hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
ecbc2a5a9d0a3618b16e1f22cd8275ab7c2c8270
625
py
Python
test_attestation_record.py
blockchainhelppro/Ether-Based-App
8c52abd30adcad5b120a9d1f238ea34cdefd2ca1
[ "MIT" ]
null
null
null
test_attestation_record.py
blockchainhelppro/Ether-Based-App
8c52abd30adcad5b120a9d1f238ea34cdefd2ca1
[ "MIT" ]
null
null
null
test_attestation_record.py
blockchainhelppro/Ether-Based-App
8c52abd30adcad5b120a9d1f238ea34cdefd2ca1
[ "MIT" ]
null
null
null
import pytest from beacon_chain.state.attestation_record import ( AttestationRecord, ) @pytest.mark.parametrize( 'param,default_value', [ ('slot', 0), ('shard_id', 0), ('oblique_parent_hashes', []), ('shard_block_hash', b'\x00'*32), ('attester_bitfield', b''), ('aggregate_sig', [0, 0]), ] ) def test_defaults(param, default_value, sample_attestation_record_params): del sample_attestation_record_params[param] attestation_record = AttestationRecord(**sample_attestation_record_params) assert getattr(attestation_record, param) == default_value
26.041667
78
0.68
0d4c59b6a0dbfb277d2e9d7b0217187673384735
7,095
py
Python
aiida/tools/data/array/kpoints/seekpath.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
1
2016-09-12T10:51:00.000Z
2016-09-12T10:51:00.000Z
aiida/tools/data/array/kpoints/seekpath.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
17
2020-03-11T17:04:05.000Z
2020-05-01T09:34:45.000Z
aiida/tools/data/array/kpoints/seekpath.py
louisponet/aiida-core
3214236df66a3792ee57fe38a06c0c3bb65861ab
[ "MIT", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Tool to automatically determine k-points for a given structure using SeeK-path.""" import seekpath from aiida.orm import KpointsData, Dict __all__ = ('get_explicit_kpoints_path', 'get_kpoints_path') def get_explicit_kpoints_path(structure, parameters): """ Return the kpoint path for band structure (in scaled and absolute coordinates), given a crystal structure, using the paths proposed in the various publications (see description of the 'recipe' input parameter). The parameters are the same as get get_explicit_k_path in __init__, but here all structures are input and returned as AiiDA structures rather than tuples, and similarly k-points-related information as a AiiDA KpointsData class. :param structure: The AiiDA StructureData for which we want to obtain the suggested path. :param parameters: A dictionary whose key-value pairs are passed as additional kwargs to the ``seekpath.get_explicit_k_path`` function. :return: A dictionary with four nodes: - ``explicit_kpoints``: a KpointsData with the (explicit) kpoints (with labels set). - ``parameters``: a Dict, whose content is the same dictionary as returned by the ``seekpath.get_explicit_k_path`` function (see `seekpath documentation <https://seekpath.readthedocs.io/>`_), except that: - ``conv_lattice``, ``conv_positions``, ``conv_types`` are removed and replaced by the ``conv_structure`` output node - ``primitive_lattice``, ``primitive_positions``, ``primitive_types`` are removed and replaced by the `primitive_structure` output node - ``reciprocal_primitive_lattice``, ``explicit_kpoints_abs``, ``explicit_kpoints_rel`` and ``explicit_kpoints_labels`` are removed and replaced by the ``explicit_kpoints`` output node - ``primitive_structure``: A StructureData with the primitive structure - ``conv_structure``: A StructureData with the primitive structure """ # pylint: disable=too-many-locals from aiida.tools.data.structure import spglib_tuple_to_structure, structure_to_spglib_tuple structure_tuple, kind_info, kinds = structure_to_spglib_tuple(structure) result = {} rawdict = seekpath.get_explicit_k_path(structure=structure_tuple, **parameters) # Replace primitive structure with AiiDA StructureData primitive_lattice = rawdict.pop('primitive_lattice') primitive_positions = rawdict.pop('primitive_positions') primitive_types = rawdict.pop('primitive_types') primitive_tuple = (primitive_lattice, primitive_positions, primitive_types) primitive_structure = spglib_tuple_to_structure(primitive_tuple, kind_info, kinds) # Replace conv structure with AiiDA StructureData conv_lattice = rawdict.pop('conv_lattice') conv_positions = rawdict.pop('conv_positions') conv_types = rawdict.pop('conv_types') conv_tuple = (conv_lattice, conv_positions, conv_types) conv_structure = spglib_tuple_to_structure(conv_tuple, kind_info, kinds) # Remove reciprocal_primitive_lattice, recalculated by kpoints class rawdict.pop('reciprocal_primitive_lattice') kpoints_abs = rawdict.pop('explicit_kpoints_abs') kpoints_labels = rawdict.pop('explicit_kpoints_labels') # set_kpoints expects labels like [[0,'X'],[34,'L'],...], so generate it here skipping empty labels labels = [[idx, label] for idx, label in enumerate(kpoints_labels) if label] kpoints = KpointsData() kpoints.set_cell_from_structure(primitive_structure) kpoints.set_kpoints(kpoints_abs, cartesian=True, labels=labels) result['parameters'] = Dict(dict=rawdict) result['explicit_kpoints'] = kpoints result['primitive_structure'] = primitive_structure result['conv_structure'] = conv_structure return result def get_kpoints_path(structure, parameters): """ Return the kpoint path information for band structure given a crystal structure, using the paths from the chosen recipe/reference. The parameters are the same as get get_path in __init__, but here all structures are input and returned as AiiDA structures rather than tuples. If you use this module, please cite the paper of the corresponding recipe (see documentation of seekpath). :param structure: The crystal structure for which we want to obtain the suggested path. It should be an AiiDA StructureData object. :param parameters: A dictionary whose key-value pairs are passed as additional kwargs to the ``seekpath.get_path`` function. :return: A dictionary with three nodes: - ``parameters``: a Dict, whose content is the same dictionary as returned by the ``seekpath.get_path`` function (see `seekpath documentation <https://seekpath.readthedocs.io/>`_), except that: - ``conv_lattice``, ``conv_positions``, ``conv_types`` are removed and replaced by the ``conv_structure`` output node - ``primitive_lattice``, ``primitive_positions``, ``primitive_types`` are removed and replaced by the ``primitive_structure`` output node - ``primitive_structure``: A StructureData with the primitive structure - ``conv_structure``: A StructureData with the primitive structure """ from aiida.tools.data.structure import spglib_tuple_to_structure, structure_to_spglib_tuple structure_tuple, kind_info, kinds = structure_to_spglib_tuple(structure) result = {} rawdict = seekpath.get_path(structure=structure_tuple, **parameters) result['parameters'] = Dict(dict=rawdict) # Replace conv structure with AiiDA StructureData conv_lattice = rawdict.pop('conv_lattice') conv_positions = rawdict.pop('conv_positions') conv_types = rawdict.pop('conv_types') result['conv_structure'] = spglib_tuple_to_structure((conv_lattice, conv_positions, conv_types), kind_info, kinds) # Replace primitive structure with AiiDA StructureData primitive_lattice = rawdict.pop('primitive_lattice') primitive_positions = rawdict.pop('primitive_positions') primitive_types = rawdict.pop('primitive_types') result['primitive_structure'] = spglib_tuple_to_structure((primitive_lattice, primitive_positions, primitive_types), kind_info, kinds) return result
45.191083
120
0.691755
4b2b8e5792c282ff7472a3c8808448ccf123d471
605
py
Python
examples/106-git-pipeline.py
sarabala1979/argo-dataflow
1f296034d0746b01a70e281faf2c0e8640d37ea1
[ "Apache-2.0" ]
null
null
null
examples/106-git-pipeline.py
sarabala1979/argo-dataflow
1f296034d0746b01a70e281faf2c0e8640d37ea1
[ "Apache-2.0" ]
null
null
null
examples/106-git-pipeline.py
sarabala1979/argo-dataflow
1f296034d0746b01a70e281faf2c0e8640d37ea1
[ "Apache-2.0" ]
null
null
null
from argo_dataflow import pipeline, kafka if __name__ == '__main__': (pipeline("106-git") .owner('argoproj-labs') .describe("""This example of a pipeline using Git. The Git handler allows you to check your application source code into Git. Dataflow will checkout and build your code when the step starts. [Learn about Git steps](../docs/GIT.md)""") .step( (kafka('input-topic') .git('main', 'https://github.com/argoproj-labs/argo-dataflow', 'main', 'examples/git', 'quay.io/argoproj/dataflow-go1-16:latest') .kafka('output-topic') )) .save())
33.611111
138
0.654545
5809ed112b734ba5e6c2934eaca245cded265249
1,918
py
Python
python/lib/ucscGb/qa/qaUtils.py
psteinb/kent
3ff439f4e5194805359405bb4452c8d96a343932
[ "IJG" ]
null
null
null
python/lib/ucscGb/qa/qaUtils.py
psteinb/kent
3ff439f4e5194805359405bb4452c8d96a343932
[ "IJG" ]
null
null
null
python/lib/ucscGb/qa/qaUtils.py
psteinb/kent
3ff439f4e5194805359405bb4452c8d96a343932
[ "IJG" ]
null
null
null
import subprocess import pipes def callHgsql(database, command): """ Run hgsql command using subprocess, return stdout data if no error.""" cmd = ["hgsql", database, "-Ne", command] p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) cmdout, cmderr = p.communicate() if p.returncode != 0: # keep command arguments nicely quoted cmdstr = " ".join([pipes.quote(arg) for arg in cmd]) raise Exception("Error from: " + cmdstr + ": " + cmderr) return cmdout def runCommand(command): """Runs command in subprocess and raises exception if return code is not 0. Returns tuple (stdoutdata, stderrdata). """ p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) cmdout, cmderr = p.communicate() if p.returncode != 0: # keep command arguments nicely quoted cmdstr = " ".join([pipes.quote(arg) for arg in command]) raise Exception("Error from: " + cmdstr) return cmdout, cmderr def runCommandMergedOutErr(command): """Runs command in subprocess and raises exception if return code is not 0. Combines stdout and stderr into a single output. Returns stdoutdata string.""" p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # cmderr is empty, but we still need to call both so cmdout is properly set cmdout, cmderr = p.communicate() if p.returncode != 0: # keep command arguments nicely quoted cmdstr = " ".join([pipes.quote(arg) for arg in command]) raise Exception("Error from: " + cmdstr) return cmdout def runCommandNoAbort(command): """Runs command in subprocess. Returns tuple (stdoutdata, stderrdata) and returncode from process.""" p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) cmdout, cmderr = p.communicate() return cmdout, cmderr, p.returncode
43.590909
83
0.688738
0a6fe1a63652d60ffc637bba6eaeeb302d70d13a
4,803
py
Python
typeidea/blog/views.py
starpsp/typeidea-1
84e5c34b0e51fd62ccf2dc30a06c060b501d4f4d
[ "MIT" ]
null
null
null
typeidea/blog/views.py
starpsp/typeidea-1
84e5c34b0e51fd62ccf2dc30a06c060b501d4f4d
[ "MIT" ]
null
null
null
typeidea/blog/views.py
starpsp/typeidea-1
84e5c34b0e51fd62ccf2dc30a06c060b501d4f4d
[ "MIT" ]
null
null
null
import logging from datetime import date from django.core.cache import cache from django.db.models import Q, F from django.views.generic import ListView, DetailView, TemplateView from django.shortcuts import get_object_or_404 from config.models import SideBar from .models import Post, Category, Tag logger = logging.getLogger(__name__) class CommonViewMixin: def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update({ 'sidebars': self.get_sidebars(), }) context.update(self.get_navs()) return context def get_sidebars(self): return SideBar.objects.filter(status=SideBar.STATUS_SHOW) def get_navs(self): categories = Category.objects.filter(status=Category.STATUS_NORMAL) nav_categories = [] normal_categories = [] for cate in categories: if cate.is_nav: nav_categories.append(cate) else: normal_categories.append(cate) return { 'navs': nav_categories, 'categories': normal_categories, } class IndexView(CommonViewMixin, ListView): queryset = Post.objects.filter(status=Post.STATUS_NORMAL)\ .select_related('owner')\ .select_related('category') paginate_by = 5 context_object_name = 'post_list' template_name = 'blog/list.html' class CategoryView(IndexView): def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) category_id = self.kwargs.get('category_id') category = get_object_or_404(Category, pk=category_id) context.update({ 'category': category, }) return context def get_queryset(self): """ 重写querset,根据分类过滤 """ queryset = super().get_queryset() category_id = self.kwargs.get('category_id') return queryset.filter(category_id=category_id) class TagView(IndexView): def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) tag_id = self.kwargs.get('tag_id') tag = get_object_or_404(Tag, pk=tag_id) context.update({ 'tag': tag, }) return context def get_queryset(self): """ 重写querset,根据标签过滤 """ queryset = super().get_queryset() tag_id = self.kwargs.get('tag_id') return queryset.filter(tag__id=tag_id) class PostDetailView(CommonViewMixin, DetailView): queryset = Post.objects.filter(status=Post.STATUS_NORMAL) template_name = 'blog/detail.html' context_object_name = 'post' pk_url_kwarg = 'post_id' def get(self, request, *args, **kwargs): response = super().get(request, *args, **kwargs) self.handle_visited() return response def handle_visited(self): increase_pv = False increase_uv = False uid = self.request.uid pv_key = 'pv:%s:%s' % (uid, self.request.path) if not cache.get(pv_key): increase_pv = True cache.set(pv_key, 1, 1*60) # 1分钟有效 uv_key = 'uv:%s:%s:%s' % (uid, str(date.today()), self.request.path) if not cache.get(uv_key): increase_uv = True cache.set(uv_key, 1, 24*60*60) # 24小时有效 if increase_pv and increase_uv: Post.objects.filter(pk=self.object.id).update(pv=F('pv') + 1, uv=F('uv') + 1) elif increase_pv: Post.objects.filter(pk=self.object.id).update(pv=F('pv') + 1) elif increase_uv: Post.objects.filter(pk=self.object.id).update(uv=F('uv') + 1) class SearchView(IndexView): def get_context_data(self): context = super().get_context_data() context.update({ 'keyword': self.request.GET.get('keyword', '') }) return context def get_queryset(self): queryset = super().get_queryset() keyword = self.request.GET.get('keyword') if not keyword: return queryset return queryset.filter(Q(title__icontains=keyword) | Q(desc__icontains=keyword)) class AuthorView(IndexView): def get_queryset(self): queryset = super().get_queryset() author_id = self.kwargs.get('owner_id') return queryset.filter(owner_id=author_id) class Handler404(CommonViewMixin, TemplateView): template_name = '404.html' def get(self, request, *args, **kwargs): context = self.get_context_data(**kwargs) return self.render_to_response(context, status=404) class Handler50x(CommonViewMixin, TemplateView): template_name = '50x.html' def get(self, request, *args, **kwargs): context = self.get_context_data(**kwargs) return self.render_to_response(context, status=500)
30.592357
89
0.634187
d778730c03e1ec9d49aa2108fab2951734e8df67
125
py
Python
check_duplication.py
Damon-wenc/find_out_duplicated_number
42c9e692a65380c5166f9e9e9409a327f7aa354e
[ "MIT" ]
1
2019-07-08T11:37:02.000Z
2019-07-08T11:37:02.000Z
check_duplication.py
Damon-wenc/find_out_duplicated_number
42c9e692a65380c5166f9e9e9409a327f7aa354e
[ "MIT" ]
null
null
null
check_duplication.py
Damon-wenc/find_out_duplicated_number
42c9e692a65380c5166f9e9e9409a327f7aa354e
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import open_excel def check(num): return num in open_excel.G_saved_numbers
12.5
44
0.68
b5b2ee6449975e9c4ee136cf2b1da2d58cd6729c
15,874
py
Python
neutron_lbaas/services/loadbalancer/drivers/haproxy/namespace_driver.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
null
null
null
neutron_lbaas/services/loadbalancer/drivers/haproxy/namespace_driver.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
null
null
null
neutron_lbaas/services/loadbalancer/drivers/haproxy/namespace_driver.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import shutil import socket import netaddr from neutron.agent.linux import ip_lib from neutron.agent.linux import utils from neutron.common import exceptions from neutron.common import utils as n_utils from neutron.plugins.common import constants from oslo_config import cfg from oslo_log import log as logging from oslo_utils import excutils from neutron_lbaas._i18n import _LE, _LW from neutron_lbaas.services.loadbalancer.agent import agent_device_driver from neutron_lbaas.services.loadbalancer import constants as lb_const from neutron_lbaas.services.loadbalancer.drivers.haproxy import cfg as hacfg LOG = logging.getLogger(__name__) NS_PREFIX = 'qlbaas-' DRIVER_NAME = 'haproxy_ns' STATE_PATH_DEFAULT = '$state_path/lbaas' USER_GROUP_DEFAULT = 'nogroup' OPTS = [ cfg.StrOpt( 'loadbalancer_state_path', default=STATE_PATH_DEFAULT, help=_('Location to store config and state files'), deprecated_opts=[cfg.DeprecatedOpt('loadbalancer_state_path', group='DEFAULT')], ), cfg.StrOpt( 'user_group', default=USER_GROUP_DEFAULT, help=_('The user group'), deprecated_opts=[cfg.DeprecatedOpt('user_group', group='DEFAULT')], ), cfg.IntOpt( 'send_gratuitous_arp', default=3, help=_('When delete and re-add the same vip, send this many ' 'gratuitous ARPs to flush the ARP cache in the Router. ' 'Set it below or equal to 0 to disable this feature.'), ) ] cfg.CONF.register_opts(OPTS, 'haproxy') class HaproxyNSDriver(agent_device_driver.AgentDeviceDriver): def __init__(self, conf, plugin_rpc): self.conf = conf self.state_path = conf.haproxy.loadbalancer_state_path try: vif_driver_class = n_utils.load_class_by_alias_or_classname( 'neutron.interface_drivers', conf.interface_driver) except ImportError: with excutils.save_and_reraise_exception(): msg = (_('Error importing interface driver: %s') % conf.interface_driver) LOG.error(msg) self.vif_driver = vif_driver_class(conf) self.plugin_rpc = plugin_rpc self.pool_to_port_id = {} @classmethod def get_name(cls): return DRIVER_NAME def create(self, logical_config): pool_id = logical_config['pool']['id'] namespace = get_ns_name(pool_id) self._plug(namespace, logical_config['vip']['port'], logical_config['vip']['address']) self._spawn(logical_config) def update(self, logical_config): pool_id = logical_config['pool']['id'] pid_path = self._get_state_file_path(pool_id, 'pid') extra_args = ['-sf'] extra_args.extend(p.strip() for p in open(pid_path, 'r')) self._spawn(logical_config, extra_args) def _spawn(self, logical_config, extra_cmd_args=()): pool_id = logical_config['pool']['id'] namespace = get_ns_name(pool_id) conf_path = self._get_state_file_path(pool_id, 'conf') pid_path = self._get_state_file_path(pool_id, 'pid') sock_path = self._get_state_file_path(pool_id, 'sock') user_group = self.conf.haproxy.user_group hacfg.save_config(conf_path, logical_config, sock_path, user_group) cmd = ['haproxy', '-f', conf_path, '-p', pid_path] cmd.extend(extra_cmd_args) ns = ip_lib.IPWrapper(namespace=namespace) ns.netns.execute(cmd) # remember the pool<>port mapping self.pool_to_port_id[pool_id] = logical_config['vip']['port']['id'] @n_utils.synchronized('haproxy-driver') def undeploy_instance(self, pool_id, **kwargs): cleanup_namespace = kwargs.get('cleanup_namespace', False) delete_namespace = kwargs.get('delete_namespace', False) namespace = get_ns_name(pool_id) pid_path = self._get_state_file_path(pool_id, 'pid') # kill the process kill_pids_in_file(pid_path) # unplug the ports if pool_id in self.pool_to_port_id: self._unplug(namespace, self.pool_to_port_id[pool_id]) # delete all devices from namespace; # used when deleting orphans and port_id is not known for pool_id if cleanup_namespace: ns = ip_lib.IPWrapper(namespace=namespace) for device in ns.get_devices(exclude_loopback=True): self.vif_driver.unplug(device.name, namespace=namespace) # remove the configuration directory conf_dir = os.path.dirname(self._get_state_file_path(pool_id, '')) if os.path.isdir(conf_dir): shutil.rmtree(conf_dir) if delete_namespace: ns = ip_lib.IPWrapper(namespace=namespace) ns.garbage_collect_namespace() def exists(self, pool_id): namespace = get_ns_name(pool_id) root_ns = ip_lib.IPWrapper() socket_path = self._get_state_file_path(pool_id, 'sock', False) if root_ns.netns.exists(namespace) and os.path.exists(socket_path): try: s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.connect(socket_path) return True except socket.error: pass return False def get_stats(self, pool_id): socket_path = self._get_state_file_path(pool_id, 'sock', False) TYPE_BACKEND_REQUEST = 2 TYPE_SERVER_REQUEST = 4 if os.path.exists(socket_path): parsed_stats = self._get_stats_from_socket( socket_path, entity_type=TYPE_BACKEND_REQUEST | TYPE_SERVER_REQUEST) pool_stats = self._get_backend_stats(parsed_stats) pool_stats['members'] = self._get_servers_stats(parsed_stats) return pool_stats else: LOG.warning(_LW('Stats socket not found for pool %s'), pool_id) return {} def _get_backend_stats(self, parsed_stats): TYPE_BACKEND_RESPONSE = '1' for stats in parsed_stats: if stats.get('type') == TYPE_BACKEND_RESPONSE: unified_stats = dict((k, stats.get(v, '')) for k, v in hacfg.STATS_MAP.items()) return unified_stats return {} def _get_servers_stats(self, parsed_stats): TYPE_SERVER_RESPONSE = '2' res = {} for stats in parsed_stats: if stats.get('type') == TYPE_SERVER_RESPONSE: res[stats['svname']] = { lb_const.STATS_STATUS: (constants.INACTIVE if stats['status'] == 'DOWN' else constants.ACTIVE), lb_const.STATS_HEALTH: stats['check_status'], lb_const.STATS_FAILED_CHECKS: stats['chkfail'] } return res def _get_stats_from_socket(self, socket_path, entity_type): try: s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.connect(socket_path) s.send('show stat -1 %s -1\n' % entity_type) raw_stats = '' chunk_size = 1024 while True: chunk = s.recv(chunk_size) raw_stats += chunk if len(chunk) < chunk_size: break return self._parse_stats(raw_stats) except socket.error as e: LOG.warning(_LW('Error while connecting to stats socket: %s'), e) return {} def _parse_stats(self, raw_stats): stat_lines = raw_stats.splitlines() if len(stat_lines) < 2: return [] stat_names = [name.strip('# ') for name in stat_lines[0].split(',')] res_stats = [] for raw_values in stat_lines[1:]: if not raw_values: continue stat_values = [value.strip() for value in raw_values.split(',')] res_stats.append(dict(zip(stat_names, stat_values))) return res_stats def _get_state_file_path(self, pool_id, kind, ensure_state_dir=True): """Returns the file name for a given kind of config file.""" confs_dir = os.path.abspath(os.path.normpath(self.state_path)) conf_dir = os.path.join(confs_dir, pool_id) if ensure_state_dir: if not os.path.isdir(conf_dir): os.makedirs(conf_dir, 0o755) return os.path.join(conf_dir, kind) def _plug(self, namespace, port, vip_address, reuse_existing=True): self.plugin_rpc.plug_vip_port(port['id']) interface_name = self.vif_driver.get_device_name(Wrap(port)) if ip_lib.device_exists(interface_name, namespace=namespace): if not reuse_existing: raise exceptions.PreexistingDeviceFailure( dev_name=interface_name ) else: self.vif_driver.plug( port['network_id'], port['id'], interface_name, port['mac_address'], namespace=namespace ) cidrs = [ '%s/%s' % (ip['ip_address'], netaddr.IPNetwork(ip['subnet']['cidr']).prefixlen) for ip in port['fixed_ips'] ] self.vif_driver.init_l3(interface_name, cidrs, namespace=namespace) # Haproxy socket binding to IPv6 VIP address will fail if this address # is not yet ready(i.e tentative address). if netaddr.IPAddress(vip_address).version == 6: device = ip_lib.IPDevice(interface_name, namespace=namespace) device.addr.wait_until_address_ready(vip_address) gw_ip = port['fixed_ips'][0]['subnet'].get('gateway_ip') if not gw_ip: host_routes = port['fixed_ips'][0]['subnet'].get('host_routes', []) for host_route in host_routes: if host_route['destination'] == "0.0.0.0/0": gw_ip = host_route['nexthop'] break if gw_ip: cmd = ['route', 'add', 'default', 'gw', gw_ip] ip_wrapper = ip_lib.IPWrapper(namespace=namespace) ip_wrapper.netns.execute(cmd, check_exit_code=False) # When delete and re-add the same vip, we need to # send gratuitous ARP to flush the ARP cache in the Router. gratuitous_arp = self.conf.haproxy.send_gratuitous_arp if gratuitous_arp > 0: for ip in port['fixed_ips']: cmd_arping = ['arping', '-U', '-I', interface_name, '-c', gratuitous_arp, ip['ip_address']] ip_wrapper.netns.execute(cmd_arping, check_exit_code=False) def _unplug(self, namespace, port_id): port_stub = {'id': port_id} self.plugin_rpc.unplug_vip_port(port_id) interface_name = self.vif_driver.get_device_name(Wrap(port_stub)) self.vif_driver.unplug(interface_name, namespace=namespace) def _is_active(self, logical_config): # haproxy wil be unable to start without any active vip if ('vip' not in logical_config or (logical_config['vip']['status'] not in constants.ACTIVE_PENDING_STATUSES) or not logical_config['vip']['admin_state_up']): return False # not checking pool's admin_state_up to utilize haproxy ability to # turn backend off instead of doing undeploy. # in this case "ERROR 503: Service Unavailable" will be returned if (logical_config['pool']['status'] not in constants.ACTIVE_PENDING_STATUSES): return False return True @n_utils.synchronized('haproxy-driver') def deploy_instance(self, logical_config): """Deploys loadbalancer if necessary :returns: True if loadbalancer was deployed, False otherwise """ # do actual deploy only if vip and pool are configured and active if not logical_config or not self._is_active(logical_config): return False if self.exists(logical_config['pool']['id']): self.update(logical_config) else: self.create(logical_config) return True def _refresh_device(self, pool_id): logical_config = self.plugin_rpc.get_logical_device(pool_id) # cleanup if the loadbalancer wasn't deployed (in case nothing to # deploy or any errors) if not self.deploy_instance(logical_config) and self.exists(pool_id): self.undeploy_instance(pool_id) def create_vip(self, vip): self._refresh_device(vip['pool_id']) def update_vip(self, old_vip, vip): self._refresh_device(vip['pool_id']) def delete_vip(self, vip): self.undeploy_instance(vip['pool_id']) def create_pool(self, pool): # nothing to do here because a pool needs a vip to be useful pass def update_pool(self, old_pool, pool): self._refresh_device(pool['id']) def delete_pool(self, pool): if self.exists(pool['id']): self.undeploy_instance(pool['id'], delete_namespace=True) def create_member(self, member): self._refresh_device(member['pool_id']) def update_member(self, old_member, member): self._refresh_device(member['pool_id']) def delete_member(self, member): self._refresh_device(member['pool_id']) def create_pool_health_monitor(self, health_monitor, pool_id): self._refresh_device(pool_id) def update_pool_health_monitor(self, old_health_monitor, health_monitor, pool_id): self._refresh_device(pool_id) def delete_pool_health_monitor(self, health_monitor, pool_id): self._refresh_device(pool_id) def remove_orphans(self, known_pool_ids): if not os.path.exists(self.state_path): return orphans = (pool_id for pool_id in os.listdir(self.state_path) if pool_id not in known_pool_ids) for pool_id in orphans: if self.exists(pool_id): self.undeploy_instance(pool_id, cleanup_namespace=True) # NOTE (markmcclain) For compliance with interface.py which expects objects class Wrap(object): """A light attribute wrapper for compatibility with the interface lib.""" def __init__(self, d): self.__dict__.update(d) def __getitem__(self, key): return self.__dict__[key] def get_ns_name(namespace_id): return NS_PREFIX + namespace_id def kill_pids_in_file(pid_path): if os.path.exists(pid_path): with open(pid_path, 'r') as pids: for pid in pids: pid = pid.strip() try: utils.execute(['kill', '-9', pid], run_as_root=True) except RuntimeError: LOG.exception( _LE('Unable to kill haproxy process: %s'), pid )
37.527187
79
0.617425
78ec1f9e16cd0772ed24856d7ad51bc15776ed3b
3,504
py
Python
Plugins/Analyses/Live_Editor_Builders/Ships.py
bvbohnen/X4_Customizer
6f865008690916a66a44c97331d9a2692baedb35
[ "MIT" ]
25
2018-12-10T12:52:11.000Z
2022-01-29T14:42:57.000Z
Plugins/Analyses/Live_Editor_Builders/Ships.py
bvbohnen/X4_Customizer
6f865008690916a66a44c97331d9a2692baedb35
[ "MIT" ]
4
2019-08-01T19:09:11.000Z
2022-01-02T01:47:42.000Z
Plugins/Analyses/Live_Editor_Builders/Ships.py
bvbohnen/X4_Customizer
6f865008690916a66a44c97331d9a2692baedb35
[ "MIT" ]
6
2019-02-16T08:39:04.000Z
2021-12-21T06:11:58.000Z
from Framework import File_System from Framework.Live_Editor_Components import * # Convenience macro renaming. E = Edit_Item_Macro D = Display_Item_Macro G = Item_Group_Macro from .Support import Create_Objects_From_Asset_Files from .Support import physics_item_macros from .Support import connection_item_macros from ..Shared import Get_Ship_Macro_Files from ...Transforms.Support import Float_to_String # TODO: # Speed calculations depend on the engine. However, can make an assumption # about the engine to estimate speed. @Live_Editor_Object_Builder('ships') def _Build_Storage_Objects(): # Ensure some available refs are loaded. Live_Editor.Get_Category_Objects('storage') Live_Editor.Get_Category_Objects('dockingbays') Live_Editor.Get_Category_Objects('cockpits') # TODO: dynamic connections. # These would require looking up and processing the component file, # to try to identify eg. how many engines the ship has, and of which # tags, then to go look up engine data and determine what the thrusts are. # Overall, this route is plausible, but would be best served by a wider # scale parsing of data into custom classes for cross referencing, # whereas the code here just runs on xpaths in the original xml. #Live_Editor.Get_Category_Objects('engines') # Switch to shared function that finds more mod ships. #game_files = File_System.Get_All_Indexed_Files('macros','ship_*') game_files = Get_Ship_Macro_Files() return Create_Objects_From_Asset_Files(game_files, ship_item_macros) #def Display_Update_Speed(component, ship_type, purpose_primary, physics_drag_forward): # return '' ship_item_macros = [ E('ship_type' , './properties/ship' , 'type' , 'Ship Type' , ''), E('purpose_primary' , './properties/purpose' , 'primary' , 'Primary Purpose' , ''), E('hull' , './properties/hull' , 'max' , 'Hull' , ''), E('explosion_damage' , './properties/explosiondamage' , 'value' , 'Expl. Damage' , ''), E('people_capacity' , './properties/people' , 'capacity' , 'People' , ''), E('storage_missile' , './properties/storage' , 'missile' , 'Missile Storage' , ''), E('thruster_tags' , './properties/thruster' , 'tags' , 'Thruster Tags' , ''), E('secrecy_level' , './properties/secrecy' , 'level' , 'Secrecy Level' , ''), #D('speed' , Display_Update_Speed , 'Speed', 'Assumes combat mk3 engines'), *physics_item_macros, E('sounds_ship' , './properties/sounds/shipdetail' , 'ref' , 'Sound Effect' , ''), E('sound_occlusion' , './properties/sound_occlusion' , 'inside' , 'Sound Occlusion' , ''), # Loop over software. G('software' , './properties/software' , 'software' , 'Software' ), E('ware' , '.' , 'ware' , 'Ware' , ''), E('default' , '.' , 'default' , 'Default' , ''), E('compatible' , '.' , 'compatible' , 'Compatible' , ''), G('/software'), *connection_item_macros ]
47.351351
113
0.578767
bde254b85876657dffc62cdc8715fab456674390
425
py
Python
losses/__init__.py
RerRayne/learn3d
83e4ac657c6538fb4cbed6e00b2e3ed6cbf43555
[ "MIT" ]
335
2020-05-17T19:37:47.000Z
2022-03-29T09:32:14.000Z
losses/__init__.py
RerRayne/learn3d
83e4ac657c6538fb4cbed6e00b2e3ed6cbf43555
[ "MIT" ]
13
2020-06-08T05:28:03.000Z
2022-03-29T07:46:18.000Z
losses/__init__.py
RerRayne/learn3d
83e4ac657c6538fb4cbed6e00b2e3ed6cbf43555
[ "MIT" ]
59
2020-06-27T09:01:29.000Z
2022-03-21T07:22:09.000Z
from .rmse_features import RMSEFeaturesLoss from .frobenius_norm import FrobeniusNormLoss from .classification import ClassificationLoss from .correspondence_loss import CorrespondenceLoss try: from .emd import EMDLoss except: print("Sorry EMD loss is not compatible with your system!") try: from .chamfer_distance import ChamferDistanceLoss except: print("Sorry ChamferDistance loss is not compatible with your system!")
35.416667
72
0.837647
0255243a31c998dfb2dedf3bd9aab0908983ecc5
4,027
py
Python
paradigm_pattern_separation.py
danielmk/pyDentateeLife2020
b4a9f2beaa0c74dbc9583e2cf228856612596f8a
[ "MIT" ]
null
null
null
paradigm_pattern_separation.py
danielmk/pyDentateeLife2020
b4a9f2beaa0c74dbc9583e2cf228856612596f8a
[ "MIT" ]
null
null
null
paradigm_pattern_separation.py
danielmk/pyDentateeLife2020
b4a9f2beaa0c74dbc9583e2cf228856612596f8a
[ "MIT" ]
4
2020-02-18T09:25:20.000Z
2021-11-20T23:52:29.000Z
# -*- coding: utf-8 -*- """ Created on Mon Mar 05 13:41:23 2018 @author: DanielM """ from neuron import h, gui # gui necessary for some parameters to h namespace import numpy as np import net_tunedrev from burst_generator_inhomogeneous_poisson import inhom_poiss import os import argparse # Handle command line inputs with argparse parser = argparse.ArgumentParser(description='Pattern separation paradigm') parser.add_argument('-runs', nargs=3, type=int, help='start stop range for the range of runs', default=[0, 1, 1], dest='runs') parser.add_argument('-savedir', type=str, help='complete directory where data is saved', default=os.getcwd(), dest='savedir') args = parser.parse_args() runs = range(args.runs[0], args.runs[1], args.runs[2]) savedir = args.savedir # Where to search for nrnmech.dll file. Must be adjusted for your machine. dll_files = [("C:\\Users\\Daniel\\repos\\pyDentate\\mechs_7-5\\nrnmech.dll"), ("C:\\Users\\DanielM\\Repos\\models_dentate\\" "dentate_gyrus_Santhakumar2005_and_Yim_patterns\\" "dentategyrusnet2005\\nrnmech.dll"), "C:\\Users\\daniel\\Repos\\nrnmech.dll", ("C:\\Users\\Holger\\danielm\\models_dentate\\" "dentate_gyrus_Santhakumar2005_and_Yim_patterns\\" "dentategyrusnet2005\\nrnmech.dll"), ("C:\\Users\\Daniel\\repos\\" "dentate_gyrus_Santhakumar2005_and_Yim_patterns\\" "dentategyrusnet2005\\nrnmech.dll")] for x in dll_files: if os.path.isfile(x): dll_dir = x print("DLL loaded from: " + str(dll_dir)) h.nrn_load_dll(dll_dir) # Generate temporal patterns for the 100 PP inputs np.random.seed(10000) temporal_patterns = inhom_poiss() # Generate the PP -> GC mapping so that each GC receives inputs from 20/400 # randomly chosen PP inputs innervation_pattern_gc = np.array([np.random.choice(400, 20, replace=False) for x in range(2000)]) innervation_pattern_gc = innervation_pattern_gc.swapaxes(0, 1) PP_to_GCs = [] for x in range(0, 400): PP_to_GCs.append(np.argwhere(innervation_pattern_gc == x)[:, 1]) PP_to_GCs = np.array(PP_to_GCs) # Generate the PP -> BC mapping as above innervation_pattern_bc = np.array([np.random.choice(400, 20, replace=False) for x in range(24)]) innervation_pattern_bc = innervation_pattern_bc.swapaxes(0, 1) PP_to_BCs = [] for x in range(0, 400): PP_to_BCs.append(np.argwhere(innervation_pattern_bc == x)[:, 1]) PP_to_BCs = np.array(PP_to_BCs) all_targets = np.array([y for x in PP_to_GCs for y in x]) # Start the runs of the model for run in runs: nw = net_tunedrev.TunedNetwork(10000, temporal_patterns[0+run:24+run], PP_to_GCs[0+run:24+run], PP_to_BCs[0+run:24+run]) # Attach voltage recordings to all cells nw.populations[0].voltage_recording(range(2000)) nw.populations[1].voltage_recording(range(60)) nw.populations[2].voltage_recording(range(24)) nw.populations[3].voltage_recording(range(24)) # Run the model """Initialization for -2000 to -100""" h.cvode.active(0) dt = 0.1 h.steps_per_ms = 1.0/dt h.finitialize(-60) h.t = -2000 h.secondorder = 0 h.dt = 10 while h.t < -100: h.fadvance() h.secondorder = 2 h.t = 0 h.dt = 0.1 """Setup run control for -100 to 1500""" h.frecord_init() # Necessary after changing t to restart the vectors while h.t < 600: h.fadvance() print("Done Running") tuned_save_file_name = str(nw) + '_run_' + str(run) nw.shelve_network(savedir, tuned_save_file_name) fig = nw.plot_aps(time=600) tuned_fig_file_name = str(nw) + '_spike_plot_run_' + str(run) nw.save_ap_fig(fig, savedir, tuned_fig_file_name)
33.840336
78
0.636951
452972b77124fb789b3916638522ea25acba2b0f
7,168
py
Python
src/octopus/manufacturer/ika.py
gar-syn/congo-lab
dc50af4e35903556bc8bc34dc23a7a708c1f5422
[ "MIT" ]
1
2021-02-02T11:27:25.000Z
2021-02-02T11:27:25.000Z
src/octopus/manufacturer/ika.py
gar-syn/congo-lab
dc50af4e35903556bc8bc34dc23a7a708c1f5422
[ "MIT" ]
18
2021-02-01T11:35:15.000Z
2021-08-03T14:23:38.000Z
src/octopus/manufacturer/ika.py
gar-syn/congo-lab
dc50af4e35903556bc8bc34dc23a7a708c1f5422
[ "MIT" ]
null
null
null
# Twisted Imports from twisted.internet import defer from twisted.internet.protocol import Factory # Package Imports from octopus.util import now from octopus.machine import Machine, Stream, Property from octopus.protocol.basic import QueuedLineReceiver # # Serial Settings for IKA Eurostar # -------------------------------- # # Baud rate 9600 bps # Data bits 7 Parity Even # Stop bits 1 Flow control None # # Protocol type Raw TCP # class IKALineReceiver (QueuedLineReceiver): delimiter = b" \r \n" class IKAEurostar (Machine): protocolFactory = Factory.forProtocol(IKALineReceiver) name = "IKA Eurostar" def setup (self): # setup variables self.power = Property(title = "Power", type = str, options = ("on", "off"), setter = _set_power(self)) self.setpoint = Property(title = "Stirrer setpoint", type = float, unit = "rpm", setter = _set_setpoint(self)) self.rpm = Stream(title = "Stirrer Speed", type = float, unit = "rpm") self.torque = Stream(title = "Torque", type = float, unit = "Ncm") def start (self): # def interpret_power (result: str) -> str: # if result == "ON": # return "on" # elif result == "OFF": # return "off" def interpret_rpm (result: str) -> float: value, id = result.split(' ') if (id == "4"): return float(value) def interpret_torque (result: str) -> float: value, id = result.split(' ') if (id == "5"): return float(value) def interpret_setpoint (result: str) -> float: value, id = result.split(' ') if (id == "4"): return float(value) to_monitor = [] def addMonitor (command, fn, variable: Stream): def interpret (result): variable._push(fn(result), now()) to_monitor.append(( command, interpret )) # addMonitor("KM?", interpret_power, self.power) addMonitor("IN_PV_4", interpret_rpm, self.rpm) addMonitor("IN_PV_5", interpret_torque, self.torque) addMonitor("IN_SP_4", interpret_setpoint, self.setpoint) def monitor (): for cmd, fn in to_monitor: self.protocol.write(cmd).addCallback(fn) self._monitor = self._tick(monitor, 1) def stop (self): if self._monitor: self._monitor.stop() def reset (self): return defer.succeed('OK') def _set_power (machine: IKAEurostar): @defer.inlineCallbacks def set_power (power: str): if power == "on": yield machine.protocol.write("START_4", expectReply = False) else: yield machine.protocol.write("STOP_4", expectReply = False) machine.power._push(power) return set_power def _set_setpoint (machine: IKAEurostar): def set_setpoint (setpoint: float): return machine.protocol.write(f"OUT_SP_4 {setpoint:.1f}", expectReply = False) return set_setpoint # # Serial Settings for RCT 5 # ----------------------------------- # # Baud rate 9600 bps # Data bits 7 Parity None # Stop bits 1 Flow control None class RCT5 (Machine): protocolFactory = Factory.forProtocol(QueuedLineReceiver) name = "IKA RCT 5" def setup (self): # setup variables self.heater_power = Property(title = "Heater On", type = str, options = ("on", "off"), setter = _set_heater_power(self)) self.stirrer_power = Property(title = "Stirrer On", type = str, options = ("on", "off"), setter = _set_stirrer_power(self)) self.stirrer_setpoint = Property(title = "Stirrer setpoint", type = float, unit = "rpm", setter = _set_stirrer_setpoint(self)) self.heater_setpoint = Property(title = "Heater setpoint", type = float, unit = "rpm", setter = _set_heater_setpoint(self)) self.external_temperature = Stream(title = "External Temperature", type = float, unit = "C") self.hotplate_temperature = Stream(title = "Hotplate Temperature", type = float, unit = "C") self.stirrer_speed = Stream(title = "Stirrer Speed", type = float, unit = "rpm") self.viscosity = Stream(title = "Viscosity", type = float, unit = "%") def start (self): def interpret_external_temperature (result: str) -> float: value, id = result.split(' ') if (id == "1"): return float(value) def interpret_hotplate_temperature (result: str) -> float: value, id = result.split(' ') if (id == "2"): return float(value) def interpret_stirrer_speed (result: str) -> float: value, id = result.split(' ') if (id == "4"): return float(value) def interpret_viscosity (result: str) -> float: value, id = result.split(' ') if (id == "5"): return float(value) to_monitor = [] def addMonitor (command, fn, variable: Stream): def interpret (result): variable._push(fn(result), now()) to_monitor.append(( command, interpret )) addMonitor("IN_PV_1", interpret_external_temperature, self.external_temperature) addMonitor("IN_PV_2", interpret_hotplate_temperature, self.hotplate_temperature) addMonitor("IN_PV_4", interpret_stirrer_speed, self.stirrer_speed) addMonitor("IN_PV_5", interpret_viscosity, self.viscosity) def monitor (): for cmd, fn in to_monitor: self.protocol.write(cmd).addCallback(fn) self._monitor = self._tick(monitor, 1) def stop (self): if self._monitor: self._monitor.stop() def reset (self): return defer.succeed('OK') def _set_stirrer_power (machine: RCT5): @defer.inlineCallbacks def set_stirrer_power (power: str): if power == "on": yield machine.protocol.write("START_4", expectReply = False) else: yield machine.protocol.write("STOP_4", expectReply = False) machine.stirrer_power._push(power) return set_stirrer_power def _set_heater_power (machine: RCT5): @defer.inlineCallbacks def set_heater_power (power: str): if power == "on": yield machine.protocol.write("START_1", expectReply = False) else: yield machine.protocol.write("STOP_1", expectReply = False) machine.heater_power._push(power) return set_heater_power def _set_stirrer_setpoint (machine: RCT5): def set_stirrer_setpoint (setpoint: float): return machine.protocol.write(f"OUT_SP_4 {setpoint:.1f}", expectReply = False) return set_stirrer_setpoint def _set_heater_setpoint (machine: RCT5): def set_heater_setpoint (setpoint: float): return machine.protocol.write(f"OUT_SP_1 {setpoint:.1f}", expectReply = False) return set_heater_setpoint __all__ = ["IKAEurostar", "RCT5"]
32.581818
134
0.596819
2b472a9e48b561e6a2032d76a6cde05b3ae6ce9a
8,163
py
Python
fuji_server/evaluators/fair_evaluator_file_format.py
sneumann/fuji
55b63e9e901ff7fee4d92fc42dec6b5753d67016
[ "MIT" ]
null
null
null
fuji_server/evaluators/fair_evaluator_file_format.py
sneumann/fuji
55b63e9e901ff7fee4d92fc42dec6b5753d67016
[ "MIT" ]
null
null
null
fuji_server/evaluators/fair_evaluator_file_format.py
sneumann/fuji
55b63e9e901ff7fee4d92fc42dec6b5753d67016
[ "MIT" ]
1
2021-02-18T16:58:10.000Z
2021-02-18T16:58:10.000Z
# -*- coding: utf-8 -*- # MIT License # # Copyright (c) 2020 PANGAEA (https://www.pangaea.de/) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from fuji_server.evaluators.fair_evaluator import FAIREvaluator from fuji_server.models.data_file_format import DataFileFormat from fuji_server.models.data_file_format_output import DataFileFormatOutput from fuji_server.models.data_file_format_output_inner import DataFileFormatOutputInner import mimetypes import re class FAIREvaluatorFileFormat(FAIREvaluator): def evaluate(self): text_format_regex = r'(^text)[\/]|[\/\+](xml|text|json)' self.result = DataFileFormat(id=self.metric_number, metric_identifier=self.metric_identifier, metric_name=self.metric_name) self.output = DataFileFormatOutput() data_file_list = [] if not self.fuji.content_identifier: # self.content_identifier only includes uris that are accessible contents = self.fuji.metadata_merged.get('object_content_identifier') unique_types = [] if contents: for c in contents: if c.get('type'): unique_types.append(c.get('type')) self.logger.info('FsF-R1.3-02D : File format(s) specified -: {}'.format(list(set(unique_types)))) mime_url_pair = {} if len(self.fuji.content_identifier) > 0: content_urls = [item.get('url') for item in self.fuji.content_identifier] self.logger.info('FsF-R1.3-02D : Data content identifier provided - {}'.format(content_urls)) #self.maturity = 1 for file_index, data_file in enumerate(self.fuji.content_identifier): mime_type = data_file.get('type') if data_file.get('url') is not None: if mime_type is None or mime_type in ['application/octet-stream']: self.logger.info( 'FsF-R1.3-02D : Guessing the type of a file based on its filename or URL -: {}'.format( data_file.get('url'))) # if mime type not given try to guess it based on the file name guessed_mime_type = mimetypes.guess_type(data_file.get('url')) self.logger.info('FsF-R1.3-02D : Guess return value - {}'.format(guessed_mime_type)) mime_type = guessed_mime_type[0] # the return value is a tuple (type, encoding) where type is None if the type can’t be guessed if mime_type: if mime_type in self.fuji.ARCHIVE_MIMETYPES: # check archive&compress media type self.logger.info( 'FsF-R1.3-02D : Archiving/compression format specified - {}'.format(mime_type)) # exclude archive format if file_index == len(self.fuji.content_identifier)-1: self.fuji.tika_content_types_list = [n for n in self.fuji.tika_content_types_list if n not in self.fuji.ARCHIVE_MIMETYPES] self.logger.info( 'FsF-R1.3-02D : Extracted file formats for selected data object (see FsF-R1-01MD) -: {}'.format(self.fuji.tika_content_types_list)) for t in self.fuji.tika_content_types_list: mime_url_pair[t] = data_file.get('url') else: mime_url_pair[mime_type] = data_file.get('url') # FILE FORMAT CHECKS.... # check if format is a scientific one: for mimetype, url in mime_url_pair.items(): data_file_output = DataFileFormatOutputInner() preferance_reason = [] subject_area = [] if mimetype in self.fuji.SCIENCE_FILE_FORMATS: self.setEvaluationCriteriumScore('FsF-R1.3-02D-1c', 0, 'pass') self.maturity = 3 if self.fuji.SCIENCE_FILE_FORMATS.get(mimetype) == 'Generic': subject_area.append('General') preferance_reason.append('generic science format') else: subject_area.append(self.fuji.SCIENCE_FILE_FORMATS.get(mimetype)) preferance_reason.append('science format') data_file_output.is_preferred_format = True # check if long term format if mimetype in self.fuji.LONG_TERM_FILE_FORMATS: self.setEvaluationCriteriumScore('FsF-R1.3-02D-1b', 0, 'pass') self.maturity = 2 preferance_reason.append('long term format') subject_area.append('General') data_file_output.is_preferred_format = True # check if open format if mimetype in self.fuji.OPEN_FILE_FORMATS: self.setEvaluationCriteriumScore('FsF-R1.3-02D-1a', 0, 'pass') self.maturity = 1 preferance_reason.append('open format') subject_area.append('General') data_file_output.is_preferred_format = True # generic text/xml/json file check if re.search(text_format_regex, mimetype): self.setEvaluationCriteriumScore('FsF-R1.3-02D-1a', 0, 'pass') self.setEvaluationCriteriumScore('FsF-R1.3-02D-1b', 0, 'pass') self.setEvaluationCriteriumScore('FsF-R1.3-02D-1c', 0, 'pass') preferance_reason.extend(['long term format', 'open format', 'generic science format']) subject_area.append('General') data_file_output.is_preferred_format = True data_file_output.mime_type = mimetype data_file_output.file_uri = url data_file_output.preference_reason = list(set(preferance_reason)) data_file_output.subject_areas = list(set(subject_area)) data_file_list.append(data_file_output) if len(data_file_list) > 0: self.score.earned = 1 self.setEvaluationCriteriumScore('FsF-R1.3-02D-1', 1, 'pass') #self.maturity = 3 self.logger.log(self.fuji.LOG_SUCCESS, 'FsF-R1.3-02D : Could identify a file format commonly used by the scientific community') self.result.test_status = 'pass' else: self.logger.warning('FsF-R1.3-02D : Could not perform file format checks as data content identifier(s) unavailable/inaccesible') self.result.test_status = 'fail' self.output = data_file_list self.result.output = self.output self.result.metric_tests = self.metric_tests self.result.maturity = self.maturity_levels.get(self.maturity) self.result.score = self.score
57.083916
167
0.60223
28dfa82b4fa0ad7bfa315a69ac37f6d408a50ebf
5,144
py
Python
Tests/test_properties.py
KwiatQIM/Quantum-Tomography
e10d03b9dc5c8c1bb61a081db1aef70a4b2bb6ca
[ "MIT" ]
11
2020-06-23T13:44:30.000Z
2021-10-22T02:55:14.000Z
Tests/test_properties.py
KwiatQIM/Quantum-Tomography
e10d03b9dc5c8c1bb61a081db1aef70a4b2bb6ca
[ "MIT" ]
3
2020-06-23T00:09:46.000Z
2021-09-12T23:25:05.000Z
Tests/test_properties.py
KwiatQIM/Quantum-Tomography
e10d03b9dc5c8c1bb61a081db1aef70a4b2bb6ca
[ "MIT" ]
4
2020-08-11T09:11:17.000Z
2021-11-06T05:47:47.000Z
import unittest import QuantumTomography as qLib import numpy as np import numpy.testing as tests """ Copyright 2020 University of Illinois Board of Trustees. Licensed under the terms of an MIT license """ """CHECK OUT THE REFERENCE PAGE ON OUR WEBSITE : https://quantumtomo.web.illinois.edu/Doc/""" "Attention! These tests run on the version that your environment uses. See readme for details" class Test_Properties(unittest.TestCase): # Test linear entropy and purity def test_purity(self): # Setup numStates = 1000 for qDim in [1,2,3,4]: pure_states = [qLib.toDensity(qLib.random_pure_state(qDim)) for x in range(numStates)] puritys = np.array([qLib.purity(x) for x in pure_states]) linear_entropys = np.array([qLib.linear_entropy(x) for x in pure_states]) # Tests self.assertEqual(any(puritys<.95), False) # Purities of random pure states should be 1 tests.assert_array_almost_equal(linear_entropys, 1-puritys) # Linear entropy = 1-purity # Test concurrence, tangle, and negativity def test_concurrence(self): # Setup bell_states = [qLib.toDensity(qLib.random_bell_state(2)) for x in range(100)] cons = np.array([qLib.concurrence(x) for x in bell_states]) tangles = np.array([qLib.tangle(x) for x in bell_states]) negs = np.array([qLib.negativity(x) for x in bell_states]) # Tests self.assertEqual(any(cons < .95), False) # Concurrence of random bell states should be 1 self.assertEqual(any(negs < .95), False) # Negativity of random bell states should be 1 tests.assert_array_almost_equal(tangles, cons**2) # tangle = concurrence**2 # Test entropy def test_entropy(self): for qDim in [1,2,3,4]: # Setup bell_states = [qLib.toDensity(qLib.random_pure_state(qDim)) for x in range(1000)] entrops = np.array([qLib.entropy(x) for x in bell_states]) # Tests self.assertEqual(any(entrops > .05), False) # Entropy of pure states should be 0 # Test fidelity def test_fidelity(self): for qDim in [1,2,3,4]: # Setup numStates = 1000 pure_states = [qLib.random_pure_state(qDim) for x in range(numStates)] density_states = [qLib.random_density_state(qDim) for x in range(numStates)] bell_states = [qLib.toDensity(qLib.random_pure_state(qDim)) for x in range(numStates)] pure_states_almost = [qLib.performOperation(x,.9999999*np.eye(2**qDim)) for x in pure_states] density_states_almost = [qLib.performOperation(x,.9999999*np.eye(2**qDim)) for x in density_states] bell_states_almost = [qLib.performOperation(x,.9999999*np.eye(2**qDim)) for x in bell_states] fidels_pure_pp = [] fidels_pure_dp = [] fidels_pure_pd = [] fidels_pure_dd = [] fidels_density = [] fidels_bell = [] for i in range(numStates): fidels_pure_pp.append(qLib.fidelity(pure_states_almost[i], pure_states[i])) fidels_pure_pd.append(qLib.fidelity(pure_states_almost[i], qLib.toDensity(pure_states[i]))) fidels_pure_dp.append(qLib.fidelity(qLib.toDensity(pure_states_almost[i]), pure_states[i])) fidels_pure_dd.append(qLib.fidelity(qLib.toDensity(pure_states_almost[i]), qLib.toDensity(pure_states[i]))) fidels_density.append(qLib.fidelity(density_states_almost[i], density_states[i])) fidels_bell.append(qLib.fidelity(bell_states_almost[i], bell_states[i])) self.assertEqual(any(np.array(fidels_pure_pp) < .95), False) self.assertEqual(any(np.array(fidels_pure_pd) < .95), False) self.assertEqual(any(np.array(fidels_pure_dp) < .95), False) self.assertEqual(any(np.array(fidels_pure_dd) < .95), False) self.assertEqual(any(np.array(fidels_density) < .95), False) self.assertEqual(any(np.array(fidels_bell) < .95), False) randomFidels = np.array([qLib.fidelity(qLib.random_density_state(qDim), qLib.random_density_state(qDim)) for x in range(numStates)]) for i in range(int(2**qDim)): state_i = np.zeros(2**qDim) state_i[i] = 1 for j in range(int(2 ** qDim)): state_j = np.zeros(2**qDim) state_j[j] = 1 if i == j: self.assertAlmostEqual(qLib.fidelity(state_i,state_j),1) else: self.assertAlmostEqual(qLib.fidelity(state_i,state_j),0) if __name__ == '__main__': unittest.main()
47.192661
111
0.587481
fb6f739e3672089aa6f282ef746f22b2dd24c72b
8,778
py
Python
local_packages/ExampleBasedRigging.py
vasiliskatr/example_based_facial_rigging_ARkit_blendshapes
39db32431f3bab2ebb91a74560a61da1ab40af05
[ "MIT" ]
6
2022-01-16T16:00:29.000Z
2022-03-03T04:47:19.000Z
local_packages/ExampleBasedRigging.py
vasiliskatr/example_based_facial_rigging_ARkit_blendshapes
39db32431f3bab2ebb91a74560a61da1ab40af05
[ "MIT" ]
null
null
null
local_packages/ExampleBasedRigging.py
vasiliskatr/example_based_facial_rigging_ARkit_blendshapes
39db32431f3bab2ebb91a74560a61da1ab40af05
[ "MIT" ]
1
2022-03-03T04:47:20.000Z
2022-03-03T04:47:20.000Z
import numpy as np import os import time import local_packages.tools3d_ as t3d from scipy.optimize import lsq_linear from IPython.display import clear_output from scipy.sparse import csr_matrix import scipy.sparse as sp from scipy.sparse.linalg import spsolve from qpsolvers import solve_qp import numba from numba import jit from numba.core.extending import overload from numba.np.linalg import norm_impl from numba.core.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning, NumbaPerformanceWarning import warnings warnings.simplefilter('ignore', category=NumbaDeprecationWarning) warnings.simplefilter('ignore', category=NumbaPendingDeprecationWarning) warnings.simplefilter('ignore', category=NumbaPerformanceWarning) from tqdm import tqdm def reading_generic_bs (objpath_generic_bs): A_bs_model = [] # variable to store all data with regards to the template B_bs_model = [] # variable to store all data with regards to the actor bs_name_list = [] # variable to store the names of imported BS A_0, faces, _, _ = t3d.Read(objpath_generic_bs + 'Neutral.obj', QuadMode = True) n_vertices = A_0.shape[1] #A_0 = tools_3d.center(A_0) generic_bs_data = os.scandir(objpath_generic_bs) for generic_bs in tqdm(generic_bs_data, unit=' files', desc="Loading generic blend shapes"): name, ext = os.path.splitext(generic_bs) name_s = name.split("/") if ext == '.obj' and 'neutral' not in name: # read only the .obj files from the source directory temp_vertices, _, _, _ = t3d.Read(name+ext, QuadMode = True) A_bs_vertices = temp_vertices - A_0 A_bs_model.append(A_bs_vertices) B_bs_model.append(np.zeros((3, n_vertices))) bs_name_list.append(name_s[-1]) n = len(A_bs_model) print ('Generic model of n = ' + str(len(A_bs_model)) + ' blend shapes imported (+1 neutral pose)') return A_bs_model, B_bs_model, A_0, faces, n, bs_name_list def reading_training_data(objpath_training_poses): S_training_poses = [] # Variable to store training poses training_pose_data = os.scandir(objpath_training_poses) for training_pose in tqdm(training_pose_data, unit=' files', desc="Loading poses"): name, ext = os.path.splitext(training_pose) if ext == '.obj': # read only the .obj files from the source directory temp_vertices, _, _, _ = t3d.Read(name+ext, QuadMode = True) S_training_poses.append(temp_vertices) m = len(S_training_poses) print ('m = ' + str(m)+' training poses in total (+ 1 neutral)') return S_training_poses, m def blend_shape_weights(A_0, B_0, A_BS_model, S_training_poses): # initial blend shape weights guessing for each training pose start_time = time.time() print ('Computing intial blend-shape weight guess for the training poses') n = len(A_BS_model) m = len(S_training_poses) n_vertices = A_0.shape[1] Alpha_star = np.zeros((m, n))# Initial guess of blendhspae weights A_All = A_BS_model[0].T.flatten().reshape(n_vertices*3, 1) for i in range(1,n): A_All = np.concatenate((A_All, A_BS_model[i].T.flatten().reshape(n_vertices*3, 1)), axis=1) for i in tqdm(range(m), unit=' pose', desc='Guessing weights'): B_temp = (S_training_poses[i] - B_0).T.flatten().reshape(n_vertices*3) weights_temp = lsq_linear(A_All, B_temp, bounds = (0, 1), lsmr_tol='auto', verbose=0) Alpha_star[i, :] = weights_temp.x.reshape(1, n) return Alpha_star print ("done in ",(time.time() - start_time), "sec") def columnise(model): for i in range(0, len(model)): model[i] = model[i].T return model @jit(nopython=True, parallel=True) def local_tri_frame_fast(vertices, triangles, tri_index): tri_vertices = vertices[triangles[tri_index, :], :] LF = np.zeros((3,3)) v1 = tri_vertices[0, :] v2 = tri_vertices[1, :] v3 = tri_vertices[2, :] LF[:,0] = (v3-v1) # v3-v1 LF[:,1] = (v2-v1) # v2-v1 LF[:,2] = (np.cross((v3-v1),(v2-v1))) # n return LF @jit(nopython=True, parallel=True) def compute_lf_fast (vertices, triangles): lf = np.zeros((len(triangles)*3, 3)) for i in numba.prange(len(triangles)): lf[i*3:i*3+3]= local_tri_frame_fast(vertices, triangles, i) return lf @jit(nopython=True, parallel=True) def compute_lf_inverse_fast(vertices, triangles): lf_inv = np.zeros((len(triangles)*3, 3)) for i in numba.prange(len(triangles)): lf_inv[i*3:i*3+3] = np.linalg.inv(local_tri_frame_fast(vertices, triangles, i)) return lf_inv @jit(nopython=True, parallel=True) def make_M_S_minus_M_B_0_fast(S_training_poses, B_0, triangles): m = len(S_training_poses) M_B_0 = compute_lf_fast(B_0, triangles) M_S_minus_M_B_0 = np.empty((m, len(triangles)*3, 3)) M_S = np.empty((m, len(triangles)*3, 3)) for s in numba.prange(m): M_S_temp = compute_lf_fast(S_training_poses[s], triangles) M_S_minus_M_B_0[s] = M_S_temp - M_B_0 M_S[s] = M_S_temp return M_S_minus_M_B_0 , M_B_0, M_S @jit(nopython=True, parallel=True) def make_W_seed_fast(triangles, A_BS_model, kappa, theta): n = len(A_BS_model) W_seed = np.empty((n, len(triangles))) for i in numba.prange(n): M_A_i = compute_lf_fast(A_BS_model[i], triangles) for j in numba.prange(len(triangles)): lf_tri_norm = np.linalg.norm(M_A_i[j*3:j*3+3,:]) W_seed[i,j] = (1 + lf_tri_norm)/np.power((kappa + lf_tri_norm), theta) return W_seed @jit(nopython=True, parallel=True) def make_M_A_star_fast(triangles, A_0, B_0, A_BS_model): n = len(A_BS_model) M_A_star = np.empty((n, len(triangles)*3, 3)) M_A_0_inv = compute_lf_inverse_fast(A_0, triangles) M_A_0 = compute_lf_fast(A_0, triangles) M_B_0 = compute_lf_fast(B_0, triangles) for i in numba.prange(n): M_A_i = compute_lf_fast(A_BS_model[i], triangles) M_A_sum = M_A_0 + M_A_i for j in numba.prange(len(triangles)): M_A_star[i][j*3:j*3+3] = ((M_A_sum[j*3:j*3+3] @ M_A_0_inv[j*3:j*3+3]) @ M_B_0[j*3:j*3+3]) - M_B_0[j*3:j*3+3] return M_A_star # Parallel version lf optimisation @jit(nopython=True, parallel=True) def lf_optimisation (num_triangles, A, M_S_minus_M_B_0, M_B, M_A_star, beta, gamma, W_seed, opt_iteration, n, m): for tri_index in numba.prange(num_triangles): # Constructing Bfit B_fit = np.zeros((n*3,3)) B_fit = A.T @ M_S_minus_M_B_0[:,tri_index*3:tri_index*3+3,:].copy().reshape(m*3,3) # Constructing W dia = [[i,i,i] for i in W_seed[:,tri_index]] dia = np.asarray(dia) dia = dia.flatten() W = np.diag(dia, 0) M_A_starr = M_A_star[:,tri_index*3:tri_index*3+3,:].copy().reshape(n*3,3) A_sum = A.T @ A + beta[opt_iteration] * (W.T @ W) B_sum = B_fit + beta[opt_iteration] * (W.T @ (W @ M_A_starr)) M_B_tri = np.linalg.solve(A_sum, B_sum[:,0:2]) #.copy() M_B[:, tri_index*2:tri_index*2+2] = M_B_tri #.copy() return M_B def make_A_sparse_reconstruction (triangles, n_vertices): row = [] col = [] data = [] for j in range(len(triangles)): tri_indices = triangles[j] row.append(j*2) col.append(tri_indices[2]) data.append(1) row.append(j*2) col.append(tri_indices[0]) data.append(-1) row.append(j*2+1) col.append(tri_indices[1]) data.append(1) row.append(j*2+1) col.append(tri_indices[0]) data.append(-1) row = np.asarray(row) col = np.asarray(col) data = np.asarray(data) ########### I removed the consideration of zero-deformation vertices. ########### There is no drifting in the reconstruction even without it. A_sparse = csr_matrix((data, (row, col)), shape=(triangles.shape[0]*2, n_vertices)) return A_sparse def recon(M_B, A_sparse_recon, n_vertices, num_triangles, i): # reconstruction of vertices B_temp_X = M_B[i*3,:].reshape(num_triangles*2, 1) X_vals = sp.linalg.lsqr(A_sparse_recon, B_temp_X)[0] B_temp_Y = M_B[i*3+1,:].reshape(num_triangles*2, 1) Y_vals = sp.linalg.lsqr(A_sparse_recon, B_temp_Y)[0] B_temp_Z = M_B[i*3+2,:].reshape(num_triangles*2, 1) Z_vals = sp.linalg.lsqr(A_sparse_recon, B_temp_Z)[0] return X_vals.reshape(1, n_vertices), Y_vals.reshape(1, n_vertices), Z_vals.reshape(1, n_vertices), i
34.155642
120
0.644224
ee3d7955dbfa7c804d4f0d3733bd5cbcb057579c
1,742
py
Python
qiskit/pulse/instructions/directives.py
romainfd/qiskit-terra
b5285ccc5cb1d17b7c73402833f2750b93652426
[ "Apache-2.0" ]
null
null
null
qiskit/pulse/instructions/directives.py
romainfd/qiskit-terra
b5285ccc5cb1d17b7c73402833f2750b93652426
[ "Apache-2.0" ]
null
null
null
qiskit/pulse/instructions/directives.py
romainfd/qiskit-terra
b5285ccc5cb1d17b7c73402833f2750b93652426
[ "Apache-2.0" ]
1
2020-07-13T17:56:46.000Z
2020-07-13T17:56:46.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Directives are hints to the pulse compiler for how to process its input programs.""" from abc import ABC from typing import Optional from qiskit.pulse import channels as chans from qiskit.pulse.instructions import instruction class Directive(instruction.Instruction, ABC): """A compiler directive. This is a hint to the pulse compiler and is not loaded into hardware. """ class RelativeBarrier(Directive): """Pulse ``RelativeBarrier`` directive.""" def __init__(self, *channels: chans.Channel, name: Optional[str] = None): """Create a relative barrier directive. The barrier directive blocks instructions within the same schedule as the barrier on channels contained within this barrier from moving through the barrier in time. Args: channels: The channel that the barrier applies to. name: Name of the directive for display purposes. """ super().__init__(tuple(channels), 0, tuple(channels), name=name) def __eq__(self, other): """Verify two barriers are equivalent.""" return (isinstance(other, type(self)) and set(self.channels) == set(other.channels))
33.5
87
0.687141
2ab6d757a28916517166e8e5f2f3587a18ca4635
1,365
py
Python
questions/q301_reorder_list/code.py
aadhityasw/Competitive-Programs
901a48d35f024a3a87c32a45b7f4531e8004a203
[ "MIT" ]
null
null
null
questions/q301_reorder_list/code.py
aadhityasw/Competitive-Programs
901a48d35f024a3a87c32a45b7f4531e8004a203
[ "MIT" ]
1
2021-05-15T07:56:51.000Z
2021-05-15T07:56:51.000Z
questions/q301_reorder_list/code.py
aadhityasw/Competitive-Programs
901a48d35f024a3a87c32a45b7f4531e8004a203
[ "MIT" ]
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def reversePortion(self, root) : head = None tail = None ptr = root while ptr : ptr2 = ptr.next ptr.next = None if head is None : head = ptr tail = ptr else : ptr.next = head head = ptr ptr = ptr2 return head, tail def findLength(self, head) : ptr = head l = 0 while ptr : ptr = ptr.next l += 1 return l # @param A : head node of linked list # @return the head node in the linked list def reorderList(self, A): n = self.findLength(A) req_index = n//2 + n%2 i = 1 ptr = A while i < req_index : i += 1 ptr = ptr.next head2 = ptr.next ptr.next = None head2, tail2 = self.reversePortion(head2) head1 = A ptr1 = head1 ptr2 = head2 while ptr2 : node = ptr2 ptr2 = ptr2.next node.next = None node.next = ptr1.next ptr1.next = node ptr1 = node.next return head1
19.782609
49
0.443956
fc5cf709c37f9b8000ed337dd619e9b995160644
4,180
py
Python
unet3d/data.py
microdyb/3DUnetCNN
45505ce8bc747301bcf53cdeced19c7bf84c09fe
[ "MIT" ]
null
null
null
unet3d/data.py
microdyb/3DUnetCNN
45505ce8bc747301bcf53cdeced19c7bf84c09fe
[ "MIT" ]
null
null
null
unet3d/data.py
microdyb/3DUnetCNN
45505ce8bc747301bcf53cdeced19c7bf84c09fe
[ "MIT" ]
null
null
null
import os import numpy as np import tables from .normalize import normalize_data_storage, reslice_image_set # cardiac: filters are used for data compression # cardiac: earray is a kind of enlargeable array defined by tables # cardiac: affine_storage def create_data_file(out_file, n_channels, n_samples, image_shape): hdf5_file = tables.open_file(out_file, mode='w') filters = tables.Filters(complevel=5, complib='blosc') data_shape = tuple([0, n_channels] + list(image_shape)) truth_shape = tuple([0, 1] + list(image_shape)) data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape, filters=filters, expectedrows=n_samples) truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape, filters=filters, expectedrows=n_samples) affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=(0, 4, 4), filters=filters, expectedrows=n_samples) return hdf5_file, data_storage, truth_storage, affine_storage def write_image_data_to_file(image_files, data_storage, truth_storage, image_shape, n_channels, affine_storage, truth_dtype=np.uint8, crop=True): for set_of_files in image_files: images = reslice_image_set(set_of_files, image_shape, label_indices=len(set_of_files) - 1, crop=crop) subject_data = [image.get_data() for image in images] add_data_to_storage(data_storage, truth_storage, affine_storage, subject_data, images[0].affine, n_channels, truth_dtype) return data_storage, truth_storage def add_data_to_storage(data_storage, truth_storage, affine_storage, subject_data, affine, n_channels, truth_dtype): data_storage.append(np.asarray(subject_data[:n_channels])[np.newaxis]) truth_storage.append(np.asarray(subject_data[n_channels], dtype=truth_dtype)[np.newaxis][np.newaxis]) affine_storage.append(np.asarray(affine)[np.newaxis]) def write_data_to_file(training_data_files, out_file, image_shape, truth_dtype=np.uint8, subject_ids=None, normalize=True, crop=True): """ Takes in a set of training images and writes those images to an hdf5 file. :param training_data_files: List of tuples containing the training data files. The modalities should be listed in the same order in each tuple. The last item in each tuple must be the labeled image. Example: [('sub1-T1.nii.gz', 'sub1-T2.nii.gz', 'sub1-truth.nii.gz'), ('sub2-T1.nii.gz', 'sub2-T2.nii.gz', 'sub2-truth.nii.gz')] :param out_file: Where the hdf5 file will be written to. :param image_shape: Shape of the images that will be saved to the hdf5 file. :param truth_dtype: Default is 8-bit unsigned integer. :return: Location of the hdf5 file with the image data written to it. """ n_samples = len(training_data_files) n_channels = len(training_data_files[0]) - 1 try: hdf5_file, data_storage, truth_storage, affine_storage = create_data_file(out_file, n_channels=n_channels, n_samples=n_samples, image_shape=image_shape) except Exception as e: # If something goes wrong, delete the incomplete data file os.remove(out_file) raise e write_image_data_to_file(training_data_files, data_storage, truth_storage, image_shape, truth_dtype=truth_dtype, n_channels=n_channels, affine_storage=affine_storage, crop=crop) if subject_ids: hdf5_file.create_array(hdf5_file.root, 'subject_ids', obj=subject_ids) if normalize: normalize_data_storage(data_storage) hdf5_file.close() return out_file def open_data_file(filename, readwrite="r"): return tables.open_file(filename, readwrite)
52.911392
118
0.66866
8f1a3110014196ee7c072ac532c459fa4a1006b4
8,630
py
Python
recommender.py
stewiemcbacon/celp
77c8135dd9c91005e5249e5fd9416e007faa4012
[ "MIT" ]
null
null
null
recommender.py
stewiemcbacon/celp
77c8135dd9c91005e5249e5fd9416e007faa4012
[ "MIT" ]
null
null
null
recommender.py
stewiemcbacon/celp
77c8135dd9c91005e5249e5fd9416e007faa4012
[ "MIT" ]
null
null
null
from data import CITIES, BUSINESSES, USERS, REVIEWS, TIPS, CHECKINS import pandas as pd from pandas import Series, DataFrame import numpy as np import random """Deze functie wordt gebruikt om de ratings voor de utility matrix te berekenen""" def get_rating(ratings,user_id,business_id): if ratings.loc[(ratings['user_id'] == user_id) & (ratings['business_id'] == business_id)]['stars'].any() == False: res = np.nan else: res = float(ratings.loc[(ratings['user_id'] == user_id) & (ratings['business_id'] == business_id),'stars'].values[0]) return res """Deze functie wordt gebruikt om een utility matrix te maken""" def pivot_ratings(df): """ takes a rating table as input and computes the utility matrix """ business_ids = df['business_id'].unique() user_ids = df['user_id'].unique() # create empty data frame pivot_data = pd.DataFrame(np.nan, columns=user_ids, index=business_ids, dtype=float) # use the function get_rating to fill the matrix for x in pivot_data: for y in pivot_data.index: pivot_data[x][y] = get_rating(df,x,y) return pivot_data """We hebben het verschil tussen cosine en euclid similarity getest""" # def cosine_angle(matrix, id1, id2): # """Compute euclid distance between two rows.""" # if id1 == id2: # return 1 # # only take the features that have values for both id1 and id2 # selected_features = matrix.loc[id1].notna() & matrix.loc[id2].notna() # # # if no matching features, return NaN # if not selected_features.any(): # return 0.0 # # # get the features from the matrix # features1 = matrix.loc[id1][selected_features] # features2 = matrix.loc[id2][selected_features] # top=0 # squared1=0 # squared2=0 # # # compute the distances for the features # distances = features1 * features2 # for x in distances: # top = top + x # for x in features1: # squared1 = squared1 + (x*x) # for x in features2: # squared2 = squared2 + (x*x) # # bottom = np.sqrt(squared1) * np.sqrt(squared2) # if bottom == 0: # return 0.0 # # res = top/bottom # return res # def create_similarity_matrix_cosine(matrix): # """ creates the similarity matrix based on cosine similarity """ # similarity_matrix = pd.DataFrame(0, index=matrix.index, columns=matrix.index, dtype=float) # for x in similarity_matrix: # for y in similarity_matrix.index: # similarity_matrix[x][y] = cosine_angle(matrix,x,y) # # return similarity_matrix def mean(frame, group_index, avg_index): return frame.groupby(group_index)[avg_index].mean() def select_neighborhood(similarity_matrix, utility_matrix, target_user, target_business): """selects all items with similarity > 0""" seen = [] a = {} for i in utility_matrix.index: if pd.isnull(utility_matrix[target_user][i]): pass else: seen.append(i) for x in similarity_matrix: if similarity_matrix[target_business][x] > 0 and similarity_matrix[target_business][x] < 1 and x in seen: a.update({x:similarity_matrix[target_business][x]}) res = pd.Series(a) return res def weighted_mean(neighborhood, utility_matrix, business_id): top = 0 bottom = 0 res=0 test = [] if neighborhood.empty: return 0.0 for x,y in neighborhood.iteritems(): top = top + (utility_matrix[business_id][x] * y) bottom = bottom + y if bottom == 0: return 0.0 res = top/bottom return res def euclid_distance(matrix, id1, id2): """Compute euclid distance between two rows.""" # only take the features that have values for both id1 and id2 selected_features = matrix.loc[id1].notna() & matrix.loc[id2].notna() # if no matching features, return NaN if not selected_features.any(): return np.nan # get the features from the matrix features1 = matrix.loc[id1][selected_features] features2 = matrix.loc[id2][selected_features] # compute the distances for the features distances = features1 - features2 squared = 0 # return the absolute sum for x in distances: squared = squared + x*x res = np.sqrt(squared) return res def euclid_similarity(matrix, id1, id2): """Compute euclid similarity between two rows.""" # compute distance distance = euclid_distance(matrix, id1, id2) # if no distance could be computed (no shared features) return a similarity of 0 if distance is np.nan: return 0 # else return similarity return 1 / (1 + distance) # TODO def create_similarity_matrix_euclid(matrix): similarity_matrix = pd.DataFrame(0, index=matrix.index, columns=matrix.index, dtype=float) for x in similarity_matrix: for y in similarity_matrix.index: similarity_matrix[x][y] = euclid_similarity(matrix,x,y) return similarity_matrix def mean_center_rows(matrix): matrix1 = pd.DataFrame(matrix) new_matrix = pd.DataFrame(0, index=matrix.index, columns=matrix.columns,dtype=float) avg = matrix1.mean(axis=1) for x in new_matrix.index: for y in new_matrix: new_matrix[y][x] = matrix1[y][x] - avg[x] return new_matrix def recommend(user_id=None, business_id=None, city=None, n=10): """ Returns n recommendations as a list of dicts. Optionally takes in a user_id, business_id and/or city. A recommendation is a dictionary in the form of: { business_id:str stars:str name:str city:str adress:str } """ user_ids = [] user_ids2 = [] names = [] business_ids = [] business_ids2 = [] stars = [] review_ids = [] addresses = [] # Puts all userids, businessids, stars, names and addresses in seperate lists. for cities, reviews in REVIEWS.items(): if cities == city: for review in reviews: user_ids.append(review['user_id']) business_ids.append(review['business_id']) review_ids.append(review['review_id']) stars.append(review['stars']) for cities, users in USERS.items(): if cities == city: for user in users: names.append(user['name']) user_ids2.append(user['user_id']) for cities, businesses in BUSINESSES.items(): if cities == city: for business in businesses: business_ids2.append(business['business_id']) addresses.append(business['address']) data = {'user_id':user_ids,'business_id':business_ids,'stars':stars,'review_id':review_ids} names_dict = dict(zip(user_ids2,names)) business_dict = dict(zip(business_ids2,addresses)) df = pd.DataFrame(data) utility_matrix = pivot_ratings(df) utility_matrix = utility_matrix.T centered_utility_matrix = mean_center_rows(utility_matrix) similarity = create_similarity_matrix_euclid(centered_utility_matrix) if not city: city = random.choice(CITIES) return random.sample(BUSINESSES[city], n) """Creates a series consisting of the top n predicted ratings for all businesses""" if business_id is None: res = [] rec = {} i = 0 for x in utility_matrix: n1 = select_neighborhood(similarity, utility_matrix, x, user_id) p1 = weighted_mean(n1, utility_matrix, x) if p1 > 0: res.append({'business_id':x,'stars':p1,'name':names_dict[user_id],'city':city,'adress':business_dict[x]}) rec.update({x:p1}) i += 1 a = rec.copy() for x in a: if pd.isnull(utility_matrix[x][user_id]): pass else: rec.pop(x) rec = pd.Series(rec) rec = rec.sort_values(ascending=False) rec = rec.head(n) return rec else: n = select_neighborhood(similarity, utility_matrix, business_id, user_id) p = weighted_mean(n,utility_matrix,business_id) res = [{'business_id':business_id,'stars':p,'name':names_dict[user_id],'city':city,'adress':business_dict[business_id]}] rec = {x:p1} return rec print(recommend("y4a_7xpbvRvCGwMNY4iRhQ",None,'ambridge'))
32.689394
129
0.620162
7352b8e8b3ef35aac8c590c6b522ab7875212913
8,751
py
Python
pypureclient/flasharray/FA_2_5/models/volume.py
ashahid-ps/py-pure-client
2e3565d37b2a41db69308769f6f485d08a7c46c3
[ "BSD-2-Clause" ]
null
null
null
pypureclient/flasharray/FA_2_5/models/volume.py
ashahid-ps/py-pure-client
2e3565d37b2a41db69308769f6f485d08a7c46c3
[ "BSD-2-Clause" ]
null
null
null
pypureclient/flasharray/FA_2_5/models/volume.py
ashahid-ps/py-pure-client
2e3565d37b2a41db69308769f6f485d08a7c46c3
[ "BSD-2-Clause" ]
null
null
null
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_5 import models class Volume(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'name': 'str', 'connection_count': 'int', 'created': 'int', 'destroyed': 'bool', 'host_encryption_key_status': 'str', 'provisioned': 'int', 'qos': 'Qos', 'serial': 'str', 'space': 'Space', 'time_remaining': 'int', 'pod': 'Reference', 'source': 'FixedReference', 'subtype': 'str', 'volume_group': 'Reference', 'requested_promotion_state': 'str', 'promotion_status': 'str' } attribute_map = { 'id': 'id', 'name': 'name', 'connection_count': 'connection_count', 'created': 'created', 'destroyed': 'destroyed', 'host_encryption_key_status': 'host_encryption_key_status', 'provisioned': 'provisioned', 'qos': 'qos', 'serial': 'serial', 'space': 'space', 'time_remaining': 'time_remaining', 'pod': 'pod', 'source': 'source', 'subtype': 'subtype', 'volume_group': 'volume_group', 'requested_promotion_state': 'requested_promotion_state', 'promotion_status': 'promotion_status' } required_args = { } def __init__( self, id=None, # type: str name=None, # type: str connection_count=None, # type: int created=None, # type: int destroyed=None, # type: bool host_encryption_key_status=None, # type: str provisioned=None, # type: int qos=None, # type: models.Qos serial=None, # type: str space=None, # type: models.Space time_remaining=None, # type: int pod=None, # type: models.Reference source=None, # type: models.FixedReference subtype=None, # type: str volume_group=None, # type: models.Reference requested_promotion_state=None, # type: str promotion_status=None, # type: str ): """ Keyword args: id (str): A globally unique, system-generated ID. The ID cannot be modified and cannot refer to another resource. name (str): A user-specified name. The name must be locally unique and can be changed. connection_count (int): The total number of hosts and host groups connected to the volume. created (int): The volume creation time. Measured in milliseconds since the UNIX epoch. destroyed (bool): Returns a value of `true` if the volume has been destroyed and is pending eradication. The `time_remaining` value displays the amount of time left until the destroyed volume is permanently eradicated. Before the `time_remaining` period has elapsed, the destroyed volume can be recovered by setting `destroyed=false`. Once the `time_remaining` period has elapsed, the volume is permanently eradicated and can no longer be recovered. host_encryption_key_status (str): The host encryption key status for this volume. Possible values include `none`, `detected`, and `fetched`. provisioned (int): The virtual size of the volume. Measured in bytes and must be a multiple of 512. The maximum size is 4503599627370496 (4PB) qos (Qos): Displays QoS limit information. serial (str): A globally unique serial number generated by the system when the volume is created. space (Space): Displays size and space consumption information. time_remaining (int): The amount of time left until the destroyed volume is permanently eradicated. Measured in milliseconds. Before the `time_remaining` period has elapsed, the destroyed volume can be recovered by setting `destroyed=false`. pod (Reference): A reference to the pod. source (FixedReference): A reference to the originating volume as a result of a volume copy. subtype (str): The type of volume. Valid values are `protocol_endpoint` and `regular`. volume_group (Reference): A reference to the volume group. requested_promotion_state (str): Valid values are `promoted` and `demoted`. Patch `requested_promotion_state` to `demoted` to demote the volume so that the volume stops accepting write requests. Patch `requested_promotion_state` to `promoted` to promote the volume so that the volume starts accepting write requests. promotion_status (str): Current promotion status of a volume. Valid values are `promoted` and `demoted`. A status of `promoted` indicates that the volume has been promoted and can accept write requests from hosts. This is the default status for a volume when it is created. A status of `demoted` indicates that the volume has been demoted and no longer accepts write requests. """ if id is not None: self.id = id if name is not None: self.name = name if connection_count is not None: self.connection_count = connection_count if created is not None: self.created = created if destroyed is not None: self.destroyed = destroyed if host_encryption_key_status is not None: self.host_encryption_key_status = host_encryption_key_status if provisioned is not None: self.provisioned = provisioned if qos is not None: self.qos = qos if serial is not None: self.serial = serial if space is not None: self.space = space if time_remaining is not None: self.time_remaining = time_remaining if pod is not None: self.pod = pod if source is not None: self.source = source if subtype is not None: self.subtype = subtype if volume_group is not None: self.volume_group = volume_group if requested_promotion_state is not None: self.requested_promotion_state = requested_promotion_state if promotion_status is not None: self.promotion_status = promotion_status def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `Volume`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Volume, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Volume): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
42.072115
461
0.61113
a209fb95ee194bc9e2a27cdc020da06fcc17f7e5
1,589
py
Python
src/ramstk/models/commondb/site_info/table.py
TahaEntezari/ramstk
f82e5b31ef5c4e33cc02252263247b99a9abe129
[ "BSD-3-Clause" ]
26
2019-05-15T02:03:47.000Z
2022-02-21T07:28:11.000Z
src/ramstk/models/commondb/site_info/table.py
TahaEntezari/ramstk
f82e5b31ef5c4e33cc02252263247b99a9abe129
[ "BSD-3-Clause" ]
815
2019-05-10T12:31:52.000Z
2022-03-31T12:56:26.000Z
src/ramstk/models/commondb/site_info/table.py
TahaEntezari/ramstk
f82e5b31ef5c4e33cc02252263247b99a9abe129
[ "BSD-3-Clause" ]
9
2019-04-20T23:06:29.000Z
2022-01-24T21:21:04.000Z
# -*- coding: utf-8 -*- # # ramstk.models.commondb.site_info.table.py is part of The RAMSTK Project # # All rights reserved. # Copyright since 2007 Doyle "weibullguy" Rowland doyle.rowland <AT> reliaqual <DOT> com """Site Information Table Model.""" # Standard Library Imports from typing import Type # RAMSTK Package Imports from ramstk.models import RAMSTKBaseTable, RAMSTKSiteInfoRecord class RAMSTKSiteInfoTable(RAMSTKBaseTable): """Contain the attributes and methods of the Option data manager.""" # Define private dict class attributes. # Define private list class attributes. # Define private scalar class attributes. _db_id_colname = "fld_site_id" _db_tablename = "ramstk_site_info" _select_msg = "request_get_option_attributes2" _tag = "option" # Define public dict class attributes. # Define public list class attributes. # Define public scalar class attributes. def __init__(self, **kwargs) -> None: """Initialize a Options data manager instance.""" RAMSTKBaseTable.__init__(self, **kwargs) # Initialize private dictionary attributes. # Initialize private list attributes. self._lst_id_columns = [ "site_id", ] # Initialize private scalar attributes. self._record: Type[RAMSTKSiteInfoRecord] = RAMSTKSiteInfoRecord # Initialize public dictionary attributes. # Initialize public list attributes. # Initialize public scalar attributes. self.pkey = "site_id" # Subscribe to PyPubSub messages.
27.877193
88
0.696035
435a0f22697864a60bb171910323c106f33c2cd8
17,624
py
Python
sapp/db_support.py
MLH-Fellowship/sapp
35ac9417520f2a10e9934ff2eeda513453b78ab2
[ "MIT" ]
1
2021-06-17T16:32:58.000Z
2021-06-17T16:32:58.000Z
sapp/db_support.py
EdOverflow/sapp
ecb2b54c27294aa3b2d7fc52c186053b6349cb11
[ "MIT" ]
11
2021-07-20T11:28:54.000Z
2021-12-11T16:28:03.000Z
sapp/db_support.py
EdOverflow/sapp
ecb2b54c27294aa3b2d7fc52c186053b6349cb11
[ "MIT" ]
1
2021-06-17T16:33:01.000Z
2021-06-17T16:33:01.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import logging from collections import namedtuple from itertools import tee from typing import Dict, List, Optional, Set, Tuple, Type from munch import Munch from sqlalchemy import Column, String, and_, exc, inspect, or_, types from sqlalchemy.dialects import mysql from sqlalchemy.dialects.mysql import BIGINT from sqlalchemy.orm import Session from .iterutil import split_every log: logging.Logger = logging.getLogger("sapp") """Number of variables that can safely be set on a single DB call""" BATCH_SIZE = 450 # The following three DBID classes require some explanation. Normally models # will reference each other by their id. But we do bulk insertion at the end # of our processing, which means the id isn't set until later. Having a DBID # object allows these models to reference each other before that point. When # we are ready to insert into the database, PrimaryKeyGenerator will give it # an ID. Any other models referencing that DBID object will now be able to use # the real id. class DBID(object): __slots__ = ["_id", "is_new", "local_id"] # Temporary IDs that are local per run (local_id) are assigned for each # DBID object on creation. This acts as a key for the object in map-like # structures of DB objects without having to define a hashing function for # each of them. next_id tracks the next available int to act as an id. next_id: int = 0 # pyre-fixme[2]: Parameter must be annotated. def __init__(self, id=None) -> None: self.resolve(id) self.local_id: int = DBID.next_id DBID.next_id += 1 # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def resolve(self, id, is_new=True): self._check_type(id) self._id = id self.is_new = is_new return self # pyre-fixme[3]: Return type must be annotated. def resolved(self): id = self._id # We allow one level of a DBID pointing to another DBID if isinstance(id, DBID): id = id.resolved() return id # pyre-fixme[2]: Parameter must be annotated. def _check_type(self, id) -> None: if not isinstance(id, (int, type(None), DBID)): raise TypeError( "id expected to be type '{}' but was type '{}'".format(int, type(id)) ) # Allow DBIDs to be added and compared as ints # pyre-fixme[3]: Return type must be annotated. def __int__(self): return self.resolved() # pyre-fixme[3]: Return type must be annotated. def __str__(self): return str(self.resolved()) # pyre-fixme[2]: Parameter must be annotated. def __add__(self, other) -> int: return int(self) + int(other) # pyre-fixme[2]: Parameter must be annotated. def __lt__(self, other) -> bool: return int(self) < int(other) # pyre-fixme[2]: Parameter must be annotated. def __gt__(self, other) -> bool: return int(self) > int(other) # pyre-fixme[2]: Parameter must be annotated. def __ge__(self, other) -> bool: return int(self) >= int(other) # pyre-fixme[2]: Parameter must be annotated. def __le__(self, other) -> bool: return int(self) <= int(other) def __repr__(self) -> str: return "<{}(id={}) object at 0x{:x}>".format( self.__class__.__name__, self._id, id(self) ) class DBIDType(types.TypeDecorator): impl = types.Integer cache_ok = False # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def process_bind_param(self, value, dialect): # If it is a DBID wrapper, then write the contained value. Otherwise it # may be resolved already, or None. if isinstance(value, DBID): return value.resolved() else: return value # pyre-fixme[2]: parameter must be annotated. # pyre-fixme[2]: parameter must be annotated. def process_result_value(self, value, dialect) -> DBID: return DBID(value) # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. def load_dialect_impl(self, dialect): if dialect.name == "mysql": return dialect.type_descriptor(mysql.INTEGER(unsigned=True)) return self.impl class BIGDBIDType(DBIDType): impl = types.BigInteger # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. def load_dialect_impl(self, dialect): if dialect.name == "mysql": return dialect.type_descriptor(mysql.BIGINT(unsigned=True)) return self.impl class PrepareMixin(object): @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def prepare(cls, session, pkgen, items): """This is called immediately before the items are written to the database. pkgen is passed in to allow last-minute resolving of ids. """ for item in cls.merge(session, items): if hasattr(item, "id"): item.id.resolve(id=pkgen.get(cls), is_new=True) # pyre-fixme[16]: `PrepareMixin` has no attribute `to_dict`. yield cls.to_dict(item) @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def merge(cls, session, items): """Models should override this to perform a merge""" return items @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def _merge_by_key(cls, session, items, attr): return cls._merge_by_keys( session, items, lambda item: getattr(item, attr.key), attr ) @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def _merge_by_keys(cls, session, items, hash_item, *attrs): """An object can have multiple attributes as its key. This merges the items to be added with existing items in the database based on their key(s). session: Session object for querying the DB. items: Iterator of items to be added to the DB. hash_item: Function that takes as in put the item to be added and returns a hash of it. attrs: List of attributes of the object/class that represent the object's key. Returns the next item (in items) that is not already in the DB. """ # Note: items is an iterator, not an iterable, 'tee' is a must. items_iter1, items_iter2 = tee(items) keys = {} # map of hash -> keys of the item for i in items_iter1: # An item's key is a map of 'attr -> item[attr]' where attr is # usually a column name. # For 'SharedText', its key would look like: { # "kind": "feature", # "contents": "via tito", # } item_hash = hash_item(i) keys[item_hash] = {attr.key: getattr(i, attr.key) for attr in attrs} # Find existing items. existing_ids = {} # map of item_hash -> existing ID cls_attrs = [getattr(cls, attr.key) for attr in attrs] for fetch_keys in split_every(BATCH_SIZE, keys.values()): filters = [] for fetch_key in fetch_keys: # Sub-filters for checking if item with fetch_key is in the DB # Example: [ # SharedText.kind.__eq__("feature"), # SharedText.contents.__eq__("via tito"), # ] subfilter = [ getattr(cls, attr).__eq__(val) for attr, val in fetch_key.items() ] filters.append(and_(*subfilter)) existing_items = ( # pyre-fixme[16]: `PrepareMixin` has no attribute `id`. session.query(cls.id, *cls_attrs) .filter(or_(*(filters))) .all() ) for existing_item in existing_items: item_hash = hash_item(existing_item) existing_ids[item_hash] = existing_item.id # Now see if we can merge new_items = {} for i in items_iter2: item_hash = hash_item(i) if item_hash in existing_ids: # The key is already in the DB i.id.resolve(existing_ids[item_hash], is_new=False) elif item_hash in new_items: # The key is already in the list of new items i.id.resolve(new_items[item_hash].id, is_new=False) else: # The key is new new_items[item_hash] = i yield i @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def _merge_assocs(cls, session, items, id1, id2): new_items = {} for i in items: r1 = getattr(i, id1.key) r2 = getattr(i, id2.key) key = (r1.resolved(), r2.resolved()) if key not in new_items: new_items[key] = i yield i # The record mixin class is more efficient than the MutableRecordMixin, so it # should be preferred. But the performance isn't from the mutability, it's # because we use namedtuples, which creates a new class on demand, which uses # __slots__, which is more efficient. Both of these mixins can be replaced when # we have dynamically created classes with the slots set. But until then, # prefer RecordMixin unless you need to change fields after creation. class RecordMixin(object): # pyre-fixme[4]: Attribute must be annotated. _record = None @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. # pyre-fixme[2]: Parameter must be annotated. def Record(cls, extra_fields=None, **kwargs): if not cls._record: if not extra_fields: extra_fields = [] mapper = inspect(cls) keys = [c.key for c in mapper.column_attrs] + ["model"] + extra_fields cls._record = namedtuple(cls.__name__ + "Record", keys) return cls._record(model=cls, **kwargs) @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. def to_dict(cls, obj): return obj._asdict() class MutableRecordMixin(object): @classmethod # pyre-fixme[2]: Parameter must be annotated. def Record(cls, **kwargs) -> Munch: return Munch(model=cls, **kwargs) @classmethod # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. def to_dict(cls, obj): return obj.toDict() class PrimaryKeyBase(PrepareMixin, RecordMixin): # noqa """Subclass this and include your declarative_base mixin""" __tablename__ = "primary_keys" # pyre-fixme[8]: Attribute has type `str`; used as `Column[str]`. table_name: str = Column( String(length=100), doc="Name of the table that this row stores the next available primary key for", nullable=False, primary_key=True, ) # pyre-fixme[8]: Attribute has type `int`; used as # `Column[Variable[sqlalchemy.sql.type_api._U]]`. current_id: int = Column( BIGINT(unsigned=True).with_variant(BIGINT, "sqlite"), doc="The current/latest id used in the table.", nullable=False, primary_key=False, ) class PrimaryKeyGeneratorBase: # pyre-ignore[13] """Keep track of DB objects' primary keys by ourselves rather than relying on SQLAlchemy, so we can supply them as arguments when creating association objects. Subclass to define PRIMARY_KEY class and QUERY_CLASSES.""" # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. PRIMARY_KEY: Type # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. QUERY_CLASSES: Set[Type] # Map from class name to an ID range (next_id, max_reserved_id) pks: Dict[str, Tuple[int, int]] = {} def reserve( self, session: Session, # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. saving_classes: List[Type], item_counts: Optional[Dict[str, int]] = None, ) -> "PrimaryKeyGeneratorBase": """ session - Session for DB operations. saving_classes - class objects that need to be saved e.g. Issue, Run item_counts - map from class name to the number of items, for preallocating id ranges """ query_classes = {cls for cls in saving_classes if cls in self.QUERY_CLASSES} for cls in query_classes: if item_counts and cls.__name__ in item_counts: count = item_counts[cls.__name__] else: count = 1 self._reserve_id_range(session, cls, count) return self # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. def _lock_pk_with_retries(self, session: Session, cls: Type) -> Optional[Type]: # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. cls_pk: Optional[Type] = None retries: int = 6 while retries > 0: try: cls_pk = ( session.query(self.PRIMARY_KEY) .filter(self.PRIMARY_KEY.table_name == cls.__name__) .with_for_update() .first() ) # if we're here, the record has been locked, or there is no record retries = 0 except exc.OperationalError as ex: # Failed to get exclusive lock on the record, so we retry retries -= 1 # Re-raise the exception if our retries are exhausted if retries == 0: raise ex return cls_pk def _reserve_id_range( self, session: Session, # pyre-fixme[24]: Generic type `type` expects 1 type parameter, use # `typing.Type` to avoid runtime subscripting errors. cls: Type, count: int, ) -> None: cls_pk = self._lock_pk_with_retries(session, cls) if not cls_pk: # If cls_pk is None, then we query the data table for the max ID # and use that as the current_id in the primary_keys table. This # should only occur once (the except with a rollback means any # additional attempt will fail to add a row, and use the "current" # id value) row = session.query(cls.id).order_by(cls.id.desc()).first() try: session.execute( "INSERT INTO primary_keys(table_name, current_id) \ VALUES (:table_name, :current_id)", { "table_name": cls.__name__, "current_id": (row.id) if row else 0, }, ) session.commit() except exc.SQLAlchemyError as err: log.error("Writing into the primary keys table failed", exc_info=err) session.rollback() cls_pk = self._lock_pk_with_retries(session, cls) if cls_pk: next_id = cls_pk.current_id + 1 cls_pk.current_id = cls_pk.current_id + count pk_entry: Tuple[int, int] = (next_id, cls_pk.current_id) session.commit() self.pks[cls.__name__] = pk_entry # pyre-fixme[3]: Return type must be annotated. # pyre-fixme[2]: Parameter must be annotated. def get(self, cls): assert cls in self.QUERY_CLASSES, ( "%s primary key should be generated by SQLAlchemy" % cls.__name__ ) assert cls.__name__ in self.pks, ( "%s primary key needs to be initialized before use" % cls.__name__ ) (pk, max_pk) = self.pks[cls.__name__] assert pk <= max_pk, "%s reserved primary key range exhausted" % cls.__name__ self.pks[cls.__name__] = (pk + 1, max_pk) return pk
38.229935
88
0.616262
b8c270376fa13dda8a812527041dc436d1df19b5
6,732
py
Python
msl/equipment/resources/bentham/benhw64.py
SwiftyMorgan/msl-equipment
56bc467e97a2a0a60aa6f031dd30bf1d98ebda5c
[ "MIT" ]
null
null
null
msl/equipment/resources/bentham/benhw64.py
SwiftyMorgan/msl-equipment
56bc467e97a2a0a60aa6f031dd30bf1d98ebda5c
[ "MIT" ]
null
null
null
msl/equipment/resources/bentham/benhw64.py
SwiftyMorgan/msl-equipment
56bc467e97a2a0a60aa6f031dd30bf1d98ebda5c
[ "MIT" ]
null
null
null
""" A wrapper around the :class:`~.benhw32.Bentham32` class. """ import os import inspect from msl.loadlib import Client64 from msl.equipment.connection import Connection from msl.equipment.exceptions import BenthamError from msl.equipment.resources import register from .errors import BI_OK, ERROR_CODES from .tokens import MonochromatorCurrentWL, BenMono @register(manufacturer=r'Bentham', model=r'[D]*TMc300') class Bentham(Connection): def __init__(self, record): """A wrapper around the :class:`~.benhw32.Bentham32` class. This class can be used with either a 32- or 64-bit Python interpreter to call the 32-bit functions in ``benhw32_cdecl.dll``. The :attr:`~msl.equipment.record_types.ConnectionRecord.properties` for a Bentham connection supports the following key-value pairs in the :ref:`connections_database`:: 'cfg': str, the path to the System.cfg file [default: None] 'atr': str, the path to the System.atr file [default: None] If the ``cfg`` and ``atr`` values are not defined in the :ref:`connections_database` then you will have to call :meth:`build_system_model`, :meth:`load_setup` and :meth:`initialise` (in that order) to configure the SDK. Do not instantiate this class directly. Use the :meth:`~.EquipmentRecord.connect` method to connect to the equipment. Parameters ---------- record : :class:`~.EquipmentRecord` A record from an :ref:`equipment_database`. """ self._is_connected = False super(Bentham, self).__init__(record) self.set_exception_class(BenthamError) path = record.connection.address[5:] head, tail = os.path.split(path) self._tail = tail self.log_debug('Starting 32-bit server for {}'.format(tail)) # the IEEE_32M.dll library must be available on PATH env_path = [head, os.path.join(head, 'IEEE', 'Dummy')] self._client = Client64( 'benhw32', append_sys_path=os.path.dirname(__file__), append_environ_path=env_path, lib_path=path ) self._hw_id = None cfg_path = record.connection.properties.get('cfg') atr_path = record.connection.properties.get('atr') if cfg_path and atr_path: self.build_system_model(cfg_path) self.load_setup(atr_path) self.initialise() self._is_connected = True def auto_measure(self): ret, reading = self._client.request32('auto_measure') self.errcheck(ret) return reading def build_system_model(self, path): """Set the model configuration file. Parameters ---------- path : :class:`str` The path to the ``System.cfg`` file. """ if not os.path.isfile(path): raise IOError('Cannot find {}'.format(path)) ret, error_report = self._client.request32('build_system_model', path) self.errcheck(ret, path, append_msg=error_report) return ret def disconnect(self): """Disconnect from the SDK and from the 32-bit server.""" if self._is_connected: self.errcheck(self._client.request32('close')) self.log_debug('Stopping 32-bit server for {}'.format(self._tail)) self.shutdown_server32() self._is_connected = False def errcheck(self, result, *args, **kwargs): """Checks whether a function call to the SDK was successful.""" frame = inspect.getouterframes(inspect.currentframe())[1] self.log_debug('{}.{}{} -> {}'.format(self.__class__.__name__, frame.function, args, result)) if result != BI_OK: e, m = ERROR_CODES[result] try: append_msg = kwargs['append_msg'] except KeyError: append_msg = '' self.raise_exception('{0}: {1} {2}'.format(e, m, append_msg)) return result def get(self, hw_id, token, index): ret, value = self._client.request32('get', hw_id, token, index) self.errcheck(ret, hw_id, token, index) return value def get_component_list(self): ret, components = self._client.request32('get_component_list') self.errcheck(ret) return components def get_hardware_type(self, hw_id): ret, hardware_type = self._client.request32('get_hardware_type', hw_id) self.errcheck(ret, hw_id) return hardware_type def get_mono_items(self, hw_id): ret, items = self._client.request32('get_mono_items', hw_id) self.errcheck(ret, hw_id) return items @property def wavelength(self): if self._hw_id is None: for item in self.get_component_list(): if self.get_hardware_type(item) == BenMono: self._hw_id = item break if self._hw_id is None: raise ValueError('Cannot get wavelength. BenMono is not a hardware type.') return self.get(self._hw_id, MonochromatorCurrentWL, 0) @wavelength.setter def wavelength(self, wavelength): self.select_wavelength(wavelength) def initialise(self): """Initialize the connection.""" return self.errcheck(self._client.request32('initialise')) def load_setup(self, path): """Load the setup file. Parameters ---------- path : :class:`str` The path to the ``System.atr`` file. """ if not os.path.isfile(path): raise IOError('Cannot find {}'.format(path)) return self.errcheck(self._client.request32('load_setup', path), path) def park(self): return self.errcheck(self._client.request32('park')) def select_wavelength(self, wavelength): ret, recommended_delay_ms = self._client.request32('select_wavelength', wavelength) self.errcheck(ret, wavelength) return recommended_delay_ms def set(self, hw_id, token, index, value): ret = self._client.request32('set', hw_id, token, index, value) return self.errcheck(ret, hw_id, token, index, value) def version(self): """:class:`str`: The version number of the SDK.""" version = self._client.request32('get_version') self.log_debug('{}.version() -> {}'.format(self.__class__.__name__, version)) return version def zero_calibration(self, start_wavelength, stop_wavelength): ret = self._client.request32('zero_calibration', start_wavelength, stop_wavelength) return self.errcheck(ret, start_wavelength, stop_wavelength)
36
101
0.628788
e9fa24ae052ede60b6afb86d074139f576ff240f
6,750
py
Python
google/cloud/errorreporting_v1beta1/services/error_stats_service/transports/base.py
LaudateCorpus1/python-error-reporting
b207f2cec4f5f3196e775ed35cd429f34f9c0bd1
[ "Apache-2.0" ]
null
null
null
google/cloud/errorreporting_v1beta1/services/error_stats_service/transports/base.py
LaudateCorpus1/python-error-reporting
b207f2cec4f5f3196e775ed35cd429f34f9c0bd1
[ "Apache-2.0" ]
null
null
null
google/cloud/errorreporting_v1beta1/services/error_stats_service/transports/base.py
LaudateCorpus1/python-error-reporting
b207f2cec4f5f3196e775ed35cd429f34f9c0bd1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import pkg_resources import google.auth # type: ignore import google.api_core from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.errorreporting_v1beta1.types import error_stats_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-errorreporting", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class ErrorStatsServiceTransport(abc.ABC): """Abstract transport class for ErrorStatsService.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/cloud-platform",) DEFAULT_HOST: str = "clouderrorreporting.googleapis.com" def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host scopes_kwargs = {"scopes": scopes, "default_scopes": self.AUTH_SCOPES} # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs( "'credentials_file' and 'credentials' are mutually exclusive" ) if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default( **scopes_kwargs, quota_project_id=quota_project_id ) # If the credentials are service account credentials, then always try to use self signed JWT. if ( always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access") ): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.list_group_stats: gapic_v1.method.wrap_method( self.list_group_stats, default_timeout=None, client_info=client_info, ), self.list_events: gapic_v1.method.wrap_method( self.list_events, default_timeout=None, client_info=client_info, ), self.delete_events: gapic_v1.method.wrap_method( self.delete_events, default_timeout=None, client_info=client_info, ), } def close(self): """Closes resources associated with the transport. .. warning:: Only call this method if the transport is NOT shared with other clients - this may cause errors in other clients! """ raise NotImplementedError() @property def list_group_stats( self, ) -> Callable[ [error_stats_service.ListGroupStatsRequest], Union[ error_stats_service.ListGroupStatsResponse, Awaitable[error_stats_service.ListGroupStatsResponse], ], ]: raise NotImplementedError() @property def list_events( self, ) -> Callable[ [error_stats_service.ListEventsRequest], Union[ error_stats_service.ListEventsResponse, Awaitable[error_stats_service.ListEventsResponse], ], ]: raise NotImplementedError() @property def delete_events( self, ) -> Callable[ [error_stats_service.DeleteEventsRequest], Union[ error_stats_service.DeleteEventsResponse, Awaitable[error_stats_service.DeleteEventsResponse], ], ]: raise NotImplementedError() __all__ = ("ErrorStatsServiceTransport",)
37.292818
101
0.658074
2966b7a3f95fc5671abb96e81c000e69f226e12d
5,683
py
Python
src/curt/curt/modules/vision/oakd_facemesh.py
sanyaade-teachings/cep
59e22b148c3a95eff521ce75cf4eacbcfb074115
[ "MIT" ]
108
2021-08-09T17:10:39.000Z
2022-03-21T21:59:03.000Z
src/curt/curt/modules/vision/oakd_facemesh.py
sanyaade-teachings/cep
59e22b148c3a95eff521ce75cf4eacbcfb074115
[ "MIT" ]
15
2021-09-19T01:25:25.000Z
2022-03-28T18:47:49.000Z
src/curt/curt/modules/vision/oakd_facemesh.py
sanyaade-teachings/cep
59e22b148c3a95eff521ce75cf4eacbcfb074115
[ "MIT" ]
14
2021-08-10T04:42:17.000Z
2022-03-28T16:30:34.000Z
""" Copyright (C) Cortic Technology Corp. - All Rights Reserved Written by Michael Ng <michaelng@cortic.ca>, 2021 """ from curt.modules.vision.oakd_processing import OAKDProcessingWorker import depthai as dai from curt.modules.vision.utils import * from curt.modules.vision.utils import decode_image_byte import numpy as np import logging import os import time class OAKDFaceMesh(OAKDProcessingWorker): def __init__(self): super().__init__() def preprocess_input(self, params): img, detected_faces = params if img is None: return None if isinstance(img, str): img = decode_image_byte(img) if "facemesh" not in self.oakd_pipeline.xlink_nodes: logging.warning("No such node: facemesh in the pipeline") return [] self.fm_nn_node_names = self.oakd_pipeline.xlink_nodes["facemesh"] self.width = img.shape[1] self.height = img.shape[0] face_frames = [] lefts = [] tops = [] xmin_crops = [] ymin_crops = [] scale_xs = [] scale_ys = [] for detection in np.array(detected_faces): detection[0] = int(detection[0] * img.shape[1]) detection[1] = int(detection[1] * img.shape[0]) detection[2] = int(detection[2] * img.shape[1]) detection[3] = int(detection[3] * img.shape[0]) box_width = detection[2] - detection[0] box_height = detection[3] - detection[1] x_center = detection[0] + box_width / 2 y_center = detection[1] + box_height / 2 new_width = box_width / 2 * 1.5 new_height = box_height / 2 * 1.5 xmin_crop = int(x_center - new_width) ymin_crop = int(y_center - new_height) xmax_crop = int(x_center + new_width) ymax_crop = int(y_center + new_height) top = 0 bottom = 0 left = 0 right = 0 if ymin_crop < 0: top = ymin_crop * -1 ymin_crop = 0 if xmin_crop < 0: left = xmin_crop * -1 xmin_crop = 0 if ymax_crop >= img.shape[0]: bottom = ymax_crop - (img.shape[0] - 1) ymax_crop = img.shape[0] - 1 if xmax_crop >= img.shape[1]: right = xmax_crop - (img.shape[1] - 1) xmax_crop = img.shape[1] - 1 crop_img = img[ymin_crop:ymax_crop, xmin_crop:xmax_crop, :] crop_img = cv2.copyMakeBorder( crop_img, top, bottom, left, right, cv2.BORDER_CONSTANT, None, [0, 0, 0], ) scale_x = crop_img.shape[1] / float( self.oakd_pipeline.nn_node_input_sizes["facemesh"][0] ) scale_y = crop_img.shape[0] / float( self.oakd_pipeline.nn_node_input_sizes["facemesh"][1] ) face_frames.append(crop_img) lefts.append(left) tops.append(top) xmin_crops.append(xmin_crop) ymin_crops.append(ymin_crop) scale_xs.append(scale_x) scale_ys.append(scale_y) return face_frames, lefts, tops, xmin_crops, ymin_crops, scale_xs, scale_ys def execute_nn_operation(self, preprocessed_data): ( face_frames, lefts, tops, xmin_crops, ymin_crops, scale_xs, scale_ys, ) = preprocessed_data raw_facemeshes = [] for face_frame in face_frames: facemesh = self.get_facemesh_single(self.fm_nn_node_names, face_frame) raw_facemeshes.append(facemesh) return raw_facemeshes, lefts, tops, xmin_crops, ymin_crops, scale_xs, scale_ys def postprocess_result(self, inference_results): ( raw_facemeshes, lefts, tops, xmin_crops, ymin_crops, scale_xs, scale_ys, ) = inference_results facemeshes = [] for i in range(len(raw_facemeshes)): facemesh = raw_facemeshes[i] left = lefts[i] top = tops[i] xmin_crop = xmin_crops[i] ymin_crop = ymin_crops[i] scale_x = scale_xs[i] scale_y = scale_ys[i] coordinates = np.squeeze(facemesh).reshape((-1, 3)) coordinates[:, 0] = ( coordinates[:, 0] * scale_x + xmin_crop - left ) / self.width coordinates[:, 1] = ( coordinates[:, 1] * scale_y + ymin_crop - top ) / self.height coordinates[:, 2] = coordinates[:, 2] * scale_x facemeshes.append(coordinates.tolist()) return facemeshes def get_facemesh_single(self, nn_node_names, aligned_face): frame_fm = dai.ImgFrame() frame_fm.setWidth(self.oakd_pipeline.nn_node_input_sizes["facemesh"][0]) frame_fm.setHeight(self.oakd_pipeline.nn_node_input_sizes["facemesh"][1]) frame_fm.setData( to_planar( aligned_face, ( self.oakd_pipeline.nn_node_input_sizes["facemesh"][0], self.oakd_pipeline.nn_node_input_sizes["facemesh"][1], ), ) ) self.oakd_pipeline.set_input(nn_node_names[0], frame_fm) facemesh = self.oakd_pipeline.get_output(nn_node_names[1]).getFirstLayerFp16() return facemesh
34.02994
86
0.545135
784b359dea0db948ff7096b9e73bb278869cb2ed
1,286
py
Python
the-saga-stepfunction/python/setup.py
LincolnHedgehog/serverless
80f79cd2ac6fb13ac9e16af6a765a06422be437b
[ "MIT" ]
1
2020-05-31T18:58:19.000Z
2020-05-31T18:58:19.000Z
the-saga-stepfunction/python/setup.py
LincolnHedgehog/serverless
80f79cd2ac6fb13ac9e16af6a765a06422be437b
[ "MIT" ]
null
null
null
the-saga-stepfunction/python/setup.py
LincolnHedgehog/serverless
80f79cd2ac6fb13ac9e16af6a765a06422be437b
[ "MIT" ]
1
2020-06-01T15:03:24.000Z
2020-06-01T15:03:24.000Z
import setuptools with open("README.md") as fp: long_description = fp.read() setuptools.setup( name="the_saga_stepfunction", version="0.0.1", description="An empty CDK Python app", long_description=long_description, long_description_content_type="text/markdown", author="author", package_dir={"": "the_saga_stepfunction"}, packages=setuptools.find_packages(where="the_saga_stepfunction"), install_requires=[ "aws-cdk.core==1.36.0", "aws-cdk.aws_apigateway==1.36.0", "aws-cdk.aws-lambda==1.36.0", "aws-cdk.aws-dynamodb==1.36.0", "aws-cdk.aws-stepfunctions==1.36.0", "aws-cdk.aws-stepfunctions-tasks==1.36.0", ], python_requires=">=3.6", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: JavaScript", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Software Development :: Code Generators", "Topic :: Utilities", "Typing :: Typed", ], )
25.215686
69
0.607309
82903d10da50ba31464b575e8a0f69d024126753
650
py
Python
backend/app/scrumboard/serializers.py
tamasf97/Platform
b5d69d051b6e8dc7d56f723146392c49db5e99c3
[ "MIT" ]
1
2019-09-22T10:21:17.000Z
2019-09-22T10:21:17.000Z
backend/app/scrumboard/serializers.py
tamasf97/Platform
b5d69d051b6e8dc7d56f723146392c49db5e99c3
[ "MIT" ]
20
2019-09-26T13:54:12.000Z
2022-02-26T18:07:34.000Z
backend/app/scrumboard/serializers.py
tamasf97/Platform
b5d69d051b6e8dc7d56f723146392c49db5e99c3
[ "MIT" ]
1
2019-09-20T09:50:01.000Z
2019-09-20T09:50:01.000Z
from rest_framework import serializers from .models import List, Card, Project from auth_api.serializers import UserSerializer class CardSerializer(serializers.ModelSerializer): class Meta: model = Card fields = '__all__' class ListSerializer(serializers.ModelSerializer): cards = CardSerializer(read_only=True, many=True) class Meta: model = List fields = '__all__' class ProjectSerializer(serializers.ModelSerializer): lists = ListSerializer(read_only=True, many=True) members = UserSerializer(read_only=True, many=True) class Meta: model = Project fields = '__all__'
24.074074
55
0.715385
68cd8992875895f3d5d5d5e63a1c8001a65b9c9f
3,679
py
Python
var/spack/repos/builtin/packages/mptensor/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2015-10-04T02:17:46.000Z
2018-02-07T18:23:00.000Z
var/spack/repos/builtin/packages/mptensor/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
22
2017-08-01T22:45:10.000Z
2022-03-10T07:46:31.000Z
var/spack/repos/builtin/packages/mptensor/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
4
2016-06-10T17:57:39.000Z
2018-09-11T04:59:38.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mptensor(CMakePackage): """mptensor is parallel C++ libarary for tensor calculations. It provides similar interfaces as Numpy and Scipy in Python.""" homepage = "https://github.com/smorita/mptensor" url = "https://github.com/smorita/mptensor/archive/v0.3.0.tar.gz" version('0.3.0', sha256='819395a91551bddb77958615042fcb935a4b67ee37f912b9a2ca5b49c71befae') variant('mpi', default=False, description='Build with MPI library') variant("doc", default=False, description="build documentation with Doxygen") depends_on('cmake@3.6:', type='build') depends_on('mpi', when="+mpi") depends_on('blas') depends_on('lapack') depends_on('scalapack', when="+mpi") depends_on('doxygen@:1.8.11', type="build", when="+doc") test_requires_compiler = True def cmake_args(self): spec = self.spec options = [] if "+mpi" in spec: options.extend([ '-DCMAKE_C_COMPILER=%s' % spec['mpi'].mpicc, '-DCMAKE_CXX_COMPILER=%s' % spec['mpi'].mpicxx, '-DCMAKE_Fortran_COMPILER=%s' % spec['mpi'].mpifc, '-DSCALAPACK_LIBRARIES=%s' % spec['scalapack'].libs, ]) else: options.extend([ '-DCMAKE_C_COMPILER=%s' % spack_cc, '-DCMAKE_CXX_COMPILER=%s' % spack_cxx, '-DCMAKE_Fortran_COMPILER=%s' % spack_fc, ]) blas = spec['blas'].libs lapack = spec['lapack'].libs options.extend([ '-DLAPACK_LIBRARIES=%s' % ';'.join(lapack), '-DBLAS_LIBRARIES=%s' % ';'.join(blas), self.define_from_variant('ENABLE_MPI', 'mpi'), self.define_from_variant('BUILD_DOC', 'doc') ]) return options @run_after("install") def setup_build_tests(self): """Copy the build test files after the package is installed to an install test subdirectory for use during `spack test run`.""" self.cache_extra_test_sources('.') def test(self): if "+mpi" not in self.spec: print("Test of mptensor only runs with +mpi option.") else: with working_dir(join_path(self.install_test_root, "tests"), create=False): make("clean") makefile = FileFilter("Makefile") makefile.filter("g++", "{0}".format(spack_cxx), string=True) with working_dir(join_path(self.install_test_root), create=False): makefile = FileFilter("Makefile.option") makefile.filter("CXX =.*", "CXX ={0}".format(self.spec["mpi"].mpicxx)) makefile.filter( "CXXFLAGS =.*", "CXXFLAGS ={0}".format(self.compiler.cxx11_flag) ) math_libs = ( self.spec["scalapack"].libs + self.spec["lapack"].libs + self.spec["blas"].libs ) with working_dir(join_path(self.install_test_root, "tests"), create=False): make("LDFLAGS={0}".format(math_libs.ld_flags)) mpirun = self.spec["mpi"].prefix.bin.mpirun mpiexec = Executable(mpirun) mpiexec("-n", "1", "tensor_test.out") # Test of mptensor has checker # and checker is abort when check detect any errors. print("Test of mptensor PASSED !")
37.927835
95
0.575428
ce2f96323d651f4b3808ba7e0ff18715a89db29a
12,780
py
Python
Lib/test/test_class_jy.py
weimingtom/j2mepython-midp
472333ebc6a7f06d92c5ede85c8ed55e4ad66c6d
[ "CNRI-Jython", "PSF-2.0", "Apache-2.0" ]
1
2015-11-07T12:22:17.000Z
2015-11-07T12:22:17.000Z
Lib/test/test_class_jy.py
weimingtom/j2mepython-midp
472333ebc6a7f06d92c5ede85c8ed55e4ad66c6d
[ "CNRI-Jython", "PSF-2.0", "Apache-2.0" ]
null
null
null
Lib/test/test_class_jy.py
weimingtom/j2mepython-midp
472333ebc6a7f06d92c5ede85c8ed55e4ad66c6d
[ "CNRI-Jython", "PSF-2.0", "Apache-2.0" ]
null
null
null
"""Misc. class tests. These are more general class tests than CPython's test_class which focuses on operators. Made for Jython """ import __builtin__ import types import unittest from java.lang import Object from test import test_support class ClassGeneralTestCase(unittest.TestCase): TE_MSG = "can't set attributes of built-in/extension type 'str'" def test_dunder_module(self): self.assertEqual(str.__module__, '__builtin__') class Foo: pass Fu = types.ClassType('Fu', (), {}) for cls in Foo, Fu: self.assert_('__module__' in cls.__dict__) self.assertEqual(cls.__module__, __name__) self.assertEqual(str(cls), '%s.%s' % (__name__, cls.__name__)) self.assert_(repr(cls).startswith('<class %s.%s at' % (__name__, cls.__name__))) obj = cls() self.assert_(str(obj).startswith('<%s.%s instance at' % (__name__, cls.__name__))) class Bar(object): pass class Baz(Object): pass Bang = type('Bang', (), {}) for cls in Bar, Baz, Bang: self.assert_('__module__' in cls.__dict__) self.assertEqual(cls.__module__, __name__) self.assertEqual(str(cls), "<class '%s.%s'>" % (__name__, cls.__name__)) self.assertEqual(repr(cls), "<class '%s.%s'>" % (__name__, cls.__name__)) self.assert_(str(Bar()).startswith('<%s.Bar object at' % __name__)) self.assert_(str(Baz()).startswith("org.python.proxies.%s$Baz" % __name__)) def test_builtin_attributes(self): for attr, val in dict(__name__='foo', __module__='bar', __dict__={}, __flags__=1, __base__=object, __bases__=(unicode, object), __mro__=(unicode, object)).iteritems(): try: setattr(str, attr, val) except TypeError, te: self.assertEqual(str(te), self.TE_MSG) else: self.assert_(False, 'setattr str.%s expected a TypeError' % attr) try: delattr(str, attr) except TypeError, te: self.assertEqual(str(te), self.TE_MSG) else: self.assert_(False, 'delattr str.%s expected a TypeError' % attr) def test_attributes(self): class Foo(object): pass Foo.__name__ = 'Bar' self.assertEqual(Foo.__name__, 'Bar') try: del Foo.__name__ except TypeError, te: self.assertEqual(str(te), "can't delete Bar.__name__") else: self.assert_(False, 'Expected a TypeError') Foo.__module__ = 'baz' self.assertEqual(Foo.__module__, 'baz') try: del Foo.__module__ except TypeError, te: self.assertEqual(str(te), "can't delete Bar.__module__") else: self.assert_(False, 'Expected a TypeError') try: Foo.__dict__ = {} except AttributeError, ae: self.assertEqual(str(ae), "attribute '__dict__' of 'type' objects is not " "writable") else: self.assert_(False, 'Expected an AttributeError') try: del Foo.__dict__ except AttributeError, ae: self.assertEqual(str(ae), "attribute '__dict__' of 'type' objects is not " "writable") else: self.assert_(False, 'Expected an AttributeError') for attr, val in dict(__flags__=1, __base__=object, __bases__=(unicode, object), __mro__=(unicode, object)).iteritems(): try: setattr(str, attr, val) except TypeError, te: self.assertEqual(str(te), self.TE_MSG) else: self.assert_(False, 'setattr Foo.%s expected a TypeError' % attr) try: delattr(str, attr) except TypeError, te: self.assertEqual(str(te), self.TE_MSG) else: self.assert_(False, 'delattr Foo.%s expected a TypeError' % attr) def test_newstyle_new_classobj(self): # Ensure new.classobj can create new style classes class Foo(object): pass def hello(self): return 'hello' Bar = types.ClassType('Bar', (Foo,), dict(hello=hello)) self.assert_(type(Bar), type) self.assert_(issubclass(Bar, Foo)) self.assert_(hasattr(Bar, 'hello')) self.assertEquals(Bar().hello(), 'hello') def test_attribute_error_message(self): # Ensure that AttributeError matches the CPython message class Bar: pass try: Bar.bar self._assert(False) # The previous line should have raised # AttributeError except AttributeError, e: self.assertEqual("class Bar has no attribute 'bar'", str(e)) class Foo(object): pass try: Foo.bar self._assert(False) # The previous line should have raised # AttributeError except AttributeError, e: self.assertEqual("type object 'Foo' has no attribute 'bar'", str(e)) def test_inner_class_dict(self): class z: class t: def moo(self): pass # Printing this caused an NPE in Jython 2.1 keys = list(z.t.__dict__) keys.sort() self.assertEqual(str(keys), "['__doc__', '__module__', 'moo']") def test_metaclass_and_slotted_base(self): class Meta(type): pass class SlottedBase(object): __slots__ = 'foo' # A regression up until 2.5a3: Defining Bar would cause a # TypeError "mro() returned base with unsuitable layout ('Bar')" class Bar(SlottedBase): __metaclass__ = Meta def test_slotted_diamond_problem_bug(self): class A(object): __slots__ = 'foo' class B(A): pass class C(A): pass # used to raise TypeError: multiple bases have instance lay-out # conflict class D(B, C): pass def test_getitem_exceptions(self): class A: def __getitem__(self, key): raise IndexError, "Fraid not" self.assertRaises(IndexError, A().__getitem__, 'b') class ClassNamelessModuleTestCase(unittest.TestCase): def setUp(self): global __name__ self.name = __name__ del __name__ def tearDown(self): global __name__ __name__ = self.name def test_nameless_module(self): class Foo: pass self.assertEqual(Foo.__module__, '__builtin__') self.assertEqual(str(Foo), '__builtin__.Foo') self.assert_(repr(Foo).startswith('<class __builtin__.Foo at')) foo = Foo() self.assert_(str(foo).startswith('<__builtin__.Foo instance at')) class Bar(object): pass self.assertEqual(Bar.__module__, '__builtin__') self.assertEqual(str(Bar), "<class 'Bar'>") self.assertEqual(repr(Bar), "<class 'Bar'>") bar = Bar() self.assert_(str(bar).startswith('<Bar ')) self.assert_(repr(bar).startswith('<Bar object at')) class BrokenNameTestCase(unittest.TestCase): def setUp(self): global __name__ self.name = __name__ self.builtin_name = __builtin__.__name__ del __name__ del __builtin__.__name__ def tearDown(self): global __name__ __builtin__.__name__ = self.builtin_name __name__ = self.name def test_broken_name(self): try: class Foobar: pass except NameError: pass else: self.assert_(False, "Expected a NameError") class ClassLocalsTestCase(unittest.TestCase): def test_class_locals(self): class Foo(object): pass class Bar(object): foo = Foo() self.assert_(not hasattr(Bar, 'Foo')) class Bar2(object): foo = Foo() locals() # Observer effect: Bar2 differs because we looked at # locals. This might be considered 'buggy' behavior; but it # matches CPython and Pypy. see below for an example self.assert_(hasattr(Bar2, 'Foo')) def test_class_locals_realworld(self): # A more real world test of the above situation, for reference class FieldGathererMeta(type): def __new__(meta, name, bases, class_dict): cls = type.__new__(meta, name, bases, class_dict) cls.fields = [field.upper() for field in class_dict.iterkeys() \ if not field.startswith('_')] cls.fields.sort() return cls class SomeClass(object): pass class MyFields(object): __metaclass__ = FieldGathererMeta jython = 'foo' java = ('bar', SomeClass()) # Technically SomeClass and FieldGathererMeta are actually # locals in the MyFields' class definition scope, but we expect # them to be omitted from its class_dict self.assertEqual(MyFields.fields, ['JAVA', 'JYTHON']) class MyFields2(object): __metaclass__ = FieldGathererMeta jython = 'foo' java = ('bar', SomeClass()) locals() # Oops, locals() updates f_locals. Hilarity ensues self.assertEqual(MyFields2.fields, ['FIELDGATHERERMETA', 'JAVA', 'JYTHON', 'SOMECLASS']) class IsDescendentTestCase(unittest.TestCase): def test_newstyle_descendent_of_oldstyle(self): class NewStyle(object): pass class OldStyle: pass class Retro(NewStyle, OldStyle): pass self.assert_(issubclass(Retro, NewStyle)) self.assert_(issubclass(Retro, OldStyle)) retro = Retro() self.assert_(isinstance(retro, NewStyle)) self.assert_(isinstance(retro, OldStyle)) class JavaClassNamingTestCase(unittest.TestCase): """Tests for PyJavaClass naming.""" def test_java_class_name(self): # The __name__ and __module__ attributes of Java classes should # be set according to the same convention that Python uses. from java.lang import String self.assertEqual(String.__name__, "String") self.assertEqual(String.__module__, "java.lang") module_name = __name__ class ClassDefinesDunderModule(unittest.TestCase): """Verifies http://bugs.jython.org/issue1022 is fixed""" def test_dundermodule_in_classdef(self): class Foo: self.assertEqual(__module__, module_name) class Bar(object): self.assertEqual(__module__, module_name) def test_dundermodule_in_class_dict_copy(self): class_dict = {'a': 'this is a', 'b': 'this is b'} Foo = type.__new__(type, 'Foo', (object,), class_dict) Foo.keys = class_dict.keys assert sorted(Foo().keys()) == sorted(['a', 'b']), sorted(Foo().keys()) class ClassMetaclassRepr(unittest.TestCase): def test_repr_with_metaclass(self): # http://bugs.jython.org/issue1131 class FooMetaclass(type): def __new__(cls, name, bases, attrs): return super(FooMetaclass, cls).__new__(cls, name, bases, attrs) class Foo(object): __metaclass__ = FooMetaclass self.assertEqual("<class '%s.Foo'>" % __name__, repr(Foo)) def test_metaclass_str(self): class Foo(type): def __repr__(cls): return 'foo' class Bar(object): __metaclass__ = Foo self.assertEqual(repr(Bar), 'foo') # type.__str__ previously broke this self.assertEqual(str(Bar), 'foo') def test_main(): test_support.run_unittest( ClassGeneralTestCase, ClassNamelessModuleTestCase, BrokenNameTestCase, ClassLocalsTestCase, IsDescendentTestCase, JavaClassNamingTestCase, ClassDefinesDunderModule, ClassMetaclassRepr) if __name__ == "__main__": test_main()
33.455497
85
0.563146
ee3e594032a4a31288798f7ae133b00b3b0872a5
556
py
Python
test/constants.py
js-ts/fix-same-dataset-tests
d76091d1b7bac4d267caaf9b6e04dd255aef8053
[ "Apache-2.0" ]
8
2021-12-17T18:26:24.000Z
2022-03-16T18:21:04.000Z
test/constants.py
js-ts/fix-same-dataset-tests
d76091d1b7bac4d267caaf9b6e04dd255aef8053
[ "Apache-2.0" ]
45
2021-12-18T08:28:56.000Z
2022-03-31T21:24:45.000Z
test/constants.py
js-ts/fix-same-dataset-tests
d76091d1b7bac4d267caaf9b6e04dd255aef8053
[ "Apache-2.0" ]
5
2021-12-17T20:08:38.000Z
2022-03-21T13:51:06.000Z
# Environment variable that can be optionally set to specify a host where Durable Functions backend is running. # If none is specified, the one deployed on Azure Functions is used. DURABLE_FUNCTIONS_BACKEND_TEST_HOST_ENV_VAR = "DURABLE_FUNCTIONS_BACKEND_TEST_HOST" # Name of the app deployed on Azure Functions running the test backend. DURABLE_FUNCTIONS_APP_NAME_AZURE = "same-df-backend" # Azure Functions host URL where the test backend is running. DURABLE_FUNCTIONS_BACKEND_URL_AZURE = f"https://{DURABLE_FUNCTIONS_APP_NAME_AZURE}.azurewebsites.net"
55.6
111
0.832734
0a27c4e57aa4e89d6ea02e1bef612a6571343918
1,710
py
Python
db_trial.py
zenranda/proj6-mongod
26286c28b9b65e4c84a959f2322e8e070d987485
[ "Artistic-2.0" ]
null
null
null
db_trial.py
zenranda/proj6-mongod
26286c28b9b65e4c84a959f2322e8e070d987485
[ "Artistic-2.0" ]
null
null
null
db_trial.py
zenranda/proj6-mongod
26286c28b9b65e4c84a959f2322e8e070d987485
[ "Artistic-2.0" ]
null
null
null
""" Just to test database functions, outside of Flask. We want to open our MongoDB database, insert some memos, and read them back """ import pymongo from pymongo import MongoClient import arrow import sys import secrets.admin_secrets import secrets.client_secrets MONGO_CLIENT_URL = "mongodb://{}:{}@{}:{}/{}".format( secrets.client_secrets.db_user, secrets.client_secrets.db_user_pw, secrets.admin_secrets.host, secrets.admin_secrets.port, secrets.client_secrets.db) try: dbclient = MongoClient(MONGO_CLIENT_URL) db = getattr(dbclient, secrets.client_secrets.db) print("Got database") collection = db.dated print("Using sample collection") except Exception as err: print("Failed") print(err) sys.exit(1) # # Insertions: I commented these out after the first # run successfuly inserted them # record = { "type": "dated_memo", "date": arrow.utcnow().naive, "text": "This is a sample memo" } collection.insert(record) record = { "type": "dated_memo", "date": arrow.utcnow().replace(days=+1).naive, "text": "Sample one day later" } collection.insert(record) # # Read database --- May be useful to see what is in there, # even after you have a working 'insert' operation in the flask app, # but they aren't very readable. If you have more than a couple records, # you'll want a loop for printing them in a nicer format. # records = [ ] for record in collection.find( { "type": "dated_memo" } ): records.append( { "type": record['type'], "date": arrow.get(record['date']).to('local').isoformat(), "text": record['text'] }) print(records)
24.782609
73
0.661404
298b1ac043b949d8a322ea61de9d54b13f6deb8b
2,208
py
Python
fcos/core/layers/roi_align.py
best-of-acrv/fcos
47e5624973b256b8c74ce2c00fca50e62c19c66a
[ "BSD-3-Clause" ]
1
2021-12-12T19:17:34.000Z
2021-12-12T19:17:34.000Z
fcos/core/layers/roi_align.py
best-of-acrv/fcos
47e5624973b256b8c74ce2c00fca50e62c19c66a
[ "BSD-3-Clause" ]
2
2021-09-17T10:28:01.000Z
2022-03-01T00:02:27.000Z
fcos/core/layers/roi_align.py
best-of-acrv/fcos
47e5624973b256b8c74ce2c00fca50e62c19c66a
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from .. import _C class _ROIAlign(Function): @staticmethod def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio): ctx.save_for_backward(roi) ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.sampling_ratio = sampling_ratio ctx.input_shape = input.size() output = _C.roi_align_forward(input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio) return output @staticmethod @once_differentiable def backward(ctx, grad_output): rois, = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale sampling_ratio = ctx.sampling_ratio bs, ch, h, w = ctx.input_shape grad_input = _C.roi_align_backward( grad_output, rois, spatial_scale, output_size[0], output_size[1], bs, ch, h, w, sampling_ratio, ) return grad_input, None, None, None, None roi_align = _ROIAlign.apply class ROIAlign(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio): super(ROIAlign, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio def forward(self, input, rois): return roi_align(input, rois, self.output_size, self.spatial_scale, self.sampling_ratio) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ")" return tmpstr
32
78
0.597826
01ff2ae59d247ab32c79e877faf0aff9e02c9948
3,743
py
Python
scripts/sources/s_rn_derivative_mre.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
6
2021-04-10T13:24:30.000Z
2022-03-26T08:20:42.000Z
scripts/sources/s_rn_derivative_mre.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
null
null
null
scripts/sources/s_rn_derivative_mre.py
dpopadic/arpmRes
ddcc4de713b46e3e9dcb77cc08c502ce4df54f76
[ "MIT" ]
6
2019-08-13T22:02:17.000Z
2022-02-09T17:49:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_rn_derivative_mre [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_rn_derivative_mre&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-sdf-mre). # + import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy as sp from arpym.statistics import simulate_normal, cdf_sp, pdf_sp from arpym.pricing import numeraire_mre from arpym.tools import add_logo # - # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_rn_derivative_mre-implementation-step00): Upload data # + path = '../../../databases/temporary-databases/' db_vpayoff = pd.read_csv(path+'db_valuation_vpayoff.csv', index_col=0) v_payoff = db_vpayoff.values db_vtnow = pd.read_csv(path+'db_valuation_vtnow.csv', index_col=0) v_tnow = db_vtnow.values.T[0] db_prob = pd.read_csv(path+'db_valuation_prob.csv', index_col=0) p = db_prob.values.T[0] # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_rn_derivative_mre-implementation-step01): Compute the minimum relative entropy numeraire probabilities # + p_mre, sdf_mre = numeraire_mre(v_payoff, v_tnow, p=p, k=1) # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_rn_derivative_mre-implementation-step02): Compute Radon-Nikodym derivative and inflator # + # compute Radon-Nikodym derivative rnd_mre = p_mre / p # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_rn_derivative_mre-implementation-step03): Compute pdfs # + h = 0.02 # grid for computing pdfs x = np.linspace(-1, 4, 100) # compute pdfs sdf_mre = pdf_sp(h, np.array([x]).T, np.array([sdf_mre]).T, p) rnd_mre = pdf_sp(h, np.array([x]).T, np.array([rnd_mre]).T, p) infl = pdf_sp(h, np.array([x]).T, np.array([v_payoff[:, 1]/v_tnow[1]]).T, p) # - # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_rn_derivative_mre-implementation-step04): Compute cdfs under probability measures p and p_mre # + y = np.linspace(0, 12, 100) ind = np.argsort(v_payoff[:, 1]) cdf = cdf_sp(y, v_payoff[:, 1], p) cdf_mre = cdf_sp(y, v_payoff[:, 1], p_mre) # - # ## Plots # + plt.style.use('arpm') sdf_name = r'$\mathit{SDF}_{t_{\mathit{now}}\rightarrow t_{\mathit{hor}}}^{\mathit{MRE}}$' rnd_name = r'$\mathit{RND}_{t_{\mathit{now}}\rightarrow t_{\mathit{hor}}}^{\mathit{MRE}}$' infl_name = r'$\mathit{V}_{2,t_{\mathit{now}}\rightarrow t_{\mathit{hor}}}^{\mathit{payoff}}/v_{2,t_{\mathit{now}}}$' fig, axes = plt.subplots(1, 2) axes[0].plot(x, sdf_mre, 'b', label=sdf_name) axes[0].plot(x, rnd_mre, 'g', label=rnd_name) axes[0].plot(x, infl, 'r', label=infl_name) yl = axes[0].get_ylim() axes[0].plot([v_tnow[0], v_tnow[0]], [0, yl[1]], 'b--', label=r'$E\{$' + sdf_name + '$\}$') axes[0].plot([1, 1], [0, yl[1]], 'g--', label=r'$E\{$' + rnd_name + '$\}$') axes[0].plot([p @ v_payoff[:, 1] / v_tnow[1], p @ v_payoff[:, 1] / v_tnow[1]], [0, yl[1]], 'r--', label=r'$E\{$' + infl_name + '$\}$') axes[0].set_xlim([x[0], x[-1]]) axes[0].set_ylim(yl) axes[0].legend() axes[1].plot(y, cdf, 'b', label='$F$') axes[1].plot(y, cdf_mre, 'g', label='$F^{numer}$') axes[1].set_ylim([0, 1]) axes[1].set_xlabel(r'$\mathit{V}_{2,t_{\mathit{now}}\rightarrow t_{\mathit{hor}}}^{\mathit{payoff}}$') axes[1].legend() add_logo(fig, location=4, size_frac_x=1/8) plt.tight_layout()
33.123894
209
0.659097
33c379c98ba9c9d27d9f59e1bbbaceb76c648d22
1,582
py
Python
MQTTupload/DORJI_Serial_to_MarkerAPI.py
JittoThomas/IOT
994fa25087d14e33c2d82b9c9d526f65823b6fa8
[ "MIT" ]
null
null
null
MQTTupload/DORJI_Serial_to_MarkerAPI.py
JittoThomas/IOT
994fa25087d14e33c2d82b9c9d526f65823b6fa8
[ "MIT" ]
null
null
null
MQTTupload/DORJI_Serial_to_MarkerAPI.py
JittoThomas/IOT
994fa25087d14e33c2d82b9c9d526f65823b6fa8
[ "MIT" ]
null
null
null
#DORJI_Serial_to_MarkerAPI #!/usr/bin/env python #WARNING: This is a TTL serial port and must not have more than 3.3 volts applied to the pins #this imports the libraries needed import serial, time #import needed modules import urllib import urllib2 #This sets up the serial port ttyAMA0 GPIO. baud rate is the bits per second. port = serial.Serial("/dev/ttyAMA0", baudrate=2400) while True: #read buffer until cr/lf rcv = port.readline() rcv = rcv.rstrip("\r\n") attributes = rcv.split(",") #for attribute in attributes: #print(attribute) param, key = attributes[0].split("=",1) param, node = attributes[1].split("=",1) param, channel = attributes[2].split("=",1) param, data = attributes[3].split("=",1) print(key, node, channel, data) # Custom Functions def send(): #API URL url = 'http://203.118.129.73:8082/api/marker' #place marker attributes in a dictionary dataToSend = { 'key' : key, 'node' : node, 'channel' : channel, 'latitude' : '', 'longitude' : '', 'elevation' : '', 'data' : data } data_encoded = urllib.urlencode(dataToSend) req = urllib2.Request(url, data_encoded) response = urllib2.urlopen(req) print response.read() send() # excute send function
31.64
94
0.530341
bd5ad529e92d808ff2ef0c2ee02c6c70a30af5be
1,237
py
Python
saleor/graphql/page/sorters.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
15,337
2015-01-12T02:11:52.000Z
2021-10-05T19:19:29.000Z
saleor/graphql/page/sorters.py
fairhopeweb/saleor
9ac6c22652d46ba65a5b894da5f1ba5bec48c019
[ "CC-BY-4.0" ]
7,486
2015-02-11T10:52:13.000Z
2021-10-06T09:37:15.000Z
saleor/graphql/page/sorters.py
aminziadna/saleor
2e78fb5bcf8b83a6278af02551a104cfa555a1fb
[ "CC-BY-4.0" ]
5,864
2015-01-16T14:52:54.000Z
2021-10-05T23:01:15.000Z
import graphene from ..core.types import SortInputObjectType class PageSortField(graphene.Enum): TITLE = ["title", "slug"] SLUG = ["slug"] VISIBILITY = ["is_published", "title", "slug"] CREATION_DATE = ["created", "title", "slug"] PUBLICATION_DATE = ["publication_date", "title", "slug"] @property def description(self): if self.name in PageSortField.__enum__._member_names_: sort_name = self.name.lower().replace("_", " ") return f"Sort pages by {sort_name}." raise ValueError("Unsupported enum value: %s" % self.value) class PageSortingInput(SortInputObjectType): class Meta: sort_enum = PageSortField type_name = "pages" class PageTypeSortField(graphene.Enum): NAME = ["name", "slug"] SLUG = ["slug"] @property def description(self): if self.name in PageTypeSortField.__enum__._member_names_: sport_name = self.name.lower().replace("_", " ") return f"Sort page types by {sport_name}." raise ValueError(f"Unsupported enum value: {self.value}") class PageTypeSortingInput(SortInputObjectType): class Meta: sort_enum = PageTypeSortField type_name = "page types"
28.767442
67
0.647534
f352dbdc764ad97b8609c8a0870e659a64a3ce2b
555
py
Python
tests/helper_test.py
KI-Research-Services/CREDA_tools
5d2709fa3e1f96fe8315b0e838253dd025f7ff85
[ "MIT" ]
1
2021-05-17T16:44:27.000Z
2021-05-17T16:44:27.000Z
tests/helper_test.py
KI-Research-Services/CREDA_tools
5d2709fa3e1f96fe8315b0e838253dd025f7ff85
[ "MIT" ]
null
null
null
tests/helper_test.py
KI-Research-Services/CREDA_tools
5d2709fa3e1f96fe8315b0e838253dd025f7ff85
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Dec 9 18:52:51 2020 @author: fisherd """ from CREDA_tools import helper import pytest def test_init_project_file(): with pytest.raises(FileNotFoundError): helper.CREDA_Project("addresses", "no_good_file.txt") def test_init_project_type(): with pytest.raises(ValueError): helper.CREDA_Project("addreses", "test_data/san_jose_d1.csv") def test_init_address_missing_column(): with pytest.raises(KeyError): helper.CREDA_Project("addresses", "test_data/bad_file.csv")
26.428571
69
0.715315
e4c73d82553d52e576ed769b4e5d00aeedb76f3b
2,498
py
Python
src/clusterfuzz/_internal/tests/appengine/handlers/testcase_detail/update_from_trunk_test.py
mspectorgoogle/clusterfuzz
44df69cbcb94efc212f27758d45d6ff0f36061e5
[ "Apache-2.0" ]
5,023
2019-02-07T16:57:56.000Z
2022-03-31T01:08:05.000Z
src/clusterfuzz/_internal/tests/appengine/handlers/testcase_detail/update_from_trunk_test.py
mspectorgoogle/clusterfuzz
44df69cbcb94efc212f27758d45d6ff0f36061e5
[ "Apache-2.0" ]
2,303
2019-02-07T17:36:36.000Z
2022-03-31T15:44:38.000Z
src/clusterfuzz/_internal/tests/appengine/handlers/testcase_detail/update_from_trunk_test.py
mspectorgoogle/clusterfuzz
44df69cbcb94efc212f27758d45d6ff0f36061e5
[ "Apache-2.0" ]
564
2019-02-07T17:34:24.000Z
2022-03-26T09:25:44.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """update_from_trunk tests.""" import unittest import flask import webtest from clusterfuzz._internal.datastore import data_types from clusterfuzz._internal.tests.test_libs import helpers as test_helpers from clusterfuzz._internal.tests.test_libs import test_utils from handlers.testcase_detail import update_from_trunk from libs import form @test_utils.with_cloud_emulators('datastore') class HandlerTest(unittest.TestCase): """Test Handler.""" def setUp(self): test_helpers.patch(self, [ 'clusterfuzz._internal.base.tasks.add_task', 'clusterfuzz._internal.base.tasks.queue_for_job', 'libs.auth.get_current_user', 'handlers.testcase_detail.show.get_testcase_detail', 'libs.access.check_access_and_get_testcase', ]) flaskapp = flask.Flask('testflask') flaskapp.add_url_rule('/', view_func=update_from_trunk.Handler.as_view('/')) self.app = webtest.TestApp(flaskapp) self.testcase = data_types.Testcase(queue='old-queue') self.testcase.put() self.mock.check_access_and_get_testcase.return_value = self.testcase self.mock.get_testcase_detail.return_value = {'testcase': 'yes'} self.mock.get_current_user().email = 'test@user.com' def test_succeed(self): """Update from trunk""" self.mock.queue_for_job.return_value = 'jobs-suffix' self.testcase.crash_stacktrace = 'Random' self.testcase.job_type = 'job' self.testcase.put() resp = self.app.post_json( '/', { 'testcaseId': self.testcase.key.id(), 'csrf_token': form.generate_csrf_token(), }) self.assertEqual(200, resp.status_int) self.assertEqual('yes', resp.json['testcase']) self.mock.add_task.assert_called_once_with( 'variant', self.testcase.key.id(), 'job', queue='jobs-suffix') testcase = self.testcase.key.get() self.assertEqual('Pending', testcase.last_tested_crash_stacktrace)
35.685714
80
0.729384
0b07a135b8d883019cab30dc9cb7d21374be4576
470
py
Python
utility/trim_dataset.py
jain-nikunj/radioML
24bcfce5f189e22679881c3eea3819e7a19e7301
[ "MIT" ]
5
2018-03-07T03:46:32.000Z
2021-02-20T11:59:40.000Z
utility/trim_dataset.py
jain-nikunj/radioML
24bcfce5f189e22679881c3eea3819e7a19e7301
[ "MIT" ]
1
2018-03-11T03:19:03.000Z
2018-03-11T03:19:03.000Z
utility/trim_dataset.py
jain-nikunj/radioML
24bcfce5f189e22679881c3eea3819e7a19e7301
[ "MIT" ]
3
2018-03-14T18:16:25.000Z
2018-11-14T07:19:41.000Z
import numpy as np import cPickle import matplotlib.pyplot as plt def open_ds(location): f = open(location) ds = cPickle.load(f) return ds def save_ds(dataset, location): cPickle.dump( dataset, file(location, 'wb' ) ) def main(): ds = open_ds(location='datasets/radioml.dat') ds_trimmed = {} ds_trimmed[('BPSK', 18)] = ds[('BPSK', 18)] save_ds(dataset=ds_trimmed, location='datasets/bpsk.dat') if __name__ == "__main__": main()
20.434783
61
0.659574
368d2df9538e87cd93834a6f6c3adcb7937a8d8b
1,651
py
Python
utils/tileconnwire.py
rw1nkler/prjxray
aff076b47dcf6d653eb3ce791b41fd6cf4343edd
[ "ISC" ]
583
2017-12-21T11:06:13.000Z
2022-02-20T21:27:33.000Z
utils/tileconnwire.py
rw1nkler/prjxray
aff076b47dcf6d653eb3ce791b41fd6cf4343edd
[ "ISC" ]
1,212
2017-12-22T15:05:06.000Z
2022-02-19T13:04:59.000Z
utils/tileconnwire.py
mfkiwl/prjxray-xilinx-7-bitstream-fortmat
5349556bc2c230801d6df0cf11bccb9cfd171639
[ "ISC" ]
134
2017-12-21T10:16:50.000Z
2022-02-16T06:42:04.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2017-2020 The Project X-Ray Authors. # # Use of this source code is governed by a ISC-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/ISC # # SPDX-License-Identifier: ISC import os, sys, json def main(argv): if len(argv) != 3: print("Usage example: python3 %s HCLK_R HCLK_SW6E3" % sys.argv[0]) sys.exit(1) with open("%s/%s/tileconn.json" % (os.getenv("XRAY_DATABASE_DIR"), os.getenv("XRAY_DATABASE")), "r") as f: tileconn = json.load(f) outdata = list() max_tiletype_len = 1 for entry in tileconn: if entry["tile_types"][0] == sys.argv[1]: this_idx, other_idx = 0, 1 delta_x, delta_y = entry["grid_deltas"] elif entry["tile_types"][1] == sys.argv[1]: this_idx, other_idx = 1, 0 delta_x, delta_y = -entry["grid_deltas"][0], -entry["grid_deltas"][ 1] else: continue for wire_pair in entry["wire_pairs"]: if wire_pair[this_idx] != sys.argv[2]: continue outdata.append( ( delta_x, delta_y, entry["tile_types"][other_idx], wire_pair[other_idx])) max_tiletype_len = max( max_tiletype_len, len(entry["tile_types"][other_idx])) for entry in outdata: print( "%3d %3d %-*s %s" % (entry[0], entry[1], max_tiletype_len, entry[2], entry[3])) if __name__ == "__main__": main(sys.argv)
28.964912
79
0.54573
41b0007b2fc02a46ebb0a9a9940671701ebc5054
177
py
Python
TicTacToePlayers.py
dz1domin/tictactoe
671eeaecb6e6c8434b2db5595d15fbcd28e90f49
[ "MIT" ]
null
null
null
TicTacToePlayers.py
dz1domin/tictactoe
671eeaecb6e6c8434b2db5595d15fbcd28e90f49
[ "MIT" ]
null
null
null
TicTacToePlayers.py
dz1domin/tictactoe
671eeaecb6e6c8434b2db5595d15fbcd28e90f49
[ "MIT" ]
null
null
null
class TicTacToePlayers: def __init__(self, addr, port, name, conn): self._addr = addr self._port = port self._name = name self._conn = conn
22.125
47
0.587571
6dd144f2acbffdd3de82f1fbc18a66189f26b0a3
25,100
py
Python
resolve_ref_exp_elements_ml/elements_embeddings.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
resolve_ref_exp_elements_ml/elements_embeddings.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
resolve_ref_exp_elements_ml/elements_embeddings.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Machine learning models to calculate embeddings for screen elements. These models are meant to be included as part of another model. This model is not pretrained (except for the text_model) and will be trained with the rest of the model. """ import numpy as np import tensorflow.compat.v1 as tf import tensorflow_hub as hub REF_EXP_ID = 'ref_exp' ELEMENTS_TEXT_ID = 'elements_text' ELEMENTS_BOX_ID = 'elements_box' ELEMENTS_EXIST_ID = 'elements_exists' ELEMENTS_NEIGHBORS_ID = 'elements_neighbors' ELEMENTS_REF_MATCH_ID = 'elements_ref_match' def text_model(text_feature, pretrained_text_enc_name): """Builds the part of the model that processes the text. Args: text_feature: A batch tf.string to run through the model. Size: [batch_size] pretrained_text_enc_name: The text encoder to use. Returns: Encoding of the text. Size: [batch_size, text_embed_size] The text_embed_size depends on the specific tf hub model. """ with tf.variable_scope('text_model'): text_encode_result = hub.Module(pretrained_text_enc_name)(text_feature) return text_encode_result def undo_mask(x, mask, pad_val=0.0): """Converts the output of boolean_mask to the original input dimensions. The boolean_mask is usually used to condense items from multiple batches into one large 'batch' for faster processing. This function is used to convert back. Args: x: The input to reshape. mask: The mask used in boolean_mask. pad_val: value to pad with. Returns: x reshaped and padded. """ with tf.variable_scope('undo_mask'): flat_x = tf.reshape(x, [-1]) x_shape = tf.shape(x)[1:] expanded_mask = tf.tile( tf.reshape( mask, tf.concat([[-1, tf.shape(mask)[1]], tf.ones_like(x_shape)], 0)), tf.concat([[1, 1], x_shape], 0)) flat_mask = tf.reshape(expanded_mask, [-1]) start_indices = tf.range(tf.shape(flat_mask)[0]) condition_indices = tf.dynamic_partition(start_indices, tf.cast(flat_mask, tf.int32), 2) stitched = tf.dynamic_stitch(condition_indices, [ tf.ones_like(condition_indices[0], tf.float32) * pad_val, tf.reshape(flat_x, [-1]) ]) final_shape = tf.shape(mask) out_shape = tf.concat([[final_shape[0], final_shape[1]], x_shape], 0) return tf.reshape(stitched, out_shape) def tile_ref_enc_to_elements(ref_enc, elements_mask): """Utility to tile the ref_enc to the same shape as the elements.""" with tf.variable_scope('tile_ref_enc_to_elements'): orig_shape = tf.shape(ref_enc) orig_shape_static = ref_enc.get_shape().as_list() ref_enc = tf.tile( tf.reshape(ref_enc, [orig_shape[0], 1, orig_shape[1]]), [1, tf.shape(elements_mask)[1], 1]) ref_enc = tf.boolean_mask(ref_enc, elements_mask) ref_enc = tf.reshape(ref_enc, [-1, orig_shape_static[1]]) return ref_enc def tile_to_image(x, image_size): x = tf.reshape(x, [-1, 1, 1, x.get_shape()[1]]) x = tf.tile(x, [1, image_size[0], image_size[1], 1]) return x def get_filled_rect(box, fill_vals, output_size, mode): """Returns a feature map with the values in the box filled in. This can either work with a single box or a batch of boxes. Args: box: The box to fill, in x,y,width,height format normalized between 0 and 1. shape: [num_boxes, 4] fill_vals: The vector to tile over each bounding box. This could be the embedding for the element. output_size: The length and width of the output. Assumes length and width are the same. mode: Method to compute values in the box. 'step': Pixels change immediately at box border. 'cont': Pixels change gradually at box border and increase towards the center. Returns: The tensor with the boxes filled. """ with tf.variable_scope('get_filled_rect'): axis = tf.to_float(tf.range(output_size)) disp_box = box disp_box *= tf.to_float(output_size) disp_box += [-1.5, -1.5, 3.0, 3.0] disp_box *= [1, 1, .5, .5] if mode == 'step': x_vals = tf.nn.relu( tf.nn.relu(axis - disp_box[:, 0:1]) / 2 - tf.nn.relu(axis - disp_box[:, 0:1] - disp_box[:, 2:3])) y_vals = tf.nn.relu( tf.nn.relu(axis - disp_box[:, 1:2]) / 2 - tf.nn.relu(axis - disp_box[:, 1:2] - disp_box[:, 3:4])) else: x_vals = tf.nn.relu(-tf.abs(axis - disp_box[:, 0:1] - disp_box[:, 2:3]) / (disp_box[:, 2:3]) + 1) y_vals = tf.nn.relu(-tf.abs(axis - disp_box[:, 1:2] - disp_box[:, 3:4]) / (disp_box[:, 3:4]) + 1) x_vals = tf.expand_dims(x_vals, 1) y_vals = tf.expand_dims(y_vals, 2) filled_rect = x_vals * y_vals if mode == 'step': filled_rect = tf.minimum(filled_rect, 1.0) fill_vals = tf.reshape( fill_vals, [tf.shape(fill_vals)[0], 1, 1, tf.shape(fill_vals)[1]]) filled_rect = tf.expand_dims(filled_rect, 3) filled_rect *= fill_vals return filled_rect def atten_softmax(atten_mask, elements_mask): """Calculates the softmax between the values in each batch.""" atten_mask = undo_mask(atten_mask, elements_mask, np.finfo(np.float32).min) atten_mask = tf.nn.softmax(atten_mask) atten_mask = tf.boolean_mask(atten_mask, elements_mask) return atten_mask def atten_metric(elements_enc_attend, ref_enc_attend, elements_mask, do_softmax): """Computes similarity metric to be used with attention.""" with tf.variable_scope('atten_metric'): ref_enc_attend = tile_ref_enc_to_elements(ref_enc_attend, elements_mask) atten_mask = tf.multiply(elements_enc_attend, ref_enc_attend) atten_mask = tf.reduce_sum(atten_mask, axis=1) if do_softmax: atten_mask = atten_softmax(atten_mask, elements_mask) return atten_mask def attention(query, attend_in, single_dot_in, elements_mask, do_softmax, attention_method, flags): """Returns the attention mask using the method described by attention_method. Args: query: Query vector. Shape: [batch_size, query_size] attend_in: Values for each item to use for attention. [batch_size * elements_per_query, attend_size] single_dot_in: Values for each item to use for attention in single dot mode. [batch_size * elements_per_query, single_dot_attend_size] single_dot_attend_size must be greater than query_size elements_mask: Mask for what elements items exist in the input. do_softmax: Whether to put the output through softmax. attention_method: The attention method to use. flags: The input Flags. (Currently unused) Returns: The attention mask. """ del flags elements_item_size = attend_in.shape[1] # Use different weights for DNN ontop of Ref Exp, and Elements if 'sepDotAtten' == attention_method: elements_enc_attend = tf.layers.dense(attend_in, elements_item_size) query_attend = tf.layers.dense(query, elements_item_size) attention_mask = atten_metric(elements_enc_attend, query_attend, elements_mask, do_softmax) # Use the same weights for DNN ontop of Ref Exp, and Elements if 'singDotAtten' == attention_method: elements_enc_attend = single_dot_in query_attend = tf.concat([ query, tf.zeros([ tf.shape(query)[0], tf.shape(single_dot_in)[1] - tf.shape(query)[1] ]) ], 1) # Concat along batch dim, so same weights used for each. all_attend = tf.concat([elements_enc_attend, query_attend], 0) all_attend = tf.layers.dense(all_attend, elements_item_size, tf.nn.relu) all_attend = tf.layers.dense(all_attend, elements_item_size) elements_enc_attend, query_attend = tf.split( all_attend, [tf.shape(elements_enc_attend)[0], tf.shape(query_attend)[0]]) attention_mask = atten_metric(elements_enc_attend, query_attend, elements_mask, do_softmax) # Combine Ref Exp, and Elements before input to DNN if 'combAtten' == attention_method: query_tile = tile_ref_enc_to_elements(query, elements_mask) attention_mask = tf.concat([attend_in, query_tile], 1) attention_mask = tf.layers.dense(attention_mask, elements_item_size, tf.nn.relu) attention_mask = tf.layers.dense(attention_mask, 1) attention_mask = tf.squeeze(attention_mask, 1) if do_softmax: attention_mask = atten_softmax(attention_mask, elements_mask) tf.summary.histogram('attention_mask', attention_mask) return attention_mask def filter_none(lst): """Removes None elements from the list.""" lst = [el for el in lst if el is not None] return lst def calc_neighbor_embed(elements_neighbors, elements_enc, elements_mask): """Calculates the sum of the embeddings of neighboring elements.""" with tf.variable_scope('calc_neighbor_embed'): elements_enc_orig_shape = elements_enc.get_shape().as_list() elements_enc = undo_mask(elements_enc, elements_mask) elements_enc_shape = tf.shape(elements_enc) elements_enc_expand = tf.tile(elements_enc, [1, elements_enc_shape[1], 1]) elements_enc_expand = tf.reshape(elements_enc_expand, [ -1, elements_enc_shape[1], elements_enc_shape[1], elements_enc_shape[2] ]) elements_neighbors = tf.cast( tf.expand_dims(elements_neighbors, 3), tf.float32) neighbor_embed = elements_enc_expand * elements_neighbors neighbor_embed = tf.reduce_mean(neighbor_embed, axis=2) neighbor_embed = tf.boolean_mask(neighbor_embed, elements_mask) neighbor_embed.set_shape(elements_enc_orig_shape) return neighbor_embed def elements_model(elements_texts_enc, feature_map, output_size, elements_mask, ref_enc, flags): """The part of the model that processes the elements text and boxes. This assumes that the text has already been preprocessed with the text_model. Even if you are only using the elements and not the referring expression, you should probably use the ref_elements_model since that also handles preprocessing with the text_model. Args: elements_texts_enc: The elements text encoded by the text_model. Size: [batch_size * elements_per_query, text_embed_size] feature_map: Features used by the model. output_size: Desired output size of the encoding. Format: [length, width, depth] elements_mask: Mask for what elements items exist in the input. ref_enc: The referring expression encoded by the text_model. [batch_size, text_embed_size] flags: The input Flags. Returns: The encoding of the elements data. """ with tf.variable_scope('elements_model'): elements_item_size = output_size[2] if flags.use_elements_boxes: elements_boxes = tf.identity(feature_map[ELEMENTS_BOX_ID], ELEMENTS_BOX_ID) flat_elements_boxes = tf.boolean_mask(elements_boxes, elements_mask) else: elements_boxes = None flat_elements_boxes = None if ref_enc is not None: ref_enc_tile = tile_ref_enc_to_elements(ref_enc, elements_mask) elements_ref_match_enc = None if flags.use_elements_ref_match: elements_ref_match = tf.identity(feature_map[ELEMENTS_REF_MATCH_ID], ELEMENTS_REF_MATCH_ID) tf.summary.text('elements_ref_match', elements_ref_match) flat_elements_ref_match = tf.boolean_mask(elements_ref_match, elements_mask) elements_ref_match_enc = text_model( flat_elements_ref_match, flags.pretrained_elements_ref_match_model) # For combinding the element with the refering expression. if flags.merge_ref_elements_method == 'combine' and (ref_enc is not None): elements_enc = tf.concat( filter_none([ elements_texts_enc, flat_elements_boxes, ref_enc_tile, elements_ref_match_enc ]), 1) elements_enc = tf.layers.dense(elements_enc, elements_item_size * 2, tf.nn.relu) else: # Paper results elements_enc = tf.concat( filter_none( [elements_texts_enc, flat_elements_boxes, elements_ref_match_enc]), 1) elements_enc = tf.layers.dense(elements_enc, elements_item_size, tf.nn.relu) neighbor_embed = None if flags.use_elements_neighbors: neighbor_embed = calc_neighbor_embed(feature_map[ELEMENTS_NEIGHBORS_ID], elements_enc, elements_mask) elements_enc = tf.concat(filter_none([elements_enc, neighbor_embed]), 1) elements_enc = tf.layers.dense(elements_enc, elements_item_size, tf.nn.relu) attend_in = elements_enc # "DNN" elements_enc = tf.nn.dropout(elements_enc, flags.elements_keep_prob) elements_enc = tf.layers.dense(elements_enc, elements_item_size, tf.nn.relu) elements_enc = tf.nn.dropout(elements_enc, flags.elements_keep_prob) elements_enc = tf.layers.dense(elements_enc, elements_item_size) elements_enc_pre_atten = elements_enc if 'Atten' in flags.merge_ref_elements_method and (ref_enc is not None): with tf.variable_scope('attention'): if elements_texts_enc is None: # Prepad with 0s so the box embedding won't overlap with the ref_enc. single_dot_concat = tf.zeros([ tf.shape(flat_elements_boxes)[0], ref_enc.get_shape().as_list()[1] ]) else: single_dot_concat = elements_texts_enc single_dot_in = tf.concat( filter_none([ single_dot_concat, flat_elements_boxes, neighbor_embed, elements_ref_match_enc, ]), 1) single_dot_in = tf.concat( [single_dot_in, tf.ones([tf.shape(single_dot_in)[0], 1])], 1) attention_mask = attention(ref_enc, attend_in, single_dot_in, elements_mask, True, flags.merge_ref_elements_method, flags) attention_mask = tf.expand_dims(attention_mask, 1) elements_enc *= attention_mask # Projects the element embeddings into a 2d feature map. if flags.elements_proj_mode != 'tile': with tf.variable_scope('elements_proj'): # Projects the elements text onto the image feature map # on the corresponding bounding boxes. assert_op = tf.Assert( tf.equal(output_size[0], output_size[1]), [ 'Assumes height and width are the same.', feature_map[ELEMENTS_BOX_ID] ]) with tf.control_dependencies([assert_op]): if flags.proj_elements_memop: # Iterate through all bounding boxes and embeddings to create # embedded bounding boxes and sum to result vector iterately elements_enc = undo_mask(elements_enc, elements_mask) fold_elms = tf.transpose( tf.concat([elements_enc, elements_boxes], 2), [1, 0, 2]) initializer = tf.zeros([tf.shape(elements_mask)[0]] + output_size) def fold_fn(total, fold_elm): elements_enc_boxes = tf.split( fold_elm, [tf.shape(elements_enc)[2], tf.shape(elements_boxes)[2]], 1) return total + get_filled_rect( elements_enc_boxes[1], elements_enc_boxes[0], output_size[0], flags.elements_proj_mode) elements_enc = tf.foldl( fold_fn, fold_elms, initializer=initializer, swap_memory=True, parallel_iterations=2) else: # Create embedding of all bb then reduce sum elements_enc = get_filled_rect(flat_elements_boxes, elements_enc, output_size[0], flags.elements_proj_mode) elements_enc = undo_mask(elements_enc, elements_mask) elements_enc = tf.reduce_sum(elements_enc, axis=1) # Turn sum into average. mask_sum = tf.cast( tf.reduce_sum(tf.cast(elements_mask, tf.uint8), 1), tf.float32) mask_sum = tf.reshape(mask_sum, [-1, 1, 1, 1]) mask_sum = tf.where( tf.equal(mask_sum, 0), tf.ones_like(mask_sum), mask_sum) elements_enc /= mask_sum tf.summary.histogram('elements_enc', elements_enc) elements_enc_for_disp = tf.reduce_mean(elements_enc, 3, keepdims=True) tf.summary.image('elements_enc_for_disp', elements_enc_for_disp, 4) else: # Undo the mask for feature mapping sequence_elements_enc = undo_mask(elements_enc, elements_mask) elements_enc = tf.reduce_mean(sequence_elements_enc, axis=1) tf.summary.histogram('elements_enc', elements_enc) if flags.elements_3d_output: elements_enc = tile_to_image(elements_enc, output_size) if flags.elements_3d_output: elements_enc.set_shape( [None, output_size[0], output_size[1], elements_item_size]) # Last CNN layer of elements model if flags.elements_3d_output and flags.elements_cnn: elements_enc = tf.layers.conv2d( elements_enc, elements_enc.shape[3], 3, padding='SAME', activation=tf.nn.relu, strides=1) elements_enc = tf.nn.dropout(elements_enc, flags.elements_keep_prob) elements_enc = tf.layers.conv2d( elements_enc, elements_enc.shape[3], 3, padding='SAME', activation=None, strides=1) return elements_enc, elements_enc_pre_atten def ref_elements_model(feature_map, output_size, flags): """Calculates an embedding for the referring expression and screen elements. The input is defined in the feature_map, with a referring expression and also text and boxes for each screen element. The certain inputs can be ignored by the model by setting their corresponding use_ flags to false. The model produces a 3d output (length, width, depth) when: flags.elements_proj_mode != 'tile' or flags.elements_3d_output and a 1d output (embedding_size) otherwize. Args: feature_map: Dict of features used by the model. See research/socrates/vis_va_model/seg_model/model_input.py for how to construct from tf.Examples, REF_EXP_ID The referring expression as tf.string. Shape: [batch_size] ELEMENTS_TEXT_ID The text for each element as tf.string. Shape: [batch_size, num_elements] (If some batches have more elements, pad with empty string) ELEMENTS_BOX_ID The box for each element as tf.string. Shape: [batch_size, 4]. The last dimension is [x,y,width,height]. (If some batches have more elements, pad with empty 0s) ELEMENTS_EXIST_ID 1 for if an element is present and 0 otherwise. Used since the batches can have different numbers of elements. output_size: Desired output size of the encoding. Format: [length, width, depth] if the flags specify a 1d output, only the depth is considered. flags: The input Flags See research/socrates/screen_elements_embedding_model/notebook.ipynb for the optimal values for these. elements_3d_output Forces a 3d output even when elements_proj_mode==tile. use_ref_exp Whether or not to use the referring expression in the model. use_elements_texts Whether or not to use the elements information in the model. Crash if this is true when use_elements_boxes is false. use_elements_boxes:Whether or not to use the elements boxes in the model. merge_ref_elements_method options: '': Don't merge in elements model. 'combine' Concatenate the representations and feed through a DNN. 'singDotAtten' Use the same DNN to calculate the representations of the items and expression to multiply. 'sepDotAtten' Use separate networks to calculate the representations. 'combAtten': Use a network to directly output multiply values. elements_proj_mode How to project the elements information onto the image feature.' 'tile' blindly tile the feature over the image." 'step': Tile only in the elements bounding box locations." 'cont': Tile the values in bounding box locations and" increase magnitude near the center of the box.' pretrained_text_enc_name - The text model to use. elements_keep_prob - Controls dropout. elements_cnn - True to use a CNN after the elements are processed. elements_enc_size - The size of the output encoding. -1 to use the output_size. proj_elements_memop Reduces elements projection mem by using a tf while loop. May be slower. Returns: A tuple of elements_enc, ref_enc, elements_enc_for_select elements_enc - The embedding representing the elements ref_enc - The embedding representing the referring expression. elements_enc_for_select - only useful when building a model to select from the screen elements. """ with tf.variable_scope('ref_elements_model'): # Checks if the referring elements model is needed. If not, return 0s if not (flags.use_ref_exp or flags.use_elements_texts or flags.use_elements_boxes or flags.use_elements_ref_match or flags.use_elements_neighbors): return (tf.zeros([ tf.shape(feature_map[ELEMENTS_EXIST_ID])[0], output_size[0], output_size[1], output_size[2] ]), tf.zeros([ tf.shape(feature_map[ELEMENTS_EXIST_ID])[0], output_size[0], output_size[1], output_size[2] ]), None) if flags.use_ref_exp: ref_exp = tf.identity(feature_map[REF_EXP_ID], REF_EXP_ID) tf.summary.text('ref_exp', ref_exp) else: ref_exp = [] # Puts everything in the same "batch" so it can be processed # by the text_model. Ignores features with their use_ flags set to false. if (flags.use_elements_texts or flags.use_elements_boxes or flags.use_elements_ref_match or flags.use_elements_neighbors): elements_mask = tf.identity(feature_map[ELEMENTS_EXIST_ID], ELEMENTS_EXIST_ID) if flags.use_elements_texts: elements_texts = tf.identity(feature_map[ELEMENTS_TEXT_ID], ELEMENTS_TEXT_ID) tf.summary.text('elements_texts', elements_texts) # Use boolean mask to ignore empty padding elements flat_elements_texts = tf.boolean_mask(elements_texts, elements_mask) else: elements_texts = [] flat_elements_texts = [] if flags.use_ref_exp or flags.use_elements_texts: ref_elements = tf.concat([ref_exp, flat_elements_texts], 0) # Text model refers to embedding model for sentences ref_elements_concat_enc = text_model(ref_elements, flags.pretrained_text_enc_name) # Unpack the "batch". ref_enc, elements_texts_enc = tf.split( ref_elements_concat_enc, [tf.shape(ref_exp)[0], tf.shape(flat_elements_texts)[0]], 0) if not flags.use_ref_exp: ref_enc = None if not flags.use_elements_texts: elements_texts_enc = None if (flags.use_elements_texts or flags.use_elements_boxes or flags.use_elements_ref_match or flags.use_elements_neighbors): # Elements odel can process OCR infromation elements_enc, elements_enc_for_select = elements_model( elements_texts_enc, feature_map, output_size, elements_mask, ref_enc, flags) else: elements_enc = tf.zeros([ tf.shape(ref_enc)[0], output_size[0], output_size[1], output_size[2] ]) elements_enc_for_select = None if flags.use_ref_exp: ref_enc = tf.layers.dense(ref_enc, output_size[2], tf.nn.relu) tf.summary.histogram('ref_enc', ref_enc) else: ref_enc = tf.zeros( [tf.shape(feature_map[ELEMENTS_EXIST_ID])[0], output_size[2]]) if flags.elements_proj_mode != 'tile' or flags.elements_3d_output: ref_enc = tile_to_image(ref_enc, output_size) return elements_enc, ref_enc, elements_enc_for_select
39.096573
80
0.676494
9c4716379da2236111ec5e1929013e6c3aca08c6
4,672
py
Python
tests/vcf_tools/test_format_sv_variant.py
bjhall/loqusdb
55ee806662848eeffd266bf65d4b4eb24e534a89
[ "MIT" ]
4
2018-06-04T12:42:45.000Z
2021-03-29T20:36:12.000Z
tests/vcf_tools/test_format_sv_variant.py
bjhall/loqusdb
55ee806662848eeffd266bf65d4b4eb24e534a89
[ "MIT" ]
50
2016-02-26T07:54:39.000Z
2021-10-12T07:52:01.000Z
tests/vcf_tools/test_format_sv_variant.py
bjhall/loqusdb
55ee806662848eeffd266bf65d4b4eb24e534a89
[ "MIT" ]
8
2016-02-29T13:50:46.000Z
2020-04-22T10:15:23.000Z
from pprint import pprint as pp from loqusdb.build_models import build_variant def test_format_indel(del_variant, case_obj): ## GIVEN a SV deletion variant = del_variant case_id = case_obj['case_id'] ## WHEN parsing the variant formated_variant = build_variant( variant=variant, case_obj=case_obj, case_id=case_id ) expected_id = '_'.join([ variant.CHROM, str(variant.POS), variant.REF, variant.ALT[0] ]) ## THEN assert the sv is parsed correct assert formated_variant assert formated_variant['variant_id'] == expected_id assert formated_variant['chrom'] == variant.CHROM assert formated_variant['end_chrom'] == variant.CHROM assert formated_variant['pos'] == variant.POS assert formated_variant['end'] == variant.INFO['END'] assert formated_variant['sv_len'] == abs(variant.INFO['SVLEN']) assert formated_variant['ref'] == variant.REF assert formated_variant['alt'] == variant.ALT[0] assert formated_variant['sv_type'] == 'DEL' assert formated_variant['case_id'] == case_id assert formated_variant['homozygote'] == 0 assert formated_variant['hemizygote'] == 0 def test_format_small_ins(small_insert_variant, case_obj): ## GIVEN a small insertion (This means that the insertion is included in ALT field) variant = small_insert_variant case_id = case_obj['case_id'] ## WHEN parsing the variant formated_variant = build_variant( variant=variant, case_obj=case_obj, case_id=case_id ) ## THEN assert the sv is parsed correct assert formated_variant['chrom'] == variant.CHROM assert formated_variant['end_chrom'] == variant.CHROM assert formated_variant['pos'] == variant.POS assert formated_variant['end'] == variant.POS + abs(variant.INFO['SVLEN']) assert formated_variant['sv_len'] == abs(variant.INFO['SVLEN']) assert formated_variant['ref'] == variant.REF assert formated_variant['alt'] == variant.ALT[0] assert formated_variant['sv_type'] == 'INS' def test_format_insertion(insertion_variant, case_obj): ## GIVEN a small insertion (This means that the insertion is included in ALT field) variant = insertion_variant case_id = case_obj['case_id'] ## WHEN parsing the variant formated_variant = build_variant( variant=variant, case_obj=case_obj, case_id=case_id ) ## THEN assert the sv is parsed correct assert formated_variant['chrom'] == variant.CHROM assert formated_variant['end_chrom'] == variant.CHROM assert formated_variant['pos'] == variant.POS assert formated_variant['end'] == variant.INFO['END'] assert formated_variant['sv_len'] == 0 assert formated_variant['ref'] == variant.REF assert formated_variant['alt'] == variant.ALT[0] assert formated_variant['sv_type'] == 'INS' def test_format_dup_tandem(duptandem_variant, case_obj): ## GIVEN a small insertion (This means that the insertion is included in ALT field) variant = duptandem_variant case_id = case_obj['case_id'] ## WHEN parsing the variant formated_variant = build_variant( variant=variant, case_obj=case_obj, case_id=case_id ) ## THEN assert the sv is parsed correct assert formated_variant['chrom'] == variant.CHROM assert formated_variant['end_chrom'] == variant.CHROM assert formated_variant['pos'] == variant.POS assert formated_variant['end'] == variant.INFO['END'] assert formated_variant['sv_len'] == abs(variant.INFO['SVLEN']) assert formated_variant['ref'] == variant.REF assert formated_variant['alt'] == variant.ALT[0] assert formated_variant['sv_type'] == 'DUP' def test_format_translocation(translocation_variant, case_obj): ## GIVEN a small insertion (This means that the insertion is included in ALT field) variant = translocation_variant case_id = case_obj['case_id'] ## WHEN parsing the variant formated_variant = build_variant( variant=variant, case_obj=case_obj, case_id=case_id ) ## THEN assert the sv is parsed correct assert formated_variant['chrom'] == variant.CHROM assert formated_variant['end_chrom'] == '11' assert formated_variant['pos'] == variant.POS assert formated_variant['end'] == 119123896 assert formated_variant['sv_len'] == float('inf') assert formated_variant['ref'] == variant.REF assert formated_variant['alt'] == variant.ALT[0] assert formated_variant['sv_type'] == 'BND'
36.5
87
0.678938
2ba0bf493f8a035816f6ab6a66c9bb901740dab2
1,769
py
Python
lite/tests/unittest_py/pass/backends/arm/test_conv_bn_fuse_pass.py
xiebaiyuan/PaddleLite
6f7280a91741d1c63fcb0296ac5c08c4e81c2a90
[ "Apache-2.0" ]
null
null
null
lite/tests/unittest_py/pass/backends/arm/test_conv_bn_fuse_pass.py
xiebaiyuan/PaddleLite
6f7280a91741d1c63fcb0296ac5c08c4e81c2a90
[ "Apache-2.0" ]
null
null
null
lite/tests/unittest_py/pass/backends/arm/test_conv_bn_fuse_pass.py
xiebaiyuan/PaddleLite
6f7280a91741d1c63fcb0296ac5c08c4e81c2a90
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('../../common') sys.path.append('../../../') import test_conv_bn_fuse_pass_base from auto_scan_test_rpc import FusePassAutoScanTest from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import unittest import hypothesis from hypothesis import given, settings, seed, example, assume import hypothesis.strategies as st class TestConvBnFusePass(FusePassAutoScanTest): def is_program_valid(self, program_config: ProgramConfig , predictor_config: CxxConfig) -> bool: return True def sample_program_configs(self, draw): return test_conv_bn_fuse_pass_base.sample_program_configs(draw) def sample_predictor_configs(self): config = CxxConfig() config.set_valid_places({Place(TargetType.ARM, PrecisionType.FP32, DataLayoutType.NCHW)}) yield config, ["conv2d"], (1e-5, 1e-5) def add_ignore_pass_case(self): pass def test(self, *args, **kwargs): self.run_and_statis(quant=False, max_examples=25, passes=["lite_conv_bn_fuse_pass"]) if __name__ == "__main__": unittest.main(argv=[''])
37.638298
125
0.751837
090dfd484588902985af92602f0c136798f7aae6
6,645
py
Python
andriller/decrypts.py
pshem/andriller
c1e2d9e05f3630a7499907190552089be18563c5
[ "MIT" ]
2
2021-11-22T03:38:06.000Z
2022-01-12T23:07:15.000Z
andriller/decrypts.py
pshem/andriller
c1e2d9e05f3630a7499907190552089be18563c5
[ "MIT" ]
null
null
null
andriller/decrypts.py
pshem/andriller
c1e2d9e05f3630a7499907190552089be18563c5
[ "MIT" ]
1
2021-09-14T04:53:18.000Z
2021-09-14T04:53:18.000Z
import gzip import zlib import pathlib import hashlib from contextlib import suppress from dataclasses import dataclass from Cryptodome.Cipher import AES from .utils import threaded @dataclass class WhatsAppCrypt: input_file: pathlib.Path key_file: pathlib.Path = None email: str = None GZIP_MAGIC = b'\x1f\x8b\x08' SQLITE_MAGIC = b'SQLite format 3\x00' KEY_SIZE = 158 SUFFIX = '.decoded.db' def __post_init__(self): self.fname = self.input_file.name self.input_data = None self.KEY = None self.IV = None @property def dst(self): return self.input_file.with_suffix(self.SUFFIX) def get_key(self): with self.key_file.open('rb') as R: self.KEY = R.read()[126:158] def get_iv(self, iv_from_file=False): if iv_from_file: with self.input_file.open('rb') as R: self.IV = R.read()[51:67] else: with self.key_fileopen('rb') as R: self.IV = R.read()[110:126] def aes_0(self): # 346a23652a46392b4d73257c67317e352e3372482177652c return AES.new(b'4j#e*F9+Ms%|g1~5.3rH!we,') def aes_5(self): ACC = hashlib.md5(self.email.encode()).digest() KEY = bytearray(b'\x8dK\x15\\\xc9\xff\x81\xe5\xcb\xf6\xfax\x196j>\xc6!\xa6VAl\xd7\x93') for i in range(24): KEY[i] ^= ACC[i] IV = b'\x1e9\xf3i\xe9\r\xb3:\xa7;D+\xbb\xb6\xb0\xb9' return AES.new(bytes(KEY), AES.MODE_CBC, IV) def aes_7(self, mode=AES.MODE_CBC, iv_from_file=False): self.get_key() self.get_iv(iv_from_file=iv_from_file) return AES.new(self.KEY, mode, self.IV) def aes_8(self, mode=AES.MODE_CBC, iv_from_file=True): self.get_key() self.get_iv(iv_from_file=iv_from_file) return AES.new(self.KEY, mode, self.IV) def aes_9(self, mode=AES.MODE_GCM, iv_from_file=True): self.get_key() self.get_iv(iv_from_file=iv_from_file) return AES.new(self.KEY, mode, self.IV) def aes_10(self, mode=AES.MODE_GCM, iv_from_file=True): self.get_key() self.get_iv(iv_from_file=iv_from_file) return AES.new(self.KEY, mode, self.IV) def aes_12(self, mode=AES.MODE_GCM, iv_from_file=True): self.get_key() self.get_iv(iv_from_file=iv_from_file) return AES.new(self.KEY, mode, self.IV) @staticmethod def unpad_pkcs5(data, bs=16): if len(data) % bs == 0: return data elif 0 < data[-1] > bs: return data[0:-(len(data) % bs)] else: return data[0:-data[-1]] @staticmethod def unpad(data): return data[0:-data[-1]] def check_input_file_size(self, head_size=67): if not (self.input_file.stat().st_size - head_size) % 16 == 0: raise WhatsAppCryptError('Unexpected input file size, may not be decrypted.') def check_input_data_size(self, data, head_size=67): if not (len(data) - head_size) % 16 == 0: raise WhatsAppCryptError('Unexpected input file size, may not be decrypted.') def check_key_file_size(self): if not self.key_file.stat().st_size == self.KEY_SIZE: raise WhatsAppCryptError('Odd key file size.') @classmethod def check_is_sqlite(cls, data): if not data.startswith(cls.SQLITE_MAGIC): raise WhatsAppCryptError('Decryption failed (not sqlite).') @classmethod def check_is_gzip(cls, data): if not data.startswith(cls.GZIP_MAGIC): raise WhatsAppCryptError('Decryption failed (not gzip).') def gzip_decompress(self, data): # Python gzip lib bug workaround length = len(data) for i in range(0, -65, -1): i = length if not i else i with suppress(OSError): return gzip.decompress(data[:i]) raise WhatsAppCryptError('Decompression failed') @threaded def decrypt(self, **kwargs): # self.check_input_file_size(**kwargs) self.check_key_file_size() self.input_data = self.input_file.read_bytes() def save_output(self, data): if self.dst.is_file(): raise WhatsAppCryptError(f'File {self.dst} already exists!') self.dst.write_bytes(data) # ----------------------------------------------------------------------------- class WhatsAppCrypt7(WhatsAppCrypt): CRYPT = 'crypt7' def __init__(self, input_file, key_file): super().__init__(input_file=input_file, key_file=key_file) def decrypt(self, **kwargs): super().decrypt(**kwargs) data = self.aes_7.decrypt(self.input_data[67:]) self.check_is_sqlite(data) self.save_output(data) return self.dst class WhatsAppCrypt8(WhatsAppCrypt): CRYPT = 'crypt8' def __init__(self, input_file, key_file): super().__init__(input_file=input_file, key_file=key_file) def decrypt(self, **kwargs): super().decrypt(**kwargs) cipher = self.aes_8() data = cipher.decrypt(self.input_data[67:]) self.check_is_gzip(data) data = gzip.decompress(self.unpad(data)) self.check_is_sqlite(data) self.save_output(data) return self.dst class WhatsAppCrypt9(WhatsAppCrypt): CRYPT = 'crypt9' def __init__(self, input_file, key_file): super().__init__(input_file=input_file, key_file=key_file) def decrypt(self, **kwargs): super().decrypt(**kwargs) data = self.unpad_pkcs5(self.input_data[67:]) self.check_input_data_size(data, head_size=0) cipher = self.aes_9() data = cipher.decrypt(data) data = self.gzip_decompress(data) self.check_is_sqlite(data) self.save_output(data) return self.dst class WhatsAppCrypt10(WhatsAppCrypt9, WhatsAppCrypt): CRYPT = 'crypt10' class WhatsAppCrypt11(WhatsAppCrypt9, WhatsAppCrypt): CRYPT = 'crypt11' class WhatsAppCrypt12(WhatsAppCrypt): CRYPT = 'crypt12' def __init__(self, input_file, key_file): super().__init__(input_file, key_file=key_file) def decrypt(self, **kwargs): super().decrypt(**kwargs) data = self.unpad_pkcs5(self.input_data[67:]) self.check_input_data_size(data, head_size=0) cipher = self.aes_12() data = cipher.decrypt(data) data = zlib.decompress(data) self.check_is_sqlite(data) self.save_output(data) return self.dst # ----------------------------------------------------------------------------- class WhatsAppCryptError(Exception): pass
30.62212
95
0.618661
ee315b5a4c1e3e10c62e456a2ca2e51e4c7a12e5
73,451
py
Python
adsrefpipe/tests/unittests/stubdata/parsed_references.py
golnazads/ADSReferencePipeline
802f26a9e085e6ff5de43f3b5642b2d9fad52cbb
[ "MIT" ]
null
null
null
adsrefpipe/tests/unittests/stubdata/parsed_references.py
golnazads/ADSReferencePipeline
802f26a9e085e6ff5de43f3b5642b2d9fad52cbb
[ "MIT" ]
null
null
null
adsrefpipe/tests/unittests/stubdata/parsed_references.py
golnazads/ADSReferencePipeline
802f26a9e085e6ff5de43f3b5642b2d9fad52cbb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- parsed_crossref = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'SB Prusiner', 'journal': 'Proc Natl Acad Sci U S A', 'title': 'Prions', 'volume': '95', 'page': '13363', 'year': '1998', 'doi': '10.1073/pnas.95.23.13363', 'refstr': 'SB Prusiner, 1998. Proc Natl Acad Sci U S A, Prions, 95, 13363. doi:10.1073/pnas.95.23.13363', 'refraw': '<citation key="ref1">\n <journal_title>Proc Natl Acad Sci U S A</journal_title>\n <author>SB Prusiner</author>\n <volume>95</volume>\n <first_page>13363</first_page>\n <cYear>1998</cYear>\n <doi provider="crossref">10.1073/pnas.95.23.13363</doi>\n <article_title>Prions</article_title>\n</citation>'}, {'year': '1099', 'doi': '10.1099/mic.0.071191-0', 'refstr': '1099, 10.1099/mic.0.071191-0', 'refraw': '<citation key="B1">\n <doi>10.1099/mic.0.071191-0</doi>\n</citation>'}, {'year': '1073', 'doi': '10.1073/pnas.1305049110', 'refstr': '1073, 10.1073/pnas.1305049110', 'refraw': '<citation key="B2">\n <doi>10.1073/pnas.1305049110</doi>\n</citation>'}, {'authors': 'Almeida MC', 'journal': 'Microbiol. Spectr.', 'volume': '5', 'issue': '2', 'year': '2017', 'refstr': 'Almeida MC, 2017. Microbiol. Spectr., 5.', 'refraw': '<citation key="B3">\n <journal_title>Microbiol. Spectr.</journal_title>\n <author>Almeida MC</author>\n <first_page>FUNK</first_page>\n <volume>5</volume>\n <issue>2</issue>\n <cYear>2017</cYear>\n</citation>'}, {'authors': 'Gerasimov G N', 'journal': 'Journal of Cosmology and Astroparticle Physics', 'volume': '58', 'issue': '02', 'page': 'A1029', 'year': '1985', 'refstr': 'Gerasimov G N, 1985. Journal of Cosmology and Astroparticle Physics, 58, A1029.', 'issn': '0030-4034', 'refraw': '<citation key="B12">\n <cYear>1985</cYear>\n <volume>58</volume>\n <issue>2</issue>\n <first_page>A1029</first_page>\n <issn>0030-4034</issn>\n <journal_title>Journal of Cosmology and Astroparticle Physics</journal_title>\n <author>Gerasimov G N</author>\n</citation>'}, {'authors': 'Gerasimov G N', 'journal': 'Journal of Cosmology and Astroparticle Physics', 'volume': '58', 'issue': '00', 'page': 'A1029', 'year': '1985', 'refstr': 'Gerasimov G N, 1985. Journal of Cosmology and Astroparticle Physics, 58, A1029.', 'issn': '0030-4034', 'refraw': '<citation key="B12a">\n <cYear>1985</cYear>\n <volume>58</volume>\n <first_page>A1029</first_page>\n <issn>0030-4034</issn>\n <journal_title>Journal of Cosmology and Astroparticle Physics</journal_title>\n <author>Gerasimov G N</author>\n</citation>'}, {'authors': 'Katz', 'journal': 'Progress in Aerospace Sciences', 'title': 'Wing/vortex interactions and wing rock', 'volume': '35', 'issue': '7', 'page': '727', 'year': '1999', 'doi': '10.1016/S0376-0421(99)00004-4', 'refstr': 'Katz, 1999. Progress in Aerospace Sciences, Wing/vortex interactions and wing rock, 35, 727. doi:10.1016/S0376-0421(99)00004-4', 'issn': '03760421', 'refraw': '<citation key="y">\n <journal_title>Progress in Aerospace Sciences</journal_title>\n <issn>03760421</issn>\n <author>Katz</author>\n <volume>35</volume>\n <issue>7</issue>\n <first_page>727</first_page>\n <cYear>1999</cYear>\n <doi>10.1016/S0376-0421(99)00004-4</doi>\n <article_title>Wing/vortex interactions and wing rock</article_title>\n</citation>'}, {'year': '1987', 'refplaintext': 'Pyoeraelae, K. and Laakso, M. and Uusitupa, M. (1987) Diabetes and atherosclerosis: an epidemiologic view Diabetes amp Metabolism Reviews, 3, pp. 463 - 524.', 'refraw': '<citation key="E00002">\n <unstructured_citation>Pyoeraelae, K. and Laakso, M. and Uusitupa, M. (1987) Diabetes and atherosclerosis: an\n epidemiologic view &lt;i>Diabetes &amp; Metabolism Reviews&lt;/i>, 3, pp. 463 - 524.\n </unstructured_citation>\n</citation>'}, {'year': '1992', 'refplaintext': 'Parthasarathy, S. and Steinberg, D. and Witztum, J.L. (1992) The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis Annual Reviews of Medicine, 43, pp. 219 - 225.', 'refraw': '<citation key="E00003">\n <unstructured_citation>Parthasarathy, S. and Steinberg, D. and Witztum, J.L. (1992) The role of oxidized low-density\n lipoproteins in the pathogenesis of atherosclerosis &lt;i>Annual Reviews of Medicine&lt;/i>, 43, pp. 219 - 225.\n </unstructured_citation>\n</citation>'}, {'refraw': '<citation key="B1">\n <empty>what we dont have anything</empty>\n</citation>'}, {'year': '2012', 'arxiv': '1207.5271', 'refstr': '2012, 1207.5271', 'refraw': '<citation key="631_CR2">\n <unstructured_citation>An, X.: Formation of trapped surfaces from past null infinity. arXiv:1207.5271 (2012)\n </unstructured_citation>\n</citation>'}, {'authors': 'Bald', 'journal': 'Nanoscale Insights Into Ion-Beam Cancer Therapy', 'title': 'Dissociative electron attachment to biomolecules', 'page': '159', 'year': '2017', 'doi': '10.1016/bs.aamop.2017.02.002_bb0190', 'refstr': 'Bald, 2017. Nanoscale Insights Into Ion-Beam Cancer Therapy, Dissociative electron attachment to biomolecules, 159. doi:10.1016/bs.aamop.2017.02.002_bb0190', 'refraw': '<citation key="10.1016/bs.aamop.2017.02.002_bb0190">\n <author>Bald</author>\n <first_page>159</first_page>\n <cYear>2017</cYear>\n <series_title>Nanoscale Insights Into Ion-Beam Cancer Therapy</series_title>\n <article_title>Dissociative electron attachment to biomolecules</article_title>\n</citation>'}]}] parsed_elsevier = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Ainsworth, E.A.', 'journal': 'Plant J.', 'title': 'Understanding and improving global crop response to ozone pollution', 'volume': '90', 'page': '886', 'year': '2016', 'doi': '10.1111/tpj.13298', 'refstr': 'Ainsworth, E.A., 2016. Plant J., Understanding and improving global crop response to ozone pollution, 90, 886. doi:10.1111/tpj.13298', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref1">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>E.A.</given-name>\n <surname>Ainsworth</surname>\n </author>\n </authors>\n <title>\n <maintitle>Understanding and improving global crop response to ozone pollution</maintitle>\n </title>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>Plant J.</maintitle>\n </title>\n <volume-nr>90</volume-nr>\n </series>\n <date>2016</date>\n </issue>\n <pages>\n <first-page>886</first-page>\n <last-page>897</last-page>\n </pages>\n <doi>10.1111/tpj.13298</doi>\n </host>\n</reference>'}, {'journal': 'Plant J.', 'volume': '90', 'page': '886', 'year': '2016', 'doi': '10.1111/tpj.13298', 'refstr': '2016, Plant J., 90, 886, 10.1111/tpj.13298', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref2">\n <host>\n <issue>\n <series>\n <title>\n <maintitle>Plant J.</maintitle>\n </title>\n <volume-nr>90</volume-nr>\n </series>\n <date>2016</date>\n </issue>\n <pages>\n <first-page>886</first-page>\n <last-page>897</last-page>\n </pages>\n <doi>10.1111/tpj.13298</doi>\n </host>\n</reference>'}, {'authors': 'Boucher, O., Randall, D., Artaxo, P., Bretherton, G., Feingold, P., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y.', 'journal': 'Climate Change 2013: the Physical Science Basis', 'title': 'Clouds and aerosols', 'volume': '571', 'year': '2013', 'refstr': 'Boucher, O., Randall, D., Artaxo, P., Bretherton, G., Feingold, P., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y., 2013. Climate Change 2013: the Physical Science Basis, Clouds and aerosols, 571.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref31">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>O.</given-name>\n <surname>Boucher</surname>\n </author>\n <author>\n <given-name>D.</given-name>\n <surname>Randall</surname>\n </author>\n <author>\n <given-name>P.</given-name>\n <surname>Artaxo</surname>\n </author>\n <author>\n <given-name>G.</given-name>\n <surname>Bretherton</surname>\n </author>\n <author>\n <given-name>P.</given-name>\n <surname>Feingold</surname>\n </author>\n <author>\n <given-name>P.</given-name>\n <surname>Forster</surname>\n </author>\n <author>\n <given-name>V.-M.</given-name>\n <surname>Kerminen</surname>\n </author>\n <author>\n <given-name>Y.</given-name>\n <surname>Kondo</surname>\n </author>\n <author>\n <given-name>H.</given-name>\n <surname>Liao</surname>\n </author>\n <author>\n <given-name>U.</given-name>\n <surname>Lohmann</surname>\n </author>\n <author>\n <given-name>P.</given-name>\n <surname>Rasch</surname>\n </author>\n <author>\n <given-name>S.K.</given-name>\n <surname>Satheesh</surname>\n </author>\n <author>\n <given-name>S.</given-name>\n <surname>Sherwood</surname>\n </author>\n <author>\n <given-name>B.</given-name>\n <surname>Stevens</surname>\n </author>\n <author>\n <given-name>X.Y.</given-name>\n <surname>Zhang</surname>\n </author>\n </authors>\n <title>\n <maintitle>Clouds and aerosols</maintitle>\n </title>\n </contribution>\n <host>\n <edited-book>\n <book-series>\n <editors>\n <editor>\n <given-name>T.F.</given-name>\n <surname>Stocker</surname>\n </editor>\n <editor>\n <given-name>D.</given-name>\n <surname>Qin</surname>\n </editor>\n <editor>\n <given-name>G.-K.</given-name>\n <surname>Plattner</surname>\n </editor>\n <editor>\n <given-name>M.M.B.</given-name>\n <surname>Tignor</surname>\n </editor>\n <editor>\n <given-name>S.K.</given-name>\n <surname>Allen</surname>\n </editor>\n <editor>\n <given-name>J.</given-name>\n <surname>Boschung</surname>\n </editor>\n <editor>\n <given-name>A.</given-name>\n <surname>Nauels</surname>\n </editor>\n <editor>\n <given-name>Y.</given-name>\n <surname>Xia</surname>\n </editor>\n <editor>\n <given-name>V.</given-name>\n <surname>Bex</surname>\n </editor>\n <editor>\n <given-name>P.M.</given-name>\n <surname>Midgley</surname>\n </editor>\n </editors>\n <series>\n <title>\n <maintitle>Climate Change 2013: the Physical Science Basis</maintitle>\n </title>\n <volume-nr>vols. 571&#x2013;657</volume-nr>\n </series>\n </book-series>\n <date>2013</date>\n <publisher>\n <name>U.S.A</name>\n <location>Cambridge, U.K., and New York</location>\n </publisher>\n </edited-book>\n </host>\n</reference>'}, {'authors': 'Kahnet', 'journal': 'J. Geophys. Res.', 'title': 'Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations', 'volume': '110', 'year': '2005', 'refstr': 'Kahnet, 2005. J. Geophys. Res., Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations, 110.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref34">\n <contribution langtype="en">\n <authors>\n <author>\n <surname>Kahnet</surname>\n </author>\n <et-al/>\n </authors>\n <title>\n <maintitle>Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2\n years of coincident Aerosol Robotic Network (AERONET) observations\n </maintitle>\n </title>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>J. Geophys. Res.</maintitle>\n </title>\n <volume-nr>110</volume-nr>\n </series>\n <issue-nr>D10</issue-nr>\n <date>2005</date>\n </issue>\n </host>\n</reference>'}, {'authors': 'Karimipour, Ghandehari', 'journal': 'Transactions on Computational Science', 'title': 'Voronoi-based medial axis approximation from samples: issues and solutions', 'volume': '20', 'page': '138', 'year': '2013', 'refstr': 'Karimipour, Ghandehari, 2013. Transactions on Computational Science, Voronoi-based medial axis approximation from samples: issues and solutions, 20, 138.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref35">\n <contribution langtype="en">\n <authors>\n <author>\n <surname>Karimipour</surname>\n </author>\n <author>\n <surname>Ghandehari</surname>\n </author>\n </authors>\n <title>\n <maintitle>Voronoi-based medial axis approximation from samples: issues and solutions</maintitle>\n </title>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>Transactions on Computational Science</maintitle>\n </title>\n <volume-nr>XX</volume-nr>\n </series>\n <date>2013</date>\n </issue>\n <pages>\n <first-page>138</first-page>\n <last-page>157</last-page>\n </pages>\n </host>\n <comment>Springer</comment>\n</reference>'}, {'authors': 'Cerri, C.E.P., You, X., Cherubin, M.R., Moreira, C.S., Raucci, G.S., Castigioni, B. de A., Alves, P.A., Cerri, D.G.P., Mello, F.F. de C., Cerri, C.C.', 'journal': 'PloS One', 'title': 'Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production', 'volume': '12', 'page': '0176948', 'year': '2017', 'doi': '10.1371/journal.pone.0176948', 'refstr': 'Cerri, C.E.P., You, X., Cherubin, M.R., Moreira, C.S., Raucci, G.S., Castigioni, B. de A., Alves, P.A., Cerri, D.G.P., Mello, F.F. de C., Cerri, C.C., 2017. PloS One, Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production, 12, 0176948. doi:10.1371/journal.pone.0176948', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref3">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>C.E.P.</given-name>\n <surname>Cerri</surname>\n </author>\n <author>\n <given-name>X.</given-name>\n <surname>You</surname>\n </author>\n <author>\n <given-name>M.R.</given-name>\n <surname>Cherubin</surname>\n </author>\n <author>\n <given-name>C.S.</given-name>\n <surname>Moreira</surname>\n </author>\n <author>\n <given-name>G.S.</given-name>\n <surname>Raucci</surname>\n </author>\n <author>\n <given-name>B. de A.</given-name>\n <surname>Castigioni</surname>\n </author>\n <author>\n <given-name>P.A.</given-name>\n <surname>Alves</surname>\n </author>\n <author>\n <given-name>D.G.P.</given-name>\n <surname>Cerri</surname>\n </author>\n <author>\n <given-name>F.F. de C.</given-name>\n <surname>Mello</surname>\n </author>\n <author>\n <given-name>C.C.</given-name>\n <surname>Cerri</surname>\n </author>\n </authors>\n <title>\n <maintitle>Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production\n </maintitle>\n </title>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>PloS One</maintitle>\n </title>\n <volume-nr>12</volume-nr>\n </series>\n <date>2017</date>\n </issue>\n <article-number>e0176948</article-number>\n <doi>10.1371/journal.pone.0176948</doi>\n </host>\n</reference>'}, {'authors': 'CARB', 'title': 'California map for local air district websites', 'year': '2020', 'refstr': 'CARB, 2020. California map for local air district websites.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref7">\n <contribution langtype="en">\n <authors>\n <author>\n <surname>CARB</surname>\n </author>\n </authors>\n <title>\n <maintitle>California map for local air district websites</maintitle>\n </title>\n </contribution>\n <comment>Accessed</comment>\n <host>\n <e-host>\n <inter-ref>\n https://ww3.arb.ca.gov/capcoa/dismap.htm\n </inter-ref>\n <date>2020</date>\n <date-accessed day="25" month="1" year="2020"/>\n </e-host>\n </host>\n</reference>'}, {'authors': 'Albert, A., Kaur, J., Gonzalez, M.C.', 'title': 'Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments at a Large Scale', 'year': '2017', 'arxiv': '1704.02965', 'refstr': 'Albert, A., Kaur, J., Gonzalez, M.C., 2017. Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments at a Large Scale. arXiv:1704.02965', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="sref1">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>A.</given-name>\n <surname>Albert</surname>\n </author>\n <author>\n <given-name>J.</given-name>\n <surname>Kaur</surname>\n </author>\n <author>\n <given-name>M.C.</given-name>\n <surname>Gonz&#225;lez</surname>\n </author>\n </authors>\n <title>\n <maintitle>Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban Environments\n at a Large Scale\n </maintitle>\n </title>\n </contribution>\n <host>\n <book>\n <date>2017</date>\n </book>\n </host>\n <comment>arXiv:1704.02965</comment>\n</reference>'}, {'authors': 'Baniecki, J.D., Ishii, M., Kurihara, K., Yamanaka, K., Yano, T., Shinozaki, K., Imada, T., Nozaki, K., Kin, N.', 'journal': 'Phys. Rev. B: Condens. Matter Mater. Phys.', 'volume': '78', 'page': '195415', 'year': '2008', 'refstr': 'Baniecki, J.D., Ishii, M., Kurihara, K., Yamanaka, K., Yano, T., Shinozaki, K., Imada, T., Nozaki, K., Kin, N., 2008. Phys. Rev. B: Condens. Matter Mater. Phys., 78, 195415.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="h0155">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>J.D.</given-name>\n <surname>Baniecki</surname>\n </author>\n <author>\n <given-name>M.</given-name>\n <surname>Ishii</surname>\n </author>\n <author>\n <given-name>K.</given-name>\n <surname>Kurihara</surname>\n </author>\n <author>\n <given-name>K.</given-name>\n <surname>Yamanaka</surname>\n </author>\n <author>\n <given-name>T.</given-name>\n <surname>Yano</surname>\n </author>\n <author>\n <given-name>K.</given-name>\n <surname>Shinozaki</surname>\n </author>\n <author>\n <given-name>T.</given-name>\n <surname>Imada</surname>\n </author>\n <author>\n <given-name>K.</given-name>\n <surname>Nozaki</surname>\n </author>\n <author>\n <given-name>N.</given-name>\n <surname>Kin</surname>\n </author>\n </authors>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>Phys. Rev. B: Condens. Matter Mater. Phys.</maintitle>\n </title>\n <volume-nr>78</volume-nr>\n </series>\n <date>2008</date>\n </issue>\n </host>\n <comment>195415</comment>\n</reference>'}, {'authors': 'Strasburger, K.', 'journal': 'Phys. Rev. A', 'volume': '99', 'page': '069901', 'year': '2019', 'refstr': 'Strasburger, K., 2019. Phys. Rev. A, 99, 069901.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="h0095">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>K.</given-name>\n <surname>Strasburger</surname>\n </author>\n </authors>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>Phys. Rev. A</maintitle>\n </title>\n <volume-nr>99</volume-nr>\n </series>\n <date>2019</date>\n </issue>\n </host>\n <comment>069901(E)</comment>\n</reference>'}, {'authors': 'Morgunov, R.B., Farle, M., Kazakova, O.L.', 'journal': 'Zh. Eksp. Teor. Fiz.', 'volume': '134', 'page': '141', 'year': '2008', 'refstr': 'Morgunov, R.B., Farle, M., Kazakova, O.L., 2008. Zh. Eksp. Teor. Fiz., 134, 141.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference id="h0130">\n <contribution langtype="en">\n <authors>\n <author>\n <given-name>R.B.</given-name>\n <surname>Morgunov</surname>\n </author>\n <author>\n <given-name>M.</given-name>\n <surname>Farle</surname>\n </author>\n <author>\n <given-name>O.L.</given-name>\n <surname>Kazakova</surname>\n </author>\n </authors>\n </contribution>\n <host>\n <issue>\n <series>\n <title>\n <maintitle>Zh. Eksp. Teor. Fiz.</maintitle>\n </title>\n <volume-nr>134</volume-nr>\n </series>\n <date>2008</date>\n </issue>\n <pages>\n <first-page>141</first-page>\n </pages>\n </host>\n <comment>[R.B. Morgunov, M. Farle, O.L. Kazakova, JETP 107 (2008) 113]</comment>\n</reference>'}, {'year': '2005', 'refplaintext': 'I. Kravchenko, et al., Updated limits on the ultra-high energy neutrino flux from the RICE experiment, in: Proceedings of the 29th International Cosmic Ray Conference, Pune, 2005', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference>\n <textref>I. Kravchenko, et al., Updated limits on the ultra-high energy neutrino flux from the RICE experiment,\n in: Proceedings of the 29th International Cosmic Ray Conference, Pune, 2005\n </textref>\n</reference>'}, {'year': '2005', 'refplaintext': 'I. Kravchenko, et al., Using RICE data and GZK neutrino flux models to bound low scale gravity, in: Proceedings of the 29th International Cosmic Ray Conference, Pune, 2005', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference>\n <textref>I. Kravchenko, et al., Using RICE data and GZK neutrino flux models to bound low scale gravity, in:\n Proceedings of the 29th International Cosmic Ray Conference, Pune, 2005\n </textref>\n</reference>'}, {'refplaintext': 'I. Kravchenko, et al., RICE limits on the diffuse ultra-high energy neutrino flux, in preparation', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference>\n <textref>I. Kravchenko, et al., RICE limits on the diffuse ultra-high energy neutrino flux, in preparation\n </textref>\n</reference>'}]}] parsed_jats = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Sun, J., Hu, F.', 'journal': 'Int. J. RF Microwave Comput. Aided Eng.', 'volume': '30', 'page': '21983', 'year': '2020', 'doi': '10.1002/mmce.21983', 'refstr': 'Sun, J., Hu, F., 2020. Int. J. RF Microwave Comput. Aided Eng., 30, 21983. doi:10.1002/mmce.21983', 'refraw': '<mixed-citation publication-type="journal">\n <string-name>\n <given-names>J.</given-names>\n <surname>Sun</surname>\n </string-name>\n and\n <string-name>\n <given-names>F.</given-names>\n <surname>Hu</surname>\n </string-name>\n ,\n <source>Int. J. RF Microwave Comput. Aided Eng.</source>\n <volume>\n <bold>30</bold>\n </volume>\n (1), <fpage>e21983</fpage> (<year>2020</year>).\n <pub-id pub-id-type="doi" specific-use="metadata">10.1002/mmce.21983</pub-id>\n</mixed-citation>'}, {'journal': 'Thin Films PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing', 'title': 'Sputter Deposition Applied to Semiconductor Manufacturing', 'year': '1999', 'refplaintext': 'Thin Films PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing , edited by R. A. Powell and S. M. Rossnagel (Academic Press, San Diego, 1999), Vol. 26.', 'refraw': '<mixed-citation publication-type="other"><italic>Thin Films PVD for Microelectronics: Sputter Deposition Applied to\n Semiconductor Manufacturing</italic>, edited by R. A. Powell and S. M. Rossnagel (Academic Press, San Diego, 1999),\n Vol. 26.\n</mixed-citation>'}, {'authors': 'Aminu, Mohammed D., Nabavi, Seyed Ali, Rochelle, Christopher A., Manovic, Vasilije', 'journal': 'Applied Energy', 'title': 'A review of developments in carbon dioxide storage', 'volume': '208', 'page': '1389', 'year': '2017', 'refstr': 'Aminu, Mohammed D., Nabavi, Seyed Ali, Rochelle, Christopher A., Manovic, Vasilije, 2017. Applied Energy, A review of developments in carbon dioxide storage, 208, 1389.', 'refraw': '<mixed-citation publication-type="journal">\n <person-group person-group-type="author">\n <name>\n <surname>Aminu</surname>\n <given-names>Mohammed D.</given-names>\n </name>\n <name>\n <surname>Nabavi</surname>\n <given-names>Seyed Ali</given-names>\n </name>\n <name>\n <surname>Rochelle</surname>\n <given-names>Christopher A.</given-names>\n </name>\n <name>\n <surname>Manovic</surname>\n <given-names>Vasilije</given-names>\n </name>\n </person-group>\n <article-title xml:lang="en">A review of developments in carbon dioxide storage</article-title>\n <source>Applied Energy</source>\n <year>2017</year>\n <volume>208</volume>\n <fpage>1389</fpage>\n <lpage>1419</lpage>\n</mixed-citation>'}, {'authors': 'Moon, H., Lennon, D. T., Kirkpatrick, J., van Esbroeck, N. M., Camenzind, L. C., Yu, L., Vigneau, F., Zumbuhl, D. M., Briggs, G. A. D., Osborne, M. A., Sejdinovic, D., Laird, E. A., Ares, N.', 'year': '2020', 'arxiv': '2001.02589', 'refstr': 'Moon, H., Lennon, D. T., Kirkpatrick, J., van Esbroeck, N. M., Camenzind, L. C., Yu, L., Vigneau, F., Zumbuhl, D. M., Briggs, G. A. D., Osborne, M. A., Sejdinovic, D., Laird, E. A., Ares, N., 2020, 2001.02589', 'refraw': '<mixed-citation publication-type="eprint">\n <string-name>\n <given-names>H.</given-names>\n <surname>Moon</surname>\n </string-name>\n ,\n <string-name>\n <given-names>D. T.</given-names>\n <surname>Lennon</surname>\n </string-name>\n ,\n <string-name>\n <given-names>J.</given-names>\n <surname>Kirkpatrick</surname>\n </string-name>\n ,\n <string-name>\n <given-names>N. M.</given-names>\n <surname>van Esbroeck</surname>\n </string-name>\n ,\n <string-name>\n <given-names>L. C.</given-names>\n <surname>Camenzind</surname>\n </string-name>\n ,\n <string-name>\n <given-names>L.</given-names>\n <surname>Yu</surname>\n </string-name>\n ,\n <string-name>\n <given-names>F.</given-names>\n <surname>Vigneau</surname>\n </string-name>\n ,\n <string-name>\n <given-names>D. M.</given-names>\n <surname>Zumb&uuml;hl</surname>\n </string-name>\n ,\n <string-name>\n <given-names>G. A. D.</given-names>\n <surname>Briggs</surname>\n </string-name>\n ,\n <string-name>\n <given-names>M. A.</given-names>\n <surname>Osborne</surname>\n </string-name>\n ,\n <string-name>\n <given-names>D.</given-names>\n <surname>Sejdinovic</surname>\n </string-name>\n ,\n <string-name>\n <given-names>E. A.</given-names>\n <surname>Laird</surname>\n </string-name>\n , and\n <string-name>\n <given-names>N.</given-names>\n <surname>Ares</surname>\n </string-name>\n , preprint <ext-link href="http://arxiv.org/abs/arXiv:2001.02589">arXiv:2001.02589\n</ext-link> (2020).\n</mixed-citation>'}, {'authors': 'Chen, L., Liao, D. G., Guo, X. G., Zhao, J. Y., Zhu, Y. M., Zhuang, S. L.', 'journal': 'Front. Inf. Technol. Electron. Eng.', 'volume': '20', 'page': '591', 'year': '2019', 'doi': '10.1631/FITEE.1800633', 'refstr': 'Chen, L., Liao, D. G., Guo, X. G., Zhao, J. Y., Zhu, Y. M., Zhuang, S. L., 2019. Front. Inf. Technol. Electron. Eng., 20, 591. doi:10.1631/FITEE.1800633', 'refraw': '<mixed-citation id="c4a" publication-type="journal">\n <string-name>\n <given-names>L.</given-names>\n <surname>Chen</surname>\n </string-name>\n ,\n <string-name>\n <given-names>D. G.</given-names>\n <surname>Liao</surname>\n </string-name>\n ,\n <string-name>\n <given-names>X. G.</given-names>\n <surname>Guo</surname>\n </string-name>\n ,\n <string-name>\n <given-names>J. Y.</given-names>\n <surname>Zhao</surname>\n </string-name>\n ,\n <string-name>\n <given-names>Y. M.</given-names>\n <surname>Zhu</surname>\n </string-name>\n , and\n <string-name>\n <given-names>S. L.</given-names>\n <surname>Zhuang</surname>\n </string-name>\n ,\n <source>Front. Inf. Technol. Electron. Eng.</source>\n <volume>\n <bold>20</bold>\n </volume>\n , <fpage>591</fpage> (<year>2019</year>);\n <pub-id pub-id-type="doi" specific-use="metadata">10.1631/FITEE.1800633</pub-id>\n</mixed-citation>'}, {'authors': 'Jepsen, P. U., Cooke, D. G., Koch, M.', 'journal': 'Laser Photonics Rev.', 'volume': '5', 'year': '2011', 'doi': '10.1002/lpor.201000011', 'refstr': 'Jepsen, P. U., Cooke, D. G., Koch, M., 2011. Laser Photonics Rev., 5. doi:10.1002/lpor.201000011', 'refraw': '<mixed-citation id="c4b" publication-type="journal">\n <string-name>\n <given-names>P. U.</given-names>\n <surname>Jepsen</surname>\n </string-name>\n ,\n <string-name>\n <given-names>D. G.</given-names>\n <surname>Cooke</surname>\n </string-name>\n , and\n <string-name>\n <given-names>M.</given-names>\n <surname>Koch</surname>\n </string-name>\n ,\n <source>Laser Photonics Rev.</source>\n <volume>\n <bold>5</bold>\n </volume>\n , 124 (2011).\n <pub-id pub-id-type="doi" specific-use="metadata">10.1002/lpor.201000011</pub-id>\n</mixed-citation>'}, {'authors': 'Agosta, L., Metere, A.', 'title': 'Movie---Fddd mesophase trajectory', 'year': '1063', 'doi': '10.1063/5', 'refstr': 'Agosta, L., Metere, A., 1063. Movie---Fddd mesophase trajectory. doi:10.1063/5', 'refraw': '<mixed-citation publication-type="supplementary-material">\n <string-name>\n <given-names>L.</given-names>\n <surname>Agosta</surname>\n </string-name>\n and\n <string-name>\n <given-names>A.</given-names>\n <surname>Metere</surname>\n </string-name>\n , &ldquo;<article-title>Movie&mdash;Fddd mesophase trajectory</article-title>,&rdquo; available in\n the <inline-supplementary-material href="https://doi.org/10.1063/5.0006096#suppl">supplementary\n material</inline-supplementary-material>.\n</mixed-citation>'}, {'authors': 'Mitchell, A. C., Zemansky, M. W.', 'title': 'Resonance Radiation and Excited Atoms', 'year': '1961', 'refstr': 'Mitchell, A. C., Zemansky, M. W., 1961. Resonance Radiation and Excited Atoms.', 'refraw': '<mixed-citation publication-type="book">\n <string-name>\n <given-names>A. C.</given-names>\n <surname>Mitchell</surname>\n </string-name>\n and\n <string-name>\n <given-names>M. W.</given-names>\n <surname>Zemansky</surname>\n </string-name>\n ,\n <source>\n <italic>Resonance Radiation and Excited Atoms</italic>\n </source>\n , <edition>2nd ed.</edition> (<publisher-name>Cambridge University Press</publisher-name>, <publisher-loc>\n Cambridge</publisher-loc>, <year>1961</year>).\n</mixed-citation>'}, {'authors': 'Knappe, R., Haloui, H., Seifert, A., Weis, A., Nebel, A.', 'title': 'Proc. SPIE', 'volume': '7585', 'page': '75850', 'year': '2010', 'doi': '10.1117/12.842318', 'refstr': 'Knappe, R., Haloui, H., Seifert, A., Weis, A., Nebel, A., 2010. Proc. SPIE, 7585, 75850. doi:10.1117/12.842318', 'refraw': '<mixed-citation publication-type="book">\n <string-name>\n <given-names>R.</given-names>\n <surname>Knappe</surname>\n </string-name>\n ,\n <string-name>\n <given-names>H.</given-names>\n <surname>Haloui</surname>\n </string-name>\n ,\n <string-name>\n <given-names>A.</given-names>\n <surname>Seifert</surname>\n </string-name>\n ,\n <string-name>\n <given-names>A.</given-names>\n <surname>Weis</surname>\n </string-name>\n , and\n <string-name>\n <given-names>A.</given-names>\n <surname>Nebel</surname>\n </string-name>\n ,\n <source>\n <italic>Proc. SPIE</italic>\n </source>\n <volume>7585</volume>, <fpage>75850H</fpage> (<year>2010</year>).\n <pub-id pub-id-type="doi" specific-use="metadata">10.1117/12.842318</pub-id>\n</mixed-citation>'}, {'authors': 'Jingli', 'title': 'Technology driven or application driven', 'year': '2018', 'refstr': 'Jingli, 2018. Technology driven or application driven.', 'refraw': '<mixed-citation publication-type="other">\n <string-name>\n <surname>Jingli</surname>\n </string-name>\n , &ldquo;Nonvolatile memory outlook: Technology driven or application driven,&rdquo; in 2018 China Semiconductor\n Technology International Conference (CSTIC) (IEEE, 2018), pp. 1&ndash;2.\n</mixed-citation>'}, {'journal': 'k', 'year': '1063', 'doi': '10.1063/5', 'refstr': '1063, k, 10.1063/5', 'refraw': '<mixed-citation publication-type="supplementary-material">The dashed curves in <xref ref-type="fig" rid="f4">Fig. 4\n</xref> are guides based on the assumptions\n \n and\n \n . The proportionality coefficient <italic>k</italic> is arbitrary, but the difference in\n \n between the electrons and holes is taken into account:\n \n . For\n \n of the n-type sample, see the <inline-supplementary-material href="https://doi.org/10.1063/5.0009687#suppl">\n supplementary material</inline-supplementary-material>.\n</mixed-citation>'}, {'authors': 'M. Van Damme', 'year': '1907', 'arxiv': 'arXiv:1907.02474', 'refstr': 'M. Van Damme, 1907, arXiv:1907.02474', 'refraw': '<mixed-citation publication-type="eprint">\n \n <person-group person-group-type="author"><string-name>M. Van Damme</string-name>, <string-name>L.\n Vanderstraeten</string-name>, <string-name>J. De Nardis</string-name>, <string-name>J. Haegeman</string-name>,\n and\n <string-name>F. Verstraete</string-name>\n </person-group>\n , <pub-id pub-id-type="arxiv">arXiv:1907.02474</pub-id> [cond-mat].\n</mixed-citation>'}, {'authors': 'M. Van Damme', 'year': '1907', 'arxiv': 'arXiv:1907.02474', 'refstr': 'M. Van Damme, 1907, arXiv:1907.02474', 'refraw': '<mixed-citation publication-type="eprint">\n \n <person-group person-group-type="author"><string-name>M. Van Damme</string-name>, <string-name>L.\n Vanderstraeten</string-name>, <string-name>J. De Nardis</string-name>, <string-name>J. Haegeman</string-name>,\n and\n <string-name>F. Verstraete</string-name>\n </person-group>\n , <pub-id pub-id-type="arxiv">arXiv:1907.02474</pub-id> [cond-mat].\n</mixed-citation>'}, {'authors': 'F. Verstraete', 'arxiv': 'arXiv:cond-mat/0407066', 'refstr': 'F. Verstraete, arXiv:cond-mat/0407066', 'refraw': '<mixed-citation publication-type="eprint">\n \n <person-group person-group-type="author">\n <string-name>F. Verstraete</string-name>\n and\n <string-name>J. I. Cirac</string-name>\n </person-group>\n , <pub-id pub-id-type="arxiv">arXiv:cond-mat/0407066</pub-id>.\n</mixed-citation>'}]}] parsed_iop = [{'bibcode': '2020TEST..........R', 'references': [{'year': '2015', 'refplaintext': 'Flynn J 2015 Computing Resources Scrutiny Group Report Tech. Rep. CERN-RRB-2015-014 CERN Geneva URL', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_label>[1]</ref_label>\n <ref_citation>Flynn J 2015 Computing Resources Scrutiny Group Report Tech. Rep. CERN-RRB-2015-014 CERN Geneva URL\n https://cds.cern.ch/record/2002240\n </ref_citation>\n</reference>'}, {'authors': 'J. Lattin D C and P G', 'journal': 'Analyzing multivariate data.', 'year': '2003', 'refplaintext': 'J. Lattin D C and P G 2003 Analyzing multivariate data. (New York: Duxbury: Pacific Grove, CA: Thomson Brooks/Cole)', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="book">\n <ref_label>[24]</ref_label>\n <ref_citation>J. Lattin D C and P G 2003 Analyzing multivariate data. (New York: Duxbury: Pacific Grove, CA: Thomson\n Brooks/Cole)\n </ref_citation>\n <ref_authors>J. Lattin D C and P G</ref_authors>\n <ref_journal>Analyzing multivariate data.</ref_journal>\n <ref_year>2003</ref_year>\n</reference>'}, {'authors': 'Agostinelli S et al and GEANT4', 'journal': 'Nucl. Instrum. Meth.', 'volume': '506', 'page': '250', 'year': '2003', 'doi': '10.1016/S0168-9002(03)01368-8', 'refstr': 'Agostinelli S et al and GEANT4, 2003. Nucl. Instrum. Meth., 506, 250. doi:10.1016/S0168-9002(03)01368-8', 'issn': '0168-9002', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_label>[13]</ref_label>\n <ref_citation>Agostinelli S et al and GEANT4 2003 Nucl. Instrum. Meth. A506 250-303</ref_citation>\n <ref_doi>10.1016/S0168-9002(03)01368-8</ref_doi>\n <ref_authors>Agostinelli S et al and GEANT4</ref_authors>\n <ref_journal>Nucl. Instrum. Meth.</ref_journal>\n <ref_issn>0168-9002</ref_issn>\n <ref_volume>506</ref_volume>\n \n <ref_year>2003</ref_year>\n <ref_start_page>250</ref_start_page>\n <ref_end_page>303</ref_end_page>\n</reference>'}, {'year': '2017', 'arxiv': 'arXiv:1701.00160', 'refstr': '2017, arXiv:1701.00160', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_label>[14]</ref_label>\n <ref_citation>Goodfellow I J 2017 CoRR abs/1701.00160 URL http://arxiv.org/abs/1701.00160</ref_citation>\n</reference>'}, {'year': '2017', 'arxiv': 'arXiv:1701.00160', 'refstr': '2017, arXiv:1701.00160', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_label>[14]</ref_label>\n <ref_citation>Goodfellow I J 2017 CoRR abs/1701.00160 URL http://arxiv.org/abs/1701.00160</ref_citation>\n</reference>'}, {'authors': 'Bekbaev U', 'title': 'On classification of finite dimensional algebras', 'year': '2015', 'arxiv': 'arXiv:1504.01194', 'refstr': ' arXiv:1504.01194', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_label>[1]</ref_label>\n <ref_citation>Bekbaev U 2015 On classification of finite dimensional algebras arXiv: 1504.01194</ref_citation>\n <ref_item_title>On classification of finite dimensional algebras</ref_item_title>\n <ref_authors>Bekbaev U</ref_authors>\n <ref_year>2015</ref_year>\n</reference>'}, {'authors': 'Orosz J. A., Welsh W. F., Carter J. A. et al', 'journal': 'Sci', 'volume': '337', 'year': '2012', 'doi': '10.1126/science.1228380', 'refstr': 'Orosz J. A., Welsh W. F., Carter J. A. et al, 2012. Sci, 337. doi:10.1126/science.1228380', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_citation>Orosz J. A., Welsh W. F., Carter J. A. et al 2012a Sci 337 1511</ref_citation>\n <ref_doi>10.1126/science.1228380</ref_doi>\n <ref_authors>Orosz J. A., Welsh W. F., Carter J. A. et al</ref_authors>\n <ref_journal>Sci</ref_journal>\n <ref_volume>337</ref_volume>\n <ref_year>2012</ref_year>\n <ref_start_page>1511</ref_start_page>\n</reference>'}, {'authors': 'Rao A. M., Zhou P., Wang K. A. et al', 'journal': 'Sci', 'volume': '259', 'year': '1993', 'refstr': 'Rao A. M., Zhou P., Wang K. A. et al, 1993. Sci, 259.', 'refraw': '<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?><reference type="journal">\n <ref_citation>Rao A. M., Zhou P., Wang K. A. et al 1993 Sci 259 955</ref_citation>\n <ref_doi>10.1126/science.259.5097.955</ref_doi>\n <ref_authors>Rao A. M., Zhou P., Wang K. A. et al</ref_authors>\n <ref_journal>Sci</ref_journal>\n <ref_volume>259</ref_volume>\n <ref_year>1993</ref_year>\n <ref_start_page>955</ref_start_page>\n</reference>'}]}] parsed_springer = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Jaeckel, J, Ringwald, A', 'journal': 'Ann. Rev. Nucl. Part. Sci.', 'title': 'The Low-Energy Frontier of Particle Physics', 'volume': '60', 'page': '405', 'year': '2010', 'doi': '10.1146/annurev.nucl.012809.104433', 'arxiv': '1002.0329', 'refstr': 'Jaeckel, J, Ringwald, A, 2010. Ann. Rev. Nucl. Part. Sci., The Low-Energy Frontier of Particle Physics, 60, 405. doi:10.1146/annurev.nucl.012809.104433 arXiv:1002.0329', 'refraw': '<Citation ID="CR1">\n<CitationNumber>[1]</CitationNumber>\n<BibArticle>\n <BibAuthorName>\n <Initials>J</Initials>\n <FamilyName>Jaeckel</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>A</Initials>\n <FamilyName>Ringwald</FamilyName>\n </BibAuthorName>\n <Year>2010</Year>\n <ArticleTitle Language="En">The Low-Energy Frontier of Particle Physics</ArticleTitle>\n <JournalTitle>Ann. Rev. Nucl. Part. Sci.</JournalTitle>\n <VolumeID>60</VolumeID>\n <FirstPage>405</FirstPage>\n <Occurrence Type="Bibcode">\n <Handle>2010ARNPS..60..405J</Handle>\n </Occurrence>\n <Occurrence Type="DOI">\n <Handle>10.1146/annurev.nucl.012809.104433</Handle>\n </Occurrence>\n <BibComments>[arXiv:1002.0329] [INSPIRE]</BibComments>\n</BibArticle>\n<BibUnstructured>J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60\n (2010) 405 [\n <ExternalRef>\n <RefSource>arXiv:1002.0329</RefSource>\n <RefTarget Address="https://arxiv.org/abs/1002.0329" TargetType="URL"/>\n </ExternalRef>\n ] [\n <ExternalRef>\n <RefSource>INSPIRE</RefSource>\n <RefTarget Address="https://inspirehep.net/search?p=find+J+%22Ann.Rev.Nucl.Part.Sci.,60,405%22"\n TargetType="URL"/>\n </ExternalRef>\n ].\n</BibUnstructured>\n</Citation>'}, {'year': '2015', 'doi': '10.1017/CBO9781107706620', 'refstr': '2015, 10.1017/CBO9781107706620', 'refraw': '<Citation ID="CR86">\n<CitationNumber>[86]</CitationNumber>\n<BibUnstructured>H. Elvang and Y. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press,\n (2015), [\n <ExternalRef>\n <RefSource>https://doi.org/10.1017/CBO9781107706620</RefSource>\n <RefTarget Address="10.1017/CBO9781107706620" TargetType="DOI"/>\n </ExternalRef>\n ].\n</BibUnstructured>\n</Citation>'}, {'authors': 'Henneaux, Marc, Teitelboim, Claudio', 'journal': 'Quantum Mechanics of Fundamental Systems 2', 'title': 'Consistent Quantum Mechanics of Chiral p-Forms', 'page': '79', 'year': '1989', 'doi': '10.1007/978-1-4613-0797-6_8', 'refstr': 'Henneaux, Marc, Teitelboim, Claudio, 1989. Quantum Mechanics of Fundamental Systems 2, Consistent Quantum Mechanics of Chiral p-Forms, 79. doi:10.1007/978-1-4613-0797-6_8', 'refraw': '<Citation ID="CR6">\n<CitationNumber>[5]</CitationNumber>\n<BibChapter>\n <BibAuthorName>\n <Initials>Marc</Initials>\n <FamilyName>Henneaux</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>Claudio</Initials>\n <FamilyName>Teitelboim</FamilyName>\n </BibAuthorName>\n <Year>1989</Year>\n <ChapterTitle Language="--">Consistent Quantum Mechanics of Chiral p-Forms</ChapterTitle>\n <BookTitle>Quantum Mechanics of Fundamental Systems 2</BookTitle>\n <PublisherName>Springer US</PublisherName>\n <PublisherLocation>Boston, MA</PublisherLocation>\n <FirstPage>79</FirstPage>\n <LastPage>112</LastPage>\n <Occurrence Type="DOI">\n <Handle>10.1007/978-1-4613-0797-6_8</Handle>\n </Occurrence>\n</BibChapter>\n<BibUnstructured>M. Henneaux and C. Teitelboim, Consistent quantum mechanics of chiral p forms, in 2nd Meeting on\n Quantum Mechanics of Fundamental Systems (CECS) Santiago, Chile, December 17&ndash;20, 1987, pp. 79&ndash;112.\n</BibUnstructured>\n</Citation>'}, {'authors': 'Elvang, H, Huang, YT', 'title': 'Scattering amplitudes in gauge theory and gravity', 'year': '2015', 'doi': '10.1017/CBO9781107706620', 'arxiv': '1332.81010', 'refstr': 'Elvang, H, Huang, YT, 2015. Scattering amplitudes in gauge theory and gravity. doi:10.1017/CBO9781107706620 arXiv:1332.81010', 'refraw': '<Citation ID="CR6i">\n<CitationNumber>[6]</CitationNumber>\n<BibBook>\n <BibAuthorName>\n <Initials>H</Initials>\n <FamilyName>Elvang</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>YT</Initials>\n <FamilyName>Huang</FamilyName>\n </BibAuthorName>\n <Year>2015</Year>\n <BookTitle>Scattering amplitudes in gauge theory and gravity</BookTitle>\n <PublisherName>Cambridge University Press</PublisherName>\n <PublisherLocation>Cambridge, U.K.</PublisherLocation>\n <Occurrence Type="ZLBID">\n <Handle>1332.81010</Handle>\n </Occurrence>\n <Occurrence Type="DOI">\n <Handle>10.1017/CBO9781107706620</Handle>\n </Occurrence>\n</BibBook>\n<BibUnstructured>H. Elvang and Y.T. Huang, Scattering amplitudes in gauge theory and gravity, Cambridge University\n Press, Cambridge, U.K. (2015).\n</BibUnstructured>\n</Citation>'}, {'authors': 'Nyhus, PJ, Sumianto', 'journal': 'Oryx', 'title': 'Crop-raiding elephants and conservation implications at Way Kambas National Park, Sumatra, Indonesia', 'volume': '34', 'page': '262', 'year': '2000', 'refstr': 'Nyhus, PJ, Sumianto, 2000. Oryx, Crop-raiding elephants and conservation implications at Way Kambas National Park, Sumatra, Indonesia, 34, 262.', 'refraw': '<Citation ID="CR39">\n<BibArticle>\n <BibAuthorName>\n <Initials>PJ</Initials>\n <FamilyName>Nyhus</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>R</Initials>\n <NoFamilyName/>\n </BibAuthorName>\n <BibAuthorName>\n <NoInitials/>\n <FamilyName>Sumianto</FamilyName>\n </BibAuthorName>\n <Year>2000</Year>\n <ArticleTitle Language="En">Crop-raiding elephants and conservation implications at Way Kambas National Park,\n Sumatra, Indonesia\n </ArticleTitle>\n <JournalTitle>Oryx</JournalTitle>\n <VolumeID>34</VolumeID>\n <FirstPage>262</FirstPage>\n <LastPage>274</LastPage>\n</BibArticle>\n<BibUnstructured>Nyhus PJ, Tilson R, Sumianto (2000) Crop-raiding elephants and conservation implications at Way Kambas\n National Park, Sumatra, Indonesia. Oryx 34:262&ndash;274\n</BibUnstructured>\n</Citation>'}, {'authors': 'Onur, M, Hegeman, P S, Gok, I M, Kuchuk, F J', 'journal': 'Proc. of the Int. Petroleum Technol. Conf., Doha (Qatar), December 7--9, 2009', 'title': 'A Novel Analysis Procedure for Estimating Thickness- Independent Horizontal and Vertical Permeabilities from Pressure Data at an Observation Probe Acquired by Packer-Probe Wireline Formation Testers', 'year': '2011', 'doi': '10.2118/148403-PA', 'refstr': 'Onur, M, Hegeman, P S, Gok, I M, Kuchuk, F J, 2011. Proc. of the Int. Petroleum Technol. Conf., Doha (Qatar), December 7--9, 2009. doi:10.2118/148403-PA', 'refraw': '<Citation ID="CR5">\n<CitationNumber>5.</CitationNumber>\n<BibChapter>\n <BibAuthorName>\n <Initials>M</Initials>\n <FamilyName>Onur</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>P S</Initials>\n <FamilyName>Hegeman</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>I M</Initials>\n <FamilyName>Gok</FamilyName>\n </BibAuthorName>\n <BibAuthorName>\n <Initials>F J</Initials>\n <FamilyName>Kuchuk</FamilyName>\n </BibAuthorName>\n <Year>2011</Year>\n <ChapterTitle Language="En">A Novel Analysis Procedure for Estimating Thickness- Independent Horizontal and Vertical\n Permeabilities from Pressure Data at an Observation Probe Acquired by Packer-Probe Wireline Formation Testers\n </ChapterTitle>\n <BookTitle>Proc. of the Int. Petroleum Technol. Conf., Doha (Qatar), December 7&ndash;9, 2009</BookTitle>\n</BibChapter>\n<BibUnstructured>M. Onur, P. S. Hegeman, I. M. Gok, and F. J. Kuchuk, &ldquo;A Novel Analysis Procedure for Estimating\n Thickness- Independent Horizontal and Vertical Permeabilities from Pressure Data at an Observation Probe Acquired by\n Packer-Probe Wireline Formation Testers,&rdquo; in Proc. of the Int. Petroleum Technol. Conf., Doha (Qatar),\n December 7&ndash;9, 2009 (Petroleum Eng., 2011);\n <ExternalRef>\n <RefSource>https://doi.org/10.2118/148403-PA</RefSource>\n <RefTarget Address="https://doi.org/10.2118/148403-PA" TargetType="URL"/>\n </ExternalRef>\n .\n</BibUnstructured>\n</Citation>'}, {'year': '2006', 'refplaintext': 'Kervella, P., amp Domiciano de Souza, A. (2006). The polar wind of the fast rotating Be star Achernar. VINCI/VLTI interferometric observations of an elongated polar envelope. Astronomy amp Astrophysics, 453, 1059.', 'refraw': '<Citation ID="CR12">\n<BibUnstructured>Kervella, P., &amp; Domiciano de Souza, A. (2006). The polar wind of the fast rotating Be star\n Achernar. VINCI/VLTI interferometric observations of an elongated polar envelope. Astronomy &amp; Astrophysics, 453,\n 1059.\n</BibUnstructured>\n</Citation>'}]}] parsed_aps = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Jensen H. J., Brass A., Berlinsky A. J.', 'journal': 'Phys. Rev. Lett.', 'volume': '60', 'page': '1676', 'year': '1988', 'doi': '10.1103/PhysRevLett.60.1676', 'refstr': 'Jensen H. J., Brass A., Berlinsky A. J., 1988. Phys. Rev. Lett., 60, 1676. doi:10.1103/PhysRevLett.60.1676', 'refraw': '<ref citid="c1">\n <jcite><refauth>H. J. Jensen</refauth>, <refauth>A. Brass</refauth>, and <refauth>A. J. Berlinsky</refauth>, <jtitle>\n Phys. Rev. Lett.\n </jtitle>\n <volume>60</volume>, <pages>1676</pages> (<date>1988</date>).\n <doi>10.1103/PhysRevLett.60.1676</doi>\n </jcite>\n </ref>'}, {'authors': 'Brandt E. H.', 'journal': 'Phys. Rev. B', 'volume': '50', 'page': '4034', 'year': '1994', 'doi': '10.1103/PhysRevB.50.4034', 'refstr': 'Brandt E. H., 1994. Phys. Rev. B, 50, 4034. doi:10.1103/PhysRevB.50.4034', 'refraw': '<ref citid="c31">\n <jcite><refauth>E. H. Brandt</refauth>, <jtitle>Phys. Rev. B</jtitle>\n <volume>50</volume>, <pages>4034</pages> (<date>1994</date>).\n <doi>10.1103/PhysRevB.50.4034</doi>\n </jcite>\n </ref>'}, {'authors': 'Golterman M., Peris S.', 'journal': 'J. High Energy Phys.', 'volume': '2001', 'issue': '01', 'page': '028', 'doi': '10.1088/1126-6708/2001/01/028', 'refstr': 'Golterman M., Peris S., J. High Energy Phys., 2001, 028, 10.1088/1126-6708/2001/01/028', 'issn': '1029-8479', 'refraw': '<ref citid="c36">\n <jcite>\n <refauth>M. Golterman</refauth>\n and <refauth>S. Peris</refauth>,\n <jtitle>J. High Energy Phys.</jtitle>\n <coden>JHEPFG</coden>\n <issn>1029-8479</issn>\n <issue>01</issue> (<volume>2001</volume>) <pages>028</pages>.\n <doi>10.1088/1126-6708/2001/01/028</doi>\n </jcite>\n </ref>'}, {'authors': 'Truong T. N.', 'arxiv': 'arXiv:hep-ph/0102300', 'refstr': 'Truong T. N., arXiv:hep-ph/0102300', 'refraw': '<ref citid="c88">\n <eprint><refauth>T. N. Truong</refauth>, <eprintid>arXiv:hep-ph/0102300</eprintid>.\n </eprint>\n </ref>'}, {'journal': 'Z. Phys. C', 'year': '1991', 'doi': '10.1007/BF01549692', 'refstr': '1991, Z. Phys. C, 10.1007/BF01549692', 'issn': '0170-9739', 'refraw': '<ref citid="c89">\n <jcite>\n <jtitle>Z. Phys. C</jtitle> (<date>1991</date>).\n <coden>ZPCFD2</coden>\n <issn>0170-9739</issn>\n <doi>10.1007/BF01549692</doi>\n </jcite>\n </ref>'}]}] parsed_nature = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Campeau, E. et al. ', 'journal': 'PLoS One ', 'title': 'A versatile viral system for expression and depletion of proteins in mammalian cells', 'year': '2009', 'refstr': 'Campeau, E. et al. , 2009. A versatile viral system for expression and depletion of proteins in mammalian cells.', 'refraw': '<reftxt>\n<refau><snm>Campeau</snm>,\n <fnm>E.</fnm>\n</refau>\net al. <atl>A versatile viral system for expression and depletion of proteins in mammalian cells</atl>. <jtl>PLoS One\n</jtl> 4, e6529 (2009)\n</reftxt>'}, {'authors': 'Inaba, M., Buszczack, M., Yamashita, Y. M.', 'journal': 'Nature', 'volume': '523', 'page': '329', 'year': '2015', 'refstr': 'Inaba, M., Buszczack, M., Yamashita, Y. M., 2015. Nature, 523, 329.', 'refraw': '<reftxt>\n<refau><snm>Inaba</snm>,\n <fnm>M.</fnm>\n</refau>\n,\n<refau><snm>Buszczack</snm>,\n <fnm>M.</fnm>\n</refau>\n__amp__amp;amp\n<refau><snm>Yamashita</snm>,\n <fnm>Y. M.</fnm>\n</refau>\n<jtl>Nature</jtl>\n523, 329__amp__#8211;332 (2015).\n</reftxt>'}]}] parsed_aip = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Smolenskii, G., Ioffe, V.', 'title': 'Communications de Colloque International de Magnetism de Grenoble', 'year': '1958', 'refstr': 'Smolenskii, G., Ioffe, V., 1958. Communications de Colloque International de Magnetism de Grenoble.', 'refraw': '<ref>\n <biother>\n <biaugrp>\n <biauth>\n <bifname>G. A.</bifname>\n <punct></punct>\n <bilname>Smolenskii</bilname>\n </biauth>\n <punct>and</punct>\n <biauth>\n <bifname>V. A.</bifname>\n <punct></punct>\n <bilname>Ioffe</bilname>\n </biauth>\n </biaugrp>\n <punct>,</punct>\n <emph_1>Communications de Colloque International de Magnetism de Grenoble</emph_1>\n <punct>(</punct>\n <othinfo>France), 2-6 Jullet, Communication No.1</othinfo>\n <punct>(</punct>\n <year>1958</year>\n <punct>).</punct>\n </biother>\n</ref>'}, {'authors': 'Jansen, M., Bak, P.', 'journal': 'Phys. Rev. B', 'volume': '27', 'page': '6853', 'doi': '10.1103/PhysRevB.27.6853', 'refstr': 'Jansen, M., Bak, P., Phys. Rev. B, 27, 6853, 10.1103/PhysRevB.27.6853', 'refraw': '<ref>\n <art>\n <biaugrp>\n <biauth>\n <bifname>M. H.</bifname>\n <punct></punct>\n <bilname>Jansen</bilname>\n </biauth>\n <punct>and</punct>\n <biauth>\n <bifname>P.</bifname>\n <punct></punct>\n <bilname>Bak</bilname>\n </biauth>\n </biaugrp>\n <punct>,</punct>\n <journal>Phys. Rev. B</journal>\n <punct></punct>\n <vol>27</vol>\n <punct>,</punct>\n <pp>6853</pp>\n <punct>.</punct>\n <plink>\n <linkkey_dbkey>prb</linkkey_dbkey>\n <linkkey_coden>PRBMDO</linkkey_coden>\n <linkkey_issn>0163-1829</linkkey_issn>\n <linkkey_doi>10.1103/PhysRevB.27.6853</linkkey_doi>\n </plink>\n </art>\n</ref>'}, {'authors': 'Binder, К., Landau, D.', 'journal': 'Phys. Rev. B', 'volume': '21', 'page': '1941', 'year': '1941', 'refstr': 'Binder, К., Landau, D., 1941. Phys. Rev. B, 21, 1941.', 'refraw': '<ref>\n <art>\n <biaugrp>\n <biauth>\n <bifname>&Kcy;.</bifname>\n <punct></punct>\n <bilname>Binder</bilname>\n </biauth>\n <punct>and</punct>\n <biauth>\n <bifname>D. P.</bifname>\n <punct></punct>\n <bilname>Landau</bilname>\n </biauth>\n </biaugrp>\n <punct>,</punct>\n <journal>Phys. Rev. B</journal>\n <punct></punct>\n <vol>21</vol>\n <punct>,</punct>\n <pp>1941</pp>\n <punct>.</punct>\n <plink>\n <linkkey_dbkey>prb</linkkey_dbkey>\n <linkkey_coden>PRBMDO</linkkey_coden>\n <linkkey_issn>0163-1829</linkkey_issn>\n </plink>\n </art>\n</ref>'}]}] parsed_wiley = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Benkovitz, C. M.', 'journal': 'Atmos. Environ.', 'title': 'Compilation of an inventory of anthropogenic emissions in the United States and Canada', 'volume': '16', 'page': '1551', 'year': '1982', 'refstr': 'Benkovitz, C. M., 1982. Atmos. Environ., Compilation of an inventory of anthropogenic emissions in the United States and Canada, 16, 1551.', 'refraw': '<citation type="journal" xmlid="jgrd3831-cit-0001">\n <author><familyName>Benkovitz</familyName>,\n <givenNames>C. M.</givenNames>\n </author>\n , <articleTitle>Compilation of an inventory of anthropogenic emissions in the United States and\n Canada</articleTitle>, <journalTitle>Atmos. Environ.</journalTitle>, <vol>16</vol>, <pageFirst>\n 1551</pageFirst>-<pageLast>1563</pageLast>, <pubYear year="1982">1982</pubYear>.\n</citation>'}, {'authors': 'Crisp, D., Meadows, V. S., Allen, D. A., Bezard, B., Bergh, C., Maillard, J.-P.', 'journal': 'International Colloquium on Venus', 'title': '; Near-infrared oxygen airglow from the Venus night side', 'year': '1992', 'refstr': 'Crisp, D., Meadows, V. S., Allen, D. A., Bezard, B., Bergh, C., Maillard, J.-P., 1992. ; Near-infrared oxygen airglow from the Venus night side.', 'refraw': '<citation type="book" xmlid="jgre558-cit-0015">\n <author><familyName>Crisp</familyName>,\n <givenNames>D.</givenNames>\n </author>\n ,\n <author>\n <givenNames>V. S.</givenNames>\n <familyName>Meadows</familyName>\n </author>\n ,\n <author>\n <givenNames>D. A.</givenNames>\n <familyName>Allen</familyName>\n </author>\n ,\n <author>\n <givenNames>B.</givenNames>\n <familyName>Bezard</familyName>\n </author>\n ,\n <author>\n <givenNames>C.</givenNames>\n <familyNamePrefix>de</familyNamePrefix>\n <familyName>Bergh</familyName>\n </author>\n ,\n <author>\n <givenNames>J.-P.</givenNames>\n <familyName>Maillard</familyName>\n </author>\n , <chapterTitle>Near-infrared oxygen airglow from the Venus night side</chapterTitle>, <bookTitle>International\n Colloquium on Venus</bookTitle>, <otherTitle>Lunar and Planet. Inst. Cont.</otherTitle>, <vol>789</vol>, <pageFirst>\n 23</pageFirst>-<pageLast>24</pageLast>, <publisherName>Lunar and Planet. Inst.</publisherName>, <publisherLoc>\n Houston</publisherLoc>, <pubYear year="1992">1992</pubYear>.\n</citation>'}, {'authors': 'Radke, L. F.', 'journal': 'Airborne observations of cloud microphysics modified by anthropogenic forcing', 'page': '310', 'year': '1989', 'refstr': 'Radke, L. F., 1989. Airborne observations of cloud microphysics modified by anthropogenic forcing, 310.', 'refraw': '<citation type="other" xmlid="jgrd3831-cit-0018">\n <author><familyName>Radke</familyName>,\n <givenNames>L. F.</givenNames>\n </author>\n , <otherTitle>Airborne observations of cloud microphysics modified by anthropogenic forcing</otherTitle>,\n <otherTitle>Preprints &acirc;&#128;&#148; Symposium on the Role of Clouds in Atmospheric Chemistry and Global\n Climate, Anaheim, CA</otherTitle>, <pageFirst>310</pageFirst>-<pageLast>315</pageLast>Am. Meteorol.\n Soc., <publisherLoc>Boston</publisherLoc>, <pubYear year="1989">1989</pubYear>.\n</citation>'}, {'authors': "Lindaas, J., Pollack, I. B., Calahorrano, J. J., O'Dell, K., Garofalo, L. A., Pothier, M. A.", 'journal': '(in review at journal of Geophysical research: Atmospheres)', 'title': 'Empirical insights into the fate of ammonia in western U.S. wildfire smoke plumes', 'refraw': '<citation type="other" xmlid="jgrd56720-cit-0046">\n <author><familyName>Lindaas</familyName>,\n <givenNames>J.</givenNames>\n </author>,\n <author><familyName>Pollack</familyName>,\n <givenNames>I. B.</givenNames>\n </author>,\n <author><familyName>Calahorrano</familyName>,\n <givenNames>J. J.</givenNames>\n </author>,\n <author><familyName>O\'Dell</familyName>,\n <givenNames>K.</givenNames>\n </author>,\n <author><familyName>Garofalo</familyName>,\n <givenNames>L. A.</givenNames>\n </author>,\n <author><familyName>Pothier</familyName>,\n <givenNames>M. A.</givenNames>\n </author>,\n et&Acirc;&nbsp;al.\n <otherTitle>Empirical insights into the fate of ammonia in western U.S. wildfire smoke plumes</otherTitle>.\n <bookTitle>(in review at journal of Geophysical research: Atmospheres)</bookTitle>.\n</citation>'}]}] parsed_nlm3 = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Facebook', 'journal': 'http://www.facebook.com/press/info.php?statistics', 'year': '2012', 'refplaintext': 'Facebook 2012 February', 'refraw': '<ref id="B1">\n<nlm-citation citation-type="web">\n <collab>Facebook</collab>\n <source>\n \n http://www.facebook.com/press/info.php?statistics\n \n </source>\n <year>2012</year>\n <comment>February</comment>\n</nlm-citation>\n</ref>'}, {'authors': 'Brin, S', 'journal': 'Comput Netw', 'title': 'The anatomy of a large-scale hypertextual web search engine', 'volume': '30', 'page': '107', 'year': '1998', 'refstr': 'Brin, S, 1998. Comput Netw, The anatomy of a large-scale hypertextual web search engine, 30, 107.', 'refraw': '<ref id="B4">\n<nlm-citation citation-type="journal">\n <person-group person-group-type="author">\n <name>\n <surname>Brin</surname>\n <given-names>S</given-names>\n </name>\n <name>\n <surname>Page</surname>\n <given-names>L</given-names>\n </name>\n </person-group>\n <article-title>The anatomy of a large-scale hypertextual web search engine</article-title>\n <source>Comput Netw</source>\n <year>1998</year>\n <volume>30</volume>\n <fpage>107</fpage>\n <lpage>117</lpage>\n</nlm-citation>\n</ref>'}, {'authors': 'Energy Information Administration', 'journal': 'Annual Energy Outlook 2011', 'year': '2011', 'refplaintext': 'U.S. Energy Information Administration Annual Energy Outlook 2011 2011 ( www.eia.gov/forecasts/aeo/)', 'refraw': '<ref id="B7">\n<nlm-citation citation-type="other">\n <collab>U.S. Energy Information Administration</collab>\n <source>Annual Energy Outlook 2011</source>\n <year>2011</year>\n <comment>(\n www.eia.gov/forecasts/aeo/)\n </comment>\n</nlm-citation>\n</ref>'}, {'authors': 'Cervero, J. M., Lohe, M. A.', 'journal': 'Exact Monopole Solution and Euclidean Yang–Mills Field', 'volume': '70', 'page': '325', 'year': '1977', 'doi': 'doi:10.1016/0370-2693(77)90669-4', 'refstr': 'Cervero, J. M., Lohe, M. A., 1977. Exact Monopole Solution and Euclidean Yang–Mills Field, 70, 325. doi:doi:10.1016/0370-2693(77)90669-4', 'refraw': '<ref id="r11">\n<label>11</label>\n<mixed-citation publication-type="book">\n <person-group person-group-type="author">\n <string-name name-style="western">\n <given-names>J. M.</given-names>\n <surname>Cervero</surname>\n </string-name>\n </person-group>\n , <source>Exact Monopole Solution and Euclidean Yang–Mills Field</source> (<publisher-name>Harvard\n University</publisher-name>, <year>1977</year>) <comment>preprint HUTP-77/A011</comment>;\n</mixed-citation>\n<mixed-citation publication-type="journal">\n <person-group person-group-type="author">\n <string-name name-style="western">\n <given-names>M. A.</given-names>\n <surname>Lohe</surname>\n </string-name>\n </person-group>\n ,\n <source>Phys. Lett. B</source>\n <volume>70</volume>, <fpage>325</fpage> (<year>1977</year>).\n <pub-id pub-id-type="doi">10.1016/0370-2693(77)90669-4</pub-id>\n</mixed-citation>\n</ref>'}, {'authors': 'Chaikin, PM', 'journal': 'Principles of Condensed Matter Physics', 'year': '2000', 'refplaintext': 'Chaikin PM Lubensky TC Principles of Condensed Matter Physics 2000 Cambridge Univ Press', 'refraw': '<ref id="B1i">\n<nlm-citation citation-type="book">\n <person-group person-group-type="author">\n <name>\n <surname>Chaikin</surname>\n <given-names>PM</given-names>\n </name>\n <name>\n <surname>Lubensky</surname>\n <given-names>TC</given-names>\n </name>\n </person-group>\n <source>Principles of Condensed Matter Physics</source>\n <year>2000</year>\n <publisher-name>Cambridge Univ Press</publisher-name>\n</nlm-citation>\n</ref>'}, {'authors': 'Knollmüller, J., Enßlin, T. A.', 'year': '2019', 'arxiv': '1901.11033', 'refstr': 'Knollmüller, J., Enßlin, T. A., 2019, 1901.11033', 'refraw': '<ref id="R5">\n<mixed-citation publication-type="other">\n <string-name><surname>Knollmüller</surname>,\n <given-names>J.</given-names>\n </string-name>\n , &amp;\n <string-name><surname>Enßlin</surname>,\n <given-names>T. A.</given-names>\n </string-name>\n <year>2019</year>, ArXiv preprint [\n arXiv:1901.11033]\n</mixed-citation>\n</ref>'}, {'authors': 'Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., Bièvre, P.D., Gröning, M.', 'journal': 'Pure Appl. Chem.', 'title': 'Atomic weights of the elements 2013', 'volume': '88', 'page': '265', 'year': '2016', 'refstr': 'Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., Bièvre, P.D., Gröning, M., 2016. Pure Appl. Chem., Atomic weights of the elements 2013, 88, 265.', 'refraw': '<ref id="R10">\n<label>10</label>\n<mixed-citation publication-type="journal">\n <string-name>\n <given-names>J.</given-names>\n <surname>Meija</surname>\n </string-name>\n ,\n <string-name>\n <given-names>T.B.</given-names>\n <surname>Coplen</surname>\n </string-name>\n ,\n <string-name>\n <given-names>M.</given-names>\n <surname>Berglund</surname>\n </string-name>\n ,\n <string-name>\n <given-names>W.A.</given-names>\n <surname>Brand</surname>\n </string-name>\n ,\n <string-name>\n <given-names>P.D.</given-names>\n <surname>Bièvre</surname>\n </string-name>\n ,\n <string-name>\n <given-names>M.</given-names>\n <surname>Gröning</surname>\n </string-name>\n et al., <article-title>Atomic weights of the elements 2013</article-title>, <source>Pure Appl. Chem.</source>\n <volume>88</volume>, <fpage>265</fpage> (<year>2016</year>)&amp;#13;\n</mixed-citation>\n</ref>'}]}] parsed_agu = [{'bibcode': '2020TEST..........R', 'references': [{'authors': 'Bouwman', 'journal': 'Global Biogeochem. Cycles', 'volume': '7', 'page': '557', 'year': '1993', 'refstr': 'Bouwman, 1993. Global Biogeochem. Cycles, 7, 557.', 'refraw': '<citation id="bouw93">\n <journal_title>Global Biogeochem. Cycles</journal_title>\n <first_author>Bouwman</first_author>\n <reftitle>Global analysis of the potential for N<sub>2</sub>O production in natural soils</reftitle>\n <volume>7</volume>\n <firstPage>557</firstPage>\n <CitationNumber>null</CitationNumber>\n <year>1993</year>\n <partOfCode>journal</partOfCode>\n <paperType>article</paperType>\n</citation>'}, {'authors': 'Scheffer', 'journal': 'Lehrbuch der Bodenkunde', 'year': '1992', 'refplaintext': 'Scheffer, Lehrbuch der Bodenkunde, 1992, standalone, book', 'refraw': '<citation id="sche92">\n <journal_title>null</journal_title>\n <first_author>Scheffer</first_author>\n <reftitle>Lehrbuch der Bodenkunde</reftitle>\n <firstPage>null</firstPage>\n <CitationNumber>null</CitationNumber>\n <year>1992</year>\n <partOfCode>standalone</partOfCode>\n <paperType>book</paperType>\n</citation>'}, {'authors': 'Yu', 'journal': 'J. Geophys. Res. D', 'volume': '113', 'page': 'DD14S12', 'year': '2008', 'doi': '10.1029/2007JD009349', 'refstr': 'Yu, 2008. J. Geophys. Res. D, 113, DD14S12. doi:10.1029/2007JD009349', 'refraw': '<citation id="yu08">\n <journal_title>J. Geophys. Res.</journal_title>\n <first_author>Yu</first_author>\n <reftitle>A satellite-based assessment of transpacific transport of pollution aerosol</reftitle>\n <volume>113</volume>\n <firstPage>null</firstPage>\n <CitationNumber>D14S12</CitationNumber>\n <year>2008</year>\n <DOI>10.1029/2007JD009349</DOI>\n <partOfCode>journal</partOfCode>\n <paperType>article</paperType>\n</citation>'}, {'authors': 'Tjernstrom', 'journal': 'J. Geophys Res. D', 'volume': '101', 'issue': 'D14', 'year': '1996', 'refstr': 'Tjernstrom, 1996. J. Geophys Res. D, 101.', 'refraw': '<citation id="tjer">\n <journal_title>J. Geophys Res.</journal_title>\n <first_author>Tjernstr&#246;m</first_author>\n <reftitle>Thermal mesoscale circulations on the Baltic coast, Part 1, A numerical case study</reftitle>\n <volume>101</volume>\n <issue>D14</issue>\n <firstPage>null</firstPage>\n <CitationNumber>null</CitationNumber>\n <year>1996</year>\n <partOfCode>journal</partOfCode>\n <paperType>article</paperType>\n</citation>'}, {'doi': '10.5194/acp-8-6117-2008', 'refstr': '10.5194/acp-8-6117-2008', 'refraw': '<citation id="zhan08">\n <DOI>10.5194/acp-8-6117-2008</DOI>\n <partOfCode>journal</partOfCode>\n <paperType>article</paperType>\n</citation>'}]}]
3,060.458333
20,810
0.607698
ca0b4a4161064461096685786242a5610cac0b2a
111
py
Python
neo_db/config.py
liupuchun/KGQA-of-HongLouMeng
2d2a1192f7d2850fb306dbb948177370140a652d
[ "MIT" ]
1
2020-06-03T08:07:37.000Z
2020-06-03T08:07:37.000Z
neo_db/config.py
liupuchun/KGQA-of-HongLouMeng
2d2a1192f7d2850fb306dbb948177370140a652d
[ "MIT" ]
null
null
null
neo_db/config.py
liupuchun/KGQA-of-HongLouMeng
2d2a1192f7d2850fb306dbb948177370140a652d
[ "MIT" ]
null
null
null
from py2neo import Graph graph = Graph( "http://localhost:7474", username="neo4j", password="hlm" )
18.5
28
0.648649
da79a26ccdb0db3e03f38bdaf8cc89dc05bb00c4
11,264
py
Python
resources/WPy32/python-3.10.2/Lib/site-packages/Cryptodome/Cipher/_mode_cbc.py
eladkarako/yt-dlp_kit
6365651111ef4d2f94335cf38bf4d9b0136d42d2
[ "Unlicense" ]
1
2022-03-26T15:43:50.000Z
2022-03-26T15:43:50.000Z
resources/WPy32/python-3.10.2/Lib/site-packages/Cryptodome/Cipher/_mode_cbc.py
eladkarako/yt-dlp_kit
6365651111ef4d2f94335cf38bf4d9b0136d42d2
[ "Unlicense" ]
null
null
null
resources/WPy32/python-3.10.2/Lib/site-packages/Cryptodome/Cipher/_mode_cbc.py
eladkarako/yt-dlp_kit
6365651111ef4d2f94335cf38bf4d9b0136d42d2
[ "Unlicense" ]
1
2022-03-28T19:28:45.000Z
2022-03-28T19:28:45.000Z
# =================================================================== # # Copyright (c) 2014, Legrandin <helderijs@gmail.com> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== """ Ciphertext Block Chaining (CBC) mode. """ __all__ = ['CbcMode'] from Cryptodome.Util.py3compat import _copy_bytes from Cryptodome.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer, create_string_buffer, get_raw_buffer, SmartPointer, c_size_t, c_uint8_ptr, is_writeable_buffer) from Cryptodome.Random import get_random_bytes raw_cbc_lib = load_pycryptodome_raw_lib("Cryptodome.Cipher._raw_cbc", """ int CBC_start_operation(void *cipher, const uint8_t iv[], size_t iv_len, void **pResult); int CBC_encrypt(void *cbcState, const uint8_t *in, uint8_t *out, size_t data_len); int CBC_decrypt(void *cbcState, const uint8_t *in, uint8_t *out, size_t data_len); int CBC_stop_operation(void *state); """ ) class CbcMode(object): """*Cipher-Block Chaining (CBC)*. Each of the ciphertext blocks depends on the current and all previous plaintext blocks. An Initialization Vector (*IV*) is required. See `NIST SP800-38A`_ , Section 6.2 . .. _`NIST SP800-38A` : http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf :undocumented: __init__ """ def __init__(self, block_cipher, iv): """Create a new block cipher, configured in CBC mode. :Parameters: block_cipher : C pointer A smart pointer to the low-level block cipher instance. iv : bytes/bytearray/memoryview The initialization vector to use for encryption or decryption. It is as long as the cipher block. **The IV must be unpredictable**. Ideally it is picked randomly. Reusing the *IV* for encryptions performed with the same key compromises confidentiality. """ self._state = VoidPointer() result = raw_cbc_lib.CBC_start_operation(block_cipher.get(), c_uint8_ptr(iv), c_size_t(len(iv)), self._state.address_of()) if result: raise ValueError("Error %d while instantiating the CBC mode" % result) # Ensure that object disposal of this Python object will (eventually) # free the memory allocated by the raw library for the cipher mode self._state = SmartPointer(self._state.get(), raw_cbc_lib.CBC_stop_operation) # Memory allocated for the underlying block cipher is now owed # by the cipher mode block_cipher.release() self.block_size = len(iv) """The block size of the underlying cipher, in bytes.""" self.iv = _copy_bytes(None, None, iv) """The Initialization Vector originally used to create the object. The value does not change.""" self.IV = self.iv """Alias for `iv`""" self._next = [ self.encrypt, self.decrypt ] def encrypt(self, plaintext, output=None): """Encrypt data with the key and the parameters set at initialization. A cipher object is stateful: once you have encrypted a message you cannot encrypt (or decrypt) another message using the same object. The data to encrypt can be broken up in two or more pieces and `encrypt` can be called multiple times. That is, the statement: >>> c.encrypt(a) + c.encrypt(b) is equivalent to: >>> c.encrypt(a+b) That also means that you cannot reuse an object for encrypting or decrypting other data with the same key. This function does not add any padding to the plaintext. :Parameters: plaintext : bytes/bytearray/memoryview The piece of data to encrypt. Its lenght must be multiple of the cipher block size. :Keywords: output : bytearray/memoryview The location where the ciphertext must be written to. If ``None``, the ciphertext is returned. :Return: If ``output`` is ``None``, the ciphertext is returned as ``bytes``. Otherwise, ``None``. """ if self.encrypt not in self._next: raise TypeError("encrypt() cannot be called after decrypt()") self._next = [ self.encrypt ] if output is None: ciphertext = create_string_buffer(len(plaintext)) else: ciphertext = output if not is_writeable_buffer(output): raise TypeError("output must be a bytearray or a writeable memoryview") if len(plaintext) != len(output): raise ValueError("output must have the same length as the input" " (%d bytes)" % len(plaintext)) result = raw_cbc_lib.CBC_encrypt(self._state.get(), c_uint8_ptr(plaintext), c_uint8_ptr(ciphertext), c_size_t(len(plaintext))) if result: if result == 3: raise ValueError("Data must be padded to %d byte boundary in CBC mode" % self.block_size) raise ValueError("Error %d while encrypting in CBC mode" % result) if output is None: return get_raw_buffer(ciphertext) else: return None def decrypt(self, ciphertext, output=None): """Decrypt data with the key and the parameters set at initialization. A cipher object is stateful: once you have decrypted a message you cannot decrypt (or encrypt) another message with the same object. The data to decrypt can be broken up in two or more pieces and `decrypt` can be called multiple times. That is, the statement: >>> c.decrypt(a) + c.decrypt(b) is equivalent to: >>> c.decrypt(a+b) This function does not remove any padding from the plaintext. :Parameters: ciphertext : bytes/bytearray/memoryview The piece of data to decrypt. Its length must be multiple of the cipher block size. :Keywords: output : bytearray/memoryview The location where the plaintext must be written to. If ``None``, the plaintext is returned. :Return: If ``output`` is ``None``, the plaintext is returned as ``bytes``. Otherwise, ``None``. """ if self.decrypt not in self._next: raise TypeError("decrypt() cannot be called after encrypt()") self._next = [ self.decrypt ] if output is None: plaintext = create_string_buffer(len(ciphertext)) else: plaintext = output if not is_writeable_buffer(output): raise TypeError("output must be a bytearray or a writeable memoryview") if len(ciphertext) != len(output): raise ValueError("output must have the same length as the input" " (%d bytes)" % len(plaintext)) result = raw_cbc_lib.CBC_decrypt(self._state.get(), c_uint8_ptr(ciphertext), c_uint8_ptr(plaintext), c_size_t(len(ciphertext))) if result: if result == 3: raise ValueError("Data must be padded to %d byte boundary in CBC mode" % self.block_size) raise ValueError("Error %d while decrypting in CBC mode" % result) if output is None: return get_raw_buffer(plaintext) else: return None def _create_cbc_cipher(factory, **kwargs): """Instantiate a cipher object that performs CBC encryption/decryption. :Parameters: factory : module The underlying block cipher, a module from ``Cryptodome.Cipher``. :Keywords: iv : bytes/bytearray/memoryview The IV to use for CBC. IV : bytes/bytearray/memoryview Alias for ``iv``. Any other keyword will be passed to the underlying block cipher. See the relevant documentation for details (at least ``key`` will need to be present). """ cipher_state = factory._create_base_cipher(kwargs) iv = kwargs.pop("IV", None) IV = kwargs.pop("iv", None) if (None, None) == (iv, IV): iv = get_random_bytes(factory.block_size) if iv is not None: if IV is not None: raise TypeError("You must either use 'iv' or 'IV', not both") else: iv = IV if len(iv) != factory.block_size: raise ValueError("Incorrect IV length (it must be %d bytes long)" % factory.block_size) if kwargs: raise TypeError("Unknown parameters for CBC: %s" % str(kwargs)) return CbcMode(cipher_state, iv)
38.312925
106
0.566229
8be59dca3d699154a7140412e5d27ae3ac1dfa72
3,644
py
Python
Lesson12/QuizSix.py
SamRicha/CS101
9b6c1334293221a5c7a68f450aa069a19b50d08d
[ "MIT" ]
null
null
null
Lesson12/QuizSix.py
SamRicha/CS101
9b6c1334293221a5c7a68f450aa069a19b50d08d
[ "MIT" ]
null
null
null
Lesson12/QuizSix.py
SamRicha/CS101
9b6c1334293221a5c7a68f450aa069a19b50d08d
[ "MIT" ]
null
null
null
# The web crawler we built at the end of Unit 3 has some serious # flaws if we were going to use it in a real crawler. One # problem is if we start with a good seed page, it might # run for an extremely long time (even forever, since the # number of URLS on the web is not actually finite). This # question and the following one explore two different ways # to limit the pages that it can crawl. # Modify the crawl_web procedure to take a second parameter, # max_pages, that limits the number of pages to crawl. # Your procedure should terminate the crawl after # max_pages different pages have been crawled, or when # there are no more pages to crawl. # The following definition of get_page provides an interface # to the website found at http://www.udacity.com/cs101x/index.html # The function output order does not affect grading. def get_page(url): try: if url == "http://www.udacity.com/cs101x/index.html": return ('<html> <body> This is a test page for learning to crawl! ' '<p> It is a good idea to ' '<a href="http://www.udacity.com/cs101x/crawling.html">learn to ' 'crawl</a> before you try to ' '<a href="http://www.udacity.com/cs101x/walking.html">walk</a> ' 'or <a href="http://www.udacity.com/cs101x/flying.html">fly</a>. ' '</p> </body> </html> ') elif url == "http://www.udacity.com/cs101x/crawling.html": return ('<html> <body> I have not learned to crawl yet, but I ' 'am quite good at ' '<a href="http://www.udacity.com/cs101x/kicking.html">kicking</a>.' '</body> </html>') elif url == "http://www.udacity.com/cs101x/walking.html": return ('<html> <body> I cant get enough ' '<a href="http://www.udacity.com/cs101x/index.html">crawling</a>! ' '</body> </html>') elif url == "http://www.udacity.com/cs101x/flying.html": return ('<html> <body> The magic words are Squeamish Ossifrage! ' '</body> </html>') except: return "" return "" def get_next_target(page): start_link = page.find('<a href=') if start_link == -1: return None, 0 start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def union(p,q): for e in q: if e not in p: p.append(e) def get_all_links(page): links = [] while True: url,endpos = get_next_target(page) if url: links.append(url) page = page[endpos:] else: break return links def crawl_web(seed, max_pages): tocrawl = [seed] crawled = [] i = 0 while tocrawl and i < max_pages: page = tocrawl.pop() if page not in crawled: union(tocrawl, get_all_links(get_page(page))) crawled.append(page) i += 1 return crawled print crawl_web("http://www.udacity.com/cs101x/index.html",1) #>>> ['http://www.udacity.com/cs101x/index.html'] print crawl_web("http://www.udacity.com/cs101x/index.html",3) #>>> ['http://www.udacity.com/cs101x/index.html', #>>> 'http://www.udacity.com/cs101x/flying.html', #>>> 'http://www.udacity.com/cs101x/walking.html'] print crawl_web("http://www.udacity.com/cs101x/index.html",500) #>>> ['http://www.udacity.com/cs101x/index.html', #>>> 'http://www.udacity.com/cs101x/flying.html', #>>> 'http://www.udacity.com/cs101x/walking.html', #>>> 'http://www.udacity.com/cs101x/crawling.html', #>>> 'http://www.udacity.com/cs101x/kicking.html']
37.56701
79
0.617453
8c68b2aa762a633f466ac1b7fc44abaffc028139
4,877
py
Python
MessagePayload.py
aws-samples/aws-connected-mobility-solution-telemetry-device-demo
eea82db46bd073198b68e776c7795aeef0034fe9
[ "MIT-0" ]
2
2021-02-05T19:16:01.000Z
2021-12-02T19:54:29.000Z
MessagePayload.py
aws-samples/aws-connected-mobility-solution-telemetry-device-demo
eea82db46bd073198b68e776c7795aeef0034fe9
[ "MIT-0" ]
null
null
null
MessagePayload.py
aws-samples/aws-connected-mobility-solution-telemetry-device-demo
eea82db46bd073198b68e776c7795aeef0034fe9
[ "MIT-0" ]
2
2021-02-24T17:10:53.000Z
2021-06-10T19:00:35.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # MessagePayload # # Takes dict of keys/vals and makes a formatted payload message. # Implemented as factory pattern that allows for variations in message formatting. # from abc import ABC, abstractmethod import ast from dict_recursive_update import recursive_update import json class MessagePayload(ABC): # pass array of keys to remove from message BEFORE or AFTER formatting # allows for subclasses to use data and then remove it # # Typically, the caller will only supply preDropKeys if any and # subclasses would set the postDropKeys as needed. # def __init__(self, d, config={'preDropKeys':[], 'postDropKeys':[]}) -> None: self.payload = {} self.preDropKeys = config.get('preDropKeys') if self.preDropKeys is None: self.preDropKeys = [] self.preDropKeys.append('') self.postDropKeys = config.get('postDropKeys') if self.postDropKeys is None: self.postDropKeys = [] self._prepare_message(d) def _prepare_message(self, d): [ d.pop(k) for k in (set(self.preDropKeys) & set(d.keys())) ] self.payload = d.copy() self.make_message(d) [ self.payload.pop(k) for k in (set(self.postDropKeys) & set(self.payload.keys())) ] def message(self, formatter=None): return self.payload if formatter == None else formatter(self.payload) @abstractmethod def make_message(self, d): raise NotImplementedError("MessagePayload must be subclassed with an implementation of #prepare_message") # SimpleLabelled Strategy just returns the dict # the dict is assumed to be structured with 'key': value # so no changes. class SimpleLabelledPayload(MessagePayload): def make_message(self, d): # self.payload = d.copy() pass # DotLabelledPayload Strategy will expand any property labels with dots .. e.g. "a.b" # into a: { b } class DotLabelledPayload(MessagePayload): def dot_expand(self, k, v): try: v = ast.literal_eval(v) except Exception as e: pass if len(k) == 0: return v keys = k.split('.') key = keys.pop(0) if len(keys) == 0: return { key: v } return { key: self.dot_expand(".".join(keys), v) } def make_message(self, d): self.payload = {} [ recursive_update(self.payload, self.dot_expand(key, d[key])) for key in d ] # DynamicLabelledPayload takes apart the dict and builds the payload # the dict is of the format 'name': metric, 'value': reading # and will be reformatted to 'metric': reading # class DynamicLabelledPayload(MessagePayload): def __init__(self, d, config={'metricKey':'status', 'readingKey':'value', 'value_transform_function': float}) -> None: self.metricKey = config.get('metricKey', 'status') self.readingKey = config.get('readingKey', 'value') self.transform = config.get('value_transform_function', float) pdk = config.get('postDropKeys', []) pdk.extend([self.metricKey, self.readingKey]) config['postDropKeys'] = pdk super().__init__(d, config) def make_message(self, d): try: self.payload[d[self.metricKey]] = self.transform(d[self.readingKey]) except Exception as e: print("key or value didn't exist") # UntimedDynamicLabelledPayload removes the timestamp from the payload # class UntimedDynamicLabelledPayload(DynamicLabelledPayload): def __init__(self, d, config={'metricKey':'status', 'readingKey':'value', 'time_col_name': 'timestamp'}) -> None: self.time_col_name = config.get('time_col_name', 'timestamp') pdk = config.get('postDropKeys', []) pdk.extend([self.time_col_name]) config['postDropKeys'] = pdk super().__init__(d, config)
39.97541
122
0.672955
8c5f312924e77641554de61a638a7de3bf314c42
547
py
Python
Iniciante/Python/1183 - Acima da Diagonal Principal.py
gtozeti/URI
e776172fd5605e9d6e641bbd59859680fecd2400
[ "MIT" ]
2
2021-02-19T01:18:10.000Z
2021-02-19T01:18:27.000Z
Iniciante/Python/1183 - Acima da Diagonal Principal.py
gtozeti/URI
e776172fd5605e9d6e641bbd59859680fecd2400
[ "MIT" ]
null
null
null
Iniciante/Python/1183 - Acima da Diagonal Principal.py
gtozeti/URI
e776172fd5605e9d6e641bbd59859680fecd2400
[ "MIT" ]
null
null
null
operacao = input() matriz = [] soma = 0 media = 0 total = 0 for i in range(12): linha = [] for j in range(12): linha.append(float(input())) matriz.append(linha) if operacao == "S": for x in range(11): for y in range(1,12): if y > x: soma += float(matriz[x][y]) print("%.1f"%soma) else: for x in range(11): for y in range(1, 12): if y > x: media += float(matriz[x][y]) total += 1 media = media/total print("%.1f"%media)
20.259259
44
0.477148
429257ab086ecc6ec5a41665446f00be5c2ba1f7
1,278
py
Python
peeringdb_server/migrations/0058_deskpro_cc.py
CyberFlameGO/peeringdb
83461deb58805fe1d83c5ff4276fa3bcb59a7323
[ "BSD-2-Clause" ]
224
2016-10-13T10:32:33.000Z
2022-03-23T13:08:48.000Z
peeringdb_server/migrations/0058_deskpro_cc.py
CyberFlameGO/peeringdb
83461deb58805fe1d83c5ff4276fa3bcb59a7323
[ "BSD-2-Clause" ]
1,063
2016-06-07T02:57:11.000Z
2022-03-31T00:08:07.000Z
peeringdb_server/migrations/0058_deskpro_cc.py
CyberFlameGO/peeringdb
83461deb58805fe1d83c5ff4276fa3bcb59a7323
[ "BSD-2-Clause" ]
92
2016-10-22T14:59:40.000Z
2022-03-26T11:30:12.000Z
# Generated by Django 2.2.17 on 2020-11-20 15:40 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("peeringdb_server", "0057_add_suite_and_floor"), ] operations = [ migrations.CreateModel( name="DeskProTicketCC", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("email", models.EmailField(max_length=254)), ( "ticket", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="cc_set", to="peeringdb_server.DeskProTicket", ), ), ], options={ "verbose_name": "DeskPRO Ticket CC Contact", "verbose_name_plural": "Deskpro Ticket CC Contacts", "unique_together": {("ticket", "email")}, }, ), ]
29.72093
68
0.442879
a93f3d3cb711af50f6e8881fb948583a06d73126
16,448
py
Python
pytomorrowio/pytomorrowio.py
raman325/pytomorrowio
2a698c3fd5686067bd8b97fd83cba6f8b125e00d
[ "MIT" ]
null
null
null
pytomorrowio/pytomorrowio.py
raman325/pytomorrowio
2a698c3fd5686067bd8b97fd83cba6f8b125e00d
[ "MIT" ]
null
null
null
pytomorrowio/pytomorrowio.py
raman325/pytomorrowio
2a698c3fd5686067bd8b97fd83cba6f8b125e00d
[ "MIT" ]
null
null
null
"""Main module.""" import asyncio from datetime import datetime, timedelta, timezone import json import logging from typing import Any, Dict, List, Optional, Union from aiohttp import ClientConnectionError, ClientSession from .const import ( BASE_URL_V4, CURRENT, DAILY, FIELDS_V4, FORECASTS, HEADERS, HOURLY, NOWCAST, TIMESTEP_DAILY, TIMESTEP_HOURLY, ) from .exceptions import ( CantConnectException, InvalidAPIKeyException, InvalidTimestep, MalformedRequestException, RateLimitedException, UnknownException, ) from .helpers import async_to_sync _LOGGER = logging.getLogger(__name__) def process_v4_fields(fields: List[str], timestep: str) -> str: """ Filter v4 field list to only include valid fields for a given endpoint. Logs a warning when fields get filtered out. """ valid_fields = [field for field in fields if field in FIELDS_V4] if len(valid_fields) < len(fields): _LOGGER.warning( "Removed invalid fields: %s", list(set(fields) - set(valid_fields)) ) if timestep == timedelta(days=1): processed_fields = [ field for field in valid_fields if FIELDS_V4[field]["timestep"][1] == 360 ] elif timestep == timedelta(hours=1): processed_fields = [ field for field in valid_fields if FIELDS_V4[field]["timestep"][1] >= 108 ] elif timestep in ( timedelta(minutes=30), timedelta(minutes=15), timedelta(minutes=5), timedelta(minutes=1), ): processed_fields = [ field for field in valid_fields if FIELDS_V4[field]["timestep"][1] >= 6 ] elif timestep == timedelta(0): processed_fields = [ field for field in valid_fields if FIELDS_V4[field]["timestep"][0] <= 0 and FIELDS_V4[field]["timestep"][1] >= 0 ] elif timestep < timedelta(0): processed_fields = [ field for field in valid_fields if FIELDS_V4[field]["timestep"][0] < 0 ] else: raise InvalidTimestep if len(processed_fields) < len(valid_fields): _LOGGER.warning( "Remove fields not available for `%s` timestep: %s", timestep, list(set(valid_fields) - set(processed_fields)), ) return processed_fields def dt_to_utc(input_dt: datetime) -> datetime: """If input datetime has a timezone defined, convert to UTC.""" if input_dt and input_dt.tzinfo: return input_dt.astimezone(timezone.utc) return input_dt class TomorrowioV4: """Async class to query the Tomorrow.io v4 API.""" def __init__( self, apikey: str, latitude: Union[int, float, str], longitude: Union[int, float, str], unit_system: str = "imperial", session: ClientSession = None, ) -> None: """Initialize Tomorrow.io API object.""" if unit_system.lower() not in ("metric", "imperial", "si", "us"): raise ValueError("`unit_system` must be `metric` or `imperial`") elif unit_system.lower() == "si": unit_system = "metric" elif unit_system.lower() == "us": unit_system = "imperial" self._apikey = apikey self.location = [float(latitude), float(longitude)] self.unit_system = unit_system.lower() self._session = session self._params = { "location": self.location, "units": self.unit_system, } self._headers = {**HEADERS, "apikey": self._apikey} @staticmethod def convert_fields_to_measurements(fields: List[str]) -> List[str]: """Converts general field list into fields with measurements.""" field_list = [] for field in fields: measurements = FIELDS_V4[field]["measurements"] if len(measurements) < 2: field_list.append(field) else: field_list.extend( [f"{field}{measurement}" for measurement in measurements] ) return field_list @staticmethod def available_fields( timestep: timedelta, types: Optional[List] = None ) -> List[str]: "Return available fields for a given timestep." if timestep == timedelta(days=1): fields = [ field for field in FIELDS_V4 if FIELDS_V4[field]["timestep"][1] == 360 ] elif timestep == timedelta(hours=1): fields = [ field for field in FIELDS_V4 if FIELDS_V4[field]["timestep"][1] >= 108 ] elif timestep in ( timedelta(minutes=30), timedelta(minutes=15), timedelta(minutes=5), timedelta(minutes=1), ): fields = [ field for field in FIELDS_V4 if FIELDS_V4[field]["timestep"][1] >= 6 ] elif timestep in (timedelta(0), CURRENT): fields = [ field for field in FIELDS_V4 if FIELDS_V4[field][0] <= 0 and FIELDS_V4[field]["timestep"][1] >= 0 ] elif timestep < timedelta(0): fields = [ field for field in FIELDS_V4 if FIELDS_V4[field]["timestep"][0] < 0 ] else: raise InvalidTimestep if types: return [field for field in fields if FIELDS_V4[field]["type"] in types] return fields async def _call_api(self, params: Dict[str, Any]) -> Dict[str, Any]: """Call Tomorrow.io API.""" try: if self._session: resp = await self._session.post( BASE_URL_V4, headers=self._headers, data=json.dumps({**self._params, **params}), ) resp_json = await resp.json() if resp.status == 200: return resp_json if resp.status == 400: raise MalformedRequestException(resp_json, resp.headers) elif resp.status in (401, 403): raise InvalidAPIKeyException(resp_json, resp.headers) elif resp.status == 429: raise RateLimitedException(resp_json, resp.headers) else: raise UnknownException(resp_json, resp.headers) async with ClientSession() as session: resp = await session.post( BASE_URL_V4, headers=self._headers, data=json.dumps({**self._params, **params}), ) resp_json = await resp.json() if resp.status == 200: return resp_json if resp.status == 400: raise MalformedRequestException(resp_json, resp.headers) elif resp.status in (401, 403): raise InvalidAPIKeyException(resp_json, resp.headers) elif resp.status == 429: raise RateLimitedException(resp_json, resp.headers) else: raise UnknownException(resp_json, resp.headers) except ClientConnectionError: raise CantConnectException() async def realtime(self, fields: List[str]) -> Dict[str, Any]: """Return realtime weather conditions from Tomorrow.io API.""" return await self._call_api( { "fields": process_v4_fields(fields, timedelta(0)), "timesteps": ["current"], } ) async def _forecast( self, timestep: timedelta, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, **kwargs, ) -> List[Dict[str, Any]]: """Return forecast data from Tomorrow.io's API for a given time period.""" params = { "fields": self.convert_fields_to_measurements( process_v4_fields(fields, timestep) ), **kwargs, } if timestep == timedelta(days=1): params["timestep"] = [TIMESTEP_DAILY] elif timestep == timedelta(hours=1): params["timestep"] = [TIMESTEP_HOURLY] elif timestep in ( timedelta(minutes=30), timedelta(minutes=15), timedelta(minutes=5), timedelta(minutes=1), ): params["timestep"] = [f"{int(timestep.total_seconds()/60)}m"] else: raise InvalidTimestep if start_time: if not start_time.tzinfo: start_time.replace(tzinfo=timezone.utc) params["startTime"] = f"{start_time.replace(microsecond=0).isoformat()}" else: start_time = datetime.utcnow().replace(tzinfo=timezone.utc) if duration: end_time = (start_time + duration).replace(microsecond=0) params["endTime"] = f"{end_time.isoformat()}" return await self._call_api(params) async def forecast_nowcast( self, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, timestep: int = 5, ) -> Dict[str, Any]: """Return forecast data from Tomorrow.io's NowCast API for a given time period.""" if timestep not in (1, 5, 15, 30): raise InvalidTimestep return await self._forecast( timedelta(minutes=timestep), fields, start_time=start_time, duration=duration, ) async def forecast_daily( self, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, ) -> Dict[str, Any]: """Return daily forecast data from Tomorrow.io's API for a given time period.""" return await self._forecast( timedelta(days=1), fields, start_time=start_time, duration=duration ) async def forecast_hourly( self, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, ) -> Dict[str, Any]: """Return hourly forecast data from Tomorrow.io's API for a given time period.""" return await self._forecast( timedelta(hours=1), fields, start_time=start_time, duration=duration ) async def realtime_and_all_forecasts( self, realtime_fields: List[str], forecast_or_nowcast_fields: List[str], hourly_fields: List[str] = None, daily_fields: List[str] = None, nowcast_timestep: int = 5, ) -> Dict[str, Any]: """ Return realtime weather and all forecasts. If `hourly_fields` and `daily_fields` are not provided, `forecast_or_nowcast_fields` will be used to get nowcast, hourly, and daily data. """ ret_data = {} data = await self._call_api( { "timesteps": ["current"], "fields": realtime_fields, } ) if ( "data" in data and "timelines" in data["data"] and "intervals" in data["data"]["timelines"][0] and "values" in data["data"]["timelines"][0]["intervals"][0] ): ret_data[CURRENT] = data["data"]["timelines"][0]["intervals"][0]["values"] forecasts = ret_data.setdefault(FORECASTS, {}) if not hourly_fields and not daily_fields: data = await self._call_api( { "timesteps": [ f"{nowcast_timestep}m", TIMESTEP_HOURLY, TIMESTEP_DAILY, ], "fields": forecast_or_nowcast_fields, "startTime": datetime.utcnow() .replace(tzinfo=timezone.utc) .isoformat(), } ) if "data" in data and "timelines" in data["data"]: for timeline in data["data"]["timelines"]: if timeline["timestep"] == TIMESTEP_DAILY: key = DAILY elif timeline["timestep"] == TIMESTEP_HOURLY: key = HOURLY else: key = NOWCAST forecasts[key] = timeline["intervals"] else: data = await self._call_api( { "timesteps": [f"{nowcast_timestep}m"], "fields": forecast_or_nowcast_fields, "startTime": datetime.utcnow() .replace(tzinfo=timezone.utc) .isoformat(), } ) if "data" in data and "timelines" in data["data"]: forecasts[NOWCAST] = data["data"]["timelines"][0]["intervals"] for field_list, timestep, key in ( (hourly_fields, TIMESTEP_HOURLY, HOURLY), (daily_fields, TIMESTEP_DAILY, DAILY), ): if field_list: await asyncio.sleep(1) data = await self._call_api( { "timesteps": [timestep], "fields": field_list, "startTime": datetime.utcnow() .replace(tzinfo=timezone.utc) .isoformat(), } ) if "data" in data and "timelines" in data["data"]: forecasts[key] = data["data"]["timelines"][0]["intervals"] return ret_data class TomorrowioV4Sync(TomorrowioV4): """Synchronous class to query the Tomorrow.io API.""" def __init__( self, apikey: str, latitude: Union[int, float, str], longitude: Union[int, float, str], unit_system: str = "imperial", ) -> None: """Initialize Synchronous Tomorrow.io v4 API object.""" super().__init__(apikey, latitude, longitude, unit_system) @async_to_sync async def realtime(self, fields: List[str]) -> Dict[str, Any]: """Return realtime weather conditions from Tomorrow.io API.""" return await super().realtime(fields) @async_to_sync async def forecast_nowcast( self, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, timestep: int = 5, ) -> List[Dict[str, Any]]: """Return forecast data from Tomorrow.io's NowCast API for a given time period.""" return await super().forecast_nowcast(fields, start_time, duration, timestep) @async_to_sync async def forecast_daily( self, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, ) -> List[Dict[str, Any]]: """Return daily forecast data from Tomorrow.io's API for a given time period.""" return await super().forecast_daily(fields, start_time, duration) @async_to_sync async def forecast_hourly( self, fields: List[str], start_time: Optional[datetime] = None, duration: Optional[timedelta] = None, ) -> List[Dict[str, Any]]: """Return hourly forecast data from Tomorrow.io's API for a given time period.""" return await super().forecast_hourly(fields, start_time, duration) @async_to_sync async def realtime_and_all_forecasts( self, realtime_fields: List[str], forecast_fields: List[str], hourly_fields: List[str] = None, daily_fields: List[str] = None, nowcast_timestep: int = 5, ) -> Dict[str, Any]: """ Return realtime weather and all forecasts. If `hourly_fields` and `daily_fields` are not provided, `forecast_or_nowcast_fields` will be used to get nowcast, hourly, and daily data. """ return await super().realtime_and_all_forecasts( realtime_fields, forecast_fields, hourly_fields=hourly_fields, daily_fields=daily_fields, nowcast_timestep=nowcast_timestep, )
35.145299
90
0.550401
8c73bf8a7212b7aa458fcc1b8e82f45c709be528
2,316
py
Python
tests/cfngin/fixtures/mock_docker/fake_api_client.py
paul-duffy/runway
a0c22eb7ca7b55df5317bdda92c08c4bb39569d2
[ "Apache-2.0" ]
1
2020-02-25T21:08:00.000Z
2020-02-25T21:08:00.000Z
tests/cfngin/fixtures/mock_docker/fake_api_client.py
paul-duffy/runway
a0c22eb7ca7b55df5317bdda92c08c4bb39569d2
[ "Apache-2.0" ]
2
2020-01-07T15:00:55.000Z
2020-01-07T15:03:25.000Z
tests/cfngin/fixtures/mock_docker/fake_api_client.py
voodooGQ/runway
8a744f33b39f1342022f1b57db996bb843e4556c
[ "Apache-2.0" ]
null
null
null
"""Fake Docker API client.""" # pylint: disable=attribute-defined-outside-init,protected-access import copy import docker from . import fake_api try: from unittest import mock except ImportError: import mock class CopyReturnMagicMock(mock.MagicMock): """A MagicMock which deep copies every return value.""" def _mock_call(self, *args, **kwargs): ret = super(CopyReturnMagicMock, self)._mock_call(*args, **kwargs) if isinstance(ret, (dict, list)): ret = copy.deepcopy(ret) return ret def make_fake_api_client(overrides=None): """Return non-complete fake APIClient. This returns most of the default cases correctly, but most arguments that change behavior will not work. """ if overrides is None: overrides = {} api_client = docker.APIClient() mock_attrs = { 'build.return_value': fake_api.FAKE_CONTAINER_ID, 'commit.return_value': fake_api.post_fake_commit()[1], 'containers.return_value': fake_api.get_fake_containers()[1], 'create_container.return_value': fake_api.post_fake_create_container()[1], 'create_host_config.side_effect': api_client.create_host_config, 'create_network.return_value': fake_api.post_fake_network()[1], 'exec_create.return_value': fake_api.post_fake_exec_create()[1], 'exec_start.return_value': fake_api.post_fake_exec_start()[1], 'images.return_value': fake_api.get_fake_images()[1], 'inspect_container.return_value': fake_api.get_fake_inspect_container()[1], 'inspect_image.return_value': fake_api.get_fake_inspect_image()[1], 'inspect_network.return_value': fake_api.get_fake_network()[1], 'logs.return_value': [b'hello world\n'], 'networks.return_value': fake_api.get_fake_network_list()[1], 'start.return_value': None, 'wait.return_value': {'StatusCode': 0}, } mock_attrs.update(overrides) mock_client = CopyReturnMagicMock(**mock_attrs) mock_client._version = docker.constants.DEFAULT_DOCKER_API_VERSION return mock_client def make_fake_client(overrides=None): """Return a Client with a fake APIClient.""" client = docker.DockerClient() client.api = make_fake_api_client(overrides) return client
34.567164
77
0.697323
2efdf8a793b42ad316740554643a811cdff52c06
17,893
py
Python
fairseq/tasks/translation.py
protonish/fairseq-cipherdaug
f268173f75698905814f62a37695d831d070b22c
[ "MIT" ]
null
null
null
fairseq/tasks/translation.py
protonish/fairseq-cipherdaug
f268173f75698905814f62a37695d831d070b22c
[ "MIT" ]
null
null
null
fairseq/tasks/translation.py
protonish/fairseq-cipherdaug
f268173f75698905814f62a37695d831d070b22c
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import itertools import json import logging import os from typing import Optional from argparse import Namespace from omegaconf import II import numpy as np from fairseq import metrics, utils from fairseq.data import ( AppendTokenDataset, ConcatDataset, LanguagePairDataset, PrependTokenDataset, StripTokenDataset, TruncateDataset, data_utils, encoders, indexed_dataset, ) from fairseq.data.indexed_dataset import get_available_dataset_impl from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task EVAL_BLEU_ORDER = 4 logger = logging.getLogger(__name__) def load_langpair_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos=False, load_alignments=False, truncate_source=False, append_source_id=False, num_buckets=0, shuffle=True, pad_to_multiple=1, prepend_bos_src=None, ): def split_exists(split, src, tgt, lang, data_path): filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") # infer langcode if split_exists(split_k, src, tgt, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) elif split_exists(split_k, tgt, src, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) else: if k > 0: break else: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) src_dataset = data_utils.load_indexed_dataset( prefix + src, src_dict, dataset_impl ) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_dataset = data_utils.load_indexed_dataset( prefix + tgt, tgt_dict, dataset_impl ) if tgt_dataset is not None: tgt_datasets.append(tgt_dataset) logger.info( "{} {} {}-{} {} examples".format( data_path, split_k, src, tgt, len(src_datasets[-1]) ) ) if not combine: break assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0 if len(src_datasets) == 1: src_dataset = src_datasets[0] tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) if len(tgt_datasets) > 0: tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) else: tgt_dataset = None if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) if tgt_dataset is not None: tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) elif prepend_bos_src is not None: logger.info(f"prepending src bos: {prepend_bos_src}") src_dataset = PrependTokenDataset(src_dataset, prepend_bos_src) eos = None if append_source_id: src_dataset = AppendTokenDataset( src_dataset, src_dict.index("[{}]".format(src)) ) if tgt_dataset is not None: tgt_dataset = AppendTokenDataset( tgt_dataset, tgt_dict.index("[{}]".format(tgt)) ) eos = tgt_dict.index("[{}]".format(tgt)) align_dataset = None if load_alignments: align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset( align_path, None, dataset_impl ) tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None return LanguagePairDataset( src_dataset, src_dataset.sizes, src_dict, tgt_dataset, tgt_dataset_sizes, tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, align_dataset=align_dataset, eos=eos, num_buckets=num_buckets, shuffle=shuffle, pad_to_multiple=pad_to_multiple, ) @dataclass class TranslationConfig(FairseqDataclass): data: Optional[str] = field( default=None, metadata={ "help": "colon separated path to data directories list, will be iterated upon during epochs " "in round-robin manner; however, valid and test data are always in the first directory " "to avoid the need for repeating them in all directories" }, ) source_lang: Optional[str] = field( default=None, metadata={ "help": "source language", "argparse_alias": "-s", }, ) target_lang: Optional[str] = field( default=None, metadata={ "help": "target language", "argparse_alias": "-t", }, ) load_alignments: bool = field( default=False, metadata={"help": "load the binarized alignments"} ) left_pad_source: bool = field( default=True, metadata={"help": "pad the source on the left"} ) left_pad_target: bool = field( default=False, metadata={"help": "pad the target on the left"} ) max_source_positions: int = field( default=1024, metadata={"help": "max number of tokens in the source sequence"} ) max_target_positions: int = field( default=1024, metadata={"help": "max number of tokens in the target sequence"} ) upsample_primary: int = field( default=-1, metadata={"help": "the amount of upsample primary dataset"} ) truncate_source: bool = field( default=False, metadata={"help": "truncate source to max-source-positions"} ) num_batch_buckets: int = field( default=0, metadata={ "help": "if >0, then bucket source and target lengths into " "N buckets and pad accordingly; this is useful on TPUs to minimize the number of compilations" }, ) train_subset: str = II("dataset.train_subset") dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( "dataset.dataset_impl" ) required_seq_len_multiple: int = II("dataset.required_seq_len_multiple") # options for reporting BLEU during validation eval_bleu: bool = field( default=False, metadata={"help": "evaluation with BLEU scores"} ) eval_bleu_args: Optional[str] = field( default="{}", metadata={ "help": 'generation args for BLUE scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' }, ) eval_bleu_detok: str = field( default="space", metadata={ "help": "detokenize before computing BLEU (e.g., 'moses'); required if using --eval-bleu; " "use 'space' to disable detokenization; see fairseq.data.encoders for other options" }, ) eval_bleu_detok_args: Optional[str] = field( default="{}", metadata={"help": "args for building the tokenizer, if needed, as JSON string"}, ) eval_tokenized_bleu: bool = field( default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"} ) eval_bleu_remove_bpe: Optional[str] = field( default=None, metadata={ "help": "remove BPE before computing BLEU", "argparse_const": "@@ ", }, ) eval_bleu_print_samples: bool = field( default=False, metadata={"help": "print sample generations during validation"} ) @register_task("translation", dataclass=TranslationConfig) class TranslationTask(FairseqTask): """ Translate from one (source) language to another (target) language. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. """ cfg: TranslationConfig def __init__(self, cfg: TranslationConfig, src_dict, tgt_dict): super().__init__(cfg) self.src_dict = src_dict self.tgt_dict = tgt_dict @classmethod def setup_task(cls, cfg: TranslationConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ paths = utils.split_paths(cfg.data) assert len(paths) > 0 # find language pair automatically if cfg.source_lang is None or cfg.target_lang is None: cfg.source_lang, cfg.target_lang = data_utils.infer_language_pair(paths[0]) if cfg.source_lang is None or cfg.target_lang is None: raise Exception( "Could not infer language pair, please provide it explicitly" ) # load dictionaries src_dict = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(cfg.source_lang)) ) tgt_dict = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(cfg.target_lang)) ) assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() logger.info("[{}] dictionary: {} types".format(cfg.source_lang, len(src_dict))) logger.info("[{}] dictionary: {} types".format(cfg.target_lang, len(tgt_dict))) return cls(cfg, src_dict, tgt_dict) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 if split != self.cfg.train_subset: # if not training data set, use the first shard for valid and test paths = paths[:1] data_path = paths[(epoch - 1) % len(paths)] # infer langcode src, tgt = self.cfg.source_lang, self.cfg.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.cfg.dataset_impl, upsample_primary=self.cfg.upsample_primary, left_pad_source=self.cfg.left_pad_source, left_pad_target=self.cfg.left_pad_target, max_source_positions=self.cfg.max_source_positions, max_target_positions=self.cfg.max_target_positions, load_alignments=self.cfg.load_alignments, truncate_source=self.cfg.truncate_source, num_buckets=self.cfg.num_batch_buckets, shuffle=(split != "test"), pad_to_multiple=self.cfg.required_seq_len_multiple, ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): return LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary, tgt_dict=self.target_dictionary, constraints=constraints, ) def build_model(self, cfg): model = super().build_model(cfg) if self.cfg.eval_bleu: detok_args = json.loads(self.cfg.eval_bleu_detok_args) self.tokenizer = encoders.build_tokenizer( Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args) ) gen_args = json.loads(self.cfg.eval_bleu_args) self.sequence_generator = self.build_generator( [model], Namespace(**gen_args) ) return model def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.cfg.eval_bleu: bleu = self._inference_with_bleu(self.sequence_generator, sample, model) logging_output["_bleu_sys_len"] = bleu.sys_len logging_output["_bleu_ref_len"] = bleu.ref_len # we split counts into separate entries so that they can be # summed efficiently across workers using fast-stat-sync assert len(bleu.counts) == EVAL_BLEU_ORDER for i in range(EVAL_BLEU_ORDER): logging_output["_bleu_counts_" + str(i)] = bleu.counts[i] logging_output["_bleu_totals_" + str(i)] = bleu.totals[i] return loss, sample_size, logging_output def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) if self.cfg.eval_bleu: def sum_logs(key): import torch result = sum(log.get(key, 0) for log in logging_outputs) if torch.is_tensor(result): result = result.cpu() return result counts, totals = [], [] for i in range(EVAL_BLEU_ORDER): counts.append(sum_logs("_bleu_counts_" + str(i))) totals.append(sum_logs("_bleu_totals_" + str(i))) if max(totals) > 0: # log counts as numpy arrays -- log_scalar will sum them correctly metrics.log_scalar("_bleu_counts", np.array(counts)) metrics.log_scalar("_bleu_totals", np.array(totals)) metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len")) metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len")) def compute_bleu(meters): import inspect try: from sacrebleu.metrics import BLEU comp_bleu = BLEU.compute_bleu except ImportError: # compatibility API for sacrebleu 1.x import sacrebleu comp_bleu = sacrebleu.compute_bleu fn_sig = inspect.getfullargspec(comp_bleu)[0] if "smooth_method" in fn_sig: smooth = {"smooth_method": "exp"} else: smooth = {"smooth": "exp"} bleu = comp_bleu( correct=meters["_bleu_counts"].sum, total=meters["_bleu_totals"].sum, sys_len=int(meters["_bleu_sys_len"].sum), ref_len=int(meters["_bleu_ref_len"].sum), **smooth ) return round(bleu.score, 2) metrics.log_derived("bleu", compute_bleu) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.cfg.max_source_positions, self.cfg.max_target_positions) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.src_dict @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.tgt_dict def _inference_with_bleu(self, generator, sample, model): import sacrebleu def decode(toks, escape_unk=False): s = self.tgt_dict.string( toks.int().cpu(), self.cfg.eval_bleu_remove_bpe, # The default unknown string in fairseq is `<unk>`, but # this is tokenized by sacrebleu as `< unk >`, inflating # BLEU scores. Instead, we use a somewhat more verbose # alternative that is unlikely to appear in the real # reference, but doesn't get split into multiple tokens. unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"), ) if self.tokenizer: s = self.tokenizer.decode(s) return s gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None) hyps, refs = [], [] for i in range(len(gen_out)): hyps.append(decode(gen_out[i][0]["tokens"])) refs.append( decode( utils.strip_pad(sample["target"][i], self.tgt_dict.pad()), escape_unk=True, # don't count <unk> as matches to the hypo ) ) if self.cfg.eval_bleu_print_samples: logger.info("example hypothesis: " + hyps[0]) logger.info("example reference: " + refs[0]) if self.cfg.eval_tokenized_bleu: return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none") else: return sacrebleu.corpus_bleu(hyps, [refs])
36.220648
108
0.600961
44bfddd8311b2ce5f5b9d04ea8832fb97c03d8da
4,309
py
Python
anime_downloader/scrapers/gogoanime/gogoanime_scraper.py
Amdrossa/Anime
9757f7c8d1a094da61e0c0ac38a2a29bf1c21e28
[ "MIT" ]
554
2020-04-15T20:22:50.000Z
2022-03-31T11:07:53.000Z
anime_downloader/scrapers/gogoanime/gogoanime_scraper.py
Amdrossa/Anime
9757f7c8d1a094da61e0c0ac38a2a29bf1c21e28
[ "MIT" ]
44
2020-04-15T19:26:43.000Z
2022-03-11T09:59:24.000Z
anime_downloader/scrapers/gogoanime/gogoanime_scraper.py
Amdrossa/Anime
9757f7c8d1a094da61e0c0ac38a2a29bf1c21e28
[ "MIT" ]
61
2020-04-16T19:17:04.000Z
2022-03-27T14:51:54.000Z
import re from util.Episode import Episode from bs4 import BeautifulSoup from extractors.jwplayer_extractor import JWPlayerExtractor from scrapers.base_scraper import BaseScraper from util.Color import printer class GoGoAnimeScraper(BaseScraper): def __init__(self, url, start_episode, end_episode, session, gui=None, resolution="480"): super().__init__(url, start_episode, end_episode, session, gui) self.resolution = resolution self.extractor = JWPlayerExtractor(None, self.session) self.anime_id = None self.api_link_bases = ['https://ajax.gogocdn.net/ajax/load-list-episode', 'https://ajax.apimovie.xyz/ajax/load-list-episode'] self.__set_anime_id() def __set_anime_id(self): response = self.session.get(self.url) if response.status_code == 200: soup_html = BeautifulSoup(response.content, "html.parser") movie_id_tag = soup_html.find("input", attrs={"id": "movie_id"}) if movie_id_tag is not None: self.anime_id = movie_id_tag["value"] def __get_episode_data(self): for base_link in self.api_link_bases: api_link = base_link + "?ep_start=" + str(self.start_episode) + "&ep_end=" + str( self.end_episode) + "&id=" + self.anime_id response = self.session.get(api_link) if response.status_code == 200: return response.content return None def __get_page_url(self, href): base_url = re.search("(.*)/category/", self.url).group(1) # print(base_url) src = base_url + href # print(src) return src def __set_stream_url(self, episode): response = self.session.get(episode.page_url) if response.status_code == 200: soup_html = BeautifulSoup(response.content, "html.parser") item_tag = soup_html.find("li", attrs={"class": "anime"}).find("a") streamer_url = item_tag["data-video"] if "https" not in streamer_url: streamer_url = "https:" + streamer_url streamer_resp = self.session.get(streamer_url) if streamer_resp.status_code == 200: sources = self.extractor.extract_sources(streamer_resp.text) src = "" for source in sources: if "m3u8" in source: src = source break if src != "": res_link_id = self.extractor.get_resolution_link(src, self.resolution) stream_base = re.search("(.*)/[\S]+\.m3u8", src).group(1) episode.download_url = stream_base + "/" + res_link_id print("stream url:", episode.download_url) return True return False def __collect_episodes(self): printer("INFO", "Extracting page URLs...", self.gui) episodes = [] if self.anime_id is not None: data = self.__get_episode_data() if data is not None: soup_html = BeautifulSoup(data, "html.parser") anchor_tags = soup_html.findAll("a", href=True) for anchor in anchor_tags: href = anchor["href"].strip() epi_no = int(href.split("-")[-1]) if epi_no < self.start_episode or epi_no > self.end_episode: continue episode = Episode("Episode - " + str(epi_no), "Episode - " + str(epi_no)) episode.is_direct = False episode.page_url = self.__get_page_url(href) val = self.__set_stream_url(episode) if val: episodes.append(episode) else: printer("ERROR", "Failed to collect download link for " + episode.title, self.gui) return episodes def get_direct_links(self): try: episodes = self.__collect_episodes() if len(episodes) > 0: return episodes else: return None except Exception as ex: printer("ERROR", str(ex), self.gui) return None
38.81982
106
0.561383
d535f9cd48f7ea39f5263170165a41da1351c10c
3,674
py
Python
tests/test_rwc_jazz.py
marypilataki/mirdata
78981e1f1e7b8661e2d04de0dd5640981bbb1881
[ "BSD-3-Clause" ]
2
2020-04-08T07:13:47.000Z
2021-11-08T06:43:58.000Z
tests/test_rwc_jazz.py
marypilataki/mirdata
78981e1f1e7b8661e2d04de0dd5640981bbb1881
[ "BSD-3-Clause" ]
2
2020-04-06T03:46:42.000Z
2020-04-08T14:16:02.000Z
tests/test_rwc_jazz.py
marypilataki/mirdata
78981e1f1e7b8661e2d04de0dd5640981bbb1881
[ "BSD-3-Clause" ]
3
2020-04-05T17:35:54.000Z
2020-04-08T11:15:09.000Z
# -*- coding: utf-8 -*- from mirdata import rwc_jazz, utils from tests.test_utils import run_track_tests def test_track(): default_trackid = 'RM-J004' data_home = 'tests/resources/mir_datasets/RWC-Jazz' track = rwc_jazz.Track(default_trackid, data_home=data_home) expected_attributes = { 'track_id': 'RM-J004', 'audio_path': 'tests/resources/mir_datasets/RWC-Jazz/' + 'audio/rwc-j-m01/4.wav', 'sections_path': 'tests/resources/mir_datasets/RWC-Jazz/' + 'annotations/AIST.RWC-MDB-J-2001.CHORUS/RM-J004.CHORUS.TXT', 'beats_path': 'tests/resources/mir_datasets/RWC-Jazz/' + 'annotations/AIST.RWC-MDB-J-2001.BEAT/RM-J004.BEAT.TXT', 'piece_number': 'No. 4', 'suffix': 'M01', 'track_number': 'Tr. 04', 'title': 'Crescent Serenade (Piano Solo)', 'artist': 'Makoto Nakamura', 'duration': 167, 'variation': 'Instrumentation 1', 'instruments': 'Pf', } expected_property_types = {'beats': utils.BeatData, 'sections': utils.SectionData} run_track_tests(track, expected_attributes, expected_property_types) # test audio loading functions y, sr = track.audio assert sr == 44100 assert y.shape == (44100 * 2,) def test_to_jams(): data_home = 'tests/resources/mir_datasets/RWC-Jazz' track = rwc_jazz.Track('RM-J004', data_home=data_home) jam = track.to_jams() beats = jam.search(namespace='beat')[0]['data'] assert [beat.time for beat in beats] == [ 0.05, 0.86, 1.67, 2.48, 3.29, 4.1, 4.91, 5.72, 6.53, 7.34, ] assert [beat.duration for beat in beats] == [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] assert [beat.value for beat in beats] == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2] assert [beat.confidence for beat in beats] == [ None, None, None, None, None, None, None, None, None, None, ] segments = jam.search(namespace='segment')[0]['data'] assert [segment.time for segment in segments] == [0.05, 6.53, 152.06] assert [segment.duration for segment in segments] == [ 6.48, 13.099999999999998, 13.319999999999993, ] assert [segment.value for segment in segments] == [ 'nothing', 'chorus A', 'chorus B', ] assert [segment.confidence for segment in segments] == [None, None, None] assert jam['file_metadata']['title'] == 'Crescent Serenade (Piano Solo)' assert jam['file_metadata']['artist'] == 'Makoto Nakamura' def test_load_metadata(): data_home = 'tests/resources/mir_datasets/RWC-Jazz' metadata = rwc_jazz._load_metadata(data_home) assert metadata['data_home'] == data_home assert metadata['RM-J004'] == { 'piece_number': 'No. 4', 'suffix': 'M01', 'track_number': 'Tr. 04', 'title': 'Crescent Serenade (Piano Solo)', 'artist': 'Makoto Nakamura', 'duration': 167, 'variation': 'Instrumentation 1', 'instruments': 'Pf', } assert metadata['RM-J044'] == { 'piece_number': 'No. 44', 'suffix': 'M04', 'track_number': 'Tr. 09', 'title': 'Joyful, Joyful, We Adore Thee', 'artist': 'K’s Band', 'duration': 270, 'variation': 'Style (Free jazz)', 'instruments': 'Pf & Bs & Dr & Gt & Ts & Fl & Bar', } metadata_none = rwc_jazz._load_metadata('asdf/asdf') assert metadata_none is None
28.045802
86
0.564507
b555378707f5628852e63d90d23e58dd14d56c82
335
py
Python
coinbase_problems/problem_1.py
loftwah/Daily-Coding-Problem
0327f0b4f69ef419436846c831110795c7a3c1fe
[ "MIT" ]
129
2018-10-14T17:52:29.000Z
2022-01-29T15:45:57.000Z
coinbase_problems/problem_1.py
loftwah/Daily-Coding-Problem
0327f0b4f69ef419436846c831110795c7a3c1fe
[ "MIT" ]
2
2019-11-30T23:28:23.000Z
2020-01-03T16:30:32.000Z
coinbase_problems/problem_1.py
loftwah/Daily-Coding-Problem
0327f0b4f69ef419436846c831110795c7a3c1fe
[ "MIT" ]
60
2019-02-21T09:18:31.000Z
2022-03-25T21:01:04.000Z
"""This problem was asked by Coinbase. Write a function that takes in a number, string, list, or dictionary and returns its JSON encoding. It should also handle nulls. For example, given the following input: [None, 123, ["a", "b"], {"c":"d"}] You should return the following, as a string: '[null, 123, ["a", "b"], {"c": "d"}]' """
27.916667
73
0.659701
ccd00f848211399cdf640bfa60c586162b458bdb
965
py
Python
convertor/migrations/0001_initial.py
fbrakhmonov/mdweb
dbe503462a2a594fa0b9a7a97f98e45b12954c9f
[ "MIT" ]
null
null
null
convertor/migrations/0001_initial.py
fbrakhmonov/mdweb
dbe503462a2a594fa0b9a7a97f98e45b12954c9f
[ "MIT" ]
null
null
null
convertor/migrations/0001_initial.py
fbrakhmonov/mdweb
dbe503462a2a594fa0b9a7a97f98e45b12954c9f
[ "MIT" ]
null
null
null
# Generated by Django 2.1 on 2019-03-01 13:54 import convertor.models from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('published_date', models.DateTimeField(auto_now_add=True)), ('summary', models.TextField(blank=True, max_length=200)), ('slug', models.SlugField()), ('page_md', models.FileField(upload_to=convertor.models.post_filename)), ('page_web', models.FileField(blank=True, null=True, upload_to='')), ], options={ 'ordering': ['-published_date'], }, ), ]
31.129032
114
0.566839
120bafa532f5f9769f58119f26862cd3bed41157
3,124
py
Python
app.py
stevexiaofei/LabOnWeb
ace26455c0b101bf5b03c3bf43799355b7513005
[ "MIT" ]
null
null
null
app.py
stevexiaofei/LabOnWeb
ace26455c0b101bf5b03c3bf43799355b7513005
[ "MIT" ]
1
2021-10-12T22:16:02.000Z
2021-10-12T22:16:02.000Z
app.py
stevexiaofei/LabOnWeb
ace26455c0b101bf5b03c3bf43799355b7513005
[ "MIT" ]
null
null
null
#!/usr/bin/env python from importlib import import_module import os from flask import Flask, render_template, Response,url_for, request, session, json, \ send_from_directory, current_app, g,redirect from flask.ext.moment import Moment from datetime import datetime from flask_sqlalchemy import SQLAlchemy from sqlite import * # import camera driver if os.environ.get('CAMERA'): Camera = import_module('camera_' + os.environ['CAMERA']).Camera else: from client import Camera # Raspberry Pi camera module (requires picamera package) # from camera_pi import Camera basedir = os.path.abspath(os.path.dirname(__file__)) app = Flask(__name__) ############################## moment = Moment(app) app.config['SECRET_KEY'] = 'stevexiaofei@app123456' @app.before_request def preprocess(): g.username = session.get('username') except_list=[url_for('logout'),'/video_feed'] session['last_base_url']='/' if (request.path in except_list) else url_for('logout') @app.after_request def postprocess(response): return response @app.route('/mission') def mission(): return render_template('mission.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/login',methods = [ 'GET', 'POST' ]) def login(): if request.method == 'POST': username = request.values.get('username') password = request.values.get('password') user_profile={'name':username,'password':password} query_return=query(user_profile) if query_return==0: session['username'] = username return json.dumps({ 'success': 'true', 'msg': 'Login success!' }) elif query_return==1: return json.dumps({ 'success': 'false', 'msg': 'password incorrect please try again!' }) else: return json.dumps({ 'success': 'false', 'msg': "The user does't exit please register first!" }) else: return render_template('login.html') @app.route('/logout', methods = [ 'GET', 'POST' ]) def logout(): last_base_url=session['last_base_url'] session.clear() return redirect(last_base_url) @app.route('/controll') def lab_on_web(): #print('lab_on_web',session.get('username')) if session.get('username',None)==None: return render_template('login.html') else: return render_template('controll.html') @app.route('/') def index(): """Video streaming home page.""" return render_template('index.html' ) def gen(camera): """Video streaming generator function.""" while True: frame = camera.get_frame() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @app.route('/video_feed', methods = [ 'GET', 'POST' ]) def video_feed(): """Video streaming route. Put this in the src attribute of an img tag.""" if request.method == 'GET': return Response(gen(Camera()), mimetype='multipart/x-mixed-replace; boundary=frame') else: item_idx = int(request.values.get('item_idx')) return json.dumps({ 'success': 'true', 'msg': "respose from remote server\n you select the %d item!"%(item_idx,) }) if __name__ == '__main__': app.run(host='202.121.181.3',threaded=True)
28.4
85
0.680538
7424cfd553471bd0b8cdefd0244627d0795bc828
167
py
Python
pipeline/schemas/tag.py
mystic-ai/pipeline
487c5e755a862a12c90572b0eff170853ecb3790
[ "Apache-2.0" ]
7
2022-01-28T20:27:50.000Z
2022-02-22T15:30:00.000Z
pipeline/schemas/tag.py
mystic-ai/pipeline
487c5e755a862a12c90572b0eff170853ecb3790
[ "Apache-2.0" ]
17
2022-01-11T12:05:38.000Z
2022-03-25T15:29:43.000Z
pipeline/schemas/tag.py
neuro-ai-dev/pipeline
c7edcc83576158062fe48f266dfaea62d754e761
[ "Apache-2.0" ]
null
null
null
from .base import BaseModel class TagBase(BaseModel): name: str class TagCreate(TagBase): pass class TagGet(TagBase): id: str frequency: int = 0
11.133333
27
0.670659
bcf09c6cdd0e8f30bc65eaacb07ad9f49c5c3151
4,197
py
Python
comet/utility/test/test_event_db.py
shinybrar/Comet
4229092fca74c130a7d4ecd4dbd22ae85f7e6308
[ "BSD-2-Clause" ]
null
null
null
comet/utility/test/test_event_db.py
shinybrar/Comet
4229092fca74c130a7d4ecd4dbd22ae85f7e6308
[ "BSD-2-Clause" ]
null
null
null
comet/utility/test/test_event_db.py
shinybrar/Comet
4229092fca74c130a7d4ecd4dbd22ae85f7e6308
[ "BSD-2-Clause" ]
null
null
null
# Comet VOEvent Broker. # Event database tests. import os import shutil import stat import tempfile import time from functools import reduce from itertools import repeat, permutations from multiprocessing.pool import ThreadPool from operator import __or__ from sys import platform from unittest import skipIf from twisted.trial import unittest from comet.testutils import DummyEvent from comet.utility.event_db import Event_DB class Event_DB_TestCase(unittest.TestCase): def setUp(self): self.event_db_dir = tempfile.mkdtemp() self.event_db = Event_DB(self.event_db_dir) self.event = DummyEvent() def test_non_existing_dir(self): # If the root for the Event_DB doesn't exist, we should create it. # Note the relative path means that this DB will be created in the # _trial_temp directory. event_db = Event_DB("event_db_test_non_exist_%.5f" % (time.time(),)) self.assertTrue(event_db.check_event(self.event)) def test_dir_is_file(self): # If the path specified for the Event_DB *does* exist but isn't a # directory, then we should fail fast. filename = "event_db_test_is_file_%.5f" % (time.time(),) open(filename, 'w').close() self.assertRaises(RuntimeError, Event_DB, filename) @skipIf(platform == "win32", "Not available on Windows.") def test_dir_is_unusable(self): # If the path specified for the Event_DB exists and is a directory, # but we don't have permissions to use it, fail fast. # Note that os.chmod() isn't properly supported on Windows. filename = "event_db_test__is_unusable_%.5f" % (time.time(),) os.makedirs(filename) os.chmod(filename, 0) self.assertRaises(RuntimeError, Event_DB, filename) for n_perms in [1, 2]: for perms in permutations([stat.S_IRUSR, stat.S_IWUSR, stat.S_IXUSR], n_perms): os.chmod(filename, reduce(__or__, perms)) self.assertRaises(RuntimeError, Event_DB, filename) os.chmod(filename, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) self.assertTrue(Event_DB(filename).check_event(self.event)) def test_unseen(self): # Unseen event -> return True self.assertTrue(self.event_db.check_event(self.event)) def test_seen(self): # Seen event -> return False self.event_db.check_event(self.event) self.assertFalse(self.event_db.check_event(self.event)) def test_threadsafe(self): # Ensure that the eventdb is thread-safe by hammering on it with # multiple threads simultaneously. We should only get one positive. pool = ThreadPool(10) results = pool.map(self.event_db.check_event, repeat(self.event, 1000)) self.assertEqual(results.count(True), 1) self.assertEqual(results.count(False), 999) def test_prune(self): def done_prune(result): self.assertTrue(self.event_db.check_event(self.event)) self.event_db.check_event(self.event) d = self.event_db.prune(0) d.addCallback(done_prune) return d def test_bad_ivoid(self): bad_event = DummyEvent(b"ivo://#") self.assertFalse(self.event_db.check_event(bad_event)) def test_prune_bad_event(self): bad_event = DummyEvent(ivoid=b"ivo://") self.assertNotIn("", self.event_db.databases) # This event doesn't validate and is rejected. self.assertFalse(self.event_db.check_event(bad_event)) # The hostname shouldn't event be stored in our list of databases. self.assertNotIn("", self.event_db.databases) d = self.event_db.prune(0) def done_prune(result): # After pruning, everything in the database should be unlocked. for lock in self.event_db.databases.values(): self.assertFalse(lock.locked()) self.assertFalse(self.event_db.check_event(bad_event)) self.assertTrue(self.event_db.check_event(self.event)) d.addCallback(done_prune) return d def tearDown(self): shutil.rmtree(self.event_db_dir)
39.224299
81
0.671194
f009003228961c726a9731d0c4f829275445603e
8,703
py
Python
imapy/email_message.py
s0x90/imapy
60f0b26aba6d4dfa088debc0a2a0c3c236cd308a
[ "MIT" ]
1
2021-07-19T07:31:07.000Z
2021-07-19T07:31:07.000Z
imapy/email_message.py
s0x90/imapy
60f0b26aba6d4dfa088debc0a2a0c3c236cd308a
[ "MIT" ]
null
null
null
imapy/email_message.py
s0x90/imapy
60f0b26aba6d4dfa088debc0a2a0c3c236cd308a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ imapy.email_message ~~~~~~~~~~~~~~~~~~~ This module contains EmailMessage class used for parsing email messages and passing calls which modify email state to imapy.IMAP() class. :copyright: (c) 2015 by Vladimir Goncharov. :license: MIT, see LICENSE for more details. """ import re from email.header import decode_header from . import utils from .structures import CaseInsensitiveDict from .packages import six from .exceptions import ( EmailParsingError, ) class EmailMessage(CaseInsensitiveDict): """Class for parsing email message""" def __init__(self, **kwargs): super(EmailMessage, self).__init__() # inject connections self.uid = kwargs.pop('uid', None) self.folder = kwargs.pop('folder', None) self.email_obj = kwargs.pop('email_obj', None) self.imap_obj = kwargs.pop('imap_obj', None) # init self.update(kwargs) self['to'] = [] self['subject'] = '' self['cc'] = [] self['text'] = [] self['html'] = [] self['headers'] = CaseInsensitiveDict() self['flags'] = kwargs.pop('flags', None) self['attachments'] = [] self['uid'] = self.uid self['email_sequence_id'] = kwargs.pop('email_sequence_id', None) self.parse() def clean_value(self, value, encoding): """Converts value to utf-8 encoding""" if six.PY2: if encoding not in ['utf-8', None]: return value.decode(encoding).encode('utf-8') elif six.PY3: # in PY3 'decode_headers' may return both byte and unicode if isinstance(value, bytes): if encoding in ['utf-8', None]: return utils.b_to_str(value) else: return value.decode(encoding) return value def _normalize_string(self, text): '''Removes excessive spaces, tabs, newlines, etc.''' conversion = { # newlines '\r\n\t': ' ', # replace excessive empty spaces '\s+': ' ' } for find, replace in six.iteritems(conversion): text = re.sub(find, replace, text, re.UNICODE) return text def _get_links(self, text): links = [] """Returns list of found links in text""" matches = re.findall( '(?<=[\s^\<])(?P<link>https?\:\/\/.*?)(?=[\s\>$])', text, re.I) if(matches): for match in matches: links.append(match) return list(set(links)) def mark(self, flags): """Alias function for imapy.mark()""" if not isinstance(flags, list): flags = [flags] # update self['flags'] for t in flags: if t[:2] == 'un': if t[2:] in self['flags']: self['flags'].remove(t[2:]) else: if t not in self['flags']: self['flags'].append(t) return self.imap_obj.mark(flags, self.uid) def delete(self): """Alias function for imapy.delete_message""" return self.imap_obj.delete_message(self.uid, self.folder) def copy(self, new_mailbox): """Alias function for imapy.copy_message""" return self.imap_obj.copy_message(self.uid, new_mailbox, self) def move(self, new_mailbox): """Alias function for imapy.copy_message""" return self.imap_obj.move_message(self.uid, new_mailbox, self) def parse(self): """Parses email object and stores data so that email parts can be access with a dictionary syntax like msg['from'], msg['to'] """ # check main body if not self.email_obj.is_multipart(): text = utils.b_to_str(self.email_obj.get_payload(decode=True)) self['text'].append( { 'text': text, 'text_normalized': self._normalize_string(text), 'links': self._get_links(text) } ) # check attachments else: for part in self.email_obj.walk(): # multipart/* are just containers if part.get_content_maintype() == 'multipart': continue content_type = part.get_content_type() if content_type == 'text/plain': # convert text text = utils.b_to_str(part.get_payload(decode=True)) self['text'].append( { 'text': text, 'text_normalized': self._normalize_string(text), 'links': self._get_links(text) } ) elif content_type == 'text/html': # convert html html = utils.b_to_str(part.get_payload(decode=True)) self['html'].append(html) else: try: data = part.get_payload(decode=True) # rare cases when we get decoding error except AssertionError: data = None attachment_fname = decode_header(part.get_filename()) filename = self.clean_value( attachment_fname[0][0], attachment_fname[0][1] ) attachment = { 'filename': filename, 'data': data, 'content_type': content_type } self['attachments'].append(attachment) # subject if 'subject' in self.email_obj: msg_subject = decode_header(self.email_obj['subject']) self['subject'] = self.clean_value( msg_subject[0][0], msg_subject[0][1]) # from # cleanup header from_header_cleaned = re.sub('[\n\r\t]+', ' ', self.email_obj['from']) msg_from = decode_header(from_header_cleaned) msg_txt = '' for part in msg_from: msg_txt += self.clean_value(part[0], part[1]) if '<' in msg_txt and '>' in msg_txt: result = re.match('(?P<from>.*)?(?P<email>\<.*\>)', msg_txt, re.U) self['from_whom'] = result.group('from').strip() self['from_email'] = result.group('email').strip('<>') self['from'] = msg_txt else: self['from_whom'] = '' self['from_email'] = self['from'] = msg_txt.strip() # to if 'to' in self.email_obj: msg_to = decode_header(self.email_obj['to']) self['to'] = self.clean_value( msg_to[0][0], msg_to[0][1]).strip('<>') # cc msg_cc = decode_header(str(self.email_obj['cc'])) cc_clean = self.clean_value(msg_cc[0][0], msg_cc[0][1]) if cc_clean and cc_clean.lower() != 'none': # split recepients recepients = cc_clean.split(',') for recepient in recepients: if '<' in recepient and '>' in recepient: # (name)? + email matches = re.findall('((?P<to>.*)?(?P<to_email>\<.*\>))', recepient, re.U) if matches: for match in matches: self['cc'].append( { 'cc': match[0], 'cc_to': match[1].strip(" \n\r\t"), 'cc_email': match[2].strip("<>"), } ) else: raise EmailParsingError( "Error parsing CC message header. " "Header value: {header}".format(header=cc_clean) ) else: # email only self['cc'].append( { 'cc': recepient, 'cc_to': '', 'cc_email': recepient, } ) # Date self['date'] = self.email_obj['Date'] # message headers for header, val in self.email_obj.items(): if header in self['headers']: self['headers'][header].append(val) else: self['headers'][header] = [val]
36.877119
78
0.475928
218660bc03a12ea774aec41148d54b5493f1c024
8,318
py
Python
official/vision/detection/main.py
denis-choi/models
b478430d89f0b40fe3caf281f4e24cefda825412
[ "Apache-2.0" ]
2
2019-11-29T09:04:04.000Z
2020-04-28T06:11:54.000Z
official/vision/detection/main.py
denis-choi/models
b478430d89f0b40fe3caf281f4e24cefda825412
[ "Apache-2.0" ]
1
2021-03-31T21:39:22.000Z
2021-03-31T21:39:22.000Z
official/vision/detection/main.py
denis-choi/models
b478430d89f0b40fe3caf281f4e24cefda825412
[ "Apache-2.0" ]
1
2022-01-25T01:09:00.000Z
2022-01-25T01:09:00.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Main function to train various object detection models.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function from absl import app from absl import flags from absl import logging import functools import os import pprint import tensorflow.compat.v2 as tf from official.modeling.hyperparams import params_dict from official.modeling.training import distributed_executor as executor from official.utils import hyperparams_flags from official.vision.detection.configs import factory as config_factory from official.vision.detection.dataloader import input_reader from official.vision.detection.dataloader import mode_keys as ModeKeys from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor from official.vision.detection.modeling import factory as model_factory hyperparams_flags.initialize_common_flags() flags.DEFINE_string( 'mode', default='train', help='Mode to run: `train`, `eval` or `train_and_eval`.') flags.DEFINE_string( 'model', default='retinanet', help='Model to run: `retinanet` or `shapemask`.') flags.DEFINE_string('training_file_pattern', None, 'Location of the train data.') flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data') flags.DEFINE_string( 'checkpoint_path', None, 'The checkpoint path to eval. Only used in eval_once mode.') FLAGS = flags.FLAGS def run_executor(params, train_input_fn=None, eval_input_fn=None, callbacks=None): """Runs Retinanet model on distribution strategy defined by the user.""" if params.architecture.use_bfloat16: policy = tf.compat.v2.keras.mixed_precision.experimental.Policy( 'mixed_bfloat16') tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy) model_builder = model_factory.model_generator(params) if FLAGS.mode == 'train': def _model_fn(params): return model_builder.build_model(params, mode=ModeKeys.TRAIN) builder = executor.ExecutorBuilder( strategy_type=params.strategy_type, strategy_config=params.strategy_config) num_workers = int(builder.strategy.num_replicas_in_sync + 7) // 8 is_multi_host = (int(num_workers) >= 2) logging.info( 'Train num_replicas_in_sync %d num_workers %d is_multi_host %s', builder.strategy.num_replicas_in_sync, num_workers, is_multi_host) if is_multi_host: train_input_fn = functools.partial( train_input_fn, batch_size=params.train.batch_size // builder.strategy.num_replicas_in_sync) dist_executor = builder.build_executor( class_ctor=DetectionDistributedExecutor, params=params, is_multi_host=is_multi_host, model_fn=_model_fn, loss_fn=model_builder.build_loss_fn, predict_post_process_fn=model_builder.post_processing, trainable_variables_filter=model_builder .make_filter_trainable_variables_fn()) return dist_executor.train( train_input_fn=train_input_fn, model_dir=params.model_dir, iterations_per_loop=params.train.iterations_per_loop, total_steps=params.train.total_steps, init_checkpoint=model_builder.make_restore_checkpoint_fn(), custom_callbacks=callbacks, save_config=True) elif FLAGS.mode == 'eval' or FLAGS.mode == 'eval_once': def _model_fn(params): return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT) builder = executor.ExecutorBuilder( strategy_type=params.strategy_type, strategy_config=params.strategy_config) num_workers = int(builder.strategy.num_replicas_in_sync + 7) // 8 is_multi_host = (int(num_workers) >= 2) if is_multi_host: eval_input_fn = functools.partial( eval_input_fn, batch_size=params.eval.batch_size // builder.strategy.num_replicas_in_sync) logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s', builder.strategy.num_replicas_in_sync, num_workers, is_multi_host) dist_executor = builder.build_executor( class_ctor=DetectionDistributedExecutor, params=params, is_multi_host=is_multi_host, model_fn=_model_fn, loss_fn=model_builder.build_loss_fn, predict_post_process_fn=model_builder.post_processing, trainable_variables_filter=model_builder .make_filter_trainable_variables_fn()) if FLAGS.mode == 'eval': results = dist_executor.evaluate_from_model_dir( model_dir=params.model_dir, eval_input_fn=eval_input_fn, eval_metric_fn=model_builder.eval_metrics, eval_timeout=params.eval.eval_timeout, min_eval_interval=params.eval.min_eval_interval, total_steps=params.train.total_steps) else: # Run evaluation once for a single checkpoint. if not FLAGS.checkpoint_path: raise ValueError('FLAGS.checkpoint_path cannot be empty.') checkpoint_path = FLAGS.checkpoint_path if tf.io.gfile.isdir(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) summary_writer = executor.SummaryWriter(params.model_dir, 'eval') results, _ = dist_executor.evaluate_checkpoint( checkpoint_path=checkpoint_path, eval_input_fn=eval_input_fn, eval_metric_fn=model_builder.eval_metrics, summary_writer=summary_writer) for k, v in results.items(): logging.info('Final eval metric %s: %f', k, v) return results else: raise ValueError('Mode not found: %s.' % FLAGS.mode) def run(callbacks=None): params = config_factory.config_generator(FLAGS.model) params = params_dict.override_params_dict( params, FLAGS.config_file, is_strict=True) params = params_dict.override_params_dict( params, FLAGS.params_override, is_strict=True) params.override( { 'strategy_type': FLAGS.strategy_type, 'model_dir': FLAGS.model_dir, 'strategy_config': executor.strategy_flags_dict(), }, is_strict=False) params.validate() params.lock() pp = pprint.PrettyPrinter() params_str = pp.pformat(params.as_dict()) logging.info('Model Parameters: {}'.format(params_str)) train_input_fn = None eval_input_fn = None training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern if not training_file_pattern and not eval_file_pattern: raise ValueError('Must provide at least one of training_file_pattern and ' 'eval_file_pattern.') if training_file_pattern: # Use global batch size for single host. train_input_fn = input_reader.InputFn( file_pattern=training_file_pattern, params=params, mode=input_reader.ModeKeys.TRAIN, batch_size=params.train.batch_size) if eval_file_pattern: eval_input_fn = input_reader.InputFn( file_pattern=eval_file_pattern, params=params, mode=input_reader.ModeKeys.PREDICT_WITH_GT, batch_size=params.eval.batch_size, num_examples=params.eval.eval_samples) return run_executor( params, train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, callbacks=callbacks) def main(argv): del argv # Unused. run() if __name__ == '__main__': assert tf.version.VERSION.startswith('2.') app.run(main)
36.482456
94
0.72265
f6a0ab277a5b4487dd315aaac9a0887ad29835f9
3,904
py
Python
colour/difference/huang2015.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
colour/difference/huang2015.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
colour/difference/huang2015.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Huang et al. (2015) Power-Functions =================================== Defines the *Huang, Cui, Melgosa, Sanchez-Maranon, Li, Luo and Liu (2015)* power-functions improving the performance of colour-difference formulas: - :func:`colour.difference.power_function_Huang2015` References ---------- - :cite:`Huang2015` : Huang, M., Cui, G., Melgosa, M., Sanchez-Maranon, M., Li, C., Luo, M. R., & Liu, H. (2015). Power functions improving the performance of color-difference formulas. Optical Society of America, 23(1), 597-610. doi:10.1364/OE.23.000597 - :cite:`Li2017` : Li, C., Li, Z., Wang, Z., Xu, Y., Luo, M. R., Cui, G., Melgosa, M., Brill, M. H., & Pointer, M. (2017). Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS. Color Research & Application, 42(6), 703-718. doi:10.1002/col.22131 """ import numpy as np from colour.utilities import CaseInsensitiveMapping, tsplit, validate_method __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = 'colour-developers@colour-science.org' __status__ = 'Production' __all__ = [ 'power_function_Huang2015', ] COEFFICIENTS_HUANG2015 = CaseInsensitiveMapping({ 'CIE 1976': np.array([1.26, 0.55]), 'CIE 1994': np.array([1.41, 0.70]), 'CIE 2000': np.array([1.43, 0.70]), 'CMC': np.array([1.34, 0.66]), 'CAM02-LCD': np.array([1.00, 0.85]), 'CAM02-SCD': np.array([1.45, 0.75]), 'CAM02-UCS': np.array([1.30, 0.75]), 'CAM16-UCS': np.array([1.41, 0.63]), 'DIN99d': np.array([1.28, 0.74]), 'OSA': np.array([3.32, 0.62]), 'OSA-GP-Euclidean': np.array([1.52, 0.76]), 'ULAB': np.array([1.17, 0.69]), }) COEFFICIENTS_HUANG2015.__doc__ = """ *Huang et al. (2015)* power-functions coefficients. References ---------- :cite:`Huang2015`, :cite:`Li2017` COEFFICIENTS_HUANG2015 : CaseInsensitiveMapping **{'CIE 1976', 'CIE 1994', 'CIE 2000', 'CMC', 'CAM02-LCD', 'CAM02-SCD', 'CAM16-UCS', 'DIN99d', 'OSA', 'OSA-GP-Euclidean', 'ULAB'}** Notes ----- - :cite:`Li2017` does not give the coefficients for the *CAM16-LCD* and *CAM16-SCD* colourspaces. *Ronnie Luo* has been contacted to know if they have been computed. Aliases: - 'cie1976': 'CIE 1976' - 'cie1994': 'CIE 1994' - 'cie2000': 'CIE 2000' """ COEFFICIENTS_HUANG2015['cie1976'] = COEFFICIENTS_HUANG2015['CIE 1976'] COEFFICIENTS_HUANG2015['cie1994'] = COEFFICIENTS_HUANG2015['CIE 1994'] COEFFICIENTS_HUANG2015['cie2000'] = COEFFICIENTS_HUANG2015['CIE 2000'] def power_function_Huang2015(d_E, coefficients='CIE 2000'): """ Improves the performance of the :math:`\\Delta E` value for given coefficients using *Huang, Cui, Melgosa, Sanchez-Maranon, Li, Luo and Liu (2015)* power-function: :math:`d_E^{\\prime}=a*d_{E^b}`. Parameters ---------- d_E : array_like Computed colour difference array :math:`\\Delta E`. coefficients : str, optional **{'CIE 1976', 'CIE 1994', 'CIE 2000', 'CMC', 'CAM02-LCD', 'CAM02-SCD', 'CAM16-UCS', 'DIN99d', 'OSA', 'OSA-GP-Euclidean', 'ULAB'}**, Coefficients for the power-function. Returns ------- numeric or ndarray Improved math:`\\Delta E` value. References ---------- :cite:`Huang2015`, :cite:`Li2017` Examples -------- >>> d_E = np.array([2.0425, 2.8615, 3.4412]) >>> power_function_Huang2015(d_E) # doctest: +ELLIPSIS array([ 2.3574879..., 2.9850503..., 3.3965106...]) """ coefficients = validate_method( coefficients, COEFFICIENTS_HUANG2015, '"{0}" coefficients are invalid, ' 'they must be one of {1}!') a, b = tsplit(COEFFICIENTS_HUANG2015[coefficients]) d_E_p = a * d_E ** b return d_E_p
32
79
0.630891
6e31af3d57648146ce7dc5c4520ff9651e7e69bb
318
py
Python
Divide and conquer/BinarySearch.py
Meemaw/Algorithms
13da51dfcdc3f7470920c8d4975aa2efce261417
[ "MIT" ]
null
null
null
Divide and conquer/BinarySearch.py
Meemaw/Algorithms
13da51dfcdc3f7470920c8d4975aa2efce261417
[ "MIT" ]
null
null
null
Divide and conquer/BinarySearch.py
Meemaw/Algorithms
13da51dfcdc3f7470920c8d4975aa2efce261417
[ "MIT" ]
null
null
null
__author__ = 'Meemaw' def binarySearch(aList, element): if len(aList) == 1: return aList[0] == element mid = int(len(aList)/2) if aList[mid] > element: return binarySearch(aList[:mid],element) if aList[mid] < element: return binarySearch(aList[mid:], element) return True
24.461538
49
0.622642
2568592a3ef9ea9843e317fe64c8f1ca2957599d
471
py
Python
data/scripts/templates/object/tangible/ship/attachment/weapon/shared_xwing_weapon1_pos_s06_0.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/ship/attachment/weapon/shared_xwing_weapon1_pos_s06_0.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/ship/attachment/weapon/shared_xwing_weapon1_pos_s06_0.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/ship/attachment/weapon/shared_xwing_weapon1_pos_s06_0.iff" result.attribute_template_id = 8 result.stfName("item_n","ship_attachment") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.705882
94
0.738854
1290e9688e9de9003c62d3a6a86e010c97095903
525
py
Python
rates_app_05242021/rates_shared/setup.py
t4d-classes/advanced-python_05242021
a4874d20372001cf199360183e5223ac60efa19f
[ "MIT" ]
null
null
null
rates_app_05242021/rates_shared/setup.py
t4d-classes/advanced-python_05242021
a4874d20372001cf199360183e5223ac60efa19f
[ "MIT" ]
null
null
null
rates_app_05242021/rates_shared/setup.py
t4d-classes/advanced-python_05242021
a4874d20372001cf199360183e5223ac60efa19f
[ "MIT" ]
null
null
null
"""Setup Package Module""" from pathlib import Path from setuptools import find_packages, setup HERE = Path(__file__).parent README = (HERE / "README.md").read_text() setup( name="rates_shared", version="0.1.0", description="A shared library for the Rates App.", long_description=README, long_description_content_type="text/markdown", url="https://www.t4d.io", license="MIT", author="Eric Greene", author_email="eric@t4d.io", packages=find_packages(where=".", exclude=('tests',)) )
25
57
0.685714
4e5d2930cff0ac752d291141be657c8caba57343
129
py
Python
pokus1/views.py
zvolsky/example_translation
37a8e71df6bdc12dda96b9e84b5c1bb7a16087dc
[ "MIT" ]
null
null
null
pokus1/views.py
zvolsky/example_translation
37a8e71df6bdc12dda96b9e84b5c1bb7a16087dc
[ "MIT" ]
null
null
null
pokus1/views.py
zvolsky/example_translation
37a8e71df6bdc12dda96b9e84b5c1bb7a16087dc
[ "MIT" ]
null
null
null
from django.views.generic import TemplateView class HelloWorldView(TemplateView): template_name = "pokus1/helloworld.html"
21.5
45
0.806202
65beeadedeb7337da616145bafe1667553a261d1
369
py
Python
receiver.py
dack/labo-caller
bb7764bc92f1aaa9d758f3811c50df17f99a79f8
[ "MIT" ]
null
null
null
receiver.py
dack/labo-caller
bb7764bc92f1aaa9d758f3811c50df17f99a79f8
[ "MIT" ]
null
null
null
receiver.py
dack/labo-caller
bb7764bc92f1aaa9d758f3811c50df17f99a79f8
[ "MIT" ]
null
null
null
from flask import Flask from twilio.twiml.voice_response import VoiceResponse app = Flask(__name__) @app.route("/answer", methods=['GET', 'POST']) def answer_call(): """Respond to incoming phone calls with a brief message.""" resp = VoiceResponse() resp.say('Hello', voice='man') return str(resp) if __name__ == "__main__": app.run(debug=True)
21.705882
63
0.685637
28aee349081a5be342e32ecb3d0d42158b641956
409
py
Python
backend/drive_time_29216/wsgi.py
crowdbotics-apps/drive-time-29216
963cbe578f21c79a974a72a9cd410a1996a1957b
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/drive_time_29216/wsgi.py
crowdbotics-apps/drive-time-29216
963cbe578f21c79a974a72a9cd410a1996a1957b
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/drive_time_29216/wsgi.py
crowdbotics-apps/drive-time-29216
963cbe578f21c79a974a72a9cd410a1996a1957b
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for drive_time_29216 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'drive_time_29216.settings') application = get_wsgi_application()
24.058824
78
0.794621
b7864ba36467fba2de68248cf4079d7f44fc7aaf
3,909
py
Python
tests/test_integration_user_information.py
PhotoScout/API
24c2040b0a2fcb1ea906c7aa095c9e74d3ca4fa9
[ "MIT" ]
null
null
null
tests/test_integration_user_information.py
PhotoScout/API
24c2040b0a2fcb1ea906c7aa095c9e74d3ca4fa9
[ "MIT" ]
null
null
null
tests/test_integration_user_information.py
PhotoScout/API
24c2040b0a2fcb1ea906c7aa095c9e74d3ca4fa9
[ "MIT" ]
null
null
null
import unittest2 as unittest import json from app import app, db from app.models import User, BetaCode import base64 import time class Test_Integration_User_Information(unittest.TestCase): """ All the test cases around the user manipulation """ ENTRYPOINT_USER = app.config['BASE_URL']+'/user' ENTRYPOINT_AUTH = app.config['BASE_URL']+'/user/auth' ENTRYPOINT_INFO = app.config['BASE_URL']+'/user/info' def setUp(self): self.app = app.test_client() db.create_all() # Add some users user1 = User( username='johndoe', email='johndoe@foo.bar' ) user1.hash_password("123456") user2 = User( username='johndoe1', email='johndoe@foo.bar' ) user2.hash_password("123456") db.session.add(user1) db.session.add(user2) db.session.commit() def tearDown(self): db.session.remove() db.drop_all() def create_authorization_header(self, username, password): """ Create the authorization header """ auth_str = username + ':' + password return {'Authorization': 'Basic ' + base64.b64encode(auth_str.encode())} def login_get_token_header(self, username, password): """ Login the user and return the token """ response = self.app.post( self.ENTRYPOINT_AUTH, headers=self.create_authorization_header(username, password) , follow_redirects=True ) token_str = json.loads(response.data)['token'] return self.create_authorization_header(token_str, '*') def get_user(self, username): return User.query.filter_by(username=username).first() def test_user_information_self_token(self): """ Test getting user info without token """ response = self.app.get( self.ENTRYPOINT_INFO, follow_redirects=True ) self.assertEqual(response.status_code, 401) self.assertEqual(response.data, 'Unauthorized Access') def test_user_information_self(self): """ Test get information about himself """ user = self.get_user('johndoe') data = { 'id': user.id, 'username': user.username, 'fullname': user.fullname, 'email': user.email } response = self.app.get( self.ENTRYPOINT_INFO, headers=self.login_get_token_header('johndoe', '123456'), follow_redirects=True ) self.assertEqual(response.status_code, 200) self.assertEqual(json.loads(response.data), data) def test_user_information_other(self): """ Test get information about another user """ user = self.get_user('johndoe1') data_email = { 'id': user.id, 'username': user.username, 'fullname': user.fullname, 'email': user.email } data = { 'id': user.id, 'username': user.username, 'fullname': user.fullname } response = self.app.get( self.ENTRYPOINT_INFO+"/johndoe1", headers=self.login_get_token_header('johndoe', '123456'), follow_redirects=True ) self.assertEqual(response.status_code, 200) self.assertEqual(json.loads(response.data), data) self.assertNotEqual(json.loads(response.data), data_email) def test_user_information_other_invalid(self): """ Test get information about another user that doesn't exist """ response = self.app.get( self.ENTRYPOINT_INFO+"/johndoe2", headers=self.login_get_token_header('johndoe', '123456'), follow_redirects=True ) self.assertEqual(response.status_code, 404) self.assertEqual(json.loads(response.data), {"error": "No user found"})
32.575
80
0.606293
299b4032f39badc444fbc70ad0f72aa3ad2ea879
548
py
Python
utils/logsupport.py
JackYangzg/pytorch-ddpg
96838a40dd6992a0a18065a5edafbefc6bb0ac69
[ "Apache-2.0" ]
1
2018-07-31T03:00:42.000Z
2018-07-31T03:00:42.000Z
utils/logsupport.py
JackYangzg/pytorch-ddpg
96838a40dd6992a0a18065a5edafbefc6bb0ac69
[ "Apache-2.0" ]
null
null
null
utils/logsupport.py
JackYangzg/pytorch-ddpg
96838a40dd6992a0a18065a5edafbefc6bb0ac69
[ "Apache-2.0" ]
1
2018-07-31T03:01:11.000Z
2018-07-31T03:01:11.000Z
import logging from utils.configsupport import config from constfile.constkey import * __fileout = config.get(LOG_ISFILEOUT) __filepath = config.get(LOG_FILEPATH) __level = config.get(LOG_LEVEL) __formated = "%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s" __datefmt= '%a, %d %b %Y %H:%M:%S' if not __fileout: logging.basicConfig(level=__level, format=__formated, datefmt=__datefmt) else: logging.basicConfig(level=__level, format=__formated, datefmt=__datefmt, filename=__filepath) log = logging.getLogger("ddpg")
30.444444
97
0.759124
2e93114b29aa107bb77b3ffaad2013a16b3ad9d1
776
py
Python
scripts/rebar_visible.py
appolimp/Dynamo_scripts
c4ea77428111d186fab55501243ad4319376482b
[ "MIT" ]
1
2021-07-23T14:38:17.000Z
2021-07-23T14:38:17.000Z
scripts/rebar_visible.py
appolimp/Dynamo_scripts
c4ea77428111d186fab55501243ad4319376482b
[ "MIT" ]
null
null
null
scripts/rebar_visible.py
appolimp/Dynamo_scripts
c4ea77428111d186fab55501243ad4319376482b
[ "MIT" ]
null
null
null
# coding=utf-8 from base.wrapper import transaction, doc from base.exeption import ScriptError from rebar import unobscured_all_selected_rebars_on_view, unobscured_all_rebars_on_view import logging @transaction def main(): ONLY_SELECTED = IN[0] if ONLY_SELECTED: unobscured_all_selected_rebars_on_view(doc.ActiveView, True, True) else: unobscured_all_rebars_on_view(doc.ActiveView, True, True) if __name__ == '__main__': logging.basicConfig( filename=None, level=logging.INFO, format='[%(asctime)s] %(levelname).1s: %(message)s', datefmt='%Y.%m.%d %H:%M:%S') try: OUT = main() except ScriptError as e: logging.error(e) except Exception as err: logging.exception('Critical error')
27.714286
87
0.69201
bb83ddadd832bf156966a91cee9f00ae6247aacd
5,154
py
Python
quantum_chemistry/train.py
yuxuan-du/Quantum_architecture_search
429be34bd7ccce60453344a3e72f05fba07dde1e
[ "Apache-2.0" ]
5
2021-08-19T06:45:23.000Z
2022-03-07T03:00:20.000Z
quantum_chemistry/train.py
yuxuan-du/Quantum_architecture_search
429be34bd7ccce60453344a3e72f05fba07dde1e
[ "Apache-2.0" ]
null
null
null
quantum_chemistry/train.py
yuxuan-du/Quantum_architecture_search
429be34bd7ccce60453344a3e72f05fba07dde1e
[ "Apache-2.0" ]
1
2021-11-25T08:07:19.000Z
2021-11-25T08:07:19.000Z
import argparse import pennylane as qml from pennylane import numpy as np import time import os import json from model import CircuitModel parser = argparse.ArgumentParser("QAS") parser.add_argument('--data', type=str, default='./data', help='location of the data corpus') parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate') parser.add_argument('--report_freq', type=float, default=50, help='report frequency') parser.add_argument('--epochs', type=int, default=50, help='num of training epochs') parser.add_argument('--layers', type=int, default=20, help='total number of layers') parser.add_argument('--save', type=str, default='EXP', help='experiment name') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument('--arch', type=str, default='', help='which architecture to use') parser.add_argument('--noise', action='store_true', default=False, help='use noise') parser.add_argument('--device', type=str, default='default', help='which device to use', choices=['default', 'ibmq-sim', 'ibmq']) # circuit parser.add_argument('--n_qubits', type=int, default=3, help='number of qubits') parser.add_argument('--n_layers', type=int, default=3, help='number of layers') args = parser.parse_args() args.save = 'eval-{}-{}'.format(args.save, time.strftime("%Y%m%d-%H%M%S")) os.makedirs(args.save) with open(os.path.join(args.save, 'args.txt'), 'w') as f: json.dump(args.__dict__, f, indent=2) if args.noise or args.device in ['ibmq-sim', 'ibmq']: import qiskit import qiskit.providers.aer.noise as noise def main(): np.random.seed(args.seed) records = { 'energy': [], 'conv': [], 'test_acc': 0 } name = "h2" geometry = "h2.xyz" charge = 0 multiplicity = 1 basis_set = "sto-3g" hamiltonian, n_qubits = qml.qchem.generate_hamiltonian( name, geometry, charge, multiplicity, basis_set, n_active_electrons=2, n_active_orbitals=2, mapping='jordan_wigner' ) args.n_qubits = n_qubits print("Number of qubits = ", n_qubits) '''init device''' if args.device in ['ibmq-sim', 'ibmq']: from qiskit import IBMQ account_key = '' assert account_key != '', 'You must fill in your IBMQ account key.' IBMQ.save_account(account_key, overwrite=True) provider = IBMQ.enable_account(account_key) if args.device == 'ibmq': dev = qml.device('qiskit.ibmq', wires=4, backend='ibmq_ourense', provider=provider) else: backend = provider.get_backend('ibmq_ourense') noise_model = noise.NoiseModel().from_backend(backend) dev = qml.device('qiskit.aer', wires=args.n_qubits, noise_model=noise_model) else: if args.noise: # Error probabilities prob_1 = 0.05 # 1-qubit gate prob_2 = 0.2 # 2-qubit gate # Depolarizing quantum errors error_1 = noise.depolarizing_error(prob_1, 1) error_2 = noise.depolarizing_error(prob_2, 2) # Add errors to noise model noise_model = noise.NoiseModel() noise_model.add_all_qubit_quantum_error(error_1, ['u1', 'u2', 'u3']) noise_model.add_all_qubit_quantum_error(error_2, ['cx']) print(noise_model) dev = qml.device('qiskit.aer', wires=args.n_qubits, noise_model=noise_model) else: dev = qml.device("default.qubit", wires=args.n_qubits) '''init model''' model = CircuitModel(dev, args.n_qubits, args.n_layers, args.arch) cost = qml.VQECost(lambda params, wires: model(params, wires), hamiltonian, dev) step_size = 0.2 exact_value = -1.136189454088 opt = qml.QNGOptimizer(step_size, lam=0.001, diag_approx=False) '''train''' prev_energy = cost(model.params) print(prev_energy) for epoch in range(args.epochs): ''' # shuffle data indices = np.random.permutation(data_train.shape[0]) data_train = data_train[indices] label_train = label_train[indices] ''' model.params = opt.step(cost, model.params) # train energy = cost(model.params) conv = np.abs(energy - prev_energy) prev_energy = energy records['energy'].append(energy) records['conv'].append(conv) if epoch % 1 == 0: print( "Iteration = {:}, Ground-state energy = {:.8f} Ha, Convergence parameter = {" ":.8f} Ha".format(epoch, energy, conv) ) print("Final convergence parameter = {:.8f} Ha".format(conv)) print("Number of iterations = ", epoch) print("Final value of the ground-state energy = {:.8f} Ha".format(energy)) print( "Accuracy with respect to the FCI energy: {:.8f} Ha ({:.8f} kcal/mol)".format( np.abs(energy - exact_value), np.abs(energy - exact_value) * 627.503 ) ) '''save records''' json.dump(records, open(os.path.join(args.save, 'records.txt'), 'w'), indent=2) if __name__ == '__main__': main()
37.347826
129
0.629608
7d50657b9d7dd01d6e2892ea8097b87d33494182
1,313
py
Python
setup.py
Khan/flask-babel
864eaabbe54e3bc9b26b25ecee859a7a1bab716b
[ "BSD-3-Clause" ]
null
null
null
setup.py
Khan/flask-babel
864eaabbe54e3bc9b26b25ecee859a7a1bab716b
[ "BSD-3-Clause" ]
null
null
null
setup.py
Khan/flask-babel
864eaabbe54e3bc9b26b25ecee859a7a1bab716b
[ "BSD-3-Clause" ]
null
null
null
""" Flask-Babel ----------- Adds i18n/l10n support to Flask applications with the help of the `Babel`_ library. Links ````` * `documentation <http://packages.python.org/Flask-Babel>`_ * `development version <http://github.com/mitsuhiko/flask-babel/zipball/master#egg=Flask-Babel-dev>`_ .. _Babel: http://babel.edgewall.org/ """ from setuptools import setup setup( name='Flask-Babel', version='0.8', url='http://github.com/mitsuhiko/flask-babel', license='BSD', author='Armin Ronacher', author_email='armin.ronacher@active-4.com', description='Adds i18n/l10n support to Flask applications', long_description=__doc__, packages=['flaskext'], namespace_packages=['flaskext'], zip_safe=False, platforms='any', install_requires=[ 'Flask', 'Babel', 'pytz', 'speaklater>=1.2', 'Jinja2>=2.5' ], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
25.25
80
0.623762
e133e662d811f4ceedc29fc450376a35c5513e2e
378
py
Python
setup.py
Mozilla-GitHub-Standards/54c69db06ef83bda60e995a6c34ecfd168ca028994e40ce817295415bb409f0c
f80e7c0cff97a1e9b301aa04015db983c7645778
[ "BSD-3-Clause" ]
4
2015-05-08T16:58:53.000Z
2019-09-06T05:30:59.000Z
setup.py
Mozilla-GitHub-Standards/54c69db06ef83bda60e995a6c34ecfd168ca028994e40ce817295415bb409f0c
f80e7c0cff97a1e9b301aa04015db983c7645778
[ "BSD-3-Clause" ]
2
2019-02-17T17:44:53.000Z
2019-03-28T03:54:39.000Z
setup.py
Mozilla-GitHub-Standards/54c69db06ef83bda60e995a6c34ecfd168ca028994e40ce817295415bb409f0c
f80e7c0cff97a1e9b301aa04015db983c7645778
[ "BSD-3-Clause" ]
7
2015-05-21T15:38:29.000Z
2019-10-28T23:39:06.000Z
import os from setuptools import setup, find_packages setup(name='make_mozilla', version='1.0', description='Django application.', long_description='', author='', author_email='', license='', url='', include_package_data=True, classifiers = [], packages=find_packages(exclude=['tests']), install_requires=[])
21
48
0.613757
a0d868b5cc7e82243953bc64f12c0964045ba7e7
1,290
py
Python
pg_jts/__init__.py
iburadempa/pg_jts
bbb444525c6c3760bfd5407e884782824594d0e0
[ "MIT" ]
9
2015-10-21T18:08:01.000Z
2021-05-26T15:33:14.000Z
pg_jts/__init__.py
iburadempa/pg_jts
bbb444525c6c3760bfd5407e884782824594d0e0
[ "MIT" ]
6
2015-11-16T18:36:06.000Z
2020-08-09T10:36:27.000Z
pg_jts/__init__.py
iburadempa/pg_jts
bbb444525c6c3760bfd5407e884782824594d0e0
[ "MIT" ]
3
2015-11-16T09:55:13.000Z
2018-03-29T02:04:20.000Z
# Copyright (C) 2015 ibu radempa <ibu@radempa.de> # # Permission is hereby granted, free of charge, to # any person obtaining a copy of this software and # associated documentation files (the "Software"), # to deal in the Software without restriction, # including without limitation the rights to use, # copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is # furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission # notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY # OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ pg_jts extracts JSON table schemas from a live PostgreSQL database. """ from .pg_jts import get_database, get_schema_table_column_triples __version__ = (0, 0, 1)
36.857143
67
0.768992
ddaf0109411a4690337b561f1aea436303ac76a4
607
py
Python
easy/Binary Tree Inorder Traversal/solution.py
ashutosh1919/leetcode-problems
65f99a3694549af88c7702b598de1a8ccb7db5fb
[ "MIT" ]
8
2021-08-21T19:10:04.000Z
2022-03-11T14:30:02.000Z
easy/Binary Tree Inorder Traversal/solution.py
ashutosh1919/leetcode-problems
65f99a3694549af88c7702b598de1a8ccb7db5fb
[ "MIT" ]
null
null
null
easy/Binary Tree Inorder Traversal/solution.py
ashutosh1919/leetcode-problems
65f99a3694549af88c7702b598de1a8ccb7db5fb
[ "MIT" ]
1
2021-08-24T06:29:02.000Z
2021-08-24T06:29:02.000Z
# Time complexity: O(n) # Approach: Standard inorder traversal algorithm # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def inorder(self, root, ans): if not root: return self.inorder(root.left, ans) ans.append(root.val) self.inorder(root.right, ans) def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]: ans = [] self.inorder(root, ans) return ans
28.904762
70
0.593081
5ff489d26516baeb27a7a86feaefd7dbb642bdaa
844
py
Python
tests/variables_test.py
sethvargo/vaex
c610324316b2c0a14b8ceac2a30e202adc9da28b
[ "MIT" ]
337
2016-02-11T07:36:35.000Z
2018-12-10T07:17:35.000Z
tests/variables_test.py
sethvargo/vaex
c610324316b2c0a14b8ceac2a30e202adc9da28b
[ "MIT" ]
127
2016-07-06T15:43:14.000Z
2018-12-11T18:46:27.000Z
tests/variables_test.py
sethvargo/vaex
c610324316b2c0a14b8ceac2a30e202adc9da28b
[ "MIT" ]
29
2016-10-05T14:15:28.000Z
2018-11-29T10:17:00.000Z
import numpy as np def test_variables(df): df.add_variable('a', 2) df['w'] = df['x'] + df['a'] assert (df.x + 2).tolist() == df.w.tolist() assert (df.x + 2).tolist() == df[['w']].w.tolist() def test_variable_rename(df): df.add_variable('a', 2) df['w'] = df['x'] + df['a'] assert (df.x + 2).tolist() == df.w.tolist() df.rename('a', 'a2') # arrow df has an extra variable, since it does the virtual as_numpy assert set(df.w.variables()) in [{'x', 'a2'} , {'__x', 'x', 'a2'}] assert (df.x + 2).tolist() == df.w.tolist() def test_numpy_array_argument(df): xx = -np.arange(10) assert len(df.variables) == 1 # this should insert a variable (the numpy array) df['w'] = df.func.where(df.x > 5, xx, df.x) assert len(df.variables) == 2 assert list(df.variables.values())[1] is xx
30.142857
72
0.57346
38a5c6fab6e94b336162868db481d7a172b2c4a5
447
py
Python
scripts/patchNeutron.py
swordboy/neutron-portforward-service
271cccbc89f8508b3dd9370de52cd1ca58afad6c
[ "Artistic-2.0" ]
1
2016-10-13T02:15:36.000Z
2016-10-13T02:15:36.000Z
scripts/patchNeutron.py
swordboy/neutron-portforward-service
271cccbc89f8508b3dd9370de52cd1ca58afad6c
[ "Artistic-2.0" ]
null
null
null
scripts/patchNeutron.py
swordboy/neutron-portforward-service
271cccbc89f8508b3dd9370de52cd1ca58afad6c
[ "Artistic-2.0" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 def patch(): config="/etc/neutron/neutron.conf" with open("/etc/neutron/neutron.conf") as conf: contents=conf.readlines() result=[] for line in contents: if line.startswith("service_plugins"): line=line.strip()+",portforward\n" result.append(line) with open("/etc/neutron/neutron.conf","w") as conf: conf.writelines(result) if __name__=="__main__": patch()
24.833333
54
0.64877
837eac150f745f1bc9e1e6cacda597e9b77a173a
15,277
py
Python
aiortc/rtcdtlstransport.py
harrydrippin/aiortc
1e72b9a752b0c807316cd0bea2c26c7ae00ecdf4
[ "BSD-3-Clause" ]
null
null
null
aiortc/rtcdtlstransport.py
harrydrippin/aiortc
1e72b9a752b0c807316cd0bea2c26c7ae00ecdf4
[ "BSD-3-Clause" ]
null
null
null
aiortc/rtcdtlstransport.py
harrydrippin/aiortc
1e72b9a752b0c807316cd0bea2c26c7ae00ecdf4
[ "BSD-3-Clause" ]
null
null
null
import asyncio import base64 import binascii import datetime import enum import logging import os import struct import attr from cryptography.hazmat.backends import default_backend from cryptography.hazmat.bindings.openssl.binding import Binding from cryptography.hazmat.primitives.asymmetric import ec from cryptography.hazmat.primitives.serialization import (Encoding, NoEncryption, PrivateFormat) from OpenSSL import crypto from pyee import EventEmitter from pylibsrtp import Policy, Session from .rtp import RtcpPacket, RtpPacket, is_rtcp from .utils import first_completed binding = Binding() binding.init_static_locks() ffi = binding.ffi lib = binding.lib SRTP_KEY_LEN = 16 SRTP_SALT_LEN = 14 logger = logging.getLogger('dtls') class DtlsError(Exception): pass def _openssl_assert(ok): if not ok: raise DtlsError('OpenSSL call failed') def certificate_digest(x509): digest = lib.EVP_get_digestbyname(b'SHA256') _openssl_assert(digest != ffi.NULL) result_buffer = ffi.new('unsigned char[]', lib.EVP_MAX_MD_SIZE) result_length = ffi.new('unsigned int[]', 1) result_length[0] = len(result_buffer) digest_result = lib.X509_digest(x509, digest, result_buffer, result_length) assert digest_result == 1 return b":".join([ base64.b16encode(ch).upper() for ch in ffi.buffer(result_buffer, result_length[0])]).decode('ascii') def generate_key(): key = ec.generate_private_key(ec.SECP256R1(), default_backend()) key_pem = key.private_bytes( encoding=Encoding.PEM, format=PrivateFormat.TraditionalOpenSSL, encryption_algorithm=NoEncryption()) return crypto.load_privatekey(crypto.FILETYPE_PEM, key_pem) def generate_certificate(key): cert = crypto.X509() cert.get_subject().CN = binascii.hexlify(os.urandom(16)).decode('ascii') cert.gmtime_adj_notBefore(-86400) cert.gmtime_adj_notAfter(30 * 86400) cert.set_version(2) cert.set_serial_number(struct.unpack('!L', os.urandom(4))[0]) cert.set_issuer(cert.get_subject()) cert.set_pubkey(key) cert.sign(key, 'sha256') return cert def get_srtp_key_salt(src, idx): key_start = idx * SRTP_KEY_LEN salt_start = 2 * SRTP_KEY_LEN + idx * SRTP_SALT_LEN return ( src[key_start:key_start + SRTP_KEY_LEN] + src[salt_start:salt_start + SRTP_SALT_LEN] ) @ffi.callback('int(int, X509_STORE_CTX *)') def verify_callback(x, y): return 1 def create_ssl_context(certificate): if hasattr(lib, 'DTLS_method'): # openssl >= 1.0.2 method = lib.DTLS_method else: # pragma: no cover # openssl < 1.0.2 method = lib.DTLSv1_method ctx = lib.SSL_CTX_new(method()) ctx = ffi.gc(ctx, lib.SSL_CTX_free) lib.SSL_CTX_set_verify(ctx, lib.SSL_VERIFY_PEER | lib.SSL_VERIFY_FAIL_IF_NO_PEER_CERT, verify_callback) _openssl_assert(lib.SSL_CTX_use_certificate(ctx, certificate._cert._x509) == 1) _openssl_assert(lib.SSL_CTX_use_PrivateKey(ctx, certificate._key._pkey) == 1) _openssl_assert(lib.SSL_CTX_set_cipher_list(ctx, b'HIGH:!CAMELLIA:!aNULL') == 1) _openssl_assert(lib.SSL_CTX_set_tlsext_use_srtp(ctx, b'SRTP_AES128_CM_SHA1_80') == 0) _openssl_assert(lib.SSL_CTX_set_read_ahead(ctx, 1) == 0) return ctx class Channel: def __init__(self, closed, queue, send): self.closed = closed self.queue = queue self.send = send async def recv(self): data = await first_completed(self.queue.get(), self.closed.wait()) if data is True: raise ConnectionError return data class State(enum.Enum): NEW = 0 CONNECTING = 1 CONNECTED = 2 CLOSED = 3 FAILED = 4 class RTCCertificate: """ The :class:`RTCCertificate` interface enables the certificates used by an :class:`RTCDtlsTransport`. To generate a certificate and the corresponding private key use :func:`generateCertificate`. """ def __init__(self, key, cert): self._key = key self._cert = cert @property def expires(self): """ The date and time after which the certificate will be considered invalid. """ not_after = self._cert.get_notAfter().decode('ascii') return datetime.datetime.strptime(not_after, '%Y%m%d%H%M%SZ').replace( tzinfo=datetime.timezone.utc) def getFingerprints(self): """ Returns the list of certificate fingerprints, one of which is computed with the digest algorithm used in the certificate signature. """ return [ RTCDtlsFingerprint(algorithm='sha-256', value=certificate_digest(self._cert._x509)) ] @classmethod def generateCertificate(cls): """ Create and return an X.509 certificate and corresponding private key. :rtype: RTCCertificate """ key = generate_key() cert = generate_certificate(key) return cls(key=key, cert=cert) @attr.s class RTCDtlsFingerprint: """ The :class:`RTCDtlsFingerprint` dictionary includes the hash function algorithm and certificate fingerprint. """ algorithm = attr.ib() "The hash function name, for instance `'sha-256'`." value = attr.ib() "The fingerprint value." @attr.s class RTCDtlsParameters: """ The :class:`RTCDtlsParameters` dictionary includes information relating to DTLS configuration. """ fingerprints = attr.ib(default=attr.Factory(list)) "List of :class:`RTCDtlsFingerprint`, one fingerprint for each certificate." role = attr.ib(default='auto') "The DTLS role, with a default of auto." class RtpRouter: def __init__(self): self.ssrc_table = {} def register(self, receiver, parameters): if parameters.rtcp.ssrc: self.ssrc_table[parameters.rtcp.ssrc] = receiver def route(self, ssrc): return self.ssrc_table.get(ssrc) class RTCDtlsTransport(EventEmitter): """ The :class:`RTCDtlsTransport` object includes information relating to Datagram Transport Layer Security (DTLS) transport. :param: transport: An :class:`RTCIceTransport`. :param: certificates: A list of :class:`RTCCertificate` (only one is allowed currently). """ def __init__(self, transport, certificates): assert len(certificates) == 1 certificate = certificates[0] super().__init__() self.closed = asyncio.Event() self.encrypted = False self._role = 'auto' self._rtp_router = RtpRouter() self._start = None self._state = State.NEW self._transport = transport self.data_queue = asyncio.Queue() self.data = Channel( closed=self.closed, queue=self.data_queue, send=self._send_data) # SSL init self.__ctx = create_ssl_context(certificate) ssl = lib.SSL_new(self.__ctx) self.ssl = ffi.gc(ssl, lib.SSL_free) self.read_bio = lib.BIO_new(lib.BIO_s_mem()) self.read_cdata = ffi.new('char[]', 1500) self.write_bio = lib.BIO_new(lib.BIO_s_mem()) self.write_cdata = ffi.new('char[]', 1500) lib.SSL_set_bio(self.ssl, self.read_bio, self.write_bio) self.__local_parameters = RTCDtlsParameters(fingerprints=certificate.getFingerprints()) @property def state(self): """ The current state of the DTLS transport. """ return str(self._state)[6:].lower() @property def transport(self): """ The associated :class:`RTCIceTransport` instance. """ return self._transport def getLocalParameters(self): """ Get the local parameters of the DTLS transport. :rtype: :class:`RTCDtlsParameters` """ return self.__local_parameters async def start(self, remoteParameters): """ Start DTLS transport negotiation with the parameters of the remote DTLS transport. :param: remoteParameters: An :class:`RTCDtlsParameters`. """ assert self._state not in [State.CLOSED, State.FAILED] assert len(remoteParameters.fingerprints) # handle the case where start is already in progress if self._start is not None: return await self._start.wait() self._start = asyncio.Event() if self.transport.role == 'controlling': self._role = 'server' lib.SSL_set_accept_state(self.ssl) else: self._role = 'client' lib.SSL_set_connect_state(self.ssl) self._set_state(State.CONNECTING) while not self.encrypted: result = lib.SSL_do_handshake(self.ssl) await self._write_ssl() if result > 0: self.encrypted = True break error = lib.SSL_get_error(self.ssl, result) if error == lib.SSL_ERROR_WANT_READ: await self._recv_next() else: self._set_state(State.FAILED) raise DtlsError('DTLS handshake failed (error %d)' % error) # check remote fingerprint x509 = lib.SSL_get_peer_certificate(self.ssl) remote_fingerprint = certificate_digest(x509) fingerprint_is_valid = False for f in remoteParameters.fingerprints: if f.algorithm == 'sha-256' and f.value.lower() == remote_fingerprint.lower(): fingerprint_is_valid = True break if not fingerprint_is_valid: self._set_state(State.FAILED) raise DtlsError('DTLS fingerprint does not match') # generate keying material buf = ffi.new('unsigned char[]', 2 * (SRTP_KEY_LEN + SRTP_SALT_LEN)) extractor = b'EXTRACTOR-dtls_srtp' _openssl_assert(lib.SSL_export_keying_material( self.ssl, buf, len(buf), extractor, len(extractor), ffi.NULL, 0, 0) == 1) view = ffi.buffer(buf) if self._role == 'server': srtp_tx_key = get_srtp_key_salt(view, 1) srtp_rx_key = get_srtp_key_salt(view, 0) else: srtp_tx_key = get_srtp_key_salt(view, 0) srtp_rx_key = get_srtp_key_salt(view, 1) rx_policy = Policy(key=srtp_rx_key, ssrc_type=Policy.SSRC_ANY_INBOUND) self._rx_srtp = Session(rx_policy) tx_policy = Policy(key=srtp_tx_key, ssrc_type=Policy.SSRC_ANY_OUTBOUND) self._tx_srtp = Session(tx_policy) # start data pump self.__log_debug('- DTLS handshake complete') self._set_state(State.CONNECTED) asyncio.ensure_future(self.__run()) self._start.set() async def stop(self): """ Stop and close the DTLS transport. """ if self._state in [State.CONNECTING, State.CONNECTED]: lib.SSL_shutdown(self.ssl) await self._write_ssl() self.__log_debug('- DTLS shutdown complete') self.closed.set() async def __run(self): try: while True: await self._recv_next() except ConnectionError: pass finally: self._set_state(State.CLOSED) self.closed.set() async def _recv_next(self): # get timeout ptv_sec = ffi.new('time_t *') ptv_usec = ffi.new('long *') if lib.Cryptography_DTLSv1_get_timeout(self.ssl, ptv_sec, ptv_usec): timeout = ptv_sec[0] + (ptv_usec[0] / 1000000) else: timeout = None try: data = await first_completed(self.transport._connection.recv(), self.closed.wait(), timeout=timeout) except TimeoutError: self.__log_debug('x DTLS handling timeout') lib.DTLSv1_handle_timeout(self.ssl) await self._write_ssl() return if data is True: # session was closed raise ConnectionError first_byte = data[0] if first_byte > 19 and first_byte < 64: # DTLS lib.BIO_write(self.read_bio, data, len(data)) result = lib.SSL_read(self.ssl, self.read_cdata, len(self.read_cdata)) await self._write_ssl() if result == 0: self.__log_debug('- DTLS shutdown by remote party') raise ConnectionError elif result > 0: await self.data_queue.put(ffi.buffer(self.read_cdata)[0:result]) elif first_byte > 127 and first_byte < 192: # SRTP / SRTCP if is_rtcp(data): data = self._rx_srtp.unprotect_rtcp(data) packets = RtcpPacket.parse(data) for packet in packets: receiver = None if hasattr(packet, 'ssrc'): # SR and RR receiver = self._rtp_router.route(packet.ssrc) elif getattr(packet, 'chunks', None): # SDES receiver = self._rtp_router.route(packet.chunks[0].ssrc) elif getattr(packet, 'sources', None): # BYE receiver = self._rtp_router.route(packet.sources[0]) if receiver is not None: await receiver._handle_rtcp_packet(packet) else: data = self._rx_srtp.unprotect(data) packet = RtpPacket.parse(data) receiver = self._rtp_router.route(packet.ssrc) if receiver is not None: await receiver._handle_rtp_packet(packet) def _register_rtp_receiver(self, receiver, parameters): self._rtp_router.register(receiver, parameters) async def _send_data(self, data): if self._state != State.CONNECTED: raise ConnectionError('Cannot send encrypted data, not connected') lib.SSL_write(self.ssl, data, len(data)) await self._write_ssl() async def _send_rtp(self, data): if self._state != State.CONNECTED: raise ConnectionError('Cannot send encrypted RTP, not connected') if is_rtcp(data): data = self._tx_srtp.protect_rtcp(data) else: data = self._tx_srtp.protect(data) await self.transport._connection.send(data) def _set_state(self, state): if state != self._state: self.__log_debug('- %s -> %s', self._state, state) self._state = state self.emit('statechange') async def _write_ssl(self): """ Flush outgoing data which OpenSSL put in our BIO to the transport. """ pending = lib.BIO_ctrl_pending(self.write_bio) if pending > 0: result = lib.BIO_read(self.write_bio, self.write_cdata, len(self.write_cdata)) await self.transport._connection.send(ffi.buffer(self.write_cdata)[0:result]) def __log_debug(self, msg, *args): logger.debug(self._role + ' ' + msg, *args)
32.504255
96
0.619035
66d04b556c690f348751d1a010b936f36251ac99
4,158
py
Python
aif360/algorithms/transformer.py
andrerubeis/AIF360
c0ce6f2e3eff9cab0ccce0bc0a05b681a5df7e44
[ "Apache-2.0" ]
null
null
null
aif360/algorithms/transformer.py
andrerubeis/AIF360
c0ce6f2e3eff9cab0ccce0bc0a05b681a5df7e44
[ "Apache-2.0" ]
null
null
null
aif360/algorithms/transformer.py
andrerubeis/AIF360
c0ce6f2e3eff9cab0ccce0bc0a05b681a5df7e44
[ "Apache-2.0" ]
null
null
null
from abc import abstractmethod from functools import wraps from aif360.datasets import Dataset from aif360.decorating_metaclass import ApplyDecorator # TODO: Use sklearn.exceptions.NotFittedError instead? class NotFittedError(ValueError, AttributeError): """Error to be raised if `predict` or `transform` is called before `fit`.""" def addmetadata(func): """Decorator for instance methods which perform a transformation and return a new dataset. Automatically populates the `metadata` field of the new dataset to reflect details of the transformation that occurred, e.g.:: { 'transformer': 'TransformerClass.function_name', 'params': kwargs_from_init, 'previous': [all_datasets_used_by_func] } """ @wraps(func) def wrapper(self, *args, **kwargs): new_dataset = func(self, *args, **kwargs) if isinstance(new_dataset, Dataset): new_dataset.metadata = new_dataset.metadata.copy() new_dataset.metadata.update({ 'transformer': '{}.{}'.format(type(self).__name__, func.__name__), 'params': self._params, 'previous': [a for a in args if isinstance(a, Dataset)] }) return new_dataset return wrapper BaseClass = ApplyDecorator(addmetadata) class Transformer(BaseClass): """Abstract base class for transformers. Transformers are an abstraction for any process which acts on a :obj:`Dataset` and returns a new, modified Dataset. This definition encompasses pre-processing, in-processing, and post-processing algorithms. """ @abstractmethod def __init__(self, **kwargs): """Initialize a Transformer object. Algorithm-specific configuration parameters should be passed here. """ #kwargs: {'unprivileged_groups': [{'sex': 0}], 'privileged_groups': [{'sex': 1}]} #Store protected attributes (lfr) self._params = kwargs def fit(self, dataset): """Train a model on the input. Args: dataset (Dataset): Input dataset. Returns: Transformer: Returns self. """ return self def predict(self, dataset): """Return a new dataset with labels predicted by running this Transformer on the input. Args: dataset (Dataset): Input dataset. Returns: Dataset: Output dataset. `metadata` should reflect the details of this transformation. """ raise NotImplementedError("'predict' is not supported for this class. " "Perhaps you meant 'transform' or 'fit_predict' instead?") def transform(self, dataset): """Return a new dataset generated by running this Transformer on the input. This function could return different `dataset.features`, `dataset.labels`, or both. Args: dataset (Dataset): Input dataset. Returns: Dataset: Output dataset. `metadata` should reflect the details of this transformation. """ raise NotImplementedError("'transform' is not supported for this class." " Perhaps you meant 'predict' or 'fit_transform' instead?") def fit_predict(self, dataset): """Train a model on the input and predict the labels. Equivalent to calling `fit(dataset)` followed by `predict(dataset)`. Args: dataset (Dataset): Input dataset. Returns: Dataset: Output dataset. `metadata` should reflect the details of this transformation. """ return self.fit(dataset).predict(dataset) def fit_transform(self, dataset): """Train a model on the input and transform the dataset accordingly. Equivalent to calling `fit(dataset)` followed by `transform(dataset)`. Args: dataset (Dataset): Input dataset. Returns: Dataset: Output dataset. `metadata` should reflect the details of this transformation. """ return self.fit(dataset).transform(dataset)
32.484375
89
0.633237
ec47bf01ebf9beb16408299c8c0c4301f6ba9ef1
4,642
py
Python
PasswordManager/PwWindow.py
whymatter/PasswordManager
86070a1f998362cfa026e6e6e9b820a2d7ad5f06
[ "MIT" ]
null
null
null
PasswordManager/PwWindow.py
whymatter/PasswordManager
86070a1f998362cfa026e6e6e9b820a2d7ad5f06
[ "MIT" ]
null
null
null
PasswordManager/PwWindow.py
whymatter/PasswordManager
86070a1f998362cfa026e6e6e9b820a2d7ad5f06
[ "MIT" ]
null
null
null
import sys from PyQt5 import QtWidgets, uic from PyQt5.QtWidgets import QApplication, QTableWidgetItem from Crypto.Cipher import AES import json from constants import FILE_NAME, KEY_ENCODING from SaveDialog import SaveDialog # -*- coding: utf-8 -*- """ Created on Fri Nov 17 13:53:56 2017 @author: seitz """ class PwWindow(QtWidgets.QMainWindow): def __init__(self, parent=None, key=None): super(PwWindow, self).__init__(parent) self.key = key self.save_dialog = SaveDialog(parent=self) # load and show the user interface created with the designer. uic.loadUi('../pw_window.ui', self) self.add_button.clicked.connect(self.add_row) self.remove_button.clicked.connect(self.remove_row) self.toggle_button.clicked.connect(self.toggle_password) self.load_data(FILE_NAME, key) self.show() def add_row(self): self.tableWidget.insertRow(self.tableWidget.rowCount()) def remove_row(self): self.tableWidget.removeRow(self.tableWidget.currentRow()) def toggle_password(self): item = self.tableWidget.currentItem() if item == None or item.column() != 1: return print(item.text()) print(item.text() == '****') if item.text() == '****': print(str(item.data(1))) item.setText(str(item.data(1))) else: item.setData(1, item.text()) item.setText('****') def closeEvent(self, event): if self.save_dialog.exec_(): self.save_data(FILE_NAME, self.key) event.accept() def get_data(self): data = [] for row in range(self.tableWidget.rowCount()): if self.tableWidget.item(row, 0) == None or\ self.tableWidget.item(row, 1) == None: continue data_pw = self.tableWidget.item(row, 1).data(1) text_pw = self.tableWidget.item(row, 1).text() print(data_pw) data.append({ "accountid": self.tableWidget.item(row, 0).text(), "password": text_pw if text_pw != '****' else data_pw }) return data def load_data(self, filename, key): try: with open(filename, 'rb') as file_in: nonce, tag, ciphertext = [ file_in.read(x) for x in (16, 16, -1) ] # let's assume that the key is somehow available again cipher = AES.new(key, AES.MODE_EAX, nonce) jsontext = cipher.decrypt_and_verify(ciphertext, tag) data = json.loads(jsontext) print(data) self.refresh_table(data) except Exception as e: print("Your file contains errors") print(e) def save_data(self, filename, key): data = self.get_data() print(data) cipher = AES.new(key, AES.MODE_EAX) ciphertext, tag = cipher.encrypt_and_digest(json.dumps(data).encode(KEY_ENCODING)) try: with open(FILE_NAME, "wb") as file_out: [ file_out.write(x) for x in (cipher.nonce, tag, ciphertext) ] except Exception as e: print("Your file contains errors") print(e) def refresh_table(self, data): def load_value(row, column, value): self.tableWidget.setItem(row, column, QTableWidgetItem(str(value), 0)) [self.tableWidget.removeRow(0) for x in range(self.tableWidget.rowCount())] for index, entry in enumerate(data): self.tableWidget.insertRow(index) self.tableWidget.setItem(index, 0, QTableWidgetItem(str(entry['accountid']), 0)) pw_item = QTableWidgetItem() pw_item.setText('****') pw_item.setData(1, str(entry['password'])) self.tableWidget.setItem(index, 1, pw_item) @staticmethod def persist(data, filename): try: print(data) with open(filename, 'w') as outFile: json.dump(data, outFile) except Exception as e: print("Failed to save!") print(e) def return_data(self): self.data = self.get_data() self.accept() def _main(): app = QApplication(sys.argv) m = PwWindow() sys.exit(app.exec_()) if __name__ == '__main__': _main()
32.461538
93
0.550409
9aaa1c2b83405b7e75a1a8f71bd668d7240eddb2
8,520
py
Python
tpu/models/official/resnet/benchmark/resnet_benchmark.py
DLPerf/class-balanced-loss
8ac4342949991384c13b5419148be7a617f2abf1
[ "MIT" ]
541
2019-01-18T03:10:19.000Z
2022-03-30T05:45:36.000Z
models/official/resnet/benchmark/resnet_benchmark.py
lc0/tpu
78eacbc1b216d498cd0456b5d84d4abcd5f16a9a
[ "Apache-2.0" ]
20
2019-02-11T06:45:43.000Z
2021-11-09T18:44:36.000Z
models/official/resnet/benchmark/resnet_benchmark.py
lc0/tpu
78eacbc1b216d498cd0456b5d84d4abcd5f16a9a
[ "Apache-2.0" ]
75
2019-01-20T13:50:39.000Z
2022-03-30T08:10:50.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Train a ResNet-50 model on ImageNet on TPU.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import os import re import sys import time from absl import flags import tensorflow as tf # For Cloud environment, add parent directory for imports sys.path.append(os.path.dirname(os.path.abspath(sys.path[0]))) from official.resnet import imagenet_input # pylint: disable=g-import-not-at-top from official.resnet import resnet_main from tensorflow.python.estimator import estimator FLAGS = tf.flags.FLAGS CKPT_PATTERN = r'model\.ckpt-(?P<gs>[0-9]+)\.data' flags.DEFINE_string( 'data_dir_small', default=None, help=('The directory where the resized (160x160) ImageNet input data is ' 'stored. This is only to be used in conjunction with the ' 'resnet_benchmark.py script.')) flags.DEFINE_bool( 'use_fast_lr', default=False, help=('Enabling this uses a faster learning rate schedule along with ' 'different image sizes in the input pipeline. This is only to be ' 'used in conjunction with the resnet_benchmark.py script.')) # Number of training and evaluation images in the standard ImageNet dataset NUM_TRAIN_IMAGES = 1281167 NUM_EVAL_IMAGES = 50000 def main(unused_argv): tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=FLAGS.model_dir, save_checkpoints_steps=FLAGS.iterations_per_loop, keep_checkpoint_max=None, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_cores, per_host_input_for_training=tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2)) # pylint: disable=line-too-long # Input pipelines are slightly different (with regards to shuffling and # preprocessing) between training and evaluation. imagenet_train = imagenet_input.ImageNetInput( is_training=True, data_dir=FLAGS.data_dir, use_bfloat16=True, transpose_input=FLAGS.transpose_input) imagenet_eval = imagenet_input.ImageNetInput( is_training=False, data_dir=FLAGS.data_dir, use_bfloat16=True, transpose_input=FLAGS.transpose_input) if FLAGS.use_fast_lr: resnet_main.LR_SCHEDULE = [ # (multiplier, epoch to start) tuples (1.0, 4), (0.1, 21), (0.01, 35), (0.001, 43) ] imagenet_train_small = imagenet_input.ImageNetInput( is_training=True, image_size=128, data_dir=FLAGS.data_dir_small, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input, cache=True) imagenet_eval_small = imagenet_input.ImageNetInput( is_training=False, image_size=128, data_dir=FLAGS.data_dir_small, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input, cache=True) imagenet_train_large = imagenet_input.ImageNetInput( is_training=True, image_size=288, data_dir=FLAGS.data_dir, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input) imagenet_eval_large = imagenet_input.ImageNetInput( is_training=False, image_size=288, data_dir=FLAGS.data_dir, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input) resnet_classifier = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=resnet_main.resnet_model_fn, config=config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size) if FLAGS.mode == 'train': current_step = estimator._load_global_step_from_checkpoint_dir(FLAGS.model_dir) # pylint: disable=protected-access,line-too-long batches_per_epoch = NUM_TRAIN_IMAGES / FLAGS.train_batch_size tf.logging.info('Training for %d steps (%.2f epochs in total). Current' ' step %d.' % (FLAGS.train_steps, FLAGS.train_steps / batches_per_epoch, current_step)) start_timestamp = time.time() # This time will include compilation time # Write a dummy file at the start of training so that we can measure the # runtime at each checkpoint from the file write time. tf.gfile.MkDir(FLAGS.model_dir) if not tf.gfile.Exists(os.path.join(FLAGS.model_dir, 'START')): with tf.gfile.GFile(os.path.join(FLAGS.model_dir, 'START'), 'w') as f: f.write(str(start_timestamp)) if FLAGS.use_fast_lr: small_steps = int(18 * NUM_TRAIN_IMAGES / FLAGS.train_batch_size) normal_steps = int(41 * NUM_TRAIN_IMAGES / FLAGS.train_batch_size) large_steps = int(min(50 * NUM_TRAIN_IMAGES / FLAGS.train_batch_size, FLAGS.train_steps)) resnet_classifier.train( input_fn=imagenet_train_small.input_fn, max_steps=small_steps) resnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=normal_steps) resnet_classifier.train( input_fn=imagenet_train_large.input_fn, max_steps=large_steps) else: resnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=FLAGS.train_steps) else: assert FLAGS.mode == 'eval' start_timestamp = tf.gfile.Stat( os.path.join(FLAGS.model_dir, 'START')).mtime_nsec results = [] eval_steps = NUM_EVAL_IMAGES // FLAGS.eval_batch_size ckpt_steps = set() all_files = tf.gfile.ListDirectory(FLAGS.model_dir) for f in all_files: mat = re.match(CKPT_PATTERN, f) if mat is not None: ckpt_steps.add(int(mat.group('gs'))) ckpt_steps = sorted(list(ckpt_steps)) tf.logging.info('Steps to be evaluated: %s' % str(ckpt_steps)) for step in ckpt_steps: ckpt = os.path.join(FLAGS.model_dir, 'model.ckpt-%d' % step) batches_per_epoch = NUM_TRAIN_IMAGES // FLAGS.train_batch_size current_epoch = step // batches_per_epoch if FLAGS.use_fast_lr: if current_epoch < 18: eval_input_fn = imagenet_eval_small.input_fn if current_epoch >= 18 and current_epoch < 41: eval_input_fn = imagenet_eval.input_fn if current_epoch >= 41: # 41: eval_input_fn = imagenet_eval_large.input_fn else: eval_input_fn = imagenet_eval.input_fn end_timestamp = tf.gfile.Stat(ckpt + '.index').mtime_nsec elapsed_hours = (end_timestamp - start_timestamp) / (1e9 * 3600.0) tf.logging.info('Starting to evaluate.') eval_start = time.time() # This time will include compilation time eval_results = resnet_classifier.evaluate( input_fn=eval_input_fn, steps=eval_steps, checkpoint_path=ckpt) eval_time = int(time.time() - eval_start) tf.logging.info('Eval results: %s. Elapsed seconds: %d' % (eval_results, eval_time)) results.append([ current_epoch, elapsed_hours, '%.2f' % (eval_results['top_1_accuracy'] * 100), '%.2f' % (eval_results['top_5_accuracy'] * 100), ]) time.sleep(60) with tf.gfile.GFile(os.path.join(FLAGS.model_dir, 'results.tsv'), 'wb') as tsv_file: # pylint: disable=line-too-long writer = csv.writer(tsv_file, delimiter='\t') writer.writerow(['epoch', 'hours', 'top1Accuracy', 'top5Accuracy']) writer.writerows(results) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
37.20524
133
0.688967
34cf4c21bff5e3b2b838b405c718743366ef4c94
178,722
py
Python
autotest/gdrivers/nitf.py
cholmes/gdal
e091ab0c9b45832f6281dae2437a5759ecd777c2
[ "MIT" ]
null
null
null
autotest/gdrivers/nitf.py
cholmes/gdal
e091ab0c9b45832f6281dae2437a5759ecd777c2
[ "MIT" ]
null
null
null
autotest/gdrivers/nitf.py
cholmes/gdal
e091ab0c9b45832f6281dae2437a5759ecd777c2
[ "MIT" ]
null
null
null
#!/usr/bin/env pytest # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test read/write functionality for NITF driver. # Author: Frank Warmerdam <warmerdam@pobox.com> # ############################################################################### # Copyright (c) 2003, Frank Warmerdam <warmerdam@pobox.com> # Copyright (c) 2008-2013, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import copy import os import sys import array import struct import shutil from osgeo import gdal from osgeo import osr import gdaltest import pytest @pytest.fixture(scope='module') def not_jpeg_9b(): import jpeg jpeg.test_jpeg_1() if gdaltest.jpeg_version == '9b': pytest.skip() def hex_string(s): return "".join(hex(ord(c))[2:] for c in s) ############################################################################### # Write/Read test of simple byte reference data. def test_nitf_1(): tst = gdaltest.GDALTest('NITF', 'byte.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Write/Read test of simple 16bit reference data. def test_nitf_2(): tst = gdaltest.GDALTest('NITF', 'int16.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Write/Read RGB image with lat/long georeferencing, and verify. def test_nitf_3(): tst = gdaltest.GDALTest('NITF', 'rgbsmall.tif', 3, 21349) return tst.testCreateCopy() ############################################################################### # Test direction creation of an NITF file. def nitf_create(creation_options, set_inverted_color_interp=True, createcopy=False): drv = gdal.GetDriverByName('NITF') try: os.remove('tmp/test_create.ntf') except OSError: pass if createcopy: ds = gdal.GetDriverByName('MEM').Create('', 200, 100, 3, gdal.GDT_Byte) else: ds = drv.Create('tmp/test_create.ntf', 200, 100, 3, gdal.GDT_Byte, creation_options) ds.SetGeoTransform((100, 0.1, 0.0, 30.0, 0.0, -0.1)) if set_inverted_color_interp: ds.GetRasterBand(1).SetRasterColorInterpretation(gdal.GCI_BlueBand) ds.GetRasterBand(2).SetRasterColorInterpretation(gdal.GCI_GreenBand) ds.GetRasterBand(3).SetRasterColorInterpretation(gdal.GCI_RedBand) else: ds.GetRasterBand(1).SetRasterColorInterpretation(gdal.GCI_RedBand) ds.GetRasterBand(2).SetRasterColorInterpretation(gdal.GCI_GreenBand) ds.GetRasterBand(3).SetRasterColorInterpretation(gdal.GCI_BlueBand) my_list = list(range(200)) + list(range(20, 220)) + list(range(30, 230)) try: raw_data = array.array('h', my_list).tobytes() except: # Python 2 raw_data = array.array('h', my_list).tostring() for line in range(100): ds.WriteRaster(0, line, 200, 1, raw_data, buf_type=gdal.GDT_Int16, band_list=[1, 2, 3]) if createcopy: ds = drv.CreateCopy('tmp/test_create.ntf', ds, options=creation_options) ds = None ############################################################################### # Test direction creation of an non-compressed NITF file. def test_nitf_4(): return nitf_create(['ICORDS=G']) ############################################################################### # Verify created file def nitf_check_created_file(checksum1, checksum2, checksum3, set_inverted_color_interp=True): ds = gdal.Open('tmp/test_create.ntf') chksum = ds.GetRasterBand(1).Checksum() chksum_expect = checksum1 assert chksum == chksum_expect, 'Did not get expected chksum for band 1' chksum = ds.GetRasterBand(2).Checksum() chksum_expect = checksum2 assert chksum == chksum_expect, 'Did not get expected chksum for band 2' chksum = ds.GetRasterBand(3).Checksum() chksum_expect = checksum3 assert chksum == chksum_expect, 'Did not get expected chksum for band 3' geotransform = ds.GetGeoTransform() assert geotransform[0] == pytest.approx(100, abs=0.1) and geotransform[1] == pytest.approx(0.1, abs=0.001) and geotransform[2] == pytest.approx(0, abs=0.001) and geotransform[3] == pytest.approx(30.0, abs=0.1) and geotransform[4] == pytest.approx(0, abs=0.001) and geotransform[5] == pytest.approx(-0.1, abs=0.001), \ 'geotransform differs from expected' if set_inverted_color_interp: assert ds.GetRasterBand(1).GetRasterColorInterpretation() == gdal.GCI_BlueBand, \ 'Got wrong color interpretation.' assert ds.GetRasterBand(2).GetRasterColorInterpretation() == gdal.GCI_GreenBand, \ 'Got wrong color interpretation.' assert ds.GetRasterBand(3).GetRasterColorInterpretation() == gdal.GCI_RedBand, \ 'Got wrong color interpretation.' ds = None ############################################################################### # Verify file created by nitf_4() def test_nitf_5(): return nitf_check_created_file(32498, 42602, 38982) ############################################################################### # Read existing NITF file. Verifies the new adjusted IGEOLO interp. def test_nitf_6(): tst = gdaltest.GDALTest('NITF', 'nitf/rgb.ntf', 3, 21349) return tst.testOpen(check_prj='WGS84', check_gt=(-44.842029478458, 0.003503401360, 0, -22.930748299319, 0, -0.003503401360)) ############################################################################### # NITF in-memory. def test_nitf_7(): tst = gdaltest.GDALTest('NITF', 'rgbsmall.tif', 3, 21349) return tst.testCreateCopy(vsimem=1) ############################################################################### # Verify we can open an NSIF file, and get metadata including BLOCKA. def test_nitf_8(): ds = gdal.Open('data/nitf/fake_nsif.ntf') chksum = ds.GetRasterBand(1).Checksum() chksum_expect = 12033 assert chksum == chksum_expect, 'Did not get expected chksum for band 1' md = ds.GetMetadata() assert md['NITF_FHDR'] == 'NSIF01.00', 'Got wrong FHDR value' assert md['NITF_BLOCKA_BLOCK_INSTANCE_01'] == '01' and md['NITF_BLOCKA_BLOCK_COUNT'] == '01' and md['NITF_BLOCKA_N_GRAY_01'] == '00000' and md['NITF_BLOCKA_L_LINES_01'] == '01000' and md['NITF_BLOCKA_LAYOVER_ANGLE_01'] == '000' and md['NITF_BLOCKA_SHADOW_ANGLE_01'] == '000' and md['NITF_BLOCKA_FRLC_LOC_01'] == '+41.319331+020.078400' and md['NITF_BLOCKA_LRLC_LOC_01'] == '+41.317083+020.126072' and md['NITF_BLOCKA_LRFC_LOC_01'] == '+41.281634+020.122570' and md['NITF_BLOCKA_FRFC_LOC_01'] == '+41.283881+020.074924', \ 'BLOCKA metadata has unexpected value.' ############################################################################### # Create and read a JPEG encoded NITF file. def test_nitf_9(): src_ds = gdal.Open('data/rgbsmall.tif') ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf9.ntf', src_ds, options=['IC=C3']) src_ds = None ds = None ds = gdal.Open('tmp/nitf9.ntf') (exp_mean, exp_stddev) = (65.9532, 46.9026375565) (mean, stddev) = ds.GetRasterBand(1).ComputeBandStats() assert exp_mean == pytest.approx(mean, abs=0.1) and exp_stddev == pytest.approx(stddev, abs=0.1), \ 'did not get expected mean or standard dev.' md = ds.GetMetadata('IMAGE_STRUCTURE') assert md['COMPRESSION'] == 'JPEG', 'Did not get expected compression value.' ############################################################################### # For esoteric reasons, createcopy from jpeg compressed nitf files can be # tricky. Verify this is working. def test_nitf_10(): src_ds = gdal.Open('tmp/nitf9.ntf') expected_cs = src_ds.GetRasterBand(2).Checksum() src_ds = None assert expected_cs == 22296 or expected_cs == 22259 tst = gdaltest.GDALTest('NITF', '../tmp/nitf9.ntf', 2, expected_cs) return tst.testCreateCopy() ############################################################################### # Test 1bit file ... conveniently very small and easy to include! (#1854) def test_nitf_11(): # From http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/i_3034c.ntf tst = gdaltest.GDALTest('NITF', 'nitf/i_3034c.ntf', 1, 170) return tst.testOpen() ############################################################################### # Verify that TRE and CGM access via the metadata domain works. def test_nitf_12(): ds = gdal.Open('data/nitf/fake_nsif.ntf') mdTRE = ds.GetMetadata('TRE') try: # NG bindings blockA = ds.GetMetadataItem('BLOCKA', 'TRE') except: blockA = mdTRE['BLOCKA'] mdCGM = ds.GetMetadata('CGM') try: # NG bindings segmentCount = ds.GetMetadataItem('SEGMENT_COUNT', 'CGM') except: segmentCount = mdCGM['SEGMENT_COUNT'] ds = None expectedBlockA = '010000001000000000 +41.319331+020.078400+41.317083+020.126072+41.281634+020.122570+41.283881+020.074924 ' assert mdTRE['BLOCKA'] == expectedBlockA, \ 'did not find expected BLOCKA from metadata.' assert blockA == expectedBlockA, 'did not find expected BLOCKA from metadata item.' assert mdCGM['SEGMENT_COUNT'] == '0', \ 'did not find expected SEGMENT_COUNT from metadata.' assert segmentCount == '0', \ 'did not find expected SEGMENT_COUNT from metadata item.' ############################################################################### # Test creation of an NITF file in UTM Zone 11, Southern Hemisphere. def test_nitf_13(): drv = gdal.GetDriverByName('NITF') ds = drv.Create('tmp/test_13.ntf', 200, 100, 1, gdal.GDT_Byte, ['ICORDS=S']) ds.SetGeoTransform((400000, 10, 0.0, 6000000, 0.0, -10)) ds.SetProjection('PROJCS["UTM Zone 11, Southern Hemisphere",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],TOWGS84[0,0,0,0,0,0,0],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9108"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-117],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000],UNIT["Meter",1]]') my_list = list(range(200)) try: raw_data = array.array('f', my_list).tobytes() except: # Python 2 raw_data = array.array('f', my_list).tostring() for line in range(100): ds.WriteRaster(0, line, 200, 1, raw_data, buf_type=gdal.GDT_Int16, band_list=[1]) ds = None ############################################################################### # Verify previous file def test_nitf_14(): ds = gdal.Open('tmp/test_13.ntf') chksum = ds.GetRasterBand(1).Checksum() chksum_expect = 55964 assert chksum == chksum_expect, 'Did not get expected chksum for band 1' geotransform = ds.GetGeoTransform() assert geotransform[0] == pytest.approx(400000, abs=.1) and geotransform[1] == pytest.approx(10, abs=0.001) and geotransform[2] == pytest.approx(0, abs=0.001) and geotransform[3] == pytest.approx(6000000, abs=.1) and geotransform[4] == pytest.approx(0, abs=0.001) and geotransform[5] == pytest.approx(-10, abs=0.001), \ 'geotransform differs from expected' prj = ds.GetProjectionRef() assert prj.find('PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-117],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",10000000]') != -1, \ 'Coordinate system not UTM Zone 11, Southern Hemisphere' ds = None ############################################################################### # Test creating an in memory copy. def test_nitf_15(): tst = gdaltest.GDALTest('NITF', 'byte.tif', 1, 4672) return tst.testCreateCopy(vsimem=1) ############################################################################### # Checks a 1-bit mono with mask table having (0x00) black as transparent with white arrow. def test_nitf_16(): # From http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/ns3034d.nsf tst = gdaltest.GDALTest('NITF', 'nitf/ns3034d.nsf', 1, 170) return tst.testOpen() ############################################################################### # Checks a 1-bit RGB/LUT (green arrow) with a mask table (pad pixels having value of 0x00) # and a transparent pixel value of 1 being mapped to green by the LUT def test_nitf_17(): # From http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/i_3034f.ntf tst = gdaltest.GDALTest('NITF', 'nitf/i_3034f.ntf', 1, 170) return tst.testOpen() ############################################################################### # Test NITF file without image segment def test_nitf_18(): # Shut up the warning about missing image segment gdal.PushErrorHandler('CPLQuietErrorHandler') # From http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv1_1/U_0006A.NTF ds = gdal.Open("data/nitf/U_0006A.NTF") gdal.PopErrorHandler() assert ds.RasterCount == 0 ############################################################################### # Test BILEVEL (C1) decompression def test_nitf_19(): # From http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_0/U_1050A.NTF tst = gdaltest.GDALTest('NITF', 'nitf/U_1050A.NTF', 1, 65024) return tst.testOpen() ############################################################################### # Test NITF file consisting only of an header def test_nitf_20(): # Shut up the warning about file either corrupt or empty gdal.PushErrorHandler('CPLQuietErrorHandler') # From http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv1_1/U_0002A.NTF ds = gdal.Open("data/nitf/U_0002A.NTF") gdal.PopErrorHandler() assert ds is None ############################################################################### # Verify that TEXT access via the metadata domain works. # # See also nitf_35 for writing TEXT segments. def test_nitf_21(): # Shut up the warning about missing image segment gdal.PushErrorHandler('CPLQuietErrorHandler') ds = gdal.Open('data/nitf/ns3114a.nsf') gdal.PopErrorHandler() mdTEXT = ds.GetMetadata('TEXT') try: # NG bindings data0 = ds.GetMetadataItem('DATA_0', 'TEXT') except: data0 = mdTEXT['DATA_0'] ds = None assert mdTEXT['DATA_0'] == 'A', 'did not find expected DATA_0 from metadata.' assert data0 == 'A', 'did not find expected DATA_0 from metadata item.' ############################################################################### # Write/Read test of simple int32 reference data. def test_nitf_22(): tst = gdaltest.GDALTest('NITF', '../../gcore/data/int32.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Write/Read test of simple float32 reference data. def test_nitf_23(): tst = gdaltest.GDALTest('NITF', '../../gcore/data/float32.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Write/Read test of simple float64 reference data. def test_nitf_24(): tst = gdaltest.GDALTest('NITF', '../../gcore/data/float64.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Write/Read test of simple uint16 reference data. def test_nitf_25(): tst = gdaltest.GDALTest('NITF', '../../gcore/data/uint16.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Write/Read test of simple uint32 reference data. def test_nitf_26(): tst = gdaltest.GDALTest('NITF', '../../gcore/data/uint32.tif', 1, 4672) return tst.testCreateCopy() ############################################################################### # Test Create() with IC=NC compression, and multi-blocks def test_nitf_27(): nitf_create(['ICORDS=G', 'IC=NC', 'BLOCKXSIZE=10', 'BLOCKYSIZE=10']) return nitf_check_created_file(32498, 42602, 38982) ############################################################################### # Test Create() with IC=C8 compression with the JP2ECW driver def test_nitf_28_jp2ecw(): gdaltest.nitf_28_jp2ecw_is_ok = False if gdal.GetDriverByName('JP2ECW') is None: pytest.skip() import ecw if not ecw.has_write_support(): pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but('JP2ECW') if nitf_create(['ICORDS=G', 'IC=C8', 'TARGET=75'], set_inverted_color_interp=False) == 'success': ret = nitf_check_created_file(32398, 42502, 38882, set_inverted_color_interp=False) if ret == 'success': gdaltest.nitf_28_jp2ecw_is_ok = True else: ret = 'fail' tmpfilename = '/vsimem/nitf_28_jp2ecw.ntf' src_ds = gdal.GetDriverByName('MEM').Create('', 1025, 1025) gdal.GetDriverByName('NITF').CreateCopy(tmpfilename, src_ds, options=['IC=C8']) ds = gdal.Open(tmpfilename) blockxsize, blockysize = ds.GetRasterBand(1).GetBlockSize() ds = None gdal.Unlink(tmpfilename) if (blockxsize, blockysize) != (256, 256): # 256 since this is hardcoded as such in the ECW driver gdaltest.post_reason('wrong block size') print(blockxsize, blockysize) ret = 'fail' gdaltest.reregister_all_jpeg2000_drivers() return ret ############################################################################### # Test reading the previously create file with the JP2MrSID driver def test_nitf_28_jp2mrsid(): if not gdaltest.nitf_28_jp2ecw_is_ok: pytest.skip() jp2mrsid_drv = gdal.GetDriverByName('JP2MrSID') if jp2mrsid_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but('JP2MrSID') ret = nitf_check_created_file(32398, 42502, 38882, set_inverted_color_interp=False) gdaltest.reregister_all_jpeg2000_drivers() return ret ############################################################################### # Test reading the previously create file with the JP2KAK driver def test_nitf_28_jp2kak(): if not gdaltest.nitf_28_jp2ecw_is_ok: pytest.skip() jp2kak_drv = gdal.GetDriverByName('JP2KAK') if jp2kak_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but('JP2KAK') ret = nitf_check_created_file(32398, 42502, 38882, set_inverted_color_interp=False) gdaltest.reregister_all_jpeg2000_drivers() return ret ############################################################################### # Test reading the previously create file with the JP2KAK driver def test_nitf_28_jp2openjpeg(): if not gdaltest.nitf_28_jp2ecw_is_ok: pytest.skip() drv = gdal.GetDriverByName('JP2OpenJPEG') if drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but('JP2OpenJPEG') ret = nitf_check_created_file(32398, 42502, 38882, set_inverted_color_interp=False) gdaltest.reregister_all_jpeg2000_drivers() return ret ############################################################################### # Test Create() with IC=C8 compression with the JP2OpenJPEG driver def test_nitf_28_jp2openjpeg_bis(): drv = gdal.GetDriverByName('JP2OpenJPEG') if drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but('JP2OpenJPEG') if nitf_create(['ICORDS=G', 'IC=C8', 'QUALITY=25'], set_inverted_color_interp=False, createcopy=True) == 'success': ret = nitf_check_created_file(31604, 42782, 38791, set_inverted_color_interp=False) else: ret = 'fail' tmpfilename = '/vsimem/nitf_28_jp2openjpeg_bis.ntf' src_ds = gdal.GetDriverByName('MEM').Create('', 1025, 1025) gdal.GetDriverByName('NITF').CreateCopy(tmpfilename, src_ds, options=['IC=C8']) ds = gdal.Open(tmpfilename) blockxsize, blockysize = ds.GetRasterBand(1).GetBlockSize() ds = None gdal.Unlink(tmpfilename) if (blockxsize, blockysize) != (1024, 1024): gdaltest.post_reason('wrong block size') print(blockxsize, blockysize) ret = 'fail' gdaltest.reregister_all_jpeg2000_drivers() return ret ############################################################################### # Test Create() with a LUT def test_nitf_29(): drv = gdal.GetDriverByName('NITF') ds = drv.Create('tmp/test_29.ntf', 1, 1, 1, gdal.GDT_Byte, ['IREP=RGB/LUT', 'LUT_SIZE=128']) ct = gdal.ColorTable() ct.SetColorEntry(0, (255, 255, 255, 255)) ct.SetColorEntry(1, (255, 255, 0, 255)) ct.SetColorEntry(2, (255, 0, 255, 255)) ct.SetColorEntry(3, (0, 255, 255, 255)) ds.GetRasterBand(1).SetRasterColorTable(ct) ds = None ds = gdal.Open('tmp/test_29.ntf') ct = ds.GetRasterBand(1).GetRasterColorTable() assert (ct.GetCount() == 129 and \ ct.GetColorEntry(0) == (255, 255, 255, 255) and \ ct.GetColorEntry(1) == (255, 255, 0, 255) and \ ct.GetColorEntry(2) == (255, 0, 255, 255) and \ ct.GetColorEntry(3) == (0, 255, 255, 255)), 'Wrong color table entry.' new_ds = drv.CreateCopy('tmp/test_29_copy.ntf', ds) del new_ds ds = None ds = gdal.Open('tmp/test_29_copy.ntf') ct = ds.GetRasterBand(1).GetRasterColorTable() assert (ct.GetCount() == 130 and \ ct.GetColorEntry(0) == (255, 255, 255, 255) and \ ct.GetColorEntry(1) == (255, 255, 0, 255) and \ ct.GetColorEntry(2) == (255, 0, 255, 255) and \ ct.GetColorEntry(3) == (0, 255, 255, 255)), 'Wrong color table entry.' ds = None ############################################################################### # Verify we can write a file with BLOCKA TRE and read it back properly. def test_nitf_30(): src_ds = gdal.Open('data/nitf/fake_nsif.ntf') ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf30.ntf', src_ds) chksum = ds.GetRasterBand(1).Checksum() chksum_expect = 12033 assert chksum == chksum_expect, 'Did not get expected chksum for band 1' md = ds.GetMetadata() assert md['NITF_FHDR'] == 'NSIF01.00', 'Got wrong FHDR value' assert md['NITF_BLOCKA_BLOCK_INSTANCE_01'] == '01' and md['NITF_BLOCKA_BLOCK_COUNT'] == '01' and md['NITF_BLOCKA_N_GRAY_01'] == '00000' and md['NITF_BLOCKA_L_LINES_01'] == '01000' and md['NITF_BLOCKA_LAYOVER_ANGLE_01'] == '000' and md['NITF_BLOCKA_SHADOW_ANGLE_01'] == '000' and md['NITF_BLOCKA_FRLC_LOC_01'] == '+41.319331+020.078400' and md['NITF_BLOCKA_LRLC_LOC_01'] == '+41.317083+020.126072' and md['NITF_BLOCKA_LRFC_LOC_01'] == '+41.281634+020.122570' and md['NITF_BLOCKA_FRFC_LOC_01'] == '+41.283881+020.074924', \ 'BLOCKA metadata has unexpected value.' ds = None gdal.GetDriverByName('NITF').Delete('tmp/nitf30.ntf') # Test overriding src BLOCKA metadata with NITF_BLOCKA creation options gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf30_override.ntf', src_ds, options=['BLOCKA_BLOCK_INSTANCE_01=01', 'BLOCKA_BLOCK_COUNT=01', 'BLOCKA_N_GRAY_01=00000', 'BLOCKA_L_LINES_01=01000', 'BLOCKA_LAYOVER_ANGLE_01=000', 'BLOCKA_SHADOW_ANGLE_01=000', 'BLOCKA_FRLC_LOC_01=+42.319331+020.078400', 'BLOCKA_LRLC_LOC_01=+42.317083+020.126072', 'BLOCKA_LRFC_LOC_01=+42.281634+020.122570', 'BLOCKA_FRFC_LOC_01=+42.283881+020.074924' ]) ds = gdal.Open('/vsimem/nitf30_override.ntf') md = ds.GetMetadata() ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf30_override.ntf') assert md['NITF_BLOCKA_BLOCK_INSTANCE_01'] == '01' and md['NITF_BLOCKA_BLOCK_COUNT'] == '01' and md['NITF_BLOCKA_N_GRAY_01'] == '00000' and md['NITF_BLOCKA_L_LINES_01'] == '01000' and md['NITF_BLOCKA_LAYOVER_ANGLE_01'] == '000' and md['NITF_BLOCKA_SHADOW_ANGLE_01'] == '000' and md['NITF_BLOCKA_FRLC_LOC_01'] == '+42.319331+020.078400' and md['NITF_BLOCKA_LRLC_LOC_01'] == '+42.317083+020.126072' and md['NITF_BLOCKA_LRFC_LOC_01'] == '+42.281634+020.122570' and md['NITF_BLOCKA_FRFC_LOC_01'] == '+42.283881+020.074924', \ 'BLOCKA metadata has unexpected value.' # Test overriding src BLOCKA metadata with TRE=BLOCKA= creation option gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf30_override.ntf', src_ds, options=['TRE=BLOCKA=010000001000000000 +42.319331+020.078400+42.317083+020.126072+42.281634+020.122570+42.283881+020.074924xxxxx' ]) ds = gdal.Open('/vsimem/nitf30_override.ntf') md = ds.GetMetadata() ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf30_override.ntf') assert md['NITF_BLOCKA_BLOCK_INSTANCE_01'] == '01' and md['NITF_BLOCKA_BLOCK_COUNT'] == '01' and md['NITF_BLOCKA_N_GRAY_01'] == '00000' and md['NITF_BLOCKA_L_LINES_01'] == '01000' and md['NITF_BLOCKA_LAYOVER_ANGLE_01'] == '000' and md['NITF_BLOCKA_SHADOW_ANGLE_01'] == '000' and md['NITF_BLOCKA_FRLC_LOC_01'] == '+42.319331+020.078400' and md['NITF_BLOCKA_LRLC_LOC_01'] == '+42.317083+020.126072' and md['NITF_BLOCKA_LRFC_LOC_01'] == '+42.281634+020.122570' and md['NITF_BLOCKA_FRFC_LOC_01'] == '+42.283881+020.074924', \ 'BLOCKA metadata has unexpected value.' # Test that gdal_translate -ullr doesn't propagate BLOCKA gdal.Translate('/vsimem/nitf30_no_src_md.ntf', src_ds, format='NITF', outputBounds=[2, 49, 3, 50]) ds = gdal.Open('/vsimem/nitf30_no_src_md.ntf') md = ds.GetMetadata() ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf30_no_src_md.ntf') assert 'NITF_BLOCKA_BLOCK_INSTANCE_01' not in md, \ 'unexpectdly found BLOCKA metadata.' # Test USE_SRC_NITF_METADATA=NO gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf30_no_src_md.ntf', src_ds, options=['USE_SRC_NITF_METADATA=NO']) ds = gdal.Open('/vsimem/nitf30_no_src_md.ntf') md = ds.GetMetadata() ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf30_no_src_md.ntf') assert 'NITF_BLOCKA_BLOCK_INSTANCE_01' not in md, \ 'unexpectdly found BLOCKA metadata.' ############################################################################### # Verify we can write a file with a custom TRE and read it back properly. def test_nitf_31(): nitf_create(['TRE=CUSTOM= Test TRE1\\0MORE', 'TRE=TOTEST=SecondTRE', 'ICORDS=G']) ds = gdal.Open('tmp/test_create.ntf') md = ds.GetMetadata('TRE') assert len(md) == 2, 'Did not get expected TRE count' # Check that the leading space in the CUSTOM metadata item is preserved (#3088, #3204) try: assert ds.GetMetadataItem('CUSTOM', 'TRE') == ' Test TRE1\\0MORE', \ 'Did not get expected TRE contents' except: pass assert md['CUSTOM'] == ' Test TRE1\\0MORE' and md['TOTEST'] == 'SecondTRE', \ 'Did not get expected TRE contents' ds = None return nitf_check_created_file(32498, 42602, 38982) ############################################################################### # Test Create() with ICORDS=D def test_nitf_32(): nitf_create(['ICORDS=D']) return nitf_check_created_file(32498, 42602, 38982) ############################################################################### # Test Create() with ICORDS=D and a consistent BLOCKA def test_nitf_33(): nitf_create(['ICORDS=D', 'BLOCKA_BLOCK_COUNT=01', 'BLOCKA_BLOCK_INSTANCE_01=01', 'BLOCKA_L_LINES_01=100', 'BLOCKA_FRLC_LOC_01=+29.950000+119.950000', 'BLOCKA_LRLC_LOC_01=+20.050000+119.950000', 'BLOCKA_LRFC_LOC_01=+20.050000+100.050000', 'BLOCKA_FRFC_LOC_01=+29.950000+100.050000']) return nitf_check_created_file(32498, 42602, 38982) ############################################################################### # Test CreateCopy() of a 16bit image with tiling def test_nitf_34(): tst = gdaltest.GDALTest('NITF', 'n43.dt0', 1, 49187, options=['BLOCKSIZE=64']) return tst.testCreateCopy() ############################################################################### # Test CreateCopy() writing file with a text segment. def test_nitf_35(): src_ds = gdal.Open('data/nitf/text_md.vrt') ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf_35.ntf', src_ds) src_ds = None ds = None ds = gdal.Open('tmp/nitf_35.ntf') exp_text = """This is text data with a newline.""" md = ds.GetMetadata('TEXT') assert md['DATA_0'] == exp_text, 'Did not get expected TEXT metadata.' exp_text = """Also, a second text segment is created.""" md = ds.GetMetadata('TEXT') assert md['DATA_1'] == exp_text, 'Did not get expected TEXT metadata.' ds = None gdal.GetDriverByName('NITF').Delete('tmp/nitf_35.ntf') ############################################################################### # Create and read a JPEG encoded NITF file (C3) with several blocks # Check that statistics are persisted (#3985) def test_nitf_36(): src_ds = gdal.Open('data/rgbsmall.tif') ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf36.ntf', src_ds, options=['IC=C3', 'BLOCKSIZE=32', 'QUALITY=100']) src_ds = None ds = None ds = gdal.Open('tmp/nitf36.ntf') assert ds.GetRasterBand(1).GetMinimum() is None, \ 'Did not expect to have minimum value at that point.' (_, _, mean, stddev) = ds.GetRasterBand(1).GetStatistics(False, False) assert stddev < 0, 'Did not expect to have statistics at that point.' (exp_mean, exp_stddev) = (65.4208, 47.254550335) (_, _, mean, stddev) = ds.GetRasterBand(1).GetStatistics(False, True) assert exp_mean == pytest.approx(mean, abs=0.1) and exp_stddev == pytest.approx(stddev, abs=0.1), \ 'did not get expected mean or standard dev.' md = ds.GetMetadata('IMAGE_STRUCTURE') assert md['COMPRESSION'] == 'JPEG', 'Did not get expected compression value.' ds = None # Check that statistics are persisted (#3985) ds = gdal.Open('tmp/nitf36.ntf') assert ds.GetRasterBand(1).GetMinimum() is not None, \ 'Should have minimum value at that point.' (_, _, mean, stddev) = ds.GetRasterBand(1).GetStatistics(False, False) assert exp_mean == pytest.approx(mean, abs=0.1) and exp_stddev == pytest.approx(stddev, abs=0.1), \ 'Should have statistics at that point.' ds = None ############################################################################### # Create and read a NITF file with 69999 bands def test_nitf_37(): ds = gdal.GetDriverByName('NITF').Create('tmp/nitf37.ntf', 1, 1, 69999) ds = None ds = gdal.Open('tmp/nitf37.ntf') assert ds.RasterCount == 69999 ds = None ############################################################################### # Create and read a NITF file with 999 images def test_nitf_38(): ds = gdal.Open('data/byte.tif') nXSize = ds.RasterXSize nYSize = ds.RasterYSize data = ds.GetRasterBand(1).ReadRaster(0, 0, nXSize, nYSize) expected_cs = ds.GetRasterBand(1).Checksum() ds = gdal.GetDriverByName('NITF').Create('tmp/nitf38.ntf', nXSize, nYSize, 1, options=['NUMI=999']) ds = None ds = gdal.Open('NITF_IM:998:tmp/nitf38.ntf', gdal.GA_Update) ds.GetRasterBand(1).WriteRaster(0, 0, nXSize, nYSize, data) # Create overviews ds.BuildOverviews(overviewlist=[2]) ds = None ds = gdal.Open('NITF_IM:0:tmp/nitf38.ntf') assert ds.GetRasterBand(1).Checksum() == 0 ds = None ds = gdal.Open('NITF_IM:998:tmp/nitf38.ntf') cs = ds.GetRasterBand(1).Checksum() assert cs == expected_cs, 'bad checksum for image of 998th subdataset' # Check the overview cs = ds.GetRasterBand(1).GetOverview(0).Checksum() assert cs == 1087, 'bad checksum for overview of image of 998th subdataset' out_ds = gdal.GetDriverByName('VRT').CreateCopy('tmp/nitf38.vrt', ds) out_ds = None ds = None ds = gdal.Open('tmp/nitf38.vrt') cs = ds.GetRasterBand(1).Checksum() ds = None gdal.Unlink('tmp/nitf38.vrt') assert cs == expected_cs ds = gdal.Open('NITF_IM:998:%s/tmp/nitf38.ntf' % os.getcwd()) out_ds = gdal.GetDriverByName('VRT').CreateCopy('%s/tmp/nitf38.vrt' % os.getcwd(), ds) out_ds = None ds = None ds = gdal.Open('tmp/nitf38.vrt') cs = ds.GetRasterBand(1).Checksum() ds = None gdal.Unlink('tmp/nitf38.vrt') assert cs == expected_cs ds = gdal.Open('NITF_IM:998:%s/tmp/nitf38.ntf' % os.getcwd()) out_ds = gdal.GetDriverByName('VRT').CreateCopy('tmp/nitf38.vrt', ds) del out_ds ds = None ds = gdal.Open('tmp/nitf38.vrt') cs = ds.GetRasterBand(1).Checksum() ds = None gdal.Unlink('tmp/nitf38.vrt') assert cs == expected_cs ############################################################################### # Create and read a JPEG encoded NITF file (M3) with several blocks def test_nitf_39(): src_ds = gdal.Open('data/rgbsmall.tif') ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf39.ntf', src_ds, options=['IC=M3', 'BLOCKSIZE=32', 'QUALITY=100']) src_ds = None ds = None ds = gdal.Open('tmp/nitf39.ntf') (exp_mean, exp_stddev) = (65.4208, 47.254550335) (mean, stddev) = ds.GetRasterBand(1).ComputeBandStats() assert exp_mean == pytest.approx(mean, abs=0.1) and exp_stddev == pytest.approx(stddev, abs=0.1), \ 'did not get expected mean or standard dev.' md = ds.GetMetadata('IMAGE_STRUCTURE') assert md['COMPRESSION'] == 'JPEG', 'Did not get expected compression value.' ds = None ############################################################################### # Create a 10 GB NITF file def test_nitf_40(): # Determine if the filesystem supports sparse files (we don't want to create a real 10 GB # file ! if not gdaltest.filesystem_supports_sparse_files('tmp'): pytest.skip() width = 99000 height = 99000 x = width - 1 y = height - 1 ds = gdal.GetDriverByName('NITF').Create('tmp/nitf40.ntf', width, height, options=['BLOCKSIZE=256']) data = struct.pack('B' * 1, 123) # Write a non NULL byte at the bottom right corner of the image (around 10 GB offset) ds.GetRasterBand(1).WriteRaster(x, y, 1, 1, data) ds = None # Check that we can fetch it at the right value ds = gdal.Open('tmp/nitf40.ntf') assert ds.GetRasterBand(1).ReadRaster(x, y, 1, 1) == data ds = None # Check that it is indeed at a very far offset, and that the NITF driver # has not put it somewhere else due to involuntary cast to 32bit integer. blockWidth = 256 blockHeight = 256 nBlockx = int((width + blockWidth - 1) / blockWidth) iBlockx = int(x / blockWidth) iBlocky = int(y / blockHeight) ix = x % blockWidth iy = y % blockHeight offset = 843 + (iBlocky * nBlockx + iBlockx) * blockWidth * blockHeight + (iy * blockWidth + ix) try: os.SEEK_SET except AttributeError: os.SEEK_SET, os.SEEK_CUR, os.SEEK_END = list(range(3)) fd = open('tmp/nitf40.ntf', 'rb') fd.seek(offset, os.SEEK_SET) bytes_read = fd.read(1) fd.close() val = struct.unpack('B' * 1, bytes_read)[0] assert val == 123, ('Bad value at offset %d : %d' % (offset, val)) ############################################################################### # Check reading a 12-bit JPEG compressed NITF def test_nitf_41(not_jpeg_9b): # Check if JPEG driver supports 12bit JPEG reading/writing jpg_drv = gdal.GetDriverByName('JPEG') md = jpg_drv.GetMetadata() if md[gdal.DMD_CREATIONDATATYPES].find('UInt16') == -1: sys.stdout.write('(12bit jpeg not available) ... ') pytest.skip() gdal.Unlink('data/nitf/U_4017A.NTF.aux.xml') ds = gdal.Open('data/nitf/U_4017A.NTF') assert ds.GetRasterBand(1).DataType == gdal.GDT_UInt16 stats = ds.GetRasterBand(1).GetStatistics(0, 1) assert stats[2] >= 2385 and stats[2] <= 2386 ds = None gdal.Unlink('data/nitf/U_4017A.NTF.aux.xml') ############################################################################### # Check creating a 12-bit JPEG compressed NITF def test_nitf_42(not_jpeg_9b): # Check if JPEG driver supports 12bit JPEG reading/writing jpg_drv = gdal.GetDriverByName('JPEG') md = jpg_drv.GetMetadata() if md[gdal.DMD_CREATIONDATATYPES].find('UInt16') == -1: sys.stdout.write('(12bit jpeg not available) ... ') pytest.skip() ds = gdal.Open('data/nitf/U_4017A.NTF') out_ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf42.ntf', ds, options=['IC=C3', 'FHDR=NITF02.10']) del out_ds ds = gdal.Open('tmp/nitf42.ntf') assert ds.GetRasterBand(1).DataType == gdal.GDT_UInt16 stats = ds.GetRasterBand(1).GetStatistics(0, 1) assert stats[2] >= 2385 and stats[2] <= 2386 ds = None ############################################################################### # Test CreateCopy() in IC=C8 with various JPEG2000 drivers def nitf_43(driver_to_test, options): jp2_drv = gdal.GetDriverByName(driver_to_test) if driver_to_test == 'JP2ECW' and jp2_drv is not None: if 'DMD_CREATIONOPTIONLIST' not in jp2_drv.GetMetadata(): jp2_drv = None if jp2_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but(driver_to_test) ds = gdal.Open('data/byte.tif') gdal.PushErrorHandler('CPLQuietErrorHandler') out_ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf_43.ntf', ds, options=options, strict=0) gdal.PopErrorHandler() out_ds = None out_ds = gdal.Open('tmp/nitf_43.ntf') if out_ds.GetRasterBand(1).Checksum() == 4672: ret = 'success' else: ret = 'fail' out_ds = None if open('tmp/nitf_43.ntf', 'rb').read().decode('LATIN1').find('<gml') >= 0: print('GMLJP2 detected !') ret = 'fail' gdal.GetDriverByName('NITF').Delete('tmp/nitf_43.ntf') gdaltest.reregister_all_jpeg2000_drivers() return ret def test_nitf_43_jasper(): return nitf_43('JPEG2000', ['IC=C8']) def test_nitf_43_jp2ecw(): import ecw if not ecw.has_write_support(): pytest.skip() return nitf_43('JP2ECW', ['IC=C8', 'TARGET=0']) def test_nitf_43_jp2kak(): return nitf_43('JP2KAK', ['IC=C8', 'QUALITY=100']) ############################################################################### # Check creating a monoblock 10000x1 image (ticket #3263) def test_nitf_44(): out_ds = gdal.GetDriverByName('NITF').Create('tmp/nitf44.ntf', 10000, 1) out_ds.GetRasterBand(1).Fill(255) out_ds = None ds = gdal.Open('tmp/nitf44.ntf') if 'GetBlockSize' in dir(gdal.Band): (blockx, _) = ds.GetRasterBand(1).GetBlockSize() assert blockx == 10000 assert ds.GetRasterBand(1).Checksum() == 57182 ds = None ############################################################################### # Check overviews on a JPEG compressed subdataset def test_nitf_45(): try: os.remove('tmp/nitf45.ntf.aux.xml') except OSError: pass shutil.copyfile('data/nitf/two_images_jpeg.ntf', 'tmp/nitf45.ntf') ds = gdal.Open('NITF_IM:1:tmp/nitf45.ntf', gdal.GA_Update) ds.BuildOverviews(overviewlist=[2]) # FIXME ? ds.GetRasterBand(1).GetOverview(0) is None until we reopen ds = None ds = gdal.Open('NITF_IM:1:tmp/nitf45.ntf') cs = ds.GetRasterBand(1).GetOverview(0).Checksum() assert cs == 1086, 'did not get expected checksum for overview of subdataset' ds = None ############################################################################### # Check overviews on a JPEG2000 compressed subdataset def nitf_46(driver_to_test): jp2_drv = gdal.GetDriverByName(driver_to_test) if jp2_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but(driver_to_test) try: os.remove('tmp/nitf46.ntf.aux.xml') except OSError: pass try: os.remove('tmp/nitf46.ntf_0.ovr') except OSError: pass shutil.copyfile('data/nitf/two_images_jp2.ntf', 'tmp/nitf46.ntf') ds = gdal.Open('NITF_IM:1:tmp/nitf46.ntf', gdal.GA_Update) ds.BuildOverviews(overviewlist=[2]) # FIXME ? ds.GetRasterBand(1).GetOverview(0) is None until we reopen ds = None ds = gdal.Open('NITF_IM:1:tmp/nitf46.ntf') if ds.GetRasterBand(1).GetOverview(0) is None: gdaltest.post_reason('no overview of subdataset') ret = 'fail' else: cs = ds.GetRasterBand(1).GetOverview(0).Checksum() if cs != 1086: print(cs) gdaltest.post_reason('did not get expected checksum for overview of subdataset') ret = 'fail' else: ret = 'success' ds = None gdaltest.reregister_all_jpeg2000_drivers() return ret def nitf_46_jp2ecw(): return nitf_46('JP2ECW') def nitf_46_jp2mrsid(): return nitf_46('JP2MrSID') def nitf_46_jp2kak(): return nitf_46('JP2KAK') def test_nitf_46_jasper(): return nitf_46('JPEG2000') def nitf_46_openjpeg(): return nitf_46('JP2OpenJPEG') ############################################################################### # Check reading of rsets. def test_nitf_47(): ds = gdal.Open('data/nitf/rset.ntf.r0') band = ds.GetRasterBand(2) assert band.GetOverviewCount() == 2, \ 'did not get the expected number of rset overviews.' cs = band.GetOverview(1).Checksum() assert cs == 1297, 'did not get expected checksum for overview of subdataset' ds = None ############################################################################### # Check building of standard overviews in place of rset overviews. def test_nitf_48(): try: os.remove('tmp/rset.ntf.r0') os.remove('tmp/rset.ntf.r1') os.remove('tmp/rset.ntf.r2') os.remove('tmp/rset.ntf.r0.ovr') except OSError: pass shutil.copyfile('data/nitf/rset.ntf.r0', 'tmp/rset.ntf.r0') shutil.copyfile('data/nitf/rset.ntf.r1', 'tmp/rset.ntf.r1') shutil.copyfile('data/nitf/rset.ntf.r2', 'tmp/rset.ntf.r2') ds = gdal.Open('tmp/rset.ntf.r0', gdal.GA_Update) ds.BuildOverviews(overviewlist=[3]) ds = None ds = gdal.Open('tmp/rset.ntf.r0') assert ds.GetRasterBand(1).GetOverviewCount() == 1, \ 'did not get the expected number of rset overviews.' cs = ds.GetRasterBand(1).GetOverview(0).Checksum() assert cs == 2328, 'did not get expected checksum for overview of subdataset' ds = None try: os.remove('tmp/rset.ntf.r0') os.remove('tmp/rset.ntf.r1') os.remove('tmp/rset.ntf.r2') os.remove('tmp/rset.ntf.r0.ovr') except OSError: pass ############################################################################### # Test TEXT and CGM creation options with CreateCopy() (#3376) def test_nitf_49(): options = ["TEXT=DATA_0=COUCOU", "TEXT=HEADER_0=ABC", # This content is invalid but who cares here "CGM=SEGMENT_COUNT=1", "CGM=SEGMENT_0_SLOC_ROW=25", "CGM=SEGMENT_0_SLOC_COL=25", "CGM=SEGMENT_0_SDLVL=2", "CGM=SEGMENT_0_SALVL=1", "CGM=SEGMENT_0_DATA=XYZ"] src_ds = gdal.Open('data/nitf/text_md.vrt') # This will check that the creation option overrides the TEXT metadata domain from the source ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf49.ntf', src_ds, options=options) # Test copy from source TEXT and CGM metadata domains ds2 = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf49_2.ntf', ds) md = ds2.GetMetadata('TEXT') if 'DATA_0' not in md or md['DATA_0'] != 'COUCOU' or \ 'HEADER_0' not in md or md['HEADER_0'].find('ABC ') == -1: gdaltest.post_reason('did not get expected TEXT metadata') print(md) return md = ds2.GetMetadata('CGM') if 'SEGMENT_COUNT' not in md or md['SEGMENT_COUNT'] != '1' or \ 'SEGMENT_0_DATA' not in md or md['SEGMENT_0_DATA'] != 'XYZ': gdaltest.post_reason('did not get expected CGM metadata') print(md) return src_ds = None ds = None ds2 = None ############################################################################### # Test TEXT and CGM creation options with Create() (#3376) def test_nitf_50(): options = [ # "IC=C8", "TEXT=DATA_0=COUCOU", "TEXT=HEADER_0=ABC", # This content is invalid but who cares here "CGM=SEGMENT_COUNT=1", "CGM=SEGMENT_0_SLOC_ROW=25", "CGM=SEGMENT_0_SLOC_COL=25", "CGM=SEGMENT_0_SDLVL=2", "CGM=SEGMENT_0_SALVL=1", "CGM=SEGMENT_0_DATA=XYZ"] try: os.remove('tmp/nitf50.ntf') except OSError: pass # This will check that the creation option overrides the TEXT metadata domain from the source ds = gdal.GetDriverByName('NITF').Create('tmp/nitf50.ntf', 100, 100, 3, options=options) ds.WriteRaster(0, 0, 100, 100, ' ', 1, 1, buf_type=gdal.GDT_Byte, band_list=[1, 2, 3]) ds.GetRasterBand(1).SetRasterColorInterpretation(gdal.GCI_BlueBand) ds.GetRasterBand(2).SetRasterColorInterpretation(gdal.GCI_GreenBand) ds.GetRasterBand(3).SetRasterColorInterpretation(gdal.GCI_RedBand) # We need to reopen the dataset, because the TEXT and CGM segments are only written # when closing the dataset (for JP2 compressed datastreams, we need to wait for the # imagery to be written) ds = None ds = gdal.Open('tmp/nitf50.ntf') md = ds.GetMetadata('TEXT') if 'DATA_0' not in md or md['DATA_0'] != 'COUCOU' or \ 'HEADER_0' not in md or md['HEADER_0'].find('ABC ') == -1: gdaltest.post_reason('did not get expected TEXT metadata') print(md) return md = ds.GetMetadata('CGM') if 'SEGMENT_COUNT' not in md or md['SEGMENT_COUNT'] != '1' or \ 'SEGMENT_0_DATA' not in md or md['SEGMENT_0_DATA'] != 'XYZ': gdaltest.post_reason('did not get expected CGM metadata') print(md) return ds = None ############################################################################### # Test reading very small images with NBPP < 8 or NBPP == 12 def test_nitf_51(): for xsize in range(1, 9): for nbpp in [1, 2, 3, 4, 5, 6, 7, 12]: ds = gdal.GetDriverByName('NITF').Create('tmp/nitf51.ntf', xsize, 1) ds = None f = open('tmp/nitf51.ntf', 'rb+') # Patch NBPP value at offset 811 f.seek(811) f.write(struct.pack('B' * 2, 48 + int(nbpp / 10), 48 + nbpp % 10)) # Write image data f.seek(843) n = int((xsize * nbpp + 7) / 8) for i in range(n): f.write(struct.pack('B' * 1, 255)) f.close() ds = gdal.Open('tmp/nitf51.ntf') if nbpp == 12: data = ds.GetRasterBand(1).ReadRaster(0, 0, xsize, 1, buf_type=gdal.GDT_UInt16) arr = struct.unpack('H' * xsize, data) else: data = ds.GetRasterBand(1).ReadRaster(0, 0, xsize, 1) arr = struct.unpack('B' * xsize, data) ds = None for i in range(xsize): if arr[i] != (1 << nbpp) - 1: print('xsize = %d, nbpp = %d' % (xsize, nbpp)) pytest.fail('did not get expected data') ############################################################################### # Test reading GeoSDE TREs def test_nitf_52(): # Create a fake NITF file with GeoSDE TREs (probably not conformant, but enough to test GDAL code) ds = gdal.GetDriverByName('NITF').Create('tmp/nitf52.ntf', 1, 1, options=['FILE_TRE=GEOPSB=01234567890123456789012345678901234567890123456789012345678901234567890123456789012345EURM ', 'FILE_TRE=PRJPSB=01234567890123456789012345678901234567890123456789012345678901234567890123456789AC0000000000000000000000000000000', 'TRE=MAPLOB=M 0001000010000000000100000000000005000000']) ds = None ds = gdal.Open('tmp/nitf52.ntf') wkt = ds.GetProjectionRef() gt = ds.GetGeoTransform() ds = None expected_wkt ="""PROJCS["unnamed",GEOGCS["EUROPEAN 1950, Mean (3 Param)",DATUM["EUROPEAN_1950_Mean_3_Param",SPHEROID["International 1924",6378388,297],TOWGS84[-87,-98,-121,0,0,0,0]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]]],PROJECTION["Albers_Conic_Equal_Area"],PARAMETER["latitude_of_center",0],PARAMETER["longitude_of_center",0],PARAMETER["standard_parallel_1",0],PARAMETER["standard_parallel_2",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH]]""" assert wkt in (expected_wkt, expected_wkt.replace('EUROPEAN_1950_Mean_3_Param', 'EUROPEAN 1950, Mean (3 Param)')) assert gt == (100000.0, 10.0, 0.0, 5000000.0, 0.0, -10.0), \ 'did not get expected geotransform' ############################################################################### # Test reading UTM MGRS def test_nitf_53(): ds = gdal.GetDriverByName('NITF').Create('tmp/nitf53.ntf', 2, 2, options=['ICORDS=N']) ds = None f = open('tmp/nitf53.ntf', 'rb+') # Patch ICORDS and IGEOLO f.seek(775) f.write(b'U') f.write(b'31UBQ1000040000') f.write(b'31UBQ2000040000') f.write(b'31UBQ2000030000') f.write(b'31UBQ1000030000') f.close() ds = gdal.Open('tmp/nitf53.ntf') wkt = ds.GetProjectionRef() gt = ds.GetGeoTransform() ds = None assert 'PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",3],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0]' in wkt, \ 'did not get expected SRS' assert gt == (205000.0, 10000.0, 0.0, 5445000.0, 0.0, -10000.0), \ 'did not get expected geotransform' ############################################################################### # Test reading RPC00B def test_nitf_54(): # Create a fake NITF file with RPC00B TRE (probably not conformant, but enough to test GDAL code) RPC00B = '100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000' ds = gdal.GetDriverByName('NITF').Create('tmp/nitf54.ntf', 1, 1, options=['TRE=RPC00B=' + RPC00B]) ds = None ds = gdal.Open('tmp/nitf54.ntf') md = ds.GetMetadata('RPC') ds = None assert md is not None and 'HEIGHT_OFF' in md ############################################################################### # Test reading ICHIPB def test_nitf_55(): # Create a fake NITF file with ICHIPB TRE (probably not conformant, but enough to test GDAL code) ICHIPB = '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000' ds = gdal.GetDriverByName('NITF').Create('tmp/nitf55.ntf', 1, 1, options=['TRE=ICHIPB=' + ICHIPB]) ds = None ds = gdal.Open('tmp/nitf55.ntf') md = ds.GetMetadata() ds = None assert md is not None and 'ICHIP_SCALE_FACTOR' in md ############################################################################### # Test reading USE00A def test_nitf_56(): # Create a fake NITF file with USE00A TRE (probably not conformant, but enough to test GDAL code) USE00A = '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000' ds = gdal.GetDriverByName('NITF').Create('tmp/nitf56.ntf', 1, 1, options=['TRE=USE00A=' + USE00A]) ds = None ds = gdal.Open('tmp/nitf56.ntf') md = ds.GetMetadata() ds = None assert md is not None and 'NITF_USE00A_ANGLE_TO_NORTH' in md ############################################################################### # Test reading GEOLOB def test_nitf_57(): # Create a fake NITF file with GEOLOB TRE GEOLOB = '000000360000000360-180.000000000090.000000000000' ds = gdal.GetDriverByName('NITF').Create('tmp/nitf57.ntf', 1, 1, options=['TRE=GEOLOB=' + GEOLOB]) ds = None ds = gdal.Open('tmp/nitf57.ntf') gt = ds.GetGeoTransform() ds = None if gt != (-180.0, 1.0, 0.0, 90.0, 0.0, -1.0): gdaltest.post_reason('did not get expected geotransform') print(gt) return ############################################################################### # Test reading STDIDC def test_nitf_58(): # Create a fake NITF file with STDIDC TRE (probably not conformant, but enough to test GDAL code) STDIDC = '00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000' ds = gdal.GetDriverByName('NITF').Create('tmp/nitf58.ntf', 1, 1, options=['TRE=STDIDC=' + STDIDC]) ds = None ds = gdal.Open('tmp/nitf58.ntf') md = ds.GetMetadata() ds = None assert md is not None and 'NITF_STDIDC_ACQUISITION_DATE' in md ############################################################################### # Test reading IMRFCA and IMASDA def test_nitf_read_IMRFCA_IMASDA(): # Create a fake NITF file with fake IMRFCA and IMASDA TRE IMRFCA = '0' * 1760 IMASDA = '0' * 242 tmpfile = '/vsimem/nitf_read_IMRFCA_IMASDA.ntf' gdal.GetDriverByName('NITF').Create(tmpfile, 1, 1, options=['TRE=IMRFCA=' + IMRFCA, 'TRE=IMASDA=' + IMASDA]) ds = gdal.Open(tmpfile) md = ds.GetMetadata('RPC') ds = None gdal.Unlink(tmpfile) assert not (md is None or md == {}) # Only IMRFCA gdal.GetDriverByName('NITF').Create(tmpfile, 1, 1, options=['TRE=IMRFCA=' + IMRFCA]) ds = gdal.Open(tmpfile) md = ds.GetMetadata('RPC') ds = None gdal.Unlink(tmpfile) assert md == {} # Only IMASDA gdal.GetDriverByName('NITF').Create(tmpfile, 1, 1, options=['TRE=IMASDA=' + IMASDA]) ds = gdal.Open(tmpfile) md = ds.GetMetadata('RPC') ds = None gdal.Unlink(tmpfile) assert md == {} # Too short IMRFCA with gdaltest.error_handler(): gdal.GetDriverByName('NITF').Create(tmpfile, 1, 1, options=['TRE=IMRFCA=' + IMRFCA[0:-1], 'TRE=IMASDA=' + IMASDA]) ds = gdal.Open(tmpfile) md = ds.GetMetadata('RPC') ds = None gdal.Unlink(tmpfile) assert md == {} # Too short IMASDA with gdaltest.error_handler(): gdal.GetDriverByName('NITF').Create(tmpfile, 1, 1, options=['TRE=IMRFCA=' + IMRFCA, 'TRE=IMASDA=' + IMASDA[0:-1]]) ds = gdal.Open(tmpfile) md = ds.GetMetadata('RPC') ds = None gdal.Unlink(tmpfile) assert md == {} ############################################################################### # Test georeferencing through .nfw and .hdr files def test_nitf_59(): shutil.copyfile('data/nitf/nitf59.nfw', 'tmp/nitf59.nfw') shutil.copyfile('data/nitf/nitf59.hdr', 'tmp/nitf59.hdr') ds = gdal.GetDriverByName('NITF').Create('tmp/nitf59.ntf', 1, 1, options=['ICORDS=N']) ds = None ds = gdal.Open('tmp/nitf59.ntf') wkt = ds.GetProjectionRef() gt = ds.GetGeoTransform() ds = None assert """PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",3],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0]""" in wkt, \ 'did not get expected SRS' assert gt == (149999.5, 1.0, 0.0, 4500000.5, 0.0, -1.0), \ 'did not get expected geotransform' ############################################################################### # Test reading CADRG polar tile georeferencing (#2940) def test_nitf_60(): # Shut down errors because the file is truncated gdal.PushErrorHandler('CPLQuietErrorHandler') ds = gdal.Open('data/nitf/testtest.on9') gdal.PopErrorHandler() wkt = ds.GetProjectionRef() gt = ds.GetGeoTransform() ds = None assert wkt == """PROJCS["unknown",GEOGCS["unknown",DATUM["unknown",SPHEROID["unknown",6378137,0]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]]],PROJECTION["Azimuthal_Equidistant"],PARAMETER["latitude_of_center",90],PARAMETER["longitude_of_center",0],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH]]""", \ 'did not get expected SRS' ref_gt = [1036422.8453166834, 149.94543479697344, 0.0, 345474.28177222813, 0.0, -149.94543479697404] for i in range(6): assert gt[i] == pytest.approx(ref_gt[i], abs=1e-6), 'did not get expected geotransform' ############################################################################### # Test reading TRE from DE segment def test_nitf_61(): # Derived from http://www.gwg.nga.mil/ntb/baseline/software/testfile/rsm/SampleFiles/FrameSet1/NITF_Files/i_6130a.zip # but hand edited to have just 1x1 imagery ds = gdal.Open('data/nitf/i_6130a_truncated.ntf') md = ds.GetMetadata('TRE') xml_tre = ds.GetMetadata('xml:TRE')[0] ds = None assert md is not None and 'RSMDCA' in md and 'RSMECA' in md and 'RSMPCA' in md and 'RSMIDA' in md assert xml_tre.find('<tre name="RSMDCA"') != -1, 'did not get expected xml:TRE' ############################################################################### # Test creating & reading image comments def test_nitf_62(): # 80+1 characters comments = '012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678ZA' ds = gdal.GetDriverByName('NITF').Create('tmp/nitf62.ntf', 1, 1, options=['ICOM=' + comments]) ds = None ds = gdal.Open('tmp/nitf62.ntf') md = ds.GetMetadata() ds = None got_comments = md['NITF_IMAGE_COMMENTS'] if len(got_comments) != 160 or got_comments.find(comments) == -1: print("'%s'" % got_comments) pytest.fail('did not get expected comments') ############################################################################### # Test NITFReadImageLine() and NITFWriteImageLine() when nCols < nBlockWidth (#3551) def test_nitf_63(): ds = gdal.GetDriverByName('NITF').Create('tmp/nitf63.ntf', 50, 25, 3, gdal.GDT_Int16, options=['BLOCKXSIZE=256']) ds = None try: os.SEEK_SET except AttributeError: os.SEEK_SET, os.SEEK_CUR, os.SEEK_END = list(range(3)) # Patch IMODE at hand f = open('tmp/nitf63.ntf', 'r+') f.seek(820, os.SEEK_SET) f.write('P') f.close() ds = gdal.Open('tmp/nitf63.ntf', gdal.GA_Update) md = ds.GetMetadata() assert md['NITF_IMODE'] == 'P', 'wrong IMODE' ds.GetRasterBand(1).Fill(0) ds.GetRasterBand(2).Fill(127) ds.GetRasterBand(3).Fill(255) ds = None ds = gdal.Open('tmp/nitf63.ntf') cs1 = ds.GetRasterBand(1).Checksum() cs2 = ds.GetRasterBand(2).Checksum() cs3 = ds.GetRasterBand(3).Checksum() ds = None assert cs1 == 0 and cs2 == 14186 and cs3 == 15301, \ ('did not get expected checksums : (%d, %d, %d) instead of (0, 14186, 15301)' % (cs1, cs2, cs3)) ############################################################################### # Test SDE_TRE creation option def test_nitf_64(): src_ds = gdal.GetDriverByName('GTiff').Create('/vsimem/nitf_64.tif', 256, 256, 1) src_ds.SetGeoTransform([2.123456789, 0.123456789, 0, 49.123456789, 0, -0.123456789]) sr = osr.SpatialReference() sr.SetWellKnownGeogCS('WGS84') src_ds.SetProjection(sr.ExportToWkt()) ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_64.ntf', src_ds, options=['ICORDS=D']) ds = None ds = gdal.Open('/vsimem/nitf_64.ntf') # One can notice that the topleft location is only precise to the 3th decimal ! expected_gt = (2.123270588235294, 0.12345882352941177, 0.0, 49.123729411764707, 0.0, -0.12345882352941176) got_gt = ds.GetGeoTransform() for i in range(6): assert expected_gt[i] == pytest.approx(got_gt[i], abs=1e-10), \ 'did not get expected GT in ICORDS=D mode' ds = None ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_64.ntf', src_ds, options=['ICORDS=G']) ds = None ds = gdal.Open('/vsimem/nitf_64.ntf') # One can notice that the topleft location is only precise to the 3th decimal ! expected_gt = (2.1235495642701521, 0.12345642701525053, 0.0, 49.123394880174288, 0.0, -0.12345642701525052) got_gt = ds.GetGeoTransform() for i in range(6): assert expected_gt[i] == pytest.approx(got_gt[i], abs=1e-10), \ 'did not get expected GT in ICORDS=G mode' ds = None ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_64.ntf', src_ds, options=['SDE_TRE=YES']) ds = None ds = gdal.Open('/vsimem/nitf_64.ntf') # One can notice that the topleft location is precise up to the 9th decimal expected_gt = (2.123456789, 0.1234567901234568, 0.0, 49.123456789000002, 0.0, -0.12345679012345678) got_gt = ds.GetGeoTransform() for i in range(6): assert expected_gt[i] == pytest.approx(got_gt[i], abs=1e-10), \ 'did not get expected GT in SDE_TRE mode' ds = None src_ds = None gdal.Unlink('/vsimem/nitf_64.tif') gdal.Unlink('/vsimem/nitf_64.ntf') ############################################################################### # Test creating an image with block_width = image_width > 8192 (#3922) def test_nitf_65(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_65.ntf', 10000, 100, options=['BLOCKXSIZE=10000']) ds = None ds = gdal.Open('/vsimem/nitf_65.ntf') (block_xsize, _) = ds.GetRasterBand(1).GetBlockSize() ds.GetRasterBand(1).Checksum() ds = None gdal.Unlink('/vsimem/nitf_65.ntf') assert block_xsize == 10000 ############################################################################### # Test creating an image with block_height = image_height > 8192 (#3922) def test_nitf_66(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_66.ntf', 100, 10000, options=['BLOCKYSIZE=10000', 'BLOCKXSIZE=50']) ds = None ds = gdal.Open('/vsimem/nitf_66.ntf') (_, block_ysize) = ds.GetRasterBand(1).GetBlockSize() ds.GetRasterBand(1).Checksum() ds = None gdal.Unlink('/vsimem/nitf_66.ntf') assert block_ysize == 10000 ############################################################################### # Test that we don't use scanline access in illegal cases (#3926) def test_nitf_67(): src_ds = gdal.Open('data/byte.tif') gdal.PushErrorHandler('CPLQuietErrorHandler') ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_67.ntf', src_ds, options=['BLOCKYSIZE=1', 'BLOCKXSIZE=10'], strict=0) gdal.PopErrorHandler() ds = None src_ds = None ds = gdal.Open('/vsimem/nitf_67.ntf') cs = ds.GetRasterBand(1).Checksum() ds = None gdal.Unlink('/vsimem/nitf_67.ntf') gdal.Unlink('/vsimem/nitf_67.ntf.aux.xml') assert cs == 4672 ############################################################################### # Test reading NITF_METADATA domain def test_nitf_68(): ds = gdal.Open('data/nitf/rgb.ntf') assert len(ds.GetMetadata('NITF_METADATA')) == 2 ds = None ds = gdal.Open('data/nitf/rgb.ntf') assert ds.GetMetadataItem('NITFFileHeader', 'NITF_METADATA') ds = None ############################################################################### # Test SetGCPs() support def test_nitf_69(): vrt_txt = """<VRTDataset rasterXSize="20" rasterYSize="20"> <GCPList Projection='GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]]'> <GCP Id="" Pixel="0.5" Line="0.5" X="2" Y="49"/> <GCP Id="" Pixel="0.5" Line="19.5" X="2" Y="48"/> <GCP Id="" Pixel="19.5" Line="0.5" X="3" Y="49.5"/> <GCP Id="" Pixel="19.5" Line="19.5" X="3" Y="48"/> </GCPList> <VRTRasterBand dataType="Byte" band="1"> <SimpleSource> <SourceFilename relativeToVRT="1">data/byte.tif</SourceFilename> <SourceProperties RasterXSize="20" RasterYSize="20" DataType="Byte" BlockXSize="20" BlockYSize="20" /> <SourceBand>1</SourceBand> </SimpleSource> </VRTRasterBand> </VRTDataset>""" # Test CreateCopy() vrt_ds = gdal.Open(vrt_txt) ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_69_src.ntf', vrt_ds) ds = None vrt_ds = None # Just in case gdal.Unlink('/vsimem/nitf_69_src.ntf.aux.xml') # Test Create() and SetGCPs() src_ds = gdal.Open('/vsimem/nitf_69_src.ntf') ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_69_dest.ntf', 20, 20, 1, options=['ICORDS=G']) ds.SetGCPs(src_ds.GetGCPs(), src_ds.GetGCPProjection()) ds.SetGCPs(src_ds.GetGCPs(), src_ds.GetGCPProjection()) # To check we can call it several times without error ds = None src_ds = None # Now open again ds = gdal.Open('/vsimem/nitf_69_dest.ntf') got_gcps = ds.GetGCPs() ds = None gdal.Unlink('/vsimem/nitf_69_src.ntf') gdal.Unlink('/vsimem/nitf_69_dest.ntf') # Check # Upper-left assert (got_gcps[0].GCPPixel == pytest.approx(0.5, abs=1e-5) and got_gcps[0].GCPLine == pytest.approx(0.5, abs=1e-5) and \ got_gcps[0].GCPX == pytest.approx(2, abs=1e-5) and got_gcps[0].GCPY == pytest.approx(49, abs=1e-5)), \ 'wrong gcp' # Upper-right assert (got_gcps[1].GCPPixel == pytest.approx(19.5, abs=1e-5) and got_gcps[1].GCPLine == pytest.approx(0.5, abs=1e-5) and \ got_gcps[1].GCPX == pytest.approx(3, abs=1e-5) and got_gcps[1].GCPY == pytest.approx(49.5, abs=1e-5)), \ 'wrong gcp' # Lower-right assert (got_gcps[2].GCPPixel == pytest.approx(19.5, abs=1e-5) and got_gcps[2].GCPLine == pytest.approx(19.5, abs=1e-5) and \ got_gcps[2].GCPX == pytest.approx(3, abs=1e-5) and got_gcps[2].GCPY == pytest.approx(48, abs=1e-5)), \ 'wrong gcp' # Lower-left assert (got_gcps[3].GCPPixel == pytest.approx(0.5, abs=1e-5) and got_gcps[3].GCPLine == pytest.approx(19.5, abs=1e-5) and \ got_gcps[3].GCPX == pytest.approx(2, abs=1e-5) and got_gcps[3].GCPY == pytest.approx(48, abs=1e-5)), \ 'wrong gcp' ############################################################################### # Create and read a JPEG encoded NITF file with NITF dimensions != JPEG dimensions def test_nitf_70(): src_ds = gdal.Open('data/rgbsmall.tif') ds = gdal.GetDriverByName('NITF').CreateCopy('tmp/nitf_70.ntf', src_ds, options=['IC=C3', 'BLOCKXSIZE=64', 'BLOCKYSIZE=64']) ds = None # For comparison ds = gdal.GetDriverByName('GTiff').CreateCopy('tmp/nitf_70.tif', src_ds, options=['COMPRESS=JPEG', 'PHOTOMETRIC=YCBCR', 'TILED=YES', 'BLOCKXSIZE=64', 'BLOCKYSIZE=64']) ds = None src_ds = None ds = gdal.Open('tmp/nitf_70.ntf') cs = ds.GetRasterBand(1).Checksum() ds = None ds = gdal.Open('tmp/nitf_70.tif') cs_ref = ds.GetRasterBand(1).Checksum() ds = None gdal.GetDriverByName('NITF').Delete('tmp/nitf_70.ntf') gdal.GetDriverByName('GTiff').Delete('tmp/nitf_70.tif') assert cs == cs_ref ############################################################################### # Test reading ENGRDA TRE (#6285) def test_nitf_71(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_71.ntf', 1, 1, options=['TRE=ENGRDA=0123456789012345678900210012345678901230123X01200000002XY01X01230123X01200000001X']) ds = None ds = gdal.Open('/vsimem/nitf_71.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_71.ntf') expected_data = """<tres> <tre name="ENGRDA" location="image"> <field name="RESRC" value="01234567890123456789" /> <field name="RECNT" value="002" /> <repeated name="RECORDS" number="2"> <group index="0"> <field name="ENGLN" value="10" /> <field name="ENGLBL" value="0123456789" /> <field name="ENGMTXC" value="0123" /> <field name="ENGMTXR" value="0123" /> <field name="ENGTYP" value="X" /> <field name="ENGDTS" value="0" /> <field name="ENGDTU" value="12" /> <field name="ENGDATC" value="00000002" /> <field name="ENGDATA" value="XY" /> </group> <group index="1"> <field name="ENGLN" value="01" /> <field name="ENGLBL" value="X" /> <field name="ENGMTXC" value="0123" /> <field name="ENGMTXR" value="0123" /> <field name="ENGTYP" value="X" /> <field name="ENGDTS" value="0" /> <field name="ENGDTU" value="12" /> <field name="ENGDATC" value="00000001" /> <field name="ENGDATA" value="X" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test writing and reading RPC00B def compare_rpc(src_md, md): # Check that we got data with the expected precision for key in src_md: if key == 'ERR_BIAS' or key == 'ERR_RAND': continue assert key in md, ('fail: %s missing' % key) if 'COEFF' in key: expected = [float(v) for v in src_md[key].strip().split(' ')] found = [float(v) for v in md[key].strip().split(' ')] if expected != found: print(md) pytest.fail('fail: %s value is not the one expected' % key) elif float(src_md[key]) != float(md[key]): print(md) pytest.fail('fail: %s value is not the one expected' % key) def test_nitf_72(): src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) # Use full precision src_md_max_precision = { 'ERR_BIAS': '1234.56', 'ERR_RAND': '2345.67', 'LINE_OFF': '345678', 'SAMP_OFF': '45678', 'LAT_OFF': '-89.8765', 'LONG_OFF': '-179.1234', 'HEIGHT_OFF': '-9876', 'LINE_SCALE': '987654', 'SAMP_SCALE': '67890', 'LAT_SCALE': '-12.3456', 'LONG_SCALE': '-123.4567', 'HEIGHT_SCALE': '-1234', 'LINE_NUM_COEFF': '0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', 'LINE_DEN_COEFF': '1 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', 'SAMP_NUM_COEFF': '2 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', 'SAMP_DEN_COEFF': '3 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', } src_md = src_md_max_precision src_ds.SetMetadata(src_md, 'RPC') gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert gdal.GetLastErrorMsg() == '', 'fail: did not expect warning' if gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None: f = gdal.VSIFOpenL('/vsimem/nitf_72.ntf.aux.xml', 'rb') data = gdal.VSIFReadL(1, 10000, f) gdal.VSIFCloseL(f) print(str(data)) pytest.fail('fail: PAM file not expected') ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72.ntf') compare_rpc(src_md, md) expected_RPC00B_max_precision = '11234.562345.6734567845678-89.8765-179.1234-987698765467890-12.3456-123.4567-1234+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+1.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+2.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+3.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9' assert RPC00B == expected_RPC00B_max_precision, 'fail: did not get expected RPC00B' # Test without ERR_BIAS and ERR_RAND src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_md = copy.copy(src_md_max_precision) del src_md['ERR_BIAS'] del src_md['ERR_RAND'] src_ds.SetMetadata(src_md, 'RPC') gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert gdal.GetLastErrorMsg() == '', 'fail: did not expect warning' if gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None: f = gdal.VSIFOpenL('/vsimem/nitf_72.ntf.aux.xml', 'rb') data = gdal.VSIFReadL(1, 10000, f) gdal.VSIFCloseL(f) print(str(data)) pytest.fail('fail: PAM file not expected') ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None expected_RPC00B = '10000.000000.0034567845678-89.8765-179.1234-987698765467890-12.3456-123.4567-1234+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+1.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+2.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+3.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9' assert RPC00B == expected_RPC00B, 'fail: did not get expected RPC00B' # Test that direct RPC00B copy works src_nitf_ds = gdal.Open('/vsimem/nitf_72.ntf') gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72_copy.ntf', src_nitf_ds) src_nitf_ds = None ds = gdal.Open('/vsimem/nitf_72_copy.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None assert RPC00B == expected_RPC00B, 'fail: did not get expected RPC00B' gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72.ntf') gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72_copy.ntf') # Test that RPC00B = NO works gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds, options=['RPC00B=NO']) assert gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None, \ 'fail: PAM file was expected' ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72.ntf') assert RPC00B is None, 'fail: did not expect RPC00B' src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) # Test padding src_md = { 'ERR_BIAS': '123', 'ERR_RAND': '234', 'LINE_OFF': '3456', 'SAMP_OFF': '4567', 'LAT_OFF': '8', 'LONG_OFF': '17', 'HEIGHT_OFF': '987', 'LINE_SCALE': '98765', 'SAMP_SCALE': '6789', 'LAT_SCALE': '12', 'LONG_SCALE': '109', 'HEIGHT_SCALE': '34', 'LINE_NUM_COEFF': '0 9.87e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', 'LINE_DEN_COEFF': '1 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', 'SAMP_NUM_COEFF': '2 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', 'SAMP_DEN_COEFF': '3 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9', } src_ds.SetMetadata(src_md, 'RPC') gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert gdal.GetLastErrorMsg() == '', 'fail: did not expect warning' if gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None: f = gdal.VSIFOpenL('/vsimem/nitf_72.ntf.aux.xml', 'rb') data = gdal.VSIFReadL(1, 10000, f) gdal.VSIFCloseL(f) print(str(data)) pytest.fail('fail: PAM file not expected') ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72.ntf') compare_rpc(src_md, md) expected_RPC00B = '10123.000234.0000345604567+08.0000+017.0000+098709876506789+12.0000+109.0000+0034+0.000000E+0+9.870000E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+1.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+2.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+3.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9' assert RPC00B == expected_RPC00B, 'fail: did not get expected RPC00B' # Test loss of precision for key in ('LINE_OFF', 'SAMP_OFF', 'LAT_OFF', 'LONG_OFF', 'HEIGHT_OFF', 'LINE_SCALE', 'SAMP_SCALE', 'LAT_SCALE', 'LONG_SCALE', 'HEIGHT_SCALE'): src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_md = copy.copy(src_md_max_precision) if src_md[key].find('.') < 0: src_md[key] += '.1' else: src_md[key] += '1' src_ds.SetMetadata(src_md, 'RPC') with gdaltest.error_handler(): ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert ds is not None, 'fail: expected a dataset' ds = None assert gdal.GetLastErrorMsg() != '', 'fail: expected a warning' assert gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None, \ 'fail: PAM file was expected' gdal.Unlink('/vsimem/nitf_72.ntf.aux.xml') ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72.ntf') assert RPC00B == expected_RPC00B_max_precision, \ 'fail: did not get expected RPC00B' # Test loss of precision on coefficient lines src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_md = copy.copy(src_md_max_precision) src_md['LINE_NUM_COEFF'] = '0 9.876543e-10 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9' src_ds.SetMetadata(src_md, 'RPC') with gdaltest.error_handler(): ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert ds is not None, 'fail: expected a dataset' ds = None assert gdal.GetLastErrorMsg() != '', 'fail: expected a warning' assert gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None, \ 'fail: PAM file was expected' gdal.Unlink('/vsimem/nitf_72.ntf.aux.xml') ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_72.ntf') expected_RPC00B = '11234.562345.6734567845678-89.8765-179.1234-987698765467890-12.3456-123.4567-1234+0.000000E+0+0.000000E+0+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+1.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+2.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+3.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9+0.000000E+0+9.876543E+9+9.876543E-9-9.876543E+9-9.876543E-9' assert RPC00B == expected_RPC00B, 'fail: did not get expected RPC00B' # Test RPCTXT creation option with gdaltest.error_handler(): gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds, options=['RPCTXT=YES']) assert gdal.VSIStatL('/vsimem/nitf_72.ntf.aux.xml') is not None, \ 'fail: PAM file was expected' gdal.Unlink('/vsimem/nitf_72.ntf.aux.xml') assert gdal.VSIStatL('/vsimem/nitf_72_RPC.TXT') is not None, \ 'fail: rpc.txt file was expected' ds = gdal.Open('/vsimem/nitf_72.ntf') md = ds.GetMetadata('RPC') RPC00B = ds.GetMetadataItem('RPC00B', 'TRE') fl = ds.GetFileList() ds = None assert '/vsimem/nitf_72_RPC.TXT' in fl, \ 'fail: _RPC.TXT file not reported in file list' # Check that we get full precision from the _RPC.TXT file compare_rpc(src_md, md) assert RPC00B == expected_RPC00B, 'fail: did not get expected RPC00B' # Test out of range for key in ('LINE_OFF', 'SAMP_OFF', 'LAT_OFF', 'LONG_OFF', 'HEIGHT_OFF', 'LINE_SCALE', 'SAMP_SCALE', 'LAT_SCALE', 'LONG_SCALE', 'HEIGHT_SCALE'): src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_md = copy.copy(src_md_max_precision) if src_md[key].find('-') >= 0: src_md[key] = '-1' + src_md[key][1:] else: src_md[key] = '1' + src_md[key] src_ds.SetMetadata(src_md, 'RPC') with gdaltest.error_handler(): ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert ds is None, ('fail: expected failure for %s' % key) # Test out of rangeon coefficient lines src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_md = copy.copy(src_md_max_precision) src_md['LINE_NUM_COEFF'] = '0 9.876543e10 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9 0 9.876543e+9 9.876543e-9 -9.876543e+9 -9.876543e-9' src_ds.SetMetadata(src_md, 'RPC') with gdaltest.error_handler(): ds = gdal.GetDriverByName('NITF').CreateCopy('/vsimem/nitf_72.ntf', src_ds) assert ds is None, 'fail: expected failure' ############################################################################### # Test case for https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=1525 def test_nitf_73(): with gdaltest.error_handler(): gdal.Open('data/nitf/oss_fuzz_1525.ntf') ############################################################################### # Test cases for CCLSTA # - Simple case def test_nitf_74(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_74.ntf', 1, 1, options=['FILE_TRE=CCINFA=0012AS 17ge:GENC:3:3-5:AUS00000']) ds = None ds = gdal.Open('/vsimem/nitf_74.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_74.ntf') expected_data = """<tres> <tre name="CCINFA" location="file"> <field name="NUMCODE" value="001" /> <repeated name="CODES" number="1"> <group index="0"> <field name="CODE_LEN" value="2" /> <field name="CODE" value="AS" /> <field name="EQTYPE" value="" /> <field name="ESURN_LEN" value="17" /> <field name="ESURN" value="ge:GENC:3:3-5:AUS" /> <field name="DETAIL_LEN" value="00000" /> </group> </repeated> </tre> </tres> """ assert data == expected_data # - TABLE AG.2 case def test_nitf_75(): listing_AG1 = """<?xml version="1.0" encoding="UTF-8"?> <genc:GeopoliticalEntityEntry xmlns:genc="http://api.nsgreg.nga.mil/schema/genc/3.0" xmlns:genc-cmn="http://api.nsgreg.nga.mil/schema/genc/3.0/genc-cmn" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://api.nsgreg.nga.mil/schema/genc/3.0 http://api.nsgreg.nga.mil/schema/genc/3.0.0/genc.xsd"> <genc:encoding> <genc-cmn:char3Code>MMR</genc-cmn:char3Code> <genc-cmn:char3CodeURISet> <genc-cmn:codespaceURL>http://api.nsgreg.nga.mil/geo-political/GENC/3/3-5</genc-cmn:codespaceURL> <genc-cmn:codespaceURN>urn:us:gov:dod:nga:def:geo-political:GENC:3:3-5</genc-cmn:codespaceURN> <genc-cmn:codespaceURNBased>geo-political:GENC:3:3-5</genc-cmn:codespaceURNBased> <genc-cmn:codespaceURNBasedShort>ge:GENC:3:3-5</genc-cmn:codespaceURNBasedShort> </genc-cmn:char3CodeURISet> <genc-cmn:char2Code>MM</genc-cmn:char2Code> <genc-cmn:char2CodeURISet> <genc-cmn:codespaceURL>http://api.nsgreg.nga.mil/geo-political/GENC/2/3-5</genc-cmn:codespaceURL> <genc-cmn:codespaceURN>urn:us:gov:dod:nga:def:geo-political:GENC:2:3-5</genc-cmn:codespaceURN> <genc-cmn:codespaceURNBased>geo-political:GENC:2:3-5</genc-cmn:codespaceURNBased> <genc-cmn:codespaceURNBasedShort>ge:GENC:2:3-5</genc-cmn:codespaceURNBasedShort> </genc-cmn:char2CodeURISet> <genc-cmn:numericCode>104</genc-cmn:numericCode> <genc-cmn:numericCodeURISet> <genc-cmn:codespaceURL>http://api.nsgreg.nga.mil/geo-political/GENC/n/3-5</genc-cmn:codespaceURL> <genc-cmn:codespaceURN>urn:us:gov:dod:nga:def:geo-political:GENC:n:3-5</genc-cmn:codespaceURN> <genc-cmn:codespaceURNBased>geo-political:GENC:n:3-5</genc-cmn:codespaceURNBased> <genc-cmn:codespaceURNBasedShort>ge:GENC:n:3-5</genc-cmn:codespaceURNBasedShort> </genc-cmn:numericCodeURISet> </genc:encoding> <genc:name><![CDATA[BURMA]]></genc:name> <genc:shortName><![CDATA[Burma]]></genc:shortName> <genc:fullName><![CDATA[Union of Burma]]></genc:fullName> <genc:gencStatus>exception</genc:gencStatus> <genc:entryDate>2016-09-30</genc:entryDate> <genc:entryType>unchanged</genc:entryType> <genc:usRecognition>independent</genc:usRecognition> <genc:entryNotesOnNaming><![CDATA[ The GENC Standard specifies the name "BURMA" where instead ISO 3166-1 specifies "MYANMAR"; GENC specifies the short name "Burma" where instead ISO 3166-1 specifies "Myanmar"; and GENC specifies the full name "Union of Burma" where instead ISO 3166-1 specifies "the Republic of the Union of Myanmar". The GENC Standard specifies the local short name for 'my'/'mya' as "Myanma Naingngandaw" where instead ISO 3166-1 specifies "Myanma". ]]></genc:entryNotesOnNaming> <genc:division codeSpace="as:GENC:6:3-5">MM-01</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-02</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-03</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-04</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-05</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-06</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-07</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-11</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-12</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-13</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-14</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-15</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-16</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-17</genc:division> <genc:division codeSpace="as:GENC:6:3-5">MM-18</genc:division> <genc:localShortName> <genc:name><![CDATA[Myanma Naingngandaw]]></genc:name> <genc:iso6393Char3Code>mya</genc:iso6393Char3Code> </genc:localShortName> </genc:GeopoliticalEntityEntry>""" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_75.ntf', 1, 1, options=['TRE=CCINFA=0062RQ 17ge:GENC:3:3-5:PRI000002RQ 20as:ISO2:6:II-3:US-PR000002BM 17ge:GENC:3:3-5:MMR04108 ' + listing_AG1 + '3MMR 19ge:ISO1:3:VII-7:MMR00000' + '2S1 19ge:GENC:3:3-alt:SCT000002YYC16gg:1059:2:ed9:3E00000']) ds = None ds = gdal.Open('/vsimem/nitf_75.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_75.ntf') expected_data = """<tres> <tre name="CCINFA" location="image"> <field name="NUMCODE" value="006" /> <repeated name="CODES" number="6"> <group index="0"> <field name="CODE_LEN" value="2" /> <field name="CODE" value="RQ" /> <field name="EQTYPE" value="" /> <field name="ESURN_LEN" value="17" /> <field name="ESURN" value="ge:GENC:3:3-5:PRI" /> <field name="DETAIL_LEN" value="00000" /> </group> <group index="1"> <field name="CODE_LEN" value="2" /> <field name="CODE" value="RQ" /> <field name="EQTYPE" value="" /> <field name="ESURN_LEN" value="20" /> <field name="ESURN" value="as:ISO2:6:II-3:US-PR" /> <field name="DETAIL_LEN" value="00000" /> </group> <group index="2"> <field name="CODE_LEN" value="2" /> <field name="CODE" value="BM" /> <field name="EQTYPE" value="" /> <field name="ESURN_LEN" value="17" /> <field name="ESURN" value="ge:GENC:3:3-5:MMR" /> <field name="DETAIL_LEN" value="04108" /> <field name="DETAIL_CMPR" value="" /> <field name="DETAIL" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot;?&gt; &lt;genc:GeopoliticalEntityEntry xmlns:genc=&quot;http://api.nsgreg.nga.mil/schema/genc/3.0&quot; xmlns:genc-cmn=&quot;http://api.nsgreg.nga.mil/schema/genc/3.0/genc-cmn&quot; xmlns:xsi=&quot;http://www.w3.org/2001/XMLSchema-instance&quot; xsi:schemaLocation=&quot;http://api.nsgreg.nga.mil/schema/genc/3.0 http://api.nsgreg.nga.mil/schema/genc/3.0.0/genc.xsd&quot;&gt; &lt;genc:encoding&gt; &lt;genc-cmn:char3Code&gt;MMR&lt;/genc-cmn:char3Code&gt; &lt;genc-cmn:char3CodeURISet&gt; &lt;genc-cmn:codespaceURL&gt;http://api.nsgreg.nga.mil/geo-political/GENC/3/3-5&lt;/genc-cmn:codespaceURL&gt; &lt;genc-cmn:codespaceURN&gt;urn:us:gov:dod:nga:def:geo-political:GENC:3:3-5&lt;/genc-cmn:codespaceURN&gt; &lt;genc-cmn:codespaceURNBased&gt;geo-political:GENC:3:3-5&lt;/genc-cmn:codespaceURNBased&gt; &lt;genc-cmn:codespaceURNBasedShort&gt;ge:GENC:3:3-5&lt;/genc-cmn:codespaceURNBasedShort&gt; &lt;/genc-cmn:char3CodeURISet&gt; &lt;genc-cmn:char2Code&gt;MM&lt;/genc-cmn:char2Code&gt; &lt;genc-cmn:char2CodeURISet&gt; &lt;genc-cmn:codespaceURL&gt;http://api.nsgreg.nga.mil/geo-political/GENC/2/3-5&lt;/genc-cmn:codespaceURL&gt; &lt;genc-cmn:codespaceURN&gt;urn:us:gov:dod:nga:def:geo-political:GENC:2:3-5&lt;/genc-cmn:codespaceURN&gt; &lt;genc-cmn:codespaceURNBased&gt;geo-political:GENC:2:3-5&lt;/genc-cmn:codespaceURNBased&gt; &lt;genc-cmn:codespaceURNBasedShort&gt;ge:GENC:2:3-5&lt;/genc-cmn:codespaceURNBasedShort&gt; &lt;/genc-cmn:char2CodeURISet&gt; &lt;genc-cmn:numericCode&gt;104&lt;/genc-cmn:numericCode&gt; &lt;genc-cmn:numericCodeURISet&gt; &lt;genc-cmn:codespaceURL&gt;http://api.nsgreg.nga.mil/geo-political/GENC/n/3-5&lt;/genc-cmn:codespaceURL&gt; &lt;genc-cmn:codespaceURN&gt;urn:us:gov:dod:nga:def:geo-political:GENC:n:3-5&lt;/genc-cmn:codespaceURN&gt; &lt;genc-cmn:codespaceURNBased&gt;geo-political:GENC:n:3-5&lt;/genc-cmn:codespaceURNBased&gt; &lt;genc-cmn:codespaceURNBasedShort&gt;ge:GENC:n:3-5&lt;/genc-cmn:codespaceURNBasedShort&gt; &lt;/genc-cmn:numericCodeURISet&gt; &lt;/genc:encoding&gt; &lt;genc:name&gt;&lt;![CDATA[BURMA]]&gt;&lt;/genc:name&gt; &lt;genc:shortName&gt;&lt;![CDATA[Burma]]&gt;&lt;/genc:shortName&gt; &lt;genc:fullName&gt;&lt;![CDATA[Union of Burma]]&gt;&lt;/genc:fullName&gt; &lt;genc:gencStatus&gt;exception&lt;/genc:gencStatus&gt; &lt;genc:entryDate&gt;2016-09-30&lt;/genc:entryDate&gt; &lt;genc:entryType&gt;unchanged&lt;/genc:entryType&gt; &lt;genc:usRecognition&gt;independent&lt;/genc:usRecognition&gt; &lt;genc:entryNotesOnNaming&gt;&lt;![CDATA[ The GENC Standard specifies the name &quot;BURMA&quot; where instead ISO 3166-1 specifies &quot;MYANMAR&quot;; GENC specifies the short name &quot;Burma&quot; where instead ISO 3166-1 specifies &quot;Myanmar&quot;; and GENC specifies the full name &quot;Union of Burma&quot; where instead ISO 3166-1 specifies &quot;the Republic of the Union of Myanmar&quot;. The GENC Standard specifies the local short name for 'my'/'mya' as &quot;Myanma Naingngandaw&quot; where instead ISO 3166-1 specifies &quot;Myanma&quot;. ]]&gt;&lt;/genc:entryNotesOnNaming&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-01&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-02&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-03&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-04&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-05&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-06&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-07&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-11&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-12&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-13&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-14&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-15&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-16&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-17&lt;/genc:division&gt; &lt;genc:division codeSpace=&quot;as:GENC:6:3-5&quot;&gt;MM-18&lt;/genc:division&gt; &lt;genc:localShortName&gt; &lt;genc:name&gt;&lt;![CDATA[Myanma Naingngandaw]]&gt;&lt;/genc:name&gt; &lt;genc:iso6393Char3Code&gt;mya&lt;/genc:iso6393Char3Code&gt; &lt;/genc:localShortName&gt; &lt;/genc:GeopoliticalEntityEntry&gt;" /> </group> <group index="3"> <field name="CODE_LEN" value="3" /> <field name="CODE" value="MMR" /> <field name="EQTYPE" value="" /> <field name="ESURN_LEN" value="19" /> <field name="ESURN" value="ge:ISO1:3:VII-7:MMR" /> <field name="DETAIL_LEN" value="00000" /> </group> <group index="4"> <field name="CODE_LEN" value="2" /> <field name="CODE" value="S1" /> <field name="EQTYPE" value="" /> <field name="ESURN_LEN" value="19" /> <field name="ESURN" value="ge:GENC:3:3-alt:SCT" /> <field name="DETAIL_LEN" value="00000" /> </group> <group index="5"> <field name="CODE_LEN" value="2" /> <field name="CODE" value="YY" /> <field name="EQTYPE" value="C" /> <field name="ESURN_LEN" value="16" /> <field name="ESURN" value="gg:1059:2:ed9:3E" /> <field name="DETAIL_LEN" value="00000" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing MATESA TRE (STDI-0002 App AK) def test_nitf_76(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_76.ntf', 1, 1, options=['FILE_TRE=MATESA=EO-1_HYPERION FTITLE 006307APR2005_Hyperion_331406N0442000E_SWIR172_001_L1R-01B-BIB-GLAS0005RADIOMTRC_CALIB 0001EO-1_HYPERION FILENAME 0020HypGain_revC.dat.svfPARENT 0001EO-1_HYPERION FILENAME 0032EO12005097_020D020C_r1_WPS_01.L0PRE_DARKCOLLECT 0001EO-1_HYPERION FILENAME 0032EO12005097_020A0209_r1_WPS_01.L0POST_DARKCOLLECT 0001EO-1_HYPERION FILENAME 0032EO12005097_020F020E_r1_WPS_01.L0PARENT 0003EO-1_HYPERION FILENAME 0026EO1H1680372005097110PZ.L1REO-1_HYPERION FILENAME 0026EO1H1680372005097110PZ.AUXEO-1_HYPERION FILENAME 0026EO1H1680372005097110PZ.MET']) ds = None ds = gdal.Open('/vsimem/nitf_76.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_76.ntf') expected_data = """<tres> <tre name="MATESA" location="file"> <field name="CUR_SOURCE" value="EO-1_HYPERION" /> <field name="CUR_MATE_TYPE" value="FTITLE" /> <field name="CUR_FILE_ID_LEN" value="0063" /> <field name="CUR_FILE_ID" value="07APR2005_Hyperion_331406N0442000E_SWIR172_001_L1R-01B-BIB-GLAS" /> <field name="NUM_GROUPS" value="0005" /> <repeated name="GROUPS" number="5"> <group index="0"> <field name="RELATIONSHIP" value="RADIOMTRC_CALIB" /> <field name="NUM_MATES" value="0001" /> <repeated name="MATES" number="1"> <group index="0"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0020" /> <field name="MATE_ID" value="HypGain_revC.dat.svf" /> </group> </repeated> </group> <group index="1"> <field name="RELATIONSHIP" value="PARENT" /> <field name="NUM_MATES" value="0001" /> <repeated name="MATES" number="1"> <group index="0"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0032" /> <field name="MATE_ID" value="EO12005097_020D020C_r1_WPS_01.L0" /> </group> </repeated> </group> <group index="2"> <field name="RELATIONSHIP" value="PRE_DARKCOLLECT" /> <field name="NUM_MATES" value="0001" /> <repeated name="MATES" number="1"> <group index="0"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0032" /> <field name="MATE_ID" value="EO12005097_020A0209_r1_WPS_01.L0" /> </group> </repeated> </group> <group index="3"> <field name="RELATIONSHIP" value="POST_DARKCOLLECT" /> <field name="NUM_MATES" value="0001" /> <repeated name="MATES" number="1"> <group index="0"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0032" /> <field name="MATE_ID" value="EO12005097_020F020E_r1_WPS_01.L0" /> </group> </repeated> </group> <group index="4"> <field name="RELATIONSHIP" value="PARENT" /> <field name="NUM_MATES" value="0003" /> <repeated name="MATES" number="3"> <group index="0"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0026" /> <field name="MATE_ID" value="EO1H1680372005097110PZ.L1R" /> </group> <group index="1"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0026" /> <field name="MATE_ID" value="EO1H1680372005097110PZ.AUX" /> </group> <group index="2"> <field name="SOURCE" value="EO-1_HYPERION" /> <field name="MATE_TYPE" value="FILENAME" /> <field name="MATE_ID_LEN" value="0026" /> <field name="MATE_ID" value="EO1H1680372005097110PZ.MET" /> </group> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing MATESA TRE (STDI-0002 App AK) def test_nitf_77(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_77.ntf', 1, 1, options=['TRE=GRDPSB=01+000027.81PIX_LATLON0000000000010000000000010000000000000000000000']) ds = None ds = gdal.Open('/vsimem/nitf_77.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_77.ntf') expected_data = """<tres> <tre name="GRDPSB" location="image"> <field name="NUM_GRDS" value="01" /> <repeated name="GRDS" number="1"> <group index="0"> <field name="ZVL" value="+000027.81" /> <field name="BAD" value="PIX_LATLON" /> <field name="LOD" value="000000000001" /> <field name="LAD" value="000000000001" /> <field name="LSO" value="00000000000" /> <field name="PSO" value="00000000000" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing BANDSB TRE (STDI-0002 App X) def test_nitf_78(): float_data = "40066666" # == struct.pack(">f", 2.1).hex() bit_mask = "89800000" # Set bits 31, 27, 24, 23 tre_data = "TRE=HEX/BANDSB=" + hex_string("00001RADIANCE S") + float_data*2 + \ hex_string("0030.00M0030.00M-------M-------M ") + \ bit_mask + hex_string("DETECTOR ") + float_data + hex_string("U00.851920.01105") ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_78.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_78.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_78.ntf') expected_data = """<tres> <tre name="BANDSB" location="image"> <field name="COUNT" value="00001" /> <field name="RADIOMETRIC_QUANTITY" value="RADIANCE" /> <field name="RADIOMETRIC_QUANTITY_UNIT" value="S" /> <field name="SCALE_FACTOR" value="2.100000" /> <field name="ADDITIVE_FACTOR" value="2.100000" /> <field name="ROW_GSD" value="0030.00" /> <field name="ROW_GSD_UNIT" value="M" /> <field name="COL_GSD" value="0030.00" /> <field name="COL_GSD_UNIT" value="M" /> <field name="SPT_RESP_ROW" value="-------" /> <field name="SPT_RESP_UNIT_ROW" value="M" /> <field name="SPT_RESP_COL" value="-------" /> <field name="SPT_RESP_UNIT_COL" value="M" /> <field name="DATA_FLD_1" value="" /> <field name="EXISTENCE_MASK" value="2306867200" /> <field name="RADIOMETRIC_ADJUSTMENT_SURFACE" value="DETECTOR" /> <field name="ATMOSPHERIC_ADJUSTMENT_ALTITUDE" value="2.100000" /> <field name="WAVE_LENGTH_UNIT" value="U" /> <repeated name="BANDS" number="1"> <group index="0"> <field name="BAD_BAND" value="0" /> <field name="CWAVE" value="0.85192" /> <field name="FWHM" value="0.01105" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing ACCHZB TRE (STDI-0002-1-v5.0 Appendix P) def test_nitf_79(): tre_data = "TRE=ACCHZB=01M 00129M 00129004+044.4130499724+33.69234401034+044.4945572008" \ "+33.67855217830+044.1731373448+32.79106350687+044.2538103407+32.77733592314" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_79.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_79.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_79.ntf') expected_data = """<tres> <tre name="ACCHZB" location="image"> <field name="NUM_ACHZ" value="01" /> <repeated number="1"> <group index="0"> <field name="UNIAAH" value="M" /> <field name="AAH" value="00129" /> <field name="UNIAPH" value="M" /> <field name="APH" value="00129" /> <field name="NUM_PTS" value="004" /> <repeated number="4"> <group index="0"> <field name="LON" value="+044.4130499724" /> <field name="LAT" value="+33.69234401034" /> </group> <group index="1"> <field name="LON" value="+044.4945572008" /> <field name="LAT" value="+33.67855217830" /> </group> <group index="2"> <field name="LON" value="+044.1731373448" /> <field name="LAT" value="+32.79106350687" /> </group> <group index="3"> <field name="LON" value="+044.2538103407" /> <field name="LAT" value="+32.77733592314" /> </group> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing ACCVTB TRE (STDI-0002-1-v5.0 Appendix P) def test_nitf_80(): tre_data = "TRE=ACCVTB=01M 00095M 00095004+044.4130499724+33.69234401034+044.4945572008" \ "+33.67855217830+044.1731373448+32.79106350687+044.2538103407+32.77733592314" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_80.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_80.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_80.ntf') expected_data = """<tres> <tre name="ACCVTB" location="image"> <field name="NUM_ACVT" value="01" /> <repeated number="1"> <group index="0"> <field name="UNIAAV" value="M" /> <field name="AAV" value="00095" /> <field name="UNIAPV" value="M" /> <field name="APV" value="00095" /> <field name="NUM_PTS" value="004" /> <repeated number="4"> <group index="0"> <field name="LON" value="+044.4130499724" /> <field name="LAT" value="+33.69234401034" /> </group> <group index="1"> <field name="LON" value="+044.4945572008" /> <field name="LAT" value="+33.67855217830" /> </group> <group index="2"> <field name="LON" value="+044.1731373448" /> <field name="LAT" value="+32.79106350687" /> </group> <group index="3"> <field name="LON" value="+044.2538103407" /> <field name="LAT" value="+32.77733592314" /> </group> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing MSTGTA TRE (STDI-0002-1-v5.0 App E) def test_nitf_81(): tre_data = "TRE=MSTGTA=012340123456789AB0123456789ABCDE0120123456789AB0123456789AB000123401234560123450TGT_LOC= " ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_81.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_81.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_81.ntf') expected_data = """<tres> <tre name="MSTGTA" location="image"> <field name="TGT_NUM" value="01234" /> <field name="TGT_ID" value="0123456789AB" /> <field name="TGT_BE" value="0123456789ABCDE" /> <field name="TGT_PRI" value="012" /> <field name="TGT_REQ" value="0123456789AB" /> <field name="TGT_LTIOV" value="0123456789AB" /> <field name="TGT_TYPE" value="0" /> <field name="TGT_COLL" value="0" /> <field name="TGT_CAT" value="01234" /> <field name="TGT_UTC" value="0123456" /> <field name="TGT_ELEV" value="012345" /> <field name="TGT_ELEV_UNIT" value="0" /> <field name="TGT_LOC" value="TGT_LOC=" /> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing PIATGB TRE (STDI-0002-1-v5.0 App C) def test_nitf_82(): tre_data = "TRE=PIATGB=0123456789ABCDE0123456789ABCDE01012340123456789ABCDE012" \ "TGTNAME= 012+01.234567-012.345678" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_82.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_82.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_82.ntf') expected_data = """<tres> <tre name="PIATGB" location="image"> <field name="TGTUTM" value="0123456789ABCDE" /> <field name="PIATGAID" value="0123456789ABCDE" /> <field name="PIACTRY" value="01" /> <field name="PIACAT" value="01234" /> <field name="TGTGEO" value="0123456789ABCDE" /> <field name="DATUM" value="012" /> <field name="TGTNAME" value="TGTNAME=" /> <field name="PERCOVER" value="012" /> <field name="TGTLAT" value="+01.234567" /> <field name="TGTLON" value="-012.345678" /> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing PIXQLA TRE (STDI-0002-1-v5.0 App AA) def test_nitf_83(): tre_data = "TRE=PIXQLA=00100200031Dead " \ "Saturated Bad " ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_83.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_83.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_83.ntf') expected_data = """<tres> <tre name="PIXQLA" location="image"> <field name="NUMAIS" value="001" /> <repeated number="1"> <group index="0"> <field name="AISDLVL" value="002" /> </group> </repeated> <field name="NPIXQUAL" value="0003" /> <field name="PQ_BIT_VALUE" value="1" /> <repeated number="3"> <group index="0"> <field name="PQ_CONDITION" value="Dead" /> </group> <group index="1"> <field name="PQ_CONDITION" value="Saturated" /> </group> <group index="2"> <field name="PQ_CONDITION" value="Bad" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing PIXMTA TRE (STDI-0002-1-v5.0 App AJ) def test_nitf_84(): tre_data = "TRE=PIXMTA=0010020.00000000E+000.00000000E+001.00000000E+003.35200000E+03F00001P" \ "BAND_WAVELENGTH micron D00000" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_84.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_84.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_84.ntf') expected_data = """<tres> <tre name="PIXMTA" location="image"> <field name="NUMAIS" value="001" /> <repeated number="1"> <group index="0"> <field name="AISDLVL" value="002" /> </group> </repeated> <field name="ORIGIN_X" value="0.00000000E+00" /> <field name="ORIGIN_Y" value="0.00000000E+00" /> <field name="SCALE_X" value="1.00000000E+00" /> <field name="SCALE_Y" value="3.35200000E+03" /> <field name="SAMPLE_MODE" value="F" /> <field name="NUMMETRICS" value="00001" /> <field name="PERBAND" value="P" /> <repeated number="1"> <group index="0"> <field name="DESCRIPTION" value="BAND_WAVELENGTH" /> <field name="UNIT" value="micron" /> <field name="FITTYPE" value="D" /> </group> </repeated> <field name="RESERVED_LEN" value="00000" /> </tre> </tres> """ assert data == expected_data ############################################################################### # Test creating a TRE with a hexadecimal string def test_nitf_85(): ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_85.ntf', 1, 1, options=["TRE=HEX/TSTTRE=414243"]) ds = None ds = gdal.Open('/vsimem/nitf_85.ntf') data = ds.GetMetadata('TRE')['TSTTRE'] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_85.ntf') expected_data = "ABC" assert data == expected_data ############################################################################### # Test parsing CSEXRB TRE (STDI-0002-1-v5.0 App AH) def test_nitf_86(): tre_data = "TRE=HEX/CSEXRB=" + hex_string("824ecf8e-1041-4cce-9edb-bc92d88624ca0047308e4b1-80e4-4777-b70f-f6e4a6881de9") + \ hex_string("17261ee9-2175-4ff2-86ad-dddda1f8270ccf306a0b-c47c-44fa-af63-463549f6bf98fd99a346-770e-4048-94d8-5a8b2e832b32") + \ hex_string("EO-1 HYPERNHYPERNF+03819809.03+03731961.77+03475785.73000000000120201012145900.000000000") + \ "0100000000000000" + "05" + "0000000100000001" "FFFFFFFFFF" + \ hex_string(" 1181.1 65535000335200256250.000") + \ hex_string(" 0000132.812+54.861 9991000000") ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_86.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_86.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_86.ntf') expected_data = """<tres> <tre name="CSEXRB" location="image"> <field name="IMAGE_UUID" value="824ecf8e-1041-4cce-9edb-bc92d88624ca" /> <field name="NUM_ASSOC_DES" value="004" /> <repeated number="4"> <group index="0"> <field name="ASSOC_DES_ID" value="7308e4b1-80e4-4777-b70f-f6e4a6881de9" /> </group> <group index="1"> <field name="ASSOC_DES_ID" value="17261ee9-2175-4ff2-86ad-dddda1f8270c" /> </group> <group index="2"> <field name="ASSOC_DES_ID" value="cf306a0b-c47c-44fa-af63-463549f6bf98" /> </group> <group index="3"> <field name="ASSOC_DES_ID" value="fd99a346-770e-4048-94d8-5a8b2e832b32" /> </group> </repeated> <field name="PLATFORM_ID" value="EO-1" /> <field name="PAYLOAD_ID" value="HYPERN" /> <field name="SENSOR_ID" value="HYPERN" /> <field name="SENSOR_TYPE" value="F" /> <field name="GROUND_REF_POINT_X" value="+03819809.03" /> <field name="GROUND_REF_POINT_Y" value="+03731961.77" /> <field name="GROUND_REF_POINT_Z" value="+03475785.73" /> <field name="TIME_STAMP_LOC" value="0" /> <field name="REFERENCE_FRAME_NUM" value="000000001" /> <field name="BASE_TIMESTAMP" value="20201012145900.000000000" /> <field name="DT_MULTIPLIER" value="72057594037927936" /> <field name="DT_SIZE" value="5" /> <field name="NUMBER_FRAMES" value="1" /> <field name="NUMBER_DT" value="1" /> <repeated number="1"> <group index="0"> <field name="DT" value="1099511627775" /> </group> </repeated> <field name="MAX_GSD" value="" /> <field name="ALONG_SCAN_GSD" value="" /> <field name="CROSS_SCAN_GSD" value="" /> <field name="GEO_MEAN_GSD" value="1181.1" /> <field name="A_S_VERT_GSD" value="" /> <field name="C_S_VERT_GSD" value="" /> <field name="GEO_MEAN_VERT_GSD" value="" /> <field name="GSD_BETA_ANGLE" value="" /> <field name="DYNAMIC_RANGE" value="65535" /> <field name="NUM_LINES" value="0003352" /> <field name="NUM_SAMPLES" value="00256" /> <field name="ANGLE_TO_NORTH" value="250.000" /> <field name="OBLIQUITY_ANGLE" value="" /> <field name="AZ_OF_OBLIQUITY" value="" /> <field name="ATM_REFR_FLAG" value="0" /> <field name="VEL_ABER_FLAG" value="0" /> <field name="GRD_COVER" value="0" /> <field name="SNOW_DEPTH_CATEGORY" value="0" /> <field name="SUN_AZIMUTH" value="132.812" /> <field name="SUN_ELEVATION" value="+54.861" /> <field name="PREDICTED_NIIRS" value="" /> <field name="CIRCL_ERR" value="" /> <field name="LINEAR_ERR" value="" /> <field name="CLOUD_COVER" value="999" /> <field name="ROLLING_SHUTTER_FLAG" value="1" /> <field name="UE_TIME_FLAG" value="0" /> <field name="RESERVED_LEN" value="00000" /> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing ILLUMB TRE (STDI-0002-1-v5.0 App AL) def test_nitf_87(): bit_mask = "7A0000" tre_data = "TRE=HEX/ILLUMB=" + hex_string("0001mm 8.5192000000E-01") + \ hex_string("2.5770800000E+00001NUM_BANDS=1 because ILLUMB has no band-dependent content ") + \ hex_string("World Geodetic System 1984 ") + \ hex_string("WGE World Geodetic System 1984 ") + \ hex_string("WE Geodetic ") + \ hex_string("GEOD") + \ bit_mask + hex_string("00120050407072410+33.234974+044.333405+27.8100000E+0132.8+54.9167.5+52.5") + \ hex_string("-163.4004099.2+84.0") ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_87.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_87.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_87.ntf') expected_data = """<tres> <tre name="ILLUMB" location="image"> <field name="NUM_BANDS" value="0001" /> <field name="BAND_UNIT" value="mm" /> <repeated number="1"> <group index="0"> <field name="LBOUND" value="8.5192000000E-01" /> <field name="UBOUND" value="2.5770800000E+00" /> </group> </repeated> <field name="NUM_OTHERS" value="00" /> <field name="NUM_COMS" value="1" /> <repeated number="1"> <group index="0"> <field name="COMMENT" value="NUM_BANDS=1 because ILLUMB has no band-dependent content" /> </group> </repeated> <field name="GEO_DATUM" value="World Geodetic System 1984" /> <field name="GEO_DATUM_CODE" value="WGE" /> <field name="ELLIPSOID_NAME" value="World Geodetic System 1984" /> <field name="ELLIPSOID_CODE" value="WE" /> <field name="VERTICAL_DATUM_REF" value="Geodetic" /> <field name="VERTICAL_REF_CODE" value="GEOD" /> <field name="EXISTENCE_MASK" value="7995392" /> <field name="NUM_ILLUM_SETS" value="001" /> <repeated number="1"> <group index="0"> <field name="DATETIME" value="20050407072410" /> <field name="TARGET_LAT" value="+33.234974" /> <field name="TARGET_LON" value="+044.333405" /> <field name="TARGET_HGT" value="+27.8100000E+0" /> <field name="SUN_AZIMUTH" value="132.8" /> <field name="SUN_ELEV" value="+54.9" /> <field name="MOON_AZIMUTH" value="167.5" /> <field name="MOON_ELEV" value="+52.5" /> <field name="MOON_PHASE_ANGLE" value="-163.4" /> <field name="MOON_ILLUM_PERCENT" value="004" /> <field name="SENSOR_AZIMUTH" value="099.2" /> <field name="SENSOR_ELEV" value="+84.0" /> <repeated number="1"> <group index="0" /> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing CSWRPB TRE (STDI-0002-1-v5.0 App AH) def test_nitf_88(): tre_data = "TRE=CSWRPB=1F199.9999999900000010000002000000300000040000005000000600000070000008" \ "1111-9.99999999999999E-99+9.99999999999999E+9900000" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_88.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_88.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_88.ntf') expected_data = """<tres> <tre name="CSWRPB" location="image"> <field name="NUM_SETS_WARP_DATA" value="1" /> <field name="SENSOR_TYPE" value="F" /> <field name="WRP_INTERP" value="1" /> <repeated number="1"> <group index="0"> <field name="FL_WARP" value="99.99999999" /> <field name="OFFSET_LINE" value="0000001" /> <field name="OFFSET_SAMP" value="0000002" /> <field name="SCALE_LINE" value="0000003" /> <field name="SCALE_SAMP" value="0000004" /> <field name="OFFSET_LINE_UNWRP" value="0000005" /> <field name="OFFSET_SAMP_UNWRP" value="0000006" /> <field name="SCALE_LINE_UNWRP" value="0000007" /> <field name="SCALE_SAMP_UNWRP" value="0000008" /> <field name="LINE_POLY_ORDER_M1" value="1" /> <field name="LINE_POLY_ORDER_M2" value="1" /> <field name="SAMP_POLY_ORDER_N1" value="1" /> <field name="SAMP_POLY_ORDER_N2" value="1" /> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <field name="A" value="-9.99999999999999E-99" /> </group> </repeated> </group> </repeated> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <field name="B" value="+9.99999999999999E+99" /> </group> </repeated> </group> </repeated> </group> </repeated> <field name="RESERVED_LEN" value="00000" /> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing CSRLSB TRE (STDI-0002-1-v5.0 App AH) def test_nitf_89(): tre_data = "TRE=CSRLSB=0101+11111111.11-22222222.22+33333333.33-44444444.44" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_89.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_89.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_89.ntf') expected_data = """<tres> <tre name="CSRLSB" location="image"> <field name="N_RS_ROW_BLOCKS" value="01" /> <field name="M_RS_COLUMN_BLOCKS" value="01" /> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <field name="RS_DT_1" value="+11111111.11" /> <field name="RS_DT_2" value="-22222222.22" /> <field name="RS_DT_3" value="+33333333.33" /> <field name="RS_DT_4" value="-44444444.44" /> </group> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing SECURA TRE (STDI-0002-1-v5.0 App AI) def test_nitf_90(): tre_data = "FILE_TRE=SECURA=20201020142500NITF02.10" + " "*207 + "ARH.XML 00068" + \ "<?xml version=\"1.0\" encoding=\"UTF-8\"?> <arh:Security></arh:Security>" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_90.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_90.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_90.ntf') expected_data = """<tres> <tre name="SECURA" location="file"> <field name="FDATTIM" value="20201020142500" /> <field name="NITFVER" value="NITF02.10" /> <field name="NFSECFLDS" value="" /> <field name="SECSTD" value="ARH.XML" /> <field name="SECCOMP" value="" /> <field name="SECLEN" value="00068" /> <field name="SECURITY" value="&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot;?&gt; &lt;arh:Security&gt;&lt;/arh:Security&gt;" /> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing SNSPSB TRE (STDI-0002-1-v5.0 App P) def test_nitf_91(): tre_data = "TRE=SNSPSB=010001111112222233333M 000001000001000001000001GSL " + \ "PLTFM INS MOD PRL SID ACT DEG0000001 +111111.11-222222.22" + \ " meters 000000000000000000000011111111111111111111112222222222222222222222001" + \ "API Imeters 0123456789" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_91.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_91.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_91.ntf') expected_data = """<tres> <tre name="SNSPSB" location="image"> <field name="NUM_SNS" value="01" /> <repeated number="1"> <group index="0"> <field name="NUM_BP" value="00" /> <field name="NUM_BND" value="01" /> <repeated number="1"> <group index="0"> <field name="BID" value="11111" /> <field name="WS1" value="22222" /> <field name="WS2" value="33333" /> </group> </repeated> <field name="UNIRES" value="M" /> <field name="REX" value="000001" /> <field name="REY" value="000001" /> <field name="GSX" value="000001" /> <field name="GSY" value="000001" /> <field name="GSL" value="GSL" /> <field name="PLTFM" value="PLTFM" /> <field name="INS" value="INS" /> <field name="MOD" value="MOD" /> <field name="PRL" value="PRL" /> <field name="SID" value="SID" /> <field name="ACT" value="ACT" /> <field name="UNINOA" value="DEG" /> <field name="NOA" value="0000001" /> <field name="UNIANG" value="" /> <field name="UNIALT" value="" /> <field name="LONSCC" value="+111111.11" /> <field name="LATSCC" value="-222222.22" /> <field name="UNISAE" value="" /> <field name="UNIRPY" value="" /> <field name="UNIPXT" value="" /> <field name="UNISPE" value="meters" /> <field name="ROS" value="0000000000000000000000" /> <field name="PIS" value="1111111111111111111111" /> <field name="YAS" value="2222222222222222222222" /> <field name="NUM_AUX" value="001" /> <repeated number="1"> <group index="0"> <field name="API" value="API" /> <field name="APF" value="I" /> <field name="UNIAPX" value="meters" /> <field name="APN" value="0123456789" /> </group> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing RSMAPB TRE (STDI-0002-1-v5.0 App U) def test_nitf_RSMAPB(): tre_data = "TRE=RSMAPB=iid " + \ "edition tid 01IG+9.99999999999999E+99" + \ "+9.99999999999999E+99+9.99999999999999E+99+9.99999999999999E+99+9.99999999999999E+99+9.99999999999999E+99" + \ "Y01011230001+9.99999999999999E+99+9.99999999999999E+99" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_RSMAPB.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_RSMAPB.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_RSMAPB.ntf') expected_data = """<tres> <tre name="RSMAPB" location="image"> <field name="IID" value="iid" /> <field name="EDITION" value="edition" /> <field name="TID" value="tid" /> <field name="NPAR" value="01" /> <field name="APTYP" value="I" /> <field name="LOCTYP" value="G" /> <field name="NSFX" value="+9.99999999999999E+99" /> <field name="NSFY" value="+9.99999999999999E+99" /> <field name="NSFZ" value="+9.99999999999999E+99" /> <field name="NOFFX" value="+9.99999999999999E+99" /> <field name="NOFFY" value="+9.99999999999999E+99" /> <field name="NOFFZ" value="+9.99999999999999E+99" /> <field name="APBASE" value="Y" /> <field name="NISAP" value="01" /> <field name="NISAPR" value="01" /> <repeated number="1"> <group index="0"> <field name="XPWRR" value="1" /> <field name="YPWRR" value="2" /> <field name="ZPWRR" value="3" /> </group> </repeated> <field name="NISAPC" value="00" /> <field name="NBASIS" value="01" /> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <field name="AEL" value="+9.99999999999999E+99" /> </group> </repeated> </group> </repeated> <repeated number="1"> <group index="0"> <field name="PARVAL" value="+9.99999999999999E+99" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing RSMDCB TRE (STDI-0002-1-v5.0 App U) def test_nitf_RSMDCB(): tre_data = "TRE=RSMDCB=iid " + \ "edition tid 01001iidi" + " "*76 + \ "01Y01GN" + "+9.99999999999999E+99"*6 + "N01ABCD+9.99999999999999E+99" ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_RSMDCB.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_RSMDCB.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_RSMDCB.ntf') expected_data = """<tres> <tre name="RSMDCB" location="image"> <field name="IID" value="iid" /> <field name="EDITION" value="edition" /> <field name="TID" value="tid" /> <field name="NROWCB" value="01" /> <field name="NIMGE" value="001" /> <repeated number="1"> <group index="0"> <field name="IIDI" value="iidi" /> <field name="NCOLCB" value="01" /> </group> </repeated> <field name="INCAPD" value="Y" /> <field name="NPAR" value="01" /> <field name="APTYP" value="G" /> <field name="LOCTYP" value="N" /> <field name="NSFX" value="+9.99999999999999E+99" /> <field name="NSFY" value="+9.99999999999999E+99" /> <field name="NSFZ" value="+9.99999999999999E+99" /> <field name="NOFFX" value="+9.99999999999999E+99" /> <field name="NOFFY" value="+9.99999999999999E+99" /> <field name="NOFFZ" value="+9.99999999999999E+99" /> <field name="APBASE" value="N" /> <field name="NGSAP" value="01" /> <repeated number="1"> <group index="0"> <field name="GSAPID" value="ABCD" /> </group> </repeated> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <field name="CRSCOV" value="+9.99999999999999E+99" /> </group> </repeated> </group> </repeated> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test parsing RSMECB TRE (STDI-0002-1-v5.0 App U) def test_nitf_RSMECB(): tre_data = "TRE=RSMECB=iid " + \ "edition tid " + \ "YY01012020110201GN" + "+9.99999999999999E+99"*6 + "N01ABCD02" + "+9.99999999999999E+99"*3 + \ "1N2" + "+9.99999999999999E+99"*8 + "N2" + "+9.99999999999999E+99"*4 + "2" + "+9.99999999999999E+99"*4 ds = gdal.GetDriverByName('NITF').Create('/vsimem/nitf_RSMECB.ntf', 1, 1, options=[tre_data]) ds = None ds = gdal.Open('/vsimem/nitf_RSMECB.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_RSMECB.ntf') expected_data = """<tres> <tre name="RSMECB" location="image"> <field name="IID" value="iid" /> <field name="EDITION" value="edition" /> <field name="TID" value="tid" /> <field name="INCLIC" value="Y" /> <field name="INCLUC" value="Y" /> <field name="NPARO" value="01" /> <field name="IGN" value="01" /> <field name="CVDATE" value="20201102" /> <field name="NPAR" value="01" /> <field name="APTYP" value="G" /> <field name="LOCTYP" value="N" /> <field name="NSFX" value="+9.99999999999999E+99" /> <field name="NSFY" value="+9.99999999999999E+99" /> <field name="NSFZ" value="+9.99999999999999E+99" /> <field name="NOFFX" value="+9.99999999999999E+99" /> <field name="NOFFY" value="+9.99999999999999E+99" /> <field name="NOFFZ" value="+9.99999999999999E+99" /> <field name="APBASE" value="N" /> <field name="NGSAP" value="01" /> <repeated number="1"> <group index="0"> <field name="GSAPID" value="ABCD" /> </group> </repeated> <repeated number="1"> <group index="0"> <field name="NUMOPG" value="02" /> <repeated number="3"> <group index="0"> <field name="ERRCVG" value="+9.99999999999999E+99" /> </group> <group index="1"> <field name="ERRCVG" value="+9.99999999999999E+99" /> </group> <group index="2"> <field name="ERRCVG" value="+9.99999999999999E+99" /> </group> </repeated> <field name="TCDF" value="1" /> <field name="ACSMC" value="N" /> <field name="NCSEG" value="2" /> <repeated number="2"> <group index="0"> <field name="CORSEG" value="+9.99999999999999E+99" /> <field name="TAUSEG" value="+9.99999999999999E+99" /> </group> <group index="1"> <field name="CORSEG" value="+9.99999999999999E+99" /> <field name="TAUSEG" value="+9.99999999999999E+99" /> </group> </repeated> </group> </repeated> <repeated number="1"> <group index="0"> <repeated number="1"> <group index="0"> <field name="MAP" value="+9.99999999999999E+99" /> </group> </repeated> </group> </repeated> <field name="URR" value="+9.99999999999999E+99" /> <field name="URC" value="+9.99999999999999E+99" /> <field name="UCC" value="+9.99999999999999E+99" /> <field name="UACSMC" value="N" /> <field name="UNCSR" value="2" /> <repeated number="2"> <group index="0"> <field name="UCORSR" value="+9.99999999999999E+99" /> <field name="UTAUSR" value="+9.99999999999999E+99" /> </group> <group index="1"> <field name="UCORSR" value="+9.99999999999999E+99" /> <field name="UTAUSR" value="+9.99999999999999E+99" /> </group> </repeated> <field name="UNCSC" value="2" /> <repeated number="2"> <group index="0"> <field name="UCORSC" value="+9.99999999999999E+99" /> <field name="UTAUSC" value="+9.99999999999999E+99" /> </group> <group index="1"> <field name="UCORSC" value="+9.99999999999999E+99" /> <field name="UTAUSC" value="+9.99999999999999E+99" /> </group> </repeated> </tre> </tres> """ assert data == expected_data ############################################################################### # Test creation and reading of Data Extension Segments (DES) def test_nitf_des(): des_data = "02U" + " "*166 + r'0004ABCD1234567\0890' ds = gdal.GetDriverByName("NITF").Create("/vsimem/nitf_DES.ntf", 1, 1, options=["DES=DES1=" + des_data, "DES=DES2=" + des_data]) ds = None # DESDATA portion will be Base64 encoded on output # base64.b64encode(bytes("1234567\x00890", "utf-8")) == b'MTIzNDU2NwA4OTA=' ds = gdal.Open("/vsimem/nitf_DES.ntf") data = ds.GetMetadata("xml:DES")[0] ds = None gdal.GetDriverByName('NITF').Delete('/vsimem/nitf_DES.ntf') expected_data = """<des_list> <des name="DES1"> <field name="NITF_DESVER" value="02" /> <field name="NITF_DECLAS" value="U" /> <field name="NITF_DESCLSY" value="" /> <field name="NITF_DESCODE" value="" /> <field name="NITF_DESCTLH" value="" /> <field name="NITF_DESREL" value="" /> <field name="NITF_DESDCTP" value="" /> <field name="NITF_DESDCDT" value="" /> <field name="NITF_DESDCXM" value="" /> <field name="NITF_DESDG" value="" /> <field name="NITF_DESDGDT" value="" /> <field name="NITF_DESCLTX" value="" /> <field name="NITF_DESCATP" value="" /> <field name="NITF_DESCAUT" value="" /> <field name="NITF_DESCRSN" value="" /> <field name="NITF_DESSRDT" value="" /> <field name="NITF_DESCTLN" value="" /> <field name="NITF_DESSHL" value="0004" /> <field name="NITF_DESSHF" value="ABCD" /> <field name="NITF_DESDATA" value="MTIzNDU2NwA4OTA=" /> </des> <des name="DES2"> <field name="NITF_DESVER" value="02" /> <field name="NITF_DECLAS" value="U" /> <field name="NITF_DESCLSY" value="" /> <field name="NITF_DESCODE" value="" /> <field name="NITF_DESCTLH" value="" /> <field name="NITF_DESREL" value="" /> <field name="NITF_DESDCTP" value="" /> <field name="NITF_DESDCDT" value="" /> <field name="NITF_DESDCXM" value="" /> <field name="NITF_DESDG" value="" /> <field name="NITF_DESDGDT" value="" /> <field name="NITF_DESCLTX" value="" /> <field name="NITF_DESCATP" value="" /> <field name="NITF_DESCAUT" value="" /> <field name="NITF_DESCRSN" value="" /> <field name="NITF_DESSRDT" value="" /> <field name="NITF_DESCTLN" value="" /> <field name="NITF_DESSHL" value="0004" /> <field name="NITF_DESSHF" value="ABCD" /> <field name="NITF_DESDATA" value="MTIzNDU2NwA4OTA=" /> </des> </des_list> """ assert data == expected_data ############################################################################### # Test reading C4 compressed file def test_nitf_read_C4(): ds = gdal.Open('data/nitf/RPFTOC01.ON2') cs = ds.GetRasterBand(1).Checksum() assert cs == 53599 ############################################################################### # Test reading a file with a SENSRB TRE def test_nitf_SENSRB(): ds = gdal.Open('data/nitf/SENSRB_TRE.ntf') data = ds.GetMetadata('xml:TRE')[0] ds = None expected_data = """<tres> <tre name="SENSRB" location="image"> <field name="GENERAL_DATA" value="Y" /> <field name="SENSOR" value="" /> <field name="SENSOR_URI" value="" /> <field name="PLATFORM" value=" UMS" /> <field name="PLATFORM_URI" value="" /> <field name="OPERATION_DOMAIN" value="" /> <field name="CONTENT_LEVEL" value="4" /> <field name="GEODETIC_SYSTEM" value="" /> <field name="GEODETIC_TYPE" value="" /> <field name="ELEVATION_DATUM" value="" /> <field name="LENGTH_UNIT" value=" m" /> <field name="ANGULAR_UNIT" value="deg" /> <field name="START_DATE" value="" /> <field name="START_TIME" value="00000000000000" /> <field name="END_DATE" value="20190507" /> <field name="END_TIME" value="0000084.059869" /> <field name="GENERATION_COUNT" value="00" /> <field name="GENERATION_DATE" value="" /> <field name="GENERATION_TIME" value="" /> <field name="SENSOR_ARRAY_DATA" value="" /> <field name="SENSOR_CALIBRATION_DATA" value="" /> <field name="IMAGE_FORMATION_DATA" value="Y" /> <field name="METHOD" value="" /> <field name="MODE" value="" /> <field name="ROW_COUNT" value="00000000" /> <field name="COLUMN_COUNT" value="00000000" /> <field name="ROW_SET" value="00000000" /> <field name="COLUMN_SET" value="00000000" /> <field name="ROW_RATE" value="0000000000" /> <field name="COLUMN_RATE" value="0000000000" /> <field name="FIRST_PIXEL_ROW" value="00000000" /> <field name="FIRST_PIXEL_COLUMN" value="00000000" /> <field name="TRANSFORM_PARAMS" value="3" /> <repeated name="TRANSFORM_PARAM" number="3"> <group index="0"> <field name="TRANSFORM_PARAM" value=" 470" /> </group> <group index="1"> <field name="TRANSFORM_PARAM" value=" 471" /> </group> <group index="2"> <field name="TRANSFORM_PARAM" value=" 472" /> </group> </repeated> <field name="REFERENCE_TIME" value="" /> <field name="REFERENCE_ROW" value="" /> <field name="REFERENCE_COLUMN" value="" /> <field name="LATITUDE_OR_X" value=" 43643267" /> <field name="LONGITUDE_OR_Y" value="" /> <field name="ALTITUDE_OR_Z" value="" /> <field name="SENSOR_X_OFFSET" value="00000000" /> <field name="SENSOR_Y_OFFSET" value="00000000" /> <field name="SENSOR_Z_OFFSET" value="00000000" /> <field name="ATTITUDE_EULER_ANGLES" value="" /> <field name="ATTITUDE_UNIT_VECTORS" value="" /> <field name="ATTITUDE_QUATERNION" value="" /> <field name="SENSOR_VELOCITY_DATA" value="" /> <field name="POINT_SET_DATA" value="00" /> <field name="TIME_STAMPED_DATA_SETS" value="02" /> <repeated name="TIME_STAMPED_SET" number="2"> <group index="0"> <field name="TIME_STAMP_TYPE_MM" value="06b" /> <field name="TIME_STAMP_COUNT_MM" value="0003" /> <repeated name="TIME_STAMP_COUNTS" number="3"> <group index="0"> <field name="TIME_STAMP_TIME_NNNN" value="111111111111" /> <field name="TIME_STAMP_VALUE_NNNN" value="111100001111" /> </group> <group index="1"> <field name="TIME_STAMP_TIME_NNNN" value="222222222222" /> <field name="TIME_STAMP_VALUE_NNNN" value="222200001111" /> </group> <group index="2"> <field name="TIME_STAMP_TIME_NNNN" value="333333333333" /> <field name="TIME_STAMP_VALUE_NNNN" value="333300001111" /> </group> </repeated> </group> <group index="1"> <field name="TIME_STAMP_TYPE_MM" value="06e" /> <field name="TIME_STAMP_COUNT_MM" value="0002" /> <repeated name="TIME_STAMP_COUNTS" number="2"> <group index="0"> <field name="TIME_STAMP_TIME_NNNN" value="444444444444" /> <field name="TIME_STAMP_VALUE_NNNN" value="44440000" /> </group> <group index="1"> <field name="TIME_STAMP_TIME_NNNN" value="555555555555" /> <field name="TIME_STAMP_VALUE_NNNN" value="55550000" /> </group> </repeated> </group> </repeated> <field name="PIXEL_REFERENCED_DATA_SETS" value="00" /> <field name="UNCERTAINTY_DATA" value="000" /> <field name="ADDITIONAL_PARAMETER_DATA" value="000" /> </tre> </tres> """ assert data == expected_data, data ############################################################################### # Verify we can read UDID metadata def test_nitf_valid_udid(): ds = gdal.Open('data/nitf/valid_udid.ntf') md = ds.GetMetadata() assert md['NITF_CSDIDA_YEAR'] == '2019', \ 'UDID CSDIDA metadata has unexpected value.' assert md['NITF_BLOCKA_BLOCK_INSTANCE_01'] == '01', \ 'BLOCKA metadata has unexpected value.' ############################################################################### # Verify that bad UDID metadata doesn't prevent reading IXSHD metadata def test_nitf_invalid_udid(): ds = gdal.Open('data/nitf/invalid_udid.ntf') md = ds.GetMetadata() assert 'NITF_CSDIDA_YEAR' not in md, \ 'Unexpected parings of UDID CSDIDA metadata.' assert md['NITF_BLOCKA_BLOCK_INSTANCE_01'] == '01', \ 'BLOCKA metadata has unexpected value.' ############################################################################### # Test NITF21_CGM_ANNO_Uncompressed_unmasked.ntf for bug #1313 and #1714 def test_nitf_online_1(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/bugs/NITF21_CGM_ANNO_Uncompressed_unmasked.ntf', 'NITF21_CGM_ANNO_Uncompressed_unmasked.ntf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/NITF21_CGM_ANNO_Uncompressed_unmasked.ntf', 1, 13123, filename_absolute=1) # Shut up the warning about missing image segment gdal.PushErrorHandler('CPLQuietErrorHandler') ret = tst.testOpen() gdal.PopErrorHandler() return ret ############################################################################### # Test NITF file with multiple images def test_nitf_online_2(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/nitf1.1/U_0001a.ntf', 'U_0001a.ntf'): pytest.skip() ds = gdal.Open('tmp/cache/U_0001a.ntf') md = ds.GetMetadata('SUBDATASETS') assert 'SUBDATASET_1_NAME' in md, 'missing SUBDATASET_1_NAME metadata' ds = None ############################################################################### # Test ARIDPCM (C2) image def test_nitf_online_3(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/nitf1.1/U_0001a.ntf', 'U_0001a.ntf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'NITF_IM:3:tmp/cache/U_0001a.ntf', 1, 23463, filename_absolute=1) return tst.testOpen() ############################################################################### # Test Vector Quantization (VQ) (C4) file def test_nitf_online_4(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/cadrg/001zc013.on1', '001zc013.on1'): pytest.skip() # check that the RPF attribute metadata was carried through. ds = gdal.Open('tmp/cache/001zc013.on1') md = ds.GetMetadata() assert md['NITF_RPF_CurrencyDate'] == '19950720' and md['NITF_RPF_ProductionDate'] == '19950720' and md['NITF_RPF_SignificantDate'] == '19890629', \ 'RPF attribute metadata not captured (#3413)' ds = None tst = gdaltest.GDALTest('NITF', 'tmp/cache/001zc013.on1', 1, 53960, filename_absolute=1) return tst.testOpen() ############################################################################### # Test Vector Quantization (VQ) (M4) file def test_nitf_online_5(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/cadrg/overview.ovr', 'overview.ovr'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/overview.ovr', 1, 60699, filename_absolute=1) return tst.testOpen() ############################################################################### # Test a JPEG compressed, single blocked 2048x2048 mono image def test_nitf_online_6(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/nitf2.0/U_4001b.ntf', 'U_4001b.ntf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/U_4001b.ntf', 1, 60030, filename_absolute=1) return tst.testOpen() ############################################################################### # Test all combinations of IMODE (S,P,B,R) for an image with 6 bands whose 3 are RGB def test_nitf_online_7(): for filename in ['ns3228b.nsf', 'i_3228c.ntf', 'ns3228d.nsf', 'i_3228e.ntf']: if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/' + filename, filename): pytest.skip() ds = gdal.Open('tmp/cache/' + filename) assert ds.RasterCount == 6 checksums = [48385, 48385, 40551, 54223, 48385, 33094] colorInterpretations = [gdal.GCI_Undefined, gdal.GCI_Undefined, gdal.GCI_RedBand, gdal.GCI_BlueBand, gdal.GCI_Undefined, gdal.GCI_GreenBand] for i in range(6): cs = ds.GetRasterBand(i + 1).Checksum() assert cs == checksums[i], ('got checksum %d for image %s' % (cs, filename)) assert ds.GetRasterBand(i + 1).GetRasterColorInterpretation() == colorInterpretations[i], \ ('got wrong color interp for image %s' % filename) ds = None ############################################################################### # Test JPEG-compressed multi-block mono-band image with a data mask subheader (IC=M3, IMODE=B) def test_nitf_online_8(): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/ns3301j.nsf', 'ns3301j.nsf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/ns3301j.nsf', 1, 56861, filename_absolute=1) return tst.testOpen() ############################################################################### # Test JPEG-compressed multi-block mono-band image without a data mask subheader (IC=C3, IMODE=B) def test_nitf_online_9(): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/ns3304a.nsf', 'ns3304a.nsf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/ns3304a.nsf', 1, 32419, filename_absolute=1) return tst.testOpen() ############################################################################### # Verify that CGM access on a file with 8 CGM segments def test_nitf_online_10(): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/ns3119b.nsf', 'ns3119b.nsf'): pytest.skip() # Shut up the warning about missing image segment gdal.PushErrorHandler('CPLQuietErrorHandler') ds = gdal.Open('tmp/cache/ns3119b.nsf') gdal.PopErrorHandler() mdCGM = ds.GetMetadata('CGM') ds = None assert mdCGM['SEGMENT_COUNT'] == '8', 'wrong SEGMENT_COUNT.' tab = [ ('SEGMENT_0_SLOC_ROW', '0'), ('SEGMENT_0_SLOC_COL', '0'), ('SEGMENT_0_CCS_COL', '0'), ('SEGMENT_0_CCS_COL', '0'), ('SEGMENT_0_SDLVL', '1'), ('SEGMENT_0_SALVL', '0'), ('SEGMENT_1_SLOC_ROW', '0'), ('SEGMENT_1_SLOC_COL', '684'), ('SEGMENT_2_SLOC_ROW', '0'), ('SEGMENT_2_SLOC_COL', '1364'), ('SEGMENT_3_SLOC_ROW', '270'), ('SEGMENT_3_SLOC_COL', '0'), ('SEGMENT_4_SLOC_ROW', '270'), ('SEGMENT_4_SLOC_COL', '684'), ('SEGMENT_5_SLOC_ROW', '270'), ('SEGMENT_5_SLOC_COL', '1364'), ('SEGMENT_6_SLOC_ROW', '540'), ('SEGMENT_6_SLOC_COL', '0'), ('SEGMENT_7_SLOC_ROW', '540'), ('SEGMENT_7_SLOC_COL', '1364'), ('SEGMENT_7_CCS_ROW', '540'), ('SEGMENT_7_CCS_COL', '1364'), ('SEGMENT_7_SDLVL', '8'), ('SEGMENT_7_SALVL', '0'), ] for item in tab: assert mdCGM[item[0]] == item[1], ('wrong value for %s.' % item[0]) ############################################################################### # 5 text files def test_nitf_online_11(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/nitf2.0/U_1122a.ntf', 'U_1122a.ntf'): pytest.skip() ds = gdal.Open('tmp/cache/U_1122a.ntf') mdTEXT = ds.GetMetadata('TEXT') ds = None assert mdTEXT['DATA_0'] == 'This is test text file 01.\r\n', \ 'did not find expected DATA_0 from metadata.' assert mdTEXT['DATA_1'] == 'This is test text file 02.\r\n', \ 'did not find expected DATA_1 from metadata.' assert mdTEXT['DATA_2'] == 'This is test text file 03.\r\n', \ 'did not find expected DATA_2 from metadata.' assert mdTEXT['DATA_3'] == 'This is test text file 04.\r\n', \ 'did not find expected DATA_3 from metadata.' assert mdTEXT['DATA_4'] == 'This is test text file 05.\r\n', \ 'did not find expected DATA_4 from metadata.' ############################################################################### # Test 12 bit uncompressed image. def test_nitf_online_12(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/bugs/i_3430a.ntf', 'i_3430a.ntf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/i_3430a.ntf', 1, 38647, filename_absolute=1) return tst.testOpen() ############################################################################### # Test complex relative graphic/image attachment. def test_nitf_online_13(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/u_3054a.ntf', 'u_3054a.ntf'): pytest.skip() # Shut up the warning about missing image segment ds = gdal.Open('NITF_IM:2:tmp/cache/u_3054a.ntf') mdCGM = ds.GetMetadata('CGM') md = ds.GetMetadata() ds = None assert mdCGM['SEGMENT_COUNT'] == '3', 'wrong SEGMENT_COUNT.' tab = [ ('SEGMENT_2_SLOC_ROW', '0'), ('SEGMENT_2_SLOC_COL', '0'), ('SEGMENT_2_CCS_COL', '1100'), ('SEGMENT_2_CCS_COL', '1100'), ('SEGMENT_2_SDLVL', '6'), ('SEGMENT_2_SALVL', '3') ] for item in tab: assert mdCGM[item[0]] == item[1], ('wrong value for %s.' % item[0]) tab = [ ('NITF_IDLVL', '3'), ('NITF_IALVL', '1'), ('NITF_ILOC_ROW', '1100'), ('NITF_ILOC_COLUMN', '1100'), ('NITF_CCS_ROW', '1100'), ('NITF_CCS_COLUMN', '1100'), ] for item in tab: assert md[item[0]] == item[1], ('wrong value for %s, got %s instead of %s.' % (item[0], md[item[0]], item[1])) ############################################################################### # Check reading a 12-bit JPEG compressed NITF (multi-block) def test_nitf_online_14(not_jpeg_9b): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/nitf2.0/U_4020h.ntf', 'U_4020h.ntf'): pytest.skip() try: os.remove('tmp/cache/U_4020h.ntf.aux.xml') except OSError: pass # Check if JPEG driver supports 12bit JPEG reading/writing jpg_drv = gdal.GetDriverByName('JPEG') md = jpg_drv.GetMetadata() if md[gdal.DMD_CREATIONDATATYPES].find('UInt16') == -1: sys.stdout.write('(12bit jpeg not available) ... ') pytest.skip() ds = gdal.Open('tmp/cache/U_4020h.ntf') assert ds.GetRasterBand(1).DataType == gdal.GDT_UInt16 stats = ds.GetRasterBand(1).GetStatistics(0, 1) assert stats[2] >= 2607 and stats[2] <= 2608 ds = None try: os.remove('tmp/cache/U_4020h.ntf.aux.xml') except OSError: pass ############################################################################### # Test opening a IC=C8 NITF file with the various JPEG2000 drivers def nitf_online_15(driver_to_test, expected_cs=1054): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Jpeg2000/p0_01/p0_01a.ntf', 'p0_01a.ntf'): pytest.skip() jp2_drv = gdal.GetDriverByName(driver_to_test) if jp2_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but(driver_to_test) ds = gdal.Open('tmp/cache/p0_01a.ntf') if ds.GetRasterBand(1).Checksum() == expected_cs: ret = 'success' else: print(ds.GetRasterBand(1).Checksum()) gdaltest.post_reason('Did not get expected checksums') ret = 'fail' gdaltest.reregister_all_jpeg2000_drivers() return ret def test_nitf_online_15_jp2ecw(): return nitf_online_15('JP2ECW') def test_nitf_online_15_jp2mrsid(): return nitf_online_15('JP2MrSID') def test_nitf_online_15_jp2kak(): return nitf_online_15('JP2KAK') def test_nitf_online_15_jasper(): return nitf_online_15('JPEG2000') def test_nitf_online_15_openjpeg(): return nitf_online_15('JP2OpenJPEG') ############################################################################### # Test opening a IC=C8 NITF file which has 256-entry palette/LUT in both JP2 Header and image Subheader # We expect RGB expansion from some JPEG2000 driver def nitf_online_16(driver_to_test): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Jpeg2000/jp2_09/file9_jp2_2places.ntf', 'file9_jp2_2places.ntf'): pytest.skip() jp2_drv = gdal.GetDriverByName(driver_to_test) if jp2_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but(driver_to_test) ds = gdal.Open('tmp/cache/file9_jp2_2places.ntf') # JPEG2000 driver if ds.RasterCount == 3 and \ ds.GetRasterBand(1).Checksum() == 48954 and \ ds.GetRasterBand(2).Checksum() == 4939 and \ ds.GetRasterBand(3).Checksum() == 17734: ret = 'success' elif ds.RasterCount == 1 and \ ds.GetRasterBand(1).Checksum() == 47664 and \ ds.GetRasterBand(1).GetRasterColorTable() is not None: ret = 'success' else: print(ds.RasterCount) for i in range(ds.RasterCount): print(ds.GetRasterBand(i + 1).Checksum()) print(ds.GetRasterBand(1).GetRasterColorTable()) gdaltest.post_reason('Did not get expected checksums') ret = 'fail' gdaltest.reregister_all_jpeg2000_drivers() return ret def test_nitf_online_16_jp2ecw(): return nitf_online_16('JP2ECW') def test_nitf_online_16_jp2mrsid(): return nitf_online_16('JP2MrSID') def test_nitf_online_16_jp2kak(): return nitf_online_16('JP2KAK') def test_nitf_online_16_jasper(): return nitf_online_16('JPEG2000') def test_nitf_online_16_openjpeg(): return nitf_online_16('JP2OpenJPEG') ############################################################################### # Test opening a IC=C8 NITF file which has 256-entry/LUT in Image Subheader, JP2 header completely removed # We don't expect RGB expansion from the JPEG2000 driver def nitf_online_17(driver_to_test): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Jpeg2000/jp2_09/file9_j2c.ntf', 'file9_j2c.ntf'): pytest.skip() jp2_drv = gdal.GetDriverByName(driver_to_test) if jp2_drv is None: pytest.skip() # Deregister other potential conflicting JPEG2000 drivers gdaltest.deregister_all_jpeg2000_drivers_but(driver_to_test) ds = gdal.Open('tmp/cache/file9_j2c.ntf') if ds.RasterCount == 1 and \ ds.GetRasterBand(1).Checksum() == 47664 and \ ds.GetRasterBand(1).GetRasterColorTable() is not None: ret = 'success' else: print(ds.RasterCount) for i in range(ds.RasterCount): print(ds.GetRasterBand(i + 1).Checksum()) print(ds.GetRasterBand(1).GetRasterColorTable()) gdaltest.post_reason('Did not get expected checksums') ret = 'fail' gdaltest.reregister_all_jpeg2000_drivers() return ret def test_nitf_online_17_jp2ecw(): return nitf_online_17('JP2ECW') def test_nitf_online_17_jp2mrsid(): return nitf_online_17('JP2MrSID') def test_nitf_online_17_jp2kak(): return nitf_online_17('JP2KAK') def test_nitf_online_17_jasper(): return nitf_online_17('JPEG2000') def test_nitf_online_17_openjpeg(): return nitf_online_17('JP2OpenJPEG') ############################################################################### # Test polar stereographic CADRG tile. def test_nitf_online_18(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/bugs/bug3337.ntf', 'bug3337.ntf'): pytest.skip() ds = gdal.Open('tmp/cache/bug3337.ntf') gt = ds.GetGeoTransform() prj = ds.GetProjection() # If we have functioning coordinate transformer. if prj[:6] == 'PROJCS': assert prj.find('Azimuthal_Equidistant') != -1, 'wrong projection?' expected_gt = (-1669792.3618991028, 724.73626818537502, 0.0, -556597.45396636717, 0.0, -724.73626818537434) assert gdaltest.geotransform_equals(gt, expected_gt, 1.0), \ 'did not get expected geotransform.' # If we do not have a functioning coordinate transformer. else: assert prj == '' and gdaltest.geotransform_equals(gt, (0, 1, 0, 0, 0, 1), 0.00000001), \ 'did not get expected empty gt/projection' prj = ds.GetGCPProjection() assert prj[:6] == 'GEOGCS', 'did not get expected geographic srs' gcps = ds.GetGCPs() gcp3 = gcps[3] assert gcp3.GCPPixel == 0 and gcp3.GCPLine == 1536 and abs(gcp3.GCPX + 45) <= 0.0000000001 and gcp3.GCPY == pytest.approx(68.78679656, abs=0.00000001), \ 'did not get expected gcp.' ds = None ############################################################################### # Test CADRG tile crossing dateline (#3383) def test_nitf_online_19(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/0000M033.GN3', '0000M033.GN3'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/0000M033.GN3', 1, 38928, filename_absolute=1) return tst.testOpen(check_gt=(174.375000000000000, 0.010986328125000, 0, 51.923076923076927, 0, -0.006760817307692)) ############################################################################### # Check that the RPF attribute metadata was carried through. # Special case where the reported size of the attribute subsection is # smaller than really available def test_nitf_online_20(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/0000M033.GN3', '0000M033.GN3'): pytest.skip() # check that the RPF attribute metadata was carried through. # Special case where the reported size of the attribute subsection is # smaller than really available ds = gdal.Open('tmp/cache/0000M033.GN3') md = ds.GetMetadata() assert md['NITF_RPF_CurrencyDate'] == '19941201' and md['NITF_RPF_ProductionDate'] == '19980511' and md['NITF_RPF_SignificantDate'] == '19850305', \ 'RPF attribute metadata not captured (#3413)' ############################################################################### # Check that we can read NITF header located in STREAMING_FILE_HEADER DE # segment when header at beginning of file is incomplete def test_nitf_online_21(): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv2_1/ns3321a.nsf', 'ns3321a.nsf'): pytest.skip() ds = gdal.Open('tmp/cache/ns3321a.nsf') md = ds.GetMetadata() ds = None # If we get NS3321A, it means we are not exploiting the header from the STREAMING_FILE_HEADER DE segment assert md['NITF_OSTAID'] == 'I_3321A', \ 'did not get expected OSTAID value' ############################################################################### # Test fix for #3002 (reconcile NITF file with LA segments) # def test_nitf_online_22(): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/software/testfile/Nitfv1_1/U_0001C.NTF', 'U_0001C.NTF'): pytest.skip() ds = gdal.Open('NITF_IM:1:tmp/cache/U_0001C.NTF') md = ds.GetMetadata() ds = None tab = [ ('NITF_IDLVL', '6'), ('NITF_IALVL', '1'), ('NITF_ILOC_ROW', '360'), ('NITF_ILOC_COLUMN', '380'), ('NITF_CCS_ROW', '425'), ('NITF_CCS_COLUMN', '410'), ] for item in tab: assert md[item[0]] == item[1], ('(1) wrong value for %s, got %s instead of %s.' % (item[0], md[item[0]], item[1])) ds = gdal.Open('NITF_IM:2:tmp/cache/U_0001C.NTF') md = ds.GetMetadata() ds = None tab = [ ('NITF_IDLVL', '11'), ('NITF_IALVL', '2'), ('NITF_ILOC_ROW', '360'), ('NITF_ILOC_COLUMN', '40'), ('NITF_CCS_ROW', '422'), ('NITF_CCS_COLUMN', '210'), ] for item in tab: assert md[item[0]] == item[1], ('(2) wrong value for %s, got %s instead of %s.' % (item[0], md[item[0]], item[1])) ds = gdal.Open('NITF_IM:3:tmp/cache/U_0001C.NTF') md = ds.GetMetadata() ds = None tab = [ ('NITF_IDLVL', '5'), ('NITF_IALVL', '3'), ('NITF_ILOC_ROW', '40'), ('NITF_ILOC_COLUMN', '240'), ('NITF_CCS_ROW', '-1'), ('NITF_CCS_COLUMN', '-1'), ] for item in tab: assert md[item[0]] == item[1], ('(3) wrong value for %s, got %s instead of %s.' % (item[0], md[item[0]], item[1])) ds = gdal.Open('NITF_IM:4:tmp/cache/U_0001C.NTF') md = ds.GetMetadata() ds = None tab = [ ('NITF_IDLVL', '1'), ('NITF_IALVL', '0'), ('NITF_ILOC_ROW', '65'), ('NITF_ILOC_COLUMN', '30'), ('NITF_CCS_ROW', '65'), ('NITF_CCS_COLUMN', '30'), ] for item in tab: assert md[item[0]] == item[1], ('(4) wrong value for %s, got %s instead of %s.' % (item[0], md[item[0]], item[1])) ############################################################################### # Test reading a M4 compressed file (fixed for #3848) def test_nitf_online_23(): if not gdaltest.download_file('http://download.osgeo.org/gdal/data/nitf/nitf2.0/U_3058b.ntf', 'U_3058b.ntf'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/U_3058b.ntf', 1, 44748, filename_absolute=1) return tst.testOpen() ############################################################################### # Test reading ECRG frames def test_nitf_online_24(): if not gdaltest.download_file('http://www.falconview.org/trac/FalconView/downloads/17', 'ECRG_Sample.zip'): pytest.skip() try: os.stat('tmp/cache/ECRG_Sample.zip') except OSError: pytest.skip() oldval = gdal.GetConfigOption('NITF_OPEN_UNDERLYING_DS') gdal.SetConfigOption('NITF_OPEN_UNDERLYING_DS', 'NO') ds = gdal.Open('/vsizip/tmp/cache/ECRG_Sample.zip/ECRG_Sample/EPF/clfc/2/000000009s0013.lf2') gdal.SetConfigOption('NITF_OPEN_UNDERLYING_DS', oldval) assert ds is not None xml_tre = ds.GetMetadata('xml:TRE')[0] ds = None assert (not (xml_tre.find('<tre name="GEOPSB"') == -1 or \ xml_tre.find('<tre name="J2KLRA"') == -1 or \ xml_tre.find('<tre name="GEOLOB"') == -1 or \ xml_tre.find('<tre name="BNDPLB"') == -1 or \ xml_tre.find('<tre name="ACCPOB"') == -1 or \ xml_tre.find('<tre name="SOURCB"') == -1)), 'did not get expected xml:TRE' ############################################################################### # Test reading a HRE file def test_nitf_online_25(): if not gdaltest.download_file('http://www.gwg.nga.mil/ntb/baseline/docs/HRE_spec/Case1_HRE10G324642N1170747W_Uxx.hr5', 'Case1_HRE10G324642N1170747W_Uxx.hr5'): pytest.skip() tst = gdaltest.GDALTest('NITF', 'tmp/cache/Case1_HRE10G324642N1170747W_Uxx.hr5', 1, 7099, filename_absolute=1) tst.testOpen() ds = gdal.Open('tmp/cache/Case1_HRE10G324642N1170747W_Uxx.hr5') xml_tre = ds.GetMetadata('xml:TRE')[0] ds = None assert xml_tre.find('<tre name="PIAPRD"') != -1, 'did not get expected xml:TRE' ############################################################################### # Cleanup. def test_nitf_cleanup(): try: gdal.GetDriverByName('NITF').Delete('tmp/test_create.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf9.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/test_13.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/test_29.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/test_29_copy.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf36.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf37.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf38.ntf') os.unlink('tmp/nitf38.ntf_0.ovr') except (RuntimeError, OSError): pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf39.ntf') except (RuntimeError, OSError): pass try: os.stat('tmp/nitf40.ntf') gdal.GetDriverByName('NITF').Delete('tmp/nitf40.ntf') except (RuntimeError, OSError): pass try: os.stat('tmp/nitf42.ntf') gdal.GetDriverByName('NITF').Delete('tmp/nitf42.ntf') except (OSError, RuntimeError): pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf44.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf45.ntf') os.unlink('tmp/nitf45.ntf_0.ovr') except (RuntimeError, OSError): pass try: os.stat('tmp/nitf46.ntf') gdal.GetDriverByName('NITF').Delete('tmp/nitf46.ntf') os.unlink('tmp/nitf46.ntf_0.ovr') except (RuntimeError, OSError): pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf49.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf49_2.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf50.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf51.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf52.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf53.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf54.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf55.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf56.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf57.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf58.ntf') except RuntimeError: pass try: os.remove('tmp/nitf59.hdr') gdal.GetDriverByName('NITF').Delete('tmp/nitf59.ntf') except (OSError, RuntimeError): pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf62.ntf') except RuntimeError: pass try: gdal.GetDriverByName('NITF').Delete('tmp/nitf63.ntf') except RuntimeError: pass
37.993622
1,079
0.594426
0f228f25863905a12148bddbe4cf13a44edfe2fe
22
py
Python
consul/datadog_checks/consul/__about__.py
seants/integrations-core
1e5548915fc24f1bbd095e845f0940c22992b09c
[ "BSD-3-Clause" ]
445
2019-01-26T13:50:26.000Z
2022-03-18T05:17:38.000Z
rasa_sdk/version.py
ClaudeCoulombe/rasa-sdk
17eb70187555c8656336f9f21dcb2eb18655f455
[ "Apache-2.0" ]
242
2019-01-29T15:48:27.000Z
2022-03-31T22:09:21.000Z
rasa_sdk/version.py
ClaudeCoulombe/rasa-sdk
17eb70187555c8656336f9f21dcb2eb18655f455
[ "Apache-2.0" ]
31
2019-03-10T09:51:27.000Z
2022-02-14T23:11:12.000Z
__version__ = "1.5.1"
11
21
0.636364
9bb843cbec397759faee30373360260fb3503149
692
py
Python
cpuTemperatureReading.py
bobjects/google-spreadsheet-temperature-logger
91861ddc7f651288116a727b17c9b9ffdbd15ea3
[ "MIT" ]
null
null
null
cpuTemperatureReading.py
bobjects/google-spreadsheet-temperature-logger
91861ddc7f651288116a727b17c9b9ffdbd15ea3
[ "MIT" ]
null
null
null
cpuTemperatureReading.py
bobjects/google-spreadsheet-temperature-logger
91861ddc7f651288116a727b17c9b9ffdbd15ea3
[ "MIT" ]
null
null
null
from temperatureReading import TemperatureReading class CPUTemperatureReading(TemperatureReading): def acquireCelsius(self): return self.parseRawString(self.procFileContents) @property def procFileName(self): return "" @property def procFileContents(self): try: with open(self.procFileName, "r") as procFile: return procFile.read() except: return "" def parseRawString(self, aString): # by default, we assume that the proc file reports the temp as thousandths of a degree # celsius, with only one line in the file. Override as needed. return float(aString) / 1000.0
28.833333
94
0.654624
303573c9d577292f6b309f692aa48e563ebe5b9a
3,875
py
Python
tests/test_git_format_pkg_patch.py
openSUSE/git-packaging-tools
be81c7d207db185ddc0d2510bd025cfc2e9613c7
[ "MIT" ]
8
2017-08-15T12:51:34.000Z
2020-10-07T09:58:34.000Z
tests/test_git_format_pkg_patch.py
openSUSE/git-packaging-tools
be81c7d207db185ddc0d2510bd025cfc2e9613c7
[ "MIT" ]
5
2017-02-04T12:32:16.000Z
2020-07-01T14:13:19.000Z
tests/test_git_format_pkg_patch.py
openSUSE/git-packaging-tools
be81c7d207db185ddc0d2510bd025cfc2e9613c7
[ "MIT" ]
6
2017-02-07T13:31:21.000Z
2021-02-10T23:14:03.000Z
from gfp import get_diff_contents, unique class TestUtils(object): ''' Grouped tests for utility functions ''' diff_a = """ From b338b21fe340ee4efa0045894315fcf20be1dc49 Mon Sep 17 00:00:00 2001 From: Test <info@suse.com> Date: Wed, 14 Dec 2016 10:33:39 +0100 Subject: [PATCH] Avoid failures on SLES 12 SP2 because of new systemd TaskMax limit (bsc#985112) --- pkg/salt-master.service | 1 + 1 file changed, 1 insertion(+) diff --git a/pkg/salt-master.service b/pkg/salt-master.service index 59be50301a..ecd3edd467 100644 --- a/pkg/salt-master.service +++ b/pkg/salt-master.service @@ -6,6 +6,7 @@ After=network.target LimitNOFILE=16384 Type=simple ExecStart=/usr/bin/salt-master +TasksMax=infinity [Install] WantedBy=multi-user.target -- 2.11.0 """ diff_b = """ From 7bbbd3b6ebaf3988a4f97b905040b56be065f201 Mon Sep 17 00:00:00 2001 From: Test <info@suse.com> Date: Fri, 29 Jul 2016 10:50:21 +0200 Subject: [PATCH] Run salt-api as user salt (bsc#990029) --- pkg/salt-api.service | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pkg/salt-api.service b/pkg/salt-api.service index c3e67d510c..9be2cb8ee6 100644 --- a/pkg/salt-api.service +++ b/pkg/salt-api.service @@ -3,8 +3,8 @@ Description=The Salt API After=network.target [Service] -Type=notify -NotifyAccess=all +User=salt +Type=simple LimitNOFILE=8192 ExecStart=/usr/bin/salt-api TimeoutStopSec=3 -- 2.11.0 """ diff_c = """ From 0943872fab17ae5400acc5b66cdb338193291e9e Mon Sep 17 00:00:00 2001 From: Test <info@saltstack.com> Date: Mon, 30 Jan 2017 16:43:40 -0700 Subject: [PATCH 350/351] Add 2016.11.3 release notes file (#39044) --- doc/topics/releases/2016.11.3.rst | 5 +++++ 1 file changed, 5 insertions(+) create mode 100644 doc/topics/releases/2016.11.3.rst diff --git a/doc/topics/releases/2016.11.3.rst b/doc/topics/releases/2016.11.3.rst new file mode 100644 index 0000000000..cb2a5974ff --- /dev/null +++ b/doc/topics/releases/2016.11.3.rst @@ -0,0 +1,5 @@ +============================ +Salt 2016.11.3 Release Notes +============================ + +Version 2016.11.3 is a bugfix release for :ref:`2016.11.0 <release-2016-11-0>`. -- 2.11.0 """ def test_get_diff_contents(self): ''' Test diff content extracted properly. :return: ''' sample_content_a = [' LimitNOFILE=16384\n Type=simple\n ExecStart=/usr/bin/salt-master\n' '+TasksMax=infinity\n\n [Install]\n WantedBy=multi-user.target\n'] assert get_diff_contents(self.diff_a) == sample_content_a sample_content_b = [' After=network.target\n\n [Service]\n-Type=notify\n-NotifyAccess=all' '\n+User=salt\n+Type=simple\n LimitNOFILE=8192\n ExecStart=/usr/bin/salt-api' '\n TimeoutStopSec=3\n'] assert get_diff_contents(self.diff_b) == sample_content_b sample_content_c = ['+============================\n+Salt 2016.11.3 Release Notes\n' '+============================\n+\n+Version 2016.11.3 is a bugfix release ' 'for :ref:`2016.11.0 <release-2016-11-0>`.\n'] assert get_diff_contents(self.diff_c) == sample_content_c def test_make_unique_filename(self): ''' Test unique filename :return: ''' fname = 'file.patch' for iter in range(10): fname = unique(fname) assert fname == 'file-{0}.patch'.format(iter + 1) fname = 'file-something.patch' for iter in range(10): fname = unique(fname) assert fname == 'file-something-{0}.patch'.format(iter + 1) fname = 'some-archive-here.tar.gz' for iter in range(10): fname = unique(fname) assert fname == 'some-archive-here-{0}.tar.gz'.format(iter + 1)
30.273438
105
0.626581
498c3fafbddb00616f420673aa6eb7436a022b6f
853
py
Python
options/test_options.py
IrinaM21/ChestXRayVis
13e8f2767406b924f38695b79b7cf80abf0ef755
[ "MIT" ]
2
2021-04-06T03:45:12.000Z
2021-04-12T17:27:05.000Z
options/test_options.py
IrinaM21/ChestXRayVis
13e8f2767406b924f38695b79b7cf80abf0ef755
[ "MIT" ]
null
null
null
options/test_options.py
IrinaM21/ChestXRayVis
13e8f2767406b924f38695b79b7cf80abf0ef755
[ "MIT" ]
null
null
null
from .base_options import BaseOptions class TestOptions(BaseOptions): def initialize(self, parser): parser = BaseOptions.initialize(self, parser) parser.add_argument('--ntest', type=int, default=float("inf"), help='# of the test examples') parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here') parser.add_argument('--how_many', type=int, default=50, help='how many test images to run') parser.add_argument('--phase', type=str, default='test', help='train, val, test') parser.add_argument('--nsampling', type=int, default=50, help='ramplimg # times for each images') parser.add_argument('--save_number', type=int, default=10, help='choice # reasonable results based on the discriminator score') self.isTrain = False return parser
47.388889
135
0.682298
29d0c6f250e078e9680104a36619da59f559cd8f
10,129
py
Python
trainer/trainer.py
justinge/DBnet.Pytorch
00dd292f1e0091e71486616b0771ab978dbd0d28
[ "Apache-2.0" ]
null
null
null
trainer/trainer.py
justinge/DBnet.Pytorch
00dd292f1e0091e71486616b0771ab978dbd0d28
[ "Apache-2.0" ]
null
null
null
trainer/trainer.py
justinge/DBnet.Pytorch
00dd292f1e0091e71486616b0771ab978dbd0d28
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2019/8/23 21:58 # @Author : zhoujun import time import torch import torchvision.utils as vutils from tqdm import tqdm from base import BaseTrainer from utils import WarmupPolyLR, runningScore, cal_text_score class Trainer(BaseTrainer): def __init__(self, config, model, criterion, train_loader, validate_loader, metric_cls, post_process=None): a = 1 super(Trainer, self).__init__(config, model, criterion) self.show_images_iter = self.config['trainer']['show_images_iter'] self.train_loader = train_loader if validate_loader is not None: assert post_process is not None and metric_cls is not None self.validate_loader = validate_loader self.post_process = post_process self.metric_cls = metric_cls self.train_loader_len = len(train_loader) if self.config['lr_scheduler']['type'] == 'WarmupPolyLR': warmup_iters = config['lr_scheduler']['args']['warmup_epoch'] * self.train_loader_len if self.start_epoch > 1: self.config['lr_scheduler']['args']['last_epoch'] = (self.start_epoch - 1) * self.train_loader_len self.scheduler = WarmupPolyLR(self.optimizer, max_iters=self.epochs * self.train_loader_len, warmup_iters=warmup_iters, **config['lr_scheduler']['args']) if self.validate_loader is not None: self.logger_info( 'train dataset has {} samples,{} in dataloader, validate dataset has {} samples,{} in dataloader'.format( len(self.train_loader.dataset), self.train_loader_len, len(self.validate_loader.dataset), len(self.validate_loader))) else: self.logger_info('train dataset has {} samples,{} in dataloader'.format(len(self.train_loader.dataset), self.train_loader_len)) def _train_epoch(self, epoch): self.model.train() epoch_start = time.time() batch_start = time.time() train_loss = 0. running_metric_text = runningScore(2) lr = self.optimizer.param_groups[0]['lr'] for i, batch in enumerate(self.train_loader): if i >= self.train_loader_len: break self.global_step += 1 lr = self.optimizer.param_groups[0]['lr'] # 数据进行转换和丢到gpu for key, value in batch.items(): if value is not None: if isinstance(value, torch.Tensor): batch[key] = value.to(self.device) cur_batch_size = batch['img'].size()[0] preds = self.model(batch['img']) loss_dict = self.criterion(preds, batch) # backward self.optimizer.zero_grad() loss_dict['loss'].backward() self.optimizer.step() if self.config['lr_scheduler']['type'] == 'WarmupPolyLR': self.scheduler.step() # acc iou score_shrink_map = cal_text_score(preds[:, 0, :, :], batch['shrink_map'], batch['shrink_mask'], running_metric_text, thred=self.config['post_processing']['args']['thresh']) # loss 和 acc 记录到日志 loss_str = 'loss: {:.4f}, '.format(loss_dict['loss'].item()) for idx, (key, value) in enumerate(loss_dict.items()): loss_dict[key] = value.item() if key == 'loss': continue loss_str += '{}: {:.4f}'.format(key, loss_dict[key]) if idx < len(loss_dict) - 1: loss_str += ', ' train_loss += loss_dict['loss'] acc = score_shrink_map['Mean Acc'] iou_shrink_map = score_shrink_map['Mean IoU'] if self.global_step % self.log_iter == 0: batch_time = time.time() - batch_start self.logger_info( '[{}/{}], [{}/{}], global_step: {}, speed: {:.1f} samples/sec, acc: {:.4f}, iou_shrink_map: {:.4f}, {}, lr:{:.6}, time:{:.2f}'.format( epoch, self.epochs, i + 1, self.train_loader_len, self.global_step, self.log_iter * cur_batch_size / batch_time, acc, iou_shrink_map, loss_str, lr, batch_time)) batch_start = time.time() if self.tensorboard_enable and self.config['local_rank'] == 0: # write tensorboard for key, value in loss_dict.items(): self.writer.add_scalar('TRAIN/LOSS/{}'.format(key), value, self.global_step) self.writer.add_scalar('TRAIN/ACC_IOU/acc', acc, self.global_step) self.writer.add_scalar('TRAIN/ACC_IOU/iou_shrink_map', iou_shrink_map, self.global_step) self.writer.add_scalar('TRAIN/lr', lr, self.global_step) if self.global_step % self.show_images_iter == 0: # show images on tensorboard self.inverse_normalize(batch['img']) self.writer.add_images('TRAIN/imgs', batch['img'], self.global_step) # shrink_labels and threshold_labels shrink_labels = batch['shrink_map'] threshold_labels = batch['threshold_map'] shrink_labels[shrink_labels <= 0.5] = 0 shrink_labels[shrink_labels > 0.5] = 1 show_label = torch.cat([shrink_labels, threshold_labels]) show_label = vutils.make_grid(show_label.unsqueeze(1), nrow=cur_batch_size, normalize=False, padding=20, pad_value=1) self.writer.add_image('TRAIN/gt', show_label, self.global_step) # model output show_pred = [] for kk in range(preds.shape[1]): show_pred.append(preds[:, kk, :, :]) show_pred = torch.cat(show_pred) show_pred = vutils.make_grid(show_pred.unsqueeze(1), nrow=cur_batch_size, normalize=False, padding=20, pad_value=1) self.writer.add_image('TRAIN/preds', show_pred, self.global_step) return {'train_loss': train_loss / self.train_loader_len, 'lr': lr, 'time': time.time() - epoch_start, 'epoch': epoch} def _eval(self, epoch): self.model.eval() # torch.cuda.empty_cache() # speed up evaluating after training finished raw_metrics = [] total_frame = 0.0 total_time = 0.0 for i, batch in tqdm(enumerate(self.validate_loader), total=len(self.validate_loader), desc='test model'): with torch.no_grad(): # 数据进行转换和丢到gpu for key, value in batch.items(): if value is not None: if isinstance(value, torch.Tensor): batch[key] = value.to(self.device) start = time.time() preds = self.model(batch['img']) boxes, scores = self.post_process(batch, preds,is_output_polygon=self.metric_cls.is_output_polygon) total_frame += batch['img'].size()[0] total_time += time.time() - start raw_metric = self.metric_cls.validate_measure(batch, (boxes, scores)) raw_metrics.append(raw_metric) metrics = self.metric_cls.gather_measure(raw_metrics) self.logger_info('FPS:{}'.format(total_frame / total_time)) return metrics['recall'].avg, metrics['precision'].avg, metrics['fmeasure'].avg def _on_epoch_finish(self): self.logger_info('[{}/{}], train_loss: {:.4f}, time: {:.4f}, lr: {}'.format( self.epoch_result['epoch'], self.epochs, self.epoch_result['train_loss'], self.epoch_result['time'], self.epoch_result['lr'])) net_save_path = '{}/model_latest.pth'.format(self.checkpoint_dir) net_save_path_best = '{}/model_best.pth'.format(self.checkpoint_dir) if self.config['local_rank'] == 0: self._save_checkpoint(self.epoch_result['epoch'], net_save_path) save_best = False if self.validate_loader is not None and self.metric_cls is not None: # 使用f1作为最优模型指标 recall, precision, hmean = self._eval(self.epoch_result['epoch']) if self.tensorboard_enable: self.writer.add_scalar('EVAL/recall', recall, self.global_step) self.writer.add_scalar('EVAL/precision', precision, self.global_step) self.writer.add_scalar('EVAL/hmean', hmean, self.global_step) self.logger_info('test: recall: {:.6f}, precision: {:.6f}, f1: {:.6f}'.format(recall, precision, hmean)) if hmean >= self.metrics['hmean']: save_best = True self.metrics['train_loss'] = self.epoch_result['train_loss'] self.metrics['hmean'] = hmean self.metrics['precision'] = precision self.metrics['recall'] = recall self.metrics['best_model_epoch'] = self.epoch_result['epoch'] else: if self.epoch_result['train_loss'] <= self.metrics['train_loss']: save_best = True self.metrics['train_loss'] = self.epoch_result['train_loss'] self.metrics['best_model_epoch'] = self.epoch_result['epoch'] best_str = 'current best, ' for k, v in self.metrics.items(): best_str += '{}: {:.6f}, '.format(k, v) self.logger_info(best_str) if save_best: import shutil shutil.copy(net_save_path, net_save_path_best) self.logger_info("Saving current best: {}".format(net_save_path_best)) else: self.logger_info("Saving checkpoint: {}".format(net_save_path)) def _on_train_finish(self): for k, v in self.metrics.items(): self.logger_info('{}:{}'.format(k, v)) self.logger_info('finish train')
52.21134
154
0.573897
1e5bab80845593f186a6d6c3af8e28946948b87a
12,191
py
Python
Lib/multiprocessing/queues.py
lotapp/cpython3
2c3125eba450f4f4ec649cae5613b3f6cbc4f110
[ "PSF-2.0" ]
2
2019-07-05T09:19:52.000Z
2019-12-18T10:31:38.000Z
Lib/multiprocessing/queues.py
lotapp/cpython3
2c3125eba450f4f4ec649cae5613b3f6cbc4f110
[ "PSF-2.0" ]
null
null
null
Lib/multiprocessing/queues.py
lotapp/cpython3
2c3125eba450f4f4ec649cae5613b3f6cbc4f110
[ "PSF-2.0" ]
null
null
null
# # Module implementing queues # # multiprocessing/queues.py # # Copyright (c) 2006-2008, R Oudkerk # Licensed to PSF under a Contributor Agreement. # __all__ = ['Queue', 'SimpleQueue', 'JoinableQueue'] import sys import os import threading import collections import time import weakref import errno from queue import Empty, Full import _multiprocessing from . import connection from . import context _ForkingPickler = context.reduction.ForkingPickler from .util import debug, info, Finalize, register_after_fork, is_exiting # 队列类型,使用PIPE,缓存,线程 # Queue type using a pipe, buffer and thread class Queue(object): # ctx = multiprocessing.get_context("xxx") # 上下文总共3种:spawn、fork、forkserver def __init__(self, maxsize=0, *, ctx): # 默认使用最大容量 if maxsize <= 0: from .synchronize import SEM_VALUE_MAX as maxsize self._maxsize = maxsize # 指定队列大小 # 创建了一个PIPE匿名管道(单向) self._reader, self._writer = connection.Pipe(duplex=False) # `multiprocessing/synchronize.py > Lock` self._rlock = ctx.Lock() # 进程锁(读)【非递归】 self._opid = os.getpid() # 获取PID if sys.platform == 'win32': self._wlock = None else: self._wlock = ctx.Lock() # 进程锁(写)【非递归】 # Semaphore信号量通常用于保护容量有限的资源 # 控制信号量,超了就异常 self._sem = ctx.BoundedSemaphore(maxsize) # 不忽略PIPE管道破裂的错误 self._ignore_epipe = False # 线程相关操作 self._after_fork() # 向`_afterfork_registry`字典中注册 if sys.platform != 'win32': register_after_fork(self, Queue._after_fork) def __getstate__(self): context.assert_spawning(self) return (self._ignore_epipe, self._maxsize, self._reader, self._writer, self._rlock, self._wlock, self._sem, self._opid) def __setstate__(self, state): (self._ignore_epipe, self._maxsize, self._reader, self._writer, self._rlock, self._wlock, self._sem, self._opid) = state self._after_fork() def _after_fork(self): debug('Queue._after_fork()') self._notempty = threading.Condition(threading.Lock()) self._buffer = collections.deque() self._thread = None self._jointhread = None self._joincancelled = False self._closed = False self._close = None self._send_bytes = self._writer.send_bytes self._recv_bytes = self._reader.recv_bytes self._poll = self._reader.poll def put(self, obj, block=True, timeout=None): # 如果Queue已经关闭就抛异常 assert not self._closed, "Queue {0!r} has been closed".format(self) # 记录信号量的锁 if not self._sem.acquire(block, timeout): raise Full # 超过数量,抛个异常 # 条件变量允许一个或多个线程等待,直到另一个线程通知它们 with self._notempty: if self._thread is None: self._start_thread() self._buffer.append(obj) self._notempty.notify() def get(self, block=True, timeout=None): # 默认情况是阻塞(lock加锁) if block and timeout is None: with self._rlock: res = self._recv_bytes() self._sem.release() # 信号量+1 else: if block: deadline = time.monotonic() + timeout # 超时抛异常 if not self._rlock.acquire(block, timeout): raise Empty try: if block: timeout = deadline - time.monotonic() # 不管有没有内容都去读,超时就抛异常 if not self._poll(timeout): raise Empty elif not self._poll(): raise Empty # 接收字节数据作为字节对象 res = self._recv_bytes() self._sem.release() # 信号量+1 finally: # 释放锁 self._rlock.release() # 释放锁后,重新序列化数据 # unserialize the data after having released the lock return _ForkingPickler.loads(res) def qsize(self): # Raises NotImplementedError on Mac OSX because of broken sem_getvalue() return self._maxsize - self._sem._semlock._get_value() def empty(self): return not self._poll() def full(self): return self._sem._semlock._is_zero() def get_nowait(self): return self.get(False) def put_nowait(self, obj): return self.put(obj, False) def close(self): self._closed = True try: self._reader.close() finally: close = self._close if close: self._close = None close() def join_thread(self): debug('Queue.join_thread()') assert self._closed, "Queue {0!r} not closed".format(self) if self._jointhread: self._jointhread() def cancel_join_thread(self): debug('Queue.cancel_join_thread()') self._joincancelled = True try: self._jointhread.cancel() except AttributeError: pass def _start_thread(self): debug('Queue._start_thread()') # Start thread which transfers data from buffer to pipe self._buffer.clear() self._thread = threading.Thread( target=Queue._feed, args=(self._buffer, self._notempty, self._send_bytes, self._wlock, self._writer.close, self._ignore_epipe, self._on_queue_feeder_error, self._sem), name='QueueFeederThread') self._thread.daemon = True debug('doing self._thread.start()') self._thread.start() debug('... done self._thread.start()') if not self._joincancelled: self._jointhread = Finalize( self._thread, Queue._finalize_join, [weakref.ref(self._thread)], exitpriority=-5) # Send sentinel to the thread queue object when garbage collected self._close = Finalize( self, Queue._finalize_close, [self._buffer, self._notempty], exitpriority=10) @staticmethod def _finalize_join(twr): debug('joining queue thread') thread = twr() if thread is not None: thread.join() debug('... queue thread joined') else: debug('... queue thread already dead') @staticmethod def _finalize_close(buffer, notempty): debug('telling queue thread to quit') with notempty: buffer.append(_sentinel) notempty.notify() @staticmethod def _feed(buffer, notempty, send_bytes, writelock, close, ignore_epipe, onerror, queue_sem): debug('starting thread to feed data to pipe') nacquire = notempty.acquire nrelease = notempty.release nwait = notempty.wait bpopleft = buffer.popleft sentinel = _sentinel if sys.platform != 'win32': wacquire = writelock.acquire wrelease = writelock.release else: wacquire = None while 1: try: nacquire() try: if not buffer: nwait() finally: nrelease() try: while 1: obj = bpopleft() if obj is sentinel: debug('feeder thread got sentinel -- exiting') close() return # serialize the data before acquiring the lock obj = _ForkingPickler.dumps(obj) if wacquire is None: send_bytes(obj) else: wacquire() try: send_bytes(obj) finally: wrelease() except IndexError: pass except Exception as e: if ignore_epipe and getattr(e, 'errno', 0) == errno.EPIPE: return # 由于这在守护程序线程中运行,因此在进程清理时,它使用的资源可能 # 变得无法使用。我们忽略在流程开始清理后发生的错误。 # Since this runs in a daemon thread the resources it uses # may be become unusable while the process is cleaning up. # We ignore errors which happen after the process has # started to cleanup. if is_exiting(): info('error in queue thread: %s', e) return else: # Since the object has not been sent in the queue, we need # to decrease the size of the queue. The error acts as # if the object had been silently removed from the queue # and this step is necessary to have a properly working # queue. queue_sem.release() onerror(e, obj) @staticmethod def _on_queue_feeder_error(e, obj): """ Private API hook called when feeding data in the background thread raises an exception. For overriding by concurrent.futures. """ import traceback traceback.print_exc() _sentinel = object() # # A queue type which also supports join() and task_done() methods # # Note that if you do not call task_done() for each finished task then # eventually the counter's semaphore may overflow causing Bad Things # to happen. # class JoinableQueue(Queue): def __init__(self, maxsize=0, *, ctx): Queue.__init__(self, maxsize, ctx=ctx) self._unfinished_tasks = ctx.Semaphore(0) self._cond = ctx.Condition() def __getstate__(self): return Queue.__getstate__(self) + (self._cond, self._unfinished_tasks) def __setstate__(self, state): Queue.__setstate__(self, state[:-2]) self._cond, self._unfinished_tasks = state[-2:] def put(self, obj, block=True, timeout=None): assert not self._closed, "Queue {0!r} is closed".format(self) if not self._sem.acquire(block, timeout): raise Full with self._notempty, self._cond: if self._thread is None: self._start_thread() self._buffer.append(obj) self._unfinished_tasks.release() self._notempty.notify() def task_done(self): with self._cond: if not self._unfinished_tasks.acquire(False): raise ValueError('task_done() called too many times') if self._unfinished_tasks._semlock._is_zero(): self._cond.notify_all() def join(self): with self._cond: if not self._unfinished_tasks._semlock._is_zero(): self._cond.wait() # # Simplified Queue type -- really just a locked pipe # class SimpleQueue(object): def __init__(self, *, ctx): self._reader, self._writer = connection.Pipe(duplex=False) self._rlock = ctx.Lock() self._poll = self._reader.poll if sys.platform == 'win32': self._wlock = None else: self._wlock = ctx.Lock() def empty(self): return not self._poll() def __getstate__(self): context.assert_spawning(self) return (self._reader, self._writer, self._rlock, self._wlock) def __setstate__(self, state): (self._reader, self._writer, self._rlock, self._wlock) = state self._poll = self._reader.poll def get(self): with self._rlock: res = self._reader.recv_bytes() # unserialize the data after having released the lock return _ForkingPickler.loads(res) def put(self, obj): # serialize the data before acquiring the lock obj = _ForkingPickler.dumps(obj) if self._wlock is None: # writes to a message oriented win32 pipe are atomic self._writer.send_bytes(obj) else: with self._wlock: self._writer.send_bytes(obj)
32.33687
80
0.564269
9bebc880f97708d73aeaabe3fe878ec5f53343b4
9,506
py
Python
lib/fast_rcnn/config.py
yanxp/self_learning-framwork
df7902f83913ba709170a8e2e003abe89619f5cc
[ "MIT" ]
1
2018-03-18T11:50:58.000Z
2018-03-18T11:50:58.000Z
lib/fast_rcnn/config.py
yanxp/self_learning-framwork
df7902f83913ba709170a8e2e003abe89619f5cc
[ "MIT" ]
null
null
null
lib/fast_rcnn/config.py
yanxp/self_learning-framwork
df7902f83913ba709170a8e2e003abe89619f5cc
[ "MIT" ]
null
null
null
# Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Fast R-CNN config system. This file specifies default config options for Fast R-CNN. You should not change values in this file. Instead, you should write a config file (in yaml) and use cfg_from_file(yaml_file) to load it and override the default options. Most tools in $ROOT/tools take a --cfg option to specify an override file. - See tools/{train,test}_net.py for example code that uses cfg_from_file() - See experiments/cfgs/*.yml for example YAML config override files """ import os import os.path as osp import numpy as np # `pip install easydict` if you don't have it from easydict import EasyDict as edict __C = edict() # Consumers can get config by: # from fast_rcnn_config import cfg cfg = __C # # Training options # __C.TRAIN = edict() # Scales to use during training (can list multiple scales) # Each scale is the pixel size of an image's shortest side __C.TRAIN.SCALES = (400,500,600,700,800) # Max pixel size of the longest side of a scaled input image __C.TRAIN.MAX_SIZE = 1000 # Images to use per minibatch __C.TRAIN.IMS_PER_BATCH = 4 # Minibatch size (number of regions of interest [ROIs]) __C.TRAIN.BATCH_SIZE = 128 # Fraction of minibatch that is labeled foreground (i.e. class > 0) __C.TRAIN.FG_FRACTION = 0.25 # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH) __C.TRAIN.FG_THRESH = 0.5 # Overlap threshold for a ROI to be considered background (class = 0 if # overlap in [LO, HI)) __C.TRAIN.BG_THRESH_HI = 0.5 __C.TRAIN.BG_THRESH_LO = 0.1 # Use horizontally-flipped images during training? __C.TRAIN.USE_FLIPPED = True # Train bounding-box regressors __C.TRAIN.BBOX_REG = True # Overlap required between a ROI and ground-truth box in order for that ROI to # be used as a bounding-box regression training example __C.TRAIN.BBOX_THRESH = 0.5 # Iterations between snapshots __C.TRAIN.SNAPSHOT_ITERS = 10000 # solver.prototxt specifies the snapshot path prefix, this adds an optional # infix to yield the path: <prefix>[_<infix>]_iters_XYZ.caffemodel __C.TRAIN.SNAPSHOT_INFIX = '' # Use a prefetch thread in roi_data_layer.layer # So far I haven't found this useful; likely more engineering work is required __C.TRAIN.USE_PREFETCH = False # Normalize the targets (subtract empirical mean, divide by empirical stddev) __C.TRAIN.BBOX_NORMALIZE_TARGETS = True # Deprecated (inside weights) __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Normalize the targets using "precomputed" (or made up) means and stdevs # (BBOX_NORMALIZE_TARGETS must also be True) __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = False __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) __C.TRAIN.RPN_NORMALIZE_TARGETS = False __C.TRAIN.RPN_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.RPN_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) # Train using these proposals __C.TRAIN.PROPOSAL_METHOD = 'selective_search' # Make minibatches from images that have similar aspect ratios (i.e. both # tall and thin or both short and wide) in order to avoid wasting computation # on zero-padding. __C.TRAIN.ASPECT_GROUPING = True # Use RPN to detect objects __C.TRAIN.HAS_RPN = False # IOU >= thresh: positive example __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 # IOU < thresh: negative example __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 # If an anchor statisfied by positive and negative conditions set to negative __C.TRAIN.RPN_CLOBBER_POSITIVES = False # Max number of foreground examples __C.TRAIN.RPN_FG_FRACTION = 0.5 # Total number of examples __C.TRAIN.RPN_BATCHSIZE = 256 # NMS threshold used on RPN proposals __C.TRAIN.RPN_NMS_THRESH = 0.7 # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TRAIN.RPN_POST_NMS_TOP_N = 2000 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) __C.TRAIN.RPN_MIN_SIZE = 16 # Deprecated (outside weights) __C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Give the positive RPN examples weight of p * 1 / {num positives} # and give negatives a weight of (1 - p) # Set to -1.0 to use uniform example weighting __C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0 # whether use class aware box or not __C.TRAIN.AGNOSTIC = False # # Testing options # __C.TEST = edict() # Scales to use during testing (can list multiple scales) # Each scale is the pixel size of an image's shortest side __C.TEST.SCALES = (200, 400, 600,800,) #__C.TEST.SCALES = (600,) # Max pixel size of the longest side of a scaled input image __C.TEST.MAX_SIZE = 1000 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) __C.TEST.NMS = 0.5 __C.TEST.USE_FLIPPED=True # Experimental: treat the (K+1) units in the cls_score layer as linear # predictors (trained, eg, with one-vs-rest SVMs). __C.TEST.SVM = False # Test using bounding-box regressors __C.TEST.BBOX_REG = True # Propose boxes __C.TEST.HAS_RPN = False # Test using these proposals __C.TEST.PROPOSAL_METHOD = 'selective_search' ## NMS threshold used on RPN proposals __C.TEST.RPN_NMS_THRESH = 0.7 ## Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TEST.RPN_PRE_NMS_TOP_N = 6000 ## Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TEST.RPN_POST_NMS_TOP_N = 300 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) __C.TEST.RPN_MIN_SIZE = 16 # whether use class aware box or not __C.TEST.AGNOSTIC = False # # MISC # # The mapping from image coordinates to feature map coordinates might cause # some boxes that are distinct in image space to become identical in feature # coordinates. If DEDUP_BOXES > 0, then DEDUP_BOXES is used as the scale factor # for identifying duplicate boxes. # 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16 __C.DEDUP_BOXES = 1./16. # Pixel mean values (BGR order) as a (1, 1, 3) array # We use the same pixel mean for all networks even though it's not exactly what # they were trained with __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) # For reproducibility __C.RNG_SEED = 3 # A small number that's used many times __C.EPS = 1e-14 # Root directory of project __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Data directory __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data')) # Model directory __C.MODELS_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'models', 'pascal_voc')) # Name (or path to) the matlab executable __C.MATLAB = 'matlab' # Place outputs under an experiments directory __C.EXP_DIR = 'default' # Use GPU implementation of non-maximum suppression __C.USE_GPU_NMS = True # Default GPU device id __C.GPU_ID = 0 def get_output_dir(imdb, net=None): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name)) if net is not None: outdir = osp.join(outdir, net.name) if not os.path.exists(outdir): os.makedirs(outdir) return outdir def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.iteritems(): # a must specify keys that are in b if not b.has_key(k): raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print('Error under config key: {}'.format(k)) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C) def cfg_from_list(cfg_list): """Set config keys via list (e.g., from command line).""" from ast import literal_eval assert len(cfg_list) % 2 == 0 for k, v in zip(cfg_list[0::2], cfg_list[1::2]): key_list = k.split('.') d = __C for subkey in key_list[:-1]: assert d.has_key(subkey) d = d[subkey] subkey = key_list[-1] assert d.has_key(subkey) try: value = literal_eval(v) except: # handle the case when v is a string literal value = v assert type(value) == type(d[subkey]), \ 'type {} does not match original type {}'.format( type(value), type(d[subkey])) d[subkey] = value
32.443686
91
0.695876
f2e18a6a6f8b14acc5b5214a2fec88b209b18e6b
141
py
Python
LinearModel/logistic_reg/test.py
Jarvis73/MachineLearning
a3add9eb0f45cbcc193ca72236373ae5b4befcb5
[ "MIT" ]
2
2021-06-10T05:02:51.000Z
2021-09-16T14:23:26.000Z
LinearModel/logistic_reg/test.py
Jarvis73/MachineLearning
a3add9eb0f45cbcc193ca72236373ae5b4befcb5
[ "MIT" ]
null
null
null
LinearModel/logistic_reg/test.py
Jarvis73/MachineLearning
a3add9eb0f45cbcc193ca72236373ae5b4befcb5
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-3, 3) y = -x**5 + x**3 + 4*x plt.plot(x, y) plt.ylim(-10, 10) plt.show()
17.625
31
0.631206
98e9cb54c2f1d0b29f02b657b8c2e4d324dfc377
3,874
py
Python
injaz/hooks.py
erpcloudsystems/injaz
ed273d2ff179070e0b44dbc1932ac8ffb13e27de
[ "MIT" ]
null
null
null
injaz/hooks.py
erpcloudsystems/injaz
ed273d2ff179070e0b44dbc1932ac8ffb13e27de
[ "MIT" ]
null
null
null
injaz/hooks.py
erpcloudsystems/injaz
ed273d2ff179070e0b44dbc1932ac8ffb13e27de
[ "MIT" ]
null
null
null
from . import __version__ as app_version app_name = "injaz" app_title = "Injaz" app_publisher = "erpcloud.systems" app_description = "injaztech.net customization" app_icon = "octicon octicon-file-directory" app_color = "grey" app_email = "mg@erpcloud.systems" app_license = "MIT" # Includes in <head> # ------------------ # include js, css files in header of desk.html # app_include_css = "/assets/injaz/css/injaz.css" # app_include_js = "/assets/injaz/js/injaz.js" # include js, css files in header of web template # web_include_css = "/assets/injaz/css/injaz.css" # web_include_js = "/assets/injaz/js/injaz.js" # include custom scss in every website theme (without file extension ".scss") # website_theme_scss = "injaz/public/scss/website" # include js, css files in header of web form # webform_include_js = {"doctype": "public/js/doctype.js"} # webform_include_css = {"doctype": "public/css/doctype.css"} # include js in page # page_js = {"page" : "public/js/file.js"} # include js in doctype views # doctype_js = {"doctype" : "public/js/doctype.js"} # doctype_list_js = {"doctype" : "public/js/doctype_list.js"} # doctype_tree_js = {"doctype" : "public/js/doctype_tree.js"} # doctype_calendar_js = {"doctype" : "public/js/doctype_calendar.js"} # Home Pages # ---------- # application home page (will override Website Settings) # home_page = "login" # website user home page (by Role) # role_home_page = { # "Role": "home_page" # } # Generators # ---------- # automatically create page for each record of this doctype # website_generators = ["Web Page"] # Installation # ------------ # before_install = "injaz.install.before_install" # after_install = "injaz.install.after_install" # Desk Notifications # ------------------ # See frappe.core.notifications.get_notification_config # notification_config = "injaz.notifications.get_notification_config" # Permissions # ----------- # Permissions evaluated in scripted ways # permission_query_conditions = { # "Event": "frappe.desk.doctype.event.event.get_permission_query_conditions", # } # # has_permission = { # "Event": "frappe.desk.doctype.event.event.has_permission", # } # DocType Class # --------------- # Override standard doctype classes # override_doctype_class = { # "ToDo": "custom_app.overrides.CustomToDo" # } # Document Events # --------------- # Hook on document methods and events # doc_events = { # "*": { # "on_update": "method", # "on_cancel": "method", # "on_trash": "method" # } # } # Scheduled Tasks # --------------- # scheduler_events = { # "all": [ # "injaz.tasks.all" # ], # "daily": [ # "injaz.tasks.daily" # ], # "hourly": [ # "injaz.tasks.hourly" # ], # "weekly": [ # "injaz.tasks.weekly" # ] # "monthly": [ # "injaz.tasks.monthly" # ] # } # Testing # ------- # before_tests = "injaz.install.before_tests" # Overriding Methods # ------------------------------ # # override_whitelisted_methods = { # "frappe.desk.doctype.event.event.get_events": "injaz.event.get_events" # } # # each overriding function accepts a `data` argument; # generated from the base implementation of the doctype dashboard, # along with any modifications made in other Frappe apps # override_doctype_dashboards = { # "Task": "injaz.task.get_dashboard_data" # } # exempt linked doctypes from being automatically cancelled # # auto_cancel_exempted_doctypes = ["Auto Repeat"] # User Data Protection # -------------------- user_data_fields = [ { "doctype": "{doctype_1}", "filter_by": "{filter_by}", "redact_fields": ["{field_1}", "{field_2}"], "partial": 1, }, { "doctype": "{doctype_2}", "filter_by": "{filter_by}", "partial": 1, }, { "doctype": "{doctype_3}", "strict": False, }, { "doctype": "{doctype_4}" } ] # Authentication and authorization # -------------------------------- # auth_hooks = [ # "injaz.auth.validate" # ]
22.011364
78
0.653072
0120b8f77b81dc0d9be0dd8c17f9fa49544ff089
5,090
py
Python
servequnit/scripts.py
bnkr/selenit
bdbedd930a5d324ddfbebcc0be3998d7d517eced
[ "MIT" ]
1
2015-03-04T22:45:52.000Z
2015-03-04T22:45:52.000Z
servequnit/scripts.py
bnkr/selenit
bdbedd930a5d324ddfbebcc0be3998d7d517eced
[ "MIT" ]
null
null
null
servequnit/scripts.py
bnkr/selenit
bdbedd930a5d324ddfbebcc0be3998d7d517eced
[ "MIT" ]
null
null
null
""" Runs an HTTP server which serves up qunit unit tests. """ from __future__ import print_function import argparse, sys, logging, subprocess, os from six.moves import urllib from servequnit.tester import QunitSeleniumTester from servequnit.factory import ServerFactory class CliCommand(object): """Command pattern converts cli settings into an operation to run.""" def __init__(self, settings): self.settings = settings def get_server_factory(self): """Turn settings into parameters for factory'ing a server.""" config = dict( port=self.settings.port, host=self.settings.host, test_dir=self.settings.root, base_dir=os.getcwd(), ) factory = ServerFactory(**config) # TODO: # Present existence errors better. for name in (self.settings.files or []): if not name: continue if '=' in name: ident, location = name.split("=") if location.endswith(".css"): factory.bind_style(ident, location) else: factory.bind_script(ident, location) else: name = urllib.parse.urljoin("/static/", name) if name.endswith(".css"): factory.style(name) else: factory.script(name) return factory class SeleniumCommand(CliCommand): def get_tester_config(self, server): caps = {} for capability in (self.settings.capability or []): name, value = capability.split("=") caps[name] = value return dict(url=server.url + "test/", hub=self.settings.webdriver, capabilities=caps) def run(self): try: factory = self.get_server_factory() with factory.server_context() as server: tester_config = self.get_tester_config(server) test = QunitSeleniumTester(**tester_config) test.run() except QunitSeleniumTester.FailureError as ex: print("FAIL", ex) return 1 except KeyboardInterrupt: pass print("PASS") return 0 class BrowserCommand(CliCommand): def run(self): try: factory = self.get_server_factory() with factory.server_context() as server: # could be a tester.BrowserTester? subprocess.call([self.settings.browser, server.url + "test/"]) except KeyboardInterrupt: pass return 0 class ServerCommand(CliCommand): def run(self): factory = self.get_server_factory() server = factory.create() try: # No need to thread; we just want the startup parts. server.run_in_current_thread() except KeyboardInterrupt: pass return 0 def get_settings(argv): parser = argparse.ArgumentParser() parser.add_argument("-p", "--port", default=8081, help="Port to run on.", type=int,) parser.add_argument("-H", "--host", default="localhost", help="Host to listen on (default localhost).") parser.add_argument("-w", "--webdriver", default="http://127.0.0.1:4444/wd/hub", help="Location of your webdriver HTTP endpoint.") parser.add_argument("-s", "--selenium", action="store_true", default=False, help="Run tests with selenium and exit.") parser.add_argument("-b", "--browser", default="unset", nargs="?", help="Run tests with a web browser command.") parser.add_argument("-r", "--root", default=os.getcwd(), help="Root for test /unit files (js test files). (default: pwd)") parser.add_argument("-c", "--capability", action="append", default=[], help="Capability of selenium node like 'browserName=firefox'. Add multiple times.") parser.add_argument("files", nargs="*", help="Stuff to source in the test file (css or js).",) settings = parser.parse_args(argv[1:]) if settings.browser == "unset": settings.browser = None elif settings.browser == None: settings.browser = "firefox" return settings def configure_logging(settings): message_format = '%(asctime)s %(levelname)s %(name)s: %(message)s' time_format = "%Y-%m-%d %H:%M:%S" logging.basicConfig(level=logging.INFO, format=message_format, datefmt=time_format) def servequnit_main(): """Command-line entry point. If your import paths are set right you can just call main() as the entire script.""" settings = get_settings(sys.argv) configure_logging(settings) if settings.selenium: command = SeleniumCommand(settings) elif settings.browser: command = BrowserCommand(settings) else: command = ServerCommand(settings) sys.exit(command.run())
34.62585
108
0.58389
caae465d794051bd8a665a1b3adc87d1f3ab8fb0
3,953
py
Python
h2o-py/tests/testdir_algos/glm/pyunit_grid_carsGLM.py
huamichaelchen/h2o-3
2b52f2240652a1c73c1708762248c0773d0c073e
[ "Apache-2.0" ]
null
null
null
h2o-py/tests/testdir_algos/glm/pyunit_grid_carsGLM.py
huamichaelchen/h2o-3
2b52f2240652a1c73c1708762248c0773d0c073e
[ "Apache-2.0" ]
null
null
null
h2o-py/tests/testdir_algos/glm/pyunit_grid_carsGLM.py
huamichaelchen/h2o-3
2b52f2240652a1c73c1708762248c0773d0c073e
[ "Apache-2.0" ]
null
null
null
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils import random import copy from h2o.estimators.glm import H2OGeneralizedLinearEstimator from h2o.grid.grid_search import H2OGridSearch def grid_cars_GLM(): cars = h2o.import_file(path=pyunit_utils.locate("smalldata/junit/cars_20mpg.csv")) r = cars[0].runif(seed=42) train = cars[r > .2] validation_scheme = random.randint(1,3) # 1:none, 2:cross-validation, 3:validation set print "Validation scheme: {0}".format(validation_scheme) if validation_scheme == 2: nfolds = 2 print "Nfolds: 2" if validation_scheme == 3: valid = cars[r <= .2] grid_space = pyunit_utils.make_random_grid_space(algo="glm") print "Grid space: {0}".format(grid_space) predictors = ["displacement","power","weight","acceleration","year"] if grid_space['family'][0] == 'binomial': response_col = "economy_20mpg" elif grid_space['family'][0] == 'gaussian': response_col = "economy" else: response_col = "cylinders" print "Predictors: {0}".format(predictors) print "Response: {0}".format(response_col) if grid_space['family'][0] in ['binomial', 'multinomial']: print "Converting the response column to a factor..." train[response_col] = train[response_col].asfactor() if validation_scheme == 3: valid[response_col] = valid[response_col].asfactor() #grid_space.update({"lambda":[0.1,0.05,0.01]}) grid_space.pop('family') print "Grid space: {0}".format(grid_space) print "Constructing the grid of glm models..." cars_glm_grid = H2OGridSearch(H2OGeneralizedLinearEstimator, hyper_params=grid_space) if validation_scheme == 1: cars_glm_grid.train(x=predictors,y=response_col,training_frame=train) elif validation_scheme == 2: cars_glm_grid.train(x=predictors,y=response_col,training_frame=train,nfolds=nfolds) else: cars_glm_grid.train(x=predictors,y=response_col,training_frame=train,validation_frame=valid) print "Performing various checks of the constructed grid..." print "Check cardinality of grid, that is, the correct number of models have been created..." size_of_grid_space = 1 for v in grid_space.values(): size_of_grid_space = size_of_grid_space * len(v) actual_size = len(cars_glm_grid) assert size_of_grid_space == actual_size, "Expected size of grid to be {0}, but got {1}" \ "".format(size_of_grid_space,actual_size) print "Duplicate-entries-in-grid-space check" new_grid_space = copy.deepcopy(grid_space) for name in grid_space.keys(): if not name == "family": new_grid_space[name] = grid_space[name] + grid_space[name] print "The new search space: {0}".format(new_grid_space) print "Constructing the new grid of glm models..." cars_glm_grid2 = H2OGridSearch(H2OGeneralizedLinearEstimator, hyper_params=new_grid_space) if validation_scheme == 1: cars_glm_grid2.train(x=predictors,y=response_col,training_frame=train) elif validation_scheme == 2: cars_glm_grid2.train(x=predictors,y=response_col,training_frame=train,nfolds=nfolds) else: cars_glm_grid2.train(x=predictors,y=response_col,training_frame=train,validation_frame=valid) actual_size2 = len(cars_glm_grid2) assert actual_size == actual_size2, "Expected duplicates to be ignored. Without dups grid size: {0}. With dups " \ "size: {1}".format(actual_size, actual_size2) print "Check that the hyper_params that were passed to grid, were used to construct the models..." for name in grid_space.keys(): print name pyunit_utils.expect_model_param(cars_glm_grid, name, grid_space[name]) if __name__ == "__main__": pyunit_utils.standalone_test(grid_cars_GLM) else: grid_cars_GLM()
42.505376
118
0.692133
9d49feb2bd372a9847d40a88e4e5c1561d0ac111
1,600
py
Python
samples/generated_samples/dialogflow_generated_dialogflow_v2_answer_records_list_answer_records_async.py
rkdfc93/python-dialogflow
a59cff0298ef18674c0b4133ef0a6ab82e288920
[ "Apache-2.0" ]
171
2018-09-19T21:16:18.000Z
2020-12-07T17:41:10.000Z
samples/generated_samples/dialogflow_generated_dialogflow_v2_answer_records_list_answer_records_async.py
rkdfc93/python-dialogflow
a59cff0298ef18674c0b4133ef0a6ab82e288920
[ "Apache-2.0" ]
150
2018-09-25T14:04:28.000Z
2020-12-09T21:45:43.000Z
samples/generated_samples/dialogflow_generated_dialogflow_v2_answer_records_list_answer_records_async.py
rkdfc93/python-dialogflow
a59cff0298ef18674c0b4133ef0a6ab82e288920
[ "Apache-2.0" ]
75
2018-09-22T14:12:18.000Z
2020-12-08T07:12:12.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for ListAnswerRecords # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dialogflow # [START dialogflow_generated_dialogflow_v2_AnswerRecords_ListAnswerRecords_async] from google.cloud import dialogflow_v2 async def sample_list_answer_records(): # Create a client client = dialogflow_v2.AnswerRecordsAsyncClient() # Initialize request argument(s) request = dialogflow_v2.ListAnswerRecordsRequest( parent="parent_value", filter="filter_value", ) # Make the request page_result = client.list_answer_records(request=request) # Handle the response async for response in page_result: print(response) # [END dialogflow_generated_dialogflow_v2_AnswerRecords_ListAnswerRecords_async]
33.333333
85
0.764375
ea4647a39c0aea1aacc7944f050b6ad6a266d6db
3,038
py
Python
kmip/core/messages/payloads/destroy.py
vbnmmnbv/PyKMIP
4617ae528006178c466fe3945a477f568b596940
[ "Apache-2.0" ]
12
2016-09-14T21:59:10.000Z
2020-03-11T07:37:25.000Z
kmip/core/messages/payloads/destroy.py
vbnmmnbv/PyKMIP
4617ae528006178c466fe3945a477f568b596940
[ "Apache-2.0" ]
1
2021-06-25T15:43:48.000Z
2021-06-25T15:43:48.000Z
kmip/core/messages/payloads/destroy.py
vbnmmnbv/PyKMIP
4617ae528006178c466fe3945a477f568b596940
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from kmip.core import attributes from kmip.core import enums from kmip.core.enums import Tags from kmip.core.primitives import Struct from kmip.core.utils import BytearrayStream # 4.21 class DestroyRequestPayload(Struct): def __init__(self, unique_identifier=None): super(DestroyRequestPayload, self).__init__(enums.Tags.REQUEST_PAYLOAD) self.unique_identifier = unique_identifier self.validate() def read(self, istream): super(DestroyRequestPayload, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) if self.is_tag_next(Tags.UNIQUE_IDENTIFIER, tstream): self.unique_identifier = attributes.UniqueIdentifier() self.unique_identifier.read(tstream) self.is_oversized(tstream) self.validate() def write(self, ostream): tstream = BytearrayStream() if self.unique_identifier is not None: self.unique_identifier.write(tstream) # Write the length and value of the request payload self.length = tstream.length() super(DestroyRequestPayload, self).write(ostream) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass class DestroyResponsePayload(Struct): def __init__(self, unique_identifier=None): super(DestroyResponsePayload, self).__init__( enums.Tags.RESPONSE_PAYLOAD) self.unique_identifier = unique_identifier self.validate() def read(self, istream): super(DestroyResponsePayload, self).read(istream) tstream = BytearrayStream(istream.read(self.length)) self.unique_identifier = attributes.UniqueIdentifier() self.unique_identifier.read(tstream) self.is_oversized(tstream) self.validate() def write(self, ostream): tstream = BytearrayStream() self.unique_identifier.write(tstream) # Write the length and value of the request payload self.length = tstream.length() super(DestroyResponsePayload, self).write(ostream) ostream.write(tstream.buffer) def validate(self): self.__validate() def __validate(self): # TODO (peter-hamilton) Finish implementation. pass
30.686869
79
0.693548
0c30ff1f70605a98959d29216e233b8cbdfccc28
19,043
py
Python
pymcr/mcr.py
francisco-dlp/pyMCR
358f4087dbaeb1fdba3b8c8e38122d2e934d01a1
[ "Python-2.0" ]
1
2021-01-05T08:44:51.000Z
2021-01-05T08:44:51.000Z
pymcr/mcr.py
francisco-dlp/pyMCR
358f4087dbaeb1fdba3b8c8e38122d2e934d01a1
[ "Python-2.0" ]
null
null
null
pymcr/mcr.py
francisco-dlp/pyMCR
358f4087dbaeb1fdba3b8c8e38122d2e934d01a1
[ "Python-2.0" ]
null
null
null
""" MCR Main Class for Computation""" import sys as _sys import numpy as _np import logging as _logging from pymcr.regressors import OLS, NNLS from pymcr.constraints import ConstraintNonneg from pymcr.metrics import mse # create logger for mcr.py and set default level _logger = _logging.getLogger(__name__) _logger.setLevel(_logging.INFO) class McrAR: """ Multivariate Curve Resolution - Alternating Regression D = CS^T Parameters ---------- c_regr : str, class Instantiated regression class (or string, see Notes) for calculating the C matrix st_regr : str, class Instantiated regression class (or string, see Notes) for calculating the S^T matrix c_fit_kwargs : dict kwargs sent to c_regr.fit method st_fit_kwargs : dict kwargs sent to st_regr.fit method c_constraints : list List of constraints applied to calculation of C matrix st_constraints : list List of constraints applied to calculation of S^T matrix max_iter : int Maximum number of iterations. One iteration calculates both C and S^T err_fcn : function Function to calculate error/differences after each least squares calculation (ie twice per iteration). Outputs to err attribute. tol_increase : float Factor increase to allow in err attribute. Set to 0 for no increase allowed. E.g., setting to 1.0 means the err can double per iteration. tol_n_increase : int Number of consecutive iterations for which the err attribute can increase tol_err_change : float If err changes less than tol_err_change, per iteration, break. tol_n_above_min : int Number of half-iterations that can be performed without reaching a new error-minimum Attributes ---------- err : list List of calculated errors (from err_fcn) after each least squares (ie twice per iteration) C_ : ndarray [n_samples, n_targets] Most recently calculated C matrix (that did not cause a tolerance failure) ST_ : ndarray [n_targets, n_features] Most recently calculated S^T matrix (that did not cause a tolerance failure) C_opt_ : ndarray [n_samples, n_targets] [Optimal] C matrix for lowest err attribute ST_opt_ : ndarray [n_targets, n_features] [Optimal] ST matrix for lowest err attribute n_iter : int Total number of iterations performed n_features : int Total number of features, e.g. spectral frequencies. n_samples : int Total number of samples (e.g., pixels) n_targets : int Total number of targets (e.g., pure analytes) n_iter_opt : int Iteration when optimal C and ST calculated exit_max_iter_reached : bool Exited iterations due to maximum number of iteration reached (max_iter parameter) exit_tol_increase : bool Exited iterations due to maximum fractional increase in error metric (via err_fcn) exit_tol_n_increase : bool Exited iterations due to maximum number of consecutive increases in error metric (via err fcn) exit_tol_err_change : bool Exited iterations due to error metric change that is smaller than tol_err_change exit_tol_n_above_min : bool Exited iterations due to maximum number of half-iterations for which the error metric increased above the minimum error Notes ----- - Built-in regressor classes (str can be used): OLS (ordinary least squares), NNLS (non-negatively constrained least squares). See mcr.regressors. - Built-in regressor methods can be given as a string to c_regr, st_regr; though instantiating an imported class gives more flexibility. - Setting any tolerance to None turns that check off """ def __init__(self, c_regr=OLS(), st_regr=OLS(), c_fit_kwargs={}, st_fit_kwargs={}, c_constraints=[ConstraintNonneg()], st_constraints=[ConstraintNonneg()], max_iter=50, err_fcn=mse, tol_increase=0.0, tol_n_increase=10, tol_err_change=None, tol_n_above_min=10 ): """ Multivariate Curve Resolution - Alternating Regression """ self.max_iter = max_iter self.tol_increase = tol_increase self.tol_n_increase = tol_n_increase self.tol_err_change = tol_err_change self.tol_n_above_min = tol_n_above_min self.err_fcn = err_fcn self.err = None self.c_constraints = c_constraints self.st_constraints = st_constraints self.c_regressor = self._check_regr(c_regr) self.st_regressor = self._check_regr(st_regr) self.c_fit_kwargs = c_fit_kwargs self.st_fit_kwargs = st_fit_kwargs self.C_ = None self.ST_ = None self.C_opt_ = None self.ST_opt_ = None self.n_iter_opt = None self.n_iter = None self.n_increase = None self.n_above_min = None self.exit_max_iter_reached = False self.exit_tol_increase = False self.exit_tol_n_increase = False self.exit_tol_err_change = False self.exit_tol_n_above_min = False # Saving every C or S^T matrix at each iteration # Could create huge memory usage self._saveall_st = False self._saveall_c = False self._saved_st = [] self._saved_c = [] def _check_regr(self, mth): """ Check regressor method. If acceptable strings, instantiate and return object. If instantiated class, make sure it has a fit attribute. """ if isinstance(mth, str): if mth.upper() == 'OLS': return OLS() elif mth.upper() == 'NNLS': return NNLS() else: raise ValueError('{} is unknown. Use NNLS or OLS.'.format(mth)) elif hasattr(mth, 'fit'): return mth else: raise ValueError('Input class ' '{} does not have a \'fit\' method'.format(mth)) @property def D_(self): """ D matrix with current C and S^T matrices """ return _np.dot(self.C_, self.ST_) @property def D_opt_(self): """ D matrix with optimal C and S^T matrices """ return _np.dot(self.C_opt_, self.ST_opt_) @property def n_features(self): """ Number of features """ if self.ST_ is not None: return self.ST_.shape[-1] else: return None @property def n_targets(self): """ Number of targets """ if self.C_ is not None: return self.C_.shape[1] else: return None @property def n_samples(self): """ Number of samples """ if self.C_ is not None: return self.C_.shape[0] else: return None def _ismin_err(self, val): """ Is the current error the minimum """ if len(self.err) == 0: return True else: return ([val > x for x in self.err].count(True) == 0) def fit(self, D, C=None, ST=None, st_fix=None, c_fix=None, c_first=True, verbose=False, post_iter_fcn=None, post_half_fcn=None): """ Perform MCR-AR. D = CS^T. Solve for C and S^T iteratively. Parameters ---------- D : ndarray D matrix C : ndarray Initial C matrix estimate. Only provide initial C OR S^T. ST : ndarray Initial S^T matrix estimate. Only provide initial C OR S^T. st_fix : list The spectral component numbers to keep fixed. c_fix : list The concentration component numbers to keep fixed. c_first : bool Calculate C first when both C and ST are provided. c_fix and st_fix must also be provided in this circumstance. verbose : bool Log iteration and per-least squares err results. See Notes. post_iter_fcn : function Function to perform after each iteration post_half_fcn : function Function to perform after half-iteration Notes ----- - pyMCR (>= 0.3.1) uses the native Python logging module rather than print statements; thus, to see the messages, one will need to log-to-file or stream to stdout. More info is available in the docs. """ if verbose: _logger.setLevel(_logging.DEBUG) else: _logger.setLevel(_logging.INFO) # Ensure only C or ST provided if (C is None) & (ST is None): raise TypeError('C or ST estimate must be provided') elif (C is not None) & (ST is not None) & ((c_fix is None) | (st_fix is None)): err_str1 = 'Only C or ST estimate must be provided, ' raise TypeError( err_str1 + 'unless c_fix and st_fix are both provided') else: self.C_ = C self.ST_ = ST self.n_increase = 0 self.n_above_min = 0 self.err = [] # Both C and ST provided. special_skip_c comes into play below both_condition = (self.ST_ is not None) & (self.C_ is not None) for num in range(self.max_iter): self.n_iter = num + 1 # Both st and c provided, but c_first is False if both_condition & (num == 0) & (not c_first): special_skip_c = True else: special_skip_c = False if (self.ST_ is not None) & (not special_skip_c): # Debugging feature -- saves every S^T matrix in a list # Can create huge memory usage if self._saveall_st: self._saved_st.append(self.ST_) # * Target is the feature of the regression self.c_regressor.fit(self.ST_.T, D.T, **self.c_fit_kwargs) C_temp = self.c_regressor.coef_ # Apply fixed C's if c_fix: C_temp[:, c_fix] = self.C_[:, c_fix] # Apply c-constraints for constr in self.c_constraints: C_temp = constr.transform(C_temp) # Apply fixed C's if c_fix: C_temp[:, c_fix] = self.C_[:, c_fix] D_calc = _np.dot(C_temp, self.ST_) err_temp = self.err_fcn(C_temp, self.ST_, D, D_calc) if self._ismin_err(err_temp): self.C_opt_ = 1 * C_temp self.ST_opt_ = 1 * self.ST_ self.n_iter_opt = num + 1 self.n_above_min = 0 else: self.n_above_min += 1 if self.tol_n_above_min is not None: if self.n_above_min > self.tol_n_above_min: err_str1 = 'Half-iterated {} times since ' \ 'min '.format(self.n_above_min) err_str2 = 'error. Exiting.' _logger.info(err_str1 + err_str2) self.exit_tol_n_above_min = True break # Calculate error fcn and check for tolerance increase if len(self.err) == 0: self.err.append(1 * err_temp) self.C_ = 1 * C_temp elif self.tol_increase is None: self.err.append(1 * err_temp) self.C_ = 1 * C_temp elif err_temp <= self.err[-1] * (1 + self.tol_increase): self.err.append(1 * err_temp) self.C_ = 1 * C_temp else: err_str1 = 'Error increased above fractional' \ 'ctol_increase (C iter). Exiting' _logger.info(err_str1) self.exit_tol_increase = True break # Check if err went up if len(self.err) > 1: if self.err[-1] > self.err[-2]: # Error increased self.n_increase += 1 else: self.n_increase *= 0 # Break if too many error-increases in a row if self.tol_n_increase is not None: if self.n_increase > self.tol_n_increase: out_str1 = 'Maximum error increases reached ' _logger.info( out_str1 + '({}) (C iter). ' 'Exiting.'.format(self.tol_n_increase)) self.exit_tol_n_increase = True break _logger.debug('Iter: {} (C)\t{}: ' '{:.4e}'.format(self.n_iter, self.err_fcn.__name__, err_temp)) if post_half_fcn is not None: post_half_fcn(self.C_, self.ST_, D, D_calc) if self.C_ is not None: # Debugging feature -- saves every C matrix in a list # Can create huge memory usage if self._saveall_c: self._saved_c.append(self.C_) # * Target is the feature of the regression self.st_regressor.fit(self.C_, D, **self.st_fit_kwargs) ST_temp = self.st_regressor.coef_.T # Apply fixed ST's if st_fix: ST_temp[st_fix] = self.ST_[st_fix] # Apply ST-constraints for constr in self.st_constraints: ST_temp = constr.transform(ST_temp) # Apply fixed ST's if st_fix: ST_temp[st_fix] = self.ST_[st_fix] D_calc = _np.dot(self.C_, ST_temp) err_temp = self.err_fcn(self.C_, ST_temp, D, D_calc) # Calculate error fcn and check for tolerance increase if self._ismin_err(err_temp): self.ST_opt_ = 1 * ST_temp self.C_opt_ = 1 * self.C_ self.n_iter_opt = num + 1 self.n_above_min = 0 else: self.n_above_min += 1 if self.tol_n_above_min is not None: if self.n_above_min > self.tol_n_above_min: err_str1 = 'Half-iterated {} times ' \ 'since min '.format(self.n_above_min) err_str2 = 'error. Exiting.' _logger.info(err_str1 + err_str2) self.exit_tol_n_above_min = True break if len(self.err) == 0: self.err.append(1 * err_temp) self.ST_ = 1 * ST_temp elif self.tol_increase is None: self.err.append(1 * err_temp) self.ST_ = 1 * ST_temp elif err_temp <= self.err[-1] * (1 + self.tol_increase): self.err.append(1 * err_temp) self.ST_ = 1 * ST_temp else: err_str1 = 'Error increased above fractional ' \ 'tol_increase (ST iter). Exiting' _logger.info(err_str1) self.exit_tol_increase = True break # Check if err went up if len(self.err) > 1: if self.err[-1] > self.err[-2]: # Error increased self.n_increase += 1 else: self.n_increase *= 0 # Break if too many error-increases in a row if self.tol_n_increase is not None: if self.n_increase > self.tol_n_increase: out_str = 'Maximum error increases reached ' _logger.info(out_str + '({}) (ST iter). ' 'Exiting.'.format(self.tol_n_increase)) self.exit_tol_n_increase = True break _logger.debug('Iter: {} (ST)\t{}: ' '{:.4e}'.format(self.n_iter, self.err_fcn.__name__, err_temp)) if post_half_fcn is not None: post_half_fcn(self.C_, self.ST_, D, D_calc) if post_iter_fcn is not None: post_iter_fcn(self.C_, self.ST_, D, D_calc) if self.n_iter >= self.max_iter: _logger.info('Max iterations reached ({}).'.format(num + 1)) self.exit_max_iter_reached = True break self.n_iter = num + 1 # Check if err changed (absolute value), per iteration, less # than abs(tol_err_change) if (self.tol_err_change is not None) & (len(self.err) > 2): err_differ = _np.abs(self.err[-1] - self.err[-3]) if err_differ < _np.abs(self.tol_err_change): _logger.info('Change in err below tol_err_change ' '({:.4e}). Exiting.'.format(err_differ)) self.exit_tol_err_change = True break if __name__ == '__main__': # pragma: no cover # PyMCR uses the Logging facility to capture messaging # Sends logging messages to stdout (prints them) stdout_handler = _logging.StreamHandler(stream=_sys.stdout) stdout_format = _logging.Formatter('%(message)s') stdout_handler.setFormatter(stdout_format) _logger.addHandler(stdout_handler) M = 21 N = 21 P = 101 n_components = 2 C_img = _np.zeros((M, N, n_components)) C_img[..., 0] = _np.dot(_np.ones((M, 1)), _np.linspace(0, 1, N)[None, :]) C_img[..., 1] = 1 - C_img[..., 0] St_known = _np.zeros((n_components, P)) St_known[0, 40:60] = 1 St_known[1, 60:80] = 2 C_known = C_img.reshape((-1, n_components)) D_known = _np.dot(C_known, St_known) mcrar = McrAR() mcrar.fit(D_known, ST=St_known, verbose=True) # assert_equal(1, mcrar.n_iter_opt) assert ((mcrar.D_ - D_known) ** 2).mean() < 1e-10 assert ((mcrar.D_opt_ - D_known) ** 2).mean() < 1e-10 mcrar = McrAR() mcrar.fit(D_known, C=C_known) # assert_equal(1, mcrar.n_iter_opt) assert ((mcrar.D_ - D_known) ** 2).mean() < 1e-10 assert ((mcrar.D_opt_ - D_known) ** 2).mean() < 1e-10
34.435805
79
0.538623
d74864083f1fe6e61c107e538e978caf85306aed
6,847
py
Python
bootstrap3_datetime/widgets.py
Solanar/django-bootstrap3-datetimepicker
cc67aa79c2843f6c477a6b2f0053aee25cd8c313
[ "Apache-2.0" ]
2
2018-04-29T05:31:59.000Z
2018-04-29T05:32:15.000Z
bootstrap3_datetime/widgets.py
AntycSolutions/django-bootstrap3-datetimepicker
cc67aa79c2843f6c477a6b2f0053aee25cd8c313
[ "Apache-2.0" ]
null
null
null
bootstrap3_datetime/widgets.py
AntycSolutions/django-bootstrap3-datetimepicker
cc67aa79c2843f6c477a6b2f0053aee25cd8c313
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from django.forms.utils import flatatt from django.forms.widgets import DateTimeInput from django.utils import translation from django.utils.safestring import mark_safe from django.utils.html import conditional_escape try: import json except ImportError: from django.utils import simplejson as json try: from django.utils.encoding import force_unicode as force_text except ImportError: # python3 from django.utils.encoding import force_text class DateTimePicker(DateTimeInput): class Media: class JsFiles(object): def __iter__(self): yield 'bootstrap3_datetime/js/moment.min.js' yield 'bootstrap3_datetime/js/bootstrap-datetimepicker.min.js' lang = translation.get_language() if lang: lang = lang.lower() #There is language name that length>2 *or* contains uppercase. lang_map = { 'ar-ma': 'ar-ma', 'en-au': 'en-au', 'en-ca': 'en-ca', 'en-gb': 'en-gb', 'en-us': 'en-us', 'fa-ir': 'fa-ir', 'fr-ca': 'fr-ca', 'ms-my': 'ms-my', 'pt-br': 'bt-BR', 'rs-latin': 'rs-latin', 'tzm-la': 'tzm-la', 'tzm': 'tzm', 'zh-cn': 'zh-CN', 'zh-tw': 'zh-TW', 'zh-hk': 'zh-TW', } if len(lang) > 2: lang = lang_map.get(lang, 'en-us') if lang not in ('en', 'en-us'): yield 'bootstrap3_datetime/js/locales/bootstrap-datetimepicker.%s.js' % (lang) # js = JsFiles() # css = {'all': ('bootstrap3_datetime/css/bootstrap-datetimepicker.min.css',), } # http://momentjs.com/docs/#/parsing/string-format/ # http://docs.python.org/2/library/datetime.html#strftime-strptime-behavior format_map = (('DDD', r'%j'), ('DD', r'%d'), ('MMMM', r'%B'), ('MMM', r'%b'), ('MM', r'%m'), ('YYYY', r'%Y'), ('YY', r'%y'), ('HH', r'%H'), ('hh', r'%I'), ('mm', r'%M'), ('ss', r'%S'), ('a', r'%p'), ('ZZ', r'%z'), ) @classmethod def conv_datetime_format_py2js(cls, format): for js, py in cls.format_map: format = format.replace(py, js) return format @classmethod def conv_datetime_format_js2py(cls, format): for js, py in cls.format_map: format = format.replace(js, py) return format html_template = ''' <div%(div_attrs)s> <input%(input_attrs)s/> <span class="input-group-addon"> <span%(icon_attrs)s></span> </span> </div>''' js_template = ''' <script> (function(window) { var callback = function() { $(function(){ $("#%(picker_id)s:has(input:not([readonly],[disabled]))").datetimepicker(%(options)s); $("#%(input_id)s:not([readonly],[disabled])").datetimepicker(%(options)s); }); }; if(window.addEventListener) window.addEventListener("load", callback, false); else if (window.attachEvent) window.attachEvent("onload", callback); else window.onload = callback; })(window); </script>''' def __init__(self, attrs=None, format=None, options=None, div_attrs=None, icon_attrs=None): if not icon_attrs: icon_attrs = {'class': 'glyphicon glyphicon-calendar'} if not div_attrs: div_attrs = {'class': 'input-group date'} if format is None and options and options.get('format'): format = self.conv_datetime_format_js2py(options.get('format')) super(DateTimePicker, self).__init__(attrs, format) if 'class' not in self.attrs: self.attrs['class'] = 'form-control' self.div_attrs = div_attrs and div_attrs.copy() or {} self.icon_attrs = icon_attrs and icon_attrs.copy() or {} self.picker_id = self.div_attrs.get('id') or None if options == False: # datetimepicker will not be initalized only when options is False self.options = False else: self.options = options and options.copy() or {} if format and not self.options.get('format') and not self.attrs.get('date-format'): self.options['format'] = self.conv_datetime_format_py2js(format) def render(self, name, value, attrs=None, renderer=None): if value is None: value = '' try: input_attrs = self.build_attrs( attrs, type=self.input_type, name=name ) except TypeError: input_attrs = self.build_attrs( attrs, extra_attrs={'type': self.input_type, 'name': name} ) if value != '': # Only add the 'value' attribute if a value is non-empty. input_attrs['value'] = force_text(self.format_value(value)) input_attrs = dict([(key, conditional_escape(val)) for key, val in input_attrs.items()]) # python2.6 compatible if not self.picker_id: self.picker_id = (input_attrs.get('id', '') + '_pickers').replace(' ', '_') self.div_attrs['id'] = self.picker_id picker_id = conditional_escape(self.picker_id) div_attrs = dict( [(key, conditional_escape(val)) for key, val in self.div_attrs.items()]) # python2.6 compatible icon_attrs = dict([(key, conditional_escape(val)) for key, val in self.icon_attrs.items()]) input_attrs.update(self.attrs) html = self.html_template % dict(div_attrs=flatatt(div_attrs), input_attrs=flatatt(input_attrs), icon_attrs=flatatt(icon_attrs)) if self.options: self.options['language'] = translation.get_language() js = self.js_template % dict(picker_id=picker_id, options=json.dumps(self.options or {}), input_id=conditional_escape(input_attrs.get('id'))) else: js = '' js = '' # we'll do it manually return mark_safe(force_text(html + js))
42.006135
120
0.508398
3b441e47c08821267d3e93249b2f1f9673b11f56
5,197
py
Python
runs/Re200_St0.6_AR1.27_psi110/scripts/process_qcrit_wx_snapshot.py
mesnardo/petibm-rollingpitching
39f7ed9b88973727bed6955e31d99754d7627c9f
[ "BSD-3-Clause" ]
2
2021-09-06T03:37:06.000Z
2021-12-01T02:39:13.000Z
runs/Re200_St0.6_AR1.27_psi110/scripts/process_qcrit_wx_snapshot.py
mesnardo/petibm-rollingpitching
39f7ed9b88973727bed6955e31d99754d7627c9f
[ "BSD-3-Clause" ]
3
2020-03-30T21:52:01.000Z
2021-07-11T13:11:35.000Z
runs/Re200_St0.6_AR1.27_psi110/scripts/process_qcrit_wx_snapshot.py
mesnardo/petibm-rollingpitching
39f7ed9b88973727bed6955e31d99754d7627c9f
[ "BSD-3-Clause" ]
4
2021-02-22T21:54:16.000Z
2022-01-18T18:39:34.000Z
"""Post-process images of Q-criterion to compute inclination angles.""" import collections import math from matplotlib import patches, pyplot import pathlib import rodney Point = collections.namedtuple('Point', ['x', 'y']) def get_midpoint(point1, point2): """Return the midpoint.""" return Point(0.5 * (point1.x + point2.x), 0.5 * (point1.y + point2.y)) class Line(object): """Define a line.""" def __init__(self, point1, point2): """Compute slope and intercept given two reference points.""" self.p1, self.p2 = point1, point2 self.a, self.b = self._slope_intercept(point1, point2) def _slope_intercept(self, point1, point2): """Compute and return slope and intercept.""" a = (point2.y - point1.y) / (point2.x - point1.x) b = point1.y - a * point1.x return a, b def y(self, x): """Compute y given x.""" if hasattr(x, "__iter__"): return (self.a * xi + self.b for xi in x) return self.a * x + self.b def get_inclination(self, degrees=True): """Compute adn return inclination angle w.r.t. horizontal axis.""" x1, x2 = 0.0, 1.0 y1, y2 = self.y([x1, x2]) length = math.sqrt((y2 - y1)**2 + (x2 - x1)**2) alpha = math.acos(abs(x2 - x1) / length) if degrees: alpha *= 180.0 / math.pi return alpha def extend(self, left=0.0, right=0.0): """Return a new extended line.""" x1, x2 = self.p1.x - left, self.p2.x + right y1, y2 = self.y([x1, x2]) return Line(Point(x1, y1), Point(x2, y2)) def limits(self): """Return line limits as tuples.""" return (self.p1.x, self.p2.x), (self.p1.y, self.p2.y) def annotate_angle(ax, text, xloc, line, hline, buf=50): """Annotate angle between two given lines.""" posA, posB = Point(xloc, line.y(xloc)), Point(xloc, hline.y(xloc)) arrowstyle = '<->,head_length=5,head_width=3' arrow = patches.FancyArrowPatch(posA=(posA.x, posA.y), posB=(posB.x, posB.y), arrowstyle=arrowstyle, color='black', linewidth=2.0, connectionstyle='arc3,rad=-0.5') ax.add_patch(arrow) ax.annotate(text, xy=(xloc + buf, get_midpoint(posA, posB).y)) # Parse command line and set directories. args = rodney.parse_command_line() simudir = pathlib.Path(__file__).absolute().parents[1] figdir = simudir / 'figures' # Set default font family and size for Matplotlib figures. pyplot.rc('font', family='serif', size=16) # -------------------------------------------------------------- # Post-process lateral view: compute and add inclination angles. # -------------------------------------------------------------- # Load PNG image from file. filepath = figdir / 'qcrit_wx_lateral_view_0008500.png' with open(filepath, 'rb') as infile: img = pyplot.imread(infile) # Plot the image. fig, ax = pyplot.subplots(figsize=(6.0, 4.0)) ax.imshow(img) xstart, xend, yend, ystart = ax.axis('scaled', adjustable='box') ymid = 0.5 * (yend - ystart) # Compute and plot inclination line for alpha. ring1 = get_midpoint(Point(247, 168), Point(334, 215)) # first vortex ring ring2 = get_midpoint(Point(399, 95), Point(506, 152)) # second vortex ring alpha = Line(ring1, ring2) # line passing through the vortex ring centers print(f'alpha: {alpha.get_inclination():.2f}') line = alpha.extend(left=100, right=200) ax.plot(*line.limits(), color='black', linestyle='--', linewidth=3.0) hline = Line(Point(xstart, ymid), Point(xend, ymid)) ax.plot(*hline.limits(), color='black', linestyle='-.', linewidth=3.0) annotate_angle(ax, r'$\alpha$', 500, line, hline, buf=50) # Set limits and remove axes. ax.axis((xstart, xend - 100, yend, ystart)) ax.axis('off') fig.tight_layout() # Save figure. if args.save_figures: filepath = figdir / 'qcrit_wx_lateral_view_0008500_post.png' fig.savefig(filepath, dpi=300, bbox_inches='tight') # ---------------------- # Post-process top view. # ---------------------- # Load PNG image from file. filepath = figdir / 'qcrit_wx_top_view_0008500.png' with open(filepath, 'rb') as infile: img = pyplot.imread(infile) # Plot the image. fig, ax = pyplot.subplots(figsize=(6.0, 4.0)) ax.imshow(img) xstart, xend, yend, ystart = ax.axis('scaled', adjustable='box') ax.axhline(0.5 * (yend - ystart), xmin=xstart, xmax=xend, color='black', linestyle='-.', linewidth=3.0) # Compute inclination angle gamma. ring1 = get_midpoint(Point(274, 127), Point(274, 259)) # first vortex ring ring2 = get_midpoint(Point(430, 103), Point(430, 249)) # second vortex ring gamma = Line(ring1, ring2) # line passing through the vortex ring centers print(f'gamma: {gamma.get_inclination():.2f}') # Set limits and remove axis. ax.axis((xstart, xend - 100, yend - 50, ystart + 50)) ax.axis('off') fig.tight_layout() # Save figure. if args.save_figures: filepath = figdir / 'qcrit_wx_top_view_0008500_post.png' fig.savefig(filepath, dpi=300, bbox_inches='tight') # Display figures. if args.show_figures: pyplot.show()
33.96732
76
0.615932