": "tags", "properties": { "tags": { "type": "object", "title": "Tags", "description": "Tags", "order": 1 } } }, "vhd": { "type": "object", "title": "vhd", "properties": { "uri": { "type": "string", "title": "VHD", "description": "Specifies the vhd uri", "order": 1 } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } }, "windowsConfiguration": { "type": "object", "title": "windowsConfiguration", "properties": { "additionalUnattendContent": { "$ref": "#/definitions/additionalUnattendContent", "title": "Additional Unattend Content", "description": "Specifies additional xml formatted information that can be included in the unattend.xml file, which is used by windows setup", "order": 1 }, "enableAutomaticUpdates": { "type": "boolean", "title": "Enable Automatic Updates", "description": "Indicates whether virtual machine is enabled for automatic updates", "order": 2 }, "provisionVMAgent": { "type": "boolean", "title": "Provision VM Agent", "description": "Indicates whether virtual machine agent should be provisioned on the virtual machine", "order": 3 }, "winRM": { "$ref": "#/definitions/winRM", "title": "Win RM", "description": "Specifies the windows remote management listeners, this enables remote windows powershell", "order": 4 }, "winrRMListener": { "$ref": "#/definitions/listeners", "title": "WinrRM Listener", "description": "Contains configuration settings for the windows remote management service on the virtual machine", "order": 5 } }, "definitions": { "additionalUnattendContent": { "type": "object", "title": "additionalUnattendContent", "properties": { "component": { "type": "string", "title": "Component", "description": "Specifies the name of the component to configure with the added content", "order": 1 }, "content": { "type": "string", "title": "Content", "description": "Specifies the xml formatted content that is added to the unattend.xml file for the specified path and component", "order": 2 }, "pass": { "type": "string", "title": "Pass", "description": "Specifies the name of the pass that the content applies to, the only allowable value is oobeSystem", "order": 3 }, "settingName": { "type": "string", "title": "Setting Name", "description": "Specifies the name of the setting to which the content applies, possible values are: firstlogoncommands and autologon", "order": 4 } } }, "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } }, "winRM": { "type": "object", "title": "winRM", "properties": { "listeners": { "type": "array", "title": "Listeners", "items": { "$ref": "#/definitions/listeners" }, "order": 1 } }, "definitions": { "listeners": { "type": "object", "title": "listeners", "properties": { "certificateUrl": { "type": "string", "title": "Certificate Url", "description": "Specifies url of the certificate with which new virtual machines is provisioned", "order": 1 }, "protocol": { "type": "string", "title": "Protocol", "description": "Specifies the protocol of listener", "order": 2 } } } } } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
34.754717
173
0.420821
60ebc05e5609ce8525399cd37f1b06db93d31368
9,237
py
Python
train_tacotron.py
atoms18/WaveRNN
f38f33e7273aaa95566cbd4533ed4a737831592e
[ "MIT" ]
null
null
null
train_tacotron.py
atoms18/WaveRNN
f38f33e7273aaa95566cbd4533ed4a737831592e
[ "MIT" ]
null
null
null
train_tacotron.py
atoms18/WaveRNN
f38f33e7273aaa95566cbd4533ed4a737831592e
[ "MIT" ]
null
null
null
import torch from torch import optim import torch.nn.functional as F from utils import hparams as hp from utils.display import * from utils.dataset import get_tts_datasets from utils.text.symbols import symbols from utils.paths import Paths from models.tacotron import Tacotron import argparse from utils import data_parallel_workaround import os from pathlib import Path import time import numpy as np import sys from utils.checkpoints import save_checkpoint, restore_checkpoint from logger import Tacotron2Logger def np_now(x: torch.Tensor): return x.detach().cpu().numpy() def prepare_directories_and_logger(output_directory, log_directory): if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) logger = Tacotron2Logger(os.path.join(output_directory, log_directory)) return logger def main(): # Parse Arguments parser = argparse.ArgumentParser(description='Train Tacotron TTS') parser.add_argument('--force_train', '-f', action='store_true', help='Forces the model to train past total steps') parser.add_argument('--force_gta', '-g', action='store_true', help='Force the model to create GTA features') parser.add_argument('--force_cpu', '-c', action='store_true', help='Forces CPU-only training, even when in CUDA capable environment') parser.add_argument('--hp_file', metavar='FILE', default='hparams.py', help='The file to use for the hyperparameters') args = parser.parse_args() hp.configure(args.hp_file) # Load hparams from file paths = Paths(hp.data_path, hp.voc_model_id, hp.tts_model_id) force_train = args.force_train force_gta = args.force_gta if not args.force_cpu and torch.cuda.is_available(): device = torch.device('cuda') for session in hp.tts_schedule: _, _, batch_size = session if batch_size % torch.cuda.device_count() != 0: raise ValueError('`batch_size` must be evenly divisible by n_gpus!') else: device = torch.device('cpu') print('Using device:', device) # Instantiate Tacotron Model print('\nInitialising Tacotron Model...\n') model = Tacotron(embed_dims=hp.tts_embed_dims, num_chars=len(symbols), encoder_dims=hp.tts_encoder_dims, decoder_dims=hp.tts_decoder_dims, decoder_R=hp.tts_R_train, fft_bins=None, postnet_dims=None, encoder_K=hp.tts_encoder_K, lstm_dims=hp.tts_lstm_dims, postnet_K=None, num_highways=hp.tts_num_highways, dropout=hp.tts_dropout, stop_threshold=hp.tts_stop_threshold).to(device) optimizer = optim.Adam(model.parameters()) restore_checkpoint('tts', paths, model, optimizer, create_if_missing=True) scaler = torch.cuda.amp.GradScaler() logger = prepare_directories_and_logger("/content/drive/MyDrive/Colab Notebooks/voiceclone/model_outputs/ljspeech_lsa_smooth_attention", "logdir") if not force_gta: for i, session in enumerate(hp.tts_schedule): current_step = model.get_step() lr, max_step, batch_size = session training_steps = max_step - current_step # Do we need to change to the next session? if current_step >= max_step: # Are there no further sessions than the current one? if i == len(hp.tts_schedule)-1: # There are no more sessions. Check if we force training. if force_train: # Don't finish the loop - train forever training_steps = 999_999_999 else: # We have completed training. Breaking is same as continue break else: # There is a following session, go to it continue model.r = hp.tts_R_train simple_table([(f'Steps with r={hp.tts_R_train}', str(training_steps//1000) + 'k Steps'), ('Batch Size', batch_size), ('Learning Rate', lr), ('Outputs/Step (r)', model.r)]) train_set, attn_example = get_tts_datasets(paths.data, batch_size, hp.tts_R_train) tts_train_loop(paths, model, scaler, logger, optimizer, train_set, lr, training_steps, attn_example) print('Training Complete.') print('To continue training increase tts_total_steps in hparams.py or use --force_train\n') print('Creating Ground Truth Aligned Dataset...\n') train_set, attn_example = get_tts_datasets(paths.data, 8, model.r) create_gta_features(model, train_set, paths.gta) print('\n\nYou can now train WaveRNN on GTA features - use python train_wavernn.py --gta\n') def tts_train_loop(paths: Paths, model: Tacotron, scaler, logger, optimizer, train_set, lr, train_steps, attn_example): device = next(model.parameters()).device # use same device as model parameters for g in optimizer.param_groups: g['lr'] = lr duration = 0 total_iters = len(train_set) epochs = train_steps // total_iters + 1 for e in range(1, epochs+1): start = time.time() running_loss = 0 # Perform 1 epoch for i, (x, wav, ids, _, stop_targets) in enumerate(train_set, 1): x, wav = x.to(device), wav.to(device) stop_targets = stop_targets.to(device) # print(f"This Iteration\'s Total Steps: {wav.size(2)//model.r}\n") optimizer.zero_grad() with torch.cuda.amp.autocast(): # Parallelize model onto GPUS using workaround due to python bug if device.type == 'cuda' and torch.cuda.device_count() > 1: logplists, logdetlosts, attention, stop_outputs = data_parallel_workaround(model, x, wav) else: logplists, logdetlosts, attention, stop_outputs = model(x, wav) nll = -logplists - logdetlosts nll = nll / model.decoder_K nll = nll.mean() stop_loss = F.binary_cross_entropy_with_logits(stop_outputs, stop_targets) loss = nll + stop_loss scaler.scale(loss).backward() if hp.tts_clip_grad_norm is not None: grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hp.tts_clip_grad_norm) if np.isnan(grad_norm.cpu()): print('grad_norm was NaN!') scaler.step(optimizer) scaler.update() running_loss += loss.item() avg_loss = running_loss / i prev_duration = duration duration = (time.time() - start) speed = i / duration step = model.get_step() # k = step // 1000 if step % hp.tts_checkpoint_every == 0 or step == 1: ckpt_name = f'taco_step{step}' save_checkpoint('tts', paths, model, optimizer, name=ckpt_name, is_silent=True) logger.log_training(loss.item(), grad_norm, lr, duration - prev_duration, step, None, None) logger.log_validation(None, None, stop_targets, [stop_outputs, attention], step) with torch.no_grad(): # y_test = torch.rand(1, 5, 96*2).to(device) zlast, _, _, zlist = model.decoder.flows(wav[0, :, 0].view(1, 10//2, 96*2)) abc = model.decoder.flows.reverse([zlist[-1]], reconstruct=True) print("Reverse-Groundtruth diff: ", (wav[0, :, 0] - abc[0]).mean()) if attn_example in ids: idx = ids.index(attn_example) save_attention(np_now(attention[idx][:, :160]), paths.tts_attention/f'{step}') # save_spectrogram(np_now(m2_hat[idx]), paths.tts_mel_plot/f'{step}', 600) msg = f'|Epoch: {e}/{epochs} ({i}/{total_iters}) | Avg Loss: {avg_loss:#.4} | NLL: {loss.item():#.4} | {speed:#.2} iteration/s | Step: {step} | ' print(msg) # Must save latest optimizer state to ensure that resuming training # doesn't produce artifacts save_checkpoint('tts', paths, model, optimizer, is_silent=True) model.log(paths.tts_log, msg) print(' ') def create_gta_features(model: Tacotron, train_set, save_path: Path): device = next(model.parameters()).device # use same device as model parameters iters = len(train_set) for i, (x, mels, ids, mel_lens) in enumerate(train_set, 1): x, mels = x.to(device), mels.to(device) with torch.no_grad(): _, gta, _ = model(x, mels) gta = gta.cpu().numpy() for j, item_id in enumerate(ids): mel = gta[j][:, :mel_lens[j]] mel = (mel + 4) / 8 np.save(save_path/f'{item_id}.npy', mel, allow_pickle=False) bar = progbar(i, iters) msg = f'{bar} {i}/{iters} Batches ' stream(msg) if __name__ == "__main__": main()
40.16087
157
0.60799
6706643443cdbf2a0884eedda5a2d823ecd23b82
18,881
py
Python
code/YOLO101_1Resolusi_80x60_TrainCDV2_OK1.py
mlcv-lab/mr3dcapsnet
d0b37ca085073257b0c485210ec92a5c6e7d9bb6
[ "Apache-2.0" ]
null
null
null
code/YOLO101_1Resolusi_80x60_TrainCDV2_OK1.py
mlcv-lab/mr3dcapsnet
d0b37ca085073257b0c485210ec92a5c6e7d9bb6
[ "Apache-2.0" ]
null
null
null
code/YOLO101_1Resolusi_80x60_TrainCDV2_OK1.py
mlcv-lab/mr3dcapsnet
d0b37ca085073257b0c485210ec92a5c6e7d9bb6
[ "Apache-2.0" ]
1
2021-02-21T16:07:39.000Z
2021-02-21T16:07:39.000Z
# -*- coding: utf-8 -*- """ Created on Fri Jul 14 13:24:34 2017 @author: user """ #from keras.preprocessing.image import ImageDataGenerator #from keras.models import Sequential #from keras.layers.core import Dense, Dropout, Activation, Flatten, SpatialDropout3D, Merge #from keras.layers.convolutional import Convolution3D, MaxPooling3D from keras.optimizers import SGD, RMSprop, Adam from keras.utils import np_utils, generic_utils import os import pandas as pd import matplotlib from keras.callbacks import ModelCheckpoint import keras.callbacks import matplotlib.pyplot as plt import numpy as np import cv2 from sklearn.cross_validation import train_test_split from sklearn import cross_validation import csv from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten, SpatialDropout3D from keras.layers.convolutional import Convolution3D, MaxPooling3D from sklearn.metrics import classification_report,confusion_matrix,cohen_kappa_score,roc_auc_score #from keras.regularizers import l2, l1, WeightRegularizer from keras.layers.normalization import BatchNormalization import gc os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1" def getLabelFromIdx(x): return { 1 : 'ApplyEyeMakeup', 2 : 'ApplyLipstick', 3 : 'Archery', 4 : 'BabyCrawling', 5 : 'BalanceBeam', 6 : 'BandMarching', 7 : 'BaseballPitch', 8 : 'Basketball', 9 : 'BasketballDunk', 10 : 'BenchPress', 11 : 'Biking', 12 : 'Billiards', 13 : 'BlowDryHair', 14 : 'BlowingCandles', 15 : 'BodyWeightSquats', 16 : 'Bowling', 17 : 'BoxingPunchingBag', 18 : 'BoxingSpeedBag', 19 : 'BreastStroke', 20 : 'BrushingTeeth', 21 : 'CleanAndJerk', 22 : 'CliffDiving', 23 : 'CricketBowling', 24 : 'CricketShot', 25 : 'CuttingInKitchen', 26 : 'Diving', 27 : 'Drumming', 28 : 'Fencing', 29 : 'FieldHockeyPenalty', 30 : 'FloorGymnastics', 31 : 'FrisbeeCatch', 32 : 'FrontCrawl', 33 : 'GolfSwing', 34 : 'Haircut', 35 : 'Hammering', 36 : 'HammerThrow', 37 : 'HandstandPushups', 38 : 'HandstandWalking', 39 : 'HeadMassage', 40 : 'HighJump', 41 : 'HorseRace', 42 : 'HorseRiding', 43 : 'HulaHoop', 44 : 'IceDancing', 45 : 'JavelinThrow', 46 : 'JugglingBalls', 47 : 'JumpingJack', 48 : 'JumpRope', 49 : 'Kayaking', 50 : 'Knitting', 51 : 'LongJump', 52 : 'Lunges', 53 : 'MilitaryParade', 54 : 'Mixing', 55 : 'MoppingFloor', 56 : 'Nunchucks', 57 : 'ParallelBars', 58 : 'PizzaTossing', 59 : 'PlayingCello', 60 : 'PlayingDaf', 61 : 'PlayingDhol', 62 : 'PlayingFlute', 63 : 'PlayingGuitar', 64 : 'PlayingPiano', 65 : 'PlayingSitar', 66 : 'PlayingTabla', 67 : 'PlayingViolin', 68 : 'PoleVault', 69 : 'PommelHorse', 70 : 'PullUps', 71 : 'Punch', 72 : 'PushUps', 73 : 'Rafting', 74 : 'RockClimbingIndoor', 75 : 'RopeClimbing', 76 : 'Rowing', 77 : 'SalsaSpin', 78 : 'ShavingBeard', 79 : 'Shotput', 80 : 'SkateBoarding', 81 : 'Skiing', 82 : 'Skijet', 83 : 'SkyDiving', 84 : 'SoccerJuggling', 85 : 'SoccerPenalty', 86 : 'StillRings', 87 : 'SumoWrestling', 88 : 'Surfing', 89 : 'Swing', 90 : 'TableTennisShot', 91 : 'TaiChi', 92 : 'TennisSwing', 93 : 'ThrowDiscus', 94 : 'TrampolineJumping', 95 : 'Typing', 96 : 'UnevenBars', 97 : 'VolleyballSpiking', 98 : 'WalkingWithDog', 99 : 'WallPushups', 100 : 'WritingOnBoard', 101 : 'YoYo' }.get(x, "----") R1x = 60 R1y = 90 R2x = 2 R2y = 3 R3x = 2 R3y = 3 RDepth = 13 kcv = 1 vartuning = '1Resolusi_90x60' filenya = 'YOLO_U_V1_' + vartuning + '.csv' with open(filenya, 'w') as out_file: writer = csv.writer(out_file, lineterminator = '\n') grup = [] grup.append('Blok ke-') grup.append('Skor Akurasi') grup.append('Skor Kappa') writer.writerows([grup]) grup = [] X_train_R1 = [] X_train_R2 = [] X_train_R3 = [] labels_train = [] count_train = 0 X_test_R1 = [] X_test_R2 = [] X_test_R3 = [] labels_test = [] count_test = 0 # training data input for labelIdx in range(1, 101): print labelIdx listing = os.listdir('TestData/' + getLabelFromIdx(labelIdx) + '/') count_pretesting = 0 for vid in listing: count_pretesting += 1 # # if count_pretesting > 5: # break vid = 'TestData/' + getLabelFromIdx(labelIdx) + '/' +vid framesR1 = [] framesR2 = [] framesR3 = [] cap = cv2.VideoCapture(vid) fps = cap.get(5) #print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps) #test frame = [] ret, frame = cap.read() #print frame.shape if frame is None: print "image not readable" break count = 0 kondisi = True while kondisi == True: ret, frame = cap.read() if frame is None: print "skipping vid" break count += 1 if not((count)%4 == 0): continue frameR1 = cv2.resize(frame, (R1x, R1y), interpolation=cv2.INTER_AREA) framesR1.append(frameR1) frameR2 = cv2.resize(frame, (R2x, R2y), interpolation=cv2.INTER_AREA) framesR2.append(frameR2) frameR3 = cv2.resize(frame, (R3x, R3y), interpolation=cv2.INTER_AREA) framesR3.append(frameR3) #plt.imshow(gray, cmap = plt.get_cmap('gray')) #plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis #plt.show() #cv2.imshow('frame',gray) if count == 52: kondisi = False if cv2.waitKey(1) & 0xFF == ord('q'): break if not(count == 52): print "vid not saved" continue count_test += 1 label = labelIdx-1 labels_test.append(label) cap.release() cv2.destroyAllWindows() inputR1=np.array(framesR1) inputR2=np.array(framesR2) inputR3=np.array(framesR3) #print input.shape iptR1=inputR1 iptR2=inputR2 iptR3=inputR3 #print ipt.shape X_test_R1.append(iptR1) X_test_R2.append(iptR2) X_test_R3.append(iptR3) listing = os.listdir('TrainData/' + getLabelFromIdx(labelIdx) + '/') count_pretesting = 0 for vid in listing: count_pretesting += 1 # if count_pretesting > 5: # break vid = 'TrainData/' + getLabelFromIdx(labelIdx) + '/' +vid framesR1 = [] framesR2 = [] framesR3 = [] cap = cv2.VideoCapture(vid) fps = cap.get(5) #print "Frames per second using video.get(cv2.cv.CV_CAP_PROP_FPS): {0}".format(fps) #test frame = [] ret, frame = cap.read() #print frame.shape if frame is None: print "image not readable" break count = 0 kondisi = True while kondisi == True: ret, frame = cap.read() if frame is None: print "skipping vid" break count += 1 if not((count)%4 == 0): continue frameR1 = cv2.resize(frame, (R1x, R1y), interpolation=cv2.INTER_AREA) framesR1.append(frameR1) frameR2 = cv2.resize(frame, (R2x, R2y), interpolation=cv2.INTER_AREA) framesR2.append(frameR2) frameR3 = cv2.resize(frame, (R3x, R3y), interpolation=cv2.INTER_AREA) framesR3.append(frameR3) #plt.imshow(gray, cmap = plt.get_cmap('gray')) #plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis #plt.show() #cv2.imshow('frame',gray) if count == 52: kondisi = False if cv2.waitKey(1) & 0xFF == ord('q'): break if not(count == 52): print "vid not saved" continue count_train += 1 label = labelIdx-1 labels_train.append(label) cap.release() cv2.destroyAllWindows() inputR1=np.array(framesR1) inputR2=np.array(framesR2) inputR3=np.array(framesR3) #print input.shape iptR1=inputR1 iptR2=inputR2 iptR3=inputR3 #print ipt.shape X_train_R1.append(iptR1) X_train_R2.append(iptR2) X_train_R3.append(iptR3) # formatting data X_train_R1_array = (X_train_R1) X_train_R2_array = (X_train_R2) X_train_R3_array = (X_train_R3) labels_train_array = np.array(labels_train) Y_train = np_utils.to_categorical(labels_train_array, 101) del X_train_R1 del X_train_R2 del X_train_R3 gc.collect() X_test_R1_array = (X_test_R1) X_test_R2_array = (X_test_R2) X_test_R3_array = (X_test_R3) labels_test_array = np.array(labels_test) Y_test = np_utils.to_categorical(labels_test_array, 101) del X_test_R1 del X_test_R2 del X_test_R3 gc.collect() test_set_R1 = np.zeros((count_test, RDepth, R1y,R1x,3)) test_set_R2 = np.zeros((count_test, RDepth, R2y,R2x,3)) test_set_R3 = np.zeros((count_test, RDepth, R3y,R3x,3)) for h in xrange(count_test): test_set_R1[h][:][:][:][:]=X_test_R1_array[h] test_set_R2[h][:][:][:][:]=X_test_R2_array[h] test_set_R3[h][:][:][:][:]=X_test_R3_array[h] train_set_R1 = np.zeros((count_train, RDepth, R1y,R1x,3)) train_set_R2 = np.zeros((count_train, RDepth, R2y,R2x,3)) train_set_R3 = np.zeros((count_train, RDepth, R3y,R3x,3)) for h in xrange(count_train): train_set_R1[h][:][:][:][:]=X_train_R1_array[h] train_set_R2[h][:][:][:][:]=X_train_R2_array[h] train_set_R3[h][:][:][:][:]=X_train_R3_array[h] del X_test_R1_array del X_test_R2_array del X_test_R3_array gc.collect() del X_train_R1_array del X_train_R2_array del X_train_R3_array gc.collect() train_set_R1 = train_set_R1.astype('float32') train_set_R1 -= 127.5 train_set_R1 /=127.5 train_set_R2 = train_set_R2.astype('float32') train_set_R2 -= 127.5 train_set_R2 /=127.5 train_set_R3 = train_set_R3.astype('float32') train_set_R3 -= 127.5 train_set_R3 /=127.5 test_set_R1 = test_set_R1.astype('float32') test_set_R1 -= 127.5 test_set_R1 /=127.5 test_set_R2 = test_set_R2.astype('float32') test_set_R2 -= 127.5 test_set_R2 /=127.5 test_set_R3 = test_set_R3.astype('float32') test_set_R3 -= 127.5 test_set_R3 /=127.5 #%% definisikan sebuah model # # Parameter tuning # jumEpoch = 25 # nb_classes = 8 # #Lengan A # filterNumL1 = 16 # jumlah filter L1 # filterSizeXYL1 = 5 #ukuran filter dimensi spasial # filterSizeTL1 = 3#ukuran filter dimensi spasial # # poolingSizeXYL1 = 3 # poolingSizeTL1 = 1 # poolingStrideXYL1 = 1 # poolingStrideTL1 = 1 #parameter pooling L1 # #Lengan B # filterNumL1B = 32 # jumlah filter L1 # filterSizeXYL1B = 3 #ukuran filter dimensi spasial # filterSizeTL1B = 3 #ukuran filter dimensi spasial # # poolingSizeXYL1B = 3 # poolingSizeTL1B = 1 # poolingStrideXYL1B = 1 # poolingStrideTL1B = 1 #parameter pooling L1 # Define model # modelA = Sequential() # modelA.add(Convolution3D(filterNumL1,kernel_dim1=filterSizeXYL1, kernel_dim2=filterSizeXYL1, kernel_dim3=filterSizeTL1, input_shape=(10, 20, 30, 3), activation='relu', dim_ordering='tf')) # modelA.add(MaxPooling3D(pool_size=(poolingSizeXYL1, poolingSizeXYL1, poolingSizeTL1), dim_ordering='tf')) # modelA.add(SpatialDropout3D(0.4)) # modelA.add(Flatten()) # # modelB = Sequential() # modelB.add(Convolution3D(filterNumL1B,kernel_dim1=filterSizeXYL1B, kernel_dim2=filterSizeXYL1B, kernel_dim3=filterSizeTL1B, input_shape=(10, 20, 30, 3), activation='relu', dim_ordering='tf')) # modelB.add(MaxPooling3D(pool_size=(poolingSizeXYL1B, poolingSizeXYL1B, poolingSizeTL1B), dim_ordering='tf')) # modelB.add(SpatialDropout3D(0.4)) # modelB.add(Flatten()) # # # model = Sequential() # model.add(Merge([modelA, modelB], mode='concat')) # model.add(Dense(paramuji, init='normal', activation='relu')) # # model.add(Dropout(0.4)) # # model.add(Dense(nb_classes,init='normal')) # # model.add(Activation('softmax')) # model.summary() # model.compile(loss='categorical_crossentropy', optimizer='RMSprop', metrics = ["accuracy"]) # # # # Train the model # # hist = model.fit([train_set, train_set], Y_train, validation_data=([test_set, test_set], Y_test), # batch_size=15, nb_epoch = jumEpoch, show_accuracy=True, shuffle=True, verbose = 0) # # # Evaluate the model # score = model.evaluate([test_set, test_set], Y_test, batch_size=15, show_accuracy=True) # # Define model # Parameter tuning jumEpoch = 250 nb_classes = 101 filterNumL1 = 64 # jumlah filter L1 filterSizeXYL1 = 3 #ukuran filter dimensi spasial filterSizeTL1 = 3#ukuran filter dimensi spasial poolingSizeXYL1 = 2 poolingSizeTL1 = 2 poolingStrideXYL1 = 1 poolingStrideTL1 = 1 #parameter pooling L1 filterNumL2 = 64 # jumlah filter L1 filterSizeXYL2 = 3 #ukuran filter dimensi spasial filterSizeTL2 = 3#ukuran filter dimensi spasial model = Sequential() model.add(Convolution3D(filterNumL1,kernel_dim1=filterSizeTL1, kernel_dim2=filterSizeXYL1, kernel_dim3=filterSizeXYL1, input_shape=(RDepth, R1y, R1x,3), activation='relu', dim_ordering='tf')) #model.add(BatchNormalization(epsilon=0.001, axis=-1, momentum=0.99, weights=None, beta_init='zero', gamma_init='one', gamma_regularizer=None, beta_regularizer=None)) model.add(MaxPooling3D(pool_size=(1, poolingSizeXYL1, poolingSizeTL1), dim_ordering='tf')) model.add(SpatialDropout3D(0.3)) model.add(Convolution3D(filterNumL2,kernel_dim1=filterSizeTL2, kernel_dim2=filterSizeXYL2, kernel_dim3=filterSizeXYL2, activation='relu', dim_ordering='tf')) # model.add(Convolution3D(filterNumL2,kernel_dim1=1, kernel_dim2=3, kernel_dim3=3, activation='relu', dim_ordering='tf')) #model.add(BatchNormalization(epsilon=0.001, axis=-1, momentum=0.99, weights=None, beta_init='zero', gamma_init='one', gamma_regularizer=None, beta_regularizer=None)) model.add(MaxPooling3D(pool_size=(1, poolingSizeXYL1, poolingSizeTL1), dim_ordering='tf')) model.add(SpatialDropout3D(0.3)) model.add(Convolution3D(128,kernel_dim1=5, kernel_dim2=3, kernel_dim3=3, activation='relu', dim_ordering='tf')) # model.add(Convolution3D(128,kernel_dim1=1, kernel_dim2=3, kernel_dim3=3, activation='relu', dim_ordering='tf')) #model.add(BatchNormalization(epsilon=0.001, axis=-1, momentum=0.99, weights=None, beta_init='zero', gamma_init='one', gamma_regularizer=None, beta_regularizer=None)) model.add(MaxPooling3D(pool_size=(1, poolingSizeXYL1, poolingSizeTL1), dim_ordering='tf')) model.add(SpatialDropout3D(0.5)) model.add(Flatten()) model.add(BatchNormalization(epsilon=0.001, axis=-1, momentum=0.99, weights=None, beta_init='zero', gamma_init='one', gamma_regularizer=None, beta_regularizer=None)) model.add(Dense(nb_classes,init='normal')) model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics = ['acc']) # Train the model nama_filenya = "weights_" + vartuning +"_.hdf5" checkpointer = ModelCheckpoint(filepath=nama_filenya, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=True) hist = model.fit(train_set_R1, Y_train, validation_data=(test_set_R1, Y_test), batch_size=8, nb_epoch = jumEpoch, shuffle=True, verbose = 1, callbacks = [checkpointer]) # Evaluate the model # load best model model2 = Sequential() model2.load_weights(nama_filenya) score = model2.evaluate(test_set_R1, Y_test, batch_size=8) print "Skor Model:" print score[1] Y_pred = model2.predict_classes(test_set_R1, batch_size = 8) grup.append(kcv) grup.append(score[1]) cohennya = cohen_kappa_score(np.argmax(Y_test,axis=1), Y_pred) print "kohen kappa:" print cohennya grup.append(cohennya) writer.writerows([grup])
35.225746
213
0.559557
93f7abb6ce10700486b64f74ff2904abb218ef3e
976
py
Python
mnist-ml-beginners.py
arpitshah101/ImageClassifier
b1b75b81f5ca9b1c3373a75c70588d92aff67eef
[ "MIT" ]
1
2021-01-02T20:22:36.000Z
2021-01-02T20:22:36.000Z
mnist-ml-beginners.py
arpitshah101/ImageClassifier
b1b75b81f5ca9b1c3373a75c70588d92aff67eef
[ "MIT" ]
null
null
null
mnist-ml-beginners.py
arpitshah101/ImageClassifier
b1b75b81f5ca9b1c3373a75c70588d92aff67eef
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x, W) + b) # Training y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
34.857143
82
0.719262
9ccdb4307a3f387e7f783de9333df594aa59313f
786
py
Python
Example 03 - ORM/address.py
tgroven/PythonSqlAlchemyLunchAndLearn
eebcb74cbf5db007ee9f2597303f4fe7ff1f5a44
[ "MIT" ]
null
null
null
Example 03 - ORM/address.py
tgroven/PythonSqlAlchemyLunchAndLearn
eebcb74cbf5db007ee9f2597303f4fe7ff1f5a44
[ "MIT" ]
null
null
null
Example 03 - ORM/address.py
tgroven/PythonSqlAlchemyLunchAndLearn
eebcb74cbf5db007ee9f2597303f4fe7ff1f5a44
[ "MIT" ]
null
null
null
from sqlalchemy import Column, Integer, String, Boolean, DateTime, ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.dialects.mssql import UNIQUEIDENTIFIER #from customer import Customer from base import Base class Address(Base): __tablename__ = 'address' __table_args__ = {'schema': 'SalesLT'} address_id = Column('AddressID', Integer, primary_key=True) address_line_1 = Column('AddressLine1', String(60)) address_line_2 = Column('AddressLine2', String(60)) city = Column(String(30)) state_province = Column('StateProvince', String(50)) country_region = Column('CountryRegion', String(50)) postal_code = Column('PostalCode', String(15)) rowguid = Column(UNIQUEIDENTIFIER) modified_date = Column('ModifiedDate', DateTime)
37.428571
77
0.744275
7fe71983df4dcc647134af527937152b68d8f23d
1,408
py
Python
tests/integration/link/test_absolute_path.py
Joeyt1008/dash-core-components
c806ea66eb5b674ef84fd9efae01cfa5292f143e
[ "MIT" ]
null
null
null
tests/integration/link/test_absolute_path.py
Joeyt1008/dash-core-components
c806ea66eb5b674ef84fd9efae01cfa5292f143e
[ "MIT" ]
null
null
null
tests/integration/link/test_absolute_path.py
Joeyt1008/dash-core-components
c806ea66eb5b674ef84fd9efae01cfa5292f143e
[ "MIT" ]
null
null
null
import pytest import dash from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html @pytest.mark.DCC782 def test_lipa001_path(dash_dcc): app = dash.Dash(__name__) app.layout = html.Div( [ dcc.Link("Relative Path", id="link1", href="google.com"), dcc.Location(id="url", refresh=False), html.Div(id="content"), ] ) @app.callback(Output("content", "children"), [Input("url", "pathname")]) def display_children(children): return children dash_dcc.start_server(app) dash_dcc.wait_for_element("#link1").click() dash_dcc.wait_for_text_to_equal("#content", "/google.com") assert dash_dcc.get_logs() == [] @pytest.mark.DCC782 def test_lipa002_path(dash_dcc): app = dash.Dash(__name__) app.layout = html.Div( [ dcc.Link( children="Absolute Path", id="link1", href="https://google.com", refresh=True, ), dcc.Location(id="url", refresh=False), ] ) dash_dcc.start_server(app) dash_dcc.wait_for_element("#link1").click() location = dash_dcc.driver.execute_script( """ return window.location.href """ ) assert location == "https://www.google.com/" assert dash_dcc.get_logs() == []
23.864407
76
0.59517
6131be5603488522710731fb2a10b9750d62a348
1,223
py
Python
src/Data/Database.py
andreisalvador/bills-management-telegram-bot
ac0ae11cd6196ab8940c3d87dc470018d648f757
[ "MIT" ]
null
null
null
src/Data/Database.py
andreisalvador/bills-management-telegram-bot
ac0ae11cd6196ab8940c3d87dc470018d648f757
[ "MIT" ]
null
null
null
src/Data/Database.py
andreisalvador/bills-management-telegram-bot
ac0ae11cd6196ab8940c3d87dc470018d648f757
[ "MIT" ]
null
null
null
import datetime from sqlalchemy import create_engine, Column, String, Enum, Numeric, SmallInteger, Boolean, ForeignKey, Date, \ BigInteger from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker import os from src.Enums.PeriodEnum import PeriodEnum engine = create_engine(os.environ['CONNECTION_STRING'], echo=True) Session = sessionmaker(bind=engine) session = Session() Base = declarative_base() class Bill(Base): __tablename__ = 'Bills' id = Column(BigInteger, primary_key=True) name = Column(String) value = Column(Numeric) expiration_day = Column(SmallInteger) expiration_period = Column(Enum(PeriodEnum)) user_id = Column(BigInteger) created_at = Column(Date, default=datetime.datetime.now()) class BillHistory(Base): __tablename__ = 'BillsHistory' id = Column(BigInteger, primary_key=True) expiration_date = Column(Date, nullable=False) payment_date = Column(Date, nullable=True) is_paid = Column(Boolean, default=False) is_value_changed = Column(Boolean, default=False) value_payed = Column(Numeric, default=0) bill_id = Column(BigInteger, ForeignKey('Bills.id')) Base.metadata.create_all(engine)
29.829268
111
0.751431
5baf196f756ee87bcc1203548c3295ce857d24d2
271
py
Python
setup.py
old-pinky/AioPaperScroll-SDK
f5dbd2edcbeadedfaa3f846db7610ab6cb018bef
[ "MIT" ]
null
null
null
setup.py
old-pinky/AioPaperScroll-SDK
f5dbd2edcbeadedfaa3f846db7610ab6cb018bef
[ "MIT" ]
null
null
null
setup.py
old-pinky/AioPaperScroll-SDK
f5dbd2edcbeadedfaa3f846db7610ab6cb018bef
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name='aiopaperscroll', version='1.0.0', packages=find_packages(), install_requires=[ 'loguru', 'asyncio', 'aiohttp'], url='https://github.com/old-pinky/AioPaperScroll-SDK' )
19.357143
57
0.627306
b33bc428ecb4566db7fba0bc10f9ebe1bbb9eb22
16,205
py
Python
tools/wptrunner/wptrunner/executors/base.py
servo-wpt-sync/web-platform-tests
56e2df852354bc2b89e6d17a9dbafd280d24203c
[ "BSD-3-Clause" ]
null
null
null
tools/wptrunner/wptrunner/executors/base.py
servo-wpt-sync/web-platform-tests
56e2df852354bc2b89e6d17a9dbafd280d24203c
[ "BSD-3-Clause" ]
null
null
null
tools/wptrunner/wptrunner/executors/base.py
servo-wpt-sync/web-platform-tests
56e2df852354bc2b89e6d17a9dbafd280d24203c
[ "BSD-3-Clause" ]
null
null
null
import hashlib import httplib import os import threading import traceback import socket import urlparse from abc import ABCMeta, abstractmethod from ..testrunner import Stop here = os.path.split(__file__)[0] # Extra timeout to use after internal test timeout at which the harness # should force a timeout extra_timeout = 5 # seconds def executor_kwargs(test_type, server_config, cache_manager, **kwargs): timeout_multiplier = kwargs["timeout_multiplier"] if timeout_multiplier is None: timeout_multiplier = 1 executor_kwargs = {"server_config": server_config, "timeout_multiplier": timeout_multiplier, "debug_info": kwargs["debug_info"]} if test_type == "reftest": executor_kwargs["screenshot_cache"] = cache_manager.dict() if test_type == "wdspec": executor_kwargs["binary"] = kwargs.get("binary") executor_kwargs["webdriver_binary"] = kwargs.get("webdriver_binary") executor_kwargs["webdriver_args"] = kwargs.get("webdriver_args") return executor_kwargs def strip_server(url): """Remove the scheme and netloc from a url, leaving only the path and any query or fragment. url - the url to strip e.g. http://example.org:8000/tests?id=1#2 becomes /tests?id=1#2""" url_parts = list(urlparse.urlsplit(url)) url_parts[0] = "" url_parts[1] = "" return urlparse.urlunsplit(url_parts) class TestharnessResultConverter(object): harness_codes = {0: "OK", 1: "ERROR", 2: "TIMEOUT"} test_codes = {0: "PASS", 1: "FAIL", 2: "TIMEOUT", 3: "NOTRUN"} def __call__(self, test, result): """Convert a JSON result into a (TestResult, [SubtestResult]) tuple""" result_url, status, message, stack, subtest_results = result assert result_url == test.url, ("Got results from %s, expected %s" % (result_url, test.url)) harness_result = test.result_cls(self.harness_codes[status], message) return (harness_result, [test.subtest_result_cls(name, self.test_codes[status], message, stack) for name, status, message, stack in subtest_results]) testharness_result_converter = TestharnessResultConverter() def reftest_result_converter(self, test, result): return (test.result_cls(result["status"], result["message"], extra=result.get("extra")), []) def pytest_result_converter(self, test, data): harness_data, subtest_data = data if subtest_data is None: subtest_data = [] harness_result = test.result_cls(*harness_data) subtest_results = [test.subtest_result_cls(*item) for item in subtest_data] return (harness_result, subtest_results) class ExecutorException(Exception): def __init__(self, status, message): self.status = status self.message = message class TestExecutor(object): __metaclass__ = ABCMeta test_type = None convert_result = None supports_testdriver = False def __init__(self, browser, server_config, timeout_multiplier=1, debug_info=None, **kwargs): """Abstract Base class for object that actually executes the tests in a specific browser. Typically there will be a different TestExecutor subclass for each test type and method of executing tests. :param browser: ExecutorBrowser instance providing properties of the browser that will be tested. :param server_config: Dictionary of wptserve server configuration of the form stored in TestEnvironment.external_config :param timeout_multiplier: Multiplier relative to base timeout to use when setting test timeout. """ self.runner = None self.browser = browser self.server_config = server_config self.timeout_multiplier = timeout_multiplier self.debug_info = debug_info self.last_environment = {"protocol": "http", "prefs": {}} self.protocol = None # This must be set in subclasses @property def logger(self): """StructuredLogger for this executor""" if self.runner is not None: return self.runner.logger def setup(self, runner): """Run steps needed before tests can be started e.g. connecting to browser instance :param runner: TestRunner instance that is going to run the tests""" self.runner = runner if self.protocol is not None: self.protocol.setup(runner) def teardown(self): """Run cleanup steps after tests have finished""" if self.protocol is not None: self.protocol.teardown() def run_test(self, test): """Run a particular test. :param test: The test to run""" if test.environment != self.last_environment: self.on_environment_change(test.environment) try: result = self.do_test(test) except Exception as e: result = self.result_from_exception(test, e) if result is Stop: return result # log result of parent test if result[0].status == "ERROR": self.logger.debug(result[0].message) self.last_environment = test.environment self.runner.send_message("test_ended", test, result) def server_url(self, protocol): return "%s://%s:%s" % (protocol, self.server_config["host"], self.server_config["ports"][protocol][0]) def test_url(self, test): return urlparse.urljoin(self.server_url(test.environment["protocol"]), test.url) @abstractmethod def do_test(self, test): """Test-type and protocol specific implementation of running a specific test. :param test: The test to run.""" pass def on_environment_change(self, new_environment): pass def result_from_exception(self, test, e): if hasattr(e, "status") and e.status in test.result_cls.statuses: status = e.status else: status = "ERROR" message = unicode(getattr(e, "message", "")) if message: message += "\n" message += traceback.format_exc(e) return test.result_cls(status, message), [] class TestharnessExecutor(TestExecutor): convert_result = testharness_result_converter class RefTestExecutor(TestExecutor): convert_result = reftest_result_converter def __init__(self, browser, server_config, timeout_multiplier=1, screenshot_cache=None, debug_info=None, **kwargs): TestExecutor.__init__(self, browser, server_config, timeout_multiplier=timeout_multiplier, debug_info=debug_info) self.screenshot_cache = screenshot_cache class RefTestImplementation(object): def __init__(self, executor): self.timeout_multiplier = executor.timeout_multiplier self.executor = executor # Cache of url:(screenshot hash, screenshot). Typically the # screenshot is None, but we set this value if a test fails # and the screenshot was taken from the cache so that we may # retrieve the screenshot from the cache directly in the future self.screenshot_cache = self.executor.screenshot_cache self.message = None def setup(self): pass def teardown(self): pass @property def logger(self): return self.executor.logger def get_hash(self, test, viewport_size, dpi): timeout = test.timeout * self.timeout_multiplier key = (test.url, viewport_size, dpi) if key not in self.screenshot_cache: success, data = self.executor.screenshot(test, viewport_size, dpi) if not success: return False, data screenshot = data hash_value = hashlib.sha1(screenshot).hexdigest() self.screenshot_cache[key] = (hash_value, None) rv = (hash_value, screenshot) else: rv = self.screenshot_cache[key] self.message.append("%s %s" % (test.url, rv[0])) return True, rv def is_pass(self, lhs_hash, rhs_hash, relation): assert relation in ("==", "!=") self.message.append("Testing %s %s %s" % (lhs_hash, relation, rhs_hash)) return ((relation == "==" and lhs_hash == rhs_hash) or (relation == "!=" and lhs_hash != rhs_hash)) def run_test(self, test): viewport_size = test.viewport_size dpi = test.dpi self.message = [] # Depth-first search of reference tree, with the goal # of reachings a leaf node with only pass results stack = list(((test, item[0]), item[1]) for item in reversed(test.references)) while stack: hashes = [None, None] screenshots = [None, None] nodes, relation = stack.pop() for i, node in enumerate(nodes): success, data = self.get_hash(node, viewport_size, dpi) if success is False: return {"status": data[0], "message": data[1]} hashes[i], screenshots[i] = data if self.is_pass(hashes[0], hashes[1], relation): if nodes[1].references: stack.extend(list(((nodes[1], item[0]), item[1]) for item in reversed(nodes[1].references))) else: # We passed return {"status":"PASS", "message": None} # We failed, so construct a failure message for i, (node, screenshot) in enumerate(zip(nodes, screenshots)): if screenshot is None: success, screenshot = self.retake_screenshot(node, viewport_size, dpi) if success: screenshots[i] = screenshot log_data = [{"url": nodes[0].url, "screenshot": screenshots[0]}, relation, {"url": nodes[1].url, "screenshot": screenshots[1]}] return {"status": "FAIL", "message": "\n".join(self.message), "extra": {"reftest_screenshots": log_data}} def retake_screenshot(self, node, viewport_size, dpi): success, data = self.executor.screenshot(node, viewport_size, dpi) if not success: return False, data key = (node.url, viewport_size, dpi) hash_val, _ = self.screenshot_cache[key] self.screenshot_cache[key] = hash_val, data return True, data class WdspecExecutor(TestExecutor): convert_result = pytest_result_converter protocol_cls = None def __init__(self, browser, server_config, webdriver_binary, webdriver_args, timeout_multiplier=1, capabilities=None, debug_info=None, **kwargs): self.do_delayed_imports() TestExecutor.__init__(self, browser, server_config, timeout_multiplier=timeout_multiplier, debug_info=debug_info) self.webdriver_binary = webdriver_binary self.webdriver_args = webdriver_args self.timeout_multiplier = timeout_multiplier self.capabilities = capabilities self.protocol = self.protocol_cls(self, browser) def is_alive(self): return self.protocol.is_alive def on_environment_change(self, new_environment): pass def do_test(self, test): timeout = test.timeout * self.timeout_multiplier + extra_timeout success, data = WdspecRun(self.do_wdspec, self.protocol.session_config, test.abs_path, timeout).run() if success: return self.convert_result(test, data) return (test.result_cls(*data), []) def do_wdspec(self, session_config, path, timeout): harness_result = ("OK", None) subtest_results = pytestrunner.run(path, self.server_config, session_config, timeout=timeout) return (harness_result, subtest_results) def do_delayed_imports(self): global pytestrunner from . import pytestrunner class Protocol(object): def __init__(self, executor, browser): self.executor = executor self.browser = browser @property def logger(self): return self.executor.logger def setup(self, runner): pass def teardown(self): pass def wait(self): pass class WdspecRun(object): def __init__(self, func, session, path, timeout): self.func = func self.result = (None, None) self.session = session self.path = path self.timeout = timeout self.result_flag = threading.Event() def run(self): """Runs function in a thread and interrupts it if it exceeds the given timeout. Returns (True, (Result, [SubtestResult ...])) in case of success, or (False, (status, extra information)) in the event of failure. """ executor = threading.Thread(target=self._run) executor.start() flag = self.result_flag.wait(self.timeout) if self.result[1] is None: self.result = False, ("EXTERNAL-TIMEOUT", None) return self.result def _run(self): try: self.result = True, self.func(self.session, self.path, self.timeout) except (socket.timeout, IOError): self.result = False, ("CRASH", None) except Exception as e: message = getattr(e, "message") if message: message += "\n" message += traceback.format_exc(e) self.result = False, ("ERROR", message) finally: self.result_flag.set() class WebDriverProtocol(Protocol): server_cls = None def __init__(self, executor, browser): Protocol.__init__(self, executor, browser) self.webdriver_binary = executor.webdriver_binary self.webdriver_args = executor.webdriver_args self.capabilities = self.executor.capabilities self.session_config = None self.server = None def setup(self, runner): """Connect to browser via the HTTP server.""" try: self.server = self.server_cls( self.logger, binary=self.webdriver_binary, args=self.webdriver_args) self.server.start(block=False) self.logger.info( "WebDriver HTTP server listening at %s" % self.server.url) self.session_config = {"host": self.server.host, "port": self.server.port, "capabilities": self.capabilities} except Exception: self.logger.error(traceback.format_exc()) self.executor.runner.send_message("init_failed") else: self.executor.runner.send_message("init_succeeded") def teardown(self): if self.server is not None and self.server.is_alive: self.server.stop() @property def is_alive(self): """Test that the connection is still alive. Because the remote communication happens over HTTP we need to make an explicit request to the remote. It is allowed for WebDriver spec tests to not have a WebDriver session, since this may be what is tested. An HTTP request to an invalid path that results in a 404 is proof enough to us that the server is alive and kicking. """ conn = httplib.HTTPConnection(self.server.host, self.server.port) conn.request("HEAD", self.server.base_path + "invalid") res = conn.getresponse() return res.status == 404
33.690229
112
0.606109
9fbfa6a5f29dd408e0c3343e3d3708c33da8d34b
1,295
py
Python
socialite/test/test_table_stmts.py
Wangqge/PowerLog_ae
8546afbcb9a77d516e8c3f0dfbaf2041a4b888f9
[ "Apache-2.0" ]
null
null
null
socialite/test/test_table_stmts.py
Wangqge/PowerLog_ae
8546afbcb9a77d516e8c3f0dfbaf2041a4b888f9
[ "Apache-2.0" ]
null
null
null
socialite/test/test_table_stmts.py
Wangqge/PowerLog_ae
8546afbcb9a77d516e8c3f0dfbaf2041a4b888f9
[ "Apache-2.0" ]
null
null
null
""" Testing functions in a query. """ import unittest class TestTableStmts(unittest.TestCase): def __init__(self, methodName='runTest'): unittest.TestCase.__init__(self, methodName) def test_drop_non_exit_table(self): try: `drop NonExistingTable42.` self.fail("") except: pass def test_drop_table(self): `TestX(int a, int b). TestX(a,b) :- a=10, b=20.` (a,b) = `TestX(a,b)`.next() self.assertEqual(a, 10) self.assertEqual(b, 20) `drop TestX.` `TestX(int a, int b). TestX(a,b) :- a=11, b=20+1.` (a,b) = `TestX(a,b)`.next() self.assertEqual(a, 11) self.assertEqual(b, 21) `drop TestX.` `TestX(int a, int b). TestX(a,b) :- a=12, b=21+1.` (a,b) = `TestX(a,b)`.next() self.assertEqual(a, 12) self.assertEqual(b, 22) def test_clear_table(self): `TestC1(int a, int b).` `clear TestC1.` `TestC1(a,b) :- a=1, b=42.` `clear TestC1.` try: `TestC1(a,b)`.next() self.fail("Expected exception(StopIteration) not raised") except StopIteration: pass if __name__ == '__main__': unittest.main()
22.719298
69
0.518147
6957f99872c70a6d867d974eacb396d071f96cac
8,707
py
Python
rasa_core/policies/two_stage_fallback.py
DavidSted/rasa_core
2b072e564373ad680600947521805911f44f3732
[ "Apache-2.0" ]
1
2019-04-19T18:01:21.000Z
2019-04-19T18:01:21.000Z
rasa_core/policies/two_stage_fallback.py
DavidSted/rasa_core
2b072e564373ad680600947521805911f44f3732
[ "Apache-2.0" ]
1
2019-04-02T17:52:01.000Z
2019-04-02T17:52:01.000Z
rasa_core/policies/two_stage_fallback.py
DavidSted/rasa_core
2b072e564373ad680600947521805911f44f3732
[ "Apache-2.0" ]
1
2019-05-29T15:06:59.000Z
2019-05-29T15:06:59.000Z
import json import logging import os from typing import List, Text from rasa_core import utils from rasa_core.actions.action import (ACTION_REVERT_FALLBACK_EVENTS_NAME, ACTION_DEFAULT_FALLBACK_NAME, ACTION_DEFAULT_ASK_REPHRASE_NAME, ACTION_DEFAULT_ASK_AFFIRMATION_NAME, ACTION_LISTEN_NAME) from rasa_core.constants import FALLBACK_SCORE, USER_INTENT_OUT_OF_SCOPE from rasa_core.domain import Domain, InvalidDomain from rasa_core.policies.fallback import FallbackPolicy from rasa_core.policies.policy import confidence_scores_for from rasa_core.trackers import DialogueStateTracker logger = logging.getLogger(__name__) def has_user_rephrased(tracker: DialogueStateTracker) -> bool: return tracker.last_executed_action_has(ACTION_DEFAULT_ASK_REPHRASE_NAME) class TwoStageFallbackPolicy(FallbackPolicy): """ This policy handles low NLU confidence in multiple stages. If a NLU prediction has a low confidence score, the user is asked to affirm whether they really had this intent. If they affirm, the story continues as if the intent was classified with high confidence from the beginning. If they deny, the user is asked to rephrase his intent. If the classification for the rephrased intent was confident, the story continues as if the user had this intent from the beginning. If the rephrased intent was not classified with high confidence, the user is asked to affirm the classified intent. If the user affirm the intent, the story continues as if the user had this intent from the beginning. If the user denies, an ultimate fallback action is triggered (e.g. a hand-off to a human). """ def __init__(self, nlu_threshold: float = 0.3, core_threshold: float = 0.3, fallback_core_action_name: Text = ACTION_DEFAULT_FALLBACK_NAME, fallback_nlu_action_name: Text = ACTION_DEFAULT_FALLBACK_NAME, deny_suggestion_intent_name: Text = USER_INTENT_OUT_OF_SCOPE, ) -> None: """Create a new Two-stage Fallback policy. Args: nlu_threshold: minimum threshold for NLU confidence. If intent prediction confidence is lower than this, predict fallback action with confidence 1.0. core_threshold: if NLU confidence threshold is met, predict fallback action with confidence `core_threshold`. If this is the highest confidence in the ensemble, the fallback action will be executed. fallback_core_action_name: This action is executed if the Core threshold is not met. fallback_nlu_action_name: This action is executed if the user denies the recognised intent for the second time. deny_suggestion_intent_name: The name of the intent which is used to detect that the user denies the suggested intents. """ super(TwoStageFallbackPolicy, self).__init__( nlu_threshold, core_threshold, fallback_core_action_name) self.fallback_nlu_action_name = fallback_nlu_action_name self.deny_suggestion_intent_name = deny_suggestion_intent_name def predict_action_probabilities(self, tracker: DialogueStateTracker, domain: Domain) -> List[float]: """Predicts the next action if NLU confidence is low. """ if self.deny_suggestion_intent_name not in domain.intents: raise InvalidDomain('The intent {} must be present in the ' 'domain file to use the ' '`TwoStageFallbackPolicy`.' ''.format(self.deny_suggestion_intent_name)) nlu_data = tracker.latest_message.parse_data nlu_confidence = nlu_data["intent"].get("confidence", 1.0) last_intent_name = nlu_data['intent'].get('name', None) should_nlu_fallback = self.should_nlu_fallback( nlu_confidence, tracker.latest_action_name) user_rephrased = has_user_rephrased(tracker) if self._is_user_input_expected(tracker): result = confidence_scores_for(ACTION_LISTEN_NAME, FALLBACK_SCORE, domain) elif self._has_user_denied(last_intent_name, tracker): logger.debug("User '{}' denied suggested intents.".format( tracker.sender_id)) result = self._results_for_user_denied(tracker, domain) elif user_rephrased and should_nlu_fallback: logger.debug("Ambiguous rephrasing of user '{}' " "for intent '{}'".format(tracker.sender_id, last_intent_name)) result = confidence_scores_for(ACTION_DEFAULT_ASK_AFFIRMATION_NAME, FALLBACK_SCORE, domain) elif user_rephrased: logger.debug("User '{}' rephrased intent".format(tracker.sender_id)) result = confidence_scores_for(ACTION_REVERT_FALLBACK_EVENTS_NAME, FALLBACK_SCORE, domain) elif tracker.last_executed_action_has( ACTION_DEFAULT_ASK_AFFIRMATION_NAME): if not should_nlu_fallback: logger.debug("User '{}' affirmed intent '{}'" "".format(tracker.sender_id, last_intent_name)) result = confidence_scores_for( ACTION_REVERT_FALLBACK_EVENTS_NAME, FALLBACK_SCORE, domain) else: result = confidence_scores_for(self.fallback_nlu_action_name, FALLBACK_SCORE, domain) elif should_nlu_fallback: logger.debug("User '{}' has to affirm intent '{}'.".format( tracker.sender_id, last_intent_name)) result = confidence_scores_for(ACTION_DEFAULT_ASK_AFFIRMATION_NAME, FALLBACK_SCORE, domain) else: result = self.fallback_scores(domain, self.core_threshold) return result def _is_user_input_expected(self, tracker: DialogueStateTracker) -> bool: return tracker.latest_action_name in [ ACTION_DEFAULT_ASK_AFFIRMATION_NAME, ACTION_DEFAULT_ASK_REPHRASE_NAME, self.fallback_action_name] def _has_user_denied(self, last_intent: Text, tracker: DialogueStateTracker) -> bool: return (tracker.last_executed_action_has( ACTION_DEFAULT_ASK_AFFIRMATION_NAME) and last_intent == self.deny_suggestion_intent_name) def _results_for_user_denied(self, tracker: DialogueStateTracker, domain: Domain) -> List[float]: has_denied_before = tracker.last_executed_action_has( ACTION_DEFAULT_ASK_REPHRASE_NAME, skip=1) if has_denied_before: return confidence_scores_for(self.fallback_nlu_action_name, FALLBACK_SCORE, domain) else: return confidence_scores_for(ACTION_DEFAULT_ASK_REPHRASE_NAME, FALLBACK_SCORE, domain) def persist(self, path: Text) -> None: """Persists the policy to storage.""" config_file = os.path.join(path, 'two_stage_fallback_policy.json') meta = { "nlu_threshold": self.nlu_threshold, "core_threshold": self.core_threshold, "fallback_core_action_name": self.fallback_action_name, "fallback_nlu_action_name": self.fallback_nlu_action_name, "deny_suggestion_intent_name": self.deny_suggestion_intent_name, } utils.create_dir_for_file(config_file) utils.dump_obj_as_json_to_file(config_file, meta) @classmethod def load(cls, path: Text) -> 'FallbackPolicy': meta = {} if os.path.exists(path): meta_path = os.path.join(path, "two_stage_fallback_policy.json") if os.path.isfile(meta_path): meta = json.loads(utils.read_file(meta_path)) return cls(**meta)
47.579235
80
0.617319
c2f8f16b7be2a26f8d0e98728347f1fb066201d9
4,546
py
Python
cohesity_management_sdk/models/environment_remote_protection_job_information_enum.py
chandrashekar-cohesity/management-sdk-python
9e6ec99e8a288005804b808c4e9b19fd204e3a8b
[ "Apache-2.0" ]
1
2019-11-07T23:19:32.000Z
2019-11-07T23:19:32.000Z
cohesity_management_sdk/models/environment_remote_protection_job_information_enum.py
chandrashekar-cohesity/management-sdk-python
9e6ec99e8a288005804b808c4e9b19fd204e3a8b
[ "Apache-2.0" ]
null
null
null
cohesity_management_sdk/models/environment_remote_protection_job_information_enum.py
chandrashekar-cohesity/management-sdk-python
9e6ec99e8a288005804b808c4e9b19fd204e3a8b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2019 Cohesity Inc. class EnvironmentRemoteProtectionJobInformationEnum(object): """Implementation of the 'Environment_RemoteProtectionJobInformation' enum. Specifies the environment type (such as kVMware or kSQL) of the original archived Protection Job. Supported environment types such as 'kView', 'kSQL', 'kVMware', etc. NOTE: 'kPuppeteer' refers to Cohesity's Remote Adapter. 'kVMware' indicates the VMware Protection Source environment. 'kHyperV' indicates the HyperV Protection Source environment. 'kSQL' indicates the SQL Protection Source environment. 'kView' indicates the View Protection Source environment. 'kPuppeteer' indicates the Cohesity's Remote Adapter. 'kPhysical' indicates the physical Protection Source environment. 'kPure' indicates the Pure Storage Protection Source environment. 'kAzure' indicates the Microsoft's Azure Protection Source environment. 'kNetapp' indicates the Netapp Protection Source environment. 'kAgent' indicates the Agent Protection Source environment. 'kGenericNas' indicates the Genreric Network Attached Storage Protection Source environment. 'kAcropolis' indicates the Acropolis Protection Source environment. 'kPhsicalFiles' indicates the Physical Files Protection Source environment. 'kIsilon' indicates the Dell EMC's Isilon Protection Source environment. 'kKVM' indicates the KVM Protection Source environment. 'kAWS' indicates the AWS Protection Source environment. 'kExchange' indicates the Exchange Protection Source environment. 'kHyperVVSS' indicates the HyperV VSS Protection Source environment. 'kOracle' indicates the Oracle Protection Source environment. 'kGCP' indicates the Google Cloud Platform Protection Source environment. 'kFlashBlade' indicates the Flash Blade Protection Source environment. 'kAWSNative' indicates the AWS Native Protection Source environment. 'kVCD' indicates the VMware's Virtual cloud Director Protection Source environment. 'kO365' indicates the Office 365 Protection Source environment. 'kO365Outlook' indicates Office 365 outlook Protection Source environment. 'kHyperFlex' indicates the Hyper Flex Protection Source environment. 'kGCPNative' indicates the GCP Native Protection Source environment. 'kAzureNative' indicates the Azure Native Protection Source environment. Attributes: KVMWARE: TODO: type description here. KHYPERV: TODO: type description here. KSQL: TODO: type description here. KVIEW: TODO: type description here. KPUPPETEER: TODO: type description here. KPHYSICAL: TODO: type description here. KPURE: TODO: type description here. KAZURE: TODO: type description here. KNETAPP: TODO: type description here. KAGENT: TODO: type description here. KGENERICNAS: TODO: type description here. KACROPOLIS: TODO: type description here. KPHYSICALFILES: TODO: type description here. KISILON: TODO: type description here. KKVM: TODO: type description here. KAWS: TODO: type description here. KEXCHANGE: TODO: type description here. KHYPERVVSS: TODO: type description here. KORACLE: TODO: type description here. KGCP: TODO: type description here. KFLASHBLADE: TODO: type description here. KAWSNATIVE: TODO: type description here. KVCD: TODO: type description here. KO365: TODO: type description here. KO365OUTLOOK: TODO: type description here. KHYPERFLEX: TODO: type description here. KGCPNATIVE: TODO: type description here. KAZURENATIVE: TODO: type description here. """ K_VMWARE = 'kVMware' K_HYPERV = 'kHyperV' KSQL = 'kSQL' KVIEW = 'kView' KPUPPETEER = 'kPuppeteer' KPHYSICAL = 'kPhysical' KPURE = 'kPure' KAZURE = 'kAzure' KNETAPP = 'kNetapp' KAGENT = 'kAgent' KGENERICNAS = 'kGenericNas' KACROPOLIS = 'kAcropolis' KPHYSICALFILES = 'kPhysicalFiles' KISILON = 'kIsilon' KKVM = 'kKVM' KAWS = 'kAWS' KEXCHANGE = 'kExchange' K_HYPERV_VSS = 'kHyperVVSS' KORACLE = 'kOracle' KGCP = 'kGCP' KFLASHBLADE = 'kFlashBlade' KAWSNATIVE = 'kAWSNative' KVCD = 'kVCD' KO365 = 'kO365' KO365OUTLOOK = 'kO365Outlook' KHYPERFLEX = 'kHyperFlex' KGCPNATIVE = 'kGCPNative' KAZURENATIVE = 'kAzureNative'
33.925373
79
0.710075
14f4f7854e24eef5e3416cab11f0faa0a458d026
8,766
py
Python
src/sas/sasgui/perspectives/calculator/calculator.py
andyfaff/sasview
c00a797ab9c4ddc60f0fa8a64ae8a2067c225921
[ "BSD-3-Clause" ]
null
null
null
src/sas/sasgui/perspectives/calculator/calculator.py
andyfaff/sasview
c00a797ab9c4ddc60f0fa8a64ae8a2067c225921
[ "BSD-3-Clause" ]
null
null
null
src/sas/sasgui/perspectives/calculator/calculator.py
andyfaff/sasview
c00a797ab9c4ddc60f0fa8a64ae8a2067c225921
[ "BSD-3-Clause" ]
null
null
null
""" Calculator Module """ ################################################################################ #This software was developed by the University of Tennessee as part of the #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) #project funded by the US National Science Foundation. # #See the license text in license.txt # #copyright 2010, University of Tennessee ################################################################################ import wx from sas.sasgui.guiframe.plugin_base import PluginBase from sas.sasgui.perspectives.calculator.data_operator import DataOperatorWindow from sas.sasgui.perspectives.calculator.data_editor import DataEditorWindow from sas.sasgui.perspectives.calculator.kiessig_calculator_panel import KiessigWindow from sas.sasgui.perspectives.calculator.sld_panel import SldWindow from sas.sasgui.perspectives.calculator.density_panel import DensityWindow from sas.sasgui.perspectives.calculator.slit_length_calculator_panel \ import SlitLengthCalculatorWindow from sas.sasgui.perspectives.calculator.resolution_calculator_panel \ import ResolutionWindow from sas.sasgui.perspectives.calculator.gen_scatter_panel import SasGenWindow from sas.sasgui.perspectives.calculator.image_viewer import ImageView from sas.sasgui.perspectives.calculator.pyconsole import PyConsole import logging logger = logging.getLogger(__name__) class Plugin(PluginBase): """ This class defines the interface for a Plugin class for calculator perspective """ def __init__(self): PluginBase.__init__(self, name="Calculator") # Log startup logger.info("Calculator plug-in started") self.sub_menu = "Tool" self.data_edit_frame = None # data operator use one frame all the time self.data_operator_frame = None self.kiessig_frame = None self.sld_frame = None self.cal_md_frame = None self.cal_slit_frame = None self.cal_res_frame = None self.gen_frame = None self.image_view = None self.py_frame = None def get_tools(self): """ Returns a set of menu entries for tools """ data_oper_help = "Perform arithmetic data operation (+...) " data_oper_help += "and combination (|)" kiessig_help = "Approximately computes the " kiessig_help += "thickness of a shell or the size of " kiessig_help += "particles \n from the width of a Kiessig fringe." sld_help = "Computes the Scattering Length Density." slit_length_help = "Computes the slit length from the beam profile." resolution_help = "Approximately estimates the " resolution_help += "resolution of Q in 2D based on the SAS " resolution_help += "instrumental parameter values." mass_volume_help = "Based on the chemical formula, " mass_volume_help += "compute the mass density or the molar volume." gensas_help = "Generic SAS" pyconsole_help = "Python Console." imageviewer_help = "Load an image file and display the image." #data_editor_help = "Meta Data Editor" return [("Data Operation", data_oper_help, self.on_data_operation), ("SLD Calculator", sld_help, self.on_calculate_sld), ("Density/Volume Calculator", mass_volume_help, self.on_calculate_dv), ("Slit Size Calculator", slit_length_help, self.on_calculate_slit_size), ("Kiessig Thickness Calculator", kiessig_help, self.on_calculate_kiessig), ("Q Resolution Estimator", resolution_help, self.on_calculate_resoltuion), ("Generic Scattering Calculator", gensas_help, self.on_gen_model), ("Python Shell/Editor", pyconsole_help, self.on_python_console), ("Image Viewer", imageviewer_help, self.on_image_viewer), ] def on_edit_data(self, event): """ Edit meta data """ if self.data_edit_frame is None: self.data_edit_frame = DataEditorWindow(parent=self.parent, manager=self, data=[], title="Data Editor") self.put_icon(self.data_edit_frame) else: self.data_edit_frame.Show(False) self.data_edit_frame.Show(True) def on_data_operation(self, event): """ Data operation """ if self.data_operator_frame is None: # Use one frame all the time self.data_operator_frame = DataOperatorWindow(parent=self.parent, manager=self, title="Data Operation") self.put_icon(self.data_operator_frame) else: self.data_operator_frame.Show(False) self.data_operator_frame.panel.set_panel_on_focus(None) self.data_operator_frame.Show(True) def on_calculate_kiessig(self, event): """ Compute the Kiessig thickness """ if self.kiessig_frame is None: frame = KiessigWindow(parent=self.parent, manager=self) self.put_icon(frame) self.kiessig_frame = frame else: self.kiessig_frame.Show(False) self.kiessig_frame.Show(True) def on_calculate_sld(self, event): """ Compute the scattering length density of molecula """ if self.sld_frame is None: frame = SldWindow(parent=self.parent, base=self.parent, manager=self) self.put_icon(frame) self.sld_frame = frame else: self.sld_frame.Show(False) self.sld_frame.Show(True) def on_calculate_dv(self, event): """ Compute the mass density or molar voulme """ if self.cal_md_frame is None: frame = DensityWindow(parent=self.parent, base=self.parent, manager=self) self.put_icon(frame) self.cal_md_frame = frame else: self.cal_md_frame.Show(False) self.cal_md_frame.Show(True) def on_calculate_slit_size(self, event): """ Compute the slit size a given data """ if self.cal_slit_frame is None: frame = SlitLengthCalculatorWindow(parent=self.parent, manager=self) self.put_icon(frame) self.cal_slit_frame = frame else: self.cal_slit_frame.Show(False) self.cal_slit_frame.Show(True) def on_calculate_resoltuion(self, event): """ Estimate the instrumental resolution """ if self.cal_res_frame is None: frame = ResolutionWindow(parent=self.parent, manager=self) self.put_icon(frame) self.cal_res_frame = frame else: self.cal_res_frame.Show(False) self.cal_res_frame.Show(True) def on_gen_model(self, event): """ On Generic model menu event """ if self.gen_frame is None: frame = SasGenWindow(parent=self.parent, manager=self) self.put_icon(frame) self.gen_frame = frame else: self.gen_frame.Show(False) self.gen_frame.Show(True) def on_image_viewer(self, event): """ Get choose an image file dialog :param event: menu event """ self.image_view = ImageView(parent=self.parent) self.image_view.load() def on_python_console(self, event): """ Open Python Console :param event: menu event """ self.get_python_panel(filename=None) def get_python_panel(self, filename=None): """ Get the python shell panel :param filename: file name to open in editor """ if self.py_frame is None: frame = PyConsole(parent=self.parent, base=self, filename=filename) self.put_icon(frame) self.py_frame = frame else: self.py_frame.Show(False) self.py_frame.Show(True) def put_icon(self, frame): """ Put icon in the frame title bar """ if hasattr(frame, "IsIconized"): if not frame.IsIconized(): try: icon = self.parent.GetIcon() frame.SetIcon(icon) except: pass
37.144068
85
0.593543
da05d17476207d1ccd360752affd2d4340edab31
1,155
py
Python
tests/test_comment.py
abbyshabi/PerfectPitches
7299b67784021d74520c2bc6af931c57877d2024
[ "MIT" ]
null
null
null
tests/test_comment.py
abbyshabi/PerfectPitches
7299b67784021d74520c2bc6af931c57877d2024
[ "MIT" ]
null
null
null
tests/test_comment.py
abbyshabi/PerfectPitches
7299b67784021d74520c2bc6af931c57877d2024
[ "MIT" ]
2
2019-02-12T22:54:31.000Z
2019-02-13T23:42:04.000Z
import unittest from app.models import Comment,User from flask_login import current_user from app import db class TestComment(unittest.TestCase): def setUp(self): self.post_Fly = Post(title = 'James',body = 'potato', id = '1') self.new_comment = Comment(body = 'good') def tearDown(self): Post.query.delete() Comment.query.delete() def test_check_instance_variables(self): self.assertEquals(self.new_comment.post_id,12345) self.assertEquals(self.new_comment.post_title,'Review for movies') self.assertEquals(self.new_comment.post_comment,'This movie is the best thing since sliced bread') self.assertEquals(self.new_comment.user,self.user_James) def test_save_comment(self): self.new_comment.save_comment() self.assertTrue(len(Comment.query.all())>0) def test_get_comment_by_id(self): self.new_comment.save_comment() got_comments = Comment.get_comment(12345) self.assertTrue(len(got_comments) == 1)
36.09375
114
0.62684
51d92107809ab93fb9b53f6a97daa853015dd3d2
436
py
Python
blog/urls.py
robscodebase/django-blog
956e3751ffe352425fb00087a37cb4648f1a176e
[ "BSD-3-Clause" ]
null
null
null
blog/urls.py
robscodebase/django-blog
956e3751ffe352425fb00087a37cb4648f1a176e
[ "BSD-3-Clause" ]
null
null
null
blog/urls.py
robscodebase/django-blog
956e3751ffe352425fb00087a37cb4648f1a176e
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ # post views url(r'^$', views.post_list, name='post_list'), url(r'^tag/(?P<tag_slug>[-\w]+)/$', views.post_list, name='post_list_by_tag'), url(r'^(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d{2})/(?P<post>[-\w]+)/$', views.post_detail, name='post_detail'), url(r'^(?P<post_id>\d+)/share/$', views.post_share, name='post_share'), ]
31.142857
82
0.580275
eea861b38075d1343f7381a54f1f66aac90b57ba
53,423
py
Python
MLlib/models.py
Vinit-source/ML-DL-implementation
15960151a4d65c24695220ee68e0ffa5b1b40e19
[ "BSD-3-Clause" ]
null
null
null
MLlib/models.py
Vinit-source/ML-DL-implementation
15960151a4d65c24695220ee68e0ffa5b1b40e19
[ "BSD-3-Clause" ]
null
null
null
MLlib/models.py
Vinit-source/ML-DL-implementation
15960151a4d65c24695220ee68e0ffa5b1b40e19
[ "BSD-3-Clause" ]
null
null
null
from MLlib.optimizers import GradientDescent from MLlib.activations import Sigmoid from MLlib.utils.misc_utils import generate_weights from MLlib.utils.decision_tree_utils import partition, find_best_split from MLlib.utils.decision_tree_utils import class_counts from MLlib.utils .knn_utils import get_neighbours from MLlib.utils.naive_bayes_utils import make_likelihood_table from MLlib.utils.gaussian_naive_bayes_utils import get_mean_var, p_y_given_x from MLlib.utils.k_means_clustering_utils import initi_centroid, cluster_allot from MLlib.utils.k_means_clustering_utils import new_centroid, xy_calc from MLlib.utils.divisive_clustering_utils import KMeans, sse, \ visualize_clusters from MLlib.utils.pca_utils import PCA_utils, infer_dimension import MLlib.nn as nn from collections import Counter, OrderedDict from MLlib.utils.agglomerative_clustering_utils import compute_distance import numpy as np from numpy.random import random from scipy.stats import norm from warnings import catch_warnings from warnings import simplefilter import pickle import matplotlib.pyplot as plt from datetime import datetime import math import scipy.cluster.hierarchy as shc DATE_FORMAT = '%d-%m-%Y_%H-%M-%S' class LinearRegression(): """ Implement Linear Regression Model. ATTRIBUTES ========== None METHODS ======= fit(X,Y,optimizer=GradientDescent,epochs=25, zeros=False,save_best=False): Implement the Training of Linear Regression Model with suitable optimizer, inititalised random weights and Dataset's Input-Output, upto certain number of epochs. predict(X): Return the Predicted Value of Output associated with Input, using the weights, which were tuned by Training Linear Regression Model. save(name): Save the Trained Linear Regression Model in rob format , in Local disk. """ def fit( self, X, Y, optimizer=GradientDescent, epochs=25, zeros=False, save_best=False ): """ Train the Linear Regression Model by fitting its associated weights, according to Dataset's Inputs and their corresponding Output Values. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. Y: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Output. optimizer: class Class of one of the Optimizers like AdamProp,SGD,MBGD,RMSprop,AdamDelta, Gradient Descent,etc. epochs: int Number of times, the loop to calculate loss and optimize weights, will going to take place. zeros: boolean Condition to initialize Weights as either zeroes or some random decimal values. save_best: boolean Condition to enable or disable the option of saving the suitable Weight values for the model after reaching the region nearby the minima of Loss-Function with respect to Weights. epoch_loss: float The degree of how much the predicted value is diverted from actual values, given by implementing one of choosen loss functions from loss_func.py . version: str Descriptive update of Model's Version at each step of Training Loop, along with Time description according to DATA_FORMAT. RETURNS ======= None """ self.weights = generate_weights(X.shape[1], 1, zeros=zeros) self.best_weights = {"weights": None, "loss": float('inf')} print("Starting training with loss:", optimizer.loss_func.loss(X, Y, self.weights)) for epoch in range(1, epochs + 1): print("======================================") print("epoch:", epoch) self.weights = optimizer.iterate(X, Y, self.weights) epoch_loss = optimizer.loss_func.loss(X, Y, self.weights) if save_best and epoch_loss < self.best_weights["loss"]: print("updating best weights (loss: {})".format(epoch_loss)) self.best_weights['weights'] = self.weights self.best_weights['loss'] = epoch_loss version = "model_best_" + datetime.now().strftime(DATE_FORMAT) print("Saving best model version: ", version) self.save(version) print("Loss in this step: ", epoch_loss) version = "model_final_" + datetime.now().strftime(DATE_FORMAT) print("Saving final model version: ", version) self.save(version) print("======================================\n") print("Finished training with final loss:", optimizer.loss_func.loss(X, Y, self.weights)) print("=====================================================\n") def predict(self, X): """ Predict the Output Value of Input, in accordance with Linear Regression Model. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. RETURNS ======= ndarray(dtype=float,ndim=1) Predicted Values corresponding to each Input of Dataset. """ return np.dot(X, self.weights) def save(self, name): """ Save the Model in rob format for further usage. PARAMETERS ========== name: str Title of the Model's file to be saved in rob format. RETURNS ======= None """ with open(name + '.rob', 'wb') as robfile: pickle.dump(self, robfile) def plot(self, X, Y, optimizer=GradientDescent, epochs=25): """" Plot the graph of loss vs number of iterations PARAMETERS ========== X: ndarray(dtype=float, ndim=1) 1-D array of Dataset's input Y: ndarray(dtype=float, ndim=1) 1-D array of Dataset's output optimizer: class Class of one of the Optimizers like AdamProp,SGD,MBGD,GradientDescent etc epochs: int Number of times, the loop to calculate loss and optimize weights, will going to take place. error: float The degree of how much the predicted value is diverted from actual values, given by implementing one of choosen loss functions from loss_func.py . RETURNS ========= A 2-D graph with x-axis as Number of iterations and y-axis as loss. """ l1 = [] l2 = [] self.weights = optimizer.loss_func.loss(X, Y, self.weights) for epoch in range(1, epochs + 1): l1.append(epoch) self.weights = optimizer.iterate(X, Y, self.weights) error = optimizer.loss_func.loss(X, Y, self.weights) l2.append(error) plt.plot(np.array(l1), np.array(l2)) plt.xlabel("Epochs") plt.ylabel("Loss") plt.scatter(X, Y) plt.show() class PolynomialRegression(): """ Implement Polynomial Regression Model. ATTRIBUTES ========== None METHODS ======= fit(X,Y,optimizer=GradientDescent,epochs=60, \ zeros=False,save_best=False): Implement the Training of Polynomial Regression Model with suitable optimizer, inititalised random weights and Dataset's Input-Output, upto certain number of epochs. predict(X): Return the Predicted Value of Output associated with Input, using the weights, which were tuned by Training Polynomial Regression Model. save(name): Save the Trained Polynomial Regression Model in rob format , in Local disk. """ def __init__(self, degree): self.degree = degree self.weights = 0 self.best_weights = {} def fit( self, X, Y, optimizer=GradientDescent, epochs=200, zeros=False, save_best=True ): """ Train the Polynomial Regression Model by fitting its associated weights, according to Dataset's Inputs and their corresponding Output Values. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. Update X with X**2, X**3, X**4 terms Y: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Output. optimizer: class Class of one of the Optimizers like AdamProp,SGD,MBGD,RMSprop,AdamDelta, Gradient Descent,etc. epochs: int Number of times, the loop to calculate loss and optimize weights, is going to take place. zeros: boolean Condition to initialize Weights as either zeroes or some random decimal values. save_best: boolean Condition to enable or disable the option of saving the suitable Weight values for the model after reaching the region nearby the minima of Loss-Function with respect to Weights. epoch_loss: float The degree of how much the predicted value is diverted from actual values, given by implementing one of choosen loss functions from loss_func.py . version: str Descriptive update of Model's Version at each step of Training Loop, along with Time description according to DATA_FORMAT. RETURNS ======= None """ M, N = X.shape P = X[:, 0:1] # Add polynomial terms to X # upto degree 'self.degree'. for i in range(2, self.degree + 1): P = np.hstack(( P, (np.power(X[:, 0:1], i)).reshape(M, 1) )) P = np.hstack(( P, X[:, 1:2] )) X = P self.weights = generate_weights(X.shape[1], 1, zeros=zeros) self.best_weights = {"weights": self.weights, "loss": optimizer.loss_func.loss(X, Y, self.weights)} print("Starting training with loss:", optimizer.loss_func.loss(X, Y, self.weights)) for epoch in range(1, epochs + 1): print("======================================") print("epoch:", epoch) self.weights = optimizer.iterate(X, Y, self.weights) epoch_loss = optimizer.loss_func.loss(X, Y, self.weights) if save_best and epoch_loss < self.best_weights["loss"]: self.best_weights['weights'] = self.weights self.best_weights['loss'] = epoch_loss version = "model_best_" + datetime.now().strftime(DATE_FORMAT) print("Saving best model version: ", version) self.save(version) print("Loss in this step: ", epoch_loss) version = "model_final_" + datetime.now().strftime(DATE_FORMAT) print("Saving final model version: ", version) self.save(version) print("======================================\n") print("Finished training with final loss:", self.best_weights['loss']) print("=====================================================\n") def predict(self, X): """ Predict the Output Value of Input, in accordance with Polynomial Regression Model. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. RETURNS ======= ndarray(dtype=float, ndim=1) Predicted Values corresponding to each Input of Dataset. """ M, N = X.shape P = X[:, 0:1] for i in range(2, self.degree + 1): P = np.hstack(( P, (np.power(X[:, 0:1], i)).reshape(M, 1) )) P = np.hstack(( P, X[:, 1:2] )) X = P return np.dot(X, self.best_weights['weights']) def save(self, name): """ Save the Model in rob format for further usage. PARAMETERS ========== name: str Title of the Model's file to be saved in rob format. RETURNS ======= None """ with open(name + '.rob', 'wb') as robfile: pickle.dump(self, robfile) def plot( self, X, Y, Z, optimizer=GradientDescent, epochs=60, zeros=False, save_best=False ): """ Plot the graph of Loss vs Epochs Plot the graph of line Of Polynomial Regression PARAMETERS ========== X: ndarray(dtype=float, ndim=1) 1-D array of Dataset's input Y: ndarray(dtype=float, ndim=1) 1-D array of Dataset's output Z: ndarray(dtype=float, ndim=1) 1-D array of Predicted Values optimizer: class Class of one of the Optimizers like AdamProp,SGD,MBGD,RMSprop,AdamDelta, Gradient Descent,etc. epochs: int Number of times, the loop to calculate loss and optimize weights, is going to take place. zeros: boolean Condition to initialize Weights as either zeroes or some random decimal values. save_best: boolean Condition to enable or disable the option of saving the suitable Weight values for the model after reaching the region nearby the minima of Loss-Function with respect to Weights. RETURNS ======= None """ M, N = X.shape P = X[:, 0:1] for i in range(2, self.degree + 1): P = np.hstack(( P, (np.power(X[:, 0:1], i)).reshape(M, 1) )) P = np.hstack(( P, X[:, 1:2] )) X = P m = [] List = [] self.weights = generate_weights(X.shape[1], 1, zeros=zeros) self.best_weights = {"weights": self.weights, "loss": optimizer.loss_func.loss(X, Y, self.weights)} print("Starting training with loss:", optimizer.loss_func.loss(X, Y, self.weights)) for epoch in range(1, epochs + 1): m.append(epoch) self.weights = optimizer.iterate(X, Y, self.weights) epoch_loss = optimizer.loss_func.loss(X, Y, self.weights) if save_best and epoch_loss < self.best_weights["loss"]: self.best_weights['weights'] = self.weights self.best_weights['loss'] = epoch_loss List.append(epoch_loss) x = np.array(m) y = np.array(List) plt.figure(figsize=(10, 5)) plt.xlabel('EPOCHS', family='serif', fontsize=15) plt.ylabel('LOSS', family='serif', fontsize=15) plt.scatter(x, y, color='navy') plt.show() z = np.reshape(Z, (1, M)) pred_value = z[0] true_value = Y[0] A = [] for i in range(0, len(Y[0])): A.append(i) x_axis = np.array(A) plt.xlabel('Number of Datasets', family='serif', fontsize=15) plt.ylabel('Values', family='serif', fontsize=15) plt.scatter(x_axis, true_value, label="True Values") plt.plot(x_axis, pred_value, label="Predicted Values") plt.legend(loc="upper right") plt.show() class LogisticRegression(LinearRegression): """ Implements Logistic Regression Model. ATTRIBUTES ========== LinearRegression: Class Parent Class from where Output Prediction Value is expressed, after Linear Weighted Combination of Input is calculated . METHODS ======= predict(X): Return the probabilistic value of an Input, belonging to either class 0 or class 1, by using final weights from Trained Logistic Regression Model. classify(X): Return the Class corresponding to each Input of Dataset, Predicted by Trained Logistic Regression Model, i.e in this scenario, either class 0 or class 1. """ def predict(self, X): """ Predict the Probabilistic Value of Input, in accordance with Logistic Regression Model. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. prediction: ndarray(dtype=float,ndim=1) 1-D Array of Predicted Values corresponding to each Input of Dataset. RETURNS ======= ndarray(dtype=float,ndim=1) 1-D Array of Probabilistic Values of whether the particular Input belongs to class 0 or class 1. """ prediction = np.dot(X, self.weights).T sigmoid = Sigmoid() return sigmoid.activation(prediction) def classify(self, X): """ Classify the Input, according to Logistic Regression Model,i.e in this case, either class 0 or class 1. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. prediction: ndarray(dtype=float,ndim=1) 1-D Array of Predicted Values corresponding to their Inputs. actual_predictions: ndarray(dtype=int,ndim=1) 1-D Array of Output, associated to each Input of Dataset, Predicted by Trained Logistic Regression Model. RETURNS ======= ndarray 1-D Array of Predicted classes (either 0 or 1) corresponding to their inputs. """ prediction = np.dot(X, self.weights).T sigmoid = Sigmoid() prediction = sigmoid.activation(prediction) actual_predictions = np.zeros((1, X.shape[0])) for i in range(prediction.shape[1]): if prediction[0][i] > 0.5: actual_predictions[0][i] = 1 return actual_predictions def Plot(self, X, Y, actual_predictions, optimizer=GradientDescent, epochs=25, zeros=False ): """ Plots for Logistic Regression. PARAMETERS ========== X: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Input. Y: ndarray(dtype=float,ndim=1) 1-D Array of Dataset's Output. actual_predictions: ndarray(dtype=int,ndim=1) 1-D Array of Output, associated to each Input of Dataset, Predicted by Trained Logistic Regression Model. optimizer: class Class of one of the Optimizers like AdamProp,SGD,MBGD,GradientDescent etc epochs: int Number of times, the loop to calculate loss and optimize weights, will going to take place. error: float The degree of how much the predicted value is diverted from actual values, given by implementing one of choosen loss functions from loss_func.py . zeros: boolean Condition to initialize Weights as either zeroes or some random decimal values. RETURNS ======= 2-D graph of Sigmoid curve, Comparision Plot of True output and Predicted output versus Feacture. 2-D graph of Loss versus Number of iterations. """ Plot = plt.figure(figsize=(8, 8)) plot1 = Plot.add_subplot(2, 2, 1) plot2 = Plot.add_subplot(2, 2, 2) plot3 = Plot.add_subplot(2, 2, 3) # 2-D graph of Sigmoid curve. x = np.linspace(- max(X[:, 0]) - 2, max(X[:, 0]) + 2, 1000) plot1.set_title('Sigmoid curve') plot1.grid() sigmoid = Sigmoid() plot1.scatter(X.T[0], Y, color="red", marker="+", label="labels") plot1.plot(x, 0 * x + 0.5, linestyle="--", label="Decision bound, y=0.5") plot1.plot(x, sigmoid.activation(x), color="green", label='Sigmoid function: 1 / (1 + e^-x)' ) plot1.legend() # Comparision Plot of Actual output and Predicted output vs Feacture. plot2.set_title('Actual output and Predicted output versus Feacture') plot2.set_xlabel("x") plot2.set_ylabel("y") plot2.scatter(X[:, 0], Y, color="orange", label='Actual output') plot2.grid() plot2.scatter(X[:, 0], actual_predictions, color="blue", marker="+", label='Predicted output' ) plot2.legend() # 2-D graph of Loss versus Number of iterations. plot3.set_title("Loss versus Number of iterations") plot3.set_xlabel("iterations") plot3.set_ylabel("Cost") iterations = [] cost = [] self.weights = generate_weights(X.shape[1], 1, zeros=zeros) for epoch in range(1, epochs + 1): iterations.append(epoch) self.weights = optimizer.iterate(X, Y, self.weights) error = optimizer.loss_func.loss(X, Y, self.weights) cost.append(error) plot3.plot(np.array(iterations), np.array(cost)) plt.show() class DecisionTreeClassifier(): """ A class to implement the Decision Tree Algorithm. ATTRIBUTES ========== None METHODS ======= print_tree(rows, head, spacing = "") To print the decision tree of the rows in an organised manner. classify(rows, head, prediction_val) To determine and return the predictions of the subsets of the dataset. """ def print_tree(self, rows, head, spacing=""): """ A tree printing function. PARAMETERS ========== rows: list A list of lists to store the dataset. head: list A list to store the headings of the columns of the dataset. spacing: String To store and update the spaces to print the tree in an organised manner. RETURNS ======= None """ # Try partitioning the dataset on each of the unique attribute, # calculate the gini impurity, # and return the question that produces the least gini impurity. gain, question = find_best_split(rows, head) # Base case: we've reached a leaf if gain == 0: print(spacing + "Predict", class_counts(rows, len(rows[0]) - 1)) return # If we reach here, we have found a useful feature / value # to partition on. true_rows, false_rows = partition(rows, question) # Print the question at this node print(spacing + str(question)) # Call this function recursively on the true branch print(spacing + '--> True:') self.print_tree(true_rows, head, spacing + " ") # Call this function recursively on the false branch print(spacing + '--> False:') self.print_tree(false_rows, head, spacing + " ") def classify(self, rows, head, prediction_val): """ A function to make predictions of the subsets of the dataset. PARAMETERS ========== rows: list A list of lists to store the subsets of the dataset. head: list A list to store the headings of the columns of the subset of the dataset. prediction_val: dictionary A dictionary to update and return the predictions of the subsets of the dataset. RETURNS ======= prediction_val Dictionary to return the predictions corresponding to the subsets of the dataset. """ N = len(rows[0]) # Finding random indexes for columns # to collect random samples of the dataset. indexcol = [] for j in range(0, 5): r = np.random.randint(0, N - 2) if r not in indexcol: indexcol.append(r) row = [] for j in rows: L = [] for k in indexcol: L.append(j[k]) row.append(L) # add last column to the random sample so created. for j in range(0, len(row)): row[j].append(rows[j][N - 1]) rows = row # Try partitioning the dataset on each of the unique attribute, # calculate the gini impurity, # and return the question that produces the least gini impurity. gain, question = find_best_split(rows, head) # Base case: we've reached a leaf if gain == 0: # Get the predictions of the current set of rows. p = class_counts(rows, len(rows[0]) - 1) for d in prediction_val: for j in p: if d == j: # update the predictions to be returned. prediction_val[d] = prediction_val[d] + p[j] return prediction_val # If we reach here, we have found a useful feature / value # to partition on. true_rows, false_rows = partition(rows, question) # Recursively build the true branch. self.classify(true_rows, head, prediction_val) # Recursively build the false branch. self.classify(false_rows, head, prediction_val) # Return the dictionary of the predictions # at the end of the recursion. return prediction_val class RandomForestClassifier(DecisionTreeClassifier): """ A class to implement the Random Forest Classification Algorithm. ATTRIBUTES ========== DecisionTreeClassifier: Class Parent Class from where the predictions for the subsets of the dataset are made. METHODS ======= predict(A, n_estimators=100): Print the value that appears the highest in the list of predictions of the subsets of the dataset. """ def predict(self, A, head, n_estimators=100): """ Determine the predictions of the subsets of the dataset through the DecisionTreeClassifier class and print the mode of the predicted values. PARAMETERS ========== A: ndarray(dtype=int,ndim=2) 2-D Array of Dataset's Input n_estimators: int Number of Decision Trees to be iterated over for the classification. RETURNS ======= None """ prediction = {} print("Predictions of individual decision trees") # Iterate to collect predictions of # 100 Decision Trees after taking # random samples from the dataset. for i in range(n_estimators): M = len(A) # Finding random indexes for rows # to collect the bootstrapped samples # of the dataset. indexrow = np.random.randint(0, M - 1, 6) rows = [] for j in indexrow: rows.append(A[j]) label = len(rows[0]) - 1 # Get prediction values for the rows prediction_val = class_counts(rows, label) for d in prediction_val: prediction_val[d] = 0 # Create object of class DecisionTreeClassifier RandomF = DecisionTreeClassifier() # Store the returned dictionary of the # predictions of the subsets of the dataset. di = RandomF.classify(rows, head, prediction_val) print(di) # find maximum predicted value for the subsets # of the dataset. maximum = 0 for j in di: if di[j] > maximum: maximum = di[j] maxk = j # Update the dictionary prediction with the # maximum predicted value in the # predictions of the subsets of the dataset. if maxk not in prediction: prediction[maxk] = maximum else: prediction[maxk] = prediction[maxk] + maximum # find maximum predicted value, hence the # final prediction of the Random Forest Algorithm. maximum = 0 for i in prediction: if prediction[i] > maximum: maximum = prediction[i] maxk = i # predicting the maximum occurence print("\n Predict = {", maxk, "}") class KNN(): """ A single Class that can act as both KNN classifier or regressor based on arguements given to the prediction function. ATTRIBUTES ========== None METHODS ======= predict(train, test_row, num_neighbours=7, classify=True): K Nearest Neighbour Model, used as Classifier, to predict the class of test point , with respect to its n nearest neighbours. """ def predict(self, train, test_row, num_neighbours=7, classify=True): """ KNN Prediction Model, used for either Regression or Classification , in respect to Test Point and Dataset Type. PARAMETERS ========== train: ndarray Array Representation of Collection of Points, with their corresponding x1,x2 and y features. test_row: ndarray(dtype=int,ndim=1,axis=1) Array representation of test point, with its corresponding x1,x2 and y features. num_neighbours: int Number of nearest neighbours, close to the test point, with respect to x1,x2 and y features. classify: Boolean Type of Mode, K Nearest Neighbour Model wants to be applied, according to Dataset and Application Field. neighbours: list List of n nearest neighbours, close to the test point, with their associated Point Array and distance from the Test point. ouput: list List of Distances of n nearest neighbours, calculated with respect to the test point, using either Block or Euclidean Metric. key: int Count of number of terms inside ouput list. RETURNS ======= prediction: float/int If used as a Classifier, gives Class number as prediction. Else, it will give the mean of Cluster made by test point and its n nearest neighbours. """ neigbours = get_neighbours( train, test_row, num_neighbours, distance_metrics="block") ouput = [row[-1] for row in neigbours] if classify: prediction = max(set(ouput), key=ouput.count) else: prediction = sum(ouput) / len(ouput) return prediction class Naive_Bayes(): """ A class which classifies and predicts based on simple Naive Bayes algorithm. ATTRIBUTES ========== None METHODS ======= predict(self, x_label, y_class): Naive Bayes Model to predict the class given the label. """ def predict(self, x_label, y_class): """ Naive Bayes Model to predict the class given the label. PARAMETERS ========== x_label: ndarray(dtype=int,ndim=1,axis=1) Array of labels. y_class: ndarray(dtype=int,ndim=1,axis=1) Array of classes. RETURNS ======= Most probable output or prediction, as list of the label and class name. """ pyx = [] likelihood = make_likelihood_table(x_label, y_class) Y = np.unique(y_class) X = np.unique(x_label) for j in range(len(Y)): total = 0 for i in range(len(X)): if(likelihood[i][j] == 0): continue total += math.log(likelihood[i][j]) y_sum = (y_class == Y[j]).sum() if y_sum: total += math.log(y_sum / len(y_class)) pyx.append([total, X[i], Y[j]]) prediction = max(pyx) return [prediction[1], prediction[2]] class Gaussian_Naive_Bayes(): """ A class which classifies and predicts based on Gaussian Naive Bayes algorithm. ATTRIBUTES ========== None METHODS ======= predict(self, x_label, y_class): Gaussian Naive Bayes Model to predict the label for given class values. """ # data is variable input given by user for which we predict the label. # Here we predict the gender from given list of height, weight, foot_size def predict(self, data, x_label, y_class): """ Gaussian Naive Bayes Model to predict the label given the class values. PARAMETERS ========== x_label: ndarray(dtype=int,ndim=1,axis=1) Array of labels. y_class: ndarray(dtype=int,ndim=1,axis=1) Array of classes. RETURNS ======= Predicts the label, for given class values by user. """ mean, var = get_mean_var(x_label, y_class) argmax = 0 for (k1, v1), (k2, v2) in zip(mean.items(), var.items()): pre_prob = Counter(x_label)[k1] / len(x_label) pro = 1 for i in range(len(v1)): pro *= p_y_given_x(data[i], v1[i], v2[i]) pxy = pro * pre_prob if(pxy > argmax): prediction = k1 return prediction class BernoulliNB(object): def __init__(self, alpha=1): self.alpha = alpha def fit(self, x, y): separate = [[i for i, t in zip(x, y) if t == c] for c in np.unique(y)] count_for_sample = x.shape[0] self.class_log = [np.log(len(i) / count_for_sample) for i in separate] count = self.alpha + np.array([np.array(i).sum(axis=0) for i in separate]) smoothing = 2 * self.alpha doc = np.array([smoothing + len(i) for i in separate]) self.log_prob = count / doc[np.newaxis].T return self def predict_log(self, x): return [(np.log(self.log_prob) * i + np.log(1 - self.log_prob) * np.abs(i - 1)).sum(axis=1) + self.class_log for i in x] def predict(self, x): return np.argmax(self.predict_log(x), axis=1) class MultinomialNB(object): def __init__(self, alpha=1): self.alpha = alpha def fit(self, x, y): separate = [[i for i, t in zip(x, y) if t == c] for c in np.unique(y)] count_for_sample = x.shape[0] self.class_log = [np.log(len(i) / count_for_sample) for i in separate] count = self.alpha + np.array([np.array(i).sum(axis=0) for i in separate]) self.log_prob = np.log(count / count.sum(axis=1)[np.newaxis].T) return self def predict_log(self, x): return [(self.log_prob * i).sum(axis=1) + self.class_log for i in x] def predict(self, x): return np.argmax(self.predict_log(x), axis=1) class KMeansClustering(): """ One of the models used for Unsupervised learning, by making finite number of clusters from Dataset points. ATTRIBUTES ========== None METHODS ======= work(M, num_cluster, epochs): Give details about cluster arrangements from Dataset's Points, after suitable number of epoch steps. """ def work(self, M, num_cluster, epochs): """ Show the arrangement of clusters after certain number of epochs, provided with number of clusters and Input Dataset Matrix. PARAMETERS ========== M: ndarray(dtype=int,ndim=2) Dataset Matrix with finite number of points, having their corresponding x and y coordinates. num_cluster: int Number of Clusters to be made from the provided Dataset's points. epochs: int Number of times, centroids' coordinates will change, to obtain suitable clusters with appropriate number of points. centroid_array: list List of randomly initialised centroids, out of Dataset points, which will be going to update with every epoch, in order to obtain suitable clusters. interm: ndarray(dtype=int,ndim=2) Intermediate Matrix, consisting of clusterwise sum of each coordinate, with number of points in each cluster. new_array: list Updated list of new centroids, due to changes in cluster points, with each epoch. cluster_array: list List of Resultant Clusters, made after updating centroids with each epoch. It consist of Centroid and its corresponding nearby points of each Cluster. cluster: list List of Current cluster to be shown on screen, with its corresponding centroid and nearby points. RETURNS ======= None """ centroid_array = initi_centroid(M, num_cluster) for i in range(1, epochs + 1): interm = xy_calc(M, centroid_array) new_array = new_centroid(interm) centroid_array = new_array cluster_array = cluster_allot(M, centroid_array) for cluster in cluster_array: print("==============================\n") print(cluster) print("\n==============================\n") # ---------------------- Divisive Hierarchical Clustering ---------------- class DivisiveClustering(): def work(self, M, n_clusters, n_iterations=7, enable_for_larger_clusters=False): if n_clusters > len(M): raise(ValueError( f'Number of clusters {n_clusters} inputted is greater than \ dataset number of examples {len(M)}.')) KMC = KMeans() clusters, centroids = KMC.runKMeans(M, 2, n_iterations) # global list of clusters and global np.array of centroids global_clusters, global_centroids = clusters, centroids # Visualize flag to toggle visualization of clusters while the # algorithm runs _visualize = False # List to store sum of squared errors of each cluster cluster_sse_list = [sse(clusters[0], centroids[0]), sse(clusters[1], centroids[1])] # List to store lengths of each cluster cluster_len_list = [len(clusters[0]), len(clusters[1])] if n_clusters > 20 and not enable_for_larger_clusters: print('Visualization disabled for number of clusters > 20. To \ enable them for larger number of clusters, pass enable_for_\ larger_clusters = True argument for DC.work.') else: _visualize = True i = 2 while len(global_clusters) < n_clusters: # index of the cluster to be splitted; selection criteria: cluster # having max sse rem_index = cluster_sse_list.index(max(cluster_sse_list)) # cluster to be splitted parent = global_clusters[rem_index] cl = cluster_len_list[rem_index] if cl == 1: # if single example remaining, directly add into global # clusters global_centroids[rem_index] = parent[0] cluster_sse_list[rem_index] = 0. # check if all previous clusters are splitted completely # #!FIXME: Necessary? m = max(cluster_len_list) # case where all sse errors are zero if any(cluster_sse_list) and m == 1: i += 1 continue else: # index of cluster to be splitted rem_index = cluster_len_list.index(max(cluster_len_list)) # cluster to be splitted parent = global_clusters[rem_index] i += 1 # delete all residues of the cluster to be splitted del(global_clusters[rem_index]) del(cluster_sse_list[rem_index]) del(cluster_len_list[rem_index]) global_centroids = np.delete(global_centroids, rem_index, 0) # run kmeans to split the cluster clusters, centroids = KMC.runKMeans(parent, 2, 7) # update util arrays using data from splitted clusters global_clusters.extend([clusters[0], clusters[1]]) # print(f'global_clusters: {global_clusters}, len(global_clusters): # {len(global_clusters)}, clusters: {clusters}, len(clusters): # {len(clusters)}, parent:{parent}') cluster_sse_list.extend([sse(clusters[0], centroids[0]), sse( clusters[1], centroids[1])]) cluster_len_list.extend([len(clusters[0]), len(clusters[1])]) global_centroids = np.append(global_centroids, centroids, axis=0) # visualize formation of clusters if _visualize: visualize_clusters(global_clusters, global_centroids, i) return global_clusters, global_centroids class Bayes_Optimization(): # surrogate or approximation for the objective function def surrogate(self, model, X): # catch any warning generated when making a prediction with catch_warnings(): # ignore generated warnings simplefilter("ignore") return model.predict(X, return_std=True) def acquisition(self, X, Xsamples, model): yhat, _ = self.surrogate(model, X) best = max(yhat) # calculate mean and stdev via surrogate function mu, std = self.surrogate(model, Xsamples) mu = mu[:, 0] # calculate the probability of improvement probs = norm.cdf((mu - best) / (std + 1E-9)) return probs # optimize the acquisition function def opt_acquisition(self, X, y, model): # random search, generate random samples Xsamples = random(100) Xsamples = Xsamples.reshape(len(Xsamples), 1) # calculate the acquisition function for each sample scores = self.acquisition(X, Xsamples, model) # locate the index of the largest scores ix = np.argmax(scores) return Xsamples[ix, 0] # plot real observations vs surrogate function def plot(self, X, y, model): # scatter plot of inputs and real objective function plt.scatter(X, y) # line plot of surrogate function across domain Xsamples = np.asarray(np.arange(0, 1, 0.001)) Xsamples = Xsamples.reshape(len(Xsamples), 1) ysamples, _ = self.surrogate(model, Xsamples) plt.plot(Xsamples, ysamples) # show the plot plt.show() # ---------------------- Principle Component Analysis ------------------------ class PCA(PCA_utils): """ Principal component analysis (PCA): Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD. """ def __init__(self, n_components=None, whiten=False, svd_solver='auto'): self.n_components = n_components self.whiten = whiten self.svd_solver = svd_solver self.components = None self.mean = None self.explained_variances = None self.noise_variance = None self.fitted = False def fit(self, X, y=None): # fit the model with the data X self._fit(X) return self def fit_transform(self, X, y=None): """Fit the model with X and apply the dimensionality reduction on X.""" U, S, Vh = self._fit(X) U = U[:, :self.n_components] if self.whiten: U *= math.sqrt(X.shape[0] - 1) else: U *= S[:self.n_components] return U def _fit(self, X): '''Fitting function for the model''' # count the sparsity of the ndarray count = np.count_nonzero(X) sparsity = 1.0 - (count / np.size(X)) if sparsity > 0.5: raise TypeError('PCA does not support sparse input.') if self.n_components is None: n_components = min(X.shape) else: n_components = self.n_components fit_svd_solver = self.svd_solver if fit_svd_solver == 'auto': # Small problem or n_components == 'mle', call full PCA if max(X.shape) <= 500 or n_components == 'mle': fit_svd_solver = 'full' elif n_components >= 1 and n_components < .8 * min(X.shape): fit_svd_solver = 'randomized' # Case of n_components in (0,1) else: fit_svd_solver = 'full' # Call different fits for either full or truncated SVD if fit_svd_solver == 'full': return self.fit_full(X, n_components) else: raise ValueError("Unrecognized svd_solver=" "'{0}'".format(fit_svd_solver)) def fit_full(self, X, n_components): """Fit the model by computing full SVD on X.""" n_samples, n_features = X.shape if n_components == 'mle': if n_samples < n_features: raise ValueError("n_components='mle' is only " "supported if n_samples >= n_features") # mean of the dataset self.mean = np.mean(X, axis=0) std = np.std(X) X = (X - self.mean) / std U, S, Vh = np.linalg.svd(X, full_matrices=False) # flip eigenvectors' sign to enforce deterministic output # columns of U, rows of Vh max_abs_cols = np.argmax(np.abs(U), axis=0) signs = np.sign(U[max_abs_cols, range(U.shape[1])]) U *= signs Vh *= signs[:, np.newaxis] components = Vh # explained variance by singular values explained_variances = (S**2) / (n_samples - 1) explained_variance_ratio = (explained_variances / explained_variances.sum()) singular_value = S.copy() if n_components == 'mle': n_components = infer_dimension(explained_variances, n_samples) elif 0 < n_components < 1.0: ratio_cumsum = np.cumsum(explained_variance_ratio, axis=None, dtype=np.float64) n_components = np.searchsorted(ratio_cumsum, n_components, side='right') + 1 # Computing noise covariance using Probabilistic PCA model if n_components < min(n_features, n_samples): self.noise_variance = explained_variances[n_components:].mean() else: self.noise_variance = 1.0 # storing the first n_component values self.components = components[:n_components] self.n_components = self.n_components self.explained_variances = explained_variances[:n_components] self.explained_variance_ratio = explained_variance_ratio[:n_components] self.singular_value = singular_value[:n_components] self.fitted = True return U, S, Vh # ------------------------------Numerical Outliers Method---------------------- class Numerical_outliers(): def get_percentile(c, percentile_rank): """ get_percentile Function PARAMETER ========= c:ndarray(dtype=float,ndim=1) input dataset percentile_rank: float type RETURNS ======= Data corresponding to percentile rank """ d = np.sort(c) index = int(((len(d) - 1) * percentile_rank) // 100) return d[index] def get_outliers(x): """ get_outliers Function PARAMETER ========= x:ndarray(dtype=float,ndim=1) input dataset """ Q1 = Numerical_outliers.get_percentile(x, 25) Q3 = Numerical_outliers.get_percentile(x, 75) iqr = Q3 - Q1 lowerbound = Q1 - 1.5 * iqr upperbound = Q3 + 1.5 * iqr for i in range(len(x)): if x[i] > upperbound or x[i] < lowerbound: print("outlier=", x[i]) # ---------------------- Sequential Neural Network --------------------------- class Sequential(nn.Module): """ A class to construct Neural Networks with ease. Usage: >>> from MLlib.models import Sequential >>> model = Sequential( layer1, layer2, layer3, layer4, ... ) The layers(layer1, layer2, etc.) can be custom layers but must inherit from `MLlib.nn.Module` class. """ # TODO: # - create a method .fit(train_data, epochs, loss_fn, optimizer) def __init__(self, *layers): """ """ super().__init__() self._submodules = OrderedDict() for i in range(len(layers)): self.register_module(str(i), layers[i]) def forward(self, x): for layer in self._submodules.values(): x = layer(x) return x class Agglomerative_clustering(): """ One of the models used for Unsupervised learning, by making finite number of clusters from Dataset points. ATTRIBUTES ========== None METHODS ======= work(M, num_cluster): Give details about cluster arrangements from Dataset's Points """ def work(self, X, num_clusters): """ Show the arrangement of clusters , provided with number of clusters and Input Dataset Matrix. PARAMETERS ========== X: ndarray(dtype=int,ndim=2) Dataset Matrix with finite number of points, having their corresponding x and y coordinates. num_cluster: int Number of Clusters to be made from the provided Dataset's points. num_cluster should be less than or equal to X.shape[0] samples: list List of lists of Dataset points, which will be updated with every iteration of while loop due to merging of data points, in order to obtain suitable clusters. Distance_mat: ndarray(dtype=int,ndim=2) Adjacency Matrix, consisting of distance between every two points/ two clusters/ one point - one cluster RETURNS ======= None """ samples = [[list(X[i])] for i in range(X.shape[0])] m = len(samples) # create adjacency matrix Distance_mat = compute_distance(samples) print("Samples before clustering : {}".format(samples)) print("=============================================") while m > num_clusters: Distance_mat = compute_distance(samples) # find the index [i,j] of the minimum distance from the matrix # samples[i], samples[j] are to be merged sample_ind_needed = np.where(Distance_mat == Distance_mat.min())[0] print("Sample size before clustering : ", m) print("Samples indexes to be merged: {}".format(sample_ind_needed)) value_to_add = samples.pop(sample_ind_needed[1]) # print("Values :{}".format(value_to_add)) print("Samples before clustering: {}".format(samples)) samples[sample_ind_needed[0]].append(value_to_add) print("Samples after clustering: {}".format(samples)) m = len(samples) print("Sample size after clustering : ", m) print("=============================================") print("Number of clusters formed are : {}".format(m)) print("Clusters formed are : {}".format(samples)) # plotting the dendrograms def plot(self, X): plt.figure(figsize=(10, 7)) plt.title("Dendrograms") shc.dendrogram(shc.linkage(X, method='single')) plt.show()
30.809112
79
0.557999
310ce5d9a9d12111712c1eab2707826ffcebfa99
1,343
py
Python
cogs/Triggers.py
jakebacker/Gompei-Bot
dba3b11874ca19c22f170b8a01928af2b3fb2bd8
[ "MIT" ]
9
2020-02-14T02:07:39.000Z
2022-01-08T03:25:22.000Z
cogs/Triggers.py
jakebacker/Gompei-Bot
dba3b11874ca19c22f170b8a01928af2b3fb2bd8
[ "MIT" ]
16
2020-02-14T02:10:29.000Z
2022-02-04T14:50:58.000Z
cogs/Triggers.py
jakebacker/Gompei-Bot
dba3b11874ca19c22f170b8a01928af2b3fb2bd8
[ "MIT" ]
8
2020-02-21T14:28:07.000Z
2022-02-04T14:49:04.000Z
from discord.ext import commands greetings = ["hello", "hi", "greetings", "howdy", "salutations", "hey", "oi", "dear", "yo ", "morning", "afternoon", "evening", "sup", "G'day", "good day", "bonjour"] gompei_references = ["gompei", "672453835863883787", "goat"] love_references = ["gompeiHug", "love", "ily", "<3", "❤"] hate_references = ["fuck you", "sucks", "fucker", "idiot", "shithead", "eat shit", "hate"] violent_references = ["kill", "murder", "attack", "skin", "ambush", "stab"] class Triggers(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_message(self, message): if not message.author.bot: if any(x in message.content.lower() for x in gompei_references): if any(x in message.content.lower() for x in love_references): await message.add_reaction("❤") elif any(x in message.content.lower() for x in hate_references): await message.add_reaction("😢") elif any(x in message.content.lower() for x in greetings): await message.add_reaction("👋") elif any(x in message.content.lower() for x in violent_references): await message.add_reaction("😨") def setup(bot): bot.add_cog(Triggers(bot))
43.322581
116
0.595681
0e269c09850e065a8861143b9038cb665d0c8f1b
2,770
py
Python
src/inverse_text_normalization/gu/taggers/tokenize_and_classify.py
yashiagar1999/indict_punc
8697ac5a5245c7e0d35b0777b1dc6fb1b8d6d525
[ "MIT" ]
15
2021-07-30T18:18:47.000Z
2022-02-14T09:04:19.000Z
src/inverse_text_normalization/gu/taggers/tokenize_and_classify.py
yashiagar1999/indict_punc
8697ac5a5245c7e0d35b0777b1dc6fb1b8d6d525
[ "MIT" ]
1
2021-12-15T12:42:12.000Z
2022-02-15T05:33:00.000Z
src/inverse_text_normalization/gu/taggers/tokenize_and_classify.py
yashiagar1999/indict_punc
8697ac5a5245c7e0d35b0777b1dc6fb1b8d6d525
[ "MIT" ]
4
2021-07-30T10:03:38.000Z
2021-12-01T14:46:54.000Z
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from inverse_text_normalization.lang_params import LANG # lang_taggers = f'inverse_text_normalization.taggers.{LANG}_taggers' lang_taggers = 'inverse_text_normalization.gu.taggers' from inverse_text_normalization.gu.graph_utils import GraphFst exec(f"from {lang_taggers}.cardinal import CardinalFst") exec(f"from {lang_taggers}.date import DateFst") exec(f"from {lang_taggers}.decimal import DecimalFst") exec(f"from {lang_taggers}.measure import MeasureFst") exec(f"from {lang_taggers}.money import MoneyFst") exec(f"from {lang_taggers}.ordinal import OrdinalFst") exec(f"from {lang_taggers}.time import TimeFst") exec(f"from {lang_taggers}.whitelist import WhiteListFst") exec(f"from {lang_taggers}.word import WordFst") try: from pynini.lib import pynutil PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): PYNINI_AVAILABLE = False class ClassifyFst(GraphFst): """ Composes other classfier grammars. This class will be compiled and exported to thrax FAR. """ def __init__(self): super().__init__(name="tokenize_and_classify", kind="classify") cardinal_graph_fst = CardinalFst() cardinal = cardinal_graph_fst.fst ordinal_graph_fst = OrdinalFst(cardinal_graph_fst) ordinal = ordinal_graph_fst.fst decimal_graph_fst = DecimalFst(cardinal_graph_fst) decimal = decimal_graph_fst.fst measure = MeasureFst(cardinal_graph_fst, decimal_graph_fst).fst date = DateFst(ordinal_graph_fst).fst word = WordFst().fst time = TimeFst().fst money = MoneyFst(cardinal_graph_fst, decimal_graph_fst).fst whitelist = WhiteListFst().fst graph = ( pynutil.add_weight(whitelist, 1.01) | pynutil.add_weight(time, 1.1) | pynutil.add_weight(date, 1.09) | pynutil.add_weight(decimal, 1.1) | pynutil.add_weight(measure, 1.1) | pynutil.add_weight(cardinal, 1.1) | pynutil.add_weight(ordinal, 1.1) | pynutil.add_weight(money, 1.1) | pynutil.add_weight(word, 100) ) self.fst = graph.optimize()
36.447368
94
0.711552
6c30804c7a529ba095bc5e76563eb929729a0f94
10,189
py
Python
pomodorr/projects/serializers.py
kamil559/pomodorr
232e6e98ff3481561dd1235794b3960066713210
[ "MIT" ]
null
null
null
pomodorr/projects/serializers.py
kamil559/pomodorr
232e6e98ff3481561dd1235794b3960066713210
[ "MIT" ]
15
2020-04-11T18:30:57.000Z
2020-07-05T09:37:43.000Z
pomodorr/projects/serializers.py
kamil559/pomodorr
232e6e98ff3481561dd1235794b3960066713210
[ "MIT" ]
null
null
null
from datetime import timedelta from rest_framework import serializers from rest_framework.serializers import ModelSerializer from pomodorr.projects.exceptions import ProjectException, PriorityException, TaskException, SubTaskException from pomodorr.projects.models import Project, Priority, Task, SubTask from pomodorr.projects.selectors.priority_selector import get_priorities_for_user, get_all_priorities from pomodorr.projects.selectors.project_selector import get_all_active_projects, get_active_projects_for_user from pomodorr.projects.selectors.task_selector import get_all_non_removed_tasks, get_all_non_removed_tasks_for_user from pomodorr.projects.services.project_service import is_project_name_available from pomodorr.projects.services.sub_task_service import is_sub_task_name_available from pomodorr.projects.services.task_service import ( complete_task, reactivate_task, pin_to_project, is_task_name_available ) from pomodorr.tools.utils import has_changed from pomodorr.tools.validators import duration_validator, today_validator from pomodorr.users.selectors import get_active_standard_users class PrioritySerializer(serializers.ModelSerializer): priority_level = serializers.IntegerField(required=True, min_value=1) user = serializers.PrimaryKeyRelatedField(write_only=True, default=serializers.CurrentUserDefault(), queryset=get_active_standard_users()) class Meta: model = Priority fields = ('id', 'name', 'priority_level', 'color', 'user') def validate(self, data): self.check_priority_name_uniqueness(data=data) return data def check_priority_name_uniqueness(self, data): user = self.context['request'].user name = data.get('name') or None if name is not None and get_priorities_for_user(user=user, name=name).exists(): raise serializers.ValidationError( {'name': PriorityException.messages[PriorityException.priority_duplicated]}, code=PriorityException.priority_duplicated) return data class ProjectSerializer(ModelSerializer): user = serializers.PrimaryKeyRelatedField(write_only=True, default=serializers.CurrentUserDefault(), queryset=get_active_standard_users()) priority = serializers.PrimaryKeyRelatedField(required=False, allow_null=True, queryset=get_all_priorities()) user_defined_ordering = serializers.IntegerField(min_value=1) class Meta: model = Project fields = ('id', 'name', 'priority', 'user_defined_ordering', 'user') def validate_priority(self, value): user = self.context['request'].user if not get_priorities_for_user(user=user).filter(id=value.id).exists(): raise serializers.ValidationError(ProjectException.messages[ProjectException.priority_does_not_exist], code=ProjectException.priority_does_not_exist) return value def validate(self, data): # Temporary solution for https://github.com/encode/django-rest-framework/issues/7100 self.check_project_name_uniqueness(data=data) return data def check_project_name_uniqueness(self, data): user = self.context['request'].user name = data.get('name') or None if user is not None and name is not None and not is_project_name_available( user=user, name=name, excluded=self.instance): raise serializers.ValidationError( {'name': ProjectException.messages[ProjectException.project_duplicated]}, code=ProjectException.project_duplicated) def to_representation(self, instance): data = super(ProjectSerializer, self).to_representation(instance=instance) data['priority'] = PrioritySerializer(instance=instance.priority).data return data class SubTaskSerializer(serializers.ModelSerializer): task = serializers.PrimaryKeyRelatedField( required=True, queryset=get_all_non_removed_tasks() ) class Meta: model = SubTask fields = ('id', 'name', 'task', 'is_completed') def validate_task(self, value): user = self.context['request'].user if value and not get_all_non_removed_tasks_for_user(user=user, id=value.id).exists(): raise serializers.ValidationError(SubTaskException.messages[SubTaskException.task_does_not_exist], code=SubTaskException.task_does_not_exist) if value and value.status == Task.status_completed: raise serializers.ValidationError(SubTaskException.messages[SubTaskException.task_already_completed], code=SubTaskException.task_already_completed) if self.instance and has_changed(self.instance, 'task', value): raise serializers.ValidationError(SubTaskException.messages[SubTaskException.cannot_change_task], code=SubTaskException.cannot_change_task) return value def validate(self, data): self.check_sub_task_name_uniqueness(data=data) return data def check_sub_task_name_uniqueness(self, data): name = data.get('name') or None task = data.get('task') or None user = self.context['request'].user if name is not None and task is not None and user is not None and \ not is_sub_task_name_available(task=task, name=name, excluded=self.instance): raise serializers.ValidationError( {'name': [SubTaskException.messages[SubTaskException.sub_task_duplicated]]}, code=SubTaskException.sub_task_duplicated) class TaskSerializer(serializers.ModelSerializer): project = serializers.PrimaryKeyRelatedField( required=True, queryset=get_all_active_projects() ) priority = serializers.PrimaryKeyRelatedField( required=False, allow_empty=True, allow_null=True, queryset=get_all_priorities() ) user_defined_ordering = serializers.IntegerField(min_value=1) pomodoro_length = serializers.DurationField(required=False, allow_null=True, min_value=timedelta(minutes=5), max_value=timedelta(hours=6)) break_length = serializers.DurationField(required=False, allow_null=True, min_value=timedelta(minutes=5), max_value=timedelta(hours=6)) repeat_duration = serializers.DurationField(required=False, allow_null=True, min_value=timedelta(days=1), validators=[duration_validator]) due_date = serializers.DateTimeField(required=False, allow_null=True, validators=[today_validator]) sub_tasks = SubTaskSerializer(many=True, read_only=True) class Meta: model = Task fields = ( 'id', 'name', 'status', 'project', 'priority', 'user_defined_ordering', 'pomodoro_number', 'pomodoro_length', 'break_length', 'due_date', 'reminder_date', 'repeat_duration', 'note', 'sub_tasks') def validate_project(self, value): user = self.context['request'].user if not get_active_projects_for_user(user=user, id=value.id).exists(): raise serializers.ValidationError(TaskException.messages[TaskException.project_does_not_exist], code=TaskException.project_does_not_exist) return value def validate_priority(self, value): user = self.context['request'].user if value and not get_priorities_for_user(user=user).filter(id=value.id).exists(): raise serializers.ValidationError(TaskException.messages[TaskException.priority_does_not_exist], code=TaskException.priority_does_not_exist) return value def validate_status(self, value): if not self.instance and value and value == self.Meta.model.status_completed: raise serializers.ValidationError(TaskException.messages[TaskException.wrong_status], code=TaskException.wrong_status) return value def update(self, instance, validated_data): status = validated_data.pop('status') if 'status' in validated_data else None project = validated_data.pop('project') if 'project' in validated_data else None if status is not None: if has_changed(instance, 'status', status, self.Meta.model.status_completed): instance = complete_task(task=self.instance, db_save=False) elif has_changed(instance, 'status', status, self.Meta.model.status_active): instance = reactivate_task(task=self.instance, db_save=False) if project is not None and has_changed(instance, 'project', project): instance = pin_to_project(task=instance, project=project, db_save=False) return super(TaskSerializer, self).update(instance, validated_data) def validate(self, data): # Temporary solution for https://github.com/encode/django-rest-framework/issues/7100 self.check_task_name_uniqueness(data=data) return data def check_task_name_uniqueness(self, data): name = data.get('name') or None project = data.get('project') or None if name is not None and project is not None and not is_task_name_available( project=project, name=name, excluded=self.instance): raise serializers.ValidationError({'name': TaskException.messages[TaskException.task_duplicated]}, code=TaskException.task_duplicated) def to_representation(self, instance): data = super(TaskSerializer, self).to_representation(instance=instance) data['status'] = instance.get_status_display() data['priority'] = PrioritySerializer(instance=instance.priority).data data['project'] = ProjectSerializer(instance=instance.project).data return data
48.519048
115
0.688978
e3cf1eeedea8999277c2956bf64ddf377947ebdc
501
py
Python
find_lane_in_mv.py
ishota/CarND-LaneLines-P1
7780ec931d696efb9e5c41d5d91aa8723b7cb2a0
[ "MIT" ]
null
null
null
find_lane_in_mv.py
ishota/CarND-LaneLines-P1
7780ec931d696efb9e5c41d5d91aa8723b7cb2a0
[ "MIT" ]
null
null
null
find_lane_in_mv.py
ishota/CarND-LaneLines-P1
7780ec931d696efb9e5c41d5d91aa8723b7cb2a0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import utl from consts import * def main(): # divide videos into img image_list = utl.get_frame_list('test_videos/' + VID_NAME + '.mp4') # detect lane line line_color = [0, 0, 255] for n, image in enumerate(image_list): image_list[n] = utl.find_lane_line(image, line_color, is_improved=IS_IMPROVED) # create video from img utl.convert_frame_to_video(image_list, VID_NAME, 'test_videos_output/') if __name__ == '__main__': main()
21.782609
86
0.668663
7890429cfa3e7afb401842c3ff15265d5f03d1d4
10,222
py
Python
docs/source/examples/deepmind/dm_manipulation_stack_sac.py
Toni-SM/skrl
15b429d89e3b8a1828b207d88463bf7090288d18
[ "MIT" ]
43
2021-12-19T07:47:43.000Z
2022-03-31T05:24:42.000Z
docs/source/examples/deepmind/dm_manipulation_stack_sac.py
Toni-SM/skrl
15b429d89e3b8a1828b207d88463bf7090288d18
[ "MIT" ]
5
2022-01-05T07:54:13.000Z
2022-03-08T21:00:39.000Z
docs/source/examples/deepmind/dm_manipulation_stack_sac.py
Toni-SM/skrl
15b429d89e3b8a1828b207d88463bf7090288d18
[ "MIT" ]
1
2022-01-31T17:53:52.000Z
2022-01-31T17:53:52.000Z
from dm_control import manipulation import torch import torch.nn as nn # Import the skrl components to build the RL system from skrl.models.torch import GaussianModel, DeterministicModel from skrl.memories.torch import RandomMemory from skrl.agents.torch.sac import SAC, SAC_DEFAULT_CONFIG from skrl.trainers.torch import SequentialTrainer from skrl.envs.torch import wrap_env # Define the models (stochastic and deterministic models) for the SAC agent using the helper classes # - StochasticActor (policy): takes as input the environment's observation/state and returns an action # - Critic: takes the state and action as input and provides a value to guide the policy class StochasticActor(GaussianModel): def __init__(self, observation_space, action_space, device, clip_actions=False, clip_log_std=True, min_log_std=-20, max_log_std=2): super().__init__(observation_space, action_space, device, clip_actions, clip_log_std, min_log_std, max_log_std) self.features_extractor = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=3), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=2, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(7744, 512), nn.ReLU(), nn.Linear(512, 8), nn.Tanh()) self.net = nn.Sequential(nn.Linear(26, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, self.num_actions)) self.log_std_parameter = nn.Parameter(torch.zeros(self.num_actions)) def compute(self, states, taken_actions): # The dm_control.manipulation tasks have as observation/state spec a `collections.OrderedDict` object as follows: # OrderedDict([('front_close', BoundedArray(shape=(1, 84, 84, 3), dtype=dtype('uint8'), name='front_close', minimum=0, maximum=255)), # ('jaco_arm/joints_pos', Array(shape=(1, 6, 2), dtype=dtype('float64'), name='jaco_arm/joints_pos')), # ('jaco_arm/joints_torque', Array(shape=(1, 6), dtype=dtype('float64'), name='jaco_arm/joints_torque')), # ('jaco_arm/joints_vel', Array(shape=(1, 6), dtype=dtype('float64'), name='jaco_arm/joints_vel')), # ('jaco_arm/jaco_hand/joints_pos', Array(shape=(1, 3), dtype=dtype('float64'), name='jaco_arm/jaco_hand/joints_pos')), # ('jaco_arm/jaco_hand/joints_vel', Array(shape=(1, 3), dtype=dtype('float64'), name='jaco_arm/jaco_hand/joints_vel')), # ('jaco_arm/jaco_hand/pinch_site_pos', Array(shape=(1, 3), dtype=dtype('float64'), name='jaco_arm/jaco_hand/pinch_site_pos')), # ('jaco_arm/jaco_hand/pinch_site_rmat', Array(shape=(1, 9), dtype=dtype('float64'), name='jaco_arm/jaco_hand/pinch_site_rmat'))]) # This spec is converted to a `gym.spaces.Dict` space by the `wrap_env` function as follows: # Dict(front_close: Box(0, 255, (1, 84, 84, 3), uint8), # jaco_arm/jaco_hand/joints_pos: Box(-inf, inf, (1, 3), float64), # jaco_arm/jaco_hand/joints_vel: Box(-inf, inf, (1, 3), float64), # jaco_arm/jaco_hand/pinch_site_pos: Box(-inf, inf, (1, 3), float64), # jaco_arm/jaco_hand/pinch_site_rmat: Box(-inf, inf, (1, 9), float64), # jaco_arm/joints_pos: Box(-inf, inf, (1, 6, 2), float64), # jaco_arm/joints_torque: Box(-inf, inf, (1, 6), float64), # jaco_arm/joints_vel: Box(-inf, inf, (1, 6), float64)) # The `spaces` parameter is a flat tensor of the flattened observation/state space with shape (batch_size, size_of_flat_space). # Using the model's method `tensor_to_space` we can convert the flattened tensor to the original space. # https://skrl.readthedocs.io/en/latest/modules/skrl.models.base_class.html#skrl.models.torch.base.Model.tensor_to_space input = self.tensor_to_space(states, self.observation_space) # For this case, the `input` variable is a Python dictionary with the following structure and shapes: # {'front_close': torch.Tensor(shape=[batch_size, 1, 84, 84, 3], dtype=torch.float32), # 'jaco_arm/jaco_hand/joints_pos': torch.Tensor(shape=[batch_size, 1, 3], dtype=torch.float32) # 'jaco_arm/jaco_hand/joints_vel': torch.Tensor(shape=[batch_size, 1, 3], dtype=torch.float32) # 'jaco_arm/jaco_hand/pinch_site_pos': torch.Tensor(shape=[batch_size, 1, 3], dtype=torch.float32) # 'jaco_arm/jaco_hand/pinch_site_rmat': torch.Tensor(shape=[batch_size, 1, 9], dtype=torch.float32) # 'jaco_arm/joints_pos': torch.Tensor(shape=[batch_size, 1, 6, 2], dtype=torch.float32) # 'jaco_arm/joints_torque': torch.Tensor(shape=[batch_size, 1, 6], dtype=torch.float32) # 'jaco_arm/joints_vel': torch.Tensor(shape=[batch_size, 1, 6], dtype=torch.float32)} # permute and normalize the images (samples, width, height, channels) -> (samples, channels, width, height) features = self.features_extractor(input['front_close'][:,0].permute(0, 3, 1, 2) / 255.0) return torch.tanh(self.net(torch.cat([features, input["jaco_arm/joints_pos"].view(states.shape[0], -1), input["jaco_arm/joints_vel"].view(states.shape[0], -1)], dim=-1))), self.log_std_parameter class Critic(DeterministicModel): def __init__(self, observation_space, action_space, device, clip_actions = False): super().__init__(observation_space, action_space, device, clip_actions) self.features_extractor = nn.Sequential(nn.Conv2d(3, 32, kernel_size=8, stride=3), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=2, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(7744, 512), nn.ReLU(), nn.Linear(512, 8), nn.Tanh()) self.net = nn.Sequential(nn.Linear(26 + self.num_actions, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 1)) def compute(self, states, taken_actions): # map the observations/states to the original space. # See the explanation above (StochasticActor.compute) input = self.tensor_to_space(states, self.observation_space) # permute and normalize the images (samples, width, height, channels) -> (samples, channels, width, height) features = self.features_extractor(input['front_close'][:,0].permute(0, 3, 1, 2) / 255.0) return self.net(torch.cat([features, input["jaco_arm/joints_pos"].view(states.shape[0], -1), input["jaco_arm/joints_vel"].view(states.shape[0], -1), taken_actions], dim=-1)) # Load and wrap the DeepMind environment env = manipulation.load("reach_site_vision") env = wrap_env(env) device = env.device # Instantiate a RandomMemory (without replacement) as experience replay memory memory = RandomMemory(memory_size=50000, num_envs=env.num_envs, device=device, replacement=False) # Instantiate the agent's models (function approximators). # SAC requires 5 models, visit its documentation for more details # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.sac.html#spaces-and-models models_sac = {"policy": StochasticActor(env.observation_space, env.action_space, device, clip_actions=True), "critic_1": Critic(env.observation_space, env.action_space, device), "critic_2": Critic(env.observation_space, env.action_space, device), "target_critic_1": Critic(env.observation_space, env.action_space, device), "target_critic_2": Critic(env.observation_space, env.action_space, device)} # Initialize the models' parameters (weights and biases) using a Gaussian distribution for model in models_sac.values(): model.init_parameters(method_name="normal_", mean=0.0, std=0.1) # Configure and instantiate the agent. # Only modify some of the default configuration, visit its documentation to see all the options # https://skrl.readthedocs.io/en/latest/modules/skrl.agents.sac.html#configuration-and-hyperparameters cfg_sac = SAC_DEFAULT_CONFIG.copy() cfg_sac["gradient_steps"] = 1 cfg_sac["batch_size"] = 256 cfg_sac["random_timesteps"] = 0 cfg_sac["learning_starts"] = 10000 cfg_sac["learn_entropy"] = True # logging to TensorBoard and write checkpoints each 1000 and 5000 timesteps respectively cfg_sac["experiment"]["write_interval"] = 1000 cfg_sac["experiment"]["checkpoint_interval"] = 5000 agent_sac = SAC(models=models_sac, memory=memory, cfg=cfg_sac, observation_space=env.observation_space, action_space=env.action_space, device=device) # Configure and instantiate the RL trainer cfg_trainer = {"timesteps": 100000, "headless": True} trainer = SequentialTrainer(cfg=cfg_trainer, env=env, agents=agent_sac) # start training trainer.train()
58.411429
151
0.596165
b4057efcbb0da71a9b4115f58108b5a21c0cb694
12,282
py
Python
sympy/printing/mathml.py
matthew-brett/sympy
7b87b62144c28f2e734e9106897c72806b99d181
[ "BSD-3-Clause" ]
null
null
null
sympy/printing/mathml.py
matthew-brett/sympy
7b87b62144c28f2e734e9106897c72806b99d181
[ "BSD-3-Clause" ]
null
null
null
sympy/printing/mathml.py
matthew-brett/sympy
7b87b62144c28f2e734e9106897c72806b99d181
[ "BSD-3-Clause" ]
null
null
null
""" A MathML printer. """ from sympy import Basic, sympify, S from sympy.simplify import fraction from printer import Printer from conventions import split_super_sub class MathMLPrinter(Printer): """Prints an expression to the MathML markup language Whenever possible tries to use Content markup and not Presentation markup. References: http://www.w3.org/TR/MathML2/ """ printmethod = "_mathml" _default_settings = { "order": None, "encoding": "utf-8" } def __init__(self, settings=None): Printer.__init__(self, settings) from xml.dom.minidom import Document self.dom = Document() def doprint(self, expr): mathML = Printer._print(self, expr) return mathML.toxml(encoding=self._settings['encoding']) def mathml_tag(self, e): """Returns the MathML tag for an expression.""" translate = { 'Add': 'plus', 'Mul': 'times', 'Derivative': 'diff', 'Number': 'cn', 'int': 'cn', 'Pow': 'power', 'Symbol': 'ci', 'Integral': 'int', 'sin': 'sin', 'cos': 'cos', 'tan': 'tan', 'cot': 'cot', 'asin': 'arcsin', 'asinh': 'arcsinh', 'acos': 'arccos', 'acosh': 'arccosh', 'atan': 'arctan', 'atanh': 'arctanh', 'acot': 'arccot', 'atan2': 'arctan', 'log': 'ln' } for cls in e.__class__.__mro__: n = cls.__name__ if n in translate: return translate[n] # Not found in the MRO set n = e.__class__.__name__ return n.lower() def _print_Mul(self, expr): coeff, terms = expr.as_coeff_terms() if coeff.is_negative: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self._print_Mul(-expr)) return x numer, denom = fraction(expr) if not denom is S.One: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) x.appendChild(self._print(numer)) x.appendChild(self._print(denom)) return x if coeff == 1 and len(terms) == 1: return self._print(terms[0]) x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('times')) if(coeff != 1): x.appendChild(self._print(coeff)) for term in terms: x.appendChild(self._print(term)) return x # This is complicated because we attempt to order then results in order of Basic._compare_pretty # and use minus instead of negative def _print_Add(self, e): args = list(e.args) args.sort(Basic._compare_pretty) lastProcessed = self._print(args[0]) args.pop(0) plusNodes = list() for i in range(0,len(args)): arg = args[i] coeff, terms = arg.as_coeff_terms() if(coeff.is_negative): #use minus x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(lastProcessed) x.appendChild(self._print(-arg)) #invert expression since this is now minused lastProcessed = x; if(arg == args[-1]): plusNodes.append(lastProcessed) else: plusNodes.append(lastProcessed) lastProcessed = self._print(arg) if(arg == args[-1]): plusNodes.append(self._print(arg)) if len(plusNodes) == 1: return lastProcessed x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('plus')) while len(plusNodes) > 0: x.appendChild(plusNodes.pop(0)) return x def _print_Matrix(self, m): x = self.dom.createElement('matrix') for i in range(m.lines): x_r = self.dom.createElement('matrixrow') for j in range(m.cols): x_r.appendChild(self._print(m[i,j])) x.appendChild(x_r) return x def _print_Rational(self, e): if e.q == 1: #don't divide x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(str(e.p))) return x x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('divide')) #numerator xnum = self.dom.createElement('cn') xnum.appendChild(self.dom.createTextNode(str(e.p))) #denomenator xdenom = self.dom.createElement('cn') xdenom.appendChild(self.dom.createTextNode(str(e.q))) x.appendChild(xnum) x.appendChild(xdenom) return x def _print_Limit(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') x_2 = self.dom.createElement('lowlimit') x_1.appendChild(self._print(e.args[1])) x_2.appendChild(self._print(e.args[2])) x.appendChild(x_1) x.appendChild(x_2) x.appendChild(self._print(e.args[0])) return x def _print_ImaginaryUnit(self,e): return self.dom.createElement('imaginaryi') def _print_EulerGamma(self,e): return self.dom.createElement('eulergamma') def _print_GoldenRatio(self,e): """We use unicode #x3c6 for Greek letter phi as defined here http://www.w3.org/Math/characters/""" x = self.dom.createElement('cn') x.appendChild(self.dom.createTextNode(u"\u03c6")) return x def _print_Exp1(self,e): return self.dom.createElement('exponentiale') def _print_Pi(self, e): return self.dom.createElement('pi') def _print_Infinity(self, e): return self.dom.createElement('infinity') def _print_Negative_Infinity(self,e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('minus')) x.appendChild(self.dom.createElement('infinity')) return x def _print_Integral(self, e): def lime_recur(limits): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) bvar_elem = self.dom.createElement('bvar') bvar_elem.appendChild(self._print(limits[0][0])) x.appendChild(bvar_elem) if limits[0][1]: low_elem = self.dom.createElement('lowlimit') low_elem.appendChild(self._print(limits[0][1][0])) x.appendChild(low_elem) up_elem = self.dom.createElement('uplimit') up_elem.appendChild(self._print(limits[0][1][1])) x.appendChild(up_elem) if len(limits) == 1: x.appendChild(self._print(e.function)) else: x.appendChild(lime_recur(limits[1:])) return x limits = list(e.limits) limits.reverse() return lime_recur(limits) def _print_Symbol(self, sym): ci = self.dom.createElement(self.mathml_tag(sym)) def join(items): if len(items) > 1: mrow = self.dom.createElement('mml:mrow') for i, item in enumerate(items): if i>0: mo = self.dom.createElement('mml:mo') mo.appendChild(self.dom.createTextNode(" ")) mrow.appendChild(mo) mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(item)) mrow.appendChild(mi) return mrow else: mi = self.dom.createElement('mml:mi') mi.appendChild(self.dom.createTextNode(items[0])) return mi name, supers, subs = split_super_sub(sym.name) mname = self.dom.createElement('mml:mi') mname.appendChild(self.dom.createTextNode(name)) if len(supers) == 0: if len(subs) == 0: ci.appendChild(self.dom.createTextNode(name)) else: msub = self.dom.createElement('mml:msub') msub.appendChild(mname) msub.appendChild(join(subs)) ci.appendChild(msub) else: if len(subs) == 0: msup = self.dom.createElement('mml:msup') msup.appendChild(mname) msup.appendChild(join(supers)) ci.appendChild(msup) else: msubsup = self.dom.createElement('mml:msubsup') msubsup.appendChild(mname) msubsup.appendChild(join(subs)) msubsup.appendChild(join(supers)) ci.appendChild(msubsup) return ci def _print_Pow(self, e): #Here we use root instead of power if the exponent is the reciprocal of an integer if e.exp.is_Rational and e.exp.p == 1: x = self.dom.createElement('apply') x.appendChild(self.dom.createElement('root')) if e.exp.q != 2: xmldeg = self.dom.createElement('degree') xmlci = self.dom.createElement('ci') xmlci.appendChild(self.dom.createTextNode(str(e.exp.q))) xmldeg.appendChild(xmlci) x.appendChild(xmldeg) x.appendChild(self._print(e.base)) return x x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) x.appendChild(self._print(e.base)) x.appendChild(self._print(e.exp)) return x def _print_Number(self, e): x = self.dom.createElement(self.mathml_tag(e)) x.appendChild(self.dom.createTextNode(str(e))) return x def _print_Derivative(self, e): x = self.dom.createElement('apply') x.appendChild(self.dom.createElement(self.mathml_tag(e))) x_1 = self.dom.createElement('bvar') for sym in e.symbols: x_1.appendChild(self._print(sym)) x.appendChild(x_1) x.appendChild(self._print(e.expr)) return x def _print_Function(self, e): x = self.dom.createElement("apply") x.appendChild(self.dom.createElement(self.mathml_tag(e))) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_Basic(self, e): x = self.dom.createElement(self.mathml_tag(e)) for arg in e: x.appendChild(self._print(arg)) return x def _print_AssocOp(self, e): x = self.dom.createElement('apply') x_1 = self.dom.createElement(self.mathml_tag(e)) x.appendChild(x_1) for arg in e.args: x.appendChild(self._print(arg)) return x def _print_list(self, seq): """MathML reference for the <list> element: http://www.w3.org/TR/MathML2/chapter4.html#contm.list""" dom_element = self.dom.createElement('list') for item in seq: dom_element.appendChild(self._print(item)) return dom_element def _print_int(self, p): dom_element = self.dom.createElement(self.mathml_tag(p)) dom_element.appendChild(self.dom.createTextNode(str(p))) return dom_element def mathml(expr, **settings): """Returns the MathML representation of expr""" return MathMLPrinter(settings).doprint(expr) def print_mathml(expr, **settings): """ Prints a pretty representation of the MathML code for expr >>> ## >>> from sympy.printing.mathml import print_mathml >>> from sympy.abc import x >>> print_mathml(x+1) #doctest: +NORMALIZE_WHITESPACE <apply> <plus/> <cn> 1 </cn> <ci> x </ci> </apply> """ s = MathMLPrinter(settings) print s._print(sympify(expr)).toprettyxml(encoding="utf-8")
33.649315
100
0.561146
70379b5a0b6c1727957fc99098c0dca8026184d9
162
py
Python
PyStacks/test/test_verification.py
0xack13/PyStacks
13136c43089c241680beb216a233d1846119dd7c
[ "MIT" ]
11
2018-02-15T04:27:05.000Z
2020-10-02T11:20:08.000Z
PyStacks/test/test_verification.py
0xack13/PyStacks
13136c43089c241680beb216a233d1846119dd7c
[ "MIT" ]
3
2018-02-15T05:46:54.000Z
2018-03-05T04:46:51.000Z
PyStacks/test/test_verification.py
0xack13/PyStacks
13136c43089c241680beb216a233d1846119dd7c
[ "MIT" ]
8
2018-03-05T04:40:41.000Z
2021-02-22T08:07:58.000Z
from mock import MagicMock import PyStacks.PyStacks.verification as verification class TestVerification: def test_ensure_http_success(self): pass
16.2
53
0.783951
59cbd347b42bbfb41e77a8ee380f937cc09abc48
52,489
py
Python
pennylane/devices/tests/test_measurements.py
MoritzWillmann/pennylane
2b07d22cfcc6406ba28e5c647062340b240a4ee5
[ "Apache-2.0" ]
539
2018-11-13T08:45:42.000Z
2020-07-27T18:17:16.000Z
pennylane/devices/tests/test_measurements.py
MoritzWillmann/pennylane
2b07d22cfcc6406ba28e5c647062340b240a4ee5
[ "Apache-2.0" ]
588
2018-11-14T10:21:47.000Z
2020-07-28T06:27:14.000Z
pennylane/devices/tests/test_measurements.py
MoritzWillmann/pennylane
2b07d22cfcc6406ba28e5c647062340b240a4ee5
[ "Apache-2.0" ]
165
2018-11-13T18:58:56.000Z
2020-07-27T17:18:17.000Z
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests that the different measurement types work correctly on a device.""" # pylint: disable=no-self-use,pointless-statement, no-member import pytest from flaky import flaky from scipy.sparse import csr_matrix import pennylane as qml from pennylane import numpy as np pytestmark = pytest.mark.skip_unsupported # ========================================================== # Some useful global variables # observables for which device support is tested obs = { "Identity": qml.Identity(wires=[0]), "Hadamard": qml.Hadamard(wires=[0]), "Hermitian": qml.Hermitian(np.eye(2), wires=[0]), "PauliX": qml.PauliX(wires=[0]), "PauliY": qml.PauliY(wires=[0]), "PauliZ": qml.PauliZ(wires=[0]), "Projector": qml.Projector(np.array([1]), wires=[0]), "SparseHamiltonian": qml.SparseHamiltonian(csr_matrix(np.eye(8)), wires=[0, 1, 2]), "Hamiltonian": qml.Hamiltonian([1, 1], [qml.PauliZ(0), qml.PauliX(0)]), } all_obs = obs.keys() # All qubit observables should be available to test in the device test suite all_available_obs = qml.ops._qubit__obs__.copy() # pylint: disable=protected-access # Note that the identity is not technically a qubit observable all_available_obs |= {"Identity"} if not set(all_obs) == all_available_obs: raise ValueError( "A qubit observable has been added that is not being tested in the " "device test suite. Please add to the obs dictionary in " "pennylane/devices/tests/test_measurements.py" ) # single qubit Hermitian observable A = np.array([[1.02789352, 1.61296440 - 0.3498192j], [1.61296440 + 0.3498192j, 1.23920938 + 0j]]) obs_lst = [ qml.PauliX(wires=0) @ qml.PauliY(wires=1), qml.PauliX(wires=1) @ qml.PauliY(wires=0), qml.PauliX(wires=1) @ qml.PauliZ(wires=2), qml.PauliX(wires=2) @ qml.PauliZ(wires=1), qml.Identity(wires=0) @ qml.Identity(wires=1) @ qml.PauliZ(wires=2), qml.PauliZ(wires=0) @ qml.PauliX(wires=1) @ qml.PauliY(wires=2), ] obs_permuted_lst = [ qml.PauliY(wires=1) @ qml.PauliX(wires=0), qml.PauliY(wires=0) @ qml.PauliX(wires=1), qml.PauliZ(wires=2) @ qml.PauliX(wires=1), qml.PauliZ(wires=1) @ qml.PauliX(wires=2), qml.PauliZ(wires=2) @ qml.Identity(wires=0) @ qml.Identity(wires=1), qml.PauliX(wires=1) @ qml.PauliY(wires=2) @ qml.PauliZ(wires=0), ] label_maps = [[0, 1, 2], ["a", "b", "c"], ["beta", "alpha", "gamma"], [3, "beta", "a"]] def sub_routine(label_map): """Quantum function to initalize state in tests""" qml.Hadamard(wires=label_map[0]) qml.RX(0.12, wires=label_map[1]) qml.RY(3.45, wires=label_map[2]) class TestSupportedObservables: """Test that the device can implement all observables that it supports.""" @pytest.mark.parametrize("observable", all_obs) def test_supported_observables_can_be_implemented(self, device_kwargs, observable): """Test that the device can implement all its supported observables.""" device_kwargs["wires"] = 3 dev = qml.device(**device_kwargs) if device_kwargs.get("shots", None) is not None and observable == "SparseHamiltonian": pytest.skip("SparseHamiltonian only supported in analytic mode") assert hasattr(dev, "observables") if observable in dev.observables: kwargs = {"diff_method": "parameter-shift"} if observable == "SparseHamiltonian" else {} @qml.qnode(dev, **kwargs) def circuit(): if dev.supports_operation(qml.PauliX): # ionq can't have empty circuits qml.PauliX(0) return qml.expval(obs[observable]) assert isinstance(circuit(), (float, np.ndarray)) def test_tensor_observables_can_be_implemented(self, device_kwargs): """Test that the device can implement a simple tensor observable. This test is skipped for devices that do not support tensor observables.""" device_kwargs["wires"] = 2 dev = qml.device(**device_kwargs) supports_tensor = ( "supports_tensor_observables" in dev.capabilities() and dev.capabilities()["supports_tensor_observables"] ) if not supports_tensor: pytest.skip("Device does not support tensor observables.") @qml.qnode(dev) def circuit(): if dev.supports_operation(qml.PauliX): # ionq can't have empty circuits qml.PauliX(0) return qml.expval(qml.Identity(wires=0) @ qml.Identity(wires=1)) assert isinstance(circuit(), (float, np.ndarray)) # pylint: disable=too-few-public-methods @flaky(max_runs=10) class TestHamiltonianSupport: """Separate test to ensure that the device can differentiate Hamiltonian observables.""" def test_hamiltonian_diff(self, device_kwargs, tol): """Tests a simple VQE gradient using parameter-shift rules.""" device_kwargs["wires"] = 1 dev = qml.device(**device_kwargs) coeffs = np.array([-0.05, 0.17]) param = np.array(1.7, requires_grad=True) @qml.qnode(dev, diff_method="parameter-shift") def circuit(coeffs, param): qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval( qml.Hamiltonian( coeffs, [qml.PauliX(0), qml.PauliZ(0)], ) ) grad_fn = qml.grad(circuit) grad = grad_fn(coeffs, param) def circuit1(param): """First Pauli subcircuit""" qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(qml.PauliX(0)) def circuit2(param): """Second Pauli subcircuit""" qml.RX(param, wires=0) qml.RY(param, wires=0) return qml.expval(qml.PauliZ(0)) half1 = qml.QNode(circuit1, dev, diff_method="parameter-shift") half2 = qml.QNode(circuit2, dev, diff_method="parameter-shift") def combine(coeffs, param): return coeffs[0] * half1(param) + coeffs[1] * half2(param) grad_fn_expected = qml.grad(combine) grad_expected = grad_fn_expected(coeffs, param) assert np.allclose(grad[0], grad_expected[0], atol=tol(dev.shots)) assert np.allclose(grad[1], grad_expected[1], atol=tol(dev.shots)) @flaky(max_runs=10) class TestExpval: """Test expectation values""" def test_identity_expectation(self, device, tol): """Test that identity expectation value (i.e. the trace) is 1.""" n_wires = 2 dev = device(n_wires) theta = 0.432 phi = 0.123 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Identity(wires=0)), qml.expval(qml.Identity(wires=1)) res = circuit() assert np.allclose(res, np.array([1, 1]), atol=tol(dev.shots)) def test_pauliz_expectation(self, device, tol): """Test that PauliZ expectation value is correct""" n_wires = 2 dev = device(n_wires) theta = 0.432 phi = 0.123 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.PauliZ(wires=0)), qml.expval(qml.PauliZ(wires=1)) res = circuit() assert np.allclose( res, np.array([np.cos(theta), np.cos(theta) * np.cos(phi)]), atol=tol(dev.shots) ) def test_paulix_expectation(self, device, tol): """Test that PauliX expectation value is correct""" n_wires = 2 dev = device(n_wires) theta = 0.432 phi = 0.123 @qml.qnode(dev) def circuit(): qml.RY(theta, wires=[0]) qml.RY(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.PauliX(wires=0)), qml.expval(qml.PauliX(wires=1)) res = circuit() expected = np.array([np.sin(theta) * np.sin(phi), np.sin(phi)]) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_pauliy_expectation(self, device, tol): """Test that PauliY expectation value is correct""" n_wires = 2 dev = device(n_wires) theta = 0.432 phi = 0.123 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.PauliY(wires=0)), qml.expval(qml.PauliY(wires=1)) res = circuit() expected = np.array([0.0, -np.cos(theta) * np.sin(phi)]) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_hadamard_expectation(self, device, tol): """Test that Hadamard expectation value is correct""" n_wires = 2 dev = device(n_wires) theta = 0.432 phi = 0.123 @qml.qnode(dev) def circuit(): qml.RY(theta, wires=[0]) qml.RY(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Hadamard(wires=0)), qml.expval(qml.Hadamard(wires=1)) res = circuit() expected = np.array( [np.sin(theta) * np.sin(phi) + np.cos(theta), np.cos(theta) * np.cos(phi) + np.sin(phi)] ) / np.sqrt(2) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_hermitian_expectation(self, device, tol): """Test that arbitrary Hermitian expectation values are correct""" n_wires = 2 dev = device(n_wires) if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") theta = 0.432 phi = 0.123 @qml.qnode(dev) def circuit(): qml.RY(theta, wires=[0]) qml.RY(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Hermitian(A, wires=0)), qml.expval(qml.Hermitian(A, wires=1)) res = circuit() a = A[0, 0] re_b = A[0, 1].real d = A[1, 1] ev1 = ((a - d) * np.cos(theta) + 2 * re_b * np.sin(theta) * np.sin(phi) + a + d) / 2 ev2 = ((a - d) * np.cos(theta) * np.cos(phi) + 2 * re_b * np.sin(phi) + a + d) / 2 expected = np.array([ev1, ev2]) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_projector_expectation(self, device, tol): """Test that arbitrary Projector expectation values are correct""" n_wires = 2 dev = device(n_wires) if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") theta = 0.732 phi = 0.523 @qml.qnode(dev) def circuit(basis_state): qml.RY(theta, wires=[0]) qml.RY(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Projector(basis_state, wires=[0, 1])) res = circuit([0, 0]) expected = (np.cos(phi / 2) * np.cos(theta / 2)) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([0, 1]) expected = (np.sin(phi / 2) * np.cos(theta / 2)) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 0]) expected = (np.sin(phi / 2) * np.sin(theta / 2)) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 1]) expected = (np.cos(phi / 2) * np.sin(theta / 2)) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) def test_multi_mode_hermitian_expectation(self, device, tol): """Test that arbitrary multi-mode Hermitian expectation values are correct""" n_wires = 2 dev = device(n_wires) if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") theta = 0.432 phi = 0.123 A_ = np.array( [ [-6, 2 + 1j, -3, -5 + 2j], [2 - 1j, 0, 2 - 1j, -5 + 4j], [-3, 2 + 1j, 0, -4 + 3j], [-5 - 2j, -5 - 4j, -4 - 3j, -6], ] ) @qml.qnode(dev) def circuit(): qml.RY(theta, wires=[0]) qml.RY(phi, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.expval(qml.Hermitian(A_, wires=[0, 1])) res = circuit() # below is the analytic expectation value for this circuit with arbitrary # Hermitian observable A expected = 0.5 * ( 6 * np.cos(theta) * np.sin(phi) - np.sin(theta) * (8 * np.sin(phi) + 7 * np.cos(phi) + 3) - 2 * np.sin(phi) - 6 * np.cos(phi) - 6 ) assert np.allclose(res, expected, atol=tol(dev.shots)) @flaky(max_runs=10) class TestTensorExpval: """Test tensor expectation values""" def test_paulix_pauliy(self, device, tol, skip_if): """Test that a tensor product involving PauliX and PauliY works correctly""" n_wires = 3 dev = device(n_wires) skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.expval(qml.PauliX(wires=0) @ qml.PauliY(wires=2)) res = circuit() expected = np.sin(theta) * np.sin(phi) * np.sin(varphi) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_pauliz_hadamard(self, device, tol, skip_if): """Test that a tensor product involving PauliZ and PauliY and hadamard works correctly""" n_wires = 3 dev = device(n_wires) skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.expval(qml.PauliZ(wires=0) @ qml.Hadamard(wires=1) @ qml.PauliY(wires=2)) res = circuit() expected = -(np.cos(varphi) * np.sin(phi) + np.sin(varphi) * np.cos(theta)) / np.sqrt(2) assert np.allclose(res, expected, atol=tol(dev.shots)) # pylint: disable=too-many-arguments @pytest.mark.parametrize( "base_obs, permuted_obs", list(zip(obs_lst, obs_permuted_lst)), ) def test_wire_order_in_tensor_prod_observables( self, device, base_obs, permuted_obs, tol, skip_if ): """Test that when given a tensor observable the expectation value is the same regardless of the order of terms in the tensor observable, provided the wires each term acts on remain constant. eg: ob1 = qml.PauliZ(wires=0) @ qml.PauliY(wires=1) ob2 = qml.PauliY(wires=1) @ qml.PauliZ(wires=0) @qml.qnode(dev) def circ(obs): return qml.expval(obs) circ(ob1) == circ(ob2) """ n_wires = 3 dev = device(n_wires) skip_if(dev, {"supports_tensor_observables": False}) @qml.qnode(dev) def circ(ob): sub_routine(label_map=range(3)) return qml.expval(ob) assert np.allclose(circ(base_obs), circ(permuted_obs), atol=tol(dev.shots), rtol=0) @pytest.mark.parametrize("label_map", label_maps) def test_wire_label_in_tensor_prod_observables(self, device, label_map, tol, skip_if): """Test that when given a tensor observable the expectation value is the same regardless of how the wires are labelled, as long as they match the device order. For example: dev1 = qml.device("default.qubit", wires=[0, 1, 2]) dev2 = qml.device("default.qubit", wires=['c', 'b', 'a'] def circ(wire_labels): return qml.expval(qml.PauliZ(wires=wire_labels[0]) @ qml.PauliX(wires=wire_labels[2])) c1, c2 = qml.QNode(circ, dev1), qml.QNode(circ, dev2) c1([0, 1, 2]) == c2(['c', 'b', 'a']) """ dev = device(wires=3) dev_custom_labels = device(wires=label_map) skip_if(dev, {"supports_tensor_observables": False}) def circ(wire_labels): sub_routine(wire_labels) return qml.expval( qml.PauliX(wire_labels[0]) @ qml.PauliY(wire_labels[1]) @ qml.PauliZ(wire_labels[2]) ) circ_base_label = qml.QNode(circ, device=dev) circ_custom_label = qml.QNode(circ, device=dev_custom_labels) assert np.allclose( circ_base_label(wire_labels=range(3)), circ_custom_label(wire_labels=label_map), atol=tol(dev.shots), rtol=0, ) def test_hermitian(self, device, tol, skip_if): """Test that a tensor product involving qml.Hermitian works correctly""" n_wires = 3 dev = device(n_wires) if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 A_ = np.array( [ [-6, 2 + 1j, -3, -5 + 2j], [2 - 1j, 0, 2 - 1j, -5 + 4j], [-3, 2 + 1j, 0, -4 + 3j], [-5 - 2j, -5 - 4j, -4 - 3j, -6], ] ) @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.expval(qml.PauliZ(wires=0) @ qml.Hermitian(A_, wires=[1, 2])) res = circuit() expected = 0.5 * ( -6 * np.cos(theta) * (np.cos(varphi) + 1) - 2 * np.sin(varphi) * (np.cos(theta) + np.sin(phi) - 2 * np.cos(phi)) + 3 * np.cos(varphi) * np.sin(phi) + np.sin(phi) ) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_projector(self, device, tol, skip_if): """Test that a tensor product involving qml.Projector works correctly""" n_wires = 3 dev = device(n_wires) if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.732 phi = 0.523 varphi = -0.543 @qml.qnode(dev) def circuit(basis_state): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.expval(qml.PauliZ(wires=[0]) @ qml.Projector(basis_state, wires=[1, 2])) res = circuit([0, 0]) expected = (np.cos(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.cos(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([0, 1]) expected = (np.sin(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.sin(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 0]) expected = (np.sin(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.sin(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 1]) expected = (np.cos(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.cos(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) def test_sparse_hamiltonian_expval(self, device, tol): """Test that expectation values of sparse Hamiltonians are properly calculated.""" n_wires = 4 dev = device(n_wires) if "SparseHamiltonian" not in dev.observables: pytest.skip("Skipped because device does not support the SparseHamiltonian observable.") if dev.shots is not None: pytest.skip("SparseHamiltonian only supported in analytic mode") h_row = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) h_col = np.array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) h_data = np.array( [-1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1], dtype=np.complex128 ) h = csr_matrix((h_data, (h_row, h_col)), shape=(16, 16)) # XXYY @qml.qnode(dev, diff_method="parameter-shift") def result(): qml.PauliX(0) qml.PauliX(2) qml.SingleExcitation(0.1, wires=[0, 1]) qml.SingleExcitation(0.2, wires=[2, 3]) qml.SingleExcitation(0.3, wires=[1, 2]) return qml.expval(qml.SparseHamiltonian(h, wires=[0, 1, 2, 3])) res = result() exp_res = 0.019833838076209875 assert np.allclose(res, exp_res, atol=tol(False)) @flaky(max_runs=10) class TestSample: """Tests for the sample return type.""" def test_sample_values(self, device, tol): """Tests if the samples returned by sample have the correct values """ n_wires = 1 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") @qml.qnode(dev) def circuit(): qml.RX(1.5708, wires=[0]) return qml.sample(qml.PauliZ(wires=0)) res = circuit() # res should only contain 1 and -1 assert np.allclose(res**2, 1, atol=tol(False)) def test_sample_values_hermitian(self, device, tol): """Tests if the samples of a Hermitian observable returned by sample have the correct values """ n_wires = 1 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") A_ = np.array([[1, 2j], [-2j, 0]]) theta = 0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) return qml.sample(qml.Hermitian(A_, wires=0)) res = circuit().flatten() # res should only contain the eigenvalues of # the hermitian matrix eigvals = np.linalg.eigvalsh(A_) assert np.allclose(sorted(list(set(res.tolist()))), sorted(eigvals), atol=tol(dev.shots)) # the analytic mean is 2*sin(theta)+0.5*cos(theta)+0.5 assert np.allclose( np.mean(res), 2 * np.sin(theta) + 0.5 * np.cos(theta) + 0.5, atol=tol(False) ) # the analytic variance is 0.25*(sin(theta)-4*cos(theta))^2 assert np.allclose( np.var(res), 0.25 * (np.sin(theta) - 4 * np.cos(theta)) ** 2, atol=tol(False) ) def test_sample_values_projector(self, device, tol): """Tests if the samples of a Projector observable returned by sample have the correct values """ n_wires = 1 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") theta = 0.543 @qml.qnode(dev) def circuit(basis_state): qml.RX(theta, wires=[0]) return qml.sample(qml.Projector(basis_state, wires=0)) res = circuit([0]).flatten() # res should only contain 0 or 1, the eigenvalues of the projector assert np.allclose(sorted(list(set(res.tolist()))), [0, 1], atol=tol(dev.shots)) assert np.allclose(np.mean(res), np.cos(theta / 2) ** 2, atol=tol(False)) assert np.allclose( np.var(res), np.cos(theta / 2) ** 2 - (np.cos(theta / 2) ** 2) ** 2, atol=tol(False) ) res = circuit([1]).flatten() # res should only contain 0 or 1, the eigenvalues of the projector assert np.allclose(sorted(list(set(res.tolist()))), [0, 1], atol=tol(dev.shots)) assert np.allclose(np.mean(res), np.sin(theta / 2) ** 2, atol=tol(False)) assert np.allclose( np.var(res), np.sin(theta / 2) ** 2 - (np.sin(theta / 2) ** 2) ** 2, atol=tol(False) ) def test_sample_values_hermitian_multi_qubit(self, device, tol): """Tests if the samples of a multi-qubit Hermitian observable returned by sample have the correct values """ n_wires = 2 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") theta = 0.543 A_ = np.array( [ [1, 2j, 1 - 2j, 0.5j], [-2j, 0, 3 + 4j, 1], [1 + 2j, 3 - 4j, 0.75, 1.5 - 2j], [-0.5j, 1, 1.5 + 2j, -1], ] ) @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RY(2 * theta, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.sample(qml.Hermitian(A_, wires=[0, 1])) res = circuit().flatten() # res should only contain the eigenvalues of # the hermitian matrix eigvals = np.linalg.eigvalsh(A_) assert np.allclose(sorted(list(set(res.tolist()))), sorted(eigvals), atol=tol(dev.shots)) # make sure the mean matches the analytic mean expected = ( 88 * np.sin(theta) + 24 * np.sin(2 * theta) - 40 * np.sin(3 * theta) + 5 * np.cos(theta) - 6 * np.cos(2 * theta) + 27 * np.cos(3 * theta) + 6 ) / 32 assert np.allclose(np.mean(res), expected, atol=tol(dev.shots)) def test_sample_values_projector_multi_qubit(self, device, tol): """Tests if the samples of a multi-qubit Projector observable returned by sample have the correct values """ n_wires = 2 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") theta = 0.543 @qml.qnode(dev) def circuit(basis_state): qml.RX(theta, wires=[0]) qml.RY(2 * theta, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.sample(qml.Projector(basis_state, wires=[0, 1])) res = circuit([0, 0]).flatten() # res should only contain 0 or 1, the eigenvalues of the projector assert np.allclose(sorted(list(set(res.tolist()))), [0, 1], atol=tol(dev.shots)) expected = (np.cos(theta / 2) * np.cos(theta)) ** 2 assert np.allclose(np.mean(res), expected, atol=tol(dev.shots)) res = circuit([0, 1]).flatten() assert np.allclose(sorted(list(set(res.tolist()))), [0, 1], atol=tol(dev.shots)) expected = (np.cos(theta / 2) * np.sin(theta)) ** 2 assert np.allclose(np.mean(res), expected, atol=tol(dev.shots)) res = circuit([1, 0]).flatten() assert np.allclose(sorted(list(set(res.tolist()))), [0, 1], atol=tol(dev.shots)) expected = (np.sin(theta / 2) * np.sin(theta)) ** 2 assert np.allclose(np.mean(res), expected, atol=tol(dev.shots)) res = circuit([1, 1]).flatten() assert np.allclose(sorted(list(set(res.tolist()))), [0, 1], atol=tol(dev.shots)) expected = (np.sin(theta / 2) * np.cos(theta)) ** 2 assert np.allclose(np.mean(res), expected, atol=tol(dev.shots)) @flaky(max_runs=10) class TestTensorSample: """Test tensor sample values.""" def test_paulix_pauliy(self, device, tol, skip_if): """Test that a tensor product involving PauliX and PauliY works correctly""" n_wires = 3 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.sample(qml.PauliX(wires=[0]) @ qml.PauliY(wires=[2])) res = circuit() # res should only contain 1 and -1 assert np.allclose(res**2, 1, atol=tol(False)) mean = np.mean(res) expected = np.sin(theta) * np.sin(phi) * np.sin(varphi) assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( 8 * np.sin(theta) ** 2 * np.cos(2 * varphi) * np.sin(phi) ** 2 - np.cos(2 * (theta - phi)) - np.cos(2 * (theta + phi)) + 2 * np.cos(2 * theta) + 2 * np.cos(2 * phi) + 14 ) / 16 assert np.allclose(var, expected, atol=tol(False)) def test_pauliz_hadamard(self, device, tol, skip_if): """Test that a tensor product involving PauliZ and PauliY and hadamard works correctly""" n_wires = 3 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.sample( qml.PauliZ(wires=[0]) @ qml.Hadamard(wires=[1]) @ qml.PauliY(wires=[2]) ) res = circuit() # s1 should only contain 1 and -1 assert np.allclose(res**2, 1, atol=tol(False)) mean = np.mean(res) expected = -(np.cos(varphi) * np.sin(phi) + np.sin(varphi) * np.cos(theta)) / np.sqrt(2) assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( 3 + np.cos(2 * phi) * np.cos(varphi) ** 2 - np.cos(2 * theta) * np.sin(varphi) ** 2 - 2 * np.cos(theta) * np.sin(phi) * np.sin(2 * varphi) ) / 4 assert np.allclose(var, expected, atol=tol(False)) def test_hermitian(self, device, tol, skip_if): """Test that a tensor product involving qml.Hermitian works correctly""" n_wires = 3 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 A_ = 0.1 * np.array( [ [-6, 2 + 1j, -3, -5 + 2j], [2 - 1j, 0, 2 - 1j, -5 + 4j], [-3, 2 + 1j, 0, -4 + 3j], [-5 - 2j, -5 - 4j, -4 - 3j, -6], ] ) @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.sample(qml.PauliZ(wires=[0]) @ qml.Hermitian(A_, wires=[1, 2])) res = circuit() # res should only contain the eigenvalues of # the hermitian matrix tensor product Z Z = np.diag([1, -1]) eigvals = np.linalg.eigvalsh(np.kron(Z, A_)) assert np.allclose(sorted(np.unique(res)), sorted(eigvals), atol=tol(False)) mean = np.mean(res) expected = ( 0.1 * 0.5 * ( -6 * np.cos(theta) * (np.cos(varphi) + 1) - 2 * np.sin(varphi) * (np.cos(theta) + np.sin(phi) - 2 * np.cos(phi)) + 3 * np.cos(varphi) * np.sin(phi) + np.sin(phi) ) ) assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( 0.01 * ( 1057 - np.cos(2 * phi) + 12 * (27 + np.cos(2 * phi)) * np.cos(varphi) - 2 * np.cos(2 * varphi) * np.sin(phi) * (16 * np.cos(phi) + 21 * np.sin(phi)) + 16 * np.sin(2 * phi) - 8 * (-17 + np.cos(2 * phi) + 2 * np.sin(2 * phi)) * np.sin(varphi) - 8 * np.cos(2 * theta) * (3 + 3 * np.cos(varphi) + np.sin(varphi)) ** 2 - 24 * np.cos(phi) * (np.cos(phi) + 2 * np.sin(phi)) * np.sin(2 * varphi) - 8 * np.cos(theta) * ( 4 * np.cos(phi) * ( 4 + 8 * np.cos(varphi) + np.cos(2 * varphi) - (1 + 6 * np.cos(varphi)) * np.sin(varphi) ) + np.sin(phi) * ( 15 + 8 * np.cos(varphi) - 11 * np.cos(2 * varphi) + 42 * np.sin(varphi) + 3 * np.sin(2 * varphi) ) ) ) / 16 ) assert np.allclose(var, expected, atol=tol(False)) def test_projector(self, device, tol, skip_if): """Test that a tensor product involving qml.Projector works correctly""" n_wires = 3 dev = device(n_wires) if dev.shots is None: pytest.skip("Device is in analytic mode, cannot test sampling.") if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") skip_if(dev, {"supports_tensor_observables": False}) theta = 1.432 phi = 1.123 varphi = -0.543 @qml.qnode(dev) def circuit(basis_state): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.sample(qml.PauliZ(wires=[0]) @ qml.Projector(basis_state, wires=[1, 2])) res = circuit([0, 0]) # res should only contain the eigenvalues of the projector matrix tensor product Z, i.e. {-1, 0, 1} assert np.allclose(sorted(np.unique(res)), [-1, 0, 1], atol=tol(False)) mean = np.mean(res) expected = (np.cos(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.cos(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( (np.cos(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 + (np.cos(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 - ( (np.cos(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - (np.cos(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 ) assert np.allclose(var, expected, atol=tol(False)) res = circuit([0, 1]) assert np.allclose(sorted(np.unique(res)), [-1, 0, 1], atol=tol(False)) mean = np.mean(res) expected = (np.sin(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.sin(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( (np.sin(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 + (np.sin(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 - ( (np.sin(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - (np.sin(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 ) assert np.allclose(var, expected, atol=tol(False)) res = circuit([1, 0]) assert np.allclose(sorted(np.unique(res)), [-1, 0, 1], atol=tol(False)) mean = np.mean(res) expected = (np.sin(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.sin(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( (np.sin(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 + (np.sin(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 - ( (np.sin(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - (np.sin(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 ) assert np.allclose(var, expected, atol=tol(False)) res = circuit([1, 1]) assert np.allclose(sorted(np.unique(res)), [-1, 0, 1], atol=tol(False)) mean = np.mean(res) expected = (np.cos(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - ( np.cos(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2) ) ** 2 assert np.allclose(mean, expected, atol=tol(False)) var = np.var(res) expected = ( (np.cos(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 + (np.cos(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 - ( (np.cos(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - (np.cos(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 ) assert np.allclose(var, expected, atol=tol(False)) @flaky(max_runs=10) class TestVar: """Tests for the variance return type""" def test_var(self, device, tol): """Tests if the samples returned by sample have the correct values """ n_wires = 2 dev = device(n_wires) phi = 0.543 theta = 0.6543 @qml.qnode(dev) def circuit(): qml.RX(phi, wires=[0]) qml.RY(theta, wires=[0]) return qml.var(qml.PauliZ(wires=0)) res = circuit() expected = 0.25 * (3 - np.cos(2 * theta) - 2 * np.cos(theta) ** 2 * np.cos(2 * phi)) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_var_hermitian(self, device, tol): """Tests if the samples of a Hermitian observable returned by sample have the correct values """ n_wires = 2 dev = device(n_wires) if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") phi = 0.543 theta = 0.6543 # test correct variance for <H> of a rotated state H = 0.1 * np.array([[4, -1 + 6j], [-1 - 6j, 2]]) @qml.qnode(dev) def circuit(): qml.RX(phi, wires=[0]) qml.RY(theta, wires=[0]) return qml.var(qml.Hermitian(H, wires=0)) res = circuit() expected = ( 0.01 * 0.5 * ( 2 * np.sin(2 * theta) * np.cos(phi) ** 2 + 24 * np.sin(phi) * np.cos(phi) * (np.sin(theta) - np.cos(theta)) + 35 * np.cos(2 * phi) + 39 ) ) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_var_projector(self, device, tol): """Tests if the samples of a Projector observable returned by sample have the correct values """ n_wires = 2 dev = device(n_wires) if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") phi = 0.543 theta = 0.654 @qml.qnode(dev) def circuit(basis_state): qml.RX(phi, wires=[0]) qml.RY(theta, wires=[1]) qml.CNOT(wires=[0, 1]) return qml.var(qml.Projector(basis_state, wires=[0, 1])) res = circuit([0, 0]) expected = (np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - ( (np.cos(phi / 2) * np.cos(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([0, 1]) expected = (np.cos(phi / 2) * np.sin(theta / 2)) ** 2 - ( (np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 0]) expected = (np.sin(phi / 2) * np.sin(theta / 2)) ** 2 - ( (np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 1]) expected = (np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - ( (np.sin(phi / 2) * np.cos(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) @flaky(max_runs=10) class TestTensorVar: """Test tensor variance measurements.""" def test_paulix_pauliy(self, device, tol, skip_if): """Test that a tensor product involving PauliX and PauliY works correctly""" n_wires = 3 dev = device(n_wires) skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.var(qml.PauliX(wires=[0]) @ qml.PauliY(wires=[2])) res = circuit() expected = ( 8 * np.sin(theta) ** 2 * np.cos(2 * varphi) * np.sin(phi) ** 2 - np.cos(2 * (theta - phi)) - np.cos(2 * (theta + phi)) + 2 * np.cos(2 * theta) + 2 * np.cos(2 * phi) + 14 ) / 16 assert np.allclose(res, expected, atol=tol(dev.shots)) def test_pauliz_hadamard(self, device, tol, skip_if): """Test that a tensor product involving PauliZ and PauliY and hadamard works correctly""" n_wires = 3 dev = device(n_wires) skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.var(qml.PauliZ(wires=[0]) @ qml.Hadamard(wires=[1]) @ qml.PauliY(wires=[2])) res = circuit() expected = ( 3 + np.cos(2 * phi) * np.cos(varphi) ** 2 - np.cos(2 * theta) * np.sin(varphi) ** 2 - 2 * np.cos(theta) * np.sin(phi) * np.sin(2 * varphi) ) / 4 assert np.allclose(res, expected, atol=tol(dev.shots)) # pylint: disable=too-many-arguments @pytest.mark.parametrize( "base_obs, permuted_obs", list(zip(obs_lst, obs_permuted_lst)), ) def test_wire_order_in_tensor_prod_observables( self, device, base_obs, permuted_obs, tol, skip_if ): """Test that when given a tensor observable the variance is the same regardless of the order of terms in the tensor observable, provided the wires each term acts on remain constant. eg: ob1 = qml.PauliZ(wires=0) @ qml.PauliY(wires=1) ob2 = qml.PauliY(wires=1) @ qml.PauliZ(wires=0) @qml.qnode(dev) def circ(obs): return qml.var(obs) circ(ob1) == circ(ob2) """ n_wires = 3 dev = device(n_wires) skip_if(dev, {"supports_tensor_observables": False}) @qml.qnode(dev) def circ(ob): sub_routine(label_map=range(3)) return qml.var(ob) assert np.allclose(circ(base_obs), circ(permuted_obs), atol=tol(dev.shots), rtol=0) @pytest.mark.parametrize("label_map", label_maps) def test_wire_label_in_tensor_prod_observables(self, device, label_map, tol, skip_if): """Test that when given a tensor observable the variance is the same regardless of how the wires are labelled, as long as they match the device order. eg: dev1 = qml.device("default.qubit", wires=[0, 1, 2]) dev2 = qml.device("default.qubit", wires=['c', 'b', 'a'] def circ(wire_labels): return qml.var(qml.PauliZ(wires=wire_labels[0]) @ qml.PauliX(wires=wire_labels[2])) c1, c2 = qml.QNode(circ, dev1), qml.QNode(circ, dev2) c1([0, 1, 2]) == c2(['c', 'b', 'a']) """ dev = device(wires=3) dev_custom_labels = device(wires=label_map) skip_if(dev, {"supports_tensor_observables": False}) def circ(wire_labels): sub_routine(wire_labels) return qml.var( qml.PauliX(wire_labels[0]) @ qml.PauliY(wire_labels[1]) @ qml.PauliZ(wire_labels[2]) ) circ_base_label = qml.QNode(circ, device=dev) circ_custom_label = qml.QNode(circ, device=dev_custom_labels) assert np.allclose( circ_base_label(wire_labels=range(3)), circ_custom_label(wire_labels=label_map), atol=tol(dev.shots), rtol=0, ) def test_hermitian(self, device, tol, skip_if): """Test that a tensor product involving qml.Hermitian works correctly""" n_wires = 3 dev = device(n_wires) if "Hermitian" not in dev.observables: pytest.skip("Skipped because device does not support the Hermitian observable.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 A_ = 0.1 * np.array( [ [-6, 2 + 1j, -3, -5 + 2j], [2 - 1j, 0, 2 - 1j, -5 + 4j], [-3, 2 + 1j, 0, -4 + 3j], [-5 - 2j, -5 - 4j, -4 - 3j, -6], ] ) @qml.qnode(dev) def circuit(): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.var(qml.PauliZ(wires=[0]) @ qml.Hermitian(A_, wires=[1, 2])) res = circuit() expected = ( 0.01 * ( 1057 - np.cos(2 * phi) + 12 * (27 + np.cos(2 * phi)) * np.cos(varphi) - 2 * np.cos(2 * varphi) * np.sin(phi) * (16 * np.cos(phi) + 21 * np.sin(phi)) + 16 * np.sin(2 * phi) - 8 * (-17 + np.cos(2 * phi) + 2 * np.sin(2 * phi)) * np.sin(varphi) - 8 * np.cos(2 * theta) * (3 + 3 * np.cos(varphi) + np.sin(varphi)) ** 2 - 24 * np.cos(phi) * (np.cos(phi) + 2 * np.sin(phi)) * np.sin(2 * varphi) - 8 * np.cos(theta) * ( 4 * np.cos(phi) * ( 4 + 8 * np.cos(varphi) + np.cos(2 * varphi) - (1 + 6 * np.cos(varphi)) * np.sin(varphi) ) + np.sin(phi) * ( 15 + 8 * np.cos(varphi) - 11 * np.cos(2 * varphi) + 42 * np.sin(varphi) + 3 * np.sin(2 * varphi) ) ) ) / 16 ) assert np.allclose(res, expected, atol=tol(dev.shots)) def test_projector(self, device, tol, skip_if): """Test that a tensor product involving qml.Projector works correctly""" n_wires = 3 dev = device(n_wires) if "Projector" not in dev.observables: pytest.skip("Skipped because device does not support the Projector observable.") skip_if(dev, {"supports_tensor_observables": False}) theta = 0.432 phi = 0.123 varphi = -0.543 @qml.qnode(dev) def circuit(basis_state): qml.RX(theta, wires=[0]) qml.RX(phi, wires=[1]) qml.RX(varphi, wires=[2]) qml.CNOT(wires=[0, 1]) qml.CNOT(wires=[1, 2]) return qml.var(qml.PauliZ(wires=[0]) @ qml.Projector(basis_state, wires=[1, 2])) res = circuit([0, 0]) expected = ( (np.cos(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 + (np.cos(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) - ( (np.cos(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - (np.cos(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([0, 1]) expected = ( (np.sin(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 + (np.sin(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) - ( (np.sin(varphi / 2) * np.cos(phi / 2) * np.cos(theta / 2)) ** 2 - (np.sin(varphi / 2) * np.sin(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 0]) expected = ( (np.sin(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 + (np.sin(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) - ( (np.sin(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - (np.sin(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots)) res = circuit([1, 1]) expected = ( (np.cos(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 + (np.cos(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) - ( (np.cos(varphi / 2) * np.sin(phi / 2) * np.cos(theta / 2)) ** 2 - (np.cos(varphi / 2) * np.cos(phi / 2) * np.sin(theta / 2)) ** 2 ) ** 2 assert np.allclose(res, expected, atol=tol(dev.shots))
35.48952
118
0.530816
ba812ec545c7f6343b5ecb7defc751652411e09c
30,642
py
Python
raiden/raiden/token_swap.py
yy18/raidenenv
f732de6870de01840a1ad7bb25cc9d31b1781600
[ "MIT" ]
null
null
null
raiden/raiden/token_swap.py
yy18/raidenenv
f732de6870de01840a1ad7bb25cc9d31b1781600
[ "MIT" ]
null
null
null
raiden/raiden/token_swap.py
yy18/raidenenv
f732de6870de01840a1ad7bb25cc9d31b1781600
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import logging import random import time from collections import namedtuple, defaultdict import gevent from gevent.queue import Empty from ethereum import slogging from raiden.network.channelgraph import ( get_best_routes, ) from raiden.tasks import Task from raiden.messages import ( MediatedTransfer, RefundTransfer, RevealSecret, Secret, SecretRequest, ) from raiden.settings import ( DEFAULT_EVENTS_POLL_TIMEOUT, ) from raiden.utils import lpex, pex, sha3 log = slogging.get_logger(__name__) # pylint: disable=invalid-name TIMEOUT = object() TokenSwap = namedtuple('TokenSwap', ( 'identifier', 'from_token', 'from_amount', 'from_nodeaddress', # the node address of the owner of the `from_token` 'to_token', 'to_amount', 'to_nodeaddress', # the node address of the owner of the `to_token` )) SwapKey = namedtuple('SwapKey', ( 'identifier', 'from_token', 'from_amount', )) class GreenletTasksDispatcher: def __init__(self): self.hashlocks_greenlets = defaultdict(list) def register_task(self, task, hashlock): """ Register the task to receive messages based on `hashlock`. Registration is required otherwise the task won't receive any messages from the protocol, un-registering is done by the `unregister_task` function. Note: Messages are dispatched solely on the hashlock value (being part of the message, eg. SecretRequest, or calculated from the message content, eg. RevealSecret), this means the sender needs to be checked for the received messages. """ if not isinstance(task, Task): raise ValueError('task must be an instance of Task') self.hashlocks_greenlets[hashlock].append(task) def unregister_task(self, task, hashlock, success): # pylint: disable=unused-argument """ Clear the task when it's finished. """ self.hashlocks_greenlets[hashlock].remove(task) if not self.hashlocks_greenlets[hashlock]: del self.hashlocks_greenlets[hashlock] def dispatch_message(self, message, hashlock): for task in self.hashlocks_greenlets[hashlock]: task.response_queue.put(message) def stop(self): wait_for = list() for greenlets in self.hashlocks_greenlets.values(): for task in greenlets: task.kill() wait_for.extend(greenlets) return wait_for class BaseMediatedTransferTask(Task): def _send_and_wait_time(self, raiden, recipient, transfer, timeout): """ Utility to handle multiple messages for the same hashlock while properly handling expiration timeouts. """ current_time = time.time() limit_time = current_time + timeout raiden.send_async(recipient, transfer) while current_time <= limit_time: # wait for a response message (not the Ack for the transfer) try: response = self.response_queue.get( timeout=limit_time - current_time, ) except Empty: yield TIMEOUT return yield response current_time = time.time() if log.isEnabledFor(logging.DEBUG): log.debug( 'TIMED OUT %s %s', self.__class__, pex(transfer), ) def _send_and_wait_block(self, raiden, recipient, transfer, expiration_block): """ Utility to handle multiple messages and timeout on a block number. """ raiden.send_async(recipient, transfer) current_block = raiden.get_block_number() while current_block < expiration_block: try: response = self.response_queue.get( timeout=DEFAULT_EVENTS_POLL_TIMEOUT, ) except Empty: pass else: if response: yield response current_block = raiden.get_block_number() if log.isEnabledFor(logging.DEBUG): log.debug( 'TIMED OUT ON BLOCK %s %s %s', current_block, self.__class__, pex(transfer), block_number=current_block, ) yield TIMEOUT def _messages_until_block(self, raiden, expiration_block): """ Returns the received messages up to the block `expiration_block`. """ current_block = raiden.get_block_number() while current_block < expiration_block: try: response = self.response_queue.get( timeout=DEFAULT_EVENTS_POLL_TIMEOUT, ) except Empty: pass else: if response: yield response current_block = raiden.get_block_number() def _wait_for_unlock_or_close(self, raiden, graph, channel, mediated_transfer): # noqa """ Wait for a Secret message from our partner to update the local state, if the Secret message is not sent within time the channel will be closed. Note: Must be called only once the secret is known. Must call `unregister_task` after this function returns. """ assert graph.token_address == mediated_transfer.token if not isinstance(mediated_transfer, MediatedTransfer): raise ValueError('MediatedTransfer expected.') block_to_close = mediated_transfer.lock.expiration - raiden.config['reveal_timeout'] hashlock = mediated_transfer.lock.hashlock identifier = mediated_transfer.identifier token = mediated_transfer.token while channel.our_state.is_locked(hashlock): current_block = raiden.get_block_number() if current_block > block_to_close: if log.isEnabledFor(logging.WARN): log.warn( 'Closing channel (%s, %s) to prevent expiration of lock %s %s', pex(channel.our_state.address), pex(channel.partner_state.address), pex(hashlock), repr(self), ) channel.external_state.close( channel.our_state.balance_proof, ) return try: response = self.response_queue.get( timeout=DEFAULT_EVENTS_POLL_TIMEOUT ) except Empty: pass else: if isinstance(response, Secret): secret = response.secret hashlock = sha3(secret) is_valid_identifier = response.identifier == identifier is_valid_channel = response.channel == channel.channel_address if is_valid_identifier and is_valid_channel: raiden.handle_secret( identifier, graph.token_address, secret, response, hashlock, ) else: # cannot use the message but the secret is okay raiden.handle_secret( identifier, graph.token_address, secret, None, hashlock, ) if log.isEnabledFor(logging.ERROR): log.error( 'Invalid Secret message received, expected message' ' for token=%s identifier=%s received=%s', token, identifier, response, ) elif isinstance(response, RevealSecret): secret = response.secret hashlock = sha3(secret) raiden.handle_secret( identifier, graph.token_address, secret, None, hashlock, ) elif log.isEnabledFor(logging.ERROR): log.error( 'Invalid message ignoring. %s %s', repr(response), repr(self), ) def _wait_expiration(self, raiden, transfer, sleep=DEFAULT_EVENTS_POLL_TIMEOUT): """ Utility to wait until the expiration block. For a chain A-B-C, if an attacker controls A and C a mediated transfer can be done through B and C will wait for/send a timeout, for that reason B must not unregister the hashlock until the lock has expired, otherwise the revealed secret wouldn't be caught. """ # pylint: disable=no-self-use expiration = transfer.lock.expiration + 1 while True: current_block = raiden.get_block_number() if current_block > expiration: return gevent.sleep(sleep) # Note: send_and_wait_valid methods are used to check the message type and # sender only, this can be improved by using a encrypted connection between the # nodes making the signature validation unnecessary # TODO: Implement the swaps as a restartable task (issue #303) class MakerTokenSwapTask(BaseMediatedTransferTask): """ Initiator task, responsible to choose a random secret, initiate the token swap by sending a mediated transfer to the counterparty and revealing the secret once the swap is complete. """ def __init__(self, raiden, tokenswap, async_result): super(MakerTokenSwapTask, self).__init__() self.raiden = raiden self.tokenswap = tokenswap self.async_result = async_result def __repr__(self): tokenswap = self.tokenswap return '<{} {} from_token:{} to_token:{}>'.format( self.__class__.__name__, pex(self.raiden.address), pex(tokenswap.from_token), pex(tokenswap.to_token), ) def _run(self): # pylint: disable=method-hidden,too-many-locals tokenswap = self.tokenswap raiden = self.raiden identifier = tokenswap.identifier from_token = tokenswap.from_token from_amount = tokenswap.from_amount to_token = tokenswap.to_token to_amount = tokenswap.to_amount to_nodeaddress = tokenswap.to_nodeaddress from_graph = raiden.token_to_channelgraph[from_token] to_graph = raiden.token_to_channelgraph[to_token] from_routes = get_best_routes( from_graph, raiden.protocol.nodeaddresses_networkstatuses, raiden.address, to_nodeaddress, from_amount, previous_address=None, ) fee = 0 for route in from_routes: # for each new path a new secret must be used secret = sha3(hex(random.getrandbits(256)).encode()) hashlock = sha3(secret) from_channel = from_graph.get_channel_by_contract_address(route.channel_address) raiden.greenlet_task_dispatcher.register_task(self, hashlock) raiden.register_channel_for_hashlock(from_token, from_channel, hashlock) block_number = raiden.get_block_number() lock_expiration = block_number + from_channel.settle_timeout from_mediated_transfer = from_channel.create_mediatedtransfer( raiden.address, to_nodeaddress, fee, from_amount, identifier, lock_expiration, hashlock, ) raiden.sign(from_mediated_transfer) from_channel.register_transfer( # must be the same block number used to compute lock_expiration block_number, from_mediated_transfer, ) # wait for the SecretRequest and MediatedTransfer to_mediated_transfer = self.send_and_wait_valid_state( raiden, route.node_address, to_nodeaddress, from_mediated_transfer, to_token, to_amount, ) if to_mediated_transfer is None: # the initiator can unregister right away since it knows the # secret wont be revealed raiden.greenlet_task_dispatcher.unregister_task(self, hashlock, False) elif isinstance(to_mediated_transfer, MediatedTransfer): to_hop = to_mediated_transfer.sender to_channel = to_graph.partneraddress_to_channel[to_hop] to_channel.register_transfer( raiden.get_block_number(), to_mediated_transfer, ) raiden.register_channel_for_hashlock(to_token, to_channel, hashlock) # A swap is composed of two mediated transfers, we need to # reveal the secret to both, since the maker is one of the ends # we just need to send the reveal secret directly to the taker. reveal_secret = RevealSecret(secret) raiden.sign(reveal_secret) raiden.send_async(to_nodeaddress, reveal_secret) from_channel.register_secret(secret) # Register the secret with the to_channel and send the # RevealSecret message to the node that is paying the to_token # (this node might, or might not be the same as the taker), # then wait for the withdraw. raiden.handle_secret( identifier, to_token, secret, None, hashlock, ) to_channel = to_graph.partneraddress_to_channel[to_mediated_transfer.sender] self._wait_for_unlock_or_close( raiden, to_graph, to_channel, to_mediated_transfer, ) # unlock the from_token and optimistically reveal the secret # forward raiden.handle_secret( identifier, from_token, secret, None, hashlock, ) raiden.greenlet_task_dispatcher.unregister_task(self, hashlock, True) self.async_result.set(True) return if log.isEnabledFor(logging.DEBUG): node_address = raiden.address log.debug( 'MAKER TOKEN SWAP FAILED', node=pex(node_address), to=pex(to_nodeaddress), ) # all routes failed self.async_result.set(False) def send_and_wait_valid_state( # noqa self, raiden, next_hop, target_address, from_token_transfer, to_token, to_amount): """ Start the swap by sending the first mediated transfer to the taker and wait for mediated transfer for the exchanged token. This method will validate the messages received, discard the invalid ones, and wait until a valid state is reached. The valid state is reached when a mediated transfer for `to_token` with `to_amount` tokens and a SecretRequest from the taker are received. Returns: None: when the timeout was reached. MediatedTransfer: when a valid state is reached. RefundTransfer: when an invalid state is reached by our partner. """ # pylint: disable=too-many-arguments # a valid state must have a secret request from the maker and a valid # mediated transfer for the new token received_secretrequest = False mediated_transfer = None response_iterator = self._send_and_wait_time( raiden, from_token_transfer.recipient, from_token_transfer, raiden.config['msg_timeout'], ) for response in response_iterator: transfer_is_valid_mediated_transfer = ( isinstance(response, MediatedTransfer) and response.token == to_token and # we need a lower expiration because: # - otherwise the previous node is not operating correctly # - we assume that received mediated transfer has a smaller # expiration to properly call close on edge cases response.lock.expiration <= from_token_transfer.lock.expiration ) if response is None: if log.isEnabledFor(logging.DEBUG): log.debug( 'MAKER SWAP TIMED OUT', hashlock=pex(from_token_transfer.lock.hashlock), ) return None # The MediatedTransfer might be from `next_hop` or most likely from # a different node. if transfer_is_valid_mediated_transfer: if response.lock.amount == to_amount: mediated_transfer = response elif isinstance(response, SecretRequest) and response.sender == target_address: received_secretrequest = True elif isinstance(response, RefundTransfer) and response.sender == next_hop: return response # The other participant must not use a direct transfer to finish # the token swap, ignore it elif log.isEnabledFor(logging.ERROR): log.error( 'Invalid message ignoring. %s', repr(response), ) if mediated_transfer and received_secretrequest: return mediated_transfer return None class TakerTokenSwapTask(BaseMediatedTransferTask): """ Taker task, responsible to receive a MediatedTransfer for the from_transfer and forward a to_transfer with the same hashlock. """ def __init__( self, raiden, tokenswap, from_mediated_transfer): super(TakerTokenSwapTask, self).__init__() self.raiden = raiden self.from_mediated_transfer = from_mediated_transfer self.tokenswap = tokenswap def __repr__(self): return '<{} {} from_token:{} to_token:{}>'.format( self.__class__.__name__, pex(self.raiden.address), pex(self.from_mediated_transfer.token), pex(self.tokenswap.to_token), ) def _run(self): # pylint: disable=method-hidden,too-many-locals fee = 0 raiden = self.raiden tokenswap = self.tokenswap # this is the MediatedTransfer that wil pay the maker's half of the # swap, not necessarily from him maker_paying_transfer = self.from_mediated_transfer # this is the address of the node that the taker actually has a channel # with (might or might not be the maker) maker_payer_hop = maker_paying_transfer.sender assert tokenswap.identifier == maker_paying_transfer.identifier assert tokenswap.from_token == maker_paying_transfer.token assert tokenswap.from_amount == maker_paying_transfer.lock.amount assert tokenswap.from_nodeaddress == maker_paying_transfer.initiator maker_receiving_token = tokenswap.to_token to_amount = tokenswap.to_amount identifier = maker_paying_transfer.identifier hashlock = maker_paying_transfer.lock.hashlock maker_address = maker_paying_transfer.initiator taker_receiving_token = maker_paying_transfer.token taker_paying_token = maker_receiving_token from_graph = raiden.token_to_channelgraph[taker_receiving_token] from_channel = from_graph.partneraddress_to_channel[maker_payer_hop] to_graph = raiden.token_to_channelgraph[maker_receiving_token] # update the channel's distributable and merkle tree from_channel.register_transfer( raiden.get_block_number(), maker_paying_transfer, ) # register the task to receive Refund/Secrect/RevealSecret messages raiden.greenlet_task_dispatcher.register_task(self, hashlock) raiden.register_channel_for_hashlock(taker_receiving_token, from_channel, hashlock) # send to the maker a secret request informing how much the taker will # be _paid_, this is used to inform the maker that his part of the # mediated transfer is okay secret_request = SecretRequest( identifier, maker_paying_transfer.lock.hashlock, maker_paying_transfer.lock.amount, ) raiden.sign(secret_request) raiden.send_async(maker_address, secret_request) lock_expiration = maker_paying_transfer.lock.expiration - raiden.config['reveal_timeout'] # Note: taker may only try different routes if a RefundTransfer is # received, because the maker is the node controlling the secret available_routes = get_best_routes( to_graph, raiden.protocol.nodeaddresses_networkstatuses, raiden.address, maker_address, maker_paying_transfer.lock.amount, previous_address=None, ) if not available_routes: if log.isEnabledFor(logging.DEBUG): node_address = raiden.address log.debug( 'TAKER TOKEN SWAP FAILED, NO ROUTES', from_=pex(node_address), to=pex(maker_address), ) return first_transfer = None for route in available_routes: taker_paying_channel = to_graph.get_channel_by_contract_address( route.channel_address, ) taker_paying_hop = route.node_address if log.isEnabledFor(logging.DEBUG): log.debug( 'TAKER TOKEN SWAP', from_=pex(maker_paying_transfer.target), to=pex(maker_address), msghash=pex(maker_paying_transfer.hash), hashlock=pex(hashlock), ) # make a paying MediatedTransfer with same hashlock/identifier and the # taker's paying token/amount taker_paying_transfer = taker_paying_channel.create_mediatedtransfer( raiden.address, maker_address, fee, to_amount, identifier, lock_expiration, hashlock, ) raiden.sign(taker_paying_transfer) taker_paying_channel.register_transfer( raiden.get_block_number(), taker_paying_transfer, ) if not first_transfer: first_transfer = taker_paying_transfer if log.isEnabledFor(logging.DEBUG): log.debug( 'EXCHANGE TRANSFER NEW PATH', path=lpex(str(t).encode() for t in taker_paying_hop), hashlock=pex(hashlock), ) # register the task to receive Refund/Secrect/RevealSecret messages raiden.register_channel_for_hashlock( maker_receiving_token, taker_paying_channel, hashlock, ) response, secret = self.send_and_wait_valid( raiden, taker_paying_transfer, maker_payer_hop, ) # only refunds for `maker_receiving_token` must be considered # (check send_and_wait_valid) if isinstance(response, RefundTransfer): if response.lock.amount != taker_paying_transfer.amount: log.info( 'Partner %s sent an invalid refund message with an invalid amount', pex(taker_paying_hop), ) raiden.greenlet_task_dispatcher.unregister_task(self, hashlock, False) return else: taker_paying_channel.register_transfer( raiden.get_block_number(), response, ) elif isinstance(response, RevealSecret): # the secret was registered by the message handler # wait for the taker_paying_hop to reveal the secret prior to # unlocking locally if response.sender != taker_paying_hop: response = self.wait_reveal_secret( raiden, taker_paying_hop, taker_paying_transfer.lock.expiration, ) # unlock and send the Secret message raiden.handle_secret( identifier, taker_paying_token, response.secret, None, hashlock, ) # if the secret arrived early, withdraw it, otherwise send the # RevealSecret forward in the maker-path if secret: raiden.handle_secret( identifier, taker_receiving_token, response.secret, secret, hashlock, ) # wait for the withdraw in case it did not happen yet self._wait_for_unlock_or_close( raiden, from_graph, from_channel, maker_paying_transfer, ) return # the lock expired else: if log.isEnabledFor(logging.DEBUG): node_address = raiden.address log.debug( 'TAKER TOKEN SWAP FAILED', from_=pex(node_address), to=pex(maker_address), ) self.async_result.set(False) return # no route is available, wait for the sent mediated transfer to expire self._wait_expiration(raiden, first_transfer) if log.isEnabledFor(logging.DEBUG): node_address = raiden.address log.debug( 'TAKER TOKEN SWAP FAILED', from_=pex(node_address), to=pex(maker_address), ) self.async_result.set(False) def send_and_wait_valid(self, raiden, mediated_transfer, maker_payer_hop): """ Start the second half of the exchange and wait for the SecretReveal for it. This will send the taker mediated transfer with the maker as a target, once the maker receives the transfer he is expected to send a RevealSecret backwards. """ # the taker cannot discard the transfer since the secret is controlled # by another node (the maker), so we have no option but to wait for a # valid response until the lock expires response_iterator = self._send_and_wait_block( raiden, mediated_transfer.recipient, mediated_transfer, mediated_transfer.lock.expiration, ) # Usually the RevealSecret for the MediatedTransfer from this node to # the maker should arrive first, but depending on the number of hops # and if the maker-path is optimistically revealing the Secret, then # the Secret message might arrive first. secret = None for response in response_iterator: valid_reveal = ( isinstance(response, RevealSecret) and response.hashlock == mediated_transfer.lock.hashlock and response.sender == maker_payer_hop ) valid_refund = ( isinstance(response, RefundTransfer) and response.sender == maker_payer_hop and response.lock.amount == mediated_transfer.lock.amount and response.lock.expiration <= mediated_transfer.lock.expiration and response.token == mediated_transfer.token ) if response is None: log.error( 'TAKER SWAP TIMED OUT', node=pex(raiden.address), hashlock=pex(mediated_transfer.lock.hashlock), ) return (response, secret) elif isinstance(response, Secret): if sha3(response.secret) != mediated_transfer.lock.hashlock: log.error("Secret doesn't match the hashlock, ignoring.") continue secret = response elif valid_reveal: return (response, secret) elif valid_refund: return (response, secret) elif log.isEnabledFor(logging.ERROR): log.error( 'Invalid message [%s] supplied to the task, ignoring.', repr(response), ) return (None, secret) def wait_reveal_secret(self, raiden, taker_paying_hop, expiration_block): for response in self._messages_until_block(raiden, expiration_block): if isinstance(response, RevealSecret) and response.sender == taker_paying_hop: return response elif log.isEnabledFor(logging.ERROR): log.error( 'Invalid message [%s] supplied to the task, ignoring.', repr(response), )
36.007051
97
0.56713
d9d801cbe3e0d0308657f8028fb0b1b31d7ebb8b
2,096
py
Python
languages/python/topics/regex/P012_ReModule_RegexObject.py
lakshmikanth-tesla/DeveloperNotes2Myself
9a5dad930ddbb99ace46d2d672109e8553aecbc2
[ "MIT" ]
2
2019-05-25T10:09:00.000Z
2022-03-11T09:06:23.000Z
languages/python/topics/regex/P012_ReModule_RegexObject.py
lakshmikanth-tesla/DeveloperNotes2Myself
9a5dad930ddbb99ace46d2d672109e8553aecbc2
[ "MIT" ]
2
2020-03-31T04:30:17.000Z
2020-10-30T07:54:28.000Z
languages/python/topics/regex/P012_ReModule_RegexObject.py
lakshmikanth-tesla/DeveloperNotes2Myself
9a5dad930ddbb99ace46d2d672109e8553aecbc2
[ "MIT" ]
4
2019-07-12T13:18:56.000Z
2021-11-17T08:04:55.000Z
# Description: The re.RegexObject import re """ Note 1. The re.RegexObject supports following methods - search(string[, pos[, endpos]]) - match(string[, pos[, endpos]]) - split(string, maxsplit=0) - findall(string[, pos[, endpos]]) - finditer(string[, pos[, endpos]]) - sub(repl, string, count=0) - subn(repl, string, count=0) 2. The re.RegexObject supports following attributes - flags: The regex matching flags. This is a combination of the flags given to compile() and any (?...) inline flags in the pattern. - groups: The number of capturing groups in the pattern. - groupindex: A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is empty if no symbolic groups were used in the pattern. - pattern: The pattern string from which the RE object was compiled. 3. The position parameter - The optional second parameter position gives an index in the string where the search is to start. - It defaults to 0. - This is not completely equivalent to slicing the string. The '^' pattern character matches at the real beginning of the string and at positions just after a newline, but not necessarily at the index where the search is to start. 4. The endposition parameter - The optional parameter endposition limits how far the string will be searched. - It will be as if the string is endpos characters long, so only the characters from position to endposition - 1 will be searched for a match. - If endposition is less than position, no match will be found, otherwise, if regexObject is a compiled regular expression object, regexObjectx.search(string, 0, 50) is equivalent to rx.search(string[:50], 0). """ text = 'A bone to the dog is not charity. Charity is the bone shared with the dog, when you are just as hungry as the dog.' pattern = 'dog' regexObject = re.compile(pattern) matchObject = regexObject.findall(text, pos=0, endpos=len(text)-3) if matchObject: print 'Total Matches:', len(matchObject) else: print 'No match found!'
46.577778
123
0.716603
aba85a8982f79dd5cfad67d945512f5c715817c8
371
py
Python
office_tracker/leave_tracker/apps.py
tanvir002700/tracker
567c3be2f36ac120fb412c06126cbd8fa72be4b9
[ "MIT" ]
null
null
null
office_tracker/leave_tracker/apps.py
tanvir002700/tracker
567c3be2f36ac120fb412c06126cbd8fa72be4b9
[ "MIT" ]
11
2020-06-05T18:04:42.000Z
2022-03-11T23:19:32.000Z
office_tracker/leave_tracker/apps.py
tanvir002700/tracker
567c3be2f36ac120fb412c06126cbd8fa72be4b9
[ "MIT" ]
null
null
null
from django.apps import AppConfig from django.db.models.signals import post_save from django.apps import apps from .signals import assign_season_to_all_user class LeaveTrackerConfig(AppConfig): name = 'leave_tracker' def ready(self): Season = apps.get_model('leave_tracker', 'Season') post_save.connect(assign_season_to_all_user, sender=Season)
30.916667
67
0.773585
ec158b25a1e594847af37d1ac161f674369ae88f
3,166
py
Python
setup/settings.py
hcs42/ExponWords
6cbb7ccea5076a33aeff23c503d168a9f4ade8a2
[ "Apache-2.0" ]
null
null
null
setup/settings.py
hcs42/ExponWords
6cbb7ccea5076a33aeff23c503d168a9f4ade8a2
[ "Apache-2.0" ]
null
null
null
setup/settings.py
hcs42/ExponWords
6cbb7ccea5076a33aeff23c503d168a9f4ade8a2
[ "Apache-2.0" ]
null
null
null
# Django settings for ExponWords project. import os ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS PROJECT_DIR = os.path.normpath(os.path.abspath(os.path.dirname(__file__))) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(PROJECT_DIR, 'production.db'), 'OPTIONS': { # Helps avoiding "DatabaseError: database is locked" errors; # see https://docs.djangoproject.com/en/dev/ref/databases/#database-is-locked-errors 'timeout': 20 }, } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = None # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' LANGUAGES = ( ('en', 'English'), ('hu', 'Magyar') ) SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(PROJECT_DIR, 'ew/media/') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = 'http://myexponwordssite.org/site_media/' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/admin/' # Make this unique, and don't share it with anybody. SECRET_KEY = '...' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) ROOT_URLCONF = 'ExponWords.urls' TEMPLATE_DIRS = () INSTALLED_APPS = ( 'ew', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.admin', ) LOGIN_URL = '/login/' LOGIN_REDIRECT_URL = '/' DEFAULT_FROM_EMAIL = 'myexponwordssite.com admin <admin@myexponwordssite.com>'
30.442308
97
0.716361
fd63219fc7f5eacebd684e1839b1bebfe6099865
93
py
Python
midburn/config/prod.py
mtr574/projectMidbrunFirstReg
2569c3f07e1af746bfc1f213632708c76d8fc829
[ "Apache-2.0" ]
null
null
null
midburn/config/prod.py
mtr574/projectMidbrunFirstReg
2569c3f07e1af746bfc1f213632708c76d8fc829
[ "Apache-2.0" ]
1
2016-01-22T09:32:04.000Z
2016-01-22T12:14:12.000Z
midburn/config/prod.py
mtr574/projectMidbrunFirstReg
2569c3f07e1af746bfc1f213632708c76d8fc829
[ "Apache-2.0" ]
3
2016-11-04T12:10:03.000Z
2017-02-23T08:52:53.000Z
from midburn.settings import * DEBUG = True DATABASES['default'] = dj_database_url.config()
18.6
47
0.763441
80cc85554034143d155874a883242839f3e7618e
24,597
py
Python
src/ezdxf/entities/dxfgfx.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
null
null
null
src/ezdxf/entities/dxfgfx.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
null
null
null
src/ezdxf/entities/dxfgfx.py
jkjt/ezdxf
2acc5611b81476ea16b98063b9f55446a9182b81
[ "MIT" ]
null
null
null
# Copyright (c) 2019-2021 Manfred Moitzi # License: MIT License from typing import TYPE_CHECKING, Optional, Tuple, Iterable, Dict, Any from ezdxf.entities import factory from ezdxf import options from ezdxf.lldxf import validator from ezdxf.lldxf.attributes import ( DXFAttr, DXFAttributes, DefSubclass, RETURN_DEFAULT, group_code_mapping, ) from ezdxf import colors as clr from ezdxf.lldxf.const import ( DXF12, DXF2000, DXF2004, DXF2007, DXF2013, DXFValueError, DXFKeyError, DXFTableEntryError, SUBCLASS_MARKER, DXFInvalidLineType, DXFStructureError, TRANSPARENCY_BYBLOCK, ) from ezdxf.math import OCS, Matrix44 from ezdxf.proxygraphic import load_proxy_graphic, export_proxy_graphic from .dxfentity import DXFEntity, base_class, SubclassProcessor, DXFTagStorage if TYPE_CHECKING: from ezdxf.eztypes import ( Auditor, TagWriter, BaseLayout, DXFNamespace, Vertex, Drawing, ) __all__ = [ "DXFGraphic", "acdb_entity", "SeqEnd", "add_entity", "replace_entity", "elevation_to_z_axis", "is_graphic_entity", "get_font_name", ] GRAPHIC_PROPERTIES = { "layer", "linetype", "color", "lineweight", "ltscale", "true_color", "color_name", "transparency", } acdb_entity: DefSubclass = DefSubclass( "AcDbEntity", { # Layer name as string, no auto fix for invalid names! "layer": DXFAttr( 8, default="0", validator=validator.is_valid_layer_name ), # Linetype name as string, no auto fix for invalid names! "linetype": DXFAttr( 6, default="BYLAYER", optional=True, validator=validator.is_valid_table_name, ), # ACI color index, BYBLOCK=0, BYLAYER=256, BYOBJECT=257: "color": DXFAttr( 62, default=256, optional=True, validator=validator.is_valid_aci_color, fixer=RETURN_DEFAULT, ), # modelspace=0, paperspace=1 "paperspace": DXFAttr( 67, default=0, optional=True, validator=validator.is_integer_bool, fixer=RETURN_DEFAULT, ), # Lineweight in mm times 100 (e.g. 0.13mm = 13). Smallest line weight is 13 # and biggest line weight is 200, values outside this range prevents AutoCAD # from loading the file. # Special values: BYLAYER=-1, BYBLOCK=-2, DEFAULT=-3 "lineweight": DXFAttr( 370, default=-1, dxfversion=DXF2000, optional=True, validator=validator.is_valid_lineweight, fixer=validator.fix_lineweight, ), "ltscale": DXFAttr( 48, default=1.0, dxfversion=DXF2000, optional=True, validator=validator.is_positive, fixer=RETURN_DEFAULT, ), # visible=0, invisible=1 "invisible": DXFAttr(60, default=0, dxfversion=DXF2000, optional=True), # True color as 0x00RRGGBB 24-bit value # True color always overrides ACI "color"! "true_color": DXFAttr(420, dxfversion=DXF2004, optional=True), # Color name as string. Color books are stored in .stb config files? "color_name": DXFAttr(430, dxfversion=DXF2004, optional=True), # Transparency value 0x020000TT 0 = fully transparent / 255 = opaque # Special value 0x01000000 == ByBlock # unset value means ByLayer "transparency": DXFAttr( 440, dxfversion=DXF2004, optional=True, validator=validator.is_transparency, ), # Shadow mode: # 0 = Casts and receives shadows # 1 = Casts shadows # 2 = Receives shadows # 3 = Ignores shadows "shadow_mode": DXFAttr(284, dxfversion=DXF2007, optional=True), "material_handle": DXFAttr(347, dxfversion=DXF2007, optional=True), "visualstyle_handle": DXFAttr(348, dxfversion=DXF2007, optional=True), # PlotStyleName type enum (AcDb::PlotStyleNameType). Stored and moved around # as a 16-bit integer. Custom non-entity "plotstyle_enum": DXFAttr( 380, dxfversion=DXF2007, default=1, optional=True ), # Handle value of the PlotStyleName object, basically a hard pointer, but # has a different range to make backward compatibility easier to deal with. "plotstyle_handle": DXFAttr(390, dxfversion=DXF2007, optional=True), # 92 or 160?: Number of bytes in the proxy entity graphics represented in # the subsequent 310 groups, which are binary chunk records (optional) # 310: Proxy entity graphics data (multiple lines; 256 characters max. per # line) (optional), compiled by TagCompiler() to a DXFBinaryTag() objects }, ) acdb_entity_group_codes = group_code_mapping(acdb_entity) def elevation_to_z_axis(dxf: "DXFNamespace", names: Iterable[str]): # The elevation group code (38) is only used for DXF R11 and prior and # ignored for DXF R2000 and later. # DXF R12 and later store the entity elevation in the z-axis of the # vertices, but AutoCAD supports elevation for R12 if no z-axis is present. # DXF types with legacy elevation support: # SOLID, TRACE, TEXT, CIRCLE, ARC, TEXT, ATTRIB, ATTDEF, INSERT, SHAPE # The elevation is only used for DXF R12 if no z-axis is stored in the DXF # file. This is a problem because ezdxf loads the vertices always as 3D # vertex including a z-axis even if no z-axis is present in DXF file. if dxf.hasattr("elevation"): elevation = dxf.elevation # ezdxf does not export the elevation attribute for any DXF version dxf.discard("elevation") if elevation == 0: return for name in names: v = dxf.get(name) # Only use elevation value if z-axis is 0, this will not work for # situations where an elevation and a z-axis=0 is present, but let's # assume if the elevation group code is used the z-axis is not # present if z-axis is 0. if v is not None and v.z == 0: dxf.set(name, v.replace(z=elevation)) class DXFGraphic(DXFEntity): """Common base class for all graphic entities, a subclass of :class:`~ezdxf.entities.dxfentity.DXFEntity`. These entities resides in entity spaces like modelspace, paperspace or block. """ DXFTYPE = "DXFGFX" DEFAULT_ATTRIBS: Dict[str, Any] = {"layer": "0"} DXFATTRIBS = DXFAttributes(base_class, acdb_entity) def load_dxf_attribs( self, processor: SubclassProcessor = None ) -> "DXFNamespace": """Adds subclass processing for 'AcDbEntity', requires previous base class processing by parent class. (internal API) """ dxf = super().load_dxf_attribs(processor) if processor is None: return dxf r12 = processor.r12 # It is valid to mix up the base class with AcDbEntity class. processor.append_base_class_to_acdb_entity() # Load proxy graphic data if requested if options.load_proxy_graphics: # length tag has group code 92 until DXF R2010 if processor.dxfversion and processor.dxfversion < DXF2013: code = 92 else: code = 160 self.proxy_graphic = load_proxy_graphic( processor.subclasses[0 if r12 else 1], length_code=code, ) processor.fast_load_dxfattribs(dxf, acdb_entity_group_codes, 1) return dxf def post_new_hook(self): """Post processing and integrity validation after entity creation (internal API) """ if self.doc: if self.dxf.linetype not in self.doc.linetypes: raise DXFInvalidLineType( f'Linetype "{self.dxf.linetype}" not defined.' ) @property def rgb(self) -> Optional[clr.RGB]: """Returns RGB true color as (r, g, b) tuple or None if true_color is not set. """ if self.dxf.hasattr("true_color"): return clr.int2rgb(self.dxf.get("true_color")) else: return None @rgb.setter def rgb(self, rgb: clr.RGB) -> None: """Set RGB true color as (r, g , b) tuple e.g. (12, 34, 56).""" self.dxf.set("true_color", clr.rgb2int(rgb)) @property def transparency(self) -> float: """Get transparency as float value between 0 and 1, 0 is opaque and 1 is 100% transparent (invisible). Transparency by block returns always 0. """ if self.dxf.hasattr("transparency"): value = self.dxf.get("transparency") if validator.is_transparency(value): if value & TRANSPARENCY_BYBLOCK: # just check flag state return 0.0 return clr.transparency2float(value) return 0.0 @transparency.setter def transparency(self, transparency: float) -> None: """Set transparency as float value between 0 and 1, 0 is opaque and 1 is 100% transparent (invisible). """ self.dxf.set("transparency", clr.float2transparency(transparency)) @property def is_transparency_by_layer(self) -> bool: """Returns ``True`` if entity inherits transparency from layer.""" return not self.dxf.hasattr("transparency") @property def is_transparency_by_block(self) -> bool: """Returns ``True`` if entity inherits transparency from block.""" return self.dxf.get("transparency", 0) == TRANSPARENCY_BYBLOCK def graphic_properties(self) -> Dict: """Returns the important common properties layer, color, linetype, lineweight, ltscale, true_color and color_name as `dxfattribs` dict. """ attribs = dict() for key in GRAPHIC_PROPERTIES: if self.dxf.hasattr(key): attribs[key] = self.dxf.get(key) return attribs def ocs(self) -> OCS: """Returns object coordinate system (:ref:`ocs`) for 2D entities like :class:`Text` or :class:`Circle`, returns a pass-through OCS for entities without OCS support. """ # extrusion is only defined for 2D entities like Text, Circle, ... if self.dxf.is_supported("extrusion"): extrusion = self.dxf.get("extrusion", default=(0, 0, 1)) return OCS(extrusion) else: return OCS() def set_owner(self, owner: Optional[str], paperspace: int = 0) -> None: """Set owner attribute and paperspace flag. (internal API)""" self.dxf.owner = owner if paperspace: self.dxf.paperspace = paperspace else: self.dxf.discard("paperspace") def link_entity(self, entity: "DXFEntity") -> None: """Store linked or attached entities. Same API for both types of appended data, because entities with linked entities (POLYLINE, INSERT) have no attached entities and vice versa. (internal API) """ pass def export_entity(self, tagwriter: "TagWriter") -> None: """Export entity specific data as DXF tags. (internal API)""" # Base class export is done by parent class. self.export_acdb_entity(tagwriter) # XDATA and embedded objects export is also done by the parent class. def export_acdb_entity(self, tagwriter: "TagWriter"): """Export subclass 'AcDbEntity' as DXF tags. (internal API)""" # Full control over tag order and YES, sometimes order matters not_r12 = tagwriter.dxfversion > DXF12 if not_r12: tagwriter.write_tag2(SUBCLASS_MARKER, acdb_entity.name) self.dxf.export_dxf_attribs( tagwriter, [ "paperspace", "layer", "linetype", "material_handle", "color", "lineweight", "ltscale", "true_color", "color_name", "transparency", "plotstyle_enum", "plotstyle_handle", "shadow_mode", "visualstyle_handle", ], ) if self.proxy_graphic and not_r12 and options.store_proxy_graphics: # length tag has group code 92 until DXF R2010 export_proxy_graphic( self.proxy_graphic, tagwriter=tagwriter, length_code=(92 if tagwriter.dxfversion < DXF2013 else 160), ) def get_layout(self) -> Optional["BaseLayout"]: """Returns the owner layout or returns ``None`` if entity is not assigned to any layout. """ if self.dxf.owner is None or self.doc is None: # unlinked entity return None try: return self.doc.layouts.get_layout_by_key(self.dxf.owner) except DXFKeyError: pass try: return self.doc.blocks.get_block_layout_by_handle(self.dxf.owner) except DXFTableEntryError: return None def unlink_from_layout(self) -> None: """ Unlink entity from associated layout. Does nothing if entity is already unlinked. It is more efficient to call the :meth:`~ezdxf.layouts.BaseLayout.unlink_entity` method of the associated layout, especially if you have to unlink more than one entity. """ if not self.is_alive: raise TypeError("Can not unlink destroyed entity.") if self.doc is None: # no doc -> no layout self.dxf.owner = None return layout = self.get_layout() if layout: layout.unlink_entity(self) def move_to_layout( self, layout: "BaseLayout", source: "BaseLayout" = None ) -> None: """ Move entity from model space or a paper space layout to another layout. For block layout as source, the block layout has to be specified. Moving between different DXF drawings is not supported. Args: layout: any layout (model space, paper space, block) source: provide source layout, faster for DXF R12, if entity is in a block layout Raises: DXFStructureError: for moving between different DXF drawings """ if source is None: source = self.get_layout() if source is None: raise DXFValueError("Source layout for entity not found.") source.move_to_layout(self, layout) def copy_to_layout(self, layout: "BaseLayout") -> "DXFEntity": """ Copy entity to another `layout`, returns new created entity as :class:`DXFEntity` object. Copying between different DXF drawings is not supported. Args: layout: any layout (model space, paper space, block) Raises: DXFStructureError: for copying between different DXF drawings """ if self.doc != layout.doc: raise DXFStructureError( "Copying between different DXF drawings is not supported." ) new_entity = self.copy() layout.add_entity(new_entity) return new_entity def audit(self, auditor: "Auditor") -> None: """Audit and repair graphical DXF entities. .. important:: Do not delete entities while auditing process, because this would alter the entity database while iterating, instead use:: auditor.trash(entity) to delete invalid entities after auditing automatically. """ assert self.doc is auditor.doc, "Auditor for different DXF document." if not self.is_alive: return super().audit(auditor) auditor.check_owner_exist(self) dxf = self.dxf if dxf.hasattr("layer"): auditor.check_for_valid_layer_name(self) if dxf.hasattr("linetype"): auditor.check_entity_linetype(self) if dxf.hasattr("color"): auditor.check_entity_color_index(self) if dxf.hasattr("lineweight"): auditor.check_entity_lineweight(self) if dxf.hasattr("extrusion"): auditor.check_extrusion_vector(self) if dxf.hasattr("transparency"): auditor.check_transparency(self) def transform(self, m: "Matrix44") -> "DXFGraphic": """Inplace transformation interface, returns `self` (floating interface). Args: m: 4x4 transformation matrix (:class:`ezdxf.math.Matrix44`) """ raise NotImplementedError() def post_transform(self, m: "Matrix44") -> None: """Should be called if the main entity transformation was successful.""" if self.xdata is not None: self.xdata.transform(m) @property def is_post_transform_required(self) -> bool: """Check if post transform call is required.""" return self.xdata is not None def translate(self, dx: float, dy: float, dz: float) -> "DXFGraphic": """Translate entity inplace about `dx` in x-axis, `dy` in y-axis and `dz` in z-axis, returns `self` (floating interface). Basic implementation uses the :meth:`transform` interface, subclasses may have faster implementations. """ return self.transform(Matrix44.translate(dx, dy, dz)) def scale(self, sx: float, sy: float, sz: float) -> "DXFGraphic": """Scale entity inplace about `dx` in x-axis, `dy` in y-axis and `dz` in z-axis, returns `self` (floating interface). """ return self.transform(Matrix44.scale(sx, sy, sz)) def scale_uniform(self, s: float) -> "DXFGraphic": """Scale entity inplace uniform about `s` in x-axis, y-axis and z-axis, returns `self` (floating interface). """ return self.transform(Matrix44.scale(s)) def rotate_axis(self, axis: "Vertex", angle: float) -> "DXFGraphic": """Rotate entity inplace about vector `axis`, returns `self` (floating interface). Args: axis: rotation axis as tuple or :class:`Vec3` angle: rotation angle in radians """ return self.transform(Matrix44.axis_rotate(axis, angle)) def rotate_x(self, angle: float) -> "DXFGraphic": """Rotate entity inplace about x-axis, returns `self` (floating interface). Args: angle: rotation angle in radians """ return self.transform(Matrix44.x_rotate(angle)) def rotate_y(self, angle: float) -> "DXFGraphic": """Rotate entity inplace about y-axis, returns `self` (floating interface). Args: angle: rotation angle in radians """ return self.transform(Matrix44.y_rotate(angle)) def rotate_z(self, angle: float) -> "DXFGraphic": """Rotate entity inplace about z-axis, returns `self` (floating interface). Args: angle: rotation angle in radians """ return self.transform(Matrix44.z_rotate(angle)) def has_hyperlink(self) -> bool: """Returns ``True`` if entity has an attached hyperlink.""" return bool(self.xdata) and ("PE_URL" in self.xdata) # type: ignore def set_hyperlink( self, link: str, description: str = None, location: str = None ): """Set hyperlink of an entity.""" xdata = [(1001, "PE_URL"), (1000, str(link))] if description: xdata.append((1002, "{")) xdata.append((1000, str(description))) if location: xdata.append((1000, str(location))) xdata.append((1002, "}")) self.discard_xdata("PE_URL") self.set_xdata("PE_URL", xdata) if self.doc and "PE_URL" not in self.doc.appids: self.doc.appids.new("PE_URL") return self def get_hyperlink(self) -> Tuple[str, str, str]: """Returns hyperlink, description and location.""" link = "" description = "" location = "" if self.xdata and "PE_URL" in self.xdata: xdata = [ tag.value for tag in self.get_xdata("PE_URL") if tag.code == 1000 ] if len(xdata): link = xdata[0] if len(xdata) > 1: description = xdata[1] if len(xdata) > 2: location = xdata[2] return link, description, location def remove_dependencies(self, other: "Drawing" = None) -> None: """Remove all dependencies from current document. (internal API) """ if not self.is_alive: return super().remove_dependencies(other) # The layer attribute is preserved because layer doesn't need a layer # table entry, the layer attributes are reset to default attributes # like color is 7 and linetype is CONTINUOUS has_linetype = other is not None and ( self.dxf.linetype in other.linetypes ) if not has_linetype: self.dxf.linetype = "BYLAYER" self.dxf.discard("material_handle") self.dxf.discard("visualstyle_handle") self.dxf.discard("plotstyle_enum") self.dxf.discard("plotstyle_handle") def _new_compound_entity( self, type_: str, dxfattribs: dict ) -> "DXFGraphic": """Create and bind new entity with same layout settings as `self`. Used by INSERT & POLYLINE to create appended DXF entities, don't use it to create new standalone entities. (internal API) """ dxfattribs = dxfattribs or {} # if layer is not deliberately set, set same layer as creator entity, # at least VERTEX should have the same layer as the POLYGON entity. # Don't know if that is also important for the ATTRIB & INSERT entity. if "layer" not in dxfattribs: dxfattribs["layer"] = self.dxf.layer if self.doc: entity = factory.create_db_entry(type_, dxfattribs, self.doc) else: entity = factory.new(type_, dxfattribs) entity.dxf.owner = self.dxf.owner entity.dxf.paperspace = self.dxf.paperspace return entity # type: ignore @factory.register_entity class SeqEnd(DXFGraphic): DXFTYPE = "SEQEND" def add_entity(entity: DXFGraphic, layout: "BaseLayout") -> None: """Add `entity` entity to the entity database and to the given `layout`.""" assert entity.dxf.handle is None assert layout is not None if layout.doc: factory.bind(entity, layout.doc) layout.add_entity(entity) def replace_entity( source: DXFGraphic, target: DXFGraphic, layout: "BaseLayout" ) -> None: """Add `target` entity to the entity database and to the given `layout` and replace the `source` entity by the `target` entity. """ assert target.dxf.handle is None assert layout is not None target.dxf.handle = source.dxf.handle if source in layout: layout.delete_entity(source) if layout.doc: factory.bind(target, layout.doc) layout.add_entity(target) else: source.destroy() def is_graphic_entity(entity: DXFEntity) -> bool: """Returns ``True`` if the `entity` has a graphical representations and can reside in the model space, a paper space or a block layout, otherwise the entity is a table or class entry or a DXF object from the OBJECTS section. """ if isinstance(entity, DXFGraphic): return True if isinstance(entity, DXFTagStorage) and entity.is_graphic_entity: return True return False def get_font_name(entity: DXFEntity) -> str: """Returns the name of the font use by an entity. This function always returns a font name even if the entity does not have any font usage. The default font name is "txt". """ font_name = "txt" if entity.doc and entity.dxf.hasattr("style"): style_name = entity.dxf.style style = entity.doc.styles.get(style_name) if style: font_name = style.dxf.font return font_name
34.692525
84
0.608245
a2c0763378c0cd4c270fb23b9d13ecb02f0ef5c9
3,807
py
Python
couler/tests/mpi_step_test.py
javoweb/couler
1531f31816a1505401c5326dc5fec5a8bb7bf7cd
[ "Apache-2.0" ]
700
2020-08-19T16:50:32.000Z
2022-03-31T11:05:22.000Z
couler/tests/mpi_step_test.py
javoweb/couler
1531f31816a1505401c5326dc5fec5a8bb7bf7cd
[ "Apache-2.0" ]
136
2020-08-19T16:54:20.000Z
2022-03-08T15:23:53.000Z
couler/tests/mpi_step_test.py
javoweb/couler
1531f31816a1505401c5326dc5fec5a8bb7bf7cd
[ "Apache-2.0" ]
74
2020-08-19T19:48:56.000Z
2022-03-04T17:39:42.000Z
# Copyright 2021 The Couler Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from io import StringIO import yaml import couler.argo as couler import couler.steps.mpi as mpi from couler.core import utils from couler.tests.argo_yaml_test import ArgoYamlTest class MPITestCase(ArgoYamlTest): def test_mpi_train(self): access_key_secret = {"access_key": "key1234"} secret = couler.create_secret(secret_data=access_key_secret) mpi.train( num_workers=3, image="mpi:1.13", command="python mpi.py", worker_resources="cpu=0.5,memory=1024", clean_pod_policy="Running", secret=secret, ) secret_yaml = list(couler.states._secrets.values())[0].to_yaml() self.assertEqual( secret_yaml["data"]["access_key"], utils.encode_base64("key1234") ) wf = couler.workflow_yaml() self.assertEqual(len(wf["spec"]["templates"]), 2) # Check steps template template0 = wf["spec"]["templates"][0] self.assertEqual(len(template0["steps"]), 1) self.assertEqual(len(template0["steps"][0]), 1) # Check train template template1 = wf["spec"]["templates"][1] self.assertEqual(template1["name"], "test-mpi-train") resource = template1["resource"] self.assertEqual(resource["action"], "create") self.assertEqual(resource["setOwnerReference"], "true") self.assertEqual( resource["successCondition"], "status.replicaStatuses.Worker.succeeded == 3", ) self.assertEqual( resource["failureCondition"], "status.replicaStatuses.Worker.failed > 0", ) # Check the MPIJob spec mpi_job = yaml.load( StringIO(resource["manifest"]), Loader=yaml.FullLoader ) self.assertEqual(mpi_job["kind"], "MPIJob") self.assertEqual(mpi_job["spec"]["cleanPodPolicy"], "Running") master = mpi_job["spec"]["mpiReplicaSpecs"]["Launcher"] self.assertEqual(master["replicas"], 1) chief_container = master["template"]["spec"]["containers"][0] self.assertEqual(chief_container["env"][0]["name"], "access_key") self.assertEqual( chief_container["env"][0]["valueFrom"]["secretKeyRef"]["name"], secret_yaml["metadata"]["name"], ) worker = mpi_job["spec"]["mpiReplicaSpecs"]["Worker"] self.assertEqual(worker["replicas"], 3) self.assertEqual(len(worker["template"]["spec"]["containers"]), 1) worker_container = worker["template"]["spec"]["containers"][0] self.assertEqual(worker_container["image"], "mpi:1.13") self.assertEqual(worker_container["command"], "python mpi.py") worker_container = worker["template"]["spec"]["containers"][0] self.assertEqual(worker_container["env"][0]["name"], "access_key") self.assertEqual( worker_container["env"][0]["valueFrom"]["secretKeyRef"]["name"], secret_yaml["metadata"]["name"], ) self.assertEqual(worker_container["resources"]["limits"]["cpu"], 0.5) self.assertEqual( worker_container["resources"]["limits"]["memory"], 1024 )
39.65625
77
0.634095
f4bb6f5bada4498926d734b6d9dd9b69b6d4fca1
1,972
py
Python
xgboost/xgb.py
alvinx31/AI-Pool
9f01ddff1b3a6cbfb1648d75f4c3706c424c9930
[ "MIT" ]
null
null
null
xgboost/xgb.py
alvinx31/AI-Pool
9f01ddff1b3a6cbfb1648d75f4c3706c424c9930
[ "MIT" ]
null
null
null
xgboost/xgb.py
alvinx31/AI-Pool
9f01ddff1b3a6cbfb1648d75f4c3706c424c9930
[ "MIT" ]
null
null
null
#coding=utf-8 """ Created on 2016/09/17 By 我曾经被山河大海跨过 """ import numpy as np import pandas as pd import xgboost as xgb from sklearn.cross_validation import train_test_split #记录程序运行时间 import time start_time = time.time() #读入数据 train = pd.read_csv("train.csv") tests = pd.read_csv("test.csv") params={ 'booster':'gbtree', 'objective': 'multi:softmax', #多分类的问题 'num_class':10, # 类别数,与 multisoftmax 并用 'gamma':0.1, # 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。 'max_depth':12, # 构建树的深度,越大越容易过拟合 'lambda':2, # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。 'subsample':0.7, # 随机采样训练样本 'colsample_bytree':0.7, # 生成树时进行的列采样 'min_child_weight':3, # 这个参数默认是 1,是每个叶子里面 h 的和至少是多少,对正负样本不均衡时的 0-1 分类而言 #,假设 h 在 0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100 个样本。 #这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。 'silent':0 ,#设置成1则没有运行信息输出,最好是设置为0. 'eta': 0.007, # 如同学习率 'seed':1000, 'nthread':7,# cpu 线程数 #'eval_metric': 'auc' } plst = list(params.items()) num_rounds = 10 #5000 # 迭代次数 train_xy,val = train_test_split(train, test_size = 0.3,random_state=1) #random_state is of big influence for val-auc y = train_xy.label X = train_xy.drop(['label'],axis=1) val_y = val.label val_X = val.drop(['label'],axis=1) xgb_val = xgb.DMatrix(val_X,label=val_y) xgb_train = xgb.DMatrix(X, label=y) xgb_test = xgb.DMatrix(tests) watchlist = [(xgb_train, 'train'),(xgb_val, 'val')] # training model # early_stopping_rounds 当设置的迭代次数较大时,early_stopping_rounds 可在一定的迭代次数内准确率没有提升就停止训练 model = xgb.train(plst, xgb_train, num_rounds, watchlist,early_stopping_rounds=100) model.save_model('./model/xgb.model') # 用于存储训练出的模型 print("best best_ntree_limit",model.best_ntree_limit) print("跑到这里了model.predict") preds = model.predict(xgb_test,ntree_limit=model.best_ntree_limit) np.savetxt('xgb_submission.csv',np.c_[range(1,len(tests)+1),preds],delimiter=',',header='ImageId,Label',comments='',fmt='%d') #输出运行时长 cost_time = time.time()-start_time print("xgboost success!",'\n',"cost time:",cost_time,"(s)")
27.774648
125
0.742394
32473c66349d7b0b578232016d303fe2db36652f
1,158
py
Python
robot_util.py
bmorrison4/LED-bot-RMR
d8e5abed39f55682b0107ffafcbced5c78be1820
[ "Apache-2.0" ]
null
null
null
robot_util.py
bmorrison4/LED-bot-RMR
d8e5abed39f55682b0107ffafcbced5c78be1820
[ "Apache-2.0" ]
null
null
null
robot_util.py
bmorrison4/LED-bot-RMR
d8e5abed39f55682b0107ffafcbced5c78be1820
[ "Apache-2.0" ]
null
null
null
import os import time import traceback import ssl import urllib2 import getpass import json ConfigFilename = "/home/pi/config_" + getpass.getuser() + ".json" def getWithRetry(url, secure=True): for retryNumber in range(2000): try: print "GET", url if secure: response = urllib2.urlopen(url).read() else: ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE response = urllib2.urlopen(url, context=ctx).read() break except: print "could not open url", url traceback.print_exc() time.sleep(2) return response def sendSerialCommand(ser, command): print(ser.name) # check which port was really used ser.nonblocking() # loop to collect input #s = "f" #print "string:", s print str(command.lower()) ser.write(command.lower().encode("utf8") + "\r\n") # write a string #ser.write(s) ser.flush() #while ser.in_waiting > 0: # print "read:", ser.read() #ser.close()
21.444444
71
0.570812
431c9a6ede9bfb15de308f98109b2a0d42a56ef8
5,481
py
Python
virtual/Lib/site-packages/dash_html_components/Output.py
LeonZly90/LeonZly90
935a658814632beca84cab0af6c048dd762f8c56
[ "MIT" ]
2
2021-07-18T11:39:56.000Z
2021-11-06T17:13:05.000Z
venv/Lib/site-packages/dash_html_components/Output.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
null
null
null
venv/Lib/site-packages/dash_html_components/Output.py
wakisalvador/constructed-misdirection
74779e9ec640a11bc08d5d1967c85ac4fa44ea5e
[ "Unlicense" ]
null
null
null
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class Output(Component): """An Output component. Output is a wrapper for the <output> HTML5 element. CAUTION: <output> is included for completeness, but its typical usage requires the oninput attribute of the enclosing <form> element, which is not accessible to Dash. For detailed attribute info see: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/output Keyword arguments: - children (a list of or a singular dash component, string or number; optional): The children of this component. - id (string; optional): The ID of this component, used to identify dash components in callbacks. The ID needs to be unique across all of the components in an app. - accessKey (string; optional): Keyboard shortcut to activate or add focus to the element. - aria-* (string; optional): A wildcard aria attribute. - className (string; optional): Often used with CSS to style elements with common properties. - contentEditable (string; optional): Indicates whether the element's content is editable. - contextMenu (string; optional): Defines the ID of a <menu> element which will serve as the element's context menu. - data-* (string; optional): A wildcard data attribute. - dir (string; optional): Defines the text direction. Allowed values are ltr (Left-To-Right) or rtl (Right-To-Left). - draggable (string; optional): Defines whether the element can be dragged. - form (string; optional): Indicates the form that is the owner of the element. - hidden (a value equal to: 'hidden', 'HIDDEN' | boolean; optional): Prevents rendering of given element, while keeping child elements, e.g. script elements, active. - htmlFor (string; optional): Describes elements which belongs to this one. - key (string; optional): A unique identifier for the component, used to improve performance by React.js while rendering components See https://reactjs.org/docs/lists-and-keys.html for more info. - lang (string; optional): Defines the language used in the element. - loading_state (dict; optional): Object that holds the loading state object coming from dash-renderer. `loading_state` is a dict with keys: - component_name (string; optional): Holds the name of the component that is loading. - is_loading (boolean; optional): Determines if the component is loading or not. - prop_name (string; optional): Holds which property is loading. - n_clicks (number; default 0): An integer that represents the number of times that this element has been clicked on. - n_clicks_timestamp (number; default -1): An integer that represents the time (in ms since 1970) at which n_clicks changed. This can be used to tell which button was changed most recently. - name (string; optional): Name of the element. For example used by the server to identify the fields in form submits. - role (string; optional): The ARIA role attribute. - spellCheck (string; optional): Indicates whether spell checking is allowed for the element. - style (dict; optional): Defines CSS styles which will override styles previously set. - tabIndex (string; optional): Overrides the browser's default tab order and follows the one specified instead. - title (string; optional): Text to be displayed in a tooltip when hovering over the element.""" @_explicitize_args def __init__(self, children=None, id=Component.UNDEFINED, n_clicks=Component.UNDEFINED, n_clicks_timestamp=Component.UNDEFINED, key=Component.UNDEFINED, role=Component.UNDEFINED, htmlFor=Component.UNDEFINED, form=Component.UNDEFINED, name=Component.UNDEFINED, accessKey=Component.UNDEFINED, className=Component.UNDEFINED, contentEditable=Component.UNDEFINED, contextMenu=Component.UNDEFINED, dir=Component.UNDEFINED, draggable=Component.UNDEFINED, hidden=Component.UNDEFINED, lang=Component.UNDEFINED, spellCheck=Component.UNDEFINED, style=Component.UNDEFINED, tabIndex=Component.UNDEFINED, title=Component.UNDEFINED, loading_state=Component.UNDEFINED, **kwargs): self._prop_names = ['children', 'id', 'accessKey', 'aria-*', 'className', 'contentEditable', 'contextMenu', 'data-*', 'dir', 'draggable', 'form', 'hidden', 'htmlFor', 'key', 'lang', 'loading_state', 'n_clicks', 'n_clicks_timestamp', 'name', 'role', 'spellCheck', 'style', 'tabIndex', 'title'] self._type = 'Output' self._namespace = 'dash_html_components' self._valid_wildcard_attributes = ['data-', 'aria-'] self.available_properties = ['children', 'id', 'accessKey', 'aria-*', 'className', 'contentEditable', 'contextMenu', 'data-*', 'dir', 'draggable', 'form', 'hidden', 'htmlFor', 'key', 'lang', 'loading_state', 'n_clicks', 'n_clicks_timestamp', 'name', 'role', 'spellCheck', 'style', 'tabIndex', 'title'] self.available_wildcard_properties = ['data-', 'aria-'] _explicit_args = kwargs.pop('_explicit_args') _locals = locals() _locals.update(kwargs) # For wildcard attrs args = {k: _locals[k] for k in _explicit_args if k != 'children'} for k in []: if k not in args: raise TypeError( 'Required argument `' + k + '` was not specified.') super(Output, self).__init__(children=children, **args)
41.839695
667
0.710089
2dcc34751c72483e3921d35c0a6b137fdb07f0c8
6,760
py
Python
sdk/python/pulumi_oci/identity/get_identity_providers.py
EladGabay/pulumi-oci
6841e27d4a1a7e15c672306b769912efbfd3ba99
[ "ECL-2.0", "Apache-2.0" ]
5
2021-08-17T11:14:46.000Z
2021-12-31T02:07:03.000Z
sdk/python/pulumi_oci/identity/get_identity_providers.py
pulumi-oci/pulumi-oci
6841e27d4a1a7e15c672306b769912efbfd3ba99
[ "ECL-2.0", "Apache-2.0" ]
1
2021-09-06T11:21:29.000Z
2021-09-06T11:21:29.000Z
sdk/python/pulumi_oci/identity/get_identity_providers.py
pulumi-oci/pulumi-oci
6841e27d4a1a7e15c672306b769912efbfd3ba99
[ "ECL-2.0", "Apache-2.0" ]
2
2021-08-24T23:31:30.000Z
2022-01-02T19:26:54.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = [ 'GetIdentityProvidersResult', 'AwaitableGetIdentityProvidersResult', 'get_identity_providers', ] @pulumi.output_type class GetIdentityProvidersResult: """ A collection of values returned by getIdentityProviders. """ def __init__(__self__, compartment_id=None, filters=None, id=None, identity_providers=None, name=None, protocol=None, state=None): if compartment_id and not isinstance(compartment_id, str): raise TypeError("Expected argument 'compartment_id' to be a str") pulumi.set(__self__, "compartment_id", compartment_id) if filters and not isinstance(filters, list): raise TypeError("Expected argument 'filters' to be a list") pulumi.set(__self__, "filters", filters) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity_providers and not isinstance(identity_providers, list): raise TypeError("Expected argument 'identity_providers' to be a list") pulumi.set(__self__, "identity_providers", identity_providers) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if protocol and not isinstance(protocol, str): raise TypeError("Expected argument 'protocol' to be a str") pulumi.set(__self__, "protocol", protocol) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) @property @pulumi.getter(name="compartmentId") def compartment_id(self) -> str: """ The OCID of the tenancy containing the `IdentityProvider`. """ return pulumi.get(self, "compartment_id") @property @pulumi.getter def filters(self) -> Optional[Sequence['outputs.GetIdentityProvidersFilterResult']]: return pulumi.get(self, "filters") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="identityProviders") def identity_providers(self) -> Sequence['outputs.GetIdentityProvidersIdentityProviderResult']: """ The list of identity_providers. """ return pulumi.get(self, "identity_providers") @property @pulumi.getter def name(self) -> Optional[str]: """ The name you assign to the `IdentityProvider` during creation. The name must be unique across all `IdentityProvider` objects in the tenancy and cannot be changed. This is the name federated users see when choosing which identity provider to use when signing in to the Oracle Cloud Infrastructure Console. """ return pulumi.get(self, "name") @property @pulumi.getter def protocol(self) -> str: """ The protocol used for federation. Allowed value: `SAML2`. Example: `SAML2` """ return pulumi.get(self, "protocol") @property @pulumi.getter def state(self) -> Optional[str]: """ The current state. """ return pulumi.get(self, "state") class AwaitableGetIdentityProvidersResult(GetIdentityProvidersResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetIdentityProvidersResult( compartment_id=self.compartment_id, filters=self.filters, id=self.id, identity_providers=self.identity_providers, name=self.name, protocol=self.protocol, state=self.state) def get_identity_providers(compartment_id: Optional[str] = None, filters: Optional[Sequence[pulumi.InputType['GetIdentityProvidersFilterArgs']]] = None, name: Optional[str] = None, protocol: Optional[str] = None, state: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetIdentityProvidersResult: """ This data source provides the list of Identity Providers in Oracle Cloud Infrastructure Identity service. Lists all the identity providers in your tenancy. You must specify the identity provider type (e.g., `SAML2` for identity providers using the SAML2.0 protocol). You must specify your tenancy's OCID as the value for the compartment ID (remember that the tenancy is simply the root compartment). See [Where to Get the Tenancy's OCID and User's OCID](https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm#five). ## Example Usage ```python import pulumi import pulumi_oci as oci test_identity_providers = oci.identity.get_identity_providers(compartment_id=var["tenancy_ocid"], protocol=var["identity_provider_protocol"], name=var["identity_provider_name"], state=var["identity_provider_state"]) ``` :param str compartment_id: The OCID of the compartment (remember that the tenancy is simply the root compartment). :param str name: A filter to only return resources that match the given name exactly. :param str protocol: The protocol used for federation. :param str state: A filter to only return resources that match the given lifecycle state. The state value is case-insensitive. """ __args__ = dict() __args__['compartmentId'] = compartment_id __args__['filters'] = filters __args__['name'] = name __args__['protocol'] = protocol __args__['state'] = state if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:identity/getIdentityProviders:getIdentityProviders', __args__, opts=opts, typ=GetIdentityProvidersResult).value return AwaitableGetIdentityProvidersResult( compartment_id=__ret__.compartment_id, filters=__ret__.filters, id=__ret__.id, identity_providers=__ret__.identity_providers, name=__ret__.name, protocol=__ret__.protocol, state=__ret__.state)
40.238095
312
0.671746
0fbced832a946f061c872027eaf01a91f3566dfb
7,748
py
Python
mitmproxy/tools/console/defaultkeys.py
developeric/mitmproxy
c996f1ee74a367424b956a77c3e2c7bfc9c86da5
[ "MIT" ]
9
2021-12-19T13:47:10.000Z
2022-03-26T06:34:02.000Z
mitmproxy/tools/console/defaultkeys.py
PeterDaveHello/mitmproxy
4bd7b6c4eadeaca712f63e0e73f20bcf6aadbffb
[ "MIT" ]
null
null
null
mitmproxy/tools/console/defaultkeys.py
PeterDaveHello/mitmproxy
4bd7b6c4eadeaca712f63e0e73f20bcf6aadbffb
[ "MIT" ]
3
2021-12-20T08:21:47.000Z
2022-03-29T17:55:12.000Z
def map(km): km.add(":", "console.command ", ["commonkey", "global"], "Command prompt") km.add("?", "console.view.help", ["global"], "View help") km.add("B", "browser.start", ["global"], "Start an attached browser") km.add("C", "console.view.commands", ["global"], "View commands") km.add("K", "console.view.keybindings", ["global"], "View key bindings") km.add("O", "console.view.options", ["commonkey", "global"], "View options") km.add("E", "console.view.eventlog", ["commonkey", "global"], "View event log") km.add("Q", "console.exit", ["global"], "Exit immediately") km.add("q", "console.view.pop", ["commonkey", "global"], "Exit the current view") km.add("-", "console.layout.cycle", ["global"], "Cycle to next layout") km.add("shift tab", "console.panes.next", ["global"], "Focus next layout pane") km.add("ctrl right", "console.panes.next", ["global"], "Focus next layout pane") km.add("P", "console.view.flow @focus", ["global"], "View flow details") km.add("?", "console.view.pop", ["help"], "Exit help") km.add("g", "console.nav.start", ["global"], "Go to start") km.add("G", "console.nav.end", ["global"], "Go to end") km.add("k", "console.nav.up", ["global"], "Up") km.add("j", "console.nav.down", ["global"], "Down") km.add("l", "console.nav.right", ["global"], "Right") km.add("h", "console.nav.left", ["global"], "Left") km.add("tab", "console.nav.next", ["commonkey", "global"], "Next") km.add("enter", "console.nav.select", ["commonkey", "global"], "Select") km.add("space", "console.nav.pagedown", ["global"], "Page down") km.add("ctrl f", "console.nav.pagedown", ["global"], "Page down") km.add("ctrl b", "console.nav.pageup", ["global"], "Page up") km.add("I", "set intercept_active toggle", ["global"], "Toggle whether the filtering via the intercept option is enabled") km.add("i", "console.command.set intercept", ["global"], "Set intercept") km.add("W", "console.command.set save_stream_file", ["global"], "Stream to file") km.add("A", "flow.resume @all", ["flowlist", "flowview"], "Resume all intercepted flows") km.add("a", "flow.resume @focus", ["flowlist", "flowview"], "Resume this intercepted flow") km.add( "b", "console.command cut.save @focus response.content ", ["flowlist", "flowview"], "Save response body to file" ) km.add("d", "view.flows.remove @focus", ["flowlist", "flowview"], "Delete flow from view") km.add("D", "view.flows.duplicate @focus", ["flowlist", "flowview"], "Duplicate flow") km.add( "e", """ console.choose.cmd Format export.formats console.command export.file {choice} @focus """, ["flowlist", "flowview"], "Export this flow to file" ) km.add("f", "console.command.set view_filter", ["flowlist"], "Set view filter") km.add("F", "set console_focus_follow toggle", ["flowlist"], "Set focus follow") km.add( "ctrl l", "console.command cut.clip ", ["flowlist", "flowview"], "Send cuts to clipboard" ) km.add("L", "console.command view.flows.load ", ["flowlist"], "Load flows from file") km.add("m", "flow.mark.toggle @focus", ["flowlist"], "Toggle mark on this flow") km.add("M", "view.properties.marked.toggle", ["flowlist"], "Toggle viewing marked flows") km.add( "n", "console.command view.flows.create get https://example.com/", ["flowlist"], "Create a new flow" ) km.add( "o", """ console.choose.cmd Order view.order.options set view_order {choice} """, ["flowlist"], "Set flow list order" ) km.add("r", "replay.client @focus", ["flowlist", "flowview"], "Replay this flow") km.add("S", "console.command replay.server ", ["flowlist"], "Start server replay") km.add("v", "set view_order_reversed toggle", ["flowlist"], "Reverse flow list order") km.add("U", "flow.mark @all false", ["flowlist"], "Un-set all marks") km.add("w", "console.command save.file @shown ", ["flowlist"], "Save listed flows to file") km.add("V", "flow.revert @focus", ["flowlist", "flowview"], "Revert changes to this flow") km.add("X", "flow.kill @focus", ["flowlist"], "Kill this flow") km.add("z", "view.flows.remove @all", ["flowlist"], "Clear flow list") km.add("Z", "view.flows.remove @hidden", ["flowlist"], "Purge all flows not showing") km.add( "|", "console.command script.run @focus ", ["flowlist", "flowview"], "Run a script on this flow" ) km.add( "e", """ console.choose.cmd Part console.edit.focus.options console.edit.focus {choice} """, ["flowview"], "Edit a flow component" ) km.add( "f", "view.settings.setval.toggle @focus fullcontents", ["flowview"], "Toggle viewing full contents on this flow", ) km.add("w", "console.command save.file @focus ", ["flowview"], "Save flow to file") km.add("space", "view.focus.next", ["flowview"], "Go to next flow") km.add( "v", """ console.choose "View Part" request,response console.bodyview @focus {choice} """, ["flowview"], "View flow body in an external viewer" ) km.add("p", "view.focus.prev", ["flowview"], "Go to previous flow") km.add( "m", """ console.choose.cmd Mode console.flowview.mode.options console.flowview.mode.set {choice} """, ["flowview"], "Set flow view mode" ) km.add( "z", """ console.choose "Part" request,response flow.encode.toggle @focus {choice} """, ["flowview"], "Encode/decode flow body" ) km.add("L", "console.command options.load ", ["options"], "Load from file") km.add("S", "console.command options.save ", ["options"], "Save to file") km.add("D", "options.reset", ["options"], "Reset all options") km.add("d", "console.options.reset.focus", ["options"], "Reset this option") km.add("a", "console.grideditor.add", ["grideditor"], "Add a row after cursor") km.add("A", "console.grideditor.insert", ["grideditor"], "Insert a row before cursor") km.add("d", "console.grideditor.delete", ["grideditor"], "Delete this row") km.add( "r", "console.command console.grideditor.load", ["grideditor"], "Read unescaped data into the current cell from file" ) km.add( "R", "console.command console.grideditor.load_escaped", ["grideditor"], "Load a Python-style escaped string into the current cell from file" ) km.add("e", "console.grideditor.editor", ["grideditor"], "Edit in external editor") km.add( "w", "console.command console.grideditor.save ", ["grideditor"], "Save data to file as CSV" ) km.add("z", "eventstore.clear", ["eventlog"], "Clear") km.add( "a", """ console.choose.cmd "Context" console.key.contexts console.command console.key.bind {choice} """, ["keybindings"], "Add a key binding" ) km.add( "d", "console.key.unbind.focus", ["keybindings"], "Unbind the currently focused key binding" ) km.add( "x", "console.key.execute.focus", ["keybindings"], "Execute the currently focused key binding" ) km.add( "enter", "console.key.edit.focus", ["keybindings"], "Edit the currently focused key binding" )
39.329949
126
0.572019
232b9be87de6124f571d4e0a6d346eae0524f5e3
12,989
py
Python
lib/saq/constants.py
ace-ecosystem/faqueue
a53b5577892ace4ca918f76ef9e676e85e30c93f
[ "Apache-2.0" ]
null
null
null
lib/saq/constants.py
ace-ecosystem/faqueue
a53b5577892ace4ca918f76ef9e676e85e30c93f
[ "Apache-2.0" ]
null
null
null
lib/saq/constants.py
ace-ecosystem/faqueue
a53b5577892ace4ca918f76ef9e676e85e30c93f
[ "Apache-2.0" ]
null
null
null
# vim: sw=4:ts=4:et __all__ = [ 'INSTANCE_TYPE_PRODUCTION', 'INSTANCE_TYPE_QA', 'INSTANCE_TYPE_DEV', 'F_UUID', 'F_ID', 'F_TOOL', 'F_TOOL_INSTANCE', 'F_TYPE', 'F_DESCRIPTION', 'F_EVENT_TIME', 'F_DETAILS', 'F_CIDR', 'F_IPV4', 'F_IPV4_CONVERSATION', 'F_FQDN', 'F_HTTP_REQUEST', 'F_HOSTNAME', 'F_ASSET', 'F_USER', 'F_URL', 'F_PCAP', 'F_FILE', 'F_SUSPECT_FILE', # DEPRECATED 'F_FILE_PATH', 'F_FILE_NAME', 'F_FILE_LOCATION', 'F_EMAIL_ADDRESS', 'F_EMAIL_CONVERSATION', 'F_YARA', 'F_YARA_RULE', 'F_INDICATOR', 'F_MD5', 'F_SHA1', 'F_SHA256', 'F_SNORT_SIGNATURE', 'F_MESSAGE_ID', 'F_DISPOSITION', 'F_PROCESS_GUID', 'event_time_format', 'OBSERVABLE_DESCRIPTIONS', 'OBSERVABLE_NODE_COLORS', 'VALID_OBSERVABLE_TYPES', 'VALID_ALERT_DISPOSITIONS', 'IGNORE_ALERT_DISPOSITIONS', 'BENIGN_ALERT_DISPOSITIONS', 'MAL_ALERT_DISPOSITIONS', 'parse_ipv4_conversation', 'create_ipv4_conversation', 'parse_email_conversation', 'create_email_conversation', 'parse_file_location', 'create_file_location', 'DISPOSITION_FALSE_POSITIVE', 'DISPOSITION_IGNORE', 'DISPOSITION_UNKNOWN', 'DISPOSITION_REVIEWED', 'DISPOSITION_GRAYWARE', 'DISPOSITION_POLICY_VIOLATION', 'DISPOSITION_RECONNAISSANCE', 'DISPOSITION_WEAPONIZATION', 'DISPOSITION_DELIVERY', 'DISPOSITION_EXPLOITATION', 'DISPOSITION_INSTALLATION', 'DISPOSITION_COMMAND_AND_CONTROL', 'DISPOSITION_EXFIL', 'DISPOSITION_DAMAGE', 'DISPOSITION_CSS_MAPPING', 'DIRECTIVE_ARCHIVE', 'DIRECTIVE_COLLECT_FILE', 'DIRECTIVE_CRAWL', 'DIRECTIVE_FORCE_DOWNLOAD', 'DIRECTIVE_EXTRACT_URLS', 'DIRECTIVE_SANDBOX', 'DIRECTIVE_ORIGINAL_EMAIL', 'DIRECTIVE_NO_SCAN', 'VALID_DIRECTIVES', 'is_valid_directive', 'TAG_LEVEL_FALSE_POSITIVE', 'TAG_LEVEL_INFO', 'TAG_LEVEL_WARNING', 'TAG_LEVEL_ALERT', 'TAG_LEVEL_CRITICAL', 'EVENT_TAG_ADDED', 'EVENT_OBSERVABLE_ADDED', 'EVENT_DETAILS_UPDATED', 'EVENT_DIRECTIVE_ADDED', 'EVENT_ANALYSIS_ADDED', 'EVENT_DETECTION_ADDED', 'EVENT_ANALYSIS_MARKED_COMPLETED', 'EVENT_GLOBAL_TAG_ADDED', 'EVENT_GLOBAL_OBSERVABLE_ADDED', 'EVENT_GLOBAL_ANALYSIS_ADDED', 'VALID_EVENTS', 'ACTION_TAG_OBSERVABLE', 'ACTION_UPLOAD_TO_CRITS', 'ACTION_FILE_DOWNLOAD', 'ACTION_FILE_DOWNLOAD_AS_ZIP', 'ACTION_FILE_VIEW_AS_HEX', 'ACTION_FILE_VIEW_AS_TEXT', 'ACTION_FILE_UPLOAD_VT', 'ACTION_FILE_UPLOAD_VX', 'ACTION_FILE_VIEW_VT', 'ACTION_FILE_VIEW_VX', 'ACTION_COLLECT_FILE', 'METRIC_THREAD_COUNT', ] # # instance types # INSTANCE_TYPE_PRODUCTION = 'PRODUCTION' INSTANCE_TYPE_QA = 'QA' INSTANCE_TYPE_DEV = 'DEV' # # required fields for every alert # F_UUID = 'uuid' F_ID = 'id' F_TOOL = 'tool' F_TOOL_INSTANCE = 'tool_instance' F_TYPE = 'type' F_DESCRIPTION = 'description' F_EVENT_TIME = 'event_time' F_DETAILS = 'details' F_DISPOSITION = 'disposition' #F_COMMENTS = 'comments' # # observable types # # # WARNING # XXX NOTE # when you add a new observable type you ALSO need to edit lib/saq/analysis.py # and add a matching entry to the _OBSERVABLE_TYPE_MAPPING dictionary F_CIDR = 'cidr' F_IPV4 = 'ipv4' F_IPV4_CONVERSATION = 'ipv4_conversation' F_FQDN = 'fqdn' F_HOSTNAME = 'hostname' F_HTTP_REQUEST = 'http_request' F_ASSET = 'asset' F_USER = 'user' F_URL = 'url' F_PCAP = 'pcap' F_FILE = 'file' F_SUSPECT_FILE = 'suspect_file' # DEPRECATED F_FILE_PATH = 'file_path' F_FILE_NAME = 'file_name' F_FILE_LOCATION = 'file_location' F_EMAIL_ADDRESS = 'email_address' F_EMAIL_CONVERSATION = 'email_conversation' F_YARA = 'yara' F_YARA_RULE = 'yara_rule' F_INDICATOR = 'indicator' F_MD5 = 'md5' F_SHA1 = 'sha1' F_SHA256 = 'sha256' F_SNORT_SIGNATURE = 'snort_sig' F_MESSAGE_ID = 'message_id' F_PROCESS_GUID = 'process_guid' OBSERVABLE_DESCRIPTIONS = { F_CIDR: 'IPv4 range in CIDR notation', F_IPV4: 'IP address (version 4)', F_IPV4_CONVERSATION: 'two F_IPV4 that were communicating formatted as aaa.bbb.ccc.ddd_aaa.bbb.ccc.ddd', F_FQDN: 'fully qualified domain name', F_HOSTNAME: 'host or workstation name', F_HTTP_REQUEST: 'a single HTTP request', F_ASSET: 'a F_IPV4 identified to be a managed asset', F_USER: 'an NT user ID identified to have used a given asset in the given period of time', F_URL: 'a URL', F_PCAP: 'path to a pcap formatted file *** DEPRECATED (use F_FILE instead)', F_FILE: 'path to an attached file', F_SUSPECT_FILE: 'path to an attached file that might be malicious *** DEPRECATED (use directives instead)', F_FILE_PATH: 'a file path', F_FILE_NAME: 'a file name (no directory path)', F_FILE_LOCATION: 'the location of file with format hostname@full_path', F_EMAIL_ADDRESS: 'email address', F_EMAIL_CONVERSATION: 'a conversation between a source email address (MAIL FROM) and a destination email address (RCPT TO)', F_YARA: 'yara scan result *** DEPRECATED (use F_YARA_RULE instead)', F_YARA_RULE: 'yara rule name', F_INDICATOR: 'crits indicator object id', F_MD5: 'MD5 hash', F_SHA1: 'SHA1 hash', F_SHA256: 'SHA256 hash', F_SNORT_SIGNATURE: 'snort signature ID', F_MESSAGE_ID: 'email Message-ID', F_PROCESS_GUID: 'CarbonBlack global process identifier' } # this is used in vis.js in the GUI # see http://www.rapidtables.com/web/color/RGB_Color.htm OBSERVABLE_NODE_COLORS = { F_CIDR: "#0000FF", # blue F_IPV4 : "#0000FF", # blue F_IPV4_CONVERSATION : "#0000FF", # blue F_FQDN : "#D2691E", # chocolate F_HOSTNAME : "#87CEFA", # light sky blue F_HTTP_REQUEST : "#87CEFA", # light sky blue F_ASSET : "#FDF5E6", # old lace F_USER : "#DDA0DD", # plum F_URL : "#F5F5DC", # beige F_PCAP : "#B0C4DE", # light steel blue F_FILE : "#9ACD32", # yellow green F_SUSPECT_FILE : "#9ACD32", # yellow green F_FILE_PATH : "#A9DC23", # ??? F_FILE_NAME : "#A9DC23", # ??? F_FILE_LOCATION : "#A9DC23", # ??? F_EMAIL_ADDRESS : "#00CED1", # dark turquoise F_EMAIL_CONVERSATION : "#00CED1", # dark turquoise F_YARA : '#B22222', # firebrick F_YARA_RULE : '#B22222', # firebrick F_INDICATOR : "#F5F5F5", # white smoke F_MD5 : "#E6E6FA", # lavender F_SHA1 : "#E6E6FA", # lavender F_SHA256 : "#E6E6FA", # lavender F_MESSAGE_ID : "#E6E6FA", # lavender F_PROCESS_GUID : "#E6E6FA", # lavender } VALID_OBSERVABLE_TYPES = sorted([ F_CIDR, F_IPV4, F_IPV4_CONVERSATION, F_FQDN, F_HOSTNAME, F_HTTP_REQUEST, F_ASSET, F_USER, F_URL, F_PCAP, F_FILE, F_SUSPECT_FILE, F_FILE_PATH, F_FILE_NAME, F_FILE_LOCATION, F_EMAIL_ADDRESS, F_EMAIL_CONVERSATION, F_YARA, F_YARA_RULE, F_INDICATOR, F_MD5, F_SHA1, F_SHA256, F_SNORT_SIGNATURE, F_MESSAGE_ID, F_PROCESS_GUID, ]) # utility functions to work with F_IPV4_CONVERSATION types def parse_ipv4_conversation(f_ipv4_c): return f_ipv4_c.split('_', 2) def create_ipv4_conversation(src, dst): return '{0}_{1}'.format(src, dst) # utility functions to work with F_EMAIL_CONVERSATION types def parse_email_conversation(f_ipv4_c): result = f_ipv4_c.split('|', 2) # did parsing fail? if len(result) != 2: return f_ipv4_c, '' return result def create_email_conversation(mail_from, rcpt_to): return '{0}|{1}'.format(mail_from, rcpt_to) def parse_file_location(file_location): return file_location.split('@', 1) def create_file_location(hostname, full_path): return '{}@{}'.format(hostname, full_path) # the expected format of the event_time of an alert event_time_format = '%Y-%m-%d %H:%M:%S' # alert dispositions DISPOSITION_FALSE_POSITIVE = 'FALSE_POSITIVE' DISPOSITION_IGNORE = 'IGNORE' DISPOSITION_UNKNOWN = 'UNKNOWN' DISPOSITION_REVIEWED = 'REVIEWED' DISPOSITION_GRAYWARE = 'GRAYWARE' DISPOSITION_POLICY_VIOLATION = 'POLICY_VIOLATION' DISPOSITION_RECONNAISSANCE = 'RECONNAISSANCE' DISPOSITION_WEAPONIZATION = 'WEAPONIZATION' DISPOSITION_DELIVERY = 'DELIVERY' DISPOSITION_EXPLOITATION = 'EXPLOITATION' DISPOSITION_INSTALLATION = 'INSTALLATION' DISPOSITION_COMMAND_AND_CONTROL = 'COMMAND_AND_CONTROL' DISPOSITION_EXFIL = 'EXFIL' DISPOSITION_DAMAGE = 'DAMAGE' # disposition to label mapping # each disposition has a specific CSS class assigned to it DISPOSITION_CSS_MAPPING = { None: 'default', # when no disposition has been set yet DISPOSITION_FALSE_POSITIVE: 'success', DISPOSITION_IGNORE: 'default', DISPOSITION_UNKNOWN: 'info', DISPOSITION_REVIEWED: 'info', DISPOSITION_GRAYWARE: 'info', DISPOSITION_POLICY_VIOLATION: 'warning', DISPOSITION_RECONNAISSANCE: 'warning', DISPOSITION_WEAPONIZATION: 'danger', DISPOSITION_DELIVERY: 'danger', DISPOSITION_EXPLOITATION: 'danger', DISPOSITION_INSTALLATION: 'danger', DISPOSITION_COMMAND_AND_CONTROL: 'danger', DISPOSITION_EXFIL: 'danger', DISPOSITION_DAMAGE: 'danger', } VALID_ALERT_DISPOSITIONS = [ DISPOSITION_FALSE_POSITIVE, DISPOSITION_IGNORE, DISPOSITION_UNKNOWN, DISPOSITION_REVIEWED, DISPOSITION_GRAYWARE, DISPOSITION_POLICY_VIOLATION, DISPOSITION_RECONNAISSANCE, DISPOSITION_WEAPONIZATION, DISPOSITION_DELIVERY, DISPOSITION_EXPLOITATION, DISPOSITION_INSTALLATION, DISPOSITION_COMMAND_AND_CONTROL, DISPOSITION_EXFIL, DISPOSITION_DAMAGE ] IGNORE_ALERT_DISPOSITIONS = [ DISPOSITION_IGNORE, DISPOSITION_UNKNOWN, DISPOSITION_REVIEWED ] BENIGN_ALERT_DISPOSITIONS = [ DISPOSITION_FALSE_POSITIVE, DISPOSITION_GRAYWARE, DISPOSITION_POLICY_VIOLATION, DISPOSITION_RECONNAISSANCE ] MAL_ALERT_DISPOSITIONS = [ DISPOSITION_WEAPONIZATION, DISPOSITION_DELIVERY, DISPOSITION_EXPLOITATION, DISPOSITION_INSTALLATION, DISPOSITION_COMMAND_AND_CONTROL, DISPOSITION_EXFIL, DISPOSITION_DAMAGE ] # --- DIRECTIVES # archive the file DIRECTIVE_ARCHIVE = 'archive' # collect the file from the remote endpoint DIRECTIVE_COLLECT_FILE = 'collect_file' # crawl the url DIRECTIVE_CRAWL = 'crawl' # download the content of the URL no matter what DIRECTIVE_FORCE_DOWNLOAD = 'force_download' # extract URLs from the given file DIRECTIVE_EXTRACT_URLS = 'extract_urls' # run the observable through a sandbox DIRECTIVE_SANDBOX = 'sandbox' # treat this file as the original email file DIRECTIVE_ORIGINAL_EMAIL = 'original_email' # do not scan this file with yara DIRECTIVE_NO_SCAN = 'no_scan' VALID_DIRECTIVES = [ DIRECTIVE_COLLECT_FILE, DIRECTIVE_CRAWL, DIRECTIVE_EXTRACT_URLS, DIRECTIVE_ORIGINAL_EMAIL, DIRECTIVE_SANDBOX, DIRECTIVE_FORCE_DOWNLOAD, ] def is_valid_directive(directive): return directive in VALID_DIRECTIVES # --- TAGS TAG_LEVEL_FALSE_POSITIVE = 'fp' TAG_LEVEL_INFO = 'info' TAG_LEVEL_WARNING = 'warning' TAG_LEVEL_ALERT = 'alert' TAG_LEVEL_CRITICAL = 'critical' # --- EVENTS # fired when we add a tag to something EVENT_TAG_ADDED = 'tag_added' # called when an Observable is added to the Analysis EVENT_OBSERVABLE_ADDED = 'observable_added' # called when the details of an Analysis have been updated EVENT_DETAILS_UPDATED = 'details_updated' # fired when we add a directive to an Observable EVENT_DIRECTIVE_ADDED = 'directive_added' # fired when we add an Analysis to an Observable EVENT_ANALYSIS_ADDED = 'analysis_added' # fired when we add a DetectionPoint ot an Analysis or Observable EVENT_DETECTION_ADDED = 'detection_added' # fired when an analysis is marked as completed manually EVENT_ANALYSIS_MARKED_COMPLETED = 'analysis_marked_completed' # these next two events are intended to be used with the RootAnalysis object # fired when we add a tag to any taggable object EVENT_GLOBAL_TAG_ADDED = 'global_tag_added' # fired when we add an observable to any analysis object EVENT_GLOBAL_OBSERVABLE_ADDED = 'global_observable_added' # fired when we add an analysis to any observable object EVENT_GLOBAL_ANALYSIS_ADDED = 'global_analysis_added' # list of all valid events VALID_EVENTS = [ EVENT_ANALYSIS_MARKED_COMPLETED, EVENT_TAG_ADDED, EVENT_OBSERVABLE_ADDED, EVENT_ANALYSIS_ADDED, EVENT_DETECTION_ADDED, EVENT_DIRECTIVE_ADDED, EVENT_DETAILS_UPDATED, EVENT_GLOBAL_TAG_ADDED, EVENT_GLOBAL_OBSERVABLE_ADDED, EVENT_GLOBAL_ANALYSIS_ADDED ] # available actions for observables ACTION_TAG_OBSERVABLE = 'tag_observable' ACTION_UPLOAD_TO_CRITS = 'upload_crits' ACTION_FILE_DOWNLOAD = 'file_download' ACTION_FILE_DOWNLOAD_AS_ZIP = 'file_download_as_zip' ACTION_FILE_VIEW_AS_HEX = 'file_view_as_hex' ACTION_FILE_VIEW_AS_TEXT = 'file_view_as_text' ACTION_FILE_UPLOAD_VT = 'file_upload_vt' ACTION_FILE_UPLOAD_VX = 'file_upload_vx' ACTION_FILE_VIEW_VT = 'file_view_vt' ACTION_FILE_VIEW_VX = 'file_view_vx' ACTION_COLLECT_FILE = 'collect_file' # recorded metrics METRIC_THREAD_COUNT = 'thread_count'
28.610132
128
0.732928
d63cd250429cfb78cd33fd33c12b653a66499eec
18,356
py
Python
src/alsc/ar-tnet/layer_no_split_lstm_after_cpt_first_and_last_hidden_reshape_concat_GraphSAGE.py
mainuliitkgp/AR-BERT
d6d5e8542a3a1c76edac49cec9e99ebda6395725
[ "MIT" ]
4
2022-03-06T17:41:57.000Z
2022-03-22T08:42:58.000Z
src/alsc/ar-tnet/layer_no_split_lstm_after_cpt_first_and_last_hidden_reshape_concat_GraphSAGE.py
mainuliitkgp/AR-BERT
d6d5e8542a3a1c76edac49cec9e99ebda6395725
[ "MIT" ]
null
null
null
src/alsc/ar-tnet/layer_no_split_lstm_after_cpt_first_and_last_hidden_reshape_concat_GraphSAGE.py
mainuliitkgp/AR-BERT
d6d5e8542a3a1c76edac49cec9e99ebda6395725
[ "MIT" ]
1
2022-03-19T14:04:42.000Z
2022-03-19T14:04:42.000Z
# -*- coding: utf-8 -*- import os import theano import theano.tensor as T from theano.tensor.nnet import conv from theano.tensor.signal import pool from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from nn_utils_sentence import * import pickle class LSTM: def __init__(self, bs, n_in, n_out, name): """ :param bs: batch size :param n_in: input size :param n_out: hidden size :param name: alias of layer """ self.bs = bs self.n_in = n_in self.n_out = n_out self.name = name # W shape: (n_in, 4*n_out) # U shape: (n_out, 4*n_out) # b shape: (4*n_out self.W, self.U, self.b = lstm_init(n_in=self.n_in, n_out=self.n_out, component=name) self.h0 = theano.shared(value=zeros(size=(self.bs, n_out)), name='h0') self.c0 = theano.shared(value=zeros(size=(self.bs, n_out)), name='c0') self.params = [self.W, self.U, self.b] def __str__(self): return "%s: LSTM(%s, %s)" % (self.name, self.n_in, self.n_out) __repr__ = __str__ def __call__(self, x): """ :param x: input tensor, shape: (bs, seq_len, n_in) :return: generated hidden states """ h0 = T.zeros_like(self.h0) c0 = T.zeros_like(self.c0) rnn_input = x.dimshuffle(1, 0, 2) [H, _], _ = theano.scan(fn=self.recurrence, sequences=rnn_input, outputs_info=[h0, c0]) return H.dimshuffle(1, 0, 2) def recurrence(self, xt, htm1, ctm1): """ :param xt: x[t] \in (bs, n_in) :param htm1: h[t-1] \in (bs, n_out) :param ctm1: c[t-1] \in (bs, n_out) :return: """ Wx = T.dot(xt, self.W) Uh = T.dot(htm1, self.U) Sum_item = Wx + Uh + self.b it = T.nnet.hard_sigmoid(Sum_item[:, :self.n_out]) ft = T.nnet.hard_sigmoid(Sum_item[:, self.n_out:2*self.n_out]) ct_tilde = T.tanh(Sum_item[:, 2*self.n_out:3*self.n_out]) ot = T.nnet.hard_sigmoid(Sum_item[:, 3*self.n_out:]) ct = ft * ctm1 + it * ct_tilde ht = ot * T.tanh(ct) return ht, ct class Linear: """ fully connected layer """ def __init__(self, n_in, n_out, name, use_bias=True): """ :param n_in: input size :param n_out: output size :param name: layer name :param use_bias: use bias or not """ self.n_in = n_in self.n_out = n_out self.name = name self.use_bias = use_bias # sample weight from uniform distribution [-INIT_RANGE, INIT_RANGE] # initialize bias as zero vector self.W = theano.shared(value=uniform(lb=-INIT_RANGE, ub=INIT_RANGE, size=(n_in, n_out)), name="%s_W" % name) self.b = theano.shared(value=zeros(size=n_out), name="%s_b" % name) self.params = [self.W] if self.use_bias: self.params.append(self.b) def __str__(self): return "%s: Linear(%s, %s)" % (self.name, self.n_in, self.n_out) __repr__ = __str__ def __call__(self, x, bs=None): """ :param x: input tensor, shape: (bs, *, n_in) :return: """ if bs is None: output = T.dot(x, self.W) else: # current shape: (bs, n_in, n_out) padded_W = T.tile(self.W, (bs, 1, 1)) # output shape: (bs, seq_len, n_out) output = T.batched_dot(x, padded_W) if self.use_bias: output = output + self.b return output class CNN: def __init__(self, bs, n_in, sent_len, kernel_size, n_filters, name): """ :param bs: batch size :param n_in: input size :param sent_len: sentence length :param kernel_size: size of convolutional kernel :param n_filters: number of filters :param name: layer alias """ self.bs = bs self.n_in = n_in self.sent_len = sent_len self.kernel_size = kernel_size self.n_filters = n_filters self.filter_shape = (self.n_filters, 1, self.kernel_size, self.n_in) self.image_shape = (self.bs, 1, self.sent_len, self.n_in) self.name = name self.pool_size = (self.sent_len - self.kernel_size + 1, 1) self.W = theano.shared( value=uniform(lb=-INIT_RANGE, ub=INIT_RANGE, size=(self.n_filters, 1, self.kernel_size, self.n_in)), name='%s_W' % self.name ) self.b = theano.shared(value=zeros(size=self.n_filters), name='%s_b' % self.name) self.params = [self.W, self.b] def __str__(self): return "%s: CNN(%s, %s, kernel_size=%s)" % (self.name, self.n_in, self.n_filters, self.kernel_size) __repr__ = __str__ def __call__(self, x): """ :param x: input tensor, shape: (bs, seq_len, n_in) :return: (1) features after pooling; (2) generated feature maps """ x = x.dimshuffle(0, 'x', 1, 2) conv_out = T.nnet.conv2d(input=x, filters=self.W, filter_shape=self.filter_shape, input_shape=self.image_shape) conv_out = T.nnet.relu(conv_out + self.b.dimshuffle('x', 0, 'x', 'x')) # shape: (bs, n_filter, sent_len - kernel_size + 1) feature_maps = conv_out.flatten(3) # max pooling conv_out_pool = pool.pool_2d(input=conv_out, ws=self.pool_size, mode='max', ignore_border=True).flatten(2) return conv_out_pool, feature_maps class Dropout: def __init__(self, p): self.p = p self.retain_prob = 1 - p def __str__(self): return "Dropout(%s)" % (1.0 - self.retain_prob) __repr__ = __str__ def __call__(self, x): """ :param x: input tensor :return: """ rng = np.random.RandomState(1344) srng = RandomStreams(rng.randint(999999)) mask = srng.binomial(size=x.shape, n=1, p=self.retain_prob, dtype='float32') scaling_factor = 1.0 / (1.0 - self.p) return x * mask class CPT_AS: # Context-Preserving Transformation with Adaptive-Scaling def __init__(self, bs, sent_len, n_in, n_out, name): self.bs = bs self.sent_len = sent_len self.n_in = n_in self.n_out = n_out self.name = name self.fc_gate = Linear(n_in=self.n_in, n_out=self.n_out, name="Gate") self.fc_trans = Linear(n_in=2*self.n_in, n_out=self.n_out, name="Trans") # for model with highway transformation self.layers = [self.fc_gate, self.fc_trans] # for model without highway transformation #self.layers = [self.fc_trans] self.params = [] for layer in self.layers: self.params.extend(layer.params) def __str__(self): des_str = 'CPT(%s, %s)' % (self.n_in, self.n_out) for layer in self.layers: des_str += ', %s' % layer return des_str __repr__ = __str__ def __call__(self, x, xt): """ :param x: input sentence, shape: (bs, sent_len, n_in) :param xt: input target, shape: (bs, target_len, n_in) :return: """ trans_gate = T.nnet.hard_sigmoid(self.fc_gate(x, bs=self.bs)) # (max_len, bs, n_in) x_ = x.dimshuffle(1, 0, 2) # (bs, n_in, target_len) xt_ = xt.dimshuffle(0, 2, 1) x_new = [] for i in range(self.sent_len): # (bs, n_in) xi = x_[i] # shape: (bs, sent_len) alphai = T.nnet.softmax(T.batched_dot(xt, xi.dimshuffle(0, 1, 'x')).flatten(2)) ti = T.batched_dot(xt_, alphai.dimshuffle(0, 1, 'x')).flatten(2) xi_new = T.tanh(self.fc_trans(x=T.concatenate([xi, ti], axis=1))) x_new.append(xi_new) x_new = T.stack(x_new, axis=0).dimshuffle(1, 0, 2) return trans_gate * x_new + (1.0 - trans_gate) * x class CPT_LF: # Context-Preserving Transformation with Lossless-Forwarding def __init__(self, bs, sent_len, n_in, n_out, name): self.bs = bs self.sent_len = sent_len self.n_in = n_in self.n_out = n_out self.name = name self.fc_trans = Linear(n_in=2*self.n_in, n_out=self.n_out, name="Trans") self.layers = [self.fc_trans] self.params = [] for layer in self.layers: self.params.extend(layer.params) def __str__(self): des_str = 'CPT(%s, %s)' % (self.n_in, self.n_out) for layer in self.layers: des_str += ', %s' % layer return des_str __repr__ = __str__ def __call__(self, x, xt): """ :param x: input sentence, shape: (bs, sent_len, n_in) :param xt: input target, shape: (bs, target_len, n_in) :return: """ # (max_len, bs, n_in) x_ = x.dimshuffle(1, 0, 2) # (bs, n_in, target_len) xt_ = xt.dimshuffle(0, 2, 1) x_new = [] for i in range(self.sent_len): # (bs, n_in) xi = x_[i] # shape: (bs, sent_len) alphai = T.nnet.softmax(T.batched_dot(xt, xi.dimshuffle(0, 1, 'x')).flatten(2)) ti = T.batched_dot(xt_, alphai.dimshuffle(0, 1, 'x')).flatten(2) xi_new = T.nnet.relu(self.fc_trans(x=T.concatenate([xi, ti], axis=1))) x_new.append(xi_new) x_new = T.stack(x_new, axis=0).dimshuffle(1, 0, 2) return x_new + x class TNet: """ Transformation Networks for Target-Oriented Sentiment Analysis """ def __init__(self, args): self.ds_name = args.ds_name # dataset name self.connection_type = args.connection_type # connection type AS/LF self.dropout_rate = args.dropout_rate # dropout rate 0.3 self.lr = args.lr self.model_name = 'TNet' self.model_dir = './models_no_split_lstm_after_cpt_first_and_last_hidden_reshape_concat_GraphSAGE/'+self.ds_name+'/' self.saved_model_name = self.connection_type+'_'+str(args.n_epoch)+'_'+str(self.lr) if args.ds_name != '14semeval_rest': seed = 14890 else: seed = 11456 print("Use seed %s..." % seed) np.random.seed(seed) self.bs = args.bs self.n_in = args.dim_w self.graphsage_dim = 50 self.n_rnn_out = args.dim_h self.n_rnn_out_after_cpt = 25 self.kernels = args.kernels self.embedding_weights = args.embeddings self.n_filters = args.n_filter self.n_y = args.dim_y self.sent_len = args.sent_len self.target_len = args.target_len #assert len(self.kernels) == 1 # model component for ASTN self.Words = theano.shared(value=np.array(self.embedding_weights, 'float32'), name="embedding") self.Dropout_ctx = Dropout(p=0.3) self.Dropout_tgt = Dropout(p=0.3) self.Dropout = Dropout(p=self.dropout_rate) self.LSTM_ctx = LSTM(bs=self.bs, n_in=self.n_in, n_out=self.n_rnn_out, name="CTX_LSTM") self.LSTM_tgt = LSTM(bs=self.bs, n_in=self.n_in, n_out=self.n_rnn_out, name="TGT_LSTM") self.LSTM_cpt = LSTM(bs=self.bs, n_in=((2*self.n_rnn_out)+self.graphsage_dim), n_out=self.n_rnn_out_after_cpt, name="CPT_LSTM") if self.connection_type == 'AS': self.CPT = CPT_AS(bs=self.bs, sent_len=self.sent_len, n_in=2*self.n_rnn_out, n_out=2*self.n_rnn_out, name="CPT") else: self.CPT = CPT_LF(bs=self.bs, sent_len=self.sent_len, n_in=2 * self.n_rnn_out, n_out=2 * self.n_rnn_out, name="CPT") # convolutional layers; actually, we just use one kernel size in our model self.Conv_layers = [] for i in range(len(self.kernels)): self.Conv_layers.append(CNN(bs=self.bs, n_in=((2*self.n_rnn_out)+self.graphsage_dim), sent_len=self.sent_len, kernel_size=self.kernels[i], n_filters=self.n_filters, name='Conv2D_%s' % i)) self.FC = Linear(n_in=((self.n_filters*len(self.kernels)) + (4*self.n_rnn_out_after_cpt)), n_out=self.n_y, name="LAST_FC") # parameters for full model self.layers = [self.LSTM_ctx, self.LSTM_tgt, self.CPT, self.FC] self.layers.extend(self.Conv_layers) self.params = [] for layer in self.layers: self.params.extend(layer.params) print(self.params) self.build_model() self.make_function() def __str__(self): strs = [] for layer in self.layers: strs.append(str(layer)) return ', '.join(strs) __repr__ = __str__ def build_model(self): """ build the computational graph of ASTN :return: """ self.x = T.imatrix('wids') self.xt = T.imatrix('wids_target') self.y = T.ivector('label') self.pw = T.fmatrix("position_weight") self.graphsage_embedding = T.ftensor3("graphsage_embedding") self.is_train = T.iscalar("is_training") input = self.Words[T.cast(self.x.flatten(), 'int32')].reshape((self.bs, self.sent_len, self.n_in)) input_target = self.Words[T.cast(self.xt.flatten(), 'int32')].reshape((self.bs, self.target_len, self.n_in)) input = T.switch(T.eq(self.is_train, np.int32(1)), self.Dropout_ctx(input), input * (1 - self.dropout_rate)) input_target = T.switch(T.eq(self.is_train, np.int32(1)), self.Dropout_tgt(input_target), input_target * (1 - self.dropout_rate)) # model component for TNet rnn_input = input rnn_input_reverse = reverse_tensor(tensor=rnn_input) rnn_input_target = input_target rnn_input_target_reverse = reverse_tensor(tensor=rnn_input_target) H0_forward = self.LSTM_ctx(x=rnn_input) Ht_forward = self.LSTM_tgt(x=rnn_input_target) H0_backward = reverse_tensor(tensor=self.LSTM_ctx(x=rnn_input_reverse)) Ht_backward = reverse_tensor(tensor=self.LSTM_tgt(x=rnn_input_target_reverse)) H0 = T.concatenate([H0_forward, H0_backward], axis=2) Ht = T.concatenate([Ht_forward, Ht_backward], axis=2) H1 = self.CPT(H0, Ht) if self.pw is not None: H1 = H1 * self.pw.dimshuffle(0, 1, 'x') H2 = self.CPT(H1, Ht) if self.pw is not None: H2 = H2 * self.pw.dimshuffle(0, 1, 'x') """ H3 = self.CPT(H2, Ht) if self.pw is not None: H3 = H3 * self.pw.dimshuffle(0, 1, 'x') H4 = self.CPT(H3, Ht) if self.pw is not None: H4 = H4 * self.pw.dimshuffle(0, 1, 'x') H5 = self.CPT(H4, Ht) if self.pw is not None: H5 = H5 * self.pw.dimshuffle(0, 1, 'x') """ # concat CPT o/p and GraphSAGE target embedding H2_concat = T.concatenate([H2, self.graphsage_embedding], axis = 2) # lstm layer after CPT # batch_size*max_sequence_length*2*hidden_size_after_cpt H2_after_lstm_forward = self.LSTM_cpt(x=H2_concat) H2_after_lstm_backward = reverse_tensor(tensor=self.LSTM_cpt(x=reverse_tensor(tensor=H2_concat))) H2_after_lstm = T.concatenate([H2_after_lstm_forward, H2_after_lstm_backward], axis=2) #concat first bi-lstm hidden and last bi-lstm hidden H2_after_lstm_shape = T.shape(H2_after_lstm) H2_after_lstm_first_hidden = H2_after_lstm[:, 0:1, :] H2_after_lstm_first_hidden_reshape = T.reshape(H2_after_lstm_first_hidden, [T.shape(H2_after_lstm_first_hidden)[0], T.shape(H2_after_lstm_first_hidden)[1]*T.shape(H2_after_lstm_first_hidden)[2]]) H2_after_lstm_last_hidden = H2_after_lstm[:, H2_after_lstm_shape[1]-1:H2_after_lstm_shape[1], :] H2_after_lstm_last_hidden_reshape = T.reshape(H2_after_lstm_last_hidden, [T.shape(H2_after_lstm_last_hidden)[0], T.shape(H2_after_lstm_last_hidden)[1]*T.shape(H2_after_lstm_last_hidden)[2]]) H2_after_lstm_concat = T.concatenate([H2_after_lstm_first_hidden_reshape, H2_after_lstm_last_hidden_reshape], axis = -1) feat_and_feat_maps = [conv(H2_concat) for conv in self.Conv_layers] feat = [ele[0] for ele in feat_and_feat_maps] self.feature_maps = T.concatenate([ele[1] for ele in feat_and_feat_maps], axis=2) self.feature_maps_argmax = T.squeeze(T.argmax(self.feature_maps.dimshuffle(0, 2, 1), axis = 1)) feat = T.concatenate(feat, axis=1) # concat cnn o/p and lstm after cpt o/p concat_hidden = T.concatenate([H2_after_lstm_concat, feat], axis = 1) # we do not use the self-implemented Dropout class feat_dropout = T.switch(T.eq(self.is_train, np.int32(1)), self.Dropout(concat_hidden), concat_hidden * (1 - self.dropout_rate)) # shape: (bs, n_y) self.p_y_x = T.nnet.softmax(self.FC(feat_dropout)) # self.p_y_x = self.FC(feat_dropout) self.loss = T.nnet.categorical_crossentropy(coding_dist=self.p_y_x, true_dist=self.y).mean() self.pred_y = T.argmax(self.p_y_x, axis=1) def save_model(self): if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) params_list = [self.Words.get_value()] for param in self.params: params_list.append(param.get_value()) model_file = self.model_dir+self.model_name+'_'+self.saved_model_name f = open(model_file, 'wb') pickle.dump(params_list, f, protocol=pickle.HIGHEST_PROTOCOL) return model_file def load_model(self, model_file): params_list = pickle.load(model_file) self.Words.set_value(params_list[0]) for param, param_value in zip(self.params, params_list[1:]): param.set_value(param_value) def make_function(self): """ compile theano function :return: """ print("Use adam...") self.updates = adam(cost=self.loss, params=self.params, lr=self.lr) model_inputs = [self.x, self.xt, self.y, self.pw, self.graphsage_embedding, self.is_train] model_outputs = [self.pred_y, self.y, self.loss, self.feature_maps_argmax] self.train = theano.function( inputs=model_inputs, outputs=model_outputs, updates=self.updates, #mode='DebugMode' ) self.test = theano.function( inputs=model_inputs, outputs=model_outputs )
38.644211
203
0.603563
39565d0a96f1c69760860e88f46e2883c3b20a9e
143
py
Python
platform_control/platforms/apps.py
dmontoya1/platform_control
4be797674dd14dc5fe0a7e8ab9e0ab1ce5c139e2
[ "MIT" ]
null
null
null
platform_control/platforms/apps.py
dmontoya1/platform_control
4be797674dd14dc5fe0a7e8ab9e0ab1ce5c139e2
[ "MIT" ]
2
2022-03-01T03:13:40.000Z
2022-03-02T03:09:57.000Z
platform_control/platforms/apps.py
dmontoya1/platform_control
4be797674dd14dc5fe0a7e8ab9e0ab1ce5c139e2
[ "MIT" ]
null
null
null
from django.apps import AppConfig class PlatformsConfig(AppConfig): name = 'platform_control.platforms' verbose_name = 'Plataformas'
20.428571
39
0.769231
6b8c3dd8e7e725e1082fcb46658641b64e308468
546
py
Python
final_project/main/decorators.py
W7SP/project_defense
550152bd82998333444ace099c47feffffb6c3ab
[ "MIT" ]
null
null
null
final_project/main/decorators.py
W7SP/project_defense
550152bd82998333444ace099c47feffffb6c3ab
[ "MIT" ]
null
null
null
final_project/main/decorators.py
W7SP/project_defense
550152bd82998333444ace099c47feffffb6c3ab
[ "MIT" ]
null
null
null
from django.http import HttpResponse # def allowed_groups(allowed_roles): # def decorator(view_func): # def wrapper(request, *args, **kwargs): # group = None # if request.groups.user.exists(): # group = request.user.groups.all()[0].name # if group in allowed_roles: # return view_func(request, *args, **kwargs) # else: # return HttpResponse('You have to be a Trainer to enter this page') # return wrapper # return decorator
34.125
84
0.571429
8dec106f9d0da892472157dfdb2230138a52dbd5
723
py
Python
tests/snmp/conftest.py
slutati1536/sonic-mgmt
741c735b8bf2385e389b252a9c7a0816641cdf90
[ "Apache-2.0" ]
null
null
null
tests/snmp/conftest.py
slutati1536/sonic-mgmt
741c735b8bf2385e389b252a9c7a0816641cdf90
[ "Apache-2.0" ]
null
null
null
tests/snmp/conftest.py
slutati1536/sonic-mgmt
741c735b8bf2385e389b252a9c7a0816641cdf90
[ "Apache-2.0" ]
1
2021-06-13T07:38:59.000Z
2021-06-13T07:38:59.000Z
import pytest from tests.common.utilities import wait_until @pytest.fixture(scope="module", autouse=True) def setup_check_snmp_ready(duthosts): for duthost in duthosts: assert wait_until(300, 20, duthost.is_service_fully_started, "snmp"), "SNMP service is not running" @pytest.fixture(scope="function", autouse=True) def snmp_wait_for_counters(wait_for_counters): return def pytest_addoption(parser): """ Adds options to pytest that are used by the snmp tests. """ parser.addoption( "--percentage", action="store", default=False, help="Set percentage difference for snmp test", type=int)
31.434783
107
0.644537
1494dc3c21d9e489b9c19148e263039d5435041a
116
py
Python
PythonBlog/configs/constant/userConst.py
Nohysiwe/FastAPIBlogBackend
2052c630a1a6e9bb9e6555f734c60020b107afc8
[ "MIT" ]
1
2022-02-09T06:58:44.000Z
2022-02-09T06:58:44.000Z
PythonBlog/configs/constant/userConst.py
Nohysiwe/FastAPIBlogBackend
2052c630a1a6e9bb9e6555f734c60020b107afc8
[ "MIT" ]
null
null
null
PythonBlog/configs/constant/userConst.py
Nohysiwe/FastAPIBlogBackend
2052c630a1a6e9bb9e6555f734c60020b107afc8
[ "MIT" ]
null
null
null
""" 用户常量 """ class UserConst: BLOGGER_ID: int = 1 # 博主id SILENCE: int = 1 # 禁言状态
7.733333
34
0.439655
0541c92f1a1bfff5f2948431b3a7e55cb90861de
12,049
py
Python
ckan/tests/logic/auth/test_create.py
ziveo/ckan
f4cfe5e28789df58b2bf7e73e5989ffda00e5c5c
[ "Apache-2.0" ]
1
2020-01-16T10:46:18.000Z
2020-01-16T10:46:18.000Z
ckan/tests/logic/auth/test_create.py
ziveo/ckan
f4cfe5e28789df58b2bf7e73e5989ffda00e5c5c
[ "Apache-2.0" ]
null
null
null
ckan/tests/logic/auth/test_create.py
ziveo/ckan
f4cfe5e28789df58b2bf7e73e5989ffda00e5c5c
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 """Unit tests for ckan/logic/auth/create.py. """ import mock import pytest import ckan.logic.auth.create as auth_create import ckan.model as core_model import ckan.tests.factories as factories import ckan.tests.helpers as helpers logic = helpers.logic def test_anon_cant_create(): response = auth_create.package_create({"user": None}, None) assert not response["success"] @pytest.mark.ckan_config("ckan.auth.anon_create_dataset", True) def test_anon_can_create(): response = auth_create.package_create({"user": None}, None) assert response["success"] @pytest.mark.ckan_config("ckan.auth.anon_create_dataset", True) @pytest.mark.ckan_config( "ckan.auth.create_dataset_if_not_in_organization", False ) def test_cdnio_overrides_acd(): response = auth_create.package_create({"user": None}, None) assert not response["success"] @pytest.mark.ckan_config("ckan.auth.anon_create_dataset", True) @pytest.mark.ckan_config("ckan.auth.create_unowned_dataset", False) def test_cud_overrides_acd(): response = auth_create.package_create({"user": None}, None) assert not response["success"] @pytest.mark.usefixtures("clean_db") class TestRealUsersAuth(object): def test_no_org_user_can_create(self): user = factories.User() response = auth_create.package_create({"user": user["name"]}, None) assert response["success"] @pytest.mark.ckan_config("ckan.auth.anon_create_dataset", True) @pytest.mark.ckan_config( "ckan.auth.create_dataset_if_not_in_organization", False ) def test_no_org_user_cant_create_if_cdnio_false(self): user = factories.User() response = auth_create.package_create({"user": user["name"]}, None) assert not response["success"] @pytest.mark.ckan_config("ckan.auth.anon_create_dataset", True) @pytest.mark.ckan_config("ckan.auth.create_unowned_dataset", False) def test_no_org_user_cant_create_if_cud_false(self): user = factories.User() response = auth_create.package_create({"user": user["name"]}, None) assert not response["success"] def test_same_org_user_can_create(self): user = factories.User() org_users = [{"name": user["name"], "capacity": "editor"}] org = factories.Organization(users=org_users) dataset = {"name": "same-org-user-can-create", "owner_org": org["id"]} context = {"user": user["name"], "model": core_model} response = auth_create.package_create(context, dataset) assert response["success"] def test_different_org_user_cant_create(s): user = factories.User() org_users = [{"name": user["name"], "capacity": "editor"}] org1 = factories.Organization(users=org_users) org2 = factories.Organization() dataset = { "name": "different-org-user-cant-create", "owner_org": org2["id"], } context = {"user": user["name"], "model": core_model} response = auth_create.package_create(context, dataset) assert not response["success"] @mock.patch("ckan.logic.auth.create.group_member_create") def test_user_invite_delegates_correctly_to_group_member_create(self, gmc): user = factories.User() context = {"user": user["name"], "model": None, "auth_user_obj": user} data_dict = {"group_id": 42} gmc.return_value = {"success": False} with pytest.raises(logic.NotAuthorized): helpers.call_auth("user_invite", context=context, **data_dict) gmc.return_value = {"success": True} result = helpers.call_auth("user_invite", context=context, **data_dict) assert result @pytest.mark.ckan_config("ckan.plugins", "image_view") @pytest.mark.usefixtures("with_plugins") def test_authorized_if_user_has_permissions_on_dataset(self): user = factories.User() dataset = factories.Dataset(user=user) resource = factories.Resource(user=user, package_id=dataset["id"]) resource_view = { "resource_id": resource["id"], "title": u"Resource View", "view_type": u"image_view", "image_url": "url", } context = {"user": user["name"], "model": core_model} response = helpers.call_auth( "resource_view_create", context=context, **resource_view ) assert response @pytest.mark.ckan_config("ckan.plugins", "image_view") @pytest.mark.usefixtures("with_plugins") def test_not_authorized_if_user_has_no_permissions_on_dataset(self): org = factories.Organization() user = factories.User() member = {"username": user["name"], "role": "admin", "id": org["id"]} helpers.call_action("organization_member_create", **member) user_2 = factories.User() dataset = factories.Dataset(owner_org=org["id"]) resource = factories.Resource(package_id=dataset["id"]) resource_view = { "resource_id": resource["id"], "title": u"Resource View", "view_type": u"image_view", "image_url": "url", } context = {"user": user_2["name"], "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth( "resource_view_create", context=context, **resource_view ) @pytest.mark.ckan_config("ckan.plugins", "image_view") @pytest.mark.usefixtures("with_plugins") def test_not_authorized_if_not_logged_in_3(self): resource_view = { "title": u"Resource View", "view_type": u"image_view", "image_url": "url", } context = {"user": None, "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth( "resource_view_create", context=context, **resource_view ) def test_authorized_if_user_has_permissions_on_dataset_3(self): user = factories.User() dataset = factories.Dataset(user=user) resource = factories.Resource(user=user, package_id=dataset["id"]) context = {"user": user["name"], "model": core_model} response = helpers.call_auth( "resource_create_default_resource_views", context=context, resource=resource, ) assert response def test_not_authorized_if_user_has_no_permissions_on_dataset_2(self): org = factories.Organization() user = factories.User() member = {"username": user["name"], "role": "admin", "id": org["id"]} helpers.call_action("organization_member_create", **member) user_2 = factories.User() dataset = factories.Dataset(owner_org=org["id"]) resource = factories.Resource(package_id=dataset["id"]) context = {"user": user_2["name"], "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth( "resource_create_default_resource_views", context=context, resource=resource, ) def test_not_authorized_if_not_logged_in_2(self): dataset = factories.Dataset() resource = factories.Resource(package_id=dataset["id"]) context = {"user": None, "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth( "resource_create_default_resource_views", context=context, resource=resource, ) def test_authorized_if_user_has_permissions_on_dataset_2(self): user = factories.User() dataset = factories.Dataset(user=user) context = {"user": user["name"], "model": core_model} response = helpers.call_auth( "package_create_default_resource_views", context=context, package=dataset, ) assert response def test_not_authorized_if_user_has_no_permissions_on_dataset_3(self): org = factories.Organization() user = factories.User() member = {"username": user["name"], "role": "admin", "id": org["id"]} helpers.call_action("organization_member_create", **member) user_2 = factories.User() dataset = factories.Dataset(owner_org=org["id"]) context = {"user": user_2["name"], "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth( "package_create_default_resource_views", context=context, package=dataset, ) def test_not_authorized_if_not_logged_in(self): dataset = factories.Dataset() context = {"user": None, "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth( "package_create_default_resource_views", context=context, package=dataset, ) def test_authorized_if_user_has_permissions_on_dataset_4(self): user = factories.User() dataset = factories.Dataset(user=user) resource = { "package_id": dataset["id"], "title": "Resource", "url": "http://test", "format": "csv", } context = {"user": user["name"], "model": core_model} response = helpers.call_auth( "resource_create", context=context, **resource ) assert response def test_not_authorized_if_user_has_no_permissions_on_dataset_4(self): org = factories.Organization() user = factories.User() member = {"username": user["name"], "role": "admin", "id": org["id"]} helpers.call_action("organization_member_create", **member) user_2 = factories.User() dataset = factories.Dataset(user=user, owner_org=org["id"]) resource = { "package_id": dataset["id"], "title": "Resource", "url": "http://test", "format": "csv", } context = {"user": user_2["name"], "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth("resource_create", context=context, **resource) def test_not_authorized_if_not_logged_in_4(self): resource = {"title": "Resource", "url": "http://test", "format": "csv"} context = {"user": None, "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth("resource_create", context=context, **resource) def test_sysadmin_is_authorized(self): sysadmin = factories.Sysadmin() resource = {"title": "Resource", "url": "http://test", "format": "csv"} context = {"user": sysadmin["name"], "model": core_model} response = helpers.call_auth( "resource_create", context=context, **resource ) assert response def test_raises_not_found_if_no_package_id_provided(self): user = factories.User() resource = {"title": "Resource", "url": "http://test", "format": "csv"} context = {"user": user["name"], "model": core_model} with pytest.raises(logic.NotFound): helpers.call_auth("resource_create", context=context, **resource) def test_raises_not_found_if_dataset_was_not_found(self): user = factories.User() resource = { "package_id": "does_not_exist", "title": "Resource", "url": "http://test", "format": "csv", } context = {"user": user["name"], "model": core_model} with pytest.raises(logic.NotFound): helpers.call_auth("resource_create", context=context, **resource) def test_normal_user_cant_use_it(self): normal_user = factories.User() context = {"user": normal_user["name"], "model": core_model} with pytest.raises(logic.NotAuthorized): helpers.call_auth("activity_create", context=context)
33.010959
79
0.625031
edf9325ac1dfa8bfde3dcf2b2c48e46d7e7efedc
26,863
py
Python
nipyapi/registry/apis/buckets_api.py
esecules/nipyapi
e8a53b79a5e1a6b29446f43d2b23b6a3e60873f1
[ "Apache-2.0" ]
null
null
null
nipyapi/registry/apis/buckets_api.py
esecules/nipyapi
e8a53b79a5e1a6b29446f43d2b23b6a3e60873f1
[ "Apache-2.0" ]
null
null
null
nipyapi/registry/apis/buckets_api.py
esecules/nipyapi
e8a53b79a5e1a6b29446f43d2b23b6a3e60873f1
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Apache NiFi Registry REST API The REST API provides an interface to a registry with operations for saving, versioning, reading NiFi flows and components. OpenAPI spec version: 0.5.0 Contact: dev@nifi.apache.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class BucketsApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def create_bucket(self, body, **kwargs): """ Create bucket This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.create_bucket(body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param Bucket body: The bucket to create (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.create_bucket_with_http_info(body, **kwargs) else: (data) = self.create_bucket_with_http_info(body, **kwargs) return data def create_bucket_with_http_info(self, body, **kwargs): """ Create bucket This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.create_bucket_with_http_info(body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param Bucket body: The bucket to create (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ all_params = ['body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_bucket" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `create_bucket`") collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['tokenAuth', 'Authorization'] return self.api_client.call_api('/buckets', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Bucket', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_bucket(self, bucket_id, **kwargs): """ Delete bucket Deletes the bucket with the given id, along with all objects stored in the bucket This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_bucket(bucket_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str bucket_id: The bucket identifier (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.delete_bucket_with_http_info(bucket_id, **kwargs) else: (data) = self.delete_bucket_with_http_info(bucket_id, **kwargs) return data def delete_bucket_with_http_info(self, bucket_id, **kwargs): """ Delete bucket Deletes the bucket with the given id, along with all objects stored in the bucket This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.delete_bucket_with_http_info(bucket_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str bucket_id: The bucket identifier (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ all_params = ['bucket_id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_bucket" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'bucket_id' is set if ('bucket_id' not in params) or (params['bucket_id'] is None): raise ValueError("Missing the required parameter `bucket_id` when calling `delete_bucket`") collection_formats = {} path_params = {} if 'bucket_id' in params: path_params['bucketId'] = params['bucket_id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'Authorization'] return self.api_client.call_api('/buckets/{bucketId}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Bucket', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_available_bucket_fields(self, **kwargs): """ Get bucket fields Retrieves bucket field names for searching or sorting on buckets. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_available_bucket_fields(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: Fields If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_available_bucket_fields_with_http_info(**kwargs) else: (data) = self.get_available_bucket_fields_with_http_info(**kwargs) return data def get_available_bucket_fields_with_http_info(self, **kwargs): """ Get bucket fields Retrieves bucket field names for searching or sorting on buckets. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_available_bucket_fields_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: Fields If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_available_bucket_fields" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'Authorization'] return self.api_client.call_api('/buckets/fields', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Fields', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_bucket(self, bucket_id, **kwargs): """ Get bucket Gets the bucket with the given id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_bucket(bucket_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str bucket_id: The bucket identifier (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_bucket_with_http_info(bucket_id, **kwargs) else: (data) = self.get_bucket_with_http_info(bucket_id, **kwargs) return data def get_bucket_with_http_info(self, bucket_id, **kwargs): """ Get bucket Gets the bucket with the given id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_bucket_with_http_info(bucket_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str bucket_id: The bucket identifier (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ all_params = ['bucket_id'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_bucket" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'bucket_id' is set if ('bucket_id' not in params) or (params['bucket_id'] is None): raise ValueError("Missing the required parameter `bucket_id` when calling `get_bucket`") collection_formats = {} path_params = {} if 'bucket_id' in params: path_params['bucketId'] = params['bucket_id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'Authorization'] return self.api_client.call_api('/buckets/{bucketId}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Bucket', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_buckets(self, **kwargs): """ Get all buckets The returned list will include only buckets for which the user is authorized.If the user is not authorized for any buckets, this returns an empty list. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_buckets(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: list[Bucket] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_buckets_with_http_info(**kwargs) else: (data) = self.get_buckets_with_http_info(**kwargs) return data def get_buckets_with_http_info(self, **kwargs): """ Get all buckets The returned list will include only buckets for which the user is authorized.If the user is not authorized for any buckets, this returns an empty list. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_buckets_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: list[Bucket] If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_buckets" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'Authorization'] return self.api_client.call_api('/buckets', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[Bucket]', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_bucket(self, bucket_id, body, **kwargs): """ Update bucket Updates the bucket with the given id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_bucket(bucket_id, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str bucket_id: The bucket identifier (required) :param Bucket body: The updated bucket (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_bucket_with_http_info(bucket_id, body, **kwargs) else: (data) = self.update_bucket_with_http_info(bucket_id, body, **kwargs) return data def update_bucket_with_http_info(self, bucket_id, body, **kwargs): """ Update bucket Updates the bucket with the given id. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_bucket_with_http_info(bucket_id, body, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str bucket_id: The bucket identifier (required) :param Bucket body: The updated bucket (required) :return: Bucket If the method is called asynchronously, returns the request thread. """ all_params = ['bucket_id', 'body'] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_bucket" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'bucket_id' is set if ('bucket_id' not in params) or (params['bucket_id'] is None): raise ValueError("Missing the required parameter `bucket_id` when calling `update_bucket`") # verify the required parameter 'body' is set if ('body' not in params) or (params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `update_bucket`") collection_formats = {} path_params = {} if 'bucket_id' in params: path_params['bucketId'] = params['bucket_id'] query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = ['tokenAuth', 'Authorization'] return self.api_client.call_api('/buckets/{bucketId}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Bucket', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
40.153961
159
0.560101
1a626b1d80a6b8ac2b8cf5cb607b7740c35e1b27
395
py
Python
yossarian/wsgi.py
avinassh/yossarian
b485da0669d87ad29f57ba2a4a446131aaf820a6
[ "MIT" ]
null
null
null
yossarian/wsgi.py
avinassh/yossarian
b485da0669d87ad29f57ba2a4a446131aaf820a6
[ "MIT" ]
null
null
null
yossarian/wsgi.py
avinassh/yossarian
b485da0669d87ad29f57ba2a4a446131aaf820a6
[ "MIT" ]
null
null
null
""" WSGI config for yossarian project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "yossarian.settings") application = get_wsgi_application()
23.235294
78
0.787342
3e94d55aea2cad48dcf85e0a037a5db51e09e88a
30
py
Python
pcdet/version.py
Number1JT/PVRCNN-Waymo
60faa8ff6fe4532845719c144f0f9a252e85ddd2
[ "Apache-2.0" ]
null
null
null
pcdet/version.py
Number1JT/PVRCNN-Waymo
60faa8ff6fe4532845719c144f0f9a252e85ddd2
[ "Apache-2.0" ]
null
null
null
pcdet/version.py
Number1JT/PVRCNN-Waymo
60faa8ff6fe4532845719c144f0f9a252e85ddd2
[ "Apache-2.0" ]
null
null
null
__version__ = "0.2.0+fec61a4"
15
29
0.7
c286721a4d4fa0e489a7b57b8d834973606d72f7
765
py
Python
cms/migrations/0002_templateactivity.py
siruku6/life_recorder
1cda45144a2cef832e8b1ffb44894810cc096164
[ "MIT" ]
1
2021-05-08T10:04:20.000Z
2021-05-08T10:04:20.000Z
cms/migrations/0002_templateactivity.py
siruku6/life_recorder
1cda45144a2cef832e8b1ffb44894810cc096164
[ "MIT" ]
34
2021-02-23T09:00:24.000Z
2021-11-28T02:02:15.000Z
cms/migrations/0002_templateactivity.py
siruku6/life_recorder
1cda45144a2cef832e8b1ffb44894810cc096164
[ "MIT" ]
2
2021-05-03T10:16:48.000Z
2021-05-08T10:04:23.000Z
# Generated by Django 3.2.2 on 2021-05-09 06:27 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cms', '0001_initial'), ] operations = [ migrations.CreateModel( name='TemplateActivity', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True, verbose_name='内容')), ('activity_type', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='template_activities', to='cms.activitytype', verbose_name='種別')), ], ), ]
33.26087
187
0.633987
9998ddd9d03f7458e2af8c8e35093c180f1d24ee
268
py
Python
app/models/User.py
thekiharani/FlaskPlayground
9287431f431cc00a150b0759448b9e4ad64ad139
[ "MIT" ]
null
null
null
app/models/User.py
thekiharani/FlaskPlayground
9287431f431cc00a150b0759448b9e4ad64ad139
[ "MIT" ]
null
null
null
app/models/User.py
thekiharani/FlaskPlayground
9287431f431cc00a150b0759448b9e4ad64ad139
[ "MIT" ]
null
null
null
from datetime import datetime from app.app import db class User(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(255)) location = db.Column(db.String(255)) date_created = db.Column(db.DateTime, default=datetime.now)
26.8
63
0.716418
1a6dea0381ab8d43d2fdfaf641afbf77a20da64c
3,067
py
Python
byceps/blueprints/site/user/avatar/views.py
homeworkprod/byceps
cd0f9f37f7b5eb517106ec761acc7e0bdf75e22e
[ "BSD-3-Clause" ]
23
2015-08-03T23:28:54.000Z
2018-12-12T20:11:45.000Z
byceps/blueprints/site/user/avatar/views.py
homeworkprod/byceps
cd0f9f37f7b5eb517106ec761acc7e0bdf75e22e
[ "BSD-3-Clause" ]
1
2018-09-30T18:18:24.000Z
2018-09-30T18:18:24.000Z
byceps/blueprints/site/user/avatar/views.py
homeworkprod/byceps
cd0f9f37f7b5eb517106ec761acc7e0bdf75e22e
[ "BSD-3-Clause" ]
9
2015-08-06T16:41:36.000Z
2018-09-25T11:17:31.000Z
""" byceps.blueprints.site.user.avatar.views ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :Copyright: 2014-2022 Jochen Kupperschmidt :License: Revised BSD (see `LICENSE` file for details) """ from flask import abort, g, request from flask_babel import gettext from .....services.image import service as image_service from .....services.user_avatar import service as avatar_service from .....signals import user_avatar as user_avatar_signals from .....util.framework.blueprint import create_blueprint from .....util.framework.flash import flash_notice, flash_success from .....util.image.models import ImageType from .....util.framework.templating import templated from .....util.views import redirect_to, respond_no_content from .forms import UpdateForm blueprint = create_blueprint('user_avatar', __name__) ALLOWED_IMAGE_TYPES = frozenset( [ ImageType.jpeg, ImageType.png, ImageType.webp, ] ) @blueprint.get('/me/avatar/update') @templated def update_form(erroneous_form=None): """Show a form to update the current user's avatar image.""" _get_current_user_or_404() form = erroneous_form if erroneous_form else UpdateForm() image_type_names = image_service.get_image_type_names(ALLOWED_IMAGE_TYPES) return { 'form': form, 'allowed_types': image_type_names, 'maximum_dimensions': avatar_service.MAXIMUM_DIMENSIONS, } @blueprint.post('/me/avatar') def update(): """Update the current user's avatar image.""" user = _get_current_user_or_404() # Make `InputRequired` work on `FileField`. form_fields = request.form.copy() if request.files: form_fields.update(request.files) form = UpdateForm(form_fields) if not form.validate(): return update_form(form) image = request.files.get('image') _update(user.id, image) flash_success(gettext('Avatar image has been updated.'), icon='upload') user_avatar_signals.avatar_updated.send(None, user_id=user.id) return redirect_to('user_settings.view') def _update(user_id, image): if not image or not image.filename: abort(400, 'No file to upload has been specified.') try: avatar_service.update_avatar_image( user_id, image.stream, ALLOWED_IMAGE_TYPES ) except avatar_service.ImageTypeProhibited as e: abort(400, str(e)) except FileExistsError: abort(409, 'File already exists, not overwriting.') @blueprint.delete('/me/avatar') @respond_no_content def delete(): """Remove the current user's avatar image.""" user = _get_current_user_or_404() try: avatar_service.remove_avatar_image(user.id) except ValueError: # No avatar selected. # But that's ok, deletions should be idempotent. flash_notice(gettext('No avatar image is set that could be removed.')) else: flash_success(gettext('Avatar image has been removed.')) def _get_current_user_or_404(): user = g.user if not user.authenticated: abort(404) return user
26.669565
78
0.695468
2d00f4ac5da22f8c6bb46f76e5e845de9da3e5d0
29
py
Python
6-del.py
YpchenLove/py-example
88bef3ebe3e4045b09c9d2efcd6164c9cfb4c87f
[ "MIT" ]
null
null
null
6-del.py
YpchenLove/py-example
88bef3ebe3e4045b09c9d2efcd6164c9cfb4c87f
[ "MIT" ]
null
null
null
6-del.py
YpchenLove/py-example
88bef3ebe3e4045b09c9d2efcd6164c9cfb4c87f
[ "MIT" ]
null
null
null
obj = 5 print(obj) del obj
4.833333
10
0.62069
56ae84b9a24134a4d8397330f173a384b63e0802
3,180
py
Python
qa/rpc-tests/invalidateblock.py
L00119483/TechSquad.io
3ebafca95c5b125f3dbe52d9d4cde29c61a48975
[ "MIT" ]
4
2018-06-16T20:08:19.000Z
2018-08-22T15:44:58.000Z
qa/rpc-tests/invalidateblock.py
L00119483/TechSquad.io
3ebafca95c5b125f3dbe52d9d4cde29c61a48975
[ "MIT" ]
null
null
null
qa/rpc-tests/invalidateblock.py
L00119483/TechSquad.io
3ebafca95c5b125f3dbe52d9d4cde29c61a48975
[ "MIT" ]
7
2018-06-06T18:51:07.000Z
2018-09-08T15:17:04.000Z
#!/usr/bin/env python2 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test InvalidateBlock code # from test_framework import BitcoinTestFramework from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * class InvalidateTest(BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 3) def setup_network(self): self.nodes = [] self.is_network_split = False self.nodes.append(start_node(0, self.options.tmpdir, ["-debug"])) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug"])) self.nodes.append(start_node(2, self.options.tmpdir, ["-debug"])) def run_test(self): print "Make sure we repopulate setBlockIndexCandidates after InvalidateBlock:" print "Mine 4 blocks on Node 0" self.nodes[0].setgenerate(True, 4) assert(self.nodes[0].getblockcount() == 4) besthash = self.nodes[0].getbestblockhash() print "Mine competing 6 blocks on Node 1" self.nodes[1].setgenerate(True, 6) assert(self.nodes[1].getblockcount() == 6) print "Connect nodes to force a reorg" connect_nodes_bi(self.nodes,0,1) sync_blocks(self.nodes[0:2]) assert(self.nodes[0].getblockcount() == 6) badhash = self.nodes[1].getblockhash(2) print "Invalidate block 2 on node 0 and verify we reorg to node 0's original chain" self.nodes[0].invalidateblock(badhash) newheight = self.nodes[0].getblockcount() newhash = self.nodes[0].getbestblockhash() if (newheight != 4 or newhash != besthash): raise AssertionError("Wrong tip for node0, hash %s, height %d"%(newhash,newheight)) print "\nMake sure we won't reorg to a lower work chain:" connect_nodes_bi(self.nodes,1,2) print "Sync node 2 to node 1 so both have 6 blocks" sync_blocks(self.nodes[1:3]) assert(self.nodes[2].getblockcount() == 6) print "Invalidate block 5 on node 1 so its tip is now at 4" self.nodes[1].invalidateblock(self.nodes[1].getblockhash(5)) assert(self.nodes[1].getblockcount() == 4) print "Invalidate block 3 on node 2, so its tip is now 2" self.nodes[2].invalidateblock(self.nodes[2].getblockhash(3)) assert(self.nodes[2].getblockcount() == 2) print "..and then mine a block" self.nodes[2].setgenerate(True, 1) print "Verify all nodes are at the right height" time.sleep(5) for i in xrange(3): print i,self.nodes[i].getblockcount() assert(self.nodes[2].getblockcount() == 3) assert(self.nodes[0].getblockcount() == 4) node1height = self.nodes[1].getblockcount() if node1height < 4: raise AssertionError("Node 1 reorged to a lower height: %d"%node1height) if __name__ == '__main__': InvalidateTest().main()
41.298701
95
0.650314
b1b38a000e56a0d7333742ec7d111f17b908efe9
2,482
py
Python
kerlas/brain.py
imandr/KeRLas
8c347cbfea982f470372fb7cf8943f4d6bda8a8a
[ "BSD-3-Clause" ]
null
null
null
kerlas/brain.py
imandr/KeRLas
8c347cbfea982f470372fb7cf8943f4d6bda8a8a
[ "BSD-3-Clause" ]
null
null
null
kerlas/brain.py
imandr/KeRLas
8c347cbfea982f470372fb7cf8943f4d6bda8a8a
[ "BSD-3-Clause" ]
null
null
null
import numpy as np np.set_printoptions(precision=4, suppress=True) from keras.models import Model from keras.layers import Dense, Activation, Flatten, Input, Lambda from keras.optimizers import Adam class TrainingContext(object): def __init__(self, brain, in_traning): self.Brain = brain self.Flag = in_traning self.SavedTraining = None def __enter__(self): self.SavedTraining = self.Brain.Training self.Brain.setTraining(self.Flag) def __exit__(self, *params): self.Brain.setTraining(self.SavedTraining) class Brain(object): def __init__(self, rlmodel, run_policy, training_policies = None): self.RLModel = rlmodel self.RunPolicy = run_policy self.Training = False self.TrainingPolicies = training_policies or [run_policy] self.TrainingPolicyIndex = 0 self.Policy = self.RunPolicy def training(self, in_traning): return TrainingContext(self, in_traning) def setTraining(self, training): self.Training = training def episodeBegin(self): if self.Training: self.Policy = self.TrainingPolicies[self.TrainingPolicyIndex] #print "Brain.episodeBegin: index, tau=", self.TrainingPolicyIndex, self.Policy.tau else: self.Policy = self.RunPolicy def episodeEnd(self): pass def nextTrainingPolicy(self): self.TrainingPolicyIndex = (self.TrainingPolicyIndex + 1) % len(self.TrainingPolicies) #print "Brain.nextTrainingPolicy:", self.TrainingPolicyIndex def q(self, observation): return self.RLModel.predict_on_batch([np.array([observation])])[0] def action(self, observation): q = self.q(observation) #print "Brain: q=", q a = self.Policy(q) return a, q def training_model(self): return self.RLModel.training_model() def train_on_sample(self, sample): return self.RLModel.train_on_sample(sample) def training_data(self, sample): return self.RLModel.training_data(sample) def formatTrajectory(self, trajectory): """ Format trajectory into a list of tuples before they are stored in memory. Trajectory is list of (s,a,r,s,d) tuples """ return self.RLModel.formatTrajectory(trajectory)
31.417722
95
0.633763
d99483f759b8272439d79d0fe8391f44024ba461
27,361
py
Python
insights/parsers/lvm.py
akshay196/insights-core
598865e6563119089c77152599300de38a77c72c
[ "Apache-2.0" ]
null
null
null
insights/parsers/lvm.py
akshay196/insights-core
598865e6563119089c77152599300de38a77c72c
[ "Apache-2.0" ]
10
2018-04-16T15:38:04.000Z
2018-05-15T18:43:02.000Z
insights/parsers/lvm.py
akshay196/insights-core
598865e6563119089c77152599300de38a77c72c
[ "Apache-2.0" ]
null
null
null
""" Logical Volume Management configuration and status ================================================== Parsers for lvm data based on output of various commands and file contents. This module contains the classes that parse the output of the commands `lvs`, `pvs`, and `vgs`, and the contents of the file `/etc/lvm/lvm.conf`. Pvs - command ``/sbin/pvs --nameprefixes --noheadings --separator='|' -a -o pv_all`` ------------------------------------------------------------------------------------ PvsHeadings - command ``pvs -a -v -o +pv_mda_free,pv_mda_size,pv_mda_count,pv_mda_used_count,pe_count --config="global{locking_type=0}"`` ----------------------------------------------------------------------------------------------------------------------------------------- Vgs - command ``/sbin/vgs --nameprefixes --noheadings --separator='|' -a -o vg_all`` ------------------------------------------------------------------------------------ VgsHeadings - command ``vgs -v -o +vg_mda_count,vg_mda_free,vg_mda_size,vg_mda_used_count,vg_tags --config="global{locking_type=0}"`` ------------------------------------------------------------------------------------------------------------------------------------- Lvs - command ``/sbin/lvs --nameprefixes --noheadings --separator='|' -a -o lv_all`` ------------------------------------------------------------------------------------ LvsHeadings - command ``/sbin/lvs -a -o +lv_tags,devices --config="global{locking_type=0}"`` -------------------------------------------------------------------------------------------- LvmConf - file ``/etc/lvm/lvm.conf`` ------------------------------------ """ from __future__ import print_function import json from ..util import parse_keypair_lines from .. import add_filter from .. import Parser, parser, get_active_lines, LegacyItemAccess, CommandParser from . import parse_fixed_table from insights.parsers import ParseException from insights.specs import Specs def map_keys(pvs, keys): """ Add human readable key names to dictionary while leaving any existing key names. """ rs = [] for pv in pvs: r = dict((v, None) for k, v in keys.items()) for k, v in pv.items(): if k in keys: r[keys[k]] = v r[k] = v rs.append(r) return rs def find_warnings(content): """Look for lines containing warning/error/info strings instead of data.""" keywords = [k.lower() for k in [ "WARNING", "Couldn't find device", "Configuration setting", "read failed", "Was device resized?", "Invalid argument", "leaked on lvs", "Checksum error", "is exported", "failed.", "Invalid metadata", "response failed", "unknown device", "duplicate", "not found", "Missing device", "Internal error", "Input/output error", "Incorrect metadata", "Cannot process volume", "No such file or directory", "Logging initialised", "changed sizes", "vsnprintf failed", "write failed", "correction failed", "Failed to write", "Couldn't read", "marked missing", "Attempt to close device", "Ignoring supplied major", "not match metadata" ]] for l in content: lower = l.strip().lower() # Avoid hitting keywords inside the data if not lower.startswith('lvm2'): if any(k in lower for k in keywords): yield l class LvmHeadings(CommandParser): """Base class for parsing LVM data in table format.""" def __iter__(self): return iter(self.data) def __len__(self): return len(self.data) def __getitem__(self, item): return self.data[item] class Lvm(CommandParser): """Base class for parsing LVM data in key=value format.""" def parse_content(self, content): if "Unrecognised field:" in content[-1]: raise ParseException(content[-1]) d = {"warnings": set(find_warnings(content))} content = [l for l in content if l not in d["warnings"]] d["content"] = list(map_keys(parse_keypair_lines(content), self.KEYS)) self.data = d if d else None def __iter__(self): return iter(self.data["content"]) def __len__(self): return len(self.data["content"]) def __getitem__(self, key): if isinstance(key, int): return self.data['content'][key] for i in self.data['content']: if i[self.PRIMARY_KEY] == key: return i return None @property def locking_disabled(self): """bool: Returns True if any lines in input data indicate locking is disabled.""" return any(l for l in self.data["warnings"] if "Locking disabled" in l) @property def warnings(self): """list: Returns a list of lines from input data containing warning/error/info strings. """ return self.data["warnings"] @parser(Specs.pvs_noheadings) class Pvs(Lvm): """ Parse the output of the `/sbin/pvs --nameprefixes --noheadings --separator='|' -a -o pv_all` command. Parse each line in the output of pvs based on the of pvs datasource in `insights/specs/` Output sample of pvs:: LVM2_PV_FMT=''|LVM2_PV_UUID=''|LVM2_DEV_SIZE='500.00m'|... LVM2_PV_FMT='lvm2'|LVM2_PV_UUID='JvSULk-ileq-JbuS-GGgg-jkif-thuW-zvFBEl'|LVM2_DEV_SIZE='476.45g'|... Returns a list like:: [ { 'LVM2_PV_FMT' : '', 'LVM2_PV_UUID' : '', 'LVM2_DEV_SIZE' : '500.00m', ... }, { 'LVM2_PV_FMT' : 'lvm2', 'LVM2_PV_UUID' : 'JvSULk-ileq-JbuS-GGgg-jkif-thuW-zvFBEl', 'LVM2_DEV_SIZE' : '476.45g', ... } ] Since it is possible to have two PV's with the same name (for example *unknown device*) a unique key for each PV is created by joining the `PV_NAME and PV_UUID fields with a `+` character. This key is added to the dictionary as the `PV_KEY` field. """ KEYS = { "LVM2_PV_MDA_USED_COUNT": "#PMdaUse", "LVM2_PV_UUID": "PV_UUID", "LVM2_DEV_SIZE": "DevSize", "LVM2_PV_FMT": "Fmt", "LVM2_PV_MDA_FREE": "PMdaFree", "LVM2_PV_EXPORTED": "Exported", "LVM2_PV_SIZE": "PSize", "LVM2_PV_BA_START": "BA_start", "LVM2_PV_PE_ALLOC_COUNT": "Alloc", "LVM2_VG_NAME": "VG", "LVM2_PV_TAGS": "PV_Tags", "LVM2_PV_PE_COUNT": "PE", "LVM2_PV_BA_SIZE": "BA_size", "LVM2_PV_ATTR": "Attr", "LVM2_PE_START": "1st_PE", "LVM2_PV_USED": "Used", "LVM2_PV_NAME": "PV", "LVM2_PV_MDA_COUNT": "#PMda", "LVM2_PV_FREE": "PFree", "LVM2_PV_ALLOCATABLE": "Allocatable", "LVM2_PV_MDA_SIZE": "PMdaSize", "LVM2_PV_MISSING": "Missing" } PRIMARY_KEY = "PV" def parse_content(self, content): super(Pvs, self).parse_content(content) for pv in self.data['content']: pv_name = pv.get('PV') if pv.get('PV') is not None else 'no_name' pv_uuid = pv.get('PV_UUID') if pv.get('PV_UUID') is not None else 'no_uuid' pv.update({'PV_KEY': '+'.join([pv_name, pv_uuid])}) def vg(self, name): """Return all physical volumes assigned to the given volume group""" return [i for i in self.data["content"] if i["VG"] == name] @parser(Specs.pvs_noheadings_all) class PvsAll(Pvs): """ Parse the output of the `/sbin/pvs --nameprefixes --noheadings --separator='|' -a -o pv_all,vg_name --config='global{locking_type=0} devices{filter=["a|.*|"]}'` command. Uses the ``Pvs`` class defined in this module. """ pass @parser(Specs.pvs) class PvsHeadings(LvmHeadings): """ Parses the output of the `pvs -a -v -o +pv_mda_free,pv_mda_size,pv_mda_count,pv_mda_used_count,pe_count --config="global{locking_type=0}"` command. Since it is possible to have two PV's with the same name (for example *unknown device*) a unique key for each PV is created by joining the `PV_NAME and PV_UUID fields with a `+` character. This key is added to the resulting dictionary as the `PV_KEY` field. Sample input:: WARNING: Locking disabled. Be careful! This could corrupt your metadata. Scanning all devices to update lvmetad. No PV label found on /dev/loop0. No PV label found on /dev/loop1. No PV label found on /dev/sda1. No PV label found on /dev/fedora/root. No PV label found on /dev/sda2. No PV label found on /dev/fedora/swap. No PV label found on /dev/fedora/home. No PV label found on /dev/mapper/docker-253:1-2361272-pool. Wiping internal VG cache Wiping cache of LVM-capable devices PV VG Fmt Attr PSize PFree DevSize PV UUID PMdaFree PMdaSize #PMda #PMdaUse PE /dev/fedora/home --- 0 0 418.75g 0 0 0 0 0 /dev/fedora/root --- 0 0 50.00g 0 0 0 0 0 /dev/fedora/swap --- 0 0 7.69g 0 0 0 0 0 /dev/loop0 --- 0 0 100.00g 0 0 0 0 0 /dev/loop1 --- 0 0 2.00g 0 0 0 0 0 /dev/mapper/docker-253:1-2361272-pool --- 0 0 100.00g 0 0 0 0 0 /dev/mapper/luks-7430952e-7101-4716-9b46-786ce4684f8d fedora lvm2 a-- 476.45g 4.00m 476.45g FPLCRf-d918-LVL7-6e3d-n3ED-aiZv-EesuzY 0 1020.00k 1 1 121970 /dev/sda1 --- 0 0 500.00m 0 0 0 0 0 /dev/sda2 --- 0 0 476.45g 0 0 0 0 0 Reloading config files Wiping internal VG cache Attributes: data (list): List of dicts, each dict containing one row of the table with column headings as keys. Examples: >>> pvs_data = shared[PvsHeadings] >>> pvs_data[0] {'PV': '/dev/fedora/home', 'VG': '', 'Fmt': '', 'Attr': '---', 'PSize': '0', 'PFree': '0', 'DevSize': '418.75g', 'PV_UUID': '', 'PMdaFree': '0', 'PMdaSize': '0', '#PMda': '0', '#PMdaUse': '0', 'PE': '0', 'PV_KEY': '/dev/fedora/home+no_uuid'} >>> pvs_data[0]['PV'] '/dev/fedora/home' """ PRIMARY_KEY = Pvs.PRIMARY_KEY def parse_content(self, content): self.data = parse_fixed_table(content, heading_ignore=['PV '], header_substitute=[('PV UUID', 'PV_UUID'), ('1st PE', '1st_PE')], trailing_ignore=['Reloading', 'Wiping']) self.data = map_keys(self.data, Pvs.KEYS) for pv in self.data: pv_name = pv.get('PV') if pv.get('PV') is not None else 'no_name' pv_uuid = pv.get('PV_UUID') if pv.get('PV_UUID') is not None else 'no_uuid' pv.update({'PV_KEY': '+'.join([pv_name, pv_uuid])}) def vg(self, name): """Return all physical volumes assigned to the given volume group""" return [i for i in self.data if i["VG"] == name] @parser(Specs.vgs_noheadings) class Vgs(Lvm): """ Parse the output of the `/sbin/vgs --nameprefixes --noheadings --separator='|' -a -o vg_all` command. Parse each line in the output of vgs based on the vgs datasource in `insights/specs/` Output sample of vgs:: LVM2_VG_FMT='lvm2'|LVM2_VG_UUID='YCpusB-LEly-THGL-YXhC-t3q6-mUQV-wyFZrx'|LVM2_VG_NAME='rhel'|LVM2_VG_ATTR='wz--n-'|... LVM2_VG_FMT='lvm2'|LVM2_VG_UUID='123456-LEly-THGL-YXhC-t3q6-mUQV-123456'|LVM2_VG_NAME='fedora'|LVM2_VG_ATTR='wz--n-'|... Returns a list like:: [ { 'LVM2_PV_FMT' : 'lvm2', 'LVM2_VG_UUID' : 'YCpusB-LEly-THGL-YXhC-t3q6-mUQV-wyFZrx', 'LVM2_VG_NAME' : 'rhel', ... }, { 'LVM2_PV_FMT' : 'lvm2', 'LVM2_VG_UUID' : '123456-LEly-THGL-YXhC-t3q6-mUQV-123456', 'LVM2_VG_NAME' : 'fedora', ... } ] """ KEYS = { "LVM2_VG_EXTENDABLE": "Extendable", "LVM2_VG_EXTENT_SIZE": "Ext", "LVM2_VG_MDA_COUNT": "#VMda", "LVM2_VG_PROFILE": "VProfile", "LVM2_VG_ALLOCATION_POLICY": "AllocPol", "LVM2_MAX_PV": "MaxPV", "LVM2_VG_UUID": "VG_UUID", "LVM2_VG_ATTR": "Attr", "LVM2_VG_SYSID": "SYS_ID", "LVM2_VG_MDA_USED_COUNT": "#VMdaUse", "LVM2_VG_MDA_FREE": "VMdaFree", "LVM2_VG_LOCKTYPE": "Lock_Type", "LVM2_VG_TAGS": "VG_Tags", "LVM2_VG_FMT": "Fmt", "LVM2_PV_COUNT": "#PV", "LVM2_VG_EXTENT_COUNT": "#Ext", "LVM2_VG_MDA_SIZE": "VMdaSize", "LVM2_SNAP_COUNT": "#SN", "LVM2_VG_EXPORTED": "Exported", "LVM2_LV_COUNT": "#LV", "LVM2_VG_NAME": "VG", "LVM2_VG_MDA_COPIES": "#VMdaCps", "LVM2_VG_SYSTEMID": "System_ID", "LVM2_VG_FREE": "VFree", "LVM2_VG_SEQNO": "Seq", "LVM2_VG_FREE_COUNT": "Free", "LVM2_VG_PARTIAL": "Partial", "LVM2_VG_PERMISSIONS": "VPerms", "LVM2_VG_CLUSTERED": "Clustered", "LVM2_VG_LOCKARGS": "Lock Args", "LVM2_MAX_LV": "MaxLV", "LVM2_VG_SIZE": "VSize" } PRIMARY_KEY = "VG" @parser(Specs.vgs_noheadings_all) class VgsAll(Vgs): """ Parse the output of the `/sbin/vgs --nameprefixes --noheadings --separator='|' -a -o vg_all --config='global{locking_type=0} devices{filter=[\"a|.*|\"]}'` command. Uses the ``Vgs`` class defined in this module. """ pass @parser(Specs.vgs) class VgsHeadings(LvmHeadings): """ Parses output of the `vgs -v -o +vg_mda_count,vg_mda_free,vg_mda_size,vg_mda_used_count,vg_tags --config="global{locking_type=0}"` command. Sample input:: WARNING: Locking disabled. Be careful! This could corrupt your metadata. Using volume group(s) on command line. VG Attr Ext #PV #LV #SN VSize VFree VG UUID VProfile #VMda VMdaFree VMdaSize #VMdaUse VG Tags DATA_OTM_VG wz--n- 4.00m 6 1 0 2.05t 1020.00m xK6HXk-xl2O-cqW5-2izb-LI9M-4fV0-dAzfcc 6 507.00k 1020.00k 6 ITM_VG wz--n- 4.00m 1 1 0 16.00g 4.00m nws5dd-INe6-1db6-9U1N-F0G3-S1z2-5XTdO4 1 508.00k 1020.00k 1 ORABIN_OTM_VG wz--n- 4.00m 2 3 0 190.00g 0 hfJwg8-hset-YgUY-X6NJ-gkWE-EunZ-KuCXGP 2 507.50k 1020.00k 2 REDO_OTM_VG wz--n- 4.00m 1 3 0 50.00g 0 Q2YtGy-CWKU-sEYj-mqHk-rbdP-Hzup-wi8jsf 1 507.50k 1020.00k 1 SWAP_OTM_VG wz--n- 4.00m 1 1 0 24.00g 8.00g hAerzZ-U8QU-ICkc-xxCj-N2Ny-rWzq-pmTpWJ 1 508.00k 1020.00k 1 rootvg wz--n- 4.00m 1 6 0 19.51g 1.95g p4tLLb-ikeo-Ankk-2xJ6-iHYf-D4E6-KFCFvr 1 506.50k 1020.00k 1 Reloading config files Wiping internal VG cache Attributes: data (list): List of dicts, each dict containing one row of the table with column headings as keys. Examples: >>> vgs_info = shared[VgsHeadings] >>> vgs_info.data[0] {} >>> vgs_info.data[2]['LSize'] '2.00g' """ PRIMARY_KEY = Vgs.PRIMARY_KEY def parse_content(self, content): self.data = parse_fixed_table(content, heading_ignore=['VG '], header_substitute=[('VG Tags', 'VG_Tags'), ('VG UUID', 'VG_UUID')], trailing_ignore=['Reloading', 'Wiping']) self.data = map_keys(self.data, Vgs.KEYS) @parser(Specs.lvs_noheadings) class Lvs(Lvm): """ Parse the output of the `/sbin/lvs --nameprefixes --noheadings --separator='|' -a -o lv_all` command. Parse each line in the output of lvs based on the lvs datasource in `insights/specs/`: Output sample of lvs:: LVM2_LV_UUID='KX68JI-8ISN-YedH-ZYDf-yZbK-zkqE-3aVo6m'|LVM2_LV_NAME='docker-poolmeta'|LVM2_LV_FULL_NAME='rhel/docker-poolmeta'|... LVM2_LV_UUID='123456-8ISN-YedH-ZYDf-yZbK-zkqE-123456'|LVM2_LV_NAME='rhel_root'|LVM2_LV_FULL_NAME='rhel/rhel_root'|LVM2_LV_PATH='/dev/rhel/docker-poolmeta'|... Return a list, as shown below:: [ { 'LVM2_LV_UUID' : 'KX68JI-8ISN-YedH-ZYDf-yZbK-zkqE-3aVo6m', 'LVM2_LV_NAME' : 'docker-poolmeta', 'LVM2_LV_FULL_NAME' : 'rhel/docker-poolmeta', ... }, { 'LVM2_LV_UUID' : '123456-8ISN-YedH-ZYDf-yZbK-zkqE-123456', 'LVM2_LV_NAME' : 'rhel_root', 'LVM2_LV_FULL_NAME' : 'rhel/rhel_root', ... } ] """ KEYS = { "LVM2_POOL_LV_UUID": "Pool_UUID", "LVM2_LV_PARENT": "Parent", "LVM2_LV_SKIP_ACTIVATION": "SkipAct", "LVM2_LV_HEALTH_STATUS": "Health", "LVM2_LV_KERNEL_MINOR": "KMin", "LVM2_RAID_WRITE_BEHIND": "WBehind", "LVM2_LV_ANCESTORS": "Ancestors", "LVM2_LV_TIME": "Time", "LVM2_METADATA_PERCENT": "Meta%", "LVM2_LV_DM_PATH": "DMPath", "LVM2_LV_INACTIVE_TABLE": "InactiveTable", "LVM2_LV_UUID": "LV_UUID", "LVM2_LV_MODULES": "Modules", "LVM2_DEVICES": "Devices", "LVM2_LV_ACTIVE_REMOTELY": "ActRemote", "LVM2_LV_ACTIVE_LOCALLY": "ActLocal", "LVM2_LV_TAGS": "LV_Tags", "LVM2_LV_IMAGE_SYNCED": "ImgSynced", "LVM2_CACHE_WRITE_MISSES": "CacheWriteMisses", "LVM2_LV_PERMISSIONS": "LPerms", "LVM2_CACHE_TOTAL_BLOCKS": "CacheTotalBlocks", "LVM2_LV_ACTIVE_EXCLUSIVELY": "ActExcl", "LVM2_LV_PATH": "Path", "LVM2_LV_FULL_NAME": "LV", "LVM2_LV_READ_AHEAD": "Rahead", "LVM2_SNAP_PERCENT": "Snap%", "LVM2_CACHE_WRITE_HITS": "CacheWriteHits", "LVM2_MIRROR_LOG": "Log", "LVM2_CACHE_DIRTY_BLOCKS": "CacheDirtyBlocks", "LVM2_SEG_COUNT": "#Seg", "LVM2_MOVE_PV": "Move", "LVM2_LV_FIXED_MINOR": "FixMin", "LVM2_SYNC_PERCENT": "Cpy%Sync", "LVM2_LV_METADATA_SIZE": "MSize", "LVM2_LV_ATTR": "Attr", "LVM2_RAID_MAX_RECOVERY_RATE": "MaxSync", "LVM2_LV_DEVICE_OPEN": "DevOpen", "LVM2_LV_ALLOCATION_POLICY": "AllocPol", "LVM2_LV_MERGING": "Merging", "LVM2_LV_SIZE": "LSize", "LVM2_LV_MAJOR": "Maj", "LVM2_ORIGIN_SIZE": "OSize", "LVM2_RAID_SYNC_ACTION": "SyncAction", "LVM2_MIRROR_LOG_UUID": "Log_UUID", "LVM2_POOL_LV": "Pool", "LVM2_COPY_PERCENT": "Cpy%Sync", "LVM2_CONVERT_LV": "Convert", "LVM2_LV_KERNEL_READ_AHEAD": "KRahead", "LVM2_LV_NAME": "LV", "LVM2_LV_HOST": "Host", "LVM2_CACHE_USED_BLOCKS": "CacheUsedBlocks", "LVM2_RAID_MIN_RECOVERY_RATE": "MinSync", "LVM2_ORIGIN_UUID": "Origin_UUID", "LVM2_LV_SUSPENDED": "Suspended", "LVM2_RAID_MISMATCH_COUNT": "Mismatches", "LVM2_LV_KERNEL_MAJOR": "KMaj", "LVM2_LV_LAYOUT": "Layout", "LVM2_LV_PROFILE": "LProfile", "LVM2_LV_LIVE_TABLE": "LiveTable", "LVM2_LV_INITIAL_IMAGE_SYNC": "InitImgSync", "LVM2_LV_CONVERTING": "Converting", "LVM2_CACHE_READ_HITS": "CacheReadHits", "LVM2_VG_NAME": "VG", "LVM2_METADATA_LV": "Meta", "LVM2_LV_ACTIVE": "Active", "LVM2_CONVERT_LV_UUID": "Convert", "LVM2_LV_MERGE_FAILED": "MergeFailed", "LVM2_METADATA_LV_UUID": "Meta_UUID", "LVM2_LV_ROLE": "Role", "LVM2_LV_WHEN_FULL": "WhenFull", "LVM2_LV_ALLOCATION_LOCKED": "AllocLock", "LVM2_DATA_PERCENT": "Data%", "LVM2_LV_LOCKARGS": "Lock_Args", "LVM2_LV_SNAPSHOT_INVALID": "SnapInvalid", "LVM2_MOVE_PV_UUID": "Move_UUID", "LVM2_LV_MINOR": "Min", "LVM2_ORIGIN": "Origin", "LVM2_DATA_LV_UUID": "Data_UUID", "LVM2_DATA_LV": "Data", "LVM2_CACHE_READ_MISSES": "CacheReadMisses", "LVM2_LV_DESCENDANTS": "Descendants", "LVM2_REGION_SIZE": "Region", "LVM2_SEGTYPE": "SegType", "LVM2_SEG_MONITOR": "Monitor" } PRIMARY_KEY = "LV" def parse_content(self, content): super(Lvs, self).parse_content(content) for item in self.data["content"]: lv_name = item["LV"] if "/" in lv_name: # Reduce full name to just the name # This is due to the lvs command having *two identical keys* # with different values item["LV"] = lv_name.split("/")[1] def vg(self, name): """Return all logical volumes in the given volume group""" return [i for i in self.data["content"] if i["VG"] == name] @parser(Specs.lvs_noheadings_all) class LvsAll(Lvs): """ Parse the output of the `/sbin/lvs --nameprefixes --noheadings --separator='|' -a -o lv_name,lv_size,lv_attr,mirror_log,vg_name,devices,region_size,data_percent,metadata_percent --config='global{locking_type=0} devices{filter=["a|.*|"]}'` command. Uses the ``Lvs`` class defined in this module. """ pass @parser(Specs.lvs) class LvsHeadings(LvmHeadings): """ Process output of the command `/sbin/lvs -a -o +lv_tags,devices --config="global{locking_type=0}"`. Sample Input data:: WARNING: Locking disabled. Be careful! This could corrupt your metadata. LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert LV Tags Devices lv_app vg_root -wi-ao---- 71.63g /dev/sda2(7136) lv_home vg_root -wi-ao---- 2.00g /dev/sda2(2272) lv_opt vg_root -wi-ao---- 5.00g /dev/sda2(2784) lv_root vg_root -wi-ao---- 5.00g /dev/sda2(0) lv_tmp vg_root -wi-ao---- 1.00g /dev/sda2(4064) lv_usr vg_root -wi-ao---- 5.00g /dev/sda2(4320) lv_usrlocal vg_root -wi-ao---- 1.00g /dev/sda2(5600) lv_var vg_root -wi-ao---- 5.00g /dev/sda2(5856) swap vg_root -wi-ao---- 3.88g /dev/sda2(1280) Attributes: data (list): List of dicts, each dict containing one row of the table with column headings as keys. Examples: >>> lvs_info = shared[LvsHeadings] >>> lvs_info.data[0] {'LV': 'lv_app', 'VG': 'vg_root', 'Attr': '-wi-ao----', 'LSize': '71.63', 'Pool': '', 'Origin': '', 'Data%': '', 'Meta%': '', 'Move': '', 'Log': '', 'Cpy%Sync': '', 'Convert': '', 'LV_Tags': '', 'Devices': '/dev/sda2(7136)'} >>> lvs_info.data[2]['LSize'] '2.00g' """ PRIMARY_KEY = Lvs.PRIMARY_KEY def parse_content(self, content): self.data = parse_fixed_table(content, heading_ignore=['LV '], header_substitute=[('LV Tags', 'LV_Tags')]) self.data = map_keys(self.data, Lvs.KEYS) KEYS_WITH_SPACES = [] for cls in (Lvs, Pvs, Vgs): KEYS_WITH_SPACES.extend([k for k in cls.KEYS.values() if " " in k]) LVM_CONF_FILTERS = [ "locking_type", # CMIRROR_PERF_ISSUE "filter", # LVM_CONF_REMOVE_BOOTDEV HA_LVM_RELOCATE_ISSUE LVM_FILTER_ISSUE "volume_list" # HA_LVM_RELOCATE_ISSUE ] add_filter(Specs.lvm_conf, LVM_CONF_FILTERS) @parser(Specs.lvm_conf) class LvmConf(LegacyItemAccess, Parser): """ Parses contents of the `/etc/lvm/lvm.conf` file. Sample Input:: locking_type = 1 #locking_type = 2 # volume_list = [ "vg1", "vg2/lvol1", "@tag1", "@*" ] volume_list = [ "vg2", "vg3/lvol3", "@tag2", "@*" ] # filter = [ "a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|" ] filter = [ "r/sda[0-9]*$/", "a/sd.*/" ] filter = [ "a/sda[0-9]*$/", "r/sd.*/" ] shell { history_size = 100 } Examples: >>> lvm_conf_data = shared[LvmConf] >>> lvm_conf_data.data {"locking_type": 1, "volume_list": ["vg1", "vg2/lvol1", "@tag1", "@*"], "filter": ["a/sda[0-9]*$/", "r/sd.*/"], "history_size": 100} >>> lvm_conf_data.get("locking_type") 1 """ def parse_content(self, content): """ Returns a dict: locking_type : 1 filter : ['a/sda[0-9]*$/', 'r/sd.*/'] volume_list : ['vg2', 'vg3/lvol3', '@tag2', '@*'] """ lvm_conf_dict = {} for line in get_active_lines(content): if "=" in line: (key, value) = [item.strip() for item in line.split('=', 1)] try: lvm_conf_dict[key] = json.loads(value) except Exception: lvm_conf_dict[key] = value self.data = lvm_conf_dict if __name__ == "__main__": # This is a quick script to generate the key mappings in each subclass. # Run each lvm command with --separator="|", --nameprefixes and *not* --noheadings import sys from collections import OrderedDict content = sys.stdin.read().splitlines() headers = [h.strip().replace(" ", "_") for h in content[0].split("|")] nameprefixes = [v.split("=")[0].strip() for v in content[1].replace("0 ", "0").split("|")] pairs = zip(nameprefixes, headers) print(json.dumps(OrderedDict(sorted(pairs))))
41.582067
251
0.526552