hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
0bd8eba2e360867ae5e0e40a00c03d3eecb7c920
170
py
Python
main.py
caow2/ML-Project
1d4bc2ed26780c787db0a64c2677a1ececc37e1d
[ "MIT" ]
null
null
null
main.py
caow2/ML-Project
1d4bc2ed26780c787db0a64c2677a1ececc37e1d
[ "MIT" ]
null
null
null
main.py
caow2/ML-Project
1d4bc2ed26780c787db0a64c2677a1ececc37e1d
[ "MIT" ]
null
null
null
import sqlite3 db_file = 'data/ATLDataBase.db' #db_file = 'ATL&PHL_Data_9_17_18_to_9_22_18/PHLDataBase.db' conn = sqlite3.connect(db_file) c = conn.cursor() c.close()
17
59
0.758824
42a45b4c1beb53a4a6ebb96bcdf2bead5d09f5e2
413
py
Python
numba/tests/builtins/test_builtin_int.py
glycerine/numba
4cb9e4f0b3cabd9e6a144fa4f3f7e5d6bee45635
[ "BSD-2-Clause" ]
1
2019-04-17T10:03:53.000Z
2019-04-17T10:03:53.000Z
numba/tests/builtins/test_builtin_int.py
glycerine/numba
4cb9e4f0b3cabd9e6a144fa4f3f7e5d6bee45635
[ "BSD-2-Clause" ]
null
null
null
numba/tests/builtins/test_builtin_int.py
glycerine/numba
4cb9e4f0b3cabd9e6a144fa4f3f7e5d6bee45635
[ "BSD-2-Clause" ]
null
null
null
""" >>> int() == 0 True >>> convert_int(2.5) == 2 True >>> convert_to_int('FF', 16) == 255 True """ import sys from numba import * @autojit(backend='ast') def empty_int(): x = float() return x @autojit(backend='ast') def convert_int(x): return int(x) @autojit(backend='ast') def convert_to_int(s, base): return int(s, base) if __name__ == '__main__': import doctest doctest.testmod()
14.241379
35
0.622276
b78ab0b133acea51380a04e9ed295fc4edf0fdc0
3,107
py
Python
ucsmsdk/mometa/equipment/EquipmentPsuFsmTask.py
thinkitdata/ucsmsdk
da6599e1dbc1207a30eabe548a7e5791af5f476b
[ "Apache-2.0" ]
null
null
null
ucsmsdk/mometa/equipment/EquipmentPsuFsmTask.py
thinkitdata/ucsmsdk
da6599e1dbc1207a30eabe548a7e5791af5f476b
[ "Apache-2.0" ]
null
null
null
ucsmsdk/mometa/equipment/EquipmentPsuFsmTask.py
thinkitdata/ucsmsdk
da6599e1dbc1207a30eabe548a7e5791af5f476b
[ "Apache-2.0" ]
null
null
null
"""This module contains the general information for EquipmentPsuFsmTask ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class EquipmentPsuFsmTaskConsts: COMPLETION_CANCELLED = "cancelled" COMPLETION_COMPLETED = "completed" COMPLETION_PROCESSING = "processing" COMPLETION_SCHEDULED = "scheduled" ITEM_UPDATE_PSU = "UpdatePSU" ITEM_NOP = "nop" class EquipmentPsuFsmTask(ManagedObject): """This is EquipmentPsuFsmTask class.""" consts = EquipmentPsuFsmTaskConsts() naming_props = set([u'item']) mo_meta = MoMeta("EquipmentPsuFsmTask", "equipmentPsuFsmTask", "task-[item]", VersionMeta.Version302c, "OutputOnly", 0xf, [], [""], [u'equipmentPsu'], [], [None]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version302c, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "completion": MoPropertyMeta("completion", "completion", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, None, ["cancelled", "completed", "processing", "scheduled"], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, 0x2, 0, 256, None, [], []), "flags": MoPropertyMeta("flags", "flags", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""(defaultValue){0,1}""", [], []), "item": MoPropertyMeta("item", "item", "string", VersionMeta.Version302c, MoPropertyMeta.NAMING, None, None, None, None, ["UpdatePSU", "nop"], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "seq_id": MoPropertyMeta("seq_id", "seqId", "uint", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version302c, MoPropertyMeta.READ_WRITE, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "completion": "completion", "dn": "dn", "flags": "flags", "item": "item", "rn": "rn", "sacl": "sacl", "seqId": "seq_id", "status": "status", } def __init__(self, parent_mo_or_dn, item, **kwargs): self._dirty_mask = 0 self.item = item self.child_action = None self.completion = None self.flags = None self.sacl = None self.seq_id = None self.status = None ManagedObject.__init__(self, "EquipmentPsuFsmTask", parent_mo_or_dn, **kwargs)
51.783333
249
0.650467
363c892f811052bf7c191734764d53c8ca22f178
6,942
py
Python
tests/local/warehouse/metrics/test_missing_and_invalid_customizations.py
b1nslashsh/soda-sql
927d19561d6315b6cbd84ada87d4953ac2e2717d
[ "Apache-2.0" ]
null
null
null
tests/local/warehouse/metrics/test_missing_and_invalid_customizations.py
b1nslashsh/soda-sql
927d19561d6315b6cbd84ada87d4953ac2e2717d
[ "Apache-2.0" ]
1
2021-02-23T20:47:40.000Z
2021-03-06T09:03:48.000Z
tests/local/warehouse/metrics/test_missing_and_invalid_customizations.py
b1nslashsh/soda-sql
927d19561d6315b6cbd84ada87d4953ac2e2717d
[ "Apache-2.0" ]
1
2021-02-23T20:41:24.000Z
2021-02-23T20:41:24.000Z
# Copyright 2020 Soda # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sodasql.scan.metric import Metric from sodasql.scan.scan_yml_parser import KEY_COLUMNS, KEY_METRICS, COLUMN_KEY_VALID_FORMAT, KEY_METRIC_GROUPS from tests.common.sql_test_case import SqlTestCase class TestMissingAndInvalidCustomizations(SqlTestCase): def test_scan_customized_missing_values(self): self.sql_recreate_table( [f"name {self.dialect.data_type_varchar_255}"], ["('one')", "('')", "(' ')", "('no value')", "(null)"]) scan_result = self.scan({ KEY_COLUMNS: { 'name': { KEY_METRIC_GROUPS: [ Metric.METRIC_GROUP_MISSING ], 'missing_values': [ 'no value' ] } } }) self.assertEqual(scan_result.get(Metric.MISSING_COUNT, 'name'), 2) self.assertEqual(scan_result.get(Metric.MISSING_PERCENTAGE, 'name'), 40.0) self.assertEqual(scan_result.get(Metric.VALUES_COUNT, 'name'), 3) self.assertEqual(scan_result.get(Metric.VALUES_PERCENTAGE, 'name'), 60.0) def test_scan_customized_missing_format_empty(self): self.sql_recreate_table( [f"name {self.dialect.data_type_varchar_255}"], ["('one')", "('two')", "('three')", "('four')", "('')", "(' ')", "(' ')", "(null)", "(null)", "(null)"]) scan_result = self.scan({ KEY_COLUMNS: { 'name': { KEY_METRIC_GROUPS: [ Metric.METRIC_GROUP_MISSING ], 'missing_format': 'empty' } } }) self.assertEqual(scan_result.get(Metric.MISSING_COUNT, 'name'), 4) self.assertEqual(scan_result.get(Metric.MISSING_PERCENTAGE, 'name'), 40.0) self.assertEqual(scan_result.get(Metric.VALUES_COUNT, 'name'), 6) self.assertEqual(scan_result.get(Metric.VALUES_PERCENTAGE, 'name'), 60.0) def test_scan_customized_missing_format_whitespace(self): self.sql_recreate_table( [f"name {self.dialect.data_type_varchar_255}"], ["('one')", "('two')", "('three')", "('four')", "('')", "(' ')", "(' ')", "(null)", "(null)", "(null)"]) scan_result = self.scan({ KEY_COLUMNS: { 'name': { KEY_METRIC_GROUPS: [ Metric.METRIC_GROUP_MISSING ], 'missing_format': 'whitespace' } } }) self.assertEqual(scan_result.get(Metric.MISSING_COUNT, 'name'), 6) self.assertEqual(scan_result.get(Metric.MISSING_PERCENTAGE, 'name'), 60.0) self.assertEqual(scan_result.get(Metric.VALUES_COUNT, 'name'), 4) self.assertEqual(scan_result.get(Metric.VALUES_PERCENTAGE, 'name'), 40.0) def test_scan_missing_customized_and_validity(self): self.sql_recreate_table( [f"name {self.dialect.data_type_varchar_255}"], ["('one')", "('')", "(' ')", "('no value')", "(null)"]) scan_result = self.scan({ KEY_COLUMNS: { 'name': { KEY_METRICS: [ Metric.INVALID_COUNT ], 'missing_values': [ 'no value' ], 'valid_regex': 'one' } } }) self.assertEqual(scan_result.get(Metric.INVALID_COUNT, 'name'), 2) self.assertEqual(scan_result.get(Metric.VALID_COUNT, 'name'), 1) self.assertEqual(scan_result.get(Metric.MISSING_COUNT, 'name'), 2) def test_scan_valid_regex(self): self.sql_recreate_table( [f"name {self.dialect.data_type_varchar_255}"], ["('one')", "('')", "(' ')", "('no value')", "(null)"]) scan_result = self.scan({ KEY_COLUMNS: { 'name': { KEY_METRIC_GROUPS: [ Metric.METRIC_GROUP_VALIDITY ], 'valid_regex': 'one' } } }) self.assertEqual(scan_result.get(Metric.MISSING_COUNT, 'name'), 1) self.assertEqual(scan_result.get(Metric.MISSING_PERCENTAGE, 'name'), 20.0) self.assertEqual(scan_result.get(Metric.VALUES_COUNT, 'name'), 4) self.assertEqual(scan_result.get(Metric.VALUES_PERCENTAGE, 'name'), 80) self.assertEqual(scan_result.get(Metric.INVALID_COUNT, 'name'), 3) self.assertEqual(scan_result.get(Metric.INVALID_PERCENTAGE, 'name'), 60.0) self.assertEqual(scan_result.get(Metric.VALID_COUNT, 'name'), 1) self.assertEqual(scan_result.get(Metric.VALID_PERCENTAGE, 'name'), 20.0) def test_scan_valid_format(self): self.sql_recreate_table( [f"col {self.dialect.data_type_varchar_255}"], ["('1')", "('2')", "('3')", "('4')", "('4')", "('4')", "('xxx') ", "('yyy') ", "(null)", "('10')"]) scan_result = self.scan({ KEY_COLUMNS: { 'col': { KEY_METRIC_GROUPS: [ Metric.METRIC_GROUP_VALIDITY ], COLUMN_KEY_VALID_FORMAT: 'number_whole' } } }) self.assertEqual(scan_result.get(Metric.MISSING_COUNT, 'col'), 1) self.assertEqual(scan_result.get(Metric.MISSING_PERCENTAGE, 'col'), 10) self.assertEqual(scan_result.get(Metric.VALUES_COUNT, 'col'), 9) self.assertEqual(scan_result.get(Metric.VALUES_PERCENTAGE, 'col'), 90) self.assertEqual(scan_result.get(Metric.INVALID_COUNT, 'col'), 2) self.assertEqual(scan_result.get(Metric.INVALID_PERCENTAGE, 'col'), 20.0) self.assertEqual(scan_result.get(Metric.VALID_COUNT, 'col'), 7) self.assertEqual(scan_result.get(Metric.VALID_PERCENTAGE, 'col'), 70.0)
35.968912
109
0.530539
f4f7eeab1ae46c26e791d1a6b640fa43bde23cda
4,414
py
Python
sdk/python/pulumi_aws/get_ami_ids.py
johnktims/pulumi-aws
c838bc79043f5376c66fc66275a1e012edd3ab7d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/get_ami_ids.py
johnktims/pulumi-aws
c838bc79043f5376c66fc66275a1e012edd3ab7d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/get_ami_ids.py
johnktims/pulumi-aws
c838bc79043f5376c66fc66275a1e012edd3ab7d
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from . import utilities, tables class GetAmiIdsResult: """ A collection of values returned by getAmiIds. """ def __init__(__self__, executable_users=None, filters=None, id=None, ids=None, name_regex=None, owners=None, sort_ascending=None): if executable_users and not isinstance(executable_users, list): raise TypeError("Expected argument 'executable_users' to be a list") __self__.executable_users = executable_users if filters and not isinstance(filters, list): raise TypeError("Expected argument 'filters' to be a list") __self__.filters = filters if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ if ids and not isinstance(ids, list): raise TypeError("Expected argument 'ids' to be a list") __self__.ids = ids if name_regex and not isinstance(name_regex, str): raise TypeError("Expected argument 'name_regex' to be a str") __self__.name_regex = name_regex if owners and not isinstance(owners, list): raise TypeError("Expected argument 'owners' to be a list") __self__.owners = owners if sort_ascending and not isinstance(sort_ascending, bool): raise TypeError("Expected argument 'sort_ascending' to be a bool") __self__.sort_ascending = sort_ascending class AwaitableGetAmiIdsResult(GetAmiIdsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAmiIdsResult( executable_users=self.executable_users, filters=self.filters, id=self.id, ids=self.ids, name_regex=self.name_regex, owners=self.owners, sort_ascending=self.sort_ascending) def get_ami_ids(executable_users=None,filters=None,name_regex=None,owners=None,sort_ascending=None,opts=None): """ Use this data source to get a list of AMI IDs matching the specified criteria. :param list executable_users: Limit search to users with *explicit* launch permission on the image. Valid items are the numeric account ID or `self`. :param list filters: One or more name/value pairs to filter off of. There are several valid keys, for a full reference, check out [describe-images in the AWS CLI reference][1]. :param str name_regex: A regex string to apply to the AMI list returned by AWS. This allows more advanced filtering not supported from the AWS API. This filtering is done locally on what AWS returns, and could have a performance impact if the result is large. It is recommended to combine this with other options to narrow down the list AWS returns. :param list owners: List of AMI owners to limit search. At least 1 value must be specified. Valid values: an AWS account ID, `self` (the current account), or an AWS owner alias (e.g. `amazon`, `aws-marketplace`, `microsoft`). :param bool sort_ascending: Used to sort AMIs by creation time. The **filters** object supports the following: * `name` (`str`) * `values` (`list`) """ __args__ = dict() __args__['executableUsers'] = executable_users __args__['filters'] = filters __args__['nameRegex'] = name_regex __args__['owners'] = owners __args__['sortAscending'] = sort_ascending if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:index/getAmiIds:getAmiIds', __args__, opts=opts).value return AwaitableGetAmiIdsResult( executable_users=__ret__.get('executableUsers'), filters=__ret__.get('filters'), id=__ret__.get('id'), ids=__ret__.get('ids'), name_regex=__ret__.get('nameRegex'), owners=__ret__.get('owners'), sort_ascending=__ret__.get('sortAscending'))
43.27451
229
0.673539
dc07fbc1d21cb1b3e30baeb8db6441de044ced39
3,387
py
Python
python/paddle/distributed/launch/utils/nvsmi.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
11
2016-08-29T07:43:26.000Z
2016-08-29T07:51:24.000Z
python/paddle/distributed/launch/utils/nvsmi.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/distributed/launch/utils/nvsmi.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-09-24T11:23:36.000Z
2021-09-24T11:23:36.000Z
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import shlex import os import json import shutil class Info(object): def __repr__(self): return str(self.__dict__) def json(self): return json.dumps(self.__dict__) def dict(self): return self.__dict__ def str(self, keys=None): if keys is None: keys = self.__dict__.keys() if isinstance(keys, str): keys = keys.split(',') values = [str(self.__dict__.get(k, '')) for k in keys] return ",".join(values) def query_smi(query=None, query_type="gpu", index=None, dtype=None): """ query_type: gpu/compute """ if not has_nvidia_smi(): return [] cmd = ["nvidia-smi", "--format=csv,noheader,nounits"] if isinstance(query, list) and query_type == "gpu": cmd.extend(["--query-gpu={}".format(",".join(query))]) elif isinstance(query, list) and query_type.startswith("compute"): cmd.extend(["--query-compute-apps={}".format(",".join(query))]) else: return if isinstance(index, list) and len(index) > 0: cmd.extend(["--id={}".format(",".join(index))]) if not isinstance(dtype, list) or len(dtype) != len(query): dtype = [str] * len(query) output = subprocess.check_output(cmd, timeout=3) lines = output.decode("utf-8").split(os.linesep) ret = [] for line in lines: if not line: continue info = Info() for k, v, d in zip(query, line.split(", "), dtype): setattr(info, k.replace(".", "_"), d(v)) ret.append(info) return ret def get_gpu_info(index=None): q = "index,uuid,driver_version,name,gpu_serial,display_active,display_mode".split( ",") d = [int, str, str, str, str, str, str] index = index if index is None or isinstance( index, list) else str(index).split(",") return query_smi(q, index=index, dtype=d) def get_gpu_util(index=None): q = "index,utilization.gpu,memory.total,memory.used,memory.free,timestamp".split( ",") d = [int, int, int, int, int, str] index = index if index is None or isinstance( index, list) else str(index).split(",") return query_smi(q, index=index, dtype=d) def get_gpu_process(index=None): q = "pid,process_name,gpu_uuid,gpu_name,used_memory".split(",") d = [int, str, str, str, int] index = index if index is None or isinstance( index, list) else str(index).split(",") return query_smi(q, index=index, query_type="compute", dtype=d) def has_nvidia_smi(): return shutil.which("nvidia-smi") if __name__ == '__main__': print(get_gpu_info(0)) print(get_gpu_util(0)) print(get_gpu_process(0)) u = get_gpu_util() for i in u: print(i.str())
28.462185
86
0.632713
4a36d3f26f3bd4d60cdfb02db4f31f9ee87695a4
62,377
py
Python
lib/galaxy/visualization/data_providers/genome.py
vimalkumarvelayudhan/galaxy
ea89dd8f149778b6c2f0f3f4a34c8b21f7033af7
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/visualization/data_providers/genome.py
vimalkumarvelayudhan/galaxy
ea89dd8f149778b6c2f0f3f4a34c8b21f7033af7
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy/visualization/data_providers/genome.py
vimalkumarvelayudhan/galaxy
ea89dd8f149778b6c2f0f3f4a34c8b21f7033af7
[ "CC-BY-3.0" ]
null
null
null
""" Data providers for genome visualizations. """ import itertools import math import os import random import re import sys from galaxy import eggs eggs.require('numpy') # noqa eggs.require('bx-python') # noqa from bx.interval_index_file import Indexes from bx.bbi.bigbed_file import BigBedFile from bx.bbi.bigwig_file import BigWigFile eggs.require('pysam') # noqa from pysam import csamtools, ctabix from galaxy.datatypes.interval import Bed, Gff, Gtf from galaxy.datatypes.util.gff_util import convert_gff_coords_to_bed, GFFFeature, GFFInterval, GFFReaderWrapper, parse_gff_attributes from galaxy.util.json import loads from galaxy.visualization.data_providers.basic import BaseDataProvider from galaxy.visualization.data_providers.cigar import get_ref_based_read_seq_and_cigar # # Utility functions. # def float_nan(n): ''' Return None instead of NaN to pass jQuery 1.4's strict JSON ''' if n != n: # NaN != NaN return None else: return float(n) def get_bounds( reads, start_pos_index, end_pos_index ): ''' Returns the minimum and maximum position for a set of reads. ''' max_low = sys.maxint max_high = -sys.maxint for read in reads: if read[ start_pos_index ] < max_low: max_low = read[ start_pos_index ] if read[ end_pos_index ] > max_high: max_high = read[ end_pos_index ] return max_low, max_high def _convert_between_ucsc_and_ensemble_naming( chrom ): ''' Convert between UCSC chromosome ('chr1') naming conventions and Ensembl naming conventions ('1') ''' if chrom.startswith( 'chr' ): # Convert from UCSC to Ensembl return chrom[ 3: ] else: # Convert from Ensembl to UCSC return 'chr' + chrom def _chrom_naming_matches( chrom1, chrom2 ): return ( chrom1.startswith( 'chr' ) and chrom2.startswith( 'chr' ) ) or ( not chrom1.startswith( 'chr' ) and not chrom2.startswith( 'chr' ) ) class FeatureLocationIndexDataProvider( BaseDataProvider ): """ Reads/writes/queries feature location index (FLI) datasets. """ def __init__( self, converted_dataset ): self.converted_dataset = converted_dataset def get_data( self, query ): # Init. textloc_file = open( self.converted_dataset.file_name, 'r' ) line_len = int( textloc_file.readline() ) file_len = os.path.getsize( self.converted_dataset.file_name ) query = query.lower() # Find query in file using binary search. low = 0 high = file_len / line_len while low < high: mid = ( low + high ) // 2 position = mid * line_len textloc_file.seek( position ) # Compare line with query and update low, high. line = textloc_file.readline() if line < query: low = mid + 1 else: high = mid # Need to move back one line because last line read may be included in # results. position = low * line_len textloc_file.seek( position ) # At right point in file, generate hits. result = [] while True: line = textloc_file.readline() if not line.startswith( query ): break if line[ -1: ] == '\n': line = line[ :-1 ] result.append( line.split()[1:] ) textloc_file.close() return result class GenomeDataProvider( BaseDataProvider ): """ Base class for genome data providers. All genome providers use BED coordinate format (0-based, half-open coordinates) for both queries and returned data. """ dataset_type = None """ Mapping from column name to payload data; this mapping is used to create filters. Key is column name, value is a dict with mandatory key 'index' and optional key 'name'. E.g. this defines column 4 col_name_data_attr_mapping = {4 : { index: 5, name: 'Score' } } """ col_name_data_attr_mapping = {} def __init__( self, converted_dataset=None, original_dataset=None, dependencies=None, error_max_vals="Only the first %i %s in this region are displayed." ): super( GenomeDataProvider, self ).__init__( converted_dataset=converted_dataset, original_dataset=original_dataset, dependencies=dependencies, error_max_vals=error_max_vals ) # File/pointer where data is obtained from. It is useful to set this for repeated # queries, such as is necessary for genome-wide data. # TODO: add functions to (a) create data_file and (b) clean up data_file. self.data_file = None def write_data_to_file( self, regions, filename ): """ Write data in region defined by chrom, start, and end to a file. """ raise Exception( "Unimplemented Function" ) def valid_chroms( self ): """ Returns chroms/contigs that the dataset contains """ return None # by default def has_data( self, chrom, start, end, **kwargs ): """ Returns true if dataset has data in the specified genome window, false otherwise. """ raise Exception( "Unimplemented Function" ) def get_iterator( self, chrom, start, end, **kwargs ): """ Returns an iterator that provides data in the region chrom:start-end """ raise Exception( "Unimplemented Function" ) def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Process data from an iterator to a format that can be provided to client. """ raise Exception( "Unimplemented Function" ) def get_data( self, chrom=None, low=None, high=None, start_val=0, max_vals=sys.maxint, **kwargs ): """ Returns data in region defined by chrom, start, and end. start_val and max_vals are used to denote the data to return: start_val is the first element to return and max_vals indicates the number of values to return. Return value must be a dictionary with the following attributes: dataset_type, data """ start, end = int( low ), int( high ) iterator = self.get_iterator( chrom, start, end, **kwargs ) return self.process_data( iterator, start_val, max_vals, start=start, end=end, **kwargs ) def get_genome_data( self, chroms_info, **kwargs ): """ Returns data for complete genome. """ genome_data = [] for chrom_info in chroms_info[ 'chrom_info' ]: chrom = chrom_info[ 'chrom' ] chrom_len = chrom_info[ 'len' ] chrom_data = self.get_data( chrom, 0, chrom_len, **kwargs ) # FIXME: data providers probably should never return None. # Some data providers return None when there's no data, so # create a dummy dict if necessary. if not chrom_data: chrom_data = { 'data': None } chrom_data[ 'region' ] = "%s:%i-%i" % ( chrom, 0, chrom_len ) genome_data.append( chrom_data ) return { 'data': genome_data, 'dataset_type': self.dataset_type } def get_filters( self ): """ Returns filters for provider's data. Return value is a list of filters; each filter is a dictionary with the keys 'name', 'index', 'type'. NOTE: This method uses the original dataset's datatype and metadata to create the filters. """ # Get column names. try: column_names = self.original_dataset.datatype.column_names except AttributeError: try: column_names = range( self.original_dataset.metadata.columns ) except: # Give up return [] # Dataset must have column types; if not, cannot create filters. try: column_types = self.original_dataset.metadata.column_types except AttributeError: return [] # Create and return filters. filters = [] if self.original_dataset.metadata.viz_filter_cols: for viz_col_index in self.original_dataset.metadata.viz_filter_cols: # Some columns are optional, so can't assume that a filter # column is in dataset. if viz_col_index >= len( column_names ): continue col_name = column_names[ viz_col_index ] # Make sure that column has a mapped index. If not, do not add filter. try: attrs = self.col_name_data_attr_mapping[ col_name ] except KeyError: continue filters.append( { 'name' : attrs[ 'name' ], 'type' : column_types[viz_col_index], 'index' : attrs[ 'index' ] } ) return filters def get_default_max_vals( self ): return 5000 # # -- Base mixins and providers -- # class FilterableMixin: def get_filters( self ): """ Returns a dataset's filters. """ # is_ functions taken from Tabular.set_meta def is_int( column_text ): try: int( column_text ) return True except: return False def is_float( column_text ): try: float( column_text ) return True except: if column_text.strip().lower() == 'na': return True # na is special cased to be a float return False # # Get filters. # TODOs: # (a) might be useful to move this into each datatype's set_meta method; # (b) could look at first N lines to ensure GTF attribute types are consistent. # filters = [] # HACK: first 8 fields are for drawing, so start filter column index at 9. filter_col = 8 if isinstance( self.original_dataset.datatype, Gff ): # Can filter by score and GTF attributes. filters = [ { 'name': 'Score', 'type': 'number', 'index': filter_col, 'tool_id': 'Filter1', 'tool_exp_name': 'c6' } ] filter_col += 1 if isinstance( self.original_dataset.datatype, Gtf ): # Create filters based on dataset metadata. for name, a_type in self.original_dataset.metadata.attribute_types.items(): if a_type in [ 'int', 'float' ]: filters.append( { 'name': name, 'type': 'number', 'index': filter_col, 'tool_id': 'gff_filter_by_attribute', 'tool_exp_name': name } ) filter_col += 1 elif isinstance( self.original_dataset.datatype, Bed ): # Can filter by score column only. filters = [ { 'name': 'Score', 'type': 'number', 'index': filter_col, 'tool_id': 'Filter1', 'tool_exp_name': 'c5' } ] return filters class TabixDataProvider( FilterableMixin, GenomeDataProvider ): dataset_type = 'tabix' """ Tabix index data provider for the Galaxy track browser. """ col_name_data_attr_mapping = { 4 : { 'index': 4 , 'name' : 'Score' } } def get_iterator( self, chrom, start, end, **kwargs ): start, end = int(start), int(end) if end >= (2 << 29): end = (2 << 29 - 1) # Tabix-enforced maximum bgzip_fname = self.dependencies['bgzip'].file_name if not self.data_file: self.data_file = ctabix.Tabixfile(bgzip_fname, index_filename=self.converted_dataset.file_name) # Get iterator using either naming scheme. iterator = iter( [] ) if chrom in self.data_file.contigs: iterator = self.data_file.fetch(reference=chrom, start=start, end=end) else: # Try alternative naming scheme. chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) if chrom in self.data_file.contigs: iterator = self.data_file.fetch(reference=chrom, start=start, end=end) return iterator def write_data_to_file( self, regions, filename ): out = open( filename, "w" ) for region in regions: # Write data in region. chrom = region.chrom start = region.start end = region.end iterator = self.get_iterator( chrom, start, end ) for line in iterator: out.write( "%s\n" % line ) out.close() # # -- Interval data providers -- # class IntervalDataProvider( GenomeDataProvider ): dataset_type = 'interval_index' """ Processes interval data from native format to payload format. Payload format: [ uid (offset), start, end, name, strand, thick_start, thick_end, blocks ] """ def get_iterator( self, chrom, start, end, **kwargs ): raise Exception( "Unimplemented Function" ) def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Provides """ # Build data to return. Payload format is: # [ <guid/offset>, <start>, <end>, <name>, <strand> ] # # First three entries are mandatory, others are optional. # filter_cols = loads( kwargs.get( "filter_cols", "[]" ) ) no_detail = ( "no_detail" in kwargs ) rval = [] message = None # Subtract one b/c columns are 1-based but indices are 0-based. def col_fn(col): return None if col is None else col - 1 start_col = self.original_dataset.metadata.startCol - 1 end_col = self.original_dataset.metadata.endCol - 1 strand_col = col_fn( self.original_dataset.metadata.strandCol ) name_col = col_fn( self.original_dataset.metadata.nameCol ) for count, line in enumerate( iterator ): if count < start_val: continue if max_vals and count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "features" ) break feature = line.split() length = len(feature) # Unique id is just a hash of the line payload = [ hash(line), int( feature[start_col] ), int( feature[end_col] ) ] if no_detail: rval.append( payload ) continue # Name, strand. if name_col: payload.append( feature[name_col] ) if strand_col: # Put empty name as placeholder. if not name_col: payload.append( "" ) payload.append( feature[strand_col] ) # Score (filter data) if length >= 5 and filter_cols and filter_cols[0] == "Score": try: payload.append( float( feature[4] ) ) except: payload.append( feature[4] ) rval.append( payload ) return { 'data': rval, 'message': message } def write_data_to_file( self, regions, filename ): raise Exception( "Unimplemented Function" ) class IntervalTabixDataProvider( TabixDataProvider, IntervalDataProvider ): """ Provides data from a BED file indexed via tabix. """ pass # # -- BED data providers -- # class BedDataProvider( GenomeDataProvider ): """ Processes BED data from native format to payload format. Payload format: [ uid (offset), start, end, name, strand, thick_start, thick_end, blocks ] """ dataset_type = 'interval_index' def get_iterator( self, chrom, start, end, **kwargs ): raise Exception( "Unimplemented Method" ) def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Provides """ # Build data to return. Payload format is: # [ <guid/offset>, <start>, <end>, <name>, <strand>, <thick_start>, # <thick_end>, <blocks> ] # # First three entries are mandatory, others are optional. # filter_cols = loads( kwargs.get( "filter_cols", "[]" ) ) no_detail = ( "no_detail" in kwargs ) rval = [] message = None for count, line in enumerate( iterator ): if count < start_val: continue if max_vals and count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "features" ) break # TODO: can we use column metadata to fill out payload? # TODO: use function to set payload data feature = line.split() length = len(feature) # Unique id is just a hash of the line payload = [ hash(line), int(feature[1]), int(feature[2]) ] if no_detail: rval.append( payload ) continue # Name, strand, thick start, thick end. if length >= 4: payload.append(feature[3]) if length >= 6: payload.append(feature[5]) if length >= 8: payload.append(int(feature[6])) payload.append(int(feature[7])) # Blocks. if length >= 12: block_sizes = [ int(n) for n in feature[10].split(',') if n != ''] block_starts = [ int(n) for n in feature[11].split(',') if n != '' ] blocks = zip( block_sizes, block_starts ) payload.append( [ ( int(feature[1]) + block[1], int(feature[1]) + block[1] + block[0] ) for block in blocks ] ) # Score (filter data) if length >= 5 and filter_cols and filter_cols[0] == "Score": # If dataset doesn't have name/strand/thick start/thick end/blocks, # add placeholders. There should be 8 entries if all attributes # are present. payload.extend( [ None for i in range( 8 - len( payload ) ) ] ) try: payload.append( float( feature[4] ) ) except: payload.append( feature[4] ) rval.append( payload ) return { 'data': rval, 'dataset_type': self.dataset_type, 'message': message } def write_data_to_file( self, regions, filename ): out = open( filename, "w" ) for region in regions: # Write data in region. chrom = region.chrom start = region.start end = region.end iterator = self.get_iterator( chrom, start, end ) for line in iterator: out.write( "%s\n" % line ) out.close() class BedTabixDataProvider( TabixDataProvider, BedDataProvider ): """ Provides data from a BED file indexed via tabix. """ pass class RawBedDataProvider( BedDataProvider ): """ Provide data from BED file. NOTE: this data provider does not use indices, and hence will be very slow for large datasets. """ def get_iterator( self, source, chrom=None, start=None, end=None, **kwargs ): # Read first line in order to match chrom naming format. line = source.readline() dataset_chrom = line.split()[0] if not _chrom_naming_matches( chrom, dataset_chrom ): chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) # Undo read. source.seek( 0 ) def line_filter_iter(): for line in open( self.original_dataset.file_name ): if line.startswith( "track" ) or line.startswith( "browser" ): continue feature = line.split() feature_chrom = feature[0] feature_start = int( feature[1] ) feature_end = int( feature[2] ) if ( chrom is not None and feature_chrom != chrom ) \ or ( start is not None and feature_start > end ) \ or ( end is not None and feature_end < start ): continue yield line return line_filter_iter() # # -- VCF data providers -- # class VcfDataProvider( GenomeDataProvider ): """ Abstract class that processes VCF data from native format to payload format. Payload format: An array of entries for each locus in the file. Each array has the following entries: 1. GUID (unused) 2. location (0-based) 3. reference base(s) 4. alternative base(s) 5. quality score 6. whether variant passed filter 7. sample genotypes -- a single string with samples separated by commas; empty string denotes the reference genotype 8-end: allele counts for each alternative """ col_name_data_attr_mapping = { 'Qual' : { 'index': 6 , 'name' : 'Qual' } } dataset_type = 'variant' def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Returns a dict with the following attributes:: data - a list of variants with the format .. raw:: text [<guid>, <start>, <end>, <name>, cigar, seq] message - error/informative message """ data = [] message = None def get_mapping( ref, alt ): """ Returns ( offset, new_seq, cigar ) tuple that defines mapping of alt to ref. Cigar format is an array of [ op_index, length ] pairs where op_index is the 0-based index into the string "MIDNSHP=X" """ cig_ops = "MIDNSHP=X" ref_len = len( ref ) alt_len = len( alt ) # Substitutions? if ref_len == alt_len: return 0, alt, [ [ cig_ops.find( "M" ), ref_len ] ] # Deletions? alt_in_ref_index = ref.find( alt ) if alt_in_ref_index != -1: return alt_in_ref_index, ref[ alt_in_ref_index + 1: ], [ [ cig_ops.find( "D" ), ref_len - alt_len ] ] # Insertions? ref_in_alt_index = alt.find( ref ) if ref_in_alt_index != -1: return ref_in_alt_index, alt[ ref_in_alt_index + 1: ], [ [ cig_ops.find( "I" ), alt_len - ref_len ] ] # Pack data. genotype_re = re.compile( '/|\|' ) for count, line in enumerate( iterator ): if count < start_val: continue if max_vals and count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "features" ) break # Split line and aggregate data. feature = line.split() pos, c_id, ref, alt, qual, c_filter, info = feature[ 1:8 ] # Format and samples data are optional. samples_data = [] if len( feature ) > 8: samples_data = feature[ 9: ] # VCF is 1-based but provided position is 0-based. pos = int( pos ) - 1 # FIXME: OK to skip? if alt == '.': count -= 1 continue # Set up array to track allele counts. allele_counts = [ 0 for i in range( alt.count( ',' ) + 1 ) ] sample_gts = [] if samples_data: # Process and pack samples' genotype and count alleles across samples. alleles_seen = {} has_alleles = False for i, sample in enumerate( samples_data ): # Parse and count alleles. genotype = sample.split( ':' )[ 0 ] has_alleles = False alleles_seen.clear() for allele in genotype_re.split( genotype ): try: # This may throw a ValueError if allele is missing. allele = int( allele ) # Only count allele if it hasn't been seen yet. if allele != 0 and allele not in alleles_seen: allele_counts[ allele - 1 ] += 1 alleles_seen[ allele ] = True has_alleles = True except ValueError: pass # If no alleles, use empty string as proxy. if not has_alleles: genotype = '' sample_gts.append( genotype ) else: # No samples, so set allele count and sample genotype manually. allele_counts = [ 1 ] sample_gts = [ '1/1' ] # Add locus data. locus_data = [ -1, pos, c_id, ref, alt, qual, c_filter, ','.join( sample_gts ) ] locus_data.extend( allele_counts ) data.append( locus_data ) return { 'data': data, 'message': message } def write_data_to_file( self, regions, filename ): out = open( filename, "w" ) for region in regions: # Write data in region. chrom = region.chrom start = region.start end = region.end iterator = self.get_iterator( chrom, start, end ) for line in iterator: out.write( "%s\n" % line ) out.close() class VcfTabixDataProvider( TabixDataProvider, VcfDataProvider ): """ Provides data from a VCF file indexed via tabix. """ dataset_type = 'variant' class RawVcfDataProvider( VcfDataProvider ): """ Provide data from VCF file. NOTE: this data provider does not use indices, and hence will be very slow for large datasets. """ def get_iterator( self, chrom, start, end, **kwargs ): source = open( self.original_dataset.file_name ) # Skip comments. line = None for line in source: if not line.startswith("#"): break # If last line is a comment, there are no data lines. if line.startswith( "#" ): return [] # Match chrom naming format. if line: dataset_chrom = line.split()[0] if not _chrom_naming_matches( chrom, dataset_chrom ): chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) def line_in_region( vcf_line, chrom, start, end ): """ Returns true if line is in region. """ variant_chrom, variant_start = vcf_line.split()[ 0:2 ] # VCF format is 1-based. variant_start = int( variant_start ) - 1 return variant_chrom == chrom and variant_start >= start and variant_start <= end def line_filter_iter(): """ Yields lines in source that are in region chrom:start-end """ # Yield data line read above. if line_in_region( line, chrom, start, end ): yield line # Search for and yield other data lines. for data_line in source: if line_in_region( data_line, chrom, start, end ): yield data_line return line_filter_iter() class BamDataProvider( GenomeDataProvider, FilterableMixin ): """ Provides access to intervals from a sorted indexed BAM file. Coordinate data is reported in BED format: 0-based, half-open. """ dataset_type = 'bai' def get_filters( self ): """ Returns filters for dataset. """ # HACK: first 7 fields are for drawing, so start filter column index at 7. filter_col = 7 filters = [] filters.append( { 'name': 'Mapping Quality', 'type': 'number', 'index': filter_col } ) return filters def write_data_to_file( self, regions, filename ): """ Write reads in regions to file. """ # Open current BAM file using index. bamfile = csamtools.Samfile( filename=self.original_dataset.file_name, mode='rb', index_filename=self.converted_dataset.file_name ) # TODO: write headers as well? new_bamfile = csamtools.Samfile( template=bamfile, filename=filename, mode='wb' ) for region in regions: # Write data from region. chrom = region.chrom start = region.start end = region.end try: data = bamfile.fetch(start=start, end=end, reference=chrom) except ValueError: # Try alternative chrom naming. chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) try: data = bamfile.fetch( start=start, end=end, reference=chrom ) except ValueError: return None # Write reads in region. for i, read in enumerate( data ): new_bamfile.write( read ) # Cleanup. new_bamfile.close() bamfile.close() def get_iterator( self, chrom, start, end, **kwargs ): """ Returns an iterator that provides data in the region chrom:start-end """ start, end = int( start ), int( end ) orig_data_filename = self.original_dataset.file_name index_filename = self.converted_dataset.file_name # Attempt to open the BAM file with index bamfile = csamtools.Samfile( filename=orig_data_filename, mode='rb', index_filename=index_filename ) try: data = bamfile.fetch( start=start, end=end, reference=chrom ) except ValueError: # Try alternative chrom naming. chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) try: data = bamfile.fetch( start=start, end=end, reference=chrom ) except ValueError: return None return data def process_data( self, iterator, start_val=0, max_vals=None, ref_seq=None, iterator_type='nth', mean_depth=None, start=0, end=0, **kwargs ): """ Returns a dict with the following attributes:: data - a list of reads with the format [<guid>, <start>, <end>, <name>, <read_1>, <read_2>, [empty], <mapq_scores>] where <read_1> has the format [<start>, <end>, <cigar>, <strand>, <read_seq>] and <read_2> has the format [<start>, <end>, <cigar>, <strand>, <read_seq>] Field 7 is empty so that mapq scores' location matches that in single-end reads. For single-end reads, read has format: [<guid>, <start>, <end>, <name>, <cigar>, <strand>, <seq>, <mapq_score>] NOTE: read end and sequence data are not valid for reads outside of requested region and should not be used. max_low - lowest coordinate for the returned reads max_high - highest coordinate for the returned reads message - error/informative message """ # No iterator indicates no reads. if iterator is None: return { 'data': [], 'message': None } # # Helper functions. # def decode_strand( read_flag, mask ): """ Decode strand from read flag. """ strand_flag = ( read_flag & mask == 0 ) if strand_flag: return "+" else: return "-" def _random_read_iterator( read_iterator, threshold ): """ An iterator that returns a random stream of reads from the read_iterator as well as corresponding pairs for returned reads. threshold is a value in [0,1] that denotes the percentage of reads to return. """ for e in read_iterator: if e.qname in paired_pending or random.uniform( 0, 1 ) <= threshold: yield e def _nth_read_iterator( read_iterator, threshold ): """ An iterator that returns every nth read. """ # Convert threshold to N for stepping through iterator. n = int( 1 / threshold ) return itertools.islice( read_iterator, None, None, n ) # -- Choose iterator. -- # Calculate threshold for non-sequential iterators based on mean_depth and read length. try: first_read = next( iterator ) except StopIteration: # no reads. return { 'data': [], 'message': None, 'max_low': start, 'max_high': start } read_len = len( first_read.seq ) num_reads = max( ( end - start ) * mean_depth / float( read_len ), 1 ) threshold = float( max_vals ) / num_reads iterator = itertools.chain( iter( [ first_read ] ), iterator ) # Use specified iterator type, save for when threshold is >= 1. # A threshold of >= 1 indicates all reads are to be returned, so no # sampling needed and seqential iterator will be used. if iterator_type == 'sequential' or threshold >= 1: read_iterator = iterator elif iterator_type == 'random': read_iterator = _random_read_iterator( iterator, threshold ) elif iterator_type == 'nth': read_iterator = _nth_read_iterator( iterator, threshold ) # # Encode reads as list of lists. # results = [] paired_pending = {} unmapped = 0 message = None count = 0 for read in read_iterator: if count < start_val: continue if ( count - start_val - unmapped ) >= max_vals: message = self.error_max_vals % ( max_vals, "reads" ) break # If not mapped, skip read. is_mapped = ( read.flag & 0x0004 == 0 ) if not is_mapped: unmapped += 1 continue qname = read.qname seq = read.seq strand = decode_strand( read.flag, 0x0010 ) if read.cigar is not None: read_len = sum( [cig[1] for cig in read.cigar] ) # Use cigar to determine length else: read_len = len(seq) # If no cigar, just use sequence length if read.is_proper_pair: if qname in paired_pending: # Found pair. pair = paired_pending[qname] results.append( [ hash( "%i_%s" % ( pair['start'], qname ) ), pair['start'], read.pos + read_len, qname, [ pair['start'], pair['end'], pair['cigar'], pair['strand'], pair['seq'] ], [ read.pos, read.pos + read_len, read.cigar, strand, seq ], None, [ pair['mapq'], read.mapq ] ] ) del paired_pending[qname] else: # Insert first of pair. paired_pending[qname] = { 'start': read.pos, 'end': read.pos + read_len, 'seq': seq, 'mate_start': read.mpos, 'rlen': read_len, 'strand': strand, 'cigar': read.cigar, 'mapq': read.mapq } count += 1 else: results.append( [ hash( "%i_%s" % ( read.pos, qname ) ), read.pos, read.pos + read_len, qname, read.cigar, strand, read.seq, read.mapq ] ) count += 1 # Take care of reads whose mates are out of range. for qname, read in paired_pending.iteritems(): if read['mate_start'] < read['start']: # Mate is before read. read_start = read['mate_start'] read_end = read['end'] # Make read_1 start=end so that length is 0 b/c we don't know # read length. r1 = [ read['mate_start'], read['mate_start'] ] r2 = [ read['start'], read['end'], read['cigar'], read['strand'], read['seq'] ] else: # Mate is after read. read_start = read['start'] # Make read_2 start=end so that length is 0 b/c we don't know # read length. Hence, end of read is start of read_2. read_end = read['mate_start'] r1 = [ read['start'], read['end'], read['cigar'], read['strand'], read['seq'] ] r2 = [ read['mate_start'], read['mate_start'] ] results.append( [ hash( "%i_%s" % ( read_start, qname ) ), read_start, read_end, qname, r1, r2, [read[ 'mapq' ], 125] ] ) # Clean up. TODO: is this needed? If so, we'll need a cleanup function after processing the data. # bamfile.close() def compress_seq_and_cigar( read, start_field, cigar_field, seq_field ): ''' Use reference-based compression to compress read sequence and cigar. ''' read_seq, read_cigar = get_ref_based_read_seq_and_cigar( read[ seq_field ].upper(), read[ start_field ], ref_seq.sequence, ref_seq.start, read[ cigar_field ] ) read[ seq_field ] = read_seq read[ cigar_field ] = read_cigar def convert_cigar( read, start_field, cigar_field, seq_field ): ''' Convert read cigar from pysam format to string format. ''' cigar_ops = 'MIDNSHP=X' read_cigar = '' for op_tuple in read[ cigar_field ]: read_cigar += '%i%s' % ( op_tuple[1], cigar_ops[ op_tuple[0] ] ) read[ cigar_field ] = read_cigar # Choose method for processing reads. Use reference-based compression # if possible. Otherwise, convert cigar. if ref_seq: # Uppercase for easy comparison. ref_seq.sequence = ref_seq.sequence.upper() process_read = compress_seq_and_cigar else: process_read = convert_cigar # Process reads. for read in results: if isinstance( read[ 5 ], list ): # Paired-end read. if len( read[4] ) > 2: process_read( read[4], 0, 2, 4 ) if len( read[5] ) > 2: process_read( read[5], 0, 2, 4 ) else: # Single-end read. process_read( read, 1, 4, 6) max_low, max_high = get_bounds( results, 1, 2 ) return { 'data': results, 'message': message, 'max_low': max_low, 'max_high': max_high } class SamDataProvider( BamDataProvider ): dataset_type = 'bai' def __init__( self, converted_dataset=None, original_dataset=None, dependencies=None ): """ Create SamDataProvider. """ super( SamDataProvider, self ).__init__( converted_dataset=converted_dataset, original_dataset=original_dataset, dependencies=dependencies ) # To use BamDataProvider, original dataset must be BAM and # converted dataset must be BAI. Use BAI from BAM metadata. if converted_dataset: self.original_dataset = converted_dataset self.converted_dataset = converted_dataset.metadata.bam_index class BBIDataProvider( GenomeDataProvider ): """ BBI data provider for the Galaxy track browser. """ dataset_type = 'bigwig' def valid_chroms( self ): # No way to return this info as of now return None def has_data( self, chrom ): f, bbi = self._get_dataset() all_dat = bbi.query( chrom, 0, 2147483647, 1 ) or \ bbi.query( _convert_between_ucsc_and_ensemble_naming( chrom ), 0, 2147483647, 1 ) f.close() return all_dat is not None def get_data( self, chrom, start, end, start_val=0, max_vals=None, num_samples=1000, **kwargs ): start = int( start ) end = int( end ) # Helper function for getting summary data regardless of chromosome # naming convention. def _summarize_bbi( bbi, chrom, start, end, num_points ): return bbi.summarize( chrom, start, end, num_points ) or \ bbi.summarize( _convert_between_ucsc_and_ensemble_naming( chrom ) , start, end, num_points ) # Bigwig can be a standalone bigwig file, in which case we use # original_dataset, or coming from wig->bigwig conversion in # which we use converted_dataset f, bbi = self._get_dataset() # If stats requested, compute overall summary data for the range # start:endbut no reduced data. This is currently used by client # to determine the default range. if 'stats' in kwargs: summary = _summarize_bbi( bbi, chrom, start, end, 1 ) f.close() min_val = 0 max_val = 0 mean = 0 sd = 0 if summary is not None: # Does the summary contain any defined values? valid_count = summary.valid_count[0] if summary.valid_count > 0: # Compute $\mu \pm 2\sigma$ to provide an estimate for upper and lower # bounds that contain ~95% of the data. mean = summary.sum_data[0] / valid_count var = summary.sum_squares[0] - mean if valid_count > 1: var /= valid_count - 1 sd = math.sqrt( var ) min_val = summary.min_val[0] max_val = summary.max_val[0] return dict( data=dict( min=min_val, max=max_val, mean=mean, sd=sd ) ) def summarize_region( bbi, chrom, start, end, num_points ): ''' Returns results from summarizing a region using num_points. NOTE: num_points cannot be greater than end - start or BBI will return None for all positions. ''' result = [] # Get summary; this samples at intervals of length # (end - start)/num_points -- i.e. drops any fractional component # of interval length. summary = _summarize_bbi( bbi, chrom, start, end, num_points ) if summary: # mean = summary.sum_data / summary.valid_count # Standard deviation by bin, not yet used # var = summary.sum_squares - mean # var /= minimum( valid_count - 1, 1 ) # sd = sqrt( var ) pos = start step_size = (end - start) / num_points for i in range( num_points ): result.append( (pos, float_nan( summary.sum_data[i] / summary.valid_count[i] ) ) ) pos += step_size return result # Approach is different depending on region size. num_samples = int( num_samples ) if end - start < num_samples: # Get values for individual bases in region, including start and end. # To do this, need to increase end to next base and request number of points. num_points = end - start + 1 end += 1 else: # # The goal is to sample the region between start and end uniformly # using ~N (num_samples) data points. The challenge is that the size of # sampled intervals rarely is full bases, so sampling using N points # will leave the end of the region unsampled due to remainders for # each interval. To recitify this, a new N is calculated based on the # step size that covers as much of the region as possible. # # However, this still leaves some of the region unsampled. This # could be addressed by repeatedly sampling remainder using a # smaller and smaller step_size, but that would require iteratively # going to BBI, which could be time consuming. # # Start with N samples. num_points = num_samples step_size = ( end - start ) / num_points # Add additional points to sample in the remainder not covered by # the initial N samples. remainder_start = start + step_size * num_points additional_points = ( end - remainder_start ) / step_size num_points += additional_points result = summarize_region( bbi, chrom, start, end, num_points ) # Cleanup and return. f.close() return { 'data': result, 'dataset_type': self.dataset_type } class BigBedDataProvider( BBIDataProvider ): def _get_dataset( self ): # Nothing converts to bigBed so we don't consider converted dataset f = open( self.original_dataset.file_name ) return f, BigBedFile(file=f) class BigWigDataProvider ( BBIDataProvider ): """ Provides data from BigWig files; position data is reported in 1-based coordinate system, i.e. wiggle format. """ def _get_dataset( self ): if self.converted_dataset is not None: f = open( self.converted_dataset.file_name ) else: f = open( self.original_dataset.file_name ) return f, BigWigFile(file=f) class IntervalIndexDataProvider( FilterableMixin, GenomeDataProvider ): """ Interval index files used for GFF, Pileup files. """ col_name_data_attr_mapping = { 4 : { 'index': 4 , 'name' : 'Score' } } dataset_type = 'interval_index' def write_data_to_file( self, regions, filename ): source = open( self.original_dataset.file_name ) index = Indexes( self.converted_dataset.file_name ) out = open( filename, 'w' ) for region in regions: # Write data from region. chrom = region.chrom start = region.start end = region.end for start, end, offset in index.find( chrom, start, end ): source.seek( offset ) # HACK: write differently depending on original dataset format. if self.original_dataset.ext not in [ 'gff', 'gff3', 'gtf' ]: line = source.readline() out.write( line ) else: reader = GFFReaderWrapper( source, fix_strand=True ) feature = reader.next() for interval in feature.intervals: out.write( '\t'.join( interval.fields ) + '\n' ) source.close() out.close() def get_iterator( self, chrom, start, end, **kwargs ): """ Returns an array with values: (a) source file and (b) an iterator that provides data in the region chrom:start-end """ start, end = int(start), int(end) index = Indexes( self.converted_dataset.file_name ) if chrom not in index.indexes: # Try alternative naming. chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) return index.find(chrom, start, end) def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): results = [] message = None source = open( self.original_dataset.file_name ) # # Build data to return. Payload format is: # [ <guid/offset>, <start>, <end>, <name>, <score>, <strand>, <thick_start>, # <thick_end>, <blocks> ] # # First three entries are mandatory, others are optional. # filter_cols = loads( kwargs.get( "filter_cols", "[]" ) ) no_detail = ( "no_detail" in kwargs ) for count, val in enumerate( iterator ): offset = val[2] if count < start_val: continue if count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "features" ) break source.seek( offset ) # TODO: can we use column metadata to fill out payload? # GFF dataset. reader = GFFReaderWrapper( source, fix_strand=True ) feature = reader.next() payload = package_gff_feature( feature, no_detail, filter_cols ) payload.insert( 0, offset ) results.append( payload ) return { 'data': results, 'message': message } class RawGFFDataProvider( GenomeDataProvider ): """ Provide data from GFF file that has not been indexed. NOTE: this data provider does not use indices, and hence will be very slow for large datasets. """ dataset_type = 'interval_index' def get_iterator( self, chrom, start, end, **kwargs ): """ Returns an iterator that provides data in the region chrom:start-end as well as a file offset. """ source = open( self.original_dataset.file_name ) # Read first line in order to match chrom naming format. line = source.readline() # If line empty, assume file is empty and return empty iterator. if len( line ) == 0: return iter([]) # Determine chromosome naming format. dataset_chrom = line.split()[0] if not _chrom_naming_matches( chrom, dataset_chrom ): chrom = _convert_between_ucsc_and_ensemble_naming( chrom ) # Undo read. source.seek( 0 ) def features_in_region_iter(): offset = 0 for feature in GFFReaderWrapper( source, fix_strand=True ): # Only provide features that are in region. feature_start, feature_end = convert_gff_coords_to_bed( [ feature.start, feature.end ] ) if feature.chrom == chrom and feature_end > start and feature_start < end: yield feature, offset offset += feature.raw_size return features_in_region_iter() def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Process data from an iterator to a format that can be provided to client. """ filter_cols = loads( kwargs.get( "filter_cols", "[]" ) ) no_detail = ( "no_detail" in kwargs ) results = [] message = None for count, ( feature, offset ) in enumerate( iterator ): if count < start_val: continue if count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "reads" ) break payload = package_gff_feature( feature, no_detail=no_detail, filter_cols=filter_cols ) payload.insert( 0, offset ) results.append( payload ) return { 'data': results, 'dataset_type': self.dataset_type, 'message': message } class GtfTabixDataProvider( TabixDataProvider ): """ Returns data from GTF datasets that are indexed via tabix. """ def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): # Loop through lines and group by transcript_id; each group is a feature. # TODO: extend this code or use code in gff_util to process GFF/3 as well # and then create a generic GFFDataProvider that can be used with both # raw and tabix datasets. features = {} for count, line in enumerate( iterator ): line_attrs = parse_gff_attributes( line.split('\t')[8] ) transcript_id = line_attrs[ 'transcript_id' ] if transcript_id in features: feature = features[ transcript_id ] else: feature = [] features[ transcript_id ] = feature feature.append( GFFInterval( None, line.split( '\t') ) ) # Process data. filter_cols = loads( kwargs.get( "filter_cols", "[]" ) ) no_detail = ( "no_detail" in kwargs ) results = [] message = None for count, intervals in enumerate( features.values() ): if count < start_val: continue if count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "reads" ) break feature = GFFFeature( None, intervals=intervals ) payload = package_gff_feature( feature, no_detail=no_detail, filter_cols=filter_cols ) payload.insert( 0, feature.intervals[ 0 ].attributes[ 'transcript_id' ] ) results.append( payload ) return { 'data': results, 'message': message } # # -- ENCODE Peak data providers. # class ENCODEPeakDataProvider( GenomeDataProvider ): """ Abstract class that processes ENCODEPeak data from native format to payload format. Payload format: [ uid (offset), start, end, name, strand, thick_start, thick_end, blocks ] """ def get_iterator( self, chrom, start, end, **kwargs ): raise "Unimplemented Method" def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Provides """ # FIXMEs: # (1) should be able to unify some of this code with BedDataProvider.process_data # (2) are optional number of parameters supported? # Build data to return. Payload format is: # [ <guid/offset>, <start>, <end>, <name>, <strand>, <thick_start>, # <thick_end>, <blocks> ] # # First three entries are mandatory, others are optional. # no_detail = ( "no_detail" in kwargs ) rval = [] message = None for count, line in enumerate( iterator ): if count < start_val: continue if max_vals and count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "features" ) break feature = line.split() # Feature initialization. payload = [ # GUID is just a hash of the line hash( line ), # Add start, end. int( feature[1] ), int( feature[2] ) ] if no_detail: rval.append( payload ) continue # Extend with additional data. payload.extend( [ # Add name, strand. feature[3], feature[5], # Thick start, end are feature start, end for now. int( feature[1] ), int( feature[2] ), # No blocks. None, # Filtering data: Score, signalValue, pValue, qValue. float( feature[4] ), float( feature[6] ), float( feature[7] ), float( feature[8] ) ] ) rval.append( payload ) return { 'data': rval, 'message': message } class ENCODEPeakTabixDataProvider( TabixDataProvider, ENCODEPeakDataProvider ): """ Provides data from an ENCODEPeak dataset indexed via tabix. """ def get_filters( self ): """ Returns filters for dataset. """ # HACK: first 8 fields are for drawing, so start filter column index at 9. filter_col = 8 filters = [] filters.append( { 'name': 'Score', 'type': 'number', 'index': filter_col, 'tool_id': 'Filter1', 'tool_exp_name': 'c6' } ) filter_col += 1 filters.append( { 'name': 'Signal Value', 'type': 'number', 'index': filter_col, 'tool_id': 'Filter1', 'tool_exp_name': 'c7' } ) filter_col += 1 filters.append( { 'name': 'pValue', 'type': 'number', 'index': filter_col, 'tool_id': 'Filter1', 'tool_exp_name': 'c8' } ) filter_col += 1 filters.append( { 'name': 'qValue', 'type': 'number', 'index': filter_col, 'tool_id': 'Filter1', 'tool_exp_name': 'c9' } ) return filters # # -- ChromatinInteraction data providers -- # class ChromatinInteractionsDataProvider( GenomeDataProvider ): def process_data( self, iterator, start_val=0, max_vals=None, **kwargs ): """ Provides """ rval = [] message = None for count, line in enumerate( iterator ): if count < start_val: continue if max_vals and count - start_val >= max_vals: message = self.error_max_vals % ( max_vals, "interactions" ) break feature = line.split() s1 = int( feature[1] ) e1 = int( feature[2] ) c = feature[3] s2 = int( feature[4] ) e2 = int( feature[5] ) v = float( feature[6] ) # Feature initialization. payload = [ # GUID is just a hash of the line hash( line ), # Add start1, end1, chr2, start2, end2, value. s1, e1, c, s2, e2, v ] rval.append( payload ) return { 'data': rval, 'message': message } def get_default_max_vals( self ): return 100000 class ChromatinInteractionsTabixDataProvider( TabixDataProvider, ChromatinInteractionsDataProvider ): def get_iterator( self, chrom, start=0, end=sys.maxint, interchromosomal=False, **kwargs ): """ """ # Modify start as needed to get earlier interactions with start region. span = int( end ) - int( start ) filter_start = max( 0, int( start ) - span - span / 2 ) def filter( iter ): for line in iter: feature = line.split() s1 = int( feature[1] ) e1 = int( feature[2] ) c = feature[3] s2 = int( feature[4] ) e2 = int( feature[5] ) # Check for intrachromosal interactions. if ( ( s1 + s2 ) / 2 <= end ) and ( ( e1 + e2 ) / 2 >= start ) and ( c == chrom ): yield line # Check for interchromosal interactions. if interchromosomal and c != chrom: yield line return filter( TabixDataProvider.get_iterator( self, chrom, filter_start, end ) ) # # -- Helper methods. -- # def package_gff_feature( feature, no_detail=False, filter_cols=[] ): """ Package a GFF feature in an array for data providers. """ feature = convert_gff_coords_to_bed( feature ) # No detail means only start, end. if no_detail: return [ feature.start, feature.end ] # Return full feature. payload = [ feature.start, feature.end, feature.name(), feature.strand, # No notion of thick start, end in GFF, so make everything # thick. feature.start, feature.end ] # HACK: ignore interval with name 'transcript' from feature. # Cufflinks puts this interval in each of its transcripts, # and they mess up trackster by covering the feature's blocks. # This interval will always be a feature's first interval, # and the GFF's third column is its feature name. feature_intervals = feature.intervals if feature.intervals[0].fields[2] == 'transcript': feature_intervals = feature.intervals[1:] # Add blocks. block_sizes = [ (interval.end - interval.start ) for interval in feature_intervals ] block_starts = [ ( interval.start - feature.start ) for interval in feature_intervals ] blocks = zip( block_sizes, block_starts ) payload.append( [ ( feature.start + block[1], feature.start + block[1] + block[0] ) for block in blocks ] ) # Add filter data to payload. for col in filter_cols: if col == "Score": if feature.score == 'nan': payload.append( feature.score ) else: try: f = float( feature.score ) payload.append( f ) except: payload.append( feature.score ) elif col in feature.attributes: if feature.attributes[col] == 'nan': payload.append( feature.attributes[col] ) else: try: f = float( feature.attributes[col] ) payload.append( f ) except: payload.append( feature.attributes[col] ) else: # Dummy value. payload.append( 0 ) return payload
36.627716
145
0.545377
33e1e3cb4e234e17a744ebb65b79e1fb3b91f4f4
25,413
py
Python
clef15/text-alignment/pan15_text_alignment_evaluator_character_level.py
deltonvaz/pan-code
7a1d11eab81d9b4111d3ba0fb7d7038ff7ebfa0a
[ "MIT" ]
null
null
null
clef15/text-alignment/pan15_text_alignment_evaluator_character_level.py
deltonvaz/pan-code
7a1d11eab81d9b4111d3ba0fb7d7038ff7ebfa0a
[ "MIT" ]
null
null
null
clef15/text-alignment/pan15_text_alignment_evaluator_character_level.py
deltonvaz/pan-code
7a1d11eab81d9b4111d3ba0fb7d7038ff7ebfa0a
[ "MIT" ]
null
null
null
#!/usr/bin/python2 # Copyright (C) 2009 webis.de. All rights reserved. """Plagiarism detection performance measures. This module implements the measures recall, precision, and granularity as described by the authors of [1]. The measures can be calculated macro-averaged and micro-averaged with the respective functions; each one's parameters are iterables of reference plagiarism cases and plagiarism detections. The latter are compared with the former in order to determine how accurate the cases have been detected with respect to different ideas of detection accuracy. Moreover, the function plagdet_score combines recall, precision and granularity values to a single value which allows to rank plagiarism detection algorithms. The parameters 'cases' and 'detections' both must contain instances of the Annotation class, a 7-tuple consisting of the following exemplified values: >>> Annotation('suspicious-document00001.txt', 10000, 1000, \ ... 'source-document00001.txt', 5000, 1100, True) where the first three values reference a section of text in a suspicious document by means of char offset and length, and likewise the following three values reference a section of text in a source document. The last value specifies whether the annotation is to be treated as an external detection or as an intrinsic detection. In the latter case, the precedin values should be set to '', 0, 0, respectively. Finally, this module contains functions to extract plagiarism annotations from XML documents which contain tags with a given name attribute, and with values corresponding to those required by the Annotation class, e.g., the XML format used in the PAN benchmarking workshops [2,3]. [1] Martin Potthast, Benno Stein, Alberto Barron-Cedeno, and Paolo Rosso. An Evaluation Framework for Plagiarism Detection. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing, China. August 2010. ACL. [2] Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barron-Cedeno, and Paolo Rosso. Overview of the 1st International Competition on Plagiarism Detection. In Benno Stein, Paolo Rosso, Efstathios Stamatatos, Moshe Koppel, and Eneko Agirre, editors, SEPLN 2009 Workshop on Uncovering Plagiarism, Authorship, and Social Software Misuse (PAN 09), pages 1-9, September 2009. CEUR-WS.org. ISSN 1613-0073. [3] Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barron-Cedeno, and Paolo Rosso. Overview of the 2nd International Benchmarking Workshop on Plagiarism Detection. In Benno Stein, Paolo Rosso, Efstathios Stamatatos, and Moshe Koppel, editors, Proceedings of PAN at CLEF 2010: Uncovering Plagiarism, Authorship, and Social Software Misuse, September 2010. """ from __future__ import division __author__ = "Martin Potthast" __email__ = "martin.potthast at uni-weimar dot de" __version__ = "1.3" __all__ = ["macro_avg_recall_and_precision", "micro_avg_recall_and_precision", "granularity", "plagdet_score", "Annotation"] from collections import namedtuple import getopt import glob import math from numpy import int8 as npint8 from numpy.ma import zeros, sum as npsum import os import sys import unittest import xml.dom.minidom import shutil import json TREF, TOFF, TLEN = 'this_reference', 'this_offset', 'this_length' SREF, SOFF, SLEN = 'source_reference', 'source_offset', 'source_length' EXT = 'is_external' Annotation = namedtuple('Annotation', [TREF, TOFF, TLEN, SREF, SOFF, SLEN, EXT]) TREF, TOFF, TLEN, SREF, SOFF, SLEN, EXT = range(7) def macro_avg_recall_and_precision(cases, detections): """Returns tuple (rec, prec); the macro-averaged recall and precision of the detections in detecting the plagiarism cases""" return macro_avg_recall(cases, detections), \ macro_avg_precision(cases, detections) def micro_avg_recall_and_precision(cases, detections): """Returns tuple (rec, prec); the micro-averaged recall and precision of the detections in detecting the plagiarism cases""" if len(cases) == 0 and len(detections) == 0: return 1, 1 if len(cases) == 0 or len(detections) == 0: return 0, 0 num_plagiarized, num_detected, num_plagiarized_detected = 0, 0, 0 # chars num_plagiarized += count_chars(cases) num_detected += count_chars(detections) print(len(detections)) detections = true_detections(cases, detections) print(len(detections)) num_plagiarized_detected += count_chars(detections) print(num_plagiarized, num_detected, num_plagiarized_detected) rec, prec = 0, 0 if num_plagiarized > 0: rec = num_plagiarized_detected / num_plagiarized if num_detected > 0: prec = num_plagiarized_detected / num_detected return rec, prec def granularity(cases, detections): """Granularity of the detections in detecting the plagiarism cases.""" if len(detections) == 0: return 1 detections_per_case = list() case_index = index_annotations(cases) det_index = index_annotations(detections) for tref in case_index: cases, detections = case_index[tref], det_index.get(tref, False) if not detections: # No detections for document tref. continue for case in cases: num_dets = sum((is_overlapping(case, det) for det in detections)) detections_per_case.append(num_dets) detected_cases = sum((num_dets > 0 for num_dets in detections_per_case)) if detected_cases == 0: return 1 return sum(detections_per_case) / detected_cases def plagdet_score(rec, prec, gran): """Combines recall, precision, and granularity to a allow for ranking.""" if (rec == 0 and prec == 0) or prec < 0 or rec < 0 or gran < 1: return 0 return ((2 * rec * prec) / (rec + prec)) / math.log(1 + gran, 2) def macro_avg_recall(cases, detections): """Recall of the detections in detecting plagiarism cases.""" if len(cases) == 0 and len(detections) == 0: return 1 elif len(cases) == 0 or len(detections) == 0: return 0 num_cases, recall_per_case = len(cases), list() case_index = index_annotations(cases) det_index = index_annotations(detections) for tref in case_index: cases, detections = case_index[tref], det_index.get(tref, False) if not detections: # No detections for document tref. continue for case in cases: recall_per_case.append(case_recall(case, detections)) return sum(recall_per_case) / num_cases def case_recall(case, detections): """Recall of the detections in detecting the plagiarism case.""" num_detected_plagiarized = overlapping_chars(case, detections) num_plagiarized = case[TLEN] + case[SLEN] return num_detected_plagiarized / num_plagiarized def macro_avg_precision(cases, detections): """Precision of the detections in detecting the plagiarism cases.""" # Observe the difference to calling 'macro_avg_recall(cases, detections)'. return macro_avg_recall(detections, cases) def true_detections(cases, detections): """Recreates the detections so that only true detections remain and so that the true detections are reduced to the passages that actually overlap with the respective detected case.""" true_dets = list() case_index = index_annotations(cases) det_index = index_annotations(detections) for tref in case_index: cases, detections = case_index[tref], det_index.get(tref, False) if not detections: # No detections for document tref. continue for case in cases: case_dets = (det for det in detections if is_overlapping(case, det)) true_case_dets = (overlap_annotation(case, det) for det in case_dets) true_dets.extend(true_case_dets) return true_dets def overlap_annotation(ann1, ann2): """Returns an Annotation that annotates overlaps between ann1 and ann2.""" tref, sref, ext = ann1[TREF], ann1[SREF], ann1[EXT] and ann2[EXT] toff, tlen, soff, slen = 0, 0, 0, 0 if is_overlapping(ann1, ann2): toff, tlen = overlap_chars(ann1, ann2, TOFF, TLEN) if ext: soff, slen = overlap_chars(ann1, ann2, SOFF, SLEN) return Annotation(tref, toff, tlen, sref, soff, slen, ext) def overlap_chars(ann1, ann2, xoff, xlen): """Returns the overlapping passage between ann1 and ann2, given the keys xoff and xlen.""" overlap_start, overlap_length = 0, 0 max_ann = ann1 if ann1[xoff] >= ann2[xoff] else ann2 min_ann = ann1 if ann1[xoff] < ann2[xoff] else ann2 if min_ann[xoff] + min_ann[xlen] > max_ann[xoff]: overlap_start = max_ann[xoff] overlap_end = min(min_ann[xoff] + min_ann[xlen], \ max_ann[xoff] + max_ann[xlen]) overlap_length = overlap_end - overlap_start return overlap_start, overlap_length def count_chars(annotations): """Returns the number of chars covered by the annotations, while counting overlapping chars only once.""" num_chars = count_chars2(annotations, TREF, TOFF, TLEN) num_chars += count_chars2(annotations, SREF, SOFF, SLEN) return num_chars def count_chars2(annotations, xref, xoff, xlen): """Returns the number of cvhars covered by the annotations with regard to the keys xref, xoff, and xlen.""" num_chars = 0 max_length = max((ann[xoff] + ann[xlen] for ann in annotations)) char_bits = zeros(max_length, dtype=bool) xref_index = index_annotations(annotations, xref) for xref in xref_index: annotations = xref_index[xref] char_bits[:] = False for ann in annotations: char_bits[ann[xoff]:ann[xoff] + ann[xlen]] = True num_chars += npsum(char_bits) return num_chars def overlapping_chars(ann1, annotations): """Returns the number of chars in ann1 that overlap with the annotations.""" annotations = [ann2 for ann2 in annotations if is_overlapping(ann1, ann2)] if len(annotations) == 0 or not isinstance(ann1, Annotation): return 0 this_overlaps = zeros(ann1[TLEN], dtype=bool) source_overlaps = zeros(ann1[SLEN], dtype=bool) for ann2 in annotations: mark_overlapping_chars(this_overlaps, ann1, ann2, TOFF, TLEN) mark_overlapping_chars(source_overlaps, ann1, ann2, SOFF, SLEN) return npsum(this_overlaps) + npsum(source_overlaps) def mark_overlapping_chars(char_bits, ann1, ann2, xoff, xlen): """Sets the i-th boolean in char_bits to true if ann2 overlaps with the i-th char in ann1, respecting the given xoff and xlen index.""" offset_difference = ann2[xoff] - ann1[xoff] overlap_start = min(max(0, offset_difference), ann1[xlen]) overlap_end = min(max(0, offset_difference + ann2[xlen]), ann1[xlen]) char_bits[overlap_start:overlap_end] = True def is_overlapping(ann1, ann2): """Returns true iff the ann2 overlaps with ann1.""" detected = ann1[TREF] == ann2[TREF] and \ ann2[TOFF] + ann2[TLEN] > ann1[TOFF] and \ ann2[TOFF] < ann1[TOFF] + ann1[TLEN] if ann1[EXT] == True and ann2[EXT] == True: detected = detected and ann1[SREF] == ann2[SREF] and \ ann2[SOFF] + ann2[SLEN] > ann1[SOFF] and \ ann2[SOFF] < ann1[SOFF] + ann1[SLEN] return detected def index_annotations(annotations, xref=TREF): """Returns an inverted index that maps references to annotation lists.""" index = dict() for ann in annotations: index.setdefault(ann[xref], []).append(ann) return index def count_files(path): """Counts number of files in directory.""" if not os.path.exists(path): print("Path not accessible:", path) sys.exit(2) xmlfiles = glob.glob(os.path.join(path, '*.xml')) xmlfiles.extend(glob.glob(os.path.join(path, os.path.join('*', '*.xml')))) return len(xmlfiles) def extract_average_execution_time(path): """Extracts the execution time from each xml file and averages it.""" if not os.path.exists(path): print("Path not accessible:", path) sys.exit(2) times = [] xmlfiles = glob.glob(os.path.join(path, '*.xml')) xmlfiles.extend(glob.glob(os.path.join(path, os.path.join('*', '*.xml')))) for xmlfile in xmlfiles: doc = xml.dom.minidom.parse(xmlfile) if doc.documentElement.hasAttribute('reference'): for node in doc.documentElement.childNodes: if node.nodeType == xml.dom.Node.ELEMENT_NODE and \ node.hasAttribute('name') and \ node.getAttribute('name').endswith("execution_time"): times.append(float(node.getAttribute("seconds"))) return sum(times)/len(times) def extract_annotations_from_files(path, tagname): """Returns a set of plagiarism annotations from XML files below path.""" if not os.path.exists(path): print("Path not accessible:", path) sys.exit(2) annotations = set() xmlfiles = glob.glob(os.path.join(path, '*.xml')) xmlfiles.extend(glob.glob(os.path.join(path, os.path.join('*', '*.xml')))) for xmlfile in xmlfiles: annotations.update(extract_annotations_from_file(xmlfile, tagname)) return annotations def extract_annotations_from_file(xmlfile, tagname): """Returns a set of plagiarism annotations from an XML file.""" doc = xml.dom.minidom.parse(xmlfile) annotations = set() if not doc.documentElement.hasAttribute('reference'): return annotations t_ref = doc.documentElement.getAttribute('reference') for node in doc.documentElement.childNodes: if node.nodeType == xml.dom.Node.ELEMENT_NODE and \ node.hasAttribute('name') and \ node.getAttribute('name').endswith(tagname): ann = extract_annotation_from_node(node, t_ref) if ann: annotations.add(ann) return annotations def extract_annotation_from_node(xmlnode, t_ref): """Returns a plagiarism annotation from an XML feature tag node.""" if not (xmlnode.hasAttribute('this_offset') and \ xmlnode.hasAttribute('this_length')): return False t_off = int(xmlnode.getAttribute('this_offset')) t_len = int(xmlnode.getAttribute('this_length')) s_ref, s_off, s_len, ext = '', 0, 0, False if xmlnode.hasAttribute('source_reference') and \ xmlnode.hasAttribute('source_offset') and \ xmlnode.hasAttribute('source_length'): s_ref = xmlnode.getAttribute('source_reference') s_off = int(xmlnode.getAttribute('source_offset')) s_len = int(xmlnode.getAttribute('source_length')) ext = True return Annotation(t_ref, t_off, t_len, s_ref, s_off, s_len, ext) class TestPerfMeasures(unittest.TestCase): """Unit tests for the plagiarism detection performance measures.""" ann1 = Annotation('tref1', 0, 100, 'sref1', 0, 100, True) ann2 = Annotation('tref1', 0, 100, '', 0, 0, False) ann3 = Annotation('tref1', 100, 100, 'sref1', 100, 100, True) ann4 = Annotation('tref1', 0, 200, 'sref1', 0, 200, True) ann5 = Annotation('tref1', 0, 1, 'sref1', 0, 1, True) ann6 = Annotation('tref1', 99, 1, 'sref1', 99, 1, True) ann7 = Annotation('tref2', 0, 100, 'sref2', 0, 100, True) ann8 = Annotation('tref2', 0, 100, '', 0, 0, False) ann9 = Annotation('tref2', 50, 100, 'sref2', 50, 100, True) ann10 = Annotation('tref2', 25, 75, 'sref2', 25, 75, True) def test_macro_averaged_recall(self): self.assertEqual(1, macro_avg_recall([], [])) self.assertEqual(0, macro_avg_recall(['sth'], [])) self.assertEqual(0, macro_avg_recall([], ['sth'])) self.assertEqual(1, macro_avg_recall([self.ann1], [self.ann1])) self.assertEqual(1, macro_avg_recall([self.ann2], [self.ann2])) self.assertEqual(0.5, macro_avg_recall([self.ann1, self.ann7], \ [self.ann1])) self.assertEqual(0.5, macro_avg_recall([self.ann2, self.ann8], \ [self.ann2])) self.assertEqual(0, macro_avg_recall([self.ann1], [self.ann7])) self.assertEqual(0, macro_avg_recall([self.ann2], [self.ann8])) def test_case_recall(self): self.assertEqual(0, case_recall(self.ann1, [])) self.assertEqual(1, case_recall(self.ann1, [self.ann1])) self.assertEqual(0.5, case_recall(self.ann1, [self.ann2])) self.assertEqual(0, case_recall(self.ann1, [self.ann3])) self.assertEqual(1, case_recall(self.ann1, [self.ann4])) self.assertEqual(1, case_recall(self.ann1, [self.ann4, self.ann7])) self.assertEqual(0, case_recall(self.ann1, [self.ann7, self.ann9])) self.assertEqual(0.5, case_recall(self.ann7, [self.ann9])) self.assertEqual(0.75, case_recall(self.ann7, [self.ann10])) self.assertEqual(0.75, case_recall(self.ann7, [self.ann9, self.ann10])) def test_macro_averaged_precision(self): self.assertEqual(1, macro_avg_precision([], [])) self.assertEqual(0, macro_avg_precision(['sth'], [])) self.assertEqual(0, macro_avg_precision([], ['sth'])) self.assertEqual(1, macro_avg_precision([self.ann1], [self.ann1])) self.assertEqual(1, macro_avg_precision([self.ann2], [self.ann2])) self.assertEqual(1, macro_avg_precision([self.ann1, self.ann7], \ [self.ann1])) self.assertEqual(1, macro_avg_precision([self.ann2, self.ann8], \ [self.ann2])) self.assertEqual(0.5, macro_avg_precision([self.ann1], [self.ann4])) self.assertEqual(1, macro_avg_precision([self.ann7], [self.ann10])) self.assertEqual(1, macro_avg_precision([self.ann7], [self.ann10])) self.assertEqual(0.75, macro_avg_precision([self.ann7], \ [self.ann9, self.ann10])) self.assertEqual(0.25, macro_avg_precision([self.ann1], \ [self.ann3, self.ann4])) def test_granularity(self): self.assertEqual(1, granularity([], [])) self.assertEqual(1, granularity([self.ann1], [self.ann2])) self.assertEqual(1, granularity([self.ann1], [self.ann2, self.ann3])) self.assertEqual(2, granularity([self.ann1], [self.ann2, self.ann3, self.ann4])) self.assertEqual(1.5, granularity([self.ann1, self.ann3], [self.ann2, self.ann4])) def test_plagdet_score(self): self.assertEqual(0, plagdet_score(-1, 0, 0)) self.assertEqual(0, plagdet_score(0, -1, 0)) self.assertEqual(0, plagdet_score(0, 0, -1)) self.assertEqual(0, plagdet_score(0, 0, 1)) self.assertEqual(0, plagdet_score(0, 1, 1)) self.assertEqual(0, plagdet_score(1, 0, 1)) self.assertEqual(1, plagdet_score(1, 1, 1)) self.assertEqual(2 / 3, plagdet_score(0.5, 1, 1)) self.assertEqual(2 / 3, plagdet_score(1, 0.5, 1)) self.assertAlmostEqual(0.63092975, plagdet_score(1, 1, 2)) self.assertAlmostEqual(0.23659865, plagdet_score(0.25, 0.75, 2)) def test_is_overlapping(self): self.assertTrue(is_overlapping(self.ann1, self.ann2)) self.assertFalse(is_overlapping(self.ann1, self.ann3)) self.assertTrue(is_overlapping(self.ann1, self.ann4)) self.assertFalse(is_overlapping(self.ann1, self.ann7)) self.assertFalse(is_overlapping(self.ann1, self.ann8)) self.assertFalse(is_overlapping(self.ann1, self.ann9)) self.assertFalse(is_overlapping(self.ann1, self.ann10)) self.assertTrue(is_overlapping(self.ann1, self.ann5)) self.assertTrue(is_overlapping(self.ann1, self.ann6)) def test_index_annotations(self): index = index_annotations([self.ann1, self.ann7, self.ann2, self.ann8]) self.assertEqual([self.ann1, self.ann2], index.get('tref1')) self.assertEqual([self.ann7, self.ann8], index.get('tref2')) def usage(): """Prints command line usage manual.""" print("""\ Usage: pan14-text-alignment-eval.py [options] Options: -h, --help Show this message --micro Compute micro-averaged recall and precision, default: macro-averaged recall and precision -t, --truth-dir Path to the XML files with plagiarism annotations --plag-tag Tag name suffix of plagiarism annotations, default: 'plagiarism' -i, --input-dir Path to the XML files with detection annotations --det-tag Tag name of the detection annotations, default: 'detected-plagiarism' -o, --output-file Path to output file """) def parse_options(): """Parses the command line options.""" try: long_options = ["micro", "truth-dir=", "plag-tag=", "input-dir=", "det-tag=", "output-file=", "help"] opts, _ = getopt.getopt(sys.argv[1:], "t:i:o:h", long_options) except Exception as err: print(str(err)) usage() sys.exit(2) micro_averaged = False plag_path, det_path = "undefined", "undefined" output_filename="undefined" plag_tag_name, det_tag_name = "plagiarism", "detected-plagiarism" for opt, arg in opts: if opt in ("--micro"): micro_averaged = True elif opt in ("-t", "--truth-dir"): plag_path = arg elif opt == "--plag-tag": plag_tag_name = arg elif opt in ("-i", "--input-dir"): det_path = arg elif opt in ("-o", "--output-file"): output_filename = arg elif opt == "--det-tag": det_tag_name = arg elif opt in ("-h", "--help"): usage() sys.exit() else: assert False, "Unknown option." if plag_path == "undefined": print("Truth directory undefined. Use option -t or --truth-dir.") sys.exit() if det_path == "undefined": print("Input directory undefined. Use option -i or --input-dir.") sys.exit() if output_filename == "undefined": print("Output file undefined. Use option -o or --outputfile.") sys.exit() return (micro_averaged, plag_path, plag_tag_name, det_path, det_tag_name, output_filename) def reduce_detections(plag_path, detections): pairs = [x.strip().split(' ') for x in open(os.path.join(plag_path, 'pairs'))] reduced_detections = set() for d in detections: for p in pairs: if d.this_reference == p[0] and d.source_reference == p[1]: reduced_detections.add(d) break return reduced_detections def character_level_performance(micro_averaged, plag_path, plag_tag_name, det_path, det_tag_name): cases = extract_annotations_from_files(plag_path, plag_tag_name) """print 'Reading', det_path""" detections = extract_annotations_from_files(det_path, det_tag_name) detections = reduce_detections(plag_path, detections) """print 'Processing... (this may take a while)'""" rec, prec = 0, 0 if micro_averaged: rec, prec = micro_avg_recall_and_precision(cases, detections) else: rec, prec = macro_avg_recall_and_precision(cases, detections) gran = granularity(cases, detections) plag = plagdet_score(rec, prec, gran) num_files = count_files(det_path) return (plag, rec, prec, gran, num_files) def main(micro_averaged, plag_path, plag_tag_name, det_path, det_tag_name, output_filename): """Main method of this module.""" """print 'Reading', plag_path""" plag, rec, prec, gran, num_files = character_level_performance(micro_averaged, plag_path, plag_tag_name, det_path, det_tag_name) output_string = '{\n'+ \ '"plagdet":"%0.5f",\n' % plag + \ '"recall":"%0.5f",\n' % rec + \ '"precision":"%0.5f",\n' % prec + \ '"granularity":"%0.5f",\n' % gran + \ '"documents":"%d"\n' % num_files + '}' print(plag) print (output_string) o=open(output_filename, "w") o.write(output_string) o.close() # write prototext file json_data = json.loads(output_string) prototext_filename= output_filename[:output_filename.rindex(".")]+".prototext" prototext_file=open(prototext_filename,"w") for i in json_data: text = '''measure{ key : "%s" value: "%s" }''' % (i, json_data[i]) prototext_file.write(text+"\n") prototext_file.close() if __name__ == '__main__': main(*parse_options())
43.740103
133
0.645024
6b5a8408f103ecb1afc0a81d03d2b8dd1d2e3846
485
py
Python
test/silicon/3_wan/plot_bands.py
mir-group/BRAVE
45a870946661d7d76fcca273036b3004f21a49bd
[ "MIT" ]
8
2020-11-03T03:28:35.000Z
2022-03-18T21:22:03.000Z
test/silicon/3_wan/plot_bands.py
mir-group/BRAVE
45a870946661d7d76fcca273036b3004f21a49bd
[ "MIT" ]
1
2021-02-28T08:41:21.000Z
2021-02-28T08:41:21.000Z
test/silicon/3_wan/plot_bands.py
mir-group/BRAVE
45a870946661d7d76fcca273036b3004f21a49bd
[ "MIT" ]
1
2022-03-20T19:27:33.000Z
2022-03-20T19:27:33.000Z
import brave bnd = brave.Diagram() bnd.read('internal', ['../../kpath/fcc.full.in']) bnd.calc_kindex('density') bnd.calc_kpoint() bnd.read('wannier-out', ['silicon.win', 'silicon-bands.dat']) bnd.nelec = 8.0 bnd.calc_efermi() bnd.set_plot('energy') bnd.plot.ylim = [[0, 12]] bnd.plot.pagesize = [5.0, 3.75] bnd.plot.note = [[[0.5, 1.02, 'center', 'bottom', 'fcc Si' + 20 * ' ' + 'LDA' + 20 * ' ' + 'Wannier90', 'black', 1.0]]] bnd.plot.write('matplotlib', 'png', 'silicon_bands.png')
32.333333
119
0.626804
28abe137f2ac997f67b62b6e77b76020a7f2c4cb
4,450
py
Python
backend/app/core/regressor.py
Laende/anleggsmaskin-salgsprisprekisjon
d1e448d9ee081ba055c3ac05c1b1883294f19c99
[ "MIT" ]
null
null
null
backend/app/core/regressor.py
Laende/anleggsmaskin-salgsprisprekisjon
d1e448d9ee081ba055c3ac05c1b1883294f19c99
[ "MIT" ]
null
null
null
backend/app/core/regressor.py
Laende/anleggsmaskin-salgsprisprekisjon
d1e448d9ee081ba055c3ac05c1b1883294f19c99
[ "MIT" ]
null
null
null
from logging import getLogger from pathlib import Path from typing import List import joblib import numpy as np import pandas as pd from app.core.config import (get_feature_codes, get_features_list, get_state_list) from app.schemas.prediction import SalePricePredictionResult from app.schemas.sales import SalesCreate log = getLogger(__name__) class SalePriceRegressor(object): def __init__(self, path): self.path = path self.feature_codes = get_feature_codes() self.features_list = get_features_list() self.state_list = get_state_list() if Path(self.path).is_file(): self._load_local_model() else: log.error("Model path doesnt exist.") def _load_local_model(self): self.model = joblib.load(self.path) def _add_and_remove_df_columns(self, input_data) -> pd.DataFrame: df = pd.DataFrame([input_data]) # Make sure saledate is of datetime type df["saledate"] = pd.to_datetime(df["saledate"], format="%Y-%m-%d") # Create new columns based on saledate df["saledate_year"] = df["saledate"].dt.year df["saledate_month"] = df["saledate"].dt.month df["saledate_day"] = df["saledate"].dt.day df["saledate_dayofweek"] = df["saledate"].dt.dayofweek df["saledate_quarter"] = df["saledate"].dt.quarter # Drop saleprice and saledate as it isnt part of the featureset for the model if "saleprice" in df.columns: df.drop(["saleprice"], axis=1, inplace=True) if "saledate" in df.columns: df.drop(["saledate"], axis=1, inplace=True) # If the dataframe doesnt have all the required features, add them and fill with zero for col in self.state_list: if col not in df.columns: df[col] = 0 return df def _fill_state_in_df(self, df) -> pd.DataFrame: # One-hot encode the state column, this will fill a 1 into the correct in_state column if df.at[0, "state"] != "": df.loc[:, df.columns.str.contains(df.at[0, "state"].lower())] = 1 df.drop(["state"], axis=1, inplace=True) return df def _fill_df_with_numbers(self, df) -> pd.DataFrame: # Fill string type columns with numbers. Check if string exists in feature dict, if it does return the code. for label, content in df.items(): if pd.api.types.is_string_dtype(content): df[label] = df[label].str.lower() val = df.at[0, label] list_of_feature_values = list(self.feature_codes[label].values()) list_of_feature_codes = list(self.feature_codes[label].keys()) try: result = list_of_feature_codes[list_of_feature_values.index(val)] df[label] = result except ValueError as e: df[label] = 0 df = df.astype(float) return df def _pre_process(self, input_data: SalesCreate) -> List: # Create a dataframe from the input data, the input data is a dict df = self._add_and_remove_df_columns(input_data) df = self._fill_state_in_df(df) # All features should be in df now, order them as expected by model df = df[self.features_list] df["machine_hours_current_meter"] = df["machine_hours_current_meter"].astype("int") df = self._fill_df_with_numbers(df) features_to_dict = df.to_dict(orient="records") out = np.array(list(features_to_dict[0].values())).reshape(1, -1) return out def _post_process(self, prediction: np.ndarray) -> SalePricePredictionResult: log.debug("Post-processing prediction.") return SalePricePredictionResult(price=prediction[0]) def _predict(self, features: List) -> np.ndarray: log.debug("Predicting.") prediction_result = self.model.predict(features) return prediction_result def predict(self, input_data: SalesCreate): if input_data is None: raise ValueError(f"{input_data} is not valid.") pre_processed_payload = self._pre_process(input_data) prediction = self._predict(pre_processed_payload) log.info(f"predicted saleprice: {prediction[0]}") post_processed_result = self._post_process(prediction) return post_processed_result
38.034188
116
0.63618
e1dc7008e8a796fb78f1594b1d0972fd14d057c4
7,152
py
Python
pycore/blocks.py
passlab/PlotNeuralNet
c8fff27fe2a7b839c01437d77363ac150d3c6d68
[ "MIT" ]
null
null
null
pycore/blocks.py
passlab/PlotNeuralNet
c8fff27fe2a7b839c01437d77363ac150d3c6d68
[ "MIT" ]
null
null
null
pycore/blocks.py
passlab/PlotNeuralNet
c8fff27fe2a7b839c01437d77363ac150d3c6d68
[ "MIT" ]
null
null
null
from .tikzeng import * #define new block def block_2ConvPool( name, botton, top, s_filer=256, n_filer=64, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ): return [ to_ConvConvRelu( name="ccr_{}".format( name ), s_filer=str(s_filer), n_filer=(n_filer,n_filer), offset=offset, to="({}-east)".format( botton ), width=(size[2],size[2]), height=size[0], depth=size[1], ), to_Pool( name="{}".format( top ), offset="(0,0,0)", to="(ccr_{}-east)".format( name ), width=1, height=size[0] - int(size[0]/4), depth=size[1] - int(size[0]/4), opacity=opacity, ), to_connection( "{}".format( botton ), "ccr_{}".format( name ) ) ] def block_Unconv( name, botton, top, s_filer=256, n_filer=64, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ): return [ to_UnPool( name='unpool_{}'.format(name), offset=offset, to="({}-east)".format(botton), width=1, height=size[0], depth=size[1], opacity=opacity ), to_ConvRes( name='ccr_res_{}'.format(name), offset="(0,0,0)", to="(unpool_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1], opacity=opacity ), to_Conv( name='ccr_{}'.format(name), offset="(0,0,0)", to="(ccr_res_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1] ), to_ConvRes( name='ccr_res_c_{}'.format(name), offset="(0,0,0)", to="(ccr_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1], opacity=opacity ), to_Conv( name='{}'.format(top), offset="(0,0,0)", to="(ccr_res_c_{}-east)".format(name), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1] ), to_connection( "{}".format( botton ), "unpool_{}".format( name ) ) ] def block_Res( num, name, botton, top, s_filer=256, n_filer=64, offset="(0,0,0)", size=(32,32,3.5), opacity=0.5 ): lys = [] layers = [ *[ '{}_{}'.format(name,i) for i in range(num-1) ], top] for name in layers: ly = [ to_Conv( name='{}'.format(name), offset=offset, to="({}-east)".format( botton ), s_filer=str(s_filer), n_filer=str(n_filer), width=size[2], height=size[0], depth=size[1] ), to_connection( "{}".format( botton ), "{}".format( name ) ) ] botton = name lys+=ly lys += [ to_skip( of=layers[1], to=layers[-2], pos=1.25), ] return lys def block_Encoder( name, botton, top, caption=256, n_filer=64, offset="(1,0,0)", size=(32,32,3.5), maxpool=False, opacity=0.5 ): encoder = []; if (botton == ""): encoder.append( to_Conv( name="ccr1_{}".format( name ), offset=offset, s_filer="", to="(0,0,0)", n_filer=n_filer, width=size[2], height=size[0], depth=size[1], ) ); else: encoder.append( to_Conv( name="ccr1_{}".format( name ), offset=offset, s_filer="", n_filer=n_filer, to="({}-east)".format( botton ), width=size[2], height=size[0], depth=size[1], ) ); encoder.append( to_Conv( name="ccr2_{}".format( name ), offset="(0,0,0)", s_filer="", caption=caption, to="(ccr1_{}-east)".format( name ), n_filer=n_filer, width=size[2], height=size[0], depth=size[1], ) ); encoder.append( to_ConvRelu( name="ccr3_{}".format( name ), offset="(0,0,0)", s_filer="", to="(ccr2_{}-east)".format( name ), n_filer=n_filer, width=size[2], height=size[0], depth=size[1], ) ); encoder.append( to_skip( of="ccr1_{}".format( name ), to="ccr3_{}".format( name ), pos_of=1.25, ) ); if (maxpool): encoder.append( to_Pool( name="{}".format( top ), offset="(0,0,0)", caption="", to="(ccr3_{}-east)".format( name ), width=size[2], height=size[0]//2, depth=size[1]//2, opacity=opacity ) ); if (botton != ""): encoder.append( to_connection( "{}".format( botton ), "ccr1_{}".format( name ) ) ); return encoder; def block_Decoder( name, botton, top, caption="", n_filer=64, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ): return [ to_TransposeConv( name='ccr_res_{}'.format(name), offset=offset, to="({}-east)".format(botton), n_filer="", s_filer="", width=1, height=size[0], depth=size[1] ), to_Concat( name='concate_ccr_res_{}'.format(name), offset="(0,0,0)", to="(ccr_res_{}-east)".format(name), n_filer="", s_filer="", width=1, height=size[0], depth=size[1], opacity=opacity ), to_Conv( name="ccr1_{}".format( name ), offset="(0,0,0)", s_filer="", caption="", to="(concate_ccr_res_{}-east)".format( name ), n_filer=n_filer, width=size[2], height=size[0], depth=size[1], ), to_Conv( name="ccr2_{}".format( name ), offset="(0,0,0)", s_filer="", caption=caption, to="(ccr1_{}-east)".format( name ), n_filer=n_filer, width=size[2], height=size[0], depth=size[1], ), to_ConvRelu( name='{}'.format(top), offset="(0,0,0)", to="(ccr2_{}-east)".format(name), s_filer="", caption="", n_filer=n_filer, width=size[2], height=size[0], depth=size[1], ), to_skip( of="ccr1_{}".format( name ), to="{}".format( top ), pos_of=1.25, ), to_connection( "{}".format( botton ), "ccr_res_{}".format(name) ) ]
30.827586
226
0.435263
e4ecaec849c9162d4324dcfffa751c45a2c130b0
973
py
Python
LeetCode/running-sum-1d-array.py
amgad01/algorithms
53eecf06e907cde806d4b78dc78fcd70d0271e3e
[ "MIT" ]
1
2021-03-05T18:13:02.000Z
2021-03-05T18:13:02.000Z
LeetCode/running-sum-1d-array.py
amgad01/algorithms
53eecf06e907cde806d4b78dc78fcd70d0271e3e
[ "MIT" ]
null
null
null
LeetCode/running-sum-1d-array.py
amgad01/algorithms
53eecf06e907cde806d4b78dc78fcd70d0271e3e
[ "MIT" ]
1
2021-07-25T01:55:12.000Z
2021-07-25T01:55:12.000Z
def running_sum(nums): """Given an array nums. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i]). Return the running sum of nums. Example 1: Input: nums = [1,2,3,4] Output: [1,3,6,10] Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4]. Example 2: Input: nums = [1,1,1,1,1] Output: [1,2,3,4,5] Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1]. Example 3: Input: nums = [3,1,2,10,1] Output: [3,4,6,16,17] :type nums: List[int] :rtype: List[int] """ # https://leetcode.com/submissions/detail/466562475/ # runtime beats 80.92 % of python submissions. # memory usage beats 98.99 % of python submissions. r_sum = nums[0] for index in range(1, len(nums)): r_sum += nums[index] nums[index] = r_sum return nums print(running_sum([1, 2, 3, 4])) print(running_sum([1, 1, 1, 1, 1])) print(running_sum([3, 1, 2, 10, 1]))
37.423077
146
0.612539
45a6e241a0a4f280e45f68722b7f3dfe4000139b
1,248
py
Python
CEGO/testFunctions/C3DTLZ4.py
napa-jmm/CEGO
172d511133a608ca5bf265d9ebd2937b8a171b3e
[ "MIT" ]
6
2018-07-18T06:38:42.000Z
2021-11-17T21:01:40.000Z
CEGO/testFunctions/C3DTLZ4.py
napa-jmm/CEGO
172d511133a608ca5bf265d9ebd2937b8a171b3e
[ "MIT" ]
null
null
null
CEGO/testFunctions/C3DTLZ4.py
napa-jmm/CEGO
172d511133a608ca5bf265d9ebd2937b8a171b3e
[ "MIT" ]
6
2018-10-15T09:35:24.000Z
2021-05-08T13:40:19.000Z
# -*- coding: utf-8 -*- """ Created on Wed Feb 21 16:50:49 2018 @author: r.dewinter """ import numpy as np def C3DTLZ4(x): x = np.array(x) gx = np.sum((x[1:]-0.5)**2) f1 = (1+(gx))*np.cos(x[0]*np.pi/2) f2 = (1+(gx))*np.sin(x[0]*np.pi/2) c1 = (f1**2)/4 + f2**2 - 1 c2 = (f2**2)/4 + f1**2 - 1 #-1* constr because of sacobra's constraint handling return [ np.array([f1, f2]), -1*np.array([c1,c2]) ] #import matplotlib.pyplot as plt #results = np.empty((1000000,2)) #constraints= np.empty((1000000,2)) #results[:] = np.nan #constraints[:] = np.nan #ii = 0 #for i in range(10): # for j in range(10): # for k in range(10): # for l in range(10): # for m in range(10): # for n in range(10): # x = np.array([i/10, j/10, k/10, l/10, m/10, n/10]) # results[ii], constraints[ii] = C3DTLZ4(x) # ii+=1 # #constr = np.sum(constraints<0, axis=1)==2 #results2 = np.sum(results<1, axis=1)==2 #results2 = results[constr] #plt.plot(results2[:,0], results2[:,1], 'ro') #iteration time 193.98799991607666 #21351.97400021553 #21406.330000162125
26.553191
76
0.508013
8e8301e31b38aa9b4357fd4b86b20aedc11293ea
974
py
Python
src/robusta/core/model/services.py
robusta-dev/robusta
5dadeb48724c37882759bcdd785e11f59a0afb09
[ "MIT" ]
273
2021-12-28T20:48:48.000Z
2022-03-31T16:03:13.000Z
src/robusta/core/model/services.py
robusta-dev/robusta
5dadeb48724c37882759bcdd785e11f59a0afb09
[ "MIT" ]
103
2022-01-10T11:45:47.000Z
2022-03-31T16:31:11.000Z
src/robusta/core/model/services.py
robusta-dev/robusta
5dadeb48724c37882759bcdd785e11f59a0afb09
[ "MIT" ]
35
2021-12-30T15:30:14.000Z
2022-03-28T11:43:57.000Z
from pydantic import BaseModel from typing import List, Dict class ServiceInfo(BaseModel): name: str service_type: str namespace: str classification: str = "None" deleted: bool = False images: List[str] labels: Dict[str, str] def get_service_key(self) -> str: return f"{self.namespace}/{self.service_type}/{self.name}" def __eq__(self, other): if not isinstance(other, ServiceInfo): return NotImplemented return ( self.name == other.name and self.service_type == other.service_type and self.namespace == other.namespace and self.classification == other.classification and self.deleted == other.deleted and sorted(self.images) == sorted(other.images) and len(self.labels.keys()) == len(other.labels.keys()) and all(self.labels.get(key) == other.labels.get(key) for key in self.labels.keys()) )
31.419355
96
0.620123
bd953357e594b719257ffd4f4a09625d8716e9fe
473
py
Python
django_resto/settings.py
innoteq/django-resto
2ea04dd116af882e62643d9f819c05d5a62389bd
[ "BSD-3-Clause" ]
31
2015-01-14T14:01:37.000Z
2020-12-12T18:39:50.000Z
django_resto/settings.py
innoteq/django-resto
2ea04dd116af882e62643d9f819c05d5a62389bd
[ "BSD-3-Clause" ]
4
2015-01-10T17:20:41.000Z
2018-01-02T15:31:43.000Z
django_resto/settings.py
innoteq/django-resto
2ea04dd116af882e62643d9f819c05d5a62389bd
[ "BSD-3-Clause" ]
5
2015-01-10T04:39:38.000Z
2018-10-12T06:42:33.000Z
"""Default settings. Override them in the settings file of your project. See the README for more information. """ from __future__ import unicode_literals from django.conf import settings def get_setting(name): name = 'RESTO_%s' % name # raise a KeyError if we have no such setting default = globals()[name] return getattr(settings, name, default) RESTO_TIMEOUT = 2 RESTO_MEDIA_HOSTS = () RESTO_FATAL_EXCEPTIONS = True RESTO_SHOW_TRACEBACK = False
18.92
72
0.742072
4da6735369d7ed529d11e1b16ec981856ad2ba96
29,541
py
Python
sdk/python/pulumi_azure_native/machinelearningservices/v20200501preview/aci_service.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/machinelearningservices/v20200501preview/aci_service.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/machinelearningservices/v20200501preview/aci_service.py
polivbr/pulumi-azure-native
09571f3bf6bdc4f3621aabefd1ba6c0d4ecfb0e7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._inputs import * __all__ = ['ACIServiceArgs', 'ACIService'] @pulumi.input_type class ACIServiceArgs: def __init__(__self__, *, compute_type: pulumi.Input[str], resource_group_name: pulumi.Input[str], workspace_name: pulumi.Input[str], app_insights_enabled: Optional[pulumi.Input[bool]] = None, auth_enabled: Optional[pulumi.Input[bool]] = None, cname: Optional[pulumi.Input[str]] = None, container_resource_requirements: Optional[pulumi.Input['ContainerResourceRequirementsArgs']] = None, data_collection: Optional[pulumi.Input['ACIServiceCreateRequestDataCollectionArgs']] = None, description: Optional[pulumi.Input[str]] = None, dns_name_label: Optional[pulumi.Input[str]] = None, encryption_properties: Optional[pulumi.Input['ACIServiceCreateRequestEncryptionPropertiesArgs']] = None, environment_image_request: Optional[pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs']] = None, keys: Optional[pulumi.Input['CreateServiceRequestKeysArgs']] = None, kv_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, service_name: Optional[pulumi.Input[str]] = None, ssl_certificate: Optional[pulumi.Input[str]] = None, ssl_enabled: Optional[pulumi.Input[bool]] = None, ssl_key: Optional[pulumi.Input[str]] = None, vnet_configuration: Optional[pulumi.Input['ACIServiceCreateRequestVnetConfigurationArgs']] = None): """ The set of arguments for constructing a ACIService resource. :param pulumi.Input[str] compute_type: The compute environment type for the service. Expected value is 'ACI'. :param pulumi.Input[str] resource_group_name: Name of the resource group in which workspace is located. :param pulumi.Input[str] workspace_name: Name of Azure Machine Learning workspace. :param pulumi.Input[bool] app_insights_enabled: Whether or not Application Insights is enabled. :param pulumi.Input[bool] auth_enabled: Whether or not authentication is enabled on the service. :param pulumi.Input[str] cname: The CName for the service. :param pulumi.Input['ContainerResourceRequirementsArgs'] container_resource_requirements: The container resource requirements. :param pulumi.Input['ACIServiceCreateRequestDataCollectionArgs'] data_collection: Details of the data collection options specified. :param pulumi.Input[str] description: The description of the service. :param pulumi.Input[str] dns_name_label: The Dns label for the service. :param pulumi.Input['ACIServiceCreateRequestEncryptionPropertiesArgs'] encryption_properties: The encryption properties. :param pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs'] environment_image_request: The Environment, models and assets needed for inferencing. :param pulumi.Input['CreateServiceRequestKeysArgs'] keys: The authentication keys. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] kv_tags: The service tag dictionary. Tags are mutable. :param pulumi.Input[str] location: The name of the Azure location/region. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: The service properties dictionary. Properties are immutable. :param pulumi.Input[str] service_name: Name of the Azure Machine Learning service. :param pulumi.Input[str] ssl_certificate: The public SSL certificate in PEM format to use if SSL is enabled. :param pulumi.Input[bool] ssl_enabled: Whether or not SSL is enabled. :param pulumi.Input[str] ssl_key: The public SSL key in PEM format for the certificate. :param pulumi.Input['ACIServiceCreateRequestVnetConfigurationArgs'] vnet_configuration: The virtual network configuration. """ pulumi.set(__self__, "compute_type", 'ACI') pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "workspace_name", workspace_name) if app_insights_enabled is None: app_insights_enabled = False if app_insights_enabled is not None: pulumi.set(__self__, "app_insights_enabled", app_insights_enabled) if auth_enabled is None: auth_enabled = False if auth_enabled is not None: pulumi.set(__self__, "auth_enabled", auth_enabled) if cname is not None: pulumi.set(__self__, "cname", cname) if container_resource_requirements is not None: pulumi.set(__self__, "container_resource_requirements", container_resource_requirements) if data_collection is not None: pulumi.set(__self__, "data_collection", data_collection) if description is not None: pulumi.set(__self__, "description", description) if dns_name_label is not None: pulumi.set(__self__, "dns_name_label", dns_name_label) if encryption_properties is not None: pulumi.set(__self__, "encryption_properties", encryption_properties) if environment_image_request is not None: pulumi.set(__self__, "environment_image_request", environment_image_request) if keys is not None: pulumi.set(__self__, "keys", keys) if kv_tags is not None: pulumi.set(__self__, "kv_tags", kv_tags) if location is not None: pulumi.set(__self__, "location", location) if properties is not None: pulumi.set(__self__, "properties", properties) if service_name is not None: pulumi.set(__self__, "service_name", service_name) if ssl_certificate is not None: pulumi.set(__self__, "ssl_certificate", ssl_certificate) if ssl_enabled is None: ssl_enabled = False if ssl_enabled is not None: pulumi.set(__self__, "ssl_enabled", ssl_enabled) if ssl_key is not None: pulumi.set(__self__, "ssl_key", ssl_key) if vnet_configuration is not None: pulumi.set(__self__, "vnet_configuration", vnet_configuration) @property @pulumi.getter(name="computeType") def compute_type(self) -> pulumi.Input[str]: """ The compute environment type for the service. Expected value is 'ACI'. """ return pulumi.get(self, "compute_type") @compute_type.setter def compute_type(self, value: pulumi.Input[str]): pulumi.set(self, "compute_type", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ Name of the resource group in which workspace is located. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="workspaceName") def workspace_name(self) -> pulumi.Input[str]: """ Name of Azure Machine Learning workspace. """ return pulumi.get(self, "workspace_name") @workspace_name.setter def workspace_name(self, value: pulumi.Input[str]): pulumi.set(self, "workspace_name", value) @property @pulumi.getter(name="appInsightsEnabled") def app_insights_enabled(self) -> Optional[pulumi.Input[bool]]: """ Whether or not Application Insights is enabled. """ return pulumi.get(self, "app_insights_enabled") @app_insights_enabled.setter def app_insights_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "app_insights_enabled", value) @property @pulumi.getter(name="authEnabled") def auth_enabled(self) -> Optional[pulumi.Input[bool]]: """ Whether or not authentication is enabled on the service. """ return pulumi.get(self, "auth_enabled") @auth_enabled.setter def auth_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "auth_enabled", value) @property @pulumi.getter def cname(self) -> Optional[pulumi.Input[str]]: """ The CName for the service. """ return pulumi.get(self, "cname") @cname.setter def cname(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "cname", value) @property @pulumi.getter(name="containerResourceRequirements") def container_resource_requirements(self) -> Optional[pulumi.Input['ContainerResourceRequirementsArgs']]: """ The container resource requirements. """ return pulumi.get(self, "container_resource_requirements") @container_resource_requirements.setter def container_resource_requirements(self, value: Optional[pulumi.Input['ContainerResourceRequirementsArgs']]): pulumi.set(self, "container_resource_requirements", value) @property @pulumi.getter(name="dataCollection") def data_collection(self) -> Optional[pulumi.Input['ACIServiceCreateRequestDataCollectionArgs']]: """ Details of the data collection options specified. """ return pulumi.get(self, "data_collection") @data_collection.setter def data_collection(self, value: Optional[pulumi.Input['ACIServiceCreateRequestDataCollectionArgs']]): pulumi.set(self, "data_collection", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ The description of the service. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="dnsNameLabel") def dns_name_label(self) -> Optional[pulumi.Input[str]]: """ The Dns label for the service. """ return pulumi.get(self, "dns_name_label") @dns_name_label.setter def dns_name_label(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "dns_name_label", value) @property @pulumi.getter(name="encryptionProperties") def encryption_properties(self) -> Optional[pulumi.Input['ACIServiceCreateRequestEncryptionPropertiesArgs']]: """ The encryption properties. """ return pulumi.get(self, "encryption_properties") @encryption_properties.setter def encryption_properties(self, value: Optional[pulumi.Input['ACIServiceCreateRequestEncryptionPropertiesArgs']]): pulumi.set(self, "encryption_properties", value) @property @pulumi.getter(name="environmentImageRequest") def environment_image_request(self) -> Optional[pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs']]: """ The Environment, models and assets needed for inferencing. """ return pulumi.get(self, "environment_image_request") @environment_image_request.setter def environment_image_request(self, value: Optional[pulumi.Input['CreateServiceRequestEnvironmentImageRequestArgs']]): pulumi.set(self, "environment_image_request", value) @property @pulumi.getter def keys(self) -> Optional[pulumi.Input['CreateServiceRequestKeysArgs']]: """ The authentication keys. """ return pulumi.get(self, "keys") @keys.setter def keys(self, value: Optional[pulumi.Input['CreateServiceRequestKeysArgs']]): pulumi.set(self, "keys", value) @property @pulumi.getter(name="kvTags") def kv_tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ The service tag dictionary. Tags are mutable. """ return pulumi.get(self, "kv_tags") @kv_tags.setter def kv_tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "kv_tags", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ The name of the Azure location/region. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def properties(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ The service properties dictionary. Properties are immutable. """ return pulumi.get(self, "properties") @properties.setter def properties(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "properties", value) @property @pulumi.getter(name="serviceName") def service_name(self) -> Optional[pulumi.Input[str]]: """ Name of the Azure Machine Learning service. """ return pulumi.get(self, "service_name") @service_name.setter def service_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_name", value) @property @pulumi.getter(name="sslCertificate") def ssl_certificate(self) -> Optional[pulumi.Input[str]]: """ The public SSL certificate in PEM format to use if SSL is enabled. """ return pulumi.get(self, "ssl_certificate") @ssl_certificate.setter def ssl_certificate(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "ssl_certificate", value) @property @pulumi.getter(name="sslEnabled") def ssl_enabled(self) -> Optional[pulumi.Input[bool]]: """ Whether or not SSL is enabled. """ return pulumi.get(self, "ssl_enabled") @ssl_enabled.setter def ssl_enabled(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "ssl_enabled", value) @property @pulumi.getter(name="sslKey") def ssl_key(self) -> Optional[pulumi.Input[str]]: """ The public SSL key in PEM format for the certificate. """ return pulumi.get(self, "ssl_key") @ssl_key.setter def ssl_key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "ssl_key", value) @property @pulumi.getter(name="vnetConfiguration") def vnet_configuration(self) -> Optional[pulumi.Input['ACIServiceCreateRequestVnetConfigurationArgs']]: """ The virtual network configuration. """ return pulumi.get(self, "vnet_configuration") @vnet_configuration.setter def vnet_configuration(self, value: Optional[pulumi.Input['ACIServiceCreateRequestVnetConfigurationArgs']]): pulumi.set(self, "vnet_configuration", value) class ACIService(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, app_insights_enabled: Optional[pulumi.Input[bool]] = None, auth_enabled: Optional[pulumi.Input[bool]] = None, cname: Optional[pulumi.Input[str]] = None, compute_type: Optional[pulumi.Input[str]] = None, container_resource_requirements: Optional[pulumi.Input[pulumi.InputType['ContainerResourceRequirementsArgs']]] = None, data_collection: Optional[pulumi.Input[pulumi.InputType['ACIServiceCreateRequestDataCollectionArgs']]] = None, description: Optional[pulumi.Input[str]] = None, dns_name_label: Optional[pulumi.Input[str]] = None, encryption_properties: Optional[pulumi.Input[pulumi.InputType['ACIServiceCreateRequestEncryptionPropertiesArgs']]] = None, environment_image_request: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestEnvironmentImageRequestArgs']]] = None, keys: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestKeysArgs']]] = None, kv_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, ssl_certificate: Optional[pulumi.Input[str]] = None, ssl_enabled: Optional[pulumi.Input[bool]] = None, ssl_key: Optional[pulumi.Input[str]] = None, vnet_configuration: Optional[pulumi.Input[pulumi.InputType['ACIServiceCreateRequestVnetConfigurationArgs']]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Machine Learning service object wrapped into ARM resource envelope. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] app_insights_enabled: Whether or not Application Insights is enabled. :param pulumi.Input[bool] auth_enabled: Whether or not authentication is enabled on the service. :param pulumi.Input[str] cname: The CName for the service. :param pulumi.Input[str] compute_type: The compute environment type for the service. Expected value is 'ACI'. :param pulumi.Input[pulumi.InputType['ContainerResourceRequirementsArgs']] container_resource_requirements: The container resource requirements. :param pulumi.Input[pulumi.InputType['ACIServiceCreateRequestDataCollectionArgs']] data_collection: Details of the data collection options specified. :param pulumi.Input[str] description: The description of the service. :param pulumi.Input[str] dns_name_label: The Dns label for the service. :param pulumi.Input[pulumi.InputType['ACIServiceCreateRequestEncryptionPropertiesArgs']] encryption_properties: The encryption properties. :param pulumi.Input[pulumi.InputType['CreateServiceRequestEnvironmentImageRequestArgs']] environment_image_request: The Environment, models and assets needed for inferencing. :param pulumi.Input[pulumi.InputType['CreateServiceRequestKeysArgs']] keys: The authentication keys. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] kv_tags: The service tag dictionary. Tags are mutable. :param pulumi.Input[str] location: The name of the Azure location/region. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: The service properties dictionary. Properties are immutable. :param pulumi.Input[str] resource_group_name: Name of the resource group in which workspace is located. :param pulumi.Input[str] service_name: Name of the Azure Machine Learning service. :param pulumi.Input[str] ssl_certificate: The public SSL certificate in PEM format to use if SSL is enabled. :param pulumi.Input[bool] ssl_enabled: Whether or not SSL is enabled. :param pulumi.Input[str] ssl_key: The public SSL key in PEM format for the certificate. :param pulumi.Input[pulumi.InputType['ACIServiceCreateRequestVnetConfigurationArgs']] vnet_configuration: The virtual network configuration. :param pulumi.Input[str] workspace_name: Name of Azure Machine Learning workspace. """ ... @overload def __init__(__self__, resource_name: str, args: ACIServiceArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Machine Learning service object wrapped into ARM resource envelope. :param str resource_name: The name of the resource. :param ACIServiceArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ACIServiceArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, app_insights_enabled: Optional[pulumi.Input[bool]] = None, auth_enabled: Optional[pulumi.Input[bool]] = None, cname: Optional[pulumi.Input[str]] = None, compute_type: Optional[pulumi.Input[str]] = None, container_resource_requirements: Optional[pulumi.Input[pulumi.InputType['ContainerResourceRequirementsArgs']]] = None, data_collection: Optional[pulumi.Input[pulumi.InputType['ACIServiceCreateRequestDataCollectionArgs']]] = None, description: Optional[pulumi.Input[str]] = None, dns_name_label: Optional[pulumi.Input[str]] = None, encryption_properties: Optional[pulumi.Input[pulumi.InputType['ACIServiceCreateRequestEncryptionPropertiesArgs']]] = None, environment_image_request: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestEnvironmentImageRequestArgs']]] = None, keys: Optional[pulumi.Input[pulumi.InputType['CreateServiceRequestKeysArgs']]] = None, kv_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, ssl_certificate: Optional[pulumi.Input[str]] = None, ssl_enabled: Optional[pulumi.Input[bool]] = None, ssl_key: Optional[pulumi.Input[str]] = None, vnet_configuration: Optional[pulumi.Input[pulumi.InputType['ACIServiceCreateRequestVnetConfigurationArgs']]] = None, workspace_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = ACIServiceArgs.__new__(ACIServiceArgs) if app_insights_enabled is None: app_insights_enabled = False __props__.__dict__["app_insights_enabled"] = app_insights_enabled if auth_enabled is None: auth_enabled = False __props__.__dict__["auth_enabled"] = auth_enabled __props__.__dict__["cname"] = cname if compute_type is None and not opts.urn: raise TypeError("Missing required property 'compute_type'") __props__.__dict__["compute_type"] = 'ACI' __props__.__dict__["container_resource_requirements"] = container_resource_requirements __props__.__dict__["data_collection"] = data_collection __props__.__dict__["description"] = description __props__.__dict__["dns_name_label"] = dns_name_label __props__.__dict__["encryption_properties"] = encryption_properties __props__.__dict__["environment_image_request"] = environment_image_request __props__.__dict__["keys"] = keys __props__.__dict__["kv_tags"] = kv_tags __props__.__dict__["location"] = location __props__.__dict__["properties"] = properties if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["service_name"] = service_name __props__.__dict__["ssl_certificate"] = ssl_certificate if ssl_enabled is None: ssl_enabled = False __props__.__dict__["ssl_enabled"] = ssl_enabled __props__.__dict__["ssl_key"] = ssl_key __props__.__dict__["vnet_configuration"] = vnet_configuration if workspace_name is None and not opts.urn: raise TypeError("Missing required property 'workspace_name'") __props__.__dict__["workspace_name"] = workspace_name __props__.__dict__["identity"] = None __props__.__dict__["name"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200501preview:ACIService"), pulumi.Alias(type_="azure-native:machinelearningservices:ACIService"), pulumi.Alias(type_="azure-nextgen:machinelearningservices:ACIService"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200515preview:ACIService"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200515preview:ACIService"), pulumi.Alias(type_="azure-native:machinelearningservices/v20200901preview:ACIService"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20200901preview:ACIService"), pulumi.Alias(type_="azure-native:machinelearningservices/v20210101:ACIService"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20210101:ACIService"), pulumi.Alias(type_="azure-native:machinelearningservices/v20210401:ACIService"), pulumi.Alias(type_="azure-nextgen:machinelearningservices/v20210401:ACIService")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ACIService, __self__).__init__( 'azure-native:machinelearningservices/v20200501preview:ACIService', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ACIService': """ Get an existing ACIService resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = ACIServiceArgs.__new__(ACIServiceArgs) __props__.__dict__["identity"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["properties"] = None __props__.__dict__["sku"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return ACIService(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.IdentityResponse']]: """ The identity of the resource. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Specifies the location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output[Any]: """ Service properties """ return pulumi.get(self, "properties") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.SkuResponse']]: """ The sku of the workspace. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Contains resource tags defined as key/value pairs. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Specifies the type of the resource. """ return pulumi.get(self, "type")
48.99005
965
0.670424
80de6ff7ed7006f770eb158437c8fe3ff6fe08d2
1,912
py
Python
delfin/alert_manager/alert_processor.py
noelmcloughlin/delfin
6dfa9bdb86d850410c82201f6fa621b4e5ea2917
[ "Apache-2.0" ]
null
null
null
delfin/alert_manager/alert_processor.py
noelmcloughlin/delfin
6dfa9bdb86d850410c82201f6fa621b4e5ea2917
[ "Apache-2.0" ]
3
2020-05-23T03:24:56.000Z
2020-06-06T02:24:27.000Z
delfin/alert_manager/alert_processor.py
noelmcloughlin/delfin
6dfa9bdb86d850410c82201f6fa621b4e5ea2917
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The SODA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_log import log from delfin import context from delfin import db from delfin import exception from delfin.common import alert_util from delfin.drivers import api as driver_manager from delfin.exporter import base_exporter LOG = log.getLogger(__name__) class AlertProcessor(object): """Alert model translation and export functions""" def __init__(self): self.driver_manager = driver_manager.API() self.exporter_manager = base_exporter.AlertExporterManager() def process_alert_info(self, alert): """Fills alert model using driver manager interface.""" ctxt = context.get_admin_context() storage = db.storage_get(ctxt, alert['storage_id']) try: alert_model = self.driver_manager.parse_alert(ctxt, alert['storage_id'], alert) # Fill storage specific info alert_util.fill_storage_attributes(alert_model, storage) except Exception as e: LOG.error(e) raise exception.InvalidResults( "Failed to fill the alert model from driver.") # Export to base exporter which handles dispatch for all exporters self.exporter_manager.dispatch(ctxt, alert_model)
36.769231
78
0.679393
886aa77bed2b2a5401469ce977fbfa53c8887d45
3,622
py
Python
models/basic.py
wpfhtl/PSMNet
337f8d9cd3ecfffe26395450e4363428179d6f30
[ "MIT" ]
null
null
null
models/basic.py
wpfhtl/PSMNet
337f8d9cd3ecfffe26395450e4363428179d6f30
[ "MIT" ]
null
null
null
models/basic.py
wpfhtl/PSMNet
337f8d9cd3ecfffe26395450e4363428179d6f30
[ "MIT" ]
1
2018-04-20T05:32:55.000Z
2018-04-20T05:32:55.000Z
from __future__ import print_function import torch import torch.nn as nn import torch.utils.data from torch.autograd import Variable import torch.nn.functional as F import math from submodule import * class PSMNet(nn.Module): def __init__(self, maxdisp, colormode): super(PSMNet, self).__init__() self.maxdisp = maxdisp self.feature_extraction = feature_extraction(colormode) ######## self.dres0 = nn.Sequential(convbn_3d(64, 32, 3, 1, 1), nn.ReLU(inplace=True), convbn_3d(32, 32, 3, 1, 1), nn.ReLU(inplace=True)) self.dres1 = nn.Sequential(convbn_3d(32, 32, 3, 1, 1), nn.ReLU(inplace=True), convbn_3d(32, 32, 3, 1, 1)) self.dres2 = nn.Sequential(convbn_3d(32, 32, 3, 1, 1), nn.ReLU(inplace=True), convbn_3d(32, 32, 3, 1, 1)) self.dres3 = nn.Sequential(convbn_3d(32, 32, 3, 1, 1), nn.ReLU(inplace=True), convbn_3d(32, 32, 3, 1, 1)) self.dres4 = nn.Sequential(convbn_3d(32, 32, 3, 1, 1), nn.ReLU(inplace=True), convbn_3d(32, 32, 3, 1, 1)) self.classify = nn.Sequential(convbn_3d(32, 32, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv3d(32, 1, kernel_size=3, padding=1, stride=1,bias=False)) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.Conv3d): n = m.kernel_size[0] * m.kernel_size[1]*m.kernel_size[2] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, left, right): refimg_fea = self.feature_extraction(left) targetimg_fea = self.feature_extraction(right) #matching cost = Variable(torch.FloatTensor(refimg_fea.size()[0], refimg_fea.size()[1]*2, self.maxdisp/4, refimg_fea.size()[2], refimg_fea.size()[3]).zero_(), volatile= not self.training).cuda() for i in range(self.maxdisp/4): if i > 0 : cost[:, :refimg_fea.size()[1], i, :,i:] = refimg_fea[:,:,:,i:] cost[:, refimg_fea.size()[1]:, i, :,i:] = targetimg_fea[:,:,:,:-i] else: cost[:, :refimg_fea.size()[1], i, :,:] = refimg_fea cost[:, refimg_fea.size()[1]:, i, :,:] = targetimg_fea cost = cost.contiguous() cost0 = self.dres0(cost) cost0 = self.dres1(cost0) + cost0 cost0 = self.dres2(cost0) + cost0 cost0 = self.dres3(cost0) + cost0 cost0 = self.dres4(cost0) + cost0 cost = self.classify(cost0) cost = F.upsample(cost, [self.maxdisp,left.size()[2],left.size()[3]], mode='trilinear') cost = torch.squeeze(cost,1) pred = F.softmax(cost) pred = disparityregression(self.maxdisp)(pred) return pred
40.244444
194
0.509111
d05c9534affc297c7fa01543d6a14f5ec3bddcf6
3,571
py
Python
main/catdog_test.py
xiaonanQua/experiment
19925c9af5cffc73451dc7674bc3afce25abf772
[ "MIT" ]
null
null
null
main/catdog_test.py
xiaonanQua/experiment
19925c9af5cffc73451dc7674bc3afce25abf772
[ "MIT" ]
null
null
null
main/catdog_test.py
xiaonanQua/experiment
19925c9af5cffc73451dc7674bc3afce25abf772
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- import torch import torch.nn as nn import torchvision.models as model from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder import torchvision.transforms as transforms import time from torch.utils.data import Dataset from PIL import Image import os import torch.nn.functional as F from sklearn.metrics import f1_score import utils.tools as tool # 训练、测试数据集路径 test_dataset_path = '/home/team/xiaonan/Dataset/cat_dog/test/' # 类别数量 num_classes = 2 # 类别名称和设备 class_name = ['cat', 'dog'] # 类别名称 device = 'cuda:1' if torch.cuda.is_available() else 'cpu' # 平均值和标准差 mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] # 保存模型路径 model_path = '../checkpoints/catdog.pth' result_file = '../result/catdog.txt' # 文件列表 file_list = os.listdir(test_dataset_path) print(len(file_list)) # 对数据进行预处理 data_preprocess = transforms.Compose([ transforms.Resize(size=(112, 112)), transforms.ToTensor(), # transforms.Normalize(mean=mean, std=std) ]) class CatDogData(Dataset): """ 继承父类数据集 """ def __init__(self, root, transform): super(CatDogData, self).__init__() # 文件路径列表 self.images_path_list = [os.path.join(root, image_name) for image_name in file_list] print(len(self.images_path_list)) self.image_preprocess = transform def __getitem__(self, index): # 获取单个图像路径 image_path = self.images_path_list[index] print('读取数据路径:{}'.format(image_path)) # 读取图像 image = Image.open(image_path) # 预处理图像 image = self.image_preprocess(image) return image def __len__(self): return len(self.images_path_list) # 加载数据集 image_datasets = CatDogData(root=test_dataset_path, transform=data_preprocess) # 数据加载器 test_data_loader = DataLoader(dataset=image_datasets) # print(iter(test_data_loader).__next__()) # 定义模型 # 获取ResNet50的网络结构 net = model.resnet50(pretrained=False, progress=True) # # 重写网络的最后一层 fc_in_features = net.fc.in_features net.fc = nn.Linear(fc_in_features, num_classes) # 加载模型参数 net.load_state_dict(torch.load(model_path)) # 将网络结构放置在gpu上 # net.to(device) # 测试的开始时间 since = time.time() # 通过上下文管理器禁用梯度计算,减少运行内存 with torch.no_grad(): j = 0 with open(result_file, mode='w+') as file: # 迭代整个数据集 for images in test_data_loader: # 获取图像和标签数据 # images= data2 # 若gpu存在,将图像和标签数据放入gpu上 # images = images.to(device) # print(images.size()) # 若读完整个数据则不再循环 if j > len(file_list) - 1: break # 预测结果 outputs = net(images) # outputs = F.softmax(outputs, dim=1) # _, preds = torch.max(outputs, 1) preds = torch.argmax(outputs, 1) predict_result = preds.numpy().tolist() # print(predict_result) # print(preds.numpy().tolist()) # print(type(preds)) # print(j) content = '{} {}\n'.format(file_list[j], class_name[predict_result[0]]) file.write(content) j = j + 1 tool.view_bar('测试数据:', j+1, len(file_list)) # # 将结果写入结果文件中 # with open(result_file, mode='a+') as file: # for i in range(images.size(0)): # content = '{} {}\n'.format(file_list[j], class_name[predict_result[i]]) # file.write(content) # j = j+1 # print('结果保存完成...') # print() # print('micro_f1_score:{}, macro_f1_score:{}'.format(micro_f1, macro_f1))
25.326241
92
0.628395
4481d4a34c212a8d376fcb4cd47f4f63acc160e8
4,514
py
Python
src/mac/generate_mapping.py
hanya/mozc
7e2420b6307ef2eb147fdf9b620cb8f1ebea0588
[ "BSD-3-Clause" ]
1,144
2015-04-23T16:18:45.000Z
2022-03-29T19:37:33.000Z
src/mac/generate_mapping.py
kirameister/mozc
18b2b32b4d3fe585d38134606773239781b6be82
[ "BSD-3-Clause" ]
291
2015-05-04T07:53:37.000Z
2022-03-22T00:09:05.000Z
src/mac/generate_mapping.py
kirameister/mozc
18b2b32b4d3fe585d38134606773239781b6be82
[ "BSD-3-Clause" ]
301
2015-05-03T00:07:18.000Z
2022-03-21T10:48:29.000Z
# -*- coding: utf-8 -*- # Copyright 2010-2021, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function import optparse import sys class Mapping(object): def __init__(self, options): self._mapname = options.mapname self._key_type = options.key_type self._result_type = options.result_type self._filename = options.filename def PrintLine(self, line): columns = line.strip().split('\t') if len(columns) != 2: return (key, value) = columns mapname = self._mapname if key.startswith('Shift '): mapname += 'Shift' key = key[len('Shift '):len(key)] if self._key_type == 'unsigned short' and not key.startswith('kVK_'): key = 'kVK_ANSI_' + key if self._result_type == 'const char *': value = '"%s"' % ''.join(r'\x%02x' % b for b in value.encode('utf-8')) elif self._result_type == 'KeyEvent::SpecialKey': value = 'KeyEvent::' + value print(' (*k%s)[%s] = %s;' % (mapname, key, value)) def PrintHeader(self): print("""// Copyright 2009 Google Inc. All Rights Reserved. // Author: mukai // // This file is automatically generated by // generate_mapping.py. // Do not edit directly and do not include this from any file other // than KeyCodeMap.mm namespace { static std::map<%(key_type)s, %(result_type)s> *k%(mapname)s = nullptr; static std::map<%(key_type)s, %(result_type)s> *k%(mapname)sShift = nullptr; static once_t kOnceFor%(mapname)s = MOZC_ONCE_INIT; void Init%(mapname)s() { if (k%(mapname)s != nullptr || k%(mapname)sShift != nullptr) { return; } k%(mapname)s = new(std::nothrow)std::map<%(key_type)s, %(result_type)s>; if (k%(mapname)s == nullptr) { return; } k%(mapname)sShift = new(std::nothrow)std::map<%(key_type)s, %(result_type)s>; if (k%(mapname)sShift == nullptr) { delete k%(mapname)s; k%(mapname)s = nullptr; return; } """ % {'key_type': self._key_type, 'mapname': self._mapname, 'result_type': self._result_type}) def PrintFooter(self): print("""} } // namespace """) def Print(self): self.PrintHeader() for line in open(self._filename, encoding='utf-8'): self.PrintLine(line) self.PrintFooter() def ParseOption(): """Parse command line options.""" parser = optparse.OptionParser() parser.add_option('--mapname', dest='mapname') parser.add_option('--key_type', dest='key_type') parser.add_option('--result_type', dest='result_type') parser.add_option('--filename', dest='filename') (options, unused_args) = parser.parse_args() if not options.mapname: print('Error: the output map name should be specified.') sys.exit(2) if not options.key_type: options.key_type = 'unsigned short' if not options.result_type: print('Error: the result type of the output map should be speicified.') if not options.filename: print('Error: the file name is not specified.') return options def main(): options = ParseOption() Mapping(options).Print() if __name__ == '__main__': main()
33.686567
79
0.696943
86e4621e9c79b5f83e2cf42b572d5292ff5f43ad
16,738
py
Python
app/engine/health_bar.py
ViolaBuddy/EscapeFromPlegia
5228b42e8525b445854d742dccf85ca65b320d70
[ "MIT" ]
null
null
null
app/engine/health_bar.py
ViolaBuddy/EscapeFromPlegia
5228b42e8525b445854d742dccf85ca65b320d70
[ "MIT" ]
null
null
null
app/engine/health_bar.py
ViolaBuddy/EscapeFromPlegia
5228b42e8525b445854d742dccf85ca65b320d70
[ "MIT" ]
null
null
null
import random import app.utilities as utils from app.constants import WINWIDTH, WINHEIGHT, TILEWIDTH, TILEHEIGHT, TILEX, TILEY from app.engine.sprites import SPRITES from app.engine.fonts import FONT from app.engine.sound import SOUNDTHREAD from app.engine import engine, combat_calcs, icons, equations, skill_system, item_system from app.engine.game_state import game from app.engine.game_counters import ANIMATION_COUNTERS class HealthBar(): time_for_change_min = 200 speed = utils.frames2ms(1) # 1 frame for each hp point def __init__(self, unit): self.unit = unit self.displayed_hp = self.unit.get_hp() self.old_hp = self.displayed_hp self.total_hp = equations.parser.hitpoints(self.unit) self.transition_flag = False self.time_for_change = self.time_for_change_min self.last_update = 0 def set_hp(self, val): self.displayed_hp = val def update(self): # print(self.displayed_hp, self.unit.get_hp(), self.transition_flag) # Check to see if we should begin showing transition if self.displayed_hp != self.unit.get_hp() and not self.transition_flag: self.transition_flag = True self.time_for_change = max(self.time_for_change_min, abs(self.displayed_hp - self.unit.get_hp()) * self.speed) self.last_update = engine.get_time() if equations.parser.hitpoints(self.unit) != self.total_hp: self.total_hp = equations.parser.hitpoints(self.unit) # Check to see if we should update if self.transition_flag: time = (engine.get_time() - self.last_update) / self.time_for_change new_val = int(utils.lerp(self.old_hp, self.unit.get_hp(), time)) self.set_hp(new_val) if time >= 1: self.set_hp(self.unit.get_hp()) self.old_hp = self.displayed_hp self.transition_flag = False class CombatHealthBar(HealthBar): full_hp_blip = SPRITES.get('full_hp_blip') empty_hp_blip = SPRITES.get('empty_hp_blip') end_hp_blip = engine.subsurface(full_hp_blip, (0, 0, 1, full_hp_blip.get_height())) colors = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1] speed = utils.frames2ms(2) time_for_change_min = 0 def __init__(self, unit): super().__init__(unit) self.color_tick = 0 self.heal_sound_update = 0 def update(self, skip=False): if self.displayed_hp < self.unit.get_hp(): self.speed = utils.frames2ms(4) # Slower speed when increasing hp else: self.speed = utils.frames2ms(2) super().update() self.color_tick = int(engine.get_time() / 16.67) % len(self.colors) def set_hp(self, val): current_time = engine.get_time() if self.displayed_hp < self.unit.get_hp() and current_time - self.heal_sound_update > self.speed: self.heal_sound_update = current_time SOUNDTHREAD.stop_sfx('HealBoop') SOUNDTHREAD.play_sfx('HealBoop') super().set_hp(val) def big_number(self) -> bool: return self.displayed_hp != self.unit.get_hp() def done(self) -> bool: return self.displayed_hp == self.unit.get_hp() def draw(self, surf, left, top): font = FONT['number-small2'] if self.big_number(): font = FONT['number-big2'] if self.displayed_hp <= 80: font.blit_right(str(self.displayed_hp), surf, (left, top - 4)) else: font.blit_right('??', surf, (left, top - 4)) full_hp_blip = engine.subsurface(self.full_hp_blip, (self.colors[self.color_tick] * 2, 0, 2, self.full_hp_blip.get_height())) if self.unit.get_max_hp() <= 40: for idx in range(self.displayed_hp): surf.blit(full_hp_blip, (left + idx * 2 + 5, top + 1)) for idx in range(self.unit.get_max_hp() - self.displayed_hp): surf.blit(self.empty_hp_blip, (left + (idx + self.displayed_hp) * 2 + 5, top + 1)) surf.blit(self.end_hp_blip, (left + self.unit.get_max_hp() * 2 + 5, top + 1)) else: # Lower 40 hp for idx in range(min(self.displayed_hp, 40)): surf.blit(full_hp_blip, (left + idx * 2 + 5, top + 4)) for idx in range(max(40 - self.displayed_hp, 0)): surf.blit(self.empty_hp_blip, (left + (idx + self.displayed_hp) * 2 + 5, top + 4)) surf.blit(self.end_hp_blip, (left + 40 * 2 + 5, top + 4)) # Upper 40 hp for idx in range(utils.clamp(self.displayed_hp - 40, 0, 40)): surf.blit(full_hp_blip, (left + idx * 2 + 5, top - 4)) right = utils.clamp(self.unit.get_max_hp(), 0, 80) for idx in range(right - max(40, self.displayed_hp)): surf.blit(self.empty_hp_blip, (left + (idx + max(self.displayed_hp - 40, 0)) * 2 + 5, top - 4)) surf.blit(self.end_hp_blip, (left + (right - 40) * 2 + 5, top - 4)) class MapHealthBar(HealthBar): time_for_change_min = 200 speed = utils.frames2ms(1) health_outline = SPRITES.get('map_health_outline') health_bar = SPRITES.get('map_health_bar') def draw(self, surf, left, top): total = max(1, self.total_hp) fraction_hp = utils.clamp(self.displayed_hp / total, 0, 1) index_pixel = int(12 * fraction_hp) + 1 surf.blit(self.health_outline, (left, top + 13)) if fraction_hp > 0: bar = engine.subsurface(self.health_bar, (0, 0, index_pixel, 1)) surf.blit(bar, (left + 1, top + 14)) return surf class MapCombatHealthBar(HealthBar): display_numbers = True health_bar = SPRITES.get('health_bar') def draw(self, surf): total = max(1, self.total_hp) fraction_hp = utils.clamp(self.displayed_hp / total, 0, 1) index_pixel = int(50 * fraction_hp) position = 25, 22 surf.blit(engine.subsurface(self.health_bar, (0, 0, index_pixel, 2)), position) # Blit HP number if self.display_numbers: font = FONT['number-small2'] if self.transition_flag: font = FONT['number-big2'] s = str(self.displayed_hp) position = 22 - font.size(s)[0], 15 font.blit(s, surf, position) return surf class MapCombatInfo(): blind_speed = 1/8. # 8 frames to fade in def __init__(self, draw_method, unit, item, target, stats): self.skill_icons = [] self.ordering = None self.reset() self.change_unit(unit, item, target, stats, draw_method) # self.fade_in() def change_unit(self, unit, item, target=None, stats=None, draw_method=None): if draw_method: self.draw_method = draw_method self.true_position = None if unit != self.unit or target != self.target: self.fade_in() else: self.blinds = 1 self.hp_bar = MapCombatHealthBar(unit) self.unit = unit self.item = item if target: self.target = target if stats: self.hit = stats[0] self.mt = stats[1] self.skill_icons.clear() # Handle surfaces team = unit.team self.stats_surf = None self.bg_surf = SPRITES.get('health_' + utils.get_team_color(team)).convert_alpha() self.c_surf = SPRITES.get('combat_stats_' + utils.get_team_color(team)).convert_alpha() self.gem = SPRITES.get('combat_gem_' + utils.get_team_color(team)).convert_alpha() def reset(self): self.draw_method = None self.true_position = None self.hp_bar = None self.unit = None self.item = None self.target = None self.hit = None self.mt = None self.blinds = 1 self.reset_shake() self.stats_surf = None self.bg_surf = None self.c_surf = None self.gem = None self.skill_icons.clear() def fade_in(self): self.blinds = 0 def fade_out(self): pass def shake(self, num): self.current_shake_idx = 1 if num == 1: # Normal hit self.shake_set = [(-3, -3), (0, 0), (3, 3), (0, 0)] elif num == 2: # Kill self.shake_set = [(3, 3), (0, 0), (0, 0), (3, 3), (-3, -3), (3, 3), (-3, -3), (0, 0)] elif num == 3: # Crit self.shake_set = [(random.randint(-4, 4), random.randint(-4, 4)) for _ in range(16)] + [(0, 0)] elif num == 4: # Glancing hit self.shake_set = [(-1, -1), (0, 0), (1, 1), (0, 0)] def reset_shake(self): self.shake_set = [(0, 0)] # How the hp bar will shake self.shake_offset = (0, 0) # How it is currently shaking self.current_shake_idx = 0 def handle_shake(self): if self.current_shake_idx: self.shake_offset = self.shake_set[self.current_shake_idx - 1] self.current_shake_idx += 1 if self.current_shake_idx > len(self.shake_set): self.current_shake_idx = 0 def add_skill_icon(self, skill_icon): self.skill_icons.append(skill_icon) def build_stat_surf(self): stat_surf = self.c_surf.copy() # Blit hit if self.hit is not None: hit = str(utils.clamp(self.hit, 0, 100)) else: hit = '--' position = stat_surf.get_width() // 2 - FONT['number-small2'].size(hit)[0] - 1, -2 FONT['number-small2'].blit(hit, stat_surf, position) # Blit damage if self.mt is not None: damage = str(max(0, self.mt)) else: damage = '--' position = stat_surf.get_width() - FONT['number-small2'].size(damage)[0] - 2, -2 FONT['number-small2'].blit(damage, stat_surf, position) return stat_surf def get_time_for_change(self): return self.hp_bar.time_for_change def force_position_update(self): if self.unit: width, height = self.bg_surf.get_width(), self.bg_surf.get_height() self.determine_position(width, height) def determine_position(self, width, height): self.true_position = self.draw_method if self.draw_method in ('p1', 'p2'): pos1 = self.unit.position pos2 = self.target.position camera_pos = game.camera.get_xy() if self.draw_method == 'p1': left = True if pos1[0] <= pos2[0] else False else: left = True if pos1[0] < pos2[0] else False self.ordering = 'left' if left else 'right' x_pos = WINWIDTH//2 - width if left else WINWIDTH//2 rel_1 = pos1[1] - camera_pos[1] rel_2 = pos2[1] - camera_pos[1] # If both are on top of screen if rel_1 < TILEY//2 and rel_2 < TILEY//2: rel = max(rel_1, rel_2) y_pos = (rel + 1) * TILEHEIGHT + 12 # If both are on bottom of screen elif rel_1 >= TILEY//2 and rel_2 >= TILEY//2: rel = min(rel_1, rel_2) y_pos = rel * TILEHEIGHT - 12 - height - 13 # Stat surf # Find largest gap and place it in the middle else: top_gap = min(rel_1, rel_2) bottom_gap = TILEY - 1 - max(rel_1, rel_2) middle_gap = abs(rel_1 - rel_2) if top_gap > bottom_gap and top_gap > middle_gap: y_pos = top_gap * TILEHEIGHT - 12 - height - 13 # Stat surf elif bottom_gap > top_gap and bottom_gap > middle_gap: y_pos = (bottom_gap + 1) * TILEHEIGHT + 12 else: y_pos = WINHEIGHT//4 - height//2 - 13//2 if rel_1 < TILEY//2 else 3*WINHEIGHT//4 - height//2 - 13//2 x_pos = WINWIDTH//4 - width//2 if pos1[0] - camera_pos[0] > TILEX//2 else 3*WINWIDTH//4 - width//2 self.ordering = 'middle' self.true_position = (x_pos, y_pos) elif self.draw_method == 'splash': x_pos = self.unit.position[0] - game.camera.get_x() x_pos = utils.clamp(x_pos, 3, TILEX - 2) if self.unit.position[1] - game.camera.get_y() < TILEY//2: y_pos = self.unit.position[1] - game.camera.get_y() + 2 else: y_pos = self.unit.position[1] - game.camera.get_y() - 3 self.true_position = x_pos * TILEWIDTH - width//2, y_pos * TILEHEIGHT - 8 self.ordering = 'middle' def update_stats(self, stats): self.hit, self.mt = stats self.stats_surf = None def update(self): # Make blinds wider self.blinds = utils.clamp(self.blinds, self.blinds + self.blind_speed, 1) if self.unit and self.blinds >= 1: self.handle_shake() self.hp_bar.update() def draw(self, surf): # Create background surface width, height = self.bg_surf.get_width(), self.bg_surf.get_height() true_height = height + self.c_surf.get_height() if self.hit or self.mt: bg_surf = engine.create_surface((width, true_height)) else: bg_surf = engine.create_surface((width, height)) bg_surf.blit(self.bg_surf, (0, 0)) # Name name_width = FONT['text-numbers'].size(self.unit.name)[0] position = width - name_width - 4, 3 FONT['text-numbers'].blit(self.unit.name, bg_surf, position) # Item if self.item: # Determine effectiveness icon = icons.get_icon(self.item) if icon: icon = item_system.item_icon_mod(self.unit, self.item, self.target, icon) bg_surf.blit(icon, (2, 3)) # Blit advantage if skill_system.check_enemy(self.unit, self.target): adv = combat_calcs.compute_advantage(self.unit, self.target, self.item, self.target.get_weapon()) disadv = combat_calcs.compute_advantage(self.unit, self.target, self.item, self.target.get_weapon(), False) up_arrow = engine.subsurface(SPRITES.get('arrow_advantage'), (ANIMATION_COUNTERS.arrow_counter.count * 7, 0, 7, 10)) down_arrow = engine.subsurface(SPRITES.get('arrow_advantage'), (ANIMATION_COUNTERS.arrow_counter.count * 7, 10, 7, 10)) if adv and adv.modification > 0: bg_surf.blit(up_arrow, (11, 7)) elif adv and adv.modification < 0: bg_surf.blit(down_arrow, (11, 7)) elif disadv and disadv.modification > 0: bg_surf.blit(down_arrow, (11, 7)) elif disadv and disadv.modification < 0: bg_surf.blit(up_arrow, (11, 7)) # End item bg_surf = self.hp_bar.draw(bg_surf) # Blit stat surf if self.hit is not None or self.mt is not None: if not self.stats_surf: self.stats_surf = self.build_stat_surf() bg_surf.blit(self.stats_surf, (0, height)) if not self.true_position or self.draw_method == 'splash': self.determine_position(width, height) if self.hit is not None or self.mt is not None: blit_surf = engine.subsurface(bg_surf, (0, true_height//2 - int(true_height * self.blinds // 2), width, int(true_height * self.blinds))) y_pos = self.true_position[1] + true_height//2 - int(true_height * self.blinds // 2) else: blit_surf = engine.subsurface(bg_surf, (0, height//2 - int(height * self.blinds // 2), width, int(height * self.blinds))) y_pos = self.true_position[1] + height//2 - int(height * self.blinds // 2) x, y = (self.true_position[0] + self.shake_offset[0], y_pos + self.shake_offset[1]) surf.blit(blit_surf, (x, y)) # Gem if self.blinds >= 1 and self.gem and self.ordering: if self.ordering == 'left': position = (x + 2, y - 3) elif self.ordering == 'right': position = (x + 56, y - 3) elif self.ordering == 'middle': position = (x + 27, y - 3) surf.blit(self.gem, position) # Draw skill icons for idx, skill_icon in enumerate(self.skill_icons): skill_icon.update() x, y = self.true_position[0] + width // 2, self.true_position[1] - 16 + idx * 16 skill_icon.draw(surf, (x, y)) self.skill_icons = [s for s in self.skill_icons if not s.done] return surf
40.235577
148
0.577668
a732bd83a09970e0573171e767890147a1b64b94
485
py
Python
mla_game/apps/transcript/migrations/0023_auto_20171113_1841.py
amazingwebdev/django-FixIt
698aa7e4c45f07d86fbf209d1caca017ed136675
[ "MIT" ]
null
null
null
mla_game/apps/transcript/migrations/0023_auto_20171113_1841.py
amazingwebdev/django-FixIt
698aa7e4c45f07d86fbf209d1caca017ed136675
[ "MIT" ]
null
null
null
mla_game/apps/transcript/migrations/0023_auto_20171113_1841.py
amazingwebdev/django-FixIt
698aa7e4c45f07d86fbf209d1caca017ed136675
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-11-13 18:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('transcript', '0022_auto_20171103_1841'), ] operations = [ migrations.AlterField( model_name='transcriptphrasecorrectionvote', name='upvote', field=models.NullBooleanField(default=False), ), ]
23.095238
57
0.643299
8d6d5a5fca1977767da574fa8b14b52724466356
1,676
py
Python
userbot/modules/hentai.py
Wiki28/WikixCilik
a7e8d684e34174001af3e69d1f00de4e98243abe
[ "Naumen", "Condor-1.1", "MS-PL" ]
4
2022-01-31T14:35:01.000Z
2022-03-31T06:42:39.000Z
userbot/modules/hentai.py
Wiki28/WikixCilik
a7e8d684e34174001af3e69d1f00de4e98243abe
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2022-03-19T15:54:46.000Z
2022-03-19T15:54:46.000Z
userbot/modules/hentai.py
Wiki28/WikixCilik
a7e8d684e34174001af3e69d1f00de4e98243abe
[ "Naumen", "Condor-1.1", "MS-PL" ]
22
2022-01-29T20:29:35.000Z
2022-03-31T06:42:41.000Z
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # """ Userbot module for filter commands """ from telethon import events from telethon.errors.rpcerrorlist import YouBlockedUserError from telethon.tl.functions.contacts import UnblockRequest from userbot import CMD_HANDLER as cmd from userbot import CMD_HELP from userbot.utils import edit_or_reply, cilik_cmd @cilik_cmd(pattern="hentai(?: |$)(.*)") async def _(event): if event.fwd_from: return link = event.pattern_match.group(1) chat = "@nHentaiBot" xx = await edit_or_reply(event, "`Processing...`") async with event.client.conversation(chat) as conv: try: response = conv.wait_event( events.NewMessage(incoming=True, from_users=424466890) ) await event.client.send_message(chat, link) response = await response except YouBlockedUserError: await event.client(UnblockRequest(chat)) await event.client.send_message(chat, link) response = await response if response.text.startswith("**Sorry I couldn't get manga from**"): await xx.edit("**Saya pikir ini bukan link yang benar**") else: await xx.delete() await event.client.send_message(event.chat_id, response.message) CMD_HELP.update( { "hentai": f"**Plugin : **`hentai`\ \n\n • **Syntax :** `{cmd}hentai` <link nhentai>\ \n • **Function : **Melihat nhentai di telegra.ph XD\ " } )
33.52
78
0.652148
1e1172f4dd482cd6789ec231902e8fc979f0cd4f
20,618
py
Python
networks/vision_transformer.py
NoelShin/selfmask
396e0a3636b29591f505b6711be45eabe292919a
[ "MIT" ]
11
2022-03-24T02:45:33.000Z
2022-03-30T02:53:33.000Z
networks/vision_transformer.py
NoelShin/selfmask
396e0a3636b29591f505b6711be45eabe292919a
[ "MIT" ]
2
2022-03-25T11:08:34.000Z
2022-03-30T14:13:26.000Z
networks/vision_transformer.py
NoelShin/selfmask
396e0a3636b29591f505b6711be45eabe292919a
[ "MIT" ]
1
2022-03-30T02:53:35.000Z
2022-03-30T02:53:35.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Mostly copy-paste from timm library. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ from typing import Optional import math from functools import partial import torch import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.", stacklevel=2 ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # square root of dimension for normalisation self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape # B x (cls token + # patch tokens) x dim qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # qkv: 3 x B x Nh x (cls token + # patch tokens) x (dim // Nh) q, k, v = qkv[0], qkv[1], qkv[2] # q, k, v: B x Nh x (cls token + # patch tokens) x (dim // Nh) # q: B x Nh x (cls token + # patch tokens) x (dim // Nh) # k.transpose(-2, -1) = B x Nh x (dim // Nh) x (cls token + # patch tokens) # attn: B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) attn = (q @ k.transpose(-2, -1)) * self.scale # @ operator is for matrix multiplication attn = attn.softmax(dim=-1) # B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) attn = self.attn_drop(attn) # attn = B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) # v = B x Nh x (cls token + # patch tokens) x (dim // Nh) # attn @ v = B x Nh x (cls token + # patch tokens) x (dim // Nh) # (attn @ v).transpose(1, 2) = B x (cls token + # patch tokens) x Nh x (dim // Nh) x = (attn @ v).transpose(1, 2).reshape(B, N, C) # B x (cls token + # patch tokens) x dim x = self.proj(x) # B x (cls token + # patch tokens) x dim x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) if return_attention: return attn x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding""" def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape x = self.proj(x) x = x.flatten(2).transpose(1, 2) # B x (P_H * P_W) x C return x class VisionTransformer(nn.Module): """ Vision Transformer """ def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm): super().__init__() self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=(224, 224), # noel: this is to load pretrained model. patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer ) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.depth = depth self.embed_dim = self.n_embs = embed_dim self.mlp_ratio = mlp_ratio self.n_heads = num_heads self.patch_size = patch_size def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor: """Pad some pixels to make the input size divisible by the patch size.""" B, _, H_0, W_0 = x.shape pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0) return x def prepare_tokens(self, x): B, nc, h, w = x.shape x: torch.Tensor = self.make_input_divisible(x) patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size x = self.patch_embed(x) # patch linear embedding # add positional encoding to each token # add the [CLS] token to the embed patch tokens cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w)) return self.pos_drop(x) @staticmethod def split_token(x, token_type: str): if token_type == "cls": return x[:, 0, :] elif token_type == "patch": return x[:, 1:, :] else: return x # noel def forward(self, x, layer: Optional[str] = None): x: torch.Tensor = self.prepare_tokens(x) features: dict = {} for i, blk in enumerate(self.blocks): x = blk(x) features[f"layer{i + 1}"] = self.norm(x) if layer is not None: return features[layer] else: return features # noel - for DINO's visual def get_last_selfattention(self, x): x = self.prepare_tokens(x) for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: # return attention of the last block return blk(x, return_attention=True) def get_tokens( self, x, layers: list, patch_tokens: bool = False, norm: bool = True, input_tokens: bool = False, post_pe: bool = False ): """Return intermediate tokens.""" list_tokens: list = [] B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if input_tokens: list_tokens.append(x) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed if post_pe: list_tokens.append(x) x = self.pos_drop(x) for i, blk in enumerate(self.blocks): x = blk(x) # B x # patches x dim if layers is None or i in layers: list_tokens.append(self.norm(x) if norm else x) tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim if not patch_tokens: return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim else: return tokens def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) if self.norm is not None: x = self.norm(x) return x[:, 0] def interpolate_pos_encoding(self, x, pos_embed, size): """Interpolate the learnable positional encoding to match the number of patches. x: B x (1 + N patches) x dim_embedding pos_embed: B x (1 + N patches) x dim_embedding return interpolated positional embedding """ npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size) N = pos_embed.shape[1] - 1 # 784 (= 28 x 28) if npatch == N: return pos_embed class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings dim = x.shape[-1] # dimension of embeddings pos_embed = nn.functional.interpolate( pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28 size=size, mode='bicubic', align_corners=False ) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1) return pos_embed def forward_selfattention(self, x, return_interm_attn=False): B, nc, w, h = x.shape N = self.pos_embed.shape[1] - 1 x = self.patch_embed(x) # interpolate patch embeddings dim = x.shape[-1] w0 = w // self.patch_embed.patch_size h0 = h // self.patch_embed.patch_size class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic' ) if w0 != patch_pos_embed.shape[-2]: helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device) patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2) if h0 != patch_pos_embed.shape[-1]: helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device) pos_embed = torch.cat((patch_pos_embed, helper), dim=-1) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) cls_tokens = self.cls_token.expand(B, -1, -1) # self.cls_token: 1 x 1 x emb_dim -> ? x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) if return_interm_attn: list_attn = [] for i, blk in enumerate(self.blocks): attn = blk(x, return_attention=True) x = blk(x) list_attn.append(attn) return torch.cat(list_attn, dim=0) else: for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: return blk(x, return_attention=True) def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) # we will return the [CLS] tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: # get only CLS token (B x dim) output.append(self.norm(x)[:, 0]) if return_patch_avgpool: x = self.norm(x) # In addition to the [CLS] tokens from the `n` last blocks, we also return # the patch tokens from the last block. This is useful for linear eval. output.append(torch.mean(x[:, 1:], dim=1)) return torch.cat(output, dim=-1) def return_patch_emb_from_n_last_blocks(self, x, n=1, return_patch_avgpool=False): """Return intermediate patch embeddings, rather than CLS token, from the last n blocks.""" B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) # we will return the [CLS] tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: output.append(self.norm(x)[:, 1:]) # get only CLS token (B x dim) if return_patch_avgpool: x = self.norm(x) # In addition to the [CLS] tokens from the `n` last blocks, we also return # the patch tokens from the last block. This is useful for linear eval. output.append(torch.mean(x[:, 1:], dim=1)) return torch.stack(output, dim=-1) # B x n_patches x dim x n def deit_tiny(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def deit_small(patch_size=16, **kwargs): depth = kwargs.pop("depth") if "depth" in kwargs else 12 model = VisionTransformer( patch_size=patch_size, embed_dim=384, depth=depth, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) return model def vit_base(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model class DINOHead(nn.Module): def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256): super().__init__() nlayers = max(nlayers, 1) if nlayers == 1: self.mlp = nn.Linear(in_dim, bottleneck_dim) else: layers = [nn.Linear(in_dim, hidden_dim)] if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) for _ in range(nlayers - 2): layers.append(nn.Linear(hidden_dim, hidden_dim)) if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) layers.append(nn.Linear(hidden_dim, bottleneck_dim)) self.mlp = nn.Sequential(*layers) self.apply(self._init_weights) self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) self.last_layer.weight_g.data.fill_(1) if norm_last_layer: self.last_layer.weight_g.requires_grad = False def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) x = nn.functional.normalize(x, dim=-1, p=2) x = self.last_layer(x) return x
36.17193
124
0.57508
e176a37f55dbe09e5239a92eb90fa2f4aa557455
5,230
py
Python
server_tools/device_server.py
krbjila/labrad_tools
5c510cb35090807807bfe6bd910b9c35edce6fce
[ "MIT" ]
1
2020-11-30T01:45:08.000Z
2020-11-30T01:45:08.000Z
server_tools/device_server.py
krbjila/labrad_tools
5c510cb35090807807bfe6bd910b9c35edce6fce
[ "MIT" ]
8
2021-02-23T00:18:12.000Z
2022-03-12T00:54:50.000Z
server_tools/device_server.py
krbjila/labrad_tools
5c510cb35090807807bfe6bd910b9c35edce6fce
[ "MIT" ]
1
2020-11-08T14:54:21.000Z
2020-11-08T14:54:21.000Z
import re import json import types import os from twisted.internet.defer import returnValue, inlineCallbacks from labrad.server import LabradServer, setting from decorators import quickSetting def underscore(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z])([A-Z])', r'\1_\2', s1).lower() def add_quick_setting(srv, ID, setting_name, arg_type): def setting(self, c, arg=None): pass setting.__name__ = str(setting_name) setting.__doc__ = "get or change {} ".format(setting_name) method = types.MethodType(setting, srv) qs = quickSetting(ID, arg_type)(method) setattr(srv, setting_name, qs) def get_device_wrapper(device_config): device_type = device_config['device_type'] _device_type = underscore(device_type) module_path = 'devices.{}'.format(_device_type) if os.path.isdir(_device_type): module_path += _device_type module = __import__(module_path, fromlist=[device_type]) print(module.__dict__.keys()) return getattr(module, device_type) def get_connection_wrapper(device): module_path = 'server_tools.connections.{}_connection'.format(device.connection_type.lower()) module = __import__(module_path, fromlist=[device.connection_type+'Connection'], level=1) return getattr(module, device.connection_type+'Connection') class DeviceWrapper(object): def __init__(self, config={}): for key, value in config.items(): setattr(self, key, value) self.connection_name = self.servername + ' - ' + self.address @inlineCallbacks def initialize(self): yield None class DeviceServer(LabradServer): def __init__(self, config_path='./config.json'): LabradServer.__init__(self) self.devices = {} self.open_connections = {} self.quick_settings = [] self.load_config(config_path) # for i, (setting, arg_type) in enumerate(self.quick_settings): # add_quick_setting(self, 10 + i, setting, arg_type) def load_config(self, path=None): self.config = lambda: None if path is not None: self.config_path = path with open(self.config_path, 'r') as infile: config = json.load(infile) for key, value in config.items(): setattr(self.config, key, value) @inlineCallbacks def initServer(self): for name, config in self.config.devices.items(): yield self.initialize_device(name, config) @inlineCallbacks def initialize_device(self, name, config): device_wrapper = get_device_wrapper(config) device_wrapper.name = name device = device_wrapper(config) try: if device.connection_name not in self.open_connections: yield self.init_connection(device) device.connection = self.open_connections[device.connection_name] self.devices[name] = device yield device.initialize() except Exception as e: print(e) print('could not initialize device {}'.format(name)) print('removing {} from available devices'.format(name)) self.devices.pop(name) @inlineCallbacks def init_connection(self, device): connection = get_connection_wrapper(device)() yield connection.initialize(device) print('connection opened: {} - {}'.format(device.servername, device.address)) self.open_connections[device.connection_name] = connection def get_device(self, c): name = c.get('name') if name is None: raise Exception('select a device first') return self.devices[name] @setting(0, returns='*s') def get_device_list(self, c): return self.devices.keys() @setting(1, name='s', returns=['s', '']) def select_device(self, c, name): if name not in self.devices.keys(): try: yield self.reload_config(c, name) except: message = '{} is not the name of a configured device'.format( name) raise Exception(message) returnValue(None) c['name'] = name device = self.get_device(c) returnValue(json.dumps(device.__dict__, default=lambda x: None)) @setting(3, returns='b') def reinit_connection(self, c): device = self.get_device(c) yield self.init_connection(device) device.connection = self.open_connections[device.connection_name] returnValue(True) @setting(4) def send_update(self, c): device = self.get_device(c) update = {c['name']: {p: getattr(device, p) for p in device.update_parameters}} yield self.update(json.dumps(update)) @setting(5, names=['*s', 's']) def reload_config(self, c, names=None): self.load_config() if names is None: names = self.config.devices elif type(names).__name__ != 'list': names = [names] for name in names: device = self.config.devices.get(name) if device: yield self.initialize_device(name, device)
35.100671
97
0.627916
221643fb5e94e107b26c17415ef42d4b8f2897a1
41,128
py
Python
PlanheatMappingModule/PlanHeatDMM/src/worker.py
Planheat/Planheat-Tool
9764fcb86d3898b232c4cc333dab75ebe41cd421
[ "MIT" ]
2
2020-04-07T03:43:33.000Z
2021-03-23T13:17:42.000Z
PlanheatMappingModule/PlanHeatDMM/src/worker.py
Planheat/Planheat-Tool
9764fcb86d3898b232c4cc333dab75ebe41cd421
[ "MIT" ]
1
2020-07-20T09:56:13.000Z
2020-07-22T10:26:06.000Z
PlanheatMappingModule/PlanHeatDMM/src/worker.py
Planheat/Planheat-Tool
9764fcb86d3898b232c4cc333dab75ebe41cd421
[ "MIT" ]
1
2020-07-20T09:40:15.000Z
2020-07-20T09:40:15.000Z
# -*- coding: utf-8 -*- """ Process Thread :author: Sergio Aparicio Vegas :version: 0.1 :date: 10 Oct. 2017 """ __docformat__ = "restructuredtext" import sys import os import time import subprocess import gc import platform from json import dumps from PyQt5 import QtGui,QtCore from PyQt5.QtCore import QThread from collections import OrderedDict from src.alternative import Alternative from src.complete import Complete from config import config as Config from utility.utils import showResults, clean_temp_files from manageCsv.csv_reader import CSV_Reader from manageCsv.csv_writer import CSV_Writer from manageShape.shape_writer import Shape_Writer from model.building import Building from manageShape.shape_reader import Shape_Reader from manageDB.db import DB from myExceptions.exceptions import NotFoundResourceException, JavaProcessException class Worker(QThread): """ Thread that executes the calculations of the process """ showMessageDialog = QtCore.pyqtSignal(str,str,str,object,name='showMessageDialog') progress_update = QtCore.pyqtSignal(int,object, name= 'progress_update') progress_total = QtCore.pyqtSignal(int,object,name='progress_total') changeStatusProcessButton = QtCore.pyqtSignal(str,object,object, name='changeStatusProcessButton') message_update = QtCore.pyqtSignal(str,object) unlock_interface = QtCore.pyqtSignal(object) loadShapeGeneratedFile = QtCore.pyqtSignal(str,str,object, name='loadShapeGeneratedFile') def __init__(self,planHeatDMM): QThread.__init__(self) try: self.clockThread = ClockThread(planHeatDMM) if planHeatDMM.resources.thread_clock is None: planHeatDMM.resources.thread_clock = self.clockThread else: self.clockThread = None self.planHeatDMM = planHeatDMM self.javaLog = Config.PLUGIN_DIR + os.path.sep + Config.LOG_PARAMS['path'] + os.path.sep + "java_output_" + planHeatDMM.resources.logDateName + "." + Config.LOG_PARAMS["logExt"] self.fileJsonArg=Config.PLUGIN_DIR + os.path.sep + "temp" + os.path.sep + "planheatjavaargs.json" self.fileJava=Config.PLUGIN_DIR + os.path.sep + "java" + os.path.sep + "jre1.8.0_151" + os.path.sep + "bin" + os.path.sep self.fileJar=self.planHeatDMM.data.fileJar self.fileLib=self.planHeatDMM.data.fileLib self.mainJavaClass=Config.JAVA_MAIN_CLASS #Input files self.csvInFilename = Config.PLUGIN_DIR + os.path.sep + "temp" + os.path.sep + Config.INTERMEDIATE_FILE_CSV self.shapeInFilename = self.planHeatDMM.data.inputShapeFile #Baseline Demand self.shapeOutBaselineFilename = self.planHeatDMM.data.outputSaveFile self.csvOutBaselineFilename = self.planHeatDMM.data.outputSaveFile + ".csv" self.csvOutBaselineTotalFilename = self.planHeatDMM.data.outputSaveFile + "_totalized.csv" self.csvOutBaselineHourlyFilename = self.planHeatDMM.data.outputSaveFile + "_hourly.csv" #Future Demand self.shapeOutFutureFilename = self.planHeatDMM.data.outputSaveFile + "_future" self.csvOutFutureFilename = self.planHeatDMM.data.outputSaveFile + "_future.csv" self.csvOutFutureTotalFilename = self.planHeatDMM.data.outputSaveFile + "_future_totalized.csv" self.csvOutFutureHourlyFilename = self.planHeatDMM.data.outputSaveFile + "_future_hourly.csv" self.threadOptionsLog = self.planHeatDMM.data.outputSaveFile + "_options.txt" self.log = self.planHeatDMM.resources.log self.database = None self.noa = self.planHeatDMM.resources.noa self.planHeatDMM.data.closeWindow = False self.dbFileName=Config.DB_PARAMS['databaseName'] self.boolRetrofittedScenarios = self.planHeatDMM.data.boolRetrofittedScenarios self.boolHourlyDetailFile = self.planHeatDMM.data.boolHourlyDetailFile self.boolAddShapeFields = self.planHeatDMM.data.boolAddShapeFields self.userFieldShapeMap = self.planHeatDMM.data.userFieldShapeMap self.inputCsvFile = None self.inputShpFile = None self.outputDetailBaselineCSVFile = None self.outputTotalizedBaselineCSVFile = None self.outputHourlyBaselineCSVFile = None self.outputBaselineSHPFile = None self.outputDetailFutureCSVFile = None self.outputTotalizedFutureCSVFile = None self.outputHourlyFutureCSVFile = None self.outputFutureSHPFile = None self.projectName = self.planHeatDMM.data.projectName self.areaName = self.planHeatDMM.data.areaName self.country_id = self.planHeatDMM.data.country_id self.folderProject = Config.PLUGIN_DIR + os.path.sep + "temp" + os.path.sep self.shpFilename = self.shapeInFilename self.logFileName = self.planHeatDMM.resources.log.completeFileName self.lidarDTMFolder = "" if self.planHeatDMM.data.DTMDirectory is None else self.planHeatDMM.data.DTMDirectory + os.path.sep self.lidarDSMFolder = "" if self.planHeatDMM.data.DSMDirectory is None else self.planHeatDMM.data.DSMDirectory + os.path.sep self.referentialSpaceEPSG = self.planHeatDMM.data.spatialReferenceEPSG self.referentialSpaceWKT = self.planHeatDMM.data.spatialReferenceWKT self.fieldMapping= None self.fieldsSHPJavaPosition = self.planHeatDMM.data.fieldsSHPMappingPosition self.buildingUseFloorHeightDict = self.planHeatDMM.data.buildingUseFloorHeightDict self.ok = 0 self.error = 0 self.total = 0 except: self.showMessageDialog.emit("CRITICAL","Thread Constructor", " __init__ Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1]),self.planHeatDMM) self.planHeatDMM.log.write_log("ERROR", "Worker Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) def run(self): try: self.log.write_log("INFO","Run Thread") # Delete temporary files # Delete temp files if Config.LAUNCH_JAVA_PROCESS in ("Y","y"): clean_temp_files(self.log) if self.clockThread is not None: self.clockThread.start( priority = Config.PROCESS_THREAD_PRIORITY) # Create DB Connection per Thread self.database = DB(self.log) if self.database is None: raise Exception("Error Creating Database Object") else: #Database Connection self.database.connectDB("DEFERRED") self.message_update.emit("Process Start",self.planHeatDMM) self.progress_update.emit(0,self.planHeatDMM) self.database.truncate_calculate_complete_totalized_table() self.planHeatDMM.resources.log.write_log("INFO","Execute") self.initizalizeLogExecuteOptions(self.threadOptionsLog) self.writeLogExecuteOptions(self.threadOptionsLog,"Execute") message = "Calculate Method:{}".format(self.planHeatDMM.data.calculateMethod) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Project Name:{}".format(self.planHeatDMM.data.projectName) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Area Under Study:{}".format(self.planHeatDMM.data.areaName) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Country:{}".format(self.planHeatDMM.data.country) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Baseline Scenario Year:{}".format(self.planHeatDMM.data.baselineScenarioYear) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) if self.boolRetrofittedScenarios: message = "Future Scenario Year:{}".format(self.planHeatDMM.data.futureScenarioYear) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Input Shape File:{}".format(self.planHeatDMM.data.inputShapeFile) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Output Files:{}".format(self.planHeatDMM.data.outputSaveFile) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Lidar DSM:{}".format(self.planHeatDMM.data.DSMDirectory) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO",message) message = "Lidar DTM:{}".format(self.planHeatDMM.data.DTMDirectory) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO", message) message = "Database file:{}".format(self.dbFileName) self.writeLogExecuteOptions(self.threadOptionsLog,message) self.planHeatDMM.resources.log.write_log("INFO", message) result = self.process() if result: if self.planHeatDMM.data.processContinue: if self.error == 0: self.changeStatusProcessButton.emit("Process Ok, see log file",self.planHeatDMM.resources.icon_ok_icon, self.planHeatDMM) self.showMessageDialog.emit("OK","Ok", "Process finished Ok",self.planHeatDMM) else: self.changeStatusProcessButton.emit("Process Warning, see log file",self.planHeatDMM.resources.icon_warn_icon, self.planHeatDMM) self.showMessageDialog.emit("WARN","Warning", "Warning - The Process finished with records in error, check log file for further information",self.planHeatDMM) if self.ok > 0 and self.planHeatDMM.data.pluginLaunch == True and self.planHeatDMM.data.boolOpenGeneratedShape == True: try: layerName = os.path.splitext(os.path.basename(self.shapeOutFilename))[0] except: layerName = self.projectName self.loadShapeGeneratedFile.emit(self.shapeOutBaselineFilename + ".shp", layerName ,self.planHeatDMM) if self.boolRetrofittedScenarios == True: self.loadShapeGeneratedFile.emit(self.shapeOutFutureFilename + ".shp", layerName + "_future_scenario" ,self.planHeatDMM) else: if self.planHeatDMM.data.closeWindow == False and self.planHeatDMM.data.processContinue == False: self.changeStatusProcessButton.emit("Process canceled, see log file",self.planHeatDMM.resources.icon_error_icon, self.planHeatDMM) self.message_update.emit("Process canceled by the user",self.planHeatDMM) self.showMessageDialog.emit("CRITICAL","Canceled", "Process canceled by the user",self.planHeatDMM) elif self.planHeatDMM.data.closeWindow == False and self.planHeatDMM.data.processContinue == True: self.changeStatusProcessButton.emit("Process Error, see log file",self.planHeatDMM.resources.icon_error_icon, self.planHeatDMM) self.message_update.emit("Process error",self.planHeatDMM) else: self.changeStatusProcessButton.emit("Close Window requested by the User",self.planHeatDMM.resources.icon_error_icon, self.planHeatDMM) self.message_update.emit("Close Window requested by the User",self.planHeatDMM) self.unlock_interface.emit(self.planHeatDMM) # Sleep time for finish de unlock interface signal self.planHeatDMM.resources.log.write_log("INFO", "Finish Process") time.sleep(1) if self.database is not None: self.database.closeDB() self.database = None self.log.write_log("INFO","Finish Thread") if self.clockThread is not None and self.clockThread.isRunning(): self.clockThread.exit() except: self.log.write_log("ERROR", "Run Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) if self.clockThread is not None and self.clockThread.isRunning(): self.clockThread.exit() if self.database is not None: self.database.closeDB() self.database = None self.unlock_interface.emit(self.planHeatDMM) self.showMessageDialog.emit("CRITICAL","ERROR", "Run Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1]),self.planHeatDMM) def kill_process(self): self.processContinue = False def process(self): try: if self.planHeatDMM.data.calculateMethod.lower() == "simplified": self.sendMessage("INFO", "Simplified - Proccess Start") method_object = Alternative(self.log,self.database,self.country_id, self.boolRetrofittedScenarios,self.planHeatDMM) method_object.initialize() self.sendMessage("INFO", "Simplified - Create Objet") else: self.sendMessage("INFO", "Complete - Proccess Start") method_object = Complete(self.log,self.database,self.noa,self.country_id, self.boolRetrofittedScenarios, self.planHeatDMM) method_object.initialize() self.sendMessage("INFO", "Complete - Create Objet") # Create the SHP Handler if self.planHeatDMM.data.processContinue == True: self.inputShpFile = Shape_Reader(self.log,self.shapeInFilename) self.sendMessage("INFO", "Create SHP Input Handler") else: self.sendMessage("INFO", "Process Cancel Request By User - Create SHP Input Handler Ok") return False # Create the CSV IN Handler if self.planHeatDMM.data.processContinue == True: self.inputCsvFile = CSV_Reader(self.log, self.csvInFilename,method_object.inputFields) self.sendMessage("INFO", "Create CSV Input Handler Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Create CSV Input Handler") return False # Create Baseline Detail Output CSV if self.planHeatDMM.data.processContinue == True: self.outputDetailBaselineCSVFile = CSV_Writer(self.log,self.csvOutBaselineFilename,method_object.outputBaselineDetailFieldsCsv,self.boolAddShapeFields ,self.userFieldShapeMap) self.sendMessage("INFO", "Create Baseline CSV - Detail Output Handler Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Create Baseline CSV Detail Output Handler") return False # Create Future Detail Output CSV if self.boolRetrofittedScenarios == True: if self.planHeatDMM.data.processContinue == True: self.outputDetailFutureCSVFile = CSV_Writer(self.log,self.csvOutFutureFilename,method_object.outputFutureDetailFieldsCsv,self.boolAddShapeFields ,self.userFieldShapeMap) self.sendMessage("INFO", "Create Future CSV Detail Output Handler Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Create Future CSV Detail Output Handler") return False # Create Baseline Totalized Output CSV if self.planHeatDMM.data.processContinue == True: self.outputTotalizedBaselineCSVFile = CSV_Writer(self.log,self.csvOutBaselineTotalFilename,method_object.outputBaselineTotalizedFieldsCsv) self.sendMessage("INFO", "Create Baseline CSV - Totalized Output Handler Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Create Baseline CSV - Totalized Output Handler") return False # Create Future Totalized Output CSV if self.boolRetrofittedScenarios == True: if self.planHeatDMM.data.processContinue == True: self.outputTotalizedFutureCSVFile = CSV_Writer(self.log,self.csvOutFutureTotalFilename,method_object.outputFutureTotalizedFieldsCsv) self.sendMessage("INFO", "Create Future CSV - Totalized Output Handler Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Create Future CSV - Totalized Output Handler") return False # Create Baseline Hourly Output CSV if self.boolHourlyDetailFile == True: if self.planHeatDMM.data.processContinue == True: self.outputHourlyBaselineCSVFile = CSV_Writer(self.log,self.csvOutBaselineHourlyFilename,method_object.outputBaselineHourlyFieldsCsv) self.sendMessage("INFO", "Create Baseline CSV - Hourly Output Handler Ok") else: self.log.write_log("INFO", "Process Cancel Request By User - Create CSV Hourly Output Handler") return False # Create Future Hourly Output CSV if self.boolHourlyDetailFile == True and self.boolRetrofittedScenarios == True: if self.planHeatDMM.data.processContinue == True: self.outputHourlyFutureCSVFile = CSV_Writer(self.log,self.csvOutFutureHourlyFilename,method_object.outputFutureHourlyFieldsCsv) self.sendMessage("INFO", "Create Future CSV - Hourly Output Handler Ok") else: self.log.write_log("INFO", "Process Cancel Request By User - Create CSV Hourly Output Handler") return False #Read Input Shape file self.sendMessage("INFO","Reading Input Shape File") if self.planHeatDMM.data.processContinue == True: self.inputShpFile.readShapeFile() self.inputShpFile.createGeometryIndex(self.fieldsSHPJavaPosition) self.sendMessage("INFO","Read Input Shape File Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Read Input Shape File") return False # Create Baseline SHP Output if self.planHeatDMM.data.processContinue == True: self.outputBaselineSHPFile = Shape_Writer(self.log,self.shapeOutBaselineFilename,method_object.outputBaselineDetailFieldsShape,self.boolAddShapeFields ,self.userFieldShapeMap, self.referentialSpaceWKT) self.sendMessage("INFO","Create Baseline - Shape File Output Handler") else: self.sendMessage("INFO","Process Cancel Request By User - Create Shape File Output Handler") return False # Create future SHP Output if self.boolRetrofittedScenarios == True: if self.planHeatDMM.data.processContinue == True: self.outputFutureSHPFile = Shape_Writer(self.log,self.shapeOutFutureFilename,method_object.outputFutureDetailFieldsShape,self.boolAddShapeFields ,self.userFieldShapeMap, self.referentialSpaceWKT) self.sendMessage("INFO","Create future - Shape File Output Handler") else: self.sendMessage("INFO","Process Cancel Request By User - Create Shape File Output Handler") return False # Create JSON file for Java Callback if self.planHeatDMM.data.processContinue == True: self.jsonArgs4Java(self.log, self.fileJsonArg,self.folderProject,self.shpFilename,self.logFileName,self.lidarDTMFolder,\ self.lidarDSMFolder, self.referentialSpaceEPSG, self.fieldsSHPJavaPosition,self.buildingUseFloorHeightDict) self.sendMessage("INFO","Create JSON File for Java Process Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Create JSON File for Java Process") return False # CALL TO JAVA PROCESS if self.planHeatDMM.data.processContinue == True: if Config.LAUNCH_JAVA_PROCESS in ("Y","y"): self.sendMessage("INFO","Call to Java Process") self.message_update.emit("Running Java Process...",self.planHeatDMM) self.javaLaunchProcess(self.log,self.javaLog, self.fileJava, self.fileJar,self.fileLib, self.mainJavaClass, self.fileJsonArg) self.planHeatDMM.resources.javaProcessObject = None self.sendMessage("INFO","Finish Java Process Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Call to Java Process") return False #Read CSV in file if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO","Reading java CSV") data = self.inputCsvFile.csv_read() self.sendMessage("INFO","Finish CSV Read Ok") else: self.sendMessage("INFO","Process Cancel Request By User - Reading CSV file") return False self.progress_total.emit(len(data),self.planHeatDMM) building_list = [] self.sendMessage("INFO","Data Calculate Processing Start") # Process Data for i, row in enumerate(data): if self.planHeatDMM.data.processContinue == True: building = Building(self.log,self.projectName,self.areaName,self.country_id,row) self.message_update.emit("Processing data calculation - Building {}/{}".format(i+1,len(data)),self.planHeatDMM) self.assignBuildingShapeGeometryAndRecord(self.inputShpFile,building) self.progress_update.emit(i+1,self.planHeatDMM) building = method_object.calculateConsumption(building) building_list.append(building) if self.boolHourlyDetailFile and building.Regstatus and building.Regprocess: #write rows on CSV file with baseline Hourly per building self.outputHourlyBaselineCSVFile.writeRowsCSV(building.hourlyBaselineDemandList) #write rows on CSV file with Future Hourly per building if self.boolRetrofittedScenarios: self.outputHourlyFutureCSVFile.writeRowsCSV(building.hourlyFutureDemandList) building.hourlyBaselineDemandList = [] building.hourlyFutureDemandList = [] else: self.sendMessage("INFO","Process Cancel Request By User - Data Calculate Processing") return False self.progress_update.emit(len(data),self.planHeatDMM) self.sendMessage("INFO", "Processing data calculation - Building {}/{}".format(len(data),len(data))) self.sendMessage("INFO", "Free memory reources - CSV input file and Geometry index") self.freeMemoryResources(self.inputCsvFile,self.inputShpFile.geometryAndRecordBuildingIndex) #Retrieve totals for selected calculation method if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Calculate Totalized Data.") method_object.calculateTotalizedConsumptionDemand() self.sendMessage("INFO", "Calculate Totalized Data Ok") else: self.log.write_log("INFO", "Process Cancel Request By User - Calculate Totalized Data") return False #Write Baseline Detail CSV file if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Writing Output CSV - Baseline Detail file") self.outputDetailBaselineCSVFile.writeRowsCSV(building_list) self.sendMessage("INFO", "Writing Output CSV - Baseline Detail file Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Writing CSV file") return False #Write Future Detail CSV file if self.boolRetrofittedScenarios == True: if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Writing Output CSV - Future Detail file") self.outputDetailFutureCSVFile.writeRowsCSV(building_list) self.sendMessage("INFO", "Writing Output CSV - Future Detail file Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Writing CSV file") return False #Write Baseline Totalized CSV file if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Writing Output CSV - Baseline Totalized file") self.outputTotalizedBaselineCSVFile.writeRowsCSV(method_object.baselineTotalizedDemandList) self.sendMessage("INFO", "Writing Output CSV - Baseline Totalized file Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Writing CSV file") return False #Write Future Totalized CSV file if self.boolRetrofittedScenarios == True: if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Writing Output CSV - Future Totalized file") self.outputTotalizedFutureCSVFile.writeRowsCSV(method_object.futureTotalizedDemandList) self.sendMessage("INFO", "Writing Output CSV - Future Totalized file Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Writing CSV file") return False self.sendMessage("INFO", "Free memory resources output CSV files") self.freeMemoryResources(self.outputDetailBaselineCSVFile,self.outputDetailFutureCSVFile,\ self.outputHourlyBaselineCSVFile,self.outputHourlyFutureCSVFile,\ self.outputTotalizedBaselineCSVFile, self.outputTotalizedFutureCSVFile,callGC=False) self.sendMessage("INFO", "Free memory resources method object data") self.freeMemoryResources(method_object) #Populate SHP file - Baseline if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Populate Baseline Output Shape file") self.outputBaselineSHPFile.populateAll(building_list) self.sendMessage("INFO", "Populate Baseline Output Shape file Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - populate Qgis Files") return False # Save QGIS files - Baseline if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Saving Output Baseline Qgis files") self.outputBaselineSHPFile.saveQgisFiles() self.sendMessage("INFO", "Saving Output Baseline Qgis files Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Writing Qgis files") return False self.sendMessage("INFO", "Free memory resources baseline shape file") self.freeMemoryResources(self.outputBaselineSHPFile) if self.boolRetrofittedScenarios == True: #Populate SHP file - Future if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Populate Future Output Shape file") self.outputFutureSHPFile.populateAll(building_list) self.sendMessage("INFO", "Populate Future Output Shape file Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - populate Qgis Files") return False # Save QGIS files - Future if self.planHeatDMM.data.processContinue == True: self.sendMessage("INFO", "Saving Output Future Qgis files") self.outputFutureSHPFile.saveQgisFiles() self.sendMessage("INFO", "Saving Output Future Qgis files Ok") else: self.sendMessage("INFO", "Process Cancel Request By User - Writing Qgis files") return False self.sendMessage("INFO", "Free memory resources future shape file") self.freeMemoryResources(self.outputFutureSHPFile, callGC=False) self.sendMessage("INFO", "Free memory resources building list data") self.freeMemoryResources(building_list) self.total, self.ok, self.error, self.skip = showResults(building_list) result = "Processed:{} buildings - Ok:{} - Error:{} - Skipped:{}".format(self.total,self.ok, self.error,self.skip) self.sendMessage("INFO", result) self.log.write_log("INFO", "Simplified Proccess End") return True self.exec_() except Exception as e: self.log.write_log("ERROR ", "Thread process - Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) self.showMessageDialog.emit("CRITICAL","ERROR", "process Unexpected error:" + str(e),self.planHeatDMM) return False def freeMemoryResources(self,*args,callGC=True,**kwargs): try: for arg in args: #print("free", asizeof.asizeof(arg),str(arg)) del arg if callGC: gc.collect() except: self.log.write_log("ERROR ","freeMemoryResources Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) def assignBuildingShapeGeometryAndRecord(self,shpReader,building): try: position = shpReader.geometryAndRecordBuildingIndex[str(building.reference)] building.shpGeometryData = shpReader.geometryAndRecordBuilding[position].shape building.shpRecordData = shpReader.geometryAndRecordBuilding[position].record except KeyError: self.log.write_log("ERROR ","assignBuildingShapeGeometryAndRecord Not Exists building reference in shapefile id:" + str(building.reference)) building.Regstatus = False except: self.log.write_log("ERROR ","assignBuildingShapeGeometryAndRecord Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) building.Regstatus = False def sendMessage(self,level,message): try: self.log.write_log(level, message) self.message_update.emit(message,self.planHeatDMM) except Exception as e: self.log.write_log("ERROR ", "process Unexpected error:" + str(e)) self.showMessageDialog.emit("ERROR", "process Unexpected error:" + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1]),self.planHeatDMM) def jsonArgs4Java(self,log,fileArg,folderProject,shpFilename,logFileName,lidarDTMFolder,lidarDSMFolder,referentialSpace,fieldMapping,buildingUseFloorHeightDict): try: with open(fileArg, "w") as jsonFile: jsonPythonJava = OrderedDict() jsonPythonJava["fieldMapping"]=fieldMapping jsonPythonJava["logFileName"] = logFileName jsonPythonJava["lidarDTMFolder"] = lidarDTMFolder jsonPythonJava["lidarDSMFolder"] = lidarDSMFolder jsonPythonJava["shpFilename"] = shpFilename jsonPythonJava["referentialSpace"] = referentialSpace jsonPythonJava["folderProject"] = folderProject jsonPythonJava["floorHeight"] = buildingUseFloorHeightDict jsonFile.write(dumps(jsonPythonJava)) log.write_log("INFO", "Write JSON Args File") except: log.write_log("ERROR", "jsonArgs4Java unexpected error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) raise def javaLaunchProcess(self,log,javaLog, fileJava, fileJar,fileLib, mainJavaClass,fileJsonArg): try: javaConsoleOutput = "" run_process = "" if os.path.isfile(fileJar): if platform.system() == 'Windows': #Add command Windows, to do not visible CMD try: run_test_process = fileJava + 'java -version ' CREATE_NO_WINDOW = 0x08000000 java_process = subprocess.Popen(run_test_process,shell=False,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL,creationflags = CREATE_NO_WINDOW) WindowMode = CREATE_NO_WINDOW except Exception as e: print("excepcion " + str(e)) WindowMode = subprocess.SW_HIDE #run_process = fileJava + 'java -cp "' + fileJar + ';' + fileLib + '" ' + mainJavaClass + ' ' + fileJsonArg else: WindowMode=0 foutput = open(javaLog, "w") run_process = fileJava + 'java -XX:+UseG1GC -Xms1g -Xmx4g -cp "' + fileJar + ';' + fileLib + '" ' + mainJavaClass + ' ' + fileJsonArg #self.planHeatDMM.resources.javaProcessObject = subprocess.run(run_process,check=True,shell=False,stdout=subprocess.PIPE,stderr=subprocess.STDOUT) #java_process = subprocess.Popen(run_process,shell=False,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL,creationflags = WindowMode) java_process = subprocess.Popen(run_process,shell=False,stdout=foutput,stderr=foutput,creationflags = WindowMode) self.planHeatDMM.resources.javaProcessObject = java_process log.write_log("INFO","Java execute command " + str(java_process.args)) returnCode = java_process.wait() foutput.close() if returnCode and self.planHeatDMM.data.processContinue is not False: #Process Error raise JavaProcessException("Error on Java Process , exit status code:{:d}".format(returnCode)) else: raise NotFoundResourceException("jar file not found at location " + fileJar) except JavaProcessException: log.write_log("ERROR","Execute error " + run_process) log.write_log("ERROR", "javaLaunchProcess JavaProcessException JAVA error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) raise except subprocess.CalledProcessError as e: javaConsoleOutput = str(e.stdout, 'utf-8', errors='ignore') log.write_log("ERROR","Java Console Output " + javaConsoleOutput) log.write_log("ERROR","Execute error " + run_process) log.write_log("ERROR", "javaLaunchProcess CalledProcessError JAVA error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) raise except OSError as e: javaConsoleOutput = str(e) log.write_log("ERROR","Java Console Output " + javaConsoleOutput) log.write_log("ERROR","Execute error " + run_process) log.write_log("ERROR", "javaLaunchProcess OSError JAVA error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) raise except Exception as e: log.write_log("ERROR", "javaLaunchProcess launching new process JAVA Unexpected error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) raise def initizalizeLogExecuteOptions(self,file_handler): try: if Config.OPTIONS_FILE.lower() == "y": with open(file_handler, "w") as optionsFile: pass except Exception as e: self.log.write_log("ERROR", "initizalizeLogExecuteOptions Unexpected error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) def writeLogExecuteOptions(self,file_handler, message): try: if Config.OPTIONS_FILE.lower() == "y": with open(file_handler, "a") as optionsFile: optionsFile.write(message + "\n") except Exception as e: self.log.write_log("ERROR", "writeLogExecuteOptions Unexpected error: " + str(sys.exc_info()[0]) + " " + str(sys.exc_info()[1])) class ClockThread(QThread): """ Interface Clock for worker thread """ clock_refresh = QtCore.pyqtSignal(int,object,name='clock_refresh') def __init__(self,planHeatDMM): QThread.__init__(self) try: self.planHeatDMM = planHeatDMM self.timeStart = None self.timer = None except Exception as e: self.planHeatDMM.resources.log.write_log("ERROR", "ClockThread Unexpected error:" + str(e)) def run(self): try: self.timer = QtCore.QTimer() self.timeStart = time.time() self.timer.timeout.connect(lambda:self.timeClock()) self.timer.setInterval(1000) self.timer.start() self.exec_() except Exception as e: self.planHeatDMM.resources.log.write_log("ERROR", "ClockThread Unexpected error:" + str(e)) def timeClock(self): try: value = int(time.time() - self.timeStart) self.clock_refresh.emit(value,self.planHeatDMM) except Exception: pass
52.392357
218
0.597039
7701ead48e65a3fbaab532b2fc7bc9bd059aa6eb
6,777
py
Python
tests/cli/test_projects.py
veger/jexia-cli
d7652030292a0276659cc0710b2bf4861c8ba568
[ "MIT" ]
6
2020-02-03T11:02:29.000Z
2020-04-02T19:16:13.000Z
tests/cli/test_projects.py
veger/jexia-cli
d7652030292a0276659cc0710b2bf4861c8ba568
[ "MIT" ]
3
2020-04-02T12:42:08.000Z
2021-06-10T23:51:13.000Z
tests/cli/test_projects.py
veger/jexia-cli
d7652030292a0276659cc0710b2bf4861c8ba568
[ "MIT" ]
2
2020-02-05T09:05:32.000Z
2020-12-04T13:22:48.000Z
import mock import pytest from jexia_cli.formatters import format_timestamp_to_utc from tests.cli import run_cmd, SHELL_CONFIG CREATED_AT = 1580208898 PROJECT_LIST_RESP = { 'accounts': [{ 'account_owner_id': '3054b850-a1d9-4860-8b4e-2b63b7322907', 'plan_id': 'cbaeb217-aadf-41c3-87c9-8b8bb0a29969', 'plan_name': 'Hobby', 'plan_amount': 0, 'is_free_plan': True }], 'max_number_free': '3', 'projects': [{ 'id': '3054b850-a1d9-4860-8b4e-2b63b7322907', 'owner': '284e31e6-b21b-418f-b19e-21d1c741db63', 'is_owner': True, 'name': 'integration', 'description': '<nil>', 'created_at': CREATED_AT }] } PROJECT_CREATE_RESP = { 'is_owner': 'true', 'description': '<nil>', 'created_at': '%s' % CREATED_AT, 'owner': '284e31e6-b21b-418f-b19e-21d1c741db63', 'id': '5f0c9f45-cbd8-4054-8158-b64c39fb8be9', 'name': 'integration' } PROJECT_SHOW_RESP = { 'collaborators': None, 'is_owner': 'true', 'name': 'integration', 'created_at': '%s' % CREATED_AT, 'owner': '284e31e6-b21b-418f-b19e-21d1c741db63', 'id': '5f0c9f45-cbd8-4054-8158-b64c39fb8be9', 'description': '<nil>' } @mock.patch('jexia_sdk.http.HTTPClient.request', return_value=PROJECT_LIST_RESP) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_list(mock_auth, mock_req): cur_projects = run_cmd(['project list', '-f=json']) mock_req.assert_called_once_with( limit=10, method='GET', page=0, url='/projects') resp = [ { "id": "3054b850-a1d9-4860-8b4e-2b63b7322907", "name": "integration", "description": "", "created_at": format_timestamp_to_utc(CREATED_AT) } ] assert cur_projects == resp @mock.patch('jexia_sdk.http.HTTPClient.request', return_value={'projects': []}) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_list_options(mock_auth, mock_req): cur_projects = run_cmd(['project list', '-f=json', '--limit=100', '--page=20']) mock_req.assert_called_once_with( limit=100, method='GET', page=20, url='/projects') assert cur_projects == [] @mock.patch('jexia_sdk.http.HTTPClient.request', return_value=PROJECT_CREATE_RESP) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_create(mock_auth, mock_req): res = run_cmd(['project create', '-f=json', '--name=test']) mock_req.assert_called_once_with( method='POST', url='/project', data={'name': 'test', 'description': None}) resp = { 'id': '5f0c9f45-cbd8-4054-8158-b64c39fb8be9', 'name': 'integration', 'description': '', 'created_at': format_timestamp_to_utc(CREATED_AT) } assert res == resp @mock.patch('jexia_sdk.http.HTTPClient.request', return_value=[]) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_create_options(mock_auth, mock_req): run_cmd(['project create', '-f=json', '--name=test', '--description=descr']) mock_req.assert_called_once_with( method='POST', url='/project', data={'name': 'test', 'description': 'descr'}) @mock.patch('jexia_sdk.http.HTTPClient.request', return_value=[]) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_create_options_fail(mock_auth, mock_req): with pytest.raises(SystemExit): run_cmd(['project create']) @mock.patch('jexia_sdk.http.HTTPClient.request', return_value=PROJECT_SHOW_RESP) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_show(mock_auth, mock_req): res = run_cmd(['project show', '-f=json', 'test']) mock_req.assert_called_once_with( method='GET', url='/project/test') resp = { 'id': '5f0c9f45-cbd8-4054-8158-b64c39fb8be9', 'name': 'integration', 'description': '', 'created_at': format_timestamp_to_utc(CREATED_AT), 'collaborators': None } assert res == resp @mock.patch('jexia_sdk.http.HTTPClient.request', return_value=[]) @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_show_options_fail(mock_auth, mock_req): with pytest.raises(SystemExit): run_cmd(['project show'], json_output=False) @mock.patch('jexia_sdk.http.HTTPClient.request', return_value='') @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_delete(mock_auth, mock_req): res = run_cmd(['project delete', 'test', '--yes-i-really-want-to-delete'], json_output=False) mock_req.assert_called_once_with( method='DELETE', url='/project/test', data={'password': SHELL_CONFIG['password']}) assert res == '' @mock.patch('jexia_sdk.http.HTTPClient.request', return_value='') @mock.patch('jexia_sdk.http.HTTPClient.auth_management') def test_project_delete_options_fail(mock_auth, mock_req): with pytest.raises(SystemExit): run_cmd(['project delete'], json_output=False) @pytest.fixture() def integration_teardown(): yield if _CREATED_RESOURCE: run_cmd(['project delete', _CREATED_RESOURCE, '--yes-i-really-want-to-delete']) @pytest.mark.integration @pytest.mark.skip( reason="This test skipped because no way to delete project") def test_projects_integration(integration_teardown): global _CREATED_RESOURCE # get current projects cur_projects = run_cmd(['project list', '-f=json']) # create new project new_project = run_cmd(['project create', '-f=json', '--name=integration']) _CREATED_RESOURCE = new_project.get('id') assert 'id' in new_project assert 'name' in new_project assert 'description' in new_project assert 'created_at' in new_project assert 'integration' == new_project['name'] # get project project = run_cmd(['project show', '-f=json', '%s' % new_project['id']]) assert 'id' in project assert 'name' in project assert 'description' in project assert 'created_at' in project assert 'collaborators' in project assert new_project['id'] == project['id'] # check number of projects projects = run_cmd(['project list', '-f=json']) assert len(cur_projects) + 1 == len(projects) # delete project output = run_cmd(['project delete', '%s' % new_project['id'], '--yes-i-really-want-to-delete'], json_output=False) assert '' == output # check number of projects projects = run_cmd(['project list', '-f=json']) assert len(cur_projects) == len(projects)
34.401015
78
0.649845
35d634568fbcfa5e6d4277017a67f008af3c9246
3,333
py
Python
tests/test_helpers/test_acn/test_agent_record.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
28
2021-10-31T18:54:14.000Z
2022-03-17T13:10:43.000Z
tests/test_helpers/test_acn/test_agent_record.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
66
2021-10-31T11:55:48.000Z
2022-03-31T06:26:23.000Z
tests/test_helpers/test_acn/test_agent_record.py
valory-xyz/agents-aea
8f38efa96041b0156ed1ae328178e395dbabf2fc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2022 Valory AG # Copyright 2018-2021 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests for acn helper module.""" import pytest from aea.configurations.constants import DEFAULT_LEDGER from aea.crypto.registries import make_crypto from aea.helpers.acn.agent_record import AgentRecord from aea.helpers.base import CertRequest from tests.conftest import _process_cert def test_agent_record(change_directory): """Test signature and public key proper retrieval from a CertRequest""" agent_key_1 = make_crypto(DEFAULT_LEDGER) agent_key_2 = make_crypto(DEFAULT_LEDGER) peer_public_key_1 = make_crypto(DEFAULT_LEDGER).public_key peer_public_key_2 = make_crypto(DEFAULT_LEDGER).public_key cert_path = "test_acn_cert.txt" cert = CertRequest( peer_public_key_1, "test_service", DEFAULT_LEDGER, "2021-01-01", "2022-01-01", "{public_key}", cert_path, ) _process_cert(agent_key_1, cert, change_directory) # success agent_record = AgentRecord.from_cert_request( cert, agent_key_1.address, peer_public_key_1 ) assert ( agent_record.address == agent_key_1.address and agent_record.public_key == agent_key_1.public_key and agent_record.representative_public_key == peer_public_key_1 and agent_record.signature == cert.get_signature() and agent_record.message == cert.get_message(peer_public_key_1) ) # success agent_record = AgentRecord( agent_key_1.address, peer_public_key_1, cert.identifier, cert.ledger_id, cert.not_before, cert.not_after, cert.message_format, cert.get_signature(), ) assert ( agent_record.address == agent_key_1.address and agent_record.public_key == agent_key_1.public_key and agent_record.representative_public_key == peer_public_key_1 and agent_record.signature == cert.get_signature() and agent_record.message == cert.get_message(peer_public_key_1) ) # error: wrong signer with pytest.raises( ValueError, match="Invalid signature for provided representative_public_key and agent address!", ): AgentRecord.from_cert_request(cert, agent_key_2.address, peer_public_key_1) # error: wrong signer with pytest.raises( ValueError, match="Invalid signature for provided representative_public_key and agent address!", ): AgentRecord.from_cert_request(cert, agent_key_1.address, peer_public_key_2)
34.360825
92
0.676568
678a7fe7e189a5e744c78f006156fe9521aadcdb
55,069
py
Python
REDSI_1160929_1161573/boost_1_67_0/tools/build/src/build/project.py
Wultyc/ISEP_1718_2A2S_REDSI_TrabalhoGrupo
eb0f7ef64e188fe871f47c2ef9cdef36d8a66bc8
[ "MIT" ]
null
null
null
REDSI_1160929_1161573/boost_1_67_0/tools/build/src/build/project.py
Wultyc/ISEP_1718_2A2S_REDSI_TrabalhoGrupo
eb0f7ef64e188fe871f47c2ef9cdef36d8a66bc8
[ "MIT" ]
null
null
null
REDSI_1160929_1161573/boost_1_67_0/tools/build/src/build/project.py
Wultyc/ISEP_1718_2A2S_REDSI_TrabalhoGrupo
eb0f7ef64e188fe871f47c2ef9cdef36d8a66bc8
[ "MIT" ]
1
2019-03-08T11:06:22.000Z
2019-03-08T11:06:22.000Z
# Status: ported. # Base revision: 64488 # Copyright 2002, 2003 Dave Abrahams # Copyright 2002, 2005, 2006 Rene Rivera # Copyright 2002, 2003, 2004, 2005, 2006 Vladimir Prus # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # Implements project representation and loading. Each project is represented # by: # - a module where all the Jamfile content live. # - an instance of 'project-attributes' class. # (given a module name, can be obtained using the 'attributes' rule) # - an instance of 'project-target' class (from targets.jam) # (given a module name, can be obtained using the 'target' rule) # # Typically, projects are created as result of loading a Jamfile, which is done # by rules 'load' and 'initialize', below. First, module for Jamfile is loaded # and new project-attributes instance is created. Some rules necessary for # project are added to the module (see 'project-rules' module) at the bottom of # this file. Default project attributes are set (inheriting attributes of # parent project, if it exists). After that the Jamfile is read. It can declare # its own attributes using the 'project' rule which will be combined with any # already set attributes. # # The 'project' rule can also declare a project id which will be associated # with the project module. # # There can also be 'standalone' projects. They are created by calling # 'initialize' on an arbitrary module and not specifying their location. After # the call, the module can call the 'project' rule, declare main targets and # behave as a regular project except that, since it is not associated with any # location, it should only declare prebuilt targets. # # The list of all loaded Jamfiles is stored in the .project-locations variable. # It is possible to obtain a module name for a location using the 'module-name' # rule. Standalone projects are not recorded and can only be references using # their project id. import b2.util.path import b2.build.targets from b2.build import property_set, property from b2.build.errors import ExceptionWithUserContext from b2.manager import get_manager import bjam import b2 import re import sys import pkgutil import os import string import imp import traceback import b2.util.option as option from b2.util import ( record_jam_to_value_mapping, qualify_jam_action, is_iterable_typed, bjam_signature, is_iterable) class ProjectRegistry: def __init__(self, manager, global_build_dir): self.manager = manager self.global_build_dir = global_build_dir self.project_rules_ = ProjectRules(self) # The target corresponding to the project being loaded now self.current_project = None # The set of names of loaded project modules self.jamfile_modules = {} # Mapping from location to module name self.location2module = {} # Mapping from project id to project module self.id2module = {} # Map from Jamfile directory to parent Jamfile/Jamroot # location. self.dir2parent_jamfile = {} # Map from directory to the name of Jamfile in # that directory (or None). self.dir2jamfile = {} # Map from project module to attributes object. self.module2attributes = {} # Map from project module to target for the project self.module2target = {} # Map from names to Python modules, for modules loaded # via 'using' and 'import' rules in Jamfiles. self.loaded_tool_modules_ = {} self.loaded_tool_module_path_ = {} # Map from project target to the list of # (id,location) pairs corresponding to all 'use-project' # invocations. # TODO: should not have a global map, keep this # in ProjectTarget. self.used_projects = {} self.saved_current_project = [] self.JAMROOT = self.manager.getenv("JAMROOT"); # Note the use of character groups, as opposed to listing # 'Jamroot' and 'jamroot'. With the latter, we'd get duplicate # matches on windows and would have to eliminate duplicates. if not self.JAMROOT: self.JAMROOT = ["project-root.jam", "[Jj]amroot", "[Jj]amroot.jam"] # Default patterns to search for the Jamfiles to use for build # declarations. self.JAMFILE = self.manager.getenv("JAMFILE") if not self.JAMFILE: self.JAMFILE = ["[Bb]uild.jam", "[Jj]amfile.v2", "[Jj]amfile", "[Jj]amfile.jam"] self.__python_module_cache = {} def load (self, jamfile_location): """Loads jamfile at the given location. After loading, project global file and jamfile needed by the loaded one will be loaded recursively. If the jamfile at that location is loaded already, does nothing. Returns the project module for the Jamfile.""" assert isinstance(jamfile_location, basestring) absolute = os.path.join(os.getcwd(), jamfile_location) absolute = os.path.normpath(absolute) jamfile_location = b2.util.path.relpath(os.getcwd(), absolute) mname = self.module_name(jamfile_location) # If Jamfile is already loaded, do not try again. if not mname in self.jamfile_modules: if "--debug-loading" in self.manager.argv(): print "Loading Jamfile at '%s'" % jamfile_location self.load_jamfile(jamfile_location, mname) # We want to make sure that child project are loaded only # after parent projects. In particular, because parent projects # define attributes which are inherited by children, and we do not # want children to be loaded before parents has defined everything. # # While "build-project" and "use-project" can potentially refer # to child projects from parent projects, we do not immediately # load child projects when seing those attributes. Instead, # we record the minimal information that will be used only later. self.load_used_projects(mname) return mname def load_used_projects(self, module_name): assert isinstance(module_name, basestring) # local used = [ modules.peek $(module-name) : .used-projects ] ; used = self.used_projects[module_name] location = self.attribute(module_name, "location") for u in used: id = u[0] where = u[1] self.use(id, os.path.join(location, where)) def load_parent(self, location): """Loads parent of Jamfile at 'location'. Issues an error if nothing is found.""" assert isinstance(location, basestring) found = b2.util.path.glob_in_parents( location, self.JAMROOT + self.JAMFILE) if not found: print "error: Could not find parent for project at '%s'" % location print "error: Did not find Jamfile.jam or Jamroot.jam in any parent directory." sys.exit(1) return self.load(os.path.dirname(found[0])) def find(self, name, current_location): """Given 'name' which can be project-id or plain directory name, return project module corresponding to that id or directory. Returns nothing of project is not found.""" assert isinstance(name, basestring) assert isinstance(current_location, basestring) project_module = None # Try interpreting name as project id. if name[0] == '/': project_module = self.id2module.get(name) if not project_module: location = os.path.join(current_location, name) # If no project is registered for the given location, try to # load it. First see if we have Jamfile. If not we might have project # root, willing to act as Jamfile. In that case, project-root # must be placed in the directory referred by id. project_module = self.module_name(location) if not project_module in self.jamfile_modules: if b2.util.path.glob([location], self.JAMROOT + self.JAMFILE): project_module = self.load(location) else: project_module = None return project_module def module_name(self, jamfile_location): """Returns the name of module corresponding to 'jamfile-location'. If no module corresponds to location yet, associates default module name with that location.""" assert isinstance(jamfile_location, basestring) module = self.location2module.get(jamfile_location) if not module: # Root the path, so that locations are always umbiguious. # Without this, we can't decide if '../../exe/program1' and '.' # are the same paths, or not. jamfile_location = os.path.realpath( os.path.join(os.getcwd(), jamfile_location)) module = "Jamfile<%s>" % jamfile_location self.location2module[jamfile_location] = module return module def find_jamfile (self, dir, parent_root=0, no_errors=0): """Find the Jamfile at the given location. This returns the exact names of all the Jamfiles in the given directory. The optional parent-root argument causes this to search not the given directory but the ones above it up to the directory given in it.""" assert isinstance(dir, basestring) assert isinstance(parent_root, (int, bool)) assert isinstance(no_errors, (int, bool)) # Glob for all the possible Jamfiles according to the match pattern. # jamfile_glob = None if parent_root: parent = self.dir2parent_jamfile.get(dir) if not parent: parent = b2.util.path.glob_in_parents(dir, self.JAMFILE) self.dir2parent_jamfile[dir] = parent jamfile_glob = parent else: jamfile = self.dir2jamfile.get(dir) if not jamfile: jamfile = b2.util.path.glob([dir], self.JAMFILE) self.dir2jamfile[dir] = jamfile jamfile_glob = jamfile if len(jamfile_glob) > 1: # Multiple Jamfiles found in the same place. Warn about this. # And ensure we use only one of them. # As a temporary convenience measure, if there's Jamfile.v2 amount # found files, suppress the warning and use it. # pattern = "(.*[Jj]amfile\\.v2)|(.*[Bb]uild\\.jam)" v2_jamfiles = [x for x in jamfile_glob if re.match(pattern, x)] if len(v2_jamfiles) == 1: jamfile_glob = v2_jamfiles else: print """warning: Found multiple Jamfiles at '%s'!""" % (dir) for j in jamfile_glob: print " -", j print "Loading the first one" # Could not find it, error. if not no_errors and not jamfile_glob: self.manager.errors()( """Unable to load Jamfile. Could not find a Jamfile in directory '%s' Attempted to find it with pattern '%s'. Please consult the documentation at 'http://boost.org/boost-build2'.""" % (dir, string.join(self.JAMFILE))) if jamfile_glob: return jamfile_glob[0] def load_jamfile(self, dir, jamfile_module): """Load a Jamfile at the given directory. Returns nothing. Will attempt to load the file as indicated by the JAMFILE patterns. Effect of calling this rule twice with the same 'dir' is underfined.""" assert isinstance(dir, basestring) assert isinstance(jamfile_module, basestring) # See if the Jamfile is where it should be. is_jamroot = False jamfile_to_load = b2.util.path.glob([dir], self.JAMROOT) if jamfile_to_load: if len(jamfile_to_load) > 1: get_manager().errors()( "Multiple Jamfiles found at '{}'\n" "Filenames are: {}" .format(dir, ' '.join(os.path.basename(j) for j in jamfile_to_load)) ) is_jamroot = True jamfile_to_load = jamfile_to_load[0] else: jamfile_to_load = self.find_jamfile(dir) dir = os.path.dirname(jamfile_to_load) if not dir: dir = "." self.used_projects[jamfile_module] = [] # Now load the Jamfile in it's own context. # The call to 'initialize' may load parent Jamfile, which might have # 'use-project' statement that causes a second attempt to load the # same project we're loading now. Checking inside .jamfile-modules # prevents that second attempt from messing up. if not jamfile_module in self.jamfile_modules: previous_project = self.current_project # Initialize the jamfile module before loading. self.initialize(jamfile_module, dir, os.path.basename(jamfile_to_load)) if not jamfile_module in self.jamfile_modules: saved_project = self.current_project self.jamfile_modules[jamfile_module] = True bjam.call("load", jamfile_module, jamfile_to_load) if is_jamroot: jamfile = self.find_jamfile(dir, no_errors=True) if jamfile: bjam.call("load", jamfile_module, jamfile) # Now do some checks if self.current_project != saved_project: from textwrap import dedent self.manager.errors()(dedent( """ The value of the .current-project variable has magically changed after loading a Jamfile. This means some of the targets might be defined a the wrong project. after loading %s expected value %s actual value %s """ % (jamfile_module, saved_project, self.current_project) )) self.end_load(previous_project) if self.global_build_dir: id = self.attributeDefault(jamfile_module, "id", None) project_root = self.attribute(jamfile_module, "project-root") location = self.attribute(jamfile_module, "location") if location and project_root == dir: # This is Jamroot if not id: # FIXME: go via errors module, so that contexts are # shown? print "warning: the --build-dir option was specified" print "warning: but Jamroot at '%s'" % dir print "warning: specified no project id" print "warning: the --build-dir option will be ignored" def end_load(self, previous_project=None): if not self.current_project: self.manager.errors()( 'Ending project loading requested when there was no project currently ' 'being loaded.' ) if not previous_project and self.saved_current_project: self.manager.errors()( 'Ending project loading requested with no "previous project" when there ' 'other projects still being loaded recursively.' ) self.current_project = previous_project def load_standalone(self, jamfile_module, file): """Loads 'file' as standalone project that has no location associated with it. This is mostly useful for user-config.jam, which should be able to define targets, but although it has some location in filesystem, we do not want any build to happen in user's HOME, for example. The caller is required to never call this method twice on the same file. """ assert isinstance(jamfile_module, basestring) assert isinstance(file, basestring) self.used_projects[jamfile_module] = [] bjam.call("load", jamfile_module, file) self.load_used_projects(jamfile_module) def is_jamroot(self, basename): assert isinstance(basename, basestring) match = [ pat for pat in self.JAMROOT if re.match(pat, basename)] if match: return 1 else: return 0 def initialize(self, module_name, location=None, basename=None, standalone_path=''): """Initialize the module for a project. module-name is the name of the project module. location is the location (directory) of the project to initialize. If not specified, standalone project will be initialized standalone_path is the path to the source-location. this should only be called from the python side. """ assert isinstance(module_name, basestring) assert isinstance(location, basestring) or location is None assert isinstance(basename, basestring) or basename is None jamroot = False parent_module = None if module_name == "test-config": # No parent pass elif module_name == "site-config": parent_module = "test-config" elif module_name == "user-config": parent_module = "site-config" elif module_name == "project-config": parent_module = "user-config" elif location and not self.is_jamroot(basename): # We search for parent/project-root only if jamfile was specified # --- i.e # if the project is not standalone. parent_module = self.load_parent(location) elif location: # It's either jamroot, or standalone project. # If it's jamroot, inherit from user-config. # If project-config module exist, inherit from it. parent_module = 'user-config' if 'project-config' in self.module2attributes: parent_module = 'project-config' jamroot = True # TODO: need to consider if standalone projects can do anything but defining # prebuilt targets. If so, we need to give more sensible "location", so that # source paths are correct. if not location: location = "" # the call to load_parent() above can end up loading this module again # make sure we don't reinitialize the module's attributes if module_name not in self.module2attributes: if "--debug-loading" in self.manager.argv(): print "Initializing project '%s'" % module_name attributes = ProjectAttributes(self.manager, location, module_name) self.module2attributes[module_name] = attributes python_standalone = False if location: attributes.set("source-location", [location], exact=1) elif not module_name in ["test-config", "site-config", "user-config", "project-config"]: # This is a standalone project with known location. Set source location # so that it can declare targets. This is intended so that you can put # a .jam file in your sources and use it via 'using'. Standard modules # (in 'tools' subdir) may not assume source dir is set. source_location = standalone_path if not source_location: source_location = self.loaded_tool_module_path_.get(module_name) if not source_location: self.manager.errors()('Standalone module path not found for "{}"' .format(module_name)) attributes.set("source-location", [source_location], exact=1) python_standalone = True attributes.set("requirements", property_set.empty(), exact=True) attributes.set("usage-requirements", property_set.empty(), exact=True) attributes.set("default-build", property_set.empty(), exact=True) attributes.set("projects-to-build", [], exact=True) attributes.set("project-root", None, exact=True) attributes.set("build-dir", None, exact=True) self.project_rules_.init_project(module_name, python_standalone) if parent_module: self.inherit_attributes(module_name, parent_module) attributes.set("parent-module", parent_module, exact=1) if jamroot: attributes.set("project-root", location, exact=1) parent = None if parent_module: parent = self.target(parent_module) if module_name not in self.module2target: target = b2.build.targets.ProjectTarget(self.manager, module_name, module_name, parent, self.attribute(module_name, "requirements"), # FIXME: why we need to pass this? It's not # passed in jam code. self.attribute(module_name, "default-build")) self.module2target[module_name] = target self.current_project = self.target(module_name) def inherit_attributes(self, project_module, parent_module): """Make 'project-module' inherit attributes of project root and parent module.""" assert isinstance(project_module, basestring) assert isinstance(parent_module, basestring) attributes = self.module2attributes[project_module] pattributes = self.module2attributes[parent_module] # Parent module might be locationless user-config. # FIXME: #if [ modules.binding $(parent-module) ] #{ # $(attributes).set parent : [ path.parent # [ path.make [ modules.binding $(parent-module) ] ] ] ; # } attributes.set("project-root", pattributes.get("project-root"), exact=True) attributes.set("default-build", pattributes.get("default-build"), exact=True) attributes.set("requirements", pattributes.get("requirements"), exact=True) attributes.set("usage-requirements", pattributes.get("usage-requirements"), exact=1) parent_build_dir = pattributes.get("build-dir") if parent_build_dir: # Have to compute relative path from parent dir to our dir # Convert both paths to absolute, since we cannot # find relative path from ".." to "." location = attributes.get("location") parent_location = pattributes.get("location") our_dir = os.path.join(os.getcwd(), location) parent_dir = os.path.join(os.getcwd(), parent_location) build_dir = os.path.join(parent_build_dir, os.path.relpath(our_dir, parent_dir)) attributes.set("build-dir", build_dir, exact=True) def register_id(self, id, module): """Associate the given id with the given project module.""" assert isinstance(id, basestring) assert isinstance(module, basestring) self.id2module[id] = module def current(self): """Returns the project which is currently being loaded.""" if not self.current_project: get_manager().errors()( 'Reference to the project currently being loaded requested ' 'when there was no project module being loaded.' ) return self.current_project def set_current(self, c): if __debug__: from .targets import ProjectTarget assert isinstance(c, ProjectTarget) self.current_project = c def push_current(self, project): """Temporary changes the current project to 'project'. Should be followed by 'pop-current'.""" if __debug__: from .targets import ProjectTarget assert isinstance(project, ProjectTarget) self.saved_current_project.append(self.current_project) self.current_project = project def pop_current(self): if self.saved_current_project: self.current_project = self.saved_current_project.pop() else: self.current_project = None def attributes(self, project): """Returns the project-attribute instance for the specified jamfile module.""" assert isinstance(project, basestring) return self.module2attributes[project] def attribute(self, project, attribute): """Returns the value of the specified attribute in the specified jamfile module.""" assert isinstance(project, basestring) assert isinstance(attribute, basestring) try: return self.module2attributes[project].get(attribute) except: raise BaseException("No attribute '%s' for project %s" % (attribute, project)) def attributeDefault(self, project, attribute, default): """Returns the value of the specified attribute in the specified jamfile module.""" assert isinstance(project, basestring) assert isinstance(attribute, basestring) assert isinstance(default, basestring) or default is None return self.module2attributes[project].getDefault(attribute, default) def target(self, project_module): """Returns the project target corresponding to the 'project-module'.""" assert isinstance(project_module, basestring) if project_module not in self.module2target: self.module2target[project_module] = \ b2.build.targets.ProjectTarget(project_module, project_module, self.attribute(project_module, "requirements")) return self.module2target[project_module] def use(self, id, location): # Use/load a project. assert isinstance(id, basestring) assert isinstance(location, basestring) saved_project = self.current_project project_module = self.load(location) declared_id = self.attributeDefault(project_module, "id", "") if not declared_id or declared_id != id: # The project at 'location' either have no id or # that id is not equal to the 'id' parameter. if id in self.id2module and self.id2module[id] != project_module: self.manager.errors()( """Attempt to redeclare already existing project id '%s' at location '%s'""" % (id, location)) self.id2module[id] = project_module self.current_project = saved_project def add_rule(self, name, callable_): """Makes rule 'name' available to all subsequently loaded Jamfiles. Calling that rule wil relay to 'callable'.""" assert isinstance(name, basestring) assert callable(callable_) self.project_rules_.add_rule(name, callable_) def project_rules(self): return self.project_rules_ def glob_internal(self, project, wildcards, excludes, rule_name): if __debug__: from .targets import ProjectTarget assert isinstance(project, ProjectTarget) assert is_iterable_typed(wildcards, basestring) assert is_iterable_typed(excludes, basestring) or excludes is None assert isinstance(rule_name, basestring) location = project.get("source-location")[0] result = [] callable = b2.util.path.__dict__[rule_name] paths = callable([location], wildcards, excludes) has_dir = 0 for w in wildcards: if os.path.dirname(w): has_dir = 1 break if has_dir or rule_name != "glob": result = [] # The paths we've found are relative to current directory, # but the names specified in sources list are assumed to # be relative to source directory of the corresponding # prject. Either translate them or make absolute. for p in paths: rel = os.path.relpath(p, location) # If the path is below source location, use relative path. if not ".." in rel: result.append(rel) else: # Otherwise, use full path just to avoid any ambiguities. result.append(os.path.abspath(p)) else: # There were not directory in wildcard, so the files are all # in the source directory of the project. Just drop the # directory, instead of making paths absolute. result = [os.path.basename(p) for p in paths] return result def __build_python_module_cache(self): """Recursively walks through the b2/src subdirectories and creates an index of base module name to package name. The index is stored within self.__python_module_cache and allows for an O(1) module lookup. For example, given the base module name `toolset`, self.__python_module_cache['toolset'] will return 'b2.build.toolset' pkgutil.walk_packages() will find any python package provided a directory contains an __init__.py. This has the added benefit of allowing libraries to be installed and automatically avaiable within the contrib directory. *Note*: pkgutil.walk_packages() will import any subpackage in order to access its __path__variable. Meaning: any initialization code will be run if the package hasn't already been imported. """ cache = {} for importer, mname, ispkg in pkgutil.walk_packages(b2.__path__, prefix='b2.'): basename = mname.split('.')[-1] # since the jam code is only going to have "import toolset ;" # it doesn't matter if there are separately named "b2.build.toolset" and # "b2.contrib.toolset" as it is impossible to know which the user is # referring to. if basename in cache: self.manager.errors()('duplicate module name "{0}" ' 'found in boost-build path'.format(basename)) cache[basename] = mname self.__python_module_cache = cache def load_module(self, name, extra_path=None): """Load a Python module that should be useable from Jamfiles. There are generally two types of modules Jamfiles might want to use: - Core Boost.Build. Those are imported using plain names, e.g. 'toolset', so this function checks if we have module named b2.package.module already. - Python modules in the same directory as Jamfile. We don't want to even temporary add Jamfile's directory to sys.path, since then we might get naming conflicts between standard Python modules and those. """ assert isinstance(name, basestring) assert is_iterable_typed(extra_path, basestring) or extra_path is None # See if we loaded module of this name already existing = self.loaded_tool_modules_.get(name) if existing: return existing # check the extra path as well as any paths outside # of the b2 package and import the module if it exists b2_path = os.path.normpath(b2.__path__[0]) # normalize the pathing in the BOOST_BUILD_PATH. # this allows for using startswith() to determine # if a path is a subdirectory of the b2 root_path paths = [os.path.normpath(p) for p in self.manager.boost_build_path()] # remove all paths that start with b2's root_path paths = [p for p in paths if not p.startswith(b2_path)] # add any extra paths paths.extend(extra_path) try: # find_module is used so that the pyc's can be used. # an ImportError is raised if not found f, location, description = imp.find_module(name, paths) except ImportError: # if the module is not found in the b2 package, # this error will be handled later pass else: # we've found the module, now let's try loading it. # it's possible that the module itself contains an ImportError # which is why we're loading it in this else clause so that the # proper error message is shown to the end user. # TODO: does this module name really need to be mangled like this? mname = name + "__for_jamfile" self.loaded_tool_module_path_[mname] = location module = imp.load_module(mname, f, location, description) self.loaded_tool_modules_[name] = module return module # the cache is created here due to possibly importing packages # that end up calling get_manager() which might fail if not self.__python_module_cache: self.__build_python_module_cache() underscore_name = name.replace('-', '_') # check to see if the module is within the b2 package # and already loaded mname = self.__python_module_cache.get(underscore_name) if mname in sys.modules: return sys.modules[mname] # otherwise, if the module name is within the cache, # the module exists within the BOOST_BUILD_PATH, # load it. elif mname: # in some cases, self.loaded_tool_module_path_ needs to # have the path to the file during the import # (project.initialize() for example), # so the path needs to be set *before* importing the module. path = os.path.join(b2.__path__[0], *mname.split('.')[1:]) self.loaded_tool_module_path_[mname] = path # mname is guaranteed to be importable since it was # found within the cache __import__(mname) module = sys.modules[mname] self.loaded_tool_modules_[name] = module return module self.manager.errors()("Cannot find module '%s'" % name) # FIXME: # Defines a Boost.Build extension project. Such extensions usually # contain library targets and features that can be used by many people. # Even though extensions are really projects, they can be initialize as # a module would be with the "using" (project.project-rules.using) # mechanism. #rule extension ( id : options * : * ) #{ # # The caller is a standalone module for the extension. # local mod = [ CALLER_MODULE ] ; # # # We need to do the rest within the extension module. # module $(mod) # { # import path ; # # # Find the root project. # local root-project = [ project.current ] ; # root-project = [ $(root-project).project-module ] ; # while # [ project.attribute $(root-project) parent-module ] && # [ project.attribute $(root-project) parent-module ] != user-config # { # root-project = [ project.attribute $(root-project) parent-module ] ; # } # # # Create the project data, and bring in the project rules # # into the module. # project.initialize $(__name__) : # [ path.join [ project.attribute $(root-project) location ] ext $(1:L) ] ; # # # Create the project itself, i.e. the attributes. # # All extensions are created in the "/ext" project space. # project /ext/$(1) : $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ; # local attributes = [ project.attributes $(__name__) ] ; # # # Inherit from the root project of whomever is defining us. # project.inherit-attributes $(__name__) : $(root-project) ; # $(attributes).set parent-module : $(root-project) : exact ; # } #} class ProjectAttributes: """Class keeping all the attributes of a project. The standard attributes are 'id', "location", "project-root", "parent" "requirements", "default-build", "source-location" and "projects-to-build". """ def __init__(self, manager, location, project_module): self.manager = manager self.location = location self.project_module = project_module self.attributes = {} self.usage_requirements = None def set(self, attribute, specification, exact=False): """Set the named attribute from the specification given by the user. The value actually set may be different.""" assert isinstance(attribute, basestring) assert isinstance(exact, (int, bool)) if __debug__ and not exact: if attribute == 'requirements': assert (isinstance(specification, property_set.PropertySet) or all(isinstance(s, basestring) for s in specification)) elif attribute in ( 'usage-requirements', 'default-build', 'source-location', 'build-dir', 'id'): assert is_iterable_typed(specification, basestring) elif __debug__: assert ( isinstance(specification, (property_set.PropertySet, type(None), basestring)) or all(isinstance(s, basestring) for s in specification) ) if exact: self.__dict__[attribute] = specification elif attribute == "requirements": self.requirements = property_set.refine_from_user_input( self.requirements, specification, self.project_module, self.location) elif attribute == "usage-requirements": unconditional = [] for p in specification: split = property.split_conditional(p) if split: unconditional.append(split[1]) else: unconditional.append(p) non_free = property.remove("free", unconditional) if non_free: get_manager().errors()("usage-requirements %s have non-free properties %s" \ % (specification, non_free)) t = property.translate_paths( property.create_from_strings(specification, allow_condition=True), self.location) existing = self.__dict__.get("usage-requirements") if existing: new = property_set.create(existing.all() + t) else: new = property_set.create(t) self.__dict__["usage-requirements"] = new elif attribute == "default-build": self.__dict__["default-build"] = property_set.create(specification) elif attribute == "source-location": source_location = [] for path in specification: source_location.append(os.path.join(self.location, path)) self.__dict__["source-location"] = source_location elif attribute == "build-dir": self.__dict__["build-dir"] = os.path.join(self.location, specification[0]) elif attribute == "id": id = specification[0] if id[0] != '/': id = "/" + id self.manager.projects().register_id(id, self.project_module) self.__dict__["id"] = id elif not attribute in ["default-build", "location", "source-location", "parent", "projects-to-build", "project-root"]: self.manager.errors()( """Invalid project attribute '%s' specified for project at '%s'""" % (attribute, self.location)) else: self.__dict__[attribute] = specification def get(self, attribute): assert isinstance(attribute, basestring) return self.__dict__[attribute] def getDefault(self, attribute, default): assert isinstance(attribute, basestring) return self.__dict__.get(attribute, default) def dump(self): """Prints the project attributes.""" id = self.get("id") if not id: id = "(none)" else: id = id[0] parent = self.get("parent") if not parent: parent = "(none)" else: parent = parent[0] print "'%s'" % id print "Parent project:%s", parent print "Requirements:%s", self.get("requirements") print "Default build:%s", string.join(self.get("debuild-build")) print "Source location:%s", string.join(self.get("source-location")) print "Projects to build:%s", string.join(self.get("projects-to-build").sort()); class ProjectRules: """Class keeping all rules that are made available to Jamfile.""" def __init__(self, registry): self.registry = registry self.manager_ = registry.manager self.rules = {} self.local_names = [x for x in self.__class__.__dict__ if x not in ["__init__", "init_project", "add_rule", "error_reporting_wrapper", "add_rule_for_type", "reverse"]] self.all_names_ = [x for x in self.local_names] def _import_rule(self, bjam_module, name, callable_): assert isinstance(bjam_module, basestring) assert isinstance(name, basestring) assert callable(callable_) if hasattr(callable_, "bjam_signature"): bjam.import_rule(bjam_module, name, self.make_wrapper(callable_), callable_.bjam_signature) else: bjam.import_rule(bjam_module, name, self.make_wrapper(callable_)) def add_rule_for_type(self, type): assert isinstance(type, basestring) rule_name = type.lower().replace("_", "-") @bjam_signature([['name'], ['sources', '*'], ['requirements', '*'], ['default_build', '*'], ['usage_requirements', '*']]) def xpto (name, sources=[], requirements=[], default_build=[], usage_requirements=[]): return self.manager_.targets().create_typed_target( type, self.registry.current(), name, sources, requirements, default_build, usage_requirements) self.add_rule(rule_name, xpto) def add_rule(self, name, callable_): assert isinstance(name, basestring) assert callable(callable_) self.rules[name] = callable_ self.all_names_.append(name) # Add new rule at global bjam scope. This might not be ideal, # added because if a jamroot does 'import foo' where foo calls # add_rule, we need to import new rule to jamroot scope, and # I'm lazy to do this now. self._import_rule("", name, callable_) def all_names(self): return self.all_names_ def call_and_report_errors(self, callable_, *args, **kw): assert callable(callable_) result = None try: self.manager_.errors().push_jamfile_context() result = callable_(*args, **kw) except ExceptionWithUserContext, e: e.report() except Exception, e: try: self.manager_.errors().handle_stray_exception (e) except ExceptionWithUserContext, e: e.report() finally: self.manager_.errors().pop_jamfile_context() return result def make_wrapper(self, callable_): """Given a free-standing function 'callable', return a new callable that will call 'callable' and report all exceptins, using 'call_and_report_errors'.""" assert callable(callable_) def wrapper(*args, **kw): return self.call_and_report_errors(callable_, *args, **kw) return wrapper def init_project(self, project_module, python_standalone=False): assert isinstance(project_module, basestring) assert isinstance(python_standalone, bool) if python_standalone: m = sys.modules[project_module] for n in self.local_names: if n != "import_": setattr(m, n, getattr(self, n)) for n in self.rules: setattr(m, n, self.rules[n]) return for n in self.local_names: # Using 'getattr' here gives us a bound method, # while using self.__dict__[r] would give unbound one. v = getattr(self, n) if callable(v): if n == "import_": n = "import" else: n = string.replace(n, "_", "-") self._import_rule(project_module, n, v) for n in self.rules: self._import_rule(project_module, n, self.rules[n]) def project(self, *args): assert is_iterable(args) and all(is_iterable(arg) for arg in args) jamfile_module = self.registry.current().project_module() attributes = self.registry.attributes(jamfile_module) id = None if args and args[0]: id = args[0][0] args = args[1:] if id: attributes.set('id', [id]) explicit_build_dir = None for a in args: if a: attributes.set(a[0], a[1:], exact=0) if a[0] == "build-dir": explicit_build_dir = a[1] # If '--build-dir' is specified, change the build dir for the project. if self.registry.global_build_dir: location = attributes.get("location") # Project with empty location is 'standalone' project, like # user-config, or qt. It has no build dir. # If we try to set build dir for user-config, we'll then # try to inherit it, with either weird, or wrong consequences. if location and location == attributes.get("project-root"): # Re-read the project id, since it might have been changed in # the project's attributes. id = attributes.get('id') # This is Jamroot. if id: if explicit_build_dir and os.path.isabs(explicit_build_dir): self.registry.manager.errors()( """Absolute directory specified via 'build-dir' project attribute Don't know how to combine that with the --build-dir option.""") rid = id if rid[0] == '/': rid = rid[1:] p = os.path.join(self.registry.global_build_dir, rid) if explicit_build_dir: p = os.path.join(p, explicit_build_dir) attributes.set("build-dir", p, exact=1) elif explicit_build_dir: self.registry.manager.errors()( """When --build-dir is specified, the 'build-dir' attribute is allowed only for top-level 'project' invocations""") def constant(self, name, value): """Declare and set a project global constant. Project global constants are normal variables but should not be changed. They are applied to every child Jamfile.""" assert is_iterable_typed(name, basestring) assert is_iterable_typed(value, basestring) self.registry.current().add_constant(name[0], value) def path_constant(self, name, value): """Declare and set a project global constant, whose value is a path. The path is adjusted to be relative to the invocation directory. The given value path is taken to be either absolute, or relative to this project root.""" assert is_iterable_typed(name, basestring) assert is_iterable_typed(value, basestring) if len(value) > 1: self.registry.manager.errors()("path constant should have one element") self.registry.current().add_constant(name[0], value, path=1) def use_project(self, id, where): # See comment in 'load' for explanation why we record the # parameters as opposed to loading the project now. assert is_iterable_typed(id, basestring) assert is_iterable_typed(where, basestring) m = self.registry.current().project_module() self.registry.used_projects[m].append((id[0], where[0])) def build_project(self, dir): assert is_iterable_typed(dir, basestring) jamfile_module = self.registry.current().project_module() attributes = self.registry.attributes(jamfile_module) now = attributes.get("projects-to-build") attributes.set("projects-to-build", now + dir, exact=True) def explicit(self, target_names): assert is_iterable_typed(target_names, basestring) self.registry.current().mark_targets_as_explicit(target_names) def always(self, target_names): assert is_iterable_typed(target_names, basestring) self.registry.current().mark_targets_as_always(target_names) def glob(self, wildcards, excludes=None): assert is_iterable_typed(wildcards, basestring) assert is_iterable_typed(excludes, basestring)or excludes is None return self.registry.glob_internal(self.registry.current(), wildcards, excludes, "glob") def glob_tree(self, wildcards, excludes=None): assert is_iterable_typed(wildcards, basestring) assert is_iterable_typed(excludes, basestring) or excludes is None bad = 0 for p in wildcards: if os.path.dirname(p): bad = 1 if excludes: for p in excludes: if os.path.dirname(p): bad = 1 if bad: self.registry.manager.errors()( "The patterns to 'glob-tree' may not include directory") return self.registry.glob_internal(self.registry.current(), wildcards, excludes, "glob_tree") def using(self, toolset, *args): # The module referred by 'using' can be placed in # the same directory as Jamfile, and the user # will expect the module to be found even though # the directory is not in BOOST_BUILD_PATH. # So temporary change the search path. assert is_iterable_typed(toolset, basestring) current = self.registry.current() location = current.get('location') m = self.registry.load_module(toolset[0], [location]) if "init" not in m.__dict__: self.registry.manager.errors()( "Tool module '%s' does not define the 'init' method" % toolset[0]) m.init(*args) # The above might have clobbered .current-project. Restore the correct # value. self.registry.set_current(current) def import_(self, name, names_to_import=None, local_names=None): assert is_iterable_typed(name, basestring) assert is_iterable_typed(names_to_import, basestring) or names_to_import is None assert is_iterable_typed(local_names, basestring)or local_names is None name = name[0] py_name = name if py_name == "os": py_name = "os_j" jamfile_module = self.registry.current().project_module() attributes = self.registry.attributes(jamfile_module) location = attributes.get("location") saved = self.registry.current() m = self.registry.load_module(py_name, [location]) for f in m.__dict__: v = m.__dict__[f] f = f.replace("_", "-") if callable(v): qn = name + "." + f self._import_rule(jamfile_module, qn, v) record_jam_to_value_mapping(qualify_jam_action(qn, jamfile_module), v) if names_to_import: if not local_names: local_names = names_to_import if len(names_to_import) != len(local_names): self.registry.manager.errors()( """The number of names to import and local names do not match.""") for n, l in zip(names_to_import, local_names): self._import_rule(jamfile_module, l, m.__dict__[n]) self.registry.set_current(saved) def conditional(self, condition, requirements): """Calculates conditional requirements for multiple requirements at once. This is a shorthand to be reduce duplication and to keep an inline declarative syntax. For example: lib x : x.cpp : [ conditional <toolset>gcc <variant>debug : <define>DEBUG_EXCEPTION <define>DEBUG_TRACE ] ; """ assert is_iterable_typed(condition, basestring) assert is_iterable_typed(requirements, basestring) c = string.join(condition, ",") if c.find(":") != -1: return [c + r for r in requirements] else: return [c + ":" + r for r in requirements] def option(self, name, value): assert is_iterable(name) and isinstance(name[0], basestring) assert is_iterable(value) and isinstance(value[0], basestring) name = name[0] if not name in ["site-config", "user-config", "project-config"]: get_manager().errors()("The 'option' rule may be used only in site-config or user-config") option.set(name, value[0])
42.821928
104
0.597541
308e7fa94dfbec0143e4ac6db3352563bc7ffee6
11,661
py
Python
mmdet/datasets/custom.py
Chenglin-Yang/LESA_detection
3238bd9c6f3eb4a2a746837043cd9b3b56c77216
[ "Apache-2.0" ]
4
2021-07-18T08:09:09.000Z
2022-01-06T06:19:00.000Z
mmdet/datasets/custom.py
Chenglin-Yang/LESA_detection
3238bd9c6f3eb4a2a746837043cd9b3b56c77216
[ "Apache-2.0" ]
null
null
null
mmdet/datasets/custom.py
Chenglin-Yang/LESA_detection
3238bd9c6f3eb4a2a746837043cd9b3b56c77216
[ "Apache-2.0" ]
1
2022-01-06T06:18:53.000Z
2022-01-06T06:18:53.000Z
import os.path as osp import warnings from collections import OrderedDict import mmcv import numpy as np from mmcv.utils import print_log from torch.utils.data import Dataset from mmdet.core import eval_map, eval_recalls from .builder import DATASETS from .pipelines import Compose @DATASETS.register_module() class CustomDataset(Dataset): """Custom dataset for detection. The annotation format is shown as follows. The `ann` field is optional for testing. .. code-block:: none [ { 'filename': 'a.jpg', 'width': 1280, 'height': 720, 'ann': { 'bboxes': <np.ndarray> (n, 4) in (x1, y1, x2, y2) order. 'labels': <np.ndarray> (n, ), 'bboxes_ignore': <np.ndarray> (k, 4), (optional field) 'labels_ignore': <np.ndarray> (k, 4) (optional field) } }, ... ] Args: ann_file (str): Annotation file path. pipeline (list[dict]): Processing pipeline. classes (str | Sequence[str], optional): Specify classes to load. If is None, ``cls.CLASSES`` will be used. Default: None. data_root (str, optional): Data root for ``ann_file``, ``img_prefix``, ``seg_prefix``, ``proposal_file`` if specified. test_mode (bool, optional): If set True, annotation will not be loaded. filter_empty_gt (bool, optional): If set true, images without bounding boxes of the dataset's classes will be filtered out. This option only works when `test_mode=False`, i.e., we never filter images during tests. """ CLASSES = None def __init__(self, ann_file, pipeline, classes=None, data_root=None, img_prefix='', seg_prefix=None, proposal_file=None, test_mode=False, filter_empty_gt=True): self.ann_file = ann_file self.data_root = data_root self.img_prefix = img_prefix self.seg_prefix = seg_prefix self.proposal_file = proposal_file self.test_mode = test_mode self.filter_empty_gt = filter_empty_gt self.CLASSES = self.get_classes(classes) # join paths if data_root is specified if self.data_root is not None: if not osp.isabs(self.ann_file): self.ann_file = osp.join(self.data_root, self.ann_file) if not (self.img_prefix is None or osp.isabs(self.img_prefix)): self.img_prefix = osp.join(self.data_root, self.img_prefix) if not (self.seg_prefix is None or osp.isabs(self.seg_prefix)): self.seg_prefix = osp.join(self.data_root, self.seg_prefix) if not (self.proposal_file is None or osp.isabs(self.proposal_file)): self.proposal_file = osp.join(self.data_root, self.proposal_file) # load annotations (and proposals) self.data_infos = self.load_annotations(self.ann_file) if self.proposal_file is not None: self.proposals = self.load_proposals(self.proposal_file) else: self.proposals = None # filter images too small and containing no annotations if not test_mode: valid_inds = self._filter_imgs() self.data_infos = [self.data_infos[i] for i in valid_inds] if self.proposals is not None: self.proposals = [self.proposals[i] for i in valid_inds] # set group flag for the sampler self._set_group_flag() # processing pipeline # __import__('pdb').set_trace() self.pipeline = Compose(pipeline) def __len__(self): """Total number of samples of data.""" return len(self.data_infos) def load_annotations(self, ann_file): """Load annotation from annotation file.""" return mmcv.load(ann_file) def load_proposals(self, proposal_file): """Load proposal from proposal file.""" return mmcv.load(proposal_file) def get_ann_info(self, idx): """Get annotation by index. Args: idx (int): Index of data. Returns: dict: Annotation info of specified index. """ return self.data_infos[idx]['ann'] def get_cat_ids(self, idx): """Get category ids by index. Args: idx (int): Index of data. Returns: list[int]: All categories in the image of specified index. """ return self.data_infos[idx]['ann']['labels'].astype(np.int).tolist() def pre_pipeline(self, results): """Prepare results dict for pipeline.""" results['img_prefix'] = self.img_prefix results['seg_prefix'] = self.seg_prefix results['proposal_file'] = self.proposal_file results['bbox_fields'] = [] results['mask_fields'] = [] results['seg_fields'] = [] def _filter_imgs(self, min_size=32): """Filter images too small.""" if self.filter_empty_gt: warnings.warn( 'CustomDataset does not support filtering empty gt images.') valid_inds = [] for i, img_info in enumerate(self.data_infos): if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _set_group_flag(self): """Set flag according to image aspect ratio. Images with aspect ratio greater than 1 will be set as group 1, otherwise group 0. """ self.flag = np.zeros(len(self), dtype=np.uint8) for i in range(len(self)): img_info = self.data_infos[i] if img_info['width'] / img_info['height'] > 1: self.flag[i] = 1 def _rand_another(self, idx): """Get another random index from the same group as the given index.""" pool = np.where(self.flag == self.flag[idx])[0] return np.random.choice(pool) def __getitem__(self, idx): """Get training/test data after pipeline. Args: idx (int): Index of data. Returns: dict: Training/test data (with annotation if `test_mode` is set \ True). """ if self.test_mode: return self.prepare_test_img(idx) while True: data = self.prepare_train_img(idx) if data is None: idx = self._rand_another(idx) continue return data def prepare_train_img(self, idx): """Get training data and annotations after pipeline. Args: idx (int): Index of data. Returns: dict: Training data and annotation after pipeline with new keys \ introduced by pipeline. """ img_info = self.data_infos[idx] ann_info = self.get_ann_info(idx) results = dict(img_info=img_info, ann_info=ann_info) if self.proposals is not None: results['proposals'] = self.proposals[idx] # __import__('pdb').set_trace() self.pre_pipeline(results) return self.pipeline(results) def prepare_test_img(self, idx): """Get testing data after pipeline. Args: idx (int): Index of data. Returns: dict: Testing data after pipeline with new keys introduced by \ pipeline. """ img_info = self.data_infos[idx] results = dict(img_info=img_info) if self.proposals is not None: results['proposals'] = self.proposals[idx] self.pre_pipeline(results) return self.pipeline(results) @classmethod def get_classes(cls, classes=None): """Get class names of current dataset. Args: classes (Sequence[str] | str | None): If classes is None, use default CLASSES defined by builtin dataset. If classes is a string, take it as a file name. The file contains the name of classes where each line contains one class name. If classes is a tuple or list, override the CLASSES defined by the dataset. Returns: tuple[str] or list[str]: Names of categories of the dataset. """ if classes is None: return cls.CLASSES if isinstance(classes, str): # take it as a file path class_names = mmcv.list_from_file(classes) elif isinstance(classes, (tuple, list)): class_names = classes else: raise ValueError(f'Unsupported type {type(classes)} of classes.') return class_names def format_results(self, results, **kwargs): """Place holder to format result to dataset specific output.""" def evaluate(self, results, metric='mAP', logger=None, proposal_nums=(100, 300, 1000), iou_thr=0.5, scale_ranges=None): """Evaluate the dataset. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thr (float | list[float]): IoU threshold. Default: 0.5. scale_ranges (list[tuple] | None): Scale ranges for evaluating mAP. Default: None. """ if not isinstance(metric, str): assert len(metric) == 1 metric = metric[0] allowed_metrics = ['mAP', 'recall'] if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') annotations = [self.get_ann_info(i) for i in range(len(self))] eval_results = OrderedDict() iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr if metric == 'mAP': assert isinstance(iou_thrs, list) mean_aps = [] for iou_thr in iou_thrs: print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') mean_ap, _ = eval_map( results, annotations, scale_ranges=scale_ranges, iou_thr=iou_thr, dataset=self.CLASSES, logger=logger) mean_aps.append(mean_ap) eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) eval_results['mAP'] = sum(mean_aps) / len(mean_aps) elif metric == 'recall': gt_bboxes = [ann['bboxes'] for ann in annotations] recalls = eval_recalls( gt_bboxes, results, proposal_nums, iou_thr, logger=logger) for i, num in enumerate(proposal_nums): for j, iou in enumerate(iou_thrs): eval_results[f'recall@{num}@{iou}'] = recalls[i, j] if recalls.shape[1] > 1: ar = recalls.mean(axis=1) for i, num in enumerate(proposal_nums): eval_results[f'AR@{num}'] = ar[i] return eval_results
35.769939
79
0.566675
8dafd003b87856c4eba1b4a96e2cabd4a3602ca8
595
py
Python
app/main.py
jmeisele/fastapi-ml-scaffolding
605cbfc6a1bb4c3bb7cb3d379a4aee6f889d0e53
[ "MIT" ]
8
2020-07-22T16:35:18.000Z
2021-11-07T02:54:30.000Z
app/main.py
jmeisele/fastapi-ml-scaffolding
605cbfc6a1bb4c3bb7cb3d379a4aee6f889d0e53
[ "MIT" ]
1
2022-01-13T04:43:41.000Z
2022-01-13T04:43:41.000Z
app/main.py
jmeisele/fastapi-ml-scaffolding
605cbfc6a1bb4c3bb7cb3d379a4aee6f889d0e53
[ "MIT" ]
2
2021-07-16T21:41:15.000Z
2022-01-24T23:31:34.000Z
from fastapi import FastAPI from app.api.routes.router import api_router from app.core.config import API_PREFIX, APP_NAME, APP_VERSION, IS_DEBUG from app.core.event_handlers import start_app_handler, stop_app_handler def get_app() -> FastAPI: """FastAPI app controller""" fast_app = FastAPI(title=APP_NAME, version=APP_VERSION, debug=IS_DEBUG) fast_app.include_router(api_router, prefix=API_PREFIX) fast_app.add_event_handler("startup", start_app_handler(fast_app)) fast_app.add_event_handler("shutdown", stop_app_handler(fast_app)) return fast_app app = get_app()
31.315789
75
0.786555
9e3645032fb9e969cb257a8b8ba592ed0c3214c4
1,750
py
Python
Data Structure/Linked_List/Singly_Linked_List/Delete_Kth_Node_From_End.py
Hasindu5512/HacktoberFest-2020-Data-Structure-and-algorithm
64ab102fd363fc47d2f22ba9f5a5a8130891efd4
[ "MIT" ]
5
2020-10-05T11:26:42.000Z
2021-03-04T04:31:37.000Z
Data Structure/Linked_List/Singly_Linked_List/Delete_Kth_Node_From_End.py
Hasindu5512/HacktoberFest-2020-Data-Structure-and-algorithm
64ab102fd363fc47d2f22ba9f5a5a8130891efd4
[ "MIT" ]
16
2020-10-05T04:56:32.000Z
2020-10-21T21:04:07.000Z
Data Structure/Linked_List/Singly_Linked_List/Delete_Kth_Node_From_End.py
Hasindu5512/HacktoberFest-2020-Data-Structure-and-algorithm
64ab102fd363fc47d2f22ba9f5a5a8130891efd4
[ "MIT" ]
45
2020-10-04T15:23:45.000Z
2020-10-30T04:46:30.000Z
# Python3 program for Fibonacci search. from bisect import bisect_left # Returns index of x if present, else # returns -1 def fibMonaccianSearch(arr, x, n): # Initialize fibonacci numbers fibMMm2 = 0 # (m-2)'th Fibonacci No. fibMMm1 = 1 # (m-1)'th Fibonacci No. fibM = fibMMm2 + fibMMm1 # m'th Fibonacci # fibM is going to store the smallest # Fibonacci Number greater than or equal to n while (fibM < n): fibMMm2 = fibMMm1 fibMMm1 = fibM fibM = fibMMm2 + fibMMm1 # Marks the eliminated range from front offset = -1; # while there are elements to be inspected. # Note that we compare arr[fibMm2] with x. # When fibM becomes 1, fibMm2 becomes 0 while (fibM > 1): # Check if fibMm2 is a valid location i = min(offset + fibMMm2, n - 1) # If x is greater than the value at # index fibMm2, cut the subarray array # from offset to i if (arr[i] < x): fibM = fibMMm1 fibMMm1 = fibMMm2 fibMMm2 = fibM - fibMMm1 offset = i # If x is less than the value at # index fibMm2, cut the subarray # after i+1 elif (arr[i] > x): fibM = fibMMm2 fibMMm1 = fibMMm1 - fibMMm2 fibMMm2 = fibM - fibMMm1 # element found. return index else: return i # comparing the last element with x */ if (fibMMm1 and arr[offset + 1] == x): return offset + 1; # element not found. return -1 return -1 # Driver Code arr = [10, 22, 35, 40, 45, 50, 80, 82, 85, 90, 100] n = len(arr) x = 85 print("Found at index:", fibMonaccianSearch(arr, x, n))
26.119403
50
0.563429
660855b1a714823c84a6ef6602c59f9473fff684
8,156
py
Python
mlmodels/model_tf/rl/21.neuro-evolution-agent.py
gitter-badger/mlmodels
f08cc9b6ec202d4ad25ecdda2f44487da387569d
[ "MIT" ]
1
2022-03-11T07:57:48.000Z
2022-03-11T07:57:48.000Z
mlmodels/model_tf/rl/21.neuro-evolution-agent.py
whitetiger1002/mlmodels
f70f1da7434e8855eed50adc67b49cc169f2ea24
[ "MIT" ]
null
null
null
mlmodels/model_tf/rl/21.neuro-evolution-agent.py
whitetiger1002/mlmodels
f70f1da7434e8855eed50adc67b49cc169f2ea24
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf sns.set() # In[2]: df = pd.read_csv("../dataset/GOOG-year.csv") df.head() # In[3]: close = df.Close.values.tolist() initial_money = 10000 window_size = 30 skip = 1 # In[4]: class neuralnetwork: def __init__(self, id_, hidden_size=128): self.W1 = np.random.randn(window_size, hidden_size) / np.sqrt(window_size) self.W2 = np.random.randn(hidden_size, 3) / np.sqrt(hidden_size) self.fitness = 0 self.id = id_ def relu(X): return np.maximum(X, 0) def softmax(X): e_x = np.exp(X - np.max(X, axis=-1, keepdims=True)) return e_x / np.sum(e_x, axis=-1, keepdims=True) def feed_forward(X, nets): a1 = np.dot(X, nets.W1) z1 = relu(a1) a2 = np.dot(z1, nets.W2) return softmax(a2) # In[5]: class NeuroEvolution: def __init__( self, population_size, mutation_rate, model_generator, state_size, window_size, trend, skip, initial_money, ): self.population_size = population_size self.mutation_rate = mutation_rate self.model_generator = model_generator self.state_size = state_size self.window_size = window_size self.half_window = window_size // 2 self.trend = trend self.skip = skip self.initial_money = initial_money def _initialize_population(self): self.population = [] for i in range(self.population_size): self.population.append(self.model_generator(i)) def mutate(self, individual, scale=1.0): mutation_mask = np.random.binomial(1, p=self.mutation_rate, size=individual.W1.shape) individual.W1 += ( np.random.normal(loc=0, scale=scale, size=individual.W1.shape) * mutation_mask ) mutation_mask = np.random.binomial(1, p=self.mutation_rate, size=individual.W2.shape) individual.W2 += ( np.random.normal(loc=0, scale=scale, size=individual.W2.shape) * mutation_mask ) return individual def inherit_weights(self, parent, child): child.W1 = parent.W1.copy() child.W2 = parent.W2.copy() return child def crossover(self, parent1, parent2): child1 = self.model_generator((parent1.id + 1) * 10) child1 = self.inherit_weights(parent1, child1) child2 = self.model_generator((parent2.id + 1) * 10) child2 = self.inherit_weights(parent2, child2) # first W n_neurons = child1.W1.shape[1] cutoff = np.random.randint(0, n_neurons) child1.W1[:, cutoff:] = parent2.W1[:, cutoff:].copy() child2.W1[:, cutoff:] = parent1.W1[:, cutoff:].copy() # second W n_neurons = child1.W2.shape[1] cutoff = np.random.randint(0, n_neurons) child1.W2[:, cutoff:] = parent2.W2[:, cutoff:].copy() child2.W2[:, cutoff:] = parent1.W2[:, cutoff:].copy() return child1, child2 def get_state(self, t): window_size = self.window_size + 1 d = t - window_size + 1 block = self.trend[d : t + 1] if d >= 0 else -d * [self.trend[0]] + self.trend[0 : t + 1] res = [] for i in range(window_size - 1): res.append(block[i + 1] - block[i]) return np.array([res]) def act(self, p, state): logits = feed_forward(state, p) return np.argmax(logits, 1)[0] def buy(self, individual): initial_money = self.initial_money starting_money = initial_money state = self.get_state(0) inventory = [] states_sell = [] states_buy = [] for t in range(0, len(self.trend) - 1, self.skip): action = self.act(individual, state) next_state = self.get_state(t + 1) if action == 1 and starting_money >= self.trend[t]: inventory.append(self.trend[t]) initial_money -= self.trend[t] states_buy.append(t) print( "day %d: buy 1 unit at price %f, total balance %f" % (t, self.trend[t], initial_money) ) elif action == 2 and len(inventory): bought_price = inventory.pop(0) initial_money += self.trend[t] states_sell.append(t) try: invest = ((self.trend[t] - bought_price) / bought_price) * 100 except: invest = 0 print( "day %d, sell 1 unit at price %f, investment %f %%, total balance %f," % (t, self.trend[t], invest, initial_money) ) state = next_state invest = ((initial_money - starting_money) / starting_money) * 100 total_gains = initial_money - starting_money return states_buy, states_sell, total_gains, invest def calculate_fitness(self): for i in range(self.population_size): initial_money = self.initial_money starting_money = initial_money state = self.get_state(0) inventory = [] for t in range(0, len(self.trend) - 1, self.skip): action = self.act(self.population[i], state) next_state = self.get_state(t + 1) if action == 1 and starting_money >= self.trend[t]: inventory.append(self.trend[t]) starting_money -= self.trend[t] elif action == 2 and len(inventory): bought_price = inventory.pop(0) starting_money += self.trend[t] state = next_state invest = ((starting_money - initial_money) / initial_money) * 100 self.population[i].fitness = invest def evolve(self, generations=20, checkpoint=5): self._initialize_population() n_winners = int(self.population_size * 0.4) n_parents = self.population_size - n_winners for epoch in range(generations): self.calculate_fitness() fitnesses = [i.fitness for i in self.population] sort_fitness = np.argsort(fitnesses)[::-1] self.population = [self.population[i] for i in sort_fitness] fittest_individual = self.population[0] if (epoch + 1) % checkpoint == 0: print( "epoch %d, fittest individual %d with accuracy %f" % (epoch + 1, sort_fitness[0], fittest_individual.fitness) ) next_population = [self.population[i] for i in range(n_winners)] total_fitness = np.sum([np.abs(i.fitness) for i in self.population]) parent_probabilities = [np.abs(i.fitness / total_fitness) for i in self.population] parents = np.random.choice( self.population, size=n_parents, p=parent_probabilities, replace=False ) for i in np.arange(0, len(parents), 2): child1, child2 = self.crossover(parents[i], parents[i + 1]) next_population += [self.mutate(child1), self.mutate(child2)] self.population = next_population return fittest_individual # In[6]: population_size = 100 generations = 100 mutation_rate = 0.1 neural_evolve = NeuroEvolution( population_size, mutation_rate, neuralnetwork, window_size, window_size, close, skip, initial_money, ) # In[7]: fittest_nets = neural_evolve.evolve(50) # In[8]: states_buy, states_sell, total_gains, invest = neural_evolve.buy(fittest_nets) # In[9]: fig = plt.figure(figsize=(15, 5)) plt.plot(close, color="r", lw=2.0) plt.plot(close, "^", markersize=10, color="m", label="buying signal", markevery=states_buy) plt.plot(close, "v", markersize=10, color="k", label="selling signal", markevery=states_sell) plt.title("total gains %f, total investment %f%%" % (total_gains, invest)) plt.legend() plt.show() # In[ ]:
30.432836
97
0.582761
490a9c6b53dfd836a8861646e415bfb04a48cb42
647
py
Python
Collect/JRC/Occurrence.py
ali1100/wa
700e5014533c45f38a245c3abdeacc537cb307bc
[ "Apache-2.0" ]
16
2017-04-27T21:22:37.000Z
2020-10-21T12:57:03.000Z
Collect/JRC/Occurrence.py
ali1100/wa
700e5014533c45f38a245c3abdeacc537cb307bc
[ "Apache-2.0" ]
1
2017-06-17T08:07:53.000Z
2017-08-22T12:28:37.000Z
Collect/JRC/Occurrence.py
wateraccounting/wa
29ed8e7eac732135678a5d171cd5e53a54c95313
[ "Apache-2.0" ]
19
2016-10-24T13:24:34.000Z
2020-02-03T17:42:22.000Z
""" Authors: Tim Hessels UNESCO-IHE 2017 Contact: t.hessels@unesco-ihe.org Repository: https://github.com/wateraccounting/wa Module: Collect/JRC """ import sys from DataAccess import DownloadData def main(Dir, latlim, lonlim, Waitbar = 1): """ This function downloads JRC water occurrence data for the specified spatial extent. Keyword arguments: Dir -- 'C:/file/to/path/' latlim -- [ymin, ymax] lonlim -- [xmin, xmax] Waitbar -- 1 (Default) will print a waitbar """ print '\nDownload JRC occurrence map' DownloadData(Dir, latlim, lonlim, Waitbar) if __name__ == '__main__': main(sys.argv)
23.962963
87
0.678516
97fa1e8876afa7962b4bcd69e63da1517bfeff0f
1,870
py
Python
example/example.py
anyongjin/pylsd2
dc1cfc7bccae0fe843c9729f386958a11b4b3b92
[ "BSD-2-Clause" ]
8
2021-07-28T16:09:01.000Z
2022-03-07T01:34:50.000Z
example/example.py
anyongjin/pylsd2
dc1cfc7bccae0fe843c9729f386958a11b4b3b92
[ "BSD-2-Clause" ]
1
2021-06-24T09:54:44.000Z
2021-06-24T10:22:40.000Z
example/example.py
anyongjin/pylsd2
dc1cfc7bccae0fe843c9729f386958a11b4b3b92
[ "BSD-2-Clause" ]
2
2021-06-24T08:55:25.000Z
2021-09-30T07:52:41.000Z
#!/usr/bin/python3 # -*- coding: utf-8 -*- # File : example.py # Author: anyongjin # Date : 2021/6/16 import os import numpy as np from pylsd2 import LineSegmentDetection, LineSegmentDetectionED def extract_lines(gray, extract_type='lsd'): if extract_type == 'lsd': lines = LineSegmentDetection(gray) else: lines = LineSegmentDetectionED(gray) return lines def get_out_path(in_path, extract_type): dirname, fname = os.path.split(in_path) base_name, ext = os.path.splitext(fname) out_dir = os.path.join(dirname, 'out') if not os.path.isdir(out_dir): os.makedirs(out_dir) return os.path.join(out_dir, base_name + '_' + extract_type + ext) def detect_lines_with_cv2(path, extract_type='lsd'): import cv2 out_path = get_out_path(path, extract_type) src = cv2.imread(path, cv2.IMREAD_COLOR) gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) lines = extract_lines(gray, extract_type) for l in lines: pt1, pt2 = tuple(l[:2]), tuple(l[2:4]) cv2.line(src, pt1, pt2, (0, 255, 0), 1) cv2.imwrite(out_path, src) def detect_lines_with_PIL(path, extract_type='lsd'): from PIL import Image, ImageDraw out_path = get_out_path(path, extract_type) img = Image.open(path) gray = np.asarray(img.convert('L')) lines = extract_lines(gray, extract_type) draw = ImageDraw.Draw(img) for l in lines: pt1, pt2 = l[:2], l[2:4] draw.line((pt1, pt2), fill=(0, 0, 255), width=1) img.save(out_path) if __name__ == '__main__': img_dir = '.' img_exts = {'.jpg', '.png'} names = os.listdir(img_dir) full_paths = [os.path.join(img_dir, n) for n in names if os.path.splitext(n)[-1] in img_exts] for path in full_paths: detect_lines_with_cv2(path, 'lsd') detect_lines_with_cv2(path, 'edlines') print('complete')
29.68254
97
0.656684
70038e8840ccebaa0a9847b376feb571b003f3d2
3,566
py
Python
sudoku_MC.py
zeryabmoussaoui/sudoku-optimization-solver
caeab796a1e231996a7e80ed6e074eaf92b3d10c
[ "Unlicense" ]
null
null
null
sudoku_MC.py
zeryabmoussaoui/sudoku-optimization-solver
caeab796a1e231996a7e80ed6e074eaf92b3d10c
[ "Unlicense" ]
null
null
null
sudoku_MC.py
zeryabmoussaoui/sudoku-optimization-solver
caeab796a1e231996a7e80ed6e074eaf92b3d10c
[ "Unlicense" ]
null
null
null
# Ref : https://www.lptmc.jussieu.fr/user/talbot/sudoku.html ( metropolis method) import numpy as np import math import random import matplotlib.pyplot as plt # Algorithm Params temp = 0.10; ntrial = 1000000; emin = 18; zero = 0; # Functions used to compute energy def check(i, k, ncheck): # determines number of unique elements in each row (k=1) or column (k!=1) nu=0 if k!=1: ncheck=np.transpose(ncheck) nu=len(np.unique(ncheck[i,])) return(nu) def checksq(Is, Js, ncheck): nu=0 sCell=int(pow(ncheck.size,1/4)) # compute these kind of variable outsite subcell=ncheck[sCell*Is:sCell*Is+sCell,sCell*Js:sCell*Js+sCell] nu=len(np.unique(subcell)) return(nu) def energy(ncheck): nsum=0 nCell=int(pow(ncheck.size,1/4)) nmax=3*pow(nCell,4) nRange=np.arange(ncheck.shape[1]) cRange=np.arange(int(pow(ncheck.size,1/4))) for i in nRange: nsum += check(i,1,n) + check(i,2,n) for i in cRange: for j in cRange: nsum += checksq(i,j,n) return(nmax-nsum) ## Read the Cell gameFile="sudoku.dat" n=np.fromfile(gameFile,dtype=int,sep=" ") #n=np.zeros(25*25) # only for test size=int(math.sqrt(len(n))) gameRange=np.arange(size) cellSize=int(math.sqrt(size)) cellRange=np.arange(cellSize) n=n.reshape(size,size) ## Initialise variables nums=np.zeros(size) num1=np.zeros(size) ntemp=0 ep=0 mask=(n==0)*1 # Fill the Cell with resolved boxes for ib in cellRange: for jb in cellRange: for k in gameRange: nums[k]=k+1 for i in cellRange: for j in cellRange: i1 = ib*cellSize + i j1 = jb*cellSize + j if n[i1][j1] !=0: ix = n[i1][j1] nums[ix-1]=0 iy = -1 for k in gameRange: if nums[k]!=0: iy+=1 num1[iy] = nums[k] kk=0 for i in cellRange: for j in cellRange: i1 = ib*cellSize + i j1 = jb*cellSize + j if n[i1][j1] ==0: n[i1][j1]=num1[kk] kk+=1 print(n) e=energy(n) # To optimize En=[] # start Monte Carlo loop for ll in np.arange(ntrial): En.append(e) # pick at random a block and two moveable elements in the block ib = cellSize*(int)(cellSize*random.uniform(0,1)) jb = cellSize*(int)(cellSize*random.uniform(0,1)) while True: i1 = (int)(cellSize*random.uniform(0,1)) j1 = (int)(cellSize*random.uniform(0,1)) if mask[ib+i1][jb+j1]==1: break while True: i2 = (int)(cellSize*random.uniform(0,1)) j2 = (int)(cellSize*random.uniform(0,1)) if mask[ib+i2][jb+j2]==1: break # swap and compute the energy of the trial ntemp = n[ib+i1][jb+j1] n[ib+i1][jb+j1] = n[ib+i2][jb+j2] n[ib+i2][jb+j2] = ntemp ep=energy(n) if ep<emin: print("Step ",ll," energy= ",ep) if ep==0: # Solution found break if math.exp((e-ep)/temp) > random.uniform(0,1): e=ep else: ntemp=n[ib+i1][jb+j1] n[ib+i1][jb+j1]=n[ib+i2][jb+j2] n[ib+i2][jb+j2]=ntemp if ep==0: print("Solution found : ") print(n) plt.plot(En) else: print("No solution found after ",ntrial ," steps") plt.plot(En)
26.61194
82
0.530566
ee49653542796bb6cd29fd1eb265eb87ce9e4f80
602
py
Python
vision_tile_query/config.py
eos-vision/tile-query
f6256ebb13c5c6f9beec9bb9a9f0cf0a85b23d0e
[ "MIT" ]
1
2019-04-22T07:45:22.000Z
2019-04-22T07:45:22.000Z
vision_tile_query/config.py
eos-vision/tile-query
f6256ebb13c5c6f9beec9bb9a9f0cf0a85b23d0e
[ "MIT" ]
null
null
null
vision_tile_query/config.py
eos-vision/tile-query
f6256ebb13c5c6f9beec9bb9a9f0cf0a85b23d0e
[ "MIT" ]
2
2020-09-04T14:53:59.000Z
2020-10-28T02:30:29.000Z
# Default SRID numbers MERCATOR_SRID = 4326 WEB_MERCATOR_SRID = 3857 # MVT query settings # 1% of tile width RELATIVE_BUFFER_WIDTH = 0.01 # default tile extent value. See details https://postgis.net/docs/ST_AsMVT.html DEFAULT_EXTENT = 4096 # 0.5% of tile area fow VM polygons simplification SIMPLIFY_COEFFICIENT = 0.000005 # Default columns names GEOMETRY_COL_NAME = 'geometry' ID_COL_NAME = 'id' # Vector objects types POINT_TYPES = ['POINT', 'MULTIPOINT'] POLYGON_TYPES = ['POLYGON', 'MULTIPOLYGON'] LINE_TYPES = ['LINESTRING', 'MULTILINESTRING'] SIMPLIFICATION_TYPES = LINE_TYPES + POLYGON_TYPES
27.363636
79
0.774086
1ee2ef4b08955ddb53e14b604b2fc406dae5609e
9,819
py
Python
models/train_rels.py
ivalab/Scene_Graph_Parsing
179b1653defe615de98165784ae3a527f822bf3a
[ "MIT" ]
null
null
null
models/train_rels.py
ivalab/Scene_Graph_Parsing
179b1653defe615de98165784ae3a527f822bf3a
[ "MIT" ]
null
null
null
models/train_rels.py
ivalab/Scene_Graph_Parsing
179b1653defe615de98165784ae3a527f822bf3a
[ "MIT" ]
null
null
null
""" Training script for scene graph detection. Integrated with my faster rcnn setup """ from dataloaders.georgia_tech import GTDataLoader, GT import numpy as np from torch import optim import torch import pandas as pd import time import os from torch import nn from config import ModelConfig, BOX_SCALE_GT, IM_SCALE_GT from torch.nn import functional as F from lib.pytorch_misc import optimistic_restore, de_chunkize, clip_grad_norm from lib.evaluation.sg_eval import BasicSceneGraphEvaluator from lib.pytorch_misc import print_para from torch.optim.lr_scheduler import ReduceLROnPlateau conf = ModelConfig() if conf.model == 'rtnet': from lib.rt_rel_model import RTRelModel elif conf.model == 'stanford': from lib.rel_model_stanford import RelModelStanford as RTRelModel else: raise ValueError() train, val, _ = GT.splits(num_val_im=conf.val_size, filter_duplicate_rels=False, use_proposals=conf.use_proposals, filter_non_overlap=conf.mode == 'sgdet') train_loader, val_loader = GTDataLoader.splits(train, val, mode='rel', batch_size=conf.batch_size, num_workers=conf.num_workers, num_gpus=conf.num_gpus) detector = RTRelModel(classes=train.ind_to_classes, aff_classes=train.ind_to_aff_classes, att_classes=train.ind_to_att_classes, rel_classes=train.ind_to_predicates, num_gpus=conf.num_gpus, mode=conf.mode, require_overlap_det=True, use_resnet=conf.use_resnet, order=conf.order, nl_edge=conf.nl_edge, nl_obj=conf.nl_obj, hidden_dim=conf.hidden_dim, use_proposals=conf.use_proposals, pass_in_obj_feats_to_decoder=conf.pass_in_obj_feats_to_decoder, pass_in_obj_feats_to_edge=conf.pass_in_obj_feats_to_edge, pooling_dim=conf.pooling_dim, rec_dropout=conf.rec_dropout, use_bias=conf.use_bias, use_tanh=conf.use_tanh, limit_vision=conf.limit_vision ) for _, param in detector.detector.rpn_head.named_parameters(): param.requires_grad = False print(print_para(detector), flush=True) def get_optim(lr): # Lower the learning rate on the VGG fully connected layers by 1/10th. It's a hack, but it helps # stabilize the models. fc_params = [p for n,p in detector.named_parameters() if n.startswith('roi_fmap') and p.requires_grad] non_fc_params = [p for n,p in detector.named_parameters() if not n.startswith('roi_fmap') and p.requires_grad] params = [{'params': fc_params, 'lr': lr / 10.0}, {'params': non_fc_params}] # params = [p for n,p in detector.named_parameters() if p.requires_grad] if conf.adam: optimizer = optim.Adam(params, weight_decay=conf.l2, lr=lr, eps=1e-3) else: optimizer = optim.SGD(params, weight_decay=conf.l2, lr=lr, momentum=0.9) scheduler = ReduceLROnPlateau(optimizer, 'max', patience=3, factor=0.1, verbose=True, threshold=0.0001, threshold_mode='abs', cooldown=1) return optimizer, scheduler ckpt = torch.load(conf.ckpt) if conf.ckpt.split('-')[-2].split('/')[-1] == 'vgrel': print("Loading EVERYTHING") start_epoch = ckpt['epoch'] if not optimistic_restore(detector, ckpt['state_dict']): start_epoch = -1 # optimistic_restore(detector.detector, torch.load('checkpoints/vgdet/vg-28.tar')['state_dict']) else: start_epoch = -1 optimistic_restore(detector.detector, ckpt['state_dict']) if (not conf.use_resnet): detector.roi_fmap[1][0].weight.data.copy_(ckpt['state_dict']['roi_fmap.0.weight']) detector.roi_fmap[1][3].weight.data.copy_(ckpt['state_dict']['roi_fmap.3.weight']) detector.roi_fmap[1][0].bias.data.copy_(ckpt['state_dict']['roi_fmap.0.bias']) detector.roi_fmap[1][3].bias.data.copy_(ckpt['state_dict']['roi_fmap.3.bias']) detector.roi_fmap_obj[0].weight.data.copy_(ckpt['state_dict']['roi_fmap.0.weight']) detector.roi_fmap_obj[3].weight.data.copy_(ckpt['state_dict']['roi_fmap.3.weight']) detector.roi_fmap_obj[0].bias.data.copy_(ckpt['state_dict']['roi_fmap.0.bias']) detector.roi_fmap_obj[3].bias.data.copy_(ckpt['state_dict']['roi_fmap.3.bias']) detector.cuda() def train_epoch(epoch_num): detector.train() tr = [] start = time.time() for b, batch in enumerate(train_loader): tr.append(train_batch(batch, verbose=b % (conf.print_interval*10) == 0)) #b == 0)) if b % conf.print_interval == 0 and b >= conf.print_interval: mn = pd.concat(tr[-conf.print_interval:], axis=1).mean(1) time_per_batch = (time.time() - start) / conf.print_interval print("\ne{:2d}b{:5d}/{:5d} {:.3f}s/batch, {:.1f}m/epoch".format( epoch_num, b, len(train_loader), time_per_batch, len(train_loader) * time_per_batch / 60)) print(mn) print('-----------', flush=True) start = time.time() return pd.concat(tr, axis=1) def train_batch(b, verbose=False): """ :param b: contains: :param imgs: the image, [batch_size, 3, IM_SIZE, IM_SIZE] :param all_anchors: [num_anchors, 4] the boxes of all anchors that we'll be using :param all_anchor_inds: [num_anchors, 2] array of the indices into the concatenated RPN feature vector that give us all_anchors, each one (img_ind, fpn_idx) :param im_sizes: a [batch_size, 4] numpy array of (h, w, scale, num_good_anchors) for each image. :param num_anchors_per_img: int, number of anchors in total over the feature pyramid per img Training parameters: :param train_anchor_inds: a [num_train, 5] array of indices for the anchors that will be used to compute the training loss (img_ind, fpn_idx) :param gt_boxes: [num_gt, 4] GT boxes over the batch. :param gt_classes: [num_gt, 2] gt boxes where each one is (img_id, class) :return: """ result = detector[b] weights_np = np.array([10., 1., 10., 10.]) weights_np = np.tile(weights_np, (int(result.rel_dists.size(0)), 1)) weights = torch.cuda.FloatTensor(weights_np) multilabel_loss_w = nn.BCELoss(weight=weights) multilabel_loss = nn.BCELoss() losses = {} losses['class_loss'] = F.cross_entropy(result.rm_obj_dists, result.rm_obj_labels) losses['aff_loss'] = multilabel_loss(result.rm_obj_aff_dists, result.rm_obj_aff_labels.float()) losses['att_loss'] = multilabel_loss(result.rm_obj_att_dists, result.rm_obj_att_labels.float()) losses['rel_loss'] = multilabel_loss_w(result.rel_dists, result.rel_labels[:, 3:].float()) loss = sum(losses.values()) optimizer.zero_grad() loss.backward() clip_grad_norm( [(n, p) for n, p in detector.named_parameters() if p.grad is not None], max_norm=conf.clip, verbose=verbose, clip=True) losses['total'] = loss optimizer.step() res = pd.Series({x: y.item() for x, y in losses.items()}) return res def val_epoch(): detector.eval() evaluator = BasicSceneGraphEvaluator.all_modes() for val_b, batch in enumerate(val_loader): val_batch(conf.num_gpus * val_b, batch, evaluator) evaluator[conf.mode].print_stats() return np.mean(evaluator[conf.mode].result_dict[conf.mode + '_recall'][100]) def val_batch(batch_num, b, evaluator): det_res = detector[b] if conf.num_gpus == 1: det_res = [det_res] for i, (boxes_i, objs_i, obj_scores_i, rels_i, pred_scores_i) in enumerate(det_res): gt_entry = { 'gt_classes': val.gt_classes[batch_num + i].copy(), 'gt_aff_classes':val.gt_aff_classes[batch_num + i].copy(), 'gt_att_classes':val.gt_att_classes[batch_num + i].copy(), 'gt_relations': val.relationships[batch_num + i].copy(), 'gt_boxes': val.gt_boxes[batch_num + i].copy(), } assert np.all(objs_i[rels_i[:, 0]] > 0) and np.all(objs_i[rels_i[:, 1]] > 0) pred_entry = { 'pred_boxes': boxes_i * BOX_SCALE_GT/IM_SCALE_GT, 'pred_classes': objs_i, 'pred_rel_inds': rels_i, 'obj_scores': obj_scores_i, 'rel_scores': pred_scores_i, # hack for now. } evaluator[conf.mode].evaluate_scene_graph_entry( gt_entry, pred_entry, ) print("Training starts now!") optimizer, scheduler = get_optim(conf.lr * conf.num_gpus * conf.batch_size) for epoch in range(start_epoch + 1, start_epoch + 1 + conf.num_epochs): rez = train_epoch(epoch) print("overall{:2d}: ({:.3f})\n{}".format(epoch, rez.mean(1)['total'], rez.mean(1)), flush=True) if conf.save_dir is not None: torch.save({ 'epoch': epoch, 'state_dict': detector.state_dict(), #{k:v for k,v in detector.state_dict().items() if not k.startswith('detector.')}, # 'optimizer': optimizer.state_dict(), }, os.path.join(conf.save_dir, '{}-{}.tar'.format('vgrel', epoch))) # save backbone network torch.save({'epoch': epoch, 'state_dict': detector.detector.features.state_dict()}, os.path.join(conf.save_dir, '{}-{}.tar'.format('resnet_backbone', epoch))) # mAp = val_epoch() # scheduler.step(mAp) if any([pg['lr'] <= (conf.lr * conf.num_gpus * conf.batch_size)/99.0 for pg in optimizer.param_groups]): print("exiting training early", flush=True) break
44.631818
130
0.642021
a3b19568d814cfd31a3d7a35df984d858abe0c42
389
py
Python
lesson_02/02_02_a.py
amindmobile/geekbrains-python-002
4bc2f7af755d00e73ddc48f1138830cb78e87034
[ "MIT" ]
null
null
null
lesson_02/02_02_a.py
amindmobile/geekbrains-python-002
4bc2f7af755d00e73ddc48f1138830cb78e87034
[ "MIT" ]
null
null
null
lesson_02/02_02_a.py
amindmobile/geekbrains-python-002
4bc2f7af755d00e73ddc48f1138830cb78e87034
[ "MIT" ]
null
null
null
# на курсе этому не учили, но мы-то знаааем.. ;) from itertools import zip_longest # Мутно, но иначе чистый инпут принимает просто строку и она потом итерируется посимвольно user_list = list(map(int, input('Введите числа через пробел: ').split())) nl = [] for a, b in zip_longest(user_list[::2], user_list[1::2]): if b: nl.append(b) if a: nl.append(a) print(nl)
27.785714
91
0.670951
a40998857d9f4a6479c064e5dd65dee7df01da1c
358
py
Python
Leetcode/0338. Counting Bits.py
luckyrabbit85/Python
ed134fd70b4a7b84b183b87b85ad5190f54c9526
[ "MIT" ]
1
2021-07-15T18:40:26.000Z
2021-07-15T18:40:26.000Z
Leetcode/0338. Counting Bits.py
luckyrabbit85/Python
ed134fd70b4a7b84b183b87b85ad5190f54c9526
[ "MIT" ]
null
null
null
Leetcode/0338. Counting Bits.py
luckyrabbit85/Python
ed134fd70b4a7b84b183b87b85ad5190f54c9526
[ "MIT" ]
null
null
null
class Solution: def countBits(self, n: int) -> list[int]: res = [] for i in range(n + 1): res.append(bin(i).count("1")) return res class Solution: def countBits(self, n: int) -> list[int]: res = [0] * (n + 1) for x in range(1, n + 1): res[x] = res[x & (x - 1)] + 1 return res
23.866667
45
0.458101
27db1b1598307857f582ab00faa76d45e9980fda
2,760
py
Python
district42_exp_types/uuid_str/_uuid_str_validator.py
nikitanovosibirsk/district42-exp-types
e36e43da62f32d58d4b14c65afa16856dc8849e1
[ "Apache-2.0" ]
null
null
null
district42_exp_types/uuid_str/_uuid_str_validator.py
nikitanovosibirsk/district42-exp-types
e36e43da62f32d58d4b14c65afa16856dc8849e1
[ "Apache-2.0" ]
2
2021-08-01T05:02:21.000Z
2021-08-01T10:06:28.000Z
district42_exp_types/uuid_str/_uuid_str_validator.py
nikitanovosibirsk/district42-exp-types
e36e43da62f32d58d4b14c65afa16856dc8849e1
[ "Apache-2.0" ]
null
null
null
from typing import Any, cast from uuid import UUID from niltype import Nil, Nilable from th import PathHolder from valera import Formatter, ValidationResult, Validator from valera.errors import TypeValidationError, ValidationError, ValueValidationError from ._uuid_str_schema import UUIDStrSchema __all__ = ("UUIDStrValidator", "StrCaseValidationError", "StrCaseFormatter",) class StrCaseValidationError(ValidationError): def __init__(self, path: PathHolder, actual_value: str, expected_case: str) -> None: self.path = path self.actual_value = actual_value self.expected_case = expected_case def format(self, formatter: Formatter) -> str: return cast(str, formatter.format_str_case_error(self)) def __repr__(self) -> str: return (f"{self.__class__.__name__}({self.path!r}, {self.actual_value!r}, " f"{self.expected_case!r})") class StrCaseFormatter(Formatter, extend=True): def format_str_case_error(self, error: StrCaseValidationError) -> str: actual_type = self._get_type(error.actual_value) formatted_path = self._at_path(error.path) return (f"Value {actual_type}{formatted_path} " f"must be in {error.expected_case} case, but {error.actual_value!r} given") class UUIDStrValidator(Validator, extend=True): def visit_uuid_str(self, schema: UUIDStrSchema, *, value: Any = Nil, path: Nilable[PathHolder] = Nil, **kwargs: Any) -> ValidationResult: result = self._validation_result_factory() if path is Nil: path = self._path_holder_factory() if error := self._validate_type(path, value, str): return result.add_error(error) try: actual_value = UUID(value) except (TypeError, ValueError): if schema.props.value is not Nil: error = ValueValidationError(path, value, schema.props.value) else: error = TypeValidationError(path, value, UUID) return result.add_error(error) if schema.props.value is not Nil: if actual_value != UUID(schema.props.value): error = ValueValidationError(path, value, schema.props.value) return result.add_error(error) if schema.props.is_lowercase is not Nil: if not value.islower(): error = StrCaseValidationError(path, value, str.lower.__name__) return result.add_error(error) if schema.props.is_uppercase is not Nil: if not value.isupper(): error = StrCaseValidationError(path, value, str.upper.__name__) return result.add_error(error) return result
38.333333
91
0.654348
6ef2845703855fa225335b7b68afaa9c7d3a592e
206
py
Python
example/eulerproject/problem1.py
Xe/code
d970038329f7c4e4f0ee9dcd1b345741dd0fcc51
[ "Zlib" ]
7
2015-03-26T07:35:06.000Z
2021-12-09T00:03:33.000Z
example/eulerproject/problem1.py
Xe/code
d970038329f7c4e4f0ee9dcd1b345741dd0fcc51
[ "Zlib" ]
null
null
null
example/eulerproject/problem1.py
Xe/code
d970038329f7c4e4f0ee9dcd1b345741dd0fcc51
[ "Zlib" ]
1
2020-11-03T22:59:31.000Z
2020-11-03T22:59:31.000Z
#!/usr/bin/python numbers = [range(1000), range(1000)] final = filter(lambda x: x % 3 == 0, numbers[0]) final.extend(filter(lambda x: x % 5 == 0, numbers[1])) print reduce((lambda x,y: x+y), set(final))
22.888889
54
0.631068
2df0c2578f25884d980bf46c51747169770e2b3f
32,657
py
Python
logging/google/cloud/logging_v2/gapic/logging_service_v2_client.py
theacodes/google-cloud-python
57dafcb78540e12c82f7ca0fc77d75edeb269390
[ "Apache-2.0" ]
1
2020-10-25T04:39:41.000Z
2020-10-25T04:39:41.000Z
logging/google/cloud/logging_v2/gapic/logging_service_v2_client.py
theacodes/google-cloud-python
57dafcb78540e12c82f7ca0fc77d75edeb269390
[ "Apache-2.0" ]
4
2018-11-13T22:15:36.000Z
2018-12-07T18:31:38.000Z
logging/google/cloud/logging_v2/gapic/logging_service_v2_client.py
theacodes/google-cloud-python
57dafcb78540e12c82f7ca0fc77d75edeb269390
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accesses the google.logging.v2 LoggingServiceV2 API.""" import functools import pkg_resources import warnings from google.oauth2 import service_account import google.api_core.gapic_v1.client_info import google.api_core.gapic_v1.config import google.api_core.gapic_v1.method import google.api_core.grpc_helpers import google.api_core.page_iterator import google.api_core.path_template import grpc from google.api import monitored_resource_pb2 from google.cloud.logging_v2.gapic import enums from google.cloud.logging_v2.gapic import logging_service_v2_client_config from google.cloud.logging_v2.gapic.transports import logging_service_v2_grpc_transport from google.cloud.logging_v2.proto import log_entry_pb2 from google.cloud.logging_v2.proto import logging_pb2 from google.cloud.logging_v2.proto import logging_pb2_grpc from google.protobuf import empty_pb2 _GAPIC_LIBRARY_VERSION = pkg_resources.get_distribution( 'google-cloud-logging', ).version class LoggingServiceV2Client(object): """Service for ingesting and querying logs.""" SERVICE_ADDRESS = 'logging.googleapis.com:443' """The default address of the service.""" # The name of the interface for this client. This is the key used to # find the method configuration in the client_config dictionary. _INTERFACE_NAME = 'google.logging.v2.LoggingServiceV2' @classmethod def from_service_account_file(cls, filename, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: LoggingServiceV2Client: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename) kwargs['credentials'] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @classmethod def log_path(cls, project, log): """Return a fully-qualified log string.""" return google.api_core.path_template.expand( 'projects/{project}/logs/{log}', project=project, log=log, ) @classmethod def project_path(cls, project): """Return a fully-qualified project string.""" return google.api_core.path_template.expand( 'projects/{project}', project=project, ) def __init__(self, transport=None, channel=None, credentials=None, client_config=None, client_info=None): """Constructor. Args: transport (Union[~.LoggingServiceV2GrpcTransport, Callable[[~.Credentials, type], ~.LoggingServiceV2GrpcTransport]): A transport instance, responsible for actually making the API calls. The default transport uses the gRPC protocol. This argument may also be a callable which returns a transport instance. Callables will be sent the credentials as the first argument and the default transport class as the second argument. channel (grpc.Channel): DEPRECATED. A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to ``transport``; doing so will raise an exception. client_config (dict): DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Raise deprecation warnings for things we want to go away. if client_config is not None: warnings.warn( 'The `client_config` argument is deprecated.', PendingDeprecationWarning, stacklevel=2) else: client_config = logging_service_v2_client_config.config if channel: warnings.warn( 'The `channel` argument is deprecated; use ' '`transport` instead.', PendingDeprecationWarning, stacklevel=2) # Instantiate the transport. # The transport is responsible for handling serialization and # deserialization and actually sending data to the service. if transport: if callable(transport): self.transport = transport( credentials=credentials, default_class=logging_service_v2_grpc_transport. LoggingServiceV2GrpcTransport, ) else: if credentials: raise ValueError( 'Received both a transport instance and ' 'credentials; these are mutually exclusive.') self.transport = transport else: self.transport = logging_service_v2_grpc_transport.LoggingServiceV2GrpcTransport( address=self.SERVICE_ADDRESS, channel=channel, credentials=credentials, ) if client_info is None: client_info = google.api_core.gapic_v1.client_info.ClientInfo( gapic_version=_GAPIC_LIBRARY_VERSION, ) else: client_info.gapic_version = _GAPIC_LIBRARY_VERSION self._client_info = client_info # Parse out the default settings for retry and timeout for each RPC # from the client configuration. # (Ordinarily, these are the defaults specified in the `*_config.py` # file next to this one.) self._method_configs = google.api_core.gapic_v1.config.parse_method_configs( client_config['interfaces'][self._INTERFACE_NAME], ) # Save a dictionary of cached API call functions. # These are the actual callables which invoke the proper # transport methods, wrapped with `wrap_method` to add retry, # timeout, and the like. self._inner_api_calls = {} # Service calls def delete_log(self, log_name, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Deletes all the log entries in a log. The log reappears if it receives new entries. Log entries written shortly before the delete operation might not be deleted. Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.LoggingServiceV2Client() >>> >>> log_name = client.log_path('[PROJECT]', '[LOG]') >>> >>> client.delete_log(log_name) Args: log_name (str): Required. The resource name of the log to delete: :: "projects/[PROJECT_ID]/logs/[LOG_ID]" "organizations/[ORGANIZATION_ID]/logs/[LOG_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]/logs/[LOG_ID]" "folders/[FOLDER_ID]/logs/[LOG_ID]" ``[LOG_ID]`` must be URL-encoded. For example, ``"projects/my-project-id/logs/syslog"``, ``"organizations/1234567890/logs/cloudresourcemanager.googleapis.com%2Factivity"``. For more information about log names, see ``LogEntry``. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'delete_log' not in self._inner_api_calls: self._inner_api_calls[ 'delete_log'] = google.api_core.gapic_v1.method.wrap_method( self.transport.delete_log, default_retry=self._method_configs['DeleteLog'].retry, default_timeout=self._method_configs['DeleteLog'].timeout, client_info=self._client_info, ) request = logging_pb2.DeleteLogRequest(log_name=log_name, ) self._inner_api_calls['delete_log']( request, retry=retry, timeout=timeout, metadata=metadata) def write_log_entries(self, entries, log_name=None, resource=None, labels=None, partial_success=None, dry_run=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Writes log entries to Logging. This API method is the only way to send log entries to Logging. This method is used, directly or indirectly, by the Logging agent (fluentd) and all logging libraries configured to use Logging. A single request may contain log entries for a maximum of 1000 different resources (projects, organizations, billing accounts or folders) Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.LoggingServiceV2Client() >>> >>> # TODO: Initialize `entries`: >>> entries = [] >>> >>> response = client.write_log_entries(entries) Args: entries (list[Union[dict, ~google.cloud.logging_v2.types.LogEntry]]): Required. The log entries to send to Logging. The order of log entries in this list does not matter. Values supplied in this method's ``log_name``, ``resource``, and ``labels`` fields are copied into those log entries in this list that do not include values for their corresponding fields. For more information, see the ``LogEntry`` type. If the ``timestamp`` or ``insert_id`` fields are missing in log entries, then this method supplies the current time or a unique identifier, respectively. The supplied values are chosen so that, among the log entries that did not supply their own values, the entries earlier in the list will sort before the entries later in the list. See the ``entries.list`` method. Log entries with timestamps that are more than the `logs retention period <https://cloud.google.com/logging/quota-policy>`__ in the past or more than 24 hours in the future will not be available when calling ``entries.list``. However, those log entries can still be exported with `LogSinks <https://cloud.google.com/logging/docs/api/tasks/exporting-logs>`__. To improve throughput and to avoid exceeding the `quota limit <https://cloud.google.com/logging/quota-policy>`__ for calls to ``entries.write``, you should try to include several log entries in this list, rather than calling this method for each individual log entry. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.logging_v2.types.LogEntry` log_name (str): Optional. A default log resource name that is assigned to all log entries in ``entries`` that do not specify a value for ``log_name``: :: "projects/[PROJECT_ID]/logs/[LOG_ID]" "organizations/[ORGANIZATION_ID]/logs/[LOG_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]/logs/[LOG_ID]" "folders/[FOLDER_ID]/logs/[LOG_ID]" ``[LOG_ID]`` must be URL-encoded. For example: :: "projects/my-project-id/logs/syslog" "organizations/1234567890/logs/cloudresourcemanager.googleapis.com%2Factivity" The permission logging.logEntries.create is needed on each project, organization, billing account, or folder that is receiving new log entries, whether the resource is specified in logName or in an individual log entry. resource (Union[dict, ~google.cloud.logging_v2.types.MonitoredResource]): Optional. A default monitored resource object that is assigned to all log entries in ``entries`` that do not specify a value for ``resource``. Example: :: { "type": "gce_instance", "labels": { "zone": "us-central1-a", "instance_id": "00000000000000000000" }} See ``LogEntry``. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.logging_v2.types.MonitoredResource` labels (dict[str -> str]): Optional. Default labels that are added to the ``labels`` field of all log entries in ``entries``. If a log entry already has a label with the same key as a label in this parameter, then the log entry's label is not changed. See ``LogEntry``. partial_success (bool): Optional. Whether valid entries should be written even if some other entries fail due to INVALID\_ARGUMENT or PERMISSION\_DENIED errors. If any entry is not written, then the response status is the error associated with one of the failed entries and the response includes error details keyed by the entries' zero-based index in the ``entries.write`` method. dry_run (bool): Optional. If true, the request should expect normal response, but the entries won't be persisted nor exported. Useful for checking whether the logging API endpoints are working properly before sending valuable data. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.logging_v2.types.WriteLogEntriesResponse` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'write_log_entries' not in self._inner_api_calls: self._inner_api_calls[ 'write_log_entries'] = google.api_core.gapic_v1.method.wrap_method( self.transport.write_log_entries, default_retry=self._method_configs['WriteLogEntries']. retry, default_timeout=self._method_configs['WriteLogEntries']. timeout, client_info=self._client_info, ) request = logging_pb2.WriteLogEntriesRequest( entries=entries, log_name=log_name, resource=resource, labels=labels, partial_success=partial_success, dry_run=dry_run, ) return self._inner_api_calls['write_log_entries']( request, retry=retry, timeout=timeout, metadata=metadata) def list_log_entries(self, resource_names, project_ids=None, filter_=None, order_by=None, page_size=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Lists log entries. Use this method to retrieve log entries from Logging. For ways to export log entries, see `Exporting Logs <https://cloud.google.com/logging/docs/export>`__. Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.LoggingServiceV2Client() >>> >>> # TODO: Initialize `resource_names`: >>> resource_names = [] >>> >>> # Iterate over all results >>> for element in client.list_log_entries(resource_names): ... # process element ... pass >>> >>> >>> # Alternatively: >>> >>> # Iterate over results one page at a time >>> for page in client.list_log_entries(resource_names).pages: ... for element in page: ... # process element ... pass Args: resource_names (list[str]): Required. Names of one or more parent resources from which to retrieve log entries: :: "projects/[PROJECT_ID]" "organizations/[ORGANIZATION_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]" "folders/[FOLDER_ID]" Projects listed in the ``project_ids`` field are added to this list. project_ids (list[str]): Deprecated. Use ``resource_names`` instead. One or more project identifiers or project numbers from which to retrieve log entries. Example: ``"my-project-1A"``. If present, these project identifiers are converted to resource name format and added to the list of resources in ``resource_names``. filter_ (str): Optional. A filter that chooses which log entries to return. See `Advanced Logs Filters <https://cloud.google.com/logging/docs/view/advanced_filters>`__. Only log entries that match the filter are returned. An empty filter matches all log entries in the resources listed in ``resource_names``. Referencing a parent resource that is not listed in ``resource_names`` will cause the filter to return no results. The maximum length of the filter is 20000 characters. order_by (str): Optional. How the results should be sorted. Presently, the only permitted values are ``"timestamp asc"`` (default) and ``"timestamp desc"``. The first option returns entries in order of increasing values of ``LogEntry.timestamp`` (oldest first), and the second option returns entries in order of decreasing timestamps (newest first). Entries with equal timestamps are returned in order of their ``insert_id`` values. page_size (int): The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.gax.PageIterator` instance. By default, this is an iterable of :class:`~google.cloud.logging_v2.types.LogEntry` instances. This object can also be configured to iterate over the pages of the response through the `options` parameter. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'list_log_entries' not in self._inner_api_calls: self._inner_api_calls[ 'list_log_entries'] = google.api_core.gapic_v1.method.wrap_method( self.transport.list_log_entries, default_retry=self._method_configs['ListLogEntries'].retry, default_timeout=self._method_configs['ListLogEntries']. timeout, client_info=self._client_info, ) request = logging_pb2.ListLogEntriesRequest( resource_names=resource_names, project_ids=project_ids, filter=filter_, order_by=order_by, page_size=page_size, ) iterator = google.api_core.page_iterator.GRPCIterator( client=None, method=functools.partial( self._inner_api_calls['list_log_entries'], retry=retry, timeout=timeout, metadata=metadata), request=request, items_field='entries', request_token_field='page_token', response_token_field='next_page_token', ) return iterator def list_monitored_resource_descriptors( self, page_size=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Lists the descriptors for monitored resource types used by Logging. Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.LoggingServiceV2Client() >>> >>> # Iterate over all results >>> for element in client.list_monitored_resource_descriptors(): ... # process element ... pass >>> >>> >>> # Alternatively: >>> >>> # Iterate over results one page at a time >>> for page in client.list_monitored_resource_descriptors().pages: ... for element in page: ... # process element ... pass Args: page_size (int): The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.gax.PageIterator` instance. By default, this is an iterable of :class:`~google.cloud.logging_v2.types.MonitoredResourceDescriptor` instances. This object can also be configured to iterate over the pages of the response through the `options` parameter. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'list_monitored_resource_descriptors' not in self._inner_api_calls: self._inner_api_calls[ 'list_monitored_resource_descriptors'] = google.api_core.gapic_v1.method.wrap_method( self.transport.list_monitored_resource_descriptors, default_retry=self. _method_configs['ListMonitoredResourceDescriptors'].retry, default_timeout=self._method_configs[ 'ListMonitoredResourceDescriptors'].timeout, client_info=self._client_info, ) request = logging_pb2.ListMonitoredResourceDescriptorsRequest( page_size=page_size, ) iterator = google.api_core.page_iterator.GRPCIterator( client=None, method=functools.partial( self._inner_api_calls['list_monitored_resource_descriptors'], retry=retry, timeout=timeout, metadata=metadata), request=request, items_field='resource_descriptors', request_token_field='page_token', response_token_field='next_page_token', ) return iterator def list_logs(self, parent, page_size=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Lists the logs in projects, organizations, folders, or billing accounts. Only logs that have entries are listed. Example: >>> from google.cloud import logging_v2 >>> >>> client = logging_v2.LoggingServiceV2Client() >>> >>> parent = client.project_path('[PROJECT]') >>> >>> # Iterate over all results >>> for element in client.list_logs(parent): ... # process element ... pass >>> >>> >>> # Alternatively: >>> >>> # Iterate over results one page at a time >>> for page in client.list_logs(parent).pages: ... for element in page: ... # process element ... pass Args: parent (str): Required. The resource name that owns the logs: :: "projects/[PROJECT_ID]" "organizations/[ORGANIZATION_ID]" "billingAccounts/[BILLING_ACCOUNT_ID]" "folders/[FOLDER_ID]" page_size (int): The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.gax.PageIterator` instance. By default, this is an iterable of :class:`str` instances. This object can also be configured to iterate over the pages of the response through the `options` parameter. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'list_logs' not in self._inner_api_calls: self._inner_api_calls[ 'list_logs'] = google.api_core.gapic_v1.method.wrap_method( self.transport.list_logs, default_retry=self._method_configs['ListLogs'].retry, default_timeout=self._method_configs['ListLogs'].timeout, client_info=self._client_info, ) request = logging_pb2.ListLogsRequest( parent=parent, page_size=page_size, ) iterator = google.api_core.page_iterator.GRPCIterator( client=None, method=functools.partial( self._inner_api_calls['list_logs'], retry=retry, timeout=timeout, metadata=metadata), request=request, items_field='log_names', request_token_field='page_token', response_token_field='next_page_token', ) return iterator
46.45377
155
0.594788
598e1f7b629f8dcacb33d96e26760d22cff36cee
1,783
py
Python
versiongrid/db/base.py
rsnyman/versiongrid
0870f320f2b53f1071282692816fcbba1f9a0346
[ "MIT" ]
null
null
null
versiongrid/db/base.py
rsnyman/versiongrid
0870f320f2b53f1071282692816fcbba1f9a0346
[ "MIT" ]
null
null
null
versiongrid/db/base.py
rsnyman/versiongrid
0870f320f2b53f1071282692816fcbba1f9a0346
[ "MIT" ]
null
null
null
from uuid import UUID from flask_sqlalchemy import SQLAlchemy from sqlalchemy.dialects.postgresql import UUID as PostgresUUID from sqlalchemy.types import CHAR from sqlalchemy.types import TypeDecorator db = SQLAlchemy() Model = db.Model Boolean = db.Boolean Column = db.Column DateTime = db.DateTime Float = db.Float ForeignKey = db.ForeignKey Integer = db.Integer LargeBinary = db.LargeBinary Table = db.Table Text = db.Text relationship = db.relationship inspect = db.inspect session = db.session class PortableUUID(TypeDecorator): """Platform-independent UUID type. Uses PostgreSQL's UUID type, otherwise uses CHAR(32), storing as stringified hex values. Based on https://docs.sqlalchemy.org/en/13/core/custom_types.html#backend-agnostic-guid-type """ impl = CHAR def __init__(self, *args, **kwargs): if "as_uuid" in kwargs: self.as_uuid = kwargs.pop("as_uuid") else: self.as_uuid = False super().__init__(*args, **kwargs) def load_dialect_impl(self, dialect): if dialect.name == "postgresql": return dialect.type_descriptor(PostgresUUID(as_uuid=self.as_uuid)) else: return dialect.type_descriptor(CHAR(32)) def process_bind_param(self, value, dialect): if value is None: return value elif dialect.name == "postgresql": return value else: if isinstance(value, UUID): return str(value) else: return value def process_result_value(self, value, dialect): if value is None: return value else: if self.as_uuid and not isinstance(value, UUID): value = UUID(value) return value
27.015152
96
0.649467
25f8d9fd0c6d587b21b656f149495e4e707044de
28,004
py
Python
plugin/tensorboard_plugin_profile/profile_plugin.py
Saiprasad16/profiler
00499416f250acca6c73dd7f191e24ee142c2bef
[ "Apache-2.0" ]
1
2021-05-10T10:47:15.000Z
2021-05-10T10:47:15.000Z
plugin/tensorboard_plugin_profile/profile_plugin.py
Saiprasad16/profiler
00499416f250acca6c73dd7f191e24ee142c2bef
[ "Apache-2.0" ]
null
null
null
plugin/tensorboard_plugin_profile/profile_plugin.py
Saiprasad16/profiler
00499416f250acca6c73dd7f191e24ee142c2bef
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The TensorBoard plugin for performance profiling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import logging import os import re import threading import six import tensorflow.compat.v2 as tf from werkzeug import wrappers from tensorboard.backend.event_processing import plugin_asset_util from tensorboard.context import RequestContext from tensorboard.plugins import base_plugin from tensorflow.python.profiler import profiler_client # pylint: disable=g-direct-tensorflow-import from tensorflow.python.profiler import profiler_v2 as profiler # pylint: disable=g-direct-tensorflow-import from tensorboard_plugin_profile.convert import raw_to_tool_data as convert tf.enable_v2_behavior() logger = logging.getLogger('tensorboard') # The prefix of routes provided by this plugin. PLUGIN_NAME = 'profile' INDEX_JS_ROUTE = '/index.js' INDEX_HTML_ROUTE = '/index.html' BUNDLE_JS_ROUTE = '/bundle.js' STYLES_CSS_ROUTE = '/styles.css' MATERIALICONS_WOFF2_ROUTE = '/materialicons.woff2' TRACE_VIEWER_INDEX_HTML_ROUTE = '/trace_viewer_index.html' TRACE_VIEWER_INDEX_JS_ROUTE = '/trace_viewer_index.js' ZONE_JS_ROUTE = '/zone.js' DATA_ROUTE = '/data' TOOLS_ROUTE = '/tools' HOSTS_ROUTE = '/hosts' CAPTURE_ROUTE = '/capture_profile' # Suffixes of "^, #, @" symbols represent different input data formats for the # same tool. # 1) '^': data generate from XPlane. # 2) '#': data is in gzip format. # 3) '@': data generate from proto, or tracetable for streaming trace viewer. # 4) no suffix: data is in json format, ready to feed to frontend. TOOLS = { 'trace_viewer': 'trace', 'trace_viewer#': 'trace.json.gz', 'trace_viewer@': 'tracetable', # streaming trace viewer 'op_profile': 'op_profile.json', 'input_pipeline_analyzer': 'input_pipeline.json', 'input_pipeline_analyzer@': 'input_pipeline.pb', 'overview_page': 'overview_page.json', 'overview_page@': 'overview_page.pb', 'memory_viewer': 'memory_viewer.json', 'pod_viewer': 'pod_viewer.json', 'tensorflow_stats': 'tensorflow_stats.pb', 'kernel_stats': 'kernel_stats.pb', 'memory_profile#': 'memory_profile.json.gz', 'xplane': 'xplane.pb', 'tf_data_bottleneck_analysis': 'tf_data_bottleneck_analysis.json', } ALL_HOSTS = 'ALL_HOSTS' _EXTENSION_TO_TOOL = {extension: tool for tool, extension in TOOLS.items()} _FILENAME_RE = re.compile(r'(?:(.*)\.)?(' + '|'.join(TOOLS.values()).replace('.', r'\.') + r')') # Tools that consume raw data. _RAW_DATA_TOOLS = frozenset( tool for tool, extension in TOOLS.items() if extension.endswith('.json') or extension.endswith('.json.gz')) # Tools that can be generated from xplane end with ^. XPLANE_TOOLS = [ 'trace_viewer^', 'overview_page^', 'input_pipeline_analyzer^', 'tensorflow_stats^', 'kernel_stats^', 'memory_profile^', 'pod_viewer^', 'tf_data_bottleneck_analysis^', ] # XPlane generated tools that support all host mode. XPLANE_TOOLS_ALL_HOSTS_SUPPORTED = frozenset([ 'input_pipeline_analyzer^', 'tensorflow_stats^', 'kernel_stats^', 'overview_page^', 'pod_viewer^', 'tf_data_bottleneck_analysis^', ]) # XPlane generated tools that only support all host mode. XPLANE_TOOLS_ALL_HOSTS_ONLY = frozenset( ['overview_page^', 'pod_viewer^', 'tf_data_bottleneck_analysis^']) def _use_xplane(tool): return tool[-1] == '^' def _make_filename(host, tool): """Returns the name of the file containing data for the given host and tool. Args: host: Name of the host that produced the profile data, e.g., 'localhost'. tool: Name of the tool, e.g., 'trace_viewer'. Returns: The host name concatenated with the tool-specific extension, e.g., 'localhost.trace'. """ filename = str(host) + '.' if host else '' tool = 'xplane' if _use_xplane(tool) else tool return filename + TOOLS[tool] def _parse_filename(filename): """Returns the host and tool encoded in a filename in the run directory. Args: filename: Name of a file in the run directory. The name might encode a host and tool, e.g., 'host.tracetable', 'host.domain.op_profile.json', or just a tool, e.g., 'trace', 'tensorflow_stats.pb'. Returns: A tuple (host, tool) containing the names of the host and tool, e.g., ('localhost', 'trace_viewer'). Either of the tuple's components can be None. """ m = _FILENAME_RE.fullmatch(filename) if m is None: return filename, None return m.group(1), _EXTENSION_TO_TOOL[m.group(2)] def _get_hosts(filenames): """Parses a list of filenames and returns the set of hosts. Args: filenames: A list of filenames (just basenames, no directory). Returns: A set of host names encoded in the filenames. """ hosts = set() for name in filenames: host, _ = _parse_filename(name) if host: hosts.add(host) return hosts def _get_tools(filenames): """Parses a list of filenames and returns the set of tools. If xplane is present in the repository, add tools that can be generated by xplane if we don't have a file for the tool. Args: filenames: A list of filenames (just basenames, no directory). Returns: A set of tool names encoded in the filenames. """ tools = set() found = set() has_xplane = False for name in filenames: _, tool = _parse_filename(name) if tool == 'xplane': has_xplane = True continue elif tool: tools.add(tool) if tool[-1] in ('@', '#'): found.add(tool[:-1]) else: found.add(tool) if has_xplane: for item in XPLANE_TOOLS: if item[:-1] not in found: tools.add(item) return tools def get_worker_list(cluster_resolver): """Parses TPU workers list from the cluster resolver.""" cluster_spec = cluster_resolver.cluster_spec() task_indices = cluster_spec.task_indices('worker') worker_list = [ cluster_spec.task_address('worker', i).replace(':8470', ':8466') for i in task_indices ] return ','.join(worker_list) def respond(body, content_type, code=200, content_encoding=None): """Create a Werkzeug response, handling JSON serialization and CSP. Args: body: For JSON responses, a JSON-serializable object; otherwise, a raw `bytes` string or Unicode `str` (which will be encoded as UTF-8). content_type: Response content-type (`str`); use `application/json` to automatically serialize structures. code: HTTP status code (`int`). content_encoding: Response Content-Encoding header ('str'); e.g. 'gzip'. Returns: A `werkzeug.wrappers.BaseResponse` object. """ if content_type == 'application/json' and isinstance( body, (dict, list, set, tuple)): body = json.dumps(body, sort_keys=True) if not isinstance(body, bytes): body = body.encode('utf-8') csp_parts = { 'default-src': ["'self'"], 'script-src': [ "'self'", "'unsafe-eval'", "'unsafe-inline'", 'https://www.gstatic.com', ], 'object-src': ["'none'"], 'style-src': [ "'self'", "'unsafe-inline'", 'https://www.gstatic.com', ], 'img-src': [ "'self'", 'blob:', 'data:', ], } csp = ';'.join((' '.join([k] + v) for (k, v) in csp_parts.items())) headers = [ ('Content-Security-Policy', csp), ('X-Content-Type-Options', 'nosniff'), ] if content_encoding: headers.append(('Content-Encoding', content_encoding)) return wrappers.Response( body, content_type=content_type, status=code, headers=headers) def _plugin_assets(logdir, runs, plugin_name): result = {} for run in runs: run_path = os.path.join(logdir, run) assets = plugin_asset_util.ListAssets(run_path, plugin_name) result[run] = assets return result class ProfilePlugin(base_plugin.TBPlugin): """Profile Plugin for TensorBoard.""" plugin_name = PLUGIN_NAME def __init__(self, context): """Constructs a profiler plugin for TensorBoard. This plugin adds handlers for performance-related frontends. Args: context: A base_plugin.TBContext instance. """ self.logdir = context.logdir self.data_provider = context.data_provider self.stub = None self.master_tpu_unsecure_channel = context.flags.master_tpu_unsecure_channel # Whether the plugin is active. This is an expensive computation, so we # compute this asynchronously and cache positive results indefinitely. self._is_active = False # Lock to ensure at most one thread computes _is_active at a time. self._is_active_lock = threading.Lock() def is_active(self): """Whether this plugin is active and has any profile data to show. Detecting profile data is expensive, so this process runs asynchronously and the value reported by this method is the cached value and may be stale. Returns: Whether any run has profile data. """ # If we are already active, we remain active and don't recompute this. # Otherwise, try to acquire the lock without blocking; if we get it and # we're still not active, launch a thread to check if we're active and # release the lock once the computation is finished. Either way, this # thread returns the current cached value to avoid blocking. if not self._is_active and self._is_active_lock.acquire(False): if self._is_active: self._is_active_lock.release() else: def compute_is_active(): self._is_active = any(self.generate_run_to_tools()) self._is_active_lock.release() new_thread = threading.Thread( target=compute_is_active, name='DynamicProfilePluginIsActiveThread') new_thread.start() return self._is_active def get_plugin_apps(self): return { INDEX_JS_ROUTE: self.static_file_route, INDEX_HTML_ROUTE: self.static_file_route, BUNDLE_JS_ROUTE: self.static_file_route, STYLES_CSS_ROUTE: self.static_file_route, MATERIALICONS_WOFF2_ROUTE: self.static_file_route, TRACE_VIEWER_INDEX_HTML_ROUTE: self.static_file_route, TRACE_VIEWER_INDEX_JS_ROUTE: self.static_file_route, ZONE_JS_ROUTE: self.static_file_route, TOOLS_ROUTE: self.tools_route, HOSTS_ROUTE: self.hosts_route, DATA_ROUTE: self.data_route, CAPTURE_ROUTE: self.capture_route, } def frontend_metadata(self): return base_plugin.FrontendMetadata(es_module_path='/index.js') @wrappers.Request.application def static_file_route(self, request): filename = os.path.basename(request.path) extention = os.path.splitext(filename)[1] if extention == '.html': mimetype = 'text/html' elif extention == '.css': mimetype = 'text/css' elif extention == '.js': mimetype = 'application/javascript' else: mimetype = 'application/octet-stream' filepath = os.path.join(os.path.dirname(__file__), 'static', filename) try: with open(filepath, 'rb') as infile: contents = infile.read() except IOError: return respond('404 Not Found', 'text/plain', code=404) return respond(contents, mimetype) @wrappers.Request.application def tools_route(self, request): run_to_tools = dict(self.generate_run_to_tools()) return respond(run_to_tools, 'application/json') def host_impl(self, run, tool): """Returns available hosts for the run and tool in the log directory. In the plugin log directory, each directory contains profile data for a single run (identified by the directory name), and files in the run directory contains data for different tools and hosts. The file that contains profile for a specific tool "x" will have extension TOOLS["x"]. Example: log/ run1/ plugins/ profile/ host1.trace host2.trace run2/ plugins/ profile/ host1.trace host2.trace Args: run: the frontend run name, e.g., 'run1' or 'run2' for the example above. tool: the requested tool, e.g., 'trace_viewer' for the example above. Returns: A list of host names, e.g. ["host1", "host2"] for the example above. """ run_dir = self._run_dir(run) if not run_dir: logger.warning('Cannot find asset directory for: %s', run) return [] tool_pattern = _make_filename('*', tool) try: filenames = tf.io.gfile.glob(os.path.join(run_dir, tool_pattern)) except tf.errors.OpError as e: logger.warning('Cannot read asset directory: %s, OpError %s', run_dir, e) filenames = [os.path.basename(f) for f in filenames] hosts = _get_hosts(filenames) if len(hosts) > 1: if tool in XPLANE_TOOLS_ALL_HOSTS_ONLY: hosts = [ALL_HOSTS] elif tool in XPLANE_TOOLS_ALL_HOSTS_SUPPORTED: hosts.add(ALL_HOSTS) return sorted(hosts) @wrappers.Request.application def hosts_route(self, request): run = request.args.get('run') tool = request.args.get('tag') hosts = self.host_impl(run, tool) return respond(hosts, 'application/json') def data_impl(self, request): """Retrieves and processes the tool data for a run and a host. Args: request: XMLHttpRequest Returns: A string that can be served to the frontend tool or None if tool, run or host is invalid. """ run = request.args.get('run') tool = request.args.get('tag') host = request.args.get('host') tqx = request.args.get('tqx') run_dir = self._run_dir(run) # Profile plugin "run" is the last component of run dir. profile_run = os.path.basename(run_dir) if tool not in TOOLS and not _use_xplane(tool): return None, None self.start_grpc_stub_if_necessary() if tool == 'trace_viewer@' and self.stub is not None: # Streaming trace viewer needs profiler_analysis service, which is only # supported in Cloud TPU. This code is unused when data was produced by # open-source TensorFlow. Only import the library when needed. # pylint: disable=g-import-not-at-top # pylint: disable=g-direct-tensorflow-import from tensorflow.core.profiler import profiler_analysis_pb2 # pylint: enable=g-import-not-at-top # pylint: enable=g-direct-tensorflow-import grpc_request = profiler_analysis_pb2.ProfileSessionDataRequest() grpc_request.repository_root = os.path.dirname(run_dir) grpc_request.session_id = profile_run grpc_request.tool_name = 'trace_viewer' # Remove the trailing dot if present grpc_request.host_name = host.rstrip('.') grpc_request.parameters['resolution'] = request.args.get( 'resolution', 8000) if request.args.get('start_time_ms') is not None: grpc_request.parameters['start_time_ms'] = request.args.get( 'start_time_ms') if request.args.get('end_time_ms') is not None: grpc_request.parameters['end_time_ms'] = request.args.get('end_time_ms') grpc_response = self.stub.GetSessionToolData(grpc_request) return grpc_response.output, None asset_path = os.path.join(run_dir, _make_filename(host, tool)) data, content_encoding = None, None if _use_xplane(tool): if host == ALL_HOSTS: file_pattern = _make_filename('*', 'xplane') try: asset_paths = tf.io.gfile.glob(os.path.join(run_dir, file_pattern)) except tf.errors.OpError as e: logger.warning('Cannot read asset directory: %s, OpError %s', run_dir, e) else: asset_paths = [asset_path] try: data = convert.xspace_to_tool_data(asset_paths, tool, tqx) except AttributeError: logger.warning('XPlane converters are available after Tensorflow 2.4') return data, content_encoding raw_data = None try: with tf.io.gfile.GFile(asset_path, 'rb') as f: raw_data = f.read() except tf.errors.NotFoundError: logger.warning('Asset path %s not found', asset_path) except tf.errors.OpError as e: logger.warning("Couldn't read asset path: %s, OpError %s", asset_path, e) if raw_data is None: return None, None if tool in _RAW_DATA_TOOLS: data = raw_data if tool[-1] == '#': content_encoding = 'gzip' else: data = convert.tool_proto_to_tool_data(raw_data, tool, tqx) return data, content_encoding @wrappers.Request.application def data_route(self, request): # params # request: XMLHTTPRequest. data, content_encoding = self.data_impl(request) if data is None: return respond('404 Not Found', 'text/plain', code=404) return respond(data, 'application/json', content_encoding=content_encoding) @wrappers.Request.application def capture_route(self, request): return self.capture_route_impl(request) def capture_route_impl(self, request): """Runs the client trace for capturing profiling information.""" service_addr = request.args.get('service_addr') duration = int(request.args.get('duration', '1000')) is_tpu_name = request.args.get('is_tpu_name') == 'true' worker_list = request.args.get('worker_list') num_tracing_attempts = int(request.args.get('num_retry', '0')) + 1 options = None try: options = profiler.ProfilerOptions( host_tracer_level=int(request.args.get('host_tracer_level', '2')), device_tracer_level=int(request.args.get('device_tracer_level', '1')), python_tracer_level=int(request.args.get('python_tracer_level', '0')), ) # For preserving backwards compatibility with TensorFlow 2.3 and older. if 'delay_ms' in options._fields: options.delay_ms = int(request.args.get('delay', '0')) except AttributeError: logger.warning('ProfilerOptions are available after tensorflow 2.3') if is_tpu_name: try: tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( service_addr) master_grpc_addr = tpu_cluster_resolver.get_master() except (ImportError, RuntimeError) as err: return respond({'error': err.message}, 'application/json', code=200) except (ValueError, TypeError): return respond( {'error': 'no TPUs with the specified names exist.'}, 'application/json', code=200, ) if not worker_list: worker_list = get_worker_list(tpu_cluster_resolver) # TPU cluster resolver always returns port 8470. Replace it with 8466 # on which profiler service is running. master_ip = master_grpc_addr.replace('grpc://', '').replace(':8470', '') service_addr = master_ip + ':8466' # Set the master TPU for streaming trace viewer. self.master_tpu_unsecure_channel = master_ip try: if options: profiler_client.trace( service_addr, self.logdir, duration, worker_list, num_tracing_attempts, options=options) else: profiler_client.trace( service_addr, self.logdir, duration, worker_list, num_tracing_attempts, ) return respond( {'result': 'Capture profile successfully. Please refresh.'}, 'application/json', ) except tf.errors.UnavailableError: return respond( {'error': 'empty trace result.'}, 'application/json', code=200, ) except Exception as e: # pylint: disable=broad-except return respond( {'error': str(e)}, 'application/json', code=200, ) def start_grpc_stub_if_necessary(self): # We will enable streaming trace viewer on two conditions: # 1. user specify the flags master_tpu_unsecure_channel to the ip address of # as "master" TPU. grpc will be used to fetch streaming trace data. # 2. the logdir is on google cloud storage. if self.master_tpu_unsecure_channel and self.logdir.startswith('gs://'): if self.stub is None: # gRPC and profiler_analysis are only needed to support streaming trace # viewer in Cloud TPU. This code is unused when data was produced by # open-source TensorFlow. Only import the libraries when needed. # pylint: disable=g-import-not-at-top import grpc from tensorflow.python.tpu.profiler import profiler_analysis_pb2_grpc # pylint: enable=g-import-not-at-top # Workaround the grpc's 4MB message limitation. gigabyte = 1024 * 1024 * 1024 options = [('grpc.max_message_length', gigabyte), ('grpc.max_send_message_length', gigabyte), ('grpc.max_receive_message_length', gigabyte)] tpu_profiler_port = self.master_tpu_unsecure_channel + ':8466' channel = grpc.insecure_channel(tpu_profiler_port, options) self.stub = profiler_analysis_pb2_grpc.ProfileAnalysisStub(channel) def _run_dir(self, run): """Helper that maps a frontend run name to a profile "run" directory. The frontend run name consists of the TensorBoard run name (aka the relative path from the logdir root to the directory containing the data) path-joined to the Profile plugin's "run" concept (which is a subdirectory of the plugins/profile directory representing an individual run of the tool), with the special case that TensorBoard run is the logdir root (which is the run named '.') then only the Profile plugin "run" name is used, for backwards compatibility. Args: run: the frontend run name, as described above, e.g. train/run1. Returns: The resolved directory path, e.g. /logdir/train/plugins/profile/run1. Raises: RuntimeError: If the run directory is not found. """ run = run.rstrip(os.sep) tb_run_name, profile_run_name = os.path.split(run) if not tb_run_name: tb_run_name = '.' if tb_run_name == '.' and tf.io.gfile.isdir(self.logdir): tb_run_directory = self.logdir else: tb_run_directory = os.path.join(self.logdir, tb_run_name) if not tf.io.gfile.isdir(tb_run_directory): raise RuntimeError('No matching run directory for run %s' % run) plugin_directory = plugin_asset_util.PluginDirectory( tb_run_directory, PLUGIN_NAME) return os.path.join(plugin_directory, profile_run_name) def generate_run_to_tools(self): """Generator for pairs of "run name" and a list of tools for that run. The "run name" here is a "frontend run name" - see _run_dir() for the definition of a "frontend run name" and how it maps to a directory of profile data for a specific profile "run". The profile plugin concept of "run" is different from the normal TensorBoard run; each run in this case represents a single instance of profile data collection, more similar to a "step" of data in typical TensorBoard semantics. These runs reside in subdirectories of the plugins/profile directory within any regular TensorBoard run directory (defined as a subdirectory of the logdir that contains at least one tfevents file) or within the logdir root directory itself (even if it contains no tfevents file and would thus not be considered a normal TensorBoard run, for backwards compatibility). Within those "profile run directories", there are files in the directory that correspond to different profiling tools. The file that contains profile for a specific tool "x" will have a suffix name TOOLS["x"]. Example: logs/ plugins/ profile/ run1/ hostA.trace train/ events.out.tfevents.foo plugins/ profile/ run1/ hostA.trace hostB.trace run2/ hostA.trace validation/ events.out.tfevents.foo plugins/ profile/ run1/ hostA.trace Yields: A sequence of tuples mapping "frontend run names" to lists of tool names available for those runs. For the above example, this would be: ("run1", ["trace_viewer"]) ("train/run1", ["trace_viewer"]) ("train/run2", ["trace_viewer"]) ("validation/run1", ["trace_viewer"]) """ self.start_grpc_stub_if_necessary() # Create a background context; we may not be in a request. ctx = RequestContext() tb_run_names_to_dirs = { run.run_name: os.path.join(self.logdir, run.run_name) for run in self.data_provider.list_runs(ctx, experiment_id='') } plugin_assets = _plugin_assets(self.logdir, list(tb_run_names_to_dirs), PLUGIN_NAME) # Ensure that we also check the root logdir, even if it isn't a recognized # TensorBoard run (i.e. has no tfevents file directly under it), to remain # backwards compatible with previously profile plugin behavior. Note that we # check if logdir is a directory to handle case where it's actually a # multipart directory spec, which this plugin does not support. if '.' not in plugin_assets and tf.io.gfile.isdir(self.logdir): tb_run_names_to_dirs['.'] = self.logdir plugin_assets['.'] = plugin_asset_util.ListAssets(self.logdir, PLUGIN_NAME) for tb_run_name, profile_runs in six.iteritems(plugin_assets): tb_run_dir = tb_run_names_to_dirs[tb_run_name] tb_plugin_dir = plugin_asset_util.PluginDirectory(tb_run_dir, PLUGIN_NAME) for profile_run in profile_runs: # Remove trailing separator; some filesystem implementations emit this. profile_run = profile_run.rstrip(os.sep) if tb_run_name == '.': frontend_run = profile_run else: frontend_run = os.path.join(tb_run_name, profile_run) profile_run_dir = os.path.join(tb_plugin_dir, profile_run) if tf.io.gfile.isdir(profile_run_dir): yield frontend_run, self._get_active_tools(profile_run_dir) def _get_active_tools(self, profile_run_dir): try: filenames = tf.io.gfile.listdir(profile_run_dir) except tf.errors.NotFoundError as e: logger.warning('Cannot read asset directory: %s, NotFoundError %s', profile_run_dir, e) return [] tools = _get_tools(filenames) if 'trace_viewer@' in tools: # streaming trace viewer always override normal trace viewer. # the trailing '@' is to inform tf-profile-dashboard.html and # tf-trace-viewer.html that stream trace viewer should be used. if self.stub is None: tools.discard('trace_viewer@') else: tools.discard('trace_viewer#') tools.discard('trace_viewer') if 'trace_viewer#' in tools: # use compressed trace tools.discard('trace_viewer') # Return sorted list of tools with 'overview_page' at the front. op = frozenset(['overview_page@', 'overview_page', 'overview_page^']) return list(tools.intersection(op)) + sorted(tools.difference(op))
36.558747
108
0.672368
b85655eed9df524c80f97cdcfd06cc48ca6f1c0e
606
py
Python
advent/day03/day03_test.py
benjackwhite/adventofcode2017
ce29e625cbe11fd5f36cff6b36a879c6a3955581
[ "MIT" ]
null
null
null
advent/day03/day03_test.py
benjackwhite/adventofcode2017
ce29e625cbe11fd5f36cff6b36a879c6a3955581
[ "MIT" ]
null
null
null
advent/day03/day03_test.py
benjackwhite/adventofcode2017
ce29e625cbe11fd5f36cff6b36a879c6a3955581
[ "MIT" ]
null
null
null
from day03 import calculate_distance, calculate_next_large_value target = 325489 def test_calculate_distance(): assert calculate_distance(1) == 0 assert calculate_distance(12) == 3 assert calculate_distance(23) == 2 assert calculate_distance(1024) == 31 assert calculate_distance(target) == 552 def test_calculate_next_large_value(): assert calculate_next_large_value(1) == 2 assert calculate_next_large_value(2) == 4 assert calculate_next_large_value(10) == 11 assert calculate_next_large_value(133) == 142 assert calculate_next_large_value(target) == 330785
28.857143
64
0.759076
beaf0c39c4b5ae53960e92b9908f9547c1abe742
4,834
py
Python
learning/graph2vec/corpus_parser.py
RiS3-Lab/FICS-
82c8abef52ca943946b7e82a16998cf67f1d2049
[ "Apache-2.0" ]
37
2020-12-04T09:15:50.000Z
2022-03-28T13:33:29.000Z
learning/graph2vec/corpus_parser.py
RiS3-Lab/FICS-
82c8abef52ca943946b7e82a16998cf67f1d2049
[ "Apache-2.0" ]
7
2020-12-03T08:14:31.000Z
2021-11-24T14:14:03.000Z
learning/graph2vec/corpus_parser.py
RiS3-Lab/FICS-
82c8abef52ca943946b7e82a16998cf67f1d2049
[ "Apache-2.0" ]
19
2020-12-04T08:43:31.000Z
2022-03-28T13:33:27.000Z
import numpy as np import logging from collections import Counter from random import shuffle import numpy as np from utils import get_files class Corpus(object): def __init__(self, fnames=None, extn='WL2', max_files=0): assert fnames != None, "please specify the corpus folder" self.fnames = fnames self.subgraph_index = 0 self.graph_index = 0 self.epoch_flag = 0 self.max_files = max_files self.graph_ids_for_batch_traversal = [] self.extn = extn def scan_corpus(self): subgraphs = [] for fname in self.graph_fname_list: subgraphs.extend( [l.split()[0] for l in open(fname).xreadlines()]) # just take the first word of every sentence subgraphs.append('UNK') subgraph_to_freq_map = Counter(subgraphs) del subgraphs subgraph_to_id_map = {sg: i for i, sg in enumerate(subgraph_to_freq_map.iterkeys())} # output layer of the skipgram network self._subgraph_to_freq_map = subgraph_to_freq_map # to be used for negative sampling self._subgraph_to_id_map = subgraph_to_id_map self._id_to_subgraph_map = {v: k for k, v in subgraph_to_id_map.iteritems()} self._subgraphcount = sum(subgraph_to_freq_map.values()) # total num subgraphs in all graphs self.num_graphs = len(self.graph_fname_list) # doc size self.num_subgraphs = len(subgraph_to_id_map) # vocab of word size self.subgraph_id_freq_map_as_list = [] # id of this list is the word id and value is the freq of word with corresponding word id for i in xrange(len(self._subgraph_to_freq_map)): self.subgraph_id_freq_map_as_list.append(self._subgraph_to_freq_map[self._id_to_subgraph_map[i]]) return self._subgraph_to_id_map def scan_and_load_corpus(self): self.graph_fname_list = get_files(self.fnames, extn=self.extn, max_files=self.max_files) self._graph_name_to_id_map = {g: i for i, g in enumerate(self.graph_fname_list)} # input layer of the skipgram network self._id_to_graph_name_map = {i: g for g, i in self._graph_name_to_id_map.iteritems()} subgraph_to_id_map = self.scan_corpus() logging.info('number of graphs: %d' % self.num_graphs) logging.info('subgraph vocabulary size: %d' % self.num_subgraphs) logging.info('total number of subgraphs to be trained: %d' % self._subgraphcount) self.graph_ids_for_batch_traversal = range(self.num_graphs) shuffle(self.graph_ids_for_batch_traversal) def generate_batch_from_file(self, batch_size): target_graph_ids = [] context_subgraph_ids = [] graph_name = self.graph_fname_list[self.graph_ids_for_batch_traversal[self.graph_index]] graph_contents = open(graph_name).readlines() while self.subgraph_index >= len(graph_contents): self.subgraph_index = 0 self.graph_index += 1 if self.graph_index == len(self.graph_fname_list): self.graph_index = 0 np.random.shuffle(self.graph_ids_for_batch_traversal) self.epoch_flag = True graph_name = self.graph_fname_list[self.graph_ids_for_batch_traversal[self.graph_index]] graph_contents = open(graph_name).readlines() while len(context_subgraph_ids) < batch_size: line_id = self.subgraph_index context_subgraph = graph_contents[line_id].split()[0] target_graph = graph_name context_subgraph_ids.append(self._subgraph_to_id_map[context_subgraph]) target_graph_ids.append(self._graph_name_to_id_map[target_graph]) self.subgraph_index += 1 while self.subgraph_index == len(graph_contents): self.subgraph_index = 0 self.graph_index += 1 if self.graph_index == len(self.graph_fname_list): self.graph_index = 0 np.random.shuffle(self.graph_ids_for_batch_traversal) self.epoch_flag = True graph_name = self.graph_fname_list[self.graph_ids_for_batch_traversal[self.graph_index]] graph_contents = open(graph_name).readlines() target_context_pairs = zip(target_graph_ids, context_subgraph_ids) shuffle(target_context_pairs) target_graph_ids, context_subgraph_ids = zip(*target_context_pairs) target_graph_ids = np.array(target_graph_ids, dtype=np.int32) context_subgraph_ids = np.array(context_subgraph_ids, dtype=np.int32) contextword_outputs = np.reshape(context_subgraph_ids, [len(context_subgraph_ids), 1]) return target_graph_ids, contextword_outputs
43.54955
137
0.672735
d6ba9d41d36cd22f3fbe7696457900a00bbeaaab
1,198
py
Python
app/core/events.py
tuilagio/project1_be
8b3760a9d4255d71b91f9a8013ac7d8117513191
[ "MIT" ]
null
null
null
app/core/events.py
tuilagio/project1_be
8b3760a9d4255d71b91f9a8013ac7d8117513191
[ "MIT" ]
null
null
null
app/core/events.py
tuilagio/project1_be
8b3760a9d4255d71b91f9a8013ac7d8117513191
[ "MIT" ]
null
null
null
from typing import Callable from fastapi import FastAPI from loguru import logger from app.db.events import close_db_connection, connect_to_db from app.core.config import settings from O365 import Account, MSGraphProtocol CLIENT_ID = '3a9eef7d-ab34-45f1-a9fd-3780564d7a2e' SECRET_ID = '<your secret id>' SECRET_VALUE = 'kpiQvG6_4ovz05n4c7Sn8.KOZE0rT.21s_' credentials = (CLIENT_ID, SECRET_VALUE) scopes = [ 'https://graph.microsoft.com/Mail.ReadWrite', 'https://graph.microsoft.com/Mail.Send', 'https://graph.microsoft.com/Calendars.ReadWrite', 'offline_access' ] def create_start_app_handler(app: FastAPI) -> Callable: # type: ignore async def start_app() -> None: await connect_to_db(app) # protocol = MSGraphProtocol() # account = Account(credentials, protocol=protocol) # if account.authenticate(scopes=scopes): # print('Authenticated!') # settings.o365_account = account # else: # print("Auth O365 failed!") return start_app def create_stop_app_handler(app: FastAPI) -> Callable: # type: ignore @logger.catch async def stop_app() -> None: await close_db_connection(app) return stop_app
27.227273
71
0.714524
8518aba8fba41aef96c552965bf816e732bc183d
3,790
py
Python
MIT/ps4.py
mrouhi13/my-mit-python-practice
f3b29418576fec54d3f9f55155aa8f2096ad974a
[ "MIT" ]
null
null
null
MIT/ps4.py
mrouhi13/my-mit-python-practice
f3b29418576fec54d3f9f55155aa8f2096ad974a
[ "MIT" ]
null
null
null
MIT/ps4.py
mrouhi13/my-mit-python-practice
f3b29418576fec54d3f9f55155aa8f2096ad974a
[ "MIT" ]
null
null
null
# Problem Set 4 # Name: # Collaborators: # Time: # # Problem 1 # def nestEggFixed(salary, save, growthRate, years): """ - salary: the amount of money you make each year. - save: the percent of your salary to save in the investment account each year (an integer between 0 and 100). - growthRate: the annual percent increase in your investment account (an integer between 0 and 100). - years: the number of years to work. - return: a list whose values are the size of your retirement account at the end of each year. """ # TODO: Your code here. def testNestEggFixed(): salary = 10000 save = 10 growthRate = 15 years = 5 savingsRecord = nestEggFixed(salary, save, growthRate, years) print savingsRecord # Output should have values close to: # [1000.0, 2150.0, 3472.5, 4993.375, 6742.3812499999995] # TODO: Add more test cases here. # # Problem 2 # def nestEggVariable(salary, save, growthRates): # TODO: Your code here. """ - salary: the amount of money you make each year. - save: the percent of your salary to save in the investment account each year (an integer between 0 and 100). - growthRate: a list of the annual percent increases in your investment account (integers between 0 and 100). - return: a list of your retirement account value at the end of each year. """ def testNestEggVariable(): salary = 10000 save = 10 growthRates = [3, 4, 5, 0, 3] savingsRecord = nestEggVariable(salary, save, growthRates) print savingsRecord # Output should have values close to: # [1000.0, 2040.0, 3142.0, 4142.0, 5266.2600000000002] # TODO: Add more test cases here. # # Problem 3 # def postRetirement(savings, growthRates, expenses): """ - savings: the initial amount of money in your savings account. - growthRate: a list of the annual percent increases in your investment account (an integer between 0 and 100). - expenses: the amount of money you plan to spend each year during retirement. - return: a list of your retirement account value at the end of each year. """ # TODO: Your code here. def testPostRetirement(): savings = 100000 growthRates = [10, 5, 0, 5, 1] expenses = 30000 savingsRecord = postRetirement(savings, growthRates, expenses) print savingsRecord # Output should have values close to: # [80000.000000000015, 54000.000000000015, 24000.000000000015, # -4799.9999999999854, -34847.999999999985] # TODO: Add more test cases here. # # Problem 4 # def findMaxExpenses(salary, save, preRetireGrowthRates, postRetireGrowthRates, epsilon): """ - salary: the amount of money you make each year. - save: the percent of your salary to save in the investment account each year (an integer between 0 and 100). - preRetireGrowthRates: a list of annual growth percentages on investments while you are still working. - postRetireGrowthRates: a list of annual growth percentages on investments while you are retired. - epsilon: an upper bound on the absolute value of the amount remaining in the investment fund at the end of retirement. """ # TODO: Your code here. def testFindMaxExpenses(): salary = 10000 save = 10 preRetireGrowthRates = [3, 4, 5, 0, 3] postRetireGrowthRates = [10, 5, 0, 5, 1] epsilon = .01 expenses = findMaxExpenses(salary, save, preRetireGrowthRates, postRetireGrowthRates, epsilon) print expenses # Output should have a value close to: # 1229.95548986 # TODO: Add more test cases here.
31.583333
79
0.658311
d041291a6ee314b9154fa84097aaca98d711a1c6
5,301
py
Python
raspberrypi/files/home/pi/watchdog.py
groovenauts/SmartShoppingNavigator
510dcea622d81fa40cafee3b30e5975be7712f54
[ "MIT" ]
31
2018-05-10T01:51:46.000Z
2021-09-02T16:02:03.000Z
raspberrypi/files/home/pi/watchdog.py
groovenauts/SmartShoppingNavigator
510dcea622d81fa40cafee3b30e5975be7712f54
[ "MIT" ]
18
2018-05-02T11:35:36.000Z
2019-11-27T13:44:14.000Z
raspberrypi/files/home/pi/watchdog.py
groovenauts/SmartShoppingNavigator
510dcea622d81fa40cafee3b30e5975be7712f54
[ "MIT" ]
14
2018-05-11T04:40:58.000Z
2020-09-11T16:17:08.000Z
import sys import time import base64 import json import datetime import jwt import requests import picamera def create_jwt(project_id, private_key_file, algorithm): """Creates a JWT (https://jwt.io) to establish an MQTT connection. Args: project_id: The cloud project ID this device belongs to private_key_file: A path to a file containing either an RSA256 or ES256 private key. algorithm: The encryption algorithm to use. Either 'RS256' or 'ES256' Returns: An MQTT generated from the given project_id and private key, which expires in 20 minutes. After 20 minutes, your client will be disconnected, and a new JWT will have to be generated. Raises: ValueError: If the private_key_file does not contain a known key. """ token = { # The time that the token was issued at 'iat': datetime.datetime.utcnow(), # The time the token expires. 'exp': datetime.datetime.utcnow() + datetime.timedelta(minutes=60), # The audience field should always be set to the GCP project id. 'aud': project_id } # Read the private key file. with open(private_key_file, 'r') as f: private_key = f.read() return jwt.encode(token, private_key, algorithm=algorithm).decode("utf-8") def capture(camera): file = "/tmp/image.jpg" camera.capture(file) with open(file, "rb") as f: buf = f.read() buf = base64.urlsafe_b64encode(buf) return buf.decode("utf-8") def upload_image(project_id, location, registry, device, jwt, b64_buf): headers = { "Authorization": "Bearer {}".format(jwt), "Content-Type" : "application/json", "Cache-Control": "no-cache" } url = "https://cloudiotdevice.googleapis.com/v1/projects/{}/locations/{}/registries/{}/devices/{}:publishEvent".format(project_id, location, registry, device) data = { "binaryData": b64_buf } data = json.dumps(data).encode("utf-8") res = requests.post(url, data=data, headers=headers) print("POST HTTP Code={}".format(res.status_code)) if res.status_code != 200: print(res.json()) filename = time.strftime("/tmp/failure_image_%Y%M%d_%H%M%S.jpg") with open(filename, "wb") as f: f.write(base64.urlsafe_b64decode(b64_buf)) print("Saved failed image to {}".format(filename)) def capture_and_upload(camera, project_id, location, registry, device, private_key): buf = capture(camera) jwt = create_jwt(project_id, private_key, "ES256") upload_image(project_id, location, registry, device, jwt, buf) def get_config( version, base_url, project_id, cloud_region, registry_id, device_id, private_key): jwt = create_jwt(project_id, private_key, "ES256") headers = { 'authorization': 'Bearer {}'.format(jwt), 'content-type': 'application/json', 'cache-control': 'no-cache' } basepath = '{}/projects/{}/locations/{}/registries/{}/devices/{}/' template = basepath + 'config?local_version={}' config_url = template.format( base_url, project_id, cloud_region, registry_id, device_id, version) resp = requests.get(config_url, headers=headers) if (resp.status_code != 200): print('Error getting config: {}, retrying'.format(resp.status_code)) raise AssertionError('Not OK response: {}'.format(resp.status_code)) return resp def main(argv): _, project_id, location, registry, device, private_key = argv camera = picamera.PiCamera() camera.resolution = (600, 360) camera.brightness = 60 camera.hflip = False camera.vflip = False version = "0" config_interval = 1 capture_interval = 60 last_captured_at = time.time() while True: res = get_config( version, "https://cloudiotdevice.googleapis.com/v1", project_id, location, registry, device, private_key) res = res.json() if version != res["version"]: version = res["version"] binary = res["binaryData"] buf = base64.urlsafe_b64decode(binary).decode("utf-8") print("Configuration update: {}".format(buf)) config = json.loads(buf) config_interval = config.get("config_interval", 1) capture_interval = config.get("capture_interval", 60) camera.hflip = config.get("camera_hflip", False) camera.vflip = config.get("camera_vflip", False) camera.brightness = config.get("camera_brightness", 60) camera.sharpness = config.get("camera_sharpness", 0) camera.contrast = config.get("camera_contrast", 0) camera.iso = config.get("camera_iso", 0) url = config.get("dashboard_url") if url: with open("/tmp/dashboard_url", "w") as f: f.write(url) if time.time() - last_captured_at > capture_interval: capture_and_upload(camera, project_id, location, registry, device, private_key) print("Still image captured.") last_captured_at = time.time() time.sleep(config_interval) main(sys.argv)
38.413043
162
0.627806
11ec09bdbe6446924ac6ee3d0175f876e635821e
1,266
py
Python
tests/test_calc_batch_size.py
enpaul/peewee-plus
8076d8cd292e3d7b0f8d0b79abdfa4e623b3bb45
[ "MIT" ]
1
2021-11-29T22:11:42.000Z
2021-11-29T22:11:42.000Z
tests/test_calc_batch_size.py
enpaul/peewee-plus
8076d8cd292e3d7b0f8d0b79abdfa4e623b3bb45
[ "MIT" ]
null
null
null
tests/test_calc_batch_size.py
enpaul/peewee-plus
8076d8cd292e3d7b0f8d0b79abdfa4e623b3bb45
[ "MIT" ]
null
null
null
# pylint: disable=redefined-outer-name # pylint: disable=missing-class-docstring # pylint: disable=too-few-public-methods # pylint: disable=unused-import import peewee import peewee_plus from .fixtures import fakedb def test_sqlite(fakedb): """Test the calculation of batch sizes on SQLite""" class TestModel(peewee.Model): class Meta: database = fakedb data = peewee.IntegerField() models = [TestModel(item) for item in range(500)] assert ( peewee_plus.calc_batch_size(models) <= peewee_plus.SQLITE_DEFAULT_VARIABLE_LIMIT ) assert peewee_plus.calc_batch_size(models) < len(models) assert peewee_plus.calc_batch_size([]) == 0 def test_non_sqlite(): """Test the calculation of batch sizes on non-SQLite""" class TestModel(peewee.Model): class Meta: database = peewee.DatabaseProxy() data = peewee.IntegerField() # Three is just chosen as an arbitrary multiplier to ensure the value is larger than the # sqlite variable limit assert peewee_plus.calc_batch_size( [ TestModel(item) for item in range(peewee_plus.SQLITE_DEFAULT_VARIABLE_LIMIT * 3) ] ) == (peewee_plus.SQLITE_DEFAULT_VARIABLE_LIMIT * 3)
27.521739
92
0.687204
feb99509e9f05999fa11b14a6dd79d8f5213e3f2
3,415
py
Python
ritpytrading/orders.py
tjsavage/ritpytrading
ead3ec11951b24b74cd8031c490e5c1c19718e4d
[ "Apache-2.0" ]
null
null
null
ritpytrading/orders.py
tjsavage/ritpytrading
ead3ec11951b24b74cd8031c490e5c1c19718e4d
[ "Apache-2.0" ]
null
null
null
ritpytrading/orders.py
tjsavage/ritpytrading
ead3ec11951b24b74cd8031c490e5c1c19718e4d
[ "Apache-2.0" ]
null
null
null
''' order return object attributes param possible order attributes: JSON formatted i.e. get_order_response( ses, url_end, param="order_id" ) { "order_id": 1221, "period": 1, "tick": 10, "trader_id": "trader49", "ticker": "CRZY", "type": "LIMIT", "quantity": 100, "action": "BUY", "price": 14.21, "quantity_filled": 10, "vwap": 14.21, "status": "OPEN" } ''' # Make sure the RIT client uses the same 9999 port host_url = 'http://localhost:9999' base_path = '/v1' base_url = host_url + base_path class ApiException(Exception): """ to print error messages and stop the program when needed """ pass class Order(): """ order_response is a json obj returned from the API get request """ def __init__(self, order_response): self.order_id = order_response["order_id"] self.period = order_response["period"] self.tick = order_response["tick"] self.trader_id = order_response["trader_id"] self.ticker = order_response["ticker"] self.type = order_response["type"] self.quantity = order_response["quantity"] self.action = order_response["action"] self.price = order_response["price"] self.quantity_filled = order_response["quantity_filled"] self.vwap = order_response["vwap"] self.status = order_response["status"] def __repr__(self): return (self.action + '_' + str(self.quantity) + '_' + self.ticker + '_' + str(self.price) + '__' + str(self.order_id)) def __eq__(self, other): return self.__dict__ == other.__dict__ def _get_orders_json(ses, url_end, order_status='OPEN', order_id=None): """ function requires a requests.Session() object as the ses argument with a loaded API_KEY order status can be OPEN, TRANSACTED or CANCELLED Json return mode is set to 0/Off by default """ # to query all orders if url_end == '/orders': payload = {'status': order_status} response = ses.get((base_url + url_end), params=payload) # to query just one order elif url_end == '/orders/{}': response = ses.get((base_url + url_end).format(order_id)) if response.ok: orders_json = response.json() # Return orders json output unformatted return orders_json raise ApiException('Authorization Error: Please check API key.') def _orders_response_handle(orders_json, url_end): if url_end == '/orders/{}': orders_obj = Order(orders_json) return orders_obj if url_end == '/orders': orders_dict = {(Order(ord)).order_id: Order(ord) for ord in orders_json} return orders_dict def order(ses, orderId, status='OPEN'): """ status can be OPEN, TRANSACTED or CLOSED status OPEN by default returns a Order object of the order class given an order id """ return _orders_response_handle(_get_orders_json( ses, '/orders/{}', status, order_id=orderId), '/orders/{}') def orders_json(ses, status='OPEN'): """ returns all the attribs of all orders in a json type list format """ return _get_orders_json(ses, '/orders', status, order_id=None) def orders_dict(ses, status='OPEN'): """ returns all the orders as a dict with the order_ids as key """ return _orders_response_handle(_get_orders_json( ses, '/orders', status, order_id=None), '/orders')
34.15
82
0.648023
41dcf5700603ddc8f82c4fc9b14d035b982084b4
10,736
py
Python
baselines/her/experiment/config.py
flowersteam/curious
05f0ce053c3614688c256ec34b08060808e62d81
[ "MIT" ]
27
2019-05-30T16:45:34.000Z
2022-03-31T06:22:07.000Z
baselines/her/experiment/config.py
flowersteam/curious
05f0ce053c3614688c256ec34b08060808e62d81
[ "MIT" ]
1
2019-06-18T18:57:10.000Z
2019-08-16T00:17:50.000Z
baselines/her/experiment/config.py
flowersteam/curious
05f0ce053c3614688c256ec34b08060808e62d81
[ "MIT" ]
5
2019-08-11T23:29:53.000Z
2021-02-24T14:11:58.000Z
import numpy as np import gym import gym_flowers from baselines import logger from baselines.her.ddpg import DDPG from baselines.her.her import make_sample_her_transitions, make_sample_multi_task_her_transitions from baselines.her.util import import_function from baselines.her.replay_buffer import ReplayBuffer DEFAULT_ENV_PARAMS = { 'FetchReach-v1': { 'n_cycles': 10, }, } DEFAULT_PARAMS = { # env 'max_u': 1., # max absolute value of actions on different coordinates # ddpg 'layers': 3, # number of layers in the critic/actor networks 'hidden': 256, # number of neurons in each hidden layers 'network_class': 'baselines.her.actor_critic:ActorCritic', 'Q_lr': 0.001, # critic learning rate 'pi_lr': 0.001, # actor learning rate 'buffer_size': int(1E6), # for experience replay 'polyak': 0.95, # polyak averaging coefficient 'action_l2': 1.0, # quadratic penalty on actions (before rescaling by max_u) 'clip_obs': 200., 'scope': 'ddpg', # can be tweaked for testing 'relative_goals': False, # training 'n_cycles': 25, # per epoch 'rollout_batch_size': 2, # per mpi thread 'n_batches': 100, # training batches per cycle 'batch_size': 256, # per mpi thread, measured in transitions and reduced to even multiple of chunk_length. 'n_test_rollouts': 5, # number of test rollouts per epoch, each consists of rollout_batch_size rollouts 'test_with_polyak': False, # run test episodes with the target network # exploration 'random_eps': 0.3, # percentage of time a random action is taken 'noise_eps': 0.2, # std of gaussian noise added to not-completely-random actions as a percentage of max_u # HER 'her_replay_k': 4, # number of additional goals used for replay, only used if off_policy_data=future # normalization 'norm_eps': 0.01, # epsilon used for observation normalization 'norm_clip': 5, # normalized observations are cropped to this values 'her_sampling_func': 'baselines.her.her:make_sample_her_transitions', 'queue_length': 200, } MULTI_TASK_PARAMS = { # env 'max_u': 1., # max absolute value of actions on different coordinates # ddpg 'layers': 3, # number of layers in the critic/actor networks 'hidden': 256, # number of neurons in each hidden layers 'network_class': 'baselines.her.actor_critic:MultiTaskActorCritic', 'Q_lr': 0.001, # critic learning rate 'pi_lr': 0.001, # actor learning rate 'buffer_size': int(1E6), # for experience replay 'polyak': 0.95, # polyak averaging coefficient 'action_l2': 1.0, # quadratic penalty on actions (before rescaling by max_u) 'clip_obs': 200., 'scope': 'ddpg', # can be tweaked for testing 'relative_goals': False, # training 'n_cycles': 25, # per epoch 'rollout_batch_size': 2, # per mpi thread 'n_batches': 100, #40, # training batches per cycle 'batch_size': 256, # per mpi thread, measured in transitions and reduced to even multiple of chunk_length. 'n_test_rollouts': 5, # number of test rollouts per epoch, each consists of rollout_batch_size rollouts 'test_with_polyak': False, # run test episodes with the target network # exploration 'random_eps': 0.3, # percentage of time a random action is taken 'noise_eps': 0.2, # std of gaussian noise added to not-completely-random actions as a percentage of max_u # HER 'her_replay_k': 4, # number of additional goals used for replay, only used if off_policy_data=future # normalization 'norm_eps': 0.01, # epsilon used for observation normalization 'norm_clip': 5, # normalized observations are cropped to this values 'her_sampling_func': 'baselines.her.her:make_sample_multi_task_her_transitions', 'queue_length': 300, # length of queue for computation of competence 'eps_task': 0.4 # epsilon greedy parameter for active task choice } CACHED_ENVS = {} def cached_make_env(make_env): """ Only creates a new environment from the provided function if one has not yet already been created. This is useful here because we need to infer certain properties of the env, e.g. its observation and action spaces, without any intend of actually using it. """ if make_env not in CACHED_ENVS: env = make_env() CACHED_ENVS[make_env] = env return CACHED_ENVS[make_env] def prepare_params(kwargs): # DDPG params ddpg_params = dict() env_name = kwargs['env_name'] def make_env(): return gym.make(env_name) kwargs['make_env'] = make_env tmp_env = cached_make_env(kwargs['make_env']) if kwargs['structure'] == 'flat': tmp_env.unwrapped.set_flat_env() kwargs['nb_tasks'] = tmp_env.unwrapped.nb_tasks kwargs['tasks_g_id'] = tmp_env.unwrapped.tasks_g_id kwargs['tasks_ag_id'] = tmp_env.unwrapped.tasks_ag_id assert hasattr(tmp_env, '_max_episode_steps') kwargs['T'] = tmp_env._max_episode_steps tmp_env.reset() kwargs['max_u'] = np.array(kwargs['max_u']) if isinstance(kwargs['max_u'], list) else kwargs['max_u'] kwargs['gamma'] = 1. - 1. / kwargs['T'] if 'lr' in kwargs: kwargs['pi_lr'] = kwargs['lr'] kwargs['Q_lr'] = kwargs['lr'] del kwargs['lr'] for name in ['hidden', 'layers', 'network_class', 'polyak', 'batch_size', 'Q_lr', 'pi_lr', 'norm_eps', 'norm_clip', 'max_u', 'action_l2', 'clip_obs', 'scope', 'relative_goals']: ddpg_params[name] = kwargs[name] kwargs['_' + name] = kwargs[name] del kwargs[name] kwargs['ddpg_params'] = ddpg_params # if kwargs['num_cpu'] == 1: # # make more test rollout when number of cpu is lower (to get a better estimate) # kwargs['n_test_rollouts'] = 100 return kwargs def log_params(params, logger=logger): for key in sorted(params.keys()): logger.info('{}: {}'.format(key, params[key])) def configure_her(params): env = cached_make_env(params['make_env']) env.reset() if params['structure'] == 'flat': env.unwrapped.set_flat_env() def reward_fun(ag_2, g, task_descr, info): # vectorized return env.unwrapped.compute_reward(achieved_goal=ag_2, goal=g, task_descr=task_descr, info=info) # Prepare configuration for HER. her_params = { 'reward_fun': reward_fun, 'tasks_ag_id': params['tasks_ag_id'], 'tasks_g_id': params['tasks_g_id'], 'goal_replay': params['goal_replay'], 'her_replay_k': params['her_replay_k'], 'task_replay': params['task_replay'] } her_sampling_func = import_function(params['her_sampling_func']) sample_her_transitions = her_sampling_func(**her_params) return sample_her_transitions def simple_goal_subtract(a, b): assert a.shape == b.shape return a - b def dims_to_shapes(input_dims): return {key: tuple([val]) if val > 0 else tuple() for key, val in input_dims.items()} def configure_buffer(dims, params): T = params['T'] structure = params['structure'] buffer_size = params['buffer_size'] rollout_batch_size = params['rollout_batch_size'] task_replay = params['task_replay'] sample_her_transitions = configure_her(params) input_shapes = dims_to_shapes(dims) dimg = dims['g'] dimag = dims['ag'] if structure == 'curious' or structure == 'task_experts': dimtask_descr = dims['task_descr'] # Configure the replay buffer. buffer_shapes = {key: (T if key != 'o' else T + 1, *input_shapes[key]) for key, val in input_shapes.items()} buffer_shapes['g'] = (buffer_shapes['g'][0], dimg) buffer_shapes['ag'] = (T + 1, dimag) buffer_size = (buffer_size // rollout_batch_size) * rollout_batch_size # addition for goal module selection buffer_shapes['task_descr'] = (buffer_shapes['g'][0], dimtask_descr) buffer_shapes['change'] = (buffer_shapes['g'][0], dimag) if 'buffer' in task_replay: # use several buffer, each corresponds to a task, the first corresponds to transition where no outcome moved. buffers = [ReplayBuffer(buffer_shapes, buffer_size, T, sample_her_transitions) for i in range(params['nb_tasks'] + 1)] else: buffers = ReplayBuffer(buffer_shapes, buffer_size, T, sample_her_transitions) return buffers def configure_ddpg(dims, params, buffers, reuse=False, use_mpi=True, clip_return=True, t_id=None): sample_her_transitions = configure_her(params) # Extract relevant parameters. gamma = params['gamma'] rollout_batch_size = params['rollout_batch_size'] ddpg_params = params['ddpg_params'] input_dims = dims.copy() # DDPG agent env = cached_make_env(params['make_env']) env.reset() ddpg_params.update({'input_dims': input_dims, # agent takes an input observations 'T': params['T'], 'clip_pos_returns': True, # clip positive returns 'clip_return': (1. / (1. - gamma)) if clip_return else np.inf, # max abs of return 'rollout_batch_size': rollout_batch_size, 'subtract_goals': simple_goal_subtract, 'sample_transitions': sample_her_transitions, 'gamma': gamma, 'task_replay': params['task_replay'], 'structure': params['structure'], 'tasks_ag_id': params['tasks_ag_id'], 'tasks_g_id': params['tasks_g_id'], 'eps_task': params['eps_task'] }) if t_id is not None: # give task id to rollout worker in the case of multiple task-experts ddpg_params.update({'t_id':t_id}) ddpg_params['info'] = { 'env_name': params['env_name'], } policy = DDPG(reuse=reuse, **ddpg_params, buffers=buffers, use_mpi=use_mpi) return policy def configure_dims(params): env = cached_make_env(params['make_env']) info = env.unwrapped.info dims = { 'o': env.observation_space.spaces['observation'].shape[0], 'u': env.action_space.shape[0], 'g': env.observation_space.spaces['desired_goal'].shape[0], 'ag': env.observation_space.spaces['achieved_goal'].shape[0] } # addition in the case of curious structure dims['task_descr'] = params['nb_tasks'] for key, value in info.items(): value = np.array(value) if value.ndim == 0: value = value.reshape(1) dims['info_{}'.format(key)] = value.shape[0] return dims
38.898551
126
0.655086
dd4062f2c72b3e52da3618078d5d55541688c8aa
1,487
py
Python
observations/r/macro.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
199
2017-07-24T01:34:27.000Z
2022-01-29T00:50:55.000Z
observations/r/macro.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
46
2017-09-05T19:27:20.000Z
2019-01-07T09:47:26.000Z
observations/r/macro.py
hajime9652/observations
2c8b1ac31025938cb17762e540f2f592e302d5de
[ "Apache-2.0" ]
45
2017-07-26T00:10:44.000Z
2022-03-16T20:44:59.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def macro(path): """Macroeconomic Data Selected macroeconomic indicators for Austria, Belgium, Canada, Denmark, Finland, France, Italy, Japan, the Netherlands, Norway, Sweden, the United Kingdom, the United States, and West Germany for the period 1966-1990. A table containing 6 variables ("country", "year", "gdp", "unem", "capmob", and "trade") and 350 observations. ICPSR Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `macro.csv`. Returns: Tuple of np.ndarray `x_train` with 350 rows and 6 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'macro.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Zelig/macro.csv' maybe_download_and_extract(path, url, save_file_name='macro.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
28.056604
74
0.68729
3f1ee6ecc7b1530c7dbd481e290eddc7cec81af8
158,987
py
Python
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_infra_syslog_cfg.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_infra_syslog_cfg.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_infra_syslog_cfg.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'LogSeverityEnum' : _MetaInfoEnum('LogSeverityEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'emergency':'emergency', 'alert':'alert', 'critical':'critical', 'error':'error', 'warning':'warning', 'notice':'notice', 'informational':'informational', 'debug':'debug', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'FacilityEnum' : _MetaInfoEnum('FacilityEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'kern':'kern', 'user':'user', 'mail':'mail', 'daemon':'daemon', 'auth':'auth', 'syslog':'syslog', 'lpr':'lpr', 'news':'news', 'uucp':'uucp', 'cron':'cron', 'authpriv':'authpriv', 'ftp':'ftp', 'local0':'local0', 'local1':'local1', 'local2':'local2', 'local3':'local3', 'local4':'local4', 'local5':'local5', 'local6':'local6', 'local7':'local7', 'sys9':'sys9', 'sys10':'sys10', 'sys11':'sys11', 'sys12':'sys12', 'sys13':'sys13', 'sys14':'sys14', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LogCollectFrequencyEnum' : _MetaInfoEnum('LogCollectFrequencyEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'weekly':'weekly', 'daily':'daily', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LoggingPrecedenceValueEnum' : _MetaInfoEnum('LoggingPrecedenceValueEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'routine':'routine', 'priority':'priority', 'immediate':'immediate', 'flash':'flash', 'flash-override':'flash_override', 'critical':'critical', 'internet':'internet', 'network':'network', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LoggingTosEnum' : _MetaInfoEnum('LoggingTosEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'precedence':'precedence', 'dscp':'dscp', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LoggingLevelsEnum' : _MetaInfoEnum('LoggingLevelsEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'emergency':'emergency', 'alert':'alert', 'critical':'critical', 'error':'error', 'warning':'warning', 'notice':'notice', 'info':'info', 'debug':'debug', 'disable':'disable', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LoggingPrecedenceEnum' : _MetaInfoEnum('LoggingPrecedenceEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'precedence':'precedence', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LoggingDscpValueEnum' : _MetaInfoEnum('LoggingDscpValueEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'default':'default', 'af11':'af11', 'af12':'af12', 'af13':'af13', 'af21':'af21', 'af22':'af22', 'af23':'af23', 'af31':'af31', 'af32':'af32', 'af33':'af33', 'af41':'af41', 'af42':'af42', 'af43':'af43', 'ef':'ef', 'cs1':'cs1', 'cs2':'cs2', 'cs3':'cs3', 'cs4':'cs4', 'cs5':'cs5', 'cs6':'cs6', 'cs7':'cs7', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LogMessageSeverityEnum' : _MetaInfoEnum('LogMessageSeverityEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'emergency':'emergency', 'alert':'alert', 'critical':'critical', 'error':'error', 'warning':'warning', 'notice':'notice', 'informational':'informational', 'debug':'debug', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'TimeInfoEnum' : _MetaInfoEnum('TimeInfoEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'disable':'disable', 'enable':'enable', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'LoggingDscpEnum' : _MetaInfoEnum('LoggingDscpEnum', 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', { 'dscp':'dscp', }, 'Cisco-IOS-XR-infra-syslog-cfg', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg']), 'SyslogService.Timestamps.Log.LogDatetime.LogDatetimeValue' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps.Log.LogDatetime.LogDatetimeValue', False, [ _MetaInfoClassMember('msec', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Seconds ''', 'msec', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('time-stamp-value', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Time ''', 'time_stamp_value', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('time-zone', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Timezone ''', 'time_zone', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('year', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Year ''', 'year', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'log-datetime-value', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService.Timestamps.Log.LogDatetime' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps.Log.LogDatetime', False, [ _MetaInfoClassMember('log-datetime-value', REFERENCE_CLASS, 'LogDatetimeValue' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps.Log.LogDatetime.LogDatetimeValue', [], [], ''' Set timestamp for log message ''', 'log_datetime_value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'log-datetime', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService.Timestamps.Log' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps.Log', False, [ _MetaInfoClassMember('log-datetime', REFERENCE_CLASS, 'LogDatetime' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps.Log.LogDatetime', [], [], ''' Timestamp with date and time ''', 'log_datetime', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('log-timestamp-disable', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Disable timestamp log messages ''', 'log_timestamp_disable', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('log-uptime', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Timestamp with systime uptime ''', 'log_uptime', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'log', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService.Timestamps.Debug.DebugDatetime.DatetimeValue' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps.Debug.DebugDatetime.DatetimeValue', False, [ _MetaInfoClassMember('msec', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Seconds ''', 'msec', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('time-stamp-value', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Time ''', 'time_stamp_value', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('time-zone', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Timezone ''', 'time_zone', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('year', REFERENCE_ENUM_CLASS, 'TimeInfoEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'TimeInfoEnum', [], [], ''' Year ''', 'year', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'datetime-value', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService.Timestamps.Debug.DebugDatetime' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps.Debug.DebugDatetime', False, [ _MetaInfoClassMember('datetime-value', REFERENCE_CLASS, 'DatetimeValue' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps.Debug.DebugDatetime.DatetimeValue', [], [], ''' Set time format for debug msg ''', 'datetime_value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'debug-datetime', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService.Timestamps.Debug' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps.Debug', False, [ _MetaInfoClassMember('debug-datetime', REFERENCE_CLASS, 'DebugDatetime' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps.Debug.DebugDatetime', [], [], ''' Timestamp with date and time ''', 'debug_datetime', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('debug-timestamp-disable', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Disable timestamp debug messages ''', 'debug_timestamp_disable', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('debug-uptime', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Timestamp with systime uptime ''', 'debug_uptime', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'debug', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService.Timestamps' : { 'meta_info' : _MetaInfoClass('SyslogService.Timestamps', False, [ _MetaInfoClassMember('debug', REFERENCE_CLASS, 'Debug' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps.Debug', [], [], ''' Timestamp debug messages ''', 'debug', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('enable', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable timestamp debug/log messages ''', 'enable', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('log', REFERENCE_CLASS, 'Log' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps.Log', [], [], ''' Timestamp log messages ''', 'log', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'timestamps', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'SyslogService' : { 'meta_info' : _MetaInfoClass('SyslogService', False, [ _MetaInfoClassMember('timestamps', REFERENCE_CLASS, 'Timestamps' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'SyslogService.Timestamps', [], [], ''' Timestamp debug/log messages configuration ''', 'timestamps', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'syslog-service', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.MonitorLogging.MonitorDiscriminator' : { 'meta_info' : _MetaInfoClass('Syslog.MonitorLogging.MonitorDiscriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set monitor logging match1 discriminator ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set monitor logging match2 discriminator ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set monitor logging match3 discriminator ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set monitor logging no-match1 discriminator ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set monitor logging no-match2 discriminator ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set monitor logging no-match3 discriminator ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'monitor-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.MonitorLogging' : { 'meta_info' : _MetaInfoClass('Syslog.MonitorLogging', False, [ _MetaInfoClassMember('logging-level', REFERENCE_ENUM_CLASS, 'LoggingLevelsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingLevelsEnum', [], [], ''' Monitor Logging Level ''', 'logging_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('monitor-discriminator', REFERENCE_CLASS, 'MonitorDiscriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.MonitorLogging.MonitorDiscriminator', [], [], ''' Set monitor logging discriminators ''', 'monitor_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'monitor-logging', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HistoryLogging' : { 'meta_info' : _MetaInfoClass('Syslog.HistoryLogging', False, [ _MetaInfoClassMember('history-size', ATTRIBUTE, 'int' , None, None, [('1', '500')], [], ''' Logging history size ''', 'history_size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('logging-level', REFERENCE_ENUM_CLASS, 'LoggingLevelsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingLevelsEnum', [], [], ''' History logging level ''', 'logging_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'history-logging', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.LoggingFacilities' : { 'meta_info' : _MetaInfoClass('Syslog.LoggingFacilities', False, [ _MetaInfoClassMember('facility-level', REFERENCE_ENUM_CLASS, 'FacilityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'FacilityEnum', [], [], ''' Facility from which logging is done ''', 'facility_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'logging-facilities', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.TrapLogging' : { 'meta_info' : _MetaInfoClass('Syslog.TrapLogging', False, [ _MetaInfoClassMember('logging-level', REFERENCE_ENUM_CLASS, 'LoggingLevelsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingLevelsEnum', [], [], ''' Trap logging level ''', 'logging_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'trap-logging', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.BufferedLogging.BufferedDiscriminator' : { 'meta_info' : _MetaInfoClass('Syslog.BufferedLogging.BufferedDiscriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set buffered logging match1 discriminator ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set buffered logging match2 discriminator ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set buffered logging match3 discriminator ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set buffered logging no-match1 discriminator ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set buffered logging no-match2 discriminator ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set buffered logging no-match3 discriminator ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'buffered-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.BufferedLogging' : { 'meta_info' : _MetaInfoClass('Syslog.BufferedLogging', False, [ _MetaInfoClassMember('buffer-size', ATTRIBUTE, 'int' , None, None, [('4096', '4294967295')], [], ''' Logging buffered size ''', 'buffer_size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('buffered-discriminator', REFERENCE_CLASS, 'BufferedDiscriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.BufferedLogging.BufferedDiscriminator', [], [], ''' Set buffered logging discriminators ''', 'buffered_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('logging-level', REFERENCE_ENUM_CLASS, 'LoggingLevelsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingLevelsEnum', [], [], ''' Logging level for Buffered logging ''', 'logging_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'buffered-logging', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityPort' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityPort', False, [ _MetaInfoClassMember('port', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Port for the logging host ''', 'port', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('severity', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Severity for the logging host ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6-severity-port', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6Discriminator' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6Discriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv6 logging match1 discriminator ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv6 logging match2 discriminator ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv6 logging match3 discriminator ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv6 logging no-match1 discriminator ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv6 logging no-match2 discriminator ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv6 logging no-match3 discriminator ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels.Ipv6SeverityLevel' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels.Ipv6SeverityLevel', False, [ _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'LogSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LogSeverityEnum', [], [], ''' Severity for the logging host ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', True), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6-severity-level', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels', False, [ _MetaInfoClassMember('ipv6-severity-level', REFERENCE_LIST, 'Ipv6SeverityLevel' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels.Ipv6SeverityLevel', [], [], ''' Severity for the logging host ''', 'ipv6_severity_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6-severity-levels', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6', False, [ _MetaInfoClassMember('address', ATTRIBUTE, 'str' , None, None, [], ['((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))(%[\\p{N}\\p{L}]+)?'], ''' IPv6 address of the logging host ''', 'address', 'Cisco-IOS-XR-infra-syslog-cfg', True), _MetaInfoClassMember('ipv6-discriminator', REFERENCE_CLASS, 'Ipv6Discriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6Discriminator', [], [], ''' Set IPv6 logging discriminators ''', 'ipv6_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv6-severity-levels', REFERENCE_CLASS, 'Ipv6SeverityLevels' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels', [], [], ''' Severity container of the logging host ''', 'ipv6_severity_levels', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv6-severity-port', REFERENCE_CLASS, 'Ipv6SeverityPort' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityPort', [], [], ''' Severity/Port for the logging host ''', 'ipv6_severity_port', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv6S' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv6S', False, [ _MetaInfoClassMember('ipv6', REFERENCE_LIST, 'Ipv6' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6', [], [], ''' IPv6 address of the logging host ''', 'ipv6', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6s', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities.HostNameSeverity' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities.HostNameSeverity', False, [ _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'LogSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LogSeverityEnum', [], [], ''' Severity for the logging host ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', True), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'host-name-severity', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities', False, [ _MetaInfoClassMember('host-name-severity', REFERENCE_LIST, 'HostNameSeverity' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities.HostNameSeverity', [], [], ''' Severity for the logging host ''', 'host_name_severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'host-name-severities', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameDiscriminator' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameDiscriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set hostname logging match1 discriminator ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set hostname logging match2 discriminator ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set hostname logging match3 discriminator ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set hostname logging no-match1 discriminator ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set hostname logging no-match2 discriminator ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set hostname logging no-match3 discriminator ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'host-name-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostSeverityPort' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostSeverityPort', False, [ _MetaInfoClassMember('port', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Port for the logging host ''', 'port', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('severity', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Severity for the logging host ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'host-severity-port', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Hosts.Host', False, [ _MetaInfoClassMember('host-name', ATTRIBUTE, 'str' , None, None, [], [], ''' Name of the logging host ''', 'host_name', 'Cisco-IOS-XR-infra-syslog-cfg', True), _MetaInfoClassMember('host-name-discriminator', REFERENCE_CLASS, 'HostNameDiscriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameDiscriminator', [], [], ''' Set Hostname logging discriminators ''', 'host_name_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('host-name-severities', REFERENCE_CLASS, 'HostNameSeverities' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities', [], [], ''' Severity container of the logging host ''', 'host_name_severities', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('host-severity-port', REFERENCE_CLASS, 'HostSeverityPort' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostSeverityPort', [], [], ''' Severity/Port for the logging host ''', 'host_severity_port', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'host', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Hosts' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Hosts', False, [ _MetaInfoClassMember('host', REFERENCE_LIST, 'Host' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Hosts.Host', [], [], ''' Name of the logging host ''', 'host', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'hosts', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels.Ipv4SeverityLevel' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels.Ipv4SeverityLevel', False, [ _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'LogSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LogSeverityEnum', [], [], ''' Severity for the logging host ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', True), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4-severity-level', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels', False, [ _MetaInfoClassMember('ipv4-severity-level', REFERENCE_LIST, 'Ipv4SeverityLevel' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels.Ipv4SeverityLevel', [], [], ''' Severity for the logging host ''', 'ipv4_severity_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4-severity-levels', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityPort' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityPort', False, [ _MetaInfoClassMember('port', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Port for the logging host ''', 'port', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('severity', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Severity for the logging host ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4-severity-port', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4Discriminator' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4Discriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv4 logging match1 discriminator ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv4 logging match2 discriminator ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv4 logging match3 discriminator ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv4 logging no-match1 discriminator ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv4 logging no-match2 discriminator ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set IPv4 logging no-match3 discriminator ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4', False, [ _MetaInfoClassMember('address', ATTRIBUTE, 'str' , None, None, [], ['(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'], ''' IPv4 address of the logging host ''', 'address', 'Cisco-IOS-XR-infra-syslog-cfg', True), _MetaInfoClassMember('ipv4-discriminator', REFERENCE_CLASS, 'Ipv4Discriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4Discriminator', [], [], ''' Set IPv4 logging discriminators ''', 'ipv4_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv4-severity-levels', REFERENCE_CLASS, 'Ipv4SeverityLevels' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels', [], [], ''' Severity container of the logging host ''', 'ipv4_severity_levels', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv4-severity-port', REFERENCE_CLASS, 'Ipv4SeverityPort' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityPort', [], [], ''' Severity/Port for the logging host ''', 'ipv4_severity_port', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf.Ipv4S' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf.Ipv4S', False, [ _MetaInfoClassMember('ipv4', REFERENCE_LIST, 'Ipv4' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4', [], [], ''' IPv4 address of the logging host ''', 'ipv4', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4s', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs.Vrf' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs.Vrf', False, [ _MetaInfoClassMember('vrf-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Name of the VRF instance ''', 'vrf_name', 'Cisco-IOS-XR-infra-syslog-cfg', True), _MetaInfoClassMember('hosts', REFERENCE_CLASS, 'Hosts' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Hosts', [], [], ''' List of the logging host ''', 'hosts', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv4s', REFERENCE_CLASS, 'Ipv4S' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv4S', [], [], ''' List of the IPv4 logging host ''', 'ipv4s', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv6s', REFERENCE_CLASS, 'Ipv6S' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf.Ipv6S', [], [], ''' List of the IPv6 logging host ''', 'ipv6s', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'vrf', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer.Vrfs' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer.Vrfs', False, [ _MetaInfoClassMember('vrf', REFERENCE_LIST, 'Vrf' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs.Vrf', [], [], ''' VRF specific data ''', 'vrf', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'vrfs', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.HostServer' : { 'meta_info' : _MetaInfoClass('Syslog.HostServer', False, [ _MetaInfoClassMember('vrfs', REFERENCE_CLASS, 'Vrfs' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer.Vrfs', [], [], ''' VRF table ''', 'vrfs', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'host-server', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.ConsoleLogging.ConsoleDiscriminator' : { 'meta_info' : _MetaInfoClass('Syslog.ConsoleLogging.ConsoleDiscriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set console logging match1 discriminator ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set console logging match2 discriminator ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set console logging match3 discriminator ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set console logging no-match1 discriminator ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set console logging no-match2 discriminator ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set console logging no-match3 discriminator ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'console-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.ConsoleLogging' : { 'meta_info' : _MetaInfoClass('Syslog.ConsoleLogging', False, [ _MetaInfoClassMember('console-discriminator', REFERENCE_CLASS, 'ConsoleDiscriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.ConsoleLogging.ConsoleDiscriminator', [], [], ''' Set console logging discriminators ''', 'console_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('logging-level', REFERENCE_ENUM_CLASS, 'LoggingLevelsEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingLevelsEnum', [], [], ''' Console logging level ''', 'logging_level', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'console-logging', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Files.File.FileSpecification' : { 'meta_info' : _MetaInfoClass('Syslog.Files.File.FileSpecification', False, [ _MetaInfoClassMember('max-file-size', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Maximum file size (in KB) ''', 'max_file_size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('path', ATTRIBUTE, 'str' , None, None, [], [], ''' File path ''', 'path', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('severity', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Severity of messages ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'file-specification', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Files.File.FileLogAttributes' : { 'meta_info' : _MetaInfoClass('Syslog.Files.File.FileLogAttributes', False, [ _MetaInfoClassMember('max-file-size', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Maximum file size (in KB) ''', 'max_file_size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('severity', ATTRIBUTE, 'int' , None, None, [('-2147483648', '2147483647')], [], ''' Severity of messages ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'file-log-attributes', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Files.File.FileLogDiscriminator' : { 'meta_info' : _MetaInfoClass('Syslog.Files.File.FileLogDiscriminator', False, [ _MetaInfoClassMember('match1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set file logging match discriminator 1 ''', 'match1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set file logging match discriminator 2 ''', 'match2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('match3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set file logging match discriminator 3 ''', 'match3', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch1', ATTRIBUTE, 'str' , None, None, [], [], ''' Set file logging no match discriminator 1 ''', 'nomatch1', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch2', ATTRIBUTE, 'str' , None, None, [], [], ''' Set file logging no match discriminator 2 ''', 'nomatch2', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('nomatch3', ATTRIBUTE, 'str' , None, None, [], [], ''' Set file logging no match discriminator 3 ''', 'nomatch3', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'file-log-discriminator', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Files.File' : { 'meta_info' : _MetaInfoClass('Syslog.Files.File', False, [ _MetaInfoClassMember('file-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Name of the file ''', 'file_name', 'Cisco-IOS-XR-infra-syslog-cfg', True), _MetaInfoClassMember('file-log-attributes', REFERENCE_CLASS, 'FileLogAttributes' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Files.File.FileLogAttributes', [], [], ''' Attributes of the logging file destination ''', 'file_log_attributes', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('file-log-discriminator', REFERENCE_CLASS, 'FileLogDiscriminator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Files.File.FileLogDiscriminator', [], [], ''' Set File logging discriminators ''', 'file_log_discriminator', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('file-specification', REFERENCE_CLASS, 'FileSpecification' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Files.File.FileSpecification', [], [], ''' Specifications of the logging file destination ''', 'file_specification', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'file', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Files' : { 'meta_info' : _MetaInfoClass('Syslog.Files', False, [ _MetaInfoClassMember('file', REFERENCE_LIST, 'File' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Files.File', [], [], ''' Specify File Name ''', 'file', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'files', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv4.Dscp' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv4.Dscp', False, [ _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'LoggingDscpEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpEnum', [], [], ''' Logging TOS type DSCP ''', 'type', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', REFERENCE_UNION, 'str' , None, None, [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('unused', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceValueEnum', [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', ATTRIBUTE, 'int' , None, None, [('0', '7')], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('value', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging DSCP value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('value', REFERENCE_ENUM_CLASS, 'LoggingDscpValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpValueEnum', [], [], ''' Logging DSCP value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('value', ATTRIBUTE, 'int' , None, None, [('0', '63')], [], ''' Logging DSCP value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'dscp', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv4.Tos' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv4.Tos', False, [ _MetaInfoClassMember('dscp', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('dscp', REFERENCE_ENUM_CLASS, 'LoggingDscpValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpValueEnum', [], [], ''' Logging DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('dscp', ATTRIBUTE, 'int' , None, None, [('0', '63')], [], ''' Logging DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('precedence', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('precedence', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceValueEnum', [], [], ''' Logging precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('precedence', ATTRIBUTE, 'int' , None, None, [('0', '7')], [], ''' Logging precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'LoggingTosEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingTosEnum', [], [], ''' Logging TOS type DSCP or precedence ''', 'type', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'tos', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv4.Precedence' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv4.Precedence', False, [ _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceEnum', [], [], ''' Logging TOS type precedence ''', 'type', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', REFERENCE_UNION, 'str' , None, None, [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('unused', REFERENCE_ENUM_CLASS, 'LoggingDscpValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpValueEnum', [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', ATTRIBUTE, 'int' , None, None, [('0', '63')], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('value', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging precedence value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('value', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceValueEnum', [], [], ''' Logging precedence value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('value', ATTRIBUTE, 'int' , None, None, [('0', '7')], [], ''' Logging precedence value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'precedence', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv4' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv4', False, [ _MetaInfoClassMember('dscp', REFERENCE_CLASS, 'Dscp' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv4.Dscp', [], [], ''' DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('precedence', REFERENCE_CLASS, 'Precedence' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv4.Precedence', [], [], ''' Precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('tos', REFERENCE_CLASS, 'Tos' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv4.Tos', [], [], ''' Type of service ''', 'tos', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv4', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Archive' : { 'meta_info' : _MetaInfoClass('Syslog.Archive', False, [ _MetaInfoClassMember('device', ATTRIBUTE, 'str' , None, None, [], [], ''' '/disk0:' or '/disk1:' or '/harddisk:' ''', 'device', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('file-size', ATTRIBUTE, 'int' , None, None, [('1', '2047')], [], ''' The maximum file size for a single log file. ''', 'file_size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('frequency', REFERENCE_ENUM_CLASS, 'LogCollectFrequencyEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LogCollectFrequencyEnum', [], [], ''' The collection interval for logs ''', 'frequency', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('length', ATTRIBUTE, 'int' , None, None, [('1', '256')], [], ''' The maximum number of weeks of log to maintain ''', 'length', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('severity', REFERENCE_ENUM_CLASS, 'LogMessageSeverityEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LogMessageSeverityEnum', [], [], ''' The minimum severity of log messages to archive ''', 'severity', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('size', ATTRIBUTE, 'int' , None, None, [('1', '2047')], [], ''' The total size of the archive ''', 'size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('threshold', ATTRIBUTE, 'int' , None, None, [('1', '99')], [], ''' The size threshold at which a syslog is generated ''', 'threshold', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'archive', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv6.Dscp' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv6.Dscp', False, [ _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'LoggingDscpEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpEnum', [], [], ''' Logging TOS type DSCP ''', 'type', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', REFERENCE_UNION, 'str' , None, None, [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('unused', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceValueEnum', [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', ATTRIBUTE, 'int' , None, None, [('0', '7')], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('value', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging DSCP value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('value', REFERENCE_ENUM_CLASS, 'LoggingDscpValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpValueEnum', [], [], ''' Logging DSCP value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('value', ATTRIBUTE, 'int' , None, None, [('0', '63')], [], ''' Logging DSCP value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'dscp', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv6.TrafficClass' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv6.TrafficClass', False, [ _MetaInfoClassMember('dscp', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('dscp', REFERENCE_ENUM_CLASS, 'LoggingDscpValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpValueEnum', [], [], ''' Logging DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('dscp', ATTRIBUTE, 'int' , None, None, [('0', '63')], [], ''' Logging DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('precedence', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('precedence', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceValueEnum', [], [], ''' Logging precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('precedence', ATTRIBUTE, 'int' , None, None, [('0', '7')], [], ''' Logging precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'LoggingTosEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingTosEnum', [], [], ''' Logging TOS type DSCP or precedence ''', 'type', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'traffic-class', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv6.Precedence' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv6.Precedence', False, [ _MetaInfoClassMember('type', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceEnum', [], [], ''' Logging TOS type precedence ''', 'type', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', REFERENCE_UNION, 'str' , None, None, [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('unused', REFERENCE_ENUM_CLASS, 'LoggingDscpValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingDscpValueEnum', [], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('unused', ATTRIBUTE, 'int' , None, None, [('0', '63')], [], ''' Unused ''', 'unused', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), _MetaInfoClassMember('value', REFERENCE_UNION, 'str' , None, None, [], [], ''' Logging precedence value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False, [ _MetaInfoClassMember('value', REFERENCE_ENUM_CLASS, 'LoggingPrecedenceValueEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'LoggingPrecedenceValueEnum', [], [], ''' Logging precedence value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('value', ATTRIBUTE, 'int' , None, None, [('0', '7')], [], ''' Logging precedence value ''', 'value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ]), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'precedence', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Ipv6' : { 'meta_info' : _MetaInfoClass('Syslog.Ipv6', False, [ _MetaInfoClassMember('dscp', REFERENCE_CLASS, 'Dscp' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv6.Dscp', [], [], ''' DSCP value ''', 'dscp', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('precedence', REFERENCE_CLASS, 'Precedence' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv6.Precedence', [], [], ''' Precedence value ''', 'precedence', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('traffic-class', REFERENCE_CLASS, 'TrafficClass' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv6.TrafficClass', [], [], ''' Type of traffic class ''', 'traffic_class', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'ipv6', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs.SourceInterfaceVrf' : { 'meta_info' : _MetaInfoClass('Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs.SourceInterfaceVrf', False, [ _MetaInfoClassMember('vrf-name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Name of the VRF instance ''', 'vrf_name', 'Cisco-IOS-XR-infra-syslog-cfg', True), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'source-interface-vrf', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs' : { 'meta_info' : _MetaInfoClass('Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs', False, [ _MetaInfoClassMember('source-interface-vrf', REFERENCE_LIST, 'SourceInterfaceVrf' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs.SourceInterfaceVrf', [], [], ''' Specify VRF for source interface ''', 'source_interface_vrf', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'source-interface-vrfs', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue' : { 'meta_info' : _MetaInfoClass('Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue', False, [ _MetaInfoClassMember('src-interface-name-value', ATTRIBUTE, 'str' , None, None, [], ['(([a-zA-Z0-9_]*\\d+/){3,4}\\d+)|(([a-zA-Z0-9_]*\\d+/){3,4}\\d+\\.\\d+)|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]*\\d+))|(([a-zA-Z0-9_]*\\d+/){2}([a-zA-Z0-9_]+))|([a-zA-Z0-9_-]*\\d+)|([a-zA-Z0-9_-]*\\d+\\.\\d+)|(mpls)|(dwdm)'], ''' Which Interface ''', 'src_interface_name_value', 'Cisco-IOS-XR-infra-syslog-cfg', True), _MetaInfoClassMember('source-interface-vrfs', REFERENCE_CLASS, 'SourceInterfaceVrfs' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs', [], [], ''' Configure source interface VRF ''', 'source_interface_vrfs', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'source-interface-value', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.SourceInterfaceTable.SourceInterfaceValues' : { 'meta_info' : _MetaInfoClass('Syslog.SourceInterfaceTable.SourceInterfaceValues', False, [ _MetaInfoClassMember('source-interface-value', REFERENCE_LIST, 'SourceInterfaceValue' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue', [], [], ''' Source interface ''', 'source_interface_value', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'source-interface-values', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.SourceInterfaceTable' : { 'meta_info' : _MetaInfoClass('Syslog.SourceInterfaceTable', False, [ _MetaInfoClassMember('source-interface-values', REFERENCE_CLASS, 'SourceInterfaceValues' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.SourceInterfaceTable.SourceInterfaceValues', [], [], ''' Specify interface for source address in logging transactions ''', 'source_interface_values', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'source-interface-table', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.AlarmLogger' : { 'meta_info' : _MetaInfoClass('Syslog.AlarmLogger', False, [ _MetaInfoClassMember('buffer-size', ATTRIBUTE, 'int' , None, None, [('1024', '1024000')], [], ''' Set size of the local event buffer ''', 'buffer_size', 'Cisco-IOS-XR-infra-alarm-logger-cfg', False), _MetaInfoClassMember('severity-level', REFERENCE_ENUM_CLASS, 'AlarmLoggerSeverityLevelEnum' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_alarm_logger_datatypes', 'AlarmLoggerSeverityLevelEnum', [], [], ''' Log all events with equal or higher (lower level) severity than this ''', 'severity_level', 'Cisco-IOS-XR-infra-alarm-logger-cfg', False), _MetaInfoClassMember('source-location', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable alarm source location in message text ''', 'source_location', 'Cisco-IOS-XR-infra-alarm-logger-cfg', False), _MetaInfoClassMember('threshold', ATTRIBUTE, 'int' , None, None, [('10', '100')], [], ''' Configure threshold (%) for capacity alarm ''', 'threshold', 'Cisco-IOS-XR-infra-alarm-logger-cfg', False), ], 'Cisco-IOS-XR-infra-alarm-logger-cfg', 'alarm-logger', _yang_ns._namespaces['Cisco-IOS-XR-infra-alarm-logger-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.Definition' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.Definition', False, [ _MetaInfoClassMember('category-name-entry1', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message category name ''', 'category_name_entry1', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry10', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry10', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry2', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry2', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry3', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry3', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry4', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry4', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry5', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry5', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry6', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry6', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry7', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry7', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry8', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry8', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('category-name-entry9', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category name ''', 'category_name_entry9', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry1', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message group name ''', 'group_name_entry1', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry10', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry10', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry2', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry2', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry3', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry3', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry4', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry4', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry5', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry5', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry6', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry6', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry7', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry7', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry8', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry8', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group-name-entry9', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group name ''', 'group_name_entry9', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry1', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message code ''', 'message_code_entry1', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry10', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry10', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry2', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry2', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry3', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry3', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry4', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry4', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry5', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry5', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry6', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry6', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry7', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry7', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry8', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry8', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code-entry9', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code_entry9', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('timeout', ATTRIBUTE, 'int' , None, None, [('1', '7200000')], [], ''' Timeout (time the rule is to be active) in milliseconds ''', 'timeout', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'definition', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses.NonRootCause' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses.NonRootCause', False, [ _MetaInfoClassMember('category', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category ''', 'category', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('group', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group ''', 'group', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('message-code', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'non-root-cause', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses', False, [ _MetaInfoClassMember('non-root-cause', REFERENCE_LIST, 'NonRootCause' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses.NonRootCause', [], [], ''' A non-rootcause ''', 'non_root_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'non-root-causes', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.NonStateful.RootCause' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.NonStateful.RootCause', False, [ _MetaInfoClassMember('category', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message category ''', 'category', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message group ''', 'group', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message code ''', 'message_code', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'root-cause', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.NonStateful' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.NonStateful', False, [ _MetaInfoClassMember('context-correlation', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable correlation on alarm context ''', 'context_correlation', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('non-root-causes', REFERENCE_CLASS, 'NonRootCauses' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses', [], [], ''' Table of configured non-rootcause ''', 'non_root_causes', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('root-cause', REFERENCE_CLASS, 'RootCause' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.NonStateful.RootCause', [], [], ''' The root cause ''', 'root_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('timeout', ATTRIBUTE, 'int' , None, None, [('1', '7200000')], [], ''' Timeout (time to wait for active correlation) in milliseconds ''', 'timeout', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('timeout-root-cause', ATTRIBUTE, 'int' , None, None, [('1', '7200000')], [], ''' Rootcause Timeout (time to wait for rootcause) in milliseconds ''', 'timeout_root_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'non-stateful', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses.NonRootCause' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses.NonRootCause', False, [ _MetaInfoClassMember('category', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message category ''', 'category', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('group', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message group ''', 'group', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('message-code', ATTRIBUTE, 'str' , None, None, [], [], ''' Correlated message code ''', 'message_code', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'non-root-cause', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses', False, [ _MetaInfoClassMember('non-root-cause', REFERENCE_LIST, 'NonRootCause' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses.NonRootCause', [], [], ''' A non-rootcause ''', 'non_root_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'non-root-causes', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.Stateful.RootCause' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.Stateful.RootCause', False, [ _MetaInfoClassMember('category', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message category ''', 'category', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('group', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message group ''', 'group', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('message-code', ATTRIBUTE, 'str' , None, None, [], [], ''' Root message code ''', 'message_code', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'root-cause', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.Stateful' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.Stateful', False, [ _MetaInfoClassMember('context-correlation', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable correlation on alarm context ''', 'context_correlation', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('non-root-causes', REFERENCE_CLASS, 'NonRootCauses' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses', [], [], ''' Table of configured non-rootcause ''', 'non_root_causes', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('reissue', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable reissue of non-bistate alarms on rootcause alarm clear ''', 'reissue', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('reparent', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Enable reparent of alarm on rootcause alarm clear ''', 'reparent', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('root-cause', REFERENCE_CLASS, 'RootCause' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.Stateful.RootCause', [], [], ''' The root cause ''', 'root_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('timeout', ATTRIBUTE, 'int' , None, None, [('1', '7200000')], [], ''' Timeout (time to wait for active correlation) in milliseconds ''', 'timeout', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('timeout-root-cause', ATTRIBUTE, 'int' , None, None, [('1', '7200000')], [], ''' Rootcause Timeout (time to wait for rootcause) in milliseconds ''', 'timeout_root_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'stateful', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.ApplyTo.Contexts' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.ApplyTo.Contexts', False, [ _MetaInfoClassMember('context', REFERENCE_LEAFLIST, 'str' , None, None, [], [], ''' One or more context names ''', 'context', 'Cisco-IOS-XR-infra-correlator-cfg', False, max_elements=32), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'contexts', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.ApplyTo.Locations' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.ApplyTo.Locations', False, [ _MetaInfoClassMember('location', REFERENCE_LEAFLIST, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' One or more Locations ''', 'location', 'Cisco-IOS-XR-infra-correlator-cfg', False, max_elements=32), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'locations', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.ApplyTo' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.ApplyTo', False, [ _MetaInfoClassMember('all-of-router', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Apply the rule to all of the router ''', 'all_of_router', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('contexts', REFERENCE_CLASS, 'Contexts' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.ApplyTo.Contexts', [], [], ''' Apply rule to a specified list of contexts, e.g. interfaces ''', 'contexts', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('locations', REFERENCE_CLASS, 'Locations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.ApplyTo.Locations', [], [], ''' Apply rule to a specified list of Locations ''', 'locations', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'apply-to', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.AppliedTo.Contexts.Context' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.AppliedTo.Contexts.Context', False, [ _MetaInfoClassMember('context', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Context ''', 'context', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'context', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.AppliedTo.Contexts' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.AppliedTo.Contexts', False, [ _MetaInfoClassMember('context', REFERENCE_LIST, 'Context' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.AppliedTo.Contexts.Context', [], [], ''' A context ''', 'context', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'contexts', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.AppliedTo.Locations.Location' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.AppliedTo.Locations.Location', False, [ _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' Location ''', 'location', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'location', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.AppliedTo.Locations' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.AppliedTo.Locations', False, [ _MetaInfoClassMember('location', REFERENCE_LIST, 'Location' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.AppliedTo.Locations.Location', [], [], ''' A location ''', 'location', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'locations', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule.AppliedTo' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule.AppliedTo', False, [ _MetaInfoClassMember('all', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Apply to all of the router ''', 'all', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('contexts', REFERENCE_CLASS, 'Contexts' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.AppliedTo.Contexts', [], [], ''' Table of configured contexts to apply ''', 'contexts', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('locations', REFERENCE_CLASS, 'Locations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.AppliedTo.Locations', [], [], ''' Table of configured locations to apply ''', 'locations', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'applied-to', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules.Rule' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules.Rule', False, [ _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Rule name ''', 'name', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('applied-to', REFERENCE_CLASS, 'AppliedTo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.AppliedTo', [], [], ''' Applied to the Rule or Ruleset ''', 'applied_to', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('apply-to', REFERENCE_CLASS, 'ApplyTo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.ApplyTo', [], [], ''' Apply the Rules ''', 'apply_to', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('definition', REFERENCE_CLASS, 'Definition' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.Definition', [], [], ''' Configure a specified correlation rule ''', 'definition', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('non-stateful', REFERENCE_CLASS, 'NonStateful' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.NonStateful', [], [], ''' The Non-Stateful Rule Type ''', 'non_stateful', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('stateful', REFERENCE_CLASS, 'Stateful' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule.Stateful', [], [], ''' The Stateful Rule Type ''', 'stateful', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rule', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.Rules' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.Rules', False, [ _MetaInfoClassMember('rule', REFERENCE_LIST, 'Rule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules.Rule', [], [], ''' Rule name ''', 'rule', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rules', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.Rulenames.Rulename' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.Rulenames.Rulename', False, [ _MetaInfoClassMember('rulename', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Rule name ''', 'rulename', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rulename', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.Rulenames' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.Rulenames', False, [ _MetaInfoClassMember('rulename', REFERENCE_LIST, 'Rulename' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.Rulenames.Rulename', [], [], ''' A rulename ''', 'rulename', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rulenames', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts.Context' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts.Context', False, [ _MetaInfoClassMember('context', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Context ''', 'context', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'context', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts', False, [ _MetaInfoClassMember('context', REFERENCE_LIST, 'Context' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts.Context', [], [], ''' A context ''', 'context', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'contexts', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations.Location' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations.Location', False, [ _MetaInfoClassMember('location', ATTRIBUTE, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' Location ''', 'location', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'location', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations', False, [ _MetaInfoClassMember('location', REFERENCE_LIST, 'Location' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations.Location', [], [], ''' A location ''', 'location', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'locations', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet.AppliedTo', False, [ _MetaInfoClassMember('all', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Apply to all of the router ''', 'all', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('contexts', REFERENCE_CLASS, 'Contexts' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts', [], [], ''' Table of configured contexts to apply ''', 'contexts', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('locations', REFERENCE_CLASS, 'Locations' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations', [], [], ''' Table of configured locations to apply ''', 'locations', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'applied-to', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets.RuleSet' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets.RuleSet', False, [ _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Ruleset name ''', 'name', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('applied-to', REFERENCE_CLASS, 'AppliedTo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.AppliedTo', [], [], ''' Applied to the Rule or Ruleset ''', 'applied_to', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('rulenames', REFERENCE_CLASS, 'Rulenames' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet.Rulenames', [], [], ''' Table of configured rulenames ''', 'rulenames', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rule-set', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator.RuleSets' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator.RuleSets', False, [ _MetaInfoClassMember('rule-set', REFERENCE_LIST, 'RuleSet' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets.RuleSet', [], [], ''' Ruleset name ''', 'rule_set', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rule-sets', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Correlator' : { 'meta_info' : _MetaInfoClass('Syslog.Correlator', False, [ _MetaInfoClassMember('buffer-size', ATTRIBUTE, 'int' , None, None, [('1024', '52428800')], [], ''' Configure size of the correlator buffer ''', 'buffer_size', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('rule-sets', REFERENCE_CLASS, 'RuleSets' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.RuleSets', [], [], ''' Table of configured rulesets ''', 'rule_sets', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('rules', REFERENCE_CLASS, 'Rules' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator.Rules', [], [], ''' Table of configured rules ''', 'rules', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'correlator', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules.Rule.AppliedTo.Sources.Source' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules.Rule.AppliedTo.Sources.Source', False, [ _MetaInfoClassMember('source', ATTRIBUTE, 'str' , None, None, [], ['([a-zA-Z0-9_]*\\d+/){1,2}([a-zA-Z0-9_]*\\d+)'], ''' Source ''', 'source', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'source', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules.Rule.AppliedTo.Sources' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules.Rule.AppliedTo.Sources', False, [ _MetaInfoClassMember('source', REFERENCE_LIST, 'Source' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules.Rule.AppliedTo.Sources.Source', [], [], ''' An alarm source ''', 'source', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'sources', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules.Rule.AppliedTo' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules.Rule.AppliedTo', False, [ _MetaInfoClassMember('all', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Apply to all of the router ''', 'all', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('sources', REFERENCE_CLASS, 'Sources' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules.Rule.AppliedTo.Sources', [], [], ''' Table of configured sources to apply ''', 'sources', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'applied-to', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules.Rule.AlarmCauses.AlarmCause' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules.Rule.AlarmCauses.AlarmCause', False, [ _MetaInfoClassMember('category', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Category ''', 'category', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('code', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Code ''', 'code', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('group', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Group ''', 'group', 'Cisco-IOS-XR-infra-correlator-cfg', True), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'alarm-cause', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules.Rule.AlarmCauses' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules.Rule.AlarmCauses', False, [ _MetaInfoClassMember('alarm-cause', REFERENCE_LIST, 'AlarmCause' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules.Rule.AlarmCauses.AlarmCause', [], [], ''' Category, Group and Code of alarm/syslog to be suppressed ''', 'alarm_cause', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'alarm-causes', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules.Rule' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules.Rule', False, [ _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [(0, 32)], [], ''' Rule name ''', 'name', 'Cisco-IOS-XR-infra-correlator-cfg', True), _MetaInfoClassMember('alarm-causes', REFERENCE_CLASS, 'AlarmCauses' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules.Rule.AlarmCauses', [], [], ''' Causes of alarms to be suppressed ''', 'alarm_causes', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('all-alarms', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Suppress all alarms ''', 'all_alarms', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('applied-to', REFERENCE_CLASS, 'AppliedTo' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules.Rule.AppliedTo', [], [], ''' Applied to the Rule ''', 'applied_to', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rule', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression.Rules' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression.Rules', False, [ _MetaInfoClassMember('rule', REFERENCE_LIST, 'Rule' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules.Rule', [], [], ''' Rule name ''', 'rule', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'rules', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog.Suppression' : { 'meta_info' : _MetaInfoClass('Syslog.Suppression', False, [ _MetaInfoClassMember('rules', REFERENCE_CLASS, 'Rules' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression.Rules', [], [], ''' Table of configured rules ''', 'rules', 'Cisco-IOS-XR-infra-correlator-cfg', False), ], 'Cisco-IOS-XR-infra-correlator-cfg', 'suppression', _yang_ns._namespaces['Cisco-IOS-XR-infra-correlator-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, 'Syslog' : { 'meta_info' : _MetaInfoClass('Syslog', False, [ _MetaInfoClassMember('alarm-logger', REFERENCE_CLASS, 'AlarmLogger' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.AlarmLogger', [], [], ''' Alarm Logger Properties ''', 'alarm_logger', 'Cisco-IOS-XR-infra-alarm-logger-cfg', False), _MetaInfoClassMember('archive', REFERENCE_CLASS, 'Archive' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Archive', [], [], ''' Archive attributes configuration ''', 'archive', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('buffered-logging', REFERENCE_CLASS, 'BufferedLogging' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.BufferedLogging', [], [], ''' Set buffered logging parameters ''', 'buffered_logging', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('console-logging', REFERENCE_CLASS, 'ConsoleLogging' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.ConsoleLogging', [], [], ''' Set console logging ''', 'console_logging', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('correlator', REFERENCE_CLASS, 'Correlator' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Correlator', [], [], ''' Configure properties of the event correlator ''', 'correlator', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('enable-console-logging', ATTRIBUTE, 'bool' , None, None, [], [], ''' Enabled or disabled ''', 'enable_console_logging', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('files', REFERENCE_CLASS, 'Files' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Files', [], [], ''' Configure logging file destination ''', 'files', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('history-logging', REFERENCE_CLASS, 'HistoryLogging' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HistoryLogging', [], [], ''' Set history logging ''', 'history_logging', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('host-name-prefix', ATTRIBUTE, 'str' , None, None, [], [], ''' Hostname prefix to add on msgs to servers ''', 'host_name_prefix', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('host-server', REFERENCE_CLASS, 'HostServer' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.HostServer', [], [], ''' Configure logging host ''', 'host_server', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv4', REFERENCE_CLASS, 'Ipv4' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv4', [], [], ''' Syslog TOS bit for outgoing messages ''', 'ipv4', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('ipv6', REFERENCE_CLASS, 'Ipv6' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Ipv6', [], [], ''' Syslog traffic class bit for outgoing messages ''', 'ipv6', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('local-log-file-size', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Set size of the local log file ''', 'local_log_file_size', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('logging-facilities', REFERENCE_CLASS, 'LoggingFacilities' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.LoggingFacilities', [], [], ''' Modify message logging facilities ''', 'logging_facilities', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('monitor-logging', REFERENCE_CLASS, 'MonitorLogging' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.MonitorLogging', [], [], ''' Set monitor logging ''', 'monitor_logging', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('source-interface-table', REFERENCE_CLASS, 'SourceInterfaceTable' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.SourceInterfaceTable', [], [], ''' Configure source interface ''', 'source_interface_table', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('suppress-duplicates', ATTRIBUTE, 'Empty' , None, None, [], [], ''' Suppress consecutive duplicate messages ''', 'suppress_duplicates', 'Cisco-IOS-XR-infra-syslog-cfg', False), _MetaInfoClassMember('suppression', REFERENCE_CLASS, 'Suppression' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.Suppression', [], [], ''' Configure properties of the syslog/alarm suppression ''', 'suppression', 'Cisco-IOS-XR-infra-correlator-cfg', False), _MetaInfoClassMember('trap-logging', REFERENCE_CLASS, 'TrapLogging' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg', 'Syslog.TrapLogging', [], [], ''' Set trap logging ''', 'trap_logging', 'Cisco-IOS-XR-infra-syslog-cfg', False), ], 'Cisco-IOS-XR-infra-syslog-cfg', 'syslog', _yang_ns._namespaces['Cisco-IOS-XR-infra-syslog-cfg'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_infra_syslog_cfg' ), }, } _meta_table['SyslogService.Timestamps.Log.LogDatetime.LogDatetimeValue']['meta_info'].parent =_meta_table['SyslogService.Timestamps.Log.LogDatetime']['meta_info'] _meta_table['SyslogService.Timestamps.Log.LogDatetime']['meta_info'].parent =_meta_table['SyslogService.Timestamps.Log']['meta_info'] _meta_table['SyslogService.Timestamps.Debug.DebugDatetime.DatetimeValue']['meta_info'].parent =_meta_table['SyslogService.Timestamps.Debug.DebugDatetime']['meta_info'] _meta_table['SyslogService.Timestamps.Debug.DebugDatetime']['meta_info'].parent =_meta_table['SyslogService.Timestamps.Debug']['meta_info'] _meta_table['SyslogService.Timestamps.Log']['meta_info'].parent =_meta_table['SyslogService.Timestamps']['meta_info'] _meta_table['SyslogService.Timestamps.Debug']['meta_info'].parent =_meta_table['SyslogService.Timestamps']['meta_info'] _meta_table['SyslogService.Timestamps']['meta_info'].parent =_meta_table['SyslogService']['meta_info'] _meta_table['Syslog.MonitorLogging.MonitorDiscriminator']['meta_info'].parent =_meta_table['Syslog.MonitorLogging']['meta_info'] _meta_table['Syslog.BufferedLogging.BufferedDiscriminator']['meta_info'].parent =_meta_table['Syslog.BufferedLogging']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels.Ipv6SeverityLevel']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityPort']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6Discriminator']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6.Ipv6SeverityLevels']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S.Ipv6']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities.HostNameSeverity']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameSeverities']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostNameDiscriminator']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host.HostSeverityPort']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts.Host']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels.Ipv4SeverityLevel']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityLevels']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4SeverityPort']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4.Ipv4Discriminator']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S.Ipv4']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv6S']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Hosts']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf.Ipv4S']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs.Vrf']['meta_info'] _meta_table['Syslog.HostServer.Vrfs.Vrf']['meta_info'].parent =_meta_table['Syslog.HostServer.Vrfs']['meta_info'] _meta_table['Syslog.HostServer.Vrfs']['meta_info'].parent =_meta_table['Syslog.HostServer']['meta_info'] _meta_table['Syslog.ConsoleLogging.ConsoleDiscriminator']['meta_info'].parent =_meta_table['Syslog.ConsoleLogging']['meta_info'] _meta_table['Syslog.Files.File.FileSpecification']['meta_info'].parent =_meta_table['Syslog.Files.File']['meta_info'] _meta_table['Syslog.Files.File.FileLogAttributes']['meta_info'].parent =_meta_table['Syslog.Files.File']['meta_info'] _meta_table['Syslog.Files.File.FileLogDiscriminator']['meta_info'].parent =_meta_table['Syslog.Files.File']['meta_info'] _meta_table['Syslog.Files.File']['meta_info'].parent =_meta_table['Syslog.Files']['meta_info'] _meta_table['Syslog.Ipv4.Dscp']['meta_info'].parent =_meta_table['Syslog.Ipv4']['meta_info'] _meta_table['Syslog.Ipv4.Tos']['meta_info'].parent =_meta_table['Syslog.Ipv4']['meta_info'] _meta_table['Syslog.Ipv4.Precedence']['meta_info'].parent =_meta_table['Syslog.Ipv4']['meta_info'] _meta_table['Syslog.Ipv6.Dscp']['meta_info'].parent =_meta_table['Syslog.Ipv6']['meta_info'] _meta_table['Syslog.Ipv6.TrafficClass']['meta_info'].parent =_meta_table['Syslog.Ipv6']['meta_info'] _meta_table['Syslog.Ipv6.Precedence']['meta_info'].parent =_meta_table['Syslog.Ipv6']['meta_info'] _meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs.SourceInterfaceVrf']['meta_info'].parent =_meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs']['meta_info'] _meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue.SourceInterfaceVrfs']['meta_info'].parent =_meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue']['meta_info'] _meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues.SourceInterfaceValue']['meta_info'].parent =_meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues']['meta_info'] _meta_table['Syslog.SourceInterfaceTable.SourceInterfaceValues']['meta_info'].parent =_meta_table['Syslog.SourceInterfaceTable']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses.NonRootCause']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.NonStateful.NonRootCauses']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.NonStateful']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.NonStateful.RootCause']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.NonStateful']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses.NonRootCause']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.Stateful.NonRootCauses']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.Stateful']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.Stateful.RootCause']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.Stateful']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.ApplyTo.Contexts']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.ApplyTo']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.ApplyTo.Locations']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.ApplyTo']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.AppliedTo.Contexts.Context']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.AppliedTo.Contexts']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.AppliedTo.Locations.Location']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.AppliedTo.Locations']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.AppliedTo.Contexts']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.AppliedTo']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.AppliedTo.Locations']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule.AppliedTo']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.Definition']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.NonStateful']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.Stateful']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.ApplyTo']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule.AppliedTo']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules.Rule']['meta_info'] _meta_table['Syslog.Correlator.Rules.Rule']['meta_info'].parent =_meta_table['Syslog.Correlator.Rules']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.Rulenames.Rulename']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet.Rulenames']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts.Context']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations.Location']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Contexts']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo.Locations']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.Rulenames']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet.AppliedTo']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets.RuleSet']['meta_info'] _meta_table['Syslog.Correlator.RuleSets.RuleSet']['meta_info'].parent =_meta_table['Syslog.Correlator.RuleSets']['meta_info'] _meta_table['Syslog.Correlator.Rules']['meta_info'].parent =_meta_table['Syslog.Correlator']['meta_info'] _meta_table['Syslog.Correlator.RuleSets']['meta_info'].parent =_meta_table['Syslog.Correlator']['meta_info'] _meta_table['Syslog.Suppression.Rules.Rule.AppliedTo.Sources.Source']['meta_info'].parent =_meta_table['Syslog.Suppression.Rules.Rule.AppliedTo.Sources']['meta_info'] _meta_table['Syslog.Suppression.Rules.Rule.AppliedTo.Sources']['meta_info'].parent =_meta_table['Syslog.Suppression.Rules.Rule.AppliedTo']['meta_info'] _meta_table['Syslog.Suppression.Rules.Rule.AlarmCauses.AlarmCause']['meta_info'].parent =_meta_table['Syslog.Suppression.Rules.Rule.AlarmCauses']['meta_info'] _meta_table['Syslog.Suppression.Rules.Rule.AppliedTo']['meta_info'].parent =_meta_table['Syslog.Suppression.Rules.Rule']['meta_info'] _meta_table['Syslog.Suppression.Rules.Rule.AlarmCauses']['meta_info'].parent =_meta_table['Syslog.Suppression.Rules.Rule']['meta_info'] _meta_table['Syslog.Suppression.Rules.Rule']['meta_info'].parent =_meta_table['Syslog.Suppression.Rules']['meta_info'] _meta_table['Syslog.Suppression.Rules']['meta_info'].parent =_meta_table['Syslog.Suppression']['meta_info'] _meta_table['Syslog.MonitorLogging']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.HistoryLogging']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.LoggingFacilities']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.TrapLogging']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.BufferedLogging']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.HostServer']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.ConsoleLogging']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.Files']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.Ipv4']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.Archive']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.Ipv6']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.SourceInterfaceTable']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.AlarmLogger']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.Correlator']['meta_info'].parent =_meta_table['Syslog']['meta_info'] _meta_table['Syslog.Suppression']['meta_info'].parent =_meta_table['Syslog']['meta_info']
50.424041
266
0.52498
2599b659a00a03060626c3dacf71789a4baa1878
2,072
py
Python
fixture/group.py
rgurevych/ironpython_training
e6752699874cbcfb5db7962682b07c7a76bfcfc8
[ "Apache-2.0" ]
null
null
null
fixture/group.py
rgurevych/ironpython_training
e6752699874cbcfb5db7962682b07c7a76bfcfc8
[ "Apache-2.0" ]
null
null
null
fixture/group.py
rgurevych/ironpython_training
e6752699874cbcfb5db7962682b07c7a76bfcfc8
[ "Apache-2.0" ]
null
null
null
import clr import sys import os.path import time project_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(project_dir, "TestStack.White.0.13.3\\lib\\net40\\")) sys.path.append(os.path.join(project_dir, "Castle.Core.3.3.0\\lib\\net40-client\\")) clr.AddReferenceByName("TestStack.White") clr.AddReferenceByName("UIAutomationTypes, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35") from TestStack.White.InputDevices import Keyboard from TestStack.White.WindowsAPI import KeyboardInput from TestStack.White.UIItems.Finders import * from System.Windows.Automation import * def add_new_group(main_window, group_name): modal = open_groups_editor(main_window) modal.Get(SearchCriteria.ByAutomationId("uxNewAddressButton")).Click() modal.Get(SearchCriteria.ByControlType(ControlType.Edit)).Enter(group_name) Keyboard.Instance.PressSpecialKey(KeyboardInput.SpecialKeys.RETURN) close_groups_editor(modal) def delete_group(main_window, index): modal = open_groups_editor(main_window) tree = modal.Get(SearchCriteria.ByAutomationId("uxAddressTreeView")) root = tree.Nodes[0] root.Nodes[index].Select() modal.Get(SearchCriteria.ByAutomationId("uxDeleteAddressButton")).Click() deletion_modal = modal.ModalWindow("Delete group") deletion_modal.Get(SearchCriteria.ByAutomationId("uxDeleteAllRadioButton")).Click() deletion_modal.Get(SearchCriteria.ByAutomationId("uxOKAddressButton")).Click() close_groups_editor(modal) def open_groups_editor(main_window): main_window.Get(SearchCriteria.ByAutomationId("groupButton")).Click() modal = main_window.ModalWindow("Group editor") return modal def close_groups_editor(modal): modal.Get(SearchCriteria.ByAutomationId("uxCloseAddressButton")).Click() def get_group_list(main_window): modal = open_groups_editor(main_window) tree = modal.Get(SearchCriteria.ByAutomationId("uxAddressTreeView")) groups_list = [node.Text for node in tree.Nodes[0].Nodes] close_groups_editor(modal) return groups_list
40.627451
110
0.785714
1906625496881413ffa4ac665c543099cab6fee8
23,258
py
Python
catkin_tools/jobs/catkin.py
ruvu/catkin_tools
cbd9ffc497a1880026c88ce3b24d390f238d8835
[ "Apache-2.0" ]
null
null
null
catkin_tools/jobs/catkin.py
ruvu/catkin_tools
cbd9ffc497a1880026c88ce3b24d390f238d8835
[ "Apache-2.0" ]
null
null
null
catkin_tools/jobs/catkin.py
ruvu/catkin_tools
cbd9ffc497a1880026c88ce3b24d390f238d8835
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import os try: from md5 import md5 except ImportError: from hashlib import md5 from catkin_tools.argument_parsing import handle_make_arguments from catkin_tools.common import mkdir_p from catkin_tools.execution.jobs import Job from catkin_tools.execution.stages import CommandStage from catkin_tools.execution.stages import FunctionStage from .commands.cmake import CMAKE_EXEC from .commands.cmake import CMakeIOBufferProtocol from .commands.cmake import CMakeMakeIOBufferProtocol from .commands.cmake import get_installed_files from .commands.make import MAKE_EXEC from .utils import copyfiles from .utils import loadenv from .utils import makedirs from .utils import require_command from .utils import rmfiles def get_prebuild_package(build_space_abs, devel_space_abs, force): """This generates a minimal Catkin package used to generate Catkin environment setup files in a merged devel space. :param build_space_abs: The path to a merged build space :param devel_space_abs: The path to a merged devel space :param force: Overwrite files if they exist :returns: source directory path """ # Get the path to the prebuild package prebuild_path = os.path.join(build_space_abs, 'catkin_tools_prebuild') if not os.path.exists(prebuild_path): mkdir_p(prebuild_path) # Create CMakeLists.txt file cmakelists_txt_path = os.path.join(prebuild_path, 'CMakeLists.txt') if force or not os.path.exists(cmakelists_txt_path): with open(cmakelists_txt_path, 'wb') as cmakelists_txt: cmakelists_txt.write(SETUP_PREBUILD_CMAKELISTS_TEMPLATE.encode('utf-8')) # Create package.xml file package_xml_path = os.path.join(prebuild_path, 'package.xml') if force or not os.path.exists(package_xml_path): with open(package_xml_path, 'wb') as package_xml: package_xml.write(SETUP_PREBUILD_PACKAGE_XML_TEMPLATE.encode('utf-8')) # Create the build directory for this package mkdir_p(os.path.join(build_space_abs, 'catkin_tools_prebuild')) return prebuild_path def clean_linked_files( logger, event_queue, metadata_path, files_that_collide, files_to_clean, dry_run): """Removes a list of files and adjusts collison counts for colliding files. This function synchronizes access to the devel collisions file. :param devel_space_abs: absolute path to merged devel space :param files_that_collide: list of absolute paths to files that collide :param files_to_clean: list of absolute paths to files to clean """ # Get paths devel_collisions_file_path = os.path.join(metadata_path, 'devel_collisions.txt') # Map from dest files to number of collisions dest_collisions = dict() # Load destination collisions file if os.path.exists(devel_collisions_file_path): with open(devel_collisions_file_path, 'r') as collisions_file: collisions_reader = csv.reader(collisions_file, delimiter=' ', quotechar='"') dest_collisions = dict([(path, int(count)) for path, count in collisions_reader]) # Add collisions for dest_file in files_that_collide: if dest_file in dest_collisions: dest_collisions[dest_file] += 1 else: dest_collisions[dest_file] = 1 # Remove files that no longer collide for dest_file in files_to_clean: # Get the collisions n_collisions = dest_collisions.get(dest_file, 0) # Check collisions if n_collisions == 0: logger.out('Unlinking: {}'.format(dest_file)) # Remove this link if not dry_run: if os.path.exists(dest_file): try: os.unlink(dest_file) except OSError: logger.err('Could not unlink: {}'.format(dest_file)) raise # Remove any non-empty directories containing this file try: os.removedirs(os.path.split(dest_file)[0]) except OSError: pass else: logger.out('Already unlinked: {}') # Update collisions if n_collisions > 1: # Decrement the dest collisions dict dest_collisions[dest_file] -= 1 elif n_collisions == 1: # Remove it from the dest collisions dict del dest_collisions[dest_file] # Load destination collisions file if not dry_run: with open(devel_collisions_file_path, 'w') as collisions_file: collisions_writer = csv.writer(collisions_file, delimiter=' ', quotechar='"') for dest_file, count in dest_collisions.items(): collisions_writer.writerow([dest_file, count]) def unlink_devel_products( logger, event_queue, devel_space_abs, private_devel_path, metadata_path, package_metadata_path, dry_run): """ Remove all files listed in the devel manifest for the given package, as well as any empty directories containing those files. :param devel_space_abs: Path to a merged devel space. :param private_devel_path: Path to the private devel space :param devel_manifest_path: Path to the directory containing the package's catkin_tools metadata """ # Check paths if not os.path.exists(private_devel_path): logger.err('Warning: No private devel path found at `{}`'.format(private_devel_path)) return 0 devel_manifest_file_path = os.path.join(package_metadata_path, DEVEL_MANIFEST_FILENAME) if not os.path.exists(devel_manifest_file_path): logger.err('Error: No devel manifest found at `{}`'.format(devel_manifest_file_path)) return 1 # List of files to clean files_to_clean = [] # Read in devel_manifest.txt with open(devel_manifest_file_path, 'r') as devel_manifest: devel_manifest.readline() manifest_reader = csv.reader(devel_manifest, delimiter=' ', quotechar='"') # Remove all listed symlinks and empty directories for source_file, dest_file in manifest_reader: if not os.path.exists(dest_file): logger.err("Warning: Dest file doesn't exist, so it can't be removed: " + dest_file) elif not os.path.islink(dest_file): logger.err("Error: Dest file isn't a symbolic link: " + dest_file) return -1 elif False and os.path.realpath(dest_file) != source_file: logger.err("Error: Dest file isn't a symbolic link to the expected file: " + dest_file) return -1 else: # Clean the file or decrement the collision count files_to_clean.append(dest_file) # Remove all listed symli and empty directories which have been removed # after this build, and update the collision file clean_linked_files(logger, event_queue, metadata_path, [], files_to_clean, dry_run) return 0 def link_devel_products( logger, event_queue, package, package_path, devel_manifest_path, source_devel_path, dest_devel_path, metadata_path, prebuild): """Link files from an isolated devel space into a merged one. This creates directories and symlinks in a merged devel space to a package's linked devel space. """ # Create the devel manifest path if necessary mkdir_p(devel_manifest_path) # Construct manifest file path devel_manifest_file_path = os.path.join(devel_manifest_path, DEVEL_MANIFEST_FILENAME) # Pair of source/dest files or directories products = list() # List of files to clean files_to_clean = [] # List of files that collide files_that_collide = [] # Select the blacklist blacklist = DEVEL_LINK_PREBUILD_BLACKLIST if prebuild else DEVEL_LINK_BLACKLIST # Gather all of the files in the devel space for source_path, dirs, files in os.walk(source_devel_path): # compute destination path dest_path = os.path.join(dest_devel_path, os.path.relpath(source_path, source_devel_path)) # create directories in the destination develspace for dirname in dirs: source_dir = os.path.join(source_path, dirname) dest_dir = os.path.join(dest_path, dirname) if os.path.islink(source_dir): # Store the source/dest pair products.append((source_dir, dest_dir)) if os.path.exists(dest_dir): if os.path.realpath(dest_dir) != os.path.realpath(source_dir): files_that_collide.append(dest_dir) else: logger.out('Linked: ({}, {})'.format(source_dir, dest_dir)) else: # Create a symlink logger.out('Symlinking %s' % (dest_dir)) try: os.symlink(source_dir, dest_dir) except OSError: logger.err('Could not create symlink `{}` referencing `{}`'.format(dest_dir, source_dir)) raise else: if not os.path.exists(dest_dir): # Create the dest directory if it doesn't exist os.mkdir(dest_dir) elif not os.path.isdir(dest_dir): logger.err('Error: Cannot create directory: {}'.format(dest_dir)) return -1 # create symbolic links from the source to the dest for filename in files: # Don't link files on the blacklist unless this is a prebuild package if os.path.relpath(os.path.join(source_path, filename), source_devel_path) in blacklist: continue source_file = os.path.join(source_path, filename) dest_file = os.path.join(dest_path, filename) # Store the source/dest pair products.append((source_file, dest_file)) # Check if the symlink exists if os.path.exists(dest_file): if os.path.realpath(dest_file) != os.path.realpath(source_file): # Compute hashes for colliding files source_hash = md5(open(os.path.realpath(source_file), "rb").read()).hexdigest() dest_hash = md5(open(os.path.realpath(dest_file), "rb").read()).hexdigest() # If the link links to a different file, report a warning and increment # the collision counter for this path if dest_hash != source_hash: logger.err('Warning: Cannot symlink from %s to existing file %s' % (source_file, dest_file)) logger.err('Warning: Source hash: {}'.format(source_hash)) logger.err('Warning: Dest hash: {}'.format(dest_hash)) # Increment link collision counter files_that_collide.append(dest_file) else: logger.out('Linked: ({}, {})'.format(source_file, dest_file)) else: # Create the symlink logger.out('Symlinking %s' % (dest_file)) try: os.symlink(source_file, dest_file) except OSError: logger.err('Could not create symlink `{}` referencing `{}`'.format(dest_file, source_file)) raise # Load the old list of symlinked files for this package if os.path.exists(devel_manifest_file_path): with open(devel_manifest_file_path, 'r') as devel_manifest: manifest_reader = csv.reader(devel_manifest, delimiter=' ', quotechar='"') # Skip the package source directory devel_manifest.readline() # Read the previously-generated products for source_file, dest_file in manifest_reader: # print('Checking (%s, %s)' % (source_file, dest_file)) if (source_file, dest_file) not in products: # Clean the file or decrement the collision count logger.out('Cleaning: (%s, %s)' % (source_file, dest_file)) files_to_clean.append(dest_file) # Remove all listed symlinks and empty directories which have been removed # after this build, and update the collision file try: clean_linked_files(logger, event_queue, metadata_path, files_that_collide, files_to_clean, dry_run=False) except: # noqa: E722 # Silencing E722 here since we immediately re-raise the exception. logger.err('Could not clean linked files.') raise # Save the list of symlinked files with open(devel_manifest_file_path, 'w') as devel_manifest: # Write the path to the package source directory devel_manifest.write('%s\n' % package_path) # Write all the products manifest_writer = csv.writer(devel_manifest, delimiter=' ', quotechar='"') for source_file, dest_file in products: manifest_writer.writerow([source_file, dest_file]) return 0 def create_catkin_build_job(context, package, package_path, dependencies, force_cmake, pre_clean, prebuild=False): """Job class for building catkin packages""" # Package source space path pkg_dir = os.path.join(context.source_space_abs, package_path) # Package build space path build_space = context.package_build_space(package) # Package devel space path devel_space = context.package_devel_space(package) # Package install space path install_space = context.package_install_space(package) # Package metadata path metadata_path = context.package_metadata_path(package) # Environment dictionary for the job, which will be built # up by the executions in the loadenv stage. job_env = dict(os.environ) # Create job stages stages = [] # Load environment for job. stages.append(FunctionStage( 'loadenv', loadenv, locked_resource=None if context.isolate_install else 'installspace', job_env=job_env, package=package, context=context )) # Create package build space stages.append(FunctionStage( 'mkdir', makedirs, path=build_space )) # Create package metadata dir stages.append(FunctionStage( 'mkdir', makedirs, path=metadata_path )) # Copy source manifest stages.append(FunctionStage( 'cache-manifest', copyfiles, source_paths=[os.path.join(context.source_space_abs, package_path, 'package.xml')], dest_path=os.path.join(metadata_path, 'package.xml') )) # Only run CMake if the Makefile doesn't exist or if --force-cmake is given # TODO: This would need to be different with `cmake --build` makefile_path = os.path.join(build_space, 'Makefile') if not os.path.isfile(makefile_path) or force_cmake: require_command('cmake', CMAKE_EXEC) # CMake command stages.append(CommandStage( 'cmake', [ CMAKE_EXEC, pkg_dir, '--no-warn-unused-cli', '-DCATKIN_DEVEL_PREFIX=' + devel_space, '-DCMAKE_INSTALL_PREFIX=' + install_space ] + context.cmake_args, cwd=build_space, logger_factory=CMakeIOBufferProtocol.factory_factory(pkg_dir), occupy_job=True )) else: # Check buildsystem command stages.append(CommandStage( 'check', [MAKE_EXEC, 'cmake_check_build_system'], cwd=build_space, logger_factory=CMakeIOBufferProtocol.factory_factory(pkg_dir), occupy_job=True )) # Filter make arguments make_args = handle_make_arguments( context.make_args + context.catkin_make_args) # Pre-clean command if pre_clean: # TODO: Remove target args from `make_args` stages.append(CommandStage( 'preclean', [MAKE_EXEC, 'clean'] + make_args, cwd=build_space, )) require_command('make', MAKE_EXEC) # Make command stages.append(CommandStage( 'make', [MAKE_EXEC] + make_args, cwd=build_space, logger_factory=CMakeMakeIOBufferProtocol.factory )) # Symlink command if using a linked develspace if context.link_devel: stages.append(FunctionStage( 'symlink', link_devel_products, locked_resource='symlink-collisions-file', package=package, package_path=package_path, devel_manifest_path=context.package_metadata_path(package), source_devel_path=context.package_devel_space(package), dest_devel_path=context.devel_space_abs, metadata_path=context.metadata_path(), prebuild=prebuild )) # Make install command, if installing if context.install: stages.append(CommandStage( 'install', [MAKE_EXEC, 'install'], cwd=build_space, logger_factory=CMakeMakeIOBufferProtocol.factory, locked_resource=None if context.isolate_install else 'installspace' )) return Job( jid=package.name, deps=dependencies, env=job_env, stages=stages) def create_catkin_clean_job( context, package, package_path, dependencies, dry_run, clean_build, clean_devel, clean_install): """Generate a Job that cleans a catkin package""" stages = [] # Package build space path build_space = context.package_build_space(package) # Package metadata path metadata_path = context.package_metadata_path(package) # Environment dictionary for the job, empty for a clean job job_env = {} # Remove installed files if clean_install: installed_files = get_installed_files(context.package_metadata_path(package)) stages.append(FunctionStage( 'cleaninstall', rmfiles, paths=sorted(installed_files), remove_empty=True, empty_root=context.install_space_abs, dry_run=dry_run)) # Remove products in develspace if clean_devel: if context.merge_devel: # Remove build targets from devel space stages.append(CommandStage( 'clean', [MAKE_EXEC, 'clean'], cwd=build_space, )) elif context.link_devel: # Remove symlinked products stages.append(FunctionStage( 'unlink', unlink_devel_products, locked_resource='symlink-collisions-file', devel_space_abs=context.devel_space_abs, private_devel_path=context.package_private_devel_path(package), metadata_path=context.metadata_path(), package_metadata_path=context.package_metadata_path(package), dry_run=dry_run )) # Remove devel space stages.append(FunctionStage( 'rmdevel', rmfiles, paths=[context.package_private_devel_path(package)], dry_run=dry_run)) elif context.isolate_devel: # Remove devel space stages.append(FunctionStage( 'rmdevel', rmfiles, paths=[context.package_devel_space(package)], dry_run=dry_run)) # Remove build space if clean_build: stages.append(FunctionStage( 'rmbuild', rmfiles, paths=[build_space], dry_run=dry_run)) # Remove cached metadata if clean_build and clean_devel and clean_install: stages.append(FunctionStage( 'rmmetadata', rmfiles, paths=[metadata_path], dry_run=dry_run)) return Job( jid=package.name, deps=dependencies, env=job_env, stages=stages) description = dict( build_type='catkin', description="Builds a catkin package.", create_build_job=create_catkin_build_job, create_clean_job=create_catkin_clean_job ) DEVEL_MANIFEST_FILENAME = 'devel_manifest.txt' # List of files which shouldn't be copied DEVEL_LINK_PREBUILD_BLACKLIST = [ '.catkin', '.rosinstall', ] DEVEL_LINK_BLACKLIST = DEVEL_LINK_PREBUILD_BLACKLIST + [ os.path.join('etc', 'catkin', 'profile.d', '05.catkin_make.bash'), os.path.join('etc', 'catkin', 'profile.d', '05.catkin_make_isolated.bash'), os.path.join('etc', 'catkin', 'profile.d', '05.catkin-test-results.sh'), 'env.sh', 'setup.bash', 'setup.zsh', 'setup.sh', 'local_setup.bash', 'local_setup.zsh', 'local_setup.sh', '_setup_util.py', ] # CMakeLists.txt for prebuild package SETUP_PREBUILD_CMAKELISTS_TEMPLATE = """\ cmake_minimum_required(VERSION 2.8.12) project(catkin_tools_prebuild) find_package(catkin QUIET) if(catkin_FOUND) catkin_package() else() # Generate an error here which is more helpful than the normal one generated by CMake. # TODO: It's possible that we could just do this silently, instead. message(FATAL_ERROR "The catkin CMake module was not found, but it is required to build a linked workspace.\ To resolve this, please do one of the following, and try building again. 1. Source the setup.sh file from an existing catkin workspace: source SETUP_FILE 2. Extend another catkin workspace's result (install or devel) space: catkin config --extend RESULT_SPACE 3. Set `catkin_DIR` to the directory containing `catkin-config.cmake`: catkin config --cmake-args -Dcatkin_DIR=CATKIN_CMAKE_CONFIG_PATH 4. Add the catkin source package to your workspace's source space: cd SOURCE_SPACE && git clone https://github.com/ros/catkin.git") endif() """ # package.xml file for prebuild package SETUP_PREBUILD_PACKAGE_XML_TEMPLATE = """\ <package> <name>catkin_tools_prebuild</name> <description> This package is used to generate catkin setup files. </description> <version>0.0.0</version> <license>BSD</license> <maintainer email="jbo@jhu.edu">jbohren</maintainer> <buildtool_depend>catkin</buildtool_depend> </package> """
35.671779
116
0.640038
8338449aaa0a3ef843f18411081b6bb836b92542
31,164
py
Python
Lib/asyncio/proactor_events.py
chexca/cpython
cfc6ce4d40f2f01314b7e283fb972a7bb3ed3faa
[ "CNRI-Python-GPL-Compatible" ]
4
2017-12-11T08:20:15.000Z
2022-03-08T09:35:04.000Z
Lib/asyncio/proactor_events.py
chexca/cpython
cfc6ce4d40f2f01314b7e283fb972a7bb3ed3faa
[ "CNRI-Python-GPL-Compatible" ]
4
2020-03-13T22:24:05.000Z
2020-03-19T15:08:18.000Z
Lib/asyncio/proactor_events.py
chexca/cpython
cfc6ce4d40f2f01314b7e283fb972a7bb3ed3faa
[ "CNRI-Python-GPL-Compatible" ]
5
2018-12-29T15:43:57.000Z
2020-12-14T15:29:43.000Z
"""Event loop using a proactor and related classes. A proactor is a "notify-on-completion" multiplexer. Currently a proactor is only implemented on Windows with IOCP. """ __all__ = 'BaseProactorEventLoop', import io import os import socket import warnings import signal import threading import collections from . import base_events from . import constants from . import futures from . import exceptions from . import protocols from . import sslproto from . import transports from . import trsock from .log import logger def _set_socket_extra(transport, sock): transport._extra['socket'] = trsock.TransportSocket(sock) try: transport._extra['sockname'] = sock.getsockname() except socket.error: if transport._loop.get_debug(): logger.warning( "getsockname() failed on %r", sock, exc_info=True) if 'peername' not in transport._extra: try: transport._extra['peername'] = sock.getpeername() except socket.error: # UDP sockets may not have a peer name transport._extra['peername'] = None class _ProactorBasePipeTransport(transports._FlowControlMixin, transports.BaseTransport): """Base class for pipe and socket transports.""" def __init__(self, loop, sock, protocol, waiter=None, extra=None, server=None): super().__init__(extra, loop) self._set_extra(sock) self._sock = sock self.set_protocol(protocol) self._server = server self._buffer = None # None or bytearray. self._read_fut = None self._write_fut = None self._pending_write = 0 self._conn_lost = 0 self._closing = False # Set when close() called. self._eof_written = False if self._server is not None: self._server._attach() self._loop.call_soon(self._protocol.connection_made, self) if waiter is not None: # only wake up the waiter when connection_made() has been called self._loop.call_soon(futures._set_result_unless_cancelled, waiter, None) def __repr__(self): info = [self.__class__.__name__] if self._sock is None: info.append('closed') elif self._closing: info.append('closing') if self._sock is not None: info.append(f'fd={self._sock.fileno()}') if self._read_fut is not None: info.append(f'read={self._read_fut!r}') if self._write_fut is not None: info.append(f'write={self._write_fut!r}') if self._buffer: info.append(f'write_bufsize={len(self._buffer)}') if self._eof_written: info.append('EOF written') return '<{}>'.format(' '.join(info)) def _set_extra(self, sock): self._extra['pipe'] = sock def set_protocol(self, protocol): self._protocol = protocol def get_protocol(self): return self._protocol def is_closing(self): return self._closing def close(self): if self._closing: return self._closing = True self._conn_lost += 1 if not self._buffer and self._write_fut is None: self._loop.call_soon(self._call_connection_lost, None) if self._read_fut is not None: self._read_fut.cancel() self._read_fut = None def __del__(self, _warn=warnings.warn): if self._sock is not None: _warn(f"unclosed transport {self!r}", ResourceWarning, source=self) self.close() def _fatal_error(self, exc, message='Fatal error on pipe transport'): try: if isinstance(exc, OSError): if self._loop.get_debug(): logger.debug("%r: %s", self, message, exc_info=True) else: self._loop.call_exception_handler({ 'message': message, 'exception': exc, 'transport': self, 'protocol': self._protocol, }) finally: self._force_close(exc) def _force_close(self, exc): if self._empty_waiter is not None and not self._empty_waiter.done(): if exc is None: self._empty_waiter.set_result(None) else: self._empty_waiter.set_exception(exc) if self._closing: return self._closing = True self._conn_lost += 1 if self._write_fut: self._write_fut.cancel() self._write_fut = None if self._read_fut: self._read_fut.cancel() self._read_fut = None self._pending_write = 0 self._buffer = None self._loop.call_soon(self._call_connection_lost, exc) def _call_connection_lost(self, exc): try: self._protocol.connection_lost(exc) finally: # XXX If there is a pending overlapped read on the other # end then it may fail with ERROR_NETNAME_DELETED if we # just close our end. First calling shutdown() seems to # cure it, but maybe using DisconnectEx() would be better. if hasattr(self._sock, 'shutdown'): self._sock.shutdown(socket.SHUT_RDWR) self._sock.close() self._sock = None server = self._server if server is not None: server._detach() self._server = None def get_write_buffer_size(self): size = self._pending_write if self._buffer is not None: size += len(self._buffer) return size class _ProactorReadPipeTransport(_ProactorBasePipeTransport, transports.ReadTransport): """Transport for read pipes.""" def __init__(self, loop, sock, protocol, waiter=None, extra=None, server=None): self._pending_data = None self._paused = True super().__init__(loop, sock, protocol, waiter, extra, server) self._loop.call_soon(self._loop_reading) self._paused = False def is_reading(self): return not self._paused and not self._closing def pause_reading(self): if self._closing or self._paused: return self._paused = True # bpo-33694: Don't cancel self._read_fut because cancelling an # overlapped WSASend() loss silently data with the current proactor # implementation. # # If CancelIoEx() fails with ERROR_NOT_FOUND, it means that WSASend() # completed (even if HasOverlappedIoCompleted() returns 0), but # Overlapped.cancel() currently silently ignores the ERROR_NOT_FOUND # error. Once the overlapped is ignored, the IOCP loop will ignores the # completion I/O event and so not read the result of the overlapped # WSARecv(). if self._loop.get_debug(): logger.debug("%r pauses reading", self) def resume_reading(self): if self._closing or not self._paused: return self._paused = False if self._read_fut is None: self._loop.call_soon(self._loop_reading, None) data = self._pending_data self._pending_data = None if data is not None: # Call the protocol methode after calling _loop_reading(), # since the protocol can decide to pause reading again. self._loop.call_soon(self._data_received, data) if self._loop.get_debug(): logger.debug("%r resumes reading", self) def _eof_received(self): if self._loop.get_debug(): logger.debug("%r received EOF", self) try: keep_open = self._protocol.eof_received() except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self._fatal_error( exc, 'Fatal error: protocol.eof_received() call failed.') return if not keep_open: self.close() def _data_received(self, data): if self._paused: # Don't call any protocol method while reading is paused. # The protocol will be called on resume_reading(). assert self._pending_data is None self._pending_data = data return if not data: self._eof_received() return if isinstance(self._protocol, protocols.BufferedProtocol): try: protocols._feed_data_to_buffered_proto(self._protocol, data) except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self._fatal_error(exc, 'Fatal error: protocol.buffer_updated() ' 'call failed.') return else: self._protocol.data_received(data) def _loop_reading(self, fut=None): data = None try: if fut is not None: assert self._read_fut is fut or (self._read_fut is None and self._closing) self._read_fut = None if fut.done(): # deliver data later in "finally" clause data = fut.result() else: # the future will be replaced by next proactor.recv call fut.cancel() if self._closing: # since close() has been called we ignore any read data data = None return if data == b'': # we got end-of-file so no need to reschedule a new read return # bpo-33694: buffer_updated() has currently no fast path because of # a data loss issue caused by overlapped WSASend() cancellation. if not self._paused: # reschedule a new read self._read_fut = self._loop._proactor.recv(self._sock, 32768) except ConnectionAbortedError as exc: if not self._closing: self._fatal_error(exc, 'Fatal read error on pipe transport') elif self._loop.get_debug(): logger.debug("Read error on pipe transport while closing", exc_info=True) except ConnectionResetError as exc: self._force_close(exc) except OSError as exc: self._fatal_error(exc, 'Fatal read error on pipe transport') except exceptions.CancelledError: if not self._closing: raise else: if not self._paused: self._read_fut.add_done_callback(self._loop_reading) finally: if data is not None: self._data_received(data) class _ProactorBaseWritePipeTransport(_ProactorBasePipeTransport, transports.WriteTransport): """Transport for write pipes.""" _start_tls_compatible = True def __init__(self, *args, **kw): super().__init__(*args, **kw) self._empty_waiter = None def write(self, data): if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError( f"data argument must be a bytes-like object, " f"not {type(data).__name__}") if self._eof_written: raise RuntimeError('write_eof() already called') if self._empty_waiter is not None: raise RuntimeError('unable to write; sendfile is in progress') if not data: return if self._conn_lost: if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES: logger.warning('socket.send() raised exception.') self._conn_lost += 1 return # Observable states: # 1. IDLE: _write_fut and _buffer both None # 2. WRITING: _write_fut set; _buffer None # 3. BACKED UP: _write_fut set; _buffer a bytearray # We always copy the data, so the caller can't modify it # while we're still waiting for the I/O to happen. if self._write_fut is None: # IDLE -> WRITING assert self._buffer is None # Pass a copy, except if it's already immutable. self._loop_writing(data=bytes(data)) elif not self._buffer: # WRITING -> BACKED UP # Make a mutable copy which we can extend. self._buffer = bytearray(data) self._maybe_pause_protocol() else: # BACKED UP # Append to buffer (also copies). self._buffer.extend(data) self._maybe_pause_protocol() def _loop_writing(self, f=None, data=None): try: if f is not None and self._write_fut is None and self._closing: # XXX most likely self._force_close() has been called, and # it has set self._write_fut to None. return assert f is self._write_fut self._write_fut = None self._pending_write = 0 if f: f.result() if data is None: data = self._buffer self._buffer = None if not data: if self._closing: self._loop.call_soon(self._call_connection_lost, None) if self._eof_written: self._sock.shutdown(socket.SHUT_WR) # Now that we've reduced the buffer size, tell the # protocol to resume writing if it was paused. Note that # we do this last since the callback is called immediately # and it may add more data to the buffer (even causing the # protocol to be paused again). self._maybe_resume_protocol() else: self._write_fut = self._loop._proactor.send(self._sock, data) if not self._write_fut.done(): assert self._pending_write == 0 self._pending_write = len(data) self._write_fut.add_done_callback(self._loop_writing) self._maybe_pause_protocol() else: self._write_fut.add_done_callback(self._loop_writing) if self._empty_waiter is not None and self._write_fut is None: self._empty_waiter.set_result(None) except ConnectionResetError as exc: self._force_close(exc) except OSError as exc: self._fatal_error(exc, 'Fatal write error on pipe transport') def can_write_eof(self): return True def write_eof(self): self.close() def abort(self): self._force_close(None) def _make_empty_waiter(self): if self._empty_waiter is not None: raise RuntimeError("Empty waiter is already set") self._empty_waiter = self._loop.create_future() if self._write_fut is None: self._empty_waiter.set_result(None) return self._empty_waiter def _reset_empty_waiter(self): self._empty_waiter = None class _ProactorWritePipeTransport(_ProactorBaseWritePipeTransport): def __init__(self, *args, **kw): super().__init__(*args, **kw) self._read_fut = self._loop._proactor.recv(self._sock, 16) self._read_fut.add_done_callback(self._pipe_closed) def _pipe_closed(self, fut): if fut.cancelled(): # the transport has been closed return assert fut.result() == b'' if self._closing: assert self._read_fut is None return assert fut is self._read_fut, (fut, self._read_fut) self._read_fut = None if self._write_fut is not None: self._force_close(BrokenPipeError()) else: self.close() class _ProactorDatagramTransport(_ProactorBasePipeTransport): max_size = 256 * 1024 def __init__(self, loop, sock, protocol, address=None, waiter=None, extra=None): self._address = address self._empty_waiter = None # We don't need to call _protocol.connection_made() since our base # constructor does it for us. super().__init__(loop, sock, protocol, waiter=waiter, extra=extra) # The base constructor sets _buffer = None, so we set it here self._buffer = collections.deque() self._loop.call_soon(self._loop_reading) def _set_extra(self, sock): _set_socket_extra(self, sock) def get_write_buffer_size(self): return sum(len(data) for data, _ in self._buffer) def abort(self): self._force_close(None) def sendto(self, data, addr=None): if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError('data argument must be bytes-like object (%r)', type(data)) if not data: return if self._address is not None and addr not in (None, self._address): raise ValueError( f'Invalid address: must be None or {self._address}') if self._conn_lost and self._address: if self._conn_lost >= constants.LOG_THRESHOLD_FOR_CONNLOST_WRITES: logger.warning('socket.sendto() raised exception.') self._conn_lost += 1 return # Ensure that what we buffer is immutable. self._buffer.append((bytes(data), addr)) if self._write_fut is None: # No current write operations are active, kick one off self._loop_writing() # else: A write operation is already kicked off self._maybe_pause_protocol() def _loop_writing(self, fut=None): try: if self._conn_lost: return assert fut is self._write_fut self._write_fut = None if fut: # We are in a _loop_writing() done callback, get the result fut.result() if not self._buffer or (self._conn_lost and self._address): # The connection has been closed if self._closing: self._loop.call_soon(self._call_connection_lost, None) return data, addr = self._buffer.popleft() if self._address is not None: self._write_fut = self._loop._proactor.send(self._sock, data) else: self._write_fut = self._loop._proactor.sendto(self._sock, data, addr=addr) except OSError as exc: self._protocol.error_received(exc) except Exception as exc: self._fatal_error(exc, 'Fatal write error on datagram transport') else: self._write_fut.add_done_callback(self._loop_writing) self._maybe_resume_protocol() def _loop_reading(self, fut=None): data = None try: if self._conn_lost: return assert self._read_fut is fut or (self._read_fut is None and self._closing) self._read_fut = None if fut is not None: res = fut.result() if self._closing: # since close() has been called we ignore any read data data = None return if self._address is not None: data, addr = res, self._address else: data, addr = res if self._conn_lost: return if self._address is not None: self._read_fut = self._loop._proactor.recv(self._sock, self.max_size) else: self._read_fut = self._loop._proactor.recvfrom(self._sock, self.max_size) except OSError as exc: self._protocol.error_received(exc) except exceptions.CancelledError: if not self._closing: raise else: if self._read_fut is not None: self._read_fut.add_done_callback(self._loop_reading) finally: if data: self._protocol.datagram_received(data, addr) class _ProactorDuplexPipeTransport(_ProactorReadPipeTransport, _ProactorBaseWritePipeTransport, transports.Transport): """Transport for duplex pipes.""" def can_write_eof(self): return False def write_eof(self): raise NotImplementedError class _ProactorSocketTransport(_ProactorReadPipeTransport, _ProactorBaseWritePipeTransport, transports.Transport): """Transport for connected sockets.""" _sendfile_compatible = constants._SendfileMode.TRY_NATIVE def __init__(self, loop, sock, protocol, waiter=None, extra=None, server=None): super().__init__(loop, sock, protocol, waiter, extra, server) base_events._set_nodelay(sock) def _set_extra(self, sock): _set_socket_extra(self, sock) def can_write_eof(self): return True def write_eof(self): if self._closing or self._eof_written: return self._eof_written = True if self._write_fut is None: self._sock.shutdown(socket.SHUT_WR) class BaseProactorEventLoop(base_events.BaseEventLoop): def __init__(self, proactor): super().__init__() logger.debug('Using proactor: %s', proactor.__class__.__name__) self._proactor = proactor self._selector = proactor # convenient alias self._self_reading_future = None self._accept_futures = {} # socket file descriptor => Future proactor.set_loop(self) self._make_self_pipe() if threading.current_thread() is threading.main_thread(): # wakeup fd can only be installed to a file descriptor from the main thread signal.set_wakeup_fd(self._csock.fileno()) def _make_socket_transport(self, sock, protocol, waiter=None, extra=None, server=None): return _ProactorSocketTransport(self, sock, protocol, waiter, extra, server) def _make_ssl_transport( self, rawsock, protocol, sslcontext, waiter=None, *, server_side=False, server_hostname=None, extra=None, server=None, ssl_handshake_timeout=None): ssl_protocol = sslproto.SSLProtocol( self, protocol, sslcontext, waiter, server_side, server_hostname, ssl_handshake_timeout=ssl_handshake_timeout) _ProactorSocketTransport(self, rawsock, ssl_protocol, extra=extra, server=server) return ssl_protocol._app_transport def _make_datagram_transport(self, sock, protocol, address=None, waiter=None, extra=None): return _ProactorDatagramTransport(self, sock, protocol, address, waiter, extra) def _make_duplex_pipe_transport(self, sock, protocol, waiter=None, extra=None): return _ProactorDuplexPipeTransport(self, sock, protocol, waiter, extra) def _make_read_pipe_transport(self, sock, protocol, waiter=None, extra=None): return _ProactorReadPipeTransport(self, sock, protocol, waiter, extra) def _make_write_pipe_transport(self, sock, protocol, waiter=None, extra=None): # We want connection_lost() to be called when other end closes return _ProactorWritePipeTransport(self, sock, protocol, waiter, extra) def close(self): if self.is_running(): raise RuntimeError("Cannot close a running event loop") if self.is_closed(): return if threading.current_thread() is threading.main_thread(): signal.set_wakeup_fd(-1) # Call these methods before closing the event loop (before calling # BaseEventLoop.close), because they can schedule callbacks with # call_soon(), which is forbidden when the event loop is closed. self._stop_accept_futures() self._close_self_pipe() self._proactor.close() self._proactor = None self._selector = None # Close the event loop super().close() async def sock_recv(self, sock, n): return await self._proactor.recv(sock, n) async def sock_recv_into(self, sock, buf): return await self._proactor.recv_into(sock, buf) async def sock_sendall(self, sock, data): return await self._proactor.send(sock, data) async def sock_connect(self, sock, address): return await self._proactor.connect(sock, address) async def sock_accept(self, sock): return await self._proactor.accept(sock) async def _sock_sendfile_native(self, sock, file, offset, count): try: fileno = file.fileno() except (AttributeError, io.UnsupportedOperation) as err: raise exceptions.SendfileNotAvailableError("not a regular file") try: fsize = os.fstat(fileno).st_size except OSError: raise exceptions.SendfileNotAvailableError("not a regular file") blocksize = count if count else fsize if not blocksize: return 0 # empty file blocksize = min(blocksize, 0xffff_ffff) end_pos = min(offset + count, fsize) if count else fsize offset = min(offset, fsize) total_sent = 0 try: while True: blocksize = min(end_pos - offset, blocksize) if blocksize <= 0: return total_sent await self._proactor.sendfile(sock, file, offset, blocksize) offset += blocksize total_sent += blocksize finally: if total_sent > 0: file.seek(offset) async def _sendfile_native(self, transp, file, offset, count): resume_reading = transp.is_reading() transp.pause_reading() await transp._make_empty_waiter() try: return await self.sock_sendfile(transp._sock, file, offset, count, fallback=False) finally: transp._reset_empty_waiter() if resume_reading: transp.resume_reading() def _close_self_pipe(self): if self._self_reading_future is not None: self._self_reading_future.cancel() self._self_reading_future = None self._ssock.close() self._ssock = None self._csock.close() self._csock = None self._internal_fds -= 1 def _make_self_pipe(self): # A self-socket, really. :-) self._ssock, self._csock = socket.socketpair() self._ssock.setblocking(False) self._csock.setblocking(False) self._internal_fds += 1 def _loop_self_reading(self, f=None): try: if f is not None: f.result() # may raise f = self._proactor.recv(self._ssock, 4096) except exceptions.CancelledError: # _close_self_pipe() has been called, stop waiting for data return except (SystemExit, KeyboardInterrupt): raise except BaseException as exc: self.call_exception_handler({ 'message': 'Error on reading from the event loop self pipe', 'exception': exc, 'loop': self, }) else: self._self_reading_future = f f.add_done_callback(self._loop_self_reading) def _write_to_self(self): try: self._csock.send(b'\0') except OSError: if self._debug: logger.debug("Fail to write a null byte into the " "self-pipe socket", exc_info=True) def _start_serving(self, protocol_factory, sock, sslcontext=None, server=None, backlog=100, ssl_handshake_timeout=None): def loop(f=None): try: if f is not None: conn, addr = f.result() if self._debug: logger.debug("%r got a new connection from %r: %r", server, addr, conn) protocol = protocol_factory() if sslcontext is not None: self._make_ssl_transport( conn, protocol, sslcontext, server_side=True, extra={'peername': addr}, server=server, ssl_handshake_timeout=ssl_handshake_timeout) else: self._make_socket_transport( conn, protocol, extra={'peername': addr}, server=server) if self.is_closed(): return f = self._proactor.accept(sock) except OSError as exc: if sock.fileno() != -1: self.call_exception_handler({ 'message': 'Accept failed on a socket', 'exception': exc, 'socket': trsock.TransportSocket(sock), }) sock.close() elif self._debug: logger.debug("Accept failed on socket %r", sock, exc_info=True) except exceptions.CancelledError: sock.close() else: self._accept_futures[sock.fileno()] = f f.add_done_callback(loop) self.call_soon(loop) def _process_events(self, event_list): # Events are processed in the IocpProactor._poll() method pass def _stop_accept_futures(self): for future in self._accept_futures.values(): future.cancel() self._accept_futures.clear() def _stop_serving(self, sock): future = self._accept_futures.pop(sock.fileno(), None) if future: future.cancel() self._proactor._stop_serving(sock) sock.close()
36.577465
87
0.569054
0088e39753c85f3a93566693289c33cd78e72505
944
py
Python
app.py
pltzr/devops-bosch-app
5940ef317c7c9e6d05a37eafa429d0f32d6d1f52
[ "MIT" ]
null
null
null
app.py
pltzr/devops-bosch-app
5940ef317c7c9e6d05a37eafa429d0f32d6d1f52
[ "MIT" ]
null
null
null
app.py
pltzr/devops-bosch-app
5940ef317c7c9e6d05a37eafa429d0f32d6d1f52
[ "MIT" ]
null
null
null
import numpy as np from flask import Flask, request, jsonify, render_template import pickle import os app = Flask(__name__) # Here we are fetching the name of the model from an environment variable. In production, # the model is stored in a Blob storage which is "mounted" to the App Service instance. model_name = os.environ.get("MODEL_NAME") model_path = os.environ.get("MODEL_PATH") model = pickle.load(open(model_path + model_name, 'rb')) @app.route('/', methods=['GET']) def home(): return ("To try out this application, please send a POST request to /results. The exact \ requirements can be found inside the Postman collection in the repository!") @app.route('/results',methods=['POST']) def results(): data = request.get_json(force=True) prediction = model.predict([np.array(list(data.values()))]) output = prediction[0] return jsonify(output) if __name__ == "__main__": app.run(debug=True)
29.5
93
0.715042
4e429877fdf24eb54a9520d835536c47bd5ce3eb
5,940
py
Python
test/torchaudio_unittest/backend/sox_io/torchscript_test.py
majabojarska/audio
765fde0873ee52be9c1db1fdc7fddedb721f4d0c
[ "BSD-2-Clause" ]
null
null
null
test/torchaudio_unittest/backend/sox_io/torchscript_test.py
majabojarska/audio
765fde0873ee52be9c1db1fdc7fddedb721f4d0c
[ "BSD-2-Clause" ]
null
null
null
test/torchaudio_unittest/backend/sox_io/torchscript_test.py
majabojarska/audio
765fde0873ee52be9c1db1fdc7fddedb721f4d0c
[ "BSD-2-Clause" ]
null
null
null
import itertools from typing import Optional import torch import torchaudio from parameterized import parameterized from torchaudio_unittest.common_utils import ( TempDirMixin, TorchaudioTestCase, skipIfNoExec, skipIfNoExtension, get_wav_data, save_wav, load_wav, sox_utils, ) from .common import ( name_func, get_enc_params, ) def py_info_func(filepath: str) -> torchaudio.backend.sox_io_backend.AudioMetaData: return torchaudio.info(filepath) def py_load_func(filepath: str, normalize: bool, channels_first: bool): return torchaudio.load( filepath, normalize=normalize, channels_first=channels_first) def py_save_func( filepath: str, tensor: torch.Tensor, sample_rate: int, channels_first: bool = True, compression: Optional[float] = None, encoding: Optional[str] = None, bits_per_sample: Optional[int] = None, ): torchaudio.save( filepath, tensor, sample_rate, channels_first, compression, None, encoding, bits_per_sample) @skipIfNoExec('sox') @skipIfNoExtension class SoxIO(TempDirMixin, TorchaudioTestCase): """TorchScript-ability Test suite for `sox_io_backend`""" backend = 'sox_io' @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_info_wav(self, dtype, sample_rate, num_channels): """`sox_io_backend.info` is torchscript-able and returns the same result""" audio_path = self.get_temp_path(f'{dtype}_{sample_rate}_{num_channels}.wav') data = get_wav_data(dtype, num_channels, normalize=False, num_frames=1 * sample_rate) save_wav(audio_path, data, sample_rate) script_path = self.get_temp_path('info_func.zip') torch.jit.script(py_info_func).save(script_path) ts_info_func = torch.jit.load(script_path) py_info = py_info_func(audio_path) ts_info = ts_info_func(audio_path) assert py_info.sample_rate == ts_info.sample_rate assert py_info.num_frames == ts_info.num_frames assert py_info.num_channels == ts_info.num_channels @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], [False, True], [False, True], )), name_func=name_func) def test_load_wav(self, dtype, sample_rate, num_channels, normalize, channels_first): """`sox_io_backend.load` is torchscript-able and returns the same result""" audio_path = self.get_temp_path(f'test_load_{dtype}_{sample_rate}_{num_channels}_{normalize}.wav') data = get_wav_data(dtype, num_channels, normalize=False, num_frames=1 * sample_rate) save_wav(audio_path, data, sample_rate) script_path = self.get_temp_path('load_func.zip') torch.jit.script(py_load_func).save(script_path) ts_load_func = torch.jit.load(script_path) py_data, py_sr = py_load_func( audio_path, normalize=normalize, channels_first=channels_first) ts_data, ts_sr = ts_load_func( audio_path, normalize=normalize, channels_first=channels_first) self.assertEqual(py_sr, ts_sr) self.assertEqual(py_data, ts_data) @parameterized.expand(list(itertools.product( ['float32', 'int32', 'int16', 'uint8'], [8000, 16000], [1, 2], )), name_func=name_func) def test_save_wav(self, dtype, sample_rate, num_channels): script_path = self.get_temp_path('save_func.zip') torch.jit.script(py_save_func).save(script_path) ts_save_func = torch.jit.load(script_path) expected = get_wav_data(dtype, num_channels, normalize=False) py_path = self.get_temp_path(f'test_save_py_{dtype}_{sample_rate}_{num_channels}.wav') ts_path = self.get_temp_path(f'test_save_ts_{dtype}_{sample_rate}_{num_channels}.wav') enc, bps = get_enc_params(dtype) py_save_func(py_path, expected, sample_rate, True, None, enc, bps) ts_save_func(ts_path, expected, sample_rate, True, None, enc, bps) py_data, py_sr = load_wav(py_path, normalize=False) ts_data, ts_sr = load_wav(ts_path, normalize=False) self.assertEqual(sample_rate, py_sr) self.assertEqual(sample_rate, ts_sr) self.assertEqual(expected, py_data) self.assertEqual(expected, ts_data) @parameterized.expand(list(itertools.product( [8000, 16000], [1, 2], list(range(9)), )), name_func=name_func) def test_save_flac(self, sample_rate, num_channels, compression_level): script_path = self.get_temp_path('save_func.zip') torch.jit.script(py_save_func).save(script_path) ts_save_func = torch.jit.load(script_path) expected = get_wav_data('float32', num_channels) py_path = self.get_temp_path(f'test_save_py_{sample_rate}_{num_channels}_{compression_level}.flac') ts_path = self.get_temp_path(f'test_save_ts_{sample_rate}_{num_channels}_{compression_level}.flac') py_save_func(py_path, expected, sample_rate, True, compression_level, None, None) ts_save_func(ts_path, expected, sample_rate, True, compression_level, None, None) # converting to 32 bit because flac file has 24 bit depth which scipy cannot handle. py_path_wav = f'{py_path}.wav' ts_path_wav = f'{ts_path}.wav' sox_utils.convert_audio_file(py_path, py_path_wav, bit_depth=32) sox_utils.convert_audio_file(ts_path, ts_path_wav, bit_depth=32) py_data, py_sr = load_wav(py_path_wav, normalize=True) ts_data, ts_sr = load_wav(ts_path_wav, normalize=True) self.assertEqual(sample_rate, py_sr) self.assertEqual(sample_rate, ts_sr) self.assertEqual(expected, py_data) self.assertEqual(expected, ts_data)
38.076923
107
0.691077
b0efbbcdd16f6901beded3da95826e5e70307dad
6,971
py
Python
tests/test_bbclib_assets_v2.py
ks91/py-bbclib
67bf402445cb44f99cdbd3a1efde8ec0515815d9
[ "Apache-2.0" ]
null
null
null
tests/test_bbclib_assets_v2.py
ks91/py-bbclib
67bf402445cb44f99cdbd3a1efde8ec0515815d9
[ "Apache-2.0" ]
8
2019-07-10T00:58:53.000Z
2021-08-25T04:57:06.000Z
tests/test_bbclib_assets_v2.py
ks91/py-bbclib
67bf402445cb44f99cdbd3a1efde8ec0515815d9
[ "Apache-2.0" ]
3
2019-07-09T14:45:51.000Z
2021-08-04T09:58:27.000Z
# -*- coding: utf-8 -*- import binascii import sys sys.path.extend(["../"]) import bbclib from bbclib import BBcTransaction, BBcRelation, KeyPair, BBcAssetRaw, BBcAssetHash, configure_id_length_all ID_LEN = 32 configure_id_length_all(ID_LEN) user_id = bbclib.get_new_id("user_id_test1")[:ID_LEN] user_id2 = bbclib.get_new_id("user_id_test2")[:ID_LEN] domain_id = bbclib.get_new_id("testdomain") asset_group_id = bbclib.get_new_id("asset_group_1")[:ID_LEN] transaction1_id = bbclib.get_new_id("transaction_1")[:ID_LEN] transaction2_id = bbclib.get_new_id("transaction_2")[:ID_LEN] keypair1 = KeyPair() keypair1.generate() keypair2 = KeyPair() keypair2.generate() asset_content = b'abcdefg' print("\n") print("private_key:", binascii.b2a_hex(keypair1.private_key)) print("private_key(pem):\n", keypair1.get_private_key_in_pem()) print("public_key:", binascii.b2a_hex(keypair1.public_key)) class TestBBcLibAssetsV2(object): def test_00_keypair(self): print("\n-----", sys._getframe().f_code.co_name, "-----") global keypair1 kp = KeyPair(pubkey=keypair1.public_key) assert kp.public_key def test_01_transaction_with_relation_and_witness_and_proof(self): print("\n-----", sys._getframe().f_code.co_name, "-----") transaction1 = bbclib.make_transaction(relation_num=1, witness=True) transaction1.version = 2 bbclib.add_relation_asset(transaction1, relation_idx=0, asset_group_id=asset_group_id, user_id=user_id, asset_body=b'ccccc') rtn1 = BBcRelation(asset_group_id=asset_group_id) rtn2 = BBcRelation(asset_group_id=asset_group_id) transaction1.add(relation=[rtn1, rtn2]) asid = bbclib.get_new_id("assetraw1")[:ID_LEN] asset_raw = BBcAssetRaw(asset_id=asid, asset_body=b'1234567890abcdefg') rtn1.add(asset_raw=asset_raw) ash = [bbclib.get_new_id("assethash%d"%i)[:ID_LEN] for i in range(1, 4)] asset_hash = BBcAssetHash(asset_ids=ash) rtn2.add(asset_hash=asset_hash) bbclib.add_relation_pointer(transaction1, relation_idx=0, ref_transaction_id=bbclib.get_new_id("dummy1")) bbclib.add_relation_pointer(transaction1, relation_idx=1, ref_transaction_id=bbclib.get_new_id("dummy2")) bbclib.add_relation_pointer(transaction1, relation_idx=2, ref_transaction_id=bbclib.get_new_id("dummy3")) transaction1.witness.add_witness(user_id=user_id) transaction1.witness.add_witness(user_id=user_id2) sig = transaction1.sign(private_key=keypair2.private_key, public_key=keypair2.public_key) if sig is None: print(bbclib.error_text) assert sig transaction1.witness.add_signature(user_id=user_id2, signature=sig) sig = transaction1.sign(private_key=keypair1.private_key, public_key=keypair1.public_key) if sig is None: print(bbclib.error_text) assert sig transaction1.witness.add_signature(user_id=user_id, signature=sig) digest = transaction1.digest() dat = transaction1.pack() print("Digest:", binascii.b2a_hex(digest)) print("Serialized data:", binascii.b2a_hex(dat)) print(transaction1) transaction_tmp = BBcTransaction() transaction_tmp.unpack(dat) transaction1 = transaction_tmp print(transaction1) assert transaction1.relations[1].asset_raw is not None assert transaction1.relations[1].asset_raw.asset_id == asid assert transaction1.relations[2].asset_hash is not None for i, h in enumerate(transaction1.relations[2].asset_hash.asset_ids): assert ash[i] == h digest = transaction1.digest() ret = transaction1.signatures[0].verify(digest) print("Proof result:", ret) if not ret: print(bbclib.error_text) assert ret def test_02_create_transaction_by_utility(self): print("\n-----", sys._getframe().f_code.co_name, "-----") transaction1 = bbclib.make_transaction(relation_num=3, witness=True, version=3) ash = [bbclib.get_new_id("assethash%d"%i)[:ID_LEN] for i in range(7)] bbclib.add_relation_asset(transaction1, relation_idx=0, asset_group_id=asset_group_id, user_id=user_id, asset_body=b'ccccc') bbclib.add_relation_asset_raw(transaction1, relation_idx=1, asset_group_id=asset_group_id, asset_id=ash[0]) bbclib.add_relation_asset_hash(transaction1, relation_idx=2, asset_group_id=asset_group_id, asset_ids=ash[1:3]) rtn3 = bbclib.make_relation_with_asset(asset_group_id, user_id, asset_body=b'xxxxxx') rtn4 = bbclib.make_relation_with_asset_raw(asset_group_id, asset_id=ash[4], asset_body=b'yyyyyy') rtn5 = bbclib.make_relation_with_asset_hash(asset_group_id, asset_ids=ash[5:]) transaction1.add(relation=[rtn3, rtn4, rtn5]) bbclib.add_relation_pointer(transaction1, relation_idx=0, ref_transaction_id=bbclib.get_new_id("dummy1")) bbclib.add_relation_pointer(transaction1, relation_idx=1, ref_transaction_id=bbclib.get_new_id("dummy2")) bbclib.add_relation_pointer(transaction1, relation_idx=2, ref_transaction_id=bbclib.get_new_id("dummy3")) transaction1.witness.add_witness(user_id=user_id) transaction1.witness.add_witness(user_id=user_id2) sig = transaction1.sign(private_key=keypair2.private_key, public_key=keypair2.public_key) if sig is None: print(bbclib.error_text) assert sig transaction1.witness.add_signature(user_id=user_id2, signature=sig) sig = transaction1.sign(private_key=keypair1.private_key, public_key=keypair1.public_key) if sig is None: print(bbclib.error_text) assert sig transaction1.witness.add_signature(user_id=user_id, signature=sig) digest = transaction1.digest() dat = transaction1.pack() print("Digest:", binascii.b2a_hex(digest)) print("Serialized data:", binascii.b2a_hex(dat)) print(transaction1) transaction_tmp = BBcTransaction() transaction_tmp.unpack(dat) transaction1 = transaction_tmp print(transaction1) assert transaction1.relations[1].asset_raw is not None assert transaction1.relations[1].asset_raw.asset_id == ash[0] assert transaction1.relations[2].asset_hash is not None for i, h in enumerate(transaction1.relations[2].asset_hash.asset_ids): assert ash[i+1] == h assert transaction1.relations[3].asset.asset_body == b'xxxxxx' assert transaction1.relations[4].asset_raw.asset_id == ash[4] assert len(transaction1.relations[5].asset_hash.asset_ids) == 2 digest = transaction1.digest() ret = transaction1.signatures[0].verify(digest) print("Proof result:", ret) if not ret: print(bbclib.error_text) assert ret
44.401274
132
0.702482
e3837a8033216d187e554f5a9f8e501979350467
9,075
py
Python
2_deep_codes/3_Siamese_triplet/Evaluate_embedding_space.py
bghojogh/Quantile-Quantile-Embedding
5daff878a838f6dbeb04cc0b15da2ad66ab9796c
[ "MIT" ]
1
2020-09-19T17:50:50.000Z
2020-09-19T17:50:50.000Z
2_deep_codes/3_Siamese_triplet/Evaluate_embedding_space.py
bghojogh/Quantile-Quantile-Embedding
5daff878a838f6dbeb04cc0b15da2ad66ab9796c
[ "MIT" ]
null
null
null
2_deep_codes/3_Siamese_triplet/Evaluate_embedding_space.py
bghojogh/Quantile-Quantile-Embedding
5daff878a838f6dbeb04cc0b15da2ad66ab9796c
[ "MIT" ]
null
null
null
import tensorflow as tf import os import numpy as np import umap import matplotlib.pyplot as plt import dataset_characteristics from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix import pickle import itertools class Evaluate_embedding_space(): def __init__(self, checkpoint_dir, model_dir_): self.checkpoint_dir = checkpoint_dir self.model_dir_ = model_dir_ self.batch_size = 32 self.n_samples = 100 self.feature_space_dimension = 128 def embed_the_data(self, X, labels, siamese, path_save_embeddings_of_test_data): print("Embedding the data....") saver_ = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) succesful_load, latest_epoch = self.load_network_model(saver_=saver_, session_=sess, checkpoint_dir=self.checkpoint_dir, model_dir_=self.model_dir_) assert (succesful_load == True) X = self.normalize_images(X) test_feed_dict = { siamese.x1: X } embedding = sess.run(siamese.o1, feed_dict=test_feed_dict) if not os.path.exists(path_save_embeddings_of_test_data+"numpy\\"): os.makedirs(path_save_embeddings_of_test_data+"numpy\\") np.save(path_save_embeddings_of_test_data+"numpy\\embedding.npy", embedding) np.save(path_save_embeddings_of_test_data+"numpy\\labels.npy", labels) if not os.path.exists(path_save_embeddings_of_test_data+"plots\\"): os.makedirs(path_save_embeddings_of_test_data+"plots\\") # plt.figure(200) plt = self.plot_embedding_of_points(embedding=embedding, labels=labels, n_samples_plot=2000) plt.savefig(path_save_embeddings_of_test_data+"plots\\" + 'embedding.png') plt.clf() plt.close() return embedding, labels def normalize_images(self, X_batch): # also see normalize_images() method in Utils.py X_batch = X_batch * (1. / 255) - 0.5 return X_batch def plot_embedding_of_points(self, embedding, labels, n_samples_plot=None): n_samples = embedding.shape[0] if n_samples_plot != None: indices_to_plot = np.random.choice(range(n_samples), min(n_samples_plot, n_samples), replace=False) embedding_sampled = embedding[indices_to_plot, :] else: indices_to_plot = [i for i in range(n_samples)] embedding_sampled = embedding if embedding.shape[1] == 2: pass else: embedding_sampled = umap.UMAP(n_neighbors=500).fit_transform(embedding_sampled) n_points = embedding.shape[0] # n_points_sampled = embedding_sampled.shape[0] labels_sampled = labels[indices_to_plot] _, ax = plt.subplots(1, figsize=(14, 10)) classes = dataset_characteristics.get_class_names() n_classes = len(classes) plt.scatter(embedding_sampled[:, 0], embedding_sampled[:, 1], s=10, c=labels_sampled, cmap='Spectral', alpha=1.0) # plt.setp(ax, xticks=[], yticks=[]) cbar = plt.colorbar(boundaries=np.arange(n_classes + 1) - 0.5) cbar.set_ticks(np.arange(n_classes)) cbar.set_ticklabels(classes) return plt def load_network_model(self, saver_, session_, checkpoint_dir, model_dir_): # https://stackoverflow.com/questions/33759623/tensorflow-how-to-save-restore-a-model print(" [*] Reading checkpoints...") checkpoint_dir = os.path.join(checkpoint_dir, model_dir_) ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) saver_.restore(session_, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(ckpt_name)) latest_epoch = int(ckpt_name.split("-")[-1]) return True, latest_epoch else: print(" [*] Failed to find a checkpoint") return False, 0 def classify_with_1NN(self, embedding, labels, path_to_save): print("KNN on embedding data....") unique_labels = np.unique(labels) n_classes = len(unique_labels) neigh = KNeighborsClassifier(n_neighbors=2) #--> it includes itself too neigh.fit(embedding, labels) y_pred = neigh.predict(embedding) accuracy_test = accuracy_score(y_true=labels, y_pred=y_pred) conf_matrix_test = confusion_matrix(y_true=labels, y_pred=y_pred) self.save_np_array_to_txt(variable=np.asarray(accuracy_test), name_of_variable="accuracy_test", path_to_save=path_to_save) self.save_variable(variable=accuracy_test, name_of_variable="accuracy_test", path_to_save=path_to_save) # self.plot_confusion_matrix(confusion_matrix=conf_matrix_test, class_names=[str(class_index+1) for class_index in range(n_classes)], # normalize=True, cmap="gray_r", path_to_save=path_to_save, name="test") self.plot_confusion_matrix(confusion_matrix=conf_matrix_test, class_names=[str(class_index) for class_index in range(n_classes)], normalize=True, cmap="gray_r", path_to_save=path_to_save, name="test") def plot_confusion_matrix(self, confusion_matrix, class_names, normalize=False, cmap="gray", path_to_save="./", name="temp"): # https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: confusion_matrix = confusion_matrix.astype('float') / confusion_matrix.sum(axis=1)[:, np.newaxis] # print("Normalized confusion matrix") else: pass # print('Confusion matrix, without normalization') # print(cm) plt.imshow(confusion_matrix, interpolation='nearest', cmap=cmap) # plt.colorbar() tick_marks = np.arange(len(class_names)) # plt.xticks(tick_marks, class_names, rotation=45) plt.xticks(tick_marks, class_names, rotation=0) plt.yticks(tick_marks, class_names) # tick_marks = np.arange(len(class_names) - 1) # plt.yticks(tick_marks, class_names[1:]) fmt = '.2f' if normalize else 'd' thresh = confusion_matrix.max() / 2. for i, j in itertools.product(range(confusion_matrix.shape[0]), range(confusion_matrix.shape[1])): plt.text(j, i, format(confusion_matrix[i, j], fmt), horizontalalignment="center", color="white" if confusion_matrix[i, j] > thresh else "black") # plt.ylabel('True label') # plt.xlabel('Predicted label') plt.ylabel('true distortion type') plt.xlabel('predicted distortion type') n_classes = len(class_names) plt.ylim([n_classes - 0.5, -0.5]) plt.tight_layout() # plt.show() plt.savefig(path_to_save + name + ".png") plt.clf() plt.close() def save_variable(self, variable, name_of_variable, path_to_save='./'): # https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python if not os.path.exists(path_to_save): # https://stackoverflow.com/questions/273192/how-can-i-create-a-directory-if-it-does-not-exist os.makedirs(path_to_save) file_address = path_to_save + name_of_variable + '.pckl' f = open(file_address, 'wb') pickle.dump(variable, f) f.close() def load_variable(self, name_of_variable, path='./'): # https://stackoverflow.com/questions/6568007/how-do-i-save-and-restore-multiple-variables-in-python file_address = path + name_of_variable + '.pckl' f = open(file_address, 'rb') variable = pickle.load(f) f.close() return variable def save_np_array_to_txt(self, variable, name_of_variable, path_to_save='./'): if type(variable) is list: variable = np.asarray(variable) # https://stackoverflow.com/questions/22821460/numpy-save-2d-array-to-text-file/22822701 if not os.path.exists( path_to_save): # https://stackoverflow.com/questions/273192/how-can-i-create-a-directory-if-it-does-not-exist os.makedirs(path_to_save) file_address = path_to_save + name_of_variable + '.txt' np.set_printoptions(threshold=np.inf, linewidth=np.inf) # turn off summarization, line-wrapping with open(file_address, 'w') as f: f.write(np.array2string(variable, separator=', '))
49.054054
162
0.654545
0c7a65cfca9772a60e5af9785e5e4f9d1c361645
26,654
py
Python
gluon/cache.py
btreecat/web2py
7ec50c25b2eced11af8bd2d17f7fce41cd7d8a10
[ "BSD-3-Clause" ]
null
null
null
gluon/cache.py
btreecat/web2py
7ec50c25b2eced11af8bd2d17f7fce41cd7d8a10
[ "BSD-3-Clause" ]
null
null
null
gluon/cache.py
btreecat/web2py
7ec50c25b2eced11af8bd2d17f7fce41cd7d8a10
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ | This file is part of the web2py Web Framework | Copyrighted by Massimo Di Pierro <mdipierro@cs.depaul.edu> | License: LGPLv3 (http://www.gnu.org/licenses/lgpl.html) Basic caching classes and methods --------------------------------- - Cache - The generic caching object interfacing with the others - CacheInRam - providing caching in ram - CacheOnDisk - provides caches on disk Memcache is also available via a different module (see gluon.contrib.memcache) When web2py is running on Google App Engine, caching will be provided by the GAE memcache (see gluon.contrib.gae_memcache) """ import time import thread import os import gc import sys import logging import re import random import hashlib import datetime import tempfile from gluon import recfile from gluon import portalocker from collections import defaultdict try: from collections import OrderedDict except ImportError: from gluon.contrib.ordereddict import OrderedDict try: from gluon import settings have_settings = True except ImportError: have_settings = False try: import cPickle as pickle except: import pickle try: import psutil HAVE_PSUTIL = True except ImportError: HAVE_PSUTIL = False def remove_oldest_entries(storage, percentage=90): # compute current memory usage (%) old_mem = psutil.virtual_memory().percent # if we have data in storage and utilization exceeds 90% while storage and old_mem > percentage: # removed oldest entry storage.popitem(last=False) # garbage collect gc.collect(1) # comute used memory again new_mem = psutil.virtual_memory().percent # if the used memory did not decrease stop if new_mem >= old_mem: break # net new measurement for memory usage and loop old_mem = new_mem logger = logging.getLogger("web2py.cache") __all__ = ['Cache', 'lazy_cache'] DEFAULT_TIME_EXPIRE = 300 class CacheAbstract(object): """ Abstract class for cache implementations. Main function just provides referenced api documentation. Use CacheInRam or CacheOnDisk instead which are derived from this class. Note: Michele says: there are signatures inside gdbm files that are used directly by the python gdbm adapter that often are lagging behind in the detection code in python part. On every occasion that a gdbm store is probed by the python adapter, the probe fails, because gdbm file version is newer. Using gdbm directly from C would work, because there is backward compatibility, but not from python! The .shelve file is discarded and a new one created (with new signature) and it works until it is probed again... The possible consequences are memory leaks and broken sessions. """ cache_stats_name = 'web2py_cache_statistics' max_ram_utilization = None # percent def __init__(self, request=None): """Initializes the object Args: request: the global request object """ raise NotImplementedError def __call__(self, key, f, time_expire=DEFAULT_TIME_EXPIRE): """ Tries to retrieve the value corresponding to `key` from the cache if the object exists and if it did not expire, else it calls the function `f` and stores the output in the cache corresponding to `key`. It always returns the function that is returned. Args: key(str): the key of the object to be stored or retrieved f(function): the function whose output is to be cached. If `f` is `None` the cache is cleared. time_expire(int): expiration of the cache in seconds. It's used to compare the current time with the time when the requested object was last saved in cache. It does not affect future requests. Setting `time_expire` to 0 or negative value forces the cache to refresh. """ raise NotImplementedError def clear(self, regex=None): """ Clears the cache of all keys that match the provided regular expression. If no regular expression is provided, it clears all entries in cache. Args: regex: if provided, only keys matching the regex will be cleared, otherwise all keys are cleared. """ raise NotImplementedError def increment(self, key, value=1): """ Increments the cached value for the given key by the amount in value Args: key(str): key for the cached object to be incremeneted value(int): amount of the increment (defaults to 1, can be negative) """ raise NotImplementedError def _clear(self, storage, regex): """ Auxiliary function called by `clear` to search and clear cache entries """ r = re.compile(regex) for key in storage.keys(): if r.match(str(key)): del storage[key] return class CacheInRam(CacheAbstract): """ Ram based caching This is implemented as global (per process, shared by all threads) dictionary. A mutex-lock mechanism avoid conflicts. """ locker = thread.allocate_lock() meta_storage = {} stats = {} def __init__(self, request=None): self.initialized = False self.request = request self.storage = OrderedDict() if HAVE_PSUTIL else {} self.app = request.application if request else '' def initialize(self): if self.initialized: return else: self.initialized = True self.locker.acquire() if not self.app in self.meta_storage: self.storage = self.meta_storage[self.app] = \ OrderedDict() if HAVE_PSUTIL else {} self.stats[self.app] = {'hit_total': 0, 'misses': 0} else: self.storage = self.meta_storage[self.app] self.locker.release() def clear(self, regex=None): self.initialize() self.locker.acquire() storage = self.storage if regex is None: storage.clear() else: self._clear(storage, regex) if not self.app in self.stats: self.stats[self.app] = {'hit_total': 0, 'misses': 0} self.locker.release() def __call__(self, key, f, time_expire=DEFAULT_TIME_EXPIRE, destroyer=None): """ Attention! cache.ram does not copy the cached object. It just stores a reference to it. Turns out the deepcopying the object has some problems: - would break backward compatibility - would be limiting because people may want to cache live objects - would work unless we deepcopy no storage and retrival which would make things slow. Anyway. You can deepcopy explicitly in the function generating the value to be cached. """ self.initialize() dt = time_expire now = time.time() self.locker.acquire() item = self.storage.get(key, None) if item and f is None: del self.storage[key] if destroyer: destroyer(item[1]) self.stats[self.app]['hit_total'] += 1 self.locker.release() if f is None: return None if item and (dt is None or item[0] > now - dt): return item[1] elif item and (item[0] < now - dt) and destroyer: destroyer(item[1]) value = f() self.locker.acquire() self.storage[key] = (now, value) self.stats[self.app]['misses'] += 1 if HAVE_PSUTIL and self.max_ram_utilization!=None and random.random()<0.10: remove_oldest_entries(self.storage, percentage = self.max_ram_utilization) self.locker.release() return value def increment(self, key, value=1): self.initialize() self.locker.acquire() try: if key in self.storage: value = self.storage[key][1] + value self.storage[key] = (time.time(), value) except BaseException, e: self.locker.release() raise e self.locker.release() return value class CacheOnDisk(CacheAbstract): """ Disk based cache This is implemented as a key value store where each key corresponds to a single file in disk which is replaced when the value changes. Disk cache provides persistance when web2py is started/stopped but it is slower than `CacheInRam` Values stored in disk cache must be pickable. """ class PersistentStorage(object): """ Implements a key based thread/process-safe safe storage in disk. """ def __init__(self, folder, file_lock_time_wait=0.1): self.folder = folder self.key_filter_in = lambda key: key self.key_filter_out = lambda key: key self.file_lock_time_wait = file_lock_time_wait # How long we should wait before retrying to lock a file held by another process # We still need a mutex for each file as portalocker only blocks other processes self.file_locks = defaultdict(thread.allocate_lock) # Make sure we use valid filenames. if sys.platform == "win32": import base64 def key_filter_in_windows(key): """ Windows doesn't allow \ / : * ? "< > | in filenames. To go around this encode the keys with base32. """ return base64.b32encode(key) def key_filter_out_windows(key): """ We need to decode the keys so regex based removal works. """ return base64.b32decode(key) self.key_filter_in = key_filter_in_windows self.key_filter_out = key_filter_out_windows def wait_portalock(self, val_file): """ Wait for the process file lock. """ while True: try: portalocker.lock(val_file, portalocker.LOCK_EX) break except: time.sleep(self.file_lock_time_wait) def acquire(self, key): self.file_locks[key].acquire() def release(self, key): self.file_locks[key].release() def __setitem__(self, key, value): key = self.key_filter_in(key) val_file = recfile.open(key, mode='wb', path=self.folder) self.wait_portalock(val_file) pickle.dump(value, val_file, pickle.HIGHEST_PROTOCOL) val_file.close() def __getitem__(self, key): key = self.key_filter_in(key) try: val_file = recfile.open(key, mode='rb', path=self.folder) except IOError: raise KeyError self.wait_portalock(val_file) value = pickle.load(val_file) val_file.close() return value def __contains__(self, key): key = self.key_filter_in(key) return (key in self.file_locks) or recfile.exists(key, path=self.folder) def __delitem__(self, key): key = self.key_filter_in(key) try: recfile.remove(key, path=self.folder) except IOError: raise KeyError def __iter__(self): for dirpath, dirnames, filenames in os.walk(self.folder): for filename in filenames: yield self.key_filter_out(filename) def safe_apply(self, key, function, default_value=None): """ Safely apply a function to the value of a key in storage and set the return value of the function to it. Return the result of applying the function. """ key = self.key_filter_in(key) exists = True try: val_file = recfile.open(key, mode='r+b', path=self.folder) except IOError: exists = False val_file = recfile.open(key, mode='wb', path=self.folder) self.wait_portalock(val_file) if exists: timestamp, value = pickle.load(val_file) else: value = default_value new_value = function(value) val_file.seek(0) pickle.dump((time.time(), new_value), val_file, pickle.HIGHEST_PROTOCOL) val_file.truncate() val_file.close() return new_value def keys(self): return list(self.__iter__()) def get(self, key, default=None): try: return self[key] except KeyError: return default def __init__(self, request=None, folder=None): self.initialized = False self.request = request self.folder = folder self.storage = None def initialize(self): if self.initialized: return else: self.initialized = True folder = self.folder request = self.request # Lets test if the cache folder exists, if not # we are going to create it folder = os.path.join(folder or (request.folder, 'cache')) if not os.path.exists(folder): os.mkdir(folder) self.storage = CacheOnDisk.PersistentStorage(folder) def __call__(self, key, f, time_expire=DEFAULT_TIME_EXPIRE): self.initialize() def inc_hit_total(v): v['hit_total'] += 1 return v def inc_misses(v): v['misses'] += 1 return v dt = time_expire self.storage.acquire(key) self.storage.acquire(CacheAbstract.cache_stats_name) item = self.storage.get(key) self.storage.safe_apply(CacheAbstract.cache_stats_name, inc_hit_total, default_value={'hit_total': 0, 'misses': 0}) if item and f is None: del self.storage[key] if f is None: self.storage.release(CacheAbstract.cache_stats_name) self.storage.release(key) return None now = time.time() if item and ((dt is None) or (item[0] > now - dt)): value = item[1] else: try: value = f() except: self.storage.release(CacheAbstract.cache_stats_name) self.storage.release(key) raise self.storage[key] = (now, value) self.storage.safe_apply(CacheAbstract.cache_stats_name, inc_misses, default_value={'hit_total': 0, 'misses': 0}) self.storage.release(CacheAbstract.cache_stats_name) self.storage.release(key) return value def clear(self, regex=None): self.initialize() storage = self.storage if regex is None: keys = storage else: r = re.compile(regex) keys = (key for key in storage if r.match(key)) for key in keys: storage.acquire(key) try: del storage[key] except KeyError: pass storage.release(key) def increment(self, key, value=1): self.initialize() self.storage.acquire(key) value = self.storage.safe_apply(key, lambda x: x + value, default_value=0) self.storage.release(key) return value class CacheAction(object): def __init__(self, func, key, time_expire, cache, cache_model): self.__name__ = func.__name__ self.__doc__ = func.__doc__ self.func = func self.key = key self.time_expire = time_expire self.cache = cache self.cache_model = cache_model def __call__(self, *a, **b): if not self.key: key2 = self.__name__ + ':' + repr(a) + ':' + repr(b) else: key2 = self.key.replace('%(name)s', self.__name__)\ .replace('%(args)s', str(a)).replace('%(vars)s', str(b)) cache_model = self.cache_model if not cache_model or isinstance(cache_model, str): cache_model = getattr(self.cache, cache_model or 'ram') return cache_model(key2, lambda a=a, b=b: self.func(*a, **b), self.time_expire) class Cache(object): """ Sets up generic caching, creating an instance of both CacheInRam and CacheOnDisk. In case of GAE will make use of gluon.contrib.gae_memcache. - self.ram is an instance of CacheInRam - self.disk is an instance of CacheOnDisk """ autokey = ':%(name)s:%(args)s:%(vars)s' def __init__(self, request): """ Args: request: the global request object """ # GAE will have a special caching if have_settings and settings.global_settings.web2py_runtime_gae: from gluon.contrib.gae_memcache import MemcacheClient self.ram = self.disk = MemcacheClient(request) else: # Otherwise use ram (and try also disk) self.ram = CacheInRam(request) try: self.disk = CacheOnDisk(request) except IOError: logger.warning('no cache.disk (IOError)') except AttributeError: # normally not expected anymore, as GAE has already # been accounted for logger.warning('no cache.disk (AttributeError)') def action(self, time_expire=DEFAULT_TIME_EXPIRE, cache_model=None, prefix=None, session=False, vars=True, lang=True, user_agent=False, public=True, valid_statuses=None, quick=None): """Better fit for caching an action Warning: Experimental! Currently only HTTP 1.1 compliant reference : http://code.google.com/p/doctype-mirror/wiki/ArticleHttpCaching Args: time_expire(int): same as @cache cache_model(str): same as @cache prefix(str): add a prefix to the calculated key session(bool): adds response.session_id to the key vars(bool): adds request.env.query_string lang(bool): adds T.accepted_language user_agent(bool or dict): if True, adds is_mobile and is_tablet to the key. Pass a dict to use all the needed values (uses str(.items())) (e.g. user_agent=request.user_agent()). Used only if session is not True public(bool): if False forces the Cache-Control to be 'private' valid_statuses: by default only status codes starting with 1,2,3 will be cached. pass an explicit list of statuses on which turn the cache on quick: Session,Vars,Lang,User-agent,Public: fast overrides with initials, e.g. 'SVLP' or 'VLP', or 'VLP' """ from gluon import current from gluon.http import HTTP def wrap(func): def wrapped_f(): if current.request.env.request_method != 'GET': return func() if time_expire: cache_control = 'max-age=%(time_expire)s, s-maxage=%(time_expire)s' % dict(time_expire=time_expire) if quick: session_ = True if 'S' in quick else False vars_ = True if 'V' in quick else False lang_ = True if 'L' in quick else False user_agent_ = True if 'U' in quick else False public_ = True if 'P' in quick else False else: session_, vars_, lang_, user_agent_, public_ = session, vars, lang, user_agent, public if not session_ and public_: cache_control += ', public' expires = (current.request.utcnow + datetime.timedelta(seconds=time_expire)).strftime('%a, %d %b %Y %H:%M:%S GMT') else: cache_control += ', private' expires = 'Fri, 01 Jan 1990 00:00:00 GMT' if cache_model: #figure out the correct cache key cache_key = [current.request.env.path_info, current.response.view] if session_: cache_key.append(current.response.session_id) elif user_agent_: if user_agent_ is True: cache_key.append("%(is_mobile)s_%(is_tablet)s" % current.request.user_agent()) else: cache_key.append(str(user_agent_.items())) if vars_: cache_key.append(current.request.env.query_string) if lang_: cache_key.append(current.T.accepted_language) cache_key = hashlib.md5('__'.join(cache_key)).hexdigest() if prefix: cache_key = prefix + cache_key try: #action returns something rtn = cache_model(cache_key, lambda : func(), time_expire=time_expire) http, status = None, current.response.status except HTTP, e: #action raises HTTP (can still be valid) rtn = cache_model(cache_key, lambda : e.body, time_expire=time_expire) http, status = HTTP(e.status, rtn, **e.headers), e.status else: #action raised a generic exception http = None else: #no server-cache side involved try: #action returns something rtn = func() http, status = None, current.response.status except HTTP, e: #action raises HTTP (can still be valid) status = e.status http = HTTP(e.status, e.body, **e.headers) else: #action raised a generic exception http = None send_headers = False if http and isinstance(valid_statuses, list): if status in valid_statuses: send_headers = True elif valid_statuses is None: if str(status)[0] in '123': send_headers = True if send_headers: headers = { 'Pragma' : None, 'Expires' : expires, 'Cache-Control' : cache_control } current.response.headers.update(headers) if cache_model and not send_headers: #we cached already the value, but the status is not valid #so we need to delete the cached value cache_model(cache_key, None) if http: if send_headers: http.headers.update(current.response.headers) raise http return rtn wrapped_f.__name__ = func.__name__ wrapped_f.__doc__ = func.__doc__ return wrapped_f return wrap def __call__(self, key=None, time_expire=DEFAULT_TIME_EXPIRE, cache_model=None): """ Decorator function that can be used to cache any function/method. Args: key(str) : the key of the object to be store or retrieved time_expire(int) : expiration of the cache in seconds `time_expire` is used to compare the current time with the time when the requested object was last saved in cache. It does not affect future requests. Setting `time_expire` to 0 or negative value forces the cache to refresh. cache_model(str): can be "ram", "disk" or other (like "memcache"). Defaults to "ram" When the function `f` is called, web2py tries to retrieve the value corresponding to `key` from the cache if the object exists and if it did not expire, else it calles the function `f` and stores the output in the cache corresponding to `key`. In the case the output of the function is returned. Example: :: @cache('key', 5000, cache.ram) def f(): return time.ctime() Note: If the function `f` is an action, we suggest using @cache.action instead """ def tmp(func, cache=self, cache_model=cache_model): return CacheAction(func, key, time_expire, self, cache_model) return tmp @staticmethod def with_prefix(cache_model, prefix): """ allow replacing cache.ram with cache.with_prefix(cache.ram,'prefix') it will add prefix to all the cache keys used. """ return lambda key, f, time_expire=DEFAULT_TIME_EXPIRE, prefix=prefix:\ cache_model(prefix + key, f, time_expire) def lazy_cache(key=None, time_expire=None, cache_model='ram'): """ Can be used to cache any function including ones in modules, as long as the cached function is only called within a web2py request If a key is not provided, one is generated from the function name `time_expire` defaults to None (no cache expiration) If cache_model is "ram" then the model is current.cache.ram, etc. """ def decorator(f, key=key, time_expire=time_expire, cache_model=cache_model): key = key or repr(f) def g(*c, **d): from gluon import current return current.cache(key, time_expire, cache_model)(f)(*c, **d) g.__name__ = f.__name__ return g return decorator
34.979003
139
0.569258
40009c0ce7cb5ebcbc9a0d3585c2a87f11a471af
1,134
py
Python
RecoTauTag/HLTProducers/python/TauRegionalPixelSeedGenerator_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
RecoTauTag/HLTProducers/python/TauRegionalPixelSeedGenerator_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
RecoTauTag/HLTProducers/python/TauRegionalPixelSeedGenerator_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms tauRegionalPixelSeedGenerator = cms.EDProducer("SeedGeneratorFromRegionHitsEDProducer", OrderedHitsFactoryPSet = cms.PSet( ComponentName = cms.string('StandardHitPairGenerator'), SeedingLayers = cms.InputTag('PixelLayerPairs') ), SeedComparitorPSet = cms.PSet( ComponentName = cms.string('none') ), RegionFactoryPSet = cms.PSet( ComponentName = cms.string('TauRegionalPixelSeedGenerator'), RegionPSet = cms.PSet( precise = cms.bool(True), deltaPhiRegion = cms.double(0.1), originHalfLength = cms.double(0.2), originRadius = cms.double(0.2), deltaEtaRegion = cms.double(0.1), ptMin = cms.double(5.0), JetSrc = cms.InputTag("icone5Tau1"), originZPos = cms.double(0.0), vertexSrc = cms.InputTag("pixelVertices"), howToUseMeasurementTracker = cms.string("ForSiStrips"), measurementTrackerName = cms.InputTag("MeasurementTrackerEvent"), ) ), TTRHBuilder = cms.string('WithTrackAngle') )
36.580645
87
0.636684
25ce218b60778f89f1a8ca8993737ceddebc15b8
19,658
py
Python
v7/sphinx_roles/sphinx_roles.py
pluser/nikola_plugins
2a95cc21d996e856b24c151d577939de41a65e6c
[ "MIT" ]
null
null
null
v7/sphinx_roles/sphinx_roles.py
pluser/nikola_plugins
2a95cc21d996e856b24c151d577939de41a65e6c
[ "MIT" ]
null
null
null
v7/sphinx_roles/sphinx_roles.py
pluser/nikola_plugins
2a95cc21d996e856b24c151d577939de41a65e6c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright © 2012-2013 Roberto Alsina and others. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import datetime import re from docutils import nodes, utils from docutils.parsers.rst import Directive, directives, roles from docutils.parsers.rst.directives.admonitions import BaseAdmonition from docutils.transforms import Transform from docutils import languages from nikola.plugin_categories import RestExtension from nikola.plugins.compile.rest import add_node class Plugin(RestExtension): name = "rest_sphinx_roles" def set_site(self, site): self.site = site roles.register_local_role('pep', pep_role) roles.register_local_role('rfc', rfc_role) roles.register_local_role('term', term_role) roles.register_local_role('option', option_role) roles.register_local_role('ref', ref_role) # This is copied almost verbatim from Sphinx generic_docroles = { 'command': nodes.strong, 'dfn': nodes.emphasis, 'kbd': nodes.literal, 'mailheader': nodes.emphasis, 'makevar': nodes.strong, 'manpage': nodes.emphasis, 'mimetype': nodes.emphasis, 'newsgroup': nodes.emphasis, 'program': nodes.strong, 'regexp': nodes.literal, } for rolename, nodeclass in generic_docroles.items(): generic = roles.GenericRole(rolename, nodeclass) role = roles.CustomRole(rolename, generic, {'classes': [rolename]}) roles.register_local_role(rolename, role) specific_docroles = { 'guilabel': menusel_role, 'menuselection': menusel_role, 'file': emph_literal_role, 'samp': emph_literal_role, 'abbr': abbr_role, } for rolename, func in specific_docroles.items(): roles.register_local_role(rolename, func) # Handle abbr title add_node(abbreviation, visit_abbreviation, depart_abbreviation) for name, (base_url, prefix) in self.site.config.get('EXTLINKS', {}).items(): roles.register_local_role(name, make_link_role(base_url, prefix)) directives.register_directive('deprecated', VersionChange) directives.register_directive('versionadded', VersionChange) directives.register_directive('versionchanged', VersionChange) directives.register_directive('centered', Centered) directives.register_directive('hlist', HList) directives.register_directive('seealso', SeeAlso) directives.register_directive('glossary', Glossary) directives.register_directive('option', Option) site.rst_transforms.append(Today) return super(Plugin, self).set_site(site) # TODO: pep_role and rfc_role are similar enough that they # should be a generic function called via partial def pep_role(name, rawtext, text, lineno, inliner, options={}, content=[]): """Enhanced PEP role supporting anchors, for Sphinx compatibility.""" anchor = '' anchorindex = text.find('#') if anchorindex > 0: text, anchor = text[:anchorindex], text[anchorindex:] try: pepnum = int(text) except ValueError: msg = inliner.reporter.error('invalid PEP number %s' % text, line=lineno) prb = inliner.problematic(rawtext, rawtext, msg) return [prb], [msg] ref = inliner.document.settings.pep_base_url + 'pep-%04d' % pepnum sn = nodes.strong('PEP ' + text, 'PEP ' + text) rn = nodes.reference('', '', internal=False, refuri=ref + anchor, classes=[name]) rn += sn return [rn], [] explicit_title_re = re.compile(r'^(.+?)\s*(?<!\x00)<(.*?)>$', re.DOTALL) def split_explicit_title(text): """Split role content into title and target, if given.""" match = explicit_title_re.match(text) if match: return True, match.group(1), match.group(2) return False, text, text def rfc_role(name, rawtext, text, lineno, inliner, options={}, content=[]): """Enhanced RFC role supporting anchors, for Sphinx compatibility.""" anchor = '' anchorindex = text.find('#') if anchorindex > 0: text, anchor = text[:anchorindex], text[anchorindex:] try: rfcnum = int(text) except ValueError: msg = inliner.reporter.error('invalid PEP number %s' % text, line=lineno) prb = inliner.problematic(rawtext, rawtext, msg) return [prb], [msg] ref = inliner.document.settings.rfc_base_url + inliner.rfc_url % rfcnum sn = nodes.strong('RFC ' + text, 'RFC ' + text) rn = nodes.reference('', '', internal=False, refuri=ref + anchor, classes=[name]) rn += sn return [rn], [] # The code below is based in code from Sphinx # Copyright (c) 2007-2013 by the Sphinx team (see AUTHORS file). # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. _litvar_re = re.compile('{([^}]+)}') def emph_literal_role(typ, rawtext, text, lineno, inliner, options={}, content=[]): text = utils.unescape(text) pos = 0 retnode = nodes.literal(role=typ.lower(), classes=[typ]) for m in _litvar_re.finditer(text): if m.start() > pos: txt = text[pos:m.start()] retnode += nodes.Text(txt, txt) retnode += nodes.emphasis(m.group(1), m.group(1)) pos = m.end() if pos < len(text): retnode += nodes.Text(text[pos:], text[pos:]) return [retnode], [] _amp_re = re.compile(r'(?<!&)&(?![&\s])') def menusel_role(typ, rawtext, text, lineno, inliner, options={}, content=[]): text = utils.unescape(text) if typ == 'menuselection': text = text.replace('-->', u'\N{TRIANGULAR BULLET}') spans = _amp_re.split(text) node = nodes.emphasis(rawtext=rawtext) for i, span in enumerate(spans): span = span.replace('&&', '&') if i == 0: if len(span) > 0: textnode = nodes.Text(span) node += textnode continue accel_node = nodes.inline() letter_node = nodes.Text(span[0]) accel_node += letter_node accel_node['classes'].append('accelerator') node += accel_node textnode = nodes.Text(span[1:]) node += textnode node['classes'].append(typ) return [node], [] def make_link_role(base_url, prefix): def role(typ, rawtext, text, lineno, inliner, options={}, content=[]): text = utils.unescape(text) has_explicit_title, title, part = split_explicit_title(text) try: full_url = base_url % part except (TypeError, ValueError): inliner.reporter.warning( 'unable to expand %s extlink with base URL %r, please make ' 'sure the base contains \'%%s\' exactly once' % (typ, base_url), line=lineno) full_url = base_url + part if not has_explicit_title: if prefix is None: title = full_url else: title = prefix + part pnode = nodes.reference(title, title, internal=False, refuri=full_url) return [pnode], [] return role def set_source_info(directive, node): node.source, node.line = \ directive.state_machine.get_source_and_line(directive.lineno) # FIXME: needs translations versionlabels = { 'versionadded': 'New in version %s', 'versionchanged': 'Changed in version %s', 'versionmodified': 'Changed in version %s', 'deprecated': 'Deprecated since version %s', } class VersionChange(Directive): """ Directive to describe a change/addition/deprecation in a specific version. """ has_content = True required_arguments = 1 optional_arguments = 1 final_argument_whitespace = True option_spec = {} def run(self): node = nodes.paragraph() node['classes'] = ['versionadded'] node.document = self.state.document set_source_info(self, node) node['type'] = self.name node['version'] = self.arguments[0] text = versionlabels[self.name] % self.arguments[0] if len(self.arguments) == 2: inodes, messages = self.state.inline_text(self.arguments[1], self.lineno + 1) para = nodes.paragraph(self.arguments[1], '', *inodes) set_source_info(self, para) node.append(para) else: messages = [] if self.content: self.state.nested_parse(self.content, self.content_offset, node) if len(node): if isinstance(node[0], nodes.paragraph) and node[0].rawsource: content = nodes.inline(node[0].rawsource, translatable=True) content.source = node[0].source content.line = node[0].line content += node[0].children node[0].replace_self(nodes.paragraph('', '', content)) node[0].insert(0, nodes.inline('', '%s: ' % text, classes=['versionmodified'])) else: para = nodes.paragraph('', '', nodes.inline('', '%s.' % text, classes=['versionmodified'])) node.append(para) language = languages.get_language(self.state.document.settings.language_code, self.state.document.reporter) language.labels.update(versionlabels) return [node] + messages class Centered(Directive): """ Directive to create a centered line of bold text. """ has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = {} def run(self): if not self.arguments: return [] p_node = nodes.paragraph() p_node['classes'] = ['centered'] strong_node = nodes.strong() inodes, messages = self.state.inline_text(self.arguments[0], self.lineno) strong_node.extend(inodes) p_node.children.append(strong_node) return [p_node] + messages class HList(Directive): """ Directive for a list that gets compacted horizontally. This differs from Sphinx's implementation in that it generates a table here at the directive level instead of creating a custom node and doing it on the writer. """ has_content = True required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = { 'columns': int, } def run(self): ncolumns = self.options.get('columns', 2) node = nodes.Element() node.document = self.state.document self.state.nested_parse(self.content, self.content_offset, node) if len(node.children) != 1 or not isinstance(node.children[0], nodes.bullet_list): return [self.state.document.reporter.warning( '.. hlist content is not a list', line=self.lineno)] fulllist = node.children[0] # create a hlist node where the items are distributed npercol, nmore = divmod(len(fulllist), ncolumns) index = 0 table = nodes.table() tg = nodes.tgroup() table += tg row = nodes.row() tbody = nodes.tbody() for column in range(ncolumns): endindex = index + (column < nmore and (npercol + 1) or npercol) colspec = nodes.colspec() colspec.attributes['stub'] = 0 colspec.attributes['colwidth'] = 100. / ncolumns col = nodes.entry() col += nodes.bullet_list() col[0] += fulllist.children[index:endindex] index = endindex tg += colspec row += col tbody += row tg += tbody table['classes'].append('hlist') return [table] class SeeAlso(BaseAdmonition): """ An admonition mentioning things to look at as reference. """ node_class = nodes.admonition def run(self): """Minor monkeypatch to set the title and classes right.""" self.arguments = ['See also'] node_list = BaseAdmonition.run(self) node_list[0]['classes'] = ['admonition', 'seealso'] return node_list class Glossary(Directive): has_content = True def run(self): node = nodes.Element() node.document = self.state.document self.state.nested_parse(self.content, self.content_offset, node) node[0]['classes'] = ['glossary', 'docutils'] # Set correct IDs for terms for term in node[0]: new_id = 'term-' + nodes.make_id(term[0].astext()) term[0]['ids'].append(new_id) return [node[0]] def term_role(typ, rawtext, text, lineno, inliner, options={}, content=[]): # FIXME add stylable span inside link text = utils.unescape(text) target = '#term-' + nodes.make_id(text) pnode = nodes.reference(text, text, internal=True, refuri=target) pnode['classes'] = ['reference'] return [pnode], [] class Option(Directive): has_content = True required_arguments = 1 def run(self): refid = 'cmdoption-arg-' + nodes.make_id(self.arguments[0]) target = nodes.target(names=[refid], ids=[refid]) dl = nodes.definition_list() dt = nodes.definition_list_item() term = nodes.term() term += nodes.literal(self.arguments[0], self.arguments[0], classes=["descname"]) dt += term definition = nodes.definition() dt += definition definition.document = self.state.document self.state.nested_parse(self.content, self.content_offset, definition) dl += dt return [target, dl] def option_role(typ, rawtext, text, lineno, inliner, options={}, content=[]): # FIXME add stylable span inside link text = utils.unescape(text) target = '#cmdoption-arg-' + nodes.make_id(text) pnode = nodes.reference(text, text, internal=True, refuri=target) pnode['classes'] = ['reference'] return [pnode], [] _ref_re = re.compile('^(.*)<(.*)>$') def ref_role(typ, rawtext, text, lineno, inliner, options={}, content=[]): """Reimplementation of Sphinx's ref role,""" msg_list = [] match = _ref_re.match(text) if match is not None: text = match.groups()[0].strip() target = '#' + match.groups()[1] pnode = nodes.reference(text, text, internal=True, refuri=target) else: class RefVisitor(nodes.NodeVisitor, object): text = None def __init__(self, document, label): self._label = label super(RefVisitor, self).__init__(document) def visit_target(self, node): if self._label not in node.attributes['ids']: return else: sibs = node.parent.children next_sib = sibs[sibs.index(node) + 1] if isinstance(next_sib, nodes.figure): # text has to be the figure caption self.text = [x for x in next_sib.children if isinstance(x, nodes.caption)][0].astext() elif isinstance(next_sib, nodes.section): # text has to be the title self.text = next_sib.attributes['names'][0].title() def unknown_visit(self, node): pass visitor = RefVisitor(inliner.document, text) inliner.document.walk(visitor) if visitor.text is None: msg_list.append(inliner.reporter.error("ref label {} is missing or not immediately before figure or section.".format(text))) target = '#' + text pnode = nodes.reference(text, visitor.text, internal=True, refuri=target) pnode['classes'] = ['reference'] return [pnode], msg_list _abbr_re = re.compile('\((.*)\)$', re.S) class abbreviation(nodes.Inline, nodes.TextElement): """Node for abbreviations with explanations.""" def visit_abbreviation(self, node): attrs = {} if node.hasattr('explanation'): attrs['title'] = node['explanation'] self.body.append(self.starttag(node, 'abbr', '', **attrs)) def depart_abbreviation(self, node): self.body.append('</abbr>') def abbr_role(typ, rawtext, text, lineno, inliner, options={}, content=[]): text = utils.unescape(text) m = _abbr_re.search(text) if m is None: return [abbreviation(text, text)], [] abbr = text[:m.start()].strip() expl = m.group(1) return [abbreviation(abbr, abbr, explanation=expl)], [] class Today(Transform): """ Replace today with the date if it's not defined in the document. """ # run before the default Substitutions default_priority = 210 def apply(self, **kwargs): # only handle it if not otherwise defined in the document to_handle = set(['today']) - set(self.document.substitution_defs) for ref in self.document.traverse(nodes.substitution_reference): refname = ref['refname'] if refname in to_handle: txt = datetime.datetime.today().strftime('%x') node = nodes.Text(txt, txt) ref.replace_self(node)
36.403704
136
0.623766
7eb7abe4f157c7098877b75a9d3d720d3ac9d90b
2,578
py
Python
skl2onnx/algebra/type_helper.py
ogrisel/sklearn-onnx
0afbe295aa3f1abbcea60f582faac31d16bd3ab0
[ "Apache-2.0" ]
1
2021-06-11T22:08:57.000Z
2021-06-11T22:08:57.000Z
skl2onnx/algebra/type_helper.py
ogrisel/sklearn-onnx
0afbe295aa3f1abbcea60f582faac31d16bd3ab0
[ "Apache-2.0" ]
null
null
null
skl2onnx/algebra/type_helper.py
ogrisel/sklearn-onnx
0afbe295aa3f1abbcea60f582faac31d16bd3ab0
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 import numpy as np from scipy.sparse import coo_matrix from ..proto import TensorProto, ValueInfoProto from ..common._topology import Variable from ..common.data_types import ( _guess_numpy_type, _guess_type_proto, BooleanTensorType, DataType, DoubleType, DoubleTensorType, FloatType, FloatTensorType, Int64Type, Int64TensorType, Int32TensorType, StringTensorType ) def _guess_type(given_type): """ Returns the proper type of an input. """ def _guess_dim(value): if value == 0: return None return value if isinstance(given_type, (np.ndarray, coo_matrix)): shape = list(given_type.shape) if len(shape) == 0: # a number return _guess_numpy_type(given_type.dtype, tuple()) shape[0] = None return _guess_numpy_type(given_type.dtype, shape) if isinstance(given_type, (FloatTensorType, Int64TensorType, Int32TensorType, StringTensorType, BooleanTensorType, DoubleTensorType)): return given_type if isinstance(given_type, Variable): return given_type.type if isinstance(given_type, DataType): return given_type if isinstance(given_type, TensorProto): return _guess_type_proto(given_type.data_type, given_type.dims) if isinstance(given_type, ValueInfoProto): ttype = given_type.type.tensor_type dims = [_guess_dim(ttype.shape.dim[i].dim_value) for i in range(len(ttype.shape.dim))] return _guess_type_proto(ttype.elem_type, dims) if isinstance(given_type, np.int64): return Int64Type() if isinstance(given_type, np.float32): return FloatType() if isinstance(given_type, np.float64): return DoubleType() if given_type.__class__.__name__.endswith("Categorical"): # pandas Categorical without important pandas return Int64TensorType() raise NotImplementedError( "Unsupported type '{}'. You may raise an issue " "at https://github.com/onnx/sklearn-onnx/issues." "".format(type(given_type))) def guess_initial_types(X, initial_types): if X is None and initial_types is None: raise NotImplementedError("Initial types must be specified.") if initial_types is None: if isinstance(X, np.ndarray): X = X[:1] gt = _guess_type(X) initial_types = [('X', gt)] return initial_types
33.051282
69
0.650504
f3d0e56e8261686883d1f93f3814ac41caeb08e8
6,725
py
Python
gpgLabs/EM/FEM3loop.py
AlainPlattner/gpgLabs
2423f0f2a845a5e44304da5e683881c65a9e4792
[ "MIT" ]
null
null
null
gpgLabs/EM/FEM3loop.py
AlainPlattner/gpgLabs
2423f0f2a845a5e44304da5e683881c65a9e4792
[ "MIT" ]
null
null
null
gpgLabs/EM/FEM3loop.py
AlainPlattner/gpgLabs
2423f0f2a845a5e44304da5e683881c65a9e4792
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import scipy.io import warnings warnings.filterwarnings('ignore') from ipywidgets import interactive, IntSlider, widget, FloatText, FloatSlider, Checkbox def mind(x,y,z,dincl,ddecl,x0,y0,z0,aincl,adecl): x = np.array(x, dtype=float) y = np.array(y, dtype=float) z = np.array(z, dtype=float) x0 = np.array(x0, dtype=float) y0 = np.array(y0, dtype=float) z0 = np.array(z0, dtype=float) dincl = np.array(dincl, dtype=float) ddecl = np.array(ddecl, dtype=float) aincl = np.array(aincl, dtype=float) adecl = np.array(adecl, dtype=float) di=np.pi*dincl/180.0 dd=np.pi*ddecl/180.0 cx=np.cos(di)*np.cos(dd) cy=np.cos(di)*np.sin(dd) cz=np.sin(di) ai=np.pi*aincl/180.0 ad=np.pi*adecl/180.0 ax=np.cos(ai)*np.cos(ad) ay=np.cos(ai)*np.sin(ad) az=np.sin(ai) # begin the calculation a=x-x0 b=y-y0 h=z-z0 rt=np.sqrt(a**2.+b**2.+h**2.)**5. txy=3.*a*b/rt txz=3.*a*h/rt tyz=3.*b*h/rt txx=(2.*a**2.-b**2.-h**2.)/rt tyy=(2.*b**2.-a**2.-h**2.)/rt tzz=-(txx+tyy) bx= (txx*cx+txy*cy+txz*cz) by= (txy*cx+tyy*cy+tyz*cz) bz= (txz*cx+tyz*cy+tzz*cz) return bx*ax+by*ay+bz*az def fem3loop(L,R,xc,yc,zc,dincl,ddecl,S,ht,f,xmin,xmax,dx,showDataPts=False): L = np.array(L, dtype=float) R = np.array(R, dtype=float) xc = np.array(xc, dtype=float) yc = np.array(yc, dtype=float) zc = np.array(zc, dtype=float) dincl = np.array(dincl, dtype=float) ddecl = np.array(ddecl, dtype=float) S = np.array(S, dtype=float) ht = np.array(ht, dtype=float) f = np.array(f, dtype=float) dx = np.array(dx, dtype=float) ymin = xmin ymax = xmax dely = dx # generate the grid xp=np.arange(xmin,xmax,dx) yp=np.arange(ymin,ymax,dely) [y,x]=np.meshgrid(yp,xp) z=0.*x-ht # set up the response arrays real_response=0.0*x imag_response=0.0*x # frequency characteristics alpha=2.*np.pi*f*L/R f_factor=(alpha**2.+1j*alpha)/(1+alpha**2.) amin=0.01 amax=100. da=4./40. alf=np.arange(-2.,2.,da) alf=10.**alf fre=alf**2./(1.+alf**2.) fim=alf/(1.+alf**2.) # simulate anomalies yt=y-S/2. yr=y+S/2. dm=-S/2. dp= S/2. M13=mind(0.,dm,0.,90.,0., 0., dp, 0., 90.,0.) M12=L*mind(x,yt,z,90.,0.,xc,yc,zc,dincl,ddecl) M23=L*mind(xc,yc,zc,dincl,ddecl,x,yr,z,90.,0.) c_response=-M12*M23*f_factor/(M13*L) # scaled to simulate a net volumetric effect if np.logical_and(dincl==0., ddecl==0.): real_response=np.real(c_response)*0. imag_response=np.imag(c_response)*0. else: real_response=np.real(c_response)*1000. imag_response=np.imag(c_response)*1000. fig, ax = plt.subplots(2,2, figsize = (14,8)) ax[0][0].semilogx(alf,fre,'.-b') ax[0][0].semilogx(alf,fim,'.--g') ax[0][0].plot([alpha, alpha],[0., 1.],'-k') ax[0][0].legend(['Real','Imag'],loc=2) ax[0][0].set_xlabel('$\\alpha = \\omega L /R$') ax[0][0].set_ylabel('Frequency Response') ax[0][0].set_title('Plot 1: EM responses of loop') ax[0][0].grid(which='major', color = '0.6', linestyle='-',linewidth='0.5') ax[0][0].grid(which='minor',color='0.6',linestyle='-',linewidth='0.5') kx = int(np.ceil(xp.size/2.)) ax[0][1].plot(y[kx,:],real_response[kx,:],'.-b') # kx ax[0][1].plot(y[kx,:],imag_response[kx,:],'.--g') # ax[0][1].legend(['Real','Imag'],loc=2) ax[0][1].set_xlabel('Easting') ax[0][1].set_ylabel('H$_s$/H$_p$') ax[0][1].set_title('Plot 2: EW cross section along Northing = %1.1f' %(x[kx,0])) ax[0][1].grid(which='major', color = '0.6', linestyle='-',linewidth='0.5') ax[0][1].grid(which='minor',color='0.6',linestyle='-',linewidth='0.5') ax[0][1].set_xlim(np.r_[xmin,xmax]) vminR = real_response.min() vmaxR = real_response.max() ax[1][0].plot(np.r_[xp.min(),xp.max()], np.zeros(2), 'k--', lw=1) clb = plt.colorbar(ax[1][0].imshow(real_response,extent=[xp.min(),xp.max(),yp.min(),yp.max()], vmin = vminR, vmax = vmaxR),ax=ax[1][0]) ax[1][0].set_xlim(np.r_[xmin,xmax]) ax[1][0].set_ylim(np.r_[xmin,xmax]) ax[1][0].set_xlabel('Easting (m)') ax[1][0].set_ylabel('Northing (m)') ax[1][0].set_title('Plot 3: Real Component') # ax[1][0].colorbar() clb.set_label('H$_s$/H$_p$') if showDataPts: XP, YP = np.meshgrid(xp,yp) ax[1][0].plot(XP,YP,'.',color=[0.2,0.2,0.2]) vminI = imag_response.min() vmaxI = imag_response.max() ax[1][1].plot(np.r_[xp.min(),xp.max()], np.zeros(2), 'k--', lw=1) clb = plt.colorbar(ax[1][1].imshow(imag_response,extent=[xp.min(),xp.max(),yp.min(),yp.max()], vmin = vminI, vmax = vmaxI),ax=ax[1][1]) ax[1][1].set_xlim(np.r_[xmin,xmax]) ax[1][1].set_ylim(np.r_[xmin,xmax]) ax[1][1].set_xlabel('Easting (m)') ax[1][1].set_ylabel('Northing (m)') ax[1][1].set_title('Plot 4: Imag Component') clb.set_label('H$_s$/H$_p$') if showDataPts: ax[1][1].plot(XP,YP,'.',color=[0.2,0.2,0.2]) plt.tight_layout() plt.show() def interactfem3loop(): S = 4. ht = 1. xmin = -10. xmax = 10. zmax = 10. # xmin = lambda dx: -40.*dx # xmax = lambda dx: 40.*dx fem3loopwrap = lambda L,R,yc,xc,zc,dincl,ddecl,f,dx,showDataPts: fem3loop(L,R,-yc,xc,zc,dincl,ddecl,S,ht,f,xmin,xmax,dx,showDataPts) Q = interactive(fem3loopwrap, L = FloatSlider(min=0.00,max=0.20,step=0.01,value=0.10, continuous_update=False), R = FloatSlider(min=0.0,max=20000.,step=1000.,value=2000., continuous_update=False), xc = FloatSlider(min=-10.,max=10.,step=1.,value=0.0, continuous_update=False), yc = FloatSlider(min=-10.,max=10.,step=1.,value=0.0, continuous_update=False), zc = FloatSlider(min=0.,max=zmax,step=0.5,value=1., continuous_update=False), dincl = FloatSlider( min=-90.,max=90.,step=1.,value=0., continuous_update=False, description='I' ), ddecl = FloatSlider( min=0.,max=180.,step=1.,value=90., continuous_update=False, description='D' ), f = FloatSlider(min=10.,max=19990.,step=10.,value=10000., continuous_update=False), dx = FloatSlider(min=0.25,max=5.,step=0.25,value=0.25, continuous_update=False), showDataPts = Checkbox(value=False) ) return Q if __name__ == '__main__': L = 0.1 R = 2000 xc = 0. yc = 0. zc = 2. dincl = 0. ddecl = 90. S = 4. ht = 0. f = 10000. xmin = -10. xmax = 10. dx = 0.25 fem3loop(L,R,xc,yc,zc,dincl,ddecl,S,ht,f,xmin,xmax,dx)
28.862661
139
0.581115
832d92d854d28c97d98d7e79994fbd6c92939c90
814
py
Python
yatube/yatube/urls.py
annrud/post_publishing_platform
c065799203c0800ce05d038f3491fb6184b5cbc7
[ "MIT" ]
1
2021-11-09T09:40:37.000Z
2021-11-09T09:40:37.000Z
yatube/yatube/urls.py
annrud/post_publishing_platform
c065799203c0800ce05d038f3491fb6184b5cbc7
[ "MIT" ]
null
null
null
yatube/yatube/urls.py
annrud/post_publishing_platform
c065799203c0800ce05d038f3491fb6184b5cbc7
[ "MIT" ]
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import include, path handler404 = 'posts.views.page_not_found' handler500 = 'posts.views.server_error' urlpatterns = [ path('auth/', include('users.urls')), path('auth/', include('django.contrib.auth.urls')), path('admin/', admin.site.urls), path('about/', include('about.urls', namespace='about')), path('', include('posts.urls')), ] if settings.DEBUG: import debug_toolbar urlpatterns += (path("__debug__/", include(debug_toolbar.urls)),) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
33.916667
69
0.681818
a580ff97f41ceaf8a427f21c1385fd26dfa4d308
8,987
py
Python
chiplotter.py
mrawls/ELCtools
7e15bf24c453ed4300c6f19f01cff74c041158b8
[ "MIT" ]
2
2018-10-08T04:59:38.000Z
2021-01-19T08:10:04.000Z
chiplotter.py
mrawls/ELCtools
7e15bf24c453ed4300c6f19f01cff74c041158b8
[ "MIT" ]
1
2021-07-20T16:42:43.000Z
2021-07-20T16:42:43.000Z
chiplotter.py
mrawls/ELCtools
7e15bf24c453ed4300c6f19f01cff74c041158b8
[ "MIT" ]
1
2018-07-31T14:36:24.000Z
2018-07-31T14:36:24.000Z
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter, MaxNLocator ''' This handy program turns your ELC output file party into something more useful. --> Makes a plot of chi^2 vs. fit parameters from a markovELC / geneticELC run (Only parameters in the generation files with the lowest 10k chi2 values are plotted) --> Spits out the fit parameters with a measure of uncertainty (+ and -) for all the parameters in both the generation and ELCparm files Required file: 'generation.all', created by 'cat generation.1* > generation.all' Required file: 'ELCparm.all', created by 'cat ELCparm.1* > ELCparm.all' Required file: 'key.ELCparm' (this is automatically generated by ELC) Required file: 'gridloop.opt' (you need this to run ELC to start with) NOTE that in the case of demcmc-ELC, substitute demcmc_fitparm.1* for generation.1*, substitute demcmc_starparm.1* for ELCparm.1*, and also make a chi.all file from chi.1*. IF THERE ARE TOO MANY FILES, you may need to use these commands: find . -name "demcmc_fitparm.1*" -print0 | xargs -0 cat > fitparm.all find . -name "demcmc_starparm.1*" -print0 | xargs -0 cat > starparm.all find . -name "chi.1*" -print0 | xargs -0 cat > chi.all The fit parameters in gridloop.opt are reported in the generation files. Other parameters of interest which follow from these are reported in the ELCparm files. The plot will be a 4 x 5 grid. If you are fitting more than 20 parameters in gridloop.opt, the last ones will be omitted. ''' # Important filename definitions2 gridloopfile = '../../RG_ELCmodeling/9246715/demcmc001_jerry/gridloop.opt' generationfile = '../../RG_ELCmodeling/9246715/demcmc001_jerry/fitparm.all' parmfile = '../../RG_ELCmodeling/9246715/demcmc001_jerry/starparm.all' parmkeyfile = '../../RG_ELCmodeling/9246715/demcmc001_jerry/key.ELCparm' chi2file = '../../RG_ELCmodeling/9246715/demcmc001_jerry/chi.all' # OMIT FOR MARKOVELC outfile = '../../RG_ELCmodeling/9246715/demcmc001_jerry/chiplotout_WTF.txt' out = open(outfile, 'w') gridloop = [line.rstrip('\n') for line in open(gridloopfile)] nvars = int(gridloop[10]) # reads the number of fit variables from gridloop file print('Working, please be patient...') print('Results will be written to {0}'.format(outfile)) # Read in names and limits for fit variables from gridloop file varnames = []; varlower = []; varupper = []; varlist = [] for i in range(0, nvars): varnames.append(gridloop[10+i+1].rstrip()) varlimits = gridloop[10+nvars+i+1] values = varlimits.split() varlower.append(float(values[0])) varupper.append(float(values[1])) # manually include 2 systemic velocity columns and 4 final columns (t0, tconj, ecc, argper) varnames.append('gamma1'); varnames.append('gamma2'); varnames.append('t0v2') varnames.append('tconjv2'); varnames.append('ecc'); varnames.append('argper') varlower.append(-100); varlower.append(-100); varlower.append(0); varlower.append(0) varlower.append(0); varlower.append(0) varupper.append(100); varupper.append(100); varupper.append(1000); varupper.append(1000) varupper.append(1); varupper.append(360) # Read in chi^2 and parameter values from generation/fitparm file # The number of cols in the generation/fitparm file varies for markovELC/demcmcELC try: varlist_gen = np.loadtxt(generationfile, usecols=(range(1,nvars+8)), dtype=np.float64, unpack=True) chi2_gen = varlist_gen[0] varlist_gen = np.delete(varlist_gen, 0, 0) demcmc = False except: varlist_gen = np.loadtxt(generationfile, usecols=(range(0,nvars+5)), dtype=np.float64, unpack=True) demcmc = True print('Read in generation/fitparm file') # Read in chi^2 and parameter values from ELCparm/starparm file # The number of cols in the ELCparm/starparm file varies for markovELC/demcmcELC parmkeys = np.loadtxt(parmkeyfile, comments='#', usecols=(1,), dtype={'names':('parmkeys',),'formats':('|S11',)}, unpack=True) for idx, entry in enumerate(parmkeys): # remove 'index' from parmkeyfile entry = str(entry) if ('index' in entry): parmkeys = np.delete(parmkeys, idx, axis=0) # remove 'chi^2' from parmkeyfile for idx, entry in enumerate(parmkeys): entry = str(entry) if ('chi^2' in entry): parmkeys = np.delete(parmkeys, idx, axis=0) nparms = len(parmkeys) if demcmc == False: varlist_par = np.loadtxt(parmfile, usecols=(range(1,nparms)), dtype=np.float64, unpack=True) chi2_par = varlist_par[0] varlist_par = np.delete(varlist_par, 0, 0) chi2s = chi2_par # higher precision than chi2_gen, but otherwise identical elif demcmc == True: varlist_par = np.loadtxt(parmfile, usecols=(range(0,nparms-1)), dtype=np.float64, unpack=True) chi2s = np.loadtxt(chi2file, usecols=(1,), dtype=np.float64, unpack=True) print('Read in ELCparm/starparm file (and chi2 file)') # Ensure the gen/fitparm, ELC/starparm, and chi2 arrays are all the same length newlength = min(varlist_gen.shape[1], varlist_par.shape[1], chi2s.shape[0]) # find length of shortest array varlist_gen = varlist_gen[:,0:newlength] varlist_par = varlist_par[:,0:newlength] chi2s = chi2s[0:newlength] # Sort parameter arrays by chi2, and only keep values with the lowest chi2 values sorted_varlist_gen = []; sorted_varlist_par = [] chi2cutval = 10000 for array in varlist_gen: sorted_varlist_gen.append(array[np.argsort(chi2s)][:chi2cutval]) for array in varlist_par: sorted_varlist_par.append(array[np.argsort(chi2s)][:chi2cutval]) sorted_chi2s = chi2s[np.argsort(chi2s)][:chi2cutval] deltachi = np.min(sorted_chi2s) + 1 print('Sorted by chi2 and kept only the {0} values with lowest chi2 values'.format(chi2cutval)) # Loop over generation file things (fit parameters) to define x-variables for plot for i in range (0, nvars+5): if demcmc == False: i = i + 1 xvalues = sorted_varlist_gen[i-1] elif demcmc == True: xvalues = sorted_varlist_gen[i] ############################## ### PLOTTING STUFF IS HERE ### if i <= 5: ax = plt.subplot2grid((4,5),(0,i-1)) elif i > 5 and i <= 10: ax = plt.subplot2grid((4,5),(1,i-5-1)) elif i > 10 and i <= 15: ax = plt.subplot2grid((4,5),(2,i-10-1)) elif i > 15 and i <= 20: ax = plt.subplot2grid((4,5),(3,i-15-1)) #elif i > 20 and i <= 25: # ax = plt.subplot2grid((5,5),(4,i-20-1)) ax.xaxis.set_major_locator(MaxNLocator(3)) # no more than 2 ticks per axis #ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) ax.xaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.subplots_adjust(wspace=0, hspace=0.4) if i % 5 != 1: ax.set_yticklabels(()) plt.plot(xvalues, sorted_chi2s, marker='o', color='k', mec=None, ms=2, ls='None', markevery=10) plt.xlabel(varnames[i]) #plt.text(xmin*1.1, ymin*1.1, varnames[i-1]) #xmin = np.min(xfilter) #xmax = np.max(xfilter) #plt.axis([xmin, xmax, ymin, ymax]) #plt.ylim((plotymin, plotymax)) #plt.axis([np.min(errorxs), np.max(errorxs), plotymin, plotymax]) ### PLOTTING STUFF IS HERE ### ############################## # Print out fit variables from generation file with uncertainties bestx = xvalues[0] errorx = [] for idx, (value, chi2) in enumerate(zip(xvalues, chi2s)): if (chi2 - chi2s[0]) <= deltachi: errorx.append(value) errorxplus = np.max(errorx) errorxminus = np.min(errorx) print(varnames[i], '\t =', bestx, '+', errorxplus-bestx, '\ -', bestx-errorxminus, file=out) # Loop over ELCparm file things # Print out fit variables from ELCparm file with uncertainties # Two options for different number of cols, as before if demcmc == False: for i in range(1, nparms+1): xvalues = sorted_varlist_par[i-1] bestx = xvalues[0] errorx = [] for idx, (value, chi2) in enumerate(zip(xvalues, chi2s)): if (chi2 - chi2s[0]) <= deltachi: errorx.append(value) errorxplus = np.max(errorx) errorxminus = np.min(errorx) print(parmkeys[i-1][0], '\t =', bestx, '+', errorxplus-bestx, '\ -', bestx-errorxminus, file=out) elif demcmc == True: for i in range(0, nparms-1): xvalues = sorted_varlist_par[i] bestx = xvalues[0] errorx = [] for idx, (value, chi2) in enumerate(zip(xvalues, chi2s)): if (chi2 - chi2s[0]) <= deltachi: errorx.append(value) errorxplus = np.max(errorx) errorxminus = np.min(errorx) print(parmkeys[i][0], '\t =', bestx, '+', errorxplus-bestx, '\ -', bestx-errorxminus, file=out) out.close() print('Chi2 ranges from {0} to {1}'.format(np.min(chi2s), np.max(chi2s))) print('There are {0} parameters explicitly being fit in gridloop.'.format(nvars)) print('Error bars assume a delta-chi2 threshold of {0}.'.format(deltachi)) print('Skipping a plot because that is ugly and slow.') #print('Here comes a plot...') #plt.show()
46.807292
126
0.687326
7b659ab8e3e537a7500d660ae695fbff9d7922af
1,362
py
Python
interpolate_map_traffic.py
frongk/sa-air
4def5f7734a73e6be03ad842e9eb15275c063ab1
[ "MIT" ]
null
null
null
interpolate_map_traffic.py
frongk/sa-air
4def5f7734a73e6be03ad842e9eb15275c063ab1
[ "MIT" ]
null
null
null
interpolate_map_traffic.py
frongk/sa-air
4def5f7734a73e6be03ad842e9eb15275c063ab1
[ "MIT" ]
null
null
null
import pandas import pickle from tqdm import tqdm INTERPOLATION_MAPPING_FILE = 'mapping_coordinates/traffic_map_sa_100.pkl' DATA_FILE = 'data/traffic/traffic_data.csv' GRID_FILE = 'data/interpolation_grid_100.csv' GRID_INDEX = ['Index'] DATA_FIELDS = ['Volume', 'Occupancy', 'Speed'] DATA_INDEX = ['AssetNum'] # time filters WEEKDAY_NAME = 'Weekday' WEEKDAY_FILTER = 5 TIME_NAME = 'Time' TIME_FILTER = 7 OUTPUT_DATA_PATH = 'data' OUTPUT_DATA_SET_NAME = 'mapgen_traffic.csv' grid = pandas.read_csv(GRID_FILE,index_col = 0) raw_data = pandas.read_csv(DATA_FILE) data = raw_data[(raw_data[WEEKDAY_NAME]==WEEKDAY_FILTER) & (raw_data[TIME_NAME]==TIME_FILTER)] data.set_index(DATA_INDEX, inplace=True) mapping_dict = pickle.load(open(INTERPOLATION_MAPPING_FILE,'rb')) grid_interpolation_output = [] for point in tqdm(grid.index): weight_set = mapping_dict[point]['weight_vals'] idx_set = mapping_dict[point]['triangle_idx'] values = data[DATA_FIELDS].loc[idx_set].transpose() output_vals = [point] + list((values*weight_set).sum(axis=1)/sum(weight_set)) grid_interpolation_output.append(output_vals) out_df = pandas.DataFrame.from_records(grid_interpolation_output, columns=GRID_INDEX + DATA_FIELDS) out_df.set_index(*GRID_INDEX,inplace=True) out_df.to_csv(f'{OUTPUT_DATA_PATH}/{OUTPUT_DATA_SET_NAME}.csv')
29.608696
99
0.76138
c9ca343323239ef3b9dedcd8e17cb5ca6e578d0a
7,388
py
Python
core/core50_inc_finetuning.py
akashgokul/core50
4afc491db32c3c58e515e5f6d2bd0425b76aedb9
[ "CC-BY-4.0" ]
103
2017-05-11T03:54:58.000Z
2022-03-14T03:14:32.000Z
core/core50_inc_finetuning.py
akashgokul/core50
4afc491db32c3c58e515e5f6d2bd0425b76aedb9
[ "CC-BY-4.0" ]
5
2018-11-19T09:59:38.000Z
2022-03-15T11:19:38.000Z
core/core50_inc_finetuning.py
akashgokul/core50
4afc491db32c3c58e515e5f6d2bd0425b76aedb9
[ "CC-BY-4.0" ]
27
2017-08-14T13:16:37.000Z
2022-02-23T13:34:30.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # Copyright (c) 2017. Vincenzo Lomonaco. All rights reserved. # # See the accompanying LICENSE file for terms. # # # # Date: 28-04-2017 # # Author: Vincenzo Lomonaco # # E-mail: vincenzo.lomonaco@unibo.it # # Website: vincenzolomonaco.com # ################################################################################ """ This sacred script can be used for recording all the incremental experiments on CORe50 on an external DB and output file. Sacred is also very useful in order to guarantee the reproducibility of the experiments and to keep track of them while they are still running. This main script can be used independently of the underline Deep Learning framework and model implementation. It orchestrates each experiment performing: 1. The connection and data transfer to the sacred observer. 2. On-the-fly creation of the batches train and test filelists for each run. 3. The multi-run training and testing with the IncFtModel wrapper. """ # Sacred dependecies from sacred import Experiment from sacred.observers import MongoObserver # Other dependencies import numpy as np import os # Local dependencies from inc_finetuning import IncFtModel from create_sI_filelist import create_sI_run_filelist from create_sII_filelist import create_sII_run_filelist from create_sIII_filelist import create_sIII_run_filelist # Add the Ingredient while creating the experiment ex = Experiment('core50 incremental finetuning') # We add the observer (if you don't have a configured DB # then simply comment the line below line). # ex.observers.append(MongoObserver.create(db_name='experiments_db')) @ex.config def cfg(): """ Default configuration parameters. Overwritten by specific exps configurations. See the docs for more information about type and semantics of each parameter. """ name = 'core50 incremental finetuning - sI' scenario = 1 img_dim = 128 data_path = '/insert/your/path/' lmdb_bp = '/insert/your/path/' filelist_bp = '/insert/your/path/sI' conf_bp = '/insert/your/path/' snapshots_bp = '/insert/your/path/' starting_weights = '/insert/your/path/bvlc_reference_caffenet.caffemodel' batches_num = 8 num_runs = 10 conf_files = { 'solver_filename': conf_bp + 'inc_solver.prototxt', 'net_filename': conf_bp + 'inc_train_val.prototxt' } # first batch learning rate first_batch_lr = 0.001 # in order of importance lrs = [ 0.001, 0.00005, 0.00001 ] num_inc_it = 100 first_batch_it = 2000 test_minibatch_size = 100 stepsize = first_batch_it weights_mult = 3 # naive if not specified strategy = 'fromscratch' fixed_test_set = True # random sees seed = 1 @ex.automain def main(img_dim, conf_files, data_path, lmdb_bp, filelist_bp, snapshots_bp, first_batch_lr, lrs, num_inc_it, first_batch_it, test_minibatch_size, batches_num, starting_weights, stepsize, weights_mult, strategy, fixed_test_set, num_runs, seed, scenario): """ Main script which create the train/test filelists for each batch and run on-the-fly. Then it trains the model continuously via the IncFtModel class. """ # setting the seed for reproducibility batches_idx = [str(x).zfill(2) for x in range(batches_num)] batch_order = [x for x in range(batches_num)] np.random.seed(seed) # For each run we operate sequentially for run in range(num_runs): run = str(run) ex.info[run] = {} # In scenario 2 (NC) and 3 (NIC) the first batch stay fixed # otherwise we shuffle everything if scenario != 1: inc_batch_order = batch_order[1:] np.random.shuffle(inc_batch_order) batch_order = [0] + inc_batch_order else: np.random.shuffle(batch_order) print("----------- Run " + run + " -----------") print("batches order: ", batch_order) print("-----------------------------") # Setting the meta filelists parameters path = filelist_bp + '_inc/run' + run + '/' cpath = filelist_bp + '_cum/run' + run + '/' for x in [path, cpath]: if not os.path.exists(x): os.makedirs(x) if strategy == 'fromscratch': cum = True curr_filelist_bp = cpath else: cum = False curr_filelist_bp = path # Actually creating the filelists depending on # the scenario sI (NI), sII (NC), sIII (NIC) if scenario == 1: create_sI_run_filelist( dest_bp=path, dest_cum_bp=cpath, cumulative=cum, batch_order=batch_order ) elif scenario == 2: create_sII_run_filelist( dest_bp=path, dest_cum_bp=cpath, cumulative=cum, batch_order=batch_order ) elif scenario == 3: create_sIII_run_filelist( dest_bp=path, dest_cum_bp=cpath, cumulative=cum, batch_order=batch_order ) else: print("Error: scenario not known.") # Create object incFTModel inc_model = IncFtModel(img_dim, conf_files, data_path, lmdb_bp, snapshots_bp, first_batch_lr, lrs, num_inc_it, first_batch_it, test_minibatch_size, starting_weights, stepsize, weights_mult, use_lmdb=False, debug=False, strategy=strategy) # Now we can train it incrementally for idx in batches_idx: if fixed_test_set: test_filelist = curr_filelist_bp + 'test_filelist.txt' else: test_filelist = curr_filelist_bp + 'test_batch_' + \ idx + "_filelist.txt" s, acc, accs = inc_model.train_batch( curr_filelist_bp + 'train_batch_' + idx + "_filelist.txt", test_filelist) # Printing batch results print(s) print("Acc. per class:") for i, single_acc in enumerate(accs): print(str(i) + ': ' + str(round(single_acc, 3)).ljust( 10) + "\t", end="") if (i + 1) % 5 == 0: print("") print("----------------------------") # Saving them on the DB if 'inc_accuracy' not in ex.info[run].keys(): ex.info[run]['inc_accuracy'] = [] if 'inc_accuracy per class' not in ex.info[run].keys(): ex.info[run]['inc_accuracy per class'] = [] ex.info[run]['inc_accuracy'].append(acc) ex.info[run]['inc_accuracy per class'].append(accs.tolist())
35.349282
80
0.563617
927a3943588dcafd0b1cc437b548c33a92bf9376
2,598
py
Python
examples/texture/receiver.py
jlai/Python-SpoutGL
01003424b9e6d6a07b346698aae1508853409a45
[ "BSD-3-Clause" ]
5
2021-12-30T15:03:52.000Z
2022-03-08T14:34:39.000Z
examples/texture/receiver.py
jlai/Python-SpoutGL
01003424b9e6d6a07b346698aae1508853409a45
[ "BSD-3-Clause" ]
1
2021-12-08T01:41:17.000Z
2021-12-08T01:41:17.000Z
examples/texture/receiver.py
jlai/Python-SpoutGL
01003424b9e6d6a07b346698aae1508853409a45
[ "BSD-3-Clause" ]
1
2021-11-24T23:12:49.000Z
2021-11-24T23:12:49.000Z
import SpoutGL import pygame from OpenGL.GL import * DISPLAY_WIDTH = 800 DISPLAY_HEIGHT = 600 SENDER_NAME = "SpoutGL-texture-test" def setProjection(width, height): glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0, width, height, 0, 1, -1) glMatrixMode(GL_MODELVIEW) def drawSquare(width, height): glEnable(GL_TEXTURE_2D) glBegin(GL_QUADS) glTexCoord(0, 0) glVertex2f(0, 0) glTexCoord(1, 0) glVertex2f(width, 0) glTexCoord(1, 1) glVertex2f(width, height) glTexCoord(0, 1) glVertex2f(0, height) glEnd() glDisable(GL_TEXTURE_2D) pygame.init() pygame.display.set_caption('Texture Receiver Example') pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT), pygame.OPENGL | pygame.DOUBLEBUF) receiveTextureID = glGenTextures(1) glBindTexture(GL_TEXTURE_2D, receiveTextureID) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 0, 0, DISPLAY_WIDTH, DISPLAY_HEIGHT, 0) setProjection(DISPLAY_WIDTH, DISPLAY_HEIGHT) glClearColor(0.0, 0.0, 0.0, 1.0) with SpoutGL.SpoutReceiver() as receiver: receiver.setReceiverName(SENDER_NAME) buffer = None width = 0 height = 0 while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() result = receiver.receiveTexture( receiveTextureID, GL_TEXTURE_2D, False, 0) if receiver.isUpdated(): width = receiver.getSenderWidth() height = receiver.getSenderHeight() print("Updated") # Initialize or update texture size glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_2D, receiveTextureID) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, None) setProjection(width, height) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) # Draw texture glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_2D, receiveTextureID) drawSquare(width, height) pygame.display.flip() # Wait until the next frame is ready # Wait time is in milliseconds; note that 0 will return immediately receiver.waitFrameSync(SENDER_NAME, 1000)
26.783505
75
0.680523
4a48ad23cddfa21b6765717dad6ea9da9a7a1a3b
1,790
py
Python
contrib/stack/topsStack/plotBursts_reference_secondaries.py
vincentschut/isce2
1557a05b7b6a3e65abcfc32f89c982ccc9b65e3c
[ "ECL-2.0", "Apache-2.0" ]
1,133
2022-01-07T21:24:57.000Z
2022-01-07T21:33:08.000Z
contrib/stack/topsStack/plotBursts_reference_secondaries.py
vincentschut/isce2
1557a05b7b6a3e65abcfc32f89c982ccc9b65e3c
[ "ECL-2.0", "Apache-2.0" ]
276
2019-02-10T07:18:28.000Z
2022-03-31T21:45:55.000Z
contrib/stack/topsStack/plotBursts_reference_secondaries.py
vincentschut/isce2
1557a05b7b6a3e65abcfc32f89c982ccc9b65e3c
[ "ECL-2.0", "Apache-2.0" ]
235
2019-02-10T05:00:53.000Z
2022-03-18T07:37:24.000Z
#!/usr/bin/env python3 # # Author: David Bekaert # Copyright 2018 import os import glob import sys import argparse def createParser(): ''' Create command line parser. ''' parser = argparse.ArgumentParser(description='Generate all kml files for the reference and secondary slc') parser.add_argument('-i', '--i', dest='inputdir', type=str, default="secondarys", help='Input directory') parser.add_argument('-o', '--o', dest='outputdir', type=str, default="kml_slcs", help='Output directory') return parser def cmdLineParse(iargs=None): ''' Command line parser. ''' parser = createParser() return parser.parse_args(args = iargs) def main(iargs=None): ''' The main driver. ''' inps = cmdLineParse(iargs) outputdir = os.path.abspath(inps.outputdir) inputdir = os.path.abspath(inps.inputdir) if not os.path.isdir(outputdir): os.mkdir(outputdir) # see if the referencedir also exist indir = os.path.abspath(os.path.join(inputdir, '..',"reference")) if os.path.isdir(inputdir): outfile = os.path.join(outputdir,'reference.kml') cmd = "plotBursts.py -i " + indir + " -k " + outfile print("reference date:") print(cmd) os.system(cmd) ### Loop over the different date folders if os.path.isdir(inputdir): for dirf in glob.glob(os.path.join(inputdir, '2*')): vals = dirf.split(os.path.sep) date = vals[-1] print(date + ":") infile = os.path.join(inputdir,date) outfile = os.path.join(outputdir,date + '.kml') cmd = "plotBursts.py -i " + infile + " -k " + outfile print(cmd) os.system(cmd) if __name__ == '__main__': main()
25.942029
110
0.604469
e72b712207a337cf52cc892447d203e2e642176f
16,011
py
Python
log_casp_act/model_176.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_casp_act/model_176.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_casp_act/model_176.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('ParpC') Monomer('Xiap', ['Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('C6A', ['C8pro']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 44000.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('C6A_0', 0.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('C6A_obs', C6A()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(ParpC(), ParpC_0) Initial(Xiap(Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(C6A(C8pro=None), C6A_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6pro(C3A=None), C6pro_0)
84.268421
614
0.812254
5952f0e24032f8847a088d92547663f4bee710ad
9,087
py
Python
python/hsfs/core/feature_group_api.py
robzor92/feature-store-api
d1a7c52d9996e2b0d0d42fbee1d687575796d339
[ "Apache-2.0" ]
null
null
null
python/hsfs/core/feature_group_api.py
robzor92/feature-store-api
d1a7c52d9996e2b0d0d42fbee1d687575796d339
[ "Apache-2.0" ]
null
null
null
python/hsfs/core/feature_group_api.py
robzor92/feature-store-api
d1a7c52d9996e2b0d0d42fbee1d687575796d339
[ "Apache-2.0" ]
null
null
null
# # Copyright 2020 Logical Clocks AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from hsfs import client from hsfs import feature_group, feature_group_commit from hsfs.core import ingestion_job class FeatureGroupApi: CACHED = "cached" ONDEMAND = "ondemand" def __init__(self, feature_store_id): self._feature_store_id = feature_store_id def save(self, feature_group_instance): """Save feature group metadata to the feature store. :param feature_group_instance: metadata object of feature group to be saved :type feature_group_instance: FeatureGroup :return: updated metadata object of the feature group :rtype: FeatureGroup """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", ] headers = {"content-type": "application/json"} return feature_group_instance.update_from_response_json( _client._send_request( "POST", path_params, headers=headers, data=feature_group_instance.json(), ), ) def get(self, name, version, fg_type): """Get the metadata of a feature group with a certain name and version. :param name: name of the feature group :type name: str :param version: version of the feature group :type version: int :param fg_type: type of the feature group to return :type version: string :return: feature group metadata object :rtype: FeatureGroup """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", name, ] query_params = None if version is None else {"version": version} json_list = _client._send_request("GET", path_params, query_params) if fg_type == self.CACHED: fg_list = feature_group.FeatureGroup.from_response_json(json_list) else: fg_list = feature_group.OnDemandFeatureGroup.from_response_json(json_list) if version is not None: return fg_list[0] else: return fg_list def delete_content(self, feature_group_instance): """Delete the content of a feature group. This endpoint serves to simulate the overwrite/insert mode. :param feature_group_instance: metadata object of feature group to clear the content for :type feature_group_instance: FeatureGroup """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", feature_group_instance.id, "clear", ] _client._send_request("POST", path_params) def delete(self, feature_group_instance): """Drop a feature group from the feature store. Drops the metadata and data of a version of a feature group. :param feature_group_instance: metadata object of feature group :type feature_group_instance: FeatureGroup """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", feature_group_instance.id, ] _client._send_request("DELETE", path_params) def update_metadata( self, feature_group_instance, feature_group_copy, query_parameter, query_parameter_value=True, ): """Update the metadata of a feature group. This only updates description and schema/features. The `feature_group_copy` is the metadata object sent to the backend, while `feature_group_instance` is the user object, which is only updated after a successful REST call. # Arguments feature_group_instance: FeatureGroup. User metadata object of the feature group. feature_group_copy: FeatureGroup. Metadata object of the feature group with the information to be updated. query_parameter: str. Query parameter that controls which information is updated. E.g. "updateMetadata", or "validationType". query_parameter_value: Str. Value of the query_parameter. # Returns FeatureGroup. The updated feature group metadata object. """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", feature_group_instance.id, ] headers = {"content-type": "application/json"} query_params = {query_parameter: query_parameter_value} return feature_group_instance.update_from_response_json( _client._send_request( "PUT", path_params, query_params, headers=headers, data=feature_group_copy.json(), ), ) def commit(self, feature_group_instance, feature_group_commit_instance): """ Save feature group commit metadata. # Arguments feature_group_instance: FeatureGroup, required metadata object of feature group. feature_group_commit_instance: FeatureGroupCommit, required metadata object of feature group commit. # Returns `FeatureGroupCommit`. """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", feature_group_instance.id, "commits", ] headers = {"content-type": "application/json"} return feature_group_commit_instance.update_from_response_json( _client._send_request( "POST", path_params, headers=headers, data=feature_group_commit_instance.json(), ), ) def get_commit_details(self, feature_group_instance, wallclock_timestamp, limit): """ Get feature group commit metadata. # Arguments feature_group_instance: FeatureGroup, required metadata object of feature group. limit: number of commits to retrieve wallclock_timestamp: specific point in time. # Returns `FeatureGroupCommit`. """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", feature_group_instance.id, "commits", ] headers = {"content-type": "application/json"} query_params = {"sort_by": "committed_on:desc", "offset": 0, "limit": limit} if wallclock_timestamp is not None: query_params["filter_by"] = "commited_on_ltoeq:" + str(wallclock_timestamp) return feature_group_commit.FeatureGroupCommit.from_response_json( _client._send_request("GET", path_params, query_params, headers=headers), ) def ingestion(self, feature_group_instance, ingestion_conf): """ Setup a Hopsworks job for dataframe ingestion Args: feature_group_instance: FeatureGroup, required metadata object of feature group. ingestion_conf: the configuration for the ingestion job application """ _client = client.get_instance() path_params = [ "project", _client._project_id, "featurestores", self._feature_store_id, "featuregroups", feature_group_instance.id, "ingestion", ] headers = {"content-type": "application/json"} return ingestion_job.IngestionJob.from_response_json( _client._send_request( "POST", path_params, headers=headers, data=ingestion_conf.json() ), )
34.290566
116
0.608121
1c783afe42f30f97bfc5d152af4ac63f2c86b6a4
3,601
py
Python
dataset.py
UMBCvision/Contextual-Adversarial-Patches
602fd267c2562f45ba65d10edb856a1144b8ca5f
[ "MIT" ]
33
2020-04-22T18:35:54.000Z
2022-02-09T06:41:02.000Z
dataset.py
UMBCvision/Contextual-Adversarial-Patches
602fd267c2562f45ba65d10edb856a1144b8ca5f
[ "MIT" ]
3
2020-06-22T11:58:33.000Z
2021-09-07T00:44:57.000Z
dataset.py
UMBCvision/Contextual-Adversarial-Patches
602fd267c2562f45ba65d10edb856a1144b8ca5f
[ "MIT" ]
6
2020-07-07T07:22:42.000Z
2022-02-09T06:41:04.000Z
#!/usr/bin/python # encoding: utf-8 import os import random import torch import numpy as np from torch.utils.data import Dataset from PIL import Image from utils import read_truths_args, read_truths from image import * import pdb # WARNING: for physical world attack class listDataset(Dataset): def __init__(self, root, shape=None, shuffle=True, transform=None, target_transform=None, train=False, seen=0, batch_size=64, num_workers=4): with open(root, 'r') as file: self.lines = file.readlines() if shuffle: random.shuffle(self.lines) self.nSamples = len(self.lines) self.transform = transform self.target_transform = target_transform self.train = train self.shape = shape self.seen = seen self.batch_size = batch_size self.num_workers = num_workers def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' imgpath = self.lines[index].rstrip() ''' Fix the width to be 13*32=416 and do not randomize ''' width = 13*32 if self.train and index % 64== 0: if self.seen < 4000*64: width = 13*32 self.shape = (width, width) elif self.seen < 8000*64: width = (random.randint(0,3) + 13)*32 self.shape = (width, width) elif self.seen < 12000*64: width = (random.randint(0,5) + 12)*32 self.shape = (width, width) elif self.seen < 16000*64: width = (random.randint(0,7) + 11)*32 self.shape = (width, width) else: # self.seen < 20000*64: width = (random.randint(0,9) + 10)*32 self.shape = (width, width) if self.train: jitter = 0.2 hue = 0.1 saturation = 1.5 exposure = 1.5 img, label = load_data_detection(imgpath, self.shape, jitter, hue, saturation, exposure) label = torch.from_numpy(label) else: img = Image.open(imgpath).convert('RGB') if self.shape: img = img.resize(self.shape) labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt') # # for KITTI # labpath = imgpath.replace('images', 'labels').replace('PNGImages_cropped', 'labels_cropped_car_person').replace('.jpg', '.txt').replace('.png','.txt') #labpath = imgpath.replace('images', 'labels').replace('train', 'labels').replace('.jpg', '.txt').replace('.png','.txt') label = torch.zeros(50*5) try: tmp = torch.from_numpy(read_truths_args(labpath, 8.0/img.width).astype('float32')) except Exception: tmp = torch.zeros(1,5) #tmp = torch.from_numpy(read_truths(labpath)) # # for KITTI # if tmp.size() == 0: # tmp = torch.zeros(1,5) tmp = tmp.view(-1) tsz = tmp.numel() # print('labpath = %s , tsz = %d' % (labpath, tsz)) if tsz > 50*5: label = tmp[0:50*5] elif tsz > 0: label[0:tsz] = tmp if self.transform is not None: img = self.transform(img) if self.target_transform is not None: label = self.target_transform(label) self.seen = self.seen + self.num_workers return (img, label, imgpath)
33.971698
164
0.549292
1d28c04aec93ee44b93a4796be781d894b46bf4c
1,172
bzl
Python
maistra/vendor/proxy_wasm_cpp_host/bazel/variables.bzl
knm3000/proxy
f2bb57b7294aea2cb344824785be42849d7d63c9
[ "Apache-2.0" ]
3
2020-11-30T15:35:37.000Z
2022-01-06T14:17:18.000Z
maistra/vendor/proxy_wasm_cpp_host/bazel/variables.bzl
knm3000/proxy
f2bb57b7294aea2cb344824785be42849d7d63c9
[ "Apache-2.0" ]
54
2020-06-23T17:34:04.000Z
2022-03-31T02:04:06.000Z
maistra/vendor/proxy_wasm_cpp_host/bazel/variables.bzl
knm3000/proxy
f2bb57b7294aea2cb344824785be42849d7d63c9
[ "Apache-2.0" ]
12
2020-07-14T23:59:57.000Z
2022-03-22T09:59:18.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. COPTS = select({ "@bazel_tools//src/conditions:windows": [ "/std:c++17", ], "//conditions:default": [ "-std=c++17", ], }) # https://bytecodealliance.github.io/wasmtime/c-api/ LINKOPTS = select({ "@bazel_tools//src/conditions:windows": [ "-", "ws2_32.lib", "advapi32.lib", "userenv.lib", "ntdll.lib", "shell32.lib", "ole32.lib", ], "@bazel_tools//src/conditions:darwin": [], "//conditions:default": [ # required for linux "-lpthread", "-ldl", "-lm", ], })
27.255814
74
0.620307
ec15f73268120324bc423abf76d765a3c3918ba9
9,024
py
Python
taxdata/cps/finalprep.py
jdebacker/taxdata
c32d401a10a6c8f6e889d87c6cc72fd4338017b2
[ "CC0-1.0" ]
12
2019-02-07T14:06:28.000Z
2021-12-04T19:19:50.000Z
taxdata/cps/finalprep.py
jdebacker/taxdata
c32d401a10a6c8f6e889d87c6cc72fd4338017b2
[ "CC0-1.0" ]
230
2015-10-20T18:38:10.000Z
2018-12-05T16:04:04.000Z
taxdata/cps/finalprep.py
jdebacker/taxdata
c32d401a10a6c8f6e889d87c6cc72fd4338017b2
[ "CC0-1.0" ]
19
2015-12-21T18:25:11.000Z
2018-11-10T16:53:38.000Z
""" Clean up the CPS file and make it ready for Tax-Calculator """ import numpy as np import pandas as pd import copy from pathlib import Path from .helpers import CUR_PATH from .constants import USEABLE_VARS ADJ_TARGETS = pd.read_csv(Path(CUR_PATH, "adjustment_targets.csv")) def drop_vars(data): """ Returns Pandas DataFrame of data without unuseable variables """ drop_vars = list(set(data.columns) - USEABLE_VARS) data = data.drop(drop_vars, axis=1) return data def add_agi_bin(data, col_name): """ Add an AGI bin indicator used in Tax-Calc to apply adjustment factors """ THRESHOLDS_K = [ -np.inf, 0, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 200, 500, 1000, 1500, 2000, np.inf, ] thresholds = [x * 1000 for x in THRESHOLDS_K] data["agi_bin"] = pd.cut( data[col_name], thresholds, labels=np.arange(0, len(THRESHOLDS_K) - 1), right=False, ) return data def deduction_limits(data): """ Apply limits on itemized deductions """ # Split charitable contributions into cash and non-cash using ratio in PUF cash = 0.82013 non_cash = 1.0 - cash data["e19800"] = data["CHARITABLE"] * cash data["e20100"] = data["CHARITABLE"] * non_cash # Apply student loan interest deduction limit data["e03210"] = np.where(data["SLINT"] > 2500, 2500, data["SLINT"]) # Apply IRA contribution limit deductable_ira = np.where( data["age_head"] >= 50, np.where(data["ADJIRA"] > 6500, 6500, data["ADJIRA"]), np.where(data["ADJIRA"] > 5500, 5500, data["ADJIRA"]), ) data["e03150"] = deductable_ira return data def adjust_helper(agi, var, target, weight, agi_bin): """ Parameters ---------- agi: AGI provided in the CPS var: variable being adjusted target: target bin levels weight: weights Returns ------- Series containing the adjusted values of the variable """ # Goal total ensures the weighted sum of the variable wont change goal_total = (var * weight).sum() # Goal distribution based on IRS data distribution = target / target.sum() # Find the goal amount in each bin goal_amts = goal_total * distribution assert np.allclose(goal_amts.sum(), goal_total) # Find current totals in each bin bin_0 = np.where(agi < 0, var * weight, 0).sum() bin_1 = np.where((agi >= 0) & (agi < 5000), var * weight, 0).sum() bin_2 = np.where((agi >= 5000) & (agi < 10000), var * weight, 0).sum() bin_3 = np.where((agi >= 10000) & (agi < 15000), var * weight, 0).sum() bin_4 = np.where((agi >= 15000) & (agi < 20000), var * weight, 0).sum() bin_5 = np.where((agi >= 20000) & (agi < 25000), var * weight, 0).sum() bin_6 = np.where((agi >= 25000) & (agi < 30000), var * weight, 0).sum() bin_7 = np.where((agi >= 30000) & (agi < 40000), var * weight, 0).sum() bin_8 = np.where((agi >= 40000) & (agi < 50000), var * weight, 0).sum() bin_9 = np.where((agi >= 50000) & (agi < 75000), var * weight, 0).sum() bin_10 = np.where((agi >= 75000) & (agi < 100_000), var * weight, 0).sum() bin_11 = np.where((agi >= 100_000) & (agi < 200_000), var * weight, 0).sum() bin_12 = np.where((agi >= 200_000) & (agi < 500_000), var * weight, 0).sum() bin_13 = np.where((agi >= 500_000) & (agi < 1e6), var * weight, 0).sum() bin_14 = np.where((agi >= 1e6) & (agi < 1.5e6), var * weight, 0).sum() bin_15 = np.where((agi >= 1.5e6) & (agi < 2e6), var * weight, 0).sum() bin_16 = np.where((agi >= 2e6), var * weight, 0).sum() # Create series holding each of the current totals actual_amts = pd.Series( [ bin_0, bin_1, bin_2, bin_3, bin_4, bin_5, bin_6, bin_7, bin_8, bin_9, bin_10, bin_11, bin_12, bin_13, bin_14, bin_15, bin_16, ], index=goal_amts.index, ) ratios_index = [num for num in range(0, len(actual_amts))] # Determine the ratios ratios = pd.Series(goal_amts / actual_amts) ratios.index = ratios_index # Apply adjustment ratios var_array = np.array(var) var_array = np.nan_to_num(var_array) ratios = np.where(ratios == np.inf, 1.0, ratios) adj_array = ratios[agi_bin] _var = var * adj_array # assert that we don't lose any of the variable tot = (_var * weight).sum() m = f"{tot:,.2f} != {goal_total:,.2f}" try: assert np.allclose(np.array(goal_total), np.array(tot)), m except AssertionError: print(m) print("Reversing Adjustment") _var = var tot = (_var * weight).sum() m = f"{tot:,.2f} != {goal_total:,.2f}" assert np.allclose(np.array(goal_total), np.array(tot)), m return _var def adjust(data, targets): """ data: CPS in DataFrame format targets: targeted totals provided by the IRS """ # Make copies of values to avoid pandas warning inc = copy.deepcopy(data["tot_inc"]) int_inc = copy.deepcopy(data["e00300"]) odiv_inc = copy.deepcopy(data["e00600"]) qdiv_inc = copy.deepcopy(data["e00650"]) biz_inc = copy.deepcopy(data["e00900"]) print("e00300") data["e00300"] = adjust_helper( inc, int_inc, targets["INT"], data["s006"], data["agi_bin"] ) div_ratio = data["e00600"] / (data["e00600"] + data["e00650"]) print("e00600") data["e00600"] = adjust_helper( inc, odiv_inc, targets["ODIV"], data["s006"], data["agi_bin"] ) print("e00650") data["e00650"] = adjust_helper( inc, qdiv_inc, targets["QDIV"], data["s006"], data["agi_bin"] ) total = data["e00600"] + data["e00650"] data["e00600"] = total * div_ratio data["e00650"] = total * (1.0 - div_ratio) biz_ratio_p = data["e00900p"] / data["e00900"] biz_ratio_s = 1.0 - biz_ratio_p biz_ratio_p = np.nan_to_num(biz_ratio_p, nan=0, posinf=1, neginf=1) biz_ratio_s = np.nan_to_num(biz_ratio_s, nan=0, posinf=1, neginf=1) sub = biz_ratio_s[data["MARS"] != 2] zeros = np.zeros_like(sub) assert np.allclose(sub, zeros) print("e00900") data["e00900"] = adjust_helper( inc, biz_inc, targets["BIZ"], data["s006"], data["agi_bin"] ) data["e00900p"] = data["e00900"] * biz_ratio_p data["e00900s"] = data["e00900"] * biz_ratio_s return data def finalprep(data: pd.DataFrame): """ Function for cleaning up the CPS file Parameters ---------- data: pandas DataFrame with the raw CPS tax unit file """ data = data.fillna(0.0) # recode blind variables data["blind_head"] = np.where(data["blind_head"] == 1, 1, 0) data["blind_spouse"] = np.where(data["blind_spouse"] == 1, 1, 0) # cap EIC data["EIC"] = np.minimum(data["EIC"], 3) # apply deduction deduction data = deduction_limits(data) # rename variables RENAMES = { "mars": "MARS", "dep_stat": "DSI", "divs": "e00600", "CGAGIX": "e01100", "DPAD": "e03240", "TIRAD": "e01400", "SEHEALTH": "e03270", "KEOGH": "e03300", "MEDEX": "e17500", "CDC": "e32800", "MISCITEM": "e20400", "realest": "e18500", "statetax": "e18400", "cash_char": "e19800", "non_cash_char": "e20100", } data = data.rename(columns=RENAMES) # assert that no non-married filers have non-zero values for spouse income sub_data = data[data["MARS"] != 2] zeros = np.zeros_like(sub_data["MARS"]) assert np.allclose(sub_data["e00200s"], zeros) assert np.allclose(sub_data["e00900s"], zeros) assert np.allclose(sub_data["e02100s"], zeros) # add record ID data["RECID"] = range(1, len(data.index) + 1) # add AGI bins data = add_agi_bin(data, "tot_inc") # adjust income distributions print("Adjusting Income Distribution") data = adjust(data, ADJ_TARGETS) # assert that no non-married filers have non-zero values for spouse income sub_data = data[data["MARS"] != 2] zeros = np.zeros_like(sub_data["MARS"]) assert np.allclose(sub_data["e00200s"], zeros) assert np.allclose(sub_data["e00900s"], zeros) data = drop_vars(data) print("Adding zero pencon_p and pencon_s variables") data["pencon_p"] = np.zeros(len(data.index), dtype=np.int32) data["pencon_s"] = np.zeros(len(data.index), dtype=np.int32) # clean data data = data.fillna(0.0) data = data.astype(np.int32) data["e00200"] = data["e00200p"] + data["e00200s"] data["e00900"] = data["e00900p"] + data["e00900s"] data["e02100"] = data["e02100p"] + data["e02100s"] data["e00650"] = np.minimum(data["e00600"], data["e00650"]) data["s006"] *= 100 return data
31.333333
80
0.587101
9065f6b06aea01e08b03cc155662b760da206344
2,559
py
Python
riscv-none-gcc/8.2.0-2.2-20190521-0004/riscv-none-embed/lib/rv32imaf/ilp32f/libstdc++.a-gdb.py
balanceTWK/GD32VF103C-START
606bf274c3d30e4f498982eaa21947e067875792
[ "Apache-2.0" ]
5
2019-10-21T09:05:38.000Z
2022-02-01T04:23:29.000Z
riscv-none-gcc/8.2.0-2.2-20190521-0004/riscv-none-embed/lib/rv32imaf/ilp32f/libstdc++.a-gdb.py
balanceTWK/GD32VF103C-START
606bf274c3d30e4f498982eaa21947e067875792
[ "Apache-2.0" ]
null
null
null
riscv-none-gcc/8.2.0-2.2-20190521-0004/riscv-none-embed/lib/rv32imaf/ilp32f/libstdc++.a-gdb.py
balanceTWK/GD32VF103C-START
606bf274c3d30e4f498982eaa21947e067875792
[ "Apache-2.0" ]
3
2019-10-22T09:45:34.000Z
2020-05-09T12:56:30.000Z
# -*- python -*- # Copyright (C) 2009-2018 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import gdb import os import os.path pythondir = '/Host/home/ilg/Work/riscv-none-gcc-8.2.0-2.2/linux-x64/install/riscv-none-gcc/share/gcc-riscv-none-embed' libdir = '/Host/home/ilg/Work/riscv-none-gcc-8.2.0-2.2/linux-x64/install/riscv-none-gcc/riscv-none-embed/lib/rv32imaf/ilp32f' # This file might be loaded when there is no current objfile. This # can happen if the user loads it manually. In this case we don't # update sys.path; instead we just hope the user managed to do that # beforehand. if gdb.current_objfile () is not None: # Update module path. We want to find the relative path from libdir # to pythondir, and then we want to apply that relative path to the # directory holding the objfile with which this file is associated. # This preserves relocatability of the gcc tree. # Do a simple normalization that removes duplicate separators. pythondir = os.path.normpath (pythondir) libdir = os.path.normpath (libdir) prefix = os.path.commonprefix ([libdir, pythondir]) # In some bizarre configuration we might have found a match in the # middle of a directory name. if prefix[-1] != '/': prefix = os.path.dirname (prefix) + '/' # Strip off the prefix. pythondir = pythondir[len (prefix):] libdir = libdir[len (prefix):] # Compute the ".."s needed to get from libdir to the prefix. dotdots = ('..' + os.sep) * len (libdir.split (os.sep)) objfile = gdb.current_objfile ().filename dir_ = os.path.join (os.path.dirname (objfile), dotdots, pythondir) if not dir_ in sys.path: sys.path.insert(0, dir_) # Call a function as a plain import would not execute body of the included file # on repeated reloads of this object file. from libstdcxx.v6 import register_libstdcxx_printers register_libstdcxx_printers(gdb.current_objfile())
41.274194
125
0.724893
a13cccb2aa154e290b4c42909cb47e441dcd2625
18,099
py
Python
classes.py
PlanTL-SANIDAD/MEDDOCAN-Evaluation-Script
843152c475e7118171028badd16f6342c5560e0f
[ "MIT" ]
null
null
null
classes.py
PlanTL-SANIDAD/MEDDOCAN-Evaluation-Script
843152c475e7118171028badd16f6342c5560e0f
[ "MIT" ]
null
null
null
classes.py
PlanTL-SANIDAD/MEDDOCAN-Evaluation-Script
843152c475e7118171028badd16f6342c5560e0f
[ "MIT" ]
null
null
null
import os from tags import PHITag from xml.etree import ElementTree class Annotation(object): def __init__(self, file_name=None, root="root"): self.doc_id = '' self.sys_id = '' self.text = None self.num_sentences = None self.root = root self.sensitive_spans = [] self.sensitive_spans_merged = [] self.verbose = False if file_name: self.sys_id = os.path.basename(os.path.dirname(file_name)) self.doc_id = os.path.splitext(os.path.basename(file_name))[0] else: self.doc_id = None @property def id(self): return self.doc_id def get_phi(self): return self.phi def get_phi_spans(self): return self.sensitive_spans def get_phi_spans_merged(self): return self.sensitive_spans_merged def get_phi_spans_joins(self): return self.sensitive_spans_joins def get_number_sentences(self): try: self.num_sentences = \ sum(1 for line in open('annotated_corpora/sentence_splitted/' + self.doc_id + ".ann")) except IOError: print("File '" + 'freeling/sentence_splitted/' + self.doc_id + ".ann' not found.") return self.num_sentences def add_spans(self, phi_tags): for tag in sorted(phi_tags): self.sensitive_spans.append(tag) for y in sorted(phi_tags): if not self.sensitive_spans_merged: self.sensitive_spans_merged.append(y) else: x = self.sensitive_spans_merged.pop() if self.is_all_non_alphanumeric(self.text[x[1]:y[0]]): self.sensitive_spans_merged.append((x[0], y[1])) else: self.sensitive_spans_merged.append(x) self.sensitive_spans_merged.append(y) @staticmethod def is_all_non_alphanumeric(string): for i in string: if i.isalnum(): return False return True class i2b2Annotation(Annotation): """ This class models the i2b2 annotation format.""" def __init__(self, file_name=None, root="root"): self.doc_id = '' self.sys_id = '' self.text = None self.num_sentences = None self.root = root self.phi = [] self.sensitive_spans = [] self.sensitive_spans_merged = [] self.verbose = False if file_name: self.sys_id = os.path.basename(os.path.dirname(file_name)) self.doc_id = os.path.splitext(os.path.basename(file_name))[0] self.parse_text_and_tags(file_name) self.parse_text_and_spans(file_name) self.file_name = file_name else: self.doc_id = None def parse_text_and_tags(self, file_name=None): if file_name is not None: text = open(file_name, 'r').read() self.text = text tree = ElementTree.parse(file_name) root = tree.getroot() self.root = root.tag try: self.text = root.find("TEXT").text except AttributeError: self.text = None # Handles files where PHI, and AnnotatorTags are all just # stuffed into tag element. for t, cls in PHITag.tag_types.items(): if len(root.find("TAGS").findall(t)): for element in root.find("TAGS").findall(t): self.phi.append(cls(element)) def parse_text_and_spans(self, file_name=None): if file_name is not None: text = open(file_name, 'r').read() self.text = text tree = ElementTree.parse(file_name) root = tree.getroot() self.root = root.tag try: self.text = root.find("TEXT").text except AttributeError: self.text = None # Fill list with tuples (start, end) for each annotation phi_tags = [] for t, cls in PHITag.tag_types.items(): if len(root.find("TAGS").findall(t)): for element in root.find("TAGS").findall(t): phi_tags.append((cls(element).get_start(), cls(element).get_end())) # Store spans self.add_spans(phi_tags) class BratAnnotation(Annotation): """ This class models the BRAT annotation format.""" def __init__(self, file_name=None, root="root"): self.doc_id = '' self.sys_id = '' self.text = None self.num_sentences = None self.root = root self.phi = [] self.sensitive_spans = [] self.sensitive_spans_merged = [] self.verbose = False if file_name: self.sys_id = os.path.basename(os.path.dirname(file_name)) self.doc_id = os.path.splitext(os.path.basename(file_name))[0] self.parse_text_and_tags(file_name) self.parse_text_and_spans(file_name) self.file_name = file_name else: self.doc_id = None def parse_text_and_tags(self, file_name=None): if file_name is not None: text = open(os.path.splitext(file_name)[0] + '.txt', 'r').read() self.text = text for row in open(file_name, 'r'): line = row.strip() if line.startswith("T"): # Lines is a Brat TAG try: label = line.split("\t")[1].split() tag = label[0] start = int(label[1]) end = int(label[2]) self.phi.append((tag, start, end)) except IndexError: print("ERROR! Index error while splitting sentence '" + line + "' in document '" + file_name + "'!") else: # Line is a Brat comment if self.verbose: print("\tSkipping line (comment):\t" + line) def parse_text_and_spans(self, file_name=None): if file_name is not None: text = open(os.path.splitext(file_name)[0] + '.txt', 'r').read() self.text = text phi_tags = [] for row in open(file_name, 'r'): line = row.strip() if line.startswith("T"): # Lines is a Brat TAG try: label = line.split("\t")[1].split() start = int(label[1]) end = int(label[2]) phi_tags.append((start, end)) except IndexError: print("ERROR! Index error while splitting sentence '" + line + "' in document '" + file_name + "'!") else: # Line is a Brat comment if self.verbose: print("\tSkipping line (comment):\t" + line) # Store spans self.add_spans(phi_tags) class Evaluate(object): """Base class with all methods to evaluate the different subtracks.""" def __init__(self, sys_ann, gs_ann): self.tp = [] self.fp = [] self.fn = [] self.doc_ids = [] self.verbose = False self.sys_id = sys_ann[list(sys_ann.keys())[0]].sys_id @staticmethod def get_tagset_ner(annotation): return annotation.get_phi() @staticmethod def get_tagset_span(annotation): return annotation.get_phi_spans() @staticmethod def get_tagset_span_merged(annotation): return annotation.get_phi_spans_merged() @staticmethod def is_contained(content, container): for element in sorted(container): if content[0] >= element[0] and content[1] <= element[1]: return True return False @staticmethod def recall(tp, fn): try: return len(tp) / float(len(fn) + len(tp)) except ZeroDivisionError: return 0.0 @staticmethod def precision(tp, fp): try: return len(tp) / float(len(fp) + len(tp)) except ZeroDivisionError: return 0.0 @staticmethod def F_beta(p, r, beta=1): try: return (1 + beta**2) * ((p * r) / (p + r)) except ZeroDivisionError: return 0.0 def micro_recall(self): try: return sum([len(t) for t in self.tp]) / \ float(sum([len(t) for t in self.tp]) + sum([len(t) for t in self.fn])) except ZeroDivisionError: return 0.0 def micro_precision(self): try: return sum([len(t) for t in self.tp]) / \ float(sum([len(t) for t in self.tp]) + sum([len(t) for t in self.fp])) except ZeroDivisionError: return 0.0 def _print_docs(self): for i, doc_id in enumerate(self.doc_ids): mp = Evaluate.precision(self.tp[i], self.fp[i]) mr = Evaluate.recall(self.tp[i], self.fn[i]) str_fmt = "{:<35}{:<15}{:<20}" print(str_fmt.format(doc_id, "Precision", "{:.4}".format(mp))) print(str_fmt.format("", "Recall", "{:.4}".format(mr))) print(str_fmt.format("", "F1", "{:.4}".format(Evaluate.F_beta(mp, mr)))) print("{:-<60}".format("")) def _print_summary(self): mp = self.micro_precision() mr = self.micro_recall() str_fmt = "{:<35}{:<15}{:<20}" print(str_fmt.format("", "", "")) print("Report (" + self.sys_id + "):") print("{:-<60}".format("")) print(str_fmt.format(self.label, "Measure", "Micro")) print("{:-<60}".format("")) print(str_fmt.format("Total ({} docs)".format(len(self.doc_ids)), "Precision", "{:.4}".format(mp))) print(str_fmt.format("", "Recall", "{:.4}".format(mr))) print(str_fmt.format("", "F1", "{:.4}".format(Evaluate.F_beta(mr, mp)))) print("{:-<60}".format("")) print("\n") def print_docs(self): print("\n") print("Report ({}):".format(self.sys_id)) print("{:-<60}".format("")) print("{:<35}{:<15}{:<20}".format("Document ID", "Measure", "Micro")) print("{:-<60}".format("")) self._print_docs() def print_report(self, verbose=False): self.verbose = verbose if verbose: self.print_docs() self._print_summary() class EvaluateSubtrack1(Evaluate): """Class for running the NER evaluation.""" def __init__(self, sys_sas, gs_sas): self.tp = [] self.fp = [] self.fn = [] self.num_sentences = [] self.doc_ids = [] self.verbose = False self.sys_id = sys_sas[list(sys_sas.keys())[0]].sys_id self.label = "Subtrack 1 [NER]" for doc_id in sorted(list(set(sys_sas.keys()) & set(gs_sas.keys()))): gold = set(self.get_tagset_ner(gs_sas[doc_id])) sys = set(self.get_tagset_ner(sys_sas[doc_id])) num_sentences = self.get_num_sentences(sys_sas[doc_id]) self.tp.append(gold.intersection(sys)) self.fp.append(sys - gold) self.fn.append(gold - sys) self.num_sentences.append(num_sentences) self.doc_ids.append(doc_id) @staticmethod def get_num_sentences(annotation): return annotation.get_number_sentences() @staticmethod def leak_score(fn, num_sentences): try: return float(len(fn) / num_sentences) except ZeroDivisionError: return 0.0 except TypeError: return "NA" def micro_leak(self): try: return float(sum([len(t) for t in self.fn]) / sum(t for t in self.num_sentences)) except ZeroDivisionError: return 0.0 except TypeError: return "NA" def _print_docs(self): for i, doc_id in enumerate(self.doc_ids): mp = EvaluateSubtrack1.precision(self.tp[i], self.fp[i]) mr = EvaluateSubtrack1.recall(self.tp[i], self.fn[i]) leak = EvaluateSubtrack1.leak_score(self.fn[i], self.num_sentences[i]) str_fmt = "{:<35}{:<15}{:<20}" print(str_fmt.format(doc_id, "Leak", "{:.4}".format(leak))) print(str_fmt.format("", "Precision", "{:.4}".format(mp))) print(str_fmt.format("", "Recall", "{:.4}".format(mr))) print(str_fmt.format("", "F1", "{:.4}".format(Evaluate.F_beta(mp, mr)))) print("{:-<60}".format("")) def _print_summary(self): mp = self.micro_precision() mr = self.micro_recall() ml = self.micro_leak() str_fmt = "{:<35}{:<15}{:<20}" print(str_fmt.format("", "", "")) print("Report (" + self.sys_id + "):") print("{:-<60}".format("")) print(str_fmt.format(self.label, "Measure", "Micro")) print("{:-<60}".format("")) print(str_fmt.format("Total ({} docs)".format(len(self.doc_ids)), "Leak", "{:.4}".format(ml))) print(str_fmt.format("", "Precision", "{:.4}".format(mp))) print(str_fmt.format("", "Recall", "{:.4}".format(mr))) print(str_fmt.format("", "F1", "{:.4}".format(Evaluate.F_beta(mr, mp)))) print("{:-<60}".format("")) print("\n") class EvaluateSubtrack2(Evaluate): """Class for running the SPAN evaluation with strict span mode.""" def __init__(self, sys_sas, gs_sas): self.tp = [] self.fp = [] self.fn = [] self.doc_ids = [] self.verbose = False self.sys_id = sys_sas[list(sys_sas.keys())[0]].sys_id self.label = "Subtrack 2 [strict]" for doc_id in sorted(list(set(sys_sas.keys()) & set(gs_sas.keys()))): gold = set(self.get_tagset_span(gs_sas[doc_id])) sys = set(self.get_tagset_span(sys_sas[doc_id])) self.tp.append(gold.intersection(sys)) self.fp.append(sys - gold) self.fn.append(gold - sys) self.doc_ids.append(doc_id) class EvaluateSubtrack2merged(Evaluate): """Class for running the SPAN evaluation with merged spans mode.""" def __init__(self, sys_sas, gs_sas): self.tp = [] self.fp = [] self.fn = [] self.doc_ids = [] self.verbose = False self.sys_id = sys_sas[list(sys_sas.keys())[0]].sys_id self.label = "Subtrack 2 [merged]" for doc_id in sorted(list(set(sys_sas.keys()) & set(gs_sas.keys()))): gold_strict = set(self.get_tagset_span(gs_sas[doc_id])) sys_strict = set(self.get_tagset_span(sys_sas[doc_id])) gold_merged = set(self.get_tagset_span_merged(gs_sas[doc_id])) sys_merged = set(self.get_tagset_span_merged(sys_sas[doc_id])) intersection = gold_strict.intersection(sys_strict).union(gold_merged.intersection(sys_merged)) fp = sys_strict - gold_strict for tag in sys_strict: if self.is_contained(tag, intersection): if tag in fp: fp.remove(tag) fn = gold_strict - sys_strict for tag in gold_strict: if self.is_contained(tag, intersection): if tag in fn: fn.remove(tag) self.tp.append(intersection) self.fp.append(fp) self.fn.append(fn) self.doc_ids.append(doc_id) class MeddocanEvaluation(object): """Base class for running the evaluations.""" def __init__(self): self.evaluations = [] def add_eval(self, e, label=""): e.sys_id = "SYSTEM: " + e.sys_id e.label = label self.evaluations.append(e) def print_docs(self): for e in self.evaluations: e.print_docs() def print_report(self, verbose=False): for e in self.evaluations: e.print_report(verbose=verbose) class NER_Evaluation(MeddocanEvaluation): """Class for running the NER evaluation (Subtrack 1).""" def __init__(self, annotator_cas, gold_cas, **kwargs): self.evaluations = [] # Basic Evaluation self.add_eval(EvaluateSubtrack1(annotator_cas, gold_cas, **kwargs), label="SubTrack 1 [NER]") class Span_Evaluation(MeddocanEvaluation): """Class for running the SPAN evaluation (Subtrack 2). Calls to 'strict' and 'merged' evaluations. """ def __init__(self, annotator_cas, gold_cas, **kwargs): self.evaluations = [] self.add_eval(EvaluateSubtrack2(annotator_cas, gold_cas, **kwargs), label="SubTrack 2 [strict]") self.add_eval(EvaluateSubtrack2merged(annotator_cas, gold_cas, **kwargs), label="SubTrack 2 [merged]")
31.259067
107
0.513012
744bf599b43629f30763f92f76315f4c19e53451
464
py
Python
inheritance/exercise/project_need_for_speed/test.py
ivan-yosifov88/python_oop
82b210e427cb80dbab3b9a5c3fceab431ee60164
[ "MIT" ]
1
2021-05-21T20:28:55.000Z
2021-05-21T20:28:55.000Z
inheritance/exercise/project_need_for_speed/test.py
ivan-yosifov88/python_oop
82b210e427cb80dbab3b9a5c3fceab431ee60164
[ "MIT" ]
null
null
null
inheritance/exercise/project_need_for_speed/test.py
ivan-yosifov88/python_oop
82b210e427cb80dbab3b9a5c3fceab431ee60164
[ "MIT" ]
null
null
null
from project_need_for_speed.family_car import FamilyCar from project_need_for_speed.vehicle import Vehicle vehicle = Vehicle(50, 150) print(Vehicle.DEFAULT_FUEL_CONSUMPTION) print(vehicle.fuel) print(vehicle.horse_power) print(vehicle.fuel_consumption) vehicle.drive(100) print(vehicle.fuel) family_car = FamilyCar(150, 150) family_car.drive(50) print(family_car.fuel) family_car.drive(50) print(family_car.fuel) print(family_car.__class__.__bases__[0].__name__)
27.294118
55
0.838362
abb3d1683099db0eee0147fc2d972069068fdf02
1,062
py
Python
scrapcore/validator_config.py
lantip/SerpScrap
b7de07b8ca826bcd941ef89455147c79ed1764bd
[ "MIT" ]
199
2017-04-02T00:43:26.000Z
2022-03-21T09:10:08.000Z
scrapcore/validator_config.py
lantip/SerpScrap
b7de07b8ca826bcd941ef89455147c79ed1764bd
[ "MIT" ]
49
2017-04-11T15:03:14.000Z
2022-03-08T18:41:21.000Z
scrapcore/validator_config.py
lantip/SerpScrap
b7de07b8ca826bcd941ef89455147c79ed1764bd
[ "MIT" ]
65
2017-05-21T04:03:31.000Z
2022-03-23T09:11:41.000Z
# -*- coding: utf-8 -*- from scrapcore.tools import ConfigurationError as Error class ValidatorConfig(): def validate(self, config): if not isinstance(config, dict): raise Error('config is not a dict') if config.get('num_results_per_page') > 100: raise Error('num_results_per_page must be lower then 100') valid_search_types = ['normal', 'video', 'news', 'image'] if config.get('search_type') not in valid_search_types: raise Error('Invalid search type!') if config.get('use_own_ip') != True and len(config.get('proxy_file')) == 0: raise Error('No proxy_file provided and using own IP is disabled.') if config.get('scrape_method') not in ('selenium'): raise Error('No such scrape_method {}'.format(config.get('scrape_method'))) if config.get('screenshot') is True and \ (config.get('dir_screenshot') is None or len(config.get('dir_screenshot')) < 1): raise Error('No config dir_screenshot found')
37.928571
87
0.627119
3b1e23159f009a4648f2a992ec9bf4208e78909e
69
py
Python
binrelay/__init__.py
nathanjackson/binrelay
20420e58e7188723916e7b69cdfad8642dd36134
[ "MIT" ]
4
2019-09-06T11:55:10.000Z
2021-09-03T11:37:22.000Z
binrelay/__init__.py
nathanjackson/binrelay
20420e58e7188723916e7b69cdfad8642dd36134
[ "MIT" ]
null
null
null
binrelay/__init__.py
nathanjackson/binrelay
20420e58e7188723916e7b69cdfad8642dd36134
[ "MIT" ]
null
null
null
from .tep import * from .utils import * from .race_analysis import *
17.25
28
0.73913
91576b2be5d991a435d2f84c1d8b92a4a6657a81
1,342
py
Python
clustering.py
guipaiva/K-means
90f1fe2896e945b173fc7788b7cf4c47feb58a99
[ "MIT" ]
null
null
null
clustering.py
guipaiva/K-means
90f1fe2896e945b173fc7788b7cf4c47feb58a99
[ "MIT" ]
null
null
null
clustering.py
guipaiva/K-means
90f1fe2896e945b173fc7788b7cf4c47feb58a99
[ "MIT" ]
null
null
null
import numpy as np from numpy import linalg as la from read import * #Calcula a norma (distancia euclidiana) entre dois arrays #axis = 1 significa que será utilizado o eixo horizontal para cálculo, considerando elementos de mesma linha def distance(a,b, ax = 1): return la.norm((a-b),axis = ax) #inicia a lista de distancias como zero, no formato [80]X[3], neste caso distances = np.zeros((size,k)) #Lista para histórico de posições de centroides c_history = [] #Posição atual da centroide curr_c = centroids c_history.append(curr_c) #Variável de controle para critério de parada do programa error = 1 #Critério de parada = 0 while error > 0: #Calcula a distancia entre as centroides e todos os pontos for i in range(size): distances[i] = distance(data[i],centroids) #Define as posições onde as distances são menores para cada centroide nearest = np.argmin(distances, axis = 1) #Atualiza o centróide atual para a média das posições onde a distancia é menor for i in range(k): curr_c[i] = np.mean(data[nearest == i], axis = 0) #adiciona ao histórico as posições atuais da centroides c_history.append(curr_c) '''Calcula a movimentação da centroide baseado na distância entre a centroide atual e sua ultima posição''' error = distance(curr_c, c_history[-1], None) c_history = np.array(c_history, dtype='f')
28.553191
108
0.742921
8b3e6cd9aa8cd6344238677acefe6d82a047b07c
3,418
py
Python
app/app/settings.py
nagasaichandra/recipe-app-api
67ac05687b9ac2b6726d02b6f615566712f2c75a
[ "MIT" ]
null
null
null
app/app/settings.py
nagasaichandra/recipe-app-api
67ac05687b9ac2b6726d02b6f615566712f2c75a
[ "MIT" ]
null
null
null
app/app/settings.py
nagasaichandra/recipe-app-api
67ac05687b9ac2b6726d02b6f615566712f2c75a
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-=vio63j(86f$hnc4fdswa3b4*!!85^zknn^c+%lp@m&0c%gt33' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS') } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'core.User' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
25.893939
91
0.694851
a77b204691c378e4ffe2fdd08bd1529782d6a1cf
19,696
py
Python
exps/NAS-Bench-201/statistics.py
EM-AutoML/AutoDL-Projects
8ff416fe5d6cb1b310b885fe376e6f2790fbda14
[ "MIT" ]
null
null
null
exps/NAS-Bench-201/statistics.py
EM-AutoML/AutoDL-Projects
8ff416fe5d6cb1b310b885fe376e6f2790fbda14
[ "MIT" ]
null
null
null
exps/NAS-Bench-201/statistics.py
EM-AutoML/AutoDL-Projects
8ff416fe5d6cb1b310b885fe376e6f2790fbda14
[ "MIT" ]
null
null
null
##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # ##################################################### import os, sys, time, argparse, collections from copy import deepcopy import torch import torch.nn as nn from pathlib import Path from collections import defaultdict lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from log_utils import AverageMeter, time_string, convert_secs2time from config_utils import load_config, dict2config from datasets import get_datasets # NAS-Bench-201 related module or function from models import CellStructure, get_cell_based_tiny_net from nas_201_api import ArchResults, ResultsCount from functions import pure_evaluate def create_result_count(used_seed, dataset, arch_config, results, dataloader_dict): xresult = ResultsCount(dataset, results['net_state_dict'], results['train_acc1es'], results['train_losses'], \ results['param'], results['flop'], arch_config, used_seed, results['total_epoch'], None) net_config = dict2config({'name': 'infer.tiny', 'C': arch_config['channel'], 'N': arch_config['num_cells'], 'genotype': CellStructure.str2structure(arch_config['arch_str']), 'num_classes':arch_config['class_num']}, None) network = get_cell_based_tiny_net(net_config) network.load_state_dict(xresult.get_net_param()) if 'train_times' in results: # new version xresult.update_train_info(results['train_acc1es'], results['train_acc5es'], results['train_losses'], results['train_times']) xresult.update_eval(results['valid_acc1es'], results['valid_losses'], results['valid_times']) else: if dataset == 'cifar10-valid': xresult.update_OLD_eval('x-valid' , results['valid_acc1es'], results['valid_losses']) loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format('cifar10', 'test')], network.cuda()) xresult.update_OLD_eval('ori-test', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) xresult.update_latency(latencies) elif dataset == 'cifar10': xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) xresult.update_latency(latencies) elif dataset == 'cifar100' or dataset == 'ImageNet16-120': xresult.update_OLD_eval('ori-test', results['valid_acc1es'], results['valid_losses']) loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'valid')], network.cuda()) xresult.update_OLD_eval('x-valid', {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) loss, top1, top5, latencies = pure_evaluate(dataloader_dict['{:}@{:}'.format(dataset, 'test')], network.cuda()) xresult.update_OLD_eval('x-test' , {results['total_epoch']-1: top1}, {results['total_epoch']-1: loss}) xresult.update_latency(latencies) else: raise ValueError('invalid dataset name : {:}'.format(dataset)) return xresult def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict): information = ArchResults(arch_index, arch_str) for checkpoint_path in checkpoints: checkpoint = torch.load(checkpoint_path, map_location='cpu') used_seed = checkpoint_path.name.split('-')[-1].split('.')[0] for dataset in datasets: assert dataset in checkpoint, 'Can not find {:} in arch-{:} from {:}'.format(dataset, arch_index, checkpoint_path) results = checkpoint[dataset] assert results['finish-train'], 'This {:} arch seed={:} does not finish train on {:} ::: {:}'.format(arch_index, used_seed, dataset, checkpoint_path) arch_config = {'channel': results['channel'], 'num_cells': results['num_cells'], 'arch_str': arch_str, 'class_num': results['config']['class_num']} xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict) information.update(dataset, int(used_seed), xresult) return information def GET_DataLoaders(workers): torch.set_num_threads(workers) root_dir = (Path(__file__).parent / '..' / '..').resolve() torch_dir = Path(os.environ['TORCH_HOME']) # cifar cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config' cifar_config = load_config(cifar_config_path, None, None) print ('{:} Create data-loader for all datasets'.format(time_string())) print ('-'*200) TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1) print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num)) cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None) assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14] temp_dataset = deepcopy(TRAIN_CIFAR10) temp_dataset.transform = VALID_CIFAR10.transform # data loader trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) train_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True) valid_cifar10_loader = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True) test__cifar10_loader = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) print ('CIFAR-10 : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size)) print ('CIFAR-10 : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size)) print ('CIFAR-10 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size)) print ('CIFAR-10 : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size)) print ('-'*200) # CIFAR-100 TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1) print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num)) cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None) assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24] train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True) test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True) print ('CIFAR-100 : train-loader has {:3d} batch'.format(len(train_cifar100_loader))) print ('CIFAR-100 : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader))) print ('CIFAR-100 : test--loader has {:3d} batch'.format(len(test__cifar100_loader))) print ('-'*200) imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config' imagenet16_config = load_config(imagenet16_config_path, None, None) TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1) print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num)) imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None) assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20] train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True) test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True) print ('ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size)) print ('ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size)) print ('ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size)) # 'cifar10', 'cifar100', 'ImageNet16-120' loaders = {'cifar10@trainval': trainval_cifar10_loader, 'cifar10@train' : train_cifar10_loader, 'cifar10@valid' : valid_cifar10_loader, 'cifar10@test' : test__cifar10_loader, 'cifar100@train' : train_cifar100_loader, 'cifar100@valid' : valid_cifar100_loader, 'cifar100@test' : test__cifar100_loader, 'ImageNet16-120@train': train_imagenet_loader, 'ImageNet16-120@valid': valid_imagenet_loader, 'ImageNet16-120@test' : test__imagenet_loader} return loaders def simplify(save_dir, meta_file, basestr, target_dir): meta_infos = torch.load(meta_file, map_location='cpu') meta_archs = meta_infos['archs'] # a list of architecture strings meta_num_archs = meta_infos['total'] meta_max_node = meta_infos['max_node'] assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0 num_seeds = defaultdict(lambda: 0) for index, sub_dir in enumerate(sub_model_dirs): xcheckpoints = list(sub_dir.glob('arch-*-seed-*.pth')) arch_indexes = set() for checkpoint in xcheckpoints: temp_names = checkpoint.name.split('-') assert len(temp_names) == 4 and temp_names[0] == 'arch' and temp_names[2] == 'seed', 'invalid checkpoint name : {:}'.format(checkpoint.name) arch_indexes.add( temp_names[1] ) subdir2archs[sub_dir] = sorted(list(arch_indexes)) num_evaluated_arch += len(arch_indexes) # count number of seeds for each architecture for arch_index in arch_indexes: num_seeds[ len(list(sub_dir.glob('arch-{:}-seed-*.pth'.format(arch_index)))) ] += 1 print('{:} There are {:5d} architectures that have been evaluated ({:} in total).'.format(time_string(), num_evaluated_arch, meta_num_archs)) for key in sorted( list( num_seeds.keys() ) ): print ('{:} There are {:5d} architectures that are evaluated {:} times.'.format(time_string(), num_seeds[key], key)) dataloader_dict = GET_DataLoaders( 6 ) to_save_simply = save_dir / 'simplifies' to_save_allarc = save_dir / 'simplifies' / 'architectures' if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) if not to_save_allarc.exists(): to_save_allarc.mkdir(parents=True, exist_ok=True) assert (save_dir / target_dir) in subdir2archs, 'can not find {:}'.format(target_dir) arch2infos, datasets = {}, ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') evaluated_indexes = set() target_directory = save_dir / target_dir target_less_dir = save_dir / '{:}-LESS'.format(target_dir) arch_indexes = subdir2archs[ target_directory ] num_seeds = defaultdict(lambda: 0) end_time = time.time() arch_time = AverageMeter() for idx, arch_index in enumerate(arch_indexes): checkpoints = list(target_directory.glob('arch-{:}-seed-*.pth'.format(arch_index))) ckps_less = list(target_less_dir.glob('arch-{:}-seed-*.pth'.format(arch_index))) # create the arch info for each architecture try: arch_info_full = account_one_arch(arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict) arch_info_less = account_one_arch(arch_index, meta_archs[int(arch_index)], ckps_less, ['cifar10-valid'], dataloader_dict) num_seeds[ len(checkpoints) ] += 1 except: print('Loading {:} failed, : {:}'.format(arch_index, checkpoints)) continue assert int(arch_index) not in evaluated_indexes, 'conflict arch-index : {:}'.format(arch_index) assert 0 <= int(arch_index) < len(meta_archs), 'invalid arch-index {:} (not found in meta_archs)'.format(arch_index) arch_info = {'full': arch_info_full, 'less': arch_info_less} evaluated_indexes.add( int(arch_index) ) arch2infos[int(arch_index)] = arch_info torch.save({'full': arch_info_full.state_dict(), 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-FULL.pth'.format(arch_index)) arch_info['full'].clear_params() arch_info['less'].clear_params() torch.save({'full': arch_info_full.state_dict(), 'less': arch_info_less.state_dict()}, to_save_allarc / '{:}-SIMPLE.pth'.format(arch_index)) # measure elapsed time arch_time.update(time.time() - end_time) end_time = time.time() need_time = '{:}'.format( convert_secs2time(arch_time.avg * (len(arch_indexes)-idx-1), True) ) print('{:} {:} [{:03d}/{:03d}] : {:} still need {:}'.format(time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time)) # measure time xstrs = ['{:}:{:03d}'.format(key, num_seeds[key]) for key in sorted( list( num_seeds.keys() ) ) ] print('{:} {:} done : {:}'.format(time_string(), target_dir, xstrs)) final_infos = {'meta_archs' : meta_archs, 'total_archs': meta_num_archs, 'basestr' : basestr, 'arch2infos' : arch2infos, 'evaluated_indexes': evaluated_indexes} save_file_name = to_save_simply / '{:}.pth'.format(target_dir) torch.save(final_infos, save_file_name) print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) def merge_all(save_dir, meta_file, basestr): meta_infos = torch.load(meta_file, map_location='cpu') meta_archs = meta_infos['archs'] meta_num_archs = meta_infos['total'] meta_max_node = meta_infos['max_node'] assert meta_num_archs == len(meta_archs), 'invalid number of archs : {:} vs {:}'.format(meta_num_archs, len(meta_archs)) sub_model_dirs = sorted(list(save_dir.glob('*-*-{:}'.format(basestr)))) print ('{:} find {:} directories used to save checkpoints'.format(time_string(), len(sub_model_dirs))) for index, sub_dir in enumerate(sub_model_dirs): arch_info_files = sorted( list(sub_dir.glob('arch-*-seed-*.pth') ) ) print ('The {:02d}/{:02d}-th directory : {:} : {:} runs.'.format(index, len(sub_model_dirs), sub_dir, len(arch_info_files))) arch2infos, evaluated_indexes = dict(), set() for IDX, sub_dir in enumerate(sub_model_dirs): ckp_path = sub_dir.parent / 'simplifies' / '{:}.pth'.format(sub_dir.name) if ckp_path.exists(): sub_ckps = torch.load(ckp_path, map_location='cpu') assert sub_ckps['total_archs'] == meta_num_archs and sub_ckps['basestr'] == basestr xarch2infos = sub_ckps['arch2infos'] xevalindexs = sub_ckps['evaluated_indexes'] for eval_index in xevalindexs: assert eval_index not in evaluated_indexes and eval_index not in arch2infos #arch2infos[eval_index] = xarch2infos[eval_index].state_dict() arch2infos[eval_index] = {'full': xarch2infos[eval_index]['full'].state_dict(), 'less': xarch2infos[eval_index]['less'].state_dict()} evaluated_indexes.add( eval_index ) print ('{:} [{:03d}/{:03d}] merge data from {:} with {:} models.'.format(time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs))) else: raise ValueError('Can not find {:}'.format(ckp_path)) #print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path)) evaluated_indexes = sorted( list( evaluated_indexes ) ) print ('Finally, there are {:} architectures that have been trained and evaluated.'.format(len(evaluated_indexes))) to_save_simply = save_dir / 'simplifies' if not to_save_simply.exists(): to_save_simply.mkdir(parents=True, exist_ok=True) final_infos = {'meta_archs' : meta_archs, 'total_archs': meta_num_archs, 'arch2infos' : arch2infos, 'evaluated_indexes': evaluated_indexes} save_file_name = to_save_simply / '{:}-final-infos.pth'.format(basestr) torch.save(final_infos, save_file_name) print ('Save {:} / {:} architecture results into {:}.'.format(len(evaluated_indexes), meta_num_archs, save_file_name)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='NAS-BENCH-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--mode' , type=str, choices=['cal', 'merge'], help='The running mode for this script.') parser.add_argument('--base_save_dir', type=str, default='./output/NAS-BENCH-201-4', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--target_dir' , type=str, help='The target directory.') parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.') parser.add_argument('--channel' , type=int, default=16, help='The number of channels.') parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.') args = parser.parse_args() save_dir = Path( args.base_save_dir ) meta_path = save_dir / 'meta-node-{:}.pth'.format(args.max_node) assert save_dir.exists(), 'invalid save dir path : {:}'.format(save_dir) assert meta_path.exists(), 'invalid saved meta path : {:}'.format(meta_path) print ('start the statistics of our nas-benchmark from {:} using {:}.'.format(save_dir, args.target_dir)) basestr = 'C{:}-N{:}'.format(args.channel, args.num_cells) if args.mode == 'cal': simplify(save_dir, meta_path, basestr, args.target_dir) elif args.mode == 'merge': merge_all(save_dir, meta_path, basestr) else: raise ValueError('invalid mode : {:}'.format(args.mode))
66.540541
232
0.701615
32b39b0725e1e0e115d097c18b63af2b780c0ccd
333
py
Python
project/asylum/management/commands/generate_all.py
jssmk/asylum
004b05939784b86ba559968a7cdcedf248edb01f
[ "MIT" ]
1
2017-04-08T21:31:37.000Z
2017-04-08T21:31:37.000Z
project/asylum/management/commands/generate_all.py
jssmk/asylum
004b05939784b86ba559968a7cdcedf248edb01f
[ "MIT" ]
9
2016-01-23T22:40:26.000Z
2021-09-13T17:44:11.000Z
project/asylum/management/commands/generate_all.py
jssmk/asylum
004b05939784b86ba559968a7cdcedf248edb01f
[ "MIT" ]
1
2017-04-08T22:13:42.000Z
2017-04-08T22:13:42.000Z
# -*- coding: utf-8 -*- from django.core.management.base import BaseCommand, CommandError from asylum.tests.fixtures.full import generate_all class Command(BaseCommand): help = 'Generates full set of test data' def add_arguments(self, parser): pass def handle(self, *args, **options): generate_all()
22.2
65
0.693694
744cc94c179c6ab0a795865193e59b39ae081e7c
8,493
py
Python
backbone/GhostNet.py
weihaoxie/FaceX-Zoo
db0b087e4f4d28152e172d6c8d3767a8870733b4
[ "Apache-2.0" ]
1,329
2021-01-13T07:06:30.000Z
2022-03-31T07:23:39.000Z
backbone/GhostNet.py
weihaoxie/FaceX-Zoo
db0b087e4f4d28152e172d6c8d3767a8870733b4
[ "Apache-2.0" ]
115
2021-01-13T10:42:57.000Z
2022-03-28T03:57:52.000Z
backbone/GhostNet.py
weihaoxie/FaceX-Zoo
db0b087e4f4d28152e172d6c8d3767a8870733b4
[ "Apache-2.0" ]
351
2021-01-13T07:21:00.000Z
2022-03-29T14:11:39.000Z
""" @author: Jun Wang @date: 20210121 @contact: jun21wangustc@gmail.com """ # based on: # https://github.com/huawei-noah/ghostnet/blob/master/ghostnet_pytorch/ghostnet.py # 2020.06.09-Changed for building GhostNet # Huawei Technologies Co., Ltd. <foss@huawei.com> """ Creates a GhostNet Model as defined in: GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu. https://arxiv.org/abs/1911.11907 Modified from https://github.com/d-li14/mobilenetv3.pytorch and https://github.com/rwightman/pytorch-image-models """ import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Sequential, BatchNorm2d, Dropout, Module, Linear, BatchNorm1d __all__ = ['ghost_net'] class Flatten(Module): def forward(self, input): return input.view(input.size(0), -1) def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def hard_sigmoid(x, inplace: bool = False): if inplace: return x.add_(3.).clamp_(0., 6.).div_(6.) else: return F.relu6(x + 3.) / 6. class SqueezeExcite(nn.Module): def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_): super(SqueezeExcite, self).__init__() self.gate_fn = gate_fn reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) self.act1 = act_layer(inplace=True) self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True) def forward(self, x): x_se = self.avg_pool(x) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) x = x * self.gate_fn(x_se) return x class ConvBnAct(nn.Module): def __init__(self, in_chs, out_chs, kernel_size, stride=1, act_layer=nn.ReLU): super(ConvBnAct, self).__init__() self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False) self.bn1 = nn.BatchNorm2d(out_chs) self.act1 = act_layer(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn1(x) x = self.act1(x) return x class GhostModule(nn.Module): def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): super(GhostModule, self).__init__() self.oup = oup init_channels = math.ceil(oup / ratio) new_channels = init_channels*(ratio-1) self.primary_conv = nn.Sequential( nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), nn.BatchNorm2d(init_channels), nn.ReLU(inplace=True) if relu else nn.Sequential(), ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), nn.BatchNorm2d(new_channels), nn.ReLU(inplace=True) if relu else nn.Sequential(), ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1,x2], dim=1) return out[:,:self.oup,:,:] class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) # Squeeze-and-excitation if has_se: self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio) else: self.se = None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) # shortcut if (in_chs == out_chs and self.stride == 1): self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): residual = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.stride > 1: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(residual) return x class GhostNet(nn.Module): def __init__(self, width=1.0, drop_ratio=0.2, feat_dim=512, out_h=7, out_w=7): super(GhostNet, self).__init__() # setting of inverted residual blocks self.cfgs = [ # k, t, c, SE, s # stage1 [[3, 16, 16, 0, 1]], # stage2 [[3, 48, 24, 0, 2]], [[3, 72, 24, 0, 1]], # stage3 [[5, 72, 40, 0.25, 2]], [[5, 120, 40, 0.25, 1]], # stage4 [[3, 240, 80, 0, 2]], [[3, 200, 80, 0, 1], [3, 184, 80, 0, 1], [3, 184, 80, 0, 1], [3, 480, 112, 0.25, 1], [3, 672, 112, 0.25, 1] ], # stage5 [[5, 672, 160, 0.25, 2]], [[5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1], [5, 960, 160, 0, 1], [5, 960, 160, 0.25, 1] ] ] # building first layer output_channel = _make_divisible(16 * width, 4) #self.conv_stem = nn.Conv2d(3, output_channel, 3, 2, 1, bias=False) self.conv_stem = nn.Conv2d(3, output_channel, 3, 1, 1, bias=False) self.bn1 = nn.BatchNorm2d(output_channel) self.act1 = nn.ReLU(inplace=True) input_channel = output_channel # building inverted residual blocks stages = [] block = GhostBottleneck for cfg in self.cfgs: layers = [] for k, exp_size, c, se_ratio, s in cfg: output_channel = _make_divisible(c * width, 4) hidden_channel = _make_divisible(exp_size * width, 4) layers.append(block(input_channel, hidden_channel, output_channel, k, s, se_ratio=se_ratio)) input_channel = output_channel stages.append(nn.Sequential(*layers)) output_channel = _make_divisible(exp_size * width, 4) stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1))) input_channel = output_channel self.blocks = nn.Sequential(*stages) self.output_layer = Sequential(BatchNorm2d(960), Dropout(drop_ratio), Flatten(), Linear(960 * out_h * out_w, feat_dim), # for eye BatchNorm1d(feat_dim)) def forward(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) x = self.blocks(x) x = self.output_layer(x) return x
34.108434
115
0.568115
9d68783df9be16528f599c9aac1a828e21508baf
1,049
py
Python
setup.py
sfreund-DLR/fatpack
aa0d0570d69bf7f8cc5cb70b53a3fdb2357ed82a
[ "ISC" ]
67
2019-03-19T11:17:36.000Z
2022-03-11T22:20:42.000Z
setup.py
sfreund-DLR/fatpack
aa0d0570d69bf7f8cc5cb70b53a3fdb2357ed82a
[ "ISC" ]
10
2019-03-18T09:40:59.000Z
2022-03-08T20:26:34.000Z
setup.py
sfreund-DLR/fatpack
aa0d0570d69bf7f8cc5cb70b53a3fdb2357ed82a
[ "ISC" ]
14
2019-11-25T16:49:30.000Z
2022-02-18T21:21:04.000Z
# -*- coding: utf-8 -*- from setuptools import setup, find_packages # Parse the version from the module. with open('fatpack/__init__.py') as f: for line in f: if line.find("__version__") >= 0: version = line.split("=")[1].strip() version = version.strip('"') version = version.strip("'") break with open('README.rst', 'r') as fin: long_description = fin.read() setup( name='fatpack', version=version, author='Gunnstein T. Frøseth', author_email='gunnstein@mailbox.org', description='Fatigue analysis in python', license='ISC', long_description=long_description, long_description_content_type="text/x-rst", url='https://github.com/gunnstein/fatpack', packages=find_packages(exclude=["test"]), classifiers=[ "License :: OSI Approved :: ISC License (ISCL)", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Scientific/Engineering", ], install_requires=["numpy"])
29.971429
56
0.621544
16bd552e48ff35ef0a8d23ab555de9c2f92bf78a
243
py
Python
examples/mytestcode.py
PeihongKe/PythonExcel
12a4ed9d8578b090870e488525b31cb9aa0a15e3
[ "MIT", "Unlicense" ]
null
null
null
examples/mytestcode.py
PeihongKe/PythonExcel
12a4ed9d8578b090870e488525b31cb9aa0a15e3
[ "MIT", "Unlicense" ]
null
null
null
examples/mytestcode.py
PeihongKe/PythonExcel
12a4ed9d8578b090870e488525b31cb9aa0a15e3
[ "MIT", "Unlicense" ]
null
null
null
import pyxll from pyxll import xl_func @xl_func("int x, int x: int") def addTwoNumbersByDavidKe(x, y): """returns the sum of a range of floats""" return x + y @xl_func("int x: int") def echoByDavidKe(x): """ """ return x
14.294118
46
0.62963
cb2887152787f4349078540eebc6f29bfc97d852
2,254
py
Python
dydx_alerts/event_trigger.py
maxholloway/dydx-alerts
d480edf1c96a6330122eb62b15fb0e5a610d38ba
[ "MIT" ]
3
2022-03-07T04:55:16.000Z
2022-03-17T18:35:59.000Z
dydx_alerts/event_trigger.py
maxholloway/dydx-alerts
d480edf1c96a6330122eb62b15fb0e5a610d38ba
[ "MIT" ]
null
null
null
dydx_alerts/event_trigger.py
maxholloway/dydx-alerts
d480edf1c96a6330122eb62b15fb0e5a610d38ba
[ "MIT" ]
null
null
null
from typing import Dict from constants import EventTriggerTypes, COLLATERAL_REQUIREMENTS def get_message_generator(event_trigger_config): """ Given the event trigger config, return the function that can be used to produce a message. event_trigger_config: a dict object that corresponds to the `event_trigger_config` attribute of a messenger blob """ if event_trigger_config["trigger"] == EventTriggerTypes.BELOW_THRESH: return make_below_thresh_event_trigger(event_trigger_config["trigger_options"]) else: raise Exception(f"Invalid message action {event_trigger_config['trigger']}") def make_below_thresh_event_trigger(config_options): """ Create a function that generates a "below threshold event" message. """ def below_thresh_event_trigger( oracle_prices: Dict[str, float], user_equity: float, user_positions: Dict[str, float], ): account_open_interest = 0 account_margin_requirement = 0 maintenance_colalteral_ratios = COLLATERAL_REQUIREMENTS["maintenance"] for market_name, pos_size in user_positions.items(): market_open_interest = abs(pos_size) * oracle_prices[market_name] account_open_interest += market_open_interest collat_ratio_requirement = float(maintenance_colalteral_ratios[market_name]) account_margin_requirement += ( market_open_interest * collat_ratio_requirement ) if account_open_interest == 0: # never alert when there's no open interest return "" account_collateral_pct = 100 * (user_equity / account_open_interest) trigger_collateral_pct = float(config_options["collateral_trigger_pct"]) if account_collateral_pct < trigger_collateral_pct: approx_liquidation_pct = 100 * ( account_margin_requirement / account_open_interest ) return f"Account is {account_collateral_pct:.2f}% collateralized and has ${user_equity:,.2f} of equity. It will be liquidated when it goes below approximately {approx_liquidation_pct:.2f}% collateralization." else: return "" return below_thresh_event_trigger
40.25
220
0.704969
74c45ecc2a6330f38302699fdc4cd93dc881eacb
870
py
Python
storm/n_inversoes.py
italo-batista/problems-solving
f83ad34f0abebd52925c4020635556f20743ba06
[ "MIT" ]
null
null
null
storm/n_inversoes.py
italo-batista/problems-solving
f83ad34f0abebd52925c4020635556f20743ba06
[ "MIT" ]
null
null
null
storm/n_inversoes.py
italo-batista/problems-solving
f83ad34f0abebd52925c4020635556f20743ba06
[ "MIT" ]
null
null
null
def count(array): if len(array) == 1: return 0 else: mid = len(array)//2 left = array[:mid] right = array[mid:] x = count(left) y = count(right) z = count_split(left, right) return z + x + y def count_split(left, right): i = 0 j = 0 k = 0 z = 0 while i < len(left) and j < len(right): if left[i] < right[j]: array[k] = left[i] i = i + 1 else: array[k] = right[j] z = z + len(left) - i j = j + 1 k = k + 1 while i < len(left): array[k] = left[i] i = i + 1 k = k + 1 while j < len(right): array[k] = right[j] z = z + len(left) - i j = j + 1 k = k + 1 return z array = map(int, raw_input().split()) print count(array)
17.755102
43
0.410345
08d41463b52c65e4a8559bfaf4b011e9191bb70a
13,923
py
Python
client/src/game_instance.py
kshshkim/2021-2-OSSProj-OTS-7
d46d56c42de1b9e445b084a627d440f158588088
[ "MIT" ]
7
2021-11-05T07:23:27.000Z
2022-01-04T04:13:39.000Z
client/src/game_instance.py
kshshkim/2021-2-OSSProj-OTS-7
d46d56c42de1b9e445b084a627d440f158588088
[ "MIT" ]
21
2021-10-31T17:30:37.000Z
2021-11-30T07:39:00.000Z
client/src/game_instance.py
kshshkim/2021-2-OSSProj-OTS-7
d46d56c42de1b9e445b084a627d440f158588088
[ "MIT" ]
2
2021-11-02T13:42:30.000Z
2021-11-08T08:20:54.000Z
import pygame from collections import deque from .components.board import Board import copy from random import randint, choice from .components.mino import Mino from .consts.custom_events import CUSTOM_EVENTS from .consts import timer_consts as tv def new_mino(): return Mino(shape_index=randint(0, 6)) def post_event(custom_event): # variables/custom_events 참조 pygame.event.post(pygame.event.Event(CUSTOM_EVENTS[custom_event])) class GameInstance: def __init__(self, is_multiplayer=False): self.board = Board() # 테트리스 판 self.is_multiplayer = is_multiplayer # 멀티플레이어 여부 self.item_list = ("bomb", "clock") # 가능한 아이템 종류 self.my_item_list = deque([]) # 아이템 보유 리스트, popleft 로 선입선출 사용 self.clock_used = False # 클락 아이템 사용 여부 self.clock_count = tv.BASE_CLOCK_COUNT # 30초, 이벤트는 0.05초마다 생성 self.score = 0 self.level = 1 self.goal = 5 self.freeze_time_count = tv.BASE_FREEZE_COUNT # 미노가 바닥에 닿았을 때 카운트 self.is_hard_dropped = False # 현재 미노를 하드드롭 했는지 여부, freeze 관련해서 필요한 변수 # self.display_update_required = True # 현재는 구현을 안 해놨지만, 화면 갱신이 필요할 때만 True 로 변경되는 방법을 생각해볼 수 있음. self.x = 3 # current mino 위치 self.y = 0 self.rotation = 0 # current mino 회전 인덱스 self.move_down_count = tv.BASE_MOVE_DOWN_COUNT # 레벨 1일 때의 값. 타이머 이벤트가 5번 발생시 하강. 타이머 이벤트는 0.05 초마다 self.current_mino = new_mino() # 현재 미노 초기화 self.next_mino = new_mino() # 다음 미노 초기화 self.is_hold_used = False # Hold 여부. 연달아가며 계속 hold 하는 꼼수 방지 self.hold_mino = None # Hold 한 mino self.status = 'start_screen' # start_screen, in_game, pause, game_over 등 # self.former_time = None # 디버그용 # self.current_time = None # 디버그용 def reset(self): self.__init__(self.is_multiplayer) # ############## 이하 상태 ############## def is_stackable(self) -> bool: # 다음 블록을 쌓을 수 있는 상황인지 판별함. 게임 오버 판별기 grid = self.next_mino.shape[0] for i in range(4): for j in range(4): if grid[i][j] != 0 and self.board.frozen_matrix[3 + j][i] != 0: return False return True def get_rotation(self, modifier: int) -> int: # 현재 회전의 index 에 modifier 를 더함. 리스트 범위 넘어가는 것 처리 temp = self.rotation + modifier if temp < 0: temp = 3 elif temp > 3: temp = 0 return temp def is_rotatable(self, x, y, r_or_l: str) -> bool: mod = 1 # 변화값 if r_or_l == 'r': mod = 1 elif r_or_l == 'l': mod = -1 grid = self.current_mino.shape[self.get_rotation(mod)] for i in range(4): for j in range(4): if grid[i][j] != 0: if (x + j) < 0 or (x + j) > 9 or (y + i) < 0 or (y + i) > 20: return False elif self.board.frozen_matrix[x + j][y + i] != 0: return False return True # Returns true if mino is at the left edge def is_left_collide(self) -> bool: grid = self.current_mino.shape[self.rotation] for i in range(4): for j in range(4): if grid[i][j] != 0: if (self.x + j - 1) < 0: return True elif self.board.frozen_matrix[self.x + j - 1][self.y + i] != 0: return True return False # Returns true if mino is at the right edge def is_right_collide(self) -> bool: grid = self.current_mino.shape[self.rotation] for i in range(4): for j in range(4): if grid[i][j] != 0: if (self.x + j + 1) > 9: return True elif self.board.frozen_matrix[self.x + j + 1][self.y + i] != 0: return True return False # 바닥 충돌 판정 def is_bottom_collide(self, x, y) -> bool: grid = self.current_mino.shape[self.rotation] temp_matrix = copy.deepcopy(self.board.frozen_matrix) for i in range(4): for j in range(4): if grid[i][j] != 0: if (y + i + 1) > 20: return True elif temp_matrix[x + j][y + i + 1] != 0 and temp_matrix[x + j][y + i + 1] != 8: return True return False # move 이벤트 wrapper. 현재 미노가 회전하거나 움직이는 이벤트는 이 래퍼 안에서 동작해야함. def move(self, func): self.board.temp_matrix = copy.deepcopy(self.board.frozen_matrix) func() self.board.temp_matrix = self.draw_current_mino(self.board.temp_matrix) self.display_update() @staticmethod def display_update(): post_event('DISPLAY_UPDATE_REQUIRED') # ############ 이하 이벤트 핸들러가 실행하는 메소드 ############# def ev_game_start(self): self.status = 'in_game' post_event('GAME_START') # 게임 오버시 def ev_game_over_screen_out(self): if not self.is_multiplayer: # 온라인이면 불가 self.reset() def ev_pause_game(self): if not self.is_multiplayer: self.status = 'pause' post_event('PAUSE') def ev_unpause_game(self): self.status = 'in_game' post_event('UNPAUSE') def ev_hard_drop(self): self.hard_drop() self.is_hard_dropped = True def ev_timer_event(self): # 디버그용 주석 # if self.former_time is None: # self.former_time = time.time() # self.current_time = time.time() # # print(f'{self.current_time - self.former_time} \n {self.move_down_count=}') # # self.former_time = self.current_time self.count_move_down() self.count_item_clock() def ev_move_down(self): if not self.is_bottom_collide(self.x, self.y): self.move(self.move_down) else: self.bottom_count() def ev_move_down_manual(self): if not self.is_bottom_collide(self.x, self.y): self.move(self.move_down) post_event("MOVE") def ev_move_left(self): if not self.is_left_collide(): self.move(self.move_left) post_event("MOVE") def ev_move_right(self): if not self.is_right_collide(): self.move(self.move_right) post_event("MOVE") # 우측 회전, mod_list 는 현재 미노의 x, y 값을 조금씩 조정했을 때 회전이 가능한지를 판별하기 위함. def ev_rotate_right(self): mod_list = [0, -1, 1, -2, 2] for mod in mod_list: if self.is_rotatable(self.x, self.y + mod, 'r'): self.rotate(y_mod=mod, right_or_left='r') break elif self.is_rotatable(self.x + mod, self.y, 'r'): self.rotate(x_mod=mod, right_or_left='r') break self.display_update() def ev_rotate_left(self): pass def ev_hold_current_mino(self): if not self.is_hold_used: self.move(self.hold_current_mino) def ev_use_item(self): self.move(self.use_item) # ############ 이하 동작 메소드 ############# def move_down(self): self.y += 1 self.move_down_count_reset() def move_down_count_reset(self): if self.clock_used: self.move_down_count = (tv.BASE_MOVE_DOWN_COUNT + 2 - self.level*2) * 2 else: self.move_down_count = tv.BASE_MOVE_DOWN_COUNT + 2 - self.level*2 # 하강 카운트 def count_move_down(self): self.move_down_count -= 1 if self.move_down_count < 0: self.ev_move_down() def move_left(self): self.x -= 1 def move_right(self): self.x += 1 def plus_y(self): self.y += 1 # 바닥에 충돌하기 전까지 한 칸씩 하강 반복 def hard_drop(self): while not self.is_bottom_collide(self.x, self.y): self.move(self.move_down) self.freeze_current_mino() post_event("HARD_DROP") # 현재 미노를 hold def hold_current_mino(self): self.is_hold_used = True if self.hold_mino is None: self.hold_mino = self.current_mino self.change_to_next_mino() else: self.freeze_time_count = tv.BASE_FREEZE_COUNT self.x, self.y = 3, 0 self.current_mino, self.hold_mino = self.hold_mino, self.current_mino # 회전, 우회전 'r', 좌회전 'l', 기본값은 'r', x_mod, y_mod 는 현재 미노 위치 기준으로 움직였을 때의 가능 여부 판별을 위해 있음. def rotate(self, right_or_left='r', x_mod=0, y_mod=0): self.x += x_mod self.y += y_mod if right_or_left == 'r': self.rotate_right() elif right_or_left == 'l': self.rotate_left() self.board.temp_matrix = copy.deepcopy(self.board.frozen_matrix) self.draw_current_mino(self.board.temp_matrix) def rotate_right(self): self.rotation = self.get_rotation(1) def rotate_left(self): self.rotation = self.get_rotation(-1) # freeze 후, 라인 완성됐는지 확인, 제거. def check_lines(self): line_count = 0 for y in range(21): # matrix y 사이즈 if self.is_y_line_full(y_index=y): # line 이 full 이면 line count 값 1 더하고 라인 지움 line_count += 1 self.erase_line(y_index=y) if line_count == 1: post_event("LINE_ERASED") elif line_count == 2: post_event("LINE_ERASED_2") elif line_count == 3: post_event("LINE_ERASED_3") elif line_count == 4: post_event("LINE_ERASED_4") score_list = (50, 150, 350, 1000) # 분리 필요 if line_count != 0: # 지운 라인이 있으면 점수, 골 업데이트 self.update_score(score_list[line_count - 1] * self.level) self.update_goal(line_count) # 특정 y 라인이 가득 찼는지 여부 반환 def is_y_line_full(self, y_index: int) -> bool: for x in range(10): # matrix x 사이즈 if self.board.temp_matrix[x][y_index] == 0: # 0 은 비어있는 칸을 의미 return False # 빈 칸이 나오는 순간 False 반환 return True # 빈 칸이 나오지 않고 for 문이 완료되면 True 반환 # 특정 y 라인 위에 있는 줄을 전부 한 줄 씩 끌어내림. def erase_line(self, y_index: int): while y_index > 0: for x in range(10): # matrix x 사이즈 self.board.frozen_matrix[x][y_index] = self.board.frozen_matrix[x][y_index - 1] self.board.temp_matrix[x][y_index] = self.board.temp_matrix[x][y_index - 1] y_index -= 1 # 점수 더하기 def update_score(self, to_add: int): self.score += to_add # 바닥에 닿았을 때 카운트. def bottom_count(self): if self.is_hard_dropped or self.freeze_time_count < 0: # 바닥에 닿아도 6틱동안 움직일수 있음 self.freeze_current_mino() else: self.freeze_time_count -= 1 # 현재 미노를 freeze def freeze_current_mino(self): self.check_lines() self.board.frozen_matrix = copy.deepcopy(self.board.temp_matrix) # 임시 matrix 를 frozen matrix 로 self.is_hard_dropped = False # 다음 미노로 변경됐으니 하드드롭 여부 False self.freeze_time_count = tv.BASE_FREEZE_COUNT # freeze count 초기화 self.update_score(10 * self.level) # 블럭 하나 freeze 때 마다 기본 점수 10*레벨 if self.is_stackable(): # 다음 미노가 나올 수 있는지 판정 self.change_to_next_mino() self.rotation = 0 self.is_hold_used = False # 새 미노가 나왔으니 hold 사용 여부 초기화 else: self.status = 'game_over' post_event("GAME_OVER") # 라인 수만큼 현재 goal 감소, level 증가할 때마다 bgm 재생 속도 변경 def update_goal(self, line_count: int): self.goal -= line_count if self.goal < 0: post_event('LEVEL_UP') def level_up(self): self.level += 1 self.goal = self.level * 5 self.add_random_item() def add_random_item(self): self.my_item_list.append(choice(self.item_list)) def change_to_next_mino(self): self.x = 3 self.y = 0 self.rotation = 0 self.freeze_time_count = tv.BASE_FREEZE_COUNT self.current_mino = self.next_mino self.next_mino = new_mino() self.draw_current_mino(self.board.temp_matrix) def draw_current_mino(self, matrix): grid = self.current_mino.shape[self.rotation] tx, ty = self.x, self.y while not self.is_bottom_collide(tx, ty): # 고스트 ty += 1 for i in range(4): for j in range(4): if grid[i][j] != 0: # update ghost matrix[tx + j][ty + i] = 8 # update current mino matrix[self.x + j][self.y + i] = grid[i][j] return matrix # todo bgm 은 게임 인스턴스에서 재생하면 안 될듯합니다. # todo bgm 재생이 끝나도 무한 반복 # def play_bgm(self): # self.bgm = UI_VARIABLES.bgm_list[self.level - 1] # pygame.mixer.music.load(self.bgm) # pygame.mixer.music.play() def use_item(self): if self.my_item_list: used_item = self.my_item_list.popleft() # 먼저 들어온 순서대로 아이템 사용 if used_item == "bomb": self.item_bomb() elif used_item == "clock": self.item_clock() else: post_event('NO_ITEM_REMAIN') def item_bomb(self): print('bomb used') self.erase_line(20) # 맨 아랫줄 제거, 화면 업데이트는 self.move() 래퍼 안에서 돌리면 해결됩니다. ev_use_item() 메소드에 넣었습니다. post_event('BOMB_USED') def item_clock(self): if self.clock_used: print('already_used') post_event('NO_ITEM_REMAIN') else: self.clock_used = True post_event('CLOCK_USED') def count_item_clock(self): if self.clock_used and self.clock_count > 0: self.clock_count -= 1 elif self.clock_count <= 0: self.clock_used = False self.clock_count = tv.BASE_MOVE_DOWN_COUNT
33.071259
107
0.560871
d3714f4e219544b312bf28765e01102c51f7cf66
869
py
Python
examples/main.py
rifqidewangga/zephyr-haf
a645a7cc5bf58cb76a0b671fbd6c6388413a9d30
[ "MIT" ]
null
null
null
examples/main.py
rifqidewangga/zephyr-haf
a645a7cc5bf58cb76a0b671fbd6c6388413a9d30
[ "MIT" ]
null
null
null
examples/main.py
rifqidewangga/zephyr-haf
a645a7cc5bf58cb76a0b671fbd6c6388413a9d30
[ "MIT" ]
null
null
null
import sys from zephyr import Zephyr import zephyr def main(): env_temperature: float = zephyr.c_to_kelvin(20.0) env_pressure: float = 1024.0 # hPa if len(sys.argv) == 3: env_pressure = float(sys.argv[1]) env_temperature = zephyr.c_to_kelvin(float(sys.argv[2])) sensor = None try: sensor = Zephyr() except zephyr.SensorNotSupported as e: print(e.message) if sensor is not None: while True: try: qs = sensor.read_average() qx = zephyr.compensated_reading(qs, env_temperature, env_pressure) print(f"{qx:2f}") except zephyr.InvalidSensorData as e: print(e.message) except KeyboardInterrupt: print("Program terminated") break if __name__ == '__main__': main()
24.138889
82
0.576525
bc5a753e8a76b4593507bcdc98bcd09db6c297e3
748
py
Python
handsonml_setup.py
Jnewgeek/handson-ml
8fa44a394604d097d03687737bcaef2af001f542
[ "Apache-2.0" ]
null
null
null
handsonml_setup.py
Jnewgeek/handson-ml
8fa44a394604d097d03687737bcaef2af001f542
[ "Apache-2.0" ]
null
null
null
handsonml_setup.py
Jnewgeek/handson-ml
8fa44a394604d097d03687737bcaef2af001f542
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Jul 8 13:42:25 2019 @author: Administrator setup.py """ from __future__ import division,print_function,unicode_literals import os import numpy as np np.random.seed(42) import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc("axes",labelsize=14) mpl.rc("xtick",labelsize=12) mpl.rc("ytick",labelsize=12) plt.rcParams["font.sans-serif"]=["SimHei"] plt.rcParams["axes.unicode_minus"]=False PROJECT_ROOT_DIR="." CHAPTER_ID="classification" def save_fig(fig_id,CHAPTER_ID,tight_layout=True): path=os.path.join(PROJECT_ROOT_DIR,"images",CHAPTER_ID,fig_id+".png") print("Saving figure",fig_id) if tight_layout: plt.tight_layout() plt.savefig(path,format="png",dpi=300)
20.777778
73
0.733957
13a0474e0fa30147051729c3884f32fc0e315a0c
9,200
py
Python
qvi/core/vi.py
amirdib/quantized-variational-inference
50c6bf3511bdb0bca48573a845580c1f10b8ba8f
[ "MIT" ]
null
null
null
qvi/core/vi.py
amirdib/quantized-variational-inference
50c6bf3511bdb0bca48573a845580c1f10b8ba8f
[ "MIT" ]
null
null
null
qvi/core/vi.py
amirdib/quantized-variational-inference
50c6bf3511bdb0bca48573a845580c1f10b8ba8f
[ "MIT" ]
null
null
null
import numpy as np import tensorflow_probability as tfp from tensorflow_probability import bijectors as tfb import tensorflow as tf from tensorflow_probability.python.vi import csiszar_divergence tfd = tfp.distributions from functools import partial import matplotlib.pyplot as plt from tensorflow_probability.python.internal import nest_util from qvi.core.distribution import get_gaussian_quantization_weights from qvi.misc.utils import split_to_nested_tensors DTYPE = tf.float32 _reparameterized_elbo = partial( csiszar_divergence.monte_carlo_variational_loss, discrepancy_fn=csiszar_divergence.kl_reverse, use_reparameterization=True) import tensorflow_probability as tfp import tensorflow as tf from tensorflow_probability.python.vi import csiszar_divergence tfd = tfp.distributions from functools import partial _reparameterized_elbo = partial( csiszar_divergence.monte_carlo_variational_loss, discrepancy_fn=csiszar_divergence.kl_reverse, use_reparameterization=True) class VariationalInference: def __init__(self, target_log_prob_fn, surrogate_posterior, sample_size, variational_loss_fn, optimizer, num_steps, trace_fn=None, name=''): self.target_log_prob_fn=target_log_prob_fn self.surrogate_posterior=surrogate_posterior self.trace_fn=trace_fn self.optimizer=optimizer self.num_steps=num_steps self.variational_loss_fn=variational_loss_fn self.trainable_variables=surrogate_posterior.trainable_variables self.sample_size=sample_size self.name = name def run(self): #pbar = tqdm(total=num_steps) self.trace = tfp.vi.fit_surrogate_posterior( target_log_prob_fn=self.target_log_prob_fn, surrogate_posterior=self.surrogate_posterior, trace_fn=self.trace_fn, optimizer=self.optimizer, num_steps=self.num_steps, variational_loss_fn=self.variational_loss_fn, trainable_variables=self.trainable_variables, sample_size=self.sample_size) def plot(self, abscissa='time',name=''): loss, timestamps, grads = self.trace if abscissa == 'time': x = timestamps - timestamps[0] elif abscissa == 'epochs': x = np.arange(0,len(loss)) plt.plot(x, -loss, label=name) class MCVariationalInference(VariationalInference): def __init__(self, target_log_prob_fn, surrogate_posterior, sample_size, optimizer, trace_fn, num_steps, name=''): super().__init__(target_log_prob_fn=target_log_prob_fn, surrogate_posterior=surrogate_posterior, sample_size=sample_size, variational_loss_fn=vi_mc, optimizer=optimizer, num_steps=num_steps, trace_fn=trace_fn, name='') class RQMCVariationalInference(VariationalInference): def __init__(self, target_log_prob_fn, surrogate_posterior, sample_size, optimizer, trace_fn, num_steps, name=''): super().__init__(target_log_prob_fn=target_log_prob_fn, surrogate_posterior=surrogate_posterior, sample_size=sample_size, variational_loss_fn=vi_mc, optimizer=optimizer, num_steps=num_steps, trace_fn=trace_fn, name='') class QuantizedVariationalInference(VariationalInference): def __init__(self, target_log_prob_fn, surrogate_posterior, sample_size, optimizer, trace_fn, num_steps, D, name=''): self.D = D super().__init__(target_log_prob_fn=target_log_prob_fn, surrogate_posterior=surrogate_posterior, sample_size=sample_size, variational_loss_fn=partial(vi_quantized, seed=None, K='', D=self.D), optimizer=optimizer, num_steps=num_steps, trace_fn=trace_fn, name='') class QuantizedRichardsonVariationalInference(VariationalInference): def __init__(self, target_log_prob_fn, surrogate_posterior, sample_size, optimizer, num_steps, trace_fn, D, M, name=''): self.D = D self.M = M super().__init__(target_log_prob_fn=target_log_prob_fn, surrogate_posterior=surrogate_posterior, sample_size=sample_size, variational_loss_fn=partial(vi_quantized_richardson, seed=None, D=self.D, M=self.M), optimizer=optimizer, num_steps=num_steps, trace_fn=trace_fn, name='') def vi_quantized_richardson(target_log_prob_fn, surrogate_posterior, sample_size, seed, D, M): #N value is sample_size N = sample_size def q_divergence(sample_size): q_samples = surrogate_posterior.sample(sample_size) surrogate_posterior_log_prob = surrogate_posterior.log_prob(q_samples) target_log_prob = nest_util.call_fn(partial(target_log_prob_fn), q_samples) weights = get_gaussian_quantization_weights(shape= (sample_size,D), dtype=tf.float32) divergence = tfp.vi.kl_reverse(target_log_prob - surrogate_posterior_log_prob) return tf.tensordot(weights,divergence, axes=1) divN = tf.reduce_sum(q_divergence(N)) divM = tf.reduce_sum(q_divergence(M)) power = tf.constant(2.) coeff_pow = D reg_M = tf.math.pow(tf.cast(M,dtype=DTYPE),power/coeff_pow) reg_N = tf.math.pow(tf.cast(N,dtype=DTYPE),power/coeff_pow) elbo = ( reg_N * divN - reg_M * divM)/(reg_N - reg_M) return elbo def vi_quantized(target_log_prob_fn, surrogate_posterior, sample_size, seed, D, K): q_samples = surrogate_posterior.sample(sample_size) surrogate_posterior_log_prob = surrogate_posterior.log_prob(q_samples) target_log_prob = nest_util.call_fn(partial(target_log_prob_fn), q_samples) weights = get_gaussian_quantization_weights(shape= (sample_size,D), dtype=tf.float32) divergence = tfp.vi.kl_reverse(target_log_prob - surrogate_posterior_log_prob) elbo = tf.reduce_sum(tf.tensordot(weights,divergence, axes=1)) #tf.print(elbo) return elbo def vi_mc(target_log_prob_fn, surrogate_posterior, sample_size, seed=None): q_samples = surrogate_posterior.sample(sample_size) surrogate_posterior_log_prob = surrogate_posterior.log_prob(q_samples) target_log_prob = nest_util.call_fn(partial(target_log_prob_fn), q_samples) divergence = tfp.vi.kl_reverse(target_log_prob - surrogate_posterior_log_prob) elbo = tf.reduce_mean(divergence, axis=0) return elbo # def trace_bnn(loss, grads, variables): # pbar.set_description('ELBO: %s' % str(loss.numpy())) # pbar.update() # return loss, tf.timestamp(), grads def build_meanfield_advi(jd_list, observed_node=-1, distribution=tfd.Normal, reinterpreted_batch_ndims_node = 1, **kwargs): """ The inputted jointdistribution needs to be a batch version """ list_of_values = jd_list.sample(1) list_of_values.pop(observed_node) distlist = [] for i, value in enumerate(list_of_values): dtype = value.dtype rv_shape = value[0].shape #print(rv_shape) loc = tf.Variable(tf.zeros(rv_shape), name='meanfield_%s_mu' % i, dtype=dtype) scale = tfp.util.TransformedVariable(tf.ones(rv_shape), tfb.Softplus(), name='meanfield_%s_scale' % i) approx_node = distribution(loc=loc, scale=scale, name='meanfield_%s' % i, **kwargs) if loc.shape == (): distlist.append(approx_node) else: distlist.append( tfd.Independent(approx_node, reinterpreted_batch_ndims=reinterpreted_batch_ndims_node) ) meanfield_advi = tfd.JointDistributionSequential(distlist) return meanfield_advi def trainable_normal_distribution(shape, name='', distribution=tfd.Normal, **kwargs): loc = tf.Variable(tf.zeros(shape), name='{}_loc'.format(name)) scale = tfp.util.TransformedVariable(tf.Variable(tf.fill(shape,1.), name='{}_scale'.format(name)), bijector = tfb.Softplus()) return distribution(loc, scale, name=name, **kwargs)
36.078431
123
0.624674
f9b485989d2d8e8b72c6d86ea28a900fde3640de
4,369
py
Python
twitchtest/spiders/rn_twitchchannelinfo_spider.py
chao-shi-git/scrapy_ttools
13a34e3bdee135c3f5513d94161a36491eb4905b
[ "MIT" ]
null
null
null
twitchtest/spiders/rn_twitchchannelinfo_spider.py
chao-shi-git/scrapy_ttools
13a34e3bdee135c3f5513d94161a36491eb4905b
[ "MIT" ]
1
2019-03-18T04:27:40.000Z
2021-05-27T08:05:23.000Z
twitchtest/spiders/rn_twitchchannelinfo_spider.py
chao-shi-git/scrapy_ttools
13a34e3bdee135c3f5513d94161a36491eb4905b
[ "MIT" ]
null
null
null
import scrapy import pandas as pd from twitchtest.items import TwitchChannelInfoItem # channel subfolder paths have been scraped from the twitchtest_spider, and saved in a csv file # here we read in the csv file, assemble the full urls, and loop over them class TwitchChannelInfoUrlsPrep(): def __init__(self): pass def prep_urls(self): with open("twitchtools_channels.csv", "r") as f: channels = pd.read_csv(f) urls = 'https://www.twitchtools.com' + channels['subfolder'] # pandas.core.series.Series # urls = list('https://www.twitchtools.com' + channels['subfolder']) # list return urls class twitchchannelinfoSpider(scrapy.Spider): name = "twitchchannelinfo_spider" custom_settings = { # custom pipeline for each spider for flexibility 'ITEM_PIPELINES': {#'twitchtest.pipelines.ValidateItemPipeline': 100, 'twitchtest.pipelines.WriteChannelInfoItemPipeline': 200} } allowed_urls = ['https://www.twitchtools.com/'] #start_urls = ['https://www.twitchtools.com/channels'] start_urls = TwitchChannelInfoUrlsPrep().prep_urls() def verify(self, content): if isinstance(content, list): if len(content) > 0: content = content[0] # convert unicode to str return content.encode('ascii','ignore') else: return "" else: # convert unicode to str return content.encode('ascii','ignore') def parse(self, response): # extract upper info box (guaranteed to have info for every channel) display_name = response.xpath('//*[@id="main"]//ul/li[1]/span/text()').extract_first() account_unique_id = response.xpath('//*[@id="main"]//ul/li[2]/span/text()').extract_first() channel_followers = response.xpath('//*[@id="main"]//ul/li[3]/span/text()').extract_first() channel_views = response.xpath('//*[@id="main"]//ul/li[4]/span/text()').extract_first() mature_flag = response.xpath('//*[@id="main"]//ul/li[5]/span/text()').extract_first() mature_flag = ''.join(mature_flag).strip() twitch_partner_flag = response.xpath('//*[@id="main"]//ul/li[6]/span/text()').extract_first() twitch_partner_flag = ''.join(twitch_partner_flag).strip() last_game = response.xpath('//*[@id="main"]//ul/li[7]/span/text()').extract_first() account_created_date = response.xpath('//*[@id="main"]//ul/li[8]/span/text()').extract_first() account_created_date = ''.join(account_created_date).strip() account_updated_date = response.xpath('//*[@id="main"]//ul/li[9]/span/text()').extract_first() account_updated_date = ''.join(account_updated_date).strip() twitch_url = response.xpath('//*[@id="main"]//ul/li[10]/span/text()').extract_first() # extract team info (direction: channel-to-multiple-teams), could be empty teams_joined_ls = response.xpath('//*[@id="main"]//div[@class="boxes"]//div[@class="user"]/a/text()').extract() if len(teams_joined_ls) > 0: teams_joined_ls = [''.join(t).strip() for t in teams_joined_ls] teams_joined_str = ';'.join(teams_joined_ls) else: teams_joined_str = 'did not join any team' # # verify # display_name = self.verify(display_name) # account_unique_id = self.verify(account_unique_id) # channel_followers = self.verify(channel_followers) # channel_views = self.verify(channel_views) # mature_flag = self.verify(mature_flag) # twitch_partner_flag = self.verify(twitch_partner_flag) # last_game = self.verify(last_game) # account_created_date = self.verify(account_created_date) # account_updated_date = self.verify(account_updated_date) # twitch_url = self.verify(twitch_url) # prep for export item = TwitchChannelInfoItem() item['display_name'] = display_name item['account_unique_id'] = account_unique_id item['channel_followers'] = channel_followers item['channel_views'] = channel_views item['mature_flag'] = mature_flag item['twitch_partner_flag'] = twitch_partner_flag item['last_game'] = last_game item['account_created_date'] = account_created_date item['account_updated_date'] = account_updated_date item['twitch_url'] = twitch_url item['page_url'] = response.request.url item['teams_joined'] = teams_joined_str # placeholder yield item
37.34188
114
0.677272
d0ded2388215cbabe89571edc8eb67c193cf7083
10,960
py
Python
python/qidoc/sphinx_project.py
vbarbaresi/qibuild
eab6b815fe0af49ea5c41ccddcd0dff2363410e1
[ "BSD-3-Clause" ]
null
null
null
python/qidoc/sphinx_project.py
vbarbaresi/qibuild
eab6b815fe0af49ea5c41ccddcd0dff2363410e1
[ "BSD-3-Clause" ]
null
null
null
python/qidoc/sphinx_project.py
vbarbaresi/qibuild
eab6b815fe0af49ea5c41ccddcd0dff2363410e1
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2012-2018 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the COPYING file. import os import sys from qisys import ui import qisys.archive import qisys.sh import qidoc.project class SphinxProject(qidoc.project.DocProject): """ A doc project using Sphinx """ def __init__(self, doc_worktree, project, name, depends=None, dest=None): self.doc_type = "sphinx" self.examples = list() self.translated = False super(SphinxProject, self).__init__(doc_worktree, project, name, depends=depends, dest=dest) @property def source_dir(self): return os.path.join(self.path, "source") def configure(self, **kwargs): """ Create a correct conf.py in self.build_dir """ rel_paths = kwargs.get("rel_paths", False) in_conf_py = os.path.join(self.source_dir, "conf.in.py") should_use_template = False if os.path.exists(in_conf_py): should_use_template = True else: in_conf_py = os.path.join(self.source_dir, "conf.py") if not os.path.exists(in_conf_py): ui.error("Could not find a conf.py or a conf.in.py in", self.source_dir) return with open(in_conf_py) as fp: conf = fp.read() if should_use_template: if self.template_project: from_template = self.template_project.sphinx_conf from_template = from_template.format(**kwargs) conf = from_template + conf else: ui.warning("Found a conf.in.py but no template project found " "in the worktree") from_conf = dict() try: # quick hack if conf.in.py used __file__ from_conf["__file__"] = in_conf_py exec(conf, from_conf) # pylint: disable=exec-used conf = conf.replace("__file__", 'r"%s"' % in_conf_py) except Exception, e: ui.error("Could not read", in_conf_py, "\n", e) return if "project" not in from_conf: conf += '\nproject = "%s"\n' % self.name if "version" not in from_conf: if kwargs.get("version"): conf += '\nversion = "%s"\n' % kwargs["version"] if should_use_template and self.template_project: if "html_theme_path" not in from_conf: conf += '\nhtml_theme_path = [r"%s"]\n' % self.template_project.themes_path conf += self.append_doxylink_settings(conf, rel_paths=rel_paths) conf += self.append_intersphinx_settings(conf, rel_paths=rel_paths) conf += self.append_qiapidoc_settings() conf += self.append_breathe_settings() out_conf_py = os.path.join(self.build_dir, "conf.py") qisys.sh.write_file_if_different(conf, out_conf_py) def append_breathe_settings(self): breathe_projects = dict() for x in self.doxydeps: breathe_projects[x.name] = os.path.join(x.build_dir, 'xml') return "\nbreathe_projects = %s\n" % breathe_projects def append_qiapidoc_settings(self): """ Return a string representing the qiapidoc settings """ path_list = [] self.append_doxy_xml_path(path_list) return ( "\nqiapidoc_srcs=[" + ','.join(["r'" + x + "'" for x in path_list]) + "]\n") def append_doxylink_settings(self, conf, rel_paths=False): """ Return a string representing the doxylink settings """ res = self.append_extension(conf, "sphinxcontrib.doxylink") doxylink = dict() for doxydep in self.doxydeps: if rel_paths: dep_path = os.path.relpath(doxydep.dest, self.dest) dep_path = qisys.sh.to_posix_path(dep_path) else: dep_path = r"%s" % doxydep.html_dir doxylink[doxydep.name] = (doxydep.tagfile, dep_path) res += "\ndoxylink = %s\n" % str(doxylink) return res def append_intersphinx_settings(self, conf, rel_paths=False): """ Return a string representing the intersphinx settings """ res = self.append_extension(conf, "sphinx.ext.intersphinx") sphinx_deps = list() for dep_name in self.depends: doc_project = self.doc_worktree.get_doc_project(dep_name, raises=False) if doc_project and doc_project.doc_type == "sphinx": sphinx_deps.append(doc_project) intersphinx_mapping = dict() for sphinx_dep in sphinx_deps: if rel_paths: dep_path = os.path.relpath(sphinx_dep.dest, self.dest) dep_path = qisys.sh.to_posix_path(dep_path) else: dep_path = sphinx_dep.html_dir intersphinx_mapping[sphinx_dep.name] = ( dep_path, os.path.join(r"%s" % sphinx_dep.html_dir, "objects.inv") ) res += "\nintersphinx_mapping= " + str(intersphinx_mapping) return res @staticmethod def append_extension(conf, extension_name): from_conf = dict() exec(conf, from_conf) # pylint: disable=exec-used res = "" if "extensions" not in from_conf: res += "extensions = list()\n" res += '\nextensions.append("%s")' % extension_name return res def build(self, build_type=None, language=None, # pylint: disable=arguments-differ,too-many-branches spellcheck=False, werror=False, pdb=False): """ Run sphinx.main() with the correct arguments """ try: import sphinx except ImportError, e: ui.error(e, "skipping build") return if self.prebuild_script: ui.info(ui.green, "Running pre-build script:", ui.white, self.prebuild_script) cmd = [sys.executable, self.prebuild_script] qisys.command.call(cmd, cwd=self.path) ui.info() self.generate_examples_zips() if self.translated and language and language != "en" \ and language not in self.linguas: raise UnknownLingua(self, language) if self.translated: self.intl_build(language) qisys.sh.mkdir(self.html_dir, recursive=True) spell_dir = os.path.join(self.build_dir, "spellcheck") qisys.sh.mkdir(spell_dir, recursive=True) cmd = [sys.executable, "-c", self.build_dir] if spellcheck: cmd.extend(("-b", "spelling")) else: cmd.extend(("-b", "html")) if werror: cmd.append("-W") if language: cmd.append("-Dlanguage=%s" % language) if pdb: cmd.append("-P") cmd.append(self.source_dir) if spellcheck: cmd.append(spell_dir) else: cmd.append(self.html_dir) if build_type: os.environ["build_type"] = build_type ui.debug("launching:", cmd) rc = 0 try: sphinx.main(argv=cmd) except SystemExit as e: rc = e.code if spellcheck: num_errors = get_num_spellcheck_errors(self.build_dir) if num_errors != 0: raise SphinxBuildError(self) if rc != 0: raise SphinxBuildError(self) def generate_examples_zips(self): for example_src in self.examples: example_path = os.path.join(self.source_dir, example_src) zip_path = os.path.join(self.source_dir, example_src + ".zip") if not qisys.sh.up_to_date(zip_path, example_path): ui.info("Generating", zip_path) qisys.archive.compress(example_path, algo="zip", quiet=True) def intl_update(self): ui.info(ui.blue, "::", ui.reset, "Generating message catalogs ...") import sphinx from sphinx_intl.commands import run as sphinx_intl_run # First step: run sphinx-build -b gettext cmd = [sys.executable, "-c", self.build_dir, "-b", "gettext"] cmd.append(self.source_dir) locale_dir = os.path.join(self.source_dir, "locale") cmd.append(locale_dir) rc = 0 try: sphinx.main(argv=cmd) except SystemExit as e: rc = e.code if rc != 0: raise SphinxBuildError(self) ui.info() # Second step: run sphinx-intl update -l <lingua> for every lingua ui.info(ui.blue, "::", ui.reset, "Updating .po files ...") for i, lingua in enumerate(self.linguas): ui.info_count(i, len(self.linguas), ui.blue, lingua) cmd = ["update", "-c", os.path.join(self.build_dir, "conf.py"), "--pot-dir", locale_dir, "--locale-dir", locale_dir, "--language", lingua] sphinx_intl_run(cmd) def intl_build(self, language): from sphinx_intl.commands import run as sphinx_intl_run locale_dir = os.path.join(self.source_dir, "locale") ui.info(ui.blue, "::", ui.reset, "Building .mo files ...") cmd = ["build", "-c", os.path.join(self.build_dir, "conf.py"), "--pot-dir", locale_dir, "--locale-dir", locale_dir, "--language", language] sphinx_intl_run(cmd) def install(self, destdir): for example_src in self.examples: example_path = os.path.join(self.source_dir, example_src) real_dest = os.path.join(destdir, example_src) qisys.sh.install(example_path, real_dest, quiet=True) qisys.sh.install(self.html_dir, destdir) def get_num_spellcheck_errors(build_dir): output_txt = os.path.join(build_dir, "spellcheck", "output.txt") res = 0 if not os.path.exists(output_txt): return 1 # so that we raise SphinxBuildError with open(output_txt, "r") as fp: lines = fp.readlines() res = len(lines) if res != 0: ui.error("Found %i spelling error(s). See %s for the details" % (res, output_txt)) return res class SphinxBuildError(Exception): def __str__(self): return "Error occurred when building doc project: %s" % self.args[0].name class UnknownLingua(Exception): def __init__(self, project, language): super(UnknownLingua, self).__init__() self.language = language self.project = project def __str__(self): mess = """ Unknown language '{language}' for {project.name}. Please check the `linguas` attribute in the `<translate>` tag in {project.qiproject_xml} """ return mess.format(language=self.language, project=self.project)
36.533333
105
0.584307
3ff58fe302c8646f3ae170569ef62ff00cd37e20
3,094
py
Python
.history/Missions_to_Mars/scrape_mars_20200809084044.py
ermiasgelaye/web-scraping-challenge
f99c3436dfb0169595c46dae7733d90e21385cc6
[ "ADSL" ]
null
null
null
.history/Missions_to_Mars/scrape_mars_20200809084044.py
ermiasgelaye/web-scraping-challenge
f99c3436dfb0169595c46dae7733d90e21385cc6
[ "ADSL" ]
null
null
null
.history/Missions_to_Mars/scrape_mars_20200809084044.py
ermiasgelaye/web-scraping-challenge
f99c3436dfb0169595c46dae7733d90e21385cc6
[ "ADSL" ]
2
2020-11-02T08:12:16.000Z
2021-05-17T21:45:42.000Z
from splinter import Browser from bs4 import BeautifulSoup import pandas as pd import time import re # This is for debugging def savetofile(contents): file = open('_temporary.txt',"w",encoding="utf-8") file.write(contents) file.close() def scrape(): executable_path = {"executable_path": "chromedriver"} browser = Browser("chrome", **executable_path, headless=False) # NASA Mars News url = 'https://mars.nasa.gov/news/' browser.visit(url) time.sleep(3) html = browser.html soup = BeautifulSoup(html, 'html.parser') slides = soup.find_all('li', class_='slide') html = browser.html soup = BeautifulSoup(html, "html.parser") content_title = slides[0].find('div', class_='content_title') news_title = content_title.text.strip() article_teaser_body = slides[0].find('div', class_='article_teaser_body') news_p = article_teaser_body.text.strip() # JPL Mars Space Images base_url = 'https://www.jpl.nasa.gov' url = base_url + '/spaceimages/?search=&category=Mars' browser.visit(url) time.sleep(1) html = browser.html soup = BeautifulSoup(html, 'html.parser') featured_image_url = base_url + soup.find('a',class_='button fancybox')['data-fancybox-href'] # Mars Weather url = 'https://twitter.com/marswxreport?lang=en' browser.visit(url) time.sleep(1) html = browser.html soup = BeautifulSoup(html, 'html.parser') mars_weather=soup.find(text=re.compile("InSight sol")) # Mars facts url = 'https://space-facts.com/mars/' browser.visit(url) tables = pd.read_html(url) facts_df = tables[0] facts_df.columns = ['Fact', 'Value'] facts_df['Fact'] = facts_df['Fact'].str.replace(':', '') facts_df.reset_index(drop=True, inplace=True) facts_html = facts_df.to_html() # Mars Hemispheres base_url = 'https://astrogeology.usgs.gov' url = base_url + '/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(url) time.sleep(1) html = browser.html soup = BeautifulSoup(html, 'html.parser') items = soup.find_all('div', class_='item') urls = [] titles = [] for item in items: urls.append(base_url + item.find('a')['href']) titles.append(item.find('h3').text.strip()) img_urls = [] for oneurl in urls: browser.visit(oneurl) time.sleep(1) html = browser.html soup = BeautifulSoup(html, 'html.parser') oneurl = base_url+soup.find('img',class_='wide-image')['src'] img_urls.append(oneurl) hemisphere_image_urls = [] for i in range(len(titles)): hemisphere_image_urls.append({'title':titles[i],'img_url':img_urls[i]}) # Assigning scraped data to a page marspage = {} marspage["news_title"] = news_title marspage["news_p"] = news_p marspage["featured_image_url"] = featured_image_url marspage["mars_weather"] = mars_weather marspage["marsfacts_html"] = marspage["hemisphere_image_urls"] = hemisphere_image_urls return marspage
26.672414
101
0.652877
348b8e072509ce02e44953f7acf24e7362f75f56
12,386
py
Python
sdk/python/pulumi_azure_native/security/security_contact.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/security/security_contact.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/security/security_contact.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['SecurityContactArgs', 'SecurityContact'] @pulumi.input_type class SecurityContactArgs: def __init__(__self__, *, alert_notifications: Optional[pulumi.Input['SecurityContactPropertiesAlertNotificationsArgs']] = None, emails: Optional[pulumi.Input[str]] = None, notifications_by_role: Optional[pulumi.Input['SecurityContactPropertiesNotificationsByRoleArgs']] = None, phone: Optional[pulumi.Input[str]] = None, security_contact_name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a SecurityContact resource. :param pulumi.Input['SecurityContactPropertiesAlertNotificationsArgs'] alert_notifications: Defines whether to send email notifications about new security alerts :param pulumi.Input[str] emails: List of email addresses which will get notifications from Azure Security Center by the configurations defined in this security contact. :param pulumi.Input['SecurityContactPropertiesNotificationsByRoleArgs'] notifications_by_role: Defines whether to send email notifications from Azure Security Center to persons with specific RBAC roles on the subscription. :param pulumi.Input[str] phone: The security contact's phone number :param pulumi.Input[str] security_contact_name: Name of the security contact object """ if alert_notifications is not None: pulumi.set(__self__, "alert_notifications", alert_notifications) if emails is not None: pulumi.set(__self__, "emails", emails) if notifications_by_role is not None: pulumi.set(__self__, "notifications_by_role", notifications_by_role) if phone is not None: pulumi.set(__self__, "phone", phone) if security_contact_name is not None: pulumi.set(__self__, "security_contact_name", security_contact_name) @property @pulumi.getter(name="alertNotifications") def alert_notifications(self) -> Optional[pulumi.Input['SecurityContactPropertiesAlertNotificationsArgs']]: """ Defines whether to send email notifications about new security alerts """ return pulumi.get(self, "alert_notifications") @alert_notifications.setter def alert_notifications(self, value: Optional[pulumi.Input['SecurityContactPropertiesAlertNotificationsArgs']]): pulumi.set(self, "alert_notifications", value) @property @pulumi.getter def emails(self) -> Optional[pulumi.Input[str]]: """ List of email addresses which will get notifications from Azure Security Center by the configurations defined in this security contact. """ return pulumi.get(self, "emails") @emails.setter def emails(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "emails", value) @property @pulumi.getter(name="notificationsByRole") def notifications_by_role(self) -> Optional[pulumi.Input['SecurityContactPropertiesNotificationsByRoleArgs']]: """ Defines whether to send email notifications from Azure Security Center to persons with specific RBAC roles on the subscription. """ return pulumi.get(self, "notifications_by_role") @notifications_by_role.setter def notifications_by_role(self, value: Optional[pulumi.Input['SecurityContactPropertiesNotificationsByRoleArgs']]): pulumi.set(self, "notifications_by_role", value) @property @pulumi.getter def phone(self) -> Optional[pulumi.Input[str]]: """ The security contact's phone number """ return pulumi.get(self, "phone") @phone.setter def phone(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "phone", value) @property @pulumi.getter(name="securityContactName") def security_contact_name(self) -> Optional[pulumi.Input[str]]: """ Name of the security contact object """ return pulumi.get(self, "security_contact_name") @security_contact_name.setter def security_contact_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "security_contact_name", value) class SecurityContact(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, alert_notifications: Optional[pulumi.Input[pulumi.InputType['SecurityContactPropertiesAlertNotificationsArgs']]] = None, emails: Optional[pulumi.Input[str]] = None, notifications_by_role: Optional[pulumi.Input[pulumi.InputType['SecurityContactPropertiesNotificationsByRoleArgs']]] = None, phone: Optional[pulumi.Input[str]] = None, security_contact_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Contact details and configurations for notifications coming from Azure Security Center. API Version: 2020-01-01-preview. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['SecurityContactPropertiesAlertNotificationsArgs']] alert_notifications: Defines whether to send email notifications about new security alerts :param pulumi.Input[str] emails: List of email addresses which will get notifications from Azure Security Center by the configurations defined in this security contact. :param pulumi.Input[pulumi.InputType['SecurityContactPropertiesNotificationsByRoleArgs']] notifications_by_role: Defines whether to send email notifications from Azure Security Center to persons with specific RBAC roles on the subscription. :param pulumi.Input[str] phone: The security contact's phone number :param pulumi.Input[str] security_contact_name: Name of the security contact object """ ... @overload def __init__(__self__, resource_name: str, args: Optional[SecurityContactArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ Contact details and configurations for notifications coming from Azure Security Center. API Version: 2020-01-01-preview. :param str resource_name: The name of the resource. :param SecurityContactArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SecurityContactArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, alert_notifications: Optional[pulumi.Input[pulumi.InputType['SecurityContactPropertiesAlertNotificationsArgs']]] = None, emails: Optional[pulumi.Input[str]] = None, notifications_by_role: Optional[pulumi.Input[pulumi.InputType['SecurityContactPropertiesNotificationsByRoleArgs']]] = None, phone: Optional[pulumi.Input[str]] = None, security_contact_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SecurityContactArgs.__new__(SecurityContactArgs) __props__.__dict__["alert_notifications"] = alert_notifications __props__.__dict__["emails"] = emails __props__.__dict__["notifications_by_role"] = notifications_by_role __props__.__dict__["phone"] = phone __props__.__dict__["security_contact_name"] = security_contact_name __props__.__dict__["name"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:security:SecurityContact"), pulumi.Alias(type_="azure-native:security/v20170801preview:SecurityContact"), pulumi.Alias(type_="azure-nextgen:security/v20170801preview:SecurityContact"), pulumi.Alias(type_="azure-native:security/v20200101preview:SecurityContact"), pulumi.Alias(type_="azure-nextgen:security/v20200101preview:SecurityContact")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SecurityContact, __self__).__init__( 'azure-native:security:SecurityContact', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SecurityContact': """ Get an existing SecurityContact resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SecurityContactArgs.__new__(SecurityContactArgs) __props__.__dict__["alert_notifications"] = None __props__.__dict__["emails"] = None __props__.__dict__["name"] = None __props__.__dict__["notifications_by_role"] = None __props__.__dict__["phone"] = None __props__.__dict__["type"] = None return SecurityContact(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="alertNotifications") def alert_notifications(self) -> pulumi.Output[Optional['outputs.SecurityContactPropertiesResponseAlertNotifications']]: """ Defines whether to send email notifications about new security alerts """ return pulumi.get(self, "alert_notifications") @property @pulumi.getter def emails(self) -> pulumi.Output[Optional[str]]: """ List of email addresses which will get notifications from Azure Security Center by the configurations defined in this security contact. """ return pulumi.get(self, "emails") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="notificationsByRole") def notifications_by_role(self) -> pulumi.Output[Optional['outputs.SecurityContactPropertiesResponseNotificationsByRole']]: """ Defines whether to send email notifications from Azure Security Center to persons with specific RBAC roles on the subscription. """ return pulumi.get(self, "notifications_by_role") @property @pulumi.getter def phone(self) -> pulumi.Output[Optional[str]]: """ The security contact's phone number """ return pulumi.get(self, "phone") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type")
48.382813
429
0.687308