hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
f0e63c97d6fcc120f5d220c8bb7de4c5493386dc
3,787
py
Python
scripts/test.py
MrGemy95/pytorch-SelectiveNet
50540c433e235d3e3824d4799fd61869f512f723
[ "MIT" ]
13
2020-03-06T04:54:22.000Z
2022-03-29T11:33:24.000Z
scripts/test.py
MrGemy95/pytorch-SelectiveNet
50540c433e235d3e3824d4799fd61869f512f723
[ "MIT" ]
1
2021-04-13T12:31:15.000Z
2021-04-13T12:31:15.000Z
scripts/test.py
MrGemy95/pytorch-SelectiveNet
50540c433e235d3e3824d4799fd61869f512f723
[ "MIT" ]
7
2020-03-02T15:20:12.000Z
2022-01-23T07:59:57.000Z
import os import sys base = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../') sys.path.append(base) import click from collections import OrderedDict import torch import torchvision from external.dada.flag_holder import FlagHolder from external.dada.metric import MetricDict from external.dada.io import print_metric_dict from external.dada.io import save_model from external.dada.io import load_model from external.dada.logger import Logger from selectivenet.vgg_variant import vgg16_variant from selectivenet.model import SelectiveNet from selectivenet.loss import SelectiveLoss from selectivenet.data import DatasetBuilder from selectivenet.evaluator import Evaluator # options @click.command() # model @click.option('--dim_features', type=int, default=512) @click.option('--dropout_prob', type=float, default=0.3) @click.option('-w', '--weight', type=str, required=True, help='model weight path') # data @click.option('-d', '--dataset', type=str, required=True) @click.option('--dataroot', type=str, default='/home/gatheluck/Scratch/selectivenet/data', help='path to dataset root') @click.option('-j', '--num_workers', type=int, default=8) @click.option('-N', '--batch_size', type=int, default=128) @click.option('--normalize', is_flag=True, default=True) # loss @click.option('--coverage', type=float, required=True) @click.option('--alpha', type=float, default=0.5, help='balancing parameter between selective_loss and ce_loss') def main(**kwargs): test(**kwargs) def test(**kwargs): FLAGS = FlagHolder() FLAGS.initialize(**kwargs) FLAGS.summary() # dataset dataset_builder = DatasetBuilder(name=FLAGS.dataset, root_path=FLAGS.dataroot) test_dataset = dataset_builder(train=False, normalize=FLAGS.normalize) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=FLAGS.batch_size, shuffle=False, num_workers=FLAGS.num_workers, pin_memory=True) # model features = vgg16_variant(dataset_builder.input_size, FLAGS.dropout_prob).cuda() model = SelectiveNet(features, FLAGS.dim_features, dataset_builder.num_classes).cuda() load_model(model, FLAGS.weight) if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # loss base_loss = torch.nn.CrossEntropyLoss(reduction='none') SelectiveCELoss = SelectiveLoss(base_loss, coverage=FLAGS.coverage) # pre epoch test_metric_dict = MetricDict() # test with torch.autograd.no_grad(): for i, (x,t) in enumerate(test_loader): model.eval() x = x.to('cuda', non_blocking=True) t = t.to('cuda', non_blocking=True) # forward out_class, out_select, out_aux = model(x) # compute selective loss loss_dict = OrderedDict() # loss dict includes, 'empirical_risk' / 'emprical_coverage' / 'penulty' selective_loss, loss_dict = SelectiveCELoss(out_class, out_select, t) selective_loss *= FLAGS.alpha loss_dict['selective_loss'] = selective_loss.detach().cpu().item() # compute standard cross entropy loss ce_loss = torch.nn.CrossEntropyLoss()(out_aux, t) ce_loss *= (1.0 - FLAGS.alpha) loss_dict['ce_loss'] = ce_loss.detach().cpu().item() # total loss loss = selective_loss + ce_loss loss_dict['loss'] = loss.detach().cpu().item() # evaluation evaluator = Evaluator(out_class.detach(), t.detach(), out_select.detach()) loss_dict.update(evaluator()) test_metric_dict.update(loss_dict) # post epoch print_metric_dict(None, None, test_metric_dict.avg, mode='test') return test_metric_dict.avg if __name__ == '__main__': main()
36.066667
154
0.693425
c5dc75a9336259e8a465110d81fadc9d20408ac5
2,201
py
Python
detection/show.py
cititude/Media-and-Cognition-Homework
dabaaef6d8ec115171e7115731c5f76b518d9bde
[ "MIT" ]
null
null
null
detection/show.py
cititude/Media-and-Cognition-Homework
dabaaef6d8ec115171e7115731c5f76b518d9bde
[ "MIT" ]
null
null
null
detection/show.py
cititude/Media-and-Cognition-Homework
dabaaef6d8ec115171e7115731c5f76b518d9bde
[ "MIT" ]
null
null
null
import torch import json from utils.utils import * import cv2 import numpy as np import matplotlib.pyplot as plt import os def plot_one_box(x, img, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1) # filled cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def main(): if not os.path.exists("imgs"): os.mkdir("imgs") jsonfile=json.load(open("filter_unique_pred17.json")) imgs=jsonfile["imgs"] for idx in imgs: img=imgs[idx] bboxes=img["objects"] output=[] mosaic = np.full((2048,2048, 3), 255, dtype=np.uint8) # Fix class - colour map prop_cycle = plt.rcParams['axes.prop_cycle'] hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']] img=np.array(Image.open(os.path.join("../image_exp/Detection/test",idx+".jpg")).convert('RGB')) mosaic = img if(len(bboxes)>8): print(idx) else: continue for bbox in bboxes: box=np.array([bbox["bbox"]["xmin"],bbox["bbox"]["ymin"],bbox["bbox"]["xmax"],bbox["bbox"]["ymax"]]) class_=bbox["category"] conf=bbox["score"] color = color_lut[hash(class_) % len(color_lut)] plot_one_box(box, mosaic, label=class_, color=color, line_thickness=2) # Image border cv2.rectangle(mosaic, (1, 1), (2047, 2047), (255, 255, 255), thickness=3) cv2.imwrite("imgs/{}.jpg".format(idx), cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB),) main()
36.683333
115
0.585189
79fe90bf1096715710cd8d51ad5c6b3e37b37163
2,601
py
Python
gazoo_device/tests/unit_tests/esp32_pigweed_locking_test.py
google/gazoo-device
f333b386f5993c8d4c9e12c89ebb620a0c4f5506
[ "Apache-2.0" ]
14
2020-11-05T23:23:32.000Z
2022-03-01T18:59:29.000Z
gazoo_device/tests/unit_tests/esp32_pigweed_locking_test.py
google/gazoo-device
f333b386f5993c8d4c9e12c89ebb620a0c4f5506
[ "Apache-2.0" ]
null
null
null
gazoo_device/tests/unit_tests/esp32_pigweed_locking_test.py
google/gazoo-device
f333b386f5993c8d4c9e12c89ebb620a0c4f5506
[ "Apache-2.0" ]
5
2021-05-20T22:52:51.000Z
2022-02-21T08:46:21.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for device class ESP32PigweedLocking.""" from unittest import mock import gazoo_device from gazoo_device.auxiliary_devices import esp32_pigweed_locking from gazoo_device.tests.unit_tests.utils import fake_device_test_case _PWRPC_COMMON_CLASS = ( gazoo_device.capabilities.pwrpc_common_default.PwRPCCommonDefault) _FAKE_FW_VERSION = "0" class ESP32PigweedLockingTests(fake_device_test_case.FakeDeviceTestCase): """Test module for device class ESP32PigweedLocking.""" def setUp(self): super().setUp() self.setup_fake_device_requirements("esp32pigweedlocking-1234") self.device_config["persistent"]["console_port_name"] = "/dev/bus/usb/01/02" self.uut = esp32_pigweed_locking.ESP32PigweedLocking( self.mock_manager, self.device_config, log_directory=self.artifacts_directory) @mock.patch.object( _PWRPC_COMMON_CLASS, "software_version", new_callable=mock.PropertyMock) def test_001_firmware_version(self, mock_fw_version): """Verifies the firmware_version.""" mock_fw_version.return_value = _FAKE_FW_VERSION self.assertEqual(_FAKE_FW_VERSION, self.uut.firmware_version) self.assertEqual(1, mock_fw_version.call_count) @mock.patch.object(_PWRPC_COMMON_CLASS, "reboot") def test_002_reboot(self, mock_reboot): """Verifies the reboot method.""" self.uut.reboot() self.assertEqual(1, mock_reboot.call_count) @mock.patch.object(_PWRPC_COMMON_CLASS, "factory_reset") def test_003_factory_reset(self, mock_factory_reset): """Verifies the factory_reset method.""" self.uut.factory_reset() self.assertEqual(1, mock_factory_reset.call_count) def test_004_common_rpc_capability(self): """Verify the initialization of pw_rpc_common capability.""" self.assertTrue(self.uut.pw_rpc_common) def test_005_locking_rpc_capability(self): """Verifies the initialization of pw_rpc_lock capability.""" self.assertTrue(self.uut.pw_rpc_lock) if __name__ == "__main__": fake_device_test_case.main()
36.633803
80
0.772011
2a0b876d49420fc816cc67f8c26adaa6ca1b83a6
682
py
Python
ctapipe/flow/algorithms/pair.py
mpecimotika/ctapipe
ffd7930921f7139b761fbf1208da16dd302e97a6
[ "BSD-3-Clause" ]
null
null
null
ctapipe/flow/algorithms/pair.py
mpecimotika/ctapipe
ffd7930921f7139b761fbf1208da16dd302e97a6
[ "BSD-3-Clause" ]
null
null
null
ctapipe/flow/algorithms/pair.py
mpecimotika/ctapipe
ffd7930921f7139b761fbf1208da16dd302e97a6
[ "BSD-3-Clause" ]
null
null
null
from ctapipe.core import Component from time import sleep class Pair(Component): """Odd` class represents a Stage for pipeline. It returns received value to Add stage except when received value is a multiple of 5. In this case it returns received value to Inverse stage """ def init(self): self.log.debug("--- Pair init ---") return True def run(self, _input): sleep(.5) self.log.debug("Pair receive {}".format(_input)) if _input % 5 == 0: return (_input, 'Inverse') else: return (_input, 'Add') def finish(self): self.log.debug("--- Pair finish ---") pass
25.259259
62
0.589443
a394b5ddaffc919cf3b20b9d9b979e7fcfe4b583
866
py
Python
setup.py
gigapixel/robotframework-cylon
909cfef10dcca42958f220481f3e51ac1398d74e
[ "MIT" ]
null
null
null
setup.py
gigapixel/robotframework-cylon
909cfef10dcca42958f220481f3e51ac1398d74e
[ "MIT" ]
null
null
null
setup.py
gigapixel/robotframework-cylon
909cfef10dcca42958f220481f3e51ac1398d74e
[ "MIT" ]
null
null
null
from setuptools import setup setup(name='robotframework-cylon', version='0.0.1', description='', url='https://github.com/gigapixel', author='Peerapat S.', author_email='gigapixel7@gmail.com', license='MIT', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Testing' ], packages=['cylon_robot'], # entry_points={ # 'console_scripts': [ # 'cylon=cylon.command:main', 'behack=cylon.behack:main' # ]}, install_requires=[ 'selenium' ], zip_safe=False)
30.928571
71
0.571594
f8e6083dbbaa37834dca61c4518f6c21ed728e2b
21,170
py
Python
pudb/settings.py
mlubimow/pudb
b36b10e8905971c700ddb6b41bf6102ea0a310c4
[ "MIT" ]
null
null
null
pudb/settings.py
mlubimow/pudb
b36b10e8905971c700ddb6b41bf6102ea0a310c4
[ "MIT" ]
null
null
null
pudb/settings.py
mlubimow/pudb
b36b10e8905971c700ddb6b41bf6102ea0a310c4
[ "MIT" ]
1
2021-05-13T13:15:47.000Z
2021-05-13T13:15:47.000Z
__copyright__ = """ Copyright (C) 2009-2017 Andreas Kloeckner Copyright (C) 2014-2017 Aaron Meurer """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import sys from configparser import ConfigParser from pudb.lowlevel import (lookup_module, get_breakpoint_invalid_reason, settings_log) # minor LGPL violation: stolen from python-xdg _home = os.environ.get("HOME", None) xdg_data_home = os.environ.get("XDG_DATA_HOME", os.path.join(_home, ".local", "share") if _home else None) XDG_CONFIG_HOME = os.environ.get("XDG_CONFIG_HOME", os.path.join(_home, ".config") if _home else None) if XDG_CONFIG_HOME: XDG_CONFIG_DIRS = [XDG_CONFIG_HOME] else: XDG_CONFIG_DIRS = os.environ.get("XDG_CONFIG_DIRS", "/etc/xdg").split(":") def get_save_config_path(*resource): if XDG_CONFIG_HOME is None: return None if not resource: resource = [XDG_CONF_RESOURCE] # no idea what pylint's problem is here resource = os.path.join(*resource) # pylint: disable=no-value-for-parameter assert not resource.startswith("/") path = os.path.join(XDG_CONFIG_HOME, resource) if not os.path.isdir(path): os.makedirs(path, 448) # 0o700 return path # end LGPL violation CONF_SECTION = "pudb" XDG_CONF_RESOURCE = "pudb" CONF_FILE_NAME = "pudb.cfg" SAVED_BREAKPOINTS_FILE_NAME = "saved-breakpoints-%d.%d" % sys.version_info[:2] BREAKPOINTS_FILE_NAME = "breakpoints-%d.%d" % sys.version_info[:2] _config_ = [None] def load_config(): # Only ever do this once if _config_[0] is not None: return _config_[0] from os.path import join, isdir cparser = ConfigParser() conf_dict = {} try: cparser.read([ join(cdir, XDG_CONF_RESOURCE, CONF_FILE_NAME) for cdir in XDG_CONFIG_DIRS if isdir(cdir)]) if cparser.has_section(CONF_SECTION): conf_dict.update(dict(cparser.items(CONF_SECTION))) except Exception: settings_log.exception("Failed to load config") conf_dict.setdefault("shell", "internal") conf_dict.setdefault("theme", "classic") conf_dict.setdefault("line_numbers", "False") conf_dict.setdefault("seen_welcome", "a") conf_dict.setdefault("sidebar_width", 0.5) conf_dict.setdefault("variables_weight", 1) conf_dict.setdefault("stack_weight", 1) conf_dict.setdefault("breakpoints_weight", 1) conf_dict.setdefault("current_stack_frame", "top") conf_dict.setdefault("stringifier", "default") conf_dict.setdefault("custom_theme", "") conf_dict.setdefault("custom_stringifier", "") conf_dict.setdefault("custom_shell", "") conf_dict.setdefault("wrap_variables", "True") conf_dict.setdefault("default_variables_access_level", "public") conf_dict.setdefault("display", "auto") conf_dict.setdefault("prompt_on_quit", "True") conf_dict.setdefault("hide_cmdline_win", "False") def normalize_bool_inplace(name): try: if conf_dict[name].lower() in ["0", "false", "off"]: conf_dict[name] = False else: conf_dict[name] = True except Exception: settings_log.exception("Failed to process config") normalize_bool_inplace("line_numbers") normalize_bool_inplace("wrap_variables") normalize_bool_inplace("prompt_on_quit") normalize_bool_inplace("hide_cmdline_win") _config_[0] = conf_dict return conf_dict def save_config(conf_dict): from os.path import join cparser = ConfigParser() cparser.add_section(CONF_SECTION) for key in sorted(conf_dict): cparser.set(CONF_SECTION, key, str(conf_dict[key])) try: save_path = get_save_config_path() if not save_path: return outf = open(join(save_path, CONF_FILE_NAME), "w") cparser.write(outf) outf.close() except Exception: settings_log.exception("Failed to save config") def edit_config(ui, conf_dict): import urwid old_conf_dict = conf_dict.copy() def _update_theme(): ui.setup_palette(ui.screen) ui.screen.clear() def _update_line_numbers(): for sl in ui.source: sl._invalidate() def _update_prompt_on_quit(): pass def _update_hide_cmdline_win(): ui.update_cmdline_win() def _update_current_stack_frame(): ui.update_stack() def _update_stringifier(): import pudb.var_view pudb.var_view.custom_stringifier_dict = {} ui.update_var_view() def _update_default_variables_access_level(): ui.update_var_view() def _update_wrap_variables(): ui.update_var_view() def _update_config(check_box, new_state, option_newvalue): option, newvalue = option_newvalue new_conf_dict = {option: newvalue} if option == "theme": # only activate if the new state of the radio button is 'on' if new_state: if newvalue is None: # Select the custom theme entry dialog lb.set_focus(lb_contents.index(theme_edit_list_item)) return conf_dict.update(theme=newvalue) _update_theme() elif option == "line_numbers": new_conf_dict["line_numbers"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_line_numbers() elif option == "prompt_on_quit": new_conf_dict["prompt_on_quit"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_prompt_on_quit() elif option == "hide_cmdline_win": new_conf_dict["hide_cmdline_win"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_hide_cmdline_win() elif option == "current_stack_frame": # only activate if the new state of the radio button is 'on' if new_state: conf_dict.update(new_conf_dict) _update_current_stack_frame() elif option == "stringifier": # only activate if the new state of the radio button is 'on' if new_state: if newvalue is None: lb.set_focus(lb_contents.index(stringifier_edit_list_item)) return conf_dict.update(stringifier=newvalue) _update_stringifier() elif option == "default_variables_access_level": # only activate if the new state of the radio button is 'on' if new_state: conf_dict.update(default_variables_access_level=newvalue) _update_default_variables_access_level() elif option == "wrap_variables": new_conf_dict["wrap_variables"] = not check_box.get_state() conf_dict.update(new_conf_dict) _update_wrap_variables() heading = urwid.Text("This is the preferences screen for PuDB. " "Hit Ctrl-P at any time to get back to it.\n\n" "Configuration settings are saved in " "$HOME/.config/pudb or $XDG_CONFIG_HOME/pudb " "environment variable. If both variables are not set " "configurations settings will not be saved.\n") cb_line_numbers = urwid.CheckBox("Show Line Numbers", bool(conf_dict["line_numbers"]), on_state_change=_update_config, user_data=("line_numbers", None)) cb_prompt_on_quit = urwid.CheckBox("Prompt before quitting", bool(conf_dict["prompt_on_quit"]), on_state_change=_update_config, user_data=("prompt_on_quit", None)) hide_cmdline_win = urwid.CheckBox("Hide command line (Ctrl-X) window " "when not in use", bool(conf_dict["hide_cmdline_win"]), on_state_change=_update_config, user_data=("hide_cmdline_win", None)) # {{{ shells shell_info = urwid.Text("This is the shell that will be " "used when you hit '!'.\n") shells = ["internal", "classic", "ipython", "ipython_kernel", "bpython", "ptpython", "ptipython"] known_shell = conf_dict["shell"] in shells shell_edit = urwid.Edit(edit_text=conf_dict["custom_shell"]) shell_edit_list_item = urwid.AttrMap(shell_edit, "value") shell_rb_group = [] shell_rbs = [ urwid.RadioButton(shell_rb_group, name, conf_dict["shell"] == name) for name in shells]+[ urwid.RadioButton(shell_rb_group, "Custom:", not known_shell, on_state_change=_update_config, user_data=("shell", None)), shell_edit_list_item, urwid.Text("\nTo use a custom shell, see example-shell.py " "in the pudb distribution. Enter the full path to a " "file like it in the box above. '~' will be expanded " "to your home directory. The file should contain a " "function called pudb_shell(_globals, _locals) " "at the module level. See the PuDB documentation for " "more information."), ] # }}} # {{{ themes from pudb.theme import THEMES known_theme = conf_dict["theme"] in THEMES theme_rb_group = [] theme_edit = urwid.Edit(edit_text=conf_dict["custom_theme"]) theme_edit_list_item = urwid.AttrMap(theme_edit, "value") theme_rbs = [ urwid.RadioButton(theme_rb_group, name, conf_dict["theme"] == name, on_state_change=_update_config, user_data=("theme", name)) for name in THEMES]+[ urwid.RadioButton(theme_rb_group, "Custom:", not known_theme, on_state_change=_update_config, user_data=("theme", None)), theme_edit_list_item, urwid.Text("\nTo use a custom theme, see example-theme.py in the " "pudb distribution. Enter the full path to a file like it in " "the box above. '~' will be expanded to your home directory. " "Note that a custom theme will not be applied until you close " "this dialog."), ] # }}} # {{{ stack stack_rb_group = [] stack_opts = ["top", "bottom"] stack_info = urwid.Text("Show the current stack frame at the\n") stack_rbs = [ urwid.RadioButton(stack_rb_group, name, conf_dict["current_stack_frame"] == name, on_state_change=_update_config, user_data=("current_stack_frame", name)) for name in stack_opts ] # }}} # {{{ stringifier from pudb.var_view import STRINGIFIERS stringifier_opts = list(STRINGIFIERS.keys()) known_stringifier = conf_dict["stringifier"] in stringifier_opts stringifier_rb_group = [] stringifier_edit = urwid.Edit(edit_text=conf_dict["custom_stringifier"]) stringifier_info = urwid.Text( "This is the default function that will be called on variables in the " "variables list. You can also change this on a per-variable basis by " "selecting a variable and typing 'e' to edit the variable's display " "settings, or by typing one of d/t/r/s/i/c. Note that str and repr will " "be slower than the default, type, or id stringifiers.\n") stringifier_edit_list_item = urwid.AttrMap(stringifier_edit, "value") stringifier_rbs = [ urwid.RadioButton(stringifier_rb_group, name, conf_dict["stringifier"] == name, on_state_change=_update_config, user_data=("stringifier", name)) for name in stringifier_opts ]+[ urwid.RadioButton(stringifier_rb_group, "Custom:", not known_stringifier, on_state_change=_update_config, user_data=("stringifier", None)), stringifier_edit_list_item, urwid.Text("\nTo use a custom stringifier, see " "example-stringifier.py in the pudb distribution. Enter the " "full path to a file like it in the box above. " "'~' will be expanded to your home directory. " "The file should contain a function called pudb_stringifier() " "at the module level, which should take a single argument and " "return the desired string form of the object passed to it. " "Note that if you choose a custom stringifier, the variables " "view will not be updated until you close this dialog."), ] # }}} # {{{ variables access level default_variables_access_level_opts = ["public", "private", "all"] default_variables_access_level_rb_group = [] default_variables_access_level_info = urwid.Text( "Set the default attribute visibility " "of variables in the variables list.\n" "\nNote that you can change this option on " "a per-variable basis by selecting the " "variable and pressing '*'.") default_variables_access_level_rbs = [ urwid.RadioButton(default_variables_access_level_rb_group, name, conf_dict["default_variables_access_level"] == name, on_state_change=_update_config, user_data=("default_variables_access_level", name)) for name in default_variables_access_level_opts ] # }}} # {{{ wrap variables cb_wrap_variables = urwid.CheckBox("Wrap variables", bool(conf_dict["wrap_variables"]), on_state_change=_update_config, user_data=("wrap_variables", None)) wrap_variables_info = urwid.Text("\nNote that you can change this option on " "a per-variable basis by selecting the " "variable and pressing 'w'.") # }}} # {{{ display display_info = urwid.Text("What driver is used to talk to your terminal. " "'raw' has the most features (colors and highlighting), " "but is only correct for " "XTerm and terminals like it. 'curses' " "has fewer " "features, but it will work with just about any terminal. 'auto' " "will attempt to pick between the two based on availability and " "the $TERM environment variable.\n\n" "Changing this setting requires a restart of PuDB.") displays = ["auto", "raw", "curses"] display_rb_group = [] display_rbs = [ urwid.RadioButton(display_rb_group, name, conf_dict["display"] == name) for name in displays] # }}} lb_contents = ( [heading] + [urwid.AttrMap(urwid.Text("General:\n"), "group head")] + [cb_line_numbers] + [cb_prompt_on_quit] + [hide_cmdline_win] + [urwid.AttrMap(urwid.Text("\nShell:\n"), "group head")] + [shell_info] + shell_rbs + [urwid.AttrMap(urwid.Text("\nTheme:\n"), "group head")] + theme_rbs + [urwid.AttrMap(urwid.Text("\nStack Order:\n"), "group head")] + [stack_info] + stack_rbs + [urwid.AttrMap(urwid.Text("\nVariable Stringifier:\n"), "group head")] + [stringifier_info] + stringifier_rbs + [urwid.AttrMap(urwid.Text("\nVariables Attribute Visibility:\n"), "group head")] + [default_variables_access_level_info] + default_variables_access_level_rbs + [urwid.AttrMap(urwid.Text("\nWrap Variables:\n"), "group head")] + [cb_wrap_variables] + [wrap_variables_info] + [urwid.AttrMap(urwid.Text("\nDisplay driver:\n"), "group head")] + [display_info] + display_rbs ) lb = urwid.ListBox(urwid.SimpleListWalker(lb_contents)) if ui.dialog(lb, [ ("OK", True), ("Cancel", False), ], title="Edit Preferences"): # Only update the settings here that instant-apply (above) doesn't take # care of. # if we had a custom theme, it wasn't updated live if theme_rb_group[-1].state: newvalue = theme_edit.get_edit_text() conf_dict.update(theme=newvalue, custom_theme=newvalue) _update_theme() # Ditto for custom stringifiers if stringifier_rb_group[-1].state: newvalue = stringifier_edit.get_edit_text() conf_dict.update(stringifier=newvalue, custom_stringifier=newvalue) _update_stringifier() if shell_rb_group[-1].state: newvalue = shell_edit.get_edit_text() conf_dict.update(shell=newvalue, custom_shell=newvalue) else: for shell, shell_rb in zip(shells, shell_rbs): if shell_rb.get_state(): conf_dict["shell"] = shell for display, display_rb in zip(displays, display_rbs): if display_rb.get_state(): conf_dict["display"] = display else: # The user chose cancel, revert changes conf_dict.update(old_conf_dict) _update_theme() # _update_line_numbers() is equivalent to _update_theme() _update_current_stack_frame() _update_stringifier() # {{{ breakpoint saving def parse_breakpoints(lines): # b [ (filename:lineno | function) [, "condition"] ] breakpoints = [] for arg in lines: if not arg: continue arg = arg[1:] filename = None lineno = None cond = None comma = arg.find(",") if comma > 0: # parse stuff after comma: "condition" cond = arg[comma+1:].lstrip() arg = arg[:comma].rstrip() colon = arg.rfind(":") funcname = None if colon > 0: filename = arg[:colon].strip() f = lookup_module(filename) if not f: continue else: filename = f arg = arg[colon+1:].lstrip() try: lineno = int(arg) except ValueError: continue else: continue if get_breakpoint_invalid_reason(filename, lineno) is None: breakpoints.append((filename, lineno, False, cond, funcname)) return breakpoints def get_breakpoints_file_name(): from os.path import join save_path = get_save_config_path() if not save_path: return None else: return join(save_path, SAVED_BREAKPOINTS_FILE_NAME) def load_breakpoints(): """ Loads and check saved breakpoints out from files Returns: list of tuples """ from os.path import join, isdir file_names = [] for cdir in XDG_CONFIG_DIRS: if isdir(cdir): for name in [SAVED_BREAKPOINTS_FILE_NAME, BREAKPOINTS_FILE_NAME]: file_names.append(join(cdir, XDG_CONF_RESOURCE, name)) lines = [] for fname in file_names: try: rc_file = open(fname) except OSError: pass else: lines.extend([line.strip() for line in rc_file.readlines()]) rc_file.close() return parse_breakpoints(lines) def save_breakpoints(bp_list): """ :arg bp_list: a list of `bdb.Breakpoint` objects """ save_path = get_breakpoints_file_name() if not save_path: return histfile = open(get_breakpoints_file_name(), "w") bp_list = {(bp.file, bp.line, bp.cond) for bp in bp_list} for bp in bp_list: line = "b %s:%d" % (bp[0], bp[1]) if bp[2]: line += ", %s" % bp[2] line += "\n" histfile.write(line) histfile.close() # }}} # vim:foldmethod=marker
34.311183
84
0.611242
0c6aa0b1bb393485828a6ca1c2e9dc2570518096
153
py
Python
news/admin.py
alcibiadesBustillo/resumen-news
62f2cf821e619703e058d2b996ebf2513854bb73
[ "MIT" ]
1
2021-07-09T07:17:17.000Z
2021-07-09T07:17:17.000Z
news/admin.py
alcibiadesBustillo/resumen-news
62f2cf821e619703e058d2b996ebf2513854bb73
[ "MIT" ]
null
null
null
news/admin.py
alcibiadesBustillo/resumen-news
62f2cf821e619703e058d2b996ebf2513854bb73
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import News # Register your models here. @admin.register(News) class NewsAdmin(admin.ModelAdmin): pass
21.857143
34
0.784314
37d7ee2c1e9b74419a6e83877774e41c506ea88a
1,019
py
Python
src/Reset Ease Automatically/__init__.py
RisingOrange/Reset-Ease-Automatically
7c2fd16b7cac32ba499d87f681c75cfcfb617405
[ "MIT" ]
5
2020-09-06T10:51:39.000Z
2021-11-11T01:46:06.000Z
src/Reset Ease Automatically/__init__.py
RisingOrange/Reset-Ease-Automatically
7c2fd16b7cac32ba499d87f681c75cfcfb617405
[ "MIT" ]
6
2020-09-06T11:28:47.000Z
2021-06-13T00:22:03.000Z
src/Reset Ease Automatically/__init__.py
RisingOrange/Reset-Ease-Automatically
7c2fd16b7cac32ba499d87f681c75cfcfb617405
[ "MIT" ]
1
2020-09-06T10:52:43.000Z
2020-09-06T10:52:43.000Z
from anki.hooks import addHook from aqt import mw from aqt.utils import tooltip from PyQt5.QtWidgets import * from . import preferences_dialog from .reset_ease import reset_ease from .store_restore_ease import add_deck_options def main(): setup_toolbar_menu() addHook('unloadProfile', reset_ease_and_show_message) addHook('showDeckOptions', add_deck_options) mw.addonManager.setConfigAction(__name__, preferences_dialog.show) def setup_toolbar_menu(): # Add "reset ease" submenu reset_ease_menu = QMenu("Reset Ease", mw) mw.form.menuTools.addMenu(reset_ease_menu) # Add Preferences button a = QAction('&Preferences', mw) a.triggered.connect(preferences_dialog.show) reset_ease_menu.addAction(a) # Reset Ease button a = QAction('&Reset Ease', mw) a.triggered.connect(reset_ease_and_show_message) reset_ease_menu.addAction(a) def reset_ease_and_show_message(): reset_ease() tooltip("Ease factors have been reset", period=1200) main()
25.475
70
0.747792
c95539e24d49b17eb6f1423afa669e17b4fcd237
29,280
py
Python
tagger.py
sjyttkl/convseg
4cd970283e128be38c1588820f741d781b709511
[ "MIT" ]
1
2018-12-10T02:20:38.000Z
2018-12-10T02:20:38.000Z
tagger.py
sjyttkl/convseg
4cd970283e128be38c1588820f741d781b709511
[ "MIT" ]
null
null
null
tagger.py
sjyttkl/convseg
4cd970283e128be38c1588820f741d781b709511
[ "MIT" ]
null
null
null
# from __future__ import print_function import tensorflow as tf import tensorflow.contrib.layers as layers import tensorflow.contrib.crf as crf import time import codecs import os import pickle import numpy as np # from itertools import izip INT_TYPE = np.int32 FLOAT_TYPE = np.float32 ################################################################################ # Model # ################################################################################ class Model(object): def __init__(self, scope, sess): self.scope = scope self.sess = sess #建立输入图, def build_input_graph(self, vocab_size, emb_size, word_vocab_size, word_emb_size, word_window_size): """ Gather embeddings from lookup tables. """ seq_ids = tf.placeholder(dtype=INT_TYPE, shape=[None, None], name='seq_ids') seq_word_ids = [tf.placeholder(dtype=INT_TYPE, shape=[None, None], name='seq_feature_%d_ids' % i) for i in range(word_window_size)] embeddings = tf.get_variable('embeddings', [vocab_size, emb_size]) embedding_output = tf.nn.embedding_lookup([embeddings], seq_ids) word_outputs = [] word_embeddings = tf.get_variable('word_embeddings', [word_vocab_size, word_emb_size]) for i in range(word_window_size): word_outputs.append(tf.nn.embedding_lookup([word_embeddings], seq_word_ids[i])) return seq_ids, seq_word_ids, tf.concat([embedding_output] + word_outputs, 2, 'inputs') def build_tagging_graph(self, inputs, hidden_layers, channels, num_tags, use_crf, lamd, dropout_emb, dropout_hidden, kernel_size, use_bn, use_wn, active_type): """ Build a deep neural model for sequence tagging. """ stag_ids = tf.placeholder(dtype=INT_TYPE, shape=[None, None], name='stag_ids') seq_lengths = tf.placeholder(dtype=INT_TYPE, shape=[None], name='seq_lengths') # Default is not train. is_train = tf.placeholder(dtype=tf.bool, shape=[], name='is_train') masks = tf.cast(tf.sequence_mask(seq_lengths), FLOAT_TYPE) # Dropout on embedding output. if dropout_emb: inputs = tf.cond(is_train, lambda: tf.nn.dropout(inputs, 1 - dropout_emb), lambda: inputs) #这里的tf.cond就是if 和 else操作 hidden_output = inputs pre_channels = inputs.get_shape()[-1].value for i in range(hidden_layers): k = kernel_size cur_channels = channels[i] filter_w = tf.get_variable('filter_w_%d' % i, shape=[k, pre_channels, cur_channels], dtype=FLOAT_TYPE) filter_v = tf.get_variable('filter_v_%d' % i, shape=[k, pre_channels, cur_channels], dtype=FLOAT_TYPE) bias_b = tf.get_variable('bias_b_%d' % i, shape=[cur_channels], initializer=tf.zeros_initializer(dtype=FLOAT_TYPE)) bias_c = tf.get_variable('bias_c_%d' % i, shape=[cur_channels], initializer=tf.zeros_initializer(dtype=FLOAT_TYPE)) # Weight normalization. if use_wn: epsilon = 1e-12 g_w = tf.get_variable('g_w_%d' % i, shape=[k, 1, cur_channels], dtype=FLOAT_TYPE) g_v = tf.get_variable('g_v_%d' % i, shape=[k, 1, cur_channels], dtype=FLOAT_TYPE) # Perform wn filter_w = g_w * filter_w / (tf.sqrt(tf.reduce_sum(filter_w ** 2, 1, keep_dims=True)) + epsilon) filter_v = g_v * filter_v / (tf.sqrt(tf.reduce_sum(filter_v ** 2, 1, keep_dims=True)) + epsilon) w = tf.nn.conv1d(hidden_output, filter_w, 1, 'SAME') + bias_b v = tf.nn.conv1d(hidden_output, filter_v, 1, 'SAME') + bias_c if use_bn: w = layers.batch_norm(inputs=v, decay=0.9, is_training=is_train, center=True, scale=True, scope='BatchNorm_w_%d' % i) v = layers.batch_norm(inputs=w, decay=0.9, is_training=is_train, center=True, scale=True, scope='BatchNorm_v_%d' % i) if active_type == 'glu': hidden_output = w * tf.nn.sigmoid(v) elif active_type == 'relu': hidden_output = tf.nn.relu(w) elif active_type == 'gtu': hidden_output = tf.tanh(w) * tf.nn.sigmoid(v) elif active_type == 'tanh': hidden_output = tf.tanh(w) elif active_type == 'linear': hidden_output = w elif active_type == 'bilinear': hidden_output = w * v # Mask paddings. hidden_output = hidden_output * tf.expand_dims(masks, -1) # Dropout on hidden output. if dropout_hidden: hidden_output = tf.cond(is_train, lambda: tf.nn.dropout(hidden_output, 1 - dropout_hidden), lambda: hidden_output ) pre_channels = cur_channels # Un-scaled log probabilities. scores = layers.fully_connected(hidden_output, num_tags, tf.identity) if use_crf: cost, transitions = crf.crf_log_likelihood(inputs=scores, tag_indices=stag_ids, sequence_lengths=seq_lengths) cost = - tf.reduce_mean(cost) else: reshaped_scores = tf.reshape(scores, [-1, num_tags]) reshaped_stag_ids = tf.reshape(stag_ids, [-1]) real_distribution = layers.one_hot_encoding(reshaped_stag_ids, num_tags) cost = tf.nn.softmax_cross_entropy_with_logits(reshaped_scores, real_distribution) cost = tf.reduce_sum(tf.reshape(cost, tf.shape(stag_ids)) * masks) / tf.cast(tf.shape(inputs)[0], FLOAT_TYPE) # Calculate L2 penalty. l2_penalty = 0 if lamd > 0: for v in tf.trainable_variables(): if '/B:' not in v.name and '/biases:' not in v.name: l2_penalty += lamd * tf.nn.l2_loss(v) train_cost = cost + l2_penalty # Summary cost. tf.summary.scalar('cost', cost) summaries = tf.summary.merge_all() update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) if update_ops: updates = tf.group(*update_ops) with tf.control_dependencies([updates]): cost = tf.identity(cost) return stag_ids, seq_lengths, is_train, cost, train_cost, scores, summaries def build_graph(self): parameters = self.parameters with tf.variable_scope(name_or_scope=self.scope, initializer=tf.uniform_unit_scaling_initializer()): seq_ids_pl, seq_other_ids_pls, inputs = self.build_input_graph(vocab_size=parameters['vocab_size'], emb_size=parameters['emb_size'], word_window_size=parameters['word_window_size'], word_vocab_size=parameters['word_vocab_size'], word_emb_size=parameters['word_emb_size']) stag_ids_pl, seq_lengths_pl, is_train_pl, cost_op, train_cost_op, scores_op, summary_op = \ self.build_tagging_graph(inputs=inputs, num_tags=parameters['num_tags'], use_crf=parameters['use_crf'], lamd=parameters['lamd'], dropout_emb=parameters['dropout_emb'], dropout_hidden=parameters['dropout_hidden'], hidden_layers=parameters['hidden_layers'], channels=parameters['channels'], kernel_size=parameters['kernel_size'], use_bn=parameters['use_bn'], use_wn=parameters['use_wn'], active_type=parameters['active_type']) self.seq_ids_pl = seq_ids_pl self.seq_other_ids_pls = seq_other_ids_pls self.stag_ids_pl = stag_ids_pl self.seq_lengths_pl = seq_lengths_pl self.is_train_pl = is_train_pl self.cost_op = cost_op self.train_cost_op = train_cost_op self.scores_op = scores_op self.summary_op = summary_op def inference(self, scores, sequence_lengths=None): """ Inference label sequence given scores. If transitions is given, then perform veterbi search, else perform greedy search. Args: scores: A numpy array with shape (batch, max_length, num_tags). sequence_lengths: A numpy array with shape (batch,). Returns: A numpy array with shape (batch, max_length). """ if not self.parameters['use_crf']: return np.argmax(scores, 2) else: with tf.variable_scope(self.scope, reuse=True): transitions = tf.get_variable('transitions').eval(session=self.sess) paths = np.zeros(scores.shape[:2], dtype=INT_TYPE) for i in range(scores.shape[0]): tag_score, length = scores[i], sequence_lengths[i] if length == 0: continue path, _ = crf.viterbi_decode(tag_score[:length], transitions) paths[i, :length] = path return paths def train(self, train_data, dev_data, test_data, model_dir, log_dir, emb_size, word_emb_size, optimizer, hidden_layers, channels, kernel_size, active_type, use_bn, use_wn, use_crf, lamd, dropout_emb, dropout_hidden, evaluator, batch_size, eval_batch_size, pre_trained_emb_path, fix_word_emb, reserve_all_word_emb, pre_trained_word_emb_path, max_epoches, print_freq): """ This function is the main function for preparing data and training the model. """ assert len(channels) == hidden_layers # Parse optimization method and parameters. optimizer = optimizer.split('_') optimizer_name = optimizer[0] optimizer_options = [eval(i) for i in optimizer[1:]] optimizer = { 'sgd': tf.train.GradientDescentOptimizer, 'adadelta': tf.train.AdadeltaOptimizer, 'adam': tf.train.AdamOptimizer, 'mom': tf.train.MomentumOptimizer }[optimizer_name](*optimizer_options) #这一步就是直接进行初始化了 ,因为optimizer_options是list,需要*打开 print('Preparing data...', end='') if not os.path.exists(model_dir): os.makedirs(model_dir) mappings_path = os.path.join(model_dir, 'mappings.pkl') parameters_path = os.path.join(model_dir, 'parameters.pkl') # Load character embeddings. pre_trained = {} if pre_trained_emb_path and os.path.isfile(pre_trained_emb_path):#预训练 embeding练模型 for l in codecs.open(pre_trained_emb_path, 'r', 'utf8'): we = l.split() if len(we) == emb_size + 1: w, e = we[0], np.array(map(float, we[1:])) pre_trained[w] = e # Load word embeddings. pre_trained_word = {} if pre_trained_word_emb_path and os.path.isfile(pre_trained_word_emb_path):#预训练字embeding练模型 for l in codecs.open(pre_trained_word_emb_path, 'r', 'utf8', 'ignore'): we = l.split() if len(we) == word_emb_size + 1: w, e = we[0], np.array(map(float, we[1:])) pre_trained_word[w] = e # Load or create mappings. if os.path.isfile(mappings_path): print(mappings_path) b = open(mappings_path, 'r',encoding="utf-8") print(b,type(b)) item2id, id2item, tag2id, id2tag, word2id, id2word = pickle.load(open(mappings_path, 'rb')) #python3 需要改为 rb else: # train_data [([word],[word]),([tag],[tag])] # print(train_data,type(train_data)) b = create_dic(train_data[0], add_unk=True, add_pad=True)#返回每个字的词频,以字典形式保存 item2id, id2item = create_mapping(b)#文字和id的映射 tag2id, id2tag = create_mapping(create_dic(train_data[-1]))#tag到id的映射 #下面的一段代码,很奇怪。 words = [] for t in train_data[1:-1]: words.extend(t) for t in dev_data[1:-1]: words.extend(t) for t in test_data[1:-1]: words.extend(t) word_dic = create_dic(words, add_unk=True, add_pad=True) for k in word_dic.keys(): if k not in pre_trained_word and k != '<UNK>' and k != '<PAD>': word_dic.pop(k) if reserve_all_word_emb: for w in pre_trained_word: if w not in word_dic: word_dic[w] = 0 word2id, id2word = create_mapping(word_dic) # Save the mappings to disk. pickle.dump((item2id, id2item, tag2id, id2tag, word2id, id2word), open(mappings_path, 'wb')) #python3,需要改为wb # Hyper parameters. word_window_size = len(train_data) - 2 parameters = { 'vocab_size': len(item2id), 'emb_size': emb_size, 'word_window_size': word_window_size, 'word_vocab_size': len(word2id), 'word_emb_size': word_emb_size, 'hidden_layers': hidden_layers, 'channels': channels, 'kernel_size': kernel_size, 'use_bn': use_bn, 'use_wn': use_wn, 'num_tags': len(tag2id), 'use_crf': use_crf, 'lamd': lamd, 'dropout_emb': dropout_emb, 'dropout_hidden': dropout_hidden, 'active_type': active_type } if os.path.isfile(parameters_path): parameters_old = pickle.load(open(parameters_path, 'rb')) if parameters != parameters_old: raise Exception('Network parameters are not consistent!') else: pickle.dump(parameters, open(parameters_path, 'wb')) self.item2id = item2id self.id2item = id2item self.tag2id = tag2id self.id2tag = id2tag self.word2id = word2id self.id2word = id2word self.parameters = parameters # Convert data to corresponding ids. train_data_ids = data_to_ids( train_data, [item2id] + [word2id] * word_window_size + [tag2id] ) print('Finished.') print("Start building the network...", end='') self.build_graph() print('Finished.') def summary(name, dtype=FLOAT_TYPE): value = tf.placeholder(dtype, shape=[]) return value, tf.summary.scalar(name, value) dev_f1_pl, dev_summary_op = summary('dev f1') test_f1_pl, test_summary_op = summary('test f1') # Clip gradients and apply. grads_and_vars = optimizer.compute_gradients(loss=self.train_cost_op, var_list=tf.trainable_variables()) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] # If use fixed word embeddings, remove the grad if fix_word_emb: grads_and_vars = [(g, v) for g, v in grads_and_vars if '/word_embeddings' not in v.name] grads_summary_op = tf.summary.histogram('grads', tf.concat([tf.reshape(g, [-1]) for g, _ in grads_and_vars], 0)) grads_norm = tf.sqrt(sum([tf.reduce_sum(tf.pow(g, 2)) for g, _ in grads_and_vars])) grads_and_vars = [(g / (tf.reduce_max([grads_norm, 5]) / 5), v) for g, v in grads_and_vars] train_op = optimizer.apply_gradients(grads_and_vars) # Variables for recording training procedure. best_epoch = tf.get_variable('best_epoch', shape=[], initializer=tf.zeros_initializer(), trainable=False, dtype=INT_TYPE) best_step = tf.get_variable('best_step', shape=[], initializer=tf.zeros_initializer(), trainable=False, dtype=INT_TYPE) best_dev_score = tf.get_variable('best_dev_score', shape=[], initializer=tf.zeros_initializer(), trainable=False, dtype=FLOAT_TYPE) best_test_score = tf.get_variable('best_test_score', shape=[], initializer=tf.zeros_initializer(), trainable=False, dtype=FLOAT_TYPE) init_op = tf.global_variables_initializer() saver = tf.train.Saver(tf.global_variables()) summary_writer = tf.summary.FileWriter(log_dir + '/summaries') print('Finished.') print('Start training the network...') self.sess.run(init_op) start_time_begin = time.time() try: checkpoint = tf.train.latest_checkpoint(model_dir) saver.restore(self.sess, checkpoint) print('Restore model from %s.' % checkpoint) except (tf.errors.DataLossError, TypeError, Exception): # Failed to restore model from disk. Load pre-trained embeddings. # Load character embeddings. with tf.variable_scope(self.scope, reuse=True): embeddings = tf.get_variable('embeddings') value = self.sess.run(embeddings) count = 0 for item in item2id: item_id = item2id[item] if item in pre_trained: value[item_id] = pre_trained[item] count += 1 # Run assign op. self.sess.run(embeddings.assign(value)) del (pre_trained) print('%d of %d character embeddings were loaded from pre-trained.' % (count, len(item2id))) # Load word embeddings. with tf.variable_scope(self.scope, reuse=True): word_embeddings = tf.get_variable('word_embeddings') value = self.sess.run(word_embeddings) count = 0 for item in word2id: item_id = word2id[item] if item in pre_trained_word: value[item_id] = pre_trained_word[item] count += 1 # Run assign op. self.sess.run(word_embeddings.assign(value)) del (pre_trained_word) print('%d of %d word embeddings were loaded from pre-trained.' % (count, len(word2id))) start_epoch, global_step, best_dev_f1 = self.sess.run((best_epoch, best_step, best_dev_score)) for epoch in range(start_epoch + 1, max_epoches + 1): print('Starting epoch %d...' % epoch) start_time = time.time() loss_ep = 0 n_step = 0 iterator = data_iterator(train_data_ids, batch_size, shuffle=True) for batch in iterator: batch = create_input(batch) seq_ids, seq_other_ids_list, stag_ids, seq_lengths = batch[0], batch[1: -2], batch[-2], batch[-1] feed_dict = {self.seq_ids_pl: seq_ids.astype(INT_TYPE), self.stag_ids_pl: stag_ids.astype(INT_TYPE), self.seq_lengths_pl: seq_lengths.astype(INT_TYPE), self.is_train_pl: True} assert len(self.seq_other_ids_pls) == len(seq_other_ids_list) for pl, v in zip(self.seq_other_ids_pls, seq_other_ids_list): feed_dict[pl] = v # feed_dict.update(drop_feed_dict) # enable noise input loss, summaries, grads_summaries, _ = self.sess.run( [self.cost_op, self.summary_op, grads_summary_op, train_op], feed_dict=feed_dict) loss_ep += loss n_step += 1 global_step += 1 summary_writer.add_summary(summaries, global_step) summary_writer.add_summary(grads_summaries, global_step) # Show training information. if global_step % print_freq == 0: print(' Step %d, current cost %.6f, average cost %.6f' % (global_step, loss, loss_ep / n_step)) loss_ep = loss_ep / n_step print('Epoch %d finished. Time: %ds Cost: %.6f' % (epoch, time.time() - start_time, loss_ep)) # Evaluate precision, recall and f1 with an external script. dev_pre, dev_rec, dev_f1 = \ evaluator((dev_data[0], dev_data[-1], self.tag_all(dev_data[:-1], eval_batch_size)[1]), log_dir + '/dev', epoch) test_pre, test_rec, test_f1 = \ evaluator((test_data[0], test_data[-1], self.tag_all(test_data[:-1], eval_batch_size)[1]), log_dir + '/test', epoch) # Summary dev and test F1 score. summary_writer.add_summary(self.sess.run(dev_summary_op, {dev_f1_pl: dev_f1}), epoch) summary_writer.add_summary(self.sess.run(test_summary_op, {test_f1_pl: test_f1}), epoch) print("Dev precision / recall / f1 score: %.2f / %.2f / %.2f" % (dev_pre * 100, dev_rec * 100, dev_f1 * 100)) print("Test precision / recall / f1 score: %.2f / %.2f / %.2f" % (test_pre * 100, test_rec * 100, test_f1 * 100)) if dev_f1 > best_dev_f1: best_dev_f1 = dev_f1 self.sess.run((tf.assign(best_epoch, epoch), tf.assign(best_dev_score, dev_f1), tf.assign(best_test_score, test_f1), tf.assign(best_step, global_step))) path = saver.save(self.sess, model_dir + '/model', epoch) print('New best score on dev.') print('Save model at %s.' % path) print('Finished.') print('Total training time: %fs.' % (time.time() - start_time_begin)) def load_model(self, model_dir): mappings_path = os.path.join(model_dir, 'mappings.pkl') parameters_path = os.path.join(model_dir, 'parameters.pkl') item2id, id2item, tag2id, id2tag, word2id, id2word = \ pickle.load(open(mappings_path, 'r')) parameters = pickle.load(open(parameters_path)) self.item2id = item2id self.id2item = id2item self.tag2id = tag2id self.id2tag = id2tag self.word2id = word2id self.id2word = id2word self.parameters = parameters print(parameters) print('Building input graph...', end='') self.build_graph() print('Finished.') print('Initializing variables...', end='') init_op = tf.initialize_all_variables() self.sess.run(init_op) print('Finished.') print('Reloading parameters...', end='') saver = tf.train.Saver(tf.global_variables()) checkpoint = tf.train.latest_checkpoint(model_dir) saver.restore(self.sess, checkpoint) print('Finished.') def tag(self, data_iter): """A tagging function. Args: data_iter: A iterator for generate batches. Returns: A generator for tagging result. """ output = [] for data in data_iter: batch = data_to_ids(data, [self.item2id] + [self.word2id] * self.parameters['word_window_size']) batch = create_input(batch) seq_ids, seq_other_ids_list, seq_lengths = batch[0], batch[1: -1], batch[-1] feed_dict = {self.seq_ids_pl: seq_ids.astype(INT_TYPE), self.seq_lengths_pl: seq_lengths.astype(INT_TYPE), self.is_train_pl: False} for pl, v in zip(self.seq_other_ids_pls, seq_other_ids_list): feed_dict[pl] = v.astype(INT_TYPE) scores = self.sess.run(self.scores_op, feed_dict) stag_ids = self.inference(scores, seq_lengths) for seq, stag_id, length in zip(data[0], stag_ids, seq_lengths): output.append((seq, [self.id2tag[t] for t in stag_id[:length]])) yield zip(*output) output = [] def tag_all(self, data, batch_size): data_iter = data_iterator(data, batch_size=batch_size, shuffle=False) output = [] for b in self.tag(data_iter): output.extend(zip(*b)) return list(zip(*output)) ################################################################################ # DATA UTILS # ################################################################################ #这方法是统计每个字出现的频率 def create_dic(item_list, add_unk=False, add_pad=False): """ Create a dictionary of items from a list of list of items. """ assert type(item_list) in (list, tuple) dic = {} for items in item_list: for item in items: if item not in dic: dic[item] = 1 else: dic[item] += 1 # Make sure that <PAD> have a id 0. if add_pad: dic['<PAD>'] = 1e20 # If specified, add a special item <UNK>. if add_unk: dic['<UNK>'] = 1e10 return dic def create_mapping(items): """ Create a mapping (item to ID / ID to item) from a dictionary. Items are ordered by decreasing frequency. """ if type(items) is dict: sorted_items = sorted(items.items(), key=lambda x: (-x[1], x[0]))# 按照词频从大到小排序,并且返回形式如:(字:词频) id2item = {i: v[0] for i, v in enumerate(sorted_items)} #返回一个每个字:所在的位置,形式如:{0: '<PAD>', 1: '<UNK>', 2: ',', 3: '的', 4: '。'} item2id = {v: k for k, v in id2item.items()}#把上面的形式,key变成value,value变成key return item2id, id2item elif type(items) is list: id2item = {i: v for i, v in enumerate(items)} item2id = {v: k for k, v in id2item.items()} return item2id, id2item def create_input(batch): """ Take each sentence data in batch and return an input for the training or the evaluation function. """ assert len(batch) > 0 lengths = [len(seq) for seq in batch[0]] max_len = max(2, max(lengths)) ret = [] for d in batch: dd = [] for seq_id, pos in zip(d, lengths): assert len(seq_id) == pos pad = [0] * (max_len - pos) dd.append(seq_id + pad) ret.append(np.array(dd)) ret.append(np.array(lengths)) return ret def data_to_ids(data, mappings): """ Map text data to ids. """ #全角转半角 def strQ2B(ustring): rstring = "" for uchar in ustring: inside_code = ord(uchar) if inside_code == 12288: inside_code = 32 elif 65281 <= inside_code <= 65374: inside_code -= 65248 rstring += chr(inside_code) return rstring #半角转全角 def strB2Q(ustring): rstring = "" for uchar in ustring: inside_code = ord(uchar) if inside_code == 32: inside_code = 12288 elif 32 <= inside_code <= 126: inside_code += 65248 rstring += chr(inside_code) return rstring def map(item, mapping): if item in mapping: return mapping[item] item = strB2Q(item) if item in mapping: return mapping[item] item = strQ2B(item) if item in mapping: return mapping[item] return mapping['<UNK>'] def map_seq(seqsx, mapping): return [[map(item, mapping) for item in seq] for seq in seqsx] ret = [] for d, m in zip(data, mappings): print(np.shape(data),np.shape(mappings)) print(np.shape(d),np.shape(m)) ret.append(map_seq(d, m)) return tuple(ret) def data_iterator(inputs, batch_size, shuffle=True, max_length=200): """ A simple iterator for generating dynamic mini batches. """ assert len(inputs) > 0 assert all([len(item) == len(inputs[0]) for item in inputs]) inputs = list(zip(*inputs)) if shuffle: np.random.shuffle(inputs) batch = [] bs = batch_size for d in inputs: if len(d[0]) > max_length: bs = max(1, min(batch_size * max_length / len(d[0]), bs)) if len(batch) < bs: batch.append(d) else: yield list(zip(*batch)) batch = [d] if len(d[0]) < max_length: bs = batch_size else: bs = max(1, batch_size * max_length / len(d[0])) if batch: yield list(zip(*batch))
43.442136
131
0.555294
7352c08c3df705bbb0de6ece15eaa02958efb3e7
1,436
py
Python
test/test_bad_request_source.py
hypostulate/mbta-api-client
f18903b6269c523c733a31574ff4579349fed3f8
[ "MIT" ]
null
null
null
test/test_bad_request_source.py
hypostulate/mbta-api-client
f18903b6269c523c733a31574ff4579349fed3f8
[ "MIT" ]
null
null
null
test/test_bad_request_source.py
hypostulate/mbta-api-client
f18903b6269c523c733a31574ff4579349fed3f8
[ "MIT" ]
null
null
null
# coding: utf-8 """ MBTA MBTA service API. https://www.mbta.com Source code: https://github.com/mbta/api # noqa: E501 The version of the OpenAPI document: 3.0 Contact: developer@mbta.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import openapi_client from openapi_client.models.bad_request_source import BadRequestSource # noqa: E501 from openapi_client.rest import ApiException class TestBadRequestSource(unittest.TestCase): """BadRequestSource unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test BadRequestSource include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = openapi_client.models.bad_request_source.BadRequestSource() # noqa: E501 if include_optional : return BadRequestSource( parameter = 'sort' ) else : return BadRequestSource( ) def testBadRequestSource(self): """Test BadRequestSource""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
26.592593
97
0.676184
d00dc8f0343d56d319263b74102fea2cd36830c1
3,735
py
Python
nbox/framework/__init__.py
NimbleBoxAI/aibox
9d1f76dd6b5d1435dc3f351800153db76cc1369c
[ "BSD-3-Clause" ]
9
2021-09-28T19:01:39.000Z
2022-03-22T19:01:29.000Z
nbox/framework/__init__.py
NimbleBoxAI/nbox
9d1f76dd6b5d1435dc3f351800153db76cc1369c
[ "BSD-3-Clause" ]
2
2021-08-06T10:25:41.000Z
2022-03-18T08:31:19.000Z
nbox/framework/__init__.py
NimbleBoxAI/nbox
9d1f76dd6b5d1435dc3f351800153db76cc1369c
[ "BSD-3-Clause" ]
4
2021-09-17T12:40:44.000Z
2022-02-16T06:14:44.000Z
r"""This submodule concerns itself with conversion of different framworks to other frameworks. It achieves this by providing a fix set of functions for each framework. There are a couple of caveats that the developer must know about. 1. We use joblib to serialize the model, see `reason <https://stackoverflow.com/questions/12615525/what-are-the-different-use-cases-of-joblib-versus-pickle>`_ \ so when you will try to unpickle the model ``pickle`` will not work correctly and will throw the error ``_pickle.UnpicklingError: invalid load key, '\x00'``. So ensure that you use ``joblib``. 2. Serializing torch models directly is a bit tricky and weird, you can read more about it `here <https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/docs/serialization.md>`_, so technically pytorch torch.save() automatically pickles the object along with the required datapoint (model hierarchy, constants, data, etc.) Lazy Loading ------------ Lazy loading is a mechanism that allows you to load the model only when you need it, this is easier said than done because you need to add many checks and balances at varaious locations in the code. The way it works here is that we check from a list of modules which are required to import which part of the model. Documentation ------------- """ # this function is for getting the meta data and is framework agnostic, so adding this in the # __init__ of framework submodule def get_meta(input_names, input_shapes, args, output_names, output_shapes, outputs): """Generic method to convert the inputs to get ``nbox_meta['metadata']`` dictionary""" # get the meta object def __get_struct(names_, shapes_, tensors_): return { name: { "dtype": str(tensor.dtype), "tensorShape": {"dim": [{"name": "", "size": x} for x in shapes], "unknownRank": False}, "name": name, } for name, shapes, tensor in zip(names_, shapes_, tensors_) } meta = {"inputs": __get_struct(input_names, input_shapes, args), "outputs": __get_struct(output_names, output_shapes, outputs)} return meta __all__ = ["get_meta"] from types import SimpleNamespace from ..utils import _isthere, folder, join def update_all_lazy_loading(*modules, fname): """Lazy load modules and update the ``__all__`` list""" import sys global __all__ if _isthere(*modules): sys.path.append(join(folder(__file__), f"{fname}.py")) _all_name = f"{fname}_all" eval(f"from .{fname} import *") eval(f"from .{fname} import __all__ as {_all_name}") maps = {f"{x}": globals()[x] for x in _all_name} maps.update({"IMPORTS": [*modules]}) _name_of_module = fname.strip("_") eval(f"{_name_of_module} = SimpleNamespace(**maps)") __all__ += [f"{_name_of_module}"] # update_all_lazy_loading("torch", fname = "__pytorch") # update_all_lazy_loading("sklearn", "sk2onnx", fname = "__sklearn") _pt_modules = ["torch"] if _isthere(*_pt_modules): from .__pytorch import * from .__pytorch import __all__ as _pt_all maps = {f"{x}": globals()[x] for x in _pt_all} maps.update({"IMPORTS": _pt_modules}) pytorch = SimpleNamespace(**maps) __all__ += ["pytorch"] _sk_modules = ["sklearn", "sk2onnx"] if _isthere(*_sk_modules): from .__sklearn import * from .__sklearn import __all__ as _sk_all maps = {f"{x}": globals()[x] for x in _sk_all} maps.update({"IMPORTS": _sk_modules}) sklearn = SimpleNamespace(**maps) __all__ += ["sklearn"] _onnx_modules = ["onnx", "onnxruntime"] if _isthere(*_onnx_modules): maps = {"IMPORTS": _onnx_modules} onnx = SimpleNamespace(**maps) __all__ += ["onnx"]
40.16129
160
0.685408
dc9e185ca9f3550d54cd41d0a8182bf42957cefe
7,451
py
Python
homeassistant/components/screenlogic/climate.py
tizzen33/core
2a1884a1f7a07848b8b63afd29f59c81f1ffaf62
[ "Apache-2.0" ]
7
2019-08-15T13:36:58.000Z
2020-03-18T10:46:29.000Z
homeassistant/components/screenlogic/climate.py
tizzen33/core
2a1884a1f7a07848b8b63afd29f59c81f1ffaf62
[ "Apache-2.0" ]
87
2020-07-15T13:43:35.000Z
2022-03-23T07:43:10.000Z
homeassistant/components/screenlogic/climate.py
tizzen33/core
2a1884a1f7a07848b8b63afd29f59c81f1ffaf62
[ "Apache-2.0" ]
7
2018-10-04T10:12:45.000Z
2021-12-29T20:55:40.000Z
"""Support for a ScreenLogic heating device.""" import logging from screenlogicpy.const import DATA as SL_DATA, EQUIPMENT, HEAT_MODE from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import ( ATTR_PRESET_MODE, CURRENT_HVAC_HEAT, CURRENT_HVAC_IDLE, CURRENT_HVAC_OFF, HVAC_MODE_HEAT, HVAC_MODE_OFF, SUPPORT_PRESET_MODE, SUPPORT_TARGET_TEMPERATURE, ) from homeassistant.const import ATTR_TEMPERATURE, TEMP_CELSIUS, TEMP_FAHRENHEIT from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.restore_state import RestoreEntity from . import ScreenlogicEntity from .const import DOMAIN _LOGGER = logging.getLogger(__name__) SUPPORTED_FEATURES = SUPPORT_TARGET_TEMPERATURE | SUPPORT_PRESET_MODE SUPPORTED_MODES = [HVAC_MODE_OFF, HVAC_MODE_HEAT] SUPPORTED_PRESETS = [ HEAT_MODE.SOLAR, HEAT_MODE.SOLAR_PREFERRED, HEAT_MODE.HEATER, ] async def async_setup_entry(hass, config_entry, async_add_entities): """Set up entry.""" entities = [] coordinator = hass.data[DOMAIN][config_entry.entry_id] for body in coordinator.data[SL_DATA.KEY_BODIES]: entities.append(ScreenLogicClimate(coordinator, body)) async_add_entities(entities) class ScreenLogicClimate(ScreenlogicEntity, ClimateEntity, RestoreEntity): """Represents a ScreenLogic climate entity.""" def __init__(self, coordinator, body): """Initialize a ScreenLogic climate entity.""" super().__init__(coordinator, body) self._configured_heat_modes = [] # Is solar listed as available equipment? if self.coordinator.data["config"]["equipment_flags"] & EQUIPMENT.FLAG_SOLAR: self._configured_heat_modes.extend( [HEAT_MODE.SOLAR, HEAT_MODE.SOLAR_PREFERRED] ) self._configured_heat_modes.append(HEAT_MODE.HEATER) self._last_preset = None @property def name(self) -> str: """Name of the heater.""" ent_name = self.body["heat_status"]["name"] return f"{self.gateway_name} {ent_name}" @property def min_temp(self) -> float: """Minimum allowed temperature.""" return self.body["min_set_point"]["value"] @property def max_temp(self) -> float: """Maximum allowed temperature.""" return self.body["max_set_point"]["value"] @property def current_temperature(self) -> float: """Return water temperature.""" return self.body["last_temperature"]["value"] @property def target_temperature(self) -> float: """Target temperature.""" return self.body["heat_set_point"]["value"] @property def temperature_unit(self) -> str: """Return the unit of measurement.""" if self.config_data["is_celsius"]["value"] == 1: return TEMP_CELSIUS return TEMP_FAHRENHEIT @property def hvac_mode(self) -> str: """Return the current hvac mode.""" if self.body["heat_mode"]["value"] > 0: return HVAC_MODE_HEAT return HVAC_MODE_OFF @property def hvac_modes(self): """Return th supported hvac modes.""" return SUPPORTED_MODES @property def hvac_action(self) -> str: """Return the current action of the heater.""" if self.body["heat_status"]["value"] > 0: return CURRENT_HVAC_HEAT if self.hvac_mode == HVAC_MODE_HEAT: return CURRENT_HVAC_IDLE return CURRENT_HVAC_OFF @property def preset_mode(self) -> str: """Return current/last preset mode.""" if self.hvac_mode == HVAC_MODE_OFF: return HEAT_MODE.NAME_FOR_NUM[self._last_preset] return HEAT_MODE.NAME_FOR_NUM[self.body["heat_mode"]["value"]] @property def preset_modes(self): """All available presets.""" return [ HEAT_MODE.NAME_FOR_NUM[mode_num] for mode_num in self._configured_heat_modes ] @property def supported_features(self): """Supported features of the heater.""" return SUPPORTED_FEATURES async def async_set_temperature(self, **kwargs) -> None: """Change the setpoint of the heater.""" if (temperature := kwargs.get(ATTR_TEMPERATURE)) is None: raise ValueError(f"Expected attribute {ATTR_TEMPERATURE}") async with self.coordinator.api_lock: success = await self.hass.async_add_executor_job( self.gateway.set_heat_temp, int(self._data_key), int(temperature) ) if success: await self.coordinator.async_request_refresh() else: raise HomeAssistantError( f"Failed to set_temperature {temperature} on body {self.body['body_type']['value']}" ) async def async_set_hvac_mode(self, hvac_mode) -> None: """Set the operation mode.""" if hvac_mode == HVAC_MODE_OFF: mode = HEAT_MODE.OFF else: mode = HEAT_MODE.NUM_FOR_NAME[self.preset_mode] async with self.coordinator.api_lock: success = await self.hass.async_add_executor_job( self.gateway.set_heat_mode, int(self._data_key), int(mode) ) if success: await self.coordinator.async_request_refresh() else: raise HomeAssistantError( f"Failed to set_hvac_mode {mode} on body {self.body['body_type']['value']}" ) async def async_set_preset_mode(self, preset_mode: str) -> None: """Set the preset mode.""" _LOGGER.debug("Setting last_preset to %s", HEAT_MODE.NUM_FOR_NAME[preset_mode]) self._last_preset = mode = HEAT_MODE.NUM_FOR_NAME[preset_mode] if self.hvac_mode == HVAC_MODE_OFF: return async with self.coordinator.api_lock: success = await self.hass.async_add_executor_job( self.gateway.set_heat_mode, int(self._data_key), int(mode) ) if success: await self.coordinator.async_request_refresh() else: raise HomeAssistantError( f"Failed to set_preset_mode {mode} on body {self.body['body_type']['value']}" ) async def async_added_to_hass(self): """Run when entity is about to be added.""" await super().async_added_to_hass() _LOGGER.debug("Startup last preset is %s", self._last_preset) if self._last_preset is not None: return prev_state = await self.async_get_last_state() if ( prev_state is not None and prev_state.attributes.get(ATTR_PRESET_MODE) is not None ): _LOGGER.debug( "Startup setting last_preset to %s from prev_state", HEAT_MODE.NUM_FOR_NAME[prev_state.attributes.get(ATTR_PRESET_MODE)], ) self._last_preset = HEAT_MODE.NUM_FOR_NAME[ prev_state.attributes.get(ATTR_PRESET_MODE) ] else: _LOGGER.debug( "Startup setting last_preset to default (%s)", self._configured_heat_modes[0], ) self._last_preset = self._configured_heat_modes[0] @property def body(self): """Shortcut to access body data.""" return self.coordinator.data[SL_DATA.KEY_BODIES][self._data_key]
33.714932
100
0.643404
187ba4f53fe90367dc3e93593f506e59cdfcee16
78,980
py
Python
runs/2016/dnn2016med_traps/traps9/src/dataset.py
rohit21122012/DCASE2013
5360402265331d1c9032cf0fa94ef73f8c3c1047
[ "MIT" ]
2
2016-10-19T06:26:50.000Z
2016-10-19T13:39:42.000Z
runs/2016/dnn2016med_traps/traps9/src/dataset.py
rohit21122012/DCASE2013
5360402265331d1c9032cf0fa94ef73f8c3c1047
[ "MIT" ]
null
null
null
runs/2016/dnn2016med_traps/traps9/src/dataset.py
rohit21122012/DCASE2013
5360402265331d1c9032cf0fa94ef73f8c3c1047
[ "MIT" ]
2
2016-06-29T02:32:05.000Z
2017-08-05T08:15:11.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import locale import socket import tarfile import urllib2 import zipfile from sklearn.cross_validation import StratifiedShuffleSplit, KFold from files import * from general import * from ui import * class Dataset(object): """Dataset base class. The specific dataset classes are inherited from this class, and only needed methods are reimplemented. """ def __init__(self, data_path='data', name='dataset'): """__init__ method. Parameters ---------- data_path : str Basepath where the dataset is stored. (Default value='data') """ # Folder name for dataset self.name = name # Path to the dataset self.local_path = os.path.join(data_path, self.name) # Create the dataset path if does not exist if not os.path.isdir(self.local_path): os.makedirs(self.local_path) # Evaluation setup folder self.evaluation_setup_folder = 'evaluation_setup' # Path to the folder containing evaluation setup files self.evaluation_setup_path = os.path.join(self.local_path, self.evaluation_setup_folder) # Meta data file, csv-format self.meta_filename = 'meta.txt' # Path to meta data file self.meta_file = os.path.join(self.local_path, self.meta_filename) # Hash file to detect removed or added files self.filelisthash_filename = 'filelist.hash' # Number of evaluation folds self.evaluation_folds = 1 # List containing dataset package items # Define this in the inherited class. # Format: # { # 'remote_package': download_url, # 'local_package': os.path.join(self.local_path, 'name_of_downloaded_package'), # 'local_audio_path': os.path.join(self.local_path, 'name_of_folder_containing_audio_files'), # } self.package_list = [] # List of audio files self.files = None # List of meta data dict self.meta_data = None # Training meta data for folds self.evaluation_data_train = {} # Testing meta data for folds self.evaluation_data_test = {} # Recognized audio extensions self.audio_extensions = {'wav', 'flac'} # Info fields for dataset self.authors = '' self.name_remote = '' self.url = '' self.audio_source = '' self.audio_type = '' self.recording_device_model = '' self.microphone_model = '' @property def audio_files(self): """Get all audio files in the dataset Parameters ---------- Nothing Returns ------- filelist : list File list with absolute paths """ if self.files is None: self.files = [] for item in self.package_list: path = item['local_audio_path'] if path: l = os.listdir(path) for f in l: file_name, file_extension = os.path.splitext(f) if file_extension[1:] in self.audio_extensions: self.files.append(os.path.abspath(os.path.join(path, f))) self.files.sort() return self.files @property def audio_file_count(self): """Get number of audio files in dataset Parameters ---------- Nothing Returns ------- filecount : int Number of audio files """ return len(self.audio_files) @property def meta(self): """Get meta data for dataset. If not already read from disk, data is read and returned. Parameters ---------- Nothing Returns ------- meta_data : list List containing meta data as dict. Raises ------- IOError meta file not found. """ if self.meta_data is None: self.meta_data = [] meta_id = 0 if os.path.isfile(self.meta_file): f = open(self.meta_file, 'rt') try: reader = csv.reader(f, delimiter='\t') for row in reader: if len(row) == 2: # Scene meta self.meta_data.append({'file': row[0], 'scene_label': row[1].rstrip()}) elif len(row) == 4: # Audio tagging meta self.meta_data.append( {'file': row[0], 'scene_label': row[1].rstrip(), 'tag_string': row[2].rstrip(), 'tags': row[3].split(';')}) elif len(row) == 6: # Event meta self.meta_data.append({'file': row[0], 'scene_label': row[1].rstrip(), 'event_onset': float(row[2]), 'event_offset': float(row[3]), 'event_label': row[4].rstrip(), 'event_type': row[5].rstrip(), 'id': meta_id }) meta_id += 1 finally: f.close() else: raise IOError("Meta file not found [%s]" % self.meta_file) return self.meta_data @property def meta_count(self): """Number of meta data items. Parameters ---------- Nothing Returns ------- meta_item_count : int Meta data item count """ return len(self.meta) @property def fold_count(self): """Number of fold in the evaluation setup. Parameters ---------- Nothing Returns ------- fold_count : int Number of folds """ return self.evaluation_folds @property def scene_labels(self): """List of unique scene labels in the meta data. Parameters ---------- Nothing Returns ------- labels : list List of scene labels in alphabetical order. """ labels = [] for item in self.meta: if 'scene_label' in item and item['scene_label'] not in labels: labels.append(item['scene_label']) labels.sort() return labels @property def scene_label_count(self): """Number of unique scene labels in the meta data. Parameters ---------- Nothing Returns ------- scene_label_count : int Number of unique scene labels. """ return len(self.scene_labels) @property def event_labels(self): """List of unique event labels in the meta data. Parameters ---------- Nothing Returns ------- labels : list List of event labels in alphabetical order. """ labels = [] for item in self.meta: if 'event_label' in item and item['event_label'].rstrip() not in labels: labels.append(item['event_label'].rstrip()) labels.sort() return labels @property def event_label_count(self): """Number of unique event labels in the meta data. Parameters ---------- Nothing Returns ------- event_label_count : int Number of unique event labels """ return len(self.event_labels) @property def audio_tags(self): """List of unique audio tags in the meta data. Parameters ---------- Nothing Returns ------- labels : list List of audio tags in alphabetical order. """ tags = [] for item in self.meta: if 'tags' in item: for tag in item['tags']: if tag and tag not in tags: tags.append(tag) tags.sort() return tags @property def audio_tag_count(self): """Number of unique audio tags in the meta data. Parameters ---------- Nothing Returns ------- audio_tag_count : int Number of unique audio tags """ return len(self.audio_tags) def __getitem__(self, i): """Getting meta data item Parameters ---------- i : int item id Returns ------- meta_data : dict Meta data item """ if i < len(self.meta): return self.meta[i] else: return None def __iter__(self): """Iterator for meta data items Parameters ---------- Nothing Returns ------- Nothing """ i = 0 meta = self[i] # yield window while it's valid while meta is not None: yield meta # get next item i += 1 meta = self[i] @staticmethod def print_bytes(num_bytes): """Output number of bytes according to locale and with IEC binary prefixes Parameters ---------- num_bytes : int > 0 [scalar] Bytes Returns ------- bytes : str Human readable string """ KiB = 1024 MiB = KiB * KiB GiB = KiB * MiB TiB = KiB * GiB PiB = KiB * TiB EiB = KiB * PiB ZiB = KiB * EiB YiB = KiB * ZiB locale.setlocale(locale.LC_ALL, '') output = locale.format("%d", num_bytes, grouping=True) + ' bytes' if num_bytes > YiB: output += ' (%.4g YiB)' % (num_bytes / YiB) elif num_bytes > ZiB: output += ' (%.4g ZiB)' % (num_bytes / ZiB) elif num_bytes > EiB: output += ' (%.4g EiB)' % (num_bytes / EiB) elif num_bytes > PiB: output += ' (%.4g PiB)' % (num_bytes / PiB) elif num_bytes > TiB: output += ' (%.4g TiB)' % (num_bytes / TiB) elif num_bytes > GiB: output += ' (%.4g GiB)' % (num_bytes / GiB) elif num_bytes > MiB: output += ' (%.4g MiB)' % (num_bytes / MiB) elif num_bytes > KiB: output += ' (%.4g KiB)' % (num_bytes / KiB) return output def download(self): """Download dataset over the internet to the local path Parameters ---------- Nothing Returns ------- Nothing Raises ------- IOError Download failed. """ section_header('Download dataset') for item in self.package_list: try: if item['remote_package'] and not os.path.isfile(item['local_package']): data = None req = urllib2.Request(item['remote_package'], data, {}) handle = urllib2.urlopen(req) if "Content-Length" in handle.headers.items(): size = int(handle.info()["Content-Length"]) else: size = None actualSize = 0 blocksize = 64 * 1024 tmp_file = os.path.join(self.local_path, 'tmp_file') fo = open(tmp_file, "wb") terminate = False while not terminate: block = handle.read(blocksize) actualSize += len(block) if size: progress(title_text=os.path.split(item['local_package'])[1], percentage=actualSize / float(size), note=self.print_bytes(actualSize)) else: progress(title_text=os.path.split(item['local_package'])[1], note=self.print_bytes(actualSize)) if len(block) == 0: break fo.write(block) fo.close() os.rename(tmp_file, item['local_package']) except (urllib2.URLError, socket.timeout), e: try: fo.close() except: raise IOError('Download failed [%s]' % (item['remote_package'])) foot() def extract(self): """Extract the dataset packages Parameters ---------- Nothing Returns ------- Nothing """ section_header('Extract dataset') for item_id, item in enumerate(self.package_list): if item['local_package']: if item['local_package'].endswith('.zip'): with zipfile.ZipFile(item['local_package'], "r") as z: # Trick to omit first level folder parts = [] for name in z.namelist(): if not name.endswith('/'): parts.append(name.split('/')[:-1]) prefix = os.path.commonprefix(parts) or '' if prefix: if len(prefix) > 1: prefix_ = list() prefix_.append(prefix[0]) prefix = prefix_ prefix = '/'.join(prefix) + '/' offset = len(prefix) # Start extraction members = z.infolist() file_count = 1 for i, member in enumerate(members): if len(member.filename) > offset: member.filename = member.filename[offset:] if not os.path.isfile(os.path.join(self.local_path, member.filename)): z.extract(member, self.local_path) progress( title_text='Extracting [' + str(item_id) + '/' + str(len(self.package_list)) + ']', percentage=(file_count / float(len(members))), note=member.filename) file_count += 1 elif item['local_package'].endswith('.tar.gz'): tar = tarfile.open(item['local_package'], "r:gz") for i, tar_info in enumerate(tar): if not os.path.isfile(os.path.join(self.local_path, tar_info.name)): tar.extract(tar_info, self.local_path) progress(title_text='Extracting [' + str(item_id) + '/' + str(len(self.package_list)) + ']', note=tar_info.name) tar.members = [] tar.close() foot() def on_after_extract(self): """Dataset meta data preparation, this will be overloaded in dataset specific classes Parameters ---------- Nothing Returns ------- Nothing """ pass def get_filelist(self): """List of files under local_path Parameters ---------- Nothing Returns ------- filelist: list File list """ filelist = [] for path, subdirs, files in os.walk(self.local_path): for name in files: filelist.append(os.path.join(path, name)) return filelist def check_filelist(self): """Generates hash from file list and check does it matches with one saved in filelist.hash. If some files have been deleted or added, checking will result False. Parameters ---------- Nothing Returns ------- result: bool Result """ if os.path.isfile(os.path.join(self.local_path, self.filelisthash_filename)): hash = load_text(os.path.join(self.local_path, self.filelisthash_filename))[0] if hash != get_parameter_hash(sorted(self.get_filelist())): return False else: return True else: return False def save_filelist_hash(self): """Generates file list hash, and saves it as filelist.hash under local_path. Parameters ---------- Nothing Returns ------- Nothing """ filelist = self.get_filelist() filelist_hash_not_found = True for file in filelist: if self.filelisthash_filename in file: filelist_hash_not_found = False if filelist_hash_not_found: filelist.append(os.path.join(self.local_path, self.filelisthash_filename)) save_text(os.path.join(self.local_path, self.filelisthash_filename), get_parameter_hash(sorted(filelist))) def fetch(self): """Download, extract and prepare the dataset. Parameters ---------- Nothing Returns ------- Nothing """ if not self.check_filelist(): self.download() self.extract() self.on_after_extract() self.save_filelist_hash() return self def train(self, fold=0): """List of training items. Parameters ---------- fold : int > 0 [scalar] Fold id, if zero all meta data is returned. (Default value=0) Returns ------- list : list of dicts List containing all meta data assigned to training set for given fold. """ if fold not in self.evaluation_data_train: self.evaluation_data_train[fold] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): if len(row) == 2: # Scene meta self.evaluation_data_train[fold].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1] }) elif len(row) == 4: # Audio tagging meta self.evaluation_data_train[fold].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1], 'tag_string': row[2], 'tags': row[3].split(';') }) elif len(row) == 5: # Event meta self.evaluation_data_train[fold].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1], 'event_onset': float(row[2]), 'event_offset': float(row[3]), 'event_label': row[4] }) else: data = [] for item in self.meta: if 'event_label' in item: data.append({'file': self.relative_to_absolute_path(item['file']), 'scene_label': item['scene_label'], 'event_onset': item['event_onset'], 'event_offset': item['event_offset'], 'event_label': item['event_label'], }) else: data.append({'file': self.relative_to_absolute_path(item['file']), 'scene_label': item['scene_label'] }) self.evaluation_data_train[0] = data return self.evaluation_data_train[fold] def test(self, fold=0): """List of testing items. Parameters ---------- fold : int > 0 [scalar] Fold id, if zero all meta data is returned. (Default value=0) Returns ------- list : list of dicts List containing all meta data assigned to testing set for given fold. """ if fold not in self.evaluation_data_test: self.evaluation_data_test[fold] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): self.evaluation_data_test[fold].append({'file': self.relative_to_absolute_path(row[0])}) else: data = [] files = [] for item in self.meta: if self.relative_to_absolute_path(item['file']) not in files: data.append({'file': self.relative_to_absolute_path(item['file'])}) files.append(self.relative_to_absolute_path(item['file'])) self.evaluation_data_test[fold] = data return self.evaluation_data_test[fold] def folds(self, mode='folds'): """List of fold ids Parameters ---------- mode : str {'folds','full'} Fold setup type, possible values are 'folds' and 'full'. In 'full' mode fold number is set 0 and all data is used for training. (Default value=folds) Returns ------- list : list of integers Fold ids """ if mode == 'folds': return range(1, self.evaluation_folds + 1) elif mode == 'full': return [0] def file_meta(self, file): """Meta data for given file Parameters ---------- file : str File name Returns ------- list : list of dicts List containing all meta data related to given file. """ file = self.absolute_to_relative(file) file_meta = [] for item in self.meta: if item['file'] == file: file_meta.append(item) return file_meta def relative_to_absolute_path(self, path): """Converts relative path into absolute path. Parameters ---------- path : str Relative path Returns ------- path : str Absolute path """ return os.path.abspath(os.path.join(self.local_path, path)) def absolute_to_relative(self, path): """Converts absolute path into relative path. Parameters ---------- path : str Absolute path Returns ------- path : str Relative path """ if path.startswith(os.path.abspath(self.local_path)): return os.path.relpath(path, self.local_path) else: return path # ===================================================== # DCASE 2016 # ===================================================== class TUTAcousticScenes_2016_DevelopmentSet(Dataset): """TUT Acoustic scenes 2016 development dataset This dataset is used in DCASE2016 - Task 1, Acoustic scene classification """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-acoustic-scenes-2016-development') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Acoustic Scenes 2016, development dataset' self.url = 'https://zenodo.org/record/45739' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 4 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.doc.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.doc.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.meta.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.meta.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.1.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.1.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.2.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.2.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.3.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.3.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.4.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.4.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.5.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.5.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.6.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.6.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.7.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.7.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45739/files/TUT-acoustic-scenes-2016-development.audio.8.zip', 'local_package': os.path.join(self.local_path, 'TUT-acoustic-scenes-2016-development.audio.8.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), } ] def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file): section_header('Generating meta file for dataset') meta_data = {} for fold in xrange(1, self.evaluation_folds): # Read train files in train_filename = os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt') f = open(train_filename, 'rt') reader = csv.reader(f, delimiter='\t') for row in reader: if row[0] not in meta_data: meta_data[row[0]] = row[1] f.close() # Read evaluation files in eval_filename = os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt') f = open(eval_filename, 'rt') reader = csv.reader(f, delimiter='\t') for row in reader: if row[0] not in meta_data: meta_data[row[0]] = row[1] f.close() f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in meta_data: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = meta_data[file] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() class TUTAcousticScenes_2016_EvaluationSet(Dataset): """TUT Acoustic scenes 2016 evaluation dataset This dataset is used in DCASE2016 - Task 1, Acoustic scene classification """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-acoustic-scenes-2016-evaluation') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Acoustic Scenes 2016, evaluation dataset' self.url = 'http://www.cs.tut.fi/sgn/arg/dcase2016/download/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 1 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, ] def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ eval_filename = os.path.join(self.evaluation_setup_path, 'evaluate.txt') if not os.path.isfile(self.meta_file) and os.path.isfile(eval_filename): section_header('Generating meta file for dataset') meta_data = {} f = open(eval_filename, 'rt') reader = csv.reader(f, delimiter='\t') for row in reader: if row[0] not in meta_data: meta_data[row[0]] = row[1] f.close() f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in meta_data: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = meta_data[file] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() def train(self, fold=0): raise IOError('Train setup not available.') # TUT Sound events 2016 development and evaluation sets class TUTSoundEvents_2016_DevelopmentSet(Dataset): """TUT Sound events 2016 development dataset This dataset is used in DCASE2016 - Task 3, Sound event detection in real life audio """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-sound-events-2016-development') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Sound Events 2016, development dataset' self.url = 'https://zenodo.org/record/45759' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 4 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'residential_area'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'home'), }, { 'remote_package': 'https://zenodo.org/record/45759/files/TUT-sound-events-2016-development.doc.zip', 'local_package': os.path.join(self.local_path, 'TUT-sound-events-2016-development.doc.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45759/files/TUT-sound-events-2016-development.meta.zip', 'local_package': os.path.join(self.local_path, 'TUT-sound-events-2016-development.meta.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': 'https://zenodo.org/record/45759/files/TUT-sound-events-2016-development.audio.zip', 'local_package': os.path.join(self.local_path, 'TUT-sound-events-2016-development.audio.zip'), 'local_audio_path': os.path.join(self.local_path, 'audio'), }, ] def event_label_count(self, scene_label=None): return len(self.event_labels(scene_label=scene_label)) def event_labels(self, scene_label=None): labels = [] for item in self.meta: if scene_label is None or item['scene_label'] == scene_label: if 'event_label' in item and item['event_label'].rstrip() not in labels: labels.append(item['event_label'].rstrip()) labels.sort() return labels def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for filename in self.audio_files: raw_path, raw_filename = os.path.split(filename) relative_path = self.absolute_to_relative(raw_path) scene_label = relative_path.replace('audio', '')[1:] base_filename, file_extension = os.path.splitext(raw_filename) annotation_filename = os.path.join(self.local_path, relative_path.replace('audio', 'meta'), base_filename + '.ann') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, float(annotation_file_row[0].replace(',', '.')), float(annotation_file_row[1].replace(',', '.')), annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() def train(self, fold=0, scene_label=None): if fold not in self.evaluation_data_train: self.evaluation_data_train[fold] = {} for scene_label_ in self.scene_labels: if scene_label_ not in self.evaluation_data_train[fold]: self.evaluation_data_train[fold][scene_label_] = [] if fold > 0: with open( os.path.join(self.evaluation_setup_path, scene_label_ + '_fold' + str(fold) + '_train.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): if len(row) == 5: # Event meta self.evaluation_data_train[fold][scene_label_].append({ 'file': self.relative_to_absolute_path(row[0]), 'scene_label': row[1], 'event_onset': float(row[2]), 'event_offset': float(row[3]), 'event_label': row[4] }) else: data = [] for item in self.meta: if item['scene_label'] == scene_label_: if 'event_label' in item: data.append({'file': self.relative_to_absolute_path(item['file']), 'scene_label': item['scene_label'], 'event_onset': item['event_onset'], 'event_offset': item['event_offset'], 'event_label': item['event_label'], }) self.evaluation_data_train[0][scene_label_] = data if scene_label: return self.evaluation_data_train[fold][scene_label] else: data = [] for scene_label_ in self.scene_labels: for item in self.evaluation_data_train[fold][scene_label_]: data.append(item) return data def test(self, fold=0, scene_label=None): if fold not in self.evaluation_data_test: self.evaluation_data_test[fold] = {} for scene_label_ in self.scene_labels: if scene_label_ not in self.evaluation_data_test[fold]: self.evaluation_data_test[fold][scene_label_] = [] if fold > 0: with open( os.path.join(self.evaluation_setup_path, scene_label_ + '_fold' + str(fold) + '_test.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): self.evaluation_data_test[fold][scene_label_].append( {'file': self.relative_to_absolute_path(row[0])}) else: data = [] files = [] for item in self.meta: if scene_label_ in item: if self.relative_to_absolute_path(item['file']) not in files: data.append({'file': self.relative_to_absolute_path(item['file'])}) files.append(self.relative_to_absolute_path(item['file'])) self.evaluation_data_test[0][scene_label_] = data if scene_label: return self.evaluation_data_test[fold][scene_label] else: data = [] for scene_label_ in self.scene_labels: for item in self.evaluation_data_test[fold][scene_label_]: data.append(item) return data class TUTSoundEvents_2016_EvaluationSet(Dataset): """TUT Sound events 2016 evaluation dataset This dataset is used in DCASE2016 - Task 3, Sound event detection in real life audio """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='TUT-sound-events-2016-evaluation') self.authors = 'Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen' self.name_remote = 'TUT Sound Events 2016, evaluation dataset' self.url = 'http://www.cs.tut.fi/sgn/arg/dcase2016/download/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Roland Edirol R-09' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 1 self.package_list = [ { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'home'), }, { 'remote_package': None, 'local_package': None, 'local_audio_path': os.path.join(self.local_path, 'audio', 'residential_area'), }, ] @property def scene_labels(self): labels = ['home', 'residential_area'] labels.sort() return labels def event_label_count(self, scene_label=None): return len(self.event_labels(scene_label=scene_label)) def event_labels(self, scene_label=None): labels = [] for item in self.meta: if scene_label is None or item['scene_label'] == scene_label: if 'event_label' in item and item['event_label'] not in labels: labels.append(item['event_label']) labels.sort() return labels def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file) and os.path.isdir(os.path.join(self.local_path, 'meta')): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for filename in self.audio_files: raw_path, raw_filename = os.path.split(filename) relative_path = self.absolute_to_relative(raw_path) scene_label = relative_path.replace('audio', '')[1:] base_filename, file_extension = os.path.splitext(raw_filename) annotation_filename = os.path.join(self.local_path, relative_path.replace('audio', 'meta'), base_filename + '.ann') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, float(annotation_file_row[0].replace(',', '.')), float(annotation_file_row[1].replace(',', '.')), annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() def train(self, fold=0, scene_label=None): raise IOError('Train setup not available.') def test(self, fold=0, scene_label=None): if fold not in self.evaluation_data_test: self.evaluation_data_test[fold] = {} for scene_label_ in self.scene_labels: if scene_label_ not in self.evaluation_data_test[fold]: self.evaluation_data_test[fold][scene_label_] = [] if fold > 0: with open(os.path.join(self.evaluation_setup_path, scene_label + '_fold' + str(fold) + '_test.txt'), 'rt') as f: for row in csv.reader(f, delimiter='\t'): self.evaluation_data_test[fold][scene_label_].append( {'file': self.relative_to_absolute_path(row[0])}) else: data = [] files = [] for item in self.audio_files: if scene_label_ in item: if self.relative_to_absolute_path(item) not in files: data.append({'file': self.relative_to_absolute_path(item)}) files.append(self.relative_to_absolute_path(item)) self.evaluation_data_test[0][scene_label_] = data if scene_label: return self.evaluation_data_test[fold][scene_label] else: data = [] for scene_label_ in self.scene_labels: for item in self.evaluation_data_test[fold][scene_label_]: data.append(item) return data # CHIME home class CHiMEHome_DomesticAudioTag_DevelopmentSet(Dataset): def __init__(self, data_path=None): Dataset.__init__(self, data_path=data_path, name='CHiMeHome-audiotag-development') self.authors = 'Peter Foster, Siddharth Sigtia, Sacha Krstulovic, Jon Barker, and Mark Plumbley' self.name_remote = 'The CHiME-Home dataset is a collection of annotated domestic environment audio recordings.' self.url = '' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Unknown' self.evaluation_folds = 10 self.package_list = [ { 'remote_package': 'https://archive.org/download/chime-home/chime_home.tar.gz', 'local_package': os.path.join(self.local_path, 'chime_home.tar.gz'), 'local_audio_path': os.path.join(self.local_path, 'chime_home', 'chunks'), }, ] @property def audio_files(self): """Get all audio files in the dataset, use only file from CHime-Home-refined set. Parameters ---------- nothing Returns ------- files : list audio files """ if self.files is None: refined_files = [] with open(os.path.join(self.local_path, 'chime_home', 'chunks_refined.csv'), 'rt') as f: for row in csv.reader(f, delimiter=','): refined_files.append(row[1]) self.files = [] for file in self.package_list: path = file['local_audio_path'] if path: l = os.listdir(path) p = path.replace(self.local_path + os.path.sep, '') for f in l: fileName, fileExtension = os.path.splitext(f) if fileExtension[1:] in self.audio_extensions and fileName in refined_files: self.files.append(os.path.abspath(os.path.join(path, f))) self.files.sort() return self.files def read_chunk_meta(self, meta_filename): if os.path.isfile(meta_filename): meta_file_handle = open(meta_filename, 'rt') try: meta_file_reader = csv.reader(meta_file_handle, delimiter=',') data = {} for meta_file_row in meta_file_reader: data[meta_file_row[0]] = meta_file_row[1] finally: meta_file_handle.close() return data def tagcode_to_taglabel(self, tag): map = {'c': 'child speech', 'm': 'adult male speech', 'f': 'adult female speech', 'v': 'video game/tv', 'p': 'percussive sound', 'b': 'broadband noise', 'o': 'other', 'S': 'silence/background', 'U': 'unidentifiable' } if tag in map: return map[tag] else: return None def on_after_extract(self): """After dataset packages are downloaded and extracted, meta-files are checked. Legacy dataset meta files are converted to be compatible with current scheme. Parameters ---------- nothing Returns ------- nothing """ if not os.path.isfile(self.meta_file): section_header('Generating meta file for dataset') scene_label = 'home' f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) base_filename, file_extension = os.path.splitext(raw_filename) annotation_filename = os.path.join(raw_path, base_filename + '.csv') meta_data = self.read_chunk_meta(annotation_filename) tags = [] for i, tag in enumerate(meta_data['majorityvote']): if tag is 'b': print file if tag is not 'S' and tag is not 'U': tags.append(self.tagcode_to_taglabel(tag)) tags = ';'.join(tags) writer.writerow( (os.path.join(relative_path, raw_filename), scene_label, meta_data['majorityvote'], tags)) finally: f.close() foot() all_folds_found = True for fold in xrange(1, self.evaluation_folds): for target_tag in self.audio_tags: if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_' + target_tag.replace('/', '-').replace(' ', '_') + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_' + target_tag.replace('/', '-').replace(' ', '_') + '_test.txt')): all_folds_found = False if not all_folds_found: if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) numpy.random.seed(475686) kf = KFold(n=len(self.audio_files), n_folds=self.evaluation_folds, shuffle=True) refined_files = [] with open(os.path.join(self.local_path, 'chime_home', 'chunks_refined.csv'), 'rt') as f: for row in csv.reader(f, delimiter=','): refined_files.append( self.relative_to_absolute_path(os.path.join('chime_home', 'chunks', row[1] + '.wav'))) fold = 1 files = numpy.array(refined_files) for train_index, test_index in kf: train_files = files[train_index] test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') item = self.file_meta(file)[0] writer.writerow( [os.path.join(relative_path, raw_filename), item['scene_label'], item['tag_string'], ';'.join(item['tags'])]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') writer.writerow([os.path.join(relative_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') item = self.file_meta(file)[0] writer.writerow( [os.path.join(relative_path, raw_filename), item['scene_label'], item['tag_string'], ';'.join(item['tags'])]) fold += 1 # Legacy datasets # ===================================================== # DCASE 2013 # ===================================================== class DCASE2013_Scene_DevelopmentSet(Dataset): """DCASE 2013 Acoustic scene classification, development dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-scene-development') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP 2013 CASA Challenge - Public Dataset for Scene Classification Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'http://c4dm.eecs.qmul.ac.uk/rdr/bitstream/handle/123456789/29/scenes_stereo.zip?sequence=1', 'local_package': os.path.join(self.local_path, 'scenes_stereo.zip'), 'local_audio_path': os.path.join(self.local_path, 'scenes_stereo'), } ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme if not os.path.isfile(self.meta_file): section_header('Generating meta file for dataset') f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = os.path.splitext(os.path.split(file)[1])[0][:-2] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: section_header('Generating evaluation setup files for dataset') if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) classes = [] files = [] for item in self.meta: classes.append(item['scene_label']) files.append(item['file']) files = numpy.array(files) sss = StratifiedShuffleSplit(y=classes, n_iter=self.evaluation_folds, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: # print("TRAIN:", train_index, "TEST:", test_index) train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) writer.writerow([os.path.join(raw_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) fold += 1 foot() class DCASE2013_Scene_EvaluationSet(DCASE2013_Scene_DevelopmentSet): """DCASE 2013 Acoustic scene classification, evaluation dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-scene-challenge') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP 2013 CASA Challenge - Private Dataset for Scene Classification Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'https://archive.org/download/dcase2013_scene_classification_testset/scenes_stereo_testset.zip', 'local_package': os.path.join(self.local_path, 'scenes_stereo_testset.zip'), 'local_audio_path': os.path.join(self.local_path, 'scenes_stereo_testset'), } ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme if not os.path.isfile(self.meta_file) or 1: section_header('Generating meta file for dataset') f = open(self.meta_file, 'wt') try: writer = csv.writer(f, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) label = os.path.splitext(os.path.split(file)[1])[0][:-2] writer.writerow((os.path.join(relative_path, raw_filename), label)) finally: f.close() foot() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: section_header('Generating evaluation setup files for dataset') if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) classes = [] files = [] for item in self.meta: classes.append(item['scene_label']) files.append(item['file']) files = numpy.array(files) sss = StratifiedShuffleSplit(y=classes, n_iter=self.evaluation_folds, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) writer.writerow([os.path.join(raw_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) label = self.file_meta(file)[0]['scene_label'] writer.writerow([os.path.join(raw_path, raw_filename), label]) fold += 1 foot() # Sound events class DCASE2013_Event_DevelopmentSet(Dataset): """DCASE 2013 Sound event detection, development dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-event-development') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP CASA Challenge - Public Dataset for Event Detection Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'https://archive.org/download/dcase2013_event_detection_development_OS/events_OS_development_v2.zip', 'local_package': os.path.join(self.local_path, 'events_OS_development_v2.zip'), 'local_audio_path': os.path.join(self.local_path, 'events_OS_development_v2'), }, # { # 'remote_package':'http://c4dm.eecs.qmul.ac.uk/rdr/bitstream/handle/123456789/28/singlesounds_annotation.zip?sequence=9', # 'local_package': os.path.join(self.local_path, 'singlesounds_annotation.zip'), # 'local_audio_path': None, # }, # { # 'remote_package':'http://c4dm.eecs.qmul.ac.uk/rdr/bitstream/handle/123456789/28/singlesounds_stereo.zip?sequence=7', # 'local_package': os.path.join(self.local_path, 'singlesounds_stereo.zip'), # 'local_audio_path': os.path.join(self.local_path, 'singlesounds_stereo'), # }, ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme scene_label = 'office' if not os.path.isfile(self.meta_file): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) base_filename, file_extension = os.path.splitext(raw_filename) if file.find('singlesounds_stereo') != -1: annotation_filename = os.path.join(self.local_path, 'Annotation1', base_filename + '_bdm.txt') label = base_filename[:-2] if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], label, 'i')) finally: annotation_file_handle.close() elif file.find('events_OS_development_v2') != -1: annotation_filename = os.path.join(self.local_path, 'events_OS_development_v2', base_filename + '_v2.txt') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: # Construct training and testing sets. Isolated sound are used for training and # polyphonic mixtures are used for testing. if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) files = [] for item in self.meta: if item['file'] not in files: files.append(item['file']) files = numpy.array(files) f = numpy.zeros(len(files)) sss = StratifiedShuffleSplit(y=f, n_iter=5, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: # print("TRAIN:", train_index, "TEST:", test_index) train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') writer.writerow([os.path.join(relative_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) fold += 1 class DCASE2013_Event_EvaluationSet(Dataset): """DCASE 2013 Sound event detection, evaluation dataset """ def __init__(self, data_path='data'): Dataset.__init__(self, data_path=data_path, name='DCASE2013-event-challenge') self.authors = 'Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, and Mark Plumbley' self.name_remote = 'IEEE AASP CASA Challenge - Private Dataset for Event Detection Task' self.url = 'http://www.elec.qmul.ac.uk/digitalmusic/sceneseventschallenge/' self.audio_source = 'Field recording' self.audio_type = 'Natural' self.recording_device_model = 'Unknown' self.microphone_model = 'Soundman OKM II Klassik/studio A3 electret microphone' self.evaluation_folds = 5 self.package_list = [ { 'remote_package': 'https://archive.org/download/dcase2013_event_detection_testset_OS/dcase2013_event_detection_testset_OS.zip', 'local_package': os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS.zip'), 'local_audio_path': os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS'), } ] def on_after_extract(self): # Make legacy dataset compatible with DCASE2016 dataset scheme scene_label = 'office' if not os.path.isfile(self.meta_file): meta_file_handle = open(self.meta_file, 'wt') try: writer = csv.writer(meta_file_handle, delimiter='\t') for file in self.audio_files: raw_path, raw_filename = os.path.split(file) relative_path = self.absolute_to_relative(raw_path) base_filename, file_extension = os.path.splitext(raw_filename) if file.find('dcase2013_event_detection_testset_OS') != -1: annotation_filename = os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS', base_filename + '_v2.txt') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], annotation_file_row[2], 'm')) finally: annotation_file_handle.close() else: annotation_filename = os.path.join(self.local_path, 'dcase2013_event_detection_testset_OS', base_filename + '.txt') if os.path.isfile(annotation_filename): annotation_file_handle = open(annotation_filename, 'rt') try: annotation_file_reader = csv.reader(annotation_file_handle, delimiter='\t') for annotation_file_row in annotation_file_reader: writer.writerow((os.path.join(relative_path, raw_filename), scene_label, annotation_file_row[0], annotation_file_row[1], annotation_file_row[2], 'm')) finally: annotation_file_handle.close() finally: meta_file_handle.close() all_folds_found = True for fold in xrange(1, self.evaluation_folds): if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt')): all_folds_found = False if not os.path.isfile(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt')): all_folds_found = False if not all_folds_found: # Construct training and testing sets. Isolated sound are used for training and # polyphonic mixtures are used for testing. if not os.path.isdir(self.evaluation_setup_path): os.makedirs(self.evaluation_setup_path) files = [] for item in self.meta: if item['file'] not in files: files.append(item['file']) files = numpy.array(files) f = numpy.zeros(len(files)) sss = StratifiedShuffleSplit(y=f, n_iter=5, test_size=0.3, random_state=0) fold = 1 for train_index, test_index in sss: # print("TRAIN:", train_index, "TEST:", test_index) train_files = files[train_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_train.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in train_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) test_files = files[test_index] with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_test.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') writer.writerow([os.path.join(relative_path, raw_filename)]) with open(os.path.join(self.evaluation_setup_path, 'fold' + str(fold) + '_evaluate.txt'), 'wt') as f: writer = csv.writer(f, delimiter='\t') for file in test_files: raw_path, raw_filename = os.path.split(file) relative_path = raw_path.replace(self.local_path + os.path.sep, '') for item in self.meta: if item['file'] == file: writer.writerow([os.path.join(relative_path, raw_filename), item['scene_label'], item['event_onset'], item['event_offset'], item['event_label']]) fold += 1
39.688442
143
0.518005
139e590525475657c335071ae28d9f2bf096dfb2
463
py
Python
mdv/tests/files/manual/run_all.py
guye1296/terminal_markdown_viewer
80f333ba51dc2f1dfa854e203d3374a112aecbd3
[ "BSD-3-Clause" ]
1,745
2015-07-14T09:35:20.000Z
2022-03-31T15:53:06.000Z
mdv/tests/files/manual/run_all.py
guye1296/terminal_markdown_viewer
80f333ba51dc2f1dfa854e203d3374a112aecbd3
[ "BSD-3-Clause" ]
91
2015-07-15T13:44:31.000Z
2022-02-06T14:18:08.000Z
mdv/tests/files/manual/run_all.py
guye1296/terminal_markdown_viewer
80f333ba51dc2f1dfa854e203d3374a112aecbd3
[ "BSD-3-Clause" ]
140
2015-07-14T10:11:50.000Z
2022-03-19T22:46:57.000Z
#!/usr/bin/env python2.7 print 'Please inspect visually.' import os, sys sys.argv.append('') # substring match on filenames, if not given run all: match = sys.argv[1] exe = '../../mdv/markdownviewer.py' for file in os.listdir('.'): if not file.endswith('.md') or not match in file: continue print '\n\n' os.system('echo "----\nTESTFILE:\n# %s\n-----" | %s -' % (file, exe)) print open(file).read() os.system('%s "%s"' % (exe, file))
27.235294
73
0.598272
550b20bd2ed32b1b48be31c5bad7ac1c883ca89d
3,825
py
Python
google/appengine/_internal/django/core/files/base.py
MiCHiLU/google_appengine_sdk
3da9f20d7e65e26c4938d2c4054bc4f39cbc5522
[ "Apache-2.0" ]
790
2015-01-03T02:13:39.000Z
2020-05-10T19:53:57.000Z
AppServer/google/appengine/_internal/django/core/files/base.py
nlake44/appscale
6944af660ca4cb772c9b6c2332ab28e5ef4d849f
[ "Apache-2.0" ]
1,361
2015-01-08T23:09:40.000Z
2020-04-14T00:03:04.000Z
AppServer/google/appengine/_internal/django/core/files/base.py
nlake44/appscale
6944af660ca4cb772c9b6c2332ab28e5ef4d849f
[ "Apache-2.0" ]
155
2015-01-08T22:59:31.000Z
2020-04-08T08:01:53.000Z
import os try: from cStringIO import StringIO except ImportError: from StringIO import StringIO from google.appengine._internal.django.utils.encoding import smart_str, smart_unicode from google.appengine._internal.django.core.files.utils import FileProxyMixin class File(FileProxyMixin): DEFAULT_CHUNK_SIZE = 64 * 2**10 def __init__(self, file, name=None): self.file = file if name is None: name = getattr(file, 'name', None) self.name = name self.mode = getattr(file, 'mode', None) def __str__(self): return smart_str(self.name or '') def __unicode__(self): return smart_unicode(self.name or u'') def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self or "None") def __nonzero__(self): return bool(self.name) def __len__(self): return self.size def _get_size(self): if not hasattr(self, '_size'): if hasattr(self.file, 'size'): self._size = self.file.size elif os.path.exists(self.file.name): self._size = os.path.getsize(self.file.name) else: raise AttributeError("Unable to determine the file's size.") return self._size def _set_size(self, size): self._size = size size = property(_get_size, _set_size) def _get_closed(self): return not self.file or self.file.closed closed = property(_get_closed) def chunks(self, chunk_size=None): """ Read the file and yield chucks of ``chunk_size`` bytes (defaults to ``UploadedFile.DEFAULT_CHUNK_SIZE``). """ if not chunk_size: chunk_size = self.DEFAULT_CHUNK_SIZE if hasattr(self, 'seek'): self.seek(0) # Assume the pointer is at zero... counter = self.size while counter > 0: yield self.read(chunk_size) counter -= chunk_size def multiple_chunks(self, chunk_size=None): """ Returns ``True`` if you can expect multiple chunks. NB: If a particular file representation is in memory, subclasses should always return ``False`` -- there's no good reason to read from memory in chunks. """ if not chunk_size: chunk_size = self.DEFAULT_CHUNK_SIZE return self.size > chunk_size def __iter__(self): # Iterate over this file-like object by newlines buffer_ = None for chunk in self.chunks(): chunk_buffer = StringIO(chunk) for line in chunk_buffer: if buffer_: line = buffer_ + line buffer_ = None # If this is the end of a line, yield # otherwise, wait for the next round if line[-1] in ('\n', '\r'): yield line else: buffer_ = line if buffer_ is not None: yield buffer_ def open(self, mode=None): if not self.closed: self.seek(0) elif self.name and os.path.exists(self.name): self.file = open(self.name, mode or self.mode) else: raise ValueError("The file cannot be reopened.") def close(self): self.file.close() class ContentFile(File): """ A File-like object that takes just raw content, rather than an actual file. """ def __init__(self, content): content = content or '' super(ContentFile, self).__init__(StringIO(content)) self.size = len(content) def __str__(self): return 'Raw content' def __nonzero__(self): return True def open(self, mode=None): self.seek(0) def close(self): pass
28.333333
85
0.579869
b214e8e4c22725a924739c28e7398529f668608d
1,894
py
Python
ppq/samples/quantize_dsp.py
openppl-public/ppq
0fdea7d4982bc57feb6bb8548c7f012707fbd607
[ "Apache-2.0" ]
100
2021-12-31T09:34:06.000Z
2022-03-25T02:54:51.000Z
ppq/samples/quantize_dsp.py
openppl-public/ppq
0fdea7d4982bc57feb6bb8548c7f012707fbd607
[ "Apache-2.0" ]
12
2021-12-31T10:28:15.000Z
2022-03-31T07:08:44.000Z
ppq/samples/quantize_dsp.py
openppl-public/ppq
0fdea7d4982bc57feb6bb8548c7f012707fbd607
[ "Apache-2.0" ]
21
2021-12-31T09:51:02.000Z
2022-03-30T12:21:55.000Z
from typing import Iterable import torch import torchvision from ppq import BaseGraph, QuantizationSettingFactory, TargetPlatform from ppq.api import export_ppq_graph, quantize_torch_model from torch.utils.data import DataLoader BATCHSIZE = 32 INPUT_SHAPE = [3, 224, 224] DEVICE = 'cuda' # only cuda is fully tested :( For other executing device there might be bugs. PLATFORM = TargetPlatform.PPL_DSP_INT8 # identify a target platform for your network. def load_calibration_dataset() -> Iterable: return [torch.rand(size=INPUT_SHAPE) for _ in range(32)] def collate_fn(batch: torch.Tensor) -> torch.Tensor: return batch.to(DEVICE) # Load a pretrained mobilenet v2 model model = torchvision.models.mobilenet.mobilenet_v2(pretrained=True) model = model.to(DEVICE) # create a setting for quantizing your network with PPL CUDA. quant_setting = QuantizationSettingFactory.pplcuda_setting() quant_setting.equalization = True # use layerwise equalization algorithm. quant_setting.dispatcher = 'conservative' # dispatch this network in conservertive way. # Load training data for creating a calibration dataloader. calibration_dataset = load_calibration_dataset() calibration_dataloader = DataLoader( dataset=calibration_dataset, batch_size=BATCHSIZE, shuffle=True) # quantize your model. quantized = quantize_torch_model( model=model, calib_dataloader=calibration_dataloader, calib_steps=32, input_shape=[BATCHSIZE] + INPUT_SHAPE, setting=quant_setting, collate_fn=collate_fn, platform=PLATFORM, onnx_export_file='Output/onnx.model', device=DEVICE, verbose=0) # Quantization Result is a PPQ BaseGraph instance. assert isinstance(quantized, BaseGraph) # export quantized graph. export_ppq_graph(graph=quantized, platform=PLATFORM, graph_save_to='Output/quantized(onnx).onnx', config_save_to='Output/quantized(onnx).json')
38.653061
95
0.786167
2bdf58b94d41d4986bfc9bd1faad2d7817695c3f
11,278
py
Python
repos.py
fisadev/student-repos-handler
da45f29bce844e221ba5c509189d7fa10296775e
[ "MIT" ]
null
null
null
repos.py
fisadev/student-repos-handler
da45f29bce844e221ba5c509189d7fa10296775e
[ "MIT" ]
null
null
null
repos.py
fisadev/student-repos-handler
da45f29bce844e221ba5c509189d7fa10296775e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 import sys from os import path, system, listdir, putenv from collections import namedtuple import requests from termcolor import colored Repo = namedtuple('Repo', 'vcs slug description') class Repo(object): def __init__(self, alias, vcs, features, service, slug, server, description): self.alias = alias self.vcs = vcs self.features = features self.service = service self.slug = slug self.server = server self.description = description def clone_url(self, section): if self.service == 'bitbucket': if self.vcs == 'hg': base_url = 'https://bitbucket.org/%s' % self.slug elif self.vcs == 'git': base_url = 'git@bitbucket.org:%s.git' % self.slug elif self.service == 'github': if self.vcs != 'git': raise NotImplementedError('Github only supports git') else: base_url = 'git@github.com:%s.git' % self.slug elif self.service == 'gitlab': if self.vcs != 'git': raise NotImplementedError('Gitlab only supports git') else: base_url = 'git@gitlab.com:%s.git' % self.slug else: raise NotImplementedError('Currently %s is not suported as service' % self.service) if section == 'code': return base_url elif section == 'wiki': if self.service == 'bitbucket': return base_url + '/wiki' elif self.service in ('github', 'gitlab'): return base_url.replace('.git', '.wiki.git') else: raise NotImplementedError('Unknown section %s' % section) def web_url(self, section=None): if self.service == 'bitbucket': url = 'https://bitbucket.org/%s' % self.slug elif self.service == 'github': url = 'https://github.com/%s' % self.slug elif self.service == 'gitlab': url = 'https://gitlab.com/%s' % self.slug else: raise NotImplementedError('Currently %s is not suported as service' % self.service) if section == 'wiki': url += '/wiki' return url def path(self, section, repos_root): base_path = path.join(repos_root, self.alias) if section == 'code': return base_path elif section == 'wiki': return base_path + '-wiki' else: raise NotImplementedError('Unknown section %s' % section) def __str__(self): return self.alias def long_description(self): return '%s: %s (%s at %s, %s, %s)' % (self.alias, self.description, self.slug, self.service, self.vcs, '-'.join(self.features)) class ReposHandler(object): def __init__(self, repos, repos_root): self.repos = repos self.repos_root = repos_root def filter_repos(self, filters): if not filters: filtered = self.repos else: filters = [f.lower() for f in filters] filtered = [repo for repo in self.repos if any(f in repo.long_description().lower() for f in filters)] if filtered: print(colored('%i repos found' % len(filtered), 'green')) else: print(colored('No repos matching the filters', 'red')) return filtered def iterate_filtered_repos(self, filters): repos = self.filter_repos(filters) for repo in repos: print(colored('-- %s --' % repo, 'green')) yield repo def vcs_action_on_repos(self, filters, vcs_action): for repo in self.iterate_filtered_repos(filters): if 'code' in repo.features: print(colored(' -- Code --', 'green')) vcs_action(repo, 'code') if 'wiki' in repo.features: print(colored(' -- Wiki --', 'green')) vcs_action(repo, 'wiki') def update(self, *filters): self.vcs_action_on_repos(filters, self.update_vcs) def clean(self, *filters): self.vcs_action_on_repos(filters, self.clean_vcs) def status(self, *filters): self.vcs_action_on_repos(filters, self.status_vcs) def update_vcs(self, repo, section): repo_url = repo.clone_url(section) repo_path = repo.path(section, self.repos_root) if path.exists(repo_path): if repo.vcs == 'hg': pull_command = 'hg pull -u' elif repo.vcs == 'git': pull_command = 'git pull' command = '(cd %s && %s)' % (repo_path, pull_command) else: if repo.vcs == 'hg': clone_command = 'hg clone' elif repo.vcs == 'git': clone_command = 'git clone' command = '%s %s %s' % (clone_command, repo_url, repo_path) result = system(command) if result != 0: print(colored('Error running command', 'red')) def clean_vcs(self, repo, section): repo_path = repo.path(section, self.repos_root) if repo.vcs == 'hg': clean_command = 'hg revert --all --no-backup' elif repo.vcs == 'git': clean_command = 'git checkout -- .' command = '(cd %s && %s)' % (repo_path, clean_command) result = system(command) if result != 0: print(colored('Error running command', 'red')) def status_vcs(self, repo, section): repo_path = repo.path(section, self.repos_root) if repo.vcs == 'hg': clean_command = 'hg status' elif repo.vcs == 'git': clean_command = 'git status' command = '(cd %s && %s)' % (repo_path, clean_command) result = system(command) if result != 0: print(colored('Error running command', 'red')) def code(self, editor, file_, *filters): return self.open_vcs_file('code', editor, filters, file_, any_extension=False) def wiki(self, editor, file_, *filters): return self.open_vcs_file('wiki', editor, filters, file_, any_extension=True) def wiki_web(self, browser, url, *filters): for repo in self.iterate_filtered_repos(filters): full_url = '%s/%s' % (repo.web_url('wiki'), url) system('%s %s' % (browser, full_url)) def server(self, browser, *filters): for repo in self.iterate_filtered_repos(filters): system('%s %s' % (browser, repo.server)) def revive_server(self, *filters): for repo in self.iterate_filtered_repos(filters): print('Accessing server...') response = requests.get(repo.server) print('Response code:', response.status_code) def run(self, command, *filters): for repo in self.iterate_filtered_repos(filters): repo_path = repo.path('code', self.repos_root) putenv("REPO_PATH", repo_path) result = system('(cd %s && %s)' % (repo_path, command)) if result != 0: print(colored('Error running command', 'red')) print() def open_vcs_file(self, section, editor, filters, file_, any_extension=False): for repo in self.iterate_filtered_repos(filters): file_path = path.join(repo.path(section, self.repos_root), file_) possible_files = [] if any_extension: directory = path.dirname(file_path) if path.exists(directory): possible_files = [path.join(directory, file_name) for file_name in listdir(directory) if file_name.split('.')[0] == file_] else: if path.exists(file_path): possible_files = [file_path,] if not possible_files: print(colored('File does not exists', 'red')) elif len(possible_files) > 1: print(colored('Many files on the wiki with that name:', 'red')) print('\n'.join(possible_files)) else: system('%s %s' % (editor, possible_files[0])) def list(self, *filters): repos = self.filter_repos(filters) for repo in repos: print(repo.long_description()) def show_urls(self, *filters): for repo in self.iterate_filtered_repos(filters): print(repo.long_description()) print(repo.web_url()) print(repo.web_url('wiki')) print(repo.server) @classmethod def find_repos_config(cls, start_path): current_path = start_path while current_path: config_path = path.join(current_path, 'repos.config') if path.exists(config_path): return config_path else: if current_path == '/': current_path = None else: current_path = path.dirname(current_path) @classmethod def read_repos_from_file(cls, file_path): repos = [] with open(file_path) as repos_file: for line in repos_file.read().strip().split('\n'): if not line.startswith('#'): data = line.split('|') alias, vcs, features, service, slug, server, description = data features = features.split(',') repo = Repo(alias=alias, vcs=vcs, features=features, service=service, slug=slug, server=server, description=description) repos.append(repo) if len(repos) != len(set(repo.alias for repo in repos)): raise ValueError('There are repos with the same alias') return repos def main(): current_path = path.abspath('.') config_path = ReposHandler.find_repos_config(current_path) if not config_path: print(colored('Unable to find repos.config', 'red')) sys.exit(1) handler = ReposHandler(ReposHandler.read_repos_from_file(config_path), current_path) if len(sys.argv) < 2: print('Usage:') print('repos list FILTERS') print('repos status FILTERS') print('repos clean FILTERS') print('repos update FILTERS') print('repos code EDITOR FILE FILTERS') print('repos wiki EDITOR FILE FILTERS') print('repos wiki_web BROWSER URL FILTERS') print('repos server BROWSER FILTERS') print('repos revive_server BROWSER FILTERS') print('repos run COMMAND FILTERS') print('repos show_urls FILTERS') exit() action = sys.argv[1] method = getattr(handler, action) if method: try: method(*sys.argv[2:]) except KeyboardInterrupt: print("Cancelled") if __name__ == '__main__': main()
35.354232
95
0.546019
a26e77c2db38e053bb17af33ac639ae747124d2f
8,765
py
Python
TLCS/generator.py
BridgeQZH/Deep-QLearning-Agent-for-Traffic-Signal-Control
194924e51d816daa992faa4bd8cdbfd22dc7b3e8
[ "MIT" ]
null
null
null
TLCS/generator.py
BridgeQZH/Deep-QLearning-Agent-for-Traffic-Signal-Control
194924e51d816daa992faa4bd8cdbfd22dc7b3e8
[ "MIT" ]
null
null
null
TLCS/generator.py
BridgeQZH/Deep-QLearning-Agent-for-Traffic-Signal-Control
194924e51d816daa992faa4bd8cdbfd22dc7b3e8
[ "MIT" ]
null
null
null
import numpy as np import math class TrafficGenerator: def __init__(self, max_steps, n_cars_generated): self._n_cars_generated = n_cars_generated # how many cars per episode self._max_steps = max_steps def generate_routefile(self, seed): """ Generation of the route of every car for one episode """ np.random.seed(seed) # make tests reproducible # the generation of cars is distributed according to a weibull distribution timings = np.random.weibull(2, self._n_cars_generated) timings = np.sort(timings) # Return a sorted copy of an array # reshape the distribution to fit the interval 0:max_steps car_gen_steps = [] min_old = math.floor(timings[1]) max_old = math.ceil(timings[-1]) min_new = 0 max_new = self._max_steps for value in timings: car_gen_steps = np.append(car_gen_steps, ((max_new - min_new) / (max_old - min_old)) * (value - max_old) + max_new) car_gen_steps = np.rint(car_gen_steps) # round every value to int -> effective steps when a car will be generated # produce the file for cars generation, one car per line with open("intersection/episode_routes.rou.xml", "w") as routes: print("""<routes> <vType accel="1.0" decel="4.5" id="standard_car" length="5.0" minGap="2.5" maxSpeed="25" sigma="0.5" /> <route id="W_N" edges="W2TL TL2N"/> <route id="W_E" edges="W2TL TL2E"/> <route id="W_S" edges="W2TL TL2S"/> <route id="N_W" edges="N2TL TL2W"/> <route id="N_E" edges="N2TL TL2E"/> <route id="N_S" edges="N2TL TL2S"/> <route id="E_W" edges="E2TL TL2W"/> <route id="E_N" edges="E2TL TL2N"/> <route id="E_S" edges="E2TL TL2S"/> <route id="S_W" edges="S2TL TL2W"/> <route id="S_N" edges="S2TL TL2N"/> <route id="S_E" edges="S2TL TL2E"/>""", file=routes) for car_counter, step in enumerate(car_gen_steps): # adds a counter to an iterable and returns it in a form of enumerating object straight_or_turn = np.random.uniform() car_type = np.random.randint(1,11) if car_type <= 11: if straight_or_turn < 0.75: # choose direction: straight or turn - 75% of times the car goes straight route_straight = np.random.randint(1, 7) # choose a random source & destination if route_straight == 1 or route_straight == 2: print(' <vehicle id="W_E_%i" type="standard_car" route="W_E" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_straight == 3 or route_straight == 4: print(' <vehicle id="E_W_%i" type="standard_car" route="E_W" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_straight == 5: print(' <vehicle id="N_S_%i" type="standard_car" route="N_S" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) else: print(' <vehicle id="S_N_%i" type="standard_car" route="S_N" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) else: # car that turn - 25% of the time the car turns route_turn = np.random.randint(1, 13) # choose random source source & destination if route_turn == 1 or route_turn == 2: print(' <vehicle id="W_N_%i" type="standard_car" route="W_N" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 3 or route_turn == 4: print(' <vehicle id="W_S_%i" type="standard_car" route="W_S" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 5: print(' <vehicle id="N_W_%i" type="standard_car" route="N_W" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 6: print(' <vehicle id="N_E_%i" type="standard_car" route="N_E" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 7 or route_turn == 8: print(' <vehicle id="E_N_%i" type="standard_car" route="E_N" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 9 or route_turn == 10: print(' <vehicle id="E_S_%i" type="standard_car" route="E_S" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 11: print(' <vehicle id="S_W_%i" type="standard_car" route="S_W" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 12: print(' <vehicle id="S_E_%i" type="standard_car" route="S_E" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) else: if straight_or_turn < 0.75: # choose direction: straight or turn - 75% of times the car goes straight route_straight = np.random.randint(1, 5) # choose a random source & destination if route_straight == 1: print(' <vehicle id="W_E_%i" type="slow_start_car" route="W_E" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_straight == 2: print(' <vehicle id="E_W_%i" type="slow_start_car" route="E_W" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_straight == 3: print(' <vehicle id="N_S_%i" type="slow_start_car" route="N_S" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) else: print(' <vehicle id="S_N_%i" type="slow_start_car" route="S_N" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) else: # car that turn -25% of the time the car turns route_turn = np.random.randint(1, 9) # choose random source source & destination if route_turn == 1: print(' <vehicle id="W_N_%i" type="slow_start_car" route="W_N" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 2: print(' <vehicle id="W_S_%i" type="slow_start_car" route="W_S" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 3: print(' <vehicle id="N_W_%i" type="slow_start_car" route="N_W" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 4: print(' <vehicle id="N_E_%i" type="slow_start_car" route="N_E" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 5: print(' <vehicle id="E_N_%i" type="slow_start_car" route="E_N" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 6: print(' <vehicle id="E_S_%i" type="slow_start_car" route="E_S" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 7: print(' <vehicle id="S_W_%i" type="slow_start_car" route="S_W" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) elif route_turn == 8: print(' <vehicle id="S_E_%i" type="slow_start_car" route="S_E" depart="%s" departLane="random" departSpeed="10" />' % (car_counter, step), file=routes) print("</routes>", file=routes)
79.681818
182
0.552767
c71fcd717893db02087c8fdcbd67f460ebd87753
2,254
py
Python
underline_macro.py
Nateowami/libreoffice-underline-macro
2dc3178a719ee9a80929ba067f377cff3a966536
[ "MIT" ]
1
2021-04-19T13:26:39.000Z
2021-04-19T13:26:39.000Z
underline_macro.py
Nateowami/libreoffice-underline-macro
2dc3178a719ee9a80929ba067f377cff3a966536
[ "MIT" ]
null
null
null
underline_macro.py
Nateowami/libreoffice-underline-macro
2dc3178a719ee9a80929ba067f377cff3a966536
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import uno # Logging util for debugging when run from within LibreOffice. def log(data): # Logging only works on *nix systems f = open('~/log.txt', 'a') f.write(data + '\n') f.close() def getDesktop(): # If being run from inside LibreOffice, XSCRIPTCONTEXT will be defined if 'XSCRIPTCONTEXT' in globals(): return XSCRIPTCONTEXT.getDesktop() # Otherwise, if we're running form the command line, we have to connect to # a running instance of LibreOffice. Libreoffice must be started to listen # on a socket that we connect to in order for this to work. localContext = uno.getComponentContext() # create the UnoUrlResolver resolver = localContext.ServiceManager.createInstanceWithContext( "com.sun.star.bridge.UnoUrlResolver", localContext) # connect to the running office ctx = resolver.resolve( "uno:socket,host=localhost,port=2002;urp;" "StarOffice.ComponentContext") smgr = ctx.ServiceManager # get the central desktop object return smgr.createInstanceWithContext("com.sun.star.frame.Desktop", ctx) def Underline_Words(): desktop = getDesktop() model = desktop.getCurrentComponent() # Remove closing "tags" that are immediately followed by opening tags. # Otherwise there could be tiny gaps in the underlining. apply_regex(model, 'x% ?%x', '') apply_regex(model, '%x(.*?)x%', '$1', {'CharUnderline': 1}) def apply_regex(model, search, replace, replaceAttrs={}): replaceDescriptor = model.createReplaceDescriptor() props = structify(replaceAttrs) replaceDescriptor.setReplaceAttributes(props) replaceDescriptor.SearchRegularExpression = True replaceDescriptor.SearchString = search replaceDescriptor.ReplaceString = replace numReplaced = model.replaceAll(replaceDescriptor) return numReplaced def structify(keypairs): result = [] for key, value in keypairs.items(): struct = uno.createUnoStruct('com.sun.star.beans.PropertyValue') struct.Name = key struct.Value = value result.append(struct) return tuple(result) g_exportedScripts = (Underline_Words, ) if __name__ == "__main__": Underline_Words()
30.459459
78
0.700532
06f8766c417a71951bcd7909236a6e6638046f1a
368
py
Python
labs/lab10/ex1/ex1.py
jamestiotio/dbsys
26f545a51626ce232c0dc26b70ef206e71b273fc
[ "MIT" ]
null
null
null
labs/lab10/ex1/ex1.py
jamestiotio/dbsys
26f545a51626ce232c0dc26b70ef206e71b273fc
[ "MIT" ]
null
null
null
labs/lab10/ex1/ex1.py
jamestiotio/dbsys
26f545a51626ce232c0dc26b70ef206e71b273fc
[ "MIT" ]
null
null
null
import sys if sys.version_info[0] == 3: from functools import reduce else: pass def min(l): return reduce(lambda x, y: x if x < y else y, l, sys.maxsize) def max(l): return reduce(lambda x, y: x if x > y else y, l, -sys.maxsize - 1) if __name__ == "__main__": assert min([32, 63, 7, 10, 100]) == 7 assert max([32, 63, 7, 10, 100]) == 100
19.368421
70
0.592391
a2ae6bcfe0f18ddf6a1811247e8e8a8b79ff7585
5,598
py
Python
src/computer_vision/training/transfer_classifier.py
mldiego/Platooning-F1Tenth
ec5eadb137da8428642b3ffd1b8ca31fde4f6dff
[ "MIT" ]
null
null
null
src/computer_vision/training/transfer_classifier.py
mldiego/Platooning-F1Tenth
ec5eadb137da8428642b3ffd1b8ca31fde4f6dff
[ "MIT" ]
null
null
null
src/computer_vision/training/transfer_classifier.py
mldiego/Platooning-F1Tenth
ec5eadb137da8428642b3ffd1b8ca31fde4f6dff
[ "MIT" ]
null
null
null
# import the neccessary packages # import sys so we can use packages outside of this folder in # either python 2 or python 3, I know it's janky, chill import sys import os from pathlib import Path #insert parent directory into the path sys.path.insert(0,str(Path(os.path.abspath(__file__)).parent.parent)) from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from nn.conv.fcheadnet import FCHeadNet from preprocessing.utils import ImageUtils # for data augmentation from tensorflow.python.keras.preprocessing.image import ImageDataGenerator #optimizers from keras.optimizers import RMSprop from keras.optimizers import SGD from keras.applications import VGG16 from keras.utils import plot_model from keras.applications import imagenet_utils # layers, model from keras.layers import Input from keras.models import Model # customary packages import numpy as np import argparse import os import cv2 # construct the argument parser ap = argparse.ArgumentParser() ap.add_argument("-d","--dataset",required=True,help="path to input dataset") ap.add_argument("-m","--model",required=True,help="path to save the output model") args = vars(ap.parse_args()) # initialize some constants HEAD_TUNING_EPOCHS = 25 FINAL_TUNING_EPOCHS = 100 BATCH_SIZE = 32 HEIGHT= 224 WIDTH= 224 # define the image augmentation generator aug= ImageDataGenerator(rotation_range=5, brightness_range=[0.5,1.5], zoom_range=[0.9,1.1],rescale=1.0/255.0,fill_mode="nearest") #load the data iu=ImageUtils() data,labels=iu.load_from_directory(args['dataset'],HEIGHT,WIDTH,verbose=1) print("[INFO] Imagenet preprocessing") training_images=[] #normalize the images count = 1 for img in np.copy(data): processed_image=imagenet_utils.preprocess_input(img) training_images.append(processed_image) if(count % 100 ==0): print("Processed {} Images".format(count)) count +=1 data=np.asarray(training_images) #convert the labels from integers to vectors lb = LabelBinarizer() labels=lb.fit_transform(labels) #since there are not an equal amount of images in each category lets compute the class totals classTotals = labels.sum(axis=0).astype('float') classWeight = classTotals.max() / classTotals print(lb.classes_,classTotals,classWeight) # partition the data into training and testing splits using 80% of # the data for training and the remaining 20% for testing #classification data (trainX, testX, trainY, testY) = train_test_split(data,labels, test_size=0.20, stratify=labels, random_state=42) # now comes the main event, the network surgery baseModel = VGG16(weights='imagenet',include_top=False,input_tensor=Input(shape=(224,224,3))) print(baseModel.summary()) # initialize the new head of the network, a set of FC layers # followed by a softmax classifier headModel=FCHeadNet.build(baseModel,testY.shape[1],256) # place the head FC model on top of the base model -- this will # become the actual model we will train model = Model(inputs=baseModel.input,outputs=headModel) print(model.summary()) plot_model(model, to_file='../plots/model.png') # loop over all layers in the base model and freeze them so they # will * not* be updated during the training process. for layer in baseModel.layers: layer.trainable = False # compile our model. This needs to be done after our setting our # layers to being non-trainable print("[INFO] compiling model...") opt = RMSprop(lr=0.001) model.compile(loss='categorical_crossentropy',optimizer=opt, metrics=['accuracy']) # train the head of the network for a few epochs (all other layers # are frozen) -- this will allow the new FC layers to start to become # initialized with actual learned values verus being purely random print ('[INFO] training head...') model.fit_generator(aug.flow(trainX,trainY,batch_size=BATCH_SIZE), validation_data=(testX,testY),epochs=HEAD_TUNING_EPOCHS, steps_per_epoch=len(trainX)//HEAD_TUNING_EPOCHS,verbose=1) # evaluate the network after initialization print("[INFO] evaluating after initialization") predictions = model.predict(testX, batch_size = BATCH_SIZE) print(classification_report(testY.argmax(axis=1),predictions.argmax(axis=1),target_names=lb.classes_)) # now that the head FC layers have been trained/initialized, lets # unfreeze the final set of CONV layers and make them trainable # the only reason that we didn't unfreeze the whole thing is that # VGG is a deep architechture, if classification accuracy continues # to improve (wihtout overfitting), you may consider unfreezing more # layers in the body for layer in baseModel.layers[15:]: layer.trainable = True # for the changes to the model to take affect we need to recompile the # model, this time using SGD with a *very* small learning rate print("[INFO] re-compiling model...") opt = SGD(lr=0.001) model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy']) print ('[INFO] fine-tuning model...') model.fit_generator(aug.flow(trainX,trainY,batch_size=BATCH_SIZE), validation_data=(testX,testY),epochs=FINAL_TUNING_EPOCHS, steps_per_epoch=len(trainX)//FINAL_TUNING_EPOCHS,verbose=1) # evaluate the network after initialization print("[INFO] evaluating after fine-tuning") predictions = model.predict(testX, batch_size = BATCH_SIZE) print(classification_report(testY.argmax(axis=1),predictions.argmax(axis=1),target_names=lb.classes_)) #save te model to disk print("[INFO] serializing model...") model.save(args['model'])
35.884615
129
0.770096
d52566b12cc891708dbf566aedfc3818d03677f4
18,211
py
Python
scout/server/blueprints/variants/views.py
mhkc/scout
a7162f28c0f3490c3f3376268118fa8e6072a9db
[ "BSD-3-Clause" ]
null
null
null
scout/server/blueprints/variants/views.py
mhkc/scout
a7162f28c0f3490c3f3376268118fa8e6072a9db
[ "BSD-3-Clause" ]
null
null
null
scout/server/blueprints/variants/views.py
mhkc/scout
a7162f28c0f3490c3f3376268118fa8e6072a9db
[ "BSD-3-Clause" ]
null
null
null
"""Views for the variants""" import datetime import io import logging import os.path import pathlib import shutil import zipfile import pymongo from flask import ( Blueprint, abort, current_app, flash, redirect, request, send_file, session, url_for, ) from flask_login import current_user from scout.constants import ( CANCER_TIER_OPTIONS, MANUAL_RANK_OPTIONS, SEVERE_SO_TERMS, DISMISS_VARIANT_OPTIONS, CANCER_SPECIFIC_VARIANT_DISMISS_OPTIONS, ) from scout.server.extensions import store from scout.server.utils import institute_and_case, templated from . import controllers from .forms import CancerFiltersForm, FiltersForm, StrFiltersForm, SvFiltersForm LOG = logging.getLogger(__name__) variants_bp = Blueprint( "variants", __name__, template_folder="templates", static_folder="static", static_url_path="/variants/static", ) @variants_bp.route("/<institute_id>/<case_name>/variants", methods=["GET", "POST"]) @templated("variants/variants.html") def variants(institute_id, case_name): """Display a list of SNV variants.""" page = int(request.form.get("page", 1)) category = "snv" institute_obj, case_obj = institute_and_case(store, institute_id, case_name) variant_type = request.args.get("variant_type", "clinical") if request.form.get("hpo_clinical_filter"): case_obj["hpo_clinical_filter"] = True user_obj = store.user(current_user.email) if request.method == "POST": if request.form.getlist("dismiss"): # dismiss a list of variants controllers.dismiss_variant_list( store, institute_obj, case_obj, "variant.variant", request.form.getlist("dismiss"), request.form.getlist("dismiss_choices"), ) form = controllers.populate_filters_form( store, institute_obj, case_obj, user_obj, category, request.form ) else: form = FiltersForm(request.args) # set form variant data type the first time around form.variant_type.data = variant_type # set chromosome to all chromosomes form.chrom.data = request.args.get("chrom", "") if form.gene_panels.data == [] and variant_type == "clinical": form.gene_panels.data = controllers.case_default_panels(case_obj) # populate filters dropdown available_filters = store.filters(institute_id, category) form.filters.choices = [ (filter.get("_id"), filter.get("display_name")) for filter in available_filters ] # populate available panel choices form.gene_panels.choices = controllers.gene_panel_choices(institute_obj, case_obj) # update status of case if visited for the first time controllers.activate_case(store, institute_obj, case_obj, current_user) # upload gene panel if symbol file exists if request.files: file = request.files[form.symbol_file.name] if request.files and file and file.filename != "": LOG.debug("Upload file request files: {0}".format(request.files.to_dict())) try: stream = io.StringIO(file.stream.read().decode("utf-8"), newline=None) except UnicodeDecodeError as error: flash("Only text files are supported!", "warning") return redirect(request.referrer) hgnc_symbols_set = set(form.hgnc_symbols.data) LOG.debug("Symbols prior to upload: {0}".format(hgnc_symbols_set)) new_hgnc_symbols = controllers.upload_panel(store, institute_id, case_name, stream) hgnc_symbols_set.update(new_hgnc_symbols) form.hgnc_symbols.data = hgnc_symbols_set # reset gene panels form.gene_panels.data = "" # check if supplied gene symbols exist hgnc_symbols = [] non_clinical_symbols = [] not_found_symbols = [] not_found_ids = [] if (form.hgnc_symbols.data) and len(form.hgnc_symbols.data) > 0: is_clinical = form.data.get("variant_type", "clinical") == "clinical" clinical_symbols = store.clinical_symbols(case_obj) if is_clinical else None for hgnc_symbol in form.hgnc_symbols.data: if hgnc_symbol.isdigit(): hgnc_gene = store.hgnc_gene(int(hgnc_symbol), case_obj["genome_build"]) if hgnc_gene is None: not_found_ids.append(hgnc_symbol) else: hgnc_symbols.append(hgnc_gene["hgnc_symbol"]) elif sum(1 for i in store.hgnc_genes(hgnc_symbol)) == 0: not_found_symbols.append(hgnc_symbol) elif is_clinical and (hgnc_symbol not in clinical_symbols): non_clinical_symbols.append(hgnc_symbol) else: hgnc_symbols.append(hgnc_symbol) if not_found_ids: flash("HGNC id not found: {}".format(", ".join(not_found_ids)), "warning") if not_found_symbols: flash("HGNC symbol not found: {}".format(", ".join(not_found_symbols)), "warning") if non_clinical_symbols: flash( "Gene not included in clinical list: {}".format(", ".join(non_clinical_symbols)), "warning", ) form.hgnc_symbols.data = hgnc_symbols # handle HPO gene list separately if "hpo" in form.data["gene_panels"]: hpo_symbols = list( set(term_obj["hgnc_symbol"] for term_obj in case_obj["dynamic_gene_list"]) ) current_symbols = set(hgnc_symbols) current_symbols.update(hpo_symbols) form.hgnc_symbols.data = list(current_symbols) cytobands = store.cytoband_by_chrom(case_obj.get("genome_build")) variants_query = store.variants(case_obj["_id"], query=form.data, category=category) result_size = store.count_variants(case_obj["_id"], form.data, None, category) # Setup variant count session with variant count by category controllers.variant_count_session(store, institute_id, case_obj["_id"], variant_type, category) session["filtered_variants"] = result_size if request.form.get("export"): return controllers.download_variants(store, case_obj, variants_query) data = controllers.variants(store, institute_obj, case_obj, variants_query, result_size, page) return dict( institute=institute_obj, case=case_obj, form=form, manual_rank_options=MANUAL_RANK_OPTIONS, dismiss_variant_options=DISMISS_VARIANT_OPTIONS, cancer_tier_options=CANCER_TIER_OPTIONS, severe_so_terms=SEVERE_SO_TERMS, cytobands=cytobands, page=page, expand_search=str(request.method == "POST"), **data, ) @variants_bp.route("/<institute_id>/<case_name>/str/variants") @templated("variants/str-variants.html") def str_variants(institute_id, case_name): """Display a list of STR variants.""" page = int(request.args.get("page", 1)) variant_type = request.args.get("variant_type", "clinical") category = "str" form = StrFiltersForm(request.args) institute_obj, case_obj = institute_and_case(store, institute_id, case_name) controllers.activate_case(store, institute_obj, case_obj, current_user) query = form.data query["variant_type"] = variant_type variants_query = store.variants(case_obj["_id"], category=category, query=query).sort( [ ("str_repid", pymongo.ASCENDING), ("chromosome", pymongo.ASCENDING), ("position", pymongo.ASCENDING), ] ) data = controllers.str_variants(store, institute_obj, case_obj, variants_query, page) return dict( institute=institute_obj, case=case_obj, dismiss_variant_options=DISMISS_VARIANT_OPTIONS, variant_type=variant_type, manual_rank_options=MANUAL_RANK_OPTIONS, form=form, page=page, **data, ) @variants_bp.route("/<institute_id>/<case_name>/sv/variants", methods=["GET", "POST"]) @templated("variants/sv-variants.html") def sv_variants(institute_id, case_name): """Display a list of structural variants.""" page = int(request.form.get("page", 1)) variant_type = request.args.get("variant_type", "clinical") category = "sv" # Define case and institute objects institute_obj, case_obj = institute_and_case(store, institute_id, case_name) if request.form.get("hpo_clinical_filter"): case_obj["hpo_clinical_filter"] = True if request.form.getlist("dismiss"): # dismiss a list of variants controllers.dismiss_variant_list( store, institute_obj, case_obj, "variant.sv_variant", request.form.getlist("dismiss"), request.form.getlist("dismiss_choices"), ) # update status of case if visited for the first time controllers.activate_case(store, institute_obj, case_obj, current_user) form = controllers.populate_sv_filters_form(store, institute_obj, case_obj, category, request) cytobands = store.cytoband_by_chrom(case_obj.get("genome_build")) variants_query = store.variants(case_obj["_id"], category=category, query=form.data) # Setup variant count session with variant count by category controllers.variant_count_session(store, institute_id, case_obj["_id"], variant_type, category) result_size = store.count_variants(case_obj["_id"], form.data, None, category) session["filtered_variants"] = result_size # if variants should be exported if request.form.get("export"): return controllers.download_variants(store, case_obj, variants_query) data = controllers.sv_variants( store, institute_obj, case_obj, variants_query, result_size, page ) return dict( institute=institute_obj, case=case_obj, dismiss_variant_options=DISMISS_VARIANT_OPTIONS, variant_type=variant_type, form=form, cytobands=cytobands, severe_so_terms=SEVERE_SO_TERMS, manual_rank_options=MANUAL_RANK_OPTIONS, page=page, expand_search=str(request.method == "POST"), **data, ) @variants_bp.route("/<institute_id>/<case_name>/cancer/variants", methods=["GET", "POST"]) @templated("variants/cancer-variants.html") def cancer_variants(institute_id, case_name): """Show cancer variants overview.""" category = "cancer" institute_obj, case_obj = institute_and_case(store, institute_id, case_name) user_obj = store.user(current_user.email) if request.method == "POST": if request.form.getlist("dismiss"): # dismiss a list of variants controllers.dismiss_variant_list( store, institute_obj, case_obj, "variant.variant", request.form.getlist("dismiss"), request.form.getlist("dismiss_choices"), ) form = controllers.populate_filters_form( store, institute_obj, case_obj, user_obj, category, request.form ) # if user is not loading an existing filter, check filter form if request.form.get("load_filter") is None and form.validate_on_submit() is False: # Flash a message with errors for field, err_list in form.errors.items(): for err in err_list: flash(f"Content of field '{field}' has not a valid format", "warning") # And do not submit the form return redirect( url_for( ".cancer_variants", institute_id=institute_id, case_name=case_name, expand_search="True", ) ) page = int(request.form.get("page", 1)) else: page = int(request.args.get("page", 1)) form = CancerFiltersForm(request.args) # set chromosome to all chromosomes form.chrom.data = request.args.get("chrom", "") if form.gene_panels.data == []: form.gene_panels.data = controllers.case_default_panels(case_obj) # update status of case if visited for the first time controllers.activate_case(store, institute_obj, case_obj, current_user) # populate filters dropdown available_filters = store.filters(institute_id, category) form.filters.choices = [ (filter.get("_id"), filter.get("display_name")) for filter in available_filters ] form.gene_panels.choices = controllers.gene_panel_choices(institute_obj, case_obj) cytobands = store.cytoband_by_chrom(case_obj.get("genome_build")) variant_type = request.args.get("variant_type", "clinical") variants_query = store.variants(case_obj["_id"], category="cancer", query=form.data) result_size = store.count_variants(case_obj["_id"], form.data, None, category) if request.form.get("export"): return controllers.download_variants(store, case_obj, variants_query) data = controllers.cancer_variants( store, institute_id, case_name, variants_query, result_size, form, page=page ) return dict( variant_type=variant_type, cytobands=cytobands, dismiss_variant_options={ **DISMISS_VARIANT_OPTIONS, **CANCER_SPECIFIC_VARIANT_DISMISS_OPTIONS, }, expand_search=str(request.method == "POST"), **data, ) @variants_bp.route("/<institute_id>/<case_name>/cancer/sv-variants", methods=["GET", "POST"]) @templated("variants/cancer-sv-variants.html") def cancer_sv_variants(institute_id, case_name): """Display a list of cancer structural variants.""" page = int(request.form.get("page", 1)) variant_type = request.args.get("variant_type", "clinical") category = "cancer_sv" # Define case and institute objects institute_obj, case_obj = institute_and_case(store, institute_id, case_name) if request.form.get("hpo_clinical_filter"): case_obj["hpo_clinical_filter"] = True # update status of case if visited for the first time controllers.activate_case(store, institute_obj, case_obj, current_user) form = controllers.populate_sv_filters_form(store, institute_obj, case_obj, category, request) cytobands = store.cytoband_by_chrom(case_obj.get("genome_build")) variants_query = store.variants(case_obj["_id"], category=category, query=form.data) # Setup variant count session with variant count by category controllers.variant_count_session(store, institute_id, case_obj["_id"], variant_type, category) result_size = store.count_variants(case_obj["_id"], form.data, None, category) session["filtered_variants"] = result_size # if variants should be exported if request.form.get("export"): return controllers.download_variants(store, case_obj, variants_query) data = controllers.sv_variants( store, institute_obj, case_obj, variants_query, result_size, page ) return dict( institute=institute_obj, case=case_obj, dismiss_variant_options={ **DISMISS_VARIANT_OPTIONS, **CANCER_SPECIFIC_VARIANT_DISMISS_OPTIONS, }, variant_type=variant_type, form=form, severe_so_terms=SEVERE_SO_TERMS, cancer_tier_options=CANCER_TIER_OPTIONS, manual_rank_options=MANUAL_RANK_OPTIONS, cytobands=cytobands, page=page, expand_search=str(request.method == "POST"), **data, ) @variants_bp.route("/<institute_id>/<case_name>/upload", methods=["POST"]) def upload_panel(institute_id, case_name): """Parse gene panel file and fill in HGNC symbols for filter.""" panel_file = request.form.symbol_file.data if panel_file.filename == "": flash("No selected file", "warning") return redirect(request.referrer) try: stream = io.StringIO(panel_file.stream.read().decode("utf-8"), newline=None) except UnicodeDecodeError as error: flash("Only text files are supported!", "warning") return redirect(request.referrer) category = request.args.get("category") if category == "sv": form = SvFiltersForm(request.args) else: form = FiltersForm(request.args) hgnc_symbols = set(form.hgnc_symbols.data) new_hgnc_symbols = controllers.upload_panel(store, institute_id, case_name, stream) hgnc_symbols.update(new_hgnc_symbols) form.hgnc_symbols.data = ",".join(hgnc_symbols) # reset gene panels form.gene_panels.data = "" # HTTP redirect code 307 asks that the browser preserves the method of request (POST). if category == "sv": return redirect( url_for(".sv_variants", institute_id=institute_id, case_name=case_name, **form.data), code=307, ) return redirect( url_for(".variants", institute_id=institute_id, case_name=case_name, **form.data), code=307 ) @variants_bp.route("/verified", methods=["GET"]) def download_verified(): """Download all verified variants for user's cases""" user_obj = store.user(current_user.email) user_institutes = user_obj.get("institutes") temp_excel_dir = os.path.join(variants_bp.static_folder, "verified_folder") os.makedirs(temp_excel_dir, exist_ok=True) written_files = controllers.verified_excel_file(store, user_institutes, temp_excel_dir) if written_files: today = datetime.datetime.now().strftime("%Y-%m-%d") # zip the files on the fly and serve the archive to the user data = io.BytesIO() with zipfile.ZipFile(data, mode="w") as z: for f_name in pathlib.Path(temp_excel_dir).iterdir(): z.write(f_name, os.path.basename(f_name)) data.seek(0) # remove temp folder with excel files in it shutil.rmtree(temp_excel_dir) return send_file( data, mimetype="application/zip", as_attachment=True, attachment_filename="_".join(["scout", "verified_variants", today]) + ".zip", cache_timeout=0, ) flash("No verified variants could be exported for user's institutes", "warning") return redirect(request.referrer)
37.165306
99
0.670419
e4499448b98c0fc26b314d9cfb8ac093d03d0cef
4,642
py
Python
inertia/views.py
zodman/inertia-django
a8515083371baf649982bd6bb0dddebac723143b
[ "Unlicense" ]
77
2020-04-11T14:27:21.000Z
2022-03-31T16:16:42.000Z
inertia/views.py
zodman/inertia-django
a8515083371baf649982bd6bb0dddebac723143b
[ "Unlicense" ]
13
2020-05-28T19:28:20.000Z
2022-02-11T10:19:59.000Z
inertia/views.py
zodman/inertia-django
a8515083371baf649982bd6bb0dddebac723143b
[ "Unlicense" ]
19
2020-04-16T06:19:34.000Z
2022-01-23T17:33:49.000Z
import json from inspect import signature from django.core.exceptions import ImproperlyConfigured from django.http.response import HttpResponse, HttpResponseRedirect from django.views.generic import View from django.views.generic.list import BaseListView from django.views.generic.detail import BaseDetailView from django.template.response import TemplateResponse from django.shortcuts import render from django.http import JsonResponse from django.middleware import csrf from django.urls import get_callable from .share import share from .version import get_version from django.views.generic import View from django.conf import settings from django.core import serializers from django.forms.models import model_to_dict import logging log = logging.getLogger(__name__) def load_lazy_props(d, request): for k, v in d.items(): if isinstance(v, dict): load_lazy_props(v, request) elif callable(v): # evaluate prop and pass request if prop accept it if len(signature(v).parameters) > 0: d[k] = v(request) else: d[k] = v() def _build_context(component_name, props, version, url): context = { "page": { "version": version, 'url': url, "component": component_name, "props": props }, } return context def render_inertia(request, component_name, props=None, template_name=None): """ Renders either an HttpRespone or JsonResponse of a component for the use in an InertiaJS frontend integration. """ inertia_template = None inertia_template = getattr(settings, "INERTIA_TEMPLATE", "base.html") if template_name is not None: inertia_template = template_name if inertia_template is None: raise ImproperlyConfigured( "No Inertia template found. Either set INERTIA_TEMPLATE" "in settings.py or pass template parameter." ) # share custom data or default authenticated user share_method_path = getattr(settings, "INERTIA_SHARE", "inertia.share.share_auth") if share_method_path: share_method = get_callable(share_method_path) share_method(request) if props is None: props = {} shared = {} if hasattr(request, "session"): for k, v in request.session.get("share", {}).items(): log.debug((k,v)) shared[k]=v props.update(shared) request.session['share']['flash'] = {'success': None, 'error': None} request.session['share']['errors'] = {} for key in ("success", "error", "errors"): if hasattr(request, "session") and request.session.get(key): del request.session[key] # subsequent renders inertia_version = get_version() is_version_correct = 'X-Inertia-Version' in request.headers and \ request.headers["X-Inertia-Version"] == str(inertia_version) # check if partial reload is requested only_props = request.headers.get("X-Inertia-Partial-Data", []) if ( only_props and request.headers.get("X-Inertia-Partial-Component", "") == component_name ): _props = {} for key in props: if key in only_props: _props.update({key: props[key]}) else: _props = props # lazy load props and make request available to props being lazy loaded load_lazy_props(_props, request) if 'X-Inertia' in request.headers: response = JsonResponse({ "component": component_name, "props": _props, "version": inertia_version, "url": request.get_full_path() }) response['X-Inertia'] = True response['Vary'] = 'Accept' return response context = _build_context(component_name, _props, inertia_version, url=request.get_full_path()) return render(request, inertia_template, context) def location(url): """Redirect to an external website, or even another non-Inertia endpoint in your app, within an Inertia request.""" response = HttpResponse(status=409) response["X-Inertia-Location"] = url return response class InertiaMixin: component_name = "" props = None def get_data(self, context): return context def render_to_response(self, context, **kwargs): if self.props is None: self.props = {} self.props.update(self.get_data(context)) return render_inertia(self.request, self.component_name, self.props, self.template_name)
31.794521
96
0.647997
668e03dc90e20dd48cf7d41300bcd7a1f6ed3182
1,122
py
Python
acscore/metrics.py
CheckiePy/CheckiePyCore
475ae75c4a30e4d7444fef218ffa7928fd4df4e2
[ "MIT" ]
2
2017-08-27T15:04:09.000Z
2017-08-27T21:05:44.000Z
acscore/metrics.py
acsproj/acscore
475ae75c4a30e4d7444fef218ffa7928fd4df4e2
[ "MIT" ]
2
2017-07-27T13:51:44.000Z
2017-08-05T06:54:10.000Z
acscore/metrics.py
CheckiePy/CheckiePyCore
475ae75c4a30e4d7444fef218ffa7928fd4df4e2
[ "MIT" ]
3
2017-05-31T21:20:18.000Z
2017-08-03T20:16:47.000Z
from .metric.file_length import FileLength from .metric.function_name_case import FunctionNameCase from .metric.nesting_loops import NestingLoops from .metric.class_name_case import ClassNameCase from .metric.indent_type import IndentType from .metric.quotes_type import QuotesType from .metric.spaces_near_round_brackets import SpacesNearRoundBrackets from .metric.spaces_near_braces import SpacesNearBraces from .metric.spaces_near_square_brackets import SpacesNearSquareBrackets from .metric.import_order import ImportOrder from .metric.blank_before_function import BlankBeforeFunction from .metric.blank_before_class import BlankBeforeClass from .metric.blank_before_method import BlankBeforeMethod IMPLEMENTED_METRICS = [ FileLength.__name__, FunctionNameCase.__name__, NestingLoops.__name__, ClassNameCase.__name__, IndentType.__name__, QuotesType.__name__, SpacesNearRoundBrackets.__name__, SpacesNearBraces.__name__, SpacesNearSquareBrackets.__name__, ImportOrder.__name__, BlankBeforeFunction.__name__, BlankBeforeClass.__name__, BlankBeforeMethod.__name__, ]
37.4
72
0.842246
dce6e5c8dc0bbaeec1e096d34aa98f71cba7ac2a
434
py
Python
instagram_api/response/direct_share_inbox.py
Yuego/instagram_api
b53f72db36c505a2eb24ebac1ba8267a0cc295bb
[ "MIT" ]
13
2019-08-07T21:24:34.000Z
2020-12-12T12:23:50.000Z
instagram_api/response/direct_share_inbox.py
Yuego/instagram_api
b53f72db36c505a2eb24ebac1ba8267a0cc295bb
[ "MIT" ]
null
null
null
instagram_api/response/direct_share_inbox.py
Yuego/instagram_api
b53f72db36c505a2eb24ebac1ba8267a0cc295bb
[ "MIT" ]
null
null
null
from .mapper import ApiResponse, ApiResponseInterface from .mapper.types import Timestamp, AnyType __all__ = ['DirectShareInboxResponse'] class DirectShareInboxResponseInterface(ApiResponseInterface): shares: AnyType max_id: str new_shares: AnyType patches: AnyType last_counted_at: AnyType new_shares_info: AnyType class DirectShareInboxResponse(ApiResponse, DirectShareInboxResponseInterface): pass
24.111111
79
0.799539
d27465e7e2b79ba732ca99e7cbc3e169d683dd79
11,678
py
Python
core/storage/file/gae_models_test.py
sagangwee/oppia
c4bf0673b4d3ec30cff609109241656f71a63a82
[ "Apache-2.0" ]
3
2021-06-26T09:45:19.000Z
2021-11-17T11:11:39.000Z
core/storage/file/gae_models_test.py
sagangwee/oppia
c4bf0673b4d3ec30cff609109241656f71a63a82
[ "Apache-2.0" ]
7
2019-08-20T08:30:43.000Z
2022-02-12T18:47:57.000Z
core/storage/file/gae_models_test.py
ledriod/oppia
4f8f95c6689cd36f0b65672b80d98a3463b001f8
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for core.storage.file.gae_models.""" from core.platform import models from core.tests import test_utils import feconf (file_models, base_models) = models.Registry.import_models( [models.NAMES.file, models.NAMES.base_model]) class FileMetadataModelTest(test_utils.GenericTestBase): """Tests the FileMetadataModel class.""" def test_get_new_id_raises_not_implemented_error(self): with self.assertRaises(NotImplementedError): file_models.FileMetadataModel.get_new_id('entity1') def test_get_undeleted_with_two_undeleted_models_returns_both(self): file_metadata_model1 = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_metadata_model1.commit(feconf.SYSTEM_COMMITTER_ID, []) file_metadata_model2 = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file2.png') file_metadata_model2.commit(feconf.SYSTEM_COMMITTER_ID, []) file_metadata_model_list = ( file_models.FileMetadataModel.get_undeleted()) self.assertEqual(len(file_metadata_model_list), 2) self.assertEqual( file_metadata_model1, file_metadata_model_list[0]) self.assertEqual( file_metadata_model2, file_metadata_model_list[1]) def test_get_undeleted_with_a_deleted_and_undeleted_model_returns_undeleted( self): file_metadata_model1 = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_metadata_model1.commit(feconf.SYSTEM_COMMITTER_ID, []) file_metadata_model2 = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file2.png') file_metadata_model2.commit(feconf.SYSTEM_COMMITTER_ID, []) file_metadata_model2.delete( feconf.SYSTEM_COMMITTER_ID, 'Delete second file model') file_metadata_model_list = ( file_models.FileMetadataModel.get_undeleted()) self.assertEqual(len(file_metadata_model_list), 1) self.assertEqual( file_metadata_model1, file_metadata_model_list[0]) def test_create_with_exp_id_not_in_filepath_and_false_deleted_status_creates_model( # pylint: disable=line-too-long self): file_metadata_model = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') self.assertFalse(file_metadata_model.deleted) self.assertEqual( file_metadata_model.id, '/exploration/exp_id1/path/to/file1.png') def test_create_with_exp_id_in_filepath_and_false_deleted_status_creates_model( # pylint: disable=line-too-long self): file_metadata_model = file_models.FileMetadataModel.create( 'exploration/exp_id1', '/exploration/exp_id1/path/to/file1.png') self.assertFalse(file_metadata_model.deleted) self.assertEqual( file_metadata_model.id, '/exploration/exp_id1/path/to/file1.png') def test_get_model_with_model_present_returns_the_correct_model(self): file_metadata_model = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_metadata_model.commit(feconf.SYSTEM_COMMITTER_ID, []) retrieved_model = file_models.FileMetadataModel.get_model( 'exploration/exp_id1', 'path/to/file1.png') self.assertEqual(retrieved_model, file_metadata_model) def test_get_model_non_strict_with_no_model_present_returns_none(self): retrieved_model = file_models.FileMetadataModel.get_model( 'exploration/exp_id1', 'path/to/file2.png') self.assertIsNone(retrieved_model) def test_get_model_strict_with_no_model_present_raises_error(self): with self.assertRaisesRegexp( base_models.BaseModel.EntityNotFoundError, ( 'Entity for class FileMetadataModel with id.+?not found')): file_models.FileMetadataModel.get_model( 'exploration/exp_id1', 'path/to/file2.png', True) def test_get_version_with_version_present_returns_correct_model(self): file_metadata_model = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_metadata_model.commit(feconf.SYSTEM_COMMITTER_ID, []) file_metadata_model.commit(feconf.SYSTEM_COMMITTER_ID, []) retrieved_model = file_models.FileMetadataModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 1) self.assertEqual(file_metadata_model.key, retrieved_model.key) self.assertEqual(retrieved_model.version, 1) retrieved_model = file_models.FileMetadataModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 2) self.assertEqual(file_metadata_model.key, retrieved_model.key) self.assertEqual(retrieved_model.version, 2) def test_get_version_with_version_absent_raises_error(self): file_metadata_model = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_metadata_model.commit(feconf.SYSTEM_COMMITTER_ID, []) with self.assertRaisesRegexp( base_models.BaseModel.EntityNotFoundError, ( 'Entity for class FileMetadataSnapshotContentModel with id' '.+?-2 not found')): file_models.FileMetadataModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 2) def test_commit_updates_version_of_stored_model(self): file_metadata_model = file_models.FileMetadataModel.create( 'exploration/exp_id1', 'path/to/file1.png') self.assertEqual(file_metadata_model.version, 0) file_metadata_model.commit(feconf.SYSTEM_COMMITTER_ID, []) self.assertEqual(file_metadata_model.version, 1) class FileModelTest(test_utils.GenericTestBase): """Tests the FileModel class.""" def test_file_model_content_is_reconstituted_correctly(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) file_model.content = 'file_contents' commit_cmds = [{'cmd': 'edit'}] file_model.commit(feconf.SYSTEM_COMMITTER_ID, commit_cmds) retrieved_model = file_models.FileModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 2) self.assertEqual(file_model.key, retrieved_model.key) self.assertEqual(retrieved_model.content, 'file_contents') def test_initial_file_model_has_no_content(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') self.assertIsNone(file_model.content) def test_file_model_snapshot_includes_file_model_content(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_model.content = 'file_contents' file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) self.assertEqual(file_model.content, 'file_contents') def test_get_new_id_raises_not_implemented_error(self): with self.assertRaises(NotImplementedError): file_models.FileModel.get_new_id('entity1') def test_create_with_exp_id_not_in_filepath_and_false_deleted_status_creates_model( # pylint: disable=line-too-long self): file_model1 = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') self.assertFalse(file_model1.deleted) self.assertEqual( file_model1.id, '/exploration/exp_id1/path/to/file1.png') def test_create_with_exp_id_in_filepath_and_false_deleted_status_creates_model( # pylint: disable=line-too-long self): file_model = file_models.FileModel.create( 'exploration/exp_id1', '/exploration/exp_id1/path/to/file1.png') self.assertFalse(file_model.deleted) self.assertEqual( file_model.id, '/exploration/exp_id1/path/to/file1.png') def test_get_model_with_model_present_returns_the_correct_model(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) retrieved_model = file_models.FileModel.get_model( 'exploration/exp_id1', 'path/to/file1.png') self.assertEqual(retrieved_model, file_model) def test_get_model_non_strict_with_no_model_present_returns_none(self): retrieved_model = file_models.FileModel.get_model( 'exploration/exp_id1', 'path/to/file2.png') self.assertIsNone(retrieved_model) def test_get_model_strict_with_no_model_present_raises_erro(self): with self.assertRaisesRegexp( base_models.BaseModel.EntityNotFoundError, ( 'Entity for class FileModel with id.+?not found')): file_models.FileModel.get_model( 'exploration/exp_id1', 'path/to/file2.png', True) def test_commit_updates_version_of_stored_model(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') self.assertEqual(file_model.version, 0) file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) self.assertEqual(file_model.version, 1) def test_get_version_with_version_present_returns_correct_model(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_model.content = 'file_contents_after_first_commit' file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) file_model.content = 'file_contents_after_second_commit' file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) retrieved_model = file_models.FileModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 1) self.assertEqual(file_model.key, retrieved_model.key) self.assertEqual( retrieved_model.content, 'file_contents_after_first_commit') self.assertEqual(retrieved_model.version, 1) retrieved_model = file_models.FileModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 2) self.assertEqual(file_model.key, retrieved_model.key) self.assertEqual( retrieved_model.content, 'file_contents_after_second_commit') self.assertEqual(retrieved_model.version, 2) def test_get_version_with_version_absent_raises_error(self): file_model = file_models.FileModel.create( 'exploration/exp_id1', 'path/to/file1.png') file_model.commit(feconf.SYSTEM_COMMITTER_ID, []) with self.assertRaisesRegexp( base_models.BaseModel.EntityNotFoundError, ( 'Entity for class FileSnapshotContentModel with id' '.+?-2 not found')): file_models.FileModel.get_version( 'exploration/exp_id1', 'path/to/file1.png', 2)
46.158103
119
0.711081
8805faf68cbab58b1bfb25bb3c923dd18eed6c35
3,999
py
Python
pyta/python_ta/reporters/node_printers.py
AbChatt/Tweet-Analyser-Python
2953137b021a71d65fe6a83e6d4b87be36d4039b
[ "MIT" ]
null
null
null
pyta/python_ta/reporters/node_printers.py
AbChatt/Tweet-Analyser-Python
2953137b021a71d65fe6a83e6d4b87be36d4039b
[ "MIT" ]
null
null
null
pyta/python_ta/reporters/node_printers.py
AbChatt/Tweet-Analyser-Python
2953137b021a71d65fe6a83e6d4b87be36d4039b
[ "MIT" ]
null
null
null
"""Specify how errors should be rendered.""" import astroid from enum import Enum def render_message(msg, source_lines): """Render a message based on type.""" renderer = CUSTOM_MESSAGES.get(msg.symbol, render_generic) yield from renderer(msg, source_lines) def render_generic(msg, source_lines=None): """Default rendering for a message.""" if hasattr(msg, 'node') and msg.node is not None: node = msg.node start_line, start_col = node.fromlineno, node.col_offset end_line, end_col = node.end_lineno, node.end_col_offset # Display up to 2 lines before node for context: yield from render_context(start_line - 2, start_line, source_lines) if start_line == end_line: yield (start_line, slice(start_col, end_col), LineType.ERROR, source_lines[start_line-1]) else: yield (start_line, slice(start_col, None), LineType.ERROR, source_lines[start_line-1]) yield from ((line, slice(None, None), LineType.ERROR, source_lines[line-1]) for line in range(start_line+1, end_line)) yield (end_line, slice(None, end_col), LineType.ERROR, source_lines[end_line-1]) # Display up to 2 lines after node for context: yield from render_context(end_line + 1, end_line + 3, source_lines) else: line = msg.line yield from render_context(line - 2, line, source_lines) yield (line, slice(None, None), LineType.ERROR, source_lines[line - 1]) yield from render_context(line + 1, line + 3, source_lines) def render_missing_docstring(msg, source_lines=None): """Render a missing docstring message""" if isinstance(msg.node, astroid.Module): yield (None, slice(None, None), LineType.DOCSTRING, '"""YOUR DOCSTRING HERE"""') yield from render_context(1, 3, source_lines) elif isinstance(msg.node, astroid.ClassDef) or isinstance(msg.node, astroid.FunctionDef): start = msg.node.fromlineno end = msg.node.body[0].fromlineno yield from render_context(start, end, source_lines) # Calculate indentation body = source_lines[end-1] indentation = len(body) - len(body.lstrip()) yield (None, slice(None, None), LineType.DOCSTRING, body[:indentation] + '"""YOUR DOCSTRING HERE"""') yield from render_context(end, end + 2, source_lines) def render_trailing_newlines(msg, source_lines=None): start_line = msg.line - 1 yield from render_context(start_line - 2, start_line, source_lines) yield from ((line, slice(None, None), LineType.OTHER, source_lines[line-1]) for line in range(start_line, len(source_lines) + 1)) def render_context(start, stop, source_lines): """Helper for rendering context lines.""" start, stop = max(start, 1), min(stop, len(source_lines)) yield from ((line, slice(None, None), LineType.CONTEXT, source_lines[line-1]) for line in range(start, stop)) def render_bad_whitespace(msg, source_lines=None): """Extract column information from caret position within message string""" start, stop = None, None last_line = msg.msg.split('\n')[-1] if '^' in last_line: start = last_line.index('^') stop = start + 1 line = msg.line yield from render_context(line - 2, line, source_lines) yield (line, slice(start, stop), LineType.ERROR, source_lines[line - 1]) yield from render_context(line + 1, line + 3, source_lines) CUSTOM_MESSAGES = { 'missing-docstring': render_missing_docstring, 'trailing-newlines': render_trailing_newlines, 'bad-whitespace': render_bad_whitespace, } class LineType(Enum): """An enumeration for _add_line method line types.""" ERROR = 1 # line with error CONTEXT = 2 # non-error/other line added for context OTHER = 3 # line included in source but not error ELLIPSIS = 5 # code replaced with ellipsis DOCSTRING = 6 # docstring needed warning
40.806122
130
0.674169
74618184653e401f2187f2bdfd163c694e2b2110
20,577
py
Python
cycle_gan/cycle_gan.py
asahi417/CycleGAN
44ab135f6666bd976299a2d86cc785f20c3b7860
[ "MIT" ]
2
2019-05-20T05:14:53.000Z
2021-04-22T16:50:14.000Z
cycle_gan/cycle_gan.py
asahi417/CycleGAN
44ab135f6666bd976299a2d86cc785f20c3b7860
[ "MIT" ]
null
null
null
cycle_gan/cycle_gan.py
asahi417/CycleGAN
44ab135f6666bd976299a2d86cc785f20c3b7860
[ "MIT" ]
1
2021-02-20T09:59:24.000Z
2021-02-20T09:59:24.000Z
import os import tensorflow as tf import numpy as np from .dataset_tool import tfrecord_parser from .util import create_log from .util_tf import generator_resnet, discriminator_patch DATA_TYPE = ['trainB', 'trainA', 'testA', 'testB'] class CycleGAN: """ Only valid for images with shape [256, 256, 3] """ def __init__(self, tfrecord_dir: str, checkpoint_dir: str, image_shape: list, cyclic_lambda_a: float, cyclic_lambda_b: float, identity_lambda: float, learning_rate: float=None, buffer_size: int = 50, batch: int = 10, optimizer: str = 'sgd', debug: bool = True, n_thread: int = 4, log_img_size: int = 5 ): self.__ini_learning_rate = learning_rate self.__checkpoint_dir = checkpoint_dir self.__checkpoint = '%s/model.ckpt' % checkpoint_dir self.__log_img_size = log_img_size self.__identity_lambda = identity_lambda self.__buffer_size = buffer_size self.__image_shape = image_shape self.__cyclic_lambda_a = cyclic_lambda_a self.__cyclic_lambda_b = cyclic_lambda_b self.__base_batch = batch self.__optimizer = optimizer self.__logger = create_log('%s/log' % checkpoint_dir) if debug else None self.__n_thread = n_thread self.tfrecord_dir = tfrecord_dir self.__build_network() self.session = tf.Session(config=tf.ConfigProto(log_device_placement=False)) self.writer = tf.summary.FileWriter('%s/summary' % self.__checkpoint_dir, self.session.graph) # Load model if os.path.exists('%s.meta' % self.__checkpoint): self.__log('load variable from %s' % self.__checkpoint) self.__saver.restore(self.session, self.__checkpoint) self.__warm_start = True else: os.makedirs(self.__checkpoint_dir, exist_ok=True) self.session.run(tf.global_variables_initializer()) self.__warm_start = False def __tfreocrd(self, record_name, batch, seed=None): seed = tf.cast(seed, tf.int64) if seed is not None else seed data_set_api = tf.data.TFRecordDataset(record_name, compression_type='GZIP') # convert record to tensor data_set_api = data_set_api.map(tfrecord_parser(self.__image_shape), self.__n_thread) # set batch size data_set_api = data_set_api.shuffle(buffer_size=10000, seed=seed) data_set_api = data_set_api.batch(tf.cast(batch, tf.int64)) # make iterator iterator = tf.data.Iterator.from_structure(data_set_api.output_types, data_set_api.output_shapes) iterator_ini = iterator.make_initializer(data_set_api) return iterator, iterator_ini def __build_network(self): ########## # config # ########## self.__tfrecord_a = tf.placeholder(tf.string, name='tfrecord_a') self.__tfrecord_b = tf.placeholder(tf.string, name='tfrecord_b') self.__batch = tf.placeholder_with_default(self.__base_batch, [], name='batch') ######### # input # ######### img_iterator_a, self.iterator_ini_a = self.__tfreocrd(self.__tfrecord_a, self.__batch) img_iterator_b, self.iterator_ini_b = self.__tfreocrd(self.__tfrecord_b, self.__batch) self.img_a = img_iterator_a.get_next() self.img_b = img_iterator_b.get_next() ############### # placeholder # ############### img_shape = [None] + self.__image_shape # original images from domain A and B self.__original_img_a = tf.placeholder(tf.float32, img_shape, name='original_img_a') self.__original_img_b = tf.placeholder(tf.float32, img_shape, name='original_img_b') # will sampled from buffered generated images self.__fake_img_a_buffer = tf.placeholder(tf.float32, img_shape, name='fake_img_a_buffer') self.__fake_img_b_buffer = tf.placeholder(tf.float32, img_shape, name='fake_img_b_buffer') self.__learning_rate = tf.placeholder_with_default(0.0, [], name='learning_rate') original_img_a_norm = (self.__original_img_a / 255 - 0.5) * 2 original_img_b_norm = (self.__original_img_b / 255 - 0.5) * 2 ############# # generator # ############# with tf.name_scope('generators'): # generator from A to B self.fake_img_b = generator_resnet(original_img_a_norm, scope='generator_a') self.cycle_img_a = generator_resnet(self.fake_img_b, scope='generator_b') # generator from B to A self.fake_img_a = generator_resnet(original_img_b_norm, scope='generator_b', reuse=True) self.cycle_img_b = generator_resnet(self.fake_img_a, scope='generator_a', reuse=True) self.id_a = generator_resnet(original_img_a_norm, scope='generator_b', reuse=True) self.id_b = generator_resnet(original_img_b_norm, scope='generator_a', reuse=True) if self.__identity_lambda != 0.0: # self.id_a = generator_resnet(original_img_a_norm, scope='generator_b', reuse=True) id_loss_a = tf.reduce_mean(tf.abs(original_img_a_norm - self.id_a)) # self.id_b = generator_resnet(original_img_b_norm, scope='generator_a', reuse=True) id_loss_b = tf.reduce_mean(tf.abs(original_img_b_norm - self.id_b)) else: id_loss_a = id_loss_b = 0.0 ################# # discriminator # ################# with tf.name_scope('discriminators'): # logit for update generator A logit_fake_a_generator = discriminator_patch(self.fake_img_a, scope='discriminator_a') # logit for update generator B logit_fake_b_generator = discriminator_patch(self.fake_img_b, scope='discriminator_b') # logit for update discriminator A logit_fake_a = discriminator_patch(self.__fake_img_a_buffer, scope='discriminator_a', reuse=True) logit_original_a = discriminator_patch(original_img_a_norm, scope='discriminator_a', reuse=True) # logit for update discriminator B logit_fake_b = discriminator_patch(self.__fake_img_b_buffer, scope='discriminator_b', reuse=True) logit_original_b = discriminator_patch(original_img_b_norm, scope='discriminator_b', reuse=True) ######## # loss # ######## with tf.name_scope('loss'): # adversarial loss (least square loss, known as LSGAN) gen_loss_a = tf.reduce_mean(tf.squared_difference(logit_fake_a_generator, 1)) gen_loss_b = tf.reduce_mean(tf.squared_difference(logit_fake_b_generator, 1)) disc_loss_a = (tf.reduce_mean(tf.squared_difference(logit_fake_a, 0)) + tf.reduce_mean(tf.squared_difference(logit_original_a, 1))) * 0.5 disc_loss_b = (tf.reduce_mean(tf.squared_difference(logit_fake_b, 0)) + tf.reduce_mean(tf.squared_difference(logit_original_b, 1))) * 0.5 # cycle consistency loss cycle_loss_a = tf.reduce_mean(tf.abs(original_img_a_norm - self.cycle_img_a)) cycle_loss_b = tf.reduce_mean(tf.abs(original_img_b_norm - self.cycle_img_b)) ################ # optimization # ################ with tf.name_scope('optimization'): if self.__optimizer == 'adam': optimizer_g_a = tf.train.AdamOptimizer(self.__learning_rate) optimizer_g_b = tf.train.AdamOptimizer(self.__learning_rate) optimizer_d_a = tf.train.AdamOptimizer(self.__learning_rate) optimizer_d_b = tf.train.AdamOptimizer(self.__learning_rate) else: raise ValueError('unknown optimizer !!') var_gen_a = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator_a') var_gen_b = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator_b') var_disc_a = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator_a') var_disc_b = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator_b') cycle_loss = cycle_loss_a * self.__cyclic_lambda_a + cycle_loss_b * self.__cyclic_lambda_b self.train_op_gen_a = optimizer_g_a.minimize( gen_loss_b + cycle_loss + id_loss_b * self.__cyclic_lambda_a * self.__identity_lambda, var_list=var_gen_a) self.train_op_gen_b = optimizer_g_b.minimize( gen_loss_a + cycle_loss + id_loss_a * self.__cyclic_lambda_b * self.__identity_lambda, var_list=var_gen_b) self.train_op_disc_a = optimizer_d_a.minimize( disc_loss_a, var_list=var_disc_a) self.train_op_disc_b = optimizer_d_b.minimize( disc_loss_b, var_list=var_disc_b) # logging n_var = 0 for var in tf.trainable_variables(): sh = var.get_shape().as_list() self.__log('%s: %s' % (var.name, str(sh))) n_var += np.prod(sh) self.__log('total variables: %i' % n_var) # saver self.__saver = tf.train.Saver() ################## # scalar summary # ################## def image_form(float_img): img_int = tf.floor((float_img + 1) * 255 / 2) return tf.cast(img_int, tf.uint8) self.summary_hyperparameter = tf.summary.merge([ tf.summary.scalar('hyperparameter_cyclic_lambda_a', self.__cyclic_lambda_a), tf.summary.scalar('hyperparameter_cyclic_lambda_b', self.__cyclic_lambda_b), tf.summary.scalar('hyperparameter_image_shape_w', self.__image_shape[0]), tf.summary.scalar('hyperparameter_image_shape_h', self.__image_shape[1]), tf.summary.scalar('hyperparameter_image_shape_c', self.__image_shape[2]), tf.summary.scalar('hyperparameter_buffer_size', self.__buffer_size), tf.summary.scalar('hyperparameter_batch', self.__base_batch) ]) self.summary_train_gen_a = tf.summary.merge([ tf.summary.scalar('meta_learning_rate', self.__learning_rate), tf.summary.scalar('loss_gen_a', gen_loss_a), tf.summary.scalar('loss_cycle_a', cycle_loss_a), tf.summary.scalar('loss_id_a', id_loss_b) ]) self.summary_train_gen_b = tf.summary.merge([ tf.summary.scalar('loss_gen_b', gen_loss_b), tf.summary.scalar('loss_cycle_b', cycle_loss_b), tf.summary.scalar('loss_id_b', id_loss_a) ]) self.summary_train_disc_a = tf.summary.merge([ tf.summary.scalar('loss_disc_a', disc_loss_a), tf.summary.image('buffer_a', image_form(self.__fake_img_a_buffer)) ]) self.summary_train_disc_b = tf.summary.merge([ tf.summary.scalar('loss_disc_b', disc_loss_b), tf.summary.image('buffer_b', image_form(self.__fake_img_b_buffer)) ]) self.summary_image = tf.summary.merge([ tf.summary.image('original_a', self.__original_img_a, self.__log_img_size), tf.summary.image('fake_b', image_form(self.fake_img_b), self.__log_img_size), tf.summary.image('cycled_a', image_form(self.cycle_img_a), self.__log_img_size), tf.summary.image('original_b', self.__original_img_b, self.__log_img_size), tf.summary.image('fake_a', image_form(self.fake_img_a), self.__log_img_size), tf.summary.image('cycled_b', image_form(self.cycle_img_b), self.__log_img_size) ]) def train(self, epoch: int, progress_interval: int = 1): def shuffle_data(data, seed=None): """shuffle array along first axis""" np.random.seed(seed) np.random.shuffle(data) return data def learning_rate_scheduler(current_lr, current_epoch): """ heuristic scheduler used in original paper """ bias = 2.0e-6 if current_epoch > 100: return np.max([current_lr - bias, 0]) else: return current_lr if self.__warm_start: meta = np.load('%s/meta.npz' % self.__checkpoint_dir) learning_rate = meta['learning_rate'] buffer_a = meta['buffer_a'] buffer_b = meta['buffer_b'] buffer_ind = meta['buffer_ind'] ini_epoch = meta['epoch'] i_summary = meta['i_summary'] else: learning_rate = self.__ini_learning_rate buffer_a = np.zeros(tuple([self.__buffer_size] + self.__image_shape)) buffer_b = np.zeros(tuple([self.__buffer_size] + self.__image_shape)) buffer_ind = 0 ini_epoch = 0 i_summary = 0 # write hyperparameters to tensorboad sums = self.session.run(self.summary_hyperparameter) self.writer.add_summary(sums, 0) e = -1 for e in range(ini_epoch, ini_epoch + epoch): self.session.run([self.iterator_ini_a, self.iterator_ini_b], feed_dict={ self.__tfrecord_a: '%s/trainA.tfrecord' % self.tfrecord_dir, self.__tfrecord_b: '%s/trainB.tfrecord' % self.tfrecord_dir }) n = 0 learning_rate = learning_rate_scheduler(learning_rate, e) # TRAIN while True: n += 1 try: # get input image img_a, img_b = self.session.run( [self.img_a, self.img_b], feed_dict={self.__learning_rate: learning_rate}) # train generator A summary, fake_img_a, _ = self.session.run([ self.summary_train_gen_a, self.fake_img_a, self.train_op_gen_a ], feed_dict={ self.__learning_rate: learning_rate, self.__original_img_a: img_a, self.__original_img_b: img_b} ) self.writer.add_summary(summary, i_summary) # train generator B summary, fake_img_b, _ = self.session.run([ self.summary_train_gen_b, self.fake_img_b, self.train_op_gen_b ], feed_dict={ self.__learning_rate: learning_rate, self.__original_img_a: img_a, self.__original_img_b: img_b} ) self.writer.add_summary(summary, i_summary) # buffering generated images if buffer_ind > self.__buffer_size - 1: # TODO: this works with only batch size `1`. Extend in general case if np.random.rand() > 0.5: sampled_fake_a = fake_img_a sampled_fake_b = fake_img_b else: # sample from buffered a buffer_a = shuffle_data(buffer_a) sampled_fake_a = buffer_a[0:1, :, :, :] buffer_a[0, :, :, :] = fake_img_a[0] # sample from buffered b buffer_b = shuffle_data(buffer_b) sampled_fake_b = buffer_b[0:1, :, :, :] buffer_b[0, :, :, :] = fake_img_b[0] else: sampled_fake_a = fake_img_a sampled_fake_b = fake_img_b buffer_a[buffer_ind, :, :, :] = sampled_fake_a buffer_b[buffer_ind, :, :, :] = sampled_fake_b buffer_ind += 1 # train discriminator A summary, _ = self.session.run([ self.summary_train_disc_a, self.train_op_disc_a ], feed_dict={ self.__learning_rate: learning_rate, self.__original_img_a: img_a, self.__fake_img_a_buffer: sampled_fake_a} ) self.writer.add_summary(summary, i_summary) # train discriminator B summary, _ = self.session.run([ self.summary_train_disc_b, self.train_op_disc_b ], feed_dict={ self.__learning_rate: learning_rate, self.__original_img_b: img_b, self.__fake_img_b_buffer: sampled_fake_b} ) self.writer.add_summary(summary, i_summary) if progress_interval is not None and n % progress_interval == 0: print('epoch %i-%i\r' % (e, n), end='', flush=True) i_summary += 1 except tf.errors.OutOfRangeError: print() self.__log('epoch %i:' % e) # produce images from validation data self.session.run([self.iterator_ini_a, self.iterator_ini_b], feed_dict={ self.__tfrecord_a: '%s/testA.tfrecord' % self.tfrecord_dir, self.__tfrecord_b: '%s/testB.tfrecord' % self.tfrecord_dir, self.__batch: self.__log_img_size }) img_a, img_b = self.session.run([self.img_a, self.img_b]) summary = self.session.run(self.summary_image, feed_dict={self.__original_img_a: img_a, self.__original_img_b: img_b}) self.writer.add_summary(summary, e) break self.__saver.save(self.session, self.__checkpoint) np.savez('%s/meta.npz' % self.__checkpoint_dir, learning_rate=learning_rate, buffer_a=buffer_a, buffer_b=buffer_b, buffer_ind=buffer_ind, i_summary=i_summary, epoch=e + 1) def generate_img(self, batch): """ Return generated img :param batch: number of img :return: 0~255, uint, numpy array [original_a, fake_from_a, cycle_a, identity_a, original_b, fake_from_b, cycle_b, identity_b] """ def form_img(target_array): target_array = (target_array+1)/2*255 target_array = target_array.astype(np.uint8) return target_array self.session.run([self.iterator_ini_a, self.iterator_ini_b], feed_dict={ self.__tfrecord_a: '%s/testA.tfrecord' % self.tfrecord_dir, self.__tfrecord_b: '%s/testB.tfrecord' % self.tfrecord_dir, self.__batch: 1 }) result = [] for b in range(batch): img_a, img_b = self.session.run([self.img_a, self.img_b]) imgs = self.session.run([ self.fake_img_b, self.cycle_img_a, self.id_a, self.fake_img_a, self.cycle_img_b, self.id_b ], feed_dict={self.__original_img_a: img_a, self.__original_img_b: img_b} ) result.append([ img_a.astype(np.uint8), form_img(imgs[0]), form_img(imgs[1]), form_img(imgs[2]), img_b.astype(np.uint8), form_img(imgs[3]), form_img(imgs[4]), form_img(imgs[5]) ]) return result def __log(self, statement): if self.__logger is not None: self.__logger.info(statement)
45.524336
118
0.565146
c609eebaf2478d42917fbf6d3029ebf5fd8da01d
7,615
py
Python
predict.py
The-ML-Hero/Robo-Semantic-Segmentation
17904ebc7d2f0f388da641140daac6f6602ef5ea
[ "MIT" ]
5
2021-01-27T13:09:13.000Z
2021-01-28T12:20:11.000Z
predict.py
The-ML-Hero/Robo-Semantic-Segmentation
17904ebc7d2f0f388da641140daac6f6602ef5ea
[ "MIT" ]
null
null
null
predict.py
The-ML-Hero/Robo-Semantic-Segmentation
17904ebc7d2f0f388da641140daac6f6602ef5ea
[ "MIT" ]
null
null
null
import argparse import logging import os import sys import numpy as np import torch import torch.nn as nn from torch import optim from tqdm import tqdm from eval import eval_net from unet import UNet from torch.utils.tensorboard import SummaryWriter from utils.dataset import BasicDataset,CarvanaDataset from torch.utils.data import DataLoader, random_split dir_img = '/content/data/data/membrane/train/image/' dir_mask = '/content/data/data/membrane/train/label/' dir_checkpoint = 'checkpoints/' def train_net(net, device, epochs=5, batch_size=1, lr=0.001, val_percent=0.1, save_cp=True, img_scale=0.5): dataset = BasicDataset(dir_img, dir_mask, img_scale) n_val = int(len(dataset) * val_percent) n_train = len(dataset) - n_val train, val = random_split(dataset, [n_train, n_val]) train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True) val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True, drop_last=True) writer = SummaryWriter(comment=f'LR_{lr}_BS_{batch_size}_SCALE_{img_scale}') global_step = 0 logging.info(f'''Starting training: Epochs: {epochs} Batch size: {batch_size} Learning rate: {lr} Training size: {n_train} Validation size: {n_val} Checkpoints: {save_cp} Device: {device.type} Images scaling: {img_scale} ''') optimizer = optim.RMSprop(net.parameters(), lr=lr, weight_decay=1e-8, momentum=0.9) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min' if net.n_classes > 1 else 'max', patience=2) if net.n_classes > 1: criterion = nn.CrossEntropyLoss() else: criterion = nn.BCEWithLogitsLoss() for epoch in range(epochs): net.train() epoch_loss = 0 with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar: for batch in train_loader: imgs = batch['image'] true_masks = batch['mask'] assert imgs.shape[1] == net.n_channels, \ f'Network has been defined with {net.n_channels} input channels, ' \ f'but loaded images have {imgs.shape[1]} channels. Please check that ' \ 'the images are loaded correctly.' imgs = imgs.to(device=device, dtype=torch.float32) mask_type = torch.float32 if net.n_classes == 1 else torch.long true_masks = true_masks.to(device=device, dtype=mask_type) masks_pred = net(imgs) loss = criterion(masks_pred, true_masks) epoch_loss += loss.item() writer.add_scalar('Loss/train', loss.item(), global_step) pbar.set_postfix(**{'loss (batch)': loss.item()}) optimizer.zero_grad() loss.backward() nn.utils.clip_grad_value_(net.parameters(), 0.1) optimizer.step() pbar.update(imgs.shape[0]) global_step += 1 if global_step % (n_train // (10 * batch_size)) == 0: for tag, value in net.named_parameters(): tag = tag.replace('.', '/') writer.add_histogram('weights/' + tag, value.data.cpu().numpy(), global_step) writer.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), global_step) val_score = eval_net(net, val_loader, device) scheduler.step(val_score) writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step) if net.n_classes > 1: logging.info('Validation cross entropy: {}'.format(val_score)) writer.add_scalar('Loss/test', val_score, global_step) else: logging.info('Validation Dice Coeff: {}'.format(val_score)) writer.add_scalar('Dice/test', val_score, global_step) writer.add_images('images', imgs, global_step) if net.n_classes == 1: writer.add_images('masks/true', true_masks, global_step) writer.add_images('masks/pred', torch.sigmoid(masks_pred) > 0.5, global_step) if save_cp: try: os.mkdir(dir_checkpoint) logging.info('Created checkpoint directory') except OSError: pass torch.save(net.state_dict(), dir_checkpoint + f'CP_epoch{epoch + 1}.pth') logging.info(f'Checkpoint {epoch + 1} saved !') writer.close() def get_args(): parser = argparse.ArgumentParser(description='Train the UNet on images and target masks', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-e', '--epochs', metavar='E', type=int, default=5, help='Number of epochs', dest='epochs') parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1, help='Batch size', dest='batchsize') parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.0001, help='Learning rate', dest='lr') parser.add_argument('-f', '--load', dest='load', type=str, default=False, help='Load model from a .pth file') parser.add_argument('-s', '--scale', dest='scale', type=float, default=0.5, help='Downscaling factor of the images') parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0, help='Percent of the data that is used as validation (0-100)') return parser.parse_args() if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') args = get_args() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logging.info(f'Using device {device}') # Change here to adapt to your data # n_channels=3 for RGB images # n_classes is the number of probabilities you want to get per pixel # - For 1 class and background, use n_classes=1 # - For 2 classes, use n_classes=1 # - For N > 2 classes, use n_classes=N net = UNet(n_channels=1, n_classes=1, bilinear=True) logging.info(f'Network:\n' f'\t{net.n_channels} input channels\n' f'\t{net.n_classes} output channels (classes)\n' f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling') if args.load: net.load_state_dict( torch.load(args.load, map_location=device) ) logging.info(f'Model loaded from {args.load}') net.to(device=device) # faster convolutions, but more memory # cudnn.benchmark = True try: train_net(net=net, epochs=args.epochs, batch_size=args.batchsize, lr=args.lr, device=device, img_scale=args.scale, val_percent=args.val / 100) except KeyboardInterrupt: torch.save(net.state_dict(), 'INTERRUPTED.pth') logging.info('Saved interrupt') try: sys.exit(0) except SystemExit: os._exit(0)
40.505319
118
0.580565
9c8e402b2290299a3cd3785de2a4be4563095858
4,120
py
Python
tests/test_preprocess_winograd.py
PterosDiacos/jiant
5aca4c5c54c4385708d3bda2d53420224ddf5dc3
[ "MIT" ]
null
null
null
tests/test_preprocess_winograd.py
PterosDiacos/jiant
5aca4c5c54c4385708d3bda2d53420224ddf5dc3
[ "MIT" ]
null
null
null
tests/test_preprocess_winograd.py
PterosDiacos/jiant
5aca4c5c54c4385708d3bda2d53420224ddf5dc3
[ "MIT" ]
null
null
null
import csv import os import pandas as pd import shutil import tempfile import unittest import src.utils.retokenize as retokenize import json import copy """ Tests scripts/winograd/preprocess_winograd.py. """ class TestPreprocessWinograd(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.mkdtemp() self.path = os.path.join(self.temp_dir, "temp_winograd_dataset.tsv") with open(self.path, "w") as jsonfile: # test for a indices that shouldn't be changed by tokenization jsonfile.write( json.dumps( { "text": "Members of the House clapped their hands", "target": { "span1_index": 0, "span1_text": "members", "span2_index": 5, "span2_text": "their", "label": True, }, } ) ) jsonfile.write("\n") # test where both span indices should shift jsonfile.write( json.dumps( { "text": "Mr. Ford told me to tell you to contact him", "target": { "span1_index": 0, "span1_text": "Mr. Ford", "span2_index": 9, "span2_text": "him", "label": True, }, } ) ) jsonfile.write("\n") # test where only one of the span indices changes jsonfile.write( json.dumps( { "text": "I told you already, Mr. Ford!", "target": { "span1_index": 4, "span1_text": "Mr. Ford", "span2_index": 0, "span2_text": "I", "label": False, }, } ) ) jsonfile.write("\n") jsonfile.write( json.dumps( { "text": "I look at Sarah's dog. It was cute.!", "target": { "span1_index": 3, "span1_text": "Sarah's dog.", "span2_index": 0, "span2_text": "I", "label": False, }, } ) ) def test_bert(self): records = list(pd.read_json(self.path, lines=True).T.to_dict().values()) orig_records = copy.deepcopy(records) for rec in records[:-1]: retokenize.realign_spans(rec, "bert-large-cased") retokenize.realign_spans(records[-1], "MosesTokenizer") assert records[0]["text"] == orig_records[0]["text"] # the two below should be changed by tokenization assert records[1]["text"] != orig_records[1]["text"] assert records[2]["text"] != orig_records[2]["text"] result_span1 = records[0]["target"]["span1"] result_span2 = records[0]["target"]["span2"] assert result_span1 == [0, 1] assert result_span2 == [5, 6] result_span1 = records[1]["target"]["span1"] result_span2 = records[1]["target"]["span2"] assert result_span1 == [0, 3] assert result_span2 == [10, 11] result_span1 = records[2]["target"]["span1"] result_span2 = records[2]["target"]["span2"] assert result_span1 == [5, 9] assert result_span2 == [0, 1] result_span1 = records[3]["target"]["span1"] result_span2 = records[3]["target"]["span2"] assert result_span1 == [3, 7] assert result_span2 == [0, 1] def tearDown(self): shutil.rmtree(self.temp_dir)
34.049587
80
0.433738
b56cbd67278be53c24d217ea331c9a69928358c0
2,749
py
Python
yodatools/dataloader/controller/WizardSummaryPageController.py
ODM2/YODAParser
274a1fc5ed1810bc748a4ab108855254f8b9fc46
[ "BSD-3-Clause" ]
null
null
null
yodatools/dataloader/controller/WizardSummaryPageController.py
ODM2/YODAParser
274a1fc5ed1810bc748a4ab108855254f8b9fc46
[ "BSD-3-Clause" ]
21
2016-02-06T00:43:44.000Z
2018-02-02T20:22:05.000Z
yodatools/dataloader/controller/WizardSummaryPageController.py
ODM2/ODM2YODAParser
274a1fc5ed1810bc748a4ab108855254f8b9fc46
[ "BSD-3-Clause" ]
1
2017-07-06T18:42:22.000Z
2017-07-06T18:42:22.000Z
import os import time import wx from pubsub import pub from yodatools.converter.Inputs.excelInput import ExcelInput from yodatools.converter.Inputs.yamlInput import yamlInput from yodatools.converter.Outputs.yamlOutput import yamlOutput from yodatools.converter.Outputs.dbOutput import dbOutput from yodatools.dataloader.view.WizardSummaryPageView import WizardSummaryPageView class WizardSummaryPageController(WizardSummaryPageView): def __init__(self, parent, panel, title): super(WizardSummaryPageController, self).__init__(panel) self.parent = parent self.title = title def run(self, *args): try: self.__run(*args) except Exception as e: pub.sendMessage('controller.error', message=e.message) if os.getenv('DEBUG', 'false') == 'true': raise def __run(self, input_file, yoda_output_file_path=None, odm2_connection=None, sqlite_connection=None): # Check if it is a yaml, or excel file file_type = verify_file_type(input_file) conn = next((conn for conn in [odm2_connection, sqlite_connection] if conn is not None), None) if file_type == 'invalid': # Accept only excel and yaml files print('File extension invalid or no file') return if file_type == 'excel': excel = ExcelInput(conn=conn, gauge=self.gauge) excel.parse(input_file) session = excel.session else: # Must be a yoda file yoda = yamlInput() yoda.parse(input_file) session = yoda.sendODM2Session() print("Input complete") # Go through each checkbox if yoda_output_file_path is not None: self.gauge.SetValue(50) yaml = yamlOutput() yaml.save(session=session, file_path=yoda_output_file_path) print "Yoda Output Complete" # if odm2_connection is not None: # db = dbOutput() # db.save(session=session, connection_string=odm2_connection) # print "DB Output Complete" # # if sqlite_connection is not None: # db = dbOutput() # db.save(session=session, connection_string=sqlite_connection) # print "SQLite Output Complete" session.close_all() self.gauge.SetValue(100) self.parent.load_finished_execution() return def verify_file_type(input_file): CONST_LEGAL_EXCEL_EXTENSIONS = ('xlsx', 'xlsm') if input_file.endswith(CONST_LEGAL_EXCEL_EXTENSIONS): file_type = 'excel' elif input_file.endswith('yml'): file_type = 'yaml' else: file_type = 'invalid' return file_type
30.208791
106
0.64387
efbe555d6b324a494ed9bb22ac1fb27e83c6950f
17,539
py
Python
siliconcompiler/sphinx_ext/dynamicgen.py
siliconcompiler/siliconcompiler
6aa2b53441608f228bd520b68c0324fc9cf96377
[ "Apache-2.0" ]
424
2021-12-04T15:45:12.000Z
2022-03-31T20:27:55.000Z
siliconcompiler/sphinx_ext/dynamicgen.py
siliconcompiler/siliconcompiler
6aa2b53441608f228bd520b68c0324fc9cf96377
[ "Apache-2.0" ]
105
2021-12-03T21:25:29.000Z
2022-03-31T22:36:59.000Z
siliconcompiler/sphinx_ext/dynamicgen.py
siliconcompiler/siliconcompiler
6aa2b53441608f228bd520b68c0324fc9cf96377
[ "Apache-2.0" ]
38
2021-12-04T21:26:20.000Z
2022-03-21T02:39:29.000Z
'''Sphinx extension that provides directives for automatically generating documentation for dynamically loaded modules used by SC. ''' from docutils import nodes from sphinx.util.nodes import nested_parse_with_titles from docutils.statemachine import ViewList from sphinx.util.docutils import SphinxDirective import docutils import importlib import pkgutil import os import subprocess import siliconcompiler from siliconcompiler import utils from siliconcompiler.sphinx_ext.utils import * ############# # Helpers ############# # We need this in a few places, so just make it global SC_ROOT = os.path.abspath(f'{__file__}/../../../') def build_schema_value_table(schema, keypath_prefix=[], skip_zero_weight=False): '''Helper function for displaying values set in schema as a docutils table.''' table = [[strong('Keypath'), strong('Value')]] flat_cfg = flatten(schema) for keys, val in flat_cfg.items(): full_keypath = list(keypath_prefix) + list(keys) if (skip_zero_weight and len(full_keypath) == 6 and full_keypath[0] == 'flowgraph' and full_keypath[-2] == 'weight' and 'value' in val and val['value'] == '0'): continue if 'value' in val and val['value']: # Don't display false booleans if val['type'] == 'bool' and val['value'] == 'false': continue if val['type'].startswith('['): if len(val['value']) > 1: val_node = build_list([code(v) for v in val['value']]) elif len(val['value']) > 0: val_node = code(val['value'][0]) else: val_node = para('') else: val_node = code(val['value']) # HTML builder fails if we don't make a text node the parent of the # reference node returned by keypath() p = nodes.paragraph() p += keypath(*full_keypath) table.append([p, val_node]) if len(table) > 1: # This colspec creates two columns of equal width that fill the entire # page, and adds line breaks if table cell contents are longer than one # line. "\X" is defined by Sphinx, otherwise this is standard LaTeX. colspec = r'{|\X{1}{2}|\X{1}{2}|}' return build_table(table, colspec=colspec) else: return None def build_config_recursive(schema, keypath_prefix=[], sec_key_prefix=[]): '''Helper function for displaying schema at each level as tables under nested sections. For each item: - If it's a leaf, collect it into a table we will display at this level - Otherwise, recurse and collect sections of lower levels ''' leaves = {} child_sections = [] for key, val in schema.items(): if key == 'default': continue if 'help' in val: if 'value' in val and val['value']: leaves.update({key: val}) else: children = build_config_recursive(val, keypath_prefix=keypath_prefix+[key], sec_key_prefix=sec_key_prefix) child_sections.extend(children) # If we've found leaves, create a new section where we'll display a # table plus all child sections. if len(leaves) > 0: keypath = ', '.join(keypath_prefix) section_key = '-'.join(sec_key_prefix + keypath_prefix) top = build_section(keypath, section_key) top += build_schema_value_table(leaves, keypath_prefix=keypath_prefix) top += child_sections return [top] else: # Otherwise, just pass on the child sections -- we don't want to # create an extra level of section hierarchy for levels of the # schema without leaves. return child_sections ############# # Base class ############# def flag_opt(argument): if argument is not None: raise ValueError('Flag should not have content') return True class DynamicGen(SphinxDirective): '''Base class for all three directives provided by this extension. Each child class implements a directive by overriding the display_config() method and setting a PATH member variable. ''' option_spec = {'nobuiltins': flag_opt} def document_module(self, module, modname, path): '''Build section documenting given module and name.''' print(f'Generating docs for module {modname}...') s = build_section_with_target(modname, f'{modname}-ref', self.state.document) if not hasattr(module, 'make_docs'): return None make_docs = getattr(module, 'make_docs') # raw docstrings have funky indentation (basically, each line is already # indented as much as the function), so we call trim() helper function # to clean it up docstr = utils.trim(make_docs.__doc__) if docstr: self.parse_rst(docstr, s) builtin = os.path.abspath(path).startswith(SC_ROOT) if builtin: relpath = path[len(SC_ROOT)+1:] gh_root = 'https://github.com/siliconcompiler/siliconcompiler/blob/main' gh_link = f'{gh_root}/{relpath}' filename = os.path.basename(relpath) p = para('Setup file: ') p += link(gh_link, text=filename) s += p chip = make_docs() extra_content = self.extra_content(chip, modname) if extra_content is not None: s += extra_content s += self.display_config(chip, modname) return s def run(self): '''Main entry point of directive.''' sections = [] for module, modname in self.get_modules(): path = module.__file__ self.env.note_dependency(path) docs = self.document_module(module, modname, path) if docs is not None: sections.append((docs, modname)) if len(sections) > 0: # Sort sections by module name sections = sorted(sections, key=lambda t: t[1]) # Strip off modname so we just return list of docutils sections sections, _ = zip(*sections) return list(sections) def get_modules(self): '''Gets dynamic modules under `self.PATH`. This function explicitly searches builtins as well as SCPATH directories. Although the directory for builtin tools gets added to SCPATH after a chip object has been initialized, we can't rely on this since we can't be sure that's happened yet. Therefore, we have to check each one explicitly. However, this could result in duplicate modules being detected once the SCPATH does get updated. Therefore, we check to ensure that SCPATH directories are not equal to the builtins directory before searching it. TODO: we want better duplicate resolution (in case the user explicitly declares a duplicate tool), where SCPATH takes priority. ''' builtins_dir = f'{SC_ROOT}/siliconcompiler/{self.PATH}' if 'nobuiltins' not in self.options: modules = self.get_modules_in_dir(builtins_dir) else: modules = [] if 'SCPATH' in os.environ: scpaths = os.environ['SCPATH'].split(':') for scpath in scpaths: user_dir = f'{scpath}/{self.PATH}' if not os.path.isdir(user_dir) or builtins_dir == user_dir: continue modules.extend(self.get_modules_in_dir(user_dir)) return modules def get_modules_in_dir(self, module_dir): '''Routine for getting modules and their names from a certain directory.''' modules = [] for importer, modname, _ in pkgutil.iter_modules([module_dir]): if modname in ('sc_floorplan'): continue module = importer.find_module(modname).load_module(modname) modules.append((module, modname)) return modules def parse_rst(self, content, s): '''Helper for parsing reStructuredText content, adding it directly to section `s`.''' rst = ViewList() # use fake filename 'inline' for error # reporting for i, line in enumerate(content.split('\n')): rst.append(line, 'inline', i) nested_parse_with_titles(self.state, rst, s) def extra_content(self, chip, modname): '''Adds extra content to documentation. May return a list of docutils nodes that will be added to the documentation in between a module's docstring and configuration table. Otherwise, if return value is None, don't add anything. ''' return None ######################### # Specialized extensions ######################### class FlowGen(DynamicGen): PATH = 'flows' def extra_content(self, chip, modname): flow_path = os.path.join(self.env.app.outdir, f'_images/gen/{modname}.svg') #chip.write_flowgraph(flow_path, fillcolor='#1c4587', fontcolor='#f1c232', border=False) chip.write_flowgraph(flow_path) return [image(flow_path, center=True)] def display_config(self, chip, modname): '''Display parameters under `flowgraph, <step>`, `metric, <step>` and `showtool`. Parameters are grouped into sections by step, with an additional table for non-step items. ''' section_key = '-'.join(['flows', modname, 'configuration']) settings = build_section('Configuration', section_key) steps = chip.getkeys('flowgraph') # TODO: should try to order? # Build section + table for each step (combining entires under flowgraph # and metric) for step in steps: section_key = '-'.join(['flows', modname, step]) section = build_section(step, section_key) step_cfg = {} for prefix in ['flowgraph']: cfg = chip.getdict(prefix, step) if cfg is None: continue pruned = chip._prune(cfg) if prefix not in step_cfg: step_cfg[prefix] = {} step_cfg[prefix][step] = pruned section += build_schema_value_table(step_cfg, skip_zero_weight=True) settings += section # Build table for non-step items (just showtool for now) section_key = '-'.join(['flows', modname, 'option', 'showtool']) section = build_section('showtool', section_key) cfg = chip.getdict('option', 'showtool') pruned = chip._prune(cfg) table = build_schema_value_table(pruned, keypath_prefix=['option', 'showtool']) if table is not None: section += table settings += section return settings class PDKGen(DynamicGen): PATH = 'pdks' def display_config(self, chip, modname): '''Display parameters under `pdk`, `asic`, and `library` in nested form.''' section_key = '-'.join(['pdks', modname, 'configuration']) settings = build_section('Configuration', section_key) cfg = chip.getdict('pdk') settings += build_config_recursive(cfg, keypath_prefix=['pdk'], sec_key_prefix=['pdks', modname]) return settings class LibGen(DynamicGen): PATH = 'libs' def extra_content(self, chip, modname): # assume same pdk for all libraries configured by this module mainlib = chip.getkeys('library')[0] pdk = chip.get('library', mainlib, 'asic', 'pdk') p = docutils.nodes.inline('') self.parse_rst(f'Associated PDK: :ref:`{pdk}<{pdk}-ref>`', p) return [p] def display_config(self, chip, modname): '''Display parameters under in nested form.''' sections = [] for libname in chip.getkeys('library'): section_key = '-'.join(['libs', modname, libname, 'configuration']) settings = build_section(libname, section_key) for key in ('asic', 'model'): cfg = chip.getdict('library', libname, key) settings += build_config_recursive(cfg, keypath_prefix=[key], sec_key_prefix=['libs', modname, libname, key]) sections.append(settings) return sections class ToolGen(DynamicGen): PATH = 'tools' def display_config(self, chip, modname): '''Display config under `eda, <modname>` in a single table.''' cfg = chip.getdict('tool', modname) pruned = chip._prune(cfg) table = build_schema_value_table(pruned, keypath_prefix=['tool', modname]) if table is not None: return table else: return [] def get_modules_in_dir(self, module_dir): '''Custom implementation for ToolGen since the tool setup modules are under an extra directory, and this way we don't have to force users to add an __init__.py to make the directory a module itself. ''' modules = [] for toolname in os.listdir(module_dir): # skip over directories/files that don't match the structure of tool # directories (otherwise we'll get confused by Python metadata like # __init__.py or __pycache__/) if not os.path.isdir(f'{module_dir}/{toolname}'): continue path = f'{module_dir}/{toolname}/{toolname}.py' if not os.path.exists(path): continue spec = importlib.util.spec_from_file_location(toolname, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) modules.append((module, toolname)) return modules class TargetGen(DynamicGen): PATH = 'targets' def build_module_list(self, chip, header, modtype, targetname): modules = chip._loaded_modules[modtype] if len(modules) > 0: section = build_section(header, f'{targetname}-{modtype}') modlist = nodes.bullet_list() for module in modules: list_item = nodes.list_item() # TODO: replace with proper docutils nodes: sphinx.addnodes.pending_xref modkey = nodes.make_id(module) self.parse_rst(f':ref:`{module}<{modkey}-ref>`', list_item) modlist += list_item section += modlist return section return None def display_config(self, chip, modname): sections = [] flow_section = self.build_module_list(chip, 'Flows', 'flows', modname) if flow_section is not None: sections.append(flow_section) pdk_section = self.build_module_list(chip, 'PDK', 'pdks', modname) if pdk_section is not None: sections.append(pdk_section) libs_section = self.build_module_list(chip, 'Libraries', 'libs', modname) if libs_section is not None: sections.append(libs_section) filtered_cfg = {} for key in ('asic', 'constraint', 'option'): filtered_cfg[key] = chip.getdict(key) pruned_cfg = chip._prune(filtered_cfg) if len(pruned_cfg) > 0: schema_section = build_section('Configuration', key=f'{modname}-config') schema_section += build_schema_value_table(pruned_cfg) sections.append(schema_section) return sections class AppGen(DynamicGen): PATH = 'apps' def document_module(self, module, modname, path): # TODO: Auto-documentation does not work with apps that use 'input(...)' if modname in ('sc_configure'): return cmd_name = modname.replace('_', '-') cmd = [cmd_name, '--help'] output = subprocess.check_output(cmd).decode('utf-8') section = build_section(cmd_name, cmd_name) section += literalblock(output) return section class ExampleGen(DynamicGen): def get_modules(self): examples_dir = f'{SC_ROOT}/examples' modules = [] for example in os.listdir(examples_dir): if not os.path.isdir(f'{examples_dir}/{example}'): continue path = f'{examples_dir}/{example}/{example}.py' if not os.path.exists(path): continue spec = importlib.util.spec_from_file_location(example, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) modules.append((module, example)) return modules def document_module(self, module, modname, path): section = build_section(modname, modname) if not hasattr(module, 'main'): return None main = getattr(module, 'main') # raw docstrings have funky indentation (basically, each line is already # indented as much as the function), so we call trim() helper function # to clean it up docstr = utils.trim(main.__doc__) if docstr: self.parse_rst(docstr, section) return section def setup(app): app.add_directive('flowgen', FlowGen) app.add_directive('pdkgen', PDKGen) app.add_directive('libgen', LibGen) app.add_directive('toolgen', ToolGen) app.add_directive('appgen', AppGen) app.add_directive('examplegen', ExampleGen) app.add_directive('targetgen', TargetGen) return { 'version': siliconcompiler.__version__, 'parallel_read_safe': True, 'parallel_write_safe': True, }
35.576065
125
0.611608
39b6f45b01e2bdfd59d3064c3805dc932e82e1d3
7,542
py
Python
doc/conf.py
heavywatal/pysam
482e887e67ce035e8a9e8fe1ec55be6c80d3e5dc
[ "MIT" ]
553
2015-01-02T15:04:03.000Z
2022-03-31T18:14:11.000Z
doc/conf.py
heavywatal/pysam
482e887e67ce035e8a9e8fe1ec55be6c80d3e5dc
[ "MIT" ]
940
2015-01-05T05:12:07.000Z
2022-03-30T17:09:19.000Z
doc/conf.py
heavywatal/pysam
482e887e67ce035e8a9e8fe1ec55be6c80d3e5dc
[ "MIT" ]
287
2015-01-04T22:46:07.000Z
2022-03-23T20:37:25.000Z
# -*- coding: utf-8 -*- # # samtools documentation build configuration file, created by # sphinx-quickstart on Wed Aug 12 14:43:42 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os, sysconfig # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. _pyversion = sysconfig.get_python_version() _libdir = "../build/lib.%s-%s" % (sysconfig.get_platform(), _pyversion) if os.path.exists(_libdir): sys.path.insert(0, os.path.abspath(_libdir)) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.todo', 'sphinx.ext.ifconfig', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon'] intersphinx_mapping = {'python': ('https://docs.python.org/%s' % _pyversion, None)} # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pysam' copyright = u'2009–2021, Andreas Heger, Kevin Jacobs, et al' # Included at the end of each rst file rst_epilog = ''' .. _CGAT Training Programme: http://www.cgat.org .. _pysam: https://github.com/pysam-developers/pysam .. _samtools: http://samtools.sourceforge.net/ .. _bcftools: https://samtools.github.io/bcftools/bcftools.html .. _htslib: http://www.htslib.org/ .. _tabix: http://samtools.sourceforge.net/tabix.shtml .. _Galaxy: https://main.g2.bx.psu.edu/ .. _cython: http://cython.org/ .. _python: http://python.org/ .. _pypi: https://pypi.org/ .. _pip: https://pip.pypa.io/ .. _pyximport: http://www.prescod.net/pyximport/ .. _conda: https://conda.io/docs/ .. _bioconda: https://bioconda.github.io/ ''' autosummary_generate = True # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # import pysam.version # The short X.Y version. version = pysam.version.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_use_modindex = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'samtoolsdoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pysam.tex', u'pysam documentation', u'Andreas Heger, Kevin Jacobs, et al.', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_use_modindex = True
33.371681
83
0.713073
54509ce70f7f7000be44c003e1dcb13dc5f8820f
32,969
py
Python
torchgeo/datasets/geo.py
RitwikGupta/torchgeo
14c19e35c2b17f9cd6f2dcbdc0968283aa89fbbb
[ "MIT" ]
1
2022-01-07T01:42:32.000Z
2022-01-07T01:42:32.000Z
torchgeo/datasets/geo.py
RitwikGupta/torchgeo
14c19e35c2b17f9cd6f2dcbdc0968283aa89fbbb
[ "MIT" ]
null
null
null
torchgeo/datasets/geo.py
RitwikGupta/torchgeo
14c19e35c2b17f9cd6f2dcbdc0968283aa89fbbb
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Base classes for all :mod:`torchgeo` datasets.""" import abc import functools import glob import os import re import sys from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, cast import fiona import fiona.transform import matplotlib.pyplot as plt import numpy as np import pyproj import rasterio import rasterio.merge import shapely import torch from rasterio.crs import CRS from rasterio.io import DatasetReader from rasterio.vrt import WarpedVRT from rasterio.windows import from_bounds from rtree.index import Index, Property from torch import Tensor from torch.utils.data import Dataset from torchvision.datasets import ImageFolder from torchvision.datasets.folder import default_loader as pil_loader from .utils import BoundingBox, concat_samples, disambiguate_timestamp, merge_samples # https://github.com/pytorch/pytorch/issues/60979 # https://github.com/pytorch/pytorch/pull/61045 Dataset.__module__ = "torch.utils.data" ImageFolder.__module__ = "torchvision.datasets" class GeoDataset(Dataset[Dict[str, Any]], abc.ABC): """Abstract base class for datasets containing geospatial information. Geospatial information includes things like: * coordinates (latitude, longitude) * :term:`coordinate reference system (CRS)` * resolution :class:`GeoDataset` is a special class of datasets. Unlike :class:`VisionDataset`, the presence of geospatial information allows two or more datasets to be combined based on latitude/longitude. This allows users to do things like: * Combine image and target labels and sample from both simultaneously (e.g. Landsat and CDL) * Combine datasets for multiple image sources for multimodal learning or data fusion (e.g. Landsat and Sentinel) These combinations require that all queries are present in *both* datasets, and can be combined using an :class:`IntersectionDataset`: .. code-block:: python dataset = landsat & cdl Users may also want to: * Combine datasets for multiple image sources and treat them as equivalent (e.g. Landsat 7 and Landsat 8) * Combine datasets for disparate geospatial locations (e.g. Chesapeake NY and PA) These combinations require that all queries are present in *at least one* dataset, and can be combined using a :class:`UnionDataset`: .. code-block:: python dataset = landsat7 | landsat8 """ #: Resolution of the dataset in units of CRS. res: float _crs: CRS # NOTE: according to the Python docs: # # * https://docs.python.org/3/library/exceptions.html#NotImplementedError # # the correct way to handle __add__ not being supported is to set it to None, # not to return NotImplemented or raise NotImplementedError. The downside of # this is that we have no way to explain to a user why they get an error and # what they should do instead (use __and__ or __or__). #: :class:`GeoDataset` addition can be ambiguous and is no longer supported. #: Users should instead use the intersection or union operator. __add__ = None # type: ignore[assignment] def __init__( self, transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None ) -> None: """Initialize a new Dataset instance. Args: transforms: a function/transform that takes an input sample and returns a transformed version """ self.transforms = transforms # Create an R-tree to index the dataset self.index = Index(interleaved=False, properties=Property(dimension=3)) @abc.abstractmethod def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve image/mask and metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of image/mask and metadata at that index Raises: IndexError: if query is not found in the index """ def __and__(self, other: "GeoDataset") -> "IntersectionDataset": """Take the intersection of two :class:`GeoDataset`. Args: other: another dataset Returns: a single dataset Raises: ValueError: if other is not a :class:`GeoDataset` """ return IntersectionDataset(self, other) def __or__(self, other: "GeoDataset") -> "UnionDataset": """Take the union of two GeoDatasets. Args: other: another dataset Returns: a single dataset Raises: ValueError: if other is not a :class:`GeoDataset` """ return UnionDataset(self, other) def __len__(self) -> int: """Return the number of files in the dataset. Returns: length of the dataset """ count: int = self.index.count(self.index.bounds) return count def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: GeoDataset bbox: {self.bounds} size: {len(self)}""" @property def bounds(self) -> BoundingBox: """Bounds of the index. Returns: (minx, maxx, miny, maxy, mint, maxt) of the dataset """ return BoundingBox(*self.index.bounds) @property def crs(self) -> CRS: """:term:`coordinate reference system (CRS)` for the dataset. Returns: the :term:`coordinate reference system (CRS)` """ return self._crs @crs.setter def crs(self, new_crs: CRS) -> None: """Change the :term:`coordinate reference system (CRS)` of a GeoDataset. If ``new_crs == self.crs``, does nothing, otherwise updates the R-tree index. Args: new_crs: new :term:`coordinate reference system (CRS)` """ if new_crs == self._crs: return new_index = Index(interleaved=False, properties=Property(dimension=3)) project = pyproj.Transformer.from_crs( pyproj.CRS(str(self._crs)), pyproj.CRS(str(new_crs)), always_xy=True ).transform for hit in self.index.intersection(self.index.bounds, objects=True): old_minx, old_maxx, old_miny, old_maxy, mint, maxt = hit.bounds old_box = shapely.geometry.box(old_minx, old_miny, old_maxx, old_maxy) new_box = shapely.ops.transform(project, old_box) new_minx, new_miny, new_maxx, new_maxy = new_box.bounds new_bounds = (new_minx, new_maxx, new_miny, new_maxy, mint, maxt) new_index.insert(hit.id, new_bounds, hit.object) self._crs = new_crs self.index = new_index class RasterDataset(GeoDataset): """Abstract base class for :class:`GeoDataset` stored as raster files.""" #: Glob expression used to search for files. #: #: This expression should be specific enough that it will not pick up files from #: other datasets. It should not include a file extension, as the dataset may be in #: a different file format than what it was originally downloaded as. filename_glob = "*" #: Regular expression used to extract date from filename. #: #: The expression should use named groups. The expression may contain any number of #: groups. The following groups are specifically searched for by the base class: #: #: * ``date``: used to calculate ``mint`` and ``maxt`` for ``index`` insertion #: #: When :attr:`separate_files`` is True, the following additional groups are #: searched for to find other files: #: #: * ``band``: replaced with requested band name #: * ``resolution``: replaced with a glob character filename_regex = ".*" #: Date format string used to parse date from filename. #: #: Not used if :attr:`filename_regex` does not contain a ``date`` group. date_format = "%Y%m%d" #: True if dataset contains imagery, False if dataset contains mask is_image = True #: True if data is stored in a separate file for each band, else False. separate_files = False #: Names of all available bands in the dataset all_bands: List[str] = [] #: Names of RGB bands in the dataset, used for plotting rgb_bands: List[str] = [] #: If True, stretch the image from the 2nd percentile to the 98th percentile, #: used for plotting stretch = False #: Color map for the dataset, used for plotting cmap: Dict[int, Tuple[int, int, int, int]] = {} def __init__( self, root: str, crs: Optional[CRS] = None, res: Optional[float] = None, transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None, cache: bool = True, ) -> None: """Initialize a new Dataset instance. Args: root: root directory where dataset can be found crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS (defaults to the resolution of the first file found) transforms: a function/transform that takes an input sample and returns a transformed version cache: if True, cache file handle to speed up repeated sampling Raises: FileNotFoundError: if no files are found in ``root`` """ super().__init__(transforms) self.root = root self.cache = cache # Populate the dataset index i = 0 pathname = os.path.join(root, "**", self.filename_glob) filename_regex = re.compile(self.filename_regex, re.VERBOSE) for filepath in glob.iglob(pathname, recursive=True): match = re.match(filename_regex, os.path.basename(filepath)) if match is not None: try: with rasterio.open(filepath) as src: # See if file has a color map try: self.cmap = src.colormap(1) except ValueError: pass if crs is None: crs = src.crs if res is None: res = src.res[0] with WarpedVRT(src, crs=crs) as vrt: minx, miny, maxx, maxy = vrt.bounds except rasterio.errors.RasterioIOError: # Skip files that rasterio is unable to read continue else: mint: float = 0 maxt: float = sys.maxsize if "date" in match.groupdict(): date = match.group("date") mint, maxt = disambiguate_timestamp(date, self.date_format) coords = (minx, maxx, miny, maxy, mint, maxt) self.index.insert(i, coords, filepath) i += 1 if i == 0: raise FileNotFoundError( f"No {self.__class__.__name__} data was found in '{root}'" ) self._crs = cast(CRS, crs) self.res = cast(float, res) def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve image/mask and metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of image/mask and metadata at that index Raises: IndexError: if query is not found in the index """ hits = self.index.intersection(tuple(query), objects=True) filepaths = [hit.object for hit in hits] if not filepaths: raise IndexError( f"query: {query} not found in index with bounds: {self.bounds}" ) if self.separate_files: data_list: List[Tensor] = [] filename_regex = re.compile(self.filename_regex, re.VERBOSE) for band in getattr(self, "bands", self.all_bands): band_filepaths = [] for filepath in filepaths: filename = os.path.basename(filepath) directory = os.path.dirname(filepath) match = re.match(filename_regex, filename) if match: if "date" in match.groupdict(): start = match.start("band") end = match.end("band") filename = filename[:start] + band + filename[end:] if "resolution" in match.groupdict(): start = match.start("resolution") end = match.end("resolution") filename = filename[:start] + "*" + filename[end:] filepath = glob.glob(os.path.join(directory, filename))[0] band_filepaths.append(filepath) data_list.append(self._merge_files(band_filepaths, query)) data = torch.cat(data_list) # type: ignore[attr-defined] else: data = self._merge_files(filepaths, query) key = "image" if self.is_image else "mask" sample = {key: data, "crs": self.crs, "bbox": query} if self.transforms is not None: sample = self.transforms(sample) return sample def _merge_files(self, filepaths: Sequence[str], query: BoundingBox) -> Tensor: """Load and merge one or more files. Args: filepaths: one or more files to load and merge query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: image/mask at that index """ if self.cache: vrt_fhs = [self._cached_load_warp_file(fp) for fp in filepaths] else: vrt_fhs = [self._load_warp_file(fp) for fp in filepaths] bounds = (query.minx, query.miny, query.maxx, query.maxy) if len(vrt_fhs) == 1: src = vrt_fhs[0] out_width = int(round((query.maxx - query.minx) / self.res)) out_height = int(round((query.maxy - query.miny) / self.res)) out_shape = (src.count, out_height, out_width) dest = src.read( out_shape=out_shape, window=from_bounds(*bounds, src.transform) ) else: dest, _ = rasterio.merge.merge(vrt_fhs, bounds, self.res) dest = dest.astype(np.int32) tensor: Tensor = torch.tensor(dest) # type: ignore[attr-defined] return tensor @functools.lru_cache(maxsize=128) def _cached_load_warp_file(self, filepath: str) -> DatasetReader: """Cached version of :meth:`_load_warp_file`. Args: filepath: file to load and warp Returns: file handle of warped VRT """ return self._load_warp_file(filepath) def _load_warp_file(self, filepath: str) -> DatasetReader: """Load and warp a file to the correct CRS and resolution. Args: filepath: file to load and warp Returns: file handle of warped VRT """ src = rasterio.open(filepath) # Only warp if necessary if src.crs != self.crs: vrt = WarpedVRT(src, crs=self.crs) src.close() return vrt else: return src def plot(self, data: Tensor) -> None: """Plot a data sample. Args: data: the data to plot Raises: AssertionError: if ``is_image`` is True and ``data`` has a different number of channels than expected """ array = data.squeeze().numpy() if self.is_image: bands = getattr(self, "bands", self.all_bands) assert array.shape[0] == len(bands) # Only plot RGB bands if bands and self.rgb_bands: indices = np.array([bands.index(band) for band in self.rgb_bands]) array = array[indices] # Convert from CxHxW to HxWxC array = np.rollaxis(array, 0, 3) if self.cmap: # Convert from class labels to RGBA values cmap = np.array([self.cmap[i] for i in range(len(self.cmap))]) array = cmap[array] if self.stretch: # Stretch to the range of 2nd to 98th percentile per02 = np.percentile(array, 2) # type: ignore[no-untyped-call] per98 = np.percentile(array, 98) # type: ignore[no-untyped-call] array = (array - per02) / (per98 - per02) array = np.clip(array, 0, 1) # Plot the data ax = plt.axes() ax.imshow(array) ax.axis("off") plt.show() plt.close() class VectorDataset(GeoDataset): """Abstract base class for :class:`GeoDataset` stored as vector files.""" #: Glob expression used to search for files. #: #: This expression should be specific enough that it will not pick up files from #: other datasets. It should not include a file extension, as the dataset may be in #: a different file format than what it was originally downloaded as. filename_glob = "*" def __init__( self, root: str = "data", crs: Optional[CRS] = None, res: float = 0.0001, transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None, ) -> None: """Initialize a new Dataset instance. Args: root: root directory where dataset can be found crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS transforms: a function/transform that takes input sample and its target as entry and returns a transformed version Raises: FileNotFoundError: if no files are found in ``root`` """ super().__init__(transforms) self.root = root self.res = res # Populate the dataset index i = 0 pathname = os.path.join(root, "**", self.filename_glob) for filepath in glob.iglob(pathname, recursive=True): try: with fiona.open(filepath) as src: if crs is None: crs = CRS.from_dict(src.crs) minx, miny, maxx, maxy = src.bounds (minx, maxx), (miny, maxy) = fiona.transform.transform( src.crs, crs.to_dict(), [minx, maxx], [miny, maxy] ) except fiona.errors.FionaValueError: # Skip files that fiona is unable to read continue else: mint = 0 maxt = sys.maxsize coords = (minx, maxx, miny, maxy, mint, maxt) self.index.insert(i, coords, filepath) i += 1 if i == 0: raise FileNotFoundError( f"No {self.__class__.__name__} data was found in '{root}'" ) self._crs = crs def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve image/mask and metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of image/mask and metadata at that index Raises: IndexError: if query is not found in the index """ hits = self.index.intersection(tuple(query), objects=True) filepaths = [hit.object for hit in hits] if not filepaths: raise IndexError( f"query: {query} not found in index with bounds: {self.bounds}" ) shapes = [] for filepath in filepaths: with fiona.open(filepath) as src: # We need to know the bounding box of the query in the source CRS (minx, maxx), (miny, maxy) = fiona.transform.transform( self.crs.to_dict(), src.crs, [query.minx, query.maxx], [query.miny, query.maxy], ) # Filter geometries to those that intersect with the bounding box for feature in src.filter(bbox=(minx, miny, maxx, maxy)): # Warp geometries to requested CRS shape = fiona.transform.transform_geom( src.crs, self.crs.to_dict(), feature["geometry"] ) shapes.append(shape) # Rasterize geometries width = (query.maxx - query.minx) / self.res height = (query.maxy - query.miny) / self.res transform = rasterio.transform.from_bounds( query.minx, query.miny, query.maxx, query.maxy, width, height ) masks = rasterio.features.rasterize( shapes, out_shape=(int(height), int(width)), transform=transform ) sample = { "mask": torch.tensor(masks), # type: ignore[attr-defined] "crs": self.crs, "bbox": query, } if self.transforms is not None: sample = self.transforms(sample) return sample def plot(self, data: Tensor) -> None: """Plot a data sample. Args: data: the data to plot """ array = data.squeeze().numpy() # Plot the image ax = plt.axes() ax.imshow(array) ax.axis("off") plt.show() plt.close() class VisionDataset(Dataset[Dict[str, Any]], abc.ABC): """Abstract base class for datasets lacking geospatial information. This base class is designed for datasets with pre-defined image chips. """ @abc.abstractmethod def __getitem__(self, index: int) -> Dict[str, Any]: """Return an index within the dataset. Args: index: index to return Returns: data and labels at that index Raises: IndexError: if index is out of range of the dataset """ @abc.abstractmethod def __len__(self) -> int: """Return the length of the dataset. Returns: length of the dataset """ def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: VisionDataset size: {len(self)}""" class VisionClassificationDataset(VisionDataset, ImageFolder): # type: ignore[misc] """Abstract base class for classification datasets lacking geospatial information. This base class is designed for datasets with pre-defined image chips which are separated into separate folders per class. """ def __init__( self, root: str, transforms: Optional[Callable[[Dict[str, Tensor]], Dict[str, Tensor]]] = None, loader: Optional[Callable[[str], Any]] = pil_loader, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> None: """Initialize a new VisionClassificationDataset instance. Args: root: root directory where dataset can be found transforms: a function/transform that takes input sample and its target as entry and returns a transformed version loader: a callable function which takes as input a path to an image and returns a PIL Image or numpy array is_valid_file: A function that takes the path of an Image file and checks if the file is a valid file """ # When transform & target_transform are None, ImageFolder.__getitem__(index) # returns a PIL.Image and int for image and label, respectively super().__init__( root=root, transform=None, target_transform=None, loader=loader, is_valid_file=is_valid_file, ) # Must be set after calling super().__init__() self.transforms = transforms def __getitem__(self, index: int) -> Dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and label at that index """ image, label = self._load_image(index) sample = {"image": image, "label": label} if self.transforms is not None: sample = self.transforms(sample) return sample def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.imgs) def _load_image(self, index: int) -> Tuple[Tensor, Tensor]: """Load a single image and it's class label. Args: index: index to return Returns: the image the image class label """ img, label = ImageFolder.__getitem__(self, index) array = np.array(img) tensor: Tensor = torch.from_numpy(array) # type: ignore[attr-defined] # Convert from HxWxC to CxHxW tensor = tensor.permute((2, 0, 1)) label = torch.tensor(label) # type: ignore[attr-defined] return tensor, label class IntersectionDataset(GeoDataset): """Dataset representing the intersection of two GeoDatasets. This allows users to do things like: * Combine image and target labels and sample from both simultaneously (e.g. Landsat and CDL) * Combine datasets for multiple image sources for multimodal learning or data fusion (e.g. Landsat and Sentinel) These combinations require that all queries are present in *both* datasets, and can be combined using an :class:`IntersectionDataset`: .. code-block:: python dataset = landsat & cdl """ def __init__( self, dataset1: GeoDataset, dataset2: GeoDataset, collate_fn: Callable[ [Sequence[Dict[str, Any]]], Dict[str, Any] ] = concat_samples, ) -> None: """Initialize a new Dataset instance. Args: dataset1: the first dataset dataset2: the second dataset collate_fn: function used to collate samples Raises: ValueError: if either dataset is not a :class:`GeoDataset` """ super().__init__() self.datasets = [dataset1, dataset2] self.collate_fn = collate_fn for ds in self.datasets: if not isinstance(ds, GeoDataset): raise ValueError("IntersectionDataset only supports GeoDatasets") self._crs = dataset1.crs self.res = dataset1.res # Force dataset2 to have the same CRS/res as dataset1 if dataset1.crs != dataset2.crs: print( f"Converting {dataset2.__class__.__name__} CRS from " f"{dataset2.crs} to {dataset1.crs}" ) dataset2.crs = dataset1.crs if dataset1.res != dataset2.res: print( f"Converting {dataset2.__class__.__name__} resolution from " f"{dataset2.res} to {dataset1.res}" ) dataset2.res = dataset1.res # Merge dataset indices into a single index self._merge_dataset_indices() def _merge_dataset_indices(self) -> None: """Create a new R-tree out of the individual indices from two datasets.""" i = 0 ds1, ds2 = self.datasets for hit1 in ds1.index.intersection(ds1.index.bounds, objects=True): for hit2 in ds2.index.intersection(hit1.bounds, objects=True): box1 = BoundingBox(*hit1.bounds) box2 = BoundingBox(*hit2.bounds) self.index.insert(i, tuple(box1 & box2)) i += 1 def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve image and metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of data/labels and metadata at that index Raises: IndexError: if query is not within bounds of the index """ if not query.intersects(self.bounds): raise IndexError( f"query: {query} not found in index with bounds: {self.bounds}" ) # All datasets are guaranteed to have a valid query samples = [ds[query] for ds in self.datasets] return self.collate_fn(samples) def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: IntersectionDataset bbox: {self.bounds} size: {len(self)}""" class UnionDataset(GeoDataset): """Dataset representing the union of two GeoDatasets. This allows users to do things like: * Combine datasets for multiple image sources and treat them as equivalent (e.g. Landsat 7 and Landsat 8) * Combine datasets for disparate geospatial locations (e.g. Chesapeake NY and PA) These combinations require that all queries are present in *at least one* dataset, and can be combined using a :class:`UnionDataset`: .. code-block:: python dataset = landsat7 | landsat8 """ def __init__( self, dataset1: GeoDataset, dataset2: GeoDataset, collate_fn: Callable[ [Sequence[Dict[str, Any]]], Dict[str, Any] ] = merge_samples, ) -> None: """Initialize a new Dataset instance. Args: dataset1: the first dataset dataset2: the second dataset collate_fn: function used to collate samples Raises: ValueError: if either dataset is not a :class:`GeoDataset` """ super().__init__() self.datasets = [dataset1, dataset2] self.collate_fn = collate_fn for ds in self.datasets: if not isinstance(ds, GeoDataset): raise ValueError("UnionDataset only supports GeoDatasets") self._crs = dataset1.crs self.res = dataset1.res # Force dataset2 to have the same CRS/res as dataset1 if dataset1.crs != dataset2.crs: print( f"Converting {dataset2.__class__.__name__} CRS from " f"{dataset2.crs} to {dataset1.crs}" ) dataset2.crs = dataset1.crs if dataset1.res != dataset2.res: print( f"Converting {dataset2.__class__.__name__} resolution from " f"{dataset2.res} to {dataset1.res}" ) dataset2.res = dataset1.res # Merge dataset indices into a single index self._merge_dataset_indices() def _merge_dataset_indices(self) -> None: """Create a new R-tree out of the individual indices from two datasets.""" i = 0 for ds in self.datasets: hits = ds.index.intersection(ds.index.bounds, objects=True) for hit in hits: self.index.insert(i, hit.bounds) i += 1 def __getitem__(self, query: BoundingBox) -> Dict[str, Any]: """Retrieve image and metadata indexed by query. Args: query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index Returns: sample of data/labels and metadata at that index Raises: IndexError: if query is not within bounds of the index """ if not query.intersects(self.bounds): raise IndexError( f"query: {query} not found in index with bounds: {self.bounds}" ) # Not all datasets are guaranteed to have a valid query samples = [] for ds in self.datasets: if ds.index.intersection(tuple(query)): samples.append(ds[query]) return self.collate_fn(samples) def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: UnionDataset bbox: {self.bounds} size: {len(self)}"""
33.607543
88
0.586187
5f588fafa9a52f8cd14bda675f3e912187a27c51
4,664
py
Python
uplink/hooks.py
sthagen/prkumar-uplink
089335833acf60cf9b206278580d856814f4067d
[ "MIT" ]
null
null
null
uplink/hooks.py
sthagen/prkumar-uplink
089335833acf60cf9b206278580d856814f4067d
[ "MIT" ]
null
null
null
uplink/hooks.py
sthagen/prkumar-uplink
089335833acf60cf9b206278580d856814f4067d
[ "MIT" ]
null
null
null
""" This module provides a class for defining custom handling for specific points of an HTTP transaction. """ # Local imports from uplink import compat __all__ = ["TransactionHook", "RequestAuditor", "ResponseHandler"] def _wrap_if_necessary(hook, requires_consumer): if not requires_consumer: return _wrap_to_ignore_consumer(hook) return hook def _wrap_to_ignore_consumer(hook): @compat.wraps(hook) def wrapper(_, *args, **kwargs): # Expects that consumer is the first argument return hook(*args, **kwargs) return wrapper class TransactionHook(object): """ A utility class providing methods that define hooks for specific points of an HTTP transaction. """ def audit_request(self, consumer, request_builder): # pragma: no cover """Inspects details of a request before it is sent.""" pass handle_response = None """ Handles a response object from the server. This method can be undefined (i.e., None), indicating that this hook does not handle responses. Args: response: The received HTTP response. """ def handle_exception( self, consumer, exc_type, exc_val, exc_tb ): # pragma: no cover """ Handles an exception thrown while waiting for a response from the server. Args: consumer: The consumer that spawned the failing request. exc_type: The type of the exception. exc_val: The exception instance raised. exc_tb: A traceback instance. """ pass class TransactionHookChain(TransactionHook): """ A chain that conjoins several transaction hooks into a single object. A method call on this composite object invokes the corresponding method on all hooks in the chain. """ def __init__(self, *hooks): self._hooks = hooks self._response_handlers = [] # TODO: If more than one callback exists on the chain, the chain # expects it can execute each synchronously. Instead, we should # be smart about this and produces a chained coroutine when all # callbacks are coroutines, so that the client can execute the # chain asynchronously. Further, when provided both synchronous # and asynchronous callbacks, we should raise an exception when # the order is mixed and split into two chains (one async and # the other sync) when the order permits separation. # Adding a synchronous callback to an async request forces the # request to execute synchronously while running this chain. To # avoid unnecessarily executing this chain when no callbacks # exists, we can set the `handle_response` method to null, # indicating that this hook doesn't handle responses. response_handlers = [h for h in hooks if h.handle_response is not None] if not response_handlers: self.handle_response = None elif len(response_handlers) == 1: self.handle_response = response_handlers[0].handle_response self._response_handlers = response_handlers def audit_request(self, consumer, request_handler): for hook in self._hooks: hook.audit_request(consumer, request_handler) def handle_response(self, consumer, response): for hook in self._response_handlers: response = hook.handle_response(consumer, response) return response def handle_exception(self, consumer, exc_type, exc_val, exc_tb): for hook in self._hooks: hook.handle_exception(consumer, exc_type, exc_val, exc_tb) compat.reraise(exc_type, exc_val, exc_tb) class RequestAuditor(TransactionHook): """ Transaction hook that inspects requests using a function provided at time of instantiation. """ def __init__(self, auditor, requires_consumer=False): self.audit_request = _wrap_if_necessary(auditor, requires_consumer) class ResponseHandler(TransactionHook): """ Transaction hook that handles responses using a function provided at time of instantiation. """ def __init__(self, handler, requires_consumer=False): self.handle_response = _wrap_if_necessary(handler, requires_consumer) class ExceptionHandler(TransactionHook): """ Transaction hook that handles an exception thrown while waiting for a response, using the provided function. """ def __init__(self, exception_handler, requires_consumer=False): self.handle_exception = _wrap_if_necessary( exception_handler, requires_consumer )
32.615385
79
0.687393
f02b79d4db48bf40af5b1d64ef0e22db3fabafc8
7,483
py
Python
plugins/modules/oci_marketplace_agreement_facts.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
108
2020-05-19T20:46:10.000Z
2022-03-25T14:10:01.000Z
plugins/modules/oci_marketplace_agreement_facts.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
90
2020-06-14T22:07:11.000Z
2022-03-07T05:40:29.000Z
plugins/modules/oci_marketplace_agreement_facts.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
42
2020-08-30T23:09:12.000Z
2022-03-25T16:58:01.000Z
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_marketplace_agreement_facts short_description: Fetches details about one or multiple Agreement resources in Oracle Cloud Infrastructure description: - Fetches details about one or multiple Agreement resources in Oracle Cloud Infrastructure - Returns the terms of use agreements that must be accepted before you can deploy the specified version of a package. - If I(agreement_id) is specified, the details of a single Agreement will be returned. version_added: "2.9.0" author: Oracle (@oracle) options: listing_id: description: - The unique identifier for the listing. type: str required: true package_version: description: - The version of the package. Package versions are unique within a listing. type: str required: true agreement_id: description: - The unique identifier for the agreement. - Required to get a specific agreement. type: str aliases: ["id"] compartment_id: description: - The unique identifier for the compartment. type: str extends_documentation_fragment: [ oracle.oci.oracle ] """ EXAMPLES = """ - name: Get a specific agreement oci_marketplace_agreement_facts: # required listing_id: "ocid1.listing.oc1..xxxxxxEXAMPLExxxxxx" package_version: package_version_example agreement_id: "ocid1.agreement.oc1..xxxxxxEXAMPLExxxxxx" # optional compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" - name: List agreements oci_marketplace_agreement_facts: # required listing_id: "ocid1.listing.oc1..xxxxxxEXAMPLExxxxxx" package_version: package_version_example # optional compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" """ RETURN = """ agreements: description: - List of Agreement resources returned: on success type: complex contains: id: description: - The unique identifier for the agreement. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" content_url: description: - The content URL of the agreement. returned: on success type: str sample: content_url_example signature: description: - A time-based signature that can be used to accept an agreement or remove a previously accepted agreement from the list that Marketplace checks before a deployment. - Returned for get operation returned: on success type: str sample: signature_example compartment_id: description: - The unique identifier for the compartment. - Returned for get operation returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" author: description: - Who authored the agreement. returned: on success type: str sample: ORACLE prompt: description: - Textual prompt to read and accept the agreement. returned: on success type: str sample: prompt_example sample: [{ "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "content_url": "content_url_example", "signature": "signature_example", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "author": "ORACLE", "prompt": "prompt_example" }] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.marketplace import MarketplaceClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class AgreementFactsHelperGen(OCIResourceFactsHelperBase): """Supported operations: get, list""" def get_required_params_for_get(self): return [ "listing_id", "package_version", "agreement_id", ] def get_required_params_for_list(self): return [ "listing_id", "package_version", ] def get_resource(self): optional_get_method_params = [ "compartment_id", ] optional_kwargs = dict( (param, self.module.params[param]) for param in optional_get_method_params if self.module.params.get(param) is not None ) return oci_common_utils.call_with_backoff( self.client.get_agreement, listing_id=self.module.params.get("listing_id"), package_version=self.module.params.get("package_version"), agreement_id=self.module.params.get("agreement_id"), **optional_kwargs ) def list_resources(self): optional_list_method_params = [ "compartment_id", ] optional_kwargs = dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None ) return oci_common_utils.list_all_resources( self.client.list_agreements, listing_id=self.module.params.get("listing_id"), package_version=self.module.params.get("package_version"), **optional_kwargs ) AgreementFactsHelperCustom = get_custom_class("AgreementFactsHelperCustom") class ResourceFactsHelper(AgreementFactsHelperCustom, AgreementFactsHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec() module_args.update( dict( listing_id=dict(type="str", required=True), package_version=dict(type="str", required=True), agreement_id=dict(aliases=["id"], type="str"), compartment_id=dict(type="str"), ) ) module = AnsibleModule(argument_spec=module_args) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_facts_helper = ResourceFactsHelper( module=module, resource_type="agreement", service_client_class=MarketplaceClient, namespace="marketplace", ) result = [] if resource_facts_helper.is_get(): result = [resource_facts_helper.get()] elif resource_facts_helper.is_list(): result = resource_facts_helper.list() else: resource_facts_helper.fail() module.exit_json(agreements=result) if __name__ == "__main__": main()
31.049793
121
0.648403
1ebc4107db903302aaffd24e454dc300550934f0
888
py
Python
caliper-workspace/Performance/Read_latency.py
weishancc/SPChain
1a10d2253b7cead862092df9f740ae768124df39
[ "Apache-2.0" ]
1
2021-12-26T07:41:11.000Z
2021-12-26T07:41:11.000Z
caliper-workspace/Performance/Read_latency.py
weishancc/SPChain
1a10d2253b7cead862092df9f740ae768124df39
[ "Apache-2.0" ]
null
null
null
caliper-workspace/Performance/Read_latency.py
weishancc/SPChain
1a10d2253b7cead862092df9f740ae768124df39
[ "Apache-2.0" ]
1
2021-07-20T04:25:03.000Z
2021-07-20T04:25:03.000Z
# -*- coding: utf-8 -*- """ Created on Mon May 17 15:27:10 2021 @author: Koma """ # Plotted read functions include: # - readConsent # - readArtwork # - getHistoryForArtwork # - readLog # - readModel # - readBalance # - invokeModel import matplotlib.pyplot as plt import util if __name__ == "__main__": filterFunc = ['initialConsent', 'grantRevokeConsent', 'uploadArtwork', 'transferArtwork', 'addLog', 'addModel', 'addWallet', 'transferBlalance'] data = util.concat_result(filterFunc, 6) # 6 for latency fig, ax = plt.subplots(figsize=(10, 6)) util.plot_latency(ax, data) plt.xticks(range(7), ["10", "20", "30", "40", "50", "60", "70"]) plt.xlabel('txDuration (sec)') plt.ylabel('Latency (sec)') plt.title('Read latency different functions under different transaction duration') plt.show()
28.645161
149
0.626126
c6d22c4d2abce021e524d16d012bc4030e580b0d
242
py
Python
corelib/core/__init__.py
guillaume-florent/corelib
9e25b862b5eaf1fe1a9b68af070a743184f992ba
[ "MIT" ]
1
2018-05-05T02:11:59.000Z
2018-05-05T02:11:59.000Z
corelib/core/__init__.py
guillaume-florent/corelib
9e25b862b5eaf1fe1a9b68af070a743184f992ba
[ "MIT" ]
null
null
null
corelib/core/__init__.py
guillaume-florent/corelib
9e25b862b5eaf1fe1a9b68af070a743184f992ba
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- r"""__init__ module of the core package""" from __future__ import unicode_literals # API from corelib.core.profiling import timeit from corelib.core.memoize import memoize from corelib.core.timeout import timeout
18.615385
42
0.768595
b48695d9c5281ea3834309a324bcda348ab27867
3,038
py
Python
deephyper/benchmark/datasets/airlines.py
Z223I/deephyper
4fd1054dc22f15197567bdd93c6e7a95a614b8e2
[ "BSD-3-Clause" ]
185
2018-11-06T18:49:47.000Z
2022-03-31T22:10:41.000Z
deephyper/benchmark/datasets/airlines.py
Z223I/deephyper
4fd1054dc22f15197567bdd93c6e7a95a614b8e2
[ "BSD-3-Clause" ]
108
2018-12-17T17:58:05.000Z
2022-03-16T10:22:08.000Z
deephyper/benchmark/datasets/airlines.py
Z223I/deephyper
4fd1054dc22f15197567bdd93c6e7a95a614b8e2
[ "BSD-3-Clause" ]
50
2018-12-11T20:41:41.000Z
2022-02-25T19:50:47.000Z
import numpy as np import openml from sklearn.preprocessing import LabelEncoder from sklearn import model_selection def load_data( random_state=42, verbose=False, test_size=0.33, valid_size=0.33, categoricals_to_integers=False, ): """Load the "Airlines" dataset from OpenML. Args: random_state (int, optional): A numpy `RandomState`. Defaults to 42. verbose (bool, optional): Print informations about the dataset. Defaults to False. test_size (float, optional): The proportion of the test dataset out of the whole data. Defaults to 0.33. valid_size (float, optional): The proportion of the train dataset out of the whole data without the test data. Defaults to 0.33. categoricals_to_integers (bool, optional): Convert categoricals features to integer values. Defaults to False. Returns: tuple: Numpy arrays as, `(X_train, y_train), (X_valid, y_valid), (X_test, y_test)`. """ random_state = ( np.random.RandomState(random_state) if type(random_state) is int else random_state ) dataset = openml.datasets.get_dataset(1169) if verbose: print( f"This is dataset '{dataset.name}', the target feature is " f"'{dataset.default_target_attribute}'" ) print(f"URL: {dataset.url}") print(dataset.description[:500]) X, y, categorical_indicator, ft_names = dataset.get_data( target=dataset.default_target_attribute ) # encode categoricals as integers if categoricals_to_integers: for (ft_ind, ft_name) in enumerate(ft_names): if categorical_indicator[ft_ind]: labenc = LabelEncoder().fit(X[ft_name]) X[ft_name] = labenc.transform(X[ft_name]) n_classes = len(labenc.classes_) else: n_classes = -1 categorical_indicator[ft_ind] = ( categorical_indicator[ft_ind], n_classes, ) X, y = X.to_numpy(), y.to_numpy() X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=test_size, shuffle=True, random_state=random_state ) # relative valid_size on Train set r_valid_size = valid_size / (1.0 - test_size) X_train, X_valid, y_train, y_valid = model_selection.train_test_split( X_train, y_train, test_size=r_valid_size, shuffle=True, random_state=random_state ) return (X_train, y_train), (X_valid, y_valid), (X_test, y_test), categorical_indicator def test_load_data_airlines(): from deephyper.benchmark.datasets import airlines import numpy as np names = ["train", "valid", "test "] data = airlines.load_data(random_state=42, verbose=True)[:-1] for (X, y), subset_name in zip(data, names): print( f"X_{subset_name} shape: ", np.shape(X), f", y_{subset_name} shape: ", np.shape(y), ) if __name__ == "__main__": test_load_data_airlines()
33.755556
136
0.64944
75cd7c8b4980332ce8bdbd0e3118348d5996e303
154,846
py
Python
python/tvm/relay/frontend/pytorch.py
pfk-beta/tvm
5ecb8c384a66933fec8c7f033cba03337eb1a726
[ "Apache-2.0" ]
null
null
null
python/tvm/relay/frontend/pytorch.py
pfk-beta/tvm
5ecb8c384a66933fec8c7f033cba03337eb1a726
[ "Apache-2.0" ]
null
null
null
python/tvm/relay/frontend/pytorch.py
pfk-beta/tvm
5ecb8c384a66933fec8c7f033cba03337eb1a726
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, too-many-lines, len-as-condition, no-else-return, unused-variable, too-many-nested-blocks # pylint: disable=consider-iterating-dictionary, invalid-name, unused-argument, unused-variable, broad-except # pylint: disable=import-outside-toplevel, simplifiable-if-expression, cell-var-from-loop, unnecessary-lambda # pylint: disable=missing-function-docstring, redefined-builtin """PT: PyTorch frontend.""" import functools import itertools import math import sys import logging import numpy as np import tvm from tvm.ir import IRModule from tvm.topi.utils import get_const_tuple from .. import analysis as _analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .. import qnn, transform from ..expr_functor import ExprMutator from ..loops import while_loop from ..prelude import Prelude, StaticTensorArrayOps from ..ty import Any, TensorType, TupleType from . import qnn_torch from .common import AttrCvt, get_relay_op, gru_cell, logger from .common import infer_shape as _infer_shape from .common import infer_value as _infer_value from .common import infer_value_simulated as _infer_value_simulated from .common import lstm_cell, try_infer_value, unbind from .pytorch_utils import is_version_greater_than, getattr_attr_name __all__ = ["from_pytorch"] # This returns a "subgraph" which puts variables whenever # the type is known. It also records things to map the input # nodes to the extracted graph's nodes. # As Python objects are not round-trippable through C++, and # our type annotations only live in Python, we need to map # the we need to map the nodes we get in visiting to the nodes # we used to construct the graph (they are the same in C++, # match each other in dictionary lookups, but are not the same # in Python) by using the hint dictionary filled as # {node: node for node in nodes} to get the type annotations. # https://discuss.tvm.apache.org/t/round-tripping-objects-through-the-ffi/8440 class _TypeFinder(ExprMutator): def __init__(self, types): super().__init__() self.counter = 0 self.vars = {} self.types = types self.leave = set() # some variables are not inputs def visit_let(self, let): self.leave.add(let.var) return super().visit_let(let) def visit_function(self, fn): self.leave.update(fn.params) return super().visit_function(fn) def visit(self, expr): if expr in self.leave: return super().visit(expr) if expr in self.vars: return self.vars[expr] if isinstance(expr, tvm.relay.Var): self.vars[expr] = expr return expr if expr in self.types: ty = self.types[expr] v = tvm.relay.var(f"_{self.counter}", type_annotation=ty) self.counter += 1 self.vars[expr] = v return v v = super().visit(expr) return v def _should_construct_dynamic_list(list_construct_node): # if this list is element-accessed or modified at runtime, generate List ADT def inplace_add_to_add(op_name): if op_name == "aten::add_": return "aten::add" else: return op_name uses = _get_uses(list_construct_node) for loop_use in filter(lambda use: use.user.kind() == "prim::Loop", uses): block_input_index = loop_use.offset - 1 block = list(loop_use.user.blocks())[0] list_loop_var = list(block.inputs())[block_input_index] uses += _get_uses(list_loop_var.node()) op_names = map(inplace_add_to_add, set(use.user.kind() for use in uses)) list_ops = set(["aten::add", "aten::__getitem__"]) intersect = list_ops.intersection(op_names) if len(intersect) > 0 and intersect != set(["aten::add"]): return True # if add op outputs list, it is dynamic so we need to construct List ADT for use in filter(lambda use: use.user.kind() in ["aten::add", "aten::add_"], uses): output_type = _get_node_type(use.user) if output_type == "ListType": return True return False def _is_int_seq(seq): # TODO (t-vi): handle non-int constants? (like numpy.intXX) return len(seq) > 0 and all([isinstance(i, int) for i in seq]) # operator implementation class PyTorchOpConverter: """A helper class for holding PyTorch op converters.""" def __init__(self, prelude, default_dtype): self.prelude = prelude self.default_dtype = default_dtype self.create_convert_map() self.types = {} # map from nodes to (Relay) type annotations # this incrementally infers the type, see the comments on the type visitor # above. def infer_type(self, node, mod=None): """An incremental method to infer the type of a node in the relay graph.""" if node in self.types: return self.types[node] if isinstance(node, tvm.relay.Var): return node.type_annotation tf = _TypeFinder(types=self.types) new_node = tf.visit(node) fn = _function.Function(list(tf.vars.values()), new_node) new_mod = IRModule({"main": fn}) if mod is not None: new_mod.update(mod) new_mod = transform.RemoveUnusedFunctions()(new_mod) new_mod = transform.InferType()(new_mod) entry = new_mod["main"] ty = entry.body.checked_type self.types[node] = ty return self.types[node] def infer_type_with_prelude(self, val): body = self.infer_type(val, self.prelude.mod) return body # list ADT utilities def convert_to_list_adt(self, py_lst): elem_tys = [self.infer_type_with_prelude(elem) for elem in py_lst] msg = "List elements should have identical types" assert all(map(lambda ty: ty == elem_tys[0], elem_tys)), msg # get_type returns type_name, ctor1, ..., ctorN # 1 is nil _, cons, nil = self.prelude.mod.get_type("List") adt_lst = nil() for elem in reversed(py_lst): adt_lst = cons(elem, adt_lst) return adt_lst def map_tensor_array_constructor(self, adt_lst, shape): static_tensor_array_ops = StaticTensorArrayOps(self.prelude, "float32", shape) static_tensor_array_ops.register() tensor_create = self.prelude.get_tensor_ctor_static("tensor_constructor", "float32", shape) return self.prelude.map(tensor_create, adt_lst) def convert_to_tensor_array(self, adt_lst): _, cons, nil = self.prelude.mod.get_type("List") if self.prelude.length(adt_lst) == 0: return nil() checked_type = self.infer_type_with_prelude(self.prelude.hd(adt_lst)) shape = checked_type.shape tensor_array = self.map_tensor_array_constructor(adt_lst, shape) return tensor_array, tuple(shape) def infer_shape(self, inputs, mod=None): """A method to get the output type of an intermediate node in the graph.""" typ = self.infer_type(inputs, mod=mod) if hasattr(typ, "shape"): # Regular operator that outputs tensors return get_const_tuple(typ.shape) # The return type is not a tensor, for example List return typ def infer_shape_with_prelude(self, inputs): return self.infer_shape(inputs, mod=self.prelude.mod) def record_output_type(self, output): if isinstance(output, tuple): cleaned_output = [o for o in output if o is not None] types = self.infer_type_with_prelude(_expr.Tuple(cleaned_output)) for o, t in zip(cleaned_output, types.fields): self.types[o] = t elif isinstance(output, _expr.Expr): self.infer_type_with_prelude(output) # it can also happen that the type is int or so def pytorch_promote_types(self, inputs, dtypes): """This promotes TVM inputs with TVM dtypes passed like PyTorch would""" actual_dtypes = [] for i, inp in enumerate(inputs): if isinstance(inp, _expr.Expr): idt = self.infer_type(inp).dtype actual_dtypes.append(idt) else: actual_dtypes.append(dtypes[i]) dtypes = actual_dtypes tensor_dtypes = [dt for inp, dt in zip(inputs, dtypes) if not np.isscalar(inp)] non_tensor_inputs = [inp for inp in inputs if np.isscalar(inp)] result_type = _pytorch_result_type(tensor_dtypes, non_tensor_inputs) results = [] for inp, dt in zip(inputs, dtypes): if np.isscalar(inp): results.append(_expr.const(inp, dtype=result_type)) elif dt == result_type: results.append(inp) else: results.append(_op.cast(inp, result_type)) return results def is_quantized_tensor(self, data): # If a quantized Torch module is saved and loaded back, dtype will be dropped # Since dtypes from Torch tensors are not reliable in such cases, we use # Relay's type inference result to decide if an input tensor is quantized ty = self.infer_type_with_prelude(data) return ty.dtype == "uint8" # Operator implementations def make_elemwise(self, name): def elemwise(inputs, input_types): if name == "divide": # https://pytorch.org/docs/stable/generated/torch.div.html#torch.div # None - default behavior. Performs no rounding and, if both input and # other are integer types, promotes the inputs to the default scalar type. if all(["int" in input_type for input_type in input_types[:2]]): input_types[:2] = ["float32"] * 2 cast_inputs = [] for inp in inputs[:2]: if np.isscalar(inp): cast_inputs.append(_expr.const(inp, dtype="float32")) else: cast_inputs.append(_op.cast(inp, "float32")) inputs[:2] = cast_inputs data0, data1 = self.pytorch_promote_types(inputs[:2], input_types[:2]) return get_relay_op(name)(data0, data1) return elemwise def min_max_common(self, name_elemwise, name_reduce, inputs, input_types): if len(inputs) == 1: data = self.pytorch_promote_types(inputs[:1], input_types[:1]) return get_relay_op(name_reduce)(data[0]) elif len(inputs) >= 2 and isinstance(inputs[1], (list, int)): data = self.pytorch_promote_types(inputs[:1], input_types[:1]) dim = inputs[1] keepdims = inputs[2] if len(inputs) > 2 else False # also return dummy indices return get_relay_op(name_reduce)(data[0], axis=dim, keepdims=keepdims), None else: data0, data1 = self.pytorch_promote_types(inputs[:2], input_types[:2]) return get_relay_op(name_elemwise)(data0, data1) def max(self, inputs, input_types): return self.min_max_common("maximum", "max", inputs, input_types) def min(self, inputs, input_types): return self.min_max_common("minimum", "min", inputs, input_types) def make_unary(self, name): def unary(inputs, input_types): # this is just to ensure tensor input (data,) = self.pytorch_promote_types(inputs[:1], input_types[:1]) return get_relay_op(name)(data) return unary def log1p(self, inputs, input_types): # 1_plus_log x = log(x + 1) (dtype,) = input_types one = _expr.const(1, dtype=dtype) return _op.log(inputs[0] + one) def square(self, inputs, input_types): (dtype,) = input_types return _op.power(inputs[0], _expr.const(2, dtype)) def arange(self, inputs, input_types): def _get_value(val, dtype): # dtype is a tvm dtype if isinstance(val, _expr.Expr): inp = _op.cast(val, dtype) ret, _ = try_infer_value(inp, lambda ret: _expr.const(ret, dtype)) else: ret = _create_typed_const(val, dtype) return ret def _get_type(val, inp_type): if isinstance(val, _expr.Expr): dtype = str(self.infer_type(val)) return dtype return inp_type # PyTorch arange uses the following type semantics: # - if a dtype is given, start, stop, step are converted to that dtype # - if no dtype is given and all args are integral, dtype is int64 # - if no dtype is given and there is a float arg, dtype is float32 if len(inputs) == 5: dtype0 = _get_type(inputs[0], input_types[0]) if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) elif dtype0.startswith("float"): dtype = "float32" else: dtype = "int64" start = _expr.const(0, dtype) stop = _get_value(inputs[0], dtype) step = _expr.const(1, dtype) elif len(inputs) == 7: types = [_get_type(inputs[i], input_types[i]) for i in range(3)] if inputs[3] is not None: dtype = _convert_dtype_value(inputs[3]) elif any([t.startswith("float") for t in types]): dtype = "float32" else: dtype = "int64" start = _get_value(inputs[0], dtype) stop = _get_value(inputs[1], dtype) step = _get_value(inputs[2], dtype) else: msg = "Unknown number of arguments (%d) to parse." % (len(inputs)) raise AssertionError(msg) return _op.transform.arange(start=start, stop=stop, step=step, dtype=dtype) def squeeze(self, inputs, input_types): data = inputs[0] if len(inputs) == 1: axis = None else: # TODO (t-vi): why is the cast to int needed? similarly elsewhere axis = [int(inputs[1])] return _op.transform.squeeze(data, axis) def unsqueeze(self, inputs, input_types): data = inputs[0] axis = inputs[1] return _op.transform.expand_dims(data, int(axis), 1) def concatenate(self, inputs, input_types): def tensor_array_concat(lst, axis): assert axis == 0, "Tensor array concat supported only for axis 0" tensor_array, shape = self.convert_to_tensor_array(lst) concat_shape = (Any(),) + shape[1:] concat = self.prelude.get_global_var_static("tensor_array_concat", "float32", shape) concatenated = concat(tensor_array) static_tensor_array_ops = StaticTensorArrayOps(self.prelude, "float32", concat_shape) static_tensor_array_ops.register() get_tensor = self.prelude.get_global_var_static( "tensor_get_data", "float32", concat_shape ) return get_tensor(concatenated) data = inputs[0] axis = inputs[1] if not isinstance(data, list): return tensor_array_concat(data, axis) if isinstance(data, _expr.Expr): data = [data] return _op.tensor.concatenate(data, int(axis)) def slice(self, inputs, input_types): axis_dtype = "int64" index_size_limit = sys.maxsize data = inputs[0] dshape = self.infer_shape(data) ndim = len(dshape) dim = int(inputs[1]) stride = inputs[4] target_begin, is_begin_const = try_infer_value( inputs[2], lambda ret: ret.astype(np.int).item(0) ) target_end, is_end_const = try_infer_value( inputs[3], lambda ret: ret.astype(np.int).item(0) ) # A fast path when slicing is nop. if ( isinstance(target_begin, int) and isinstance(target_end, int) and target_begin == 0 and target_end >= index_size_limit and stride == 1 ): return data if target_begin is None and target_end is None: return data # Process begin begin = [0] * ndim if target_begin is not None: begin[dim] = target_begin if target_begin is not None and not isinstance(begin[dim], int): tmp = [] for b in begin: if isinstance(b, int): tmp.append(_op.expand_dims(_expr.const(b, axis_dtype), axis=0)) else: tmp.append(_op.cast(_op.expand_dims(b, axis=0), axis_dtype)) begin = _op.concatenate(tmp, axis=0) btype = self.infer_type(begin).dtype if str(btype) != axis_dtype: begin = _op.cast(begin, axis_dtype) # Process end if isinstance(target_end, int) and target_end >= index_size_limit: target_end = dshape[dim] if any([isinstance(d, tvm.tir.Any) for d in dshape]): end = _op.shape_of(data) else: end = dshape if isinstance(target_end, int): if isinstance(end, list): end[dim] = target_end else: all_static = True for i, shape_dim in enumerate(dshape): if i != dim and isinstance(shape_dim, tvm.tir.Any): all_static = False if all_static: end = list(get_const_tuple(dshape)) end[dim] = target_end else: target_end = _expr.const(target_end) end = _op.scatter( end, _op.expand_dims(_expr.const(dim), axis=0), _op.expand_dims(target_end, axis=0), axis=0, ) else: end = _op.cast(_op.shape_of(data), axis_dtype) if target_end is not None and not isinstance(target_end, tvm.tir.Any): ttype = self.infer_type(target_end).dtype if str(ttype) != axis_dtype: target_end = _op.cast(target_end, axis_dtype) end = _op.scatter( end, _op.expand_dims(_expr.const(dim), axis=0), _op.expand_dims(target_end, axis=0), axis=0, ) if not isinstance(end, list): etype = self.infer_type(end).dtype if str(etype) != axis_dtype: end = _op.cast(end, axis_dtype) strides = [1] * ndim strides[dim] = stride return _op.transform.strided_slice( data, begin=begin, end=end, strides=strides, slice_mode="end" ) def narrow(self, inputs, input_types): # Inputs are: # 0 - the tensor to narrow # 1 - the dimension along which to narrow # 2 - the starting dimension # 3 - the distance to the ending dimension # Lets find the ending dimension end = self.add(inputs[2:4], input_types[2:4]) stride = 1 slice_input = inputs[:3] + [end, stride] slice_types = input_types + ["int32"] return self.slice(slice_input, slice_types) def split(self, inputs, input_types): data = inputs[0] split_size = int(inputs[1]) dim = int(inputs[2]) split_index = split_size indices = [] while split_index < self.infer_shape(data)[dim]: indices.append(split_index) split_index += split_size return _op.split(data, indices, dim) def split_with_sizes(self, inputs, input_types): data = inputs[0] sections = inputs[1] dim = int(inputs[2]) if len(sections) == 1: # a special case used in torchvision detection models return _expr.TupleWrapper(_expr.Tuple([data]), 1) split_index = 0 indices = [] for i in range(len(sections) - 1): index, _ = try_infer_value(sections[i], lambda ret: int(ret)) split_index += index indices.append(split_index) return _op.split(data, indices, dim) def select(self, inputs, input_types): data = inputs[0] dim = int(inputs[1]) index = _wrap_const(inputs[2]) return _op.transform.take(data, index, axis=dim, mode="wrap") def take(self, inputs, input_types): data = inputs[0] indices = _op.cast(inputs[1], "int32") return _op.transform.take(data, indices=indices, mode="wrap") def topk(self, inputs, input_types): data = inputs[0] axis = int(inputs[2]) is_ascend = not bool(inputs[3]) sort = bool(inputs[4]) if isinstance(inputs[1], _expr.Expr): k, _ = try_infer_value(inputs[1], lambda ret: ret.tolist()) else: k = inputs[1] if not sort: msg = "Currently supports only sorted output for topk operator." raise AssertionError(msg) outs = _op.topk(data, k=k, axis=axis, is_ascend=is_ascend, ret_type="both", dtype="int64") return outs[0], outs[1] def reciprocal(self, inputs, input_types): data = inputs[0] return _expr.const(1.0, dtype=input_types[0]) / data def repeat(self, inputs, input_types): data = inputs[0] reps = [] for r in inputs[1]: if isinstance(r, int): reps.append(r) else: reps.append(int(_infer_value(r, {}).numpy())) return _op.transform.tile(data, reps=reps) def repeat_interleave(self, inputs, input_types): data = inputs[0] if isinstance(inputs[1], int): repeats = inputs[1] axis = inputs[2] elif isinstance(inputs[1], _expr.Expr): if isinstance(inputs[1], _expr.Constant): repeats = int(inputs[1].data.numpy()) else: repeats, _ = try_infer_value(inputs[1], lambda ret: ret.tolist()) axis = inputs[2] else: msg = "Only repeat with one value as repeat is currently supported." raise AssertionError(msg) if axis is None: # Flatten the data if no axis is given from torch data = _op.transform.reshape(data, [-1]) axis = 0 return _op.transform.repeat(data, repeats=repeats, axis=axis) def addcdiv(self, inputs, input_types): data, t1, t2, c = self.pytorch_promote_types(inputs[:4], input_types[:4]) return data + (c * (t1 / t2)) def addcmul(self, inputs, input_types): data, t1, t2, c = self.pytorch_promote_types(inputs[:4], input_types[:4]) return data + (c * (t1 * t2)) def where(self, inputs, input_types): if len(inputs) == 1: return self.nonzero([inputs[0], True], input_types) cond = inputs[0] x, y = self.pytorch_promote_types(inputs[1:3], input_types[1:3]) return _op.where(cond, x, y) def full_impl(self, data, fill_value, dtype): size = [] need_reshape = False new_shape = [] for dim in data: if isinstance(dim, _expr.Expr): if isinstance(dim, _expr.Constant): dim = int(dim.data.numpy()) if isinstance(size, list): size.append(dim) new_shape.append(dim) else: dim, success = try_infer_value(dim, lambda ret: int(ret), lambda: 0) new_shape.append(dim) if success: if isinstance(size, list): size.append(dim) else: size = None need_reshape = True else: if isinstance(size, list): size.append(dim) new_shape.append(dim) if size is None: tmp = [] for dim in data: tmp.append(_op.cast(_op.expand_dims(dim, axis=0), "int64")) size = _op.concatenate(tmp, axis=0) out = _op.full(_expr.const(fill_value, dtype=dtype), size, dtype=dtype) if need_reshape: out = _op.reshape(out, new_shape) return out def ones(self, inputs, input_types): data = inputs[0] import torch if not isinstance(data, (_expr.Expr, list, torch.Tensor, np.ndarray)): msg = "Data type %s could not be parsed in ones op" % (type(data)) raise AssertionError(msg) if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype return self.full_impl(data, 1, dtype) def ones_like(self, inputs, input_types): data = inputs[0] out = _op.ones_like(data) # If the input and the output datatype is different, do a cast if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype if input_types[0] != dtype: out = _op.cast(out, dtype) return out def zeros(self, inputs, input_types): data = inputs[0] import torch if not isinstance(data, (_expr.Expr, list, torch.Tensor, np.ndarray)): msg = "Data type %s could not be parsed in zeros op" % (type(data)) raise AssertionError(msg) if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype return self.full_impl(data, 0, dtype) def zeros_like(self, inputs, input_types): data = inputs[0] out = _op.zeros_like(data) # If the input and the output datatype is different, do a cast if inputs[1] is not None: dtype = _convert_dtype_value(inputs[1]) else: dtype = self.default_dtype if input_types[0] not in dtype: out = _op.cast(out, dtype) return out def full(self, inputs, input_types): data = inputs[0] fill_value = inputs[1] import torch if not isinstance(data, (_expr.Expr, list, torch.Tensor, np.ndarray)): msg = "Data type %s could not be parsed in full op" % (type(data)) raise AssertionError(msg) if inputs[2] is not None: # dtype given dtype = _convert_dtype_value(inputs[2]) else: # if dtype is None, torch uses a global default set by torch.set_default_tensor_type() dtype = self.default_dtype return self.full_impl(data, fill_value, dtype) def full_like(self, inputs, input_types): data = inputs[0] fill_value = inputs[1] out = _op.full_like(data, _expr.const(fill_value)) # If the input and the output datatype is different, do a cast if inputs[2] is not None: # dtype given dtype = _convert_dtype_value(inputs[2]) else: # if dtype is None, torch uses a global default set by torch.set_default_tensor_type() dtype = self.default_dtype if input_types[0] not in dtype: out = _op.cast(out, dtype) return out def linspace(self, inputs, input_types): start = inputs[0] stop = inputs[1] step = inputs[2] # Find the spacing between values as step if step != 1: step = (stop - start) / (step - 1) stop = stop + step else: stop = start + step if inputs[3] is None: import torch dtype = _convert_data_type(str(torch.get_default_dtype())) else: dtype = _convert_dtype_value(inputs[3]) start = _create_typed_const(start, dtype) stop = _create_typed_const(stop, dtype) step = _create_typed_const(step, dtype) return _op.transform.arange(start=start, stop=stop, step=step, dtype=dtype) def relu(self, inputs, input_types): data = inputs[0] if self.is_quantized_tensor(data): assert len(inputs) == 3, "Input quant param not found in op inputs" input_zero_point = _expr.const(inputs[2], dtype="int32") return qnn_torch.quantized_relu(data, input_zero_point) return _op.nn.relu(data) def prelu(self, inputs, input_types): # Reference: https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html#torch.nn.PReLU data = inputs[0] dim = self.get_dims(data) ndims = len(dim) axis = 0 if ndims == 1 else 1 alpha = _op.broadcast_to(inputs[1], (dim[axis])) return _op.nn.prelu(data, alpha, axis) def leaky_relu(self, inputs, input_types): data = inputs[0] alpha = float(inputs[1]) return _op.nn.leaky_relu(data, alpha) def elu(self, inputs, input_types): data = inputs[0] dtype = input_types[0] alpha = _expr.const(-float(inputs[1]), dtype=dtype) return alpha * _op.nn.relu(_expr.const(1, dtype=dtype) - _op.exp(data)) + _op.nn.relu(data) def celu(self, inputs, input_types): data = inputs[0] dtype = input_types[0] alpha = _expr.const(float(inputs[1]), dtype=dtype) return alpha * _op.nn.relu( _expr.const(1, dtype=dtype) - _op.exp(data / alpha) ) + _op.nn.relu(data) def gelu(self, inputs, input_types): data = inputs[0] dtype = input_types[0] # gelu is data * normcdf(data) # normcdf expressed as erf because we don't currently have that intrinsic # note that there is also a fastgelu variant approximating normcdf # with tanh and third order polynomials, but this is "true" gelu return data * ( _expr.const(0.5, dtype=dtype) + _op.erf(data * _expr.const(0.5**0.5, dtype=dtype)) * _expr.const(0.5, dtype=dtype) ) def selu(self, inputs, input_types): data = inputs[0] # https://pytorch.org/docs/stable/nn.html#selu dtype = input_types[0] alpha = _expr.const(-1.6732632423543772848170429916717, dtype=dtype) gamma = _expr.const(1.0507009873554804934193349852946, dtype=dtype) return gamma * ( alpha * _op.nn.relu(_expr.const(1.0, dtype=dtype) - _op.exp(data)) + _op.nn.relu(data) ) def silu(self, inputs, input_types): data = inputs[0] return data * _op.tensor.sigmoid(data) def log_sigmoid(self, inputs, input_types): data = inputs[0] return _op.log(_op.tensor.sigmoid(data)) def hard_sigmoid(self, inputs, input_types): def _relu6(x): return _op.tensor.clip(x, 0.0, 6.0) def func(x): return _relu6(x + _expr.const(3.0)) / _expr.const(6.0) if self.is_quantized_tensor(inputs[0]): input_scale = _expr.const(inputs[1]) input_zero_point = _expr.const(inputs[2]) # PyTorch seems to use the following output qparams, but accuracy # is broken if we use this. # TODO(masahi): Revisit this parameter choice # # Taken from src/ATen/native/quantized/cpu/kernels/QuantizedOpKernels.cpp # output_scale = _expr.const(0.00390625) # 1.0 / 2^8 # output_zero_point = _expr.const(-128) output_scale = input_scale output_zero_point = input_zero_point data = qnn.op.dequantize(inputs[0], input_scale, input_zero_point, axis=1) out = func(data) return qnn.op.quantize(out, output_scale, output_zero_point, out_dtype="uint8") return func(inputs[0]) def hard_swish(self, inputs, input_types): data = inputs[0] return data * self.hard_sigmoid(inputs, input_types) def adaptive_avg_pool(self, op, inputs, input_types): data = inputs[0] output_size = inputs[1] def func(x): return op(x, output_size=output_size) if self.is_quantized_tensor(data): return qnn_torch.apply_with_upcast(data, func) return func(data) def adaptive_max_pool(self, op, inputs, input_types): data = inputs[0] output_size = inputs[1] # returns dummy indices too return op(data, output_size=output_size), None @staticmethod def convert_const_list(data): if isinstance(data, list): for i, _ in enumerate(data): if isinstance(data[i], _expr.Expr): data[i] = int(_infer_value_simulated(data[i], {}).numpy()) return data def maxpool_2d(self, inputs, input_types): data = inputs[0] pool_size = self.convert_const_list(inputs[1]) strides = self.convert_const_list(inputs[2] if inputs[2] else pool_size) padding = inputs[3] dilation = inputs[4] ceil_mode = int(inputs[5]) return _op.nn.max_pool2d( data, pool_size=pool_size, strides=strides, dilation=dilation, padding=padding, layout="NCHW", ceil_mode=ceil_mode, ) def maxpool_2d_with_indices(self, inputs, input_types): # returns dummy indices too return self.maxpool_2d(inputs, input_types), None def maxpool_1d(self, inputs, input_types): data = inputs[0] pool_size = inputs[1] strides = inputs[2] if inputs[2] else pool_size padding = inputs[3] dilation = inputs[4] ceil_mode = int(inputs[5]) return _op.nn.max_pool1d( data, pool_size=pool_size, strides=strides, dilation=dilation, padding=padding, layout="NCW", ceil_mode=ceil_mode, ) def maxpool_3d(self, inputs, input_types): data = inputs[0] pool_size = inputs[1] strides = inputs[2] if inputs[2] else pool_size padding = inputs[3] dilation = inputs[4] ceil_mode = int(inputs[5]) return _op.nn.max_pool3d( data, pool_size=pool_size, strides=strides, dilation=dilation, padding=padding, ceil_mode=ceil_mode, ) def hardtanh(self, inputs, input_types): a = inputs[0] tanh_min = float(inputs[1]) tanh_max = float(inputs[2]) return _op.tensor.clip(a, tanh_min, tanh_max) def convolution(self, inputs, input_types): # Use transpose or normal use_transpose = True if inputs[6] == 1 else False data = inputs[0] weight = inputs[1] bias = inputs[2] strides = tuple(inputs[3]) padding = tuple(inputs[4]) dilation = tuple(inputs[5]) if isinstance(weight, _expr.Expr): inferred_shape = self.infer_shape(weight) weight_shape = [] for infer in inferred_shape: weight_shape.append(infer) else: msg = "Data type %s could not be parsed in conv op" % (type(weight)) raise AssertionError(msg) groups = int(inputs[8]) if use_transpose: channels = weight_shape[1] * groups in_channels = weight_shape[0] else: channels = weight_shape[0] in_channels = weight_shape[1] # Check if this is depth wise convolution # We need to reshape weight so that Relay could recognize this is depth wise # weight_shape[1] is always in_channels // groups # For depthwise, in_channels == groups, so weight_shape[1] == 1 # If groups > 1 but weight_shape[1] != 1, this is group convolution if groups > 1 and in_channels == 1: channel_multiplier = channels // groups new_weight_shape = (groups, channel_multiplier) + tuple(weight_shape[2:]) weight = _op.transform.reshape(weight, new_weight_shape) kernel_size = weight_shape[2:] use_bias = isinstance(bias, _expr.Expr) # We are trying to invoke various relay operations through a single conv_op variable. # However the function signatures for some operations have additional attributes so we # pass these in along with the standard ones. additional_arguments = dict() if use_transpose: if len(kernel_size) == 3: conv_op = _op.nn.conv3d_transpose elif len(kernel_size) == 2: conv_op = _op.nn.conv2d_transpose else: conv_op = _op.nn.conv1d_transpose output_padding = tuple(inputs[7]) additional_arguments["output_padding"] = output_padding else: if len(kernel_size) == 3: conv_op = _op.nn.conv3d elif len(kernel_size) == 2: conv_op = _op.nn.conv2d else: conv_op = _op.nn.conv1d if len(kernel_size) == 3: data_layout = "NCDHW" kernel_layout = "OIDHW" elif len(kernel_size) == 2: data_layout = "NCHW" kernel_layout = "OIHW" if use_transpose: # Transposed convolutions have IOHW layout. kernel_layout = "IOHW" else: data_layout = "NCW" kernel_layout = "OIW" # Conv1d does not currently support grouped convolution so we convert it to conv2d is_grouped_conv1d = False if groups > 1 and len(kernel_size) == 1 and not use_transpose: is_grouped_conv1d = True conv_op = _op.nn.conv2d kernel_size = [1] + kernel_size strides = (1,) + strides padding = (0,) + padding dilation = (1,) + dilation data = _op.expand_dims(data, axis=2) weight = _op.expand_dims(weight, axis=2) data_layout = "NCHW" kernel_layout = "OIHW" conv_out = conv_op( data, weight, strides=strides, padding=padding, dilation=dilation, groups=groups, channels=channels, kernel_size=kernel_size, data_layout=data_layout, kernel_layout=kernel_layout, out_layout="", out_dtype="", **additional_arguments, ) if use_bias: res = _op.nn.bias_add(conv_out, bias) else: res = conv_out if is_grouped_conv1d: # Because we conducted grouped conv1d convolution through conv2d we must # squeeze the output to get the correct result. res = _op.squeeze(res, axis=[2]) return res def softmax(self, inputs, input_types): data = inputs[0] axis = inputs[1] if isinstance(axis, str): axis = int(axis) return _op.nn.softmax(data, axis=axis) def threshold(self, inputs, input_types): data = inputs[0] return _op.nn.relu(data) def contiguous(self, inputs, input_types): return inputs[0] def batch_norm(self, inputs, input_types): data = inputs[0] data_type = input_types[0] channels = self.infer_shape(data) if isinstance(inputs[1], _expr.Expr) and isinstance(inputs[2], _expr.Expr): scale = center = True weight = inputs[1] beta = inputs[2] gamma = weight else: scale = center = False if not scale: gamma = _create_typed_const(np.ones([int(channels[1])]), data_type) if not center: beta = _create_typed_const(np.zeros([int(channels[1])]), data_type) moving_mean = inputs[3] moving_var = inputs[4] epsilon = float(inputs[7]) return _op.nn.batch_norm( data, gamma, beta, moving_mean, moving_var, axis=1, epsilon=epsilon, center=center, scale=scale, )[0] def instance_norm(self, inputs, input_types): data = inputs[0] data_type = input_types[0] channels = self.infer_shape(data) if isinstance(inputs[1], _expr.Expr) and isinstance(inputs[2], _expr.Expr): scale = center = True weight = inputs[1] beta = inputs[2] gamma = weight else: scale = center = False if not scale: gamma = _create_typed_const(np.ones([int(channels[1])]), data_type) if not center: beta = _create_typed_const(np.zeros([int(channels[1])]), data_type) epsilon = float(inputs[7]) return _op.nn.instance_norm( data, gamma, beta, axis=1, epsilon=epsilon, center=center, scale=scale ) def get_dims(self, data): import torch if isinstance(data, _expr.Expr): dims = self.infer_shape(data) elif isinstance(data, list): dims = data elif isinstance(data, (torch.Tensor, np.ndarray)): dims = data.shape else: msg = "Data type %s could not be parsed" % type(data) raise AssertionError(msg) return dims def layer_norm(self, inputs, input_types): data = inputs[0] ndims = len(self.get_dims(inputs[1])) assert ndims == 1, "Support only normalization over last one dimension." return _op.nn.layer_norm( data, gamma=inputs[2], beta=inputs[3], axis=-1, epsilon=float(inputs[4]), center=True, scale=True, ) def group_norm(self, inputs, input_types): data = inputs[0] gamma = inputs[2] beta = inputs[3] num_groups = inputs[1] epsilon = float(inputs[4]) return _op.nn.group_norm( data, gamma=gamma, beta=beta, num_groups=num_groups, axis=1, epsilon=epsilon, center=True, scale=True, ) def transpose(self, inputs, input_types): data = inputs[0] import torch if isinstance(data, _expr.Expr): ndims = len(self.infer_shape_with_prelude(data)) elif isinstance(data, list): ndims = data elif isinstance(data, (torch.Tensor, np.ndarray)): ndims = data.shape else: msg = "Data type %s could not be parsed in transpose op" % (type(data)) raise AssertionError(msg) if isinstance(data, tvm.runtime.NDArray): ndims = len(data.shape) axes = list(range(ndims)) num_inputs = len(inputs) if num_inputs == 1: if ndims >= 2: axes[-1] = ndims - 2 axes[-2] = ndims - 1 if not isinstance(data, _expr.Expr): data = _expr.const(data) elif num_inputs == 3: parse = lambda i: ndims * (i < 0) + i src, dst = [parse(int(inputs[i])) for i in [1, 2]] axes[src] = dst axes[dst] = src else: axes = inputs[1] return _op.transform.transpose(data, axes) def flatten(self, inputs, input_types): data = inputs[0] start = int(inputs[1]) end = int(inputs[2]) dshape = get_const_tuple(self.infer_shape_with_prelude(data)) ndim = len(dshape) if start < 0: start += ndim if end < 0: end += ndim assert start <= end, "start dim cannot come after end dim" new_shape = [0] * start new_shape.append(-1) squeeze_axes = [] for i in range(start + 1, end + 1): new_shape.append(1) squeeze_axes.append(i) for _ in range(end + 1, ndim): new_shape.append(0) out = _op.reshape(data, new_shape) if squeeze_axes: out = _op.squeeze(out, axis=squeeze_axes) return out def addmm(self, inputs, input_types): input_mat = inputs[0] mat1 = inputs[1] data_type = input_types[1] mat2 = inputs[2] beta = inputs[3] alpha = inputs[4] if not isinstance(alpha, _expr.Expr) and alpha != 1: alpha = _create_typed_const(alpha, data_type) mat1 *= alpha if not isinstance(beta, _expr.Expr) and beta != 1: beta = _create_typed_const(beta, data_type) mat2 *= beta transposed_mat2 = _op.transform.transpose(mat2, axes=[1, 0]) units = self.infer_shape(transposed_mat2)[0] dense_out = _op.nn.dense(mat1, transposed_mat2, units=units) return dense_out + input_mat def size(self, inputs, input_types): shape = self.infer_shape_with_prelude(inputs[0]) axis = None if len(inputs) > 1: axis = int(inputs[1]) if any(map(lambda s: isinstance(s, tvm.tir.expr.Any), shape)): if axis is None or isinstance(shape[axis], tvm.tir.expr.Any): shape_dynamic = _op.shape_of(inputs[0], dtype="int32") if axis is not None: return _op.take(shape_dynamic, _expr.const(axis), 0) return shape_dynamic if axis is not None: return _expr.const(shape[axis]) return _expr.const(shape) def numtotensor(self, inputs, input_types): val = inputs[0] dtype = input_types[0] if isinstance(val, _expr.Expr): return val if isinstance(val, tvm.tir.IntImm): val = val.__int__() dtype = int arr = val * np.ones([]).astype(dtype) return arr def tensortonum(self, inputs, input_types): return inputs[0] def view(self, inputs, input_types): data = inputs[0] if len(inputs) == 3: shape_inp = [inputs[1], self.infer_shape(inputs[2])[0]] else: if isinstance(inputs[1], list): shape_inp = inputs[1] else: shape_inp = self.infer_shape(inputs[1]) new_shape = shape_inp for i, shape in enumerate(shape_inp): if isinstance(shape, _expr.Expr): val = _infer_value_simulated(shape, {}) new_shape[i] = val.numpy().item(0) return _op.transform.reshape(data, new_shape) def reshape(self, inputs, input_types): data = inputs[0] new_shape = inputs[1] tmp_shape = [] is_dyn = False for s in new_shape: if isinstance(s, _expr.Constant): tmp_shape.append(int(s.data.numpy())) elif isinstance(s, _expr.Expr): dim, success = try_infer_value(s, lambda ret: int(ret)) tmp_shape.append(dim) if not success: is_dyn = True else: tmp_shape.append(s) if is_dyn: new_shape = [] for i, s in enumerate(tmp_shape): if not isinstance(s, _expr.Expr): s = _expr.const(s, "int64") else: s = _op.cast(s, "int64") new_shape.append(_op.expand_dims(s, axis=0)) new_shape = _op.concatenate(new_shape, axis=0) else: new_shape = tmp_shape return _op.transform.reshape(data, new_shape) def pixel_shuffle(self, inputs, input_types): data = inputs[0] upscale_factor = inputs[1] upscale_squared = upscale_factor * upscale_factor b, c, h, w = self.infer_shape(data) assert ( c % upscale_squared == 0 ), "input channel should be divisible by square of upscale_factor" ndims = len(self.infer_shape_with_prelude(data)) axes = list(range(ndims)) num_inputs = len(inputs) oc = c // upscale_squared oh = h * upscale_factor ow = w * upscale_factor new_shape = [b, oc, upscale_factor, upscale_factor, h, w] out_shape = [b, oc, oh, ow] data = _op.transform.reshape(data, new_shape) # The data will be transposed to # [b, oc, h, upscale_factor, w, upscale_factor] # for further reshape axes = [0, 1, 4, 2, 5, 3] data = _op.transform.transpose(data, axes) return _op.transform.reshape(data, out_shape) def clone(self, inputs, input_types): data = inputs[0] return _op.tensor.copy(data) def log_softmax(self, inputs, input_types): data = inputs[0] axis = int(inputs[1]) return _op.nn.log_softmax(data, axis) def sigmoid(self, inputs, input_types): data = inputs[0] def func(x): return _op.tensor.sigmoid(x) if self.is_quantized_tensor(data): assert len(inputs) == 3, "Input quant param not found in op inputs" input_scale = _expr.const(inputs[1]) input_zero_point = _expr.const(inputs[2]) return qnn_torch.apply_with_fp32_fallback(data, input_scale, input_zero_point, func) return func(data) def softplus(self, inputs, input_types): dtype = input_types[0] beta = _expr.const(float(inputs[1]), dtype=dtype) return _op.log(_op.exp(inputs[0] * beta) + _expr.const(1.0, dtype=dtype)) / beta def make_avg_pool(self, dim): def avg_pool(inputs, input_types): data = inputs[0] pool_size = self.convert_const_list(inputs[1]) strides = self.convert_const_list(inputs[2] if inputs[2] else pool_size) padding = inputs[3] ceil_mode = int(inputs[4]) count_include_pad = int(inputs[5]) def func(x): if dim == 1: return _op.nn.avg_pool1d( x, pool_size=pool_size, strides=strides, padding=padding, dilation=(1,), ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) elif dim == 2: return _op.nn.avg_pool2d( x, pool_size=pool_size, strides=strides, padding=padding, dilation=(1, 1), ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) elif dim == 3: return _op.nn.avg_pool3d( x, pool_size=pool_size, strides=strides, padding=padding, dilation=(1, 1, 1), ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) else: msg = "Average Pooling dimension should be between 1 and 3" raise RuntimeError(msg) if self.is_quantized_tensor(data): return qnn_torch.apply_with_upcast(data, func) return func(data) return avg_pool def linear(self, inputs, input_types): # https://pytorch.org/docs/stable/nn.functional.html#linear # 0 - input # 1 - weight bias = inputs[2] a_shape = self.infer_shape_with_prelude(inputs[0]) b_shape = self.infer_shape_with_prelude(inputs[1]) if len(a_shape) == 2 and len(b_shape) == 2: mm_out = _op.nn.dense(inputs[0], inputs[1]) elif len(b_shape) == 1: mm_out = self.matmul([inputs[0], inputs[1]], input_types[:2]) else: mm_out = self.matmul( [inputs[0], _op.transpose(inputs[1], axes=(1, 0))], input_types[:2] ) if isinstance(bias, _expr.Expr): bias_ndims = len(self.infer_shape_with_prelude(bias)) if bias_ndims == 1: return _op.nn.bias_add(mm_out, bias, axis=-1) mm_dtype = self.infer_type_with_prelude(mm_out).dtype return self.add([mm_out, bias], [mm_dtype, input_types[2]]) return mm_out def dropout(self, inputs, input_types): data = inputs[0] rate = float(inputs[1]) return _op.nn.dropout(data, rate) def make_reduce(self, name): def reduce(inputs, input_types): data = inputs[0] axis = None keepdims = False if len(inputs) > 2: # default, torch have only data, axis=None, keepdims=False if isinstance(inputs[1], int): axis = int(inputs[1]) elif _is_int_seq(inputs[1]): axis = inputs[1] else: axis = list(self.infer_shape(inputs[1])) keepdims = bool(inputs[2]) return get_relay_op(name)(data, axis=axis, keepdims=keepdims) return reduce def norm(self, inputs, input_types): data = inputs[0] dtype = input_types[0] axis = None keepdims = False if len(inputs) > 3: axis = inputs[2] keepdims = bool(inputs[3]) order = inputs[1] if order == np.inf: return _op.reduce.max(_op.abs(data), axis=axis, keepdims=keepdims) elif order == np.NINF: return _op.reduce.min(_op.abs(data), axis=axis, keepdims=keepdims) else: reci_order = _expr.const(1.0 / order, dtype=dtype) order = _expr.const(order) return _op.power( _op.reduce.sum(_op.power(_op.abs(data), order), axis=axis, keepdims=keepdims), reci_order, ) def frobenius_norm(self, inputs, input_types): data = inputs[0] axis = None keepdims = False if len(inputs) > 2: axis = inputs[1] if len(inputs[1]) > 0 else None keepdims = bool(inputs[2]) return _op.sqrt(_op.reduce.sum((data * data), axis=axis, keepdims=keepdims)) def std(self, inputs, input_types): data = inputs[0] if len(inputs) == 2: axis = None keepdims = False unbiased = bool(inputs[1]) else: axis = inputs[1] keepdims = bool(inputs[3]) unbiased = bool(inputs[2]) return _op.reduce.std(data, axis=axis, keepdims=keepdims, unbiased=unbiased) def variance(self, inputs, input_types): data = inputs[0] if len(inputs) == 2: axis = None keepdims = False unbiased = bool(inputs[1]) else: axis = inputs[1] keepdims = bool(inputs[3]) unbiased = bool(inputs[2]) return _op.reduce.variance(data, axis=axis, keepdims=keepdims, unbiased=unbiased) def mean(self, inputs, input_types): data = inputs[0] if inputs[1]: axis = inputs[1] else: axis = None if len(inputs) > 2 and inputs[2]: keepdims = int(inputs[2]) else: keepdims = False if len(inputs) > 3 and inputs[3]: exclude = int(inputs[3]) else: exclude = False def func(x): return _op.mean(x, axis, keepdims, exclude) if self.is_quantized_tensor(data): assert len(inputs) == 6, "Input quant param not found in op inputs" input_scale = _expr.const(inputs[4]) input_zero_point = _expr.const(inputs[5]) # refer to aten/src/ATen/native/quantized/cpu/qreduction.cpp return qnn_torch.apply_with_fp32_fallback(data, input_scale, input_zero_point, func) return func(data) def var_mean(self, inputs, input_types): data = inputs[0] if len(inputs) == 2: axis = None keepdims = False unbiased = bool(inputs[1]) else: axis = inputs[1] keepdims = bool(inputs[3]) unbiased = bool(inputs[2]) m, v = _op.reduce.mean_variance(data, axis, keepdims, False, unbiased) return v, m def chunk(self, inputs, input_types): data = inputs[0] num_chunks = int(inputs[1]) axis = int(inputs[2]) if isinstance(data, _expr.Expr): inferred_shape = self.infer_shape_with_prelude(data) shape = [] for infer in inferred_shape: shape.append(infer) dim = int(shape[axis]) if dim % num_chunks: unif_size = int(dim / (num_chunks - 1)) else: unif_size = int(dim / num_chunks) indeces = [] for i in range(unif_size, dim, unif_size): indeces.append(i) return _op.split(data, indeces, axis) def matmul(self, inputs, input_types): inputs_0 = inputs[0] inputs_1 = inputs[1] # Need to check input shape as batch matmul must be supported. a_shape = self.infer_shape_with_prelude(inputs_0) b_shape = self.infer_shape_with_prelude(inputs_1) # When performing a batch matmul, we need to properly handle N-dim shapes. if len(a_shape) > 2 and len(b_shape) > 2: # Convert a into a 3 dimensional tensors. need_reshape_output = False if len(a_shape) != 3: a = _op.reshape(inputs_0, [-1, a_shape[-2], a_shape[-1]]) need_reshape_output = True else: a = inputs_0 # Transpose matrix dimensions of b. trans_axes = list(range(len(b_shape))) trans_axes[-2], trans_axes[-1] = trans_axes[-1], trans_axes[-2] b = _op.transpose(inputs_1, trans_axes) # Convert b into a 3 dimensional tensor. Note that the last two dimensions # are transposed. if len(b_shape) != 3: b = _op.reshape(b, [-1, b_shape[-1], b_shape[-2]]) # Perform a batch matmul. output = _op.nn.batch_matmul(a, b) # Reshape output to original dimensions. if need_reshape_output: return _op.reshape(output, [*a_shape[:-2], a_shape[-2], b_shape[-1]]) return output elif len(a_shape) > 2: inputs_0 = _op.reshape(inputs_0, [-1, a_shape[-1]]) if len(b_shape) > 2: trans_axes = list(range(len(b_shape))) trans_axes[-2], trans_axes[-1] = trans_axes[-1], trans_axes[-2] input_1 = _op.reshape(_op.transpose(inputs_1, trans_axes), [-1, b_shape[-2]]) elif len(b_shape) == 2: input_1 = _op.transpose(inputs_1, axes=(1, 0)) elif len(b_shape) == 1: input_1 = _op.expand_dims(inputs_1, 0, 1) out = _op.nn.dense(inputs_0, input_1) if len(b_shape) == 1: out = _op.squeeze(out, axis=[-1]) # Reshape output into a N dimensional tensor when a or b dim > 2 if len(a_shape) > 2: out = _op.reshape(out, [*a_shape[:-1], b_shape[-1]]) elif len(b_shape) > 2: out = _op.reshape(out, [a_shape[-2], -1, b_shape[-1]]) out = _op.reshape( _op.transpose(out, [1, 0, 2]), [*b_shape[:-2], a_shape[-2], b_shape[-1]] ) return out def expand(self, inputs, input_types): data_in = inputs[0] shape = list(self.infer_shape(data_in)) ndims = len(shape) sizes = inputs[1] out = data_in out_dims = len(sizes) if ndims < out_dims: num_newaxis = out_dims - ndims out = _op.expand_dims(out, axis=0, num_newaxis=num_newaxis) shape = [1] * num_newaxis + shape for i in range(out_dims): if sizes[i] != -1 and shape[i] == 1: if not isinstance(sizes[i], int): sizes[i] = int(_infer_value(sizes[i], {}).numpy()) out = _op.repeat(out, sizes[i], axis=i) return out def int(self, inputs, input_types): if isinstance(inputs[0], _expr.Expr): return inputs[0] return int(inputs[0]) def identity(self, inputs, input_types): return inputs[0] def none(self, inputs, input_types): return None def make_pad(self, mode): def pad(inputs, input_types): data = inputs[0] if isinstance(inputs[1], list): pad_list = inputs[1] else: pad_list = list(self.infer_shape(inputs[1])) # initialize paddings based on input len pad_len = len(self.infer_shape(data)) * 2 paddings = [0] * pad_len if len(pad_list) >= 2: paddings[-1] = pad_list[1] paddings[-2] = pad_list[0] if len(pad_list) >= 4: paddings[-3] = pad_list[3] paddings[-4] = pad_list[2] if len(pad_list) >= 6: paddings[-5] = pad_list[5] paddings[-6] = pad_list[4] # group into tuple of 2 ints paddings = [paddings[i : i + 2] for i in range(0, len(paddings), 2)] const_paddings = [] non_zero_found = False for pad in paddings: const_paddings.append([]) for p in pad: if not isinstance(p, int): p = int(_infer_value(p, {}).numpy()) const_paddings[-1].append(p) if p != 0: non_zero_found = True if not non_zero_found: return data elif mode == "constant": return _op.nn.pad(data, const_paddings, pad_value=inputs[2], pad_mode=mode) else: return _op.nn.pad(data, const_paddings, pad_mode=mode) return pad def clamp_common(self, data, min=None, max=None): def get_v(v, default_v): if isinstance(v, _expr.Constant): return float(v.data.numpy()) if isinstance(v, _expr.Expr): infer_v, success = try_infer_value(v, lambda ret: float(ret)) if success: return infer_v if v is not None: return v return default_v dtype = self.infer_type(data).dtype type_info = np.finfo(dtype) if "float" in dtype else np.iinfo(dtype) # TODO(masahi): Properly handle inf in a one-way clamp case. if min is not None and max is not None: amin = get_v(min, type_info.min) amax = get_v(max, type_info.max) elif min is not None: amin = get_v(min, type_info.min) amax = type_info.max else: amin = type_info.min amax = get_v(max, type_info.max) return _op.clip(data, amin, amax) def clamp(self, inputs, _): return self.clamp_common(inputs[0], min=inputs[1], max=inputs[2]) def clamp_min(self, inputs, input_types): return self.clamp_common(inputs[0], min=inputs[1]) def clamp_max(self, inputs, input_types): return self.clamp_common(inputs[0], max=inputs[1]) def to(self, inputs, input_types): data = inputs[0] dtype = inputs[1] if inputs[1] is not None and not isinstance(inputs[1], str) else inputs[2] # special handling for aten::to(data, 6, _, _, _) case # 6 means dtype = float # this happens when converting upsampling with scale factor cast_map = { 5: "float16", 6: "float32", 7: "float64", 3: "int32", 4: "int64", } cast_func = {5: float, 6: float, 7: float, 3: int, 4: int} ret = data if isinstance(data, _expr.Expr): actual_dtype = str(self.infer_type(data).dtype) if dtype in cast_map and cast_map[dtype] != actual_dtype: ret = _op.cast(data, cast_map[dtype]) elif dtype in cast_map: ret = cast_func[dtype](data) return ret def get_upsample_out_size(self, inputs, method): # This assumes a static shape out_size = [] if inputs[1] is not None: for size in inputs[1]: if not isinstance(size, int): out_size.append(int(_infer_value(size, {}).numpy())) else: out_size.append(size) else: scale_index = 3 if method != "nearest_neighbor" else 2 scales = inputs[scale_index] assert scales is not None, "neither out size nor scale provided" assert isinstance(scales, list) ishape = self.infer_shape(inputs[0]) for i, scale in enumerate(scales): out_size.append(int(math.floor(float(ishape[2 + i]) * scale))) return out_size def make_upsample(self, method): def upsample(inputs, input_types): data = inputs[0] out_size = self.get_upsample_out_size(inputs, method) if len(inputs) > 2 and method != "nearest_neighbor": align_corners = inputs[2] else: align_corners = False if method == "nearest_neighbor": coord_trans = "asymmetric" elif align_corners: coord_trans = "align_corners" else: coord_trans = "half_pixel" def func(x): return _op.image.resize2d( x, out_size, None, "NCHW", method, coord_trans, cubic_alpha=-0.75 ) if self.is_quantized_tensor(data): # input qparams are manually appended by us assert isinstance(inputs[-2], float) assert isinstance(inputs[-1], int) input_scale = _expr.const(inputs[-2]) input_zero_point = _expr.const(inputs[-1]) # currently piggy backs to fp32, it gets identical output as torch return qnn_torch.apply_with_fp32_fallback(data, input_scale, input_zero_point, func) return func(data) return upsample def make_upsample3d(self, method): def upsample3d(inputs, input_types): data = inputs[0] out_size = self.get_upsample_out_size(inputs, method) if len(inputs) > 2 and method == "linear": align_corners = inputs[2] else: align_corners = False if method == "nearest_neighbor": coord_trans = "asymmetric" elif align_corners: coord_trans = "align_corners" else: coord_trans = "half_pixel" return _op.image.resize3d(data, out_size, None, "NCDHW", method, coord_trans) return upsample3d def expand_as(self, inputs, input_types): target = inputs[1] t0 = self.infer_type(inputs[0]).dtype t1 = self.infer_type(inputs[1]).dtype if str(t0) != str(t1): target = _op.cast(target, t0) return _op.broadcast_to_like(inputs[0], target) def Bool(self, inputs, input_types): assert len(inputs) == 1 return inputs[0] def Float(self, inputs, input_types): assert len(inputs) == 1 return _op.cast(inputs[0], "float32") def bitwise_not(self, inputs, input_types): data = inputs[0] # The input tensor must be of integral or Boolean types. # For bool tensors, it computes the logical NOT if input_types[0] == "bool": out = _op.logical_not(_op.cast(data, "bool")) else: out = _op.bitwise_not(_op.cast(data, "int")) return out def bitwise_xor(self, inputs, input_types): lhs = inputs[0] rhs = inputs[1] lhs = _op.cast(lhs, "bool") if input_types[0] == "bool" else _op.cast(lhs, "int") rhs = _op.cast(rhs, "bool") if input_types[1] == "bool" else _op.cast(rhs, "int") return _op.bitwise_xor(lhs, rhs) def logical_not(self, inputs, input_types): data = _wrap_const(inputs[0]) return _op.logical_not(_op.cast(data, "bool")) def logical_xor(self, inputs, input_types): lhs = _op.cast(inputs[0], "bool") rhs = _op.cast(inputs[1], "bool") return _op.logical_xor(lhs, rhs) def list_getitem(self, inputs, input_types): return self.prelude.nth(inputs[0], _wrap_const(inputs[1])) def list_len(self, inputs, input_types): return self.prelude.length(inputs[0]) def type_as(self, inputs, input_types): assert len(inputs) == 2 assert len(input_types) == 2 return _op.cast(inputs[0], input_types[1]) def gather(self, inputs, input_types): data = inputs[0] axis = inputs[1] indices = inputs[2] return _op.gather(data, axis, indices) def add(self, inputs, input_types): # add_ is overloaded for tensor add and list concat if input_types[0] == "ListType": return self.prelude.concat(inputs[0], inputs[1]) return self.make_elemwise("add")(inputs, input_types) def tensor_array_stack(self, inputs, input_types): dim = inputs[1] assert dim == 0, "stacking on a dynamic tensor list only supported on a first axis" tensor_array, shape = self.convert_to_tensor_array(inputs[0]) stacked_shape = (Any(),) + shape stack = self.prelude.get_global_var_static("tensor_array_stack", "float32", shape) stacked = stack(tensor_array) static_tensor_array_ops = StaticTensorArrayOps(self.prelude, "float32", stacked_shape) static_tensor_array_ops.register() get_tensor = self.prelude.get_global_var_static("tensor_get_data", "float32", stacked_shape) return get_tensor(stacked) def stack(self, inputs, input_types): if isinstance(inputs[0], list): # a static python list of tensors dim = inputs[1] return _op.stack(inputs[0], dim) else: # List ADT case assert isinstance(inputs[0], _expr.Expr) ty = self.infer_type_with_prelude(inputs[0]) list_ty = self.prelude.mod.get_global_type_var("List") msg = "The input list is expected to be List ADT" assert isinstance(ty, tvm.ir.TypeCall) and ty.func == list_ty, msg return self.tensor_array_stack(inputs, input_types) def sub(self, inputs, input_types): if len(inputs) == 3: data0, data1, alpha = self.pytorch_promote_types(inputs, input_types) return get_relay_op("subtract")(data0, alpha * data1) else: data0, data1 = self.pytorch_promote_types(inputs, input_types) return get_relay_op("subtract")(data0, data1) def rsub(self, inputs, input_types): data0, data1, alpha = self.pytorch_promote_types(inputs, input_types) # note: rsub means data0 and data1 swap places return get_relay_op("subtract")(data1, alpha * data0) def embedding(self, inputs, input_types): weight = inputs[0] indices = inputs[1] return _op.take(weight, indices.astype("int32"), axis=0) def one_hot(self, inputs, input_types): indices = inputs[0].astype("int32") num_classes = inputs[1] if num_classes == -1: msg = "Inferring the number of classes is not yet supported." raise NotImplementedError(msg) dtype = "int32" on_value = tvm.relay.const(1.0, dtype) off_value = tvm.relay.const(0.0, dtype) return _op.one_hot(indices, on_value, off_value, num_classes, -1, dtype) def index(self, inputs, input_types): data = inputs[0] indices = inputs[1] return _op.adv_index([data] + indices) def meshgrid(self, inputs, input_types): data = inputs[0] return _op.meshgrid(data, indexing="ij") def nms(self, inputs, input_types): boxes = inputs[0] scores = inputs[1] iou_threshold = inputs[2] # TVM NMS assumes score > 0 scores = scores - _op.min(scores) + _op.const(1.0) num_boxes = _op.shape_of(scores) # PyTorch NMS doesn't have score_threshold, so no need to run get_valid_count indices = _op.transform.arange(_op.squeeze(num_boxes), dtype="int32") indices = _op.expand_dims(indices, 0, 1) # Generate data with shape (1, num_anchors, 5) scores = AttrCvt(op_name="expand_dims", extras={"axis": -1, "num_newaxis": 1})([scores], {}) data = _op.concatenate([scores, boxes], -1) data = _op.expand_dims(data, 0, 1) # Perform Non-Maximum Suppression, # PyTorch NMS doesn't have parameter top_k and max_output_size score_index = 0 top_k = max_out_size = -1 nms_ret = get_relay_op("non_max_suppression")( data=data, valid_count=num_boxes, indices=indices, max_output_size=max_out_size, iou_threshold=iou_threshold, force_suppress=True, top_k=top_k, coord_start=1, score_index=score_index, id_index=-1, return_indices=True, invalid_to_bottom=False, ) # squeeze the two outputs of nms for strided_slice size = get_relay_op("squeeze")(nms_ret[1], axis=[1]) data_slice = get_relay_op("squeeze")(nms_ret[0], axis=[0]) # strided slice to get the dynamic result ret = get_relay_op("strided_slice")( data_slice, begin=_expr.const([0]), end=size, slice_mode="size" ) # in torchvision, indices from nms are int64 return _op.cast(ret, "int64") def logsumexp(self, inputs, input_types): data = self.pytorch_promote_types(inputs[:1], input_types[:1]) dim_list = inputs[1] keepdim = inputs[2] if len(inputs) > 2 else False # dim is output of prim::ListConstruct, even if it is int in python code assert isinstance(dim_list, list), "dim is expected to be a list" return _op.logsumexp(data[0], axis=dim_list, keepdims=keepdim) def roi_align(self, inputs, input_types): data = inputs[0] boxes = inputs[1] output_size = (inputs[3], inputs[4]) spatial_scale = inputs[2] sample_ratio = inputs[5] aligned = False if len(inputs) < 7 else inputs[6] if aligned: boxes -= _expr.const(0.5 / spatial_scale) return _op.vision.roi_align(data, boxes, output_size, spatial_scale, sample_ratio) def deform_conv2d(self, inputs, input_types): data = inputs[0] weight = inputs[1] offset = inputs[2] if len(inputs) > 12: strides_offset = 5 bias = inputs[4] logging.warning("mask argument in deformable conv2d is not supported and ignored") else: strides_offset = 4 bias = inputs[3] strides = (inputs[strides_offset], inputs[strides_offset + 1]) padding = (inputs[strides_offset + 2], inputs[strides_offset + 3]) dilation = (inputs[strides_offset + 4], inputs[strides_offset + 5]) groups = inputs[strides_offset + 6] deformable_groups = inputs[strides_offset + 7] weight_shape = self.infer_shape(weight) output_channels = weight_shape[0] kernel_size = (weight_shape[2], weight_shape[3]) conv_out = _op.nn.deformable_conv2d( data, offset, weight, strides, padding, dilation, deformable_groups, groups, output_channels, kernel_size, ) return _op.nn.bias_add(conv_out, bias) def stft(self, inputs, input_types): data = inputs[0] n_fft = inputs[1] hop_length = inputs[2] win_length = inputs[3] window = inputs[4] normalized = inputs[5] onesided = inputs[6] return _op.stft(data, n_fft, hop_length, win_length, window, normalized, onesided) def unbind(self, inputs, input_types): data = inputs[0] axis = int(inputs[1]) return unbind(data, axis) def shape_as_tensor(self, inputs, input_types): is_symbolic_shape = False input_shape = self.infer_shape(inputs[0], self.prelude.mod) for axis in input_shape: if not isinstance(axis, (int, tvm.tir.IntImm)): is_symbolic_shape = True break if is_symbolic_shape: ret = _op.shape_of(inputs[0], dtype="int64") else: ret = _expr.const(np.array(input_shape), dtype="int64") return ret def logical_and(self, inputs, input_types): lhs = _op.cast(inputs[0], "bool") rhs = _op.cast(inputs[1], "bool") return _op.logical_and(lhs, rhs) def nonzero(self, inputs, input_types, is_numpy_style=False): data = inputs[0] ret = _op.transform.argwhere(data) if is_numpy_style or (len(inputs) > 1 and inputs[1]): return unbind(ret, 1) return ret def nonzero_numpy(self, inputs, input_types): return self.nonzero(inputs, input_types, is_numpy_style=False) def scatter(self, inputs, input_types): data = inputs[0] axis = int(inputs[1]) index = inputs[2] src = inputs[3] return _op.transform.scatter(data, index, src, axis) def index_put(self, inputs, input_types): in_tensor = inputs[0] indices = inputs[1] values = inputs[2] accumulate = inputs[3] if not accumulate: mode = "update" else: mode = "add" # Combine array of index tensors into one index tensor with shape (N,_) index_tensor = _op.stack(indices, axis=0) return _op.transform.scatter_nd(in_tensor, index_tensor, values, mode) def scalar_tensor(self, inputs, input_types): data = inputs[0] cast_map = { 6: "float32", 7: "float64", 3: "int32", 4: "int64", } type_key = inputs[1] if isinstance(data, _expr.Constant): data = data.data.numpy().tolist() return _expr.const(data, cast_map[type_key]) def interpolate(self, inputs, input_types): if isinstance(inputs[1], _expr.Expr): out_size = inputs[1] elif isinstance(inputs[1], list): out_size = [] for i in [0, 1]: size, _ = try_infer_value( inputs[1][i], lambda ret: ret.astype(np.int), lambda: _op.expand_dims(inputs[1][i], axis=0), ) out_size.append(size) out_size = _op.concatenate(out_size, axis=0) data = inputs[0] align_corners = inputs[4] method = inputs[3] if method.startswith("nearest"): method = "nearest_neighbor" elif method[0:2] == "bi": method = method[2:] if method == "nearest_neighbor": coord_trans = "asymmetric" elif align_corners: coord_trans = "align_corners" else: coord_trans = "half_pixel" return _op.image.resize2d( data, out_size, None, "NCHW", method, coord_trans, cubic_alpha=-0.75 ) def numel(self, inputs, input_types): return _op.ndarray_size(inputs[0]) def empty(self, inputs, input_types): shape = inputs[0] return _op.zeros(shape, _convert_dtype_value(inputs[1])) def bincount(self, inputs, input_types): data = inputs[0] weights = inputs[1] input_type = self.infer_type(data).dtype if input_type == "int64": logger.warning( "Casting an int64 input to int32, since we do not have int64 atomic add" "needed for bincount yet." ) data = _op.cast(data, "int32") maximum = _op.max(data) dim = maximum + _expr.const(1, dtype="int32") if weights: weight_type = self.infer_type(weights) out_dtype = weight_type.dtype updates = weights else: out_dtype = "int32" updates = _op.ones_like(data) counts = _op.zeros(_op.reshape(dim, [1]), out_dtype) out = _op.scatter_add(counts, data, updates, axis=0) if input_type == "int32": # Torch always outputs int64 results for bincount return _op.cast(out, "int64") return out def scatter_add(self, inputs, input_types): data = inputs[0] axis = inputs[1] index = inputs[2] src = inputs[3] return _op.scatter_add(data, index, src, axis=axis) def cumsum(self, inputs, input_types): data = inputs[0] dim = inputs[1] dtype = inputs[2] if inputs[2] is not None: dtype = _convert_dtype_value(inputs[2]) return _op.cumsum(data, axis=dim, dtype=dtype) def masked_fill(self, inputs, input_types): mask = inputs[1] value = _op.cast(_wrap_const(inputs[2]), input_types[0]) return _op.where(mask, value, inputs[0]) def masked_select(self, inputs, input_types): mask = inputs[1] indices = self.nonzero([mask], input_types, is_numpy_style=True) return _op.adv_index([inputs[0]] + [indices[i] for i in range(indices.size)]) def sort(self, inputs, input_types): data = inputs[0] dim = inputs[1] is_descending = inputs[2] # pytorch sort returns both sorted indices and values indices = _op.argsort(data, dim, not is_descending) return _op.gather(data, dim, indices), indices def argsort(self, inputs, input_types): data = inputs[0] dim = inputs[1] is_descending = inputs[2] return _op.argsort(data, dim, not is_descending) def is_floating_point(self, inputs, input_types): assert len(inputs) == 1 if isinstance(inputs[0], _expr.Expr): input_type = self.infer_type(inputs[0]).dtype else: input_type = input_types[0] is_float = input_type in ["float32", "float64", "float16", "bfloat16"] return _expr.const(is_float) def unique(self, inputs, input_types): assert len(inputs) == 4 [data, is_sorted, return_inverse, return_counts] = inputs if not is_sorted: logger.warning("TVM always assumes sorted=True for torch.unique") is_sorted = True if return_counts: [unique, indices, inverse_indices, num_uniq, counts] = _op.unique( data, is_sorted=is_sorted, return_counts=True ) unique_sliced = _op.strided_slice(unique, begin=[0], end=num_uniq, slice_mode="size") counts_sliced = _op.strided_slice(counts, begin=[0], end=num_uniq, slice_mode="size") return (unique_sliced, inverse_indices, counts_sliced) else: [unique, indices, inverse_indices, num_uniq] = _op.unique( data, is_sorted=is_sorted, return_counts=False ) unique_sliced = _op.strided_slice(unique, begin=[0], end=num_uniq, slice_mode="size") return (unique_sliced, inverse_indices) def nll_loss(self, inputs, input_types): assert len(inputs) == 5 [predictions, targets, weights, reduction, ignore_index] = inputs num_class = self.infer_shape(predictions)[1] if reduction == 0: reduction = "none" elif reduction == 1: reduction = "mean" else: reduction = "sum" if weights is None: weights = _op.full(_expr.const(1), (num_class,), dtype=input_types[0]) return _op.nn.nll_loss(predictions, targets, weights, reduction, ignore_index) def flip(self, inputs, input_types): data = inputs[0] axis = inputs[1] return _op.transform.reverse(data, axis=axis[0]) def bidir_gru_cell( self, input_seqs, weights_dicts, ): """ Bidirectional GRU cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t = gru_cell( input_seqs, **weights_dicts[0], ) reverse_outputs, rev_H_t = gru_cell( input_seqs, **weights_dicts[1], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.concatenate([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=-1) ) return final_outputs, _op.stack([fw_H_t, rev_H_t], axis=0) def gru_layers(self, input_data, layer_weights_dicts, bidirectional, dropout_p=0.0): """ Methods iterates layers for Stacked GRU """ layers_num = len(layer_weights_dicts) # split input sequence to samples set input_seqs = unbind(input_data, 0) # [seq_num, (batch, feature_size)] output_hiddens = [] for i in range(layers_num): weights_dicts = layer_weights_dicts[i] # input_seqs shape = [seq_num, (batch, feature_size)] or # [seq_num, (batch, 2*feature_size)] for bidirectional if bidirectional: input_seqs, H_t = self.bidir_gru_cell(input_seqs, weights_dicts) else: input_seqs, H_t = gru_cell(input_seqs, **weights_dicts[0]) output_hiddens.append(H_t) # TODO (vvchernov): in pytorch implementation train is also checked # see https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339 # /aten/src/ATen/native/RNN.cpp#L1054 if dropout_p != 0 and i < layers_num - 1: # for input in input_seqs: # input = _op.dropout(input, dropout_p) raise NotImplementedError("Dropout for GRU has not been supported yet!") return _op.stack(input_seqs, 0), _op.stack(output_hiddens, 0) def gru(self, inputs, input_types): """ Description of GRU in pytorch: https://pytorch.org/docs/stable/generated/torch.nn.GRU.html?highlight=gru#torch.nn.GRU """ # TODO (vvchernov): support dropout assert len(inputs) == 9, "Input of size 9 is expected" # Unpack inputs, note that if optional and not provided then value will be None. _X = inputs[0] # _X shape (seq_num, batch, feature_size) or (batch, seq_num, feature_size) hidden_state = inputs[1] # Hidden state shape (hidden_layers_num, batch, hidden_size) _weights = inputs[2] # Wi layer[0] shape (3 * hidden_size, feature_size) # Wh layer[0] shape (3 * hidden_size, hidden_size) # Bi layer[0] shape (3 * hidden_size) # Bh layer[0] shape (3 * hidden_size) # Wi layer[>0] shape (3 * hidden_size, hidden_size * num_directions) # Wh layer[>0] shape (3 * hidden_size, hidden_size) # Bi layer[>0] shape (3 * hidden_size) # Bh layer[>0] shape (3 * hidden_size) # Scalar inputs has_biases = inputs[3] num_layers = inputs[4] dropout_p = inputs[5] # dropout probability, if 0.0 it means there is no dropout # train = inputs[6] bidirectional = inputs[7] batch_first = inputs[8] num_directions = 1 if bidirectional: num_directions = 2 rsd = len(_weights) % num_layers assert rsd == 0, "The number of weights must be a multiple of the number of layers!" rsd = (len(_weights) / num_layers) % num_directions assert ( rsd == 0 ), "The number of weights in layer must be a multiple of the number of directions!" weights_num = int(len(_weights) / num_layers / num_directions) if has_biases: assert weights_num == 4, "The weights number in layer is expected equal to 4" else: assert weights_num == 2, "The weights number in layer is expected equal to 2" X = _op.transpose(_X, (1, 0, 2)) if batch_first else _X # TODO (vvchernov): Which data type should be used? from input or weights? # Instead of it _infer_type(X).checked_type.dtype can be used X_dtype = input_types[0] X_shape = _infer_shape(X) # (seq_num, batch, feature_size) hidden_size = int(_infer_shape(_weights[0])[0] / 3) batch_size = X_shape[1] # Initialize hidden states if not provided. layers_h = [] hidden_layers_num = num_directions * num_layers if hidden_state is None: h_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_h.append(h_0) else: layers_h = unbind(hidden_state, 0) layer_weights_dicts = [] k = 0 # layer counter if has_biases: names = ["hidden_state", "w_inp", "w_hid", "b_inp", "b_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) j = i + weights_num rev_tensors = [layers_h[2 * k + 1], *_weights[j : j + 4]] rev_weights_dict = dict(zip(names, rev_tensors)) layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) layer_weights_dicts.append([fw_weights_dict]) k += 1 else: names = ["hidden_state", "w_inp", "w_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) j = i + weights_num rev_tensors = [layers_h[2 * k + 1], *_weights[j : j + 2]] rev_weights_dict = dict(zip(names, rev_tensors)) layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of GRU weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) layer_weights_dicts.append([fw_weights_dict]) k += 1 assert ( len(layer_weights_dicts) == num_layers and k == num_layers ), "For stacked GRU number of weights sets should be the same as number of layers!" output, out_hidden_state = self.gru_layers( X, layer_weights_dicts, bidirectional, dropout_p=dropout_p, ) # output shape = (seq_num, batch, hidden_size) or # (seq_num, batch, 2*feature_size) for bidirectional if batch_first: output = _op.transpose(output, (1, 0, 2)) return (output, out_hidden_state) def bidir_lstm_cell( self, input_seqs, weights_dicts, ): """ Bidirectional LSTM cell """ seq_len = len(input_seqs) forward_outputs, fw_H_t, fw_C_t = lstm_cell( input_seqs, **weights_dicts[0], ) reverse_outputs, rev_H_t, rev_C_t = lstm_cell( input_seqs, **weights_dicts[1], backwards=True, ) final_outputs = [] for i in range(seq_len): final_outputs.append( _op.concatenate([forward_outputs[i], reverse_outputs[seq_len - 1 - i]], axis=-1) ) return final_outputs, (fw_H_t, fw_C_t), (rev_H_t, rev_C_t) def lstm_layers(self, input_data, layer_weights_dicts, bidirectional, dtype, dropout_p=0.0): """ Methods iterates layers for Stacked LSTM """ layers_num = len(layer_weights_dicts) # split input sequence to samples set input_seqs = unbind(input_data, 0) # [seq_num, (batch, feature_size)] output_hiddens = [] for i in range(layers_num): weights_dicts = layer_weights_dicts[i] # input_seqs shape = [seq_num, (batch, feature_size)] or # [seq_num, (batch, 2*feature_size)] for bidirectional if bidirectional: input_seqs, H_t, C_t = self.bidir_lstm_cell(input_seqs, weights_dicts) else: input_seqs, H_t, C_t = lstm_cell(input_seqs, **weights_dicts[0]) output_hiddens.append((H_t, C_t)) # TODO (vvchernov): in pytorch implementation train is also checked # see https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339 # /aten/src/ATen/native/RNN.cpp#L1054 if dropout_p != 0 and i < layers_num - 1: # for input in input_seqs: # input = _op.dropout(input, dropout_p) raise NotImplementedError("Dropout for LSTM has not been supported yet!") final_hiddens = [] if bidirectional: for output_hidden in output_hiddens: final_hiddens.append(output_hidden[0]) final_hiddens.append(output_hidden[1]) else: final_hiddens = output_hiddens return _op.stack(input_seqs, 0), final_hiddens def lstm(self, inputs, input_types): """ Description of LSTM in pytorch:https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html Native implementation for torch version less than 1.8.0 (projection is unsupported): https://github.com/pytorch/pytorch/blob/70c8daf43946b53af6493d058899ef952d27d339/aten/ \ src/ATen/native/RNN.cpp#L1396 Native implementation for torch version from 1.8.0 and higher (projection is supported): https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/RNN.cpp#L1483 """ # TODO (vvchernov): support dropout assert len(inputs) == 9, "Input of size 9 is expected" # Unpack inputs, note that if optional and not provided then value will be None. _X = inputs[0] # _X shape (seq_num, batch, feature_size) or (batch, seq_num, feature_size) hidden_states = inputs[1] assert len(hidden_states) == 2, "lstm expects two hidden states" h_0 = hidden_states[0] c_0 = hidden_states[1] # H0 shape (hidden_layers_num, batch, proj_size) if projection # else (hidden_layers_num, batch, hidden_size) # C0 shape (hidden_layers_num, batch, hidden_size) _weights = inputs[2] # If no projection # Wi layer[0] shape (4 * hidden_size, feature_size) # Wh layer[0] shape (4 * hidden_size, hidden_size) # Bi layer[0] shape (4 * hidden_size) # Bh layer[0] shape (4 * hidden_size) # Wi layer[>0] shape (4 * hidden_size, hidden_size * num_directions) # Wh layer[>0] shape (4 * hidden_size, hidden_size) # Bi layer[>0] shape (4 * hidden_size) # Bh layer[>0] shape (4 * hidden_size) # If projection # Wi layer[0] shape (4 * hidden_size, feature_size) # Wh layer[0] shape (4 * hidden_size, proj_size) # Bi layer[0] shape (4 * hidden_size) # Bh layer[0] shape (4 * hidden_size) # P layer[0] shape (proj_size, hidden_size) # Wi layer[>0] shape (4 * hidden_size, proj_size * num_directions) # Wh layer[>0] shape (4 * hidden_size, proj_size) # Bi layer[>0] shape (4 * hidden_size) # Bh layer[>0] shape (4 * hidden_size) # P layer[>0] shape (proj_size, hidden_size) # Scalar inputs has_biases = inputs[3] num_layers = inputs[4] dropout_p = inputs[5] # dropout probability, if 0.0 it means there is no dropout # train = inputs[6] bidirectional = inputs[7] batch_first = inputs[8] num_directions = 1 if bidirectional: num_directions = 2 rsd = len(_weights) % num_layers assert rsd == 0, "The number of weights must be a multiple of the number of layers!" rsd = (len(_weights) / num_layers) % num_directions assert ( rsd == 0 ), "The number of weights in layer must be a multiple of the number of directions!" has_proj = False proj_size = 0 weights_num = int(len(_weights) / num_layers / num_directions) if has_biases: if weights_num == 5: has_proj = True proj_size = _infer_shape(_weights[4])[0] else: assert weights_num == 4, "The weights number in layer is expected equal to 4" else: if weights_num == 3: has_proj = True proj_size = _infer_shape(_weights[2])[0] else: assert weights_num == 2, "The weights number in layer is expected equal to 2" X = _op.transpose(_X, (1, 0, 2)) if batch_first else _X # TODO (vvchernov): Which data type should be used? from input or weights? # Instead of it _infer_type(X).checked_type.dtype can be used X_dtype = input_types[0] X_shape = _infer_shape(X) # (seq_num, batch, feature_size) hidden_size = _infer_shape(_weights[0])[0] / 4 batch_size = X_shape[1] # Initialize hidden states if not provided. layers_h = [] layers_c = [] hidden_layers_num = num_directions * num_layers if h_0 is None: if has_proj: h_0 = _op.zeros((batch_size, proj_size), X_dtype) else: h_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_h.append(h_0) else: layers_h = unbind(h_0, 0) if c_0 is None: c_0 = _op.zeros((batch_size, hidden_size), X_dtype) for i in range(hidden_layers_num): layers_c.append(c_0) else: layers_c = unbind(c_0, 0) layer_weights_dicts = [] k = 0 # layer counter if has_biases: names = ["hidden_state", "cell_state", "w_inp", "w_hid", "b_inp", "b_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], layers_c[2 * k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 4] j = i + weights_num rev_tensors = [layers_h[2 * k + 1], layers_c[2 * k + 1], *_weights[j : j + 4]] rev_weights_dict = dict(zip(names, rev_tensors)) if has_proj: rev_weights_dict["proj"] = _weights[j + 4] layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], layers_c[k], *_weights[i : i + 4]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 4] layer_weights_dicts.append([fw_weights_dict]) k += 1 else: names = ["hidden_state", "cell_state", "w_inp", "w_hid"] if bidirectional: rsd = len(_weights) % (2 * weights_num) assert rsd == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), 2 * weights_num): fw_tensors = [layers_h[2 * k], layers_c[2 * k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 2] j = i + weights_num rev_tensors = [layers_h[2 * k + 1], layers_c[2 * k + 1], *_weights[j : j + 2]] rev_weights_dict = dict(zip(names, rev_tensors)) if has_proj: rev_weights_dict["proj"] = _weights[j + 2] layer_weights_dicts.append([fw_weights_dict, rev_weights_dict]) k += 1 else: assert len(_weights) % weights_num == 0, "got an incorrect number of LSTM weights" for i in range(0, len(_weights), weights_num): fw_tensors = [layers_h[k], layers_c[k], *_weights[i : i + 2]] fw_weights_dict = dict(zip(names, fw_tensors)) if has_proj: fw_weights_dict["proj"] = _weights[i + 2] layer_weights_dicts.append([fw_weights_dict]) k += 1 assert ( len(layer_weights_dicts) == num_layers and k == num_layers ), "For stacked LSTM number of weights sets should be the same as number of layers!" outputs = self.lstm_layers( X, layer_weights_dicts, bidirectional, dtype=X_dtype, dropout_p=dropout_p, ) # output shape = (seq_num, batch, hidden_size) or # (seq_num, batch, 2*feature_size) for bidirectional output = outputs[0] hy = [] cy = [] for hidden in outputs[1]: hy.append(hidden[0]) cy.append(hidden[1]) if batch_first: output = _op.transpose(output, (1, 0, 2)) return (output, _op.stack(hy, 0), _op.stack(cy, 0)) def all_any_common(self, op, inputs, input_types): dim = inputs[1] keepdim = inputs[2] if self.infer_type(inputs[0]).dtype != "bool": # The input dtype can be uint8. inp = _op.cast(inputs[0], "bool") else: inp = inputs[0] return op(inp, axis=dim, keepdims=keepdim) def searchsorted_common( self, sorted_sequence, values, out_int32, right, side=None, out=None, sorter=None ): assert side is None and out is None and sorter is None, "unsupported parameters" dtype = "int32" if out_int32 else "int64" values_shape = _infer_shape(values) if len(values_shape) == 0: values = _op.expand_dims(values, 0) out = _op.searchsorted(sorted_sequence, values, right=right, dtype=dtype) if len(values_shape) == 0: return _op.squeeze(out) return out def searchsorted(self, inputs, input_types): return self.searchsorted_common(*inputs) def bucketize(self, inputs, input_types): return self.searchsorted_common(inputs[1], inputs[0], inputs[2], inputs[3]) def roll(self, inputs, input_types): def slide_axes(inp, shape, ax): axes = list(range(len(shape))) axes = axes[:ax] + [-1] + axes[ax:-1] return _op.transpose(inp, axes) x = inputs[0] shifts = inputs[1] dims = inputs[2] shape = self.infer_shape(x) start = _expr.const(0, "int64") step = _expr.const(1, "int64") out = x for i, dim in enumerate(dims): roll_dim = _expr.const(shape[dim], "int64") indices_1d = _op.mod( _op.transform.arange(start, roll_dim, step, "int64") - _expr.const(shifts[i], "int64") + roll_dim, roll_dim, ) # First fill in the last axis with roll indices, and then do transpose to # bring the roll indices into the desired axis. indices = slide_axes( _op.tile(indices_1d, shape[:dim] + shape[dim + 1 :] + (1,)), shape, dim, ) out = _op.gather(out, dim, indices) return out def einsum(self, inputs, input_types): equation, data = inputs return _op.einsum(data, equation) def dot(self, inputs, _): lhs, rhs = inputs return _op.sum(_op.multiply(lhs, rhs)) def mv(self, inputs, _): lhs, rhs = inputs # Convert the 1D matrix (vector) into a 2D matrix with the extra # dimension=1 rhs_matrix = _op.transform.expand_dims(rhs, 0) # Run multiplication dense_result = _op.nn.dense(lhs, rhs_matrix, units=None) # Chop off the extra result dimension return _op.transform.squeeze(dense_result) def grid_sampler(self, inputs, input_types): interpolate_mode = inputs[2] padding_mode = inputs[3] align_corners = inputs[4] data_shape = self.infer_shape_with_prelude(inputs[0]) if len(data_shape) == 4: layout = "NCHW" axes = [0, 3, 1, 2] grid = _op.transform.transpose(inputs[1], axes) elif len(data_shape) == 5: layout = "NCDHW" axes = [0, 4, 1, 2, 3] grid = _op.transform.transpose(inputs[1], axes) else: msg = f"only 4D and 5D are supported." raise ValueError(msg) if interpolate_mode == 0: interpolate_str = "bilinear" elif interpolate_mode == 1: interpolate_str = "nearest" elif interpolate_mode == 2: interpolate_str = "bicubic" else: msg = f"interpolation method {interpolate_mode} is not supported" raise ValueError(msg) if padding_mode == 0: padding_mode_str = "zeros" elif padding_mode == 1: padding_mode_str = "border" elif padding_mode == 2: padding_mode_str = "reflection" else: msg = f"padding_mode {padding_mode} is not supported" raise ValueError(msg) return _op.image.grid_sample( inputs[0], grid, interpolate_str, layout, padding_mode_str, align_corners ) # Operator mappings def create_convert_map(self): self.convert_map = { "aten::is_floating_point": self.is_floating_point, "aten::pixel_shuffle": self.pixel_shuffle, "aten::device": self.none, "prim::device": self.none, "aten::sub": self.sub, "aten::max": self.max, "aten::min": self.min, "aten::amax": self.max, "aten::amin": self.min, "aten::stft": self.stft, "aten::mul": self.make_elemwise("multiply"), "aten::pow": self.make_elemwise("power"), "aten::arange": self.arange, "aten::meshgrid": self.meshgrid, "aten::div": self.make_elemwise("divide"), "aten::floor_divide": self.make_elemwise("floor_divide"), "aten::true_divide": self.make_elemwise("divide"), "aten::fmod": self.make_elemwise("trunc_mod"), "aten::remainder": self.make_elemwise("floor_mod"), "aten::addcdiv": self.addcdiv, "aten::addcmul": self.addcmul, "aten::ones": self.ones, "aten::ones_like": self.ones_like, "aten::zeros": self.zeros, "aten::zeros_like": self.zeros_like, "aten::full": self.full, "aten::full_like": self.full_like, "aten::linspace": self.linspace, "aten::reciprocal": self.reciprocal, "aten::repeat": self.repeat, "aten::repeat_interleave": self.repeat_interleave, "aten::to": self.to, "aten::squeeze": self.squeeze, "aten::unsqueeze": self.unsqueeze, "aten::cat": self.concatenate, "aten::slice": self.slice, "aten::narrow": self.narrow, "aten::split": self.split, "aten::split_with_sizes": self.split_with_sizes, "aten::select": self.select, "aten::take": self.take, "aten::where": self.where, "aten::topk": self.topk, "aten::relu": self.relu, "aten::prelu": self.prelu, "aten::leaky_relu": self.leaky_relu, "aten::elu": self.elu, "aten::celu": self.celu, "aten::gelu": self.gelu, "aten::selu": self.selu, "aten::silu": self.silu, "aten::log_sigmoid": self.log_sigmoid, "aten::adaptive_avg_pool1d": functools.partial( self.adaptive_avg_pool, _op.nn.adaptive_avg_pool1d ), "aten::adaptive_avg_pool2d": functools.partial( self.adaptive_avg_pool, _op.nn.adaptive_avg_pool2d ), "aten::adaptive_avg_pool3d": functools.partial( self.adaptive_avg_pool, _op.nn.adaptive_avg_pool3d ), "aten::adaptive_max_pool1d": functools.partial( self.adaptive_max_pool, _op.nn.adaptive_max_pool1d ), "aten::adaptive_max_pool2d": functools.partial( self.adaptive_max_pool, _op.nn.adaptive_max_pool2d ), "aten::adaptive_max_pool3d": functools.partial( self.adaptive_max_pool, _op.nn.adaptive_max_pool3d ), "aten::max_pool2d": self.maxpool_2d, "aten::max_pool2d_with_indices": self.maxpool_2d_with_indices, "aten::max_pool1d": self.maxpool_1d, "aten::max_pool3d": self.maxpool_3d, "aten::hardtanh": self.hardtanh, "aten::_convolution": self.convolution, "aten::softmax": self.softmax, "aten::threshold": self.threshold, "aten::contiguous": self.contiguous, "aten::batch_norm": self.batch_norm, "aten::instance_norm": self.instance_norm, "aten::layer_norm": self.layer_norm, "aten::group_norm": self.group_norm, "aten::transpose": self.transpose, "aten::t": self.transpose, "aten::flatten": self.flatten, "aten::addmm": self.addmm, "aten::size": self.size, "aten::view": self.view, "aten::reshape": self.reshape, "aten::clone": self.clone, "aten::log_softmax": self.log_softmax, "aten::sigmoid": self.sigmoid, "aten::softplus": self.softplus, "aten::avg_pool1d": self.make_avg_pool(1), "aten::avg_pool2d": self.make_avg_pool(2), "aten::avg_pool3d": self.make_avg_pool(3), "aten::linear": self.linear, "aten::dropout": self.dropout, "aten::feature_dropout": self.dropout, "aten::alpha_dropout": self.dropout, "aten::mean": self.mean, "aten::chunk": self.chunk, "aten::unsafe_chunk": self.chunk, "aten::matmul": self.matmul, "aten::bmm": self.matmul, "aten::expand": self.expand, "aten::Int": self.int, "prim::NumToTensor": self.numtotensor, "prim::ImplicitTensorToNum": self.tensortonum, "aten::ScalarImplicit": self.tensortonum, "aten::constant_pad_nd": self.make_pad("constant"), "aten::reflection_pad1d": self.make_pad("reflect"), "aten::reflection_pad2d": self.make_pad("reflect"), "aten::replication_pad1d": self.make_pad("edge"), "aten::replication_pad2d": self.make_pad("edge"), "aten::replication_pad3d": self.make_pad("edge"), "aten::permute": self.transpose, "aten::sum": self.make_reduce("sum"), "aten::prod": self.make_reduce("prod"), "aten::argmin": self.make_reduce("argmin"), "aten::argmax": self.make_reduce("argmax"), "aten::norm": self.norm, "aten::frobenius_norm": self.frobenius_norm, "aten::std": self.std, "aten::var": self.variance, "aten::var_mean": self.var_mean, "aten::abs": self.make_unary("abs"), "aten::neg": self.make_unary("negative"), "aten::cos": self.make_unary("cos"), "aten::cosh": self.make_unary("cosh"), "aten::sin": self.make_unary("sin"), "aten::sinh": self.make_unary("sinh"), "aten::tan": self.make_unary("tan"), "aten::tanh": self.make_unary("tanh"), "aten::acos": self.make_unary("acos"), "aten::asin": self.make_unary("asin"), "aten::atan": self.make_unary("atan"), "aten::log": self.make_unary("log"), "aten::log2": self.make_unary("log2"), "aten::log10": self.make_unary("log10"), "aten::log1p": self.log1p, "aten::exp": self.make_unary("exp"), "aten::erf": self.make_unary("erf"), "aten::trunc": self.make_unary("trunc"), "aten::sign": self.make_unary("sign"), "aten::sqrt": self.make_unary("sqrt"), "aten::rsqrt": self.make_unary("rsqrt"), "aten::square": self.square, "aten::ceil": self.make_unary("ceil"), "aten::floor": self.make_unary("floor"), "aten::round": self.make_unary("round"), "aten::isfinite": self.make_unary("isfinite"), "aten::isinf": self.make_unary("isinf"), "aten::isnan": self.make_unary("isnan"), "aten::clamp": self.clamp, "aten::clamp_min": self.clamp_min, "aten::clamp_max": self.clamp_max, "aten::detach": self.identity, "aten::upsample_bilinear2d": self.make_upsample("linear"), "aten::upsample_bicubic2d": self.make_upsample("cubic"), "aten::upsample_nearest2d": self.make_upsample("nearest_neighbor"), "aten::upsample_trilinear3d": self.make_upsample3d("linear"), "aten::upsample_nearest3d": self.make_upsample3d("nearest_neighbor"), "aten::expand_as": self.expand_as, "aten::lt": self.make_elemwise("less"), "aten::gt": self.make_elemwise("greater"), "aten::le": self.make_elemwise("less_equal"), "aten::ge": self.make_elemwise("greater_equal"), "aten::ne": self.make_elemwise("not_equal"), "aten::eq": self.make_elemwise("equal"), "aten::logical_not": self.logical_not, "aten::logical_xor": self.logical_xor, "aten::bitwise_not": self.bitwise_not, "aten::bitwise_xor": self.bitwise_xor, "aten::Bool": self.Bool, "aten::Float": self.Float, "aten::rsub": self.rsub, "aten::embedding": self.embedding, "aten::one_hot": self.one_hot, "aten::mm": self.matmul, "aten::add": self.add, "aten::stack": self.stack, "aten::__getitem__": self.list_getitem, "aten::len": self.list_len, "aten::type_as": self.type_as, "aten::gather": self.gather, "aten::index_select": self.select, "aten::index": self.index, "torchvision::nms": self.nms, "aten::logsumexp": self.logsumexp, "torchvision::roi_align": self.roi_align, "torchvision::deform_conv2d": self.deform_conv2d, "aten::unbind": self.unbind, "aten::__and__": self.logical_and, "aten::logical_and": self.logical_and, "aten::_shape_as_tensor": self.shape_as_tensor, "aten::nonzero": self.nonzero, "aten::nonzero_numpy": self.nonzero_numpy, "aten::scatter": self.scatter, "aten::index_put": self.index_put, "aten::scalar_tensor": self.scalar_tensor, "aten::__interpolate": self.interpolate, "aten::IntImplicit": self.identity, "aten::tensor": self.identity, # used for example in tensor(1.0) "aten::numel": self.numel, "aten::empty": self.empty, "aten::bincount": self.bincount, "aten::scatter_add": self.scatter_add, "aten::__not__": self.logical_not, "aten::hardswish": self.hard_swish, "aten::hardsigmoid": self.hard_sigmoid, "aten::cumsum": self.cumsum, "aten::masked_fill": self.masked_fill, "aten::masked_select": self.masked_select, "aten::argsort": self.argsort, "aten::sort": self.sort, "aten::_unique2": self.unique, "aten::nll_loss": self.nll_loss, "aten::nll_loss2d": self.nll_loss, "aten::nll_loss_nd": self.nll_loss, "aten::flip": self.flip, "aten::gru": self.gru, "aten::lstm": self.lstm, "aten::all": functools.partial(self.all_any_common, _op.all), "aten::any": functools.partial(self.all_any_common, _op.any), "aten::searchsorted": self.searchsorted, "aten::bucketize": self.bucketize, "aten::roll": self.roll, "aten::einsum": self.einsum, "aten::dot": self.dot, "aten::mv": self.mv, "aten::grid_sampler": self.grid_sampler, "aten::__ior__": self.make_elemwise("bitwise_or"), "aten::__iand__": self.make_elemwise("bitwise_and"), "aten::__ixor__": self.make_elemwise("bitwise_xor"), "aten::__lshift__": self.make_elemwise("left_shift"), "aten::__rshift__": self.make_elemwise("right_shift"), } def update_convert_map(self, custom_map): self.convert_map.update(custom_map) def report_missing_conversion(self, op_names): """Check if all ops in an input graph are supported by TVM""" known_ops = [ "prim::Constant", "prim::GetAttr", "prim::ListConstruct", "prim::ListUnpack", "prim::TupleConstruct", "prim::TupleUnpack", "prim::RaiseException", "prim::If", "prim::Loop", ] known_ops += list(self.convert_map.keys()) known_ops += list(qnn_torch.convert_map.keys()) missing = [] for op_name in op_names: # Also take care of in-place variant ops like aten::relu_ if op_name not in known_ops and not ( op_name.endswith("_") and op_name[:-1] in known_ops ): missing.append(op_name) if missing: msg = "The following operators are not implemented: {}".format(missing) raise NotImplementedError(msg) def convert_block(self, block, outputs): """Translate Torch "Block", used for prim::If and prim::Loop""" ops = _get_operator_nodes(block.nodes()) ret_names = _get_input_names(block.returnNode()) return self.convert_operators(ops, outputs, ret_names) def convert_if(self, if_node, outputs): """Translate Torch prim::If to Relay If""" cond = outputs[if_node.inputsAt(0).debugName()] blocks = list(if_node.blocks()) true_branch = self.convert_block(blocks[0], outputs) false_branch = self.convert_block(blocks[1], outputs) assert len(true_branch) == 1 and len(false_branch) == 1 return _expr.If(cond, true_branch[0], false_branch[0]) def convert_loop(self, loop_node, outputs): """Translate Torch prim::Loop to Relay while_loop""" def get_input(index): ivalue = loop_node.inputsAt(index) inode = ivalue.node() if inode.kind() == "prim::Constant": return _expr.const(_get_constant(inode)) var_name = ivalue.debugName() assert var_name in outputs return _wrap_const(outputs[var_name]) # Refer to the spec for prim::Loop below # https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/OVERVIEW.md#loops # The first input: %max_trip_count # The second input: %initial_condition # The rest of input: loop variables max_loop_count = get_input(0) init_cond = get_input(1) num_loop_var = len(list(loop_node.inputs())) - 2 init_vals = [get_input(i + 2) for i in range(num_loop_var)] # while loop has always max_loop_count being int64 max # max_loop_count.data (tvm.runtime.NDArray) is -1, so _get_constant again is_while_loop = ( isinstance(max_loop_count, _expr.Constant) and _get_constant(loop_node.inputsAt(0).node()) == sys.maxsize ) if is_while_loop: loop_iter_dtype = "bool" # while loop with non input dependent condition such as while i < 10: # init_cond is int, need to cast to bool to type check if isinstance(init_cond, _expr.Constant): init_cond = _op.cast(init_cond, "bool") init_loop_iter_val = init_cond else: loop_iter_dtype = "int32" # always count from 0 init_loop_iter_val = _expr.const(0, dtype="int32") body_block = list(loop_node.blocks())[0] block_input_names = _get_input_names(body_block) num_block_inputs = len(block_input_names) name_val_pairs = list(zip(block_input_names, [init_loop_iter_val] + init_vals)) outputs.update(name_val_pairs) def get_var(name, val): if val: checked_type = self.infer_type_with_prelude(val) if hasattr(checked_type, "shape"): shape = get_const_tuple(checked_type.shape) actual_shape = [] for dim in shape: if isinstance(dim, int) and dim == 0: actual_shape.append(Any()) else: actual_shape.append(dim) return _expr.var(name, shape=actual_shape, dtype=checked_type.dtype) else: return _expr.var(name, type_annotation=checked_type) return _expr.var(name) loop_iter_var = _expr.var(block_input_names[0], shape=(), dtype=loop_iter_dtype) loop_vars = [get_var(name, val) for name, val in name_val_pairs[1:]] # Add non constant free variables to loop variables to prevent code blow up # Without this, if there are two for loops in a row, which often happens # if the outer loop is unrolled, the computation corresponding to the first for loop # is inlined inside loop body, turning O(N) + O(N) computation into O(N^2). # This issue was found when converting from Stacked LSTM test. Torch does not add the # outputof the eariler loop into loop variables of the next loop. # So the variable corresponding to the first loop output appears free in the second # loop body. free_vars = [ var for var in _get_free_vars_from_block(body_block) if var in outputs and not isinstance(outputs[var], (_expr.Constant, int, float, str)) and outputs[var] ] prev_outputs = {} for name in free_vars: prev_output = outputs[name] new_loop_var = get_var(name, prev_output) prev_outputs[name] = prev_output outputs[name] = new_loop_var loop_vars.append(new_loop_var) init_vals.append(prev_output) def cond(*current_vals): i = current_vals[0] if is_while_loop: return _op.equal(i, _expr.const(True, "bool")) return _op.less(i, max_loop_count) def body(*current_vals): # Update loop variables using the prev iteration outputs assert len(current_vals) == num_block_inputs + len(free_vars) for (i, val) in enumerate(current_vals): if i < num_block_inputs: outputs[block_input_names[i]] = val else: outputs[free_vars[i - num_block_inputs]] = val block_outputs = self.convert_block(body_block, outputs) block_outputs += [outputs[name] for name in free_vars] if not is_while_loop: # iter var increment implicit in torch, so do it manually # for while loop, block_outputs[0] is already a boolean, # the result of termination check incr = _expr.const(1, dtype="int32") block_outputs[0] = current_vals[0] + incr return block_outputs loop = while_loop(cond, [loop_iter_var] + loop_vars, body) loop_val = loop(init_loop_iter_val, *init_vals) # restore original output values for free vars outputs.update(prev_outputs) # The first element is a loop counter or boolean condition, ignore it return [_expr.TupleGetItem(loop_val, i + 1) for i in range(num_loop_var)] def convert_operators(self, operators, outputs, ret_names): """Convert each Torch IR operators to Relay equivalent""" for node_name, op_node in operators: operator = op_node.kind() inputs = _get_op_inputs(op_node, outputs) if operator == "prim::Constant": outputs[node_name] = _get_constant(op_node) elif operator == "prim::ListConstruct" and _should_construct_dynamic_list(op_node): outputs[node_name] = self.convert_to_list_adt(inputs) elif operator == "prim::ListConstruct": # This assumes that no more elements will be appended to this list # In this case, we keep the Python list outputs[node_name] = inputs elif operator == "prim::TupleConstruct": def _handel_nested_input(inputs): inputs_list = [] for i, _ in enumerate(inputs): if isinstance(inputs[i], list): inputs_list.append(_handel_nested_input(inputs[i])) else: assert isinstance(inputs[i], _expr.Expr) inputs_list.append(inputs[i]) return _expr.Tuple(inputs_list) outputs[node_name] = _handel_nested_input(inputs) elif operator in ["prim::ListUnpack", "prim::TupleUnpack"]: assert len(inputs) == 1 if isinstance(inputs[0], (list, _expr.TupleWrapper)): unpacked = inputs[0] else: unpacked = _unpack_tuple(inputs[0]) outputs.update(zip(_get_output_names(op_node), unpacked)) elif operator == "prim::prim::RaiseException": logger.warning("raising exceptions is ignored") outputs[node_name] = None elif operator == "prim::If": if_out = self.convert_if(op_node, outputs) outputs[node_name] = if_out elif operator == "prim::Loop": loop_out = self.convert_loop(op_node, outputs) unpacked_names = _get_output_names(op_node) assert len(loop_out) == len(unpacked_names) outputs.update(zip(unpacked_names, loop_out)) else: if operator not in self.convert_map: # At this point, the only possible ops that are not in convert_map are # in-place variant of ops like aten::relu_ assert operator.endswith("_") logger.warning( "An in-place op %s found, the result will not be correct " "if the model depends on side-effects by this op.", operator, ) relay_op = self.convert_map[operator[:-1]] else: relay_op = self.convert_map[operator] relay_out = relay_op( inputs, _get_input_types(op_node, outputs, default_dtype=self.default_dtype) ) self.record_output_type(relay_out) if isinstance(relay_out, tuple): # This is for torch operators that return multiple outputs # See _adaptive_max_2d above for example out_names = _get_output_names(op_node) outputs.update(zip(out_names, relay_out)) else: assert op_node.outputsSize() == 1 outputs[node_name] = relay_out return [_wrap_const(outputs[ret_name]) for ret_name in ret_names] def _pytorch_result_type(dtypes, non_tensor_inputs): """This promotes TVM dtypes like PyTorch would""" import torch dtype_map = { "float64": torch.float64, "float32": torch.float32, "float16": torch.float16, "bfloat16": torch.bfloat16, "int64": torch.int64, "int32": torch.int32, "int16": torch.int16, "int8": torch.int8, "uint8": torch.uint8, "bool": torch.bool, } if len(dtypes) > 0: result_type = dtypes[0] for dt in dtypes[1:]: if dt != result_type: # we don't want to work with same types as we # don't do quantized here (which cannot be promoted?) result_type = _convert_data_type( str( torch.result_type( torch.zeros((), dtype=dtype_map[result_type]), torch.zeros((), dtype=dtype_map[dt]), ) ) ) else: result_type = "bool" # this is the smallest type... for inp in non_tensor_inputs: result_type = _convert_data_type( str(torch.result_type(torch.zeros((), dtype=dtype_map[result_type]), inp)) ) return result_type # Helper functions for operator implementation def _convert_dtype_value(val): """converts a PyTorch the PyTorch numeric type id to a torch scalar type.""" convert_torch_dtype_map = { 7: "torch.float64", 6: "torch.float32", 5: "torch.float16", 4: "torch.int64", 3: "torch.int32", 2: "torch.int16", 1: "torch.int8", 0: "torch.unit8", None: "torch.int64", } # Default is torch.int64 if val in convert_torch_dtype_map: return _convert_data_type(convert_torch_dtype_map[val]) else: msg = "Torch data type value %d is not handled yet." % (val) raise NotImplementedError(msg) def _convert_data_type(input_type, default_dtype=None): """converts the PyTorch scalar type input_type to a TVM dtype. optionally, default_dtype can be a TVM dtype that is used if input_type is None (but not when it is unknown)""" if input_type is None and default_dtype is not None: return default_dtype input_type = input_type.lower() if input_type in ["double", "float64", "torch.float64"]: return "float64" elif input_type in ["float", "float32", "torch.float32"]: return "float32" elif input_type in ["half", "float16", "torch.float16"]: return "float16" elif input_type in ["long", "int64", "torch.int64"]: return "int64" elif input_type in ["int", "int32", "torch.int32"]: return "int32" elif input_type in ["short", "int16", "torch.int16"]: return "int16" elif input_type in ["char", "int8", "torch.int8"]: return "int8" elif input_type in ["byte", "uint8", "torch.uint8"]: return "uint8" elif input_type in ["quint8", "torch.quint8"]: return "quint8" elif input_type in ["qint8", "torch.qint8"]: return "qint8" elif input_type in ["qint32", "torch.qint32"]: return "qint32" elif input_type in ["bool", "torch.bool"]: return "bool" elif input_type in ["str"]: return "str" else: raise NotImplementedError("input_type {} is not handled yet".format(input_type)) return "float32" # Never reached def _create_typed_const(data, dtype): """create a (scalar) constant of given value and dtype. dtype should be a TVM dtype""" if dtype == "float64": typed_data = _expr.const(np.float64(data), dtype=dtype) elif dtype == "float32": typed_data = _expr.const(np.float32(data), dtype=dtype) elif dtype == "float16": typed_data = _expr.const(np.float16(data), dtype=dtype) elif dtype == "int64": typed_data = _expr.const(np.int64(data), dtype=dtype) elif dtype == "int32": typed_data = _expr.const(np.int32(data), dtype=dtype) elif dtype == "int16": typed_data = _expr.const(np.int16(data), dtype=dtype) elif dtype == "int8": typed_data = _expr.const(np.int8(data), dtype=dtype) elif dtype == "uint8": typed_data = _expr.const(np.uint8(data), dtype=dtype) else: raise NotImplementedError("input_type {} is not handled yet".format(dtype)) return typed_data def _wrap_const(c): if not isinstance(c, (_expr.Expr, list, tvm.tir.expr.Any)): return _expr.const(c) return c def _run_jit_passes(graph, enable_lower_all_tuples=True): """The inline pass is necessary to unwrap prim::CallMethod""" # pylint: disable=c-extension-no-member import torch if is_version_greater_than("1.5.1"): # This is required for torchvision detection models from 1.6 above # It is the same as _jit_pass_inline, except that it has some special # case behaviors for some ops such as aten::__interpolate() torch._C._jit_pass_onnx_function_substitution(graph) else: torch._C._jit_pass_inline(graph) if enable_lower_all_tuples: torch._C._jit_pass_lower_all_tuples(graph) def _get_tensor_and_var(torch_tensor, name): tensor = tvm.nd.array(torch_tensor.cpu().numpy()) var = _expr.var(name, shape=tensor.shape, dtype=tensor.dtype) return tensor, var def _get_output_name(node): assert node.outputsSize() == 1 return node.output().debugName() def _get_output_names(node): return [output.debugName() for output in node.outputs()] def _get_input_names(node_or_graph): return [inp.debugName() for inp in node_or_graph.inputs()] def _get_op_inputs(op_node, outputs): return [outputs[name] for name in _get_input_names(op_node)] def _get_node_type(node): assert node.outputsSize() == 1 return node.output().type().kind() def _get_uses(node): uses = [] for output in node.outputs(): uses += output.uses() return uses def _get_users(node): return [use.user for use in _get_uses(node)] def _getattr_full_name(getattrs, sep="."): return sep.join([getattr_attr_name(node) for node in getattrs]) def _get_pytorch_value_type(typ, default_dtype="float32"): kind = typ.kind() if kind == "TensorType": if typ.scalarType() is None: # Tensor's type can be unknown if we use torch.jit.script(...) # Defaults can be passed in, if not it is float32 logger.warning("Untyped Tensor found, assume it is %s", default_dtype) return default_dtype else: return _convert_data_type(typ.scalarType()) elif kind == "ListType": return "ListType" elif kind in ["IntType", "FloatType", "BoolType", "StringType", "OptionalType"]: pt_dtype = str(typ).lower() dtype = pt_dtype if pt_dtype == "OptionalType" else _convert_data_type(pt_dtype) return dtype else: return "UnsupportedType" def _get_input_types(op_node, outputs, default_dtype="float32"): """Returns a TVM dtype for each input nodes derived from the torch type""" in_types = [] for inp in op_node.inputs(): if inp.node().kind() == "prim::GetAttr": # GetAttr nodes always return None when we call scalarType() on it name = inp.debugName() assert name in outputs if isinstance(outputs[name], _expr.Var): in_types.append(outputs[name].type_annotation.dtype) else: # For quantized modules with parameters, here we would get # "prim::GetAttr[name="_packed_params"]". Since the dtype corresponding to # _packed_params is not needed by quantized ops, we return an arbitrary type. in_types.append(default_dtype) else: in_types.append(_get_pytorch_value_type(inp.type(), default_dtype=default_dtype)) return in_types def _get_constant(node): """Retrieve a constant associated with this prim::Constant node""" attribute_names = node.attributeNames() num_attributes = len(attribute_names) if num_attributes == 1: attr_name = attribute_names[0] ty = node.output().type().kind() if ty == "IntType": return node.i(attr_name) elif ty == "BoolType": return bool(node.i(attr_name)) elif ty in ["FloatType", "LongType"]: return node.f(attr_name) elif ty in ["TensorType", "CompleteTensorType"]: tensor = node.t(attr_name) if tensor.is_cuda: tensor = tensor.cpu() if len(tensor.shape) == 0: # tensor(0.1) # TODO(t-vi): When is this needed? return tensor.item() return _wrap_const(tensor.numpy()) elif ty in ["DeviceObjType", "StringType"]: return node.s(attr_name) elif ty == "FunctionType": return None else: raise NotImplementedError("Unsupported type: %s" % ty) else: assert num_attributes == 0 return None def _get_operator_nodes(nodes): """Returns torch IR nodes that need conversion to Relay""" ops = [] # Traverse nodes and add to graph for node in nodes: if node.outputsSize() == 0: continue if node.outputsSize() > 1: node_name = "_".join(_get_output_names(node)) else: node_name = _get_output_name(node) if node.kind() != "prim::GetAttr": ops.append((node_name, node)) return ops def _get_relay_input_vars(graph, input_infos, prelude, is_module=True, default_dtype="float32"): """ Return Relay vars from input shapes and create entries based on expected graph inputs - to allow translation """ graph_inputs = list(graph.inputs()) if is_module: # a module has "self" as first input, which we do not need/want graph_inputs = graph_inputs[1:] if not isinstance(input_infos, list): msg = "Graph inputs input_infos should be a list" raise RuntimeError(msg) if len(graph_inputs) != len(input_infos): msg = "PyTorch has {} inputs and input_infos lists {}.".format( len(graph_inputs), len(input_infos) ) raise RuntimeError(msg) def get_relay_ty(ishape, itype, pt_type): if pt_type.kind() == "TensorType": if not (_is_int_seq(ishape) or len(ishape) == 0): msg = "Shape for Tensors must be lists of ints" raise RuntimeError(msg) if (pt_type.dim() is not None and pt_type.dim() != len(ishape)) or ( pt_type.sizes() is not None and any([s1 != s2 for s1, s2 in zip(pt_type.sizes(), ishape)]) ): msg = "Shapes of input list and information in the graph do not match" raise RuntimeError(msg) pt_dtype = pt_type.scalarType() if not pt_dtype and itype: pt_dtype = itype dtype = _convert_data_type(pt_dtype, default_dtype=default_dtype) return TensorType(ishape, dtype) elif pt_type.kind() == "TupleType": if not isinstance(ishape, tuple): msg = "Shapes for tuples must be tuples" raise RuntimeError(msg) return TupleType( [get_relay_ty(elem, itype, pt_t) for elem, pt_t in zip(ishape, pt_type.elements())] ) elif pt_type.kind() == "ListType": if not isinstance(ishape, list): msg = "Shapes for lists must be lists" raise RuntimeError(msg) pt_elemtype = pt_type.getElementType() elem_tys = [get_relay_ty(s, itype, pt_elemtype) for s in ishape] if len(elem_tys) > 0 and not all(map(lambda ty: ty == elem_tys[0], elem_tys)): msg = "List elements need have identical types" raise RuntimeError(msg) rlist, _, _ = prelude.mod.get_type("List") return rlist(elem_tys[0]) elif pt_type.kind() == "OptionalType": # we do not support None yet, so we fill in the type return get_relay_ty(ishape, itype, pt_type.getElementType()) # TODO: scalar inputs raise NotImplementedError("unsupported input type") input_vars = {} new_input_infos = [] for num, inp in enumerate(input_infos): if not isinstance(inp, tuple): msg = "Graph input {} is not a tuple".format(num) raise RuntimeError(msg) if len(inp) != 2 or not isinstance(inp[0], str): msg = ( "Graph input {} is not valid," " expected ('name', shape) or ('name', (shape, dtype))".format(inp) ) raise RuntimeError(msg) if not isinstance(inp[1], tuple) or len(inp[1]) == 0 or not isinstance(inp[1][-1], str): new_input_infos.append((inp[0], (inp[1], default_dtype))) else: new_input_infos.append(inp) input_types = [ (name, get_relay_ty(info[0], info[1], gi.type())) for (name, info), gi in zip(new_input_infos, graph_inputs) ] ir_inputs = [i.debugName() for i in graph_inputs] for ir_input, (name, itype) in zip(ir_inputs, input_types): inp = _expr.var(name, type_annotation=itype) # Translate from graph input to user input name input_vars[ir_input] = inp return input_vars def _unpack_tuple(tup): def unpack(tup, num_fields): return [_expr.TupleGetItem(tup, i) for i in range(num_fields)] if isinstance(tup, _expr.Tuple): return unpack(tup, len(tup.fields)) elif isinstance(tup.type_annotation, TupleType): return unpack(tup, len(tup.type_annotation.fields)) # shouldn't happen assert False def _get_free_vars_from_block(block): block_inp_names = _get_input_names(block) bound_names = block_inp_names free_vars = set() for node in block.nodes(): inp_names = _get_input_names(node) list_diff = [name for name in inp_names if name not in bound_names] free_vars.update(list_diff) bound_names += _get_output_names(node) return free_vars def get_use_chains(root_node, terminate=lambda _: False): """ Track a chain of users of this node forward, returning a list of chains See get_attr_chains below for its usage """ def concat_lists(lists): return itertools.chain.from_iterable(lists) def inner(current, accum): users = _get_users(current) if not users or terminate(users): return [accum] return concat_lists([inner(nxt, accum + [nxt]) for nxt in users]) return inner(root_node, [root_node]) def get_attr_chains(root_getattr_node): """Returns chains of attribute access starting from root_getattr_node For example, given attribute "block", as in "self.block" when "self" points to the top level torch.nn.Module, it returns lists of attribute "chains", e.g. ['block', '2'], ['block', '1'], ['block', '0', '_packed_params'] These sets of attributes form full attribute accessors. For example, "self.block.1", "self.block.2" will return the second and third submodule, and "self.block.0._packed_params" will return the parameters of the first submodule. """ def terminate(users): next_attrs = [user for user in users if user.kind() == "prim::GetAttr"] return len(next_attrs) == 0 return get_use_chains(root_getattr_node, terminate) def convert_params(graph, state_dict, use_parser_friendly_name=False): """ Return Relay vars and TVM NDArrays for input parameters A chain of prim::GetAttr nodes is processed one at a time """ getattr_nodes = graph.findAllNodes("prim::GetAttr", recurse=True) params = {} param_tensors = {} packed_param_map = {} vars_by_name = {} seen = set() attr_name_sep = "_" if use_parser_friendly_name else "." for node in getattr_nodes: if _get_output_name(node) in seen: continue for getattrs in get_attr_chains(node): seen.update(map(_get_output_name, getattrs)) full_attr = _getattr_full_name(getattrs, attr_name_sep) full_attr_node_name = _get_output_name(getattrs[-1]) if full_attr.endswith("_packed_params"): # for quantized models packed_param_map[full_attr_node_name] = full_attr elif full_attr in state_dict: if full_attr in vars_by_name: var = vars_by_name[full_attr] else: torch_tensor = state_dict[full_attr] tensor, var = _get_tensor_and_var(torch_tensor, full_attr) param_tensors[full_attr] = tensor vars_by_name[full_attr] = var params[full_attr_node_name] = var return params, param_tensors, packed_param_map def get_all_op_names(graph): """Return all operator names in the input graph""" nodes = list(graph.nodes()) prim_with_blocks = ["prim::If", "prim::Loop"] for prim in prim_with_blocks: prim_nodes = graph.findAllNodes(prim, recurse=True) for prim_node in prim_nodes: for block in prim_node.blocks(): nodes += block.nodes() return set(node.kind() for node in nodes) def from_pytorch( script_module, input_infos, custom_convert_map=None, default_dtype="float32", use_parser_friendly_name=False, keep_quantized_weight=False, ): """Load PyTorch model in the form of a scripted PyTorch model and convert into relay. The companion parameters will be handled automatically. Parameters ---------- script_module : TopLevelTracedModule object TorchScripted PyTorch graph Note: We currently only support traces (ie: torch.jit.trace(model, input)) input_infos : List of tuples Can be (input name, input shape) or (input name, (input shape, input types)) Graph level input shape and type list The same input names need to be used for deployment, so choose easy to remember names (such as: input0, input1) e.g. [('input0', (1, 2)), ('input1', (3, 4))] or [('input0', ((1, 2), 'int')), ('input1', ((3, 4), 'float'))] custom_convert_map : Dictionary of str to Relay op A custom op conversion map in the same format as _convert_map above default_type : str The default dtype to use when type information is not provided by PyTorch. use_parser_friendly_name : bool When True, replace '.' with `_' in a original parameter name. The Relay text parser treats a variable name followed by a period as a tuple element access, so a variable name like "dense.weight" cannot be parsed correctly. Use this option when you want to run the AnnotateSpans pass on the imported module. keep_quantized_weight : bool Return quantized weights and bias, rather than float ones. PyTorch stores quantized weights in a custom format, so we cannot directly access 8 bit weights as Numpy arrays. We use a PyTorch function to unpack quantized weights into float32 arrays and quantization parameters. By default, we return float32 weights and rely on the QNN lowering and the Relay constant folding pass to quantize weights at compile time. In BYOC use cases, however, we cannot apply the constant folding pass on a QNN graph. If keep_quantized_weight is True, we quantize weights in the frontend using a function that is equivalent to qnn.op.quantize(...) operating on Numpy arrays. Returns ------- mod : tvm.IRModule The module that optimizations will be performed on. params : dict of str to tvm.runtime.NDArray Dict of converted parameters stored in tvm.runtime.ndarray format """ import torch mod = tvm.IRModule() prelude = Prelude(mod) enable_lower_all_tuples = True converter = PyTorchOpConverter(prelude, default_dtype) graph = script_module.graph.copy() # Check if lower_all_tuples pass can be enabled graph_inputs = list(graph.inputs()) for inp in graph_inputs: if inp.type().kind() == "TupleType" or inp.type().kind() == "ListType": enable_lower_all_tuples = False break _run_jit_passes(graph, enable_lower_all_tuples) if custom_convert_map: converter.update_convert_map(custom_convert_map) op_names = get_all_op_names(graph) converter.report_missing_conversion(op_names) is_module = isinstance(script_module, torch.jit.ScriptModule) params = script_module.state_dict() if is_module else {} outputs = _get_relay_input_vars( graph, input_infos, prelude, default_dtype=default_dtype, is_module=is_module ) if use_parser_friendly_name: new_names = [key.replace(".", "_") for key in params.keys()] params = dict(zip(new_names, params.values())) param_vars, tensors, packed_param_map = convert_params(graph, params, use_parser_friendly_name) tvm_params = {k: tvm.nd.array(v) for k, v in tensors.items()} outputs.update(param_vars) ret_name = _get_input_names(graph.return_node()) # For quantized models quantized_ops = set(["aten::quantize_per_tensor", "quantized::linear_dynamic"]) if len(quantized_ops.intersection(set(op_names))) > 0: weight_quant_params = qnn_torch.get_weight_quant_params( script_module, packed_param_map.values() ) qnn_torch.inline_input_quant_params_for_fx(graph, tensors) input_scales_for_bias = qnn_torch.add_input_quant_params_to_op_inputs(graph) qnn_torch.add_quant_params_to_outputs( outputs, packed_param_map, weight_quant_params, input_scales_for_bias, keep_quantized_weight, ) qnn_torch.add_quant_params(tvm_params, weight_quant_params) converter.update_convert_map(qnn_torch.convert_map) outputs = converter.convert_operators(_get_operator_nodes(graph.nodes()), outputs, ret_name) # ListConstruct kept original python list. Convert to tuple. outputs = [_expr.Tuple(output) if isinstance(output, list) else output for output in outputs] if len(outputs) > 1: ret = _expr.Tuple(outputs) else: ret = outputs[0] # Separate data inputs and parameters to make sure data inputs come first. func_args = [] data_inputs = [] for arg in _analysis.free_vars(ret): if arg.name_hint not in tvm_params.keys(): data_inputs.append(arg) else: func_args.append(arg) func_args = data_inputs + func_args mod["main"] = tvm.relay.Function(func_args, ret) return transform.RemoveUnusedFunctions()(mod), tvm_params
37.520233
120
0.578523
fc20c7ff23103be71b3e60c22a0f246c31449383
16,994
py
Python
art/utils.py
b0bbybaldi/adversarial-robustness-toolbox
68a170642d96194c4586d6f9e8c801ccf7b1c1f6
[ "MIT" ]
1
2019-05-24T12:11:49.000Z
2019-05-24T12:11:49.000Z
art/utils.py
b0bbybaldi/adversarial-robustness-toolbox
68a170642d96194c4586d6f9e8c801ccf7b1c1f6
[ "MIT" ]
null
null
null
art/utils.py
b0bbybaldi/adversarial-robustness-toolbox
68a170642d96194c4586d6f9e8c801ccf7b1c1f6
[ "MIT" ]
null
null
null
# MIT License # # Copyright (C) IBM Corporation 2018 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Module providing convenience functions. """ from __future__ import absolute_import, division, print_function, unicode_literals import argparse import logging import os import numpy as np from scipy.special import gammainc logger = logging.getLogger(__name__) def projection(v, eps, p): """ Project the values in `v` on the L_p norm ball of size `eps`. :param v: Array of perturbations to clip. :type v: `np.ndarray` :param eps: Maximum norm allowed. :type eps: `float` :param p: L_p norm to use for clipping. Only 1, 2 and `np.Inf` supported for now. :type p: `int` :return: Values of `v` after projection. :rtype: `np.ndarray` """ # Pick a small scalar to avoid division by 0 tol = 10e-8 v_ = v.reshape((v.shape[0], -1)) if p == 2: v_ = v_ * np.expand_dims(np.minimum(1., eps / (np.linalg.norm(v_, axis=1) + tol)), axis=1) elif p == 1: v_ = v_ * np.expand_dims(np.minimum(1., eps / (np.linalg.norm(v_, axis=1, ord=1) + tol)), axis=1) elif p == np.inf: v_ = np.sign(v_) * np.minimum(abs(v_), eps) else: raise NotImplementedError('Values of `p` different from 1, 2 and `np.inf` are currently not supported.') v = v_.reshape(v.shape) return v def random_sphere(nb_points, nb_dims, radius, norm): """ Generate randomly `m x n`-dimension points with radius `r` and centered around 0. :param nb_points: Number of random data points :type nb_points: `int` :param nb_dims: Dimensionality :type nb_dims: `int` :param radius: Radius :type radius: `float` :param norm: Current support: 1, 2, np.inf :type norm: `int` :return: The generated random sphere :rtype: `np.ndarray` """ if norm == 1: a = np.zeros(shape=(nb_points, nb_dims + 1)) a[:, -1] = np.sqrt(np.random.uniform(0, radius ** 2, nb_points)) for i in range(nb_points): a[i, 1:-1] = np.sort(np.random.uniform(0, a[i, -1], nb_dims - 1)) res = (a[:, 1:] - a[:, :-1]) * np.random.choice([-1, 1], (nb_points, nb_dims)) elif norm == 2: a = np.random.randn(nb_points, nb_dims) s2 = np.sum(a ** 2, axis=1) base = gammainc(nb_dims / 2.0, s2 / 2.0) ** (1 / nb_dims) * radius / np.sqrt(s2) res = a * (np.tile(base, (nb_dims, 1))).T elif norm == np.inf: res = np.random.uniform(float(-radius), float(radius), (nb_points, nb_dims)) else: raise NotImplementedError("Norm {} not supported".format(norm)) return res def to_categorical(labels, nb_classes=None): """ Convert an array of labels to binary class matrix. :param labels: An array of integer labels of shape `(nb_samples,)` :type labels: `np.ndarray` :param nb_classes: The number of classes (possible labels) :type nb_classes: `int` :return: A binary matrix representation of `y` in the shape `(nb_samples, nb_classes)` :rtype: `np.ndarray` """ labels = np.array(labels, dtype=np.int32) if not nb_classes: nb_classes = np.max(labels) + 1 categorical = np.zeros((labels.shape[0], nb_classes), dtype=np.float32) categorical[np.arange(labels.shape[0]), np.squeeze(labels)] = 1 return categorical def random_targets(labels, nb_classes): """ Given a set of correct labels, randomly choose target labels different from the original ones. These can be one-hot encoded or integers. :param labels: The correct labels :type labels: `np.ndarray` :param nb_classes: The number of classes for this model :type nb_classes: `int` :return: An array holding the randomly-selected target classes, one-hot encoded. :rtype: `np.ndarray` """ if len(labels.shape) > 1: labels = np.argmax(labels, axis=1) result = np.zeros(labels.shape) for class_ind in range(nb_classes): other_classes = list(range(nb_classes)) other_classes.remove(class_ind) in_cl = labels == class_ind result[in_cl] = np.random.choice(other_classes) return to_categorical(result, nb_classes) def least_likely_class(x, classifier): """ Compute the least likely class predictions for sample `x`. This strategy for choosing attack targets was used in (Kurakin et al., 2016). See https://arxiv.org/abs/1607.02533. :param x: A data sample of shape accepted by `classifier`. :type x: `np.ndarray` :param classifier: The classifier used for computing predictions. :type classifier: `Classifier` :return: Least-likely class predicted by `classifier` for sample `x` in one-hot encoding. :rtype: `np.ndarray` """ return to_categorical(np.argmin(classifier.predict(x), axis=1), nb_classes=classifier.nb_classes) def get_label_conf(y_vec): """ Returns the confidence and the label of the most probable class given a vector of class confidences :param y_vec: (np.ndarray) vector of class confidences, nb of instances as first dimension :return: (np.ndarray, np.ndarray) confidences and labels """ assert len(y_vec.shape) == 2 confs, labels = np.amax(y_vec, axis=1), np.argmax(y_vec, axis=1) return confs, labels def get_labels_np_array(preds): """Returns the label of the most probable class given a array of class confidences. See get_labels_tf_tensor() for tensorflow version :param preds: (np.ndarray) array of class confidences, nb of instances as first dimension :return: (np.ndarray) labels """ preds_max = np.amax(preds, axis=1, keepdims=True) y = (preds == preds_max).astype(float) return y def preprocess(x, y, nb_classes=10, max_value=255): """Scales `x` to [0, 1] and converts `y` to class categorical confidences. :param x: Data instances :type x: `np.ndarray` :param y: Labels :type y: `np.ndarray` :param nb_classes: Number of classes in dataset :type nb_classes: `int` :param max_value: Original maximum allowed value for features :type max_value: `int` :return: rescaled values of `x`, `y` :rtype: `tuple` """ x = x.astype('float32') / max_value y = to_categorical(y, nb_classes) return x, y # -------------------------------------------------------------------------------------------------------- IO FUNCTIONS def load_cifar10(raw=False): """Loads CIFAR10 dataset from config.CIFAR10_PATH or downloads it if necessary. :param raw: `True` if no preprocessing should be applied to the data. Otherwise, data is normalized to 1. :type raw: `bool` :return: `(x_train, y_train), (x_test, y_test), min, max` :rtype: `(np.ndarray, np.ndarray), (np.ndarray, np.ndarray), float, float` """ import keras.backend as k from keras.datasets.cifar import load_batch from keras.utils.data_utils import get_file from art import DATA_PATH path = get_file('cifar-10-batches-py', untar=True, cache_subdir=DATA_PATH, origin='http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz') num_train_samples = 50000 x_train = np.zeros((num_train_samples, 3, 32, 32), dtype=np.uint8) y_train = np.zeros((num_train_samples,), dtype=np.uint8) for i in range(1, 6): fpath = os.path.join(path, 'data_batch_' + str(i)) data, labels = load_batch(fpath) x_train[(i - 1) * 10000: i * 10000, :, :, :] = data y_train[(i - 1) * 10000: i * 10000] = labels fpath = os.path.join(path, 'test_batch') x_test, y_test = load_batch(fpath) y_train = np.reshape(y_train, (len(y_train), 1)) y_test = np.reshape(y_test, (len(y_test), 1)) if k.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) min_, max_ = 0, 255 if not raw: min_, max_ = 0., 1. x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) return (x_train, y_train), (x_test, y_test), min_, max_ def load_mnist(raw=False): """Loads MNIST dataset from `DATA_PATH` or downloads it if necessary. :param raw: `True` if no preprocessing should be applied to the data. Otherwise, data is normalized to 1. :type raw: `bool` :return: `(x_train, y_train), (x_test, y_test), min, max` :rtype: `(np.ndarray, np.ndarray), (np.ndarray, np.ndarray), float, float` """ from keras.utils.data_utils import get_file from art import DATA_PATH path = get_file('mnist.npz', cache_subdir=DATA_PATH, origin='https://s3.amazonaws.com/img-datasets/mnist.npz') f = np.load(path) x_train = f['x_train'] y_train = f['y_train'] x_test = f['x_test'] y_test = f['y_test'] f.close() # Add channel axis min_, max_ = 0, 255 if not raw: min_, max_ = 0., 1. x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) return (x_train, y_train), (x_test, y_test), min_, max_ def load_stl(): """Loads the STL-10 dataset from config.STL10_PATH or downloads it if necessary. :return: `(x_train, y_train), (x_test, y_test), min, max` :rtype: `(np.ndarray, np.ndarray), (np.ndarray, np.ndarray), float, float` """ from os.path import join import keras.backend as k from keras.utils.data_utils import get_file from art import DATA_PATH min_, max_ = 0., 1. # Download and extract data if needed path = get_file('stl10_binary', cache_subdir=DATA_PATH, untar=True, origin='https://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz') with open(join(path, str('train_X.bin')), str('rb')) as f: x_train = np.fromfile(f, dtype=np.uint8) x_train = np.reshape(x_train, (-1, 3, 96, 96)) with open(join(path, str('test_X.bin')), str('rb')) as f: x_test = np.fromfile(f, dtype=np.uint8) x_test = np.reshape(x_test, (-1, 3, 96, 96)) if k.image_data_format() == 'channels_last': x_train = x_train.transpose(0, 2, 3, 1) x_test = x_test.transpose(0, 2, 3, 1) with open(join(path, str('train_y.bin')), str('rb')) as f: y_train = np.fromfile(f, dtype=np.uint8) y_train -= 1 with open(join(path, str('test_y.bin')), str('rb')) as f: y_test = np.fromfile(f, dtype=np.uint8) y_test -= 1 x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) return (x_train, y_train), (x_test, y_test), min_, max_ def load_dataset(name): """ Loads or downloads the dataset corresponding to `name`. Options are: `mnist`, `cifar10` and `stl10`. :param name: Name of the dataset :type name: `str` :return: The dataset separated in training and test sets as `(x_train, y_train), (x_test, y_test), min, max` :rtype: `(np.ndarray, np.ndarray), (np.ndarray, np.ndarray), float, float` :raises NotImplementedError: If the dataset is unknown. """ if "mnist" in name: return load_mnist() elif "cifar10" in name: return load_cifar10() elif "stl10" in name: return load_stl() else: raise NotImplementedError("There is no loader for dataset '{}'.".format(name)) def make_directory(dir_path): """ Creates the specified tree of directories if needed. :param dir_path: (str) directory or file path :return: None """ if not os.path.exists(dir_path): os.makedirs(dir_path) def get_npy_files(path): """ Generator returning all the npy files in path subdirectories. :param path: (str) directory path :return: (str) paths """ for root, _, files in os.walk(path): for file_ in files: if file_.endswith(".npy"): yield os.path.join(root, file_) # ------------------------------------------------------------------- ARG PARSER def get_args(prog, load_classifier=False, load_sample=False, per_batch=False, options=""): """ Parser for all scripts :param prog: name of the script calling the function :param load_classifier: bool, load a model, default False :param load_sample: bool, load (adversarial) data for training, default False :param per_batch: bool, load data in batches, default False :param options: :return: parsed arguments """ parser = argparse.ArgumentParser(prog=prog, formatter_class=argparse.ArgumentDefaultsHelpFormatter) option_dict = { "a": {"flags": ["-a", "--adv"], "kwargs": {"type": str, "dest": 'adv_method', "default": "fgsm", "choices": ["fgsm", "deepfool", "universal", "jsma", "vat", "carlini", "rnd_fgsm"], "help": 'choice of attacker'}}, "b": {"flags": ["-b", "--batchsize"], "kwargs": {"type": int, "dest": 'batch_size', "default": 128, "help": 'size of the batches'}}, "c": {"flags": ["-c", "--classifier"], "kwargs": {"type": str, "dest": 'classifier', "default": "cnn", "choices": ["cnn", "resnet", "mlp"], "help": 'choice of classifier'}}, "d": {"flags": ["-d", "--dataset"], "kwargs": {"type": str, "dest": 'dataset', "default": "mnist", "help": 'either the path or name of the dataset the classifier is tested/trained on.'}}, "e": {"flags": ["-e", "--epochs"], "kwargs": {"type": int, "dest": 'nb_epochs', "default": 20, "help": 'number of epochs for training the classifier'}}, "f": {"flags": ["-f", "--act"], "kwargs": {"type": str, "dest": 'act', "default": "relu", "choices": ["relu", "brelu"], "help": 'choice of activation function'}}, "n": {"flags": ["-n", "--nbinstances"], "kwargs": {"type": int, "dest": 'nb_instances', "default": 1, "help": 'number of supplementary instances per true example'}}, "r": {"flags": ["-r", "--valsplit"], "kwargs": {"type": float, "dest": 'val_split', "default": 0.1, "help": 'ratio of training sample used for validation'}}, "s": {"flags": ["-s", "--save"], "kwargs": {"nargs": '?', "type": str, "dest": 'save', "default": False, "help": 'if set, the classifier is saved; if an argument is provided it is used as path to' ' store the model'}}, "t": {"flags": ["-t", "--stdev"], "kwargs": {"type": float, "dest": 'std_dev', "default": 0.1, "help": 'standard deviation of the distributions'}}, "v": {"flags": ["-v", "--verbose"], "kwargs": {"dest": 'verbose', "action": "store_true", "help": 'if set, verbose mode'}}, "z": {"flags": ["-z", "--defences"], "kwargs": {"dest": 'defences', "nargs": "*", "default": None, "help": 'list of basic defences.'}}, } # Add required arguments if load_classifier: parser.add_argument("load", type=str, help='the classifier is loaded from `load` directory.') if load_sample: parser.add_argument("adv_path", type=str, help='path to the dataset for data augmentation training.') if per_batch: parser.add_argument("batch_idx", type=int, help='index of the batch to use.') # Add optional arguments for o in options: parser.add_argument(*option_dict[o]["flags"], **option_dict[o]["kwargs"]) return parser.parse_args() def get_verbose_print(verbose): """ Sets verbose mode. :param verbose: (bool) True for verbose, False for quiet :return: (function) printing function """ if verbose: return print else: return lambda *a, **k: None
37.514349
120
0.619866
6d9332fd23d153a16b08083b8b5821e556a4f859
6,248
py
Python
trio/_core/_mock_clock.py
RmStorm/trio
708c2e3029f210832ee8c9354887879e0161b065
[ "Apache-2.0", "MIT" ]
null
null
null
trio/_core/_mock_clock.py
RmStorm/trio
708c2e3029f210832ee8c9354887879e0161b065
[ "Apache-2.0", "MIT" ]
null
null
null
trio/_core/_mock_clock.py
RmStorm/trio
708c2e3029f210832ee8c9354887879e0161b065
[ "Apache-2.0", "MIT" ]
null
null
null
import time from math import inf from .. import _core from ._run import GLOBAL_RUN_CONTEXT from .._abc import Clock from .._util import SubclassingDeprecatedIn_v0_15_0 ################################################################ # The glorious MockClock ################################################################ # Prior art: # https://twistedmatrix.com/documents/current/api/twisted.internet.task.Clock.html # https://github.com/ztellman/manifold/issues/57 class MockClock(Clock, metaclass=SubclassingDeprecatedIn_v0_15_0): """A user-controllable clock suitable for writing tests. Args: rate (float): the initial :attr:`rate`. autojump_threshold (float): the initial :attr:`autojump_threshold`. .. attribute:: rate How many seconds of clock time pass per second of real time. Default is 0.0, i.e. the clock only advances through manuals calls to :meth:`jump` or when the :attr:`autojump_threshold` is triggered. You can assign to this attribute to change it. .. attribute:: autojump_threshold The clock keeps an eye on the run loop, and if at any point it detects that all tasks have been blocked for this many real seconds (i.e., according to the actual clock, not this clock), then the clock automatically jumps ahead to the run loop's next scheduled timeout. Default is :data:`math.inf`, i.e., to never autojump. You can assign to this attribute to change it. Basically the idea is that if you have code or tests that use sleeps and timeouts, you can use this to make it run much faster, totally automatically. (At least, as long as those sleeps/timeouts are happening inside Trio; if your test involves talking to external service and waiting for it to timeout then obviously we can't help you there.) You should set this to the smallest value that lets you reliably avoid "false alarms" where some I/O is in flight (e.g. between two halves of a socketpair) but the threshold gets triggered and time gets advanced anyway. This will depend on the details of your tests and test environment. If you aren't doing any I/O (like in our sleeping example above) then just set it to zero, and the clock will jump whenever all tasks are blocked. .. note:: If you use ``autojump_threshold`` and `wait_all_tasks_blocked` at the same time, then you might wonder how they interact, since they both cause things to happen after the run loop goes idle for some time. The answer is: `wait_all_tasks_blocked` takes priority. If there's a task blocked in `wait_all_tasks_blocked`, then the autojump feature treats that as active task and does *not* jump the clock. """ def __init__(self, rate=0.0, autojump_threshold=inf): # when the real clock said 'real_base', the virtual time was # 'virtual_base', and since then it's advanced at 'rate' virtual # seconds per real second. self._real_base = 0.0 self._virtual_base = 0.0 self._rate = 0.0 self._autojump_threshold = 0.0 # kept as an attribute so that our tests can monkeypatch it self._real_clock = time.perf_counter # use the property update logic to set initial values self.rate = rate self.autojump_threshold = autojump_threshold def __repr__(self): return "<MockClock, time={:.7f}, rate={} @ {:#x}>".format( self.current_time(), self._rate, id(self) ) @property def rate(self): return self._rate @rate.setter def rate(self, new_rate): if new_rate < 0: raise ValueError("rate must be >= 0") else: real = self._real_clock() virtual = self._real_to_virtual(real) self._virtual_base = virtual self._real_base = real self._rate = float(new_rate) @property def autojump_threshold(self): return self._autojump_threshold @autojump_threshold.setter def autojump_threshold(self, new_autojump_threshold): self._autojump_threshold = float(new_autojump_threshold) self._try_resync_autojump_threshold() # runner.clock_autojump_threshold is an internal API that isn't easily # usable by custom third-party Clock objects. If you need access to this # functionality, let us know, and we'll figure out how to make a public # API. Discussion: # # https://github.com/python-trio/trio/issues/1587 def _try_resync_autojump_threshold(self): try: runner = GLOBAL_RUN_CONTEXT.runner if runner.is_guest: runner.force_guest_tick_asap() except AttributeError: pass else: runner.clock_autojump_threshold = self._autojump_threshold # Invoked by the run loop when runner.clock_autojump_threshold is # exceeded. def _autojump(self): statistics = _core.current_statistics() jump = statistics.seconds_to_next_deadline if 0 < jump < inf: self.jump(jump) def _real_to_virtual(self, real): real_offset = real - self._real_base virtual_offset = self._rate * real_offset return self._virtual_base + virtual_offset def start_clock(self): self._try_resync_autojump_threshold() def current_time(self): return self._real_to_virtual(self._real_clock()) def deadline_to_sleep_time(self, deadline): virtual_timeout = deadline - self.current_time() if virtual_timeout <= 0: return 0 elif self._rate > 0: return virtual_timeout / self._rate else: return 999999999 def jump(self, seconds): """Manually advance the clock by the given number of seconds. Args: seconds (float): the number of seconds to jump the clock forward. Raises: ValueError: if you try to pass a negative value for ``seconds``. """ if seconds < 0: raise ValueError("time can't go backwards") self._virtual_base += seconds
37.638554
84
0.649808
70b33e0510862179f13f8965a43f0354ea7bc9cb
3,036
py
Python
codescroll/_project_information_builder.py
Suresoft-GLaDOS/cxbuild
1eb568bc11ae8854b1a6025c969ec94c96d6a4a9
[ "MIT" ]
2
2021-11-01T02:11:59.000Z
2021-11-04T09:19:45.000Z
codescroll/_project_information_builder.py
HansolChoe/cxbuild
c289e40efdf92f34e7781772b3b84e0a1c7d0af2
[ "MIT" ]
3
2021-11-04T06:23:38.000Z
2021-11-19T01:54:05.000Z
codescroll/_project_information_builder.py
HansolChoe/cxbuild
c289e40efdf92f34e7781772b3b84e0a1c7d0af2
[ "MIT" ]
2
2021-11-01T03:01:28.000Z
2021-11-04T09:19:28.000Z
import json import cslib import compiler from codescroll.runner import * def _normalize_command_list(commands): # commands 는 모두 절대경로로 변경된 상태로 들어온다 # absolute_command_list 에 따옴표가 들어 있는 것들을 노멀라이즈한 후 검토 # STCS-165, 매크로 인자에도 " 가 존재할 수 있으므로 첫번째와 마지막에 같은 기호가 존재하는지 확인 normalize_commands = [] for cmd in commands: if len(cmd) > 1 and (cmd[0] == '"' or cmd[0] == "'") and cmd[0] == cmd[-1]: cmd = cmd.replace(cmd[0], '') normalize_commands.append(cmd) return normalize_commands class _ProjectInformationBuilder(Runner): def start(self, options, cstrace_json_filepath=None): if not os.path.exists(cstrace_json_filepath): return False, None project_json_path = os.path.join(libcsbuild.get_working_dir(), "project.json") with open(cstrace_json_filepath, "r") as tracefile: traces = json.load(tracefile) if os.path.exists(project_json_path): os.remove(project_json_path) project_json = self._create_project_json(traces) with open(project_json_path, 'w', encoding='utf-8') as project_json_file: json.dump(project_json, project_json_file, indent=4) libcsbuild.step_message("project.json written [%s]" % project_json_path) return True, project_json_path def get_open_files(self, pid, traces): collects = [] collects.extend(traces[pid]['open']) for child_pid in traces[pid]['sigchld']: collects.extend(self.get_open_files(child_pid, traces)) return collects def _create_project_json(self, traces): sources = self._source_list(traces) module = { "dependencies": [], "linkFlags": [], "linkType": "not yet", "name": "not yet", "sources": sources } project = {'modules': [module]} return project def _source_list(self, traces): ret = [] for pid in traces: if traces[pid]['execve'] is None: continue invoked_command = traces[pid]['execve'][0] build_location = traces[pid]['execve'][2] commands = _normalize_command_list(traces[pid]['execve'][1]) if not cslib.is_interest_call(invoked_command): continue compiler_tool = compiler.create(invoked_command, commands) open_files = list(set(self.get_open_files(pid, traces))) open_files.sort() options, compiling_source_files = compiler_tool.split_command() for sourcefile in compiling_source_files: source = { 'dependencies': open_files, 'buildLocation': build_location, 'originalPath': sourcefile, 'originalFlags': "not-yet", 'command': options, 'compiler': invoked_command } ret.append(source) return ret
34.11236
86
0.589262
bc527ca716ff9f8bed67ff5a0e3707c54d5bbc06
1,006
py
Python
earthquakeformat/example2.py
pinaky/utilities
c76123defa2b233992399a5647588684c54264d4
[ "MIT" ]
null
null
null
earthquakeformat/example2.py
pinaky/utilities
c76123defa2b233992399a5647588684c54264d4
[ "MIT" ]
null
null
null
earthquakeformat/example2.py
pinaky/utilities
c76123defa2b233992399a5647588684c54264d4
[ "MIT" ]
null
null
null
from earthquakeformat import CSMIPVolume2Record import os.path s = CSMIPVolume2Record('test2.V2') # --- This block of commands export acceleration data from all channels to CSV format basename = 'CE1430V2_ACC_' channelnumber = 0 # From each channel, get (#data points, time step) and check that they're all the same. vals=[(e['info']['int_numv2accdpts'][1], e['info']['dbl_avgdt'][1]) for e in s.channels] assert len(set(vals)) == 1, 'All channels do not have the same number of acceleration points. Quitting...' nptsa = vals[0][0] dt = vals[0][1] * 1.0E-3 # In milliseconds, so needs to be multiplied by 1E-3 file = open(basename+'{0}'.format(channelnumber)+'.csv', 'w') header = 'Time (s),'+''.join(['Channel {0:02d} Acceleration (cm/s2),'.format(e) for e in range(len(s.channels))])+'\n' file.write(header) for i in range(nptsa): line = '{0},'.format(i * dt)+''.join(['{0},'.format(e['adata'][i]) for e in s.channels])+'\n' file.write(line) file.close() # ---
41.916667
119
0.65507
7c358cffc20e4e15f117068a8a7d4885e3913b15
27,325
py
Python
aiokafka/client.py
patkivikram/aiokafka-1
bbbfc4bf4ed02c0a25b4a86c8ec7afa5b5867975
[ "Apache-2.0" ]
1
2021-10-01T08:02:17.000Z
2021-10-01T08:02:17.000Z
aiokafka/client.py
patkivikram/aiokafka-1
bbbfc4bf4ed02c0a25b4a86c8ec7afa5b5867975
[ "Apache-2.0" ]
null
null
null
aiokafka/client.py
patkivikram/aiokafka-1
bbbfc4bf4ed02c0a25b4a86c8ec7afa5b5867975
[ "Apache-2.0" ]
2
2020-12-04T22:05:41.000Z
2022-03-16T22:26:49.000Z
import asyncio import logging import random import time from kafka.conn import collect_hosts from kafka.protocol.metadata import MetadataRequest from kafka.protocol.commit import OffsetFetchRequest from kafka.protocol.fetch import FetchRequest import aiokafka.errors as Errors from aiokafka import __version__ from aiokafka.conn import create_conn, CloseReason from aiokafka.cluster import ClusterMetadata from aiokafka.protocol.coordination import FindCoordinatorRequest from aiokafka.protocol.produce import ProduceRequest from aiokafka.errors import ( KafkaError, KafkaConnectionError, NodeNotReadyError, RequestTimedOutError, UnknownTopicOrPartitionError, UnrecognizedBrokerVersion, StaleMetadata) from aiokafka.util import ( create_task, create_future, parse_kafka_version, get_running_loop ) from aiokafka.protocol.group import SyncGroupRequest __all__ = ['AIOKafkaClient'] log = logging.getLogger('aiokafka') class ConnectionGroup: DEFAULT = 0 COORDINATION = 1 class CoordinationType: GROUP = 0 TRANSACTION = 1 class AIOKafkaClient: """Initialize an asynchronous kafka client Keyword Arguments: bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'aiokafka-{ver}' request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. api_version (str): specify which kafka API version to use. AIOKafka supports Kafka API versions >=0.9 only. If set to 'auto', will attempt to infer the broker version by probing various APIs. Default: auto security_protocol (str): Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT. ssl_context (ssl.SSLContext): pre-configured SSLContext for wrapping socket connections. For more information see :ref:`ssl_auth`. Default: None. connections_max_idle_ms (int): Close idle connections after the number of milliseconds specified by this config. Specifying `None` will disable idle checks. Default: 540000 (9 minutes). """ def __init__(self, *, loop=None, bootstrap_servers='localhost', client_id='aiokafka-' + __version__, metadata_max_age_ms=300000, request_timeout_ms=40000, retry_backoff_ms=100, ssl_context=None, security_protocol='PLAINTEXT', api_version='auto', connections_max_idle_ms=540000, sasl_mechanism='PLAIN', sasl_plain_username=None, sasl_plain_password=None, sasl_kerberos_service_name='kafka', sasl_kerberos_domain_name=None, sasl_oauth_token_provider=None ): if loop is None: loop = get_running_loop() if security_protocol not in ( 'SSL', 'PLAINTEXT', 'SASL_PLAINTEXT', 'SASL_SSL'): raise ValueError("`security_protocol` should be SSL or PLAINTEXT") if security_protocol in ["SSL", "SASL_SSL"] and ssl_context is None: raise ValueError( "`ssl_context` is mandatory if security_protocol=='SSL'") if security_protocol in ["SASL_SSL", "SASL_PLAINTEXT"]: if sasl_mechanism not in ( "PLAIN", "GSSAPI", "SCRAM-SHA-256", "SCRAM-SHA-512", "OAUTHBEARER"): raise ValueError( "only `PLAIN`, `GSSAPI`, `SCRAM-SHA-256`, " "`SCRAM-SHA-512` and `OAUTHBEARER`" "sasl_mechanism are supported " "at the moment") if sasl_mechanism == "PLAIN" and \ (sasl_plain_username is None or sasl_plain_password is None): raise ValueError( "sasl_plain_username and sasl_plain_password required for " "PLAIN sasl") self._bootstrap_servers = bootstrap_servers self._client_id = client_id self._metadata_max_age_ms = metadata_max_age_ms self._request_timeout_ms = request_timeout_ms if api_version != "auto": api_version = parse_kafka_version(api_version) self._api_version = api_version self._security_protocol = security_protocol self._ssl_context = ssl_context self._retry_backoff = retry_backoff_ms / 1000 self._connections_max_idle_ms = connections_max_idle_ms self._sasl_mechanism = sasl_mechanism self._sasl_plain_username = sasl_plain_username self._sasl_plain_password = sasl_plain_password self._sasl_kerberos_service_name = sasl_kerberos_service_name self._sasl_kerberos_domain_name = sasl_kerberos_domain_name self._sasl_oauth_token_provider = sasl_oauth_token_provider self.cluster = ClusterMetadata(metadata_max_age_ms=metadata_max_age_ms) self._topics = set() # empty set will fetch all topic metadata self._conns = {} self._loop = loop self._sync_task = None self._md_update_fut = None self._md_update_waiter = create_future() self._get_conn_lock = asyncio.Lock() def __repr__(self): return '<AIOKafkaClient client_id=%s>' % self._client_id @property def api_version(self): if type(self._api_version) is tuple: return self._api_version # unknown api version, return minimal supported version return (0, 9, 0) @property def hosts(self): return collect_hosts(self._bootstrap_servers) async def close(self): if self._sync_task: self._sync_task.cancel() try: await self._sync_task except asyncio.CancelledError: pass self._sync_task = None # Be careful to wait for graceful closure of all connections, so we # process all pending buffers. futs = [] for conn in self._conns.values(): futs.append(conn.close(reason=CloseReason.SHUTDOWN)) if futs: await asyncio.gather(*futs) async def bootstrap(self): """Try to to bootstrap initial cluster metadata""" assert self._loop is asyncio.get_event_loop(), ( "Please create objects with the same loop as running with" ) # using request v0 for bootstrap if not sure v1 is available if self._api_version == "auto" or self._api_version < (0, 10): metadata_request = MetadataRequest[0]([]) else: metadata_request = MetadataRequest[1]([]) version_hint = None if self._api_version != "auto": version_hint = self._api_version for host, port, _ in self.hosts: log.debug("Attempting to bootstrap via node at %s:%s", host, port) try: bootstrap_conn = await create_conn( host, port, client_id=self._client_id, request_timeout_ms=self._request_timeout_ms, ssl_context=self._ssl_context, security_protocol=self._security_protocol, max_idle_ms=self._connections_max_idle_ms, sasl_mechanism=self._sasl_mechanism, sasl_plain_username=self._sasl_plain_username, sasl_plain_password=self._sasl_plain_password, sasl_kerberos_service_name=self._sasl_kerberos_service_name, # noqa: ignore=E501 sasl_kerberos_domain_name=self._sasl_kerberos_domain_name, sasl_oauth_token_provider=self._sasl_oauth_token_provider, version_hint=version_hint) except (OSError, asyncio.TimeoutError) as err: log.error('Unable connect to "%s:%s": %s', host, port, err) continue try: metadata = await bootstrap_conn.send(metadata_request) except (KafkaError, asyncio.TimeoutError) as err: log.warning('Unable to request metadata from "%s:%s": %s', host, port, err) bootstrap_conn.close() continue self.cluster.update_metadata(metadata) # A cluster with no topics can return no broker metadata... # In that case, we should keep the bootstrap connection till # we get a normal cluster layout. if not len(self.cluster.brokers()): bootstrap_id = ('bootstrap', ConnectionGroup.DEFAULT) self._conns[bootstrap_id] = bootstrap_conn else: bootstrap_conn.close() log.debug('Received cluster metadata: %s', self.cluster) break else: raise KafkaConnectionError( 'Unable to bootstrap from {}'.format(self.hosts)) # detect api version if need if self._api_version == 'auto': self._api_version = await self.check_version() if self._sync_task is None: # starting metadata synchronizer task self._sync_task = create_task(self._md_synchronizer()) async def _md_synchronizer(self): """routine (async task) for synchronize cluster metadata every `metadata_max_age_ms` milliseconds""" while True: await asyncio.wait( [self._md_update_waiter], timeout=self._metadata_max_age_ms / 1000) topics = self._topics if self._md_update_fut is None: self._md_update_fut = create_future() ret = await self._metadata_update(self.cluster, topics) # If list of topics changed during metadata update we must update # it again right away. if topics != self._topics: continue # Earlier this waiter was set before sending metadata_request, # but that was to avoid topic list changes being unnoticed, which # is handled explicitly now. self._md_update_waiter = create_future() self._md_update_fut.set_result(ret) self._md_update_fut = None def get_random_node(self): """choice random node from known cluster brokers Returns: nodeId - identifier of broker """ nodeids = [b.nodeId for b in self.cluster.brokers()] if not nodeids: return None return random.choice(nodeids) async def _metadata_update(self, cluster_metadata, topics): assert isinstance(cluster_metadata, ClusterMetadata) topics = list(topics) version_id = 0 if self.api_version < (0, 10) else 1 if version_id == 1 and not topics: topics = None metadata_request = MetadataRequest[version_id](topics) nodeids = [b.nodeId for b in self.cluster.brokers()] bootstrap_id = ('bootstrap', ConnectionGroup.DEFAULT) if bootstrap_id in self._conns: nodeids.append('bootstrap') random.shuffle(nodeids) for node_id in nodeids: conn = await self._get_conn(node_id) if conn is None: continue log.debug("Sending metadata request %s to node %s", metadata_request, node_id) try: metadata = await conn.send(metadata_request) except (KafkaError, asyncio.TimeoutError) as err: log.error( 'Unable to request metadata from node with id %s: %r', node_id, err) continue # don't update the cluster if there are no valid nodes...the topic # we want may still be in the process of being created which means # we will get errors and no nodes until it exists if not metadata.brokers: return False cluster_metadata.update_metadata(metadata) # We only keep bootstrap connection to update metadata until # proper cluster layout is available. if bootstrap_id in self._conns and len(self.cluster.brokers()): conn = self._conns.pop(bootstrap_id) conn.close() break else: log.error('Unable to update metadata from %s', nodeids) cluster_metadata.failed_update(None) return False return True def force_metadata_update(self): """Update cluster metadata Returns: True/False - metadata updated or not """ if self._md_update_fut is None: # Wake up the `_md_synchronizer` task if not self._md_update_waiter.done(): self._md_update_waiter.set_result(None) self._md_update_fut = create_future() # Metadata will be updated in the background by syncronizer return asyncio.shield(self._md_update_fut) async def fetch_all_metadata(self): cluster_md = ClusterMetadata( metadata_max_age_ms=self._metadata_max_age_ms) updated = await self._metadata_update(cluster_md, []) if not updated: raise KafkaError( 'Unable to get cluster metadata over all known brokers') return cluster_md def add_topic(self, topic): """Add a topic to the list of topics tracked via metadata. Arguments: topic (str): topic to track """ if topic in self._topics: res = create_future() res.set_result(True) else: res = self.force_metadata_update() self._topics.add(topic) return res def set_topics(self, topics): """Set specific topics to track for metadata. Arguments: topics (list of str): topics to track """ assert not isinstance(topics, str) if not topics or set(topics).difference(self._topics): res = self.force_metadata_update() else: res = create_future() res.set_result(True) self._topics = set(topics) return res def _on_connection_closed(self, conn, reason): """ Callback called when connection is closed """ # Connection failures imply that our metadata is stale, so let's # refresh if reason == CloseReason.CONNECTION_BROKEN or \ reason == CloseReason.CONNECTION_TIMEOUT: self.force_metadata_update() async def _get_conn( self, node_id, *, group=ConnectionGroup.DEFAULT, no_hint=False ): "Get or create a connection to a broker using host and port" conn_id = (node_id, group) if conn_id in self._conns: conn = self._conns[conn_id] if not conn.connected(): del self._conns[conn_id] else: return conn try: if group == ConnectionGroup.DEFAULT: broker = self.cluster.broker_metadata(node_id) # XXX: earlier we only did an assert here, but it seems it's # possible to get a leader that is for some reason not in # metadata. # I think requerying metadata should solve this problem if broker is None: raise StaleMetadata( 'Broker id %s not in current metadata' % node_id) else: broker = self.cluster.coordinator_metadata(node_id) assert broker is not None log.debug("Initiating connection to node %s at %s:%s", node_id, broker.host, broker.port) async with self._get_conn_lock: if conn_id in self._conns: return self._conns[conn_id] version_hint = self._api_version if version_hint == "auto" or no_hint: version_hint = None self._conns[conn_id] = await create_conn( broker.host, broker.port, client_id=self._client_id, request_timeout_ms=self._request_timeout_ms, ssl_context=self._ssl_context, security_protocol=self._security_protocol, on_close=self._on_connection_closed, max_idle_ms=self._connections_max_idle_ms, sasl_mechanism=self._sasl_mechanism, sasl_plain_username=self._sasl_plain_username, sasl_plain_password=self._sasl_plain_password, sasl_kerberos_service_name=self._sasl_kerberos_service_name, # noqa: ignore=E501 sasl_kerberos_domain_name=self._sasl_kerberos_domain_name, sasl_oauth_token_provider=self._sasl_oauth_token_provider, version_hint=version_hint ) except (OSError, asyncio.TimeoutError, KafkaError) as err: log.error('Unable connect to node with id %s: %s', node_id, err) if group == ConnectionGroup.DEFAULT: # Connection failures imply that our metadata is stale, so # let's refresh self.force_metadata_update() return None else: return self._conns[conn_id] async def ready(self, node_id, *, group=ConnectionGroup.DEFAULT): conn = await self._get_conn(node_id, group=group) if conn is None: return False return True async def send(self, node_id, request, *, group=ConnectionGroup.DEFAULT): """Send a request to a specific node. Arguments: node_id (int): destination node request (Struct): request object (not-encoded) Raises: kafka.errors.RequestTimedOutError kafka.errors.NodeNotReadyError kafka.errors.KafkaConnectionError kafka.errors.CorrelationIdError Returns: Future: resolves to Response struct """ if not (await self.ready(node_id, group=group)): raise NodeNotReadyError( "Attempt to send a request to node" " which is not ready (node id {}).".format(node_id)) # Every request gets a response, except one special case: expect_response = True if isinstance(request, tuple(ProduceRequest)) and \ request.required_acks == 0: expect_response = False future = self._conns[(node_id, group)].send( request, expect_response=expect_response) try: result = await future except asyncio.TimeoutError: # close connection so it is renewed in next request self._conns[(node_id, group)].close( reason=CloseReason.CONNECTION_TIMEOUT) raise RequestTimedOutError() else: return result async def check_version(self, node_id=None): """Attempt to guess the broker version""" if node_id is None: default_group_conns = [ n_id for (n_id, group) in self._conns.keys() if group == ConnectionGroup.DEFAULT ] if default_group_conns: node_id = default_group_conns[0] else: assert self.cluster.brokers(), 'no brokers in metadata' node_id = list(self.cluster.brokers())[0].nodeId from kafka.protocol.admin import ( ListGroupsRequest_v0, ApiVersionRequest_v0) from kafka.protocol.commit import ( OffsetFetchRequest_v0, GroupCoordinatorRequest_v0) from kafka.protocol.metadata import MetadataRequest_v0 test_cases = [ ((0, 10), ApiVersionRequest_v0()), ((0, 9), ListGroupsRequest_v0()), ((0, 8, 2), GroupCoordinatorRequest_v0('aiokafka-default-group')), ((0, 8, 1), OffsetFetchRequest_v0('aiokafka-default-group', [])), ((0, 8, 0), MetadataRequest_v0([])), ] # kafka kills the connection when it does not recognize an API request # so we can send a test request and then follow immediately with a # vanilla MetadataRequest. If the server did not recognize the first # request, both will be failed with a ConnectionError that wraps # socket.error (32, 54, or 104) conn = await self._get_conn(node_id, no_hint=True) if conn is None: raise KafkaConnectionError( "No connection to node with id {}".format(node_id)) for version, request in test_cases: try: if not conn.connected(): await conn.connect() assert conn, 'no connection to node with id {}'.format(node_id) # request can be ignored by Kafka broker, # so we send metadata request and wait response task = create_task(conn.send(request)) await asyncio.wait([task], timeout=0.1) try: await conn.send(MetadataRequest_v0([])) except KafkaError: # metadata request can be cancelled in case # of invalid correlationIds order pass response = await task except KafkaError: continue else: # To avoid having a connection in undefined state if node_id != "bootstrap" and conn.connected(): conn.close() if isinstance(request, ApiVersionRequest_v0): # Starting from 0.10 kafka broker we determine version # by looking at ApiVersionResponse version = self._check_api_version_response(response) return version raise UnrecognizedBrokerVersion() def _check_api_version_response(self, response): # The logic here is to check the list of supported request versions # in descending order. As soon as we find one that works, return it test_cases = [ # format (<broker version>, <needed struct>) ((2, 3, 0), SyncGroupRequest[0].API_KEY, 3), ((2, 3, 0), FetchRequest[0].API_KEY, 11), ((2, 1, 0), MetadataRequest[0].API_KEY, 7), ((1, 1, 0), FetchRequest[0].API_KEY, 7), ((1, 0, 0), MetadataRequest[0].API_KEY, 5), ((0, 11, 0), MetadataRequest[0].API_KEY, 4), ((0, 10, 2), OffsetFetchRequest[0].API_KEY, 2), ((0, 10, 1), MetadataRequest[0].API_KEY, 2), ] error_type = Errors.for_code(response.error_code) assert error_type is Errors.NoError, "API version check failed" max_versions = dict([ (api_key, max_version) for api_key, _, max_version in response.api_versions ]) # Get the best match of test cases for broker_version, api_key, version in test_cases: if max_versions.get(api_key, -1) >= version: return broker_version # We know that ApiVersionResponse is only supported in 0.10+ # so if all else fails, choose that return (0, 10, 0) async def _wait_on_metadata(self, topic): """ Wait for cluster metadata including partitions for the given topic to be available. Arguments: topic (str): topic we want metadata for Returns: set: partition ids for the topic Raises: UnknownTopicOrPartitionError: if no topic or partitions found in cluster metadata """ if topic in self.cluster.topics(): return self.cluster.partitions_for_topic(topic) # add topic to metadata topic list if it is not there already. self.add_topic(topic) t0 = time.monotonic() while True: await self.force_metadata_update() if topic in self.cluster.topics(): break if (time.monotonic() - t0) > (self._request_timeout_ms / 1000): raise UnknownTopicOrPartitionError() if topic in self.cluster.unauthorized_topics: raise Errors.TopicAuthorizationFailedError(topic) await asyncio.sleep(self._retry_backoff) return self.cluster.partitions_for_topic(topic) async def _maybe_wait_metadata(self): if self._md_update_fut is not None: await asyncio.shield(self._md_update_fut) async def coordinator_lookup(self, coordinator_type, coordinator_key): """ Lookup which node in the cluster is the coordinator for a certain role (Transaction coordinator or Group coordinator atm.) NOTE: Client keeps track of all coordination nodes separately, as they all have different sockets and ids. """ node_id = self.get_random_node() assert node_id is not None, "Did we not perform bootstrap?" log.debug( "Sending FindCoordinator request for key %s to broker %s", coordinator_key, node_id) if self.api_version > (0, 11): request = FindCoordinatorRequest[1]( coordinator_key, coordinator_type) else: # Group coordination only assert coordinator_type == CoordinationType.GROUP, \ "No transactions for older brokers" request = FindCoordinatorRequest[0](coordinator_key) resp = await self.send(node_id, request) log.debug("Received group coordinator response %s", resp) error_type = Errors.for_code(resp.error_code) if error_type is not Errors.NoError: err = error_type() raise err self.cluster.add_coordinator( resp.coordinator_id, resp.host, resp.port, rack=None, purpose=(coordinator_type, coordinator_key)) return resp.coordinator_id
40.541543
101
0.60505
da171f97851ae5d0f58aa3d0b1bb9b78258b0349
1,412
py
Python
tools/nntool/importer/onnx/handlers/backend/mul.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
118
2018-05-22T08:45:59.000Z
2022-03-30T07:00:45.000Z
tools/nntool/importer/onnx/handlers/backend/mul.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
213
2018-07-25T02:37:32.000Z
2022-03-30T18:04:01.000Z
tools/nntool/importer/onnx/handlers/backend/mul.py
00-01/gap_sdk
25444d752b26ccf0b848301c381692d77172852c
[ "Apache-2.0" ]
76
2018-07-04T08:19:27.000Z
2022-03-24T09:58:05.000Z
# Copyright (C) 2020 GreenWaves Technologies, SAS # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. from graph.types.tensor_arithmetic import MatrixMulParameters from ..backend_handler import BackendHandler from ..handler import onnx_op from .math_mixin import ArithmeticMixin @onnx_op("Mul") class Mul(ArithmeticMixin, BackendHandler): @classmethod def _common(cls, node, **kwargs): return super(Mul, cls)._common(node, params_class=MatrixMulParameters, constant_operation=lambda x, y: x * y, **kwargs) @classmethod def version_7(cls, node, **kwargs): return cls._common(node, **kwargs) @classmethod def version_13(cls, node, **kwargs): return cls._common(node, **kwargs)
36.205128
78
0.706091
d1474f79fc8f33e52087301cb746b04cc0e61c19
1,565
py
Python
companies/models.py
miclemabasie/jobizar
1dde7aab4ba02de75517a5cf91d54b43ac41e3cb
[ "MIT" ]
null
null
null
companies/models.py
miclemabasie/jobizar
1dde7aab4ba02de75517a5cf91d54b43ac41e3cb
[ "MIT" ]
null
null
null
companies/models.py
miclemabasie/jobizar
1dde7aab4ba02de75517a5cf91d54b43ac41e3cb
[ "MIT" ]
null
null
null
from django.db import models from users.models import Profile class Company(models.Model): name = models.CharField(max_length=255) line_of_engagement = models.CharField(max_length=255, null=True, blank=True) location = models.CharField(max_length=255) logo = models.ImageField(upload_to='companies', default="none.png", null=True, blank=True) about = models.TextField() link = models.CharField(max_length=1000, null=True, blank=True) mail = models.EmailField(null=True, blank=True) profile = models.OneToOneField(Profile, on_delete=models.CASCADE) facebook = models.CharField(max_length=255, null=True, blank=True, help_text='Your facebook page link, Optional') google = models.CharField(max_length=255, null=True, blank=True, help_text='Your google plus page link, Optional') twitter = models.CharField(max_length=255, null=True, blank=True, help_text='Your twitter page link, Optional') linkedin = models.CharField(max_length=255, null=True, blank=True, help_text='Your linkedin page link, Optional') instagram = models.CharField(max_length=255, null=True, blank=True, help_text='Your facebook page link, Optional') slug = models.SlugField(unique=True, null=True, blank=True) created_on = models.DateTimeField(auto_now_add=True) updated_on = models.DateTimeField(auto_now=True) def save(self, *args, **kwargs): super().save() self.name = str(self.name).upper() class Meta: verbose_name = 'companies' def __str__(self): return self.name
46.029412
118
0.722045
98ab713602c578de9e6bc2cb074f71d4843f4c82
54,919
py
Python
python/paddle/fluid/layers/tensor.py
honlinchen/Paddle
99d30bfc367d6b472d8b667656678f6b6d84db0c
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/tensor.py
honlinchen/Paddle
99d30bfc367d6b472d8b667656678f6b6d84db0c
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/tensor.py
honlinchen/Paddle
99d30bfc367d6b472d8b667656678f6b6d84db0c
[ "Apache-2.0" ]
1
2020-09-12T21:35:19.000Z
2020-09-12T21:35:19.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unlessf required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from six.moves import reduce from ..layer_helper import LayerHelper from ..param_attr import ParamAttr from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator from ..framework import Variable from ..initializer import Constant from ..core import VarDesc from .. import core from .layer_function_generator import templatedoc from . import utils from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype import numpy import warnings __all__ = [ 'create_tensor', 'create_parameter', 'create_global_var', 'cast', 'tensor_array_to_tensor', 'concat', 'sums', 'assign', 'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax', 'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite', 'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye' ] def create_tensor(dtype, name=None, persistable=False): """ Create a variable, which will hold a Tensor with data type dtype. Args: dtype(string|numpy.dtype): the data type of Tensor to be created, the data type is bool, float16, float32, float64, int8, int16, int32 and int64. name(string, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` persistable(bool): Set the persistable flag of the create tensor. default value is False. Returns: Variable: The tensor to be created according to dtype. Examples: .. code-block:: python import paddle.fluid as fluid tensor = fluid.layers.create_tensor(dtype='float32') """ helper = LayerHelper("create_tensor", **locals()) return helper.create_variable( name=helper.name, dtype=dtype, persistable=persistable) def create_parameter(shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None): """ This function creates a parameter. The parameter is a learnable variable, which can have gradient, and can be optimized. NOTE: this is a very low-level API. This API is useful when you create operator by your self. instead of using layers. Parameters: shape (list of int): Shape of the parameter dtype (str): Data type of the parameter name (str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. attr (ParamAttr, optional): Attributes of the parameter is_bias (bool, optional): This can affect which default initializer is chosen when default_initializer is None. If is_bias, initializer.Constant(0.0) will be used. Otherwise, Xavier() will be used. default_initializer (Initializer, optional): Initializer for the parameter Returns: The created parameter. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers W = layers.create_parameter(shape=[784, 200], dtype='float32') """ helper = LayerHelper("create_parameter", **locals()) if attr is None: attr = ParamAttr(name=name) return helper.create_parameter(attr, shape, dtype, is_bias, default_initializer) def create_global_var(shape, value, dtype, persistable=False, force_cpu=False, name=None): """ This function creates a new tensor variable with value in the global block(block 0). Parameters: shape (list of int): Shape of the variable value (float): The value of the variable. The new created variable will be filled with it. dtype (str): Data type of the variable persistable (bool, optional): If this variable is persistable. Default: False force_cpu (bool, optional): Force this variable to be on CPU. Default: False name (str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Returns: Variable: The created Variable Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32', persistable=True, force_cpu=True, name='new_var') """ helper = LayerHelper("global_var", **locals()) var = helper.create_global_variable( dtype=dtype, shape=shape, persistable=persistable, name=name, stop_gradient=True) helper.set_variable_initializer( var, initializer=Constant( value=float(value), force_cpu=force_cpu)) return var def cast(x, dtype): """ This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it to the output with :attr:`dtype`. It's meaningless if the output dtype equals the input dtype, but it's fine if you do so. Args: x(Variable): An input N-D Tensor with data type bool, float16, float32, float64, int32, int64, uint8. dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output: bool, float15, float32, float64, int8, int32, int64, uint8. Returns: Variable: A Tensor with the same shape as input's. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np place = fluid.core.CPUPlace() x_lod = fluid.data(name="x", shape=[2,2], lod_level=0) cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8") cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_i_lod = fluid.core.LoDTensor() x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place) x_i_lod.set_recursive_sequence_lengths([[0,2]]) res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False) res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False) print(np.array(res1[0]), np.array(res1[0]).dtype) # [[ 1 254] # [ 0 4]] uint8 print(np.array(res2[0]), np.array(res2[0]).dtype) # [[ 1 -2] # [ 0 4]] int32 """ helper = LayerHelper('cast', **locals()) check_variable_and_dtype( x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'], 'cast') out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='cast', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'in_dtype': x.dtype, 'out_dtype': out.dtype}) return out def concat(input, axis=0, name=None): """ **Concat** This OP concatenates the input along the axis. Args: input(list): List of input Tensors with data type float32, float64, int32, int64. axis(int32|Variable, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with the same data type as input's. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[1,2,3], [4,5,6]]) in2 = np.array([[11,12,13], [14,15,16]]) in3 = np.array([[21,22], [23,24]]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(in1) x2 = fluid.dygraph.to_variable(in2) x3 = fluid.dygraph.to_variable(in3) out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1) out2 = fluid.layers.concat(input=[x1,x2], axis=0) print(out1.numpy()) # [[ 1 2 3 11 12 13 21 22] # [ 4 5 6 14 15 16 23 24]] print(out2.numpy()) # [[ 1 2 3] # [ 4 5 6] # [11 12 13] # [14 15 16]] """ if in_dygraph_mode(): if isinstance(axis, Variable): axis = axis.numpy() assert axis.shape == ( 1, ), "axis of type Variable should have shape [1]" axis = axis[0] return core.ops.concat(input, 'axis', axis) if not isinstance(input, list): warnings.warn( "The type of input in concat should be list, but received %s." % (type(input))) input = [input] for id, x in enumerate(input): check_variable_and_dtype( x, 'input[' + str(id) + ']', ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat') check_type(axis, 'axis', (int, Variable), 'concat') helper = LayerHelper('concat', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY: assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \ "number of the elements must be 1, but received %s." % len(x) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input[0]}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': False}) else: inputs = {'X': input} attrs = {} if isinstance(axis, Variable): axis.stop_gradient = True inputs['AxisTensor'] = axis else: attrs['axis'] = axis helper.append_op( type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs) return out def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False): """ This function concatenates or stacks all tensors in the input LoDTensorArray along the axis mentioned and returns that as the output. For Example: .. code-block:: text Case 1: Given: input.data = {[[0.6, 0.1, 0.3], [0.5, 0.3, 0.2]], [[1.3], [1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1, use_stack = False Then: output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1], [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]] output_index.data = [3, 1, 2] Case 2: Given: input.data = {[[0.6, 0.1], [0.5, 0.3]], [[0.3, 1.3], [0.2, 1.8]], [[2.3, 2.1], [2.5, 2.4]]} axis = 1, use_stack = True Then: output.data = [[[0.6, 0.1] [0.3, 1.3] [2.3, 2.1], [[0.5, 0.3] [0.2, 1.8] [2.5, 2.4]]] output_index.data = [2, 2, 2] Args: input(Variable): A LodTensorArray variable. axis(int): The axis along which the tensors in attr::`input` will be concatenated or stacked. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. use_stack(bool): Act as concat_op or stack_op. For stack mode, all tensors in the tensor array must have the same shape. Returns: Variable: The concatenated or stacked tensor variable. Variable: A 1-D tensor variable with int32 data type. The data in this \ tensor contains all input including tensors' sizes along the axis. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32")) x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32")) i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0) array = fluid.layers.create_array(dtype='float32') fluid.layers.array_write(x0, i, array) fluid.layers.array_write(x1, i + 1, array) output, output_index = fluid.layers.tensor_array_to_tensor(input=array) """ helper = LayerHelper('tensor_array_to_tensor', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out_index = helper.create_variable_for_type_inference(dtype="int32") helper.append_op( type='tensor_array_to_tensor', inputs={'X': input}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': use_stack}) return out, out_index def sums(input, out=None): """ This function computes the sum of multiple input Tensors elementwisely. - Case 1, sum of 3 Tensors .. code-block:: text # Input Tensors x0.shape = [2, 3] x0.data = [[1., 2., 3.], [4., 5., 6.]] x1.shape = [2, 3] x1.data = [[10., 20., 30.], [40., 50., 60.]] x2.shape = [2, 3] x2.data = [[100., 200., 300.], [400., 500., 600.]] # Output Tensor out.shape = [2, 3] out.data = [[111., 222., 333.], [444., 555., 666.]] Args: input (list): A list of Variables which hold input Tensors with the same data type and shape. Optional data types are: float32, float64, int32, int64. out (Variable, optional): Output Tensor. It can be any existing Variable. The default value is None, then a new Variable will be created and returned. Returns: Variable: The sum of inputs. The shape and data type is the same with input. \ If :code:`out` is not None, the returned value is :code:`out` . Examples: .. code-block:: python import paddle.fluid as fluid x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1) x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2) x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3) x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0) # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum0 = fluid.layers.sums(input=[x0, x1, x2]) # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3) """ helper = LayerHelper('sum', **locals()) if out is None: out = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) helper.append_op( type='sum', inputs={'X': input}, outputs={'Out': out}, attrs={'use_mkldnn': False}) return out def assign(input, output=None): """ The OP copies the :attr:`input` to the :attr:`output`. Parameters: input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports float32, float64, int32 and int64. output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will be created as :attr:`output`. Default: None. Returns: Variable: A tensor with the same shape, data type and value as :attr:`input`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result1 = fluid.layers.create_tensor(dtype='float64') fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result2 = fluid.layers.assign(data) # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]] """ helper = LayerHelper('assign', **locals()) check_type(input, 'input', (Variable, numpy.ndarray), 'assign') if isinstance(input, Variable): check_dtype(input.dtype, 'input', ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign', '(When the type of input in assign is Variable.)') if output is None: output = helper.create_variable_for_type_inference( dtype=input.dtype) helper.append_op( type='assign', inputs={'X': [input]}, outputs={'Out': [output]}) elif isinstance(input, numpy.ndarray): dtype = convert_np_dtype_to_dtype_(input.dtype) if dtype == VarDesc.VarType.FP32: value_name = "fp32_values" values = [float(v) for v in input.flat] elif dtype == VarDesc.VarType.INT32: value_name = "int32_values" values = [int(v) for v in input.flat] elif dtype == VarDesc.VarType.INT64: value_name = "int64_values" values = [int(v) for v in input.flat] else: raise TypeError( "When the type of 'input' in assign is numpy.ndarray, " "the data type of 'input' must be float32, int32 or int64, but " "received %s." % convert_dtype(dtype)) if input.size > 1024 * 1024: raise ValueError("The size of input is too big. Please consider " "saving it to file and 'load_op' to load it") if output is None: output = helper.create_variable_for_type_inference( dtype=input.dtype) helper.append_op( type='assign_value', outputs={'Out': [output]}, attrs={ 'dtype': dtype, 'shape': list(input.shape), value_name: values }) return output def fill_constant(shape, dtype, value, force_cpu=False, out=None): """ This OP creates a Tensor with specified `shape` and `dtype`, and initializes it with a constant specified by `value`. The attribute `stop_gradient` of the created Tensor is set to True. Args: shape(list|tuple|Variable): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Variable, it should be an 1-D Tensor . dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can be float16, float32, float64, int32, int64. value(float): The constant value used to initialize the Tensor to be created. force_cpu(True): data should be on CPU if it's true, default value is False. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. Returns: Variable: Tensor which is created according to shape and dtype. Raise: TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64 and the data type of out Tensor must be the same as the dtype. Examples: .. code-block:: python import paddle.fluid as fluid # attr shape is a list which doesn't contain Variable Tensor. data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]] data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1) # data1=[[0], [0]] data2=[[5], [5]] # attr shape is a list which contains Variable Tensor. positive_2 = fluid.layers.fill_constant([1], "int32", 2) data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5] # attr shape is an Variable Tensor. shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2] data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]] """ attrs = {'value': float(value), 'force_cpu': force_cpu} if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) if in_dygraph_mode(): if isinstance(shape, (list, tuple)): shape = list( map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x, shape)) else: shape = list(shape.numpy().astype(int)) dtype = convert_np_dtype_to_dtype_(dtype) if out is None: out = _varbase_creator(dtype=dtype) core.ops.fill_constant(out, 'value', float(value), 'force_cpu', force_cpu, 'dtype', dtype, 'str_value', attrs['str_value'], 'shape', shape) out.stop_gradient = True return out helper = LayerHelper("fill_constant", **locals()) check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'fill_constant') check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant') inputs = {} attrs = {'value': float(value), 'force_cpu': force_cpu} if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) def _get_attr_shape(list_shape): attr_shape = [] for idx, dim in enumerate(list_shape): if isinstance(dim, Variable): attr_shape.append(-1) else: attr_shape.append(dim) return attr_shape def _get_shape_tensor(list_shape): new_shape_tensor = [] for idx, dim in enumerate(list_shape): if isinstance(dim, Variable): dim.stop_gradient = True check_dtype( dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'], 'fill_constant', '(When type of shape in fill_constant is list or tuple.)') if convert_dtype(dim.dtype) == 'int64': dim = cast(x=dim, dtype='int32') new_shape_tensor.append(dim) else: temp_out = helper.create_variable_for_type_inference('int32') fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out) new_shape_tensor.append(temp_out) return new_shape_tensor if isinstance(shape, Variable): shape.stop_gradient = True check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant', '(When type of shape in fill_constant is Variable.)') if (convert_dtype(shape.dtype) == 'int64'): shape = cast(shape, 'int32') inputs["ShapeTensor"] = shape elif isinstance(shape, (list, tuple)): assert len(shape) > 0, ( "The size of 'shape' in fill_constant can't be zero, " "but received %s." % len(shape)) attrs["shape"] = _get_attr_shape(shape) if utils._contain_var(shape): inputs['ShapeTensorList'] = _get_shape_tensor(shape) if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) else: check_dtype( dtype, 'create data type', convert_dtype(out.dtype), 'fill_constant', '(The create data type in fill_constant must be the same with out data type.)' ) attrs['dtype'] = out.dtype helper.append_op( type='fill_constant', inputs=inputs, outputs={'Out': [out]}, attrs=attrs, stop_gradient=True) out.stop_gradient = True return out @templatedoc() def fill_constant_batch_size_like(input, shape, dtype, value, input_dim_idx=0, output_dim_idx=0, force_cpu=False): """ This OP creates a Tesnor according the shape and dtype, and initializes the Tensor with the constants provided in ``value``. When the input is LoDTensor and the input_dim_idx is 0, the output_dim_idx dimension is set to the value of the batch_size input by the input, the Stop_gradient attribute of the created Tensor is False by default. Args: input(Variable): Tensor which data type is float32, float64, int32 and int64. shape(list): The shape of Tensor to be created, Tensor's shape may be changed according the input. dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which can be float32, float64, int32, int64. value(float|int): The constant value used to initialize the Tensor to be created. input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx dimension of the created Tensor is set to the batch_size value of input. The default value is 0. output_dim_idx(int): Used to specify which dimension of Tensor is created to be set the value of batch_size of input Tensor. The default value is 0. force_cpu(bool): data should be on CPU if it's true, default value is False. Returns: Variable: Tensor which will be created according to dtype. Examples: .. code-block:: python import paddle.fluid as fluid like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]] data = fluid.layers.fill_constant_batch_size_like( input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0] """ helper = LayerHelper("fill_constant_batch_size_like", **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) attrs = { 'shape': shape, 'dtype': out.dtype, 'value': float(value), 'input_dim_idx': input_dim_idx, 'output_dim_idx': output_dim_idx, 'force_cpu': force_cpu } if convert_dtype(dtype) in ['int64', 'int32']: attrs['str_value'] = str(int(value)) else: attrs['str_value'] = str(float(value)) helper.append_op( type='fill_constant_batch_size_like', inputs={'Input': input}, outputs={'Out': [out]}, attrs=attrs) out.stop_gradient = True return out def argmin(x, axis=0): """ **argmin** This OP computes the indices of the min elements of the input tensor's element along the provided axis. Args: x(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argmin(x=x, axis=-1) out2 = fluid.layers.argmin(x=x, axis=0) out3 = fluid.layers.argmin(x=x, axis=1) out4 = fluid.layers.argmin(x=x, axis=2) print(out1.numpy()) # [[0 0 2] # [1 0 2]] print(out2.numpy()) # [[0 1 1 1] # [0 0 0 0] # [1 1 1 0]] print(out3.numpy()) # [[1 1 1 2] # [2 0 2 0]] print(out4.numpy()) # [[0 0 2] # [1 0 2]] """ helper = LayerHelper("arg_min", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) out.stop_gradient = True return out def argmax(x, axis=0): """ **argmax** This OP computes the indices of the max elements of the input tensor's element along the provided axis. Args: x(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. Returns: Variable: A Tensor with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argmax(x=x, axis=-1) out2 = fluid.layers.argmax(x=x, axis=0) out3 = fluid.layers.argmax(x=x, axis=1) out4 = fluid.layers.argmax(x=x, axis=2) print(out1.numpy()) # [[2 3 1] # [0 3 1]] print(out2.numpy()) # [[0 0 0 0] # [1 1 1 1] # [0 0 0 1]] print(out3.numpy()) # [[2 2 0 1] # [0 1 1 1]] print(out4.numpy()) # [[2 3 1] # [0 3 1]] """ helper = LayerHelper("arg_max", **locals()) out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) out.stop_gradient = True return out def argsort(input, axis=-1, descending=False, name=None): """ This OP sorts the input along the given axis, and returns sorted output data Varibale and its corresponding index Variable with the same shape as :attr:`input`. Args: input(Variable): An input N-D Tensor with type float32, float64, int16, int32, int64, uint8. axis(int, optional): Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0. descending(bool, optional) : Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: tuple: A tuple of sorted data Variable(with the same shape and data type as input) and the sorted indices(with the same shape as input's and with data type int64). Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]]).astype(np.float32) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(in1) out1 = fluid.layers.argsort(input=x, axis=-1) out2 = fluid.layers.argsort(input=x, axis=0) out3 = fluid.layers.argsort(input=x, axis=1) print(out1[0].numpy()) # [[[5. 5. 8. 9.] # [0. 0. 1. 7.] # [2. 4. 6. 9.]] # [[2. 2. 4. 5.] # [4. 7. 7. 9.] # [0. 1. 6. 7.]]] print(out1[1].numpy()) # [[[0 3 1 2] # [0 1 2 3] # [2 3 0 1]] # [[1 3 2 0] # [0 1 2 3] # [2 0 3 1]]] print(out2[0].numpy()) # [[[5. 2. 4. 2.] # [0. 0. 1. 7.] # [1. 7. 0. 4.]] # [[5. 8. 9. 5.] # [4. 7. 7. 9.] # [6. 9. 2. 6.]]] print(out3[0].numpy()) # [[[0. 0. 1. 4.] # [5. 8. 2. 5.] # [6. 9. 9. 7.]] # [[1. 2. 0. 2.] # [4. 7. 4. 6.] # [5. 7. 7. 9.]]] """ helper = LayerHelper("argsort", **locals()) out = helper.create_variable_for_type_inference( dtype=input.dtype, stop_gradient=True) ids = helper.create_variable_for_type_inference( VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': input}, outputs={'Out': out, 'Indices': ids}, attrs={'axis': axis, 'descending': descending}) return out, ids def ones(shape, dtype, force_cpu=False): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1. Its :attr:`stop_gradient` will be set to True to stop gradient computation. Parameters: shape (tuple|list): Shape of output tensor. dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. force_cpu (bool, optional): Whether force to store the output tensor in CPU memory. If :attr:`force_cpu` is False, the output tensor will be stored in running device memory. Default: False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]] """ assert isinstance(shape, list) or isinstance( shape, tuple), "The shape's type should be list or tuple." assert reduce(lambda x, y: x * y, shape) > 0, "The shape is invalid: %s." % (str(shape)) return fill_constant(value=1.0, **locals()) def zeros(shape, dtype, force_cpu=False): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Its :attr:`stop_gradient` will be set to True to stop gradient computation. Parameters: shape (tuple|list): Shape of output tensor. dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. force_cpu (bool, optional): Whether force to store the output tensor in CPU memory. If :attr:`force_cpu` is False, the output tensor will be stored in running device memory. Default: False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]] """ check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros') return fill_constant(value=0.0, **locals()) def reverse(x, axis): """ The OP reverses the tensor :attr:`x` along the given :attr:`axis`. Parameters: x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8. axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing will be apply on each axis in the tuple or list. Returns: Variable: The reversed tensor with the same shape and data type as :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]] result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]] result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]] """ if isinstance(axis, int): axis = [axis] helper = LayerHelper("reverse", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reverse', inputs={'X': x}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def save(x, file_path, overwrite=True): """ Saves a variable as a file. Args: x(variable): The Tensor/LoDTensor to be saved. file_path(str): The file path where the variable will be saved. overwrite(bool): Whether or not cover the given file when it has already existed. If it's set 'False' and the file is existed, a runtime error will be thrown. """ helper = LayerHelper("save", **locals()) helper.append_op( type="save", inputs={"input": x}, outputs={}, args={"file_path": file_path, "overwrite": overwrite}) def save_combine(x, file_path, overwrite=True): """ Saves a list of variables into a single file. Args: x(list): A list of Tensor/LoDTensor variables to be saved together in a single file. file_path(str): The file path where variables will be saved. overwrite(bool): Whether or not cover the given file when it has already existed. If it's set 'False' and the file is existed, a runtime error will be thrown. Returns: There is no return value. Examples: .. code-block:: python import paddle.fluid as fluid v1 = fluid.layers.data(name="data", shape=(4, 6), dtype="float32") v2 = fluid.layers.data(name="data", shape=(6, 8, 4), dtype="float32") normed = fluid.layers.save_combine([v1, v2], file_path="output") """ helper = LayerHelper("save_combine", **locals()) helper.append_op( type="save_combine", inputs={"input": x}, outputs={}, args={"file_path": file_path, "overwrite": overwrite}) def load_combine(out, file_path): """ Loads a list of variable from a single file. Args: out(list): The list of variables to be read from the disk file. file_path(str): The path of the disk file. """ helper = LayerHelper("load_combine", **locals()) helper.append_op( type="load_combine", inputs={}, output={"Out": out}, args={"file_path": file_path}) def has_inf(x): """ Test if any of x contains an infinity number Args: x (Variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") res = fluid.layers.has_inf(data) """ helper = LayerHelper("isinf", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out}) return out def has_nan(x): """ Test if any of x contains a NAN Args: x (Variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") res = fluid.layers.has_nan(data) """ helper = LayerHelper("isnan", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out}) return out def isfinite(x): """ Test if any of x contains an infinity/NAN number. If all the elements are finite, returns true, else false. Args: x(variable): The Tensor/LoDTensor to be checked. Returns: Variable: The tensor variable storing the output, contains a bool value. Examples: .. code-block:: python import paddle.fluid as fluid var = fluid.layers.data(name="data", shape=(4, 6), dtype="float32") out = fluid.layers.isfinite(var) """ helper = LayerHelper("isfinite", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out}) return out def range(start, end, step, dtype): """ Return evenly spaced values within a given interval. Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). Parameters: start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value. when start is Variable, it is a 1-D Tensor with shape [1]. end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this value, except in some cases where step is not an integer and floating point round-off affects the length of out. When end is Variable, it is a 1-D Tensor with shape [1]. step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i]. dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64. Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype. Return type: Variable examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.range(0, 10, 2, 'int32') """ helper = LayerHelper("range", **locals()) check_dtype(dtype, 'create data type', ['float32', 'float64', 'int32', 'int64'], 'range') dtype = convert_dtype(dtype) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) elif convert_dtype(start.dtype) != dtype: # make sure that start, end, step has the same dtype as # `dtype` start = cast(x=start, dtype=dtype) if not isinstance(end, Variable): end = fill_constant([1], dtype, end) elif convert_dtype(end.dtype) != dtype: end = cast(x=end, dtype=dtype) if not isinstance(step, Variable): step = fill_constant([1], dtype, step) elif convert_dtype(step.dtype) != dtype: step = cast(x=step, dtype=dtype) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='range', inputs={'Start': start, 'End': end, 'Step': step}, outputs={'Out': [out]}) out.stop_gradient = True return out def linspace(start, stop, num, dtype): """ This OP return fixed number of evenly spaced values within a given interval. Args: start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \ or a tensor of shape [1] with input data type float32, float64. stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \ or a tensor of shape [1] with input data type float32, float64. num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \ or a tensor of shape [1] with type int32. dtype(string): The data type of output tensor, it could be 'float32' and 'float64'. Returns: Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \ the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \ the value with input :attr:`start`. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0, 2.5, 5.0, 7.5, 10.0] data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0] """ helper = LayerHelper("linspace", **locals()) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) if not isinstance(stop, Variable): stop = fill_constant([1], dtype, stop) if not isinstance(num, Variable): num = fill_constant([1], 'int32', num) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='linspace', inputs={'Start': start, 'Stop': stop, 'Num': num}, outputs={'Out': [out]}) return out def zeros_like(x, out=None): """ This OP creates a zeros tensor which has identical shape and dtype with `x`. Args: x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64. out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \ this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. The default value is :attr:`None` . Returns: Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \ the output value is False, otherwise is zero. The output shape is the same as the input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', dtype='float32', shape=[3]) data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0] """ helper = LayerHelper("zeros_like", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]}) out.stop_gradient = True return out def diag(diagonal): """ This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`. Args: diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \ specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64. Returns: Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \ the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims. Examples: .. code-block:: python # [[3, 0, 0] # [0, 4, 0] # [0, 0, 5] import paddle.fluid as fluid import numpy as np diagonal = np.arange(3, 6, dtype='int32') data = fluid.layers.diag(diagonal) # diagonal.shape=(3,) data.shape=(3, 3) """ helper = LayerHelper("diag", **locals()) if not isinstance(diagonal, Variable): diagonal = assign(diagonal) out = helper.create_variable_for_type_inference(dtype=diagonal.dtype) helper.append_op( type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]}) out.stop_gradient = True return out def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'): """ **eye** This function constructs an identity tensor, or a batch of tensor. Args: num_rows(int): the number of rows in each batch tensor. num_columns(int): the number of columns in each batch tensor. If None, default: num_rows. batch_shape(list(int)): If provided, the returned tensor will have a leading batch size of this shape. dtype(string): The data type of the returned tensor. It should be int32, int64, float16, float32, float64. Returns: Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns]. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.eye(3, dtype='int32') # [[1, 0, 0] # [0, 1, 0] # [0, 0, 1]] data = fluid.layers.eye(2, 3, dtype='int32') # [[1, 0, 0] # [0, 1, 0]] data = fluid.layers.eye(2, batch_shape=[3]) # Construct a batch of 3 identity tensors, each 2 x 2. # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2. """ helper = LayerHelper("eye", **locals()) if not isinstance(num_rows, int) or num_rows < 0: raise TypeError("num_rows should be a non-negative int") if num_columns is not None: if not isinstance(num_columns, int) or num_columns < 0: raise TypeError("num_columns should be a non-negative int") else: num_columns = num_rows out = helper.create_variable_for_type_inference(dtype=dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='eye', inputs={}, outputs={'Out': [out]}, attrs={ 'num_rows': num_rows, 'num_columns': num_columns, 'dtype': c_dtype }, stop_gradient=True) out.stop_gradient = True if batch_shape is not None: if not isinstance(batch_shape, list): raise TypeError("batch_shape should be a list") from .nn import stack for batch_val in reversed(batch_shape): if batch_val <= 0: raise TypeError("batch_shape should be a positive int list") else: stack_vars = [out for _ in numpy.arange(batch_val)] out = stack(stack_vars, axis=0) return out def ones_like(x, out=None): """ **ones_like** This function creates a ones tensor which has identical shape and dtype with `x`. Args: x(Variable): The input tensor which specifies shape and dtype. out(Variable): The output tensor. Returns: out(Variable): The tensor variable storing the output. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False) data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0] """ helper = LayerHelper("ones_like", **locals()) if out is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='fill_any_like', inputs={'X': [x]}, attrs={'value': 1.0}, outputs={'Out': [out]}) return out
37.385296
171
0.563029
789bcf3999beabe4b78b031c82dd0da11d13971d
4,070
py
Python
testing/legion/examples/http_example/http_test.py
google-ar/chromium
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
testing/legion/examples/http_example/http_test.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
testing/legion/examples/http_example/http_test.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import logging import os import socket import sys import time TESTING_DIR = os.path.join( os.path.dirname(os.path.abspath(__file__)), '..', '..', '..') sys.path.append(TESTING_DIR) from legion import legion_test_case class HttpTest(legion_test_case.TestCase): """Example HTTP test case.""" @classmethod def GetArgs(cls): """Get command line args.""" parser = argparse.ArgumentParser() parser.add_argument('--http-server') parser.add_argument('--http-client') parser.add_argument('--os', default='Ubuntu-14.04') args, _ = parser.parse_known_args() return args @classmethod def CreateTask(cls, name, task_hash, os_type): """Create a new task.""" #pylint: disable=unexpected-keyword-arg,no-value-for-parameter #pylint: disable=arguments-differ task = super(HttpTest, cls).CreateTask( name=name, isolated_hash=task_hash, dimensions={'os': os_type}) task.Create() return task @classmethod def setUpClass(cls): """Creates the task machines and waits until they connect.""" args = cls.GetArgs() cls.http_server = cls.CreateTask( 'http_server', args.http_server, args.os) cls.http_client = cls.CreateTask( 'http_client', args.http_client, args.os) cls.http_server.WaitForConnection() cls.http_client.WaitForConnection() def CanConnectToServerPort(self, server_port): """Connect to a port on the http_server. Returns: True if the connection succeeded, False otherwise. """ try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((self.http_server.ip_address, server_port)) return True except socket.error: return False def FindOpenPortOnServer(self): """Find an open port on the server and return it. Returns: The value of an open port. """ for server_port in xrange(2000, 20000): if not self.CanConnectToServerPort(server_port): return server_port self.fail('Unable to find an open port on the server.') def StartServer(self, server_port): """Starts the http_server process. Returns: The server process. """ def WaitForServer(): timeout = time.time() + 5 while timeout > time.time(): if self.CanConnectToServerPort(server_port): return self.fail('Server process failed to start') cmd = [ self.http_server.executable, 'http_server.py', '--port', str(server_port) ] proc = self.http_server.Process(cmd) WaitForServer() return proc def StartClient(self, server_port): """Starts the http_client process. Returns: The client process. """ cmd = [ self.http_client.executable, 'http_client.py', '--server', self.http_server.ip_address, '--port', str(server_port) ] return self.http_client.Process(cmd) def testHttpWorks(self): """Tests that the client process can talk to the server process.""" server_proc = None client_proc = None try: server_port = self.FindOpenPortOnServer() logging.info('Starting server at %s:%s', self.http_server.ip_address, server_port) server_proc = self.StartServer(server_port) logging.info('Connecting to server at %s:%s', self.http_server.ip_address, server_port) client_proc = self.StartClient(server_port) client_proc.Wait() logging.info('client_proc.stdout: %s', client_proc.ReadStdout()) logging.info('client_proc.stderr: %s', client_proc.ReadStderr()) self.assertEqual(client_proc.GetReturncode(), 0) finally: if server_proc: server_proc.Kill() server_proc.Delete() if client_proc: client_proc.Kill() client_proc.Delete() if __name__ == '__main__': legion_test_case.main()
28.661972
80
0.660934
a975e20dea25fa8ed21cee0a6272199672e98ba7
20,927
py
Python
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_ipv6_acl_datatypes.py
bopopescu/ACI
dd717bc74739eeed4747b3ea9e36b239580df5e1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_ipv6_acl_datatypes.py
bopopescu/ACI
dd717bc74739eeed4747b3ea9e36b239580df5e1
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_ipv6_acl_datatypes.py
bopopescu/ACI
dd717bc74739eeed4747b3ea9e36b239580df5e1
[ "ECL-2.0", "Apache-2.0" ]
1
2020-07-22T04:04:44.000Z
2020-07-22T04:04:44.000Z
""" Cisco_IOS_XR_ipv6_acl_datatypes This module contains a collection of generally useful derived YANG data types. Copyright (c) 2013\-2017 by Cisco Systems, Inc. All rights reserved. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class Ipv6AclDscpNumber(Enum): """ Ipv6AclDscpNumber (Enum Class) Ipv6 acl dscp number .. data:: default = 0 Default DSCP .. data:: af11 = 10 Match packets with AF11 DSCP .. data:: af12 = 12 Match packets with AF12 DSCP .. data:: af13 = 14 Match packets with AF13 DSCP .. data:: af21 = 18 Match packets with AF21 DSCP .. data:: af22 = 20 Match packets with AF22 DSCP .. data:: af23 = 22 Match packets with AF23 DSCP .. data:: af31 = 26 Match packets with AF31 DSCP .. data:: af32 = 28 Match packets with AF32 DSCP .. data:: af33 = 30 Match packets with AF33 DSCP .. data:: af41 = 34 Match packets with AF41 DSCP .. data:: af42 = 36 Match packets with AF42 DSCP .. data:: af43 = 38 Match packets with AF43 DSCP .. data:: cs1 = 8 Match packets with CS1 (precedence 1) DSCP .. data:: cs2 = 16 Match packets with CS2 (precedence 2) DSCP .. data:: cs3 = 24 Match packets with CS3 (precedence 3) DSCP .. data:: cs4 = 32 Match packets with CS4 (precedence 4) DSCP .. data:: cs5 = 40 Match packets with CS5 (precedence 5) DSCP .. data:: cs6 = 48 Match packets with CS6 (precedence 6) DSCP .. data:: cs7 = 56 Match packets with CS7 (precedence 7) DSCP .. data:: ef = 46 Match packets with EF DSCP """ default = Enum.YLeaf(0, "default") af11 = Enum.YLeaf(10, "af11") af12 = Enum.YLeaf(12, "af12") af13 = Enum.YLeaf(14, "af13") af21 = Enum.YLeaf(18, "af21") af22 = Enum.YLeaf(20, "af22") af23 = Enum.YLeaf(22, "af23") af31 = Enum.YLeaf(26, "af31") af32 = Enum.YLeaf(28, "af32") af33 = Enum.YLeaf(30, "af33") af41 = Enum.YLeaf(34, "af41") af42 = Enum.YLeaf(36, "af42") af43 = Enum.YLeaf(38, "af43") cs1 = Enum.YLeaf(8, "cs1") cs2 = Enum.YLeaf(16, "cs2") cs3 = Enum.YLeaf(24, "cs3") cs4 = Enum.YLeaf(32, "cs4") cs5 = Enum.YLeaf(40, "cs5") cs6 = Enum.YLeaf(48, "cs6") cs7 = Enum.YLeaf(56, "cs7") ef = Enum.YLeaf(46, "ef") class Ipv6AclGrantEnum(Enum): """ Ipv6AclGrantEnum (Enum Class) Ipv6 acl grant enum .. data:: deny = 0 Deny .. data:: permit = 1 Permit """ deny = Enum.YLeaf(0, "deny") permit = Enum.YLeaf(1, "permit") class Ipv6AclIcmpTypeCodeEnum(Enum): """ Ipv6AclIcmpTypeCodeEnum (Enum Class) Ipv6 acl icmp type code enum .. data:: no_route_to_destination = 65536 No route to destination .. data:: administratively_prohibited = 65537 Administratively prohibited .. data:: beyond_scope_of_source_address = 65538 Unreachable beyond scope of address .. data:: host_unreachable = 65539 Host unreachable .. data:: port_unreachable = 65540 Port unreachable .. data:: unreachable = 131071 All unreachables .. data:: packet_too_big = 131072 packet too big .. data:: ttl_exceeded = 196608 TTL exceeded .. data:: reassembly_timeout = 196609 Reassembly timeout .. data:: time_exceeded = 262143 All time exceeds .. data:: erronenous_header_field = 262144 Erroneous header field .. data:: option_missing = 262145 Parameter required but not present .. data:: no_room_for_option = 262146 Parameter required but no room .. data:: parameter_problem = 327679 All parameter problems .. data:: echo = 8388608 Echo ping .. data:: echo_reply = 8454144 Echo reply .. data:: group_membership_query = 8585215 Multicast listener query .. data:: group_membership_report = 8650751 Multicast listener report .. data:: group_membership_reduction = 8716287 Multicast listener done .. data:: router_solicitation = 8716288 Router discovery solicitations .. data:: router_advertisement = 8781824 Router discovery advertisements .. data:: neighbor_solicitation = 8847360 Neighbor discovery neighbor solicitations .. data:: neighbor_advertisement = 8912896 Neighbor discovery neighbor advertisements .. data:: redirect = 8978432 All redirects .. data:: rr_command = 9043968 Router renumbering command .. data:: rr_result = 9043969 Router renumbering result .. data:: rr_seqnum_reset = 9044223 Router renumbering seqnum .. data:: router_renumbering = 9109503 Router renumbering .. data:: query_subject_is_ipv6_address = 9109504 Query subject is ipv6 address .. data:: query_subject_is_domain_name = 9109505 Query subject is domain name .. data:: query_subject_is_ipv4_address = 9109506 Query subject is ipv4 address .. data:: who_are_you_request = 9175039 Who are you request .. data:: node_information_successful_reply = 9175040 Node information successful reply .. data:: node_information_request_is_refused = 9175041 Node information reply rejected .. data:: unknown_query_type = 9175042 Unknown query type .. data:: who_are_you_reply = 9240575 Who are you reply """ no_route_to_destination = Enum.YLeaf(65536, "no-route-to-destination") administratively_prohibited = Enum.YLeaf(65537, "administratively-prohibited") beyond_scope_of_source_address = Enum.YLeaf(65538, "beyond-scope-of-source-address") host_unreachable = Enum.YLeaf(65539, "host-unreachable") port_unreachable = Enum.YLeaf(65540, "port-unreachable") unreachable = Enum.YLeaf(131071, "unreachable") packet_too_big = Enum.YLeaf(131072, "packet-too-big") ttl_exceeded = Enum.YLeaf(196608, "ttl-exceeded") reassembly_timeout = Enum.YLeaf(196609, "reassembly-timeout") time_exceeded = Enum.YLeaf(262143, "time-exceeded") erronenous_header_field = Enum.YLeaf(262144, "erronenous-header-field") option_missing = Enum.YLeaf(262145, "option-missing") no_room_for_option = Enum.YLeaf(262146, "no-room-for-option") parameter_problem = Enum.YLeaf(327679, "parameter-problem") echo = Enum.YLeaf(8388608, "echo") echo_reply = Enum.YLeaf(8454144, "echo-reply") group_membership_query = Enum.YLeaf(8585215, "group-membership-query") group_membership_report = Enum.YLeaf(8650751, "group-membership-report") group_membership_reduction = Enum.YLeaf(8716287, "group-membership-reduction") router_solicitation = Enum.YLeaf(8716288, "router-solicitation") router_advertisement = Enum.YLeaf(8781824, "router-advertisement") neighbor_solicitation = Enum.YLeaf(8847360, "neighbor-solicitation") neighbor_advertisement = Enum.YLeaf(8912896, "neighbor-advertisement") redirect = Enum.YLeaf(8978432, "redirect") rr_command = Enum.YLeaf(9043968, "rr-command") rr_result = Enum.YLeaf(9043969, "rr-result") rr_seqnum_reset = Enum.YLeaf(9044223, "rr-seqnum-reset") router_renumbering = Enum.YLeaf(9109503, "router-renumbering") query_subject_is_ipv6_address = Enum.YLeaf(9109504, "query-subject-is-ipv6-address") query_subject_is_domain_name = Enum.YLeaf(9109505, "query-subject-is-domain-name") query_subject_is_ipv4_address = Enum.YLeaf(9109506, "query-subject-is-ipv4-address") who_are_you_request = Enum.YLeaf(9175039, "who-are-you-request") node_information_successful_reply = Enum.YLeaf(9175040, "node-information-successful-reply") node_information_request_is_refused = Enum.YLeaf(9175041, "node-information-request-is-refused") unknown_query_type = Enum.YLeaf(9175042, "unknown-query-type") who_are_you_reply = Enum.YLeaf(9240575, "who-are-you-reply") class Ipv6AclLoggingEnum(Enum): """ Ipv6AclLoggingEnum (Enum Class) Ipv6 acl logging enum .. data:: log = 1 Log matches against this entry .. data:: log_input = 2 Log matches against this entry, including input interface """ log = Enum.YLeaf(1, "log") log_input = Enum.YLeaf(2, "log-input") class Ipv6AclOperatorEnum(Enum): """ Ipv6AclOperatorEnum (Enum Class) Ipv6 acl operator enum .. data:: equal = 1 Match only packets on a given port number .. data:: greater_than = 2 Match only packet with a greater port number .. data:: less_than = 3 Match only packet with a lower port number .. data:: not_equal = 4 Match only packets not on a given port number .. data:: range = 5 Match only packets in the range of port numbers """ equal = Enum.YLeaf(1, "equal") greater_than = Enum.YLeaf(2, "greater-than") less_than = Enum.YLeaf(3, "less-than") not_equal = Enum.YLeaf(4, "not-equal") range = Enum.YLeaf(5, "range") class Ipv6AclPortNumber(Enum): """ Ipv6AclPortNumber (Enum Class) Ipv6 acl port number .. data:: echo = 7 Match on the 'echo' port number .. data:: discard = 9 Match on the 'discard' port number .. data:: daytime = 13 Match on the 'daytime' port number (TCP/SCTP only) .. data:: char_gen = 19 Match on the 'chargen' port number (TCP/SCTP only) .. data:: ftp_data = 20 Match on the FTP data connections port number (TCP/SCTP only) .. data:: ftp = 21 Match on the 'ftp' port number (TCP/SCTP only) .. data:: telnet = 23 Match on the 'telnet' port number (TCP/SCTP only) .. data:: smtp = 25 Match on the 'smtp' port number (TCP/SCTP only) .. data:: time = 37 Match on the 'time' port number .. data:: name_server = 42 Match on the IEN116 name service port number (UDP only) .. data:: who_is = 43 Match on the 'nicname' port number (TCP/SCTP only) .. data:: tacacs = 49 Match on the 'tacacs' port number .. data:: dns = 53 Match on the 'dns' port number .. data:: boot_ps = 67 Match on the Bootstrap Protocol server port number (UDP only) .. data:: boot_pc = 68 Match on the Bootstrap Protocol client port number (UDP only) .. data:: tftp = 69 Match on the 'tftp' port number (UDP only) .. data:: gopher = 70 Match on the 'gopher' port number (TCP/SCTP only) .. data:: finger = 79 Match on the 'finger' port number (TCP/SCTP only) .. data:: www = 80 Match on the 'http' port number (TCP/SCTP only) .. data:: host_name = 101 Match on the NIC hostname server port number (TCP/SCTP only) .. data:: pop2 = 109 Match on the 'pop2' port number (TCP/SCTP only) .. data:: pop3 = 110 Match on the 'pop3' port number (TCP/SCTP only) .. data:: sun_rpc = 111 Match on the Sun RPC port number .. data:: ident = 113 Match on the 'ident' port number (TCP/SCTP only) .. data:: nntp = 119 Match on the 'nntp' port number (TCP/SCTP only) .. data:: ntp = 123 Match on the 'ntp' port number (UDP only) .. data:: net_bios_ns = 137 Match on the NetBIOS name service port number (UDP only) .. data:: net_bios_dgs = 138 Match on the NetBIOS datagram service port number (UDP only) .. data:: net_bios_ss = 139 Match on the NetBIOS session service port number (UDP only) .. data:: snmp = 161 Match on the 'snmp' port number (UDP only) .. data:: snmp_trap = 162 Match on the SNMP traps port number (UDP only) .. data:: xdmcp = 177 Match on the 'xdmcp' port number (UDP only) .. data:: bgp = 179 Match on the 'bgp' port number (TCP/SCTP only) .. data:: irc = 194 Match on the 'irc' port number (TCP/SCTP only) .. data:: dnsix = 195 Match on the DNSIX security protocol auditing port number (UDP only) .. data:: mobile_ip = 434 Match on the mobile IP registration port number (UDP only) .. data:: pim_auto_rp = 496 Match on the PIM Auto-RP port number .. data:: isakmp = 500 Match on the 'isakmp' port number (UDP only) .. data:: exec_or_biff = 512 Match on the port used by TCP/SCTP for 'exec' and by UDP for 'biff' .. data:: login_or_who = 513 Match on the port used by TCP/SCTP for 'login' and by UDP for 'rwho' .. data:: cmd_or_syslog = 514 Match on the port used by TCP/SCTP for 'rcmd' and by UDP for 'syslog' .. data:: lpd = 515 Match on the 'lpd' port number (TCP/SCTP only) .. data:: talk = 517 Match on the 'talk' port number .. data:: rip = 520 Match on the 'rip' port number (UDP only) .. data:: uucp = 540 Match on the 'uucp' port number (TCP/SCTP only) .. data:: klogin = 543 Match on the Kerberos login port number (TCP/SCTP only) .. data:: kshell = 544 Match on the Kerberos shell port number (TCP/SCTP only) .. data:: ldp = 646 Match on the LDP port """ echo = Enum.YLeaf(7, "echo") discard = Enum.YLeaf(9, "discard") daytime = Enum.YLeaf(13, "daytime") char_gen = Enum.YLeaf(19, "char-gen") ftp_data = Enum.YLeaf(20, "ftp-data") ftp = Enum.YLeaf(21, "ftp") telnet = Enum.YLeaf(23, "telnet") smtp = Enum.YLeaf(25, "smtp") time = Enum.YLeaf(37, "time") name_server = Enum.YLeaf(42, "name-server") who_is = Enum.YLeaf(43, "who-is") tacacs = Enum.YLeaf(49, "tacacs") dns = Enum.YLeaf(53, "dns") boot_ps = Enum.YLeaf(67, "boot-ps") boot_pc = Enum.YLeaf(68, "boot-pc") tftp = Enum.YLeaf(69, "tftp") gopher = Enum.YLeaf(70, "gopher") finger = Enum.YLeaf(79, "finger") www = Enum.YLeaf(80, "www") host_name = Enum.YLeaf(101, "host-name") pop2 = Enum.YLeaf(109, "pop2") pop3 = Enum.YLeaf(110, "pop3") sun_rpc = Enum.YLeaf(111, "sun-rpc") ident = Enum.YLeaf(113, "ident") nntp = Enum.YLeaf(119, "nntp") ntp = Enum.YLeaf(123, "ntp") net_bios_ns = Enum.YLeaf(137, "net-bios-ns") net_bios_dgs = Enum.YLeaf(138, "net-bios-dgs") net_bios_ss = Enum.YLeaf(139, "net-bios-ss") snmp = Enum.YLeaf(161, "snmp") snmp_trap = Enum.YLeaf(162, "snmp-trap") xdmcp = Enum.YLeaf(177, "xdmcp") bgp = Enum.YLeaf(179, "bgp") irc = Enum.YLeaf(194, "irc") dnsix = Enum.YLeaf(195, "dnsix") mobile_ip = Enum.YLeaf(434, "mobile-ip") pim_auto_rp = Enum.YLeaf(496, "pim-auto-rp") isakmp = Enum.YLeaf(500, "isakmp") exec_or_biff = Enum.YLeaf(512, "exec-or-biff") login_or_who = Enum.YLeaf(513, "login-or-who") cmd_or_syslog = Enum.YLeaf(514, "cmd-or-syslog") lpd = Enum.YLeaf(515, "lpd") talk = Enum.YLeaf(517, "talk") rip = Enum.YLeaf(520, "rip") uucp = Enum.YLeaf(540, "uucp") klogin = Enum.YLeaf(543, "klogin") kshell = Enum.YLeaf(544, "kshell") ldp = Enum.YLeaf(646, "ldp") class Ipv6AclPrecedenceNumber(Enum): """ Ipv6AclPrecedenceNumber (Enum Class) Ipv6 acl precedence number .. data:: critical = 5 Match packets with critical precedence .. data:: flash = 3 Match packets with flash precedence .. data:: flash_override = 4 Match packets with flash override precedence .. data:: immediate = 2 Match packets with immediate precedence .. data:: internet = 6 Match packets with internetwork control precedence .. data:: network = 7 Match packets with network control precedence .. data:: priority = 1 Match packets with priority precedence .. data:: routine = 0 Match packets with routine precedence """ critical = Enum.YLeaf(5, "critical") flash = Enum.YLeaf(3, "flash") flash_override = Enum.YLeaf(4, "flash-override") immediate = Enum.YLeaf(2, "immediate") internet = Enum.YLeaf(6, "internet") network = Enum.YLeaf(7, "network") priority = Enum.YLeaf(1, "priority") routine = Enum.YLeaf(0, "routine") class Ipv6AclProtocolNumber(Enum): """ Ipv6AclProtocolNumber (Enum Class) Ipv6 acl protocol number .. data:: ip = 0 Any IP protocol .. data:: icmp = 1 Internet Control Message Protocol .. data:: igmp = 2 Internet Gateway Message Protocol .. data:: ip_in_ip = 4 IP in IP tunneling .. data:: tcp = 6 Transport Control Protocol .. data:: igrp = 9 Cisco's IGRP Routing Protocol .. data:: udp = 17 User Datagram Protocol .. data:: gre = 47 Cisco's GRE tunneling .. data:: esp = 50 Encapsulation Security Protocol .. data:: ahp = 51 Authentication Header Protocol .. data:: icmpv6 = 58 Internet Control Message Protocol .. data:: eigrp = 88 Cisco's EIGRP Routing Protocol .. data:: ospf = 89 OSPF Routing Protocol .. data:: nos = 94 KA9Q NOS Compatible IP over IP tunneling .. data:: pim = 103 Protocol Independent Multicast .. data:: pcp = 108 Payload Compression Protocol .. data:: sctp = 132 Stream Control Transmission Protocol """ ip = Enum.YLeaf(0, "ip") icmp = Enum.YLeaf(1, "icmp") igmp = Enum.YLeaf(2, "igmp") ip_in_ip = Enum.YLeaf(4, "ip-in-ip") tcp = Enum.YLeaf(6, "tcp") igrp = Enum.YLeaf(9, "igrp") udp = Enum.YLeaf(17, "udp") gre = Enum.YLeaf(47, "gre") esp = Enum.YLeaf(50, "esp") ahp = Enum.YLeaf(51, "ahp") icmpv6 = Enum.YLeaf(58, "icmpv6") eigrp = Enum.YLeaf(88, "eigrp") ospf = Enum.YLeaf(89, "ospf") nos = Enum.YLeaf(94, "nos") pim = Enum.YLeaf(103, "pim") pcp = Enum.YLeaf(108, "pcp") sctp = Enum.YLeaf(132, "sctp") class Ipv6AclStatusEnum(Enum): """ Ipv6AclStatusEnum (Enum Class) Ipv6 acl status enum .. data:: disabled = 0 Disabled .. data:: enabled = 1 Enabled """ disabled = Enum.YLeaf(0, "disabled") enabled = Enum.YLeaf(1, "enabled") class Ipv6AclTcpBitsNumber(Enum): """ Ipv6AclTcpBitsNumber (Enum Class) Ipv6 acl tcp bits number .. data:: established = 20 Match established connections (0x14) .. data:: ack = 16 Match on the ACK bit (0x10) .. data:: rst = 4 Match on the RST bit (0x04) .. data:: fin = 1 Match on the FIN bit (0x01) .. data:: psh = 8 Match on the PSH bit (0x08) .. data:: syn = 2 Match on the SYN bit (0x02) .. data:: urg = 32 Match on the URG bit (0x20) """ established = Enum.YLeaf(20, "established") ack = Enum.YLeaf(16, "ack") rst = Enum.YLeaf(4, "rst") fin = Enum.YLeaf(1, "fin") psh = Enum.YLeaf(8, "psh") syn = Enum.YLeaf(2, "syn") urg = Enum.YLeaf(32, "urg") class Ipv6AclTcpMatchOperatorEnum(Enum): """ Ipv6AclTcpMatchOperatorEnum (Enum Class) Ipv6 acl tcp match operator enum .. data:: match_all = 1 Match only packet with all the given TCP bits .. data:: match_any = 3 Match only packet with any of the given TCP bits """ match_all = Enum.YLeaf(1, "match-all") match_any = Enum.YLeaf(3, "match-any") class Ipv6AclTypeEnum(Enum): """ Ipv6AclTypeEnum (Enum Class) Ipv6 acl type enum .. data:: acl = 1 ACL .. data:: prefix_list = 2 Prefix List """ acl = Enum.YLeaf(1, "acl") prefix_list = Enum.YLeaf(2, "prefix-list") class Ipv6PrefixMatchExactLength(Enum): """ Ipv6PrefixMatchExactLength (Enum Class) Ipv6 prefix match exact length .. data:: match_exact_length = 1 Prefix Length Exact match """ match_exact_length = Enum.YLeaf(1, "match-exact-length") class Ipv6PrefixMatchMaxLength(Enum): """ Ipv6PrefixMatchMaxLength (Enum Class) Ipv6 prefix match max length .. data:: match_max_length = 3 Enable matching of Prefix Lengths lesser than MaxPrefixLength """ match_max_length = Enum.YLeaf(3, "match-max-length") class Ipv6PrefixMatchMinLength(Enum): """ Ipv6PrefixMatchMinLength (Enum Class) Ipv6 prefix match min length .. data:: match_min_length = 2 Enable matching of Prefix Lengths greater than MinPrefixLength """ match_min_length = Enum.YLeaf(2, "match-min-length")
18.197391
126
0.624361
0d8a4340868fe6ed30637cf1e8c52f187b8b49cc
15,036
py
Python
modoboa/core/models.py
Arvedui/modoboa
404f4bc0f544506d23ac534ff02ae6c6e3b6558c
[ "ISC" ]
null
null
null
modoboa/core/models.py
Arvedui/modoboa
404f4bc0f544506d23ac534ff02ae6c6e3b6558c
[ "ISC" ]
null
null
null
modoboa/core/models.py
Arvedui/modoboa
404f4bc0f544506d23ac534ff02ae6c6e3b6558c
[ "ISC" ]
null
null
null
# -*- coding: utf-8 -*- """Core models.""" from __future__ import unicode_literals import re from email.header import Header import jsonfield from reversion import revisions as reversion from django.conf import settings from django.contrib.auth.models import AbstractUser, Group from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import models from django.urls import reverse from django.utils.encoding import ( force_str, python_2_unicode_compatible, smart_bytes, smart_text ) from django.utils.functional import cached_property from django.utils.translation import ugettext as _, ugettext_lazy from modoboa.core.password_hashers import get_password_hasher from modoboa.lib.exceptions import ( BadRequest, Conflict, InternalError, PermDeniedException ) from modoboa.parameters import tools as param_tools from . import constants, signals try: from modoboa.lib.ldap_utils import LDAPAuthBackend ldap_available = True except ImportError: ldap_available = False @python_2_unicode_compatible class User(AbstractUser): """Custom User model. It overloads the way passwords are stored into the database. The main reason to change this mechanism is to ensure the compatibility with the way Dovecot stores passwords. It also adds new attributes and methods. """ username = models.CharField(max_length=254, unique=True) email = models.EmailField(max_length=254, blank=True, db_index=True) is_staff = models.BooleanField(default=False, db_index=True) is_active = models.BooleanField(default=True, db_index=True) is_local = models.BooleanField(default=True, db_index=True) master_user = models.BooleanField( ugettext_lazy("Allow mailboxes access"), default=False, help_text=ugettext_lazy( "Allow this administrator to access user mailboxes" ) ) password = models.CharField(ugettext_lazy("password"), max_length=256) language = models.CharField( ugettext_lazy("language"), max_length=10, default="en", choices=constants.LANGUAGES, help_text=ugettext_lazy( "Prefered language to display pages." ) ) phone_number = models.CharField( ugettext_lazy("Phone number"), max_length=128, blank=True, null=True) secondary_email = models.EmailField( ugettext_lazy("Secondary email"), max_length=254, blank=True, null=True, help_text=ugettext_lazy( "An alternative e-mail address, can be used for recovery needs.") ) _parameters = jsonfield.JSONField(default={}) class Meta(object): ordering = ["username"] index_together = [ ["email", "is_active"] ] password_expr = re.compile(r'\{([\w\-]+)\}(.+)') def __init__(self, *args, **kwargs): """Load parameter manager.""" super(User, self).__init__(*args, **kwargs) self.parameters = param_tools.Manager("user", self._parameters) def _crypt_password(self, raw_value): """Crypt the local password using the appropriate scheme. In case we don't find the scheme (for example when the management framework is used), we load the parameters and try one more time. """ scheme = param_tools.get_global_parameter( "password_scheme", raise_exception=False) if scheme is None: from modoboa.core.apps import load_core_settings load_core_settings() scheme = param_tools.get_global_parameter( "password_scheme", raise_exception=False) raw_value = smart_bytes(raw_value) return get_password_hasher(scheme.upper())().encrypt(raw_value) def set_password(self, raw_value, curvalue=None): """Password update Update the current mailbox's password with the given clear value. This value is encrypted according to the defined method before it is saved. :param raw_value: the new password's value :param curvalue: the current password (for LDAP authentication) """ if self.is_local: self.password = self._crypt_password(raw_value) else: if not ldap_available: raise InternalError( _("Failed to update password: LDAP module not installed") ) LDAPAuthBackend().update_user_password( self.username, curvalue, raw_value ) signals.account_password_updated.send( sender=self.__class__, account=self, password=raw_value, created=self.pk is None) def check_password(self, raw_value): """Compare raw_value to current password.""" match = self.password_expr.match(self.password) if match is None: return False raw_value = force_str(raw_value) scheme = match.group(1) val2 = match.group(2) hasher = get_password_hasher(scheme) return hasher().verify(raw_value, val2) def __str__(self): return smart_text(self.get_username()) def get_absolute_url(self): """Return detail url for this user.""" return reverse("admin:account_detail", args=[self.pk]) @property def tags(self): return [{"name": "account", "label": _("account"), "type": "idt"}, {"name": self.role, "label": self.role, "type": "grp", "color": "info"}] @property def fullname(self): result = self.username if self.first_name != "": result = self.first_name if self.last_name != "": if result != "": result += " " result += self.last_name return result @property def identity(self): return self.username @property def name_or_rcpt(self): if self.first_name != "": return "%s %s" % (self.first_name, self.last_name) return "----" @property def enabled(self): return self.is_active @property def encoded_address(self): if self.first_name != "" or self.last_name != "": return '"{}" <{}>'.format( Header(self.fullname, "utf8").encode(), self.email) return self.email def is_owner(self, obj): """Tell is the user is the unique owner of this object :param obj: an object inheriting from ``models.Model`` :return: a boolean """ ct = ContentType.objects.get_for_model(obj) try: ooentry = self.objectaccess_set.get( content_type=ct, object_id=obj.id) except ObjectAccess.DoesNotExist: return False return ooentry.is_owner def can_access(self, obj): """Check if the user can access a specific object This function is recursive: if the given user hasn't got direct access to this object and if he has got access to other ``User`` objects, we check if one of those users owns the object. :param obj: a admin object :return: a boolean """ if self.is_superuser: return True ct = ContentType.objects.get_for_model(obj) try: ooentry = self.objectaccess_set.get( content_type=ct, object_id=obj.id) except ObjectAccess.DoesNotExist: pass else: return True if ct.model == "user": return False ct = ContentType.objects.get_for_model(self) qs = self.objectaccess_set.filter(content_type=ct) for ooentry in qs.all(): if ooentry.content_object.is_owner(obj): return True return False @property def role(self): """Return user role.""" if not hasattr(self, "_role"): if self.is_superuser: self._role = "SuperAdmins" else: try: self._role = self.groups.all()[0].name except IndexError: self._role = "---" return self._role @role.setter def role(self, role): """Set administrative role for this account :param string role: the role to set """ if role is None or self.role == role: return signals.account_role_changed.send( sender=self.__class__, account=self, role=role) self.groups.clear() if role == "SuperAdmins": self.is_superuser = True else: if self.is_superuser: ObjectAccess.objects.filter(user=self).delete() self.is_superuser = False try: self.groups.add(Group.objects.get(name=role)) except Group.DoesNotExist: self.groups.add(Group.objects.get(name="SimpleUsers")) if role != "SimpleUsers" and not self.can_access(self): from modoboa.lib.permissions import grant_access_to_object grant_access_to_object(self, self) self.save() self._role = role def get_role_display(self): """Return the display name of this role.""" for role in constants.ROLES: if role[0] == self.role: return role[1] return _("Unknown") @cached_property def is_admin(self): """Shortcut to check if user is administrator.""" return self.role in constants.ADMIN_GROUPS def post_create(self, creator): """Grant permission on this user to creator.""" from modoboa.lib.permissions import grant_access_to_object grant_access_to_object(creator, self, is_owner=True) def save(self, *args, **kwargs): creator = kwargs.pop("creator", None) super(User, self).save(*args, **kwargs) if creator is not None: self.post_create(creator) def from_csv(self, user, row, crypt_password=True): """Create a new account from a CSV file entry. The expected order is the following:: "account", loginname, password, first name, last name, enabled, role Additional fields can be added using the *account_imported* signal. :param user: a ``core.User`` instance :param row: a list containing the expected information :param crypt_password: """ from modoboa.lib.permissions import get_account_roles if len(row) < 7: raise BadRequest(_("Invalid line")) desired_role = row[6].strip() if not user.is_superuser: allowed_roles = get_account_roles(user) allowed_roles = [role[0] for role in allowed_roles] if desired_role not in allowed_roles: raise PermDeniedException(_( "You can't import an account with a role greater than " "yours" )) self.username = row[1].strip().lower() try: User.objects.get(username=self.username) except User.DoesNotExist: pass else: raise Conflict if desired_role == "SimpleUsers": if len(row) < 8 or not row[7].strip(): raise BadRequest( _("The simple user '%s' must have a valid email address" % self.username) ) if self.username != row[7].strip(): raise BadRequest( _("username and email fields must not differ for '%s'" % self.username) ) if crypt_password: self.set_password(row[2].strip()) else: self.password = row[2].strip() self.first_name = row[3].strip() self.last_name = row[4].strip() self.is_active = (row[5].strip().lower() in ["true", "1", "yes", "y"]) self.language = settings.LANGUAGE_CODE self.save() self.role = desired_role self.post_create(user) if len(row) < 8: return signals.account_imported.send( sender=self.__class__, user=user, account=self, row=row[7:]) def to_csv(self, csvwriter): """Export this account. The CSV format is used to export. :param csvwriter: csv object """ row = [ "account", smart_text(self.username), smart_text(self.password), smart_text(self.first_name), smart_text(self.last_name), smart_text(self.is_active), smart_text(self.role), smart_text(self.email) ] results = signals.account_exported.send( sender=self.__class__, user=self) for result in results: row += result[1] csvwriter.writerow(row) reversion.register(User) def populate_callback(user, group="SimpleUsers"): """Populate callback If the LDAP authentication backend is in use, this callback will be called each time a new user authenticates succesfuly to Modoboa. This function is in charge of creating the mailbox associated to the provided ``User`` object. :param user: a ``User`` instance """ from modoboa.lib.permissions import grant_access_to_object sadmins = User.objects.filter(is_superuser=True) user.role = group user.post_create(sadmins[0]) for su in sadmins[1:]: grant_access_to_object(su, user) signals.account_auto_created.send( sender="populate_callback", user=user) @python_2_unicode_compatible class ObjectAccess(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) content_type = models.ForeignKey(ContentType, on_delete=models.CASCADE) object_id = models.PositiveIntegerField() content_object = GenericForeignKey("content_type", "object_id") is_owner = models.BooleanField(default=False) class Meta(object): unique_together = (("user", "content_type", "object_id"),) def __str__(self): return "%s => %s (%s)" % ( self.user, self.content_object, self.content_type ) class Log(models.Model): """Simple log in database.""" date_created = models.DateTimeField(auto_now_add=True) message = models.CharField(max_length=255) level = models.CharField(max_length=15) logger = models.CharField(max_length=30) class LocalConfig(models.Model): """Store instance configuration here.""" api_pk = models.PositiveIntegerField(null=True) site = models.ForeignKey("sites.Site", on_delete=models.CASCADE) # API results cache api_versions = jsonfield.JSONField() _parameters = jsonfield.JSONField(default={}) def __init__(self, *args, **kwargs): """Load parameter manager.""" super(LocalConfig, self).__init__(*args, **kwargs) self.parameters = param_tools.Manager("global", self._parameters)
33.118943
78
0.618183
a96c26dc03007de2017b22a3ffa3914a7819ed92
1,059
py
Python
5.1 Newton otimizacao nao linear irrestrito.py
HigorAnjos/Fundamentos-VI
e0aa3cb37e4c54d24ac7123ea3bd8038196e0edb
[ "MIT" ]
null
null
null
5.1 Newton otimizacao nao linear irrestrito.py
HigorAnjos/Fundamentos-VI
e0aa3cb37e4c54d24ac7123ea3bd8038196e0edb
[ "MIT" ]
null
null
null
5.1 Newton otimizacao nao linear irrestrito.py
HigorAnjos/Fundamentos-VI
e0aa3cb37e4c54d24ac7123ea3bd8038196e0edb
[ "MIT" ]
null
null
null
from FuncoesCauchyNewton import * from sympy import * import numpy as np x = Symbol('x') y = Symbol('y') ponto_x = Matrix([1, 0]) f = 1/2*(x - 2)**2 + (y - 1)**2 constante = 1 Matdiff = Matrix([[diff(f.subs(y, constante))], [diff(f.subs(x, constante))]]) # vetor derivada primeira d = - Matdiff.subs(x, ponto_x[0]).subs(y, ponto_x[1]) Matdiffseg = Matrix([[diff(diff(f.subs(y, constante)).subs(y, constante)), 0], [0, diff(diff(f.subs(x, constante)).subs(x, constante))]]) mat = Matdiffseg.subs(x, ponto_x[0]).subs(y, ponto_x[1]) dk = mat.LUsolve(d) t = aureat(ponto_x, dk, f) ponto_x = ponto_x + t * dk k = 1 valida = Matdiff.subs(x, ponto_x[0]).subs(y, ponto_x[1]) while valida.norm() >= Epsilon(): d = - Matdiff.subs(x, ponto_x[0]).subs(y, ponto_x[1]) mat = Matdiffseg.subs(x, ponto_x[0]).subs(y, ponto_x[1]) dk = mat.LUsolve(d) t = aureat(ponto_x, dk, f) ponto_x = ponto_x + t * dk k+=1 valida = Matdiff.subs(x, ponto_x[0]).subs(y, ponto_x[1]) print(f'Newton Min = ({ponto_x[0]}, {ponto_x[1]}) iteracao = {k}')
24.627907
137
0.620397
76b1aad19ca5850515d3525d0a82f62145059d08
14,200
py
Python
userbot/plugins/so_IQ.py
TeleOniOn/telethon-iraq
a247d2a44c547a2a98befdc4d7be93d55a077f70
[ "Apache-2.0" ]
null
null
null
userbot/plugins/so_IQ.py
TeleOniOn/telethon-iraq
a247d2a44c547a2a98befdc4d7be93d55a077f70
[ "Apache-2.0" ]
null
null
null
userbot/plugins/so_IQ.py
TeleOniOn/telethon-iraq
a247d2a44c547a2a98befdc4d7be93d55a077f70
[ "Apache-2.0" ]
null
null
null
# credits to @TeleOniOn from telethon import events import asyncio from userbot.utils import admin_cmd from userbot import ALIVE_NAME import random, re from userbot import CMD_HELP from collections import deque DEFAULTUSER = str(ALIVE_NAME) if ALIVE_NAME else "cat" @borg.on(admin_cmd(pattern=f"loading$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 0.3 animation_ttl = range(0, 20) animation_chars = [ "▮", "▯", "▬", "▭", "‎" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 4]) @borg.on(admin_cmd(pattern=f"square$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 0.3 animation_ttl = range(0, 20) animation_chars = [ "◧", "◨", "◧", "◨", "‎" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 4]) @borg.on(admin_cmd(pattern=f"up$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 0.3 animation_ttl = range(0, 20) animation_chars = [ "╹", "╻", "╹", "╻", "‎" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 4]) @borg.on(admin_cmd(pattern=f"moni$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 0.3 animation_ttl = range(0, 20) animation_chars = [ "⚫", "⬤", "●", "∘", "‎" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 4]) @borg.on(admin_cmd(pattern=f"hart$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 0.5 animation_ttl = range(0, 20) animation_chars = [ "🖤", "❤️", "🖤", "❤️", "‎" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 4]) @borg.on(admin_cmd(pattern=f"anim$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 1 animation_ttl = range(0, 11) animation_chars = [ "😁", "😧", "😡", "😢", "‎**Repo of catuserbot**", "😁", "😧", "😡", "😢", "[‎](github.com/sandy1709/catuserbot)", "__**Good to See you guys....**__" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 11]) @borg.on(admin_cmd(pattern=f"fnl$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 2 animation_ttl = range(0, 6) animation_chars = [ "😁🏿", "😁🏾", "😁🏽", "😁🏼", "‎😁", "**Good to See you friend....**" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 6]) @borg.on(admin_cmd(pattern=f"monkey$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 2 animation_ttl = range(0, 6) animation_chars = [ "🐵", "🙉", "🙈", "🙊", "🖕‎🐵🖕", "**Good to See you friend....**" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 6]) @borg.on(admin_cmd(pattern=f"herber$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 2 animation_ttl = range(0, 11) animation_chars = [ "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 10%\n\n ●○○○○○○○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 5.9%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 8.13GB\n **🔹used:** 33.77GB\n **🔹total:** 60.0GB\n \n ●●●●●●●○○○\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 158.98GB\n **🔹recv:** 146.27GB\n **🔹sent_packets:** 84518799\n **🔹recv_packets:** 159720314\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 30%\n\n ●●●○○○○○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 20.4%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 7.18GB\n **🔹used:** 28.26GB\n **🔹total:** 60.0GB\n \n ●●●●●●●●●●\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 146.27GB\n **🔹recv:** 124.33GB\n **🔹sent_packets:** 54635686\n **🔹recv_packets:** 143565654\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 60%\n\n ●●●●●●○○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 60.9%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 6.52GB\n **🔹used:** 35.78GB\n **🔹total:** 60.0GB\n \n ●●●○○○○○○○\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 124.33GB\n **🔹recv:** 162.48GB\n **🔹sent_packets:** 25655655\n **🔹recv_packets:** 165289456\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 100%\n\n ●●●●●●●●●●\n\n **🔹cpu core**\n\n **🔹core_usage:** 100.0%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 9.81GB\n **🔹used:** 30.11GB\n **🔹total:** 60.0GB\n \n ●●●●●●●●●●\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 162.48GB\n **🔹recv:** 175.75GB\n **🔹sent_packets:** 56565435\n **🔹recv_packets:** 135345655\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 70%\n\n ●●●●●●●○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 80.4%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 5.76GB\n **🔹used:** 29.35GB\n **🔹total:** 60.0GB\n \n ●●●●●●●○○○\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 175.75GB\n **🔹recv:** 118.55GB\n **🔹sent_packets:** 36547698\n **🔹recv_packets:** 185466554\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 60%\n\n ●●●●●●○○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 62.9%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 8.23GB\n **🔹used:** 33.32GB\n **🔹total:** 60.0GB\n \n ●●●●●●○○○○\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 118.55GB\n **🔹recv:** 168.65GB\n **🔹sent_packets:** 24786554\n **🔹recv_packets:** 156745865\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 30%\n\n ●●●○○○○○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 30.6%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 9.75GB\n **🔹used:** 36.54GB\n **🔹total:** 60.0GB\n \n ●●●●●●●●●●\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 168.65GB\n **🔹recv:** 128.35GB\n **🔹sent_packets:** 56565435\n **🔹recv_packets:** 1475823589\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 10%\n\n ●○○○○○○○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 10.2%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 10.20GB\n **🔹used:** 25.40GB\n **🔹total:** 60.0GB\n \n ●●●●●●○○○○\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 128.35GB\n **🔹recv:** 108.31GB\n **🔹sent_packets:** 54635686\n **🔹recv_packets:** 157865426\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 100%\n\n ●●●●●●●●●●\n\n **🔹cpu core**\n\n **🔹core_usage:** 100.0%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 5.25GB\n **🔹used:** 31.14GB\n **🔹total:** 60.0GB\n \n ●●●●●●●●●●\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 108.31GB\n **🔹recv:** 167.17GB\n **🔹sent_packets:** 84518799\n **🔹recv_packets:** 124575356\n\n\n**===================**\n", "**===================**\n **Server Details** \n**===================**\n\n\n**=>>> CPU <<<=**\n\n **🔹current_freq:** 2500.09MHz\n **🔹total_usage:** 70%\n\n ●●●●●●●○○○\n\n **🔹cpu core**\n\n **🔹core_usage:** 76.2%\n **🔹current_freq:** 2500.09MHz\n |██████████▉ |\n \n**=>>> RAM <<<=**\n\n **🔹free:** 8.01GB\n **🔹used:** 33.27GB\n **🔹total:** 60.0GB\n \n ●●●○○○○○○○\n\n\n**=>>> DISK <<<=**\n\n **🔹free:** 224.12GB\n **🔹used:** 131.84GB\n **🔹total:** 375.02GB\n **🔹usage:** 37.0%\n\n |████▍ |\n\n\n**=>>> NETWORK <<<=**\n\n **🔹sent:** 167.17GB\n **🔹recv:** 158.98GB\n **🔹sent_packets:** 36547698\n **🔹recv_packets:** 165455856\n\n\n**===================**\n", ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 11]) @borg.on(admin_cmd(pattern=f"hand$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 1 animation_ttl = range(0, 14) animation_chars = [ "👈", "👉", "☝️", "👆", "🖕", "👇", "✌️", "🤞", "🖖", "🤘", "🤙", "🖐️", "👌" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 14]) @borg.on(admin_cmd(pattern=f"gsg$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 1 animation_ttl = range(0, 13) animation_chars = [ "🔟", "9️⃣", "8️⃣", "7️⃣", "6️⃣", "5️⃣", "4️⃣", "3️⃣", "2️⃣", "1️⃣", "0️⃣", "🆘" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 13]) @borg.on(admin_cmd(pattern=r"theart$", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 0.3 animation_ttl = range(0, 54) animation_chars = [ "❤️", "🧡", "💛", "💚", "💙", "💜", "🖤", "💘", "💝", "❤️", "🧡", "💛", "💚", "💙", "💜", "🖤", "💘", "💝" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 18])
55.03876
781
0.406338
c74f1b750e0ef58e421a7c8b5c1ac411bce8f83e
2,584
py
Python
vk/bot_framework/dispatcher/handler.py
fossabot/vk.py
94d5c719eb8da6d778d2be208038c447971d5cff
[ "MIT" ]
null
null
null
vk/bot_framework/dispatcher/handler.py
fossabot/vk.py
94d5c719eb8da6d778d2be208038c447971d5cff
[ "MIT" ]
null
null
null
vk/bot_framework/dispatcher/handler.py
fossabot/vk.py
94d5c719eb8da6d778d2be208038c447971d5cff
[ "MIT" ]
null
null
null
import abc import asyncio import logging import typing from vk.bot_framework.dispatcher import data_ from vk.bot_framework.dispatcher.rule import BaseRule from vk.types.events.community.events_list import Event logger = logging.getLogger(__name__) class BaseHandler(abc.ABC): @property def event_type(self) -> Event: raise NotImplementedError() @property def handler(self) -> typing.Callable: raise NotImplementedError() @property def rules(self) -> typing.List[BaseRule]: raise NotImplementedError() @property def meta(self) -> dict: raise NotImplementedError() @meta.setter def meta(self, value): raise NotImplementedError() @abc.abstractmethod async def execute_handler(self, *args): """ Execute handler (after handler rules.) args - (event, data) """ class SkipHandler(Exception): """ Raise this when you want skip handlers. """ pass class Handler: def __init__( self, event_type: Event, handler: typing.Callable, rules: typing.List[BaseRule] ): """ :param event_type: type of event which this handler accepted :param handler: coroutine :param rules: list of rules which be executed """ self.event_type: Event = event_type self.handler: typing.Callable = handler self.rules: typing.List[BaseRule] = rules self._meta: typing.Dict[str, typing.Any] = {} @property def meta(self): return self._meta @meta.setter def meta(self, value: typing.Dict[str, typing.Any]): self._meta = value async def execute_handler(self, *args): """ Execute rules and handler :param args: :return: """ # args - (event, data) if self.rules: _execute = False for rule in self.rules: if not asyncio.iscoroutinefunction(rule) and not isinstance( rule, BaseRule ): result = rule(*args) else: result = await rule(*args) if not result: _execute = False break if isinstance(result, dict): args[1].update(result) data_.set(args[1]) _execute = True if _execute: await self.handler(*args) return True else: await self.handler(*args) return True
24.846154
87
0.566176
daae9923c4299e7e4b25b6125c3f59c5e1730ed8
7,671
py
Python
T4_trd_env.py
EY4L/Bitcoin-trading-bot
d57325e165ddb2731089cf0a600114617bff0d82
[ "MIT" ]
null
null
null
T4_trd_env.py
EY4L/Bitcoin-trading-bot
d57325e165ddb2731089cf0a600114617bff0d82
[ "MIT" ]
null
null
null
T4_trd_env.py
EY4L/Bitcoin-trading-bot
d57325e165ddb2731089cf0a600114617bff0d82
[ "MIT" ]
1
2021-11-21T15:47:44.000Z
2021-11-21T15:47:44.000Z
import gym from gym import spaces import pandas as pd import numpy as np import random import gym from gym import spaces import pandas as pd import numpy as np import random class trading_env(gym.Env): """Single Stock Trading Environment""" def __init__(self,df, init_capital=10000): #instance attributes self.df = df self.initial_capital = init_capital self.current_step = None #Porfolio Information self.no_stocks_bought = None self.no_stocks_sold = None self.portfolio_value = None self.current_stocks_held = None self.current_capital = None self.avg_cost = None self.buy_cost = None self.returns = None self.max_steps = None self.previous_portfolio_value = None #Values for normalising data self.max_stock_price = max(self.df["Close"]) self.max_volume = max(self.df["Volume_(BTC)"]) self.max_capital = 1000000 self.max_no_shares = 10000 def observation(self): #-6 the predefined lookback window # env_observations = np.array([self.df.loc[self.current_step-5:self.current_step,"Close"].values/self.max_stock_price, # self.df.loc[self.current_step-5:self.current_step,"Volume_(BTC)"].values/self.max_volume, # self.df.loc[self.current_step-5:self.current_step,"MACD_status"].values, # self.df.loc[self.current_step-5:self.current_step,"RSI_status"].values, # self.df.loc[self.current_step-5:self.current_step,"EMA_status"].values, # self.df.loc[self.current_step-5:self.current_step,"3D_return_norm"].values] # ) #Not required for Q-learning, only using 2 variables, combined_indicators & return_norm # obs = np.append(env_observations,[[ # self.current_capital/self.max_capital, # self.portfolio_value/self.max_capital, # self.returns/self.initial_capital, # not sure how to normalise returns since it can be a negative value # self.no_stocks_bought/self.max_no_shares, # self.no_stocks_sold/self.max_no_shares, # self.avg_cost/self.max_stock_price # ]],axis = 0) obs = np.array([self.df.loc[self.current_step,"3D_return_norm"], self.df.loc[self.current_step,"MACD_status"],self.df.loc[self.current_step,"RSI_status"],self.df.loc[self.current_step,"EMA_status"],self.df.loc[self.current_step,"Pred_status"]]) return obs def step(self,a): self.action(a) self.current_step += 1 if self.current_step > len(self.df.loc[:,"Open"].values): self.current_step = 0 # Sanity check ensuring that current step isn't greater than 6 steps ahead delay = self.current_step/self.max_steps reward = (self.portfolio_value - self.previous_portfolio_value)/self.previous_portfolio_value if self.current_step == len(self.df): self.done = True elif self.portfolio_value == 0: self.done = True obs = self.observation() return obs,float(reward), self.done def action(self,a): self.amount = 0 current_price = random.uniform(self.df.loc[self.current_step,"Open"],self.df.loc[self.current_step,"Close"]) #Buy at the low and sell high if self.df.loc[self.current_step,"3D_return"] < -0.19: self.amount = random.uniform(0.3,0.5) elif (self.df.loc[self.current_step,"3D_return"] > -0.19) & (self.df.loc[self.current_step,"3D_return"]<-0.02): self.amount = random.uniform(0.1,0.3) elif self.df.loc[self.current_step,"3D_return"] > 0.3: self.amount = random.uniform(0.3,0.5) elif (self.df.loc[self.current_step,"3D_return"] >0.1) & (self.df.loc[self.current_step,"3D_return"]<0.3): self.amount = random.uniform(0.1,0.3) action_taken = a if action_taken == 2: # Buy total_possible = self.current_capital/current_price amount_stocks_bought = total_possible current_cost = amount_stocks_bought * current_price self.buy_cost += current_cost self.no_stocks_bought += amount_stocks_bought self.current_stocks_held += amount_stocks_bought self.avg_cost = float(self.buy_cost) / float(self.current_stocks_held) self.current_capital -= current_cost #attemps to incentivise buying behaviour at prices lower than the average cost self.previous_portfolio_value = self.portfolio_value self.portfolio_value = self.current_capital + (self.current_stocks_held*current_price) elif action_taken <= 0: #Sell shares_sell = self.current_stocks_held profit = shares_sell * current_price self.no_stocks_sold += shares_sell self.current_stocks_held -= shares_sell self.current_capital += profit self.returns = profit - (shares_sell * self.avg_cost) self.buy_cost -= shares_sell * self.avg_cost self.previous_portfolio_value = self.portfolio_value self.portfolio_value = self.current_capital + (self.current_stocks_held*current_price) elif action_taken == 1: self.previous_portfolio_value = self.portfolio_value self.portfolio_value -= self.portfolio_value *0.1 #holding should only be considered beneficial if current price of all assets > average price of assets, besides that selling is better if self.current_capital > self.max_capital: self.max_capital = self.current_capital if self.current_stocks_held <= 0: self.avg_cost == 0 def reset(self): self.no_stocks_bought = 0.00000001 #to avoid double scalar problems self.no_stocks_sold = 0.0000001 #to avoid double scalar problems self.current_stocks_held = 0.000001 self.portfolio_value = self.initial_capital self.current_capital = self.initial_capital self.avg_cost = 0 self.returns = 0 self.max_steps = len(self.df) self.current_step = 0 self.buy_cost = 0 self.previous_portfolio_value = 0 self.done = False return self.observation() def render(self): current_price = random.uniform(self.df.loc[self.current_step, "Open"],self.df.loc[self.current_step,"Close"]) self.portfolio_value = self.current_capital + (self.current_stocks_held*current_price) return_perc = (self.portfolio_value-self.initial_capital)/self.initial_capital * 100 print(f"Current Porfolio Value:{self.portfolio_value}; Available Capital: {self.current_capital}; Current Stocks Held: {self.current_stocks_held}") print(f"No. Stocks Bought:{self.no_stocks_bought}; No. Stocks Sold:{self.no_stocks_sold}; Average Cost:{self.avg_cost} ") print(f"Return:{return_perc}%; {self.portfolio_value-self.initial_capital}") print(f"Termination date: {self.df.loc[self.current_step,'Timestamp']}") def reward_output(self): return_value = self.portfolio_value-self.initial_capital return_perc = (self.portfolio_value/self.initial_capital) * 100 return return_perc, return_value, self.no_stocks_bought,self.no_stocks_sold
47.645963
252
0.639421
2c4b93c40bbcb708ed1954792251763307ebe751
786
py
Python
rest_service/client_rest.py
mgzeke0/movie_classifier
df24e29e8a3c3f04e77a13a03d301f4daa6b8385
[ "Apache-2.0" ]
null
null
null
rest_service/client_rest.py
mgzeke0/movie_classifier
df24e29e8a3c3f04e77a13a03d301f4daa6b8385
[ "Apache-2.0" ]
5
2020-09-25T21:16:41.000Z
2022-02-10T00:38:07.000Z
rest_service/client_rest.py
mgzeke0/movie_classifier
df24e29e8a3c3f04e77a13a03d301f4daa6b8385
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import json import traceback import requests from config import PORT def test(): """ Utility function to debug FastAPI service :return: """ url = f'http://127.0.0.1:{PORT}/predict_genre/' while True: title = input('Insert movie title: ') overview = input('Insert movie description: ') if title in {'q', 'quit'} or overview in {'q', 'quit'}: break try: input_obj = { 'title': [title], 'overview': [overview], } res = requests.post(url, json=input_obj) result = json.loads(res.content) print(result) except Exception: traceback.print_exc() if __name__ == '__main__': test()
22.457143
63
0.52799
5e64adce2d9f7dffa22395236fbf1f9e486cc783
3,177
py
Python
airflow/providers/datadog/sensors/datadog.py
dorranh/airflow
1a9a2cadcf8606cfcb729d1323dd33dfacc64633
[ "Apache-2.0" ]
null
null
null
airflow/providers/datadog/sensors/datadog.py
dorranh/airflow
1a9a2cadcf8606cfcb729d1323dd33dfacc64633
[ "Apache-2.0" ]
1
2020-05-24T15:53:39.000Z
2020-05-24T15:53:39.000Z
airflow/providers/datadog/sensors/datadog.py
dorranh/airflow
1a9a2cadcf8606cfcb729d1323dd33dfacc64633
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from datadog import api from airflow.exceptions import AirflowException from airflow.providers.datadog.hooks.datadog import DatadogHook from airflow.sensors.base_sensor_operator import BaseSensorOperator from airflow.utils.decorators import apply_defaults class DatadogSensor(BaseSensorOperator): """ A sensor to listen, with a filter, to datadog event streams and determine if some event was emitted. Depends on the datadog API, which has to be deployed on the same server where Airflow runs. :param datadog_conn_id: The connection to datadog, containing metadata for api keys. :param datadog_conn_id: str """ ui_color = '#66c3dd' @apply_defaults def __init__( self, datadog_conn_id='datadog_default', from_seconds_ago=3600, up_to_seconds_from_now=0, priority=None, sources=None, tags=None, response_check=None, *args, **kwargs): super().__init__(*args, **kwargs) self.datadog_conn_id = datadog_conn_id self.from_seconds_ago = from_seconds_ago self.up_to_seconds_from_now = up_to_seconds_from_now self.priority = priority self.sources = sources self.tags = tags self.response_check = response_check def poke(self, context): # This instantiates the hook, but doesn't need it further, # because the API authenticates globally (unfortunately), # but for airflow this shouldn't matter too much, because each # task instance runs in its own process anyway. DatadogHook(datadog_conn_id=self.datadog_conn_id) response = api.Event.query( start=self.from_seconds_ago, end=self.up_to_seconds_from_now, priority=self.priority, sources=self.sources, tags=self.tags) if isinstance(response, dict) and response.get('status', 'ok') != 'ok': self.log.error("Unexpected Datadog result: %s", response) raise AirflowException("Datadog returned unexpected result") if self.response_check: # run content check on response return self.response_check(response) # If no check was inserted, assume any event that matched yields true. return len(response) > 0
37.376471
88
0.687441
dcf03fe5aa03bde678f2ed82914789262f44883a
9,009
py
Python
nova/tests/unit/cells/test_cells_weights.py
lixiaoy1/nova
357b8b38e88300948bb2e07d1bbaabd1e9d7b60e
[ "Apache-2.0" ]
2
2021-10-11T04:56:25.000Z
2022-02-16T08:49:29.000Z
nova/tests/unit/cells/test_cells_weights.py
woraser/nova
fc3890667e4971e3f0f35ac921c2a6c25f72adec
[ "Apache-2.0" ]
132
2017-03-27T11:31:52.000Z
2022-03-30T08:45:02.000Z
nova/tests/unit/cells/test_cells_weights.py
woraser/nova
fc3890667e4971e3f0f35ac921c2a6c25f72adec
[ "Apache-2.0" ]
8
2017-03-27T07:50:38.000Z
2020-02-14T16:55:56.000Z
# Copyright (c) 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for testing the cells weight algorithms. Cells with higher weights should be given priority for new builds. """ import datetime from oslo_utils import fixture as utils_fixture from oslo_utils import timeutils from nova.cells import state from nova.cells import weights from nova import test class FakeCellState(state.CellState): def __init__(self, cell_name): super(FakeCellState, self).__init__(cell_name) self.capacities['ram_free'] = {'total_mb': 0, 'units_by_mb': {}} self.db_info = {} def _update_ram_free(self, *args): ram_free = self.capacities['ram_free'] for ram_size, units in args: ram_free['total_mb'] += units * ram_size ram_free['units_by_mb'][str(ram_size)] = units def _get_fake_cells(): cell1 = FakeCellState('cell1') cell1._update_ram_free((512, 1), (1024, 4), (2048, 3)) cell1.db_info['weight_offset'] = -200.0 cell2 = FakeCellState('cell2') cell2._update_ram_free((512, 2), (1024, 3), (2048, 4)) cell2.db_info['weight_offset'] = -200.1 cell3 = FakeCellState('cell3') cell3._update_ram_free((512, 3), (1024, 2), (2048, 1)) cell3.db_info['weight_offset'] = 400.0 cell4 = FakeCellState('cell4') cell4._update_ram_free((512, 4), (1024, 1), (2048, 2)) cell4.db_info['weight_offset'] = 300.0 return [cell1, cell2, cell3, cell4] class CellsWeightsTestCase(test.NoDBTestCase): """Makes sure the proper weighers are in the directory.""" def test_all_weighers(self): weighers = weights.all_weighers() # Check at least a couple that we expect are there self.assertGreaterEqual(len(weighers), 2) class_names = [cls.__name__ for cls in weighers] self.assertIn('WeightOffsetWeigher', class_names) self.assertIn('RamByInstanceTypeWeigher', class_names) class _WeigherTestClass(test.NoDBTestCase): """Base class for testing individual weigher plugins.""" weigher_cls_name = None def setUp(self): super(_WeigherTestClass, self).setUp() self.weight_handler = weights.CellWeightHandler() weigher_classes = self.weight_handler.get_matching_classes( [self.weigher_cls_name]) self.weighers = [cls() for cls in weigher_classes] def _get_weighed_cells(self, cells, weight_properties): return self.weight_handler.get_weighed_objects(self.weighers, cells, weight_properties) class RAMByInstanceTypeWeigherTestClass(_WeigherTestClass): weigher_cls_name = ('nova.cells.weights.ram_by_instance_type.' 'RamByInstanceTypeWeigher') def test_default_spreading(self): """Test that cells with more ram available return a higher weight.""" cells = _get_fake_cells() # Simulate building a new 512MB instance. instance_type = {'memory_mb': 512} weight_properties = {'request_spec': {'instance_type': instance_type}} weighed_cells = self._get_weighed_cells(cells, weight_properties) self.assertEqual(4, len(weighed_cells)) resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] expected_cells = [cells[3], cells[2], cells[1], cells[0]] self.assertEqual(expected_cells, resulting_cells) # Simulate building a new 1024MB instance. instance_type = {'memory_mb': 1024} weight_properties = {'request_spec': {'instance_type': instance_type}} weighed_cells = self._get_weighed_cells(cells, weight_properties) self.assertEqual(4, len(weighed_cells)) resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] expected_cells = [cells[0], cells[1], cells[2], cells[3]] self.assertEqual(expected_cells, resulting_cells) # Simulate building a new 2048MB instance. instance_type = {'memory_mb': 2048} weight_properties = {'request_spec': {'instance_type': instance_type}} weighed_cells = self._get_weighed_cells(cells, weight_properties) self.assertEqual(4, len(weighed_cells)) resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] expected_cells = [cells[1], cells[0], cells[3], cells[2]] self.assertEqual(expected_cells, resulting_cells) def test_negative_multiplier(self): """Test that cells with less ram available return a higher weight.""" self.flags(ram_weight_multiplier=-1.0, group='cells') cells = _get_fake_cells() # Simulate building a new 512MB instance. instance_type = {'memory_mb': 512} weight_properties = {'request_spec': {'instance_type': instance_type}} weighed_cells = self._get_weighed_cells(cells, weight_properties) self.assertEqual(4, len(weighed_cells)) resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] expected_cells = [cells[0], cells[1], cells[2], cells[3]] self.assertEqual(expected_cells, resulting_cells) # Simulate building a new 1024MB instance. instance_type = {'memory_mb': 1024} weight_properties = {'request_spec': {'instance_type': instance_type}} weighed_cells = self._get_weighed_cells(cells, weight_properties) self.assertEqual(4, len(weighed_cells)) resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] expected_cells = [cells[3], cells[2], cells[1], cells[0]] self.assertEqual(expected_cells, resulting_cells) # Simulate building a new 2048MB instance. instance_type = {'memory_mb': 2048} weight_properties = {'request_spec': {'instance_type': instance_type}} weighed_cells = self._get_weighed_cells(cells, weight_properties) self.assertEqual(4, len(weighed_cells)) resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] expected_cells = [cells[2], cells[3], cells[0], cells[1]] self.assertEqual(expected_cells, resulting_cells) class WeightOffsetWeigherTestClass(_WeigherTestClass): """Test the RAMWeigher class.""" weigher_cls_name = 'nova.cells.weights.weight_offset.WeightOffsetWeigher' def test_weight_offset(self): """Test that cells with higher weight_offsets return higher weights. """ cells = _get_fake_cells() weighed_cells = self._get_weighed_cells(cells, {}) self.assertEqual(4, len(weighed_cells)) expected_cells = [cells[2], cells[3], cells[0], cells[1]] resulting_cells = [weighed_cell.obj for weighed_cell in weighed_cells] self.assertEqual(expected_cells, resulting_cells) class MuteWeigherTestClass(_WeigherTestClass): weigher_cls_name = 'nova.cells.weights.mute_child.MuteChildWeigher' def setUp(self): super(MuteWeigherTestClass, self).setUp() self.flags(mute_weight_multiplier=-10.0, mute_child_interval=100, group='cells') self.now = timeutils.utcnow() self.useFixture(utils_fixture.TimeFixture(self.now)) self.cells = _get_fake_cells() for cell in self.cells: cell.last_seen = self.now def test_non_mute(self): weight_properties = {} weighed_cells = self._get_weighed_cells(self.cells, weight_properties) self.assertEqual(4, len(weighed_cells)) for weighed_cell in weighed_cells: self.assertEqual(0, weighed_cell.weight) def test_mutes(self): # make 2 of them mute: self.cells[0].last_seen = (self.cells[0].last_seen - datetime.timedelta(seconds=200)) self.cells[1].last_seen = (self.cells[1].last_seen - datetime.timedelta(seconds=200)) weight_properties = {} weighed_cells = self._get_weighed_cells(self.cells, weight_properties) self.assertEqual(4, len(weighed_cells)) for i in range(2): weighed_cell = weighed_cells.pop(0) self.assertEqual(0, weighed_cell.weight) self.assertIn(weighed_cell.obj.name, ['cell3', 'cell4']) for i in range(2): weighed_cell = weighed_cells.pop(0) self.assertEqual(-10.0, weighed_cell.weight) self.assertIn(weighed_cell.obj.name, ['cell1', 'cell2'])
41.516129
78
0.676768
ce1bf201a160fdb55900343f242bdac3cbfd2131
1,019
py
Python
sample_app/migrations/0001_initial.py
Draft2Digital/react-in-django
09906fd69b5ce574d3cb798e4ea1f6a3334f9dfb
[ "MIT" ]
null
null
null
sample_app/migrations/0001_initial.py
Draft2Digital/react-in-django
09906fd69b5ce574d3cb798e4ea1f6a3334f9dfb
[ "MIT" ]
null
null
null
sample_app/migrations/0001_initial.py
Draft2Digital/react-in-django
09906fd69b5ce574d3cb798e4ea1f6a3334f9dfb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Author', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('first_name', models.TextField()), ('last_name', models.TextField()), ('description', models.TextField()), ], ), migrations.CreateModel( name='Book', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.TextField()), ('copyright', models.DateField()), ('description', models.TextField()), ('author', models.ForeignKey(to='sample_app.Author')), ], ), ]
30.878788
114
0.533857
04f83863146f3e50ce4964fcf0e8e9dd5376764b
11,882
py
Python
src/azure-cli/azure/cli/command_modules/storage/_client_factory.py
chef-davin/azure-cli
2ebd33d5f69a27d07404cc48cf475d5fbdda6378
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/storage/_client_factory.py
chef-davin/azure-cli
2ebd33d5f69a27d07404cc48cf475d5fbdda6378
[ "MIT" ]
1
2021-06-02T04:24:22.000Z
2021-06-02T04:24:22.000Z
src/azure-cli/azure/cli/command_modules/storage/_client_factory.py
chef-davin/azure-cli
2ebd33d5f69a27d07404cc48cf475d5fbdda6378
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands.client_factory import get_mgmt_service_client, get_data_service_client from azure.cli.core.profiles import ResourceType, get_sdk from azure.cli.command_modules.storage.sdkutil import get_table_data_type MISSING_CREDENTIALS_ERROR_MESSAGE = """ Missing credentials to access storage service. The following variations are accepted: (1) account name and key (--account-name and --account-key options or set AZURE_STORAGE_ACCOUNT and AZURE_STORAGE_KEY environment variables) (2) account name and SAS token (--sas-token option used with either the --account-name option or AZURE_STORAGE_ACCOUNT environment variable) (3) account name (--account-name option or AZURE_STORAGE_ACCOUNT environment variable; this will make calls to query for a storage account key using login credentials) (4) connection string (--connection-string option or set AZURE_STORAGE_CONNECTION_STRING environment variable); some shells will require quoting to preserve literal character interpretation. """ def get_storage_data_service_client(cli_ctx, service, name=None, key=None, connection_string=None, sas_token=None, socket_timeout=None, token_credential=None): return get_data_service_client(cli_ctx, service, name, key, connection_string, sas_token, socket_timeout=socket_timeout, token_credential=token_credential, endpoint_suffix=cli_ctx.cloud.suffixes.storage_endpoint) def generic_data_service_factory(cli_ctx, service, name=None, key=None, connection_string=None, sas_token=None, socket_timeout=None, token_credential=None): try: return get_storage_data_service_client(cli_ctx, service, name, key, connection_string, sas_token, socket_timeout, token_credential) except ValueError as val_exception: _ERROR_STORAGE_MISSING_INFO = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'common._error#_ERROR_STORAGE_MISSING_INFO') message = str(val_exception) if message == _ERROR_STORAGE_MISSING_INFO: message = MISSING_CREDENTIALS_ERROR_MESSAGE from knack.util import CLIError raise CLIError(message) def storage_client_factory(cli_ctx, **_): return get_mgmt_service_client(cli_ctx, ResourceType.MGMT_STORAGE) def file_data_service_factory(cli_ctx, kwargs): t_file_svc = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'file#FileService') return generic_data_service_factory(cli_ctx, t_file_svc, kwargs.pop('account_name', None), kwargs.pop('account_key', None), connection_string=kwargs.pop('connection_string', None), sas_token=kwargs.pop('sas_token', None)) def page_blob_service_factory(cli_ctx, kwargs): t_page_blob_service = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'blob.pageblobservice#PageBlobService') return generic_data_service_factory(cli_ctx, t_page_blob_service, kwargs.pop('account_name', None), kwargs.pop('account_key', None), connection_string=kwargs.pop('connection_string', None), sas_token=kwargs.pop('sas_token', None), token_credential=kwargs.pop('token_credential', None)) def blob_data_service_factory(cli_ctx, kwargs): if 'encryption_scope' in kwargs and kwargs['encryption_scope']: return cf_blob_client(cli_ctx, kwargs) from azure.cli.command_modules.storage.sdkutil import get_blob_service_by_type blob_type = kwargs.get('blob_type') blob_service = get_blob_service_by_type(cli_ctx, blob_type) or get_blob_service_by_type(cli_ctx, 'block') return generic_data_service_factory(cli_ctx, blob_service, kwargs.pop('account_name', None), kwargs.pop('account_key', None), connection_string=kwargs.pop('connection_string', None), sas_token=kwargs.pop('sas_token', None), socket_timeout=kwargs.pop('socket_timeout', None), token_credential=kwargs.pop('token_credential', None)) def table_data_service_factory(cli_ctx, kwargs): return generic_data_service_factory(cli_ctx, get_table_data_type(cli_ctx, 'table', 'TableService'), kwargs.pop('account_name', None), kwargs.pop('account_key', None), connection_string=kwargs.pop('connection_string', None), sas_token=kwargs.pop('sas_token', None)) def queue_data_service_factory(cli_ctx, kwargs): t_queue_service = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'queue#QueueService') return generic_data_service_factory( cli_ctx, t_queue_service, kwargs.pop('account_name', None), kwargs.pop('account_key', None), connection_string=kwargs.pop('connection_string', None), sas_token=kwargs.pop('sas_token', None), token_credential=kwargs.pop('token_credential', None)) def cloud_storage_account_service_factory(cli_ctx, kwargs): t_cloud_storage_account = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'common#CloudStorageAccount') account_name = kwargs.pop('account_name', None) account_key = kwargs.pop('account_key', None) sas_token = kwargs.pop('sas_token', None) kwargs.pop('connection_string', None) return t_cloud_storage_account(account_name, account_key, sas_token) def multi_service_properties_factory(cli_ctx, kwargs): """Create multiple data services properties instance based on the services option""" from .services_wrapper import ServiceProperties t_base_blob_service, t_file_service, t_queue_service, = get_sdk(cli_ctx, ResourceType.DATA_STORAGE, 'blob.baseblobservice#BaseBlobService', 'file#FileService', 'queue#QueueService') t_table_service = get_table_data_type(cli_ctx, 'table', 'TableService') account_name = kwargs.pop('account_name', None) account_key = kwargs.pop('account_key', None) connection_string = kwargs.pop('connection_string', None) sas_token = kwargs.pop('sas_token', None) services = kwargs.pop('services', []) def get_creator(name, service_type): return lambda: ServiceProperties(cli_ctx, name, service_type, account_name, account_key, connection_string, sas_token) creators = {'b': get_creator('blob', t_base_blob_service), 'f': get_creator('file', t_file_service), 'q': get_creator('queue', t_queue_service), 't': get_creator('table', t_table_service)} return [creators[s]() for s in services] def cf_sa(cli_ctx, _): return storage_client_factory(cli_ctx).storage_accounts def cf_sa_for_keys(cli_ctx, _): from knack.log import get_logger logger = get_logger(__name__) logger.debug('Disable HTTP logging to avoid having storage keys in debug logs') client = storage_client_factory(cli_ctx) client.config.enable_http_logger = False return client.storage_accounts def cf_mgmt_policy(cli_ctx, _): return storage_client_factory(cli_ctx).management_policies def cf_blob_container_mgmt(cli_ctx, _): return storage_client_factory(cli_ctx).blob_containers def cf_mgmt_blob_services(cli_ctx, _): return storage_client_factory(cli_ctx).blob_services def cf_mgmt_file_services(cli_ctx, _): return storage_client_factory(cli_ctx).file_services def cf_mgmt_file_shares(cli_ctx, _): return storage_client_factory(cli_ctx).file_shares def cf_blob_data_gen_update(cli_ctx, kwargs): return blob_data_service_factory(cli_ctx, kwargs.copy()) def cf_private_link(cli_ctx, _): return storage_client_factory(cli_ctx).private_link_resources def cf_private_endpoint(cli_ctx, _): return storage_client_factory(cli_ctx).private_endpoint_connections def cf_mgmt_encryption_scope(cli_ctx, _): return storage_client_factory(cli_ctx).encryption_scopes def get_account_url(cli_ctx, account_name, service): from knack.util import CLIError if account_name is None: raise CLIError("Please provide storage account name or connection string.") storage_endpoint = cli_ctx.cloud.suffixes.storage_endpoint return "https://{}.{}.{}".format(account_name, service, storage_endpoint) def cf_blob_service(cli_ctx, kwargs): from knack.util import CLIError t_blob_service = get_sdk(cli_ctx, ResourceType.DATA_STORAGE_BLOB, '_blob_service_client#BlobServiceClient') connection_string = kwargs.pop('connection_string', None) account_name = kwargs.pop('account_name', None) account_key = kwargs.pop('account_key', None) token_credential = kwargs.pop('token_credential', None) sas_token = kwargs.pop('sas_token', None) if connection_string: return t_blob_service.from_connection_string(conn_str=connection_string) account_url = get_account_url(cli_ctx, account_name=account_name, service='blob') credential = account_key or sas_token or token_credential if account_url and credential: return t_blob_service(account_url=account_url, credential=credential) raise CLIError("Please provide valid connection string, or account name with account key, " "sas token or login auth mode.") def cf_blob_client(cli_ctx, kwargs): return cf_blob_service(cli_ctx, kwargs).get_blob_client(container=kwargs['container_name'], blob=kwargs['blob_name']) def cf_adls_service(cli_ctx, kwargs): t_adls_service = get_sdk(cli_ctx, ResourceType.DATA_STORAGE_FILEDATALAKE, '_data_lake_service_client#DataLakeServiceClient') connection_string = kwargs.pop('connection_string', None) account_key = kwargs.pop('account_key', None) token_credential = kwargs.pop('token_credential', None) sas_token = kwargs.pop('sas_token', None) if connection_string: return t_adls_service.from_connection_string(connection_string=connection_string) account_url = get_account_url(cli_ctx, account_name=kwargs.pop('account_name', None), service='dfs') credential = account_key or sas_token or token_credential if account_url and credential: return t_adls_service(account_url=account_url, credential=credential) return None def cf_adls_file_system(cli_ctx, kwargs): return cf_adls_service(cli_ctx, kwargs).get_file_system_client(file_system=kwargs.pop('file_system_name')) def cf_adls_directory(cli_ctx, kwargs): return cf_adls_file_system(cli_ctx, kwargs).get_directory_client(directory=kwargs.pop('directory_path')) def cf_adls_file(cli_ctx, kwargs): return cf_adls_service(cli_ctx, kwargs).get_file_client(file_system=kwargs.pop('file_system_name', None), file_path=kwargs.pop('path', None))
47.338645
115
0.680693
1b9c1967527aa13f2b84d821cdb771ccef93c933
62,656
py
Python
src/genie/libs/parser/iosxr/show_platform.py
miuvlad/genieparser
60b1151e3c67c6b55d75e30359d0bf52825efad8
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxr/show_platform.py
miuvlad/genieparser
60b1151e3c67c6b55d75e30359d0bf52825efad8
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxr/show_platform.py
miuvlad/genieparser
60b1151e3c67c6b55d75e30359d0bf52825efad8
[ "Apache-2.0" ]
null
null
null
''' show_platform.py IOSXR parsers for the following show commands: * 'show version' * 'show sdr detail' * 'show platform' * 'show platform vm' * 'show install active summary' * 'show install inactive summary' * 'show install commit summary' * 'show inventory' * 'admin show diag chassis' * 'show redundancy summary' * 'show redundancy' * 'dir' ''' # Python import re import xmltodict # Metaparser from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Schema, Any, Optional, Or, And,\ Default, Use def regexp(expression): def match(value): if re.match(expression,value): return value else: raise TypeError("Value '%s' doesnt match regex '%s'" %(value,expression)) return match # ========================= # Parser for 'show version' # ========================= class ShowVersionSchema(MetaParser): """Schema for show version""" schema = {'operating_system': str, 'software_version': str, 'uptime': str, Optional('image'): str, 'device_family': str, Optional('processor'): str, Optional('processor_memory_bytes'): str, Optional('chassis_detail'): str, Optional('config_register'): str, Optional('rp_config_register'): str, Optional('main_mem'): str, } class ShowVersion(ShowVersionSchema): """Parser for show version""" cli_command = 'show version' exclude = ['seconds', 'minutes', 'hours', 'uptime'] def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars show_version_dict = {} # regex patterns # Cisco IOS XR Software, Version 6.3.1.15I # Cisco IOS XR Software, Version 6.1.4.10I[Default] p1 = re.compile(r'\s*Cisco +IOS +XR +Software, +Version' ' +(?P<software_version>[A-Z0-9\.]+)(?:\[Default\])?$') # System uptime is 1 week, 1 day, 5 hours, 47 minutes # PE1 uptime is 3 hours, 11 minutes p2 = re.compile(r'\s*.* +uptime +is +(?P<uptime>[a-zA-Z0-9\s\,]+)$') # System image file is "disk0:asr9k-os-mbi-6.1.4.10I/0x100305/mbiasr9k-rsp3.vm" p3 = re.compile(r'\s*System +image +file +is' ' +\"(?P<image>[a-zA-Z0-9\:\/\.\-]+)\"$') # cisco IOS-XRv 9000 () processor p4 = re.compile(r'\s*cisco +(?P<device_family>[a-zA-Z0-9\-\s]+)' r' +\(\) +processor$') # cisco ASR9K Series (Intel 686 F6M14S4) processor with 6291456K bytes of memory. # cisco CRS-16/S-B (Intel 686 F6M14S4) processor with 12582912K bytes of memory. p5 = re.compile(r'^cisco +(?P<device_family>[a-zA-Z0-9\/\-\s]+)' r'(?:( +Series))? +\((?P<processor>[a-zA-Z0-9\s]+)\)' r' +processor +with +(?P<processor_memory_bytes>[0-9A-Z]+)' r' +bytes +of +memory.$') # Configuration register on node 0/RSP0/CPU0 is 0x1922 p6 = re.compile(r'\s*Configuration +register +on +node' ' +(?P<node>[A-Z0-9\/]+) +is' ' +(?P<config_register>[x0-9]+)$') # ASR 9006 4 Line Card Slot Chassis with V2 AC PEM p7 = re.compile(r'\s*.*Chassis.*$') for line in out.splitlines(): line = line.strip() m = p1.match(line) if m: show_version_dict['operating_system'] = 'IOSXR' show_version_dict['software_version'] = \ str(m.groupdict()['software_version']) continue m = p2.match(line) if m: show_version_dict['uptime'] = str(m.groupdict()['uptime']) continue m = p3.match(line) if m: show_version_dict['image'] = str(m.groupdict()['image']) continue m = p4.match(line) if m: show_version_dict['device_family'] = \ str(m.groupdict()['device_family']) continue m = p5.match(line) if m: show_version_dict['device_family'] = \ m.groupdict()['device_family'] show_version_dict['processor'] = m.groupdict()['processor'] show_version_dict['processor_memory_bytes'] = \ m.groupdict()['processor_memory_bytes'] show_version_dict['main_mem'] = line continue m = p6.match(line) if m: show_version_dict['config_register'] = \ m.groupdict()['config_register'] node = str(m.groupdict()['node']) if re.search('CPU0', node): show_version_dict['rp_config_register'] = \ str(m.groupdict()['config_register']) continue m = p7.match(line) if m: show_version_dict['chassis_detail'] = str(line.strip()) continue return show_version_dict # ============================ # Parser for 'show sdr detail' # ============================ class ShowSdrDetailSchema(MetaParser): """Schema for show sdr detail""" schema = { 'sdr_id': {Any(): {'sdr_name': str, Optional('dsdrsc_node'): str, Optional('dsdrsc_partner_node'): str, 'primary_node1': str, 'primary_node2': str, Optional('mac_address'): str, 'membership': {Any(): {'type': str, 'node_status': str, Optional('red_state'): str, 'partner_name': str, }, }, }, }, } class ShowSdrDetail(ShowSdrDetailSchema): """Parser for show sdr detail""" cli_command = 'show sdr detail' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars sdr_detail = {} for line in out.splitlines(): line = line.rstrip() # SDR_id : 0 # SDR ID : 2 p1 = re.compile(r'\s*(SDR_id|SDR ID) *: +(?P<sdr_id>[0-9]+)$') m = p1.match(line) if m: if 'sdr_id' not in sdr_detail: sdr_detail['sdr_id'] = {} sdr_id = int(m.groupdict()['sdr_id']) if sdr_id not in sdr_detail['sdr_id']: sdr_detail['sdr_id'][sdr_id] = {} continue # SDR_name : Owner # SDR name : default-sdr p2 = re.compile(r'\s*(SDR_name|SDR name) *:' ' +(?P<sdr_name>[a-zA-Z\-]+)$') m = p2.match(line) if m: sdr_detail['sdr_id'][sdr_id]['sdr_name'] = \ str(m.groupdict()['sdr_name']) continue # dSDRsc node : 0/0/CPU0 p3 = re.compile(r'\s*dSDRsc +node *:' ' +(?P<dsdrsc_node>[a-zA-Z0-9\/]+)$') m = p3.match(line) if m: sdr_detail['sdr_id'][sdr_id]['dsdrsc_node'] \ = str(m.groupdict()['dsdrsc_node']) continue # dSDRsc partner node : NONE p4 = re.compile(r'\s*dSDRsc +partner +node *:' ' +(?P<dsdrsc_partner_node>[a-zA-Z0-9\/]+)$') m = p4.match(line) if m: sdr_detail['sdr_id'][sdr_id]['dsdrsc_partner_node'] = \ str(m.groupdict()['dsdrsc_partner_node']) continue # primary node1 : 0/0/CPU0 # SDR lead (Primary) : 0x1000 p5 = re.compile(r'\s*(primary +node1|SDR +lead +\(Primary\)) *:' ' +(?P<primary_node1>[a-zA-Z0-9\/]+)$') m = p5.match(line) if m: sdr_detail['sdr_id'][sdr_id]['primary_node1'] = \ str(m.groupdict()['primary_node1']) continue # primary node2 : NONE # SDR lead (Backup) : 0xffffffff p6 = re.compile(r'\s*(primary +node2|SDR +lead +\(Backup\)) *:' ' +(?P<primary_node2>[a-zA-Z0-9\/]+)$') m = p6.match(line) if m: sdr_detail['sdr_id'][sdr_id]['primary_node2'] = \ str(m.groupdict()['primary_node2']) continue # mac addr : 025e.eaff.fb57 p7 = re.compile(r'\s*mac +addr *:' ' +(?P<mac_address>[a-zA-Z0-9\.]+)$') m = p7.match(line) if m: sdr_detail['sdr_id'][sdr_id]['mac_address'] = \ str(m.groupdict()['mac_address']) continue # RP 0/0/CPU0 IOS XR RUN Primary NONE # RP 0/RSP0/CPU0 IOS XR RUN Primary 0/RSP1/CPU0 # RP 0/RSP0/CPU0 IOS XR RUN Primary 0/RSP1/CPU0 p8 = re.compile(r'\s*(?P<type>[a-zA-Z0-9\-]+)' ' +(?P<node_name>[a-zA-Z0-9\/]+)' ' +(?P<node_status>[IOS XR RUN|OPERATIONAL]+)' ' +(?P<red_state>[a-zA-Z\/\-]+)?' ' +(?P<partner_name>[a-zA-Z0-9\/]+)$') m = p8.match(line) if m: if 'membership' not in sdr_detail['sdr_id'][sdr_id]: sdr_detail['sdr_id'][sdr_id]['membership'] = {} node_name = str(m.groupdict()['node_name']).strip() if node_name not in sdr_detail['sdr_id'][sdr_id]['membership']: sdr_detail['sdr_id'][sdr_id]['membership'][node_name] = {} sdr_detail['sdr_id'][sdr_id]['membership'][node_name]\ ['type'] = str(m.groupdict()['type']).strip() sdr_detail['sdr_id'][sdr_id]['membership'][node_name]\ ['node_status'] = \ str(m.groupdict()['node_status']).strip() sdr_detail['sdr_id'][sdr_id]['membership'][node_name]\ ['red_state'] = str(m.groupdict()['red_state']).strip() sdr_detail['sdr_id'][sdr_id]['membership'][node_name]\ ['partner_name'] = \ str(m.groupdict()['partner_name']).strip() continue return sdr_detail # ========================== # Parser for 'show platform' # ========================== class ShowPlatformSchema(MetaParser): """Schema for show platform""" schema = { 'slot': {Any(): {Any(): {'name': str, 'state': str, 'config_state': str, 'full_slot': str, Optional('redundancy_state'): str, Optional('plim'): str, Optional('subslot'): {Optional(Any()): {Optional('name'): str, Optional('state'): str, Optional('config_state'): str, Optional('redundancy_state'): str, }, }, }, }, }, } class ShowPlatform(ShowPlatformSchema): """Parser for show platform""" cli_command = 'show platform' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars show_platform = {} daughtercard_dict = {} for line in out.splitlines(): entry_is_daughter = False line = line.rstrip() # 0/RSP0/CPU0 A9K-RSP440-TR(Active) IOS XR RUN PWR,NSHUT,MON # 0/0/CPU0 RP(Active) N/A IOS XR RUN PWR,NSHUT,MON p1 = re.compile(r'\s*(?P<node>[a-zA-Z0-9\/]+)' ' +(?P<name>[a-zA-Z0-9\-]+)' '(?:\((?P<redundancy_state>[a-zA-Z]+)\))?' '(?: +(?P<plim>[a-zA-Z\/]+))?' ' +(?P<state>(IOS XR RUN|OK)+)' ' +(?P<config_state>[a-zA-Z\,]+)$') m = p1.match(line) if m: # Parse regexp node = str(m.groupdict()['node']).strip() name = str(m.groupdict()['name']).strip() redundancy_state = str(m.groupdict()['redundancy_state']).strip() plim = str(m.groupdict()['plim']).strip() state = str(m.groupdict()['state']).strip() config_state = str(m.groupdict()['config_state']).strip() # Parse node for rack, slot, subslot details parse_node = re.compile(r'\s*(?P<rack>[0-9]+)' '\/(?P<slot>[0-9A-Z]+)' '\/(?P<last_entry>[0-9A-Z]+)' '$').match(node) rack = str(parse_node.groupdict()['rack']) slot = rack + '/' + str(parse_node.groupdict()['slot']) last_entry = str(parse_node.groupdict()['last_entry']) # Check if subslot/daughtercard parse_subslot = re.compile(r'.*(0\/0\/[0-9]+).*').match(node) if parse_subslot and last_entry.isdigit(): # This entry is a daughtercard/subslot entry_is_daughter = True subslot = last_entry # Determine if slot is RP/LineCard/OtherCard parse_rp = re.compile(r'.*(RSP|RP).*').match(slot) parse_lc = re.compile(r'.*(0\/0).*').match(slot) parse_name = re.compile(r'.*(RSP|RP).*').match(name) if parse_rp or parse_name: slot_type = 'rp' elif parse_lc: slot_type = 'lc' else: slot_type = 'oc' # Set everything if 'slot' not in show_platform: show_platform['slot'] = {} if slot_type not in show_platform['slot']: show_platform['slot'][slot_type] = {} if slot not in show_platform['slot'][slot_type]: show_platform['slot'][slot_type][slot] = {} show_platform['slot'][slot_type][slot]['name'] = name show_platform['slot'][slot_type][slot]['full_slot'] = node show_platform['slot'][slot_type][slot]['state'] = state show_platform['slot'][slot_type][slot]['config_state'] = config_state if redundancy_state != 'None': show_platform['slot'][slot_type][slot]['redundancy_state'] = redundancy_state if plim != 'None': show_platform['slot'][slot_type][slot]['plim'] = plim # Check for daughtercards if daughtercard_dict and slot in daughtercard_dict: # Then merge dictionary show_platform['slot'][slot_type][slot]['subslot'].update(daughtercard_dict[slot]) continue # Check for daughtercards if entry_is_daughter: # Verify parent exists if slot in show_platform['slot'][slot_type]: if 'subslot' not in show_platform['slot'][slot_type][slot]: show_platform['slot'][slot_type][slot]['subslot'] = {} if subslot not in show_platform['slot'][slot_type][slot]['subslot']: show_platform['slot'][slot_type][slot]['subslot'][subslot] = {} show_platform['slot'][slot_type][slot]['subslot'][subslot]['name'] = name show_platform['slot'][slot_type][slot]['subslot'][subslot]['state'] = state show_platform['slot'][slot_type][slot]['subslot'][subslot]['config_state'] = config_state show_platform['slot'][slot_type][slot]['subslot'][subslot]['redundancy_state'] = redundancy_state continue else: # Store in temp dict if slot not in daughtercard_dict[slot]: daughtercard_dict[slot] = {} if 'subslot' not in daughtercard_dict: daughtercard_dict[slot]['subslot'] = {} if subslot not in daughtercard_dict[slot]['subslot']: daughtercard_dict[slot]['subslot'][subslot] = {} daughtercard_dict[slot]['subslot'][subslot]['name'] = name daughtercard_dict[slot]['subslot'][subslot]['state'] = state daughtercard_dict[slot]['subslot'][subslot]['config_state'] = config_state daughtercard_dict[slot]['subslot'][subslot]['redundancy_state'] = redundancy_state continue return show_platform # ============================= # Parser for 'show platform vm' # ============================= class ShowPlatformVmSchema(MetaParser): """Schema for show platform vm""" schema = { 'node': {Any(): {'type': str, 'partner_name': str, 'sw_status': str, 'ip_address': str, }, }, } class ShowPlatformVm(ShowPlatformVmSchema): """Parser for show platform vm""" cli_command = 'show platform vm' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars show_platform_vm = {} for line in out.splitlines(): line = line.strip() # 0/RP0/CPU0 RP (ACTIVE) NONE FINAL Band 192.0.0.4 # 0/0/CPU0 LC (ACTIVE) NONE FINAL Band 192.0.0.6 # 0/RSP0/CPU0 RP(ACTIVE) 0/RSP1/CPU0 FINAL Band 192.0.0.4 # 0/RSP1/CPU0 RP(STANDBY) 0/RSP0/CPU0 FINAL Band 192.168.166.4 p1 = re.compile(r'^(?P<node>[\S\/]+) +(?P<type>[(RP|LC)\s*\((ACTIVE|STANDBY)\)]+)' ' +(?P<partner_name>[NONE|(?:\S)]+) +(?P<sw_status>[a-zA-Z\s]+)' ' +(?P<ip_address>[\S]+)$') m = p1.match(line) if m: if 'node' not in show_platform_vm: show_platform_vm['node'] = {} node = str(m.groupdict()['node']).strip() if node not in show_platform_vm['node']: show_platform_vm['node'][node] = {} show_platform_vm['node'][node]['type'] = \ str(m.groupdict()['type']).strip() show_platform_vm['node'][node]['partner_name'] = \ str(m.groupdict()['partner_name']).strip() show_platform_vm['node'][node]['sw_status'] = \ str(m.groupdict()['sw_status']).strip() show_platform_vm['node'][node]['ip_address'] = \ str(m.groupdict()['ip_address']).strip() continue return show_platform_vm # ======================================== # Schema for 'show install active summary' # ======================================== class ShowInstallActiveSummarySchema(MetaParser): """Schema for show install active summary""" schema = { 'active_packages': Any(), Optional('num_active_packages'): int, Optional('sdr'): str, } class ShowInstallActiveSummary(ShowInstallActiveSummarySchema): """Parser for show install active summary""" cli_command = 'show install active summary' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars install_active_dict = {} previous_line_sdr = False previous_line_active_packages = False for line in out.splitlines(): line = line.rstrip() p1 = re.compile(r'\s*SDRs:*$') m = p1.match(line) if m: previous_line_sdr = True continue if previous_line_sdr: previous_line_sdr = False install_active_dict['sdr'] = str(line).strip() continue # disk0:xrvr-full-x-6.2.1.23I # disk0:asr9k-mini-px-6.1.21.15I # xrv9k-xr-6.2.2.14I version=6.2.2.14I [Boot image] p2 = re.compile(r'\s*Active +Packages:' ' *(?P<num_active_packages>[0-9]+)?$') m = p2.match(line) if m: previous_line_active_packages = True if 'active_packages' not in install_active_dict: install_active_dict['active_packages'] = [] if m.groupdict()['num_active_packages']: install_active_dict['num_active_packages'] = \ int(m.groupdict()['num_active_packages']) continue if previous_line_active_packages and line is not None: clean_line = str(line).strip() if line and '/' not in line: install_active_dict['active_packages'].append(clean_line) continue return install_active_dict # ======================================== # Schema for 'show install inactive summary' # ======================================== class ShowInstallInactiveSummarySchema(MetaParser): """Schema for show install inactive summary""" schema = { 'inactive_packages': Any(), Optional('num_inactive_packages'): int, Optional('sdr'): list, } class ShowInstallInactiveSummary(ShowInstallInactiveSummarySchema): """Parser for show install inactive summary""" cli_command = 'show install inactive summary' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars install_inactive_dict = {} previous_line_sdr = False previous_line_inactive_packages = False for line in out.splitlines(): line = line.rstrip() p1 = re.compile(r'\s*SDRs:*$') m = p1.match(line) if m: previous_line_sdr = True continue if previous_line_sdr: previous_line_sdr = False install_inactive_dict.setdefault('sdr', []).append(str(line).strip()) continue # disk0:xrvr-full-x-6.2.1.23I # disk0:asr9k-mini-px-6.1.21.15I # xrv9k-xr-6.2.2.14I version=6.2.2.14I [Boot image] p2 = re.compile(r'\s*Inactive +Packages:' ' *(?P<num_inactive_packages>[0-9]+)?$') m = p2.match(line) if m: previous_line_inactive_packages = True if 'inactive_packages' not in install_inactive_dict: install_inactive_dict['inactive_packages'] = [] if m.groupdict()['num_inactive_packages']: install_inactive_dict['num_inactive_packages'] = \ int(m.groupdict()['num_inactive_packages']) continue if previous_line_inactive_packages and line is not None: clean_line = str(line).strip() if line and '/' not in line: install_inactive_dict['inactive_packages'].append(clean_line) continue return install_inactive_dict # ======================================== # Schema for 'show install commit summary' # ======================================== class ShowInstallCommitSummarySchema(MetaParser): """Schema for show install commit summary""" schema = { Optional('committed_packages'): Any(), Optional('active_packages'): Any(), Optional('num_committed_packages'): int, Optional('sdr'): list, } class ShowInstallCommitSummary(ShowInstallCommitSummarySchema): """Parser for show install commit summary""" cli_command = 'show install commit summary' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars install_commit_dict = {} previous_line_sdr = False previous_line_committed_packages = False previous_line_active_packages = False for line in out.splitlines(): line = line.rstrip() p1 = re.compile(r'\s*SDRs:*$') m = p1.match(line) if m: previous_line_sdr = True continue if previous_line_sdr: previous_line_sdr = False install_commit_dict.setdefault('sdr', []).append(str(line).strip()) continue # disk0:xrvr-full-x-6.2.1.23I # disk0:asr9k-mini-px-6.1.21.15I # xrv9k-xr-6.2.2.14I version=6.2.2.14I [Boot image] p2 = re.compile(r'\s*Committed +Packages:' ' *(?P<num_committed_packages>[0-9]+)?$') m = p2.match(line) if m: previous_line_committed_packages = True if 'committed_packages' not in install_commit_dict: install_commit_dict['committed_packages'] = [] if m.groupdict()['num_committed_packages']: install_commit_dict['num_committed_packages'] = \ int(m.groupdict()['num_committed_packages']) continue if previous_line_committed_packages and line is not None: clean_line = str(line).strip() if line and '/' not in line: install_commit_dict['committed_packages'].append(clean_line) continue # disk0:xrvr-full-x-6.2.1.23I # disk0:asr9k-mini-px-6.1.21.15I # xrv9k-xr-6.2.2.14I version=6.2.2.14I [Boot image] p2 = re.compile(r'\s*Active +Packages:' ' *(?P<num_active_packages>[0-9]+)?$') m = p2.match(line) if m: previous_line_active_packages = True if 'active_packages' not in install_commit_dict: install_commit_dict['active_packages'] = [] if m.groupdict()['num_active_packages']: install_commit_dict['num_active_packages'] = \ int(m.groupdict()['num_active_packages']) continue if previous_line_active_packages and line is not None: clean_line = str(line).strip() if line and '/' not in line: install_commit_dict['active_packages'].append(clean_line) continue return install_commit_dict # =========================== # Schema for 'show inventory' # =========================== class ShowInventorySchema(MetaParser): """Schema for show inventory""" schema = { 'module_name': {Any(): {'descr': str, 'pid': str, 'vid': str, Optional('sn'): str, }, }, } class ShowInventory(ShowInventorySchema): """Parser for show inventory""" cli_command = 'show inventory' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars inventory_dict = {} # NAME: "module 0/RSP0/CPU0", DESCR: "ASR9K Route Switch Processor with 440G/slot Fabric and 6GB" # NAME: "Rack 0", DESCR: "Cisco XRv9K Centralized Virtual Router" # NAME: "Rack 0", DESCR: "Sherman 1RU Chassis with 24x400GE QSFP56-DD & 12x100G QSFP28" # NAME: "0/FT4", DESCR: "Sherman Fan Module Reverse Airflow / exhaust, BLUE" # NAME: "TenGigE0/0/0/0", DESCR: "Cisco SFP+ 10G SR Pluggable Optics Module" p1 = re.compile(r'^NAME: +\"(?P<module_name>[\S\s]*)\",' r' +DESCR: +\"(?P<descr>[\S\s]*)\"$') # PID: A9K-MPA-20X1GE, VID: V02, SN: FOC1811N49J # PID: SFP-1G-NIC-X , VID: N/A, SN: N/A # PID: N/A, VID: N/A, SN: p2 = re.compile(r'^PID: *(?P<pid>[\S\s]*),' r' +VID: *(?P<vid>[\S\s]*),' r' SN: *(?P<sn>[\S\s]*)$') for line in out.splitlines(): line = line.strip() if not line: continue # NAME: "0/FT4", DESCR: "Sherman Fan Module Reverse Airflow / exhaust, BLUE" # NAME: "TenGigE0/0/0/0", DESCR: "Cisco SFP+ 10G SR Pluggable Optics Module" m = p1.match(line) if m: if 'module_name' not in inventory_dict: inventory_dict['module_name'] = {} module_name = str(m.groupdict()['module_name']) if module_name not in inventory_dict['module_name']: inventory_dict['module_name'][module_name] = {} inventory_dict['module_name'][module_name]['descr'] = \ str(m.groupdict()['descr']).strip() continue # PID: A9K-MPA-20X1GE, VID: V02, SN: FOC1811N49J # PID: SFP-1G-NIC-X , VID: N/A, SN: N/A m = p2.match(line) if m: inventory_dict['module_name'][module_name]['pid'] = \ str(m.groupdict()['pid']).strip() inventory_dict['module_name'][module_name]['vid'] = \ str(m.groupdict()['vid']).strip() inventory_dict['module_name'][module_name]['sn'] = \ str(m.groupdict()['sn']).strip() continue return inventory_dict # ==================================== # Schema for 'admin show diag chassis' # ==================================== class AdminShowDiagChassisSchema(MetaParser): """Schema for admin show diag chassis""" schema = { Optional('device_family'): str, Optional('device_series'): str, Optional('num_line_cards'): int, Optional('chassis_feature'): str, 'rack_num': int, Optional('sn'): str, 'pid': str, 'vid': str, Optional('desc'): str, 'clei': str, Optional('eci'): str, Optional('pca'): str, Optional('top_assy_num'): str, Optional('main'): { 'board_type': str, 'part': str, 'dev': str, 'serial_number': str, }, Optional('part_number'): str, Optional('part_revision'): str, Optional('hw_version'): str, Optional('top_assembly_block'): { 'serial_number': str, 'part_number': str, 'part_revision': str, 'mfg_deviation': str, 'hw_version': str, 'mfg_bits': str, } } class AdminShowDiagChassis(AdminShowDiagChassisSchema): """Parser for admin show diag chassis""" cli_command = 'admin show diag chassis' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars admin_show_diag_dict = {} top_assembly_flag = False main_flag = False for line in out.splitlines(): line = line.strip() # Rack 0 - ASR 9006 4 Line Card Slot Chassis with V2 AC PEM # Rack 0 - Cisco CRS Series 16 Slots Line Card Chassis # Rack 0 - CRS 16 Slots Line Card Chassis for CRS-16/S-B p1 = re.compile(r'Rack +(?P<rack_num>\d+) +-' r' +(?P<device_group>[a-zA-Z0-9\s]+)' r' +(?P<num_line_cards>\d+)' r' +((Line +Card +Slot +Chassis +with *)|' r'Slots +Line +Card +Chassis(?:( +for))? *)' r'(?P<chassis_feature>[\S ]+)?$') m = p1.match(line) if m: admin_show_diag_dict['rack_num'] = \ int(m.groupdict()['rack_num']) # ASR 9006 # Cisco CRS Series # CRS device_group = m.group(2) split_device_group = re.split('\s', device_group) if len(split_device_group)>1: admin_show_diag_dict['device_family'] = \ split_device_group[0] device_series = ' '.join(split_device_group[1:]) else: device_series = split_device_group[0] admin_show_diag_dict['device_series'] = device_series admin_show_diag_dict['num_line_cards'] = \ int(m.groupdict()['num_line_cards']) if m.groupdict()['chassis_feature']: admin_show_diag_dict['chassis_feature'] = \ str(m.groupdict()['chassis_feature']) description = line[8:] admin_show_diag_dict['desc'] = description continue # RACK NUM: 0 p2 = re.compile(r'RACK NUM\: *(?P<rack_num>[0-9]+)$') m = p2.match(line) if m: admin_show_diag_dict['rack_num'] = \ int(m.groupdict()['rack_num']) continue # S/N: FOX1810G8LR # Serial Number : FOC23158L99 p3 = re.compile(r'^(S\/N|Serial +Number)(\s+)?(\:)? ' r'+(?P<serial_number>\S+)$') m = p3.match(line) if m: serial_num = str(m.groupdict()['serial_number']) if top_assembly_flag: top_assembly_dict['serial_number'] = serial_num elif main_flag: main_dict['serial_number'] = serial_num else: admin_show_diag_dict['sn'] = serial_num continue # PID: ASR-9006-AC-V2 # Product ID : NCS-5501 p4 = re.compile(r'(PID|Product ID)(\s+)?\: ' r'+(?P<pid>[a-zA-Z0-9\-]+)$') m = p4.match(line) if m: admin_show_diag_dict['pid'] = \ str(m.groupdict()['pid']) continue # VID: V02 # VID : V01 p5 = re.compile(r'VID(\s+)?\: +(?P<vid>[a-zA-Z0-9\-]+)$') m = p5.match(line) if m: admin_show_diag_dict['vid'] = \ str(m.groupdict()['vid']) continue # Desc: ASR 9006 4 Line Card Slot Chassis with V2 AC PEM p6 = re.compile(r'Desc\: *(?P<desc>[a-zA-Z0-9\-\s]+)$') m = p6.match(line) if m: admin_show_diag_dict['desc'] = \ str(m.groupdict()['desc']) continue # CLEI: IPMUP00BRB # CLEI Code : INM1J10ARA p7 = re.compile(r'CLEI( +Code\s+)?: +(?P<clei>[a-zA-Z0-9\-]+)$') m = p7.match(line) if m: admin_show_diag_dict['clei'] = \ str(m.groupdict()['clei']) continue # Top Assy. Number: 68-4235-02 p8 = re.compile(r'Top +Assy. +Number\:' ' *(?P<top_assy_num>[a-zA-Z0-9\-\s]+)$') m = p8.match(line) if m: admin_show_diag_dict['top_assy_num'] = \ str(m.groupdict()['top_assy_num']) continue # PCA: 73-7806-01 rev B0 p9 = re.compile(r'^PCA\: +(?P<pca>[\S ]+)$') m = p9.match(line) if m: admin_show_diag_dict['pca'] = \ str(m.groupdict()['pca']) continue # ECI: 459651 p10 = re.compile(r'^ECI\: +(?P<eci>[\S ]+)$') m = p10.match(line) if m: admin_show_diag_dict['eci'] = \ str(m.groupdict()['eci']) continue # MAIN: board type 500060 p11 = re.compile(r'^MAIN\: +board +type +(?P<board_type>[\S ]+)$') m = p11.match(line) if m: main_dict = admin_show_diag_dict.setdefault('main', {}) main_dict['board_type'] = \ str(m.groupdict()['board_type']) continue # 800-25021-05 rev B0 p12 = re.compile(r'^\S+ +rev +\S+') m = p12.match(line) if m: main_dict = admin_show_diag_dict.setdefault('main', {}) main_dict['part'] = line.strip() continue # dev 080366, 080181 p13 = re.compile(r'\s*dev +(?P<dev>[\S ]+)') m = p13.match(line) if m: dev = m.groupdict()['dev'] main_dict = admin_show_diag_dict.setdefault('main', {}) main_flag = True main_dict['dev'] = dev continue # 0 Rack 0-IDPROM Info p15 = re.compile(r'(?P<rack_num>[0-9]+) +Rack +\d\-IDPROM +Info$') m15 = p15.match(line) if m15: admin_show_diag_dict['rack_num'] = \ int(m15.groupdict()['rack_num']) continue # Top +Assembly +Block\:$ p16 = re.compile(r'Top +Assembly +Block\:$') m16 = p16.match(line) if m16: top_assembly_flag = True top_assembly_dict = admin_show_diag_dict.setdefault('top_assembly_block', {}) continue # Part Number : 73-101057-02 p17 = re.compile(r'^Part +(n|N)umber(\s+)?\: +(?P<part_number>\S+)$') m17 = p17.match(line) if m17: part_num = str(m17.groupdict()['part_number']) if top_assembly_flag: top_assembly_dict['part_number'] = part_num else: admin_show_diag_dict['part_number'] = part_num continue # Part Revision : D0 p18 = re.compile(r'^Part +(r|R)evision(\s+)?\: +(?P<part_revision>\S+)$') m18 = p18.match(line) if m18: part_rev = str(m18.groupdict()['part_revision']) if top_assembly_flag: top_assembly_dict['part_revision'] = part_rev else: admin_show_diag_dict['part_revision'] = part_rev continue # H/W Version : 1.0 p19 = re.compile(r'^H\/W +[v|V]ersion(\s+)?\: +(?P<hw_version>\S+)$') m19 = p19.match(line) if m19: hw_ver = str(m19.groupdict()['hw_version']) if top_assembly_flag: top_assembly_dict['hw_version'] = hw_ver else: admin_show_diag_dict['hw_version'] = hw_ver # Mfg Deviation : 0 p20 = re.compile(r'^[M|m]fg +[D|d]eviation(\s+)?\: ' r'+(?P<mfg_deviation>\S+)$') m20 = p20.match(line) if m20: mfg_dev = str(m20.groupdict()['mfg_deviation']) top_assembly_dict['mfg_deviation'] = mfg_dev continue # Mfg Bits : 1 p21 = re.compile(r'^[M|m]fg +Bits(\s+)?\: +(?P<mfg_bits>\S+)$') m21 = p21.match(line) if m21: mfg_bit = str(m21.groupdict()['mfg_bits']) top_assembly_dict['mfg_bits'] = mfg_bit top_assembly_flag = False continue return admin_show_diag_dict # ==================================== # Schema for 'show redundancy summary' # ==================================== class ShowRedundancySummarySchema(MetaParser): """Schema for show redundancy summary""" schema = { 'node': {Any(): {'type': str, Optional('standby_node'): str, Optional('backup_node'): str, Optional('node_detail'): str, }, }, Optional('redundancy_communication'): bool, } class ShowRedundancySummary(ShowRedundancySummarySchema): """Parser for show redundancy summary""" cli_command = 'show redundancy summary' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars redundancy_summary = {} redundancy_communication = False for line in out.splitlines(): line = line.rstrip() p0 = re.compile(r'\s*Active.*$') m = p0.match(line) if m: continue # 0/RSP0/CPU0(A) 0/RSP1/CPU0(S) (Node Not Ready, NSR: Not Configured) p1 = re.compile(r'\s*(?P<node>[a-zA-Z0-9\/\(\)]+)' ' +(?P<standby_node>[a-zA-Z0-9\/\(\)]+)' ' +\((?P<node_detail>[a-zA-Z\,\:\s]+)\)$') m = p1.match(line) if m: if 'node' not in redundancy_summary: redundancy_summary['node'] = {} # Check if node type is active or primary node = str(m.groupdict()['node']).strip() if re.search("\(P\)", node): type = 'primary' else: type = 'active' # Check standby or backup node backup_node = None standby_node = str(m.groupdict()['standby_node']) if re.search("\(B\)", standby_node): backup_node = standby_node elif standby_node == 'N/A': continue # set everything redundancy_summary['node'][node] = {} redundancy_summary['node'][node]['type'] = type redundancy_summary['node'][node]['standby_node'] = \ standby_node redundancy_summary['node'][node]['node_detail'] = \ str(m.groupdict()['node_detail']) if re.search(r'NSR: +Ready', str(m.groupdict()['node_detail'])): redundancy_communication = True redundancy_summary['redundancy_communication'] = redundancy_communication if backup_node is not None: redundancy_summary['node'][node]['backup_node'] = \ backup_node continue # 0/0/CPU0 N/A p2 = re.compile(r'\s*(?P<node>[a-zA-Z0-9\/\(\)]+)' ' +(?P<standby_node>[a-zA-Z0-9\/\(\)]+)$') m = p2.match(line) if m: if 'node' not in redundancy_summary: redundancy_summary['node'] = {} # Check if node type is active or primary node = str(m.groupdict()['node']).strip() if re.search("\(P\)", node): type = 'primary' else: type = 'active' # Check standby or backup node backup_node = None standby_node = str(m.groupdict()['standby_node']) if re.search("\(B\)", standby_node): backup_node = standby_node # set everything redundancy_summary['node'][node] = {} redundancy_summary['node'][node]['type'] = type redundancy_summary['node'][node]['standby_node'] = \ standby_node if backup_node is not None: redundancy_summary['node'][node]['backup_node'] = \ backup_node continue return redundancy_summary # ============================ # Schema for 'show redundancy' # ============================ class ShowRedundancySchema(MetaParser): """Schema for show redundancy""" schema = { 'node': {Any(): {'role': str, Optional('valid_partner'): str, Optional('ready'): str, Optional('group'): {Any(): {'primary': str, 'backup': str, 'status': str, }, }, Optional('primary_rmf_state'): str, Optional('primary_rmf_state_reason'): str, 'last_reload_timestamp': str, 'time_since_last_reload': str, 'node_uptime': str, 'node_uptime_timestamp': str, 'node_uptime_in_seconds': int, Optional('standby_node'): str, Optional('backup_process'): str, Optional('last_switchover_timepstamp'): str, Optional('time_since_last_switchover'): str, Optional('standby_node_timestamp'): str, Optional('time_since_standby_boot'): str, Optional('standby_node_not_ready'): str, Optional('time_since_standby_node_not_ready'): str, Optional('standby_node_ready'):str, Optional('time_since_standby_node_ready'): str, Optional('reload_cause'): str }, }, } class ShowRedundancy(ShowRedundancySchema): """Parser for show redundancy""" cli_command = 'show redundancy' exclude = ['node_uptime', 'time_since_standby_boot', 'time_since_last_reload', 'time_since_last_switchover', 'time_since_standby_node_not_ready', 'time_since_standby_node_ready', 'standby_node_not_ready', 'standby_node_ready', 'standby_node_timestamp', 'node_uptime_in_seconds', 'iteration:'] def cli(self,output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # Init vars redundancy_dict = {} for line in out.splitlines(): line = line.rstrip() # Redundancy information for node 0/RP0/CPU0 p1 = re.compile(r'\s*Redundancy +information +for +node' ' +(?P<node>[a-zA-Z0-9\/]+):$') m = p1.match(line) if m: if 'node' not in redundancy_dict: redundancy_dict['node'] = {} node = str(m.groupdict()['node']) if node not in redundancy_dict['node']: redundancy_dict['node'][node] = {} continue # Node 0/RSP0/CPU0 is in ACTIVE role p2 = re.compile(r'\s*Node +([a-zA-Z0-9\/]+) +is +in' ' +(?P<role>[a-zA-Z]+) +role$') m = p2.match(line) if m: redundancy_dict['node'][node]['role'] = \ str(m.groupdict()['role']) continue # Node Redundancy Partner (0/RSP1/CPU0) is in STANDBY role p3_1 = re.compile(r'\s*Node *Redundancy *Partner' ' *\((?P<node>[a-zA-Z0-9\/]+)\) *is *in' ' *(?P<role>[a-zA-Z]+) *role$') m = p3_1.match(line) if m: if 'standby' in str(m.groupdict()['role']).lower(): redundancy_dict['node'][node]['standby_node'] = str(m.groupdict()['node']) continue # Process Redundancy Partner (0/RSP0/CPU0) is in BACKUP role p3_3 = re.compile(r'\s*Process *Redundancy *Partner' ' *\((?P<node>[a-zA-Z0-9\/]+)\) *is *in' ' *(?P<role>[a-zA-Z]+) *role$') m = p3_3.match(line) if m: if 'backup' in str(m.groupdict()['role']).lower(): redundancy_dict['node'][node]['backup_process'] = str(m.groupdict()['node']) continue # Standby node in 0/RSP1/CPU0 is ready # Standby node in 0/RSP1/CPU0 is NSR-ready p3_2 = re.compile(r'\s*Standby *node *in *([a-zA-Z0-9\/]+)' ' *is *(?P<ready>[a-zA-Z\-]+)$') m = p3_2.match(line) if m: redundancy_dict['node'][node]['ready'] = \ str(m.groupdict()['ready']) continue # Node 0/RP0/CPU0 has no valid partner p3 = re.compile(r'\s*Node +([a-zA-Z0-9\/]+) +has +(?P<valid_partner>\S+)' ' +valid +partner$') m = p3.match(line) if m: redundancy_dict['node'][node]['valid_partner'] = \ str(m.groupdict()['valid_partner']) continue # v6-routing 0/RSP0/CPU0 N/A Not Ready p4 = re.compile(r'\s*(?P<group>[a-zA-Z0-9\-]+)' ' +(?P<primary>[A-Z0-9\/]+)' ' +(?P<backup>[A-Z0-9\/]+)' ' +(?P<status>[a-zA-Z\-\s]+)$') m = p4.match(line) if m: if 'group' not in redundancy_dict['node'][node]: redundancy_dict['node'][node]['group'] = {} group = str(m.groupdict()['group']) if group not in redundancy_dict['node'][node]['group']: redundancy_dict['node'][node]['group'][group] = {} redundancy_dict['node'][node]['group'][group]['primary'] = \ str(m.groupdict()['primary']) redundancy_dict['node'][node]['group'][group]['backup'] = \ str(m.groupdict()['backup']) redundancy_dict['node'][node]['group'][group]['status'] = \ str(m.groupdict()['status']) continue # NSR not ready since Backup is not Present p5 = re.compile(r'\s*NSR +(?P<primary_rmf_state>[a-zA-Z\s]+) +since' ' +(?P<primary_rmf_state_reason>[a-zA-Z\s]+)$') m = p5.match(line) if m: redundancy_dict['node'][node]['primary_rmf_state'] = \ str(m.groupdict()['primary_rmf_state']) redundancy_dict['node'][node]\ ['primary_rmf_state_reason'] = \ str(m.groupdict()['primary_rmf_state_reason']) continue # A9K-RSP440-TR reloaded Thu Apr 27 02:14:12 2017: 1 hour, 16 minutes ago p6 = re.compile(r'\s*(?P<node_name>[a-zA-Z0-9\-]+) +reloaded' ' +(?P<last_reload_timestamp>[a-zA-Z0-9\:\s]+):' ' +(?P<time_since_last_reload>[a-zA-Z0-9\,\s]+)$') m = p6.match(line) if m: redundancy_dict['node'][node]['last_reload_timestamp'] =\ str(m.groupdict()['last_reload_timestamp']) redundancy_dict['node'][node]['time_since_last_reload'] =\ str(m.groupdict()['time_since_last_reload']) continue # Active node booted Thu Apr 27 03:22:37 2017: 8 minutes ago # Active node booted Thu Jan 11 12:31:59 2018: 5 days, 23 hours, ago # Active node booted Tue Jan 2 07:32:33 2018: 1 day, 1 hour, 6 minutes ago # Active node booted Thu Jan 11 12:32:03 2018: 1 week, 4 days, 20 hours, 19 minutes ago p7 = re.compile(r'\s*Active +node +booted' ' +(?P<node_uptime_timestamp>[a-zA-Z0-9\:\s]+):' ' +(?P<node_uptime>((?P<ignore>\d+ \w+, *)?((?P<week>\d+) +(week|weeks), )?' '(((?P<day>\d+) +(day|days))?, )?)?(((?P<hour>\d+) +(hour|hours))?, )?' '(((?P<minute>\d+) +(minute|minutes))|((?P<second>\d+) +(seconds|seconds)))?) +ago$') m = p7.match(line) if m: redundancy_dict['node'][node]['node_uptime_timestamp'] = \ str(m.groupdict()['node_uptime_timestamp']) redundancy_dict['node'][node]['node_uptime'] = \ str(m.groupdict()['node_uptime']) time_in_seconds = 0 if m.groupdict()['week']: time_in_seconds += int(m.groupdict()['week']) * 7 * 86400 if m.groupdict()['day']: time_in_seconds += int(m.groupdict()['day']) * 86400 if m.groupdict()['hour']: time_in_seconds += int(m.groupdict()['hour']) * 3600 if m.groupdict()['minute']: time_in_seconds += int(m.groupdict()['minute']) * 60 if m.groupdict()['second']: time_in_seconds += int(m.groupdict()['second']) redundancy_dict['node'][node]['node_uptime_in_seconds'] = \ time_in_seconds continue # Standby node boot Thu Aug 10 08:29:18 2017: 1 day, 32 minutes ago p7_1 = re.compile(r'\s*Standby +node +boot' ' +(?P<standby_node_timestamp>[a-zA-Z0-9\:\s]+):' ' +(?P<time_since_standby_boot>[a-zA-Z0-9\,\s]+)$') m = p7_1.match(line) if m: standby_node_timestamp = str(m.groupdict()['standby_node_timestamp']) time_since_standby_boot = str(m.groupdict()['time_since_standby_boot']) redundancy_dict['node'][node]['standby_node_timestamp'] = \ standby_node_timestamp redundancy_dict['node'][node]['time_since_standby_boot'] = \ time_since_standby_boot continue # Standby node last went not ready Fri Aug 11 07:13:26 2017: 1 hour, 48 minutes ago # Standby node last went ready Fri Aug 11 07:13:26 2017: 1 hour, 48 minutes ago p7_2 = re.compile(r'\s*Standby *node *last *went *not *ready' ' *(?P<standby_node_not_ready>[a-zA-Z0-9\:\s]+):' ' *(?P<time_since_standby_node_not_ready>[a-zA-Z0-9\,\s]+)$') m = p7_2.match(line) if m: standby_node_not_ready = str(m.groupdict()['standby_node_not_ready']) time_since_standby_node_not_ready = str(m.groupdict()['time_since_standby_node_not_ready']) redundancy_dict['node'][node]['standby_node_not_ready'] = \ standby_node_not_ready redundancy_dict['node'][node]['time_since_standby_node_not_ready'] = \ time_since_standby_node_not_ready continue p7_3 = re.compile(r'\s*Standby *node *last *went *ready' ' *(?P<standby_node_ready>[a-zA-Z0-9\:\s]+):' ' *(?P<time_since_standby_node_ready>[a-zA-Z0-9\,\s]+)$') m = p7_3.match(line) if m: standby_node_ready = str(m.groupdict()['standby_node_ready']) time_since_standby_node_ready = str(m.groupdict()['time_since_standby_node_ready']) redundancy_dict['node'][node]['standby_node_ready'] = \ standby_node_ready redundancy_dict['node'][node]['time_since_standby_node_ready'] = \ time_since_standby_node_ready continue # Last switch-over Thu Apr 27 03:29:57 2017: 1 minute ago p8 = re.compile(r'\s*Last +switch-over' ' +(?P<last_switchover_timepstamp>[a-zA-Z0-9\:\s]+):' ' +(?P<time_since_last_switchover>[a-zA-Z0-9\,\s]+)$') m = p8.match(line) if m: redundancy_dict['node'][node]['last_switchover_timepstamp'] = \ str(m.groupdict()['last_switchover_timepstamp']) redundancy_dict['node'][node]['time_since_last_switchover'] = \ str(m.groupdict()['time_since_last_switchover']) continue # Active node reload Cause: Initiating switch-over. p9 = re.compile(r'\s*Active +node +reload *(?:Cause)?:' ' +(?P<reload_cause>[a-zA-Z\-\s]+).$') m = p9.match(line) if m: redundancy_dict['node'][node]['reload_cause'] = \ str(m.groupdict()['reload_cause']) continue return redundancy_dict # ================ # Schema for 'dir' # ================ class DirSchema(MetaParser): """Schema for dir""" schema = { 'dir': { 'dir_name': str, 'total_bytes': str, 'total_free_bytes': str, Optional('files'): {Any(): {Optional('size'): str, Optional('date'): str, Optional('permission'): str, Optional('index'): str, Optional('time'): str} }, }, } class Dir(DirSchema): """Parser for dir""" cli_command = ['dir', 'dir {directory}'] exclude = ['size', 'time', 'total_free_bytes', 'date', 'index'] def cli(self, directory='', output=None): if output is None: if directory: out = self.device.execute(self.cli_command[1].format(directory=directory)) else: out = self.device.execute(self.cli_command[0]) else: out = output # Init vars dir_dict = {} for line in out.splitlines(): line = line.rstrip() # Directory of /misc/scratch # Directory of disk0a:/usr p1 = re.compile(r'\s*Directory +of' ' +(?P<dir_name>[a-zA-Z0-9\:\/]+)$') m = p1.match(line) if m: if 'dir' not in dir_dict: dir_dict['dir'] = {} dir_dict['dir']['dir_name'] = str(m.groupdict()['dir_name']) continue # 1012660 kbytes total (939092 kbytes free) # 2562719744 bytes total (1918621184 bytes free) p2 = re.compile(r'\s*(?P<total_bytes>[0-9]+ +(kbytes|bytes))' ' +total +\((?P<total_free_bytes>[0-9]+' ' +(kbytes|bytes)) +free\)$') m = p2.match(line) if m: dir_dict['dir']['total_bytes'] = \ str(m.groupdict()['total_bytes']) dir_dict['dir']['total_free_bytes'] = \ str(m.groupdict()['total_free_bytes']) continue # 20 -rw-r--r-- 1 773 May 10 2017 cvac.log # 15 lrwxrwxrwx 1 12 May 10 2017 config -> /misc/config # 11 drwx------ 2 16384 Mar 28 12:23 lost+found # 14 -rw-r--r--. 1 10429 Oct 26 16:17 pnet_cfg.log p3 = re.compile(r'^\s*(?P<index>[0-9]+) +(?P<permission>[a-z\-]+)(\.)? ' '+(?P<unknown>[0-9]+) +(?P<size>[0-9]+) +(?P<month>[a-zA-Z]+) ' '+(?P<day>[0-9]+) +(?P<year>[0-9\:]+) ' '+(?P<file>[a-zA-Z0-9\.\/\_\-\+\>\s]+)$') m = p3.match(line) if m: file = m.groupdict()['file'] date = m.groupdict()['month'].strip() \ + ' ' + m.groupdict()['day'].strip() + ' ' \ + m.groupdict()['year'].strip() if 'files' not in dir_dict['dir']: dir_dict['dir']['files'] = {} dir_dict['dir']['files'][file] = {} dir_dict['dir']['files'][file]['size'] = m.groupdict()['size'] dir_dict['dir']['files'][file]['permission'] = \ m.groupdict()['permission'] dir_dict['dir']['files'][file]['index'] = m.groupdict()['index'] dir_dict['dir']['files'][file]['date'] = date continue return dir_dict # vim: ft=python et sw=4
40.449322
125
0.465223
6ad5444041e41103d8caef6b528585a77533e037
17,586
py
Python
google/ads/googleads/v4/services/services/keyword_view_service/client.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v4/services/services/keyword_view_service/client.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v4/services/services/keyword_view_service/client.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.ads.googleads.v4.resources.types import keyword_view from google.ads.googleads.v4.services.types import keyword_view_service from .transports.base import KeywordViewServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import KeywordViewServiceGrpcTransport class KeywordViewServiceClientMeta(type): """Metaclass for the KeywordViewService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[KeywordViewServiceTransport]] _transport_registry["grpc"] = KeywordViewServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[KeywordViewServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class KeywordViewServiceClient(metaclass=KeywordViewServiceClientMeta): """Service to manage keyword views.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: KeywordViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: KeywordViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> KeywordViewServiceTransport: """Return the transport used by the client instance. Returns: KeywordViewServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def keyword_view_path(customer: str, keyword_view: str,) -> str: """Return a fully-qualified keyword_view string.""" return "customers/{customer}/keywordViews/{keyword_view}".format( customer=customer, keyword_view=keyword_view, ) @staticmethod def parse_keyword_view_path(path: str) -> Dict[str, str]: """Parse a keyword_view path into its component segments.""" m = re.match( r"^customers/(?P<customer>.+?)/keywordViews/(?P<keyword_view>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[credentials.Credentials] = None, transport: Union[str, KeywordViewServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the keyword view service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.KeywordViewServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool( util.strtobool( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") ) ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, KeywordViewServiceTransport): # transport is a KeywordViewServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = KeywordViewServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_keyword_view( self, request: keyword_view_service.GetKeywordViewRequest = None, *, resource_name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> keyword_view.KeywordView: r"""Returns the requested keyword view in full detail. Args: request (:class:`google.ads.googleads.v4.services.types.GetKeywordViewRequest`): The request object. Request message for [KeywordViewService.GetKeywordView][google.ads.googleads.v4.services.KeywordViewService.GetKeywordView]. resource_name (:class:`str`): Required. The resource name of the keyword view to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v4.resources.types.KeywordView: A keyword view. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a keyword_view_service.GetKeywordViewRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance(request, keyword_view_service.GetKeywordViewRequest): request = keyword_view_service.GetKeywordViewRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[self._transport.get_keyword_view] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("KeywordViewServiceClient",)
40.708333
120
0.637439
df09567d4892044b4f5d5cdba93f80b181ef202d
6,160
py
Python
Controller/NovoFornecedorController.py
rennancockles/gigapy
4fb0cd97e689c6460254a466a7a8d9137c2392b1
[ "MIT" ]
null
null
null
Controller/NovoFornecedorController.py
rennancockles/gigapy
4fb0cd97e689c6460254a466a7a8d9137c2392b1
[ "MIT" ]
null
null
null
Controller/NovoFornecedorController.py
rennancockles/gigapy
4fb0cd97e689c6460254a466a7a8d9137c2392b1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from View import NovoFornecedorView from DAO import FornecedorDAO from Model.TelefoneModel import Telefone from Model.EmailModel import Email from Model.FornecedorModel import Fornecedor from PyQt4 import QtGui class NovoFornecedor(QtGui.QMainWindow, NovoFornecedorView.Ui_NovoFornecedor): def __init__(self, parent=None): super(NovoFornecedor, self).__init__(parent) self.setupUi(self) self.parent = parent self.telefoneId = 0 self.telefone_row_count = 0 self.telefones = [] self.emailId = 0 self.email_row_count = 0 self.emails = [] self.btnCancelar.clicked.connect(self.close_view) self.btnSalvar.clicked.connect(self.salvar) self.btnTelefoneAdd.clicked.connect(self.add_telefone) self.btnTelefoneRemove.clicked.connect(self.remove_telefone) self.btnEmailAdd.clicked.connect(self.add_email) self.btnEmailRemove.clicked.connect(self.remove_email) def close_view(self): self.close() def salvar(self): nome = self.tbNome.toPlainText() desc = self.tbDescricao.toPlainText() cidade = self.tbCidade.toPlainText() endereco = self.tbEndereco.toPlainText() bairro = self.tbBairro.toPlainText() numero = self.tbNumero.toPlainText() if nome == '' or desc == '' or cidade == '' or endereco == '' or bairro == '' or numero == '': QtGui.QMessageBox.warning(self, "Erro", "Preencha os campos corretamente!") return parsed_num = self.parse_numero(numero) if parsed_num is None: return fornecedor = Fornecedor(nome=nome, descricao=desc, cidade=cidade, endereco=endereco, bairro=bairro, numero=numero) fornecedor.add_emails(self.emails) fornecedor.add_telefones(self.telefones) FornecedorDAO.insert(fornecedor) print fornecedor self.close_view() def add_telefone(self): ddd = self.verify_ddd(self.tbTelefoneDDD.toPlainText()) numero = self.verify_telefone(self.tbTelefoneNumero.toPlainText()) referencia = self.tbTelefoneReferencia.toPlainText() if numero is None or ddd is None: return if ddd == '' or numero == '' or referencia == '': QtGui.QMessageBox.warning(self, "Erro", "Preencha os campos corretamente!") return telefone = Telefone(ddd=ddd, numero=numero, referencia=referencia) self.telefones.append(telefone) self.telefoneId += 1 row = self.telefone_row_count self.telefone_row_count += 1 self.tblTelefone.setRowCount(self.telefone_row_count) item = QtGui.QTableWidgetItem() self.tblTelefone.setVerticalHeaderItem(row, item) item = QtGui.QTableWidgetItem() self.tblTelefone.setItem(row, 0, item) item = QtGui.QTableWidgetItem() self.tblTelefone.setItem(row, 1, item) item = QtGui.QTableWidgetItem() self.tblTelefone.setItem(row, 2, item) item = self.tblTelefone.item(row, 0) item.setText(telefone.ddd) item = self.tblTelefone.item(row, 1) item.setText(telefone.numero) item = self.tblTelefone.item(row, 2) item.setText(telefone.referencia) self.tbTelefoneDDD.clear() self.tbTelefoneNumero.clear() self.tbTelefoneReferencia.clear() def remove_telefone(self): row = self.tblTelefone.currentRow() self.telefone_row_count -= 1 self.telefones.pop(row) self.tblTelefone.removeRow(row) def add_email(self): email = self.verify_email(self.tbEmail.toPlainText()) referencia = self.tbEmailReferencia.toPlainText() if email is None: return if email == '' or referencia == '': QtGui.QMessageBox.warning(self, "Erro", "Preencha os campos corretamente!") return email = Email(email=email, referencia=referencia) self.emails.append(email) self.emailId += 1 row = self.email_row_count self.email_row_count += 1 self.tblEmail.setRowCount(self.email_row_count) item = QtGui.QTableWidgetItem() self.tblEmail.setVerticalHeaderItem(row, item) item = QtGui.QTableWidgetItem() self.tblEmail.setItem(row, 0, item) item = QtGui.QTableWidgetItem() self.tblEmail.setItem(row, 1, item) item = self.tblEmail.item(row, 0) item.setText(email.email) item = self.tblEmail.item(row, 1) item.setText(email.referencia) self.tbEmail.clear() self.tbEmailReferencia.clear() def remove_email(self): row = self.tblEmail.currentRow() self.email_row_count -= 1 self.emails.pop(row) self.tblEmail.removeRow(row) def parse_numero(self, string): try: i = int(string) return i except: QtGui.QMessageBox.warning(self, "Erro", "Numero deve ser do tipo inteiro!".format(string)) return def verify_email(self, email): import re addressToVerify = email match = re.match('^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,4})$', addressToVerify) if match is None: QtGui.QMessageBox.warning(self, "Erro", "Email invalido!") return None else: return email def verify_telefone(self, telefone): import re addressToVerify = telefone match = re.match('(\d{3}[-\.\s]??\d{3}[-\.\s]??\d{4}|\(\d{3}\)\s*\d{3}[-\.\s]??\d{4}|\d{3}[-\.\s]??\d{4})', addressToVerify) if match is None: QtGui.QMessageBox.warning(self, "Erro", "Telefone invalido!") return None else: return telefone def verify_ddd(self, ddd): import re addressToVerify = ddd match = re.match('^\d{2}$', addressToVerify) if match is None: QtGui.QMessageBox.warning(self, "Erro", "DDD invalido!") return None else: return ddd
31.428571
132
0.618994
447ecf981b52993051e05b9b3407b5ba591ea2ee
3,322
py
Python
saleor/menu/models.py
mmmcorpsvit/saleor
09e40a2af549109fbc2f8e82c68a195053e8224e
[ "BSD-3-Clause" ]
null
null
null
saleor/menu/models.py
mmmcorpsvit/saleor
09e40a2af549109fbc2f8e82c68a195053e8224e
[ "BSD-3-Clause" ]
null
null
null
saleor/menu/models.py
mmmcorpsvit/saleor
09e40a2af549109fbc2f8e82c68a195053e8224e
[ "BSD-3-Clause" ]
null
null
null
from django.contrib.postgres.fields import JSONField from django.db import models from django.utils.translation import pgettext_lazy from mptt.managers import TreeManager from mptt.models import MPTTModel from ..core.models import SortableModel from ..core.utils.translations import TranslationProxy from ..page.models import Page from ..product.models import Category, Collection class Menu(models.Model): name = models.CharField(max_length=128) json_content = JSONField(blank=True, default=dict) class Meta: permissions = (( 'manage_menus', pgettext_lazy( 'Permission description', 'Manage navigation.')),) def __str__(self): return self.name class MenuItem(MPTTModel, SortableModel): menu = models.ForeignKey( Menu, related_name='items', on_delete=models.CASCADE) name = models.CharField(max_length=128) parent = models.ForeignKey( 'self', null=True, blank=True, related_name='children', on_delete=models.CASCADE) # not mandatory fields, usage depends on what type of link is stored url = models.URLField(max_length=256, blank=True, null=True) category = models.ForeignKey( Category, blank=True, null=True, on_delete=models.CASCADE) collection = models.ForeignKey( Collection, blank=True, null=True, on_delete=models.CASCADE) page = models.ForeignKey( Page, blank=True, null=True, on_delete=models.CASCADE) objects = models.Manager() tree = TreeManager() translated = TranslationProxy() class Meta: ordering = ('sort_order',) app_label = 'menu' def __str__(self): return self.name def get_ordering_queryset(self): return ( self.menu.items.all() if not self.parent else self.parent.children.all()) @property def linked_object(self): return self.category or self.collection or self.page @property def destination_display(self): linked_object = self.linked_object if not linked_object: prefix = pgettext_lazy('Link object type description', 'URL: ') return prefix + self.url if isinstance(linked_object, Category): prefix = pgettext_lazy( 'Link object type description', 'Category: ') elif isinstance(linked_object, Collection): prefix = pgettext_lazy( 'Link object type description', 'Collection: ') else: prefix = pgettext_lazy( 'Link object type description', 'Page: ') return prefix + str(linked_object) def get_url(self): linked_object = self.linked_object return linked_object.get_absolute_url() if linked_object else self.url class MenuItemTranslation(models.Model): language_code = models.CharField(max_length=10) menu_item = models.ForeignKey( MenuItem, related_name='translations', on_delete=models.CASCADE) name = models.CharField(max_length=128) class Meta: unique_together = (('language_code', 'menu_item'),) def __repr__(self): class_ = type(self) return '%s(pk=%r, name=%r, menu_item_pk=%r)' % ( class_.__name__, self.pk, self.name, self.menu_item_id) def __str__(self): return self.name
31.942308
78
0.665563
01cb3746d1820266b80596bef731013d68387939
439
py
Python
pol/ptst.py
mlares/CMB_polarization
936d17d0be81564dbae96d8aae0cb9f824f8a94d
[ "MIT" ]
null
null
null
pol/ptst.py
mlares/CMB_polarization
936d17d0be81564dbae96d8aae0cb9f824f8a94d
[ "MIT" ]
null
null
null
pol/ptst.py
mlares/CMB_polarization
936d17d0be81564dbae96d8aae0cb9f824f8a94d
[ "MIT" ]
null
null
null
from Parser import Parser from sys import argv #import PixelSky as pxs import cmfg #from configparser import ConfigParser if len(argv) > 1: config = Parser(argv[1]) else: config = Parser() #filename = pxs.check_file(argv) #config = ConfigParser() #config.read(filename) #config = Parser('../set/POL03.ini') #X = cmfg.profile2d(config) #X.load_centers() #X.select_subsample_centers()
19.086957
38
0.653759
dc040750089650045d2f2ec4f082ac76b18ea976
9,014
py
Python
venv/Lib/site-packages/celery/bin/worker.py
Verckolf/MyInterfaceTest
e05674bd673a6a43cfb33f7cb4318886ba92a05c
[ "MIT" ]
39
2016-12-05T14:36:37.000Z
2021-07-29T18:22:34.000Z
microblog/flask/venv/lib/python2.7/site-packages/celery/bin/worker.py
johankaito/fufuka
32a96ecf98ce305c2206c38443e58fdec88c788d
[ "Apache-2.0" ]
68
2016-12-12T20:38:47.000Z
2020-07-26T18:28:49.000Z
microblog/flask/venv/lib/python2.7/site-packages/celery/bin/worker.py
johankaito/fufuka
32a96ecf98ce305c2206c38443e58fdec88c788d
[ "Apache-2.0" ]
120
2016-08-18T14:53:03.000Z
2020-06-16T13:27:20.000Z
# -*- coding: utf-8 -*- """ The :program:`celery worker` command (previously known as ``celeryd``) .. program:: celery worker .. seealso:: See :ref:`preload-options`. .. cmdoption:: -c, --concurrency Number of child processes processing the queue. The default is the number of CPUs available on your system. .. cmdoption:: -P, --pool Pool implementation: prefork (default), eventlet, gevent, solo or threads. .. cmdoption:: -f, --logfile Path to log file. If no logfile is specified, `stderr` is used. .. cmdoption:: -l, --loglevel Logging level, choose between `DEBUG`, `INFO`, `WARNING`, `ERROR`, `CRITICAL`, or `FATAL`. .. cmdoption:: -n, --hostname Set custom hostname, e.g. 'w1.%h'. Expands: %h (hostname), %n (name) and %d, (domain). .. cmdoption:: -B, --beat Also run the `celery beat` periodic task scheduler. Please note that there must only be one instance of this service. .. cmdoption:: -Q, --queues List of queues to enable for this worker, separated by comma. By default all configured queues are enabled. Example: `-Q video,image` .. cmdoption:: -I, --include Comma separated list of additional modules to import. Example: -I foo.tasks,bar.tasks .. cmdoption:: -s, --schedule Path to the schedule database if running with the `-B` option. Defaults to `celerybeat-schedule`. The extension ".db" may be appended to the filename. .. cmdoption:: -O Apply optimization profile. Supported: default, fair .. cmdoption:: --scheduler Scheduler class to use. Default is celery.beat.PersistentScheduler .. cmdoption:: -S, --statedb Path to the state database. The extension '.db' may be appended to the filename. Default: {default} .. cmdoption:: -E, --events Send events that can be captured by monitors like :program:`celery events`, `celerymon`, and others. .. cmdoption:: --without-gossip Do not subscribe to other workers events. .. cmdoption:: --without-mingle Do not synchronize with other workers at startup. .. cmdoption:: --without-heartbeat Do not send event heartbeats. .. cmdoption:: --heartbeat-interval Interval in seconds at which to send worker heartbeat .. cmdoption:: --purge Purges all waiting tasks before the daemon is started. **WARNING**: This is unrecoverable, and the tasks will be deleted from the messaging server. .. cmdoption:: --time-limit Enables a hard time limit (in seconds int/float) for tasks. .. cmdoption:: --soft-time-limit Enables a soft time limit (in seconds int/float) for tasks. .. cmdoption:: --maxtasksperchild Maximum number of tasks a pool worker can execute before it's terminated and replaced by a new worker. .. cmdoption:: --pidfile Optional file used to store the workers pid. The worker will not start if this file already exists and the pid is still alive. .. cmdoption:: --autoscale Enable autoscaling by providing max_concurrency, min_concurrency. Example:: --autoscale=10,3 (always keep 3 processes, but grow to 10 if necessary) .. cmdoption:: --autoreload Enable autoreloading. .. cmdoption:: --no-execv Don't do execv after multiprocessing child fork. """ from __future__ import absolute_import, unicode_literals import sys from celery import concurrency from celery.bin.base import Command, Option, daemon_options from celery.bin.celeryd_detach import detached_celeryd from celery.five import string_t from celery.platforms import maybe_drop_privileges from celery.utils import default_nodename from celery.utils.log import LOG_LEVELS, mlevel __all__ = ['worker', 'main'] __MODULE_DOC__ = __doc__ class worker(Command): """Start worker instance. Examples:: celery worker --app=proj -l info celery worker -A proj -l info -Q hipri,lopri celery worker -A proj --concurrency=4 celery worker -A proj --concurrency=1000 -P eventlet celery worker --autoscale=10,0 """ doc = __MODULE_DOC__ # parse help from this too namespace = 'celeryd' enable_config_from_cmdline = True supports_args = False def run_from_argv(self, prog_name, argv=None, command=None): command = sys.argv[0] if command is None else command argv = sys.argv[1:] if argv is None else argv # parse options before detaching so errors can be handled. options, args = self.prepare_args( *self.parse_options(prog_name, argv, command)) self.maybe_detach([command] + argv) return self(*args, **options) def maybe_detach(self, argv, dopts=['-D', '--detach']): if any(arg in argv for arg in dopts): argv = [v for v in argv if v not in dopts] # will never return detached_celeryd(self.app).execute_from_commandline(argv) raise SystemExit(0) def run(self, hostname=None, pool_cls=None, app=None, uid=None, gid=None, loglevel=None, logfile=None, pidfile=None, state_db=None, **kwargs): maybe_drop_privileges(uid=uid, gid=gid) # Pools like eventlet/gevent needs to patch libs as early # as possible. pool_cls = (concurrency.get_implementation(pool_cls) or self.app.conf.CELERYD_POOL) if self.app.IS_WINDOWS and kwargs.get('beat'): self.die('-B option does not work on Windows. ' 'Please run celery beat as a separate service.') hostname = self.host_format(default_nodename(hostname)) if loglevel: try: loglevel = mlevel(loglevel) except KeyError: # pragma: no cover self.die('Unknown level {0!r}. Please use one of {1}.'.format( loglevel, '|'.join( l for l in LOG_LEVELS if isinstance(l, string_t)))) return self.app.Worker( hostname=hostname, pool_cls=pool_cls, loglevel=loglevel, logfile=logfile, # node format handled by celery.app.log.setup pidfile=self.node_format(pidfile, hostname), state_db=self.node_format(state_db, hostname), **kwargs ).start() def with_pool_option(self, argv): # this command support custom pools # that may have to be loaded as early as possible. return (['-P'], ['--pool']) def get_options(self): conf = self.app.conf return ( Option('-c', '--concurrency', default=conf.CELERYD_CONCURRENCY, type='int'), Option('-P', '--pool', default=conf.CELERYD_POOL, dest='pool_cls'), Option('--purge', '--discard', default=False, action='store_true'), Option('-l', '--loglevel', default=conf.CELERYD_LOG_LEVEL), Option('-n', '--hostname'), Option('-B', '--beat', action='store_true'), Option('-s', '--schedule', dest='schedule_filename', default=conf.CELERYBEAT_SCHEDULE_FILENAME), Option('--scheduler', dest='scheduler_cls'), Option('-S', '--statedb', default=conf.CELERYD_STATE_DB, dest='state_db'), Option('-E', '--events', default=conf.CELERY_SEND_EVENTS, action='store_true', dest='send_events'), Option('--time-limit', type='float', dest='task_time_limit', default=conf.CELERYD_TASK_TIME_LIMIT), Option('--soft-time-limit', dest='task_soft_time_limit', default=conf.CELERYD_TASK_SOFT_TIME_LIMIT, type='float'), Option('--maxtasksperchild', dest='max_tasks_per_child', default=conf.CELERYD_MAX_TASKS_PER_CHILD, type='int'), Option('--queues', '-Q', default=[]), Option('--exclude-queues', '-X', default=[]), Option('--include', '-I', default=[]), Option('--autoscale'), Option('--autoreload', action='store_true'), Option('--no-execv', action='store_true', default=False), Option('--without-gossip', action='store_true', default=False), Option('--without-mingle', action='store_true', default=False), Option('--without-heartbeat', action='store_true', default=False), Option('--heartbeat-interval', type='int'), Option('-O', dest='optimization'), Option('-D', '--detach', action='store_true'), ) + daemon_options() + tuple(self.app.user_options['worker']) def main(app=None): # Fix for setuptools generated scripts, so that it will # work with multiprocessing fork emulation. # (see multiprocessing.forking.get_preparation_data()) if __name__ != '__main__': # pragma: no cover sys.modules['__main__'] = sys.modules[__name__] from billiard import freeze_support freeze_support() worker(app=app).execute_from_commandline() if __name__ == '__main__': # pragma: no cover main()
33.261993
79
0.637342
49a05265bb854182d7f2865ec9a6936496e2d54e
812
py
Python
python/opencv/color-detection/detect_color.py
lijiansong/lang
e255709da2b12e09dea45f86d54f77a19b96f13b
[ "WTFPL" ]
1
2020-01-09T03:22:09.000Z
2020-01-09T03:22:09.000Z
python/opencv/color-detection/detect_color.py
lijiansong/lang
e255709da2b12e09dea45f86d54f77a19b96f13b
[ "WTFPL" ]
null
null
null
python/opencv/color-detection/detect_color.py
lijiansong/lang
e255709da2b12e09dea45f86d54f77a19b96f13b
[ "WTFPL" ]
null
null
null
# USAGE # python3 detect_color.py --image pokemon_games.png import numpy as np import cv2 # load the image image = cv2.imread('pokemon_games.png') # define the list of boundaries boundaries = [ ([17, 15, 100], [50, 56, 200]), ([86, 31, 4], [220, 88, 50]), ([25, 146, 190], [62, 174, 250]), ([103, 86, 65], [145, 133, 128]) ] # loop over the boundaries for (lower, upper) in boundaries: # create NumPy arrays from the boundaries lower = np.array(lower, dtype="uint8") upper = np.array(upper, dtype="uint8") # find the colors within the specified boundaries and apply # the mask mask = cv2.inRange(image, lower, upper) output = cv2.bitwise_and(image, image, mask=mask) # show the images cv2.imshow("images", np.hstack([image, output])) cv2.waitKey(0)
24.606061
63
0.641626
86719db4609affe2ab17f4139b0925e50fea220f
4,454
py
Python
JavaScripts/ImageCollection/LandsatSimpleComposite.py
OIEIEIO/earthengine-py-notebooks
5d6c5cdec0c73bf02020ee17d42c9e30d633349f
[ "MIT" ]
1,008
2020-01-27T02:03:18.000Z
2022-03-24T10:42:14.000Z
JavaScripts/ImageCollection/LandsatSimpleComposite.py
rafatieppo/earthengine-py-notebooks
99fbc4abd1fb6ba41e3d8a55f8911217353a3237
[ "MIT" ]
8
2020-02-01T20:18:18.000Z
2021-11-23T01:48:02.000Z
JavaScripts/ImageCollection/LandsatSimpleComposite.py
rafatieppo/earthengine-py-notebooks
99fbc4abd1fb6ba41e3d8a55f8911217353a3237
[ "MIT" ]
325
2020-01-27T02:03:36.000Z
2022-03-25T20:33:33.000Z
# %% """ <table class="ee-notebook-buttons" align="left"> <td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/JavaScripts/ImageCollection/LandsatSimpleComposite.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td> <td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/JavaScripts/ImageCollection/LandsatSimpleComposite.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/JavaScripts/ImageCollection/LandsatSimpleComposite.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td> </table> """ # %% """ ## Install Earth Engine API and geemap Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geemap](https://github.com/giswqs/geemap). The **geemap** Python package is built upon the [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet) and [folium](https://github.com/python-visualization/folium) packages and implements several methods for interacting with Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, and `Map.centerObject()`. The following script checks if the geemap package has been installed. If not, it will install geemap, which automatically installs its [dependencies](https://github.com/giswqs/geemap#dependencies), including earthengine-api, folium, and ipyleaflet. **Important note**: A key difference between folium and ipyleaflet is that ipyleaflet is built upon ipywidgets and allows bidirectional communication between the front-end and the backend enabling the use of the map to capture user input, while folium is meant for displaying static data only ([source](https://blog.jupyter.org/interactive-gis-in-jupyter-with-ipyleaflet-52f9657fa7a)). Note that [Google Colab](https://colab.research.google.com/) currently does not support ipyleaflet ([source](https://github.com/googlecolab/colabtools/issues/60#issuecomment-596225619)). Therefore, if you are using geemap with Google Colab, you should use [`import geemap.eefolium`](https://github.com/giswqs/geemap/blob/master/geemap/eefolium.py). If you are using geemap with [binder](https://mybinder.org/) or a local Jupyter notebook server, you can use [`import geemap`](https://github.com/giswqs/geemap/blob/master/geemap/geemap.py), which provides more functionalities for capturing user input (e.g., mouse-clicking and moving). """ # %% # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as geemap except: import geemap # Authenticates and initializes Earth Engine import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() # %% """ ## Create an interactive map The default basemap is `Google MapS`. [Additional basemaps](https://github.com/giswqs/geemap/blob/master/geemap/basemaps.py) can be added using the `Map.add_basemap()` function. """ # %% Map = geemap.Map(center=[40,-100], zoom=4) Map # %% """ ## Add Earth Engine Python script """ # %% # Add Earth Engine dataset # Composite 6 months of Landsat 8. # Note that the input to simpleComposite is raw data. l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1') # The asFloat parameter gives floating-point TOA output instead of # the UINT8 outputs of the default simpleComposite(). composite = ee.Algorithms.Landsat.simpleComposite({ 'collection': l8.filterDate('2015-1-1', '2015-7-1'), 'asFloat': True }) # Pick a spot with lots of clouds. Map.setCenter(-47.6735, -0.6344, 12) # Display a composite with a band combination chosen from: # https:#landsat.usgs.gov/how-do-landsat-8-band-combinations-differ-landsat-7-or-landsat-5-satellite-data Map.addLayer(composite, {'bands': ['B6', 'B5', 'B4'], 'max': [0.3, 0.4, 0.3]}) # %% """ ## Display Earth Engine data layers """ # %% Map.addLayerControl() # This line is not needed for ipyleaflet-based Map. Map
50.613636
1,021
0.748541
4970a28b266621d087080991a28c4ba7bbf93393
30,399
py
Python
guts/api/xmlutil.py
smallwormer/stable-liberty-guts
e635b710cdd210f70e9d50c3b85fffdeb53e8f01
[ "Apache-2.0" ]
null
null
null
guts/api/xmlutil.py
smallwormer/stable-liberty-guts
e635b710cdd210f70e9d50c3b85fffdeb53e8f01
[ "Apache-2.0" ]
null
null
null
guts/api/xmlutil.py
smallwormer/stable-liberty-guts
e635b710cdd210f70e9d50c3b85fffdeb53e8f01
[ "Apache-2.0" ]
1
2022-03-03T05:41:31.000Z
2022-03-03T05:41:31.000Z
# Copyright (c) 2015 Aptira Pty Ltd. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os.path import re from lxml import etree import six from guts.i18n import _ from guts import utils XMLNS_V10 = 'http://docs.rackspacecloud.com/servers/api/v1.0' XMLNS_V11 = 'http://docs.openstack.org/compute/api/v1.1' XMLNS_COMMON_V10 = 'http://docs.openstack.org/common/api/v1.0' XMLNS_ATOM = 'http://www.w3.org/2005/Atom' XMLNS_MIGRATION_V1 = ('http://docs.openstack.org/api/guts/1.0/' 'content') XMLNS_MIGRATION_V2 = ('http://docs.openstack.org/api/guts/2.0/' 'content') _split_pattern = re.compile(r'([^:{]*{[^}]*}[^:]*|[^:]+)') def validate_schema(xml, schema_name): if isinstance(xml, str): xml = etree.fromstring(xml) base_path = 'guts/api/schemas/v1.1/' if schema_name in ('atom', 'atom-link'): base_path = 'guts/api/schemas/' schema_path = os.path.join(utils.gutsdir(), '%s%s.rng' % (base_path, schema_name)) schema_doc = etree.parse(schema_path) relaxng = etree.RelaxNG(schema_doc) relaxng.assertValid(xml) class Selector(object): """Selects datum to operate on from an object.""" def __init__(self, *chain): """Initialize the selector. Each argument is a subsequent index into the object. """ self.chain = chain def __repr__(self): """Return a representation of the selector.""" return "Selector" + repr(self.chain) def __call__(self, obj, do_raise=False): """Select a datum to operate on. Selects the relevant datum within the object. :param obj: The object from which to select the object. :param do_raise: If False (the default), return None if the indexed datum does not exist. Otherwise, raise a KeyError. """ # Walk the selector list for elem in self.chain: # If it's callable, call it if callable(elem): obj = elem(obj) else: # Use indexing try: obj = obj[elem] except (KeyError, IndexError): # No sense going any further if do_raise: # Convert to a KeyError, for consistency raise KeyError(elem) return None # Return the finally-selected object return obj def get_items(obj): """Get items in obj.""" return list(obj.items()) class EmptyStringSelector(Selector): """Returns the empty string if Selector would return None.""" def __call__(self, obj, do_raise=False): """Returns empty string if the selected value does not exist.""" try: return super(EmptyStringSelector, self).__call__(obj, True) except KeyError: return "" class ConstantSelector(object): """Returns a constant.""" def __init__(self, value): """Initialize the selector. :param value: The value to return. """ self.value = value def __repr__(self): """Return a representation of the selector.""" return repr(self.value) def __call__(self, _obj, _do_raise=False): """Select a datum to operate on. Returns a constant value. Compatible with Selector.__call__(). """ return self.value class TemplateElement(object): """Represent an element in the template.""" def __init__(self, tag, attrib=None, selector=None, subselector=None, **extra): """Initialize an element. Initializes an element in the template. Keyword arguments specify attributes to be set on the element; values must be callables. See TemplateElement.set() for more information. :param tag: The name of the tag to create. :param attrib: An optional dictionary of element attributes. :param selector: An optional callable taking an object and optional boolean do_raise indicator and returning the object bound to the element. :param subselector: An optional callable taking an object and optional boolean do_raise indicator and returning the object bound to the element. This is used to further refine the datum object returned by selector in the event that it is a list of objects. """ # Convert selector into a Selector if selector is None: selector = Selector() elif not callable(selector): selector = Selector(selector) # Convert subselector into a Selector if subselector is not None and not callable(subselector): subselector = Selector(subselector) self.tag = tag self.selector = selector self.subselector = subselector self.attrib = {} self._text = None self._children = [] self._childmap = {} # Run the incoming attributes through set() so that they # become selectorized if not attrib: attrib = {} attrib.update(extra) for k, v in attrib.items(): self.set(k, v) def __repr__(self): """Return a representation of the template element.""" return ('<%s.%s %r at %#x>' % (self.__class__.__module__, self.__class__.__name__, self.tag, id(self))) def __len__(self): """Return the number of child elements.""" return len(self._children) def __contains__(self, key): """Determine whether a child node named by key exists.""" return key in self._childmap def __getitem__(self, idx): """Retrieve a child node by index or name.""" if isinstance(idx, six.string_types): # Allow access by node name return self._childmap[idx] else: return self._children[idx] def append(self, elem): """Append a child to the element.""" # Unwrap templates... elem = elem.unwrap() # Avoid duplications if elem.tag in self._childmap: raise KeyError(elem.tag) self._children.append(elem) self._childmap[elem.tag] = elem def extend(self, elems): """Append children to the element.""" # Pre-evaluate the elements elemmap = {} elemlist = [] for elem in elems: # Unwrap templates... elem = elem.unwrap() # Avoid duplications if elem.tag in self._childmap or elem.tag in elemmap: raise KeyError(elem.tag) elemmap[elem.tag] = elem elemlist.append(elem) # Update the children self._children.extend(elemlist) self._childmap.update(elemmap) def insert(self, idx, elem): """Insert a child element at the given index.""" # Unwrap templates... elem = elem.unwrap() # Avoid duplications if elem.tag in self._childmap: raise KeyError(elem.tag) self._children.insert(idx, elem) self._childmap[elem.tag] = elem def remove(self, elem): """Remove a child element.""" # Unwrap templates... elem = elem.unwrap() # Check if element exists if elem.tag not in self._childmap or self._childmap[elem.tag] != elem: raise ValueError(_('element is not a child')) self._children.remove(elem) del self._childmap[elem.tag] def get(self, key): """Get an attribute. Returns a callable which performs datum selection. :param key: The name of the attribute to get. """ return self.attrib[key] def set(self, key, value=None): """Set an attribute. :param key: The name of the attribute to set. :param value: A callable taking an object and optional boolean do_raise indicator and returning the datum bound to the attribute. If None, a Selector() will be constructed from the key. If a string, a Selector() will be constructed from the string. """ # Convert value to a selector if value is None: value = Selector(key) elif not callable(value): value = Selector(value) self.attrib[key] = value def keys(self): """Return the attribute names.""" return self.attrib.keys() def items(self): """Return the attribute names and values.""" return self.attrib.items() def unwrap(self): """Unwraps a template to return a template element.""" # We are a template element return self def wrap(self): """Wraps a template element to return a template.""" # Wrap in a basic Template return Template(self) def apply(self, elem, obj): """Apply text and attributes to an etree.Element. Applies the text and attribute instructions in the template element to an etree.Element instance. :param elem: An etree.Element instance. :param obj: The base object associated with this template element. """ # Start with the text... if self.text is not None: elem.text = six.text_type(self.text(obj)) # Now set up all the attributes... for key, value in self.attrib.items(): try: elem.set(key, six.text_type(value(obj, True))) except KeyError: # Attribute has no value, so don't include it pass def getAttrib(self, obj): """Get attribute.""" tmpattrib = {} # Now set up all the attributes... for key, value in self.attrib.items(): try: tmpattrib[key] = value(obj) except KeyError: # Attribute has no value, so don't include it pass return tmpattrib @staticmethod def _splitTagName(name): return _split_pattern.findall(name) def _render(self, parent, datum, patches, nsmap): """Internal rendering. Renders the template node into an etree.Element object. Returns the etree.Element object. :param parent: The parent etree.Element instance. :param datum: The datum associated with this template element. :param patches: A list of other template elements that must also be applied. :param nsmap: An optional namespace dictionary to be associated with the etree.Element instance. """ # Allocate a node if callable(self.tag): tagname = self.tag(datum) else: tagname = self.tag # If the datum is None if datum is not None: tmpattrib = self.getAttrib(datum) else: tmpattrib = {} tagnameList = self._splitTagName(tagname) insertIndex = 0 # If parent is not none and has same tagname if parent is not None: for i in range(0, len(tagnameList)): tmpInsertPos = parent.find(tagnameList[i]) if tmpInsertPos is None: break elif parent.attrib != tmpattrib: break parent = tmpInsertPos insertIndex = i + 1 if insertIndex >= len(tagnameList): insertIndex = insertIndex - 1 # Create root elem elem = etree.Element(tagnameList[insertIndex], nsmap=nsmap) rootelem = elem subelem = elem # Create subelem for i in range((insertIndex + 1), len(tagnameList)): subelem = etree.SubElement(elem, tagnameList[i]) elem = subelem # If we have a parent, append the node to the parent if parent is not None: # If we can merge this element, then insert if insertIndex > 0: parent.insert(len(list(parent)), rootelem) else: parent.append(rootelem) # If the datum is None, do nothing else if datum is None: return rootelem # Apply this template element to the element self.apply(subelem, datum) # Additionally, apply the patches for patch in patches: patch.apply(subelem, datum) # We have fully rendered the element; return it return rootelem def render(self, parent, obj, patches=None, nsmap=None): """Render an object. Renders an object against this template node. Returns a list of two-item tuples, where the first item is an etree.Element instance and the second item is the datum associated with that instance. :param parent: The parent for the etree.Element instances. :param obj: The object to render this template element against. :param patches: A list of other template elements to apply when rendering this template element. :param nsmap: An optional namespace dictionary to attach to the etree.Element instances. """ patches = patches or [] # First, get the datum we're rendering data = None if obj is None else self.selector(obj) # Check if we should render at all if not self.will_render(data): return [] elif data is None: return [(self._render(parent, None, patches, nsmap), None)] # Make the data into a list if it isn't already if not isinstance(data, list): data = [data] elif parent is None: raise ValueError(_('root element selecting a list')) # Render all the elements elems = [] for datum in data: if self.subselector is not None: datum = self.subselector(datum) elems.append((self._render(parent, datum, patches, nsmap), datum)) # Return all the elements rendered, as well as the # corresponding datum for the next step down the tree return elems def will_render(self, datum): """Hook method. An overridable hook method to determine whether this template element will be rendered at all. By default, returns False (inhibiting rendering) if the datum is None. :param datum: The datum associated with this template element. """ # Don't render if datum is None return datum is not None def _text_get(self): """Template element text. Either None or a callable taking an object and optional boolean do_raise indicator and returning the datum bound to the text of the template element. """ return self._text def _text_set(self, value): # Convert value to a selector if value is not None and not callable(value): value = Selector(value) self._text = value def _text_del(self): self._text = None text = property(_text_get, _text_set, _text_del) def tree(self): """Return string representation of the template tree. Returns a representation of the template rooted at this element as a string, suitable for inclusion in debug logs. """ # Build the inner contents of the tag... contents = [self.tag, '!selector=%r' % self.selector] # Add the text... if self.text is not None: contents.append('!text=%r' % self.text) # Add all the other attributes for key, value in self.attrib.items(): contents.append('%s=%r' % (key, value)) # If there are no children, return it as a closed tag if len(self) == 0: return '<%s/>' % ' '.join([str(i) for i in contents]) # OK, recurse to our children children = [c.tree() for c in self] # Return the result return ('<%s>%s</%s>' % (' '.join(contents), ''.join(children), self.tag)) def SubTemplateElement(parent, tag, attrib=None, selector=None, subselector=None, **extra): """Create a template element as a child of another. Corresponds to the etree.SubElement interface. Parameters are as for TemplateElement, with the addition of the parent. """ # Convert attributes attrib = attrib or {} attrib.update(extra) # Get a TemplateElement elem = TemplateElement(tag, attrib=attrib, selector=selector, subselector=subselector) # Append the parent safely if parent is not None: parent.append(elem) return elem class Template(object): """Represent a template.""" def __init__(self, root, nsmap=None): """Initialize a template. :param root: The root element of the template. :param nsmap: An optional namespace dictionary to be associated with the root element of the template. """ self.root = root.unwrap() if root is not None else None self.nsmap = nsmap or {} self.serialize_options = dict(encoding='UTF-8', xml_declaration=True) def _serialize(self, parent, obj, siblings, nsmap=None): """Internal serialization. Recursive routine to build a tree of etree.Element instances from an object based on the template. Returns the first etree.Element instance rendered, or None. :param parent: The parent etree.Element instance. Can be None. :param obj: The object to render. :param siblings: The TemplateElement instances against which to render the object. :param nsmap: An optional namespace dictionary to be associated with the etree.Element instance rendered. """ # First step, render the element elems = siblings[0].render(parent, obj, siblings[1:], nsmap) # Now, traverse all child elements seen = set() for idx, sibling in enumerate(siblings): for child in sibling: # Have we handled this child already? if child.tag in seen: continue seen.add(child.tag) # Determine the child's siblings nieces = [child] for sib in siblings[idx + 1:]: if child.tag in sib: nieces.append(sib[child.tag]) # Now call this function for all data elements recursively for elem, datum in elems: self._serialize(elem, datum, nieces) # Return the first element; at the top level, this will be the # root element if elems: return elems[0][0] def serialize(self, obj, *args, **kwargs): """Serialize an object. Serializes an object against the template. Returns a string with the serialized XML. Positional and keyword arguments are passed to etree.tostring(). :param obj: The object to serialize. """ elem = self.make_tree(obj) if elem is None: return '' for k, v in self.serialize_options.items(): kwargs.setdefault(k, v) # Serialize it into XML return etree.tostring(elem, *args, **kwargs) def make_tree(self, obj): """Create a tree. Serializes an object against the template. Returns an Element node with appropriate children. :param obj: The object to serialize. """ # If the template is empty, return the empty string if self.root is None: return None # Get the siblings and nsmap of the root element siblings = self._siblings() nsmap = self._nsmap() # Form the element tree return self._serialize(None, obj, siblings, nsmap) def _siblings(self): """Hook method for computing root siblings. An overridable hook method to return the siblings of the root element. By default, this is the root element itself. """ return [self.root] def _nsmap(self): """Hook method for computing the namespace dictionary. An overridable hook method to return the namespace dictionary. """ return self.nsmap.copy() def unwrap(self): """Unwraps a template to return a template element.""" # Return the root element return self.root def wrap(self): """Wraps a template element to return a template.""" # We are a template return self def apply(self, master): """Hook method for determining slave applicability. An overridable hook method used to determine if this template is applicable as a slave to a given master template. :param master: The master template to test. """ return True def tree(self): """Return string representation of the template tree. Returns a representation of the template as a string, suitable for inclusion in debug logs. """ return "%r: %s" % (self, self.root.tree()) class MasterTemplate(Template): """Represent a master template. Master templates are versioned derivatives of templates that additionally allow slave templates to be attached. Slave templates allow modification of the serialized result without directly changing the master. """ def __init__(self, root, version, nsmap=None): """Initialize a master template. :param root: The root element of the template. :param version: The version number of the template. :param nsmap: An optional namespace dictionary to be associated with the root element of the template. """ super(MasterTemplate, self).__init__(root, nsmap) self.version = version self.slaves = [] def __repr__(self): """Return string representation of the template.""" return ("<%s.%s object version %s at %#x>" % (self.__class__.__module__, self.__class__.__name__, self.version, id(self))) def _siblings(self): """Hook method for computing root siblings. An overridable hook method to return the siblings of the root element. This is the root element plus the root elements of all the slave templates. """ return [self.root] + [slave.root for slave in self.slaves] def _nsmap(self): """Hook method for computing the namespace dictionary. An overridable hook method to return the namespace dictionary. The namespace dictionary is computed by taking the master template's namespace dictionary and updating it from all the slave templates. """ nsmap = self.nsmap.copy() for slave in self.slaves: nsmap.update(slave._nsmap()) return nsmap def attach(self, *slaves): """Attach one or more slave templates. Attaches one or more slave templates to the master template. Slave templates must have a root element with the same tag as the master template. The slave template's apply() method will be called to determine if the slave should be applied to this master; if it returns False, that slave will be skipped. (This allows filtering of slaves based on the version of the master template.) """ slave_list = [] for slave in slaves: slave = slave.wrap() # Make sure we have a tree match if slave.root.tag != self.root.tag: msg = (_("Template tree mismatch; adding slave %(slavetag)s " "to master %(mastertag)s") % {'slavetag': slave.root.tag, 'mastertag': self.root.tag}) raise ValueError(msg) # Make sure slave applies to this template if not slave.apply(self): continue slave_list.append(slave) # Add the slaves self.slaves.extend(slave_list) def copy(self): """Return a copy of this master template.""" # Return a copy of the MasterTemplate tmp = self.__class__(self.root, self.version, self.nsmap) tmp.slaves = self.slaves[:] return tmp class SlaveTemplate(Template): """Represent a slave template. Slave templates are versioned derivatives of templates. Each slave has a minimum version and optional maximum version of the master template to which they can be attached. """ def __init__(self, root, min_vers, max_vers=None, nsmap=None): """Initialize a slave template. :param root: The root element of the template. :param min_vers: The minimum permissible version of the master template for this slave template to apply. :param max_vers: An optional upper bound for the master template version. :param nsmap: An optional namespace dictionary to be associated with the root element of the template. """ super(SlaveTemplate, self).__init__(root, nsmap) self.min_vers = min_vers self.max_vers = max_vers def __repr__(self): """Return string representation of the template.""" return ("<%s.%s object versions %s-%s at %#x>" % (self.__class__.__module__, self.__class__.__name__, self.min_vers, self.max_vers, id(self))) def apply(self, master): """Hook method for determining slave applicability. An overridable hook method used to determine if this template is applicable as a slave to a given master template. This version requires the master template to have a version number between min_vers and max_vers. :param master: The master template to test. """ # Does the master meet our minimum version requirement? if master.version < self.min_vers: return False # How about our maximum version requirement? if self.max_vers is not None and master.version > self.max_vers: return False return True class TemplateBuilder(object): """Template builder. This class exists to allow templates to be lazily built without having to build them each time they are needed. It must be subclassed, and the subclass must implement the construct() method, which must return a Template (or subclass) instance. The constructor will always return the template returned by construct(), or, if it has a copy() method, a copy of that template. """ _tmpl = None def __new__(cls, copy=True): """Construct and return a template. :param copy: If True (the default), a copy of the template will be constructed and returned, if possible. """ # Do we need to construct the template? if cls._tmpl is None: tmp = super(TemplateBuilder, cls).__new__(cls) # Construct the template cls._tmpl = tmp.construct() # If the template has a copy attribute, return the result of # calling it if copy and hasattr(cls._tmpl, 'copy'): return cls._tmpl.copy() # Return the template return cls._tmpl def construct(self): """Construct a template. Called to construct a template instance, which it must return. Only called once. """ raise NotImplementedError(_("subclasses must implement construct()!")) def make_links(parent, selector=None): """Attach an Atom <links> element to the parent.""" elem = SubTemplateElement(parent, '{%s}link' % XMLNS_ATOM, selector=selector) elem.set('rel') elem.set('type') elem.set('href') # Just for completeness... return elem def make_flat_dict(name, selector=None, subselector=None, ns=None): """Utility for simple XML templates. Simple templates are templates that traditionally used XMLDictSerializer with no metadata. Returns a template element where the top-level element has the given tag name, and where sub-elements have tag names derived from the object's keys and text derived from the object's values. This only works for flat dictionary objects, not dictionaries containing nested lists or dictionaries. """ # Set up the names we need... if ns is None: elemname = name tagname = Selector(0) else: elemname = '{%s}%s' % (ns, name) tagname = lambda obj, do_raise=False: '{%s}%s' % (ns, obj[0]) if selector is None: selector = name # Build the root element root = TemplateElement(elemname, selector=selector, subselector=subselector) # Build an element to represent all the keys and values elem = SubTemplateElement(root, tagname, selector=get_items) elem.text = 1 # Return the template return root
31.371517
78
0.593605
a83cd8246e345ca8860b4a62c06df0f0a1b8fdf9
12,501
py
Python
tests/unit/modules/test_cmci_get.py
vera-chan/ibm_zos_cics
727867b121ff6d6e0dfd01488d7a588597208e2b
[ "Apache-2.0" ]
null
null
null
tests/unit/modules/test_cmci_get.py
vera-chan/ibm_zos_cics
727867b121ff6d6e0dfd01488d7a588597208e2b
[ "Apache-2.0" ]
null
null
null
tests/unit/modules/test_cmci_get.py
vera-chan/ibm_zos_cics
727867b121ff6d6e0dfd01488d7a588597208e2b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) IBM Corporation 2020 # Apache License, Version 2.0 (see https://opensource.org/licenses/Apache-2.0) from __future__ import absolute_import, division, print_function __metaclass__ = type from ansible_collections.ibm.ibm_zos_cics.plugins.modules import cmci_get from ansible_collections.ibm.ibm_zos_cics.tests.unit.helpers.cmci_helper import ( HOST, PORT, CONTEXT, SCOPE, AnsibleFailJson, set_module_args, exit_json, fail_json, cmci_module, CMCITestHelper ) from ansible.module_utils import basic import pytest import re def test_401_fails(cmci_module): # type: (CMCITestHelper) -> None cmci_module.stub_request( 'GET', 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/CICSDefinitionBundle/CICPY012/', status_code=401, reason='Not authorized', text='<!doctype html public "-//IETF//DTD HTML 2.0//EN">\n' '<html>' '<head>' '<title>CICS Web Interface error</title>' '</head>' '<body>' '<H1>401 Basic Authentication Error</H1>' '</body>' '</html>', headers={ 'CONTENT-TYPE': 'text/html' }) cmci_module.expect({ 'msg': 'CMCI request returned non-OK status: Not authorized', 'changed': False, 'failed': True, 'http_status': 'Not authorized', 'http_status_code': 401, 'request': { 'url': 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/' 'cicsdefinitionbundle/CICPY012/', 'method': 'GET', 'body': None } }) # Module config cmci_module.run(cmci_get, { 'cmci_host': 'winmvs2c.hursley.ibm.com', 'cmci_port': '26040', 'context': 'CICPY012', 'security_type': 'none', 'type': 'CICSDefinitionBundle' }) def test_invalid_host(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': 'Parameter "cmci_host" with value "^*.99.99.199" was not valid. Expected an IP address or host name.', 'changed': False, 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '^*.99.99.199', 'cmci_port': '10080', 'context': 'iyk3z0r9', 'scope': 'iyk3z0r8', 'type': 'cicslocalfile' }) def test_unknown_host(monkeypatch): monkeypatch.setattr(basic.AnsibleModule, "exit_json", exit_json) monkeypatch.setattr(basic.AnsibleModule, "fail_json", fail_json) set_module_args({ 'cmci_host': 'invalid.hursley.ibm.com', 'cmci_port': '26040', 'context': 'CICPY012', 'security_type': 'none', 'type': 'CICSDefinitionBundle' }) with pytest.raises(AnsibleFailJson) as exc_info: cmci_get.main() exp = \ 'Error performing CMCI request: <[^>]*>: Failed to establish a new connection: ' \ '\\[Errno 8\\] nodename nor servname provided, or not known' assert re.match(exp, exc_info.value.args[0]['msg']) def test_invalid_port_type(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': "argument cmci_port is of type <class 'str'> and we were unable to " "convert to int: invalid literal for int() with base 10: '^%^080'", 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '100.99.99.199', 'cmci_port': '^%^080', 'context': 'iyk3z0r9', 'scope': 'iyk3z0r8', 'type': 'cicslocalfile' }) def test_invalid_port_low(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': 'Parameter "cmci_port" with value "-1" was not valid. Expected a port number 0-65535.', 'changed': False, 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '100.99.99.199', 'cmci_port': -1, 'context': 'iyk3z0r9', 'scope': 'iyk3z0r8', 'type': 'cicslocalfile' }) def test_invalid_port_high(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': 'Parameter "cmci_port" with value "65536" was not valid. Expected a port number 0-65535.', 'changed': False, 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '100.99.99.199', 'cmci_port': 65536, 'context': 'iyk3z0r9', 'scope': 'iyk3z0r8', 'type': 'cicslocalfile' }) def test_invalid_context(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': 'Parameter "context" with value "^&iyk3z0r9" was not valid. Expected a CPSM context name. CPSM ' 'context names are max 8 characters. Valid characters are A-Z a-z 0-9.', 'changed': False, 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '100.99.99.199', 'cmci_port': '10080', 'context': '^&iyk3z0r9', 'scope': 'iyk3z0r8', 'type': 'cicslocalfile' }) def test_invalid_scope(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': 'Parameter "scope" with value "&^iyk3z0r8" was not valid. Expected a CPSM scope name. CPSM scope ' 'names are max 8 characters. Valid characters are A-Z a-z 0-9.', 'changed': False, 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '100.99.99.199', 'cmci_port': '10080', 'context': 'iyk3z0r9', 'scope': '&^iyk3z0r8', 'type': 'cicslocalfile' }) def test_invalid_security(cmci_module): # type: (CMCITestHelper) -> None cmci_module.expect({ 'msg': 'value of security_type must be one of: none, basic, certificate, got: yes', 'failed': True }) cmci_module.run(cmci_get, { 'cmci_host': '100.99.99.199', 'cmci_port': '10080', 'context': 'iyk3z0r9', 'scope': 'iyk3z0r8', 'security_type': 'yes', 'type': 'cicslocalfile' }) def test_auth(cmci_module): # type: (CMCITestHelper) -> None records = [ {'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}, {'name': 'bing', 'dsname': 'STEWF.BAT.BAZ'} ] cmci_module.stub_records( 'GET', 'cicslocalfile', records, scope=SCOPE, request_headers={ 'authorization': 'Basic Zm9vOmJhcg==' }, scheme='https' ) cmci_module.expect(result( 'https://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/cicslocalfile/CICSEX56/IYCWEMW2', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'cmci_user': 'foo', 'cmci_password': 'bar', 'security_type': 'basic', 'context': CONTEXT, 'scope': SCOPE, 'type': 'cicslocalfile' }) def test_ok_context_scope(cmci_module): # type: (CMCITestHelper) -> None records = [ {'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}, {'name': 'bing', 'dsname': 'STEWF.BAT.BAZ'} ] cmci_module.stub_records('GET', 'cicslocalfile', records, scope=SCOPE) cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/cicslocalfile/CICSEX56/IYCWEMW2', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'scope': 'IYCWEMW2', 'type': 'cicslocalfile' }) def test_ok_context_scope_single_record(cmci_module): # type: (CMCITestHelper) -> None records = [{'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}] cmci_module.stub_records('GET', 'cicslocalfile', records, scope=SCOPE) cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/cicslocalfile/CICSEX56/IYCWEMW2', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'scope': 'IYCWEMW2', 'type': 'cicslocalfile' }) def test_ok_context_scope_jvmserver_header(cmci_module): # type: (CMCITestHelper) -> None records = [ {'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}, {'name': 'bing', 'dsname': 'STEWF.BAT.BAZ'} ] cmci_module.stub_records( 'GET', 'cicslocalfile', records, scope=SCOPE, headers={ # JVM server returns a content type with the charset embedded 'Content-Type': 'application/xml;charset=UTF-8' } ) cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/cicslocalfile/CICSEX56/IYCWEMW2', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'scope': 'IYCWEMW2', 'type': 'cicslocalfile' }) def test_query_criteria(cmci_module): # type: (CMCITestHelper) -> None records = [{'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}] cmci_module.stub_records('GET', 'cicslocalfile', records, scope=SCOPE, parameters='?CRITERIA=%28FOO%3D%27BAR%27%29') cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/' 'cicslocalfile/CICSEX56/IYCWEMW2?CRITERIA=%28FOO%3D%27BAR%27%29', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'scope': 'IYCWEMW2', 'type': 'cicslocalfile', 'resources': { 'filter': { 'FOO': 'BAR' } } }) def test_query_parameter(cmci_module): # type: (CMCITestHelper) -> None records = [{'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}] cmci_module.stub_records( 'GET', 'cicsdefinitionfile', records, scope=SCOPE, parameters='?PARAMETER=CSDGROUP%28%2A%29' ) cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/' 'cicsdefinitionfile/CICSEX56/IYCWEMW2?PARAMETER=CSDGROUP%28%2A%29', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'scope': 'IYCWEMW2', 'type': 'cicsdefinitionfile', 'resources': { 'parameter': 'CSDGROUP(*)' } }) def test_query_parameter_criteria(cmci_module): # type: (CMCITestHelper) -> None records = [{'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}] cmci_module.stub_records( 'GET', 'cicsdefinitionfile', records, scope=SCOPE, parameters='?CRITERIA=%28FOO%3D%27BAR%27%29&PARAMETER=CSDGROUP%28%2A%29' ) cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/' 'cicsdefinitionfile/CICSEX56/IYCWEMW2?CRITERIA=%28FOO%3D%27BAR%27%29&PARAMETER=CSDGROUP%28%2A%29', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'scope': 'IYCWEMW2', 'type': 'cicsdefinitionfile', 'resources': { 'parameter': 'CSDGROUP(*)', 'filter': { 'FOO': 'BAR' } } }) def test_ok_context_record_count(cmci_module): # type: (CMCITestHelper) -> None records = [{'name': 'bat', 'dsname': 'STEWF.BLOP.BLIP'}] cmci_module.stub_records('GET', 'cicslocalfile', records, record_count=1) cmci_module.expect(result( 'http://winmvs2c.hursley.ibm.com:26040/CICSSystemManagement/cicslocalfile/CICSEX56///1', records=records )) cmci_module.run(cmci_get, { 'cmci_host': HOST, 'cmci_port': PORT, 'context': CONTEXT, 'record_count': 1, 'type': 'cicslocalfile' }) def result(url, records, http_status='OK', http_status_code=200): return { 'changed': False, 'connect_version': '0560', 'cpsm_reason': '', 'cpsm_reason_code': 0, 'cpsm_response': 'OK', 'cpsm_response_code': 1024, 'http_status': http_status, 'http_status_code': http_status_code, 'record_count': len(records), 'records': records, 'request': { 'url': url, 'method': 'GET', 'body': None } }
29.623223
121
0.584513
146eae829642956c5318bdbc5073f1cfd4e06145
26,399
py
Python
deepdiff/delta.py
dtorres-sf/deepdiff
1dd0aecbc8307842e54ce429ddb254ef4bc97724
[ "MIT" ]
1,349
2015-01-15T20:25:28.000Z
2022-03-30T11:58:03.000Z
deepdiff/delta.py
dtorres-sf/deepdiff
1dd0aecbc8307842e54ce429ddb254ef4bc97724
[ "MIT" ]
270
2015-02-25T00:58:09.000Z
2022-03-31T18:02:17.000Z
deepdiff/delta.py
dtorres-sf/deepdiff
1dd0aecbc8307842e54ce429ddb254ef4bc97724
[ "MIT" ]
187
2015-02-24T18:21:07.000Z
2022-03-06T18:38:20.000Z
import logging from collections.abc import Mapping from copy import deepcopy from deepdiff import DeepDiff from deepdiff.serialization import pickle_load, pickle_dump from deepdiff.helper import ( strings, short_repr, numbers, np_ndarray, np_array_factory, numpy_dtypes, get_doc, not_found, numpy_dtype_string_to_type, dict_) from deepdiff.path import _path_to_elements, _get_nested_obj, GET, GETATTR from deepdiff.anyset import AnySet logger = logging.getLogger(__name__) VERIFICATION_MSG = 'Expected the old value for {} to be {} but it is {}. Error found on: {}' ELEM_NOT_FOUND_TO_ADD_MSG = 'Key or index of {} is not found for {} for setting operation.' TYPE_CHANGE_FAIL_MSG = 'Unable to do the type change for {} from to type {} due to {}' VERIFY_SYMMETRY_MSG = ('while checking the symmetry of the delta. You have applied the delta to an object that has ' 'different values than the original object the delta was made from') FAIL_TO_REMOVE_ITEM_IGNORE_ORDER_MSG = 'Failed to remove index[{}] on {}. It was expected to be {} but got {}' DELTA_NUMPY_OPERATOR_OVERRIDE_MSG = ( 'A numpy ndarray is most likely being added to a delta. ' 'Due to Numpy override the + operator, you can only do: delta + ndarray ' 'and NOT ndarray + delta') BINIARY_MODE_NEEDED_MSG = "Please open the file in the binary mode and pass to Delta by passing 'b' in open(..., 'b'): {}" DELTA_AT_LEAST_ONE_ARG_NEEDED = 'At least one of the diff, delta_path or delta_file arguments need to be passed.' INVALID_ACTION_WHEN_CALLING_GET_ELEM = 'invalid action of {} when calling _get_elem_and_compare_to_old_value' INVALID_ACTION_WHEN_CALLING_SIMPLE_SET_ELEM = 'invalid action of {} when calling _simple_set_elem_value' INVALID_ACTION_WHEN_CALLING_SIMPLE_DELETE_ELEM = 'invalid action of {} when calling _simple_set_elem_value' UNABLE_TO_GET_ITEM_MSG = 'Unable to get the item at {}: {}' UNABLE_TO_GET_PATH_MSG = 'Unable to get the item at {}' INDEXES_NOT_FOUND_WHEN_IGNORE_ORDER = 'Delta added to an incompatible object. Unable to add the following items at the specific indexes. {}' NUMPY_TO_LIST = 'NUMPY_TO_LIST' NOT_VALID_NUMPY_TYPE = "{} is not a valid numpy type." doc = get_doc('delta.rst') class DeltaError(ValueError): """ Delta specific errors """ pass class DeltaNumpyOperatorOverrideError(ValueError): """ Delta Numpy Operator Override Error """ pass class Delta: __doc__ = doc def __init__( self, diff=None, delta_path=None, delta_file=None, deserializer=pickle_load, log_errors=True, mutate=False, raise_errors=False, safe_to_import=None, serializer=pickle_dump, verify_symmetry=False, ): if 'safe_to_import' not in set(deserializer.__code__.co_varnames): def _deserializer(obj, safe_to_import=None): return deserializer(obj) else: _deserializer = deserializer if diff is not None: if isinstance(diff, DeepDiff): self.diff = diff._to_delta_dict(directed=not verify_symmetry) elif isinstance(diff, Mapping): self.diff = diff elif isinstance(diff, strings): self.diff = _deserializer(diff, safe_to_import=safe_to_import) elif delta_path: with open(delta_path, 'rb') as the_file: content = the_file.read() self.diff = _deserializer(content, safe_to_import=safe_to_import) elif delta_file: try: content = delta_file.read() except UnicodeDecodeError as e: raise ValueError(BINIARY_MODE_NEEDED_MSG.format(e)) from None self.diff = _deserializer(content, safe_to_import=safe_to_import) else: raise ValueError(DELTA_AT_LEAST_ONE_ARG_NEEDED) self.mutate = mutate self.verify_symmetry = verify_symmetry self.raise_errors = raise_errors self.log_errors = log_errors self._numpy_paths = self.diff.pop('_numpy_paths', False) self.serializer = serializer self.deserializer = deserializer self.reset() def __repr__(self): return "<Delta: {}>".format(short_repr(self.diff, max_length=100)) def reset(self): self.post_process_paths_to_convert = dict_() def __add__(self, other): if isinstance(other, numbers) and self._numpy_paths: raise DeltaNumpyOperatorOverrideError(DELTA_NUMPY_OPERATOR_OVERRIDE_MSG) if self.mutate: self.root = other else: self.root = deepcopy(other) self._do_pre_process() self._do_values_changed() self._do_set_item_added() self._do_set_item_removed() self._do_type_changes() # NOTE: the remove iterable action needs to happen BEFORE # all the other iterables to match the reverse of order of operations in DeepDiff self._do_iterable_item_removed() self._do_iterable_item_added() self._do_ignore_order() self._do_dictionary_item_added() self._do_dictionary_item_removed() self._do_attribute_added() self._do_attribute_removed() self._do_post_process() other = self.root # removing the reference to other del self.root self.reset() return other __radd__ = __add__ def _raise_or_log(self, msg, level='error'): if self.log_errors: getattr(logger, level)(msg) if self.raise_errors: raise DeltaError(msg) def _do_verify_changes(self, path, expected_old_value, current_old_value): if self.verify_symmetry and expected_old_value != current_old_value: self._raise_or_log(VERIFICATION_MSG.format( path, expected_old_value, current_old_value, VERIFY_SYMMETRY_MSG)) def _get_elem_and_compare_to_old_value(self, obj, path_for_err_reporting, expected_old_value, elem=None, action=None): try: if action == GET: current_old_value = obj[elem] elif action == GETATTR: current_old_value = getattr(obj, elem) else: raise DeltaError(INVALID_ACTION_WHEN_CALLING_GET_ELEM.format(action)) except (KeyError, IndexError, AttributeError, IndexError, TypeError) as e: current_old_value = not_found if isinstance(path_for_err_reporting, (list, tuple)): path_for_err_reporting = '.'.join([i[0] for i in path_for_err_reporting]) if self.verify_symmetry: self._raise_or_log(VERIFICATION_MSG.format( path_for_err_reporting, expected_old_value, current_old_value, e)) else: self._raise_or_log(UNABLE_TO_GET_PATH_MSG.format( path_for_err_reporting)) return current_old_value def _simple_set_elem_value(self, obj, path_for_err_reporting, elem=None, value=None, action=None): """ Set the element value directly on an object """ try: if action == GET: try: obj[elem] = value except IndexError: if elem == len(obj): obj.append(value) else: self._raise_or_log(ELEM_NOT_FOUND_TO_ADD_MSG.format(elem, path_for_err_reporting)) elif action == GETATTR: setattr(obj, elem, value) else: raise DeltaError(INVALID_ACTION_WHEN_CALLING_SIMPLE_SET_ELEM.format(action)) except (KeyError, IndexError, AttributeError, TypeError) as e: self._raise_or_log('Failed to set {} due to {}'.format(path_for_err_reporting, e)) def _coerce_obj(self, parent, obj, path, parent_to_obj_elem, parent_to_obj_action, elements, to_type, from_type): """ Coerce obj and mark it in post_process_paths_to_convert for later to be converted back. Also reassign it to its parent to replace the old object. """ self.post_process_paths_to_convert[elements[:-1]] = {'old_type': to_type, 'new_type': from_type} # If this function is going to ever be used to convert numpy arrays, uncomment these lines: # if from_type is np_ndarray: # obj = obj.tolist() # else: obj = to_type(obj) if parent: # Making sure that the object is re-instated inside the parent especially if it was immutable # and we had to turn it into a mutable one. In such cases the object has a new id. self._simple_set_elem_value(obj=parent, path_for_err_reporting=path, elem=parent_to_obj_elem, value=obj, action=parent_to_obj_action) return obj def _set_new_value(self, parent, parent_to_obj_elem, parent_to_obj_action, obj, elements, path, elem, action, new_value): """ Set the element value on an object and if necessary convert the object to the proper mutable type """ if isinstance(obj, tuple): # convert this object back to a tuple later obj = self._coerce_obj( parent, obj, path, parent_to_obj_elem, parent_to_obj_action, elements, to_type=list, from_type=tuple) self._simple_set_elem_value(obj=obj, path_for_err_reporting=path, elem=elem, value=new_value, action=action) def _simple_delete_elem(self, obj, path_for_err_reporting, elem=None, action=None): """ Delete the element directly on an object """ try: if action == GET: del obj[elem] elif action == GETATTR: del obj.__dict__[elem] else: raise DeltaError(INVALID_ACTION_WHEN_CALLING_SIMPLE_DELETE_ELEM.format(action)) except (KeyError, IndexError, AttributeError) as e: self._raise_or_log('Failed to set {} due to {}'.format(path_for_err_reporting, e)) def _del_elem(self, parent, parent_to_obj_elem, parent_to_obj_action, obj, elements, path, elem, action): """ Delete the element value on an object and if necessary convert the object to the proper mutable type """ obj_is_new = False if isinstance(obj, tuple): # convert this object back to a tuple later self.post_process_paths_to_convert[elements[:-1]] = {'old_type': list, 'new_type': tuple} obj = list(obj) obj_is_new = True self._simple_delete_elem(obj=obj, path_for_err_reporting=path, elem=elem, action=action) if obj_is_new and parent: # Making sure that the object is re-instated inside the parent especially if it was immutable # and we had to turn it into a mutable one. In such cases the object has a new id. self._simple_set_elem_value(obj=parent, path_for_err_reporting=path, elem=parent_to_obj_elem, value=obj, action=parent_to_obj_action) def _do_iterable_item_added(self): iterable_item_added = self.diff.get('iterable_item_added', {}) iterable_item_moved = self.diff.get('iterable_item_moved') if iterable_item_moved: added_dict = {v["new_path"]: v["value"] for k, v in iterable_item_moved.items()} iterable_item_added.update(added_dict) if iterable_item_added: self._do_item_added(iterable_item_added, insert=True) def _do_dictionary_item_added(self): dictionary_item_added = self.diff.get('dictionary_item_added') if dictionary_item_added: self._do_item_added(dictionary_item_added, sort=False) def _do_attribute_added(self): attribute_added = self.diff.get('attribute_added') if attribute_added: self._do_item_added(attribute_added) def _do_item_added(self, items, sort=True, insert=False): if sort: # sorting items by their path so that the items with smaller index # are applied first (unless `sort` is `False` so that order of # added items is retained, e.g. for dicts). items = sorted(items.items(), key=lambda x: x[0]) else: items = items.items() for path, new_value in items: elem_and_details = self._get_elements_and_details(path) if elem_and_details: elements, parent, parent_to_obj_elem, parent_to_obj_action, obj, elem, action = elem_and_details else: continue # pragma: no cover. Due to cPython peephole optimizer, this line doesn't get covered. https://github.com/nedbat/coveragepy/issues/198 # Insert is only true for iterables, make sure it is a valid index. if(insert and elem < len(obj)): obj.insert(elem, None) self._set_new_value(parent, parent_to_obj_elem, parent_to_obj_action, obj, elements, path, elem, action, new_value) def _do_values_changed(self): values_changed = self.diff.get('values_changed') if values_changed: self._do_values_or_type_changed(values_changed) def _do_type_changes(self): type_changes = self.diff.get('type_changes') if type_changes: self._do_values_or_type_changed(type_changes, is_type_change=True) def _do_post_process(self): if self.post_process_paths_to_convert: self._do_values_or_type_changed(self.post_process_paths_to_convert, is_type_change=True) def _do_pre_process(self): if self._numpy_paths and ('iterable_item_added' in self.diff or 'iterable_item_removed' in self.diff): preprocess_paths = dict_() for path, type_ in self._numpy_paths.items(): preprocess_paths[path] = {'old_type': np_ndarray, 'new_type': list} try: type_ = numpy_dtype_string_to_type(type_) except Exception as e: self._raise_or_log(NOT_VALID_NUMPY_TYPE.format(e)) continue # pragma: no cover. Due to cPython peephole optimizer, this line doesn't get covered. https://github.com/nedbat/coveragepy/issues/198 self.post_process_paths_to_convert[path] = {'old_type': list, 'new_type': type_} if preprocess_paths: self._do_values_or_type_changed(preprocess_paths, is_type_change=True) def _get_elements_and_details(self, path): try: elements = _path_to_elements(path) if len(elements) > 1: parent = _get_nested_obj(obj=self, elements=elements[:-2]) parent_to_obj_elem, parent_to_obj_action = elements[-2] obj = self._get_elem_and_compare_to_old_value( obj=parent, path_for_err_reporting=path, expected_old_value=None, elem=parent_to_obj_elem, action=parent_to_obj_action) else: parent = parent_to_obj_elem = parent_to_obj_action = None obj = _get_nested_obj(obj=self, elements=elements[:-1]) elem, action = elements[-1] except Exception as e: self._raise_or_log(UNABLE_TO_GET_ITEM_MSG.format(path, e)) return None else: if obj is not_found: return None return elements, parent, parent_to_obj_elem, parent_to_obj_action, obj, elem, action def _do_values_or_type_changed(self, changes, is_type_change=False): for path, value in changes.items(): elem_and_details = self._get_elements_and_details(path) if elem_and_details: elements, parent, parent_to_obj_elem, parent_to_obj_action, obj, elem, action = elem_and_details else: continue # pragma: no cover. Due to cPython peephole optimizer, this line doesn't get covered. https://github.com/nedbat/coveragepy/issues/198 expected_old_value = value.get('old_value', not_found) current_old_value = self._get_elem_and_compare_to_old_value( obj=obj, path_for_err_reporting=path, expected_old_value=expected_old_value, elem=elem, action=action) if current_old_value is not_found: continue # pragma: no cover. I have not been able to write a test for this case. But we should still check for it. # With type change if we could have originally converted the type from old_value # to new_value just by applying the class of the new_value, then we might not include the new_value # in the delta dictionary. if is_type_change and 'new_value' not in value: try: new_type = value['new_type'] # in case of Numpy we pass the ndarray plus the dtype in a tuple if new_type in numpy_dtypes: new_value = np_array_factory(current_old_value, new_type) else: new_value = new_type(current_old_value) except Exception as e: self._raise_or_log(TYPE_CHANGE_FAIL_MSG.format(obj[elem], value.get('new_type', 'unknown'), e)) continue else: new_value = value['new_value'] self._set_new_value(parent, parent_to_obj_elem, parent_to_obj_action, obj, elements, path, elem, action, new_value) self._do_verify_changes(path, expected_old_value, current_old_value) def _do_item_removed(self, items): """ Handle removing items. """ # Sorting the iterable_item_removed in reverse order based on the paths. # So that we delete a bigger index before a smaller index for path, expected_old_value in sorted(items.items(), key=lambda x: x[0], reverse=True): elem_and_details = self._get_elements_and_details(path) if elem_and_details: elements, parent, parent_to_obj_elem, parent_to_obj_action, obj, elem, action = elem_and_details else: continue # pragma: no cover. Due to cPython peephole optimizer, this line doesn't get covered. https://github.com/nedbat/coveragepy/issues/198 current_old_value = self._get_elem_and_compare_to_old_value( obj=obj, elem=elem, path_for_err_reporting=path, expected_old_value=expected_old_value, action=action) if current_old_value is not_found: continue self._del_elem(parent, parent_to_obj_elem, parent_to_obj_action, obj, elements, path, elem, action) self._do_verify_changes(path, expected_old_value, current_old_value) def _do_iterable_item_removed(self): iterable_item_removed = self.diff.get('iterable_item_removed', {}) iterable_item_moved = self.diff.get('iterable_item_moved') if iterable_item_moved: # These will get added back during items_added removed_dict = {k: v["value"] for k, v in iterable_item_moved.items()} iterable_item_removed.update(removed_dict) if iterable_item_removed: self._do_item_removed(iterable_item_removed) def _do_dictionary_item_removed(self): dictionary_item_removed = self.diff.get('dictionary_item_removed') if dictionary_item_removed: self._do_item_removed(dictionary_item_removed) def _do_attribute_removed(self): attribute_removed = self.diff.get('attribute_removed') if attribute_removed: self._do_item_removed(attribute_removed) def _do_set_item_added(self): items = self.diff.get('set_item_added') if items: self._do_set_or_frozenset_item(items, func='union') def _do_set_item_removed(self): items = self.diff.get('set_item_removed') if items: self._do_set_or_frozenset_item(items, func='difference') def _do_set_or_frozenset_item(self, items, func): for path, value in items.items(): elements = _path_to_elements(path) parent = _get_nested_obj(obj=self, elements=elements[:-1]) elem, action = elements[-1] obj = self._get_elem_and_compare_to_old_value( parent, path_for_err_reporting=path, expected_old_value=None, elem=elem, action=action) new_value = getattr(obj, func)(value) self._simple_set_elem_value(parent, path_for_err_reporting=path, elem=elem, value=new_value, action=action) def _do_ignore_order_get_old(self, obj, remove_indexes_per_path, fixed_indexes_values, path_for_err_reporting): """ A generator that gets the old values in an iterable when the order was supposed to be ignored. """ old_obj_index = -1 max_len = len(obj) - 1 while old_obj_index < max_len: old_obj_index += 1 current_old_obj = obj[old_obj_index] if current_old_obj in fixed_indexes_values: continue if old_obj_index in remove_indexes_per_path: expected_obj_to_delete = remove_indexes_per_path.pop(old_obj_index) if current_old_obj == expected_obj_to_delete: continue else: self._raise_or_log(FAIL_TO_REMOVE_ITEM_IGNORE_ORDER_MSG.format( old_obj_index, path_for_err_reporting, expected_obj_to_delete, current_old_obj)) yield current_old_obj def _do_ignore_order(self): """ 't1': [5, 1, 1, 1, 6], 't2': [7, 1, 1, 1, 8], 'iterable_items_added_at_indexes': { 'root': { 0: 7, 4: 8 } }, 'iterable_items_removed_at_indexes': { 'root': { 4: 6, 0: 5 } } """ fixed_indexes = self.diff.get('iterable_items_added_at_indexes', dict_()) remove_indexes = self.diff.get('iterable_items_removed_at_indexes', dict_()) paths = set(fixed_indexes.keys()) | set(remove_indexes.keys()) for path in paths: # In the case of ignore_order reports, we are pointing to the container object. # Thus we add a [0] to the elements so we can get the required objects and discard what we don't need. elem_and_details = self._get_elements_and_details("{}[0]".format(path)) if elem_and_details: _, parent, parent_to_obj_elem, parent_to_obj_action, obj, _, _ = elem_and_details else: continue # pragma: no cover. Due to cPython peephole optimizer, this line doesn't get covered. https://github.com/nedbat/coveragepy/issues/198 # copying both these dictionaries since we don't want to mutate them. fixed_indexes_per_path = fixed_indexes.get(path, dict_()).copy() remove_indexes_per_path = remove_indexes.get(path, dict_()).copy() fixed_indexes_values = AnySet(fixed_indexes_per_path.values()) new_obj = [] # Numpy's NdArray does not like the bool function. if isinstance(obj, np_ndarray): there_are_old_items = obj.size > 0 else: there_are_old_items = bool(obj) old_item_gen = self._do_ignore_order_get_old( obj, remove_indexes_per_path, fixed_indexes_values, path_for_err_reporting=path) while there_are_old_items or fixed_indexes_per_path: new_obj_index = len(new_obj) if new_obj_index in fixed_indexes_per_path: new_item = fixed_indexes_per_path.pop(new_obj_index) new_obj.append(new_item) elif there_are_old_items: try: new_item = next(old_item_gen) except StopIteration: there_are_old_items = False else: new_obj.append(new_item) else: # pop a random item from the fixed_indexes_per_path dictionary self._raise_or_log(INDEXES_NOT_FOUND_WHEN_IGNORE_ORDER.format(fixed_indexes_per_path)) new_item = fixed_indexes_per_path.pop(next(iter(fixed_indexes_per_path))) new_obj.append(new_item) if isinstance(obj, tuple): new_obj = tuple(new_obj) # Making sure that the object is re-instated inside the parent especially if it was immutable # and we had to turn it into a mutable one. In such cases the object has a new id. self._simple_set_elem_value(obj=parent, path_for_err_reporting=path, elem=parent_to_obj_elem, value=new_obj, action=parent_to_obj_action) def dump(self, file): """ Dump into file object """ # Small optimization: Our internal pickle serializer can just take a file object # and directly write to it. However if a user defined serializer is passed # we want to make it compatible with the expectation that self.serializer(self.diff) # will give the user the serialization and then it can be written to # a file object when using the dump(file) function. param_names_of_serializer = set(self.serializer.__code__.co_varnames) if 'file_obj' in param_names_of_serializer: self.serializer(self.diff, file_obj=file) else: file.write(self.dumps()) def dumps(self): """ Return the serialized representation of the object as a bytes object, instead of writing it to a file. """ return self.serializer(self.diff) def to_dict(self): return dict(self.diff) if __name__ == "__main__": # pragma: no cover import doctest doctest.testmod()
46.477113
163
0.637751
b9c184207839866636d560f91d98548195dece76
259
py
Python
demo_stock/A_1day/D02_merge_total_shares.py
jiangtiantu/kquant_data
9bd47ba23c23110757186897e37ea36234bdce2c
[ "BSD-2-Clause" ]
23
2017-08-05T04:35:47.000Z
2020-12-16T09:40:08.000Z
demo_stock/A_1day/D02_merge_total_shares.py
jiangtiantu/kquant_data
9bd47ba23c23110757186897e37ea36234bdce2c
[ "BSD-2-Clause" ]
2
2017-08-05T04:57:10.000Z
2018-04-14T14:52:39.000Z
demo_stock/A_1day/D02_merge_total_shares.py
wukan1986/kquant_data
9bd47ba23c23110757186897e37ea36234bdce2c
[ "BSD-2-Clause" ]
21
2017-08-01T09:56:30.000Z
2021-07-10T01:19:39.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 合并财务数据 """ from kquant_data.processing.merge import merge_report if __name__ == '__main__': rule = '1day' field = 'total_shares' merge_report(rule, field, field) print("Done") debug = 1
17.266667
53
0.629344
00d0255e06c68688d9db33323d750f7605745852
13,806
py
Python
colour/appearance/tests/test_kim2009.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
colour/appearance/tests/test_kim2009.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
colour/appearance/tests/test_kim2009.py
aurelienpierre/colour
3ac45c12fbc0493e49ba4d4b2cb253df9fe14c47
[ "BSD-3-Clause" ]
null
null
null
# !/usr/bin/env python """Defines the unit tests for the :mod:`colour.appearance.kim2009` module.""" import numpy as np import unittest from itertools import permutations from colour.appearance import ( MEDIA_PARAMETERS_KIM2009, VIEWING_CONDITIONS_KIM2009, InductionFactors_Kim2009, CAM_Specification_Kim2009, MediaParameters_Kim2009, XYZ_to_Kim2009, Kim2009_to_XYZ, ) from colour.utilities import ( as_float_array, domain_range_scale, ignore_numpy_errors, tsplit, ) __author__ = "Colour Developers" __copyright__ = "Copyright 2013 Colour Developers" __license__ = "New BSD License - https://opensource.org/licenses/BSD-3-Clause" __maintainer__ = "Colour Developers" __email__ = "colour-developers@colour-science.org" __status__ = "Production" __all__ = [ "TestXYZ_to_Kim2009", "TestKim2009_to_XYZ", ] class TestXYZ_to_Kim2009(unittest.TestCase): """ Define :func:`colour.appearance.kim2009.XYZ_to_Kim2009` definition unit tests methods. """ def test_XYZ_to_Kim2009(self): """Test :func:`colour.appearance.kim2009.XYZ_to_Kim2009` definition.""" XYZ = np.array([19.01, 20.00, 21.78]) XYZ_w = np.array([95.05, 100.00, 108.88]) L_a = 318.31 media = MEDIA_PARAMETERS_KIM2009["CRT Displays"] surround = VIEWING_CONDITIONS_KIM2009["Average"] np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), np.array( [ 28.86190898, 0.55924559, 219.04806678, 9.38377973, 52.71388839, 0.46417384, 278.06028246, np.nan, ] ), decimal=7, ) XYZ = np.array([57.06, 43.06, 31.96]) L_a = 31.83 np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), np.array( [ 70.15940419, 57.89295872, 21.27017200, 61.23630434, 128.14034598, 48.05115573, 1.41841443, np.nan, ] ), decimal=7, ) XYZ = np.array([3.53, 6.56, 2.14]) XYZ_w = np.array([109.85, 100.00, 35.58]) L_a = 318.31 np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), np.array( [ -4.83430022, 37.42013921, 177.12166057, np.nan, -8.82944930, 31.05871555, 220.36270343, np.nan, ] ), decimal=7, ) XYZ = np.array([19.01, 20.00, 21.78]) L_a = 31.83 np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), np.array( [ 47.20460719, 56.35723637, 241.04877377, 73.65830083, 86.21530880, 46.77650619, 301.77516676, np.nan, ] ), decimal=7, ) def test_n_dimensional_XYZ_to_Kim2009(self): """ Test :func:`colour.appearance.kim2009.XYZ_to_Kim2009` definition n-dimensional support. """ XYZ = np.array([19.01, 20.00, 21.78]) XYZ_w = np.array([95.05, 100.00, 108.88]) L_a = 318.31 media = MEDIA_PARAMETERS_KIM2009["CRT Displays"] surround = VIEWING_CONDITIONS_KIM2009["Average"] specification = XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround) XYZ = np.tile(XYZ, (6, 1)) specification = np.tile(specification, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), specification, decimal=7, ) XYZ_w = np.tile(XYZ_w, (6, 1)) np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), specification, decimal=7, ) XYZ = np.reshape(XYZ, (2, 3, 3)) XYZ_w = np.reshape(XYZ_w, (2, 3, 3)) specification = np.reshape(specification, (2, 3, 8)) np.testing.assert_almost_equal( XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround), specification, decimal=7, ) @ignore_numpy_errors def test_domain_range_scale_XYZ_to_Kim2009(self): """ Test :func:`colour.appearance.kim2009.XYZ_to_Kim2009` definition domain and range scale support. """ XYZ = np.array([19.01, 20.00, 21.78]) XYZ_w = np.array([95.05, 100.00, 108.88]) L_a = 318.31 media = MEDIA_PARAMETERS_KIM2009["CRT Displays"] surround = VIEWING_CONDITIONS_KIM2009["Average"] specification = XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround) d_r = ( ("reference", 1, 1), ( "1", 0.01, np.array( [ 1 / 100, 1 / 100, 1 / 360, 1 / 100, 1 / 100, 1 / 100, 1 / 400, np.nan, ] ), ), ( "100", 1, np.array([1, 1, 100 / 360, 1, 1, 1, 100 / 400, np.nan]), ), ) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( XYZ_to_Kim2009( XYZ * factor_a, XYZ_w * factor_a, L_a, media, surround ), as_float_array(specification) * factor_b, decimal=7, ) @ignore_numpy_errors def test_nan_XYZ_to_Kim2009(self): """ Test :func:`colour.appearance.kim2009.XYZ_to_Kim2009` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: XYZ = np.array(case) XYZ_w = np.array(case) L_a = case[0] media = MediaParameters_Kim2009(case[0]) surround = InductionFactors_Kim2009(case[0], case[0], case[0]) XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround) class TestKim2009_to_XYZ(unittest.TestCase): """ Define :func:`colour.appearance.kim2009.Kim2009_to_XYZ` definition unit tests methods. """ def test_Kim2009_to_XYZ(self): """Test :func:`colour.appearance.kim2009.Kim2009_to_XYZ` definition.""" specification = CAM_Specification_Kim2009( 28.86190898, 0.55924559, 219.04806678, 9.38377973, 52.71388839, 0.46417384, 278.06028246, np.nan, ) XYZ_w = np.array([95.05, 100.00, 108.88]) L_a = 318.31 media = MEDIA_PARAMETERS_KIM2009["CRT Displays"] surround = VIEWING_CONDITIONS_KIM2009["Average"] np.testing.assert_allclose( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), np.array([19.01, 20.00, 21.78]), atol=0.01, rtol=0.01, ) specification = CAM_Specification_Kim2009( 70.15940419, 57.89295872, 21.27017200, 61.23630434, 128.14034598, 48.05115573, 1.41841443, np.nan, ) L_a = 31.83 np.testing.assert_allclose( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), np.array([57.06, 43.06, 31.96]), atol=0.01, rtol=0.01, ) specification = CAM_Specification_Kim2009( -4.83430022, 37.42013921, 177.12166057, np.nan, -8.82944930, 31.05871555, 220.36270343, np.nan, ) XYZ_w = np.array([109.85, 100.00, 35.58]) L_a = 318.31 np.testing.assert_allclose( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), np.array([3.53, 6.56, 2.14]), atol=0.01, rtol=0.01, ) specification = CAM_Specification_Kim2009( 47.20460719, 56.35723637, 241.04877377, 73.65830083, 86.21530880, 46.77650619, 301.77516676, np.nan, ) L_a = 31.83 np.testing.assert_allclose( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), np.array([19.01, 20.00, 21.78]), atol=0.01, rtol=0.01, ) def test_n_dimensional_Kim2009_to_XYZ(self): """ Test :func:`colour.appearance.kim2009.Kim2009_to_XYZ` definition n-dimensional support. """ XYZ = np.array([19.01, 20.00, 21.78]) XYZ_w = np.array([95.05, 100.00, 108.88]) L_a = 318.31 media = MEDIA_PARAMETERS_KIM2009["CRT Displays"] surround = VIEWING_CONDITIONS_KIM2009["Average"] specification = XYZ_to_Kim2009(XYZ, XYZ_w, L_a, media, surround) XYZ = Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround) specification = CAM_Specification_Kim2009( *np.transpose(np.tile(tsplit(specification), (6, 1))).tolist() ) XYZ = np.tile(XYZ, (6, 1)) np.testing.assert_almost_equal( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), XYZ, decimal=7, ) XYZ_w = np.tile(XYZ_w, (6, 1)) np.testing.assert_almost_equal( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), XYZ, decimal=7, ) specification = CAM_Specification_Kim2009( *tsplit(np.reshape(specification, (2, 3, 8))).tolist() ) XYZ_w = np.reshape(XYZ_w, (2, 3, 3)) XYZ = np.reshape(XYZ, (2, 3, 3)) np.testing.assert_almost_equal( Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround), XYZ, decimal=7, ) @ignore_numpy_errors def test_domain_range_scale_Kim2009_to_XYZ(self): """ Test :func:`colour.appearance.kim2009.Kim2009_to_XYZ` definition domain and range scale support. """ XYZ_i = np.array([19.01, 20.00, 21.78]) XYZ_w = np.array([95.05, 100.00, 108.88]) L_a = 318.31 media = MEDIA_PARAMETERS_KIM2009["CRT Displays"] surround = VIEWING_CONDITIONS_KIM2009["Average"] specification = XYZ_to_Kim2009(XYZ_i, XYZ_w, L_a, media, surround) XYZ = Kim2009_to_XYZ(specification, XYZ_w, L_a, media, surround) d_r = ( ("reference", 1, 1), ( "1", np.array( [ 1 / 100, 1 / 100, 1 / 360, 1 / 100, 1 / 100, 1 / 100, 1 / 400, np.nan, ] ), 0.01, ), ( "100", np.array([1, 1, 100 / 360, 1, 1, 1, 100 / 400, np.nan]), 1, ), ) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( Kim2009_to_XYZ( specification * factor_a, XYZ_w * factor_b, L_a, media, surround, ), XYZ * factor_b, decimal=7, ) @ignore_numpy_errors def test_raise_exception_Kim2009_to_XYZ(self): """ Test :func:`colour.appearance.kim2009.Kim2009_to_XYZ` definition raised exception. """ self.assertRaises( ValueError, Kim2009_to_XYZ, CAM_Specification_Kim2009( 41.731091132513917, None, 219.04843265831178, ), np.array([95.05, 100.00, 108.88]), 318.31, 20.0, VIEWING_CONDITIONS_KIM2009["Average"], ) @ignore_numpy_errors def test_nan_Kim2009_to_XYZ(self): """ Test :func:`colour.appearance.kim2009.Kim2009_to_XYZ` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: J = case[0] C = case[0] h = case[0] XYZ_w = np.array(case) L_a = case[0] media = MediaParameters_Kim2009(case[0]) surround = InductionFactors_Kim2009(case[0], case[0], case[0]) Kim2009_to_XYZ( CAM_Specification_Kim2009(J, C, h, M=50), XYZ_w, L_a, media, surround, )
30.409692
79
0.488121
8be51723ecb3eb9e718a4675e48dbe31ad8519be
7,249
py
Python
datamodels/doc/source/conf.py
mwregan2/MiriTE
6b65939454db60bf10619d50fcb5769d23598b76
[ "CNRI-Python" ]
null
null
null
datamodels/doc/source/conf.py
mwregan2/MiriTE
6b65939454db60bf10619d50fcb5769d23598b76
[ "CNRI-Python" ]
24
2019-08-09T15:03:20.000Z
2022-03-04T10:04:48.000Z
datamodels/doc/source/conf.py
mwregan2/MiriTE
6b65939454db60bf10619d50fcb5769d23598b76
[ "CNRI-Python" ]
4
2019-06-16T15:03:23.000Z
2020-12-02T19:51:52.000Z
# -*- coding: utf-8 -*- # # filter documentation build configuration file, created by # sphinx-quickstart on Tue Jun 1 21:59:45 2010. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os try: import miri import miri.datamodels except ImportError: strg = "***Please build the miri package with \'python setup.py install\'" strg += " before building the documentation.\n" raise ImportError(strg) # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.append(os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [\ 'sphinx.ext.autodoc', 'sphinx.ext.doctest' #'sphinx.ext.intersphinx', #'sphinx.ext.ifconfig', #'numpydoc', #'matplotlib.sphinxext.mathmpl', #'matplotlib.sphinxext.only_directives', #'matplotlib.sphinxext.plot_directive', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. #master_doc = 'reference/miri_datamodels' master_doc = 'index' # General information about the project. project = miri.datamodels.__project__ copyright = miri.datamodels.__copyright__ # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = miri.__version__ # The full version, including alpha/beta/rc tags. release = miri.__version__ + " (MiriTE package)" #release = release.replace('GlobalRev:','') #release = release.replace('$','') # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'miri_datamodels' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('reference/miri_datamodels', 'miri_datamodels.tex', 'MIRI Data Models Documentation', 'MIRI Software Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
32.653153
88
0.71265
0168b42604d1d2d0ddc1b76fab177b82426af792
123,968
py
Python
src/v96.py
numb3r33/Kaggle_Home_Credit
f8f56a0514b928d7ed4b8f38c6edc53b67bab32d
[ "MIT" ]
null
null
null
src/v96.py
numb3r33/Kaggle_Home_Credit
f8f56a0514b928d7ed4b8f38c6edc53b67bab32d
[ "MIT" ]
14
2020-01-28T22:02:01.000Z
2022-03-11T23:33:08.000Z
src/v96.py
numb3r33/Kaggle_Home_Credit
f8f56a0514b928d7ed4b8f38c6edc53b67bab32d
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import scipy as sp import argparse import os import gc import time from base import * from features import * from datetime import datetime from sklearn.externals import joblib from sklearn.model_selection import cross_val_score, StratifiedKFold basepath = os.path.expanduser('../') SEED = 1231 np.random.seed(SEED) ############################################################################################################# # EXPERIMENT PARAMETERS # ############################################################################################################# COLS_TO_REMOVE = ['SK_ID_CURR', 'TARGET', 'OCCUPATION_TYPE__5', 'OCCUPATION_TYPE__-1', 'OCCUPATION_TYPE__11', 'OCCUPATION_TYPE__15', 'ORGANIZATION_TYPE__29', 'ORGANIZATION_TYPE__5', 'FLAG_OWN_REALTY', 'FLAG_DOCUMENT_21', 'ORGANIZATION_TYPE__21', 'FLAG_DOCUMENT_14', 'ORGANIZATION_TYPE__17', 'ORGANIZATION_TYPE__27', 'ORGANIZATION_TYPE__32', 'FLAG_DOCUMENT_16', 'ORGANIZATION_TYPE__47', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_11', 'ORGANIZATION_TYPE__40', 'ORGANIZATION_TYPE__23', 'ORGANIZATION_TYPE__14', 'diff_max_min_credit_term', 'ORGANIZATION_TYPE__1', 'ORGANIZATION_TYPE__9', 'OCCUPATION_TYPE__nan', 'ORGANIZATION_TYPE__41', 'OCCUPATION_TYPE__7', 'FLAG_MOBIL', 'ORGANIZATION_TYPE__18', 'ORGANIZATION_TYPE__38', 'ORGANIZATION_TYPE__44', 'FLAG_DOCUMENT_12', 'ORGANIZATION_TYPE__0', 'FLAG_DOCUMENT_2', 'ORGANIZATION_TYPE__13', 'OCCUPATION_TYPE__0', 'FLAG_DOCUMENT_4', 'OCCUPATION_TYPE__16', 'ORGANIZATION_TYPE__49', 'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_9', 'ORGANIZATION_TYPE__nan', 'OCCUPATION_TYPE__12', 'ORGANIZATION_TYPE__20', 'FLAG_CONT_MOBILE', 'ORGANIZATION_TYPE__37', 'ORGANIZATION_TYPE__45', 'FLAG_EMP_PHONE', 'FLAG_DOCUMENT_17', 'LIVE_REGION_NOT_WORK_REGION', 'OCCUPATION_TYPE__17', 'NAME_TYPE_SUITE', 'ORGANIZATION_TYPE__15', 'REG_REGION_NOT_LIVE_REGION', 'FLAG_DOCUMENT_10', 'ORGANIZATION_TYPE__3', 'OCCUPATION_TYPE__2', 'ORGANIZATION_TYPE__19', 'FLAG_DOCUMENT_19', 'AMT_REQ_CREDIT_BUREAU_DAY', 'credits_ended_bureau', 'ORGANIZATION_TYPE__8', 'ORGANIZATION_TYPE__16', 'FLAG_DOCUMENT_8', 'ORGANIZATION_TYPE__25', 'OCCUPATION_TYPE__6', 'NUM_NULLS_EXT_SCORES', 'ORGANIZATION_TYPE__48', 'ORGANIZATION_TYPE__53', 'ORGANIZATION_TYPE__10', 'FLAG_DOCUMENT_7', 'ORGANIZATION_TYPE__55', 'ORGANIZATION_TYPE__24', 'NAME_EDUCATION_TYPE__0', 'ORGANIZATION_TYPE__46', 'ELEVATORS_MODE', 'NAME_EDUCATION_TYPE__nan', 'ORGANIZATION_TYPE__22', 'ORGANIZATION_TYPE__50', 'REG_REGION_NOT_WORK_REGION', 'ORGANIZATION_TYPE__56', 'FLAG_DOCUMENT_5', 'FLAG_DOCUMENT_20', 'ORGANIZATION_TYPE__2', 'ORGANIZATION_TYPE__6', 'OCCUPATION_TYPE__13', 'ORGANIZATION_TYPE__52', 'FLAG_DOCUMENT_15', 'ORGANIZATION_TYPE__43', 'AMT_REQ_CREDIT_BUREAU_HOUR', 'NAME_HOUSING_TYPE', 'ORGANIZATION_TYPE__11', 'HOUSETYPE_MODE', 'EMERGENCYSTATE_MODE', 'ORGANIZATION_TYPE__28', 'NAME_EDUCATION_TYPE__2', 'ORGANIZATION_TYPE__4', 'OCCUPATION_TYPE__14', 'ORGANIZATION_TYPE__35', 'LIVE_CITY_NOT_WORK_CITY', 'num_diff_credits', 'ORGANIZATION_TYPE__51', 'REG_CITY_NOT_WORK_CITY', 'FLAG_EMAIL', 'ORGANIZATION_TYPE__57', 'NAME_HOUSING_TYPE__0', 'NAME_INCOME_TYPE__2', 'NAME_INCOME_TYPE__5', 'NAME_HOUSING_TYPE__nan', 'NAME_INCOME_TYPE__nan', 'NAME_INCOME_TYPE__0', 'NAME_INCOME_TYPE__6', 'NAME_CONTRACT_STATUS_3', 'NAME_INCOME_TYPE__3', 'diff_balance_curr_credit', 'ratio_min_installment_balance', 'NAME_HOUSING_TYPE__4', 'CODE_REJECT_REASON_5', 'CODE_REJECT_REASON_8', 'ORGANIZATION_TYPE__33', 'CODE_REJECT_REASON_0', 'OCCUPATION_TYPE__1', 'NAME_HOUSING_TYPE__5', 'sum_num_times_prolonged', 'NAME_GOODS_CATEGORY_13', 'NAME_GOODS_CATEGORY_4', 'NAME_GOODS_CATEGORY_26', 'PRODUCT_COMBINATION_-1', 'NAME_GOODS_CATEGORY_24', 'NAME_GOODS_CATEGORY_15', 'NAME_GOODS_CATEGORY_20', 'NAME_GOODS_CATEGORY_9', 'CODE_REJECT_REASON_6', 'NAME_GOODS_CATEGORY_6', 'NAME_GOODS_CATEGORY_0', 'num_high_int_no_info_loans', 'NAME_HOUSING_TYPE__2', 'NAME_GOODS_CATEGORY_14', 'NAME_GOODS_CATEGORY_17', 'PRODUCT_COMBINATION_16', 'PRODUCT_COMBINATION_15', 'OCCUPATION_TYPE__10', 'PRODUCT_COMBINATION_14', 'NAME_GOODS_CATEGORY_1', 'NAME_GOODS_CATEGORY_12', 'NAME_GOODS_CATEGORY_21', 'NAME_GOODS_CATEGORY_25', 'OCCUPATION_TYPE__9', 'NAME_GOODS_CATEGORY_10', 'NAME_GOODS_CATEGORY_16', 'NAME_GOODS_CATEGORY_8', 'mean_CODE_GENDER_ORGANIZATION_TYPE_DAYS_REGISTRATION', 'FLAG_DOCUMENT_18', 'NAME_GOODS_CATEGORY_18', 'ORGANIZATION_TYPE__30', 'sum_CODE_GENDER_NAME_EDUCATION_TYPE_OWN_CAR_AGE', 'ORGANIZATION_TYPE__12', 'NAME_EDUCATION_TYPE__3', 'ORGANIZATION_TYPE__36', 'ORGANIZATION_TYPE__34', 'total_bureau_prev_app_live_debt', 'total_bureau_prev_app_live_debt_to_income', 'total_live_debt_credit', 'external_scores_nan_median', 'months_left_to_pay', 'new_user_date', 'recent_employment', 'young_age', 'actual_proposed_termination', 'completed_to_total', 'mean_status', 'median_num_bureau_balance', 'EXT_3_2', 'EXT_1_3', 'EXT_1_2', 'EXT_1_3_gm', 'EXT_2_3_gm', 'EXT_1_2_3_gm', 'EXT_1_2_sum', 'EXT_1_3_sum', 'EXT_2_3_sum', 'EXT_1_2_div', 'EXT_1_3_div', 'EXT_2_3_div', 'EXT_1_2_mean', 'EXT_2_3_mean', 'EXT_1_3_mean', 'weighted_mean_external_scores', 'external_scores_nan_median', 'EXT_SOURCE_DEV', 'EXT_SOURCE_SUM', 'MEAN_EXTERNAL_SCORE', 'mean_EXT_SOURCE_2_num_nulls', 'ratio_annuity_score_1', 'ratio_annuity_score_2', 'ratio_annuity_score_3', 'ratio_credit_annuity_score_1', 'ratio_credit_annuity_score_2', 'ratio_credit_annuity_score_3', 'annuity_div_income_ext_source_2', 'annuity_sub_income_ext_source_2', 'annuity_div_credit_ext_source_2', 'annuity_sub_credit_ext_source_2', 'mult_age_ext_source_1', 'mult_age_ext_source_2', 'mult_age_ext_source_3', 'div_age_ext_source_1', 'div_age_ext_source_2', 'div_age_ext_source_3', 'debt_to_credit_ext_source_2_mult', 'max_debt_to_credit_ext_source_2_mult', 'diff_code_gender_organization_type_source_2_mean', 'diff_code_gender_occupation_source_3_mean', 'diff_family_income_ext_source_3_mean', 'diff_education_occupation_source_3_mean', 'diff_income_type_education_type_source_2_mean', 'diff_family_income_ext_source_2_mean', 'diff_organization_ext_source_3_mean', 'diff_occupation_source_3_mean', 'diff_name_income_type_occupation_source_2_mean', 'diff_organization_ext_source_2_mean', 'mean_CODE_GENDER_OCCUPATION_TYPE_EXT_SOURCE_2', 'mean_CODE_GENDER_NAME_EDUCATION_TYPE_EXT_SOURCE_2', 'diff_organization_ext_source_1_mean', 'diff_income_ext_source_1_mean', 'var_CODE_GENDER_NAME_EDUCATION_TYPE_EXT_SOURCE_2', 'mean_CODE_GENDER_OCCUPATION_TYPE_EXT_SOURCE_1', 'mean_CODE_GENDER_NAME_EDUCATION_TYPE_EXT_SOURCE_1', 'diff_code_gender_organization_type_source_1_mean', 'ext_3_age', 'EXT_SOURCE_3', 'ext_2_age', 'diff_occupation_source_2_mean', 'diff_education_occupation_source_2_mean', 'ratio_annuity_credit_ext_source_3' 'add_mult_age_employed_ext_2', 'EXT_SOURCE_2', 'region_ext_source_3', 'mult_annuity_credit_ext_source_3', 'diff_code_gender_occupation_source_2_mean', 'diff_income_ext_source_3_mean', 'EXT_SOURCE_1', 'ratio_annuity_credit_ext_source_2', 'diff_family_education_ext_source_3_mean', 'mult_annuity_credit_ext_source_2', 'diff_family_income_ext_source_1_mean', 'diff_code_gender_name_education_type_source_2_mean', 'diff_education_ext_source_1_mean', 'add_rate_ext_2', 'diff_income_ext_source_2_mean', 'diff_family_education_ext_source_1_mean', 'diff_education_ext_source_2_mean', 'diff_education_ext_source_3_mean', 'diff_code_gender_occupation_source_1_mean', 'diff_code_gender_name_education_type_source_1_mean', 'mean_OCCUPATION_TYPE_ORGANIZATION_TYPE_EXT_SOURCE_2', 'mean_NAME_EDUCATION_TYPE_OCCUPATION_TYPE_EXT_SOURCE_2', 'mean_NAME_INCOME_TYPE_OCCUPATION_TYPE_EXT_SOURCE_2', 'mean_NAME_EDUCATION_TYPE_OCCUPATION_TYPE_EXT_SOURCE_1', 'mean_NAME_FAMILY_STATUS_NAME_EDUCATION_TYPE_EXT_SOURCE_2', 'rate_annuity_region_ext_source_2', 'mean_OCCUPATION_TYPE_ratio_annuity_credit', 'diff_family_education_ext_source_2_mean', 'ratio_annuity_credit_ext_source_1', 'mean_NAME_EDUCATION_TYPE_EXT_SOURCE_2', 'mean_NAME_EDUCATION_TYPE_OCCUPATION_TYPE_REG_CITY_NOT_WORK_CITY_EXT_SOURCE_2', 'ratio_annuity_credit_ext_source_3', 'add_mult_age_employed_ext_2', 'diff_education_occupation_source_1_mean', 'mult_annuity_credit_ext_source_1', 'mean_NAME_INCOME_TYPE_NAME_EDUCATION_TYPE_EXT_SOURCE_2' ] PARAMS = { 'num_boost_round': 10000, 'early_stopping_rounds': 200, 'boosting_type': 'gbdt', 'objective': 'binary', 'learning_rate': .02, 'metric': 'auc', 'max_depth': 4, 'num_leaves': 58, 'sub_feature': 0.10, 'feature_fraction_seed': SEED, 'bagging_fraction': 0.89, 'bagging_seed': SEED, 'min_data_in_leaf': 57, 'max_bin': 300, 'lambda_l1': 0.05, 'lambda_l2': 51, 'min_split_gain': 0.05, 'min_child_weight': 77, 'nthread': 8, 'verbose': -1, 'seed': SEED } PCA_PARAMS = { 'n_components': 10, 'whiten': True, 'random_state': SEED } MODEL_FILENAME = 'v96' SAMPLE_SIZE = .1 # NOTE: column in frequency encoded columns # cannot be in ohe cols. FREQ_ENCODING_COLS = ['ORGANIZATION_OCCUPATION', 'age_emp_categorical', 'age_occupation' ] OHE_COLS = [ 'ORGANIZATION_TYPE', 'OCCUPATION_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE' ] class Modelv96(BaseModel): def __init__(self, **params): self.params = params self.n_train = 307511 # TODO: find a way to remove this constant def load_data(self, filenames): dfs = [] for filename in filenames: dfs.append(pd.read_csv(filename, parse_dates=True, keep_date_col=True)) df = pd.concat(dfs) df.index = np.arange(len(df)) df = super(Modelv96, self).reduce_mem_usage(df) return df def reduce_mem_usage(self, df): return super(Modelv96, self).reduce_mem_usage(df) def preprocess(self): tr = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'application_train.pkl')) te = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'application_test.pkl')) ntrain = len(tr) data = pd.concat((tr, te)) del tr, te gc.collect() if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'current_application_train.pkl')): print('Generating features based on current application ....') t0 = time.clock() data, FEATURE_NAMES = current_application_features(data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'current_application_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'current_application_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on current application') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_train.pkl')): bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes print('Generating features based on credits reported to bureau ....') t0 = time.clock() data, FEATURE_NAMES = bureau_features(bureau, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) del bureau gc.collect() else: print('Already generated features based on bureau application') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_bal_train.pkl')): bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) bureau_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau_balance.pkl')) for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes for col in bureau_bal.select_dtypes(include=['category']).columns: bureau_bal.loc[:, col] = bureau_bal.loc[:, col].cat.codes print('Generating features based on credits reported to bureau and bureau balance ....') t0 = time.clock() data, FEATURE_NAMES = bureau_and_balance(bureau, bureau_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_bal_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_bal_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on bureau and balance') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes print('Generating features based on previous application ....') t0 = time.clock() data, FEATURE_NAMES = prev_app_features(prev_app, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on previous application') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'pos_cash_train.pkl')): pos_cash = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'POS_CASH_balance.pkl')) for col in pos_cash.select_dtypes(include=['category']).columns: pos_cash.loc[:, col] = pos_cash.loc[:, col].cat.codes print('Generating features based on pos cash ....') t0 = time.clock() data, FEATURE_NAMES = pos_cash_features(pos_cash, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del pos_cash gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'pos_cash_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'pos_cash_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on pos cash') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'credit_train.pkl')): credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes print('Generating features based on Credit Card ....') t0 = time.clock() data, FEATURE_NAMES = credit_card_features(credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del credit_bal gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'credit_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'credit_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Credit Card') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'installments_train.pkl')): installments = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'installments_payments.pkl')) for col in installments.select_dtypes(include=['category']).columns: installments.loc[:, col] = installments.loc[:, col].cat.codes print('Generating features based on Installments ....') t0 = time.clock() data, FEATURE_NAMES = get_installment_features(installments, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del installments gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'installments_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'installments_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Installments') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_bureau_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes print('Generating features based on Previous Applications and Bureau Applications....') t0 = time.clock() data, FEATURE_NAMES = prev_app_bureau(prev_app, bureau, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del bureau, prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_bureau_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_bureau_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Previous application and Bureau Applications') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_credit_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes print('Generating features based on Previous Applications and Credit card balance ....') t0 = time.clock() data, FEATURE_NAMES = prev_app_credit_card(prev_app, credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del credit_bal, prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_credit_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_credit_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Previous application and Credit card balance') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_installments_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) installments = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'installments_payments.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in installments.select_dtypes(include=['category']).columns: installments.loc[:, col] = installments.loc[:, col].cat.codes print('Generating features based on Previous Applications and Installment Payments ....') t0 = time.clock() data, FEATURE_NAMES = prev_app_installments(prev_app, installments, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del installments, prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_installments_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_installments_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Previous application and Installment Payments.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'loan_stacking_train.pkl')): bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes print('Generating features based on loan stacking ....') t0 = time.clock() data, FEATURE_NAMES = loan_stacking(bureau, prev_app, credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'loan_stacking_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'loan_stacking_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) del bureau gc.collect() else: print('Already generated features based on loan stacking.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'feature_groups_train.pkl')): print('Generating features based on feature groups ....') t0 = time.clock() data, FEATURE_NAMES = feature_groups(data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'feature_groups_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'feature_groups_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on feature groups.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_train.pkl')): print('Generating features based on previous application and pos cash ....') prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) pos_cash = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'POS_CASH_balance.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in pos_cash.select_dtypes(include=['category']).columns: pos_cash.loc[:, col] = pos_cash.loc[:, col].cat.codes t0 = time.clock() data, FEATURE_NAMES = prev_app_pos(prev_app, pos_cash, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on previous application and pos cash.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_credit_bal_train.pkl')): print('Generating features based on previous application, pos cash and credit card balance ....') prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) pos_cash = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'POS_CASH_balance.pkl')) credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in pos_cash.select_dtypes(include=['category']).columns: pos_cash.loc[:, col] = pos_cash.loc[:, col].cat.codes for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes t0 = time.time() data, FEATURE_NAMES = prev_app_pos_credit(prev_app, pos_cash, credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_credit_bal_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_credit_bal_test.pkl')) print('\nTook: {} seconds'.format(time.time() - t0)) else: print('Already generated features based on previous application, pos cash and credit card balance.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_ohe_train.pkl')): print('Generating features based on previous application one hot encoded features ....') prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes t0 = time.time() data, FEATURE_NAMES = prev_app_ohe(prev_app, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_ohe_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_ohe_test.pkl')) print('\nTook: {} seconds'.format(time.time() - t0)) else: print('Already generated features based on previous application one hot encode features.') def prepare_features(self): tr = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'application_train.pkl')) te = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'application_test.pkl')) ntrain = len(tr) data = pd.concat((tr, te)) del tr, te gc.collect() if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'current_application_train.pkl')): print('Generating features based on current application ....') t0 = time.clock() data, FEATURE_NAMES = current_application_features(data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'current_application_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'current_application_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on current application') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_train.pkl')): bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes print('Generating features based on credits reported to bureau ....') t0 = time.clock() data, FEATURE_NAMES = bureau_features(bureau, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) del bureau gc.collect() else: print('Already generated features based on bureau application') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_bal_train.pkl')): bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) bureau_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau_balance.pkl')) for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes for col in bureau_bal.select_dtypes(include=['category']).columns: bureau_bal.loc[:, col] = bureau_bal.loc[:, col].cat.codes print('Generating features based on credits reported to bureau and bureau balance ....') t0 = time.clock() data, FEATURE_NAMES = bureau_and_balance(bureau, bureau_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_bal_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'bureau_bal_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on bureau and balance') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes print('Generating features based on previous application ....') t0 = time.clock() data, FEATURE_NAMES = prev_app_features(prev_app, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on previous application') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'pos_cash_train.pkl')): pos_cash = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'POS_CASH_balance.pkl')) for col in pos_cash.select_dtypes(include=['category']).columns: pos_cash.loc[:, col] = pos_cash.loc[:, col].cat.codes print('Generating features based on pos cash ....') t0 = time.clock() data, FEATURE_NAMES = pos_cash_features(pos_cash, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del pos_cash gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'pos_cash_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'pos_cash_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on pos cash') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'credit_train.pkl')): credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes print('Generating features based on Credit Card ....') t0 = time.clock() data, FEATURE_NAMES = credit_card_features(credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del credit_bal gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'credit_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'credit_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Credit Card') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'installments_train.pkl')): installments = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'installments_payments.pkl')) for col in installments.select_dtypes(include=['category']).columns: installments.loc[:, col] = installments.loc[:, col].cat.codes print('Generating features based on Installments ....') t0 = time.clock() data, FEATURE_NAMES = get_installment_features(installments, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del installments gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'installments_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'installments_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Installments') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_bureau_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes print('Generating features based on Previous Applications and Bureau Applications....') t0 = time.clock() data, FEATURE_NAMES = prev_app_bureau(prev_app, bureau, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del bureau, prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_bureau_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_bureau_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Previous application and Bureau Applications') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_credit_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes print('Generating features based on Previous Applications and Credit card balance ....') t0 = time.clock() data, FEATURE_NAMES = prev_app_credit_card(prev_app, credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del credit_bal, prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_credit_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_credit_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Previous application and Credit card balance') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_installments_train.pkl')): prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) installments = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'installments_payments.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in installments.select_dtypes(include=['category']).columns: installments.loc[:, col] = installments.loc[:, col].cat.codes print('Generating features based on Previous Applications and Installment Payments ....') t0 = time.clock() data, FEATURE_NAMES = prev_app_installments(prev_app, installments, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) del installments, prev_app gc.collect() data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_installments_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_installments_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on Previous application and Installment Payments.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'loan_stacking_train.pkl')): bureau = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'bureau.pkl')) prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in bureau.select_dtypes(include=['category']).columns: bureau.loc[:, col] = bureau.loc[:, col].cat.codes for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes print('Generating features based on loan stacking ....') t0 = time.clock() data, FEATURE_NAMES = loan_stacking(bureau, prev_app, credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'loan_stacking_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'loan_stacking_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) del bureau gc.collect() else: print('Already generated features based on loan stacking.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'feature_groups_train.pkl')): print('Generating features based on feature groups ....') t0 = time.clock() data, FEATURE_NAMES = feature_groups(data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'feature_groups_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'feature_groups_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on feature groups.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_train.pkl')): print('Generating features based on previous application and pos cash ....') prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) pos_cash = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'POS_CASH_balance.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in pos_cash.select_dtypes(include=['category']).columns: pos_cash.loc[:, col] = pos_cash.loc[:, col].cat.codes t0 = time.clock() data, FEATURE_NAMES = prev_app_pos(prev_app, pos_cash, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_test.pkl')) print('\nTook: {} seconds'.format(time.clock() - t0)) else: print('Already generated features based on previous application and pos cash.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_credit_bal_train.pkl')): print('Generating features based on previous application, pos cash and credit card balance ....') prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) pos_cash = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'POS_CASH_balance.pkl')) credit_bal = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'credit_card_balance.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes for col in pos_cash.select_dtypes(include=['category']).columns: pos_cash.loc[:, col] = pos_cash.loc[:, col].cat.codes for col in credit_bal.select_dtypes(include=['category']).columns: credit_bal.loc[:, col] = credit_bal.loc[:, col].cat.codes t0 = time.time() data, FEATURE_NAMES = prev_app_pos_credit(prev_app, pos_cash, credit_bal, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_credit_bal_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_pos_cash_credit_bal_test.pkl')) print('\nTook: {} seconds'.format(time.time() - t0)) else: print('Already generated features based on previous application, pos cash and credit card balance.') if not os.path.exists(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_ohe_train.pkl')): print('Generating features based on previous application one hot encoded features ....') prev_app = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + 'previous_application.pkl')) for col in prev_app.select_dtypes(include=['category']).columns: prev_app.loc[:, col] = prev_app.loc[:, col].cat.codes t0 = time.time() data, FEATURE_NAMES = prev_app_ohe(prev_app, data) data.index = np.arange(len(data)) # fill infrequent values data = super(Modelv96, self).fill_infrequent_values(data) data.iloc[:ntrain].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_ohe_train.pkl')) data.iloc[ntrain:].loc[:, FEATURE_NAMES].to_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'prev_app_ohe_test.pkl')) print('\nTook: {} seconds'.format(time.time() - t0)) else: print('Already generated features based on previous application one hot encode features.') # This method currently takes care of loading engineered features from disk # and merging train and test to report back a dataframe (data) which can be used by # other layers. def merge_datasets(self): def get_filenames(): filenames = [f'application_', f'current_application_', f'bureau_', f'bureau_bal_', f'prev_app_', f'pos_cash_', f'credit_', f'installments_', f'prev_app_bureau_', f'prev_app_credit_', f'prev_app_installments_', f'loan_stacking_', f'feature_groups_', f'prev_app_pos_cash_', f'prev_app_pos_cash_credit_bal_', f'prev_app_ohe_' ] return filenames train = [] test = [] filenames = get_filenames() for filename_ in filenames: tmp = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'{filename_}train.pkl')) tmp.index = np.arange(len(tmp)) train.append(tmp) for filename_ in filenames: tmp = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + 'feature_groups/' + f'{filename_}test.pkl')) tmp.index = np.arange(len(tmp)) test.append(tmp) return pd.concat(train, axis=1), pd.concat(test, axis=1) def feature_interaction(self, data, key, agg_feature, agg_func, agg_func_name): key_name = '_'.join(key) tmp = data.groupby(key)[agg_feature].apply(agg_func)\ .reset_index()\ .rename(columns={agg_feature: f'{agg_func_name}_{key_name}_{agg_feature}'}) feat_name = f'{agg_func_name}_{key_name}_{agg_feature}' data.loc[:, feat_name] = data.loc[:, key].merge(tmp, on=key, how='left')[feat_name] return data, feat_name def feature_preprocessing(self, data): # current application preprocessing data['DAYS_LAST_PHONE_CHANGE'].replace(0, np.nan, inplace=True) data['CODE_GENDER'].replace(2, np.nan, inplace=True) data['DAYS_EMPLOYED'].replace(365243, np.nan, inplace=True) # previous application data['DAYS_FIRST_DRAWING'].replace(365243, np.nan, inplace=True) data['DAYS_FIRST_DUE'].replace(365243, np.nan, inplace=True) data['DAYS_LAST_DUE_1ST_VERSION'].replace(365243, np.nan, inplace=True) data['DAYS_LAST_DUE'].replace(365243, np.nan, inplace=True) data['DAYS_TERMINATION'].replace(365243, np.nan, inplace=True) return data def add_missing_values_flag(self, data): # preprocess for pca SKIP_COLS = ['SK_ID_CURR', 'TARGET'] for col in data.columns.drop(SKIP_COLS): # replace inf with np.nan data[col] = data[col].replace([np.inf, -np.inf], np.nan) # fill missing values with median if data[col].isnull().sum(): data[f'{col}_flag'] = data[col].isnull().astype(np.uint8) if pd.isnull(data[col].median()): data[col] = data[col].fillna(-1) else: data[col] = data[col].fillna(data[col].median()) return data def get_features(self, train, test, compute_ohe): data = pd.concat((train, test)) data.index = np.arange(len(data)) for col in data.select_dtypes(include=['category']).columns: data[col] = data[col].cat.codes # TODO: not very happy with the way we are computing interactions # because if we omit any of this feature from pipeline it would # still work but would most likely be a feature of all null values. # flag for age >= 43 data.loc[:, 'age_ge_43'] = ((-data.DAYS_BIRTH / 365) > 43).astype(np.uint8) # flag for age over 43 and income type Pensioner data.loc[:, 'age_ge_43_and_income_pensioner'] = (((-data.DAYS_BIRTH / 365) > 43) & (data.NAME_INCOME_TYPE == 3)).astype(np.uint8) # concatenate OCCUPATION TYPE AND ORGANIZATION TYPE data.loc[:, 'ORGANIZATION_OCCUPATION'] = pd.factorize(data.ORGANIZATION_TYPE.astype(np.str) +\ data.OCCUPATION_TYPE.astype(np.str) )[0] # interaction between total debt to income and (annuity / credit) data.loc[:, 'debt_income_to_annuity_credit'] = data.total_debt_to_income / data.ratio_annuity_credit # interaction between days birth and ratio of annuity to credit data.loc[:, 'add_days_birth_annuity_credit'] = data.DAYS_BIRTH + data.ratio_annuity_credit # interaction between ratio of annuity to credit with external source 2 score data.loc[:, 'mult_annuity_credit_ext_source_2'] = data.ratio_annuity_credit * data.EXT_SOURCE_2 data.loc[:, 'ratio_annuity_credit_ext_source_2'] = data.ratio_annuity_credit / data.EXT_SOURCE_2.map(np.log1p) data.loc[:, 'mult_annuity_credit_ext_source_1'] = data.ratio_annuity_credit * data.EXT_SOURCE_1 data.loc[:, 'ratio_annuity_credit_ext_source_1'] = data.ratio_annuity_credit / data.EXT_SOURCE_1.map(np.log1p) data.loc[:, 'mult_annuity_credit_ext_source_3'] = data.ratio_annuity_credit * data.EXT_SOURCE_3 data.loc[:, 'ratio_annuity_credit_ext_source_3'] = data.ratio_annuity_credit / data.EXT_SOURCE_3.map(np.log1p) # interaction between ratio of annuity to credit with total amount paid in installments data.loc[:, 'mult_annuity_credit_amt_payment_sum'] = data.ratio_annuity_credit * data.AMT_PAYMENT_sum # interaction between total amount paid in installments and delay in installments data.loc[:, 'mult_amt_payment_sum_delay_installment'] = data.AMT_PAYMENT_sum * data.delay_in_installment_payments # interaction between credit / annuity and age data.loc[:, 'diff_credit_annuity_age'] = (data.AMT_CREDIT / data.AMT_ANNUITY) - (-data.DAYS_BIRTH / 365) # interaction between ext_3 and age data.loc[:, 'ext_3_age'] = data.EXT_SOURCE_3 * (-data.DAYS_BIRTH / 365) # interaction between ext_2 and age data.loc[:, 'ext_2_age'] = data.EXT_SOURCE_2 * (-data.DAYS_BIRTH / 365) # interaction between rate and external source 2 data.loc[:, 'add_rate_ext_2'] = (data.AMT_CREDIT / data.AMT_ANNUITY) + data.EXT_SOURCE_2 # interaction between rate and age data.loc[:, 'add_rate_age'] = (data.AMT_CREDIT / data.AMT_ANNUITY) + (-data.DAYS_BIRTH / 365) # interaction between age and employed and external score 2 data.loc[:, 'add_mult_age_employed_ext_2'] = ((-data.DAYS_BIRTH / 365) +\ (-data.DAYS_EMPLOYED.replace({365243: np.nan}))) *\ (data.EXT_SOURCE_2) # combine ratio annuity credit, region populative relative and ext source 2 data.loc[:, 'rate_annuity_region_ext_source_2'] = data.ratio_annuity_credit * data.REGION_POPULATION_RELATIVE * data.EXT_SOURCE_2 data.loc[:, 'region_ext_source_3'] = data.REGION_POPULATION_RELATIVE * data.EXT_SOURCE_3 # Relationship between AMT_REQ_CREDIT_BUREAU_HOUR and AMT_REQ_CREDIT_BUREAU_YEAR data.loc[:, 'ratio_check_hour_to_year'] = data.AMT_REQ_CREDIT_BUREAU_HOUR.div(data.AMT_REQ_CREDIT_BUREAU_YEAR) # Relationship between Income and ratio annuity credit data.loc[:, 'mult_ratio_income'] = (data.ratio_annuity_credit * data.AMT_INCOME_TOTAL).map(np.log1p) data.loc[:, 'div_ratio_income'] = (data.AMT_INCOME_TOTAL / data.ratio_annuity_credit).map(np.log1p) # Gender, Education and other features data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_code_gender_name_education_type_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_2', np.var, 'var') data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_code_gender_name_education_type_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_code_gender_name_education_type_amt_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_code_gender_name_education_type_amt_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'OWN_CAR_AGE', np.max, 'max') data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'OWN_CAR_AGE', np.sum, 'sum') data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_code_gender_education_type_age'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_code_gender_education_type_empl'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'NAME_EDUCATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_code_gender_education_type_income'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Gender, Occupation and other features data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_days_birth_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'OCCUPATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_code_gender_occupation_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] # Gender, Organization and other features data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_amt_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'DAYS_REGISTRATION', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_days_reg_mean'] = data[feat_name] - data['DAYS_REGISTRATION'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_age_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_empl_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'ORGANIZATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_code_gender_organization_type_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] # Gender, Reg city not work city and other fatures data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_amount_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'CNT_CHILDREN', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_cnt_children_mean'] = data[feat_name] - data['CNT_CHILDREN'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'DAYS_ID_PUBLISH', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_days_id_mean'] = data[feat_name] - data['DAYS_ID_PUBLISH'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['CODE_GENDER', 'REG_CITY_NOT_WORK_CITY'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_code_gender_reg_city_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Income, Occupation and Ext Score data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'OCCUPATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_name_income_type_occupation_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Occupation and Organization and Ext Score data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_source_2_mean'] = data[feat_name] - data['DAYS_ID_PUBLISH'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_source_1_mean'] = data[feat_name] - data['DAYS_ID_PUBLISH'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_source_3_mean'] = data[feat_name] - data['DAYS_ID_PUBLISH'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE', 'ORGANIZATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_occupation_organization_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Income, Education and Ext score data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_income_type_education_type_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Education and Occupation and other features data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_education_occupation_amt_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_education_occupation_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_education_occupation_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_education_occupation_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'OWN_CAR_AGE', np.mean, 'mean') data.loc[:, 'diff_education_occupation_car_age_mean'] = data[feat_name] - data['OWN_CAR_AGE'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_education_occupation_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_education_occupation_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_education_occupation_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_education_occupation_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Education, Occupation, Reg city not work city and other features data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_education_occupation_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_education_occupation_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_education_occupation_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_education_occupation_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_education_occupation_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_education_occupation_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_education_occupation_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE', 'OCCUPATION_TYPE', 'REG_CITY_NOT_WORK_CITY'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_education_occupation_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Occupation and other features data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_occupation_reg_city_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'CNT_CHILDREN', np.mean, 'mean') data.loc[:, 'diff_occupation_cnt_children_mean'] = data[feat_name] - data['CNT_CHILDREN'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'CNT_FAM_MEMBERS', np.mean, 'mean') data.loc[:, 'diff_occupation_cnt_fam_mebers_mean'] = data[feat_name] - data['CNT_FAM_MEMBERS'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_occupation_days_birth_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_occupation_days_employed_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_occupation_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_occupation_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_occupation_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'OWN_CAR_AGE', np.mean, 'mean') data.loc[:, 'diff_occupation_own_car_age_mean'] = data[feat_name] - data['OWN_CAR_AGE'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'YEARS_BUILD_AVG', np.mean, 'mean') data.loc[:, 'diff_occupation_year_build_mean'] = data[feat_name] - data['YEARS_BUILD_AVG'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'ratio_annuity_credit', np.mean, 'mean') data.loc[:, 'diff_occupation_annuity_credit_mean'] = data[feat_name] - data['ratio_annuity_credit'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_occupation_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_occupation_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['OCCUPATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_occupation_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Organization type and other features data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_organization_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_organization_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_organization_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_organization_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_organization_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_organization_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_organization_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['ORGANIZATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_organization_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # INCOME Type and other features data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_income_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data.loc[:, 'ratio_income_ext_source_1_mean'] = data[feat_name] / data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_income_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_income_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_income_ext_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_income_ext_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_income_ext_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_income_ext_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_INCOME_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_income_ext_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # EDUCATION Type and other features data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_education_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_education_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_education_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_education_ext_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_education_ext_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_education_ext_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_education_ext_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_EDUCATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_education_ext_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Family Type and Income Type data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_INCOME_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_family_income_ext_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Family Type and Education Type data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_family_education_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_family_education_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_family_education_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_family_education_ext_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_family_education_ext_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_family_education_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_family_education_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_family_education_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Family Type, Organization Type data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'ORGANIZATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_family_organization_ext_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # Family Type, Occupation Type data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'EXT_SOURCE_1', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_source_1_mean'] = data[feat_name] - data['EXT_SOURCE_1'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'EXT_SOURCE_2', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_source_2_mean'] = data[feat_name] - data['EXT_SOURCE_2'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'EXT_SOURCE_3', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_source_3_mean'] = data[feat_name] - data['EXT_SOURCE_3'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'DAYS_BIRTH', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_age_mean'] = data[feat_name] - data['DAYS_BIRTH'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'DAYS_EMPLOYED', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_empl_mean'] = data[feat_name] - data['DAYS_EMPLOYED'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'AMT_CREDIT', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_credit_mean'] = data[feat_name] - data['AMT_CREDIT'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'AMT_ANNUITY', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_annuity_mean'] = data[feat_name] - data['AMT_ANNUITY'] data, feat_name = self.feature_interaction(data, ['NAME_FAMILY_STATUS', 'OCCUPATION_TYPE'], 'AMT_INCOME_TOTAL', np.mean, 'mean') data.loc[:, 'diff_family_occupation_ext_income_mean'] = data[feat_name] - data['AMT_INCOME_TOTAL'] # frequency encoding of some of the categorical variables. data = frequency_encoding(data, FREQ_ENCODING_COLS) # add pca components if os.path.exists(os.path.join(basepath, self.params['output_path'] + f'{self.params["data_folder"]}pca.pkl')): pca_components = pd.read_pickle(os.path.join(basepath, self.params['output_path'] + f'{self.params["data_folder"]}pca.pkl')) else: pca_components = super(Modelv96, self).add_pca_components(data.copy(), PCA_PARAMS) pca_components.to_pickle(os.path.join(basepath, self.params['output_path'] + f'{self.params["data_folder"]}pca.pkl')) pca_components.index = data.index data = pd.concat((data, pca_components), axis=1) # one hot encoding of some of the categorical variables controlled by a flag # if flag is True then one hot encoding else do frequency encoding. if compute_ohe: data = super(Modelv96, self).prepare_ohe(data, OHE_COLS, drop_col=True) else: data = frequency_encoding(data, OHE_COLS) return data # This method would perform feature engineering on merged datasets. def fe(self, train, test, compute_ohe=True): original_train = train.copy() data = self.get_features(original_train, test, compute_ohe) train = data.iloc[:len(train)] test = data.iloc[len(train):] del data, original_train gc.collect() return train, test # This method just calls the base class with X,y, Xte and yte in the right format # to train and returns a trained model which could be dumped on disk for further use. # TODO: Find out why we are not able to load back model from disk and generate correct predictions # there seems to be some issue in it right now. def train(self, train, test, feature_list, is_eval, TARGET_NAME='TARGET', **params): X = train.loc[:, feature_list] y = train.loc[:, TARGET_NAME] Xte = test.loc[:, feature_list] yte = [] if is_eval: yte = test.loc[:, TARGET_NAME] return super(Modelv96, self).train_lgb(X, y, Xte, yte, **params) # This method just takes in a model and test dataset and returns predictions # prints out AUC on the test dataset as well in the process. def evaluate(self, test, feature_list, is_eval, model, TARGET_NAME='TARGET'): Xte = test.loc[:, feature_list] yte = [] if is_eval: yte = test.loc[:, TARGET_NAME] return super(Modelv96, self).evaluate_lgb(Xte, yte, model) def cross_validate(self, train, feature_list, params, cv_adversarial_filepath=None, categorical_feature='auto', TARGET_NAME='TARGET'): Xtr = train.loc[:, feature_list] ytr = train.loc[:, TARGET_NAME] return super(Modelv96, self).cross_validate(Xtr, ytr, params, cv_adversarial_filepath=cv_adversarial_filepath, categorical_feature=categorical_feature ) def oof_preds(self, train, test, feature_list, model, TARGET_NAME='TARGET'): X = train.loc[:, feature_list] y = train.loc[:, TARGET_NAME] Xte = test.loc[:, feature_list] return super(Modelv96, self).oof_preds(X, y, Xte, model) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Home Credit Default Risk Solution') parser.add_argument('-input_path', help='Path to input directory') # path to raw files parser.add_argument('-output_path', help='Path to output directory') # path to working data folder parser.add_argument('-data_folder', help='Folder name of the dataset') # dataset folder name parser.add_argument('-p', type=bool, help='Preprocess') parser.add_argument('-cv', type=bool, help='Cross Validation') parser.add_argument('-v', type=str, help='Validation') parser.add_argument('-features', type=bool, help='Generate Features') parser.add_argument('-s', type=bool, help='Whether to work on a sample or not.') parser.add_argument('-seed', type=int, help='Random SEED') parser.add_argument('-cv_seed', type=int, help='CV SEED') parser.add_argument('-oof', type=bool, help='OOF preds for training and test set.') parser.add_argument('-t', type=bool, help='Full Training Loop.') parser.add_argument('-ensemble', type=bool , help='Average out predictions.') args = parser.parse_args() if args.p: print('Preprocessing ...') input_path = args.input_path output_path = args.output_path params = { 'input_path': input_path, 'output_path': output_path } m = Modelv96(**params) m.preprocess() elif args.features: print('Generating features ...') print() input_path = args.input_path output_path = args.output_path params = { 'input_path': input_path, 'output_path': output_path, } m = Modelv96(**params) m.prepare_features() elif args.v is not None and len(args.v): print('Train and generate predictions on a fold') input_path = args.input_path output_path = args.output_path data_folder = args.data_folder fold_indicator = args.v is_sample = args.s cv_seed = args.cv_seed SEED = int(args.seed) print('*' * 100) print('SEED FOUND: {}'.format(SEED)) params = { 'input_path': input_path, 'output_path': output_path, 'data_folder': data_folder } PARAMS = joblib.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{cv_seed}_params.pkl')) # Set seed to Params PARAMS['seed'] = SEED PARAMS['feature_fraction_seed'] = SEED PARAMS['bagging_seed'] = SEED PARAMS['early_stopping_rounds'] = None # explicitly make it None print('*' * 100) print('PARAMS: {}'.format(PARAMS)) m = Modelv96(**params) if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}data.h5')): print('Loading dataset from disk ...') data = pd.read_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') else: print('Merge feature groups and save them to disk ...') train, test = m.merge_datasets() train, test = m.fe(train, test) data = pd.concat((train, test)) data = m.reduce_mem_usage(data) data.to_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') del train, test gc.collect() ite = pd.read_csv(os.path.join(basepath, input_path + 'cv_adversarial_idx_v1.csv'), usecols=[fold_indicator])[fold_indicator].values print('Shape of fold indices ', len(ite)) itr = np.array(list(set(data.iloc[:m.n_train].index) - set(ite))) # train = data.iloc[:m.n_train].iloc[itr] # test = data.iloc[:m.n_train].iloc[ite] train = data.loc[data.index.isin(itr)] test = data.loc[data.index.isin(ite)] del data gc.collect() if is_sample: print('*' * 100) print('Take a random sample of the training data ...') train = train.sample(frac=SAMPLE_SIZE) # check to see if feature list exists on disk or not for a particular model if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')): feature_list = np.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')) else: feature_list = train.columns.tolist() feature_list = list(set(feature_list) - set(COLS_TO_REMOVE)) np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy'), feature_list) # print features with null percentage print('Top-5 features with highest percentage of null values ...\n') print((train.loc[:, feature_list].isnull().sum() / len(train)).sort_values(ascending=False).iloc[:5]) # print number of features explored in the experiment print('*' * 100) print('Number of features: {}'.format(len(feature_list))) print('*' * 100) model_identifier = f'{data_folder}{MODEL_FILENAME}_{fold_indicator}_{SEED}' if os.path.exists(os.path.join(basepath, output_path + f'{model_identifier}_model.txt')): print('Loading model from disk ...') model = lgb.Booster(model_file=os.path.join(basepath, output_path + f'{model_identifier}_model.txt')) yhold = test.TARGET hold_preds = np.array(model.predict(test.loc[:, feature_list])) print('AUC score: {}'.format(roc_auc_score(yhold, hold_preds))) else: print('Saving model to disk ...') # train model model, feat_df = m.train(train, test, feature_list, is_eval=True, **PARAMS) if not is_sample: model.save_model(os.path.join(basepath, output_path + f'{model_identifier}_model.txt')) if not os.path.exists(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}{fold_indicator}_true_holdout.npy')): np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}{fold_indicator}_true_holdout.npy'), test.TARGET) hold_preds = model.predict(test.loc[:, feature_list]) np.save(os.path.join(basepath, output_path + f'{model_identifier}_preds_holdout.npy'), hold_preds) feat_df.to_csv(os.path.join(basepath, output_path + f'{model_identifier}_feat_imp.csv'), index=False) elif args.cv: print('Cross validation on training and store parameters and cv score on disk ...') input_path = args.input_path output_path = args.output_path data_folder = args.data_folder is_sample = args.s SEED = args.seed params = { 'input_path': input_path, 'output_path': output_path, 'data_folder': data_folder } m = Modelv96(**params) if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}data.h5')): print('Loading dataset from disk ...') data = pd.read_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') else: print('Merge feature groups and save them to disk ...') train, test = m.merge_datasets() train, test = m.fe(train, test) data = pd.concat((train, test)) data = m.reduce_mem_usage(data) data.to_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') del train, test gc.collect() train = data.iloc[:m.n_train] del data gc.collect() if is_sample: print('*' * 100) print('Take a random sample of the training data ...') train = train.sample(frac=SAMPLE_SIZE) # check to see if feature list exists on disk or not for a particular model if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')): feature_list = np.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')) else: feature_list = train.columns.tolist() feature_list = list(set(feature_list) - set(COLS_TO_REMOVE)) np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy'), feature_list) PARAMS['seed'] = SEED PARAMS['feature_fraction_seed'] = SEED PARAMS['bagging_seed'] = SEED # cv_adversarial_filepath = os.path.join(basepath, 'data/raw/cv_adversarial_idx_v1.csv') cv_adversarial_filepath = None cv_history = m.cross_validate(train, feature_list, PARAMS.copy(), cv_adversarial_filepath) cv_score = str(cv_history.iloc[-1]['auc-mean']) + '_' + str(cv_history.iloc[-1]['auc-stdv']) PARAMS['num_boost_round'] = len(cv_history) print('*' * 100) print('Best AUC: {}'.format(cv_score)) joblib.dump(PARAMS, os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{SEED}_params.pkl')) joblib.dump(cv_score, os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{SEED}_cv.pkl')) elif args.oof: print('Generate oof predictions for train and test set ...') input_path = args.input_path output_path = args.output_path data_folder = args.data_folder SEED = args.seed params = { 'input_path': input_path, 'output_path': output_path, 'data_folder': data_folder } m = Modelv96(**params) if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}data.h5')): print('Loading dataset from disk ...') data = pd.read_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') else: print('Merge feature groups and save them to disk ...') train, test = m.merge_datasets() train, test = m.fe(train, test) data = pd.concat((train, test)) data = m.reduce_mem_usage(data) data.to_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') del train, test gc.collect() train = data.iloc[:m.n_train] test = data.iloc[m.n_train:] del data gc.collect() # check to see if feature list exists on disk or not for a particular model if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')): feature_list = np.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')) else: feature_list = train.columns.tolist() feature_list = list(set(feature_list) - set(COLS_TO_REMOVE)) np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy'), feature_list) PARAMS = joblib.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{SEED}_params.pkl')) # model construction model = lgb.LGBMClassifier(num_leaves=PARAMS['num_leaves'], max_depth=PARAMS['max_depth'], learning_rate=PARAMS['learning_rate'], n_estimators=PARAMS['num_boost_round'], objective=PARAMS['objective'], min_child_weight=PARAMS['min_child_weight'], min_child_samples=PARAMS['min_data_in_leaf'], subsample=PARAMS['bagging_fraction'], colsample_bytree=PARAMS['sub_feature'], reg_lambda=PARAMS['lambda_l2'], reg_alpha=PARAMS['lambda_l1'], min_split_gain=PARAMS['min_split_gain'], random_state=SEED, verbose=-1, n_jobs=8 ) oof_preds, test_preds = m.oof_preds(train, test, feature_list, model) np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{SEED}_oof_preds.npy'), oof_preds) np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{SEED}_test.npy'), test_preds) elif args.t: print('Full Training') input_path = args.input_path output_path = args.output_path data_folder = args.data_folder CV_SEED = args.cv_seed SEED = args.seed params = { 'input_path': input_path, 'output_path': output_path, 'data_folder': data_folder } m = Modelv96(**params) # Load or save data from/ on disk if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}data.h5')): print('Loading dataset from disk ...') data = pd.read_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') else: print('Merge feature groups and save them to disk ...') train, test = m.merge_datasets() train, test = m.fe(train, test) data = pd.concat((train, test)) data = m.reduce_mem_usage(data) data.to_hdf(os.path.join(basepath, output_path + f'{data_folder}data.h5'), format='table', key='data') del train, test gc.collect() # separate out training and test set. train = data.iloc[:m.n_train] test = data.iloc[m.n_train:] # check to see if feature list exists on disk or not for a particular model if os.path.exists(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')): feature_list = np.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy')) else: feature_list = train.columns.tolist() feature_list = list(set(feature_list) - set(COLS_TO_REMOVE)) np.save(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_features.npy'), feature_list) # Load params and holdout score from disk. PARAMS = joblib.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{CV_SEED}_params.pkl')) HOLDOUT_SCORE = joblib.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{CV_SEED}_cv.pkl')) PARAMS['num_boost_round'] = int(1.1 * PARAMS['num_boost_round']) PARAMS['learning_rate'] /= 1.1 PARAMS['seed'] = SEED PARAMS['feature_fraction_seed'] = SEED PARAMS['bagging_seed'] = SEED print('*' * 100) print('PARAMS are: {}'.format(PARAMS)) # train model model, feat_df = m.train(train, test, feature_list, is_eval=False, **PARAMS) # evaluation part preds, score = m.evaluate(test, feature_list, is_eval=False, model=model) sub_identifier = "%s-%s-%s-%s-%s" % (datetime.now().strftime('%Y%m%d-%H%M'), MODEL_FILENAME, HOLDOUT_SCORE, SEED, data_folder[:-1]) sub = pd.read_csv(os.path.join(basepath, 'data/raw/sample_submission.csv.zip')) sub['TARGET'] = preds sub.to_csv(os.path.join(basepath, 'submissions/%s.csv'%(sub_identifier)), index=False) elif args.ensemble: input_path = args.input_path output_path = args.output_path data_folder = args.data_folder CV_SEED = args.cv_seed output_files = [] ensemble_preds = 0 for f in output_files: sub = pd.read_csv(f)['TARGET'].values ensemble_preds += sub ensemble_preds /= len(output_files) HOLDOUT_SCORE = joblib.load(os.path.join(basepath, output_path + f'{data_folder}{MODEL_FILENAME}_{CV_SEED}_cv.pkl')) sub_identifier = "%s-%s-%s-%s" % (datetime.now().strftime('%Y%m%d-%H%M'), MODEL_FILENAME, HOLDOUT_SCORE, data_folder[:-1]) sub = pd.read_csv(os.path.join(basepath, 'data/raw/sample_submission.csv.zip')) sub['TARGET'] = ensemble_preds sub.to_csv(os.path.join(basepath, 'submissions/ensemble_%s.csv'%(sub_identifier)), index=False)
54.063672
178
0.621604
bfe223b8dc7fabe5eb052ff84f4d3f160ebb1ec5
1,757
py
Python
termicoder/utils/parse.py
apb7/termicoder
f0540a2fb4fe0858fa6a9d63e722ad5aa525e14a
[ "MIT" ]
1
2018-06-22T06:59:24.000Z
2018-06-22T06:59:24.000Z
termicoder/utils/parse.py
apb7/termicoder
f0540a2fb4fe0858fa6a9d63e722ad5aa525e14a
[ "MIT" ]
null
null
null
termicoder/utils/parse.py
apb7/termicoder
f0540a2fb4fe0858fa6a9d63e722ad5aa525e14a
[ "MIT" ]
null
null
null
import os import json import click import termicoder.utils.display as display supported_extensions = [".py", ".cpp", ".c", ".java", ".c++", ".cc"] def get_judge(): problem_file_path = ".problem" try: f = open(problem_file_path, "r") except BaseException: display.file_read_error(problem_file_path, abort=True) else: j = json.load(f) return j["judge"] def get_file_name(file): # the file may be a str or a click.file return file name finally if(not isinstance(file, str)): return str(file.name) else: return str(file) # this helps is reducing time as intelligently handling default def get_code_file(): probable_files = [] for f in os.listdir(os.getcwd()): if(os.path.isfile(f) and os.path.splitext(f)[1] in supported_extensions): probable_files.append(f) default_file = None if(probable_files): default_file = probable_files[0] # defaulting to latest file for f in probable_files: if(os.path.getmtime(f) > os.path.getmtime(default_file)): default_file = f code_file = click.prompt('Please provide a code file', type=click.File(), default=default_file) return code_file def get_time_limit(): time_limit = None problem_file_path = ".problem" try: f = open(problem_file_path, "r") except BaseException: pass else: j = json.load(f) try: time_limit = j["max_timelimit"] except BaseException: pass if(time_limit is None): return 3.0 else: return float(time_limit) def get_memory_limit(): click.echo("memory_limit not implemented in this version")
23.426667
81
0.622652
12a4cdb9de3bde812b09c5f54bac42e1d4b154b4
5,320
py
Python
eucaconsole/forms/securitygroups.py
gholms/eucaconsole
4629c961c90e3aae27e3a869a7f157bafeda6489
[ "BSD-2-Clause" ]
null
null
null
eucaconsole/forms/securitygroups.py
gholms/eucaconsole
4629c961c90e3aae27e3a869a7f157bafeda6489
[ "BSD-2-Clause" ]
null
null
null
eucaconsole/forms/securitygroups.py
gholms/eucaconsole
4629c961c90e3aae27e3a869a7f157bafeda6489
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2013-2016 Hewlett Packard Enterprise Development LP # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Forms for Security Groups """ import wtforms from wtforms import validators from ..i18n import _ from ..views import BaseView from . import BaseSecureForm, ChoicesManager, TextEscapedField, ASCII_WITHOUT_SLASHES_NOTICE class SecurityGroupForm(BaseSecureForm): """Security Group create/edit form Constraints for VPC security group name/desc: a-z, A-Z, 0-9, spaces, and ._-:/()#,@[]+=;{}!$* See http://docs.aws.amazon.com/cli/latest/reference/ec2/create-security-group.html """ name_error_msg = ASCII_WITHOUT_SLASHES_NOTICE name = wtforms.TextField( label=_(u'Name'), validators=[validators.DataRequired(message=name_error_msg)], ) sgroup_description_pattern = r'^[a-zA-Z0-9\s\._\-:\/\(\)#,@\[\]\+=;\{\}!\$\*]+$' DESCRIPTION_RESTRICTION_NOTICE = _( u'Description is required, must be between 1 and 255 characters, and may only contain ' u'letters, numbers, spaces, and the following characters:') special_chars = u'._-:/()#,@[]+=;{}!$*' desc_error_msg = u'{0} {1}'.format(DESCRIPTION_RESTRICTION_NOTICE, special_chars) description = wtforms.TextAreaField( label=_(u'Description'), validators=[ validators.DataRequired(message=desc_error_msg), validators.Length(max=255, message=_(u'Description must be less than 255 characters')) ], ) securitygroup_vpc_network = wtforms.SelectField(label=_(u'VPC network')) def __init__(self, request, vpc_conn=None, security_group=None, **kwargs): super(SecurityGroupForm, self).__init__(request, **kwargs) self.vpc_conn = vpc_conn self.name.error_msg = self.name_error_msg # Used for Foundation Abide error message self.description.error_msg = self.desc_error_msg # Used for Foundation Abide error message self.vpc_choices_manager = ChoicesManager(conn=vpc_conn) self.cloud_type = request.session.get('cloud_type', 'euca') from ..views import BaseView self.is_vpc_supported = BaseView.is_vpc_supported(request) self.set_vpc_choices() # Although we don't need to show the name/desc fields on update, we need these here to ensure the form is valid if security_group is not None: self.name.data = security_group.name self.description.data = security_group.description self.securitygroup_vpc_network.data = security_group.vpc_id or '' def set_vpc_choices(self): if self.cloud_type == 'euca' and self.is_vpc_supported: self.securitygroup_vpc_network.choices = self.vpc_choices_manager.vpc_networks(add_blank=False) else: self.securitygroup_vpc_network.choices = self.vpc_choices_manager.vpc_networks() class SecurityGroupDeleteForm(BaseSecureForm): """Security Group deletion form. Only need to initialize as a secure form to generate CSRF token """ pass class SecurityGroupsFiltersForm(BaseSecureForm): """Form class for filters on landing page""" vpc_id = wtforms.SelectMultipleField(label=_(u'VPC network')) tags = TextEscapedField(label=_(u'Tags')) def __init__(self, request, vpc_conn=None, cloud_type='euca', **kwargs): super(SecurityGroupsFiltersForm, self).__init__(request, **kwargs) self.request = request self.cloud_type = cloud_type self.vpc_choices_manager = ChoicesManager(conn=vpc_conn) self.vpc_id.choices = self.vpc_choices_manager.vpc_networks(add_blank=False) if self.cloud_type == 'aws': self.vpc_id.choices.append(('None', _(u'No VPC'))) self.vpc_id.choices = sorted(self.vpc_id.choices) self.facets = [] if BaseView.is_vpc_supported(request): self.facets.append( {'name': 'vpc_id', 'label': self.vpc_id.label.text, 'options': self.get_options_from_choices(self.vpc_id.choices)} )
46.26087
119
0.709962
578554499d010d3b09aa6ec6fe400fa5275b5c86
6,874
py
Python
datadog_checks_dev/datadog_checks/dev/tooling/config_validator/validator.py
tanner-bruce/integrations-core
36337b84fefb73e94d4f1ee28aaeb669dc12fb59
[ "BSD-3-Clause" ]
null
null
null
datadog_checks_dev/datadog_checks/dev/tooling/config_validator/validator.py
tanner-bruce/integrations-core
36337b84fefb73e94d4f1ee28aaeb669dc12fb59
[ "BSD-3-Clause" ]
null
null
null
datadog_checks_dev/datadog_checks/dev/tooling/config_validator/validator.py
tanner-bruce/integrations-core
36337b84fefb73e94d4f1ee28aaeb669dc12fb59
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2019-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from .config_block import ConfigBlock from .utils import get_end_of_part, get_indent, is_at_least_indented, is_blank from .validator_errors import SEVERITY_WARNING, ValidatorError def validate_config(config): """Function used to validate a whole yaml configuration file. Will check if there are both the init_config and the instances sections. And will parse using the _parse_for_config_blocks function """ errors = [] blocks = [] # This will store ConfigBlocks as a tree config_lines = config.split('\n') init_config_line = -1 instances_line = -1 for i, line in enumerate(config_lines): if line.startswith("init_config:"): init_config_line = i if line != "init_config:": errors.append(ValidatorError("Expected no data after ':'", i, SEVERITY_WARNING)) if line.startswith("instances:"): instances_line = i if line != "instances:": errors.append(ValidatorError("Expected no data after ':'", i, SEVERITY_WARNING)) if init_config_line == -1: errors.append(ValidatorError("Missing `init_config` section", None)) return errors if instances_line == -1: errors.append(ValidatorError("Missing `instances` section", None)) return errors # parse init_config data blocks.append(_parse_init_config(config_lines, init_config_line, errors)) # parse instances data instances_end = get_end_of_part(config_lines, instances_line) if instances_end is None: errors.append(ValidatorError("Malformed file, cannot find end of part 'instances'", instances_line)) return errors blocks.append(_parse_for_config_blocks(config_lines, instances_line + 1, instances_end, errors)) _check_no_duplicate_names(blocks, errors) _validate_blocks(blocks, errors) return errors def _parse_init_config(config_lines, init_config_start_line, errors): """Function used to parse the init_config section and return the list of 'ConfigBlock' It first checks if the section contains data or not. If not, it returns an empty list. Otherwise it will use the _parse_for_config_blocks function to parse it between the beginning and the end of the part """ blocks = [] idx = init_config_start_line + 1 # Check if the init_config part contains data or not while idx < len(config_lines): current_line = config_lines[idx] if is_blank(current_line): idx += 1 continue elif is_at_least_indented(current_line, 1): # There is data in 'init_config' break else: # There is no data, do not try to parse the init_config return blocks end = get_end_of_part(config_lines, init_config_start_line) if end is None: errors.append(ValidatorError("Malformed file, cannot find end of part 'init_config'", init_config_start_line)) return blocks return _parse_for_config_blocks(config_lines, init_config_start_line + 1, end, errors) def _parse_for_config_blocks(config_lines, start, end, errors): """The function basically do all the work. It reads the config from start, removes blank lines first then when it first sees data, it sets the 'indent' variable once for all. All blocks read in a given function call must have the same indentation. Sub-blocks are parsed recursively and thus the 'indent' variable is given a new value. Once a block is parsed the function will either recurse if the block requires it (see ConfigBlock), or it will go to the next block and iterate. """ idx = start blocks = [] # Go to the first line with data (see 'is_blank') while idx < end: if is_blank(config_lines[idx]): idx += 1 continue break else: return blocks # All blocks of a same level must have the same indentation. Let's use the first one to compare them indent = get_indent(config_lines[idx]) while idx < end: current_line = config_lines[idx] if is_blank(current_line): idx += 1 continue if not is_at_least_indented(current_line, indent): errors.append(ValidatorError("Content is not correctly indented - skipping rest of file", idx)) # File will not be able to be parsed correctly if indentation is wrong return blocks cfg_block = ConfigBlock.parse_from_strings(idx, config_lines, indent, errors) # Even if there has been an issue when parsing the block, cfg_block.length always point to another block # (either a sub-block or not) or to EOF idx += cfg_block.length blocks.append(cfg_block) if cfg_block.should_recurse: # new_end points to the next line having the same indent as the cfg_block new_end = get_end_of_part(config_lines, idx, indent=indent) if new_end is None: block_name = cfg_block.param_prop.var_name if cfg_block.param_prop else "?" err_string = "The object {} cannot be parsed correctly, check indentation".format(block_name) errors.append(ValidatorError(err_string, idx)) return blocks if new_end > end: new_end = end blocks += _parse_for_config_blocks(config_lines, idx, new_end, errors) idx = new_end return blocks def _check_no_duplicate_names(blocks, errors): """blocks contains ConfigBlocks as a tree. This function makes sure that each yaml object has no duplicates variables and return a list of errors to be displayed if duplicates are found. The @param declaration needs to be there for this to correctly identify a variable. """ same_level_blocks = [b for b in blocks if isinstance(b, ConfigBlock)] names_list = [b.param_prop.var_name for b in same_level_blocks if b.param_prop] duplicates = set([x for x in names_list if names_list.count(x) > 1]) for dup in duplicates: errors.append(ValidatorError("Duplicate variable with name {}".format(dup), None)) sub_lists_of_other_blocks = [b for b in blocks if isinstance(b, list)] for l in sub_lists_of_other_blocks: _check_no_duplicate_names(l, errors) def _validate_blocks(blocks, errors): """blocks contains ConfigBlocks as a tree. This function iterate over it to run the validate method on each ConfigBlock and append errors to the provided array if needed. """ leaves = [b for b in blocks if isinstance(b, ConfigBlock)] for b in leaves: b.validate(errors) nodes = [b for b in blocks if isinstance(b, list)] for n in nodes: _validate_blocks(n, errors)
42.695652
123
0.686063
2208af44a2e6f99d8e95d530a79e85e70dfd47c2
3,373
py
Python
Trakttv.bundle/Contents/Libraries/Shared/trakt/objects/season.py
disrupted/Trakttv.bundle
24712216c71f3b22fd58cb5dd89dad5bb798ed60
[ "RSA-MD" ]
1,346
2015-01-01T14:52:24.000Z
2022-03-28T12:50:48.000Z
Trakttv.bundle/Contents/Libraries/Shared/trakt/objects/season.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
474
2015-01-01T10:27:46.000Z
2022-03-21T12:26:16.000Z
Trakttv.bundle/Contents/Libraries/Shared/trakt/objects/season.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
191
2015-01-02T18:27:22.000Z
2022-03-29T10:49:48.000Z
from trakt.core.helpers import to_iso8601_datetime, from_iso8601_datetime, deprecated from trakt.objects.core.helpers import update_attributes from trakt.objects.media import Media class Season(Media): def __init__(self, client, keys=None, index=None): super(Season, self).__init__(client, keys, index) self.show = None """ :type: :class:`trakt.objects.show.Show` Show """ self.episodes = {} """ :type: :class:`~python:dict` Episodes, defined as :code:`{episode_num: Episode}` **Note:** this field might not be available with some methods """ self.first_aired = None """ :type: :class:`~python:datetime.datetime` First air date """ self.episode_count = None """ :type: :class:`~python:int` Total episode count """ self.aired_episodes = None """ :type: :class:`~python:int` Aired episode count """ def to_identifier(self): """Returns the season identifier which is compatible with requests that require season definitions. :return: Season identifier/definition :rtype: :class:`~python:dict` """ return { 'number': self.pk, 'episodes': [ episode.to_dict() for episode in self.episodes.values() ] } @deprecated('Season.to_info() has been moved to Season.to_dict()') def to_info(self): """**Deprecated:** use the :code:`to_dict()` method instead""" return self.to_dict() def to_dict(self): """Dump season to a dictionary :return: Season dictionary :rtype: :class:`~python:dict` """ result = self.to_identifier() result.update({ 'ids': dict([ (key, value) for (key, value) in self.keys[1:] # NOTE: keys[0] is the season identifier ]) }) if self.rating: result['rating'] = self.rating.value result['rated_at'] = to_iso8601_datetime(self.rating.timestamp) result['in_watchlist'] = self.in_watchlist if self.in_watchlist is not None else 0 # Extended Info if self.first_aired: result['first_aired'] = to_iso8601_datetime(self.first_aired) if self.episode_count: result['episode_count'] = self.episode_count if self.aired_episodes: result['aired_episodes'] = self.aired_episodes return result def _update(self, info=None, **kwargs): if not info: return super(Season, self)._update(info, **kwargs) update_attributes(self, info, [ # Extended Info 'episode_count', 'aired_episodes' ]) # Extended Info if 'first_aired' in info: self.first_aired = from_iso8601_datetime(info.get('first_aired')) @classmethod def _construct(cls, client, keys, info=None, index=None, **kwargs): season = cls(client, keys, index=index) season._update(info, **kwargs) return season def __repr__(self): if self.show: return '<Season %r - S%02d>' % (self.show.title, self.pk) return '<Season S%02d>' % self.pk
26.147287
104
0.565372
d3a091a1f07abe82eb3fb181f720fb9da96dfac2
7,302
py
Python
build/lib/scripts/database_tools.py
nicolas998/ifis_tools
f7b06473a916324fc37937bc5e9034cc57bc1623
[ "MIT" ]
3
2019-09-05T14:47:02.000Z
2021-11-12T15:31:56.000Z
build/lib/scripts/database_tools.py
nicolas998/ifis_tools
f7b06473a916324fc37937bc5e9034cc57bc1623
[ "MIT" ]
2
2019-11-13T21:36:22.000Z
2019-12-16T21:16:43.000Z
build/lib/scripts/database_tools.py
nicolas998/ifis_tools
f7b06473a916324fc37937bc5e9034cc57bc1623
[ "MIT" ]
null
null
null
# --- # jupyter: # jupytext: # formats: jupyter_scripts//ipynb,scripts//py # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 1.0.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # database_tools: # # Set of tools to connect to the data base, put and get data from them. import psycopg2 from psycopg2 import sql import pandas as pd from datetime import datetime import numpy as np import auxiliar as aux # + def DataBaseConnect(user = "iihr_student", password = "iihr.student", host = "s-iihr51.iihr.uiowa.edu", port = "5435", database = "research_environment"): '''Connect to the database that hsa stored the usgs information''' con = psycopg2.connect(user = user, password = password, host = host, port = port, database = database) return con def SQL_read_USGS_Streamflow(usgs_id, date1, date2, schema = 'pers_nico', table = 'data_usgs', time_name = 'unix_time', data_name = 'val', usgs_name = 'usgs_id'): '''Read streamflow data from IIHR database "research_environment" and returns it as a pandas.DataFrame element. Parameters: - usgs_id: code of the usgs. - date1: initial date of the query. - date2: final date of the query. Optional: - schema: where to obtain data in the databse. - table: master table with the usgs data. - time_name: the name of the column that has the time. - data_name: the name of the column that has the data. - usgs_name: the name of the column that has the id of the usgs stations. Returns: - pandas.DataFrame containing the streamflow data.''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '10A28Gir0') #Work with dates and usgs id date1 = str(aux.__datetime2unix__(date1)) date2 = str(aux.__datetime2unix__(date2)) if type(usgs_id) is not str: usgs_id = str(usgs_id) #make the querty query = sql.SQL("SELECT "+time_name+", "+data_name+" FROM "+schema+"."+table+" WHERE "+time_name+" BETWEEN "+date1+" and "+date2+" AND "+usgs_name+"='"+usgs_id+"'") #Make the consult. Data = pd.read_sql(query, con, index_col='unix_time',parse_dates={'unix_time':{'unit':'s'}}) con.close() return Data #SQL Query to obtain the data from per_felipe.pois_adv_geom def SQL_USGS_at_IFIS(): '''Return the list of the usgs stations in the IFIS system and the linkID where they belong.''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '10A28Gir0') #Query for the stations query = sql.SQL("SELECT foreign_id,link_id FROM pers_felipe.pois_adv_geom where type in (2,3) and foreign_id like '0%' AND link_id < 620000") #make the consult cur = con.cursor() cur.execute(query) L = cur.fetchall() cur.close() con.close() #Obtains a dictionary in which stations are the key DicUSGSinIFIS = {} for l in L: DicUSGSinIFIS.update({l[0]:l[1]}) return DicUSGSinIFIS def SQL_USGS_at_MATC(): '''Return the list of stations that are in the databse pers_nico (matc).''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '10A28Gir0') #Make the query query = sql.SQL("SELECT DISTINCT(usgs_id) FROM pers_nico.data_usgs_2008") cur = con.cursor() cur.execute(query) L = cur.fetchall() cur.close() con.close() return [l[0] for l in L] def SQL_Get_linkArea(linkID): '''Obtains the up area for a link ID''' #The query and the obtentions con = DataBaseConnect('nicolas','10A28Gir0') cur = con.cursor() q = sql.SQL("SELECT upstream_area FROM pers_felipe.pois_adv_geom WHERE link_id = "+str(linkID)) cur.execute(q) A = cur.fetchall() cur.close() con.close() return A[0][0]*2.583 def SQL_Read_MeanRainfall(link_id, date1, date2, schema = 'pers_nico', table = 's4mrain', time_name = 'unix_time', data_name = 'rain', linkid_name = 'link_id'): '''Read streamflow data from IIHR database "research_environment" and returns it as a pandas.DataFrame element. Parameters: - usgs_id: code of the usgs. - date1: initial date of the query. - date2: final date of the query. Optional: - schema: where to obtain data in the databse. - table: master table with the usgs data. - time_name: the name of the column that has the time. - data_name: the name of the column that has the data. - usgs_name: the name of the column that has the id of the usgs stations. Returns: - pandas.DataFrame containing the streamflow data.''' #make the connection con = DataBaseConnect(user = 'nicolas', password = '10A28Gir0') #Work with dates and usgs id date1 = str(aux.__datetime2unix__(date1)) date2 = str(aux.__datetime2unix__(date2)) if type(link_id) is not str: link_id = str(link_id) #make the querty query = sql.SQL("SELECT "+time_name+", "+data_name+" FROM "+schema+"."+table+" WHERE "+time_name+" BETWEEN "+date1+" and "+date2+" AND "+linkid_name+"='"+link_id+"'") #Make the consult. Data = pd.read_sql(query, con, index_col='unix_time',parse_dates={'unix_time':{'unit':'s'}}) con.close() #Organize rainfall Data = Data.sort_index() Dates = pd.date_range(Data.index[0], Data.index[-1], freq='1h') Rain = pd.Series(np.zeros(Dates.size), Dates) Rain[Data.index] = Data['rain'].values Rain[Rain>1000] = 0.0 return Rain def SQL_Get_MeanRainfall(linkID, date1, date2): '''Obtains the mean rainfall for the watershed associated to a given linkID. Parameters: - linkID: linkID of the outlet of the basin. - date1: initial date (YYYY-MM-DD HH:MM). - date2: end date (YYYY-MM-DD HH:MM). Returns: - Rainfall: Pandas series with the mean rainfall in the basin.''' #SEt the connection con = DataBaseConnect(user='nicolas', password='10A28Gir0', database='rt_precipitation') #Transform dates to unix unix1 = str(aux.__datetime2unix__(date1)) unix2 = str(aux.__datetime2unix__(date2)) linkID = str(linkID) #Set the query and obtains data q = sql.SQL("WITH subbasin AS (SELECT nodeX.link_id AS link_id FROM students.env_master_km AS nodeX, students.env_master_km AS parentX WHERE (nodeX.left BETWEEN parentX.left AND parentX.right) AND parentX.link_id = "+str(linkID)+"), uparea as (SELECT up_area FROM students.env_master_km WHERE link_id= "+str(linkID)+"), lut as (SELECT x, y FROM env_lookup_hrap_lid_v4 WHERE link_id IN (SELECT * FROM subbasin) group by x, y) SELECT unix_time, sum(val)/(SELECT count(*) FROM lut) as rain FROM stage_4.data WHERE grid_x IN (SELECT x FROM lut) AND grid_y IN (SELECT y from lut) AND unix_time between "+unix1+" AND "+unix2+" group by unix_time order by unix_time;") Data = pd.read_sql(q, con, index_col='unix_time',parse_dates={'unix_time':{'unit':'s'}}) #close connection con.close() #Pos process data dates = pd.date_range(date1, date2, freq='1h') Rain = pd.Series(np.zeros(dates.size), dates) Rain[Data.index] = Data['rain'] return Rain # -
40.793296
665
0.665845
28174f965e0920e05ef5a65c29d714d927e3e844
11,416
py
Python
tests/test_gpu_aamp.py
profintegra/stumpy
66b3402d91820005b466e1da6fe353b61e6246c5
[ "BSD-3-Clause" ]
1
2021-07-27T11:14:01.000Z
2021-07-27T11:14:01.000Z
tests/test_gpu_aamp.py
profintegra/stumpy
66b3402d91820005b466e1da6fe353b61e6246c5
[ "BSD-3-Clause" ]
null
null
null
tests/test_gpu_aamp.py
profintegra/stumpy
66b3402d91820005b466e1da6fe353b61e6246c5
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import numpy.testing as npt import pandas as pd from stumpy import gpu_aamp from stumpy import config from numba import cuda import pytest import naive config.THREADS_PER_BLOCK = 10 if not cuda.is_available(): pytest.skip("Skipping Tests No GPUs Available", allow_module_level=True) test_data = [ ( np.array([9, 8100, -60, 7], dtype=np.float64), np.array([584, -11, 23, 79, 1001, 0, -19], dtype=np.float64), ), ( np.random.uniform(-1000, 1000, [8]).astype(np.float64), np.random.uniform(-1000, 1000, [64]).astype(np.float64), ), ] window_size = [8, 16, 32] substitution_locations = [(slice(0, 0), 0, -1, slice(1, 3), [0, 3])] substitution_values = [np.nan, np.inf] def test_gpu_aamp_int_input(): with pytest.raises(TypeError): gpu_aamp(np.arange(10), 5, ignore_trivial=True) @pytest.mark.parametrize("T_A, T_B", test_data) def test_gpu_aamp_self_join(T_A, T_B): m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T_B, m, exclusion_zone=zone) comp_mp = gpu_aamp(T_B, m, ignore_trivial=True) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) comp_mp = gpu_aamp(pd.Series(T_B), m, ignore_trivial=True) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_gpu_aamp_self_join_larger_window(T_A, T_B, m): if len(T_B) > m: zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T_B, m, exclusion_zone=zone) comp_mp = gpu_aamp(T_B, m, ignore_trivial=True) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) # comp_mp = gpu_aamp( # pd.Series(T_B), # m, # ignore_trivial=True, # ) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.parametrize("T_A, T_B", test_data) def test_gpu_aamp_A_B_join(T_A, T_B): m = 3 ref_mp = naive.aamp(T_B, m, T_B=T_A) comp_mp = gpu_aamp(T_B, m, T_A, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) # comp_mp = gpu_aamp(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.parametrize("T_A, T_B", test_data) def test_parallel_gpu_aamp_self_join(T_A, T_B): device_ids = [device.id for device in cuda.list_devices()] if len(T_B) > 10: m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T_B, m, exclusion_zone=zone) comp_mp = gpu_aamp( T_B, m, ignore_trivial=True, device_id=device_ids, ) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) # comp_mp = gpu_aamp( # pd.Series(T_B), # m, # ignore_trivial=True, # device_id=device_ids, # ) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.parametrize("T_A, T_B", test_data) def test_parallel_gpu_aamp_A_B_join(T_A, T_B): device_ids = [device.id for device in cuda.list_devices()] if len(T_B) > 10: m = 3 ref_mp = naive.aamp(T_B, m, T_B=T_A) comp_mp = gpu_aamp( T_B, m, T_A, ignore_trivial=False, device_id=device_ids, ) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) # comp_mp = gpu_aamp( # pd.Series(T_B), # m, # pd.Series(T_A), # ignore_trivial=False, # device_id=device_ids, # ) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp, comp_mp) def test_gpu_aamp_constant_subsequence_self_join(): T_A = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64))) m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T_A, m, exclusion_zone=zone) comp_mp = gpu_aamp(T_A, m, ignore_trivial=True) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_A), m, ignore_trivial=True) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices def test_gpu_aamp_one_constant_subsequence_A_B_join(): T_A = np.random.rand(20) T_B = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64))) m = 3 ref_mp = naive.aamp(T_B, m, T_B=T_A) comp_mp = gpu_aamp(T_B, m, T_A, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # Swap inputs ref_mp = naive.aamp(T_A, m, T_B=T_B) comp_mp = gpu_aamp(T_A, m, T_B, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices def test_gpu_aamp_two_constant_subsequences_A_B_join(): T_A = np.array([0, 0, 0, 0, 0, 1], dtype=np.float64) T_B = np.concatenate((np.zeros(20, dtype=np.float64), np.ones(5, dtype=np.float64))) m = 3 ref_mp = naive.aamp(T_B, m, T_B=T_A) comp_mp = gpu_aamp(T_B, m, T_A, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # Swap inputs ref_mp = naive.aamp(T_A, m, T_B=T_B) comp_mp = gpu_aamp(T_A, m, T_B, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp[:, 0], comp_mp[:, 0]) # ignore indices def test_gpu_aamp_identical_subsequence_self_join(): identical = np.random.rand(8) T_A = np.random.rand(20) T_A[1 : 1 + identical.shape[0]] = identical T_A[11 : 11 + identical.shape[0]] = identical m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T_A, m, exclusion_zone=zone) comp_mp = gpu_aamp(T_A, m, ignore_trivial=True) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal( ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION ) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_A), m, ignore_trivial=True) # naive.replace_inf(comp_mp) # npt.assert_almost_equal( # ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION # ) # ignore indices def test_gpu_aamp_identical_subsequence_A_B_join(): identical = np.random.rand(8) T_A = np.random.rand(20) T_B = np.random.rand(20) T_A[1 : 1 + identical.shape[0]] = identical T_B[11 : 11 + identical.shape[0]] = identical m = 3 ref_mp = naive.aamp(T_A, m, T_B=T_B) comp_mp = gpu_aamp(T_A, m, T_B, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal( ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION ) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_A), m, pd.Series(T_B), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal( # ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION # ) # ignore indices # Swap inputs ref_mp = naive.aamp(T_B, m, T_B=T_A) comp_mp = gpu_aamp(T_B, m, T_A, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal( ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION ) # ignore indices # comp_mp = gpu_aamp(pd.Series(T_B), m, pd.Series(T_A), ignore_trivial=False) # naive.replace_inf(comp_mp) # npt.assert_almost_equal( # ref_mp[:, 0], comp_mp[:, 0], decimal=config.STUMPY_TEST_PRECISION # ) # ignore indices @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("substitute_B", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) def test_gpu_aamp_nan_inf_self_join(T_A, T_B, substitute_B, substitution_locations): m = 3 stop = 16 T_B_sub = T_B.copy()[:stop] for substitution_location_B in substitution_locations: T_B_sub[:] = T_B[:stop] T_B_sub[substitution_location_B] = substitute_B zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T_B_sub, m, exclusion_zone=zone) comp_mp = gpu_aamp(T_B_sub, m, ignore_trivial=True) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) # comp_mp = gpu_aamp(pd.Series(T_B_sub), m, ignore_trivial=True) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("substitute_A", substitution_values) @pytest.mark.parametrize("substitute_B", substitution_values) @pytest.mark.parametrize("substitution_locations", substitution_locations) def test_gpu_aamp_nan_inf_A_B_join( T_A, T_B, substitute_A, substitute_B, substitution_locations ): m = 3 stop = 16 T_A_sub = T_A.copy() T_B_sub = T_B.copy()[:stop] for substitution_location_B in substitution_locations: for substitution_location_A in substitution_locations: T_A_sub[:] = T_A T_B_sub[:] = T_B[:stop] T_A_sub[substitution_location_A] = substitute_A T_B_sub[substitution_location_B] = substitute_B ref_mp = naive.aamp(T_B_sub, m, T_B=T_A_sub) comp_mp = gpu_aamp(T_B_sub, m, T_A_sub, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) # comp_mp = gpu_aamp( # pd.Series(T_B_sub), m, pd.Series(T_A_sub), ignore_trivial=False # ) # naive.replace_inf(comp_mp) # npt.assert_almost_equal(ref_mp, comp_mp) def test_gpu_aamp_nan_zero_mean_self_join(): T = np.array([-1, 0, 1, np.inf, 1, 0, -1]) m = 3 zone = int(np.ceil(m / 4)) ref_mp = naive.aamp(T, m, exclusion_zone=zone) comp_mp = gpu_aamp(T, m, ignore_trivial=True) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp)
34.077612
88
0.656184
79ef4a5fd7f4f90112e6a20dcba81e0008826c1f
2,260
py
Python
homeassistant/components/switch/litejet.py
sara0871/laughing--barnacle-
70412fc0ba42ccfe446c0c62e327eceeda56a2ab
[ "Apache-2.0" ]
7
2018-08-03T10:15:36.000Z
2019-03-25T13:31:55.000Z
homeassistant/components/switch/litejet.py
sara0871/https-wakatime.com-android-studio
5a15b2c036b332c17d5f6a06664378e9273d684f
[ "Apache-2.0" ]
3
2021-09-08T03:06:43.000Z
2022-03-12T00:56:04.000Z
homeassistant/components/switch/litejet.py
sara0871/https-wakatime.com-android-studio
5a15b2c036b332c17d5f6a06664378e9273d684f
[ "Apache-2.0" ]
3
2018-12-04T11:54:27.000Z
2019-08-31T14:41:32.000Z
""" Support for LiteJet switch. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/switch.litejet/ """ import logging from homeassistant.components import litejet from homeassistant.components.switch import SwitchDevice DEPENDENCIES = ['litejet'] ATTR_NUMBER = 'number' _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the LiteJet switch platform.""" litejet_ = hass.data['litejet_system'] devices = [] for i in litejet_.button_switches(): name = litejet_.get_switch_name(i) if not litejet.is_ignored(hass, name): devices.append(LiteJetSwitch(hass, litejet_, i, name)) add_devices(devices, True) class LiteJetSwitch(SwitchDevice): """Representation of a single LiteJet switch.""" def __init__(self, hass, lj, i, name): """Initialize a LiteJet switch.""" self._hass = hass self._lj = lj self._index = i self._state = False self._name = name lj.on_switch_pressed(i, self._on_switch_pressed) lj.on_switch_released(i, self._on_switch_released) def _on_switch_pressed(self): _LOGGER.debug("Updating pressed for %s", self._name) self._state = True self.schedule_update_ha_state() def _on_switch_released(self): _LOGGER.debug("Updating released for %s", self._name) self._state = False self.schedule_update_ha_state() @property def name(self): """Return the name of the switch.""" return self._name @property def is_on(self): """Return if the switch is pressed.""" return self._state @property def should_poll(self): """Return that polling is not necessary.""" return False @property def device_state_attributes(self): """Return the device-specific state attributes.""" return { ATTR_NUMBER: self._index } def turn_on(self, **kwargs): """Press the switch.""" self._lj.press_switch(self._index) def turn_off(self, **kwargs): """Release the switch.""" self._lj.release_switch(self._index)
26.904762
74
0.652655
6ebe95d8e08d07c2d56895a42ec83c841e448ef8
3,544
py
Python
ayesaac/services/natural_language_understanding/main.py
F21CA-group-6/aye-saac
0b1b4d1365b84c80047796a05c10dcfe9c8e921a
[ "BSD-3-Clause" ]
1
2021-03-08T13:24:59.000Z
2021-03-08T13:24:59.000Z
ayesaac/services/natural_language_understanding/main.py
F21CA-group-6/aye-saac
0b1b4d1365b84c80047796a05c10dcfe9c8e921a
[ "BSD-3-Clause" ]
null
null
null
ayesaac/services/natural_language_understanding/main.py
F21CA-group-6/aye-saac
0b1b4d1365b84c80047796a05c10dcfe9c8e921a
[ "BSD-3-Clause" ]
1
2021-03-11T13:54:00.000Z
2021-03-11T13:54:00.000Z
from os import listdir from os.path import isdir, join from rasa.nlu.model import Interpreter from ayesaac.services.common import QueueManager from ayesaac.utils.config import Config from ayesaac.utils.logger import get_logger config = Config() logger = get_logger(__file__) def contains_word(s, w): """ Checks whether a string contains a certain word """ return f" {w} " in f" {s} " def contains_at_least_one_word(s, arr): """ Checks whether a string contains at least one word coming from an array of words """ for elem in arr: if contains_word(s, elem): return True return False def check_followup(query): """ Checks whether the query is a followup query and returns if we should add the last entities found to the current query. """ if contains_at_least_one_word( # query, ["it", "that", "this", "them", "they", "those", "these"] query, ["it", "that", "them", "they", "those", "these"] ): return True return False class NaturalLanguageUnderstanding(object): """ The class NaturalLanguageUnderstanding purpose is to sense the objectives of the query. """ def __init__(self): self.queue_manager = QueueManager([self.__class__.__name__, "Manager"]) self.previous_query = None model_path = str(config.directory.data.joinpath("rasa", "nlu")) dirs = [f for f in listdir(model_path) if isdir(join(model_path, f))] dirs.sort(reverse=True) model = join(model_path, dirs[0]) self.interpreter = Interpreter.load(model) logger.info(f"{self.__class__.__name__} ready") def callback(self, body, **_): body["ingredientClass"] = "" # ingredient classifications body["asking"] = body["query"].split() intents = self.interpreter.parse(body["query"]) try: if ( intents["intent"]["name"] == "same_intent" and self.previous_query != None ): intents["intent"]["name"] = self.previous_query["intent"]["name"] if ( intents["intent"]["name"] != "recognise" and intents["intent"]["name"] != "identify" and check_followup(body["query"]) == True ): intents["entities"].extend(self.previous_query["entities"]) # set list of ingredients classed as dairy/meat/nuts to ingredient class in body # removes trailing and before spaces with strip, and all lower case with lower if (intents["entities"]["value"].strip().lower() == "dairy"): body["ingredientClass"] = dairy if (intents["entities"]["value"].strip().lower() == "meat"): body["ingredientClass"] = meat if (intents["entities"]["value"].strip().lower() == "nuts"): body["ingredientClass"] = nuts except IndexError as error: logger.error(error) except Exception as exception: logger.warning(exception) self.previous_query = intents body["intents"] = intents body["path_done"].append(self.__class__.__name__) # logger.info(body) self.queue_manager.publish("Manager", body) def run(self): self.queue_manager.start_consuming(self.__class__.__name__, self.callback) def main(): natural_language_understanding = NaturalLanguageUnderstanding() natural_language_understanding.run() if __name__ == "__main__": main()
31.362832
86
0.615406
3650a4d3cd6c02ad1d01cdb72f78256610333141
982
py
Python
sdat/tools_sam/split_bam.py
Chipeyown/SPLiT-seq-Data-Analysis_Toolkit
903fdbeeed8d0ef91c7a08af6226731297b21bdc
[ "MIT" ]
4
2019-09-11T07:20:22.000Z
2020-09-04T09:21:18.000Z
sdat/tools_sam/split_bam.py
Chipeyown/SPLiT-seq-Data-Analysis_Toolkit
903fdbeeed8d0ef91c7a08af6226731297b21bdc
[ "MIT" ]
1
2019-09-10T01:37:18.000Z
2019-09-10T01:45:42.000Z
sdat/tools_sam/split_bam.py
Chipeyown/SPLiT-seq-Data-Analysis_Toolkit
903fdbeeed8d0ef91c7a08af6226731297b21bdc
[ "MIT" ]
1
2020-09-17T02:24:06.000Z
2020-09-17T02:24:06.000Z
import subprocess import time def split_bam(in_dir, out_folder): p = subprocess.Popen('samtools view %s' % in_dir, shell=True, stdout=subprocess.PIPE) chr_list = [] line0 = p.stdout.readline().decode() chr0 = line0.split('\t')[2] chr_list.append(chr0) fo = open('%s/%s.sam' % (out_folder, chr0), 'w') # tmp/sam/Chr1.sam print('[%s]' % time.strftime("%Y-%m-%d %X", time.localtime()) + ' Spliting to' + '\033[1;35m %s \033[0m' % chr0 + ' ...') fo.write(line0) for line in p.stdout: line=line.decode() chr = line.split('\t')[2] if chr == chr0: fo.write(line) else: fo.close() chr0 = chr chr_list.append(chr0) fo = open('%s/%s.sam' % (out_folder, chr0), 'w') print('[%s]' % time.strftime("%Y-%m-%d %X", time.localtime()) + ' Spliting to' + '\033[1;35m %s \033[0m' % chr0 + ' ...') fo.write(line) fo.close() return chr_list
35.071429
133
0.528513
08033c98ed901d172c8037688f66d333fa92c377
1,360
py
Python
api.py
unmix-io/unmix-api
0d029c0a6b93f46c17e3c13588d649529036d1a2
[ "MIT" ]
null
null
null
api.py
unmix-io/unmix-api
0d029c0a6b93f46c17e3c13588d649529036d1a2
[ "MIT" ]
null
null
null
api.py
unmix-io/unmix-api
0d029c0a6b93f46c17e3c13588d649529036d1a2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf8 """ unmix.io RESTful API to extract vocals and instrumental from audio streams. """ __author__ = 'David Flury, Andreas Kaufmann, Raphael Müller' __email__ = "info@unmix.io" from flask import Flask from flask_restful import Api, Resource, reqparse from flask_cors import CORS import os from controllers.dummy import DummyController from controllers.file import FileController from controllers.youtube import YouTubeController from controllers.result import ResultController from context import Context def register_controllers(api): api.add_resource(DummyController, '/dummy/<string:name>') api.add_resource(YouTubeController, '/predict/youtube') api.add_resource(FileController, '/predict/file') api.add_resource(ResultController, '/result/<string:identifier>/<string:type>') def app(): app = Flask(__name__) api = Api(app) register_controllers(api) CORS(app, resources={"*": {"origins": "*"}}) Context.initialize() if 'UNMIX_API_TLS_CERTIFICATE' in os.environ and os.environ['UNMIX_API_TLS_CERTIFICATE']: app.run('0.0.0.0', port=os.environ['UNMIX_API_PORT'], ssl_context=(os.environ['UNMIX_API_TLS_CERTIFICATE'], os.environ['UNMIX_API_TLS_PRIVATEKEY'])) else: app.run('0.0.0.0', port=os.environ['UNMIX_API_PORT']) if __name__ == "__main__": app()
30.909091
156
0.741912
c3e1b5d9914fa604affa4b5a0ce7f15002c09cea
9,971
py
Python
meta/enc.py
Cypher1/naive
768443236032149a368f2e0f6eedc0392820367d
[ "MIT" ]
12
2017-02-04T17:32:58.000Z
2022-02-06T17:26:58.000Z
meta/enc.py
Cypher1/naive
768443236032149a368f2e0f6eedc0392820367d
[ "MIT" ]
4
2018-05-13T20:00:04.000Z
2021-08-23T10:01:56.000Z
meta/enc.py
Cypher1/naive
768443236032149a368f2e0f6eedc0392820367d
[ "MIT" ]
5
2017-10-11T03:33:51.000Z
2021-08-18T03:24:20.000Z
#!/usr/bin/env python3 # Generates code for encoding assembly instructions (and potentially decoding # in the future for a disassembler). The format that is parsed matches the # format used in the Intel architecture manual, read it for further details. import pprint import re import sys from collections import namedtuple pp = pprint.PrettyPrinter(indent=4) Instr = namedtuple('Instr', ['opcode', 'encodings']) Encoding = namedtuple('Encoding', ['args', 'arg_order', 'use_rex_w', 'use_oso', 'opcode_size', 'opcode', 'reg_and_rm', 'opcode_extension', 'immediate_size', 'reg_in_opcode', 'fixup_type']) def generate_encoder(input_filename, output_filename): instrs = {} with open(input_filename, 'r') as f: for line in f.readlines(): if line == '\n' or line.startswith('#'): continue instr, encoding = line.rstrip('\n').split('=') instr_components = instr.replace(',', ' ').split() assert 1 <= len(instr_components) <= 4 instr_name = instr_components[0] args = instr_components[1:] if len(args) >= 2: if args[1].startswith('r/m'): arg_order = 'RM' elif args[0].startswith('r/m'): arg_order = 'MR' else: arg_order = 'INVALID' if 'rel' in args: fixup_type = 'FIXUP_RELATIVE' else: fixup_type = 'FIXUP_ABSOLUTE' # @TODO: We treat 'i' immediates the same as 'c' immediates. It's # not entirely clear whether they are actually encoded the same, as # the manual says that 'i' operands follow the opcode, ModR/M and # SIB, and that 'c' operands follow the opcode. Look into this # further if there is an opcode with a 'c' immediate and ModR/M or # SIB bytes. match = re.match( r' *(?P<use_rex_w>REX\.W *\+ *)? *' + r'(?P<use_oso>OSO *\+ *)? *' + r'(?P<opcode>([0-9a-fA-F]+|\[[0-9a-fA-F ]+\])) *' + r'(?P<slash>/.)? *' + r'(?P<reg_in_opcode>\+r[bwdo])? *' + r'(?P<immediate>[ic][bwdo])? *', encoding) use_rex_w = bool(match.group('use_rex_w')) use_oso = bool(match.group('use_oso')) opcode_str = match.group('opcode').strip('[]').replace(' ', '') opcode = [int(a + b, 16) for a, b in zip(opcode_str[0::2], opcode_str[1::2])] opcode_size = len(opcode) slash = match.group('slash') if slash: slash = slash[1] if slash and ('0' <= slash <= '7'): opcode_extension = ord(slash) - ord('0') else: opcode_extension = -1 reg_and_rm = slash == 'r' immediate = match.group('immediate') if immediate: immediate_size = { 'b': 1, 'w': 2, 'd': 4, 'o': 8, }[immediate[1]] else: immediate_size = -1 reg_in_opcode = bool(match.group('reg_in_opcode')) encoding = Encoding(args, arg_order, use_rex_w, use_oso, opcode_size, opcode, reg_and_rm, opcode_extension, immediate_size, reg_in_opcode, fixup_type) # @TODO: We should sort encodings by immediate size (ascending) so # that the smallest encoding gets selected automatically. if instr_name not in instrs: instrs[instr_name] = Instr(instr_name, []) instrs[instr_name].encodings.append(encoding) output = [] output.append(""" // @NOTE: This is an automatically generated file! Do not edit it! // It was generated from '%s', edit that instead static void assemble_instr(Array(u8) *output, AsmModule *asm_module, AsmInstr *instr) { \tswitch (instr->op) { """ % input_filename) #pp.pprint(instrs) for opcode in instrs: output.append("\tcase %s:\n" % opcode) for encoding in instrs[opcode].encodings: if len(encoding.args) == 0: indent = '\t\t' else: output.append("\t\tif ((instr->arity == %d) && %s) {\n" % (len(encoding.args), arg_conditions(encoding.args))) indent = '\t\t\t' output.append(("%sencode_instr(output, asm_module, instr, %s);\n" + "%sreturn;\n") % (indent, ', '.join(map(to_c_val, [encoding.arg_order, encoding.use_rex_w, encoding.use_oso, encoding.opcode_size, encoding.opcode, encoding.reg_and_rm, encoding.opcode_extension, encoding.immediate_size, encoding.reg_in_opcode, encoding.fixup_type])), indent)) if len(encoding.args) != 0: output.append("\t\t}\n") output.append("\t\tbreak;\n") output.append(""" \tdefault: break; \t} \t \tfputs("Unimplemented instruction:\\n", stderr); \tdump_asm_instr(instr); \t \tUNIMPLEMENTED; } """) with open(output_filename, 'w') as f: f.writelines(output) def check_width(width): assert int(width) in [8, 16, 32, 64] REGISTER_MAP = { "AL": ("REG_CLASS_A", 8), "AX": ("REG_CLASS_A", 16), "EAX": ("REG_CLASS_A", 32), "RAX": ("REG_CLASS_A", 64), "BL": ("REG_CLASS_B", 8), "BX": ("REG_CLASS_B", 16), "EBX": ("REG_CLASS_B", 32), "RBX": ("REG_CLASS_B", 64), "CL": ("REG_CLASS_C", 8), "CX": ("REG_CLASS_C", 16), "ECX": ("REG_CLASS_C", 32), "RCX": ("REG_CLASS_C", 64), "DL": ("REG_CLASS_D", 8), "DX": ("REG_CLASS_D", 16), "EDX": ("REG_CLASS_D", 32), "RDX": ("REG_CLASS_D", 64), "DIL": ("REG_CLASS_DI", 8), "DI": ("REG_CLASS_DI", 16), "EDI": ("REG_CLASS_DI", 32), "RDI": ("REG_CLASS_DI", 64), "SIL": ("REG_CLASS_SI", 8), "SI": ("REG_CLASS_SI", 16), "ESI": ("REG_CLASS_SI", 32), "RSI": ("REG_CLASS_SI", 64), "BPL": ("REG_CLASS_BP", 8), "BP": ("REG_CLASS_BP", 16), "EBP": ("REG_CLASS_BP", 32), "RBP": ("REG_CLASS_BP", 64), "SPL": ("REG_CLASS_SP", 8), "SP": ("REG_CLASS_SP", 16), "ESP": ("REG_CLASS_SP", 32), "RSP": ("REG_CLASS_SP", 64), "R8B": ("REG_CLASS_R8", 8), "R8W": ("REG_CLASS_R8", 16), "R8D": ("REG_CLASS_R8", 32), "R8": ("REG_CLASS_R8", 64), "R9B": ("REG_CLASS_R9", 8), "R9W": ("REG_CLASS_R9", 16), "R9D": ("REG_CLASS_R9", 32), "R9": ("REG_CLASS_R9", 64), "R10B": ("REG_CLASS_R10", 8), "R10W": ("REG_CLASS_R10", 16), "R10D": ("REG_CLASS_R10", 32), "R10": ("REG_CLASS_R10", 64), "R11B": ("REG_CLASS_R11", 8), "R11W": ("REG_CLASS_R11", 16), "R11D": ("REG_CLASS_R11", 32), "R11": ("REG_CLASS_R11", 64), "R12B": ("REG_CLASS_R12", 8), "R12W": ("REG_CLASS_R12", 16), "R12D": ("REG_CLASS_R12", 32), "R12": ("REG_CLASS_R12", 64), "R13B": ("REG_CLASS_R13", 8), "R13W": ("REG_CLASS_R13", 16), "R13D": ("REG_CLASS_R13", 32), "R13": ("REG_CLASS_R13", 64), "R14B": ("REG_CLASS_R14", 8), "R14W": ("REG_CLASS_R14", 16), "R14D": ("REG_CLASS_R14", 32), "R14": ("REG_CLASS_R14", 64), "R15B": ("REG_CLASS_R15", 8), "R15W": ("REG_CLASS_R15", 16), "R15D": ("REG_CLASS_R15", 32), "R15": ("REG_CLASS_R15", 64), } def arg_conditions(args): conditions = [] ext_width = 0 for i, arg in enumerate(args): arg_str = 'instr->args[%d]' % i if arg.startswith('r/m'): width = arg[3:] check_width(width) ext_width = width conditions.append(( '(({0}.t == ASM_VALUE_REGISTER' + ' && {0}.u.reg.width == {1})' + ' || ({0}.is_deref' + ' && {0}.u.reg.width == 64))').format(arg_str, width)) elif arg[0] == 'r' and all(c.isdigit() for c in arg[1:]): width = arg[1:] check_width(width) ext_width = width conditions.append(( '({0}.t == ASM_VALUE_REGISTER' + ' && {0}.u.reg.width == {1}' + ' && !{0}.is_deref)').format(arg_str, width)) elif arg.startswith('imm'): width = arg[3:] check_width(width) conditions.append(( '(is_const_and_fits({0}, {1}, {2}, ' + 'is_sign_extending_instr(instr)))') .format(arg_str, ext_width, width)) elif arg == 'rel': conditions.append('({0}.t == ASM_VALUE_CONST)'.format(arg_str)) elif arg in REGISTER_MAP: reg_class, width = REGISTER_MAP[arg] conditions.append(( '({0}.t == ASM_VALUE_REGISTER' + ' && {0}.u.reg.u.class == {1}' + ' && {0}.u.reg.width == {2})').format(arg_str, reg_class, width)) else: print("Unknown arg type: '%s'" % arg) assert False return ' && '.join(conditions) def to_c_val(x): if isinstance(x, bool): return 'true' if x else 'false' # Must be in this order as bool is a subclass of int. if isinstance(x, int): return hex(x) if x >= 0 else str(x) if isinstance(x, str): return x if isinstance(x, list): return '(u8[]){ %s }' % ', '.join(map(to_c_val, x)) assert False if __name__ == '__main__': if len(sys.argv) not in (2, 3): print("Usage: %s <enc definition> [output file]" % sys.argv[0]) sys.exit(1) # @PORT output_filename = "/dev/stdout" if len(sys.argv) == 2 else sys.argv[2] generate_encoder(sys.argv[1], output_filename)
40.864754
129
0.512687
94af275a644c43f8140f0ab469bbc543eb28564d
1,095
py
Python
openedx/admin.py
mitodl/mitxonline
adf6084b1f4addd57473153ed6bd08ea09bc4685
[ "BSD-3-Clause" ]
1
2021-07-25T21:29:12.000Z
2021-07-25T21:29:12.000Z
openedx/admin.py
drhodes/mitxonline
2af72db40723e7d61c0229b6fc80216a3a94cd9e
[ "BSD-3-Clause" ]
420
2021-07-13T14:58:52.000Z
2022-03-31T20:50:10.000Z
openedx/admin.py
drhodes/mitxonline
2af72db40723e7d61c0229b6fc80216a3a94cd9e
[ "BSD-3-Clause" ]
1
2021-07-25T21:28:32.000Z
2021-07-25T21:28:32.000Z
""" Admin site bindings for profiles """ from django.contrib import admin from openedx.models import OpenEdxApiAuth, OpenEdxUser class OpenEdxUserAdmin(admin.ModelAdmin): """Admin for OpenEdxUser""" model = OpenEdxUser search_fields = ["user__username", "user__email", "user__name", "platform"] list_display = ["id", "user", "has_been_synced", "platform"] list_filter = ["has_been_synced", "platform"] raw_id_fields = ["user"] def get_queryset(self, request): """Overrides base queryset""" return super().get_queryset(request).select_related("user") class OpenEdxApiAuthAdmin(admin.ModelAdmin): """Admin for OpenEdxApiAuth""" model = OpenEdxApiAuth list_display = ["id", "user"] search_fields = ["user__username", "user__email", "user__name"] raw_id_fields = ["user"] def get_queryset(self, request): """Overrides base queryset""" return super().get_queryset(request).select_related("user") admin.site.register(OpenEdxUser, OpenEdxUserAdmin) admin.site.register(OpenEdxApiAuth, OpenEdxApiAuthAdmin)
28.076923
79
0.703196
69e2212e02234c0bbb671ad0c6742df50727cf92
1,176
py
Python
apps/home/models.py
alex112401/Black-Dashboard-Django
e1746b7ef35afda448e47b96f11ac2e7e49d084a
[ "MIT" ]
null
null
null
apps/home/models.py
alex112401/Black-Dashboard-Django
e1746b7ef35afda448e47b96f11ac2e7e49d084a
[ "MIT" ]
null
null
null
apps/home/models.py
alex112401/Black-Dashboard-Django
e1746b7ef35afda448e47b96f11ac2e7e49d084a
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ from django.db import models from django.contrib.auth.models import User # Create your models here. class EventList(models.Model): username = models.ForeignKey(User, on_delete = models.CASCADE) eventname = models.CharField(max_length=50) eventdate = models.DateField(null=True) predtime = models.FloatField(max_length=50) emerge = models.CharField(max_length=50) iscomplete = models.BooleanField(default=False) costtime = models.FloatField(null=True, blank=True) class Meta: ordering: ['eventdate'] def __str__(self): return 'user: %s eventname: %s %s %s %s %s %s'%(self.username, self.eventname, self.eventdate, self.predtime, self.emerge, self.iscomplete , self.costtime) class Dailyfreetime(models.Model): username = models.ForeignKey(User, on_delete=models.CASCADE) timedate = models.DateField(null=True) freetime = models.FloatField(max_length=50) busytime = models.FloatField(max_length=50, null=True) def __str__(self): return '%s %s %s %s'%(self.username, self.timedate, self.freetime, self.busytime)
32.666667
163
0.705782
a4bc47eae6a5d4242780cb28a858e103d6538c90
344
py
Python
cobiv/modules/core/gestures/gesture.py
gokudomatic/cobiv
c095eda704fab319fccc04d43d8099f1e8327734
[ "MIT" ]
4
2017-12-26T07:19:46.000Z
2019-09-20T08:27:58.000Z
cobiv/modules/core/gestures/gesture.py
gokudomatic/cobiv
c095eda704fab319fccc04d43d8099f1e8327734
[ "MIT" ]
4
2017-10-01T12:18:43.000Z
2019-06-09T10:29:03.000Z
cobiv/modules/core/gestures/gesture.py
gokudomatic/cobiv
c095eda704fab319fccc04d43d8099f1e8327734
[ "MIT" ]
1
2019-01-07T19:58:00.000Z
2019-01-07T19:58:00.000Z
from cobiv.modules.core.component import Component class Gesture(Component): def initialize(self, touches): pass def validate(self, touches, strokes): pass def process(self, touches, strokes): pass def finalize(self, touches, strokes): pass def required_touch_count(self): pass
18.105263
50
0.645349
c9477ae1161a1b44f13c2a99d73ed9089e8d1087
8,965
py
Python
almost_make/cli.py
personalizedrefrigerator/AlmostMake
9b91021282315ef1cdf47643e6c3058398eb9111
[ "BSD-3-Clause" ]
7
2020-09-04T00:05:57.000Z
2021-11-29T20:02:23.000Z
almost_make/cli.py
personalizedrefrigerator/AlmostMake
9b91021282315ef1cdf47643e6c3058398eb9111
[ "BSD-3-Clause" ]
3
2021-11-29T19:58:01.000Z
2022-02-28T20:54:26.000Z
almost_make/cli.py
personalizedrefrigerator/AlmostMake
9b91021282315ef1cdf47643e6c3058398eb9111
[ "BSD-3-Clause" ]
1
2022-02-14T17:32:53.000Z
2022-02-14T17:32:53.000Z
#!/usr/bin/python3 import sys, os from almost_make.utils.printUtil import * import almost_make.utils.makeUtil as makeUtility import almost_make.utils.macroUtil as macroUtility from almost_make.utils.argsUtil import * from almost_make import version ARGUMENT_MAPPINGS = \ { 'h': "help", 'k': 'keep-going', 'p': 'print-expanded', 'n': 'just-print', 'f': 'file', 'C': 'directory', 's': 'silent', 'b': 'built-in-shell', 'w': 'print-directory', 'j': 'jobs' } # These are flags, so don't associate values with them... JUST_FLAGS = \ { 'help', 'keep-going', 'print-expanded', 'just-print', 'silent', 'built-in-shell', 'print-directory', 'undefined-is-error' } # Don't save these when we recurse... NO_SAVE_ARGS = \ { 'C', 'directory', 'f', 'file', 'default', 'h', 'help', 'version' } def printHelp(): cprint("Help: \n", FORMAT_COLORS['YELLOW']) cprint(" Summary: ", FORMAT_COLORS['YELLOW']) print("Satisfy dependencies of a target in a makefile. This parser is not quite POSIX-compliant, but should be able to parse simple makefiles.") cprint(" Usage: almake [targets...] [options]\n", FORMAT_COLORS['YELLOW']) print(" where each target in targets is a valid target and options include:") cprint(" -h, --help", FORMAT_COLORS['GREEN']) print("\t\t\t Print this message.") cprint(" --version", FORMAT_COLORS['GREEN']) print("\t\t\t Print version and licensing information.") cprint(" --file", FORMAT_COLORS['GREEN']) print("\t\t\t File to parse (default is Makefile).") cprint(" -k", FORMAT_COLORS['GREEN']) print("\t\t\t\t Keep going if errors are encountered.") cprint(" -n, --just-print", FORMAT_COLORS['GREEN']) cprint("\t\t Just print commands to be run, without evaluating (print commands, don't send them to the shell). ") print("Be aware that $(shell ...) macros are still evaluated. This option only applies to individual commands.") cprint(" -p", FORMAT_COLORS['GREEN']) print("\t\t\t\t Rather than finding targets, print the makefile, with top-level targets expanded.") cprint(" -C dir", FORMAT_COLORS['GREEN']) print("\t\t\t Switch to directory, dir, before running make. ") cprint(" -w, --print-directory", FORMAT_COLORS['GREEN']) print("\t Print the current directory before and after running make. ") cprint(" -j, --jobs", FORMAT_COLORS['GREEN']) print("\t\t\t Maximum number of jobs (e.g. almake -j 8). ") cprint(" -s, --silent", FORMAT_COLORS['GREEN']) print("\t\t In most cases, don't print output.") cprint(" --undefined-is-error", FORMAT_COLORS['GREEN']) print("\t\t Display an error when attempting to use an undefined macro.") cprint(" --expand-undefined-to value", FORMAT_COLORS['GREEN']) print("\t Expand undefined macros to value, rather than expanding to nothing.") cprint(" -b, --built-in-shell", FORMAT_COLORS['GREEN']) print("\t Use the built-in shell for commands in the makefile. This can also be enabled as follows:") cprint(" export ", FORMAT_COLORS['PURPLE']) print("_BUILTIN_SHELL ", end='') cprint(":= ", FORMAT_COLORS['YELLOW']) print("1 \t\t", end='') cprint("# Use the built-in shell instead of the system shell.", FORMAT_COLORS['GREEN']) print() cprint(" export", FORMAT_COLORS['PURPLE']) print(" _CUSTOM_BASE_COMMANDS ", end='') cprint(":= ", FORMAT_COLORS['YELLOW']) print("1 \t", end='') cprint("# Enable built-in overrides for several commands like ls, echo, cat, grep, and pwd.", FORMAT_COLORS['GREEN']) print() cprint(" export", FORMAT_COLORS['PURPLE']) print(" _SYSTEM_SHELL_PIPES ", end='') cprint(":= ", FORMAT_COLORS['YELLOW']) print("1 \t", end='') cprint("# Send commands that seem related to pipes (e.g. ls | less) directly to the system's shell. ", FORMAT_COLORS['GREEN']) print() cprint("Note: ", FORMAT_COLORS['PURPLE']) print("AlmostMake's built-in shell is currently very limited.") print() cprint("Note: ", FORMAT_COLORS['PURPLE']) print("Macro definitions that override those from the environment" + " can be provided in addition to targets and options. For example,") cprint(" make target1 target2 target3 CC=gcc CFLAGS=-O3", FORMAT_COLORS['YELLOW']) print() print("should make target1, target2, and target3 with the " + "macros CC and CFLAGS by default set to gcc and -O3, respectively.") cprint("Note: ", FORMAT_COLORS['PURPLE']) print("Options can also be given to almake through the environment. " + "This is done through the MAKEFLAGS variable. For example, " + "setting MAKEFLAGS to --built-in-shell causes almake to " + "always use its built-in shell, rather than the system shell.") # On commandline run... def main(args=sys.argv): args = parseArgs(args, ARGUMENT_MAPPINGS, strictlyFlags=JUST_FLAGS) # Fill args from MAKEFLAGS (see https://www.gnu.org/software/make/manual/make.html#How-the-MAKE-Variable-Works) args = fillArgsFromEnv(args, "MAKEFLAGS", ARGUMENT_MAPPINGS, JUST_FLAGS) # Previously-defined args take precedence. saveArgsInEnv(args, "MAKEFLAGS", NO_SAVE_ARGS) # For recursive calls to make. if 'help' in args: printHelp() elif 'version' in args: version.printVersion() else: macroUtil = macroUtility.MacroUtil() makeUtil = makeUtility.MakeUtil() fileName = 'Makefile' targets = [] defaultMacros = macroUtil.getDefaultMacros() # Fills with macros from environment, etc. overrideMacros = {} if 'directory' in args: try: os.chdir(args['directory']) except Exception as ex: print("Error changing directories: %s" % str(ex)) sys.exit(1) # If we know the path to the python interpreter... if sys.executable: defaultMacros["MAKE"] = sys.executable + " " + os.path.abspath(__file__) #^ Use ourself, rather than another make implementation. if 'keep-going' in args: makeUtil.setStopOnError(False) if 'silent' in args: makeUtil.setSilent(True) if 'jobs' in args: jobs = 1 try: jobs = int(args['jobs']) except ValueError as ex: makeUtil.errorUtil.reportError("Invalid argument to --jobs. This must be an integer.") makeUtil.setMaxJobs(jobs) if 'just-print' in args: makeUtil.setJustPrint(True) if 'file' in args: fileName = args['file'] if 'expand-undefined-to' in args: makeUtil.setDefaultMacroExpansion(runner.stripQuotes(args["expand-undefined-to"])) if 'undefined-is-error' in args: makeUtil.setDefaultMacroExpansion(None) if len(args['default']) > 0: targets = [ ] # Split into targets and default macros. for arg in args['default']: assignmentIndex = arg.find("=") if assignmentIndex > 0: key = arg[:assignmentIndex].strip() # e.g. VAR in VAR=33 val = arg[assignmentIndex+1:].strip() # e.g. 33 in VAR=33 overrideMacros[key] = val defaultMacros[key] = val else: targets.append(arg) # Were we told to use the built-in shell? if 'built-in-shell' in args: overrideMacros["_BUILTIN_SHELL"] = "1" overrideMacros["_CUSTOM_BASE_COMMANDS"] = "1" if len(targets) == 0: # Select the default target, if no targets targets = [''] if not os.path.exists(fileName): cprint("The file with name \"%s\" was not found!\n" % fileName, FORMAT_COLORS['RED']) print("Please check your spelling.") sys.exit(1) fileObj = open(fileName, 'r') fileContents = fileObj.read() fileObj.close() if 'print-directory' in args: cprint("make: ", FORMAT_COLORS['YELLOW']) print ('Entering directory %s' % runner.quote(os.getcwd())) if not 'print-expanded' in args: # Run for each target. for target in targets: makeUtil.runMakefile(fileContents, target, defaultMacros, overrideMacros) else: contents, macros = macroUtil.expandAndDefineMacros(fileContents, defaultMacros) contents, macros = makeUtil.handleIncludes(contents, macros) print(contents) if 'print-directory' in args: cprint("make: ", FORMAT_COLORS['YELLOW']) print ('Leaving directory %s' % runner.quote(os.getcwd())) if __name__ == "__main__": main()
41.313364
148
0.609035
0c9093a1bbfc9ca1ce36e266432acd577b30ad92
19,424
py
Python
cottoncandy/Encryption.py
moflo/cottoncandy
b38a1a7094474a29224fbc518d391384f770da24
[ "BSD-2-Clause" ]
35
2016-08-01T19:34:19.000Z
2022-02-07T19:45:27.000Z
cottoncandy/Encryption.py
moflo/cottoncandy
b38a1a7094474a29224fbc518d391384f770da24
[ "BSD-2-Clause" ]
56
2016-08-16T23:35:02.000Z
2022-03-13T02:39:06.000Z
cottoncandy/Encryption.py
moflo/cottoncandy
b38a1a7094474a29224fbc518d391384f770da24
[ "BSD-2-Clause" ]
15
2016-10-03T00:50:11.000Z
2020-03-29T04:45:13.000Z
from __future__ import print_function import os import struct from Crypto import Random from Crypto.Cipher import AES, PKCS1_OAEP from Crypto.PublicKey import RSA from io import BytesIO CIPHER_BLOCK_CHAIN = AES.MODE_CBC INIT_VECT_SIZE = 16 DEFAULT_CHUNK_SIZE = 64 * 1024 FILE_LENGTH_FIELD_SIZE = struct.calcsize('Q') WHENCE_EOF = 2 class Encryption(object): """ Abstract base class for a file encrypt/decrypt object """ def __init__(self, key=None, keyfile=None): """ Parameters ---------- key : str key to use keyfile : str key from which to read stored key """ if key is not None: self.key = key elif keyfile is not None: self.read_key(keyfile) else: self.generate_key() def read_key(self, file_name): """Reads a stored key Parameters ---------- file_name : str name of file to read from Returns ------- """ with open(file_name) as file: self.key = file.read() def store_key(self, file_name='key.key'): """Stores key to file Parameters ---------- file_name : str path of tile to store Returns ------- """ with open(file_name) as keyFile: keyFile.write(self.key) def generate_key(self): """Generates a key for encrypting/decrypting files for this object """ raise NotImplementedError def encrypt_file(self, file_name, encrypted_file_name=None): """Encrypts a file on disk Parameters ---------- file_name : str path to file to be encrypted encrypted_file_name : str path for encrypted file, if None, appends 'enc' to the file extenstion Returns ------- """ raise NotImplementedError def encrypt_stream(self, instream): """Encrypts a stream object in memory Parameters ---------- instream : stream object in memory with a .read() function Returns ------- : stream encrypted object """ raise NotImplementedError def decrypt_file(self, file_name, key=None, decrypted_file_name=None): """Decrypts a file on disk Parameters ---------- file_name : str path to encrypted file key : str key to use for decryption decrypted_file_name : str name for decrypted file, if None, strips the last 3 chars off the name (assumes 'enc' on extension) Returns ------- """ raise NotImplementedError def decrypt_stream(self, instream, key=None): """Decrypts a stream in memory Parameters ---------- instream : stream object with .read() function key : str key to use for decryption Returns ------- : stream decrypted stream """ raise NotImplementedError class AESEncryption(Encryption): """ Encrypts files using an AES cipher. All files passing through the same object will be encrypted with the same key Encrypted files have the following structure: [ 16 bytes default ][ file size || file size % 16 - 8 bytes ][ 8 bytes ] [initialization vector][ binary ciphertext for file || padding with spaces ][file size in bytes] """ def __init__(self, key=None, keyfile=None, mode=CIPHER_BLOCK_CHAIN, chunk_size=DEFAULT_CHUNK_SIZE, initialisation_vector_size=INIT_VECT_SIZE): """ Parameters ---------- key : str key to use keyfile : str path to stored key, overrides key value mode : int encrytion mode chunk_size : int size in bytes of each chunk during encryption initialisation_vector_size : int bytes of initialisation vector """ super(AESEncryption, self).__init__(key, keyfile) self.mode = mode self.chunk_size = chunk_size self.initialisation_vector_size = initialisation_vector_size def generate_key(self, key_size=32): """Generates a new AES key Parameters ---------- key_size : int bits in key Returns ------- """ if key_size not in [16, 24, 32]: raise RuntimeError('Bad key length') self.key = Random.get_random_bytes(key_size) def encrypt_file(self, file_name, encrypted_file_name=None, key=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- file_name : str path to file encrypted_file_name : str name for encrypted file key : str key to use chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- """ if chunk_size is not None and chunk_size % 16 != 0: raise RuntimeError('Bad chunk_size') if encrypted_file_name is None: encrypted_file_name = file_name + 'enc' if chunk_size is None: chunk_size = self.chunk_size if initialisation_vector_size is None: initialisation_vector_size = self.initialisation_vector_size # Initialize AES encryption object initialisation_vector = Random.new().read(initialisation_vector_size) encryptor = AES.new(self.key if key is None else key, self.mode, initialisation_vector) # record file size since the encrypted file might be padded input_size = os.path.getsize(file_name) file_length_field = struct.pack('<Q', input_size) with open(file_name, 'rb') as input_file: with open(encrypted_file_name, 'wb') as output_file: assert len(initialisation_vector) == initialisation_vector_size output_file.write(initialisation_vector) # record the initialization vector # encrypt the file in chunks this_chunk = None is_final_chunk = False while not is_final_chunk: this_chunk = input_file.read(chunk_size) if len(this_chunk) == 0 or len(this_chunk) % 16 != 0: # end of file # pad the end chunk if necessary - AES needs things to be in 16-byte blocks padSize = 16 - (len(this_chunk) + FILE_LENGTH_FIELD_SIZE) % 16 padding = ' ' * padSize this_chunk += padding this_chunk += file_length_field # record the actual file length so we can get ride of the padding on decryption is_final_chunk = True output_file.write(encryptor.encrypt(this_chunk)) del encryptor def encrypt_stream(self, instream, key=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- instream : stream object in memory with a .read() function key : str key to use chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- output_stream : stream encrypted stream """ if chunk_size is None: chunk_size = self.chunk_size if chunk_size is not None and chunk_size % 16 != 0: raise RuntimeError('Bad chunk_size') if initialisation_vector_size is None: initialisation_vector_size = self.initialisation_vector_size initialisation_vector = Random.new().read(initialisation_vector_size) encryptor = AES.new(self.key if key is None else key, self.mode, initialisation_vector) instream.seek(0, os.SEEK_END) input_size = instream.tell() instream.seek(0) file_length_field = struct.pack('<Q', input_size) output_stream = BytesIO() output_stream.write(initialisation_vector) this_chunk = None is_final_chunk = False while not is_final_chunk: this_chunk = instream.read(chunk_size) if len(this_chunk) == 0 or len(this_chunk) % 16 != 0: # end of file # pad the end chunk if necessary padSize = 16 - (len(this_chunk) + FILE_LENGTH_FIELD_SIZE) % 16 padding = ' ' * padSize this_chunk += padding this_chunk += file_length_field is_final_chunk = True output_stream.write(encryptor.encrypt(this_chunk)) del encryptor output_stream.seek(0) return output_stream def decrypt_file(self, file_name, key=None, decrypted_file_name=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- file_name : str path to encrypted file key : str key to use decrypted_file_name : str name for decrypted file chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- """ if chunk_size is not None and chunk_size % 16 != 0: raise RuntimeError('Bad chunk_size') if decrypted_file_name is None: decrypted_file_name = file_name[:-3] # strip off the 'enc' in the file extension if chunk_size is None: chunk_size = self.chunk_size if initialisation_vector_size is None: initialisation_vector_size = self.initialisation_vector_size with open(file_name, 'rb') as input_file: initialisation_vector = input_file.read(initialisation_vector_size) decryptor = AES.new(self.key if key is None else key, self.mode, initialisation_vector) with open(decrypted_file_name, 'wb+') as output_file: this_chunk = None is_final_chunk = False while not is_final_chunk: this_chunk = input_file.read(chunk_size) if len(this_chunk) == 0: # EOF # read out actual size of file output_file.seek(-FILE_LENGTH_FIELD_SIZE, WHENCE_EOF) file_length_field = output_file.read(FILE_LENGTH_FIELD_SIZE) original_size = struct.unpack('<Q', file_length_field)[0] is_final_chunk = True output_file.write(decryptor.decrypt(this_chunk)) # truncate to original size output_file.truncate(original_size) del decryptor def decrypt_stream(self, instream, key=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- instream : stream object in memory with a .read() function key : str key to use chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- output_stream : stream decrypted stream """ if chunk_size is not None and chunk_size % 16 != 0: raise RuntimeError('Bad chunk_size') if chunk_size is None: chunk_size = self.chunk_size if initialisation_vector_size is None: initialisation_vector_size = self.initialisation_vector_size instream.seek(0) initialisation_vector = instream.read(initialisation_vector_size) decryptor = AES.new(self.key if key is None else key, self.mode, initialisation_vector) output_stream = BytesIO() this_chunk = None is_final_chunk = False while not is_final_chunk: this_chunk = instream.read(chunk_size) if len(this_chunk) == 0: output_stream.seek(-FILE_LENGTH_FIELD_SIZE, WHENCE_EOF) file_length_field = output_stream.read(FILE_LENGTH_FIELD_SIZE) original_size = struct.unpack('<Q', file_length_field)[0] is_final_chunk = True output_stream.write(decryptor.decrypt(this_chunk)) del decryptor output_stream.truncate(original_size) output_stream.seek(0) return output_stream class RSAAESEncryption(AESEncryption): """ Encrypts each file using a unique AES key. Keys are then encrypted with RSA and returned along with the objects, the RSA private key is needed to decrypt the AES key. """ def __init__(self, key=None, keyfile=None, mode=CIPHER_BLOCK_CHAIN, chunk_size=DEFAULT_CHUNK_SIZE, initialisation_vector_size=INIT_VECT_SIZE, AES_key_length=32): """ Parameters ---------- key : str key to use keyfile : str path to key file mode : int AES encryption method chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector AES_key_length : int bits in AES keys """ super(RSAAESEncryption, self).__init__(key, keyfile, mode, chunk_size, initialisation_vector_size) if AES_key_length not in [16, 24, 32]: raise ValueError('Bad AES key size') self.AES_key_length = AES_key_length @property def can_decrypt(self): """Can this object decrypt? i.e. does it have a private RSA key? """ if not self.RSAcipher: return False return self.RSAcipher.can_decrypt() @property def can_encrypt(self): """Can this object encrypt?, i.e. does it have a public key? """ if not self.RSAcipher: return False return self.RSAcipher.can_encrypt() def generate_key(self, key_size=2048): """ Parameters ---------- key_size : int bits in RSA key Returns ------- """ if key_size % 256 != 0: raise ValueError('RSA key size must be divisible by 256') self.key = RSA.generate(key_size) # RSA key self.RSAcipher = PKCS1_OAEP.new(self.key) # salts/pads things to be encrypted def read_key(self, file_name): with open(file_name) as keyFile: self.key = RSA.importKey(keyFile.read()) self.RSAcipher = PKCS1_OAEP.new(self.key) def store_key(self, file_name='key.key', public=True): """ Parameters ---------- file_name public : bool store public key only? Returns ------- """ with open(file_name, 'w') as keyfile: if not public: keyfile.write(self.key.exportKey()) else: keyfile.write(self.key.publickey().exportKey()) def generate_AES_key(self, key_size=None): """Generates a new AES key Parameters ---------- key_size : int bits in key Returns ------- key : str AES key """ if key_size is None: key_size = self.AES_key_length if key_size not in [16, 24, 32]: raise ValueError('Bad AES key size') return Random.get_random_bytes(key_size) def encrypt_file(self, file_name, encrypted_file_name=None, AESkey=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- file_name encrypted_file_name AESkey : str AES key to use for this particular file chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- """ if AESkey is None: AESkey = self.generate_AES_key() super(RSAAESEncryption, self).encrypt_file(file_name, encrypted_file_name, AESkey, chunk_size, initialisation_vector_size) return self.RSAcipher.encrypt(AESkey) def encrypt_stream(self, instream, AESkey=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- instream : stream object in memory with a .read() function AESkey : str AES key to use for this particular stream chunk_size initialisation_vector_size Returns ------- """ if AESkey is None: AESkey = self.generate_AES_key() outstream = super(RSAAESEncryption, self).encrypt_stream(instream, AESkey, chunk_size, initialisation_vector_size) return outstream, self.RSAcipher.encrypt(AESkey) def encrypt_string(self, plaintext): """Encrypts a string Parameters ---------- plaintext : str plaintext Returns ------- ciphertext : str ciphertext """ return self.RSAcipher.encrypt(plaintext) def decrypt_string(self, ciphertext): """Decrypts a string Parameters ---------- ciphertext : str ciphertext Returns ------- plaintext : str plaintext """ return self.RSAcipher.decrypt(ciphertext) def decrypt_file(self, file_name, encrypted_AES_key=None, decrypted_file_name=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- file_name : str path to encrypted file encrypted_AES_key : str The encrypted AES key associated with this file decrypted_file_name : str name for decrypted file chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- """ if encrypted_AES_key is None: raise RuntimeError('You need a key!') AESkey = self.RSAcipher.decrypt(encrypted_AES_key) super(RSAAESEncryption, self).decrypt_file(file_name, AESkey, decrypted_file_name, chunk_size, initialisation_vector_size) def decrypt_stream(self, instream, encrypted_AES_Key=None, chunk_size=None, initialisation_vector_size=None): """ Parameters ---------- instream : stream object in memory with a .read() function encrypted_AES_Key : str The encrypted AES key associated with this file chunk_size : int bytes in each chunk initialisation_vector_size : int bytes in initialisation vector Returns ------- """ if encrypted_AES_Key is None: raise RuntimeError('You need a key!') AESkey = self.RSAcipher.decrypt(encrypted_AES_Key) return super(RSAAESEncryption, self).decrypt_stream(instream, AESkey, chunk_size, initialisation_vector_size)
30.540881
165
0.58196
67e5917141e14d476e102357580ce92b2c81cd92
18,553
py
Python
Resnet12/data/mini_imagenet.py
HanChangHun/dsn_fewshot
dbe8d637bce1cb17bfb7c7fd7784bcdebb79085c
[ "MIT" ]
80
2020-06-09T06:27:30.000Z
2022-03-09T22:23:00.000Z
Resnet12/data/mini_imagenet.py
HanChangHun/dsn_fewshot
dbe8d637bce1cb17bfb7c7fd7784bcdebb79085c
[ "MIT" ]
14
2020-09-20T18:54:29.000Z
2022-02-08T04:43:39.000Z
Resnet12/data/mini_imagenet.py
HanChangHun/dsn_fewshot
dbe8d637bce1cb17bfb7c7fd7784bcdebb79085c
[ "MIT" ]
15
2020-07-09T13:09:08.000Z
2022-03-12T13:34:16.000Z
# Dataloader of Gidaris & Komodakis, CVPR 2018 # Adapted from: # https://github.com/gidariss/FewShotWithoutForgetting/blob/master/dataloader.py from __future__ import print_function import os import os.path import numpy as np import random import pickle import json import math import torch import torch.utils.data as data import torchvision import torchvision.datasets as datasets import torchvision.transforms as transforms import torchnet as tnt import h5py from PIL import Image from PIL import ImageEnhance from pdb import set_trace as breakpoint # Set the appropriate paths of the datasets here. _MINI_IMAGENET_DATASET_DIR = './miniimagenet/' ## your miniimagenet folder def buildLabelIndex(labels): label2inds = {} for idx, label in enumerate(labels): if label not in label2inds: label2inds[label] = [] label2inds[label].append(idx) return label2inds def load_data(file): try: with open(file, 'rb') as fo: data = pickle.load(fo) return data except: with open(file, 'rb') as f: u = pickle._Unpickler(f) u.encoding = 'latin1' data = u.load() return data class MiniImageNet(data.Dataset): def __init__(self, phase='train', do_not_use_random_transf=False): self.base_folder = 'miniImagenet' #assert(phase=='train' or phase=='val' or phase=='test' or ph) self.phase = phase self.name = 'MiniImageNet_' + phase print('Loading mini ImageNet dataset - phase {0}'.format(phase)) file_train_categories_train_phase = os.path.join( _MINI_IMAGENET_DATASET_DIR, 'miniImageNet_category_split_train_phase_train.pickle') file_train_categories_val_phase = os.path.join( _MINI_IMAGENET_DATASET_DIR, 'miniImageNet_category_split_train_phase_val.pickle') file_train_categories_test_phase = os.path.join( _MINI_IMAGENET_DATASET_DIR, 'miniImageNet_category_split_train_phase_test.pickle') file_val_categories_val_phase = os.path.join( _MINI_IMAGENET_DATASET_DIR, 'miniImageNet_category_split_val.pickle') file_test_categories_test_phase = os.path.join( _MINI_IMAGENET_DATASET_DIR, 'miniImageNet_category_split_test.pickle') if self.phase=='train': # During training phase we only load the training phase images # of the training categories (aka base categories). data_train = load_data(file_train_categories_train_phase) self.data = data_train['data'] self.labels = data_train['labels'] self.label2ind = buildLabelIndex(self.labels) self.labelIds = sorted(self.label2ind.keys()) self.num_cats = len(self.labelIds) self.labelIds_base = self.labelIds self.num_cats_base = len(self.labelIds_base) elif self.phase == 'trainval': # During training phase we only load the training phase images # of the training categories (aka base categories). data_train = load_data(file_train_categories_train_phase) self.data = data_train['data'] self.labels = data_train['labels'] data_base = load_data(file_train_categories_val_phase) data_novel = load_data(file_val_categories_val_phase) self.data = np.concatenate( [self.data, data_novel['data']], axis=0) self.data = np.concatenate( [self.data, data_base['data']], axis=0) self.labels = np.concatenate( [self.labels, data_novel['labels']], axis=0) self.labels = np.concatenate( [self.labels, data_base['labels']], axis=0) self.label2ind = buildLabelIndex(self.labels) self.labelIds = sorted(self.label2ind.keys()) self.num_cats = len(self.labelIds) self.labelIds_base = self.labelIds self.num_cats_base = len(self.labelIds_base) elif self.phase=='val' or self.phase=='test': if self.phase=='test': # load data that will be used for evaluating the recognition # accuracy of the base categories. data_base = load_data(file_train_categories_test_phase) # load data that will be use for evaluating the few-shot recogniton # accuracy on the novel categories. data_novel = load_data(file_test_categories_test_phase) else: # phase=='val' # load data that will be used for evaluating the recognition # accuracy of the base categories. data_base = load_data(file_train_categories_val_phase) # load data that will be use for evaluating the few-shot recogniton # accuracy on the novel categories. data_novel = load_data(file_val_categories_val_phase) self.data = np.concatenate( [data_base['data'], data_novel['data']], axis=0) self.labels = data_base['labels'] + data_novel['labels'] self.label2ind = buildLabelIndex(self.labels) self.labelIds = sorted(self.label2ind.keys()) self.num_cats = len(self.labelIds) self.labelIds_base = buildLabelIndex(data_base['labels']).keys() self.labelIds_novel = buildLabelIndex(data_novel['labels']).keys() self.num_cats_base = len(self.labelIds_base) self.num_cats_novel = len(self.labelIds_novel) intersection = set(self.labelIds_base) & set(self.labelIds_novel) assert(len(intersection) == 0) else: raise ValueError('Not valid phase {0}'.format(self.phase)) mean_pix = [x/255.0 for x in [120.39586422, 115.59361427, 104.54012653]] std_pix = [x/255.0 for x in [70.68188272, 68.27635443, 72.54505529]] normalize = transforms.Normalize(mean=mean_pix, std=std_pix) if (self.phase=='test' or self.phase=='val') or (do_not_use_random_transf==True): self.transform = transforms.Compose([ lambda x: np.asarray(x), transforms.ToTensor(), normalize ]) else: self.transform = transforms.Compose([ transforms.RandomCrop(84, padding=8), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), lambda x: np.asarray(x), transforms.ToTensor(), normalize ]) def __getitem__(self, index): img, label = self.data[index], self.labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) return img, label def __len__(self): return len(self.data) class FewShotDataloader(): def __init__(self, dataset, nKnovel=5, # number of novel categories. nKbase=-1, # number of base categories. nExemplars=1, # number of training examples per novel category. nTestNovel=15*5, # number of test examples for all the novel categories. nTestBase=15*5, # number of test examples for all the base categories. batch_size=1, # number of training episodes per batch. num_workers=4, epoch_size=2000, # number of batches per epoch. ): self.dataset = dataset self.phase = self.dataset.phase max_possible_nKnovel = (self.dataset.num_cats_base if self.phase=='train' or self.phase=='trainval' else self.dataset.num_cats_novel) assert(nKnovel >= 0 and nKnovel < max_possible_nKnovel) self.nKnovel = nKnovel max_possible_nKbase = self.dataset.num_cats_base nKbase = nKbase if nKbase >= 0 else max_possible_nKbase if (self.phase=='train'or self.phase=='trainval') and nKbase > 0: nKbase -= self.nKnovel max_possible_nKbase -= self.nKnovel assert(nKbase >= 0 and nKbase <= max_possible_nKbase) self.nKbase = nKbase self.nExemplars = nExemplars self.nTestNovel = nTestNovel self.nTestBase = nTestBase self.batch_size = batch_size self.epoch_size = epoch_size self.num_workers = num_workers self.is_eval_mode = (self.phase=='test') or (self.phase=='val') def sampleImageIdsFrom(self, cat_id, sample_size=1): """ Samples `sample_size` number of unique image ids picked from the category `cat_id` (i.e., self.dataset.label2ind[cat_id]). Args: cat_id: a scalar with the id of the category from which images will be sampled. sample_size: number of images that will be sampled. Returns: image_ids: a list of length `sample_size` with unique image ids. """ assert(cat_id in self.dataset.label2ind) assert(len(self.dataset.label2ind[cat_id]) >= sample_size) # Note: random.sample samples elements without replacement. return random.sample(self.dataset.label2ind[cat_id], sample_size) def sampleCategories(self, cat_set, sample_size=1): """ Samples `sample_size` number of unique categories picked from the `cat_set` set of categories. `cat_set` can be either 'base' or 'novel'. Args: cat_set: string that specifies the set of categories from which categories will be sampled. sample_size: number of categories that will be sampled. Returns: cat_ids: a list of length `sample_size` with unique category ids. """ if cat_set=='base': labelIds = self.dataset.labelIds_base elif cat_set=='novel': labelIds = self.dataset.labelIds_novel else: raise ValueError('Not recognized category set {}'.format(cat_set)) assert(len(labelIds) >= sample_size) # return sample_size unique categories chosen from labelIds set of # categories (that can be either self.labelIds_base or self.labelIds_novel) # Note: random.sample samples elements without replacement. return random.sample(labelIds, sample_size) def sample_base_and_novel_categories(self, nKbase, nKnovel): """ Samples `nKbase` number of base categories and `nKnovel` number of novel categories. Args: nKbase: number of base categories nKnovel: number of novel categories Returns: Kbase: a list of length 'nKbase' with the ids of the sampled base categories. Knovel: a list of lenght 'nKnovel' with the ids of the sampled novel categories. """ if self.is_eval_mode: assert(nKnovel <= self.dataset.num_cats_novel) # sample from the set of base categories 'nKbase' number of base # categories. Kbase = sorted(self.sampleCategories('base', nKbase)) # sample from the set of novel categories 'nKnovel' number of novel # categories. Knovel = sorted(self.sampleCategories('novel', nKnovel)) else: # sample from the set of base categories 'nKnovel' + 'nKbase' number # of categories. cats_ids = self.sampleCategories('base', nKnovel+nKbase) assert(len(cats_ids) == (nKnovel+nKbase)) # Randomly pick 'nKnovel' number of fake novel categories and keep # the rest as base categories. random.shuffle(cats_ids) Knovel = sorted(cats_ids[:nKnovel]) Kbase = sorted(cats_ids[nKnovel:]) return Kbase, Knovel def sample_test_examples_for_base_categories(self, Kbase, nTestBase): """ Sample `nTestBase` number of images from the `Kbase` categories. Args: Kbase: a list of length `nKbase` with the ids of the categories from where the images will be sampled. nTestBase: the total number of images that will be sampled. Returns: Tbase: a list of length `nTestBase` with 2-element tuples. The 1st element of each tuple is the image id that was sampled and the 2nd elemend is its category label (which is in the range [0, len(Kbase)-1]). """ Tbase = [] if len(Kbase) > 0: # Sample for each base category a number images such that the total # number sampled images of all categories to be equal to `nTestBase`. KbaseIndices = np.random.choice( np.arange(len(Kbase)), size=nTestBase, replace=True) KbaseIndices, NumImagesPerCategory = np.unique( KbaseIndices, return_counts=True) for Kbase_idx, NumImages in zip(KbaseIndices, NumImagesPerCategory): imd_ids = self.sampleImageIdsFrom( Kbase[Kbase_idx], sample_size=NumImages) Tbase += [(img_id, Kbase_idx) for img_id in imd_ids] assert(len(Tbase) == nTestBase) return Tbase def sample_train_and_test_examples_for_novel_categories( self, Knovel, nTestNovel, nExemplars, nKbase): """Samples train and test examples of the novel categories. Args: Knovel: a list with the ids of the novel categories. nTestNovel: the total number of test images that will be sampled from all the novel categories. nExemplars: the number of training examples per novel category that will be sampled. nKbase: the number of base categories. It is used as offset of the category index of each sampled image. Returns: Tnovel: a list of length `nTestNovel` with 2-element tuples. The 1st element of each tuple is the image id that was sampled and the 2nd element is its category label (which is in the range [nKbase, nKbase + len(Knovel) - 1]). Exemplars: a list of length len(Knovel) * nExemplars of 2-element tuples. The 1st element of each tuple is the image id that was sampled and the 2nd element is its category label (which is in the ragne [nKbase, nKbase + len(Knovel) - 1]). """ if len(Knovel) == 0: return [], [] nKnovel = len(Knovel) Tnovel = [] Exemplars = [] assert((nTestNovel % nKnovel) == 0) nEvalExamplesPerClass = int(nTestNovel / nKnovel) for Knovel_idx in range(len(Knovel)): imd_ids = self.sampleImageIdsFrom( Knovel[Knovel_idx], sample_size=(nEvalExamplesPerClass + nExemplars)) imds_tnovel = imd_ids[:nEvalExamplesPerClass] imds_ememplars = imd_ids[nEvalExamplesPerClass:] Tnovel += [(img_id, nKbase+Knovel_idx) for img_id in imds_tnovel] Exemplars += [(img_id, nKbase+Knovel_idx) for img_id in imds_ememplars] assert(len(Tnovel) == nTestNovel) assert(len(Exemplars) == len(Knovel) * nExemplars) random.shuffle(Exemplars) return Tnovel, Exemplars def sample_episode(self): """Samples a training episode.""" nKnovel = self.nKnovel nKbase = self.nKbase nTestNovel = self.nTestNovel nTestBase = self.nTestBase nExemplars = self.nExemplars Kbase, Knovel = self.sample_base_and_novel_categories(nKbase, nKnovel) Tbase = self.sample_test_examples_for_base_categories(Kbase, nTestBase) Tnovel, Exemplars = self.sample_train_and_test_examples_for_novel_categories( Knovel, nTestNovel, nExemplars, nKbase) # concatenate the base and novel category examples. Test = Tbase + Tnovel random.shuffle(Test) Kall = Kbase + Knovel return Exemplars, Test, Kall, nKbase def createExamplesTensorData(self, examples): """ Creates the examples image and label tensor data. Args: examples: a list of 2-element tuples, each representing a train or test example. The 1st element of each tuple is the image id of the example and 2nd element is the category label of the example, which is in the range [0, nK - 1], where nK is the total number of categories (both novel and base). Returns: images: a tensor of shape [nExamples, Height, Width, 3] with the example images, where nExamples is the number of examples (i.e., nExamples = len(examples)). labels: a tensor of shape [nExamples] with the category label of each example. """ images = torch.stack( [self.dataset[img_idx][0] for img_idx, _ in examples], dim=0) labels = torch.LongTensor([label for _, label in examples]) return images, labels def get_iterator(self, epoch=0): rand_seed = epoch random.seed(rand_seed) np.random.seed(rand_seed) def load_function(iter_idx): Exemplars, Test, Kall, nKbase = self.sample_episode() Xt, Yt = self.createExamplesTensorData(Test) Kall = torch.LongTensor(Kall) if len(Exemplars) > 0: Xe, Ye = self.createExamplesTensorData(Exemplars) return Xe, Ye, Xt, Yt, Kall, nKbase else: return Xt, Yt, Kall, nKbase tnt_dataset = tnt.dataset.ListDataset( elem_list=range(self.epoch_size), load=load_function) data_loader = tnt_dataset.parallel( batch_size=self.batch_size, num_workers=(0 if self.is_eval_mode else self.num_workers), shuffle=(False if self.is_eval_mode else True)) return data_loader def __call__(self, epoch=0): return self.get_iterator(epoch) def __len__(self): return int(self.epoch_size / self.batch_size)
41.137472
107
0.617259
00df031bfc33fae4fdd71f5c04b2d239dc6528d0
709
py
Python
examples/manipulate_userdata.py
tracivar/zegami-python-sdk
3d273d2c987ccf2d311733f29529e2c5b25beceb
[ "Apache-2.0" ]
null
null
null
examples/manipulate_userdata.py
tracivar/zegami-python-sdk
3d273d2c987ccf2d311733f29529e2c5b25beceb
[ "Apache-2.0" ]
null
null
null
examples/manipulate_userdata.py
tracivar/zegami-python-sdk
3d273d2c987ccf2d311733f29529e2c5b25beceb
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Download images from a collection with a specific tag.""" from zegami_sdk.client import ZegamiClient WORKSPACE_ID = '' COLLECTION_ID = '' USERNAME = '' PASSWORD = '' zc = ZegamiClient(username=USERNAME, password=PASSWORD) workspace = zc.get_workspace_by_id(WORKSPACE_ID) collection = workspace.get_collection_by_id(COLLECTION_ID) # fetch userdata userdata = collection.userdata # add new userdata userdata = collection.set_userdata({ 'testString': 'string', 'testNumber': 1 }) # replace userdata userdata = collection.set_userdata({ 'testString': 'new string' }) # remove userdata userdata = collection.set_userdata({ 'testString': None }) print(userdata)
19.162162
60
0.732017
5d9ad098ecb4d7f5289f2ed25d27c5915fcf2f1d
279
py
Python
Act1/cssenv/Scripts/csaplication/login/urls.py
Talox1/Cliente-Servidor
fb243832684f818416c10fdcdaf397fccda09321
[ "MIT" ]
null
null
null
Act1/cssenv/Scripts/csaplication/login/urls.py
Talox1/Cliente-Servidor
fb243832684f818416c10fdcdaf397fccda09321
[ "MIT" ]
null
null
null
Act1/cssenv/Scripts/csaplication/login/urls.py
Talox1/Cliente-Servidor
fb243832684f818416c10fdcdaf397fccda09321
[ "MIT" ]
null
null
null
from django.urls import path,re_path from django.conf.urls import include from django.contrib.auth.models import User # from rest_framework import routers, serilizers, viewsets from login.views import CustomAuthToken urlpatterns = [ re_path(r'^',CustomAuthToken.as_view()), ]
31
58
0.802867
ef407def11be145f06cedacb996051e9e7391bf1
3,158
py
Python
SoftLayer/managers/ssl.py
corneil/softlayer-python
bbaf562fb76536c5cc652e356729723f38f48b66
[ "MIT" ]
1
2019-11-06T13:54:07.000Z
2019-11-06T13:54:07.000Z
SoftLayer/managers/ssl.py
underscorephil/softlayer-python
567540a328d5258e55594466127cd22b9a04a2ea
[ "MIT" ]
null
null
null
SoftLayer/managers/ssl.py
underscorephil/softlayer-python
567540a328d5258e55594466127cd22b9a04a2ea
[ "MIT" ]
1
2020-07-07T12:18:26.000Z
2020-07-07T12:18:26.000Z
""" SoftLayer.ssl ~~~~~~~~~~~~~ SSL Manager/helpers :license: MIT, see LICENSE for more details. """ class SSLManager(object): """Manages SSL certificates. :param SoftLayer.API.Client client: an API client instance Example:: # Initialize the Manager. # env variables. These can also be specified in ~/.softlayer, # or passed directly to SoftLayer.Client() # SL_USERNAME = YOUR_USERNAME # SL_API_KEY = YOUR_API_KEY import SoftLayer client = SoftLayer.Client() mgr = SoftLayer.SSLManager(client) """ def __init__(self, client): self.client = client self.ssl = self.client['Security_Certificate'] def list_certs(self, method='all'): """List all certificates. :param string method: The type of certificates to list. Options are 'all', 'expired', and 'valid'. :returns: A list of dictionaries representing the requested SSL certs. Example:: # Get all valid SSL certs certs = mgr.list_certs(method='valid') print certs """ ssl = self.client['Account'] methods = { 'all': 'getSecurityCertificates', 'expired': 'getExpiredSecurityCertificates', 'valid': 'getValidSecurityCertificates' } mask = "mask[id, commonName, validityDays, notes]" func = getattr(ssl, methods[method]) return func(mask=mask) def add_certificate(self, certificate): """Creates a new certificate. :param dict certificate: A dictionary representing the parts of the certificate. See developer.softlayer.com for more info. Example:: cert = ?? result = mgr.add_certificate(certificate=cert) """ return self.ssl.createObject(certificate) def remove_certificate(self, cert_id): """Removes a certificate. :param integer cert_id: a certificate ID to remove Example:: # Removes certificate with id 1234 result = mgr.remove_certificate(cert_id = 1234) """ return self.ssl.deleteObject(id=cert_id) def edit_certificate(self, certificate): """Updates a certificate with the included options. The provided dict must include an 'id' key and value corresponding to the certificate ID that should be updated. :param dict certificate: the certificate to update. Example:: # Updates the cert id 1234 cert['id'] = 1234 cert['certificate'] = ?? result = mgr.edit_certificate(certificate=cert) """ return self.ssl.editObject(certificate, id=certificate['id']) def get_certificate(self, cert_id): """Gets a certificate with the ID specified. :param integer cert_id: the certificate ID to retrieve Example:: cert = mgr.get_certificate(cert_id=1234) print(cert) """ return self.ssl.getObject(id=cert_id)
27.701754
78
0.591514
ca394a2d66766faa097b16504926b432d2ddde2b
13,371
py
Python
siphon/tests/test_catalog.py
story645/siphon
d2d4584f953cc4034e2b60bcb0ced8bc7ec4fee5
[ "BSD-3-Clause" ]
null
null
null
siphon/tests/test_catalog.py
story645/siphon
d2d4584f953cc4034e2b60bcb0ced8bc7ec4fee5
[ "BSD-3-Clause" ]
null
null
null
siphon/tests/test_catalog.py
story645/siphon
d2d4584f953cc4034e2b60bcb0ced8bc7ec4fee5
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2013-2017 Siphon Contributors. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Test the catalog access API.""" from datetime import datetime import logging import pytest from siphon.catalog import get_latest_access_url, TDSCatalog from siphon.testing import get_recorder log = logging.getLogger('siphon.catalog') log.setLevel(logging.WARNING) recorder = get_recorder(__file__) @recorder.use_cassette('thredds-test-toplevel-catalog') def test_basic(): """Test of parsing a basic catalog.""" url = 'http://thredds-test.unidata.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert 'Forecast Model Data' in cat.catalog_refs @recorder.use_cassette('thredds-test-toplevel-catalog') def test_catalog_representation(): """Test string representation of the catalog object.""" url = 'http://thredds-test.unidata.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert str(cat) == 'Unidata THREDDS Data Server' @recorder.use_cassette('thredds-test-latest-gfs-0p5') def test_access(): """Test catalog parsing of access methods.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/grib/' 'NCEP/GFS/Global_0p5deg/latest.xml') cat = TDSCatalog(url) ds = list(cat.datasets.values())[0] assert 'OPENDAP' in ds.access_urls @recorder.use_cassette('thredds-test-default-5-0') def test_access_default_catalog(): """Test case-insensitive parsing of access methods in default catalog.""" url = ('http://localhost:8081/thredds/catalog/catalog.xml') cat = TDSCatalog(url) ds = list(cat.datasets.values())[0] assert 'OPENDAP' in ds.access_urls @recorder.use_cassette('top_level_20km_rap_catalog') def test_virtual_access(): """Test access of virtual datasets.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) # find the 2D time coordinate "full collection" dataset for dataset in list(cat.datasets.values()): if 'Full Collection' in dataset.name: ds = dataset break assert 'OPENDAP' in ds.access_urls # TwoD is a virtual dataset, so HTTPServer # should not be listed here assert 'HTTPServer' not in ds.access_urls @recorder.use_cassette('latest_rap_catalog') def test_get_latest(): """Test latest dataset helper function.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/' 'grib/NCEP/RAP/CONUS_13km/catalog.xml') latest_url = get_latest_access_url(url, 'OPENDAP') assert latest_url @recorder.use_cassette('latest_rap_catalog') def test_latest_attribute(): """Test using the catalog latest attribute.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/' 'grib/NCEP/RAP/CONUS_13km/catalog.xml') cat = TDSCatalog(url) assert cat.latest.name == 'RR_CONUS_13km_20150527_0100.grib2' @recorder.use_cassette('top_level_cat') def test_tds_top_catalog(): """Test parsing top-level catalog.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert cat @recorder.use_cassette('radar_dataset_cat') def test_simple_radar_cat(): """Test parsing of radar server catalog.""" url = 'http://thredds.ucar.edu/thredds/radarServer/nexrad/level2/IDD/dataset.xml' cat = TDSCatalog(url) assert cat @recorder.use_cassette('point_feature_dataset_xml') def test_simple_point_feature_collection_xml(): """Test accessing point feature top-level catalog.""" url = ('http://thredds.ucar.edu/thredds/catalog/nws/metar/ncdecoded/catalog.xml' '?dataset=nws/metar/ncdecoded/Metar_Station_Data_fc.cdmr') cat = TDSCatalog(url) assert cat @recorder.use_cassette('html_then_xml_catalog') def test_html_link(recwarn): """Test that we fall-back when given an HTML catalog page.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/' 'grib/NCEP/RAP/CONUS_13km/catalog.html') TDSCatalog(url) assert 'Changing' in str(recwarn.pop(UserWarning).message) @recorder.use_cassette('follow_cat') def test_catalog_follow(): """Test catalog reference following.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' ref_name = 'Forecast Model Data' cat = TDSCatalog(url).catalog_refs[ref_name].follow() assert cat @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_order(): """Test that we properly order datasets parsed from the catalog.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert list(cat.datasets) == ['Full Collection (Reference / Forecast Time) Dataset', 'Best NAM CONUS 20km Time Series', 'Latest Collection for NAM CONUS 20km'] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_get_by_index(): """Test that datasets can be accessed by index.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert cat.datasets[0].name == 'Full Collection (Reference / Forecast Time) Dataset' assert cat.datasets[1].name == 'Best NAM CONUS 20km Time Series' assert cat.datasets[2].name == 'Latest Collection for NAM CONUS 20km' @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_str(): """Test that datasets are printed as expected.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert str(cat.datasets) == ("['Full Collection (Reference / Forecast Time) Dataset', " "'Best NAM CONUS 20km Time Series', " "'Latest Collection for NAM CONUS 20km']") @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_sliced_str(): """Test that datasets are printed as expected when sliced.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) assert str(cat.datasets[-2:]) == ('[Best NAM CONUS 20km Time Series, ' 'Latest Collection for NAM CONUS 20km]') @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_nearest_time(): """Test getting dataset by time using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) nearest = cat.catalog_refs.filter_time_nearest(datetime(2015, 5, 28, 17)) assert nearest.title == 'NAM_CONUS_20km_noaaport_20150528_1800.grib1' @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_nearest_time_30(): """Test getting dataset by time; check for a day in the 30s (#gh-173).""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) nearest = cat.catalog_refs.filter_time_nearest(datetime(2015, 5, 30, 11)) assert nearest.title == 'NAM_CONUS_20km_noaaport_20150530_1200.grib1' @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_nearest_time_raises(): """Test getting dataset by time using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) # Datasets doesn't have any timed datasets with pytest.raises(ValueError): cat.datasets.filter_time_nearest(datetime(2015, 5, 28, 17)) @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_time_range(): """Test getting datasets by time range using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) in_range = cat.catalog_refs.filter_time_range(datetime(2015, 5, 28, 0), datetime(2015, 5, 29, 0)) titles = [item.title for item in in_range] assert titles == ['NAM_CONUS_20km_noaaport_20150528_0000.grib1', 'NAM_CONUS_20km_noaaport_20150528_0600.grib1', 'NAM_CONUS_20km_noaaport_20150528_1200.grib1', 'NAM_CONUS_20km_noaaport_20150528_1800.grib1', 'NAM_CONUS_20km_noaaport_20150529_0000.grib1'] @recorder.use_cassette('top_level_20km_rap_catalog') def test_datasets_time_range_raises(): """Test getting datasets by time range using filenames.""" url = ('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/NAM/' 'CONUS_20km/noaaport/catalog.xml') cat = TDSCatalog(url) # No time-based dataset names with pytest.raises(ValueError): cat.datasets.filter_time_range(datetime(2015, 5, 28, 0), datetime(2015, 5, 29, 0)) @recorder.use_cassette('top_level_cat') def test_catalog_ref_order(): """Test that catalog references are properly ordered.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert list(cat.catalog_refs) == ['Forecast Model Data', 'Forecast Products and Analyses', 'Observation Data', 'Radar Data', 'Satellite Data', 'Unidata case studies'] @recorder.use_cassette('cat_non_standard_context_path') def test_non_standard_context_path(): """Test accessing TDS with non-standard Context Path.""" url = 'http://ereeftds.bom.gov.au/ereefs/tds/catalog/ereef/mwq/P1A/catalog.xml' cat = TDSCatalog(url) ds = cat.datasets['A20020101.P1A.ANN_MIM_RMP.nc'] expected = ('http://ereeftds.bom.gov.au/ereefs/tds/dodsC/ereef/mwq/' 'P1A/A20020101.P1A.ANN_MIM_RMP.nc') assert ds.access_urls['OPENDAP'] == expected @recorder.use_cassette('cat_access_elements') def test_access_elements(): """Test parsing access elements in TDS client catalog.""" url = 'http://oceandata.sci.gsfc.nasa.gov/opendap/SeaWiFS/L3SMI/2001/001/catalog.xml' cat = TDSCatalog(url) assert len(list(cat.datasets)) != 0 @recorder.use_cassette('cat_only_http') def test_simple_service_within_compound(): """Test parsing of a catalog that asks for a single service within a compound one.""" url = ('http://thredds-test.unidata.ucar.edu/thredds/catalog/noaaport/text/' 'tropical/atlantic/hdob/catalog.xml') cat = TDSCatalog(url) assert (cat.datasets[0].access_urls == {'HTTPServer': 'http://thredds-test.unidata.ucar.edu/thredds/' 'fileServer/noaaport/text/tropical/atlantic/hdob/' 'High_density_obs_20170824.txt'}) @recorder.use_cassette('rsmas_ramadda') def test_ramadda_catalog(): """Test parsing a catalog from RAMADDA.""" url = 'http://weather.rsmas.miami.edu/repository?output=thredds.catalog' cat = TDSCatalog(url) assert len(cat.catalog_refs) == 12 @recorder.use_cassette('rsmas_ramadda_datasets') def test_ramadda_access_urls(): """Test creating access urls from a catalog from RAMADDA.""" url = 'http://weather.rsmas.miami.edu/repository?output=thredds.catalog' # Walk down a few levels to where we can get a dataset cat = (TDSCatalog(url).catalog_refs[0].follow().catalog_refs[0].follow() .catalog_refs[0].follow()) ds = cat.datasets[3] assert ds.access_urls['opendap'] == ('http://weather.rsmas.miami.edu/repository/opendap/' 'synth:a43c1cc4-1cf2-4365-97b9-6768b8201407:L3YyYl91c' '2VzRUNPQS9keW5hbW9fYmFzaWNfdjJiXzIwMTFhbGwubmM=' '/entry.das') @recorder.use_cassette('tds50_catalogref_follow') def test_tds50_catalogref_follow(): """Test following a catalog ref url on TDS 5.""" cat = TDSCatalog('http://thredds-test.unidata.ucar.edu/thredds/catalog.xml') assert len(cat.catalog_refs[0].follow().catalog_refs) == 59 @recorder.use_cassette('top_level_cat') def test_catalog_ref_str(): """Test that catalog references are properly represented as strings.""" url = 'http://thredds.ucar.edu/thredds/catalog.xml' cat = TDSCatalog(url) assert str(cat.catalog_refs[0]) == 'Forecast Model Data' @recorder.use_cassette('ncei_embedded_metadata') def test_catalog_with_embedded_metadata_elements(): """Test catalog with embedded metadata elements.""" url = 'https://www.ncei.noaa.gov/thredds/catalog/namanl/201802/20180220/catalog.xml' cat = TDSCatalog(url) md = cat.metadata assert 'external_metadata' in md assert 'serviceName' in md @recorder.use_cassette('latest_resolver_on_latest_dataset') def test_latest_resolver_fail(): """Test getting latest on catalog that does not have a resolver.""" cat = TDSCatalog('http://thredds.ucar.edu/thredds/catalog/grib/NCEP/GFS/' 'Global_0p25deg_ana/latest.xml') latest = '' with pytest.raises(AttributeError) as excinfo: latest = cat.latest assert latest == '' assert '"latest" not available for this catalog' in str(excinfo.value)
39.559172
95
0.687234
6056888e31e0f6b32971566ba3dd54d4fbde30b2
3,202
bzl
Python
api/bazel/repository_locations.bzl
yuxiaobo96/envoy
789a95989f62ed1bbb2822c0f236300099f1bdb9
[ "Apache-2.0" ]
null
null
null
api/bazel/repository_locations.bzl
yuxiaobo96/envoy
789a95989f62ed1bbb2822c0f236300099f1bdb9
[ "Apache-2.0" ]
null
null
null
api/bazel/repository_locations.bzl
yuxiaobo96/envoy
789a95989f62ed1bbb2822c0f236300099f1bdb9
[ "Apache-2.0" ]
null
null
null
BAZEL_SKYLIB_RELEASE = "0.8.0" BAZEL_SKYLIB_SHA256 = "2ef429f5d7ce7111263289644d233707dba35e39696377ebab8b0bc701f7818e" OPENCENSUS_PROTO_GIT_SHA = "5cec5ea58c3efa81fa808f2bd38ce182da9ee731" # Jul 25, 2019 OPENCENSUS_PROTO_SHA256 = "faeb93f293ff715b0cb530d273901c0e2e99277b9ed1c0a0326bca9ec5774ad2" PGV_GIT_SHA = "a18376249eb51cdd517f67fe8703897322812e6d" # Nov 5, 2019 PGV_SHA256 = "8e45a3582e7fa9d0005ad6ff1ed9208e793b847f1c455d2bbe5b1c580338ffaf" GOOGLEAPIS_GIT_SHA = "82944da21578a53b74e547774cf62ed31a05b841" # Dec 2, 2019 GOOGLEAPIS_SHA = "a45019af4d3290f02eaeb1ce10990166978c807cb33a9692141a076ba46d1405" PROMETHEUS_GIT_SHA = "99fa1f4be8e564e8a6b613da7fa6f46c9edafc6c" # Nov 17, 2017 PROMETHEUS_SHA = "783bdaf8ee0464b35ec0c8704871e1e72afa0005c3f3587f65d9d6694bf3911b" KAFKA_SOURCE_SHA = "ae7a1696c0a0302b43c5b21e515c37e6ecd365941f68a510a7e442eebddf39a1" # 2.2.0-rc2 UDPA_GIT_SHA = "a45f154471612140bc7f4a4d5abbc8a315848d7f" # Dec 12, 2019 UDPA_SHA256 = "03e794f7bae192930213622105bf9c6891e7de20c22deae12d8e92f54baca8c5" ZIPKINAPI_RELEASE = "0.2.2" # Aug 23, 2019 ZIPKINAPI_SHA256 = "688c4fe170821dd589f36ec45aaadc03a618a40283bc1f97da8fa11686fc816b" REPOSITORY_LOCATIONS = dict( bazel_skylib = dict( sha256 = BAZEL_SKYLIB_SHA256, urls = ["https://github.com/bazelbuild/bazel-skylib/releases/download/" + BAZEL_SKYLIB_RELEASE + "/bazel-skylib." + BAZEL_SKYLIB_RELEASE + ".tar.gz"], ), com_envoyproxy_protoc_gen_validate = dict( sha256 = PGV_SHA256, strip_prefix = "protoc-gen-validate-" + PGV_GIT_SHA, urls = ["https://github.com/envoyproxy/protoc-gen-validate/archive/" + PGV_GIT_SHA + ".tar.gz"], ), com_google_googleapis = dict( # TODO(dio): Consider writing a Skylark macro for importing Google API proto. sha256 = GOOGLEAPIS_SHA, strip_prefix = "googleapis-" + GOOGLEAPIS_GIT_SHA, urls = ["https://github.com/googleapis/googleapis/archive/" + GOOGLEAPIS_GIT_SHA + ".tar.gz"], ), com_github_cncf_udpa = dict( sha256 = UDPA_SHA256, strip_prefix = "udpa-" + UDPA_GIT_SHA, urls = ["https://github.com/cncf/udpa/archive/" + UDPA_GIT_SHA + ".tar.gz"], ), prometheus_metrics_model = dict( sha256 = PROMETHEUS_SHA, strip_prefix = "client_model-" + PROMETHEUS_GIT_SHA, urls = ["https://github.com/prometheus/client_model/archive/" + PROMETHEUS_GIT_SHA + ".tar.gz"], ), opencensus_proto = dict( sha256 = OPENCENSUS_PROTO_SHA256, strip_prefix = "opencensus-proto-" + OPENCENSUS_PROTO_GIT_SHA + "/src", urls = ["https://github.com/census-instrumentation/opencensus-proto/archive/" + OPENCENSUS_PROTO_GIT_SHA + ".tar.gz"], ), kafka_source = dict( sha256 = KAFKA_SOURCE_SHA, strip_prefix = "kafka-2.2.0-rc2/clients/src/main/resources/common/message", urls = ["https://github.com/apache/kafka/archive/2.2.0-rc2.zip"], ), com_github_openzipkin_zipkinapi = dict( sha256 = ZIPKINAPI_SHA256, strip_prefix = "zipkin-api-" + ZIPKINAPI_RELEASE, urls = ["https://github.com/openzipkin/zipkin-api/archive/" + ZIPKINAPI_RELEASE + ".tar.gz"], ), )
48.515152
158
0.732667
9dbe6b8ab778cbd94d61248fc74b976bdb72f82b
1,127
py
Python
medium/781-rabbits-in-forest.py
wanglongjiang/leetcode
c61d2e719e81575cfb5bde9d64e15cee7cf01ef3
[ "MIT" ]
2
2021-03-14T11:38:26.000Z
2021-03-14T11:38:30.000Z
medium/781-rabbits-in-forest.py
wanglongjiang/leetcode
c61d2e719e81575cfb5bde9d64e15cee7cf01ef3
[ "MIT" ]
null
null
null
medium/781-rabbits-in-forest.py
wanglongjiang/leetcode
c61d2e719e81575cfb5bde9d64e15cee7cf01ef3
[ "MIT" ]
1
2022-01-17T19:33:23.000Z
2022-01-17T19:33:23.000Z
''' 森林中的兔子 森林中,每个兔子都有颜色。其中一些兔子(可能是全部)告诉你还有多少其他的兔子和自己有相同的颜色。我们将这些回答放在 answers 数组里。 返回森林中兔子的最少数量。 示例: 输入: answers = [1, 1, 2] 输出: 5 解释: 两只回答了 "1" 的兔子可能有相同的颜色,设为红色。 之后回答了 "2" 的兔子不会是红色,否则他们的回答会相互矛盾。 设回答了 "2" 的兔子为蓝色。 此外,森林中还应有另外 2 只蓝色兔子的回答没有包含在数组中。 因此森林中兔子的最少数量是 5: 3 只回答的和 2 只没有回答的。 输入: answers = [10, 10, 10] 输出: 11 输入: answers = [] 输出: 0 说明: answers 的长度最大为1000。 answers[i] 是在 [0, 999] 范围内的整数。 ''' from typing import List ''' 思路:一次遍历。(官方给这个思路叫贪心算法) 一个兔子说的数字是除自己以外的兔子数量n,那么跟这个兔子同色的兔子共n+1只,n一共会出现n+1次。 故每个数字如果不满足数字n出现n+1次,需要补足n+1。 时间复杂度:O(n) 空间复杂度:O(n) ''' class Solution: def numRabbits(self, answers: List[int]) -> int: nums = {} # 统计每个数字出现的次数 for a in answers: if a in nums: nums[a] += 1 else: nums[a] = 1 count = len(answers) # 兔子的总数量 for num, c in nums.items(): d, r = divmod(c, num + 1) if r > 0: count += num + 1 - r # 如果数字出现的次数不是num+1的整数倍,缺少的兔子需要补充 return count s = Solution() print(s.numRabbits([1, 1, 2])) print(s.numRabbits([10, 10, 10])) print(s.numRabbits([]))
19.77193
70
0.597161
636fac92cd5a53da0dbc4ae3081c8311393376d1
4,086
py
Python
text_based_sorts/test.py
AshuHK/Sorting_Visualization
24d4edbda1ef15f950dc2acf27e93e005c6c0522
[ "MIT" ]
null
null
null
text_based_sorts/test.py
AshuHK/Sorting_Visualization
24d4edbda1ef15f950dc2acf27e93e005c6c0522
[ "MIT" ]
null
null
null
text_based_sorts/test.py
AshuHK/Sorting_Visualization
24d4edbda1ef15f950dc2acf27e93e005c6c0522
[ "MIT" ]
1
2020-05-04T23:43:23.000Z
2020-05-04T23:43:23.000Z
# import the sorts here from InsertionSort import insertion_sort from SelectionSort import selection_sort from BubbleSort import bubble_sort from QuickSort import quick_sort from MergeSort import merge_sort # used to generate the rules import random import time def generate_results(test_list, total_time, sort_type): """ Takes the information from the test functions and builds the results into a string for readability :param test_list: Python list that is ideally sorted :param total_time: Time object that is total time of the sort :param sort_type: String of the done to get the result """ # create an empty string result_str = "" # add the appropriate string based on if the list is sorted if test_list == sorted(test_list): result_str += "Test: Successful\t" else: result_str += "Test: Fail\t" # build the final string with the sort type given result_str += "{} sort time: {:5f} seconds".format(sort_type, total_time) return result_str def test_bubble(user_int): # build the test list test_list = [i for i in range(user_int)] random.shuffle(test_list) # time tracking of the sort start_time = time.time() bubble_sort(test_list) final_time = time.time() # generate and print results total_time = final_time - start_time result_str = generate_results(test_list, total_time, " Bubble") print(result_str) return None def test_insertion(user_int): # build the test list test_list = [i for i in range(user_int)] random.shuffle(test_list) # time tracking of the sort start_time = time.time() insertion_sort(test_list, 0, len(test_list) - 1) final_time = time.time() # generate and print results total_time = final_time - start_time result_str = generate_results(test_list, total_time, "Insertion") print(result_str) return None def test_selection(user_int): # build the test list test_list = [i for i in range(user_int)] random.shuffle(test_list) # time tracking of the sort start_time = time.time() selection_sort(test_list) final_time = time.time() # generate and print results total_time = final_time - start_time result_str = generate_results(test_list, total_time, "Selection") print(result_str) return None def test_quick(user_int): # build the test list test_list = [i for i in range(user_int)] random.shuffle(test_list) # time tracking of the sort start_time = time.time() quick_sort(test_list, 0, len(test_list) - 1) final_time = time.time() # generate and print results total_time = final_time - start_time result_str = generate_results(test_list, total_time, " Quick") print(result_str) return None def test_merge(user_int): # build the test list test_list = [i for i in range(user_int)] random.shuffle(test_list) # time tracking of the sort start_time = time.time() merge_sort(test_list) final_time = time.time() # generate and print results total_time = final_time - start_time result_str = generate_results(test_list, total_time, " Merge") print(result_str) return None def main(): # print a warning for the user about the O(n^2) algorithms warning_str = """ The first 3 sorts in this program (bubble, insertion, and selection) will take a significant amount of time if you input something greater than 20,000. """ print(warning_str) # take input for the size try: user_int = int(input("\nInput the size of the list to be generated: ")) if user_int < 0: user_int *= -1 except ValueError: # sets a default size as exception handling user_int = 1000 # run the test suite print("\n") test_bubble(user_int) test_insertion(user_int) test_selection(user_int) test_quick(user_int) test_merge(user_int) print("\n") return None if __name__ == "__main__": main()
23.084746
79
0.679148
115bbe7e5ca5952a8bc3797ada001c2c9855137e
17,668
py
Python
serv.py
pindos11/2017_17-01_project
725f334594c609aa57b31c3bc55ccbe4fec14dc5
[ "MIT" ]
null
null
null
serv.py
pindos11/2017_17-01_project
725f334594c609aa57b31c3bc55ccbe4fec14dc5
[ "MIT" ]
1
2017-12-27T17:28:17.000Z
2017-12-27T17:28:17.000Z
serv.py
pindos11/2017_17-01_project
725f334594c609aa57b31c3bc55ccbe4fec14dc5
[ "MIT" ]
null
null
null
from multiprocessing import Process import socket,time,sqlite3,time,os,random try: import serv_settings except: f = open("serv_settings.py","w") t = ''' IP_ADDRESS = "" PORT = 9090 KEY_DECAY_TIME = 3600 ONLINE_CONFIRM_TIME = 600 LOGGING = 1 LOGFOLDER = "logs" MAX_CLIENTS = 100 ''' f.write(t) f.close() import serv_settings def error_p(errmsg): print("Error: "+errmsg) def logmsg(logmsg): a = time.strftime("%H-%M %d %h %Y") print(a+": "+logmsg) def add_nulls(dlen,data): to_ret = data if(len(data)<dlen): dif = dlen-len(data) to_ret = "0"*dif+to_ret return to_ret class logging_db: def __init__(self): cur,connection = self.connect_to_db() cur.execute(''' CREATE TABLE IF NOT EXISTS errlogs( ADDR TEXT, DATE TEXT, ERROR TEXT) ''') cur.execute(''' CREATE TABLE IF NOT EXISTS traffics( ADDR TEXT, TYPE TEXT, AMOUNT INTEGER) ''')#amount in bytes connection.commit() connection.close() #todo #make traffic counting #make error logging here #traffic counted by dates and users #tables must be wiped sometimes))))00000 def add_traffic(self,addr,ttype,amount): cur,connection = self.connect_to_db() cur.execute("SELECT AMOUNT FROM traffics WHERE ADDR = ? AND TYPE = ?",(addr,ttype)) d = cur.fetchone() if(d!=None): num = d[0] num+=amount cur.execute("UPDATE traffics SET AMOUNT = ? WHERE ADDR = ? AND TYPE = ?",(num,addr,ttype)) else: cur.execute("INSERT INTO traffics VALUES (?,?,?)",(addr,ttype,amount)) connection.commit() connection.close() def add_error(self,addr,error): date = time.time() cur,connection = self.connect_to_db() cur.execute("INSERT INTO errlogs VALUES (?,?,?)",(addr,str(date),error)) connection.commit() connection.close() def connect_to_db(self): try: connection = sqlite3.connect(serv_settings.LOGFOLDER+"/"+"log.db") except: os.mkdir(serv_settings.LOGFOLDER) connection = sqlite3.connect(serv_settings.LOGFOLDER+"/"+"log.db") cur = connection.cursor() return(cur,connection) class dbwork: #1)login,password,id - logindata #2)id,key,time_to_change_key - keys #3)id,time_to_offline - onlines #4)id,unread_messages - messages def __init__(self): cur,connection = self.connect_to_db() #creating tables cur.execute(''' CREATE TABLE IF NOT EXISTS logindata( ID INTEGER PRIMARY KEY, LOGIN TEXT, PASSWORD TEXT) ''') cur.execute(''' CREATE TABLE IF NOT EXISTS keys( ID INTEGER, KEY INTEGER, DTIME INTEGER) ''') cur.execute(''' CREATE TABLE IF NOT EXISTS onlines( ID INTEGER PRIMARY KEY, OTIME INTEGER) ''') cur.execute(''' CREATE TABLE IF NOT EXISTS messages( ID INTEGER, MESSAGE BLOB) ''')#ID of the user to recive message connection.commit() connection.close() def connect_to_db(self): connection = sqlite3.connect("chatdb.db") cur = connection.cursor() return(cur,connection) def generate_key(self,ID): #generates a new key for given ID random.seed() cur,connection = self.connect_to_db() key = random.randint(10000000,99999999) ok = 0 while(ok==0): #generating a unique key for messaging cur.execute("SELECT * FROM keys WHERE KEY = ?",(key,)) if(cur.fetchone()==None): ok = 1 break else: key = random.randint(10000000,99999999) cur.execute("SELECT * FROM keys WHERE ID = ?",(ID,)) #checking if the dtime = time.time()+serv_settings.KEY_DECAY_TIME #ID in table if(cur.fetchone()==None): cur.execute("INSERT INTO keys VALUES (?,?,?)",(ID,key,dtime)) else: cur.execute("UPDATE keys SET KEY = ?, DTIME = ? WHERE ID = ?",(key,dtime,ID)) connection.commit() connection.close() return(key) def get_messages(self,ID): cur,connection = self.connect_to_db() cur.execute("SELECT MESSAGE FROM messages WHERE ID = ?",(ID,)) msgs = cur.fetchall() msgdata = b"" if(msgs==[]): connection.close() return(0) else: for msg in msgs: message = msg[0] msgdata+=message cur.execute("DELETE FROM messages WHERE ID = ?",(ID,)) connection.commit() connection.close() return(msgdata) def get_ID_by_login(self,login): cur,connection = self.connect_to_db() cur.execute("SELECT ID FROM logindata WHERE LOGIN = ?",(login,)) ID = cur.fetchone()[0] connection.close() return(ID) def get_key(self,ID): #returns a key for given ID cur,connection = self.connect_to_db() cur.execute("SELECT KEY FROM keys WHERE ID = ?",(ID,)) key = cur.fetchone() if(key!=None): key=key[0] connection.close() return(key) def get_key_dtime(self,ID): cur,connection = self.connect_to_db() cur.execute("SELECT DTIME FROM keys WHERE ID = ?",(ID,)) dtime = cur.fetchone() if(dtime!=None): dtime=dtime[0] connection.close() return(dtime) def get_ID_by_key(self,key): cur,connection = self.connect_to_db() cur.execute("SELECT ID, DTIME FROM keys WHERE key = ?",(key,)) uid = cur.fetchone() connection.close() if(uid==None): return(-1)#no such key else: dtime = uid[1] uid = uid[0] if(dtime<time.time()): return(-2)#timed out key else: return(uid) def update_user_online(self,ID): otime = time.time()+serv_settings.ONLINE_CONFIRM_TIME cur,connection = self.connect_to_db() cur.execute("REPLACE INTO onlines VALUES(?,?)",(ID,otime)) connection.commit() connection.close() def get_users_online(self): ctime = time.time() cur,connection = self.connect_to_db() cur.execute("SELECT ID FROM onlines WHERE OTIME > ?",(ctime,)) onlineIDs = cur.fetchall() onlines = [] if(onlineIDs == []): return([]) else: for oid in onlineIDs: onlines.append(oid[0]) return(onlines) def add_message(self,ID,msg): cur,connection = self.connect_to_db() cur.execute("INSERT INTO messages VALUES(?,?)",(ID,msg)) connection.commit() connection.close() def login(self,login,password): cur,connection = self.connect_to_db() cur.execute("SELECT * FROM logindata WHERE LOGIN = ?",(login,)) udata = cur.fetchone() if(udata==None): cur.execute("INSERT INTO logindata VALUES (NULL,?,?)",(login,password)) connection.commit() connection.close() ID = self.get_ID_by_login(login) key = self.generate_key(ID) self.update_user_online(ID) return([0,key]) #OK - new registered else: if(udata[2]==password): connection.close() ID = self.get_ID_by_login(login) key = self.generate_key(ID) self.update_user_online(ID) return([0,key]) #OK - ok login&pwd else: connection.close() return([1,0]) #login already exists(it means - password incorrect) class client_job: def send_close(self,data): self.send_msg(data) self.conn.close() def send_msg(self,data): count = 0 try: try: self.conn.send(data.encode("utf-8")) count = len(data.encode("utf-8")) except: self.conn.send(data) count = len(data) except: self.write_log("error sending to: "+str(self.addr)) return self.count_traffic(count,"out") def answer_ask_chk(self): self.ID = self.database.get_ID_by_key(self.key) if(self.ID>0): dtime = self.database.get_key_dtime(self.ID) dtime-=time.time() dtime = add_nulls(4,str(dtime)) self.database.update_user_online(self.ID) self.send_msg("OK"+dtime) return(-1) else: if(self.ID==-1): self.error = 5 #wrong key else: self.error = 6 #key timed out return(0) def read_ask_msg(self,data): try: ask_m = data.decode("utf-8") except: self.error = 1 #encoding failure return(0) if(len(ask_m)!=11): self.error = 3 #message badly structured return(0) mtype = ask_m[:3] if(mtype=="CHK"): try: self.key = int(ask_m[3:]) except: self.error = 5 return(0) return self.answer_ask_chk() if(mtype=="MES"): try: self.protocol = int(ask_m[3:7]) ret_bytes = int(ask_m[7:]) except: self.error = 1 return(0) return ret_bytes else: self.error = 2 #unknown initiation return(0) def check_key_ID(self): realID = self.database.get_ID_by_key(self.key) if(realID==self.ID): return(1) else: if(realID==-1): self.error = 5 return(0) else: self.error = 6 return(0) def process_message(self,trg_ID,message): if(self.check_key_ID()==1): if(self.database.get_key(trg_ID)==None): self.error = 9 return(0) else: msglen = str(add_nulls(4,str(len(message)))).encode("utf-8") sender = str(add_nulls(8,str(self.ID))).encode("utf-8") dbmsg = sender+msglen+message #add a sender's ID and msglen self.database.add_message(trg_ID,dbmsg) self.database.update_user_online(self.ID) msg = "OK"+add_nulls(16,"") self.send_msg(msg) return(-1) else: self.error = 5 return(0) def read_msg(self,data,len_m): if(len(data)!=len_m): self.error = 3 return(0) try: mtype = data[:3].decode("utf-8") except: self.error = 1 return(0) if(data[-3:].decode("utf-8")!="FIN"): self.error = 3 return(0) if(mtype=="MSG"):#messages can be not a unicode str if(self.protocol==1): try: self.ID = int(data[3:11].decode("utf-8")) self.key = int(data[11:19].decode("utf-8")) trg_ID = int(data[19:27].decode("utf-8")) except: self.error = 3 return(0) msg = data[27:-3] return(self.process_message(trg_ID,msg)) else: self.error = 4 #protocol mismatch return(0) try: cl_data = data.decode("utf-8") except: self.error = 1 return(0) if(cl_data[-3:]!="FIN"): self.error = 3 return(0) mtype = cl_data[:3] if(mtype=="LOG"): if(self.protocol==1): try: llen = int(cl_data[3:7]) plen = int(cl_data[7:11]) except: self.error = 3 return(0) self.login = cl_data[11:11+llen] self.password = cl_data[11+llen:11+llen+plen] result = self.database.login(self.login,self.password) if(result[0]==0): self.key = result[1] self.ID = self.database.get_ID_by_key(self.key) if(self.ID<0): self.error = 7 #internal error???? must not happen return(0) else: msg = "OK"+add_nulls(8,str(self.key))+add_nulls(8,str(self.ID)) self.send_msg(msg) return(-1) else: self.error = 8 #wrong password for existing login return(0) else: self.error = 4 return(0) if(mtype=="UPD"): if(self.protocol==1): try: self.key = int(cl_data[3:11]) except: self.error = 5 return(0) self.ID = self.database.get_ID_by_key(self.key) if(self.ID>0): msgdata = self.database.get_messages(self.ID) if(msgdata==0): self.error = 10 return(0) else: msgdata = msgdata msg = "OK"+add_nulls(16,str(len(msgdata))) self.database.update_user_online(self.ID) self.send_msg(msg) self.send_msg(msgdata) return(-1) else: self.error = 5 return(0) else: self.error = 4 return(0) if(mtype=="WOL"): if(self.protocol==1): onlines = self.database.get_users_online() if(onlines==[]): self.error = 11 return(0) outmsg = "" for oid in onlines: outmsg+=add_nulls(8,str(oid)) outmsg = outmsg.encode("utf-8") lenmsg = len(outmsg) msg = "OK"+add_nulls(16,str(lenmsg)) self.send_msg(msg) self.send_msg(outmsg) return(-1) else: self.error = 4 return(0) def write_log(self,errtext): if(serv_settings.LOGGING==1 and self.error!=10 and self.error!=11): self.log.add_error(self.addr[0],errtext) outstr="Error ID: "+str(self.error)+" " outstr+="Error text: "+errtext+"\n" print(outstr) def count_traffic(self,num,traffic_type): if(serv_settings.LOGGING==1): self.log.add_traffic(self.addr[0],traffic_type,num) def work_with_client(self,conn,addr): self.log = logging_db() self.database = dbwork() self.conn = conn self.addr = addr self.ID = "" self.key = "" self.login = "" self.password = "" self.protocol = 0 self.error = 0 #zero is for unknown error try: data = self.conn.recv(11) except: print(1) to_recieve = self.read_ask_msg(data) if(to_recieve==0): bmsg = "BA"+add_nulls(4,str(self.error)) self.send_close(bmsg.encode("utf-8")) self.write_log("initiation bad from: "+str(self.addr)) return elif(to_recieve==-1): self.conn.close() return else: self.send_msg("OK0000".encode("utf-8")) data = conn.recv(to_recieve) to_recieve = self.read_msg(data,to_recieve) if(to_recieve==0): bmsg = "BA"+add_nulls(16,str(self.error)) self.send_close(bmsg.encode("utf-8")) self.write_log("shit with message from: "+str(self.addr)) else: self.conn.close() #KEEP IN MIND THAT MULTIPROCESS DOES NOT WORK IN IDLE, START THE SERVER #USING A DOUBLECLICK ON PY FILE def start_process(conne,addre): job = client_job() job.work_with_client(conne,addre) if(__name__=="__main__"): sock = socket.socket() sock.bind((serv_settings.IP_ADDRESS, serv_settings.PORT)) sock.listen(serv_settings.MAX_CLIENTS) while True: conn, addr = sock.accept() answ = Process(target=start_process,args=(conn,addr)) answ.start() answ.join()
33.462121
103
0.482001