hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
c9a65c9c39bb1b0664afb6f88c492d94f51b41c5
3,981
py
Python
scikitplot/tests/test_clustering.py
leozhoujf/scikit-plot
2dd3e6a76df77edcbd724c4db25575f70abb57cb
[ "MIT" ]
2,360
2017-02-12T01:43:09.000Z
2022-03-31T10:06:31.000Z
scikitplot/tests/test_clustering.py
leozhoujf/scikit-plot
2dd3e6a76df77edcbd724c4db25575f70abb57cb
[ "MIT" ]
79
2017-02-12T21:42:08.000Z
2022-02-28T03:00:44.000Z
scikitplot/tests/test_clustering.py
leozhoujf/scikit-plot
2dd3e6a76df77edcbd724c4db25575f70abb57cb
[ "MIT" ]
302
2017-02-17T19:36:33.000Z
2022-01-28T16:22:06.000Z
from __future__ import absolute_import import unittest import scikitplot import warnings import numpy as np from sklearn.datasets import load_iris as load_data from sklearn.cluster import KMeans import matplotlib.pyplot as plt class TestClassifierFactory(unittest.TestCase): def setUp(self): class Clusterer: def __init__(self): pass def fit(self): pass def fit_predict(self): pass class NotClusterer: def __init__(self): pass self.Clusterer = Clusterer self.NotClusterer = NotClusterer def test_instance_validation(self): clf = self.Clusterer() scikitplot.clustering_factory(clf) not_clf = self.NotClusterer() self.assertRaises(TypeError, scikitplot.clustering_factory, not_clf) def test_method_insertion(self): clf = self.Clusterer() scikitplot.clustering_factory(clf) assert hasattr(clf, 'plot_silhouette') assert hasattr(clf, 'plot_elbow_curve') with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') scikitplot.clustering_factory(clf) assert len(w) >= 2 for warning in w[1:]: assert issubclass(warning.category, UserWarning) assert ' method already in clf. ' \ 'Overriding anyway. This may ' \ 'result in unintended behavior.' in str(warning.message) class TestPlotSilhouette(unittest.TestCase): def setUp(self): np.random.seed(0) self.X, self.y = load_data(return_X_y=True) p = np.random.permutation(len(self.X)) self.X, self.y = self.X[p], self.y[p] def tearDown(self): plt.close("all") def test_copy(self): np.random.seed(0) clf = KMeans() scikitplot.clustering_factory(clf) ax = clf.plot_silhouette(self.X) assert not hasattr(clf, "cluster_centers_") ax = clf.plot_silhouette(self.X, copy=False) assert hasattr(clf, "cluster_centers_") def test_cmap(self): np.random.seed(0) clf = KMeans() scikitplot.clustering_factory(clf) ax = clf.plot_silhouette(self.X, cmap='Spectral') ax = clf.plot_silhouette(self.X, cmap=plt.cm.Spectral) def test_ax(self): np.random.seed(0) clf = KMeans() scikitplot.clustering_factory(clf) fig, ax = plt.subplots(1, 1) out_ax = clf.plot_silhouette(self.X) assert ax is not out_ax out_ax = clf.plot_silhouette(self.X, ax=ax) assert ax is out_ax class TestPlotElbow(unittest.TestCase): def setUp(self): np.random.seed(0) self.X, self.y = load_data(return_X_y=True) p = np.random.permutation(len(self.X)) self.X, self.y = self.X[p], self.y[p] def tearDown(self): plt.close("all") def test_n_clusters_in_clf(self): np.random.seed(0) class DummyClusterer: def __init__(self): pass def fit(self): pass def fit_predict(self): pass clf = DummyClusterer() scikitplot.clustering_factory(clf) self.assertRaises(TypeError, clf.plot_elbow_curve, self.X) def test_cluster_ranges(self): np.random.seed(0) clf = KMeans() scikitplot.clustering_factory(clf) ax = clf.plot_elbow_curve(self.X, cluster_ranges=range(1, 10)) ax = clf.plot_elbow_curve(self.X) def test_ax(self): np.random.seed(0) clf = KMeans() scikitplot.clustering_factory(clf) fig, ax = plt.subplots(1, 1) out_ax = clf.plot_elbow_curve(self.X) assert ax is not out_ax out_ax = clf.plot_elbow_curve(self.X, ax=ax) assert ax is out_ax if __name__ == '__main__': unittest.main()
28.234043
79
0.60412
48aa586eb94948416c769721ea3d9bc286163e95
4,994
py
Python
PROJ/LEVY/Credit_Default_Swaps/Script_Credit_Default_Swap.py
mattslezak-shell/PROJ_Option_Pricing_Matlab
6105bd00ba3471802180c122fdf81e90833a91c4
[ "MIT" ]
null
null
null
PROJ/LEVY/Credit_Default_Swaps/Script_Credit_Default_Swap.py
mattslezak-shell/PROJ_Option_Pricing_Matlab
6105bd00ba3471802180c122fdf81e90833a91c4
[ "MIT" ]
null
null
null
PROJ/LEVY/Credit_Default_Swaps/Script_Credit_Default_Swap.py
mattslezak-shell/PROJ_Option_Pricing_Matlab
6105bd00ba3471802180c122fdf81e90833a91c4
[ "MIT" ]
1
2022-01-07T15:31:45.000Z
2022-01-07T15:31:45.000Z
# Generated with SMOP 0.41-beta try: from smop.libsmop import * except ImportError: raise ImportError('File compiled with `smop3`, please install `smop3` to run it.') from None # Script_Credit_Default_Swap.m ################################################################## ### CREDIT DEFAULT SWAP / DEFAULT PROBABILITY CALCULATOR ################################################################## # Descritpion: Script to Calc Fair Spread of Credit Default Swaps (and default probabilities) in Levy Models # using the PROJ method # Author: Justin Kirkby # References: (1) Efficient Option Pricing By Frame Duality with The Fast # Fourier Transform, SIAM J. Financial Math., 2015 # (2) American and exotic option pricing with jump diffusions and other Levy Processes, # J. Compuational Finance, 2018 ################################################################## folder,name,ext=fileparts(which(mfilename('fullpath')),nargout=3) # Script_Credit_Default_Swap.m:12 cd(folder) addpath('../RN_CHF') addpath('../Helper_Functions') ############################################## ### Step 1) CHOOSE CONTRACT/GENERAL PARAMETERS ############################################## # For details on CDS model, see reference (2) above r=0.04 # Script_Credit_Default_Swap.m:21 T=1 # Script_Credit_Default_Swap.m:22 M=52 # Script_Credit_Default_Swap.m:23 R=0.4 # Script_Credit_Default_Swap.m:24 L=0.4 # Script_Credit_Default_Swap.m:25 ############################################## ### Step 2) CHOOSE MODEL PARAMETERS ############################################## model=1 # Script_Credit_Default_Swap.m:30 params=cellarray([]) # Script_Credit_Default_Swap.m:31 if model == 1: params.sigmaBSM = copy(0.2) # Script_Credit_Default_Swap.m:34 else: if model == 2: params.C = copy(0.02) # Script_Credit_Default_Swap.m:37 params.G = copy(5) # Script_Credit_Default_Swap.m:38 params.MM = copy(15) # Script_Credit_Default_Swap.m:39 params.Y = copy(1.2) # Script_Credit_Default_Swap.m:40 else: if model == 3: params.alpha = copy(15) # Script_Credit_Default_Swap.m:43 params.beta = copy(- 5) # Script_Credit_Default_Swap.m:44 params.delta = copy(0.5) # Script_Credit_Default_Swap.m:45 else: if model == 4: params.sigma = copy(0.12) # Script_Credit_Default_Swap.m:48 params.lam = copy(0.4) # Script_Credit_Default_Swap.m:49 params.muj = copy(- 0.12) # Script_Credit_Default_Swap.m:50 params.sigmaj = copy(0.18) # Script_Credit_Default_Swap.m:51 else: if model == 5: params.sigma = copy(0.15) # Script_Credit_Default_Swap.m:54 params.lam = copy(3) # Script_Credit_Default_Swap.m:55 params.p_up = copy(0.2) # Script_Credit_Default_Swap.m:56 params.eta1 = copy(25) # Script_Credit_Default_Swap.m:57 params.eta2 = copy(10) # Script_Credit_Default_Swap.m:58 ############################################## ### Step 3) CHOOSE PROJ PARAMETERS ############################################## UseCumulant=1 # Script_Credit_Default_Swap.m:65 mult=2 # Script_Credit_Default_Swap.m:66 #--------------------- # APPROACH 1: Cumulant Based approach for grid width # (see "Robust Option Pricing with Characteritics Functions and the BSpline Order of Density Projection") #--------------------- if UseCumulant == 1: logN=14 # Script_Credit_Default_Swap.m:73 L1=12 # Script_Credit_Default_Swap.m:74 #--------------------- # APPROACH 2: Manual GridWidth approach #--------------------- else: P=10 # Script_Credit_Default_Swap.m:79 Pbar=3 # Script_Credit_Default_Swap.m:80 ############################################## ### PRICE ############################################## ### Note: rnCHF is the risk netural CHF, c1,c2,c4 are the cumulants modelInput=getModelInput(model,T / M,r,0,params) # Script_Credit_Default_Swap.m:87 if UseCumulant == 1: alpha=getTruncationAlpha(T,L1,modelInput,model) # Script_Credit_Default_Swap.m:90 else: logN=P + Pbar # Script_Credit_Default_Swap.m:92 alpha=2 ** Pbar / 2 # Script_Credit_Default_Swap.m:93 N=2 ** logN # Script_Credit_Default_Swap.m:95 tic prob,spread=PROJ_CDS(R,L,M,T,r,N,alpha,mult,modelInput.rnCHF,nargout=2) # Script_Credit_Default_Swap.m:98 toc fprintf('Default Prob: %.8f \n',prob) fprintf('CDS Spread: %.8f \n',spread)
34.441379
109
0.536444
903c70142d3a0859ba4ad1d0da17c99ad9affdd4
1,302
py
Python
tests/test_time.py
User3574/hyperqueue
d4dea5a805925cb624eb81da65840d5a8226d4a9
[ "MIT" ]
null
null
null
tests/test_time.py
User3574/hyperqueue
d4dea5a805925cb624eb81da65840d5a8226d4a9
[ "MIT" ]
21
2021-03-31T16:00:39.000Z
2021-05-06T08:41:26.000Z
tests/test_time.py
User3574/hyperqueue
d4dea5a805925cb624eb81da65840d5a8226d4a9
[ "MIT" ]
1
2021-05-04T07:40:58.000Z
2021-05-04T07:40:58.000Z
import time from .conftest import HqEnv from .utils import wait_for_job_state def test_job_time_request1(hq_env: HqEnv): # Tests that tasks are send only to worker3 and worker 4 (because of time requests) hq_env.start_server() hq_env.start_worker(args=["--time-limit", "2s"]) hq_env.start_worker(args=["--time-limit", "4s"]) hq_env.start_worker(args=["--time-limit", "10s"]) hq_env.start_worker() hq_env.command(["submit", "--array=1-20", "--time-request=5s", "--", "ls"]) wait_for_job_state(hq_env, 1, "FINISHED") table = hq_env.command(["job", "1"], as_table=True) assert {"worker3", "worker4"} == set(table.get_row_value("Workers").split(", ")) def test_job_time_request2(hq_env: HqEnv): # Test that a tasks with time request is not sent to worker without remaining lifetime hq_env.start_server() hq_env.start_worker(args=["--time-limit", "4s"]) hq_env.command(["submit", "--time-request=2s", "--", "ls"]) time.sleep(2.2) hq_env.command(["submit", "--time-request=2s", "--", "ls"]) time.sleep(1.0) # hq_env.start_worker(args=["--time-limit", "5s"]) wait_for_job_state(hq_env, 1, "FINISHED") table = hq_env.command(["jobs"], as_table=True) assert table[1][2] == "FINISHED" assert table[2][2] == "WAITING"
37.2
90
0.655146
5e848cefa51531281aca4628861c0876202cb02e
1,312
py
Python
tests/test_client.py
symvo/udsi
715a3bed866af628fa217504e2fd41377555f0f2
[ "MIT" ]
7
2019-07-08T01:05:51.000Z
2019-07-09T11:57:51.000Z
tests/test_client.py
symvo/udsi
715a3bed866af628fa217504e2fd41377555f0f2
[ "MIT" ]
1
2019-07-07T03:12:48.000Z
2019-07-07T04:12:38.000Z
tests/test_client.py
rlygud/udsi
715a3bed866af628fa217504e2fd41377555f0f2
[ "MIT" ]
1
2019-03-02T03:58:24.000Z
2019-03-02T03:58:24.000Z
""" tests.test_client ~~~~~~~~~~~~~~~~~ This module implements the unit tests for the `client` module. """ import json from tests.utils import async_test, make_client, make_file, cleanup class TestClient: """ Test class for the `client` module. """ @async_test async def test_init(self): client = make_client() assert "aperio-root-folder" in json.dumps(client.root) @async_test async def test_upload(self): client = make_client() file, sheet = await make_file(client) assert type(sheet) is dict assert "temp" in json.dumps(sheet) await cleanup(client, sheet.get("spreadsheetId")) @async_test async def test_get(self): client = make_client() file, sheet = await make_file(client) id = sheet.get("spreadsheetId") sheet, data = await client.get(id) assert type(sheet) is dict assert "temp" in json.dumps(sheet) await cleanup(client, sheet.get("spreadsheetId")) @async_test async def test_list(self): client = make_client() file, sheet = await make_file(client) files = await client.list() assert type(files) is list assert "temp" in json.dumps(files) await cleanup(client, sheet.get("spreadsheetId"))
23.428571
67
0.628049
d6ecbf212234d97a9d5afe1102eabbc8e2ee2aff
468
py
Python
stubs/micropython-v1_10-esp8266/zlib.py
mattytrentini/micropython-stubs
4d596273823b69e9e5bcf5fa67f249c374ee0bbc
[ "MIT" ]
null
null
null
stubs/micropython-v1_10-esp8266/zlib.py
mattytrentini/micropython-stubs
4d596273823b69e9e5bcf5fa67f249c374ee0bbc
[ "MIT" ]
null
null
null
stubs/micropython-v1_10-esp8266/zlib.py
mattytrentini/micropython-stubs
4d596273823b69e9e5bcf5fa67f249c374ee0bbc
[ "MIT" ]
null
null
null
""" Module: 'zlib' on esp8266 v1.10 """ # MCU: (sysname='esp8266', nodename='esp8266', release='2.2.0-dev(9422289)', version='v1.10-8-g8b7039d7d on 2019-01-26', machine='ESP module with ESP8266') # Stubber: 1.1.0 - updated from typing import Any class DecompIO: """""" def read(self, *args) -> Any: pass def readinto(self, *args) -> Any: pass def readline(self, *args) -> Any: pass def decompress(*args) -> Any: pass
19.5
155
0.600427
b76bb81952192c1adb7cdb422d3d29ad5cc0c17c
6,795
py
Python
pandapower/test/topology/test_graph_searches.py
mathildebadoual/pandapower
9ba4bcb78e84b644d2ba6df0c08e285c54af8ddc
[ "BSD-3-Clause" ]
1
2020-10-19T06:39:15.000Z
2020-10-19T06:39:15.000Z
pandapower/test/topology/test_graph_searches.py
miek770/pandapower
de004efc1b7432a633792af4f551f7635a02db47
[ "BSD-3-Clause" ]
null
null
null
pandapower/test/topology/test_graph_searches.py
miek770/pandapower
de004efc1b7432a633792af4f551f7635a02db47
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2016-2018 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import numpy as np import pandapower as pp import pytest import pandapower.topology as top @pytest.fixture def feeder_network(): net = pp.create_empty_network() current_bus = pp.create_bus(net, vn_kv=20.) pp.create_ext_grid(net, current_bus) for length in [12, 6, 8]: new_bus = pp.create_bus(net, vn_kv=20.) pp.create_line(net, current_bus, new_bus, length_km=length, std_type="NA2XS2Y 1x185 RM/25 12/20 kV") current_bus = new_bus pp.create_line(net, current_bus, 0, length_km=5, std_type="NA2XS2Y 1x185 RM/25 12/20 kV") return net def test_determine_stubs(feeder_network): net = feeder_network sec_bus = pp.create_bus(net, vn_kv=20.) sec_line = pp.create_line(net, 3, sec_bus, length_km=3, std_type="NA2XS2Y 1x185 RM/25 12/20 kV") top.determine_stubs(net) assert not np.any(net.bus.on_stub.loc[set(net.bus.index) - {sec_bus}].values) assert not np.any(net.line.is_stub.loc[set(net.line.index) - {sec_line}].values) assert net.bus.on_stub.at[sec_bus] assert net.line.is_stub.at[sec_line] def test_distance(feeder_network): net = feeder_network dist = top.calc_distance_to_bus(net, 0) assert np.allclose(dist.sort_index().values, [0, 12, 13, 5]) dist = top.calc_distance_to_bus(net, 0, notravbuses={3}) assert np.allclose(dist.sort_index().values, [0, 12, 18, 5]) pp.create_switch(net, bus=3, element=2, et="l", closed=False) dist = top.calc_distance_to_bus(net, 0) assert np.allclose(dist.sort_index().values, [0, 12, 18, 5]) def test_unsupplied_buses_with_in_service(): # IS ext_grid --- open switch --- OOS bus --- open switch --- IS bus net = pp.create_empty_network() bus_sl = pp.create_bus(net, 0.4) pp.create_ext_grid(net, bus_sl) bus0 = pp.create_bus(net, 0.4, in_service=False) pp.create_switch(net, bus_sl, bus0, 'b', False) bus1 = pp.create_bus(net, 0.4, in_service=True) pp.create_switch(net, bus0, bus1, 'b', False) ub = top.unsupplied_buses(net) assert ub == {2} # OOS ext_grid --- closed switch --- IS bus net = pp.create_empty_network() bus_sl = pp.create_bus(net, 0.4) pp.create_ext_grid(net, bus_sl, in_service=False) bus0 = pp.create_bus(net, 0.4, in_service=True) pp.create_switch(net, bus_sl, bus0, 'b', True) ub = top.unsupplied_buses(net) assert ub == {0, 1} def test_unsupplied_buses_with_switches(): net = pp.create_empty_network() pp.create_buses(net, 8, 20) pp.create_buses(net, 5, 0.4) pp.create_ext_grid(net, 0) pp.create_line(net, 0, 1, 1.2, "NA2XS2Y 1x185 RM/25 12/20 kV") pp.create_switch(net, 0, 0, "l", closed=True) pp.create_switch(net, 1, 0, "l", closed=False) pp.create_line(net, 0, 2, 1.2, "NA2XS2Y 1x185 RM/25 12/20 kV") pp.create_switch(net, 0, 1, "l", closed=False) pp.create_switch(net, 2, 1, "l", closed=True) pp.create_line(net, 0, 3, 1.2, "NA2XS2Y 1x185 RM/25 12/20 kV") pp.create_switch(net, 0, 2, "l", closed=False) pp.create_switch(net, 3, 2, "l", closed=False) pp.create_line(net, 0, 4, 1.2, "NA2XS2Y 1x185 RM/25 12/20 kV") pp.create_switch(net, 0, 3, "l", closed=True) pp.create_switch(net, 4, 3, "l", closed=True) pp.create_line(net, 0, 5, 1.2, "NA2XS2Y 1x185 RM/25 12/20 kV") pp.create_switch(net, 0, 6, "b", closed=True) pp.create_switch(net, 0, 7, "b", closed=False) pp.create_transformer(net, 0, 8, "0.63 MVA 20/0.4 kV") pp.create_switch(net, 0, 0, "t", closed=True) pp.create_switch(net, 8, 0, "t", closed=False) pp.create_transformer(net, 0, 9, "0.63 MVA 20/0.4 kV") pp.create_switch(net, 0, 1, "t", closed=False) pp.create_switch(net, 9, 1, "t", closed=True) pp.create_transformer(net, 0, 10, "0.63 MVA 20/0.4 kV") pp.create_switch(net, 0, 2, "t", closed=False) pp.create_switch(net, 10, 2, "t", closed=False) pp.create_transformer(net, 0, 11, "0.63 MVA 20/0.4 kV") pp.create_switch(net, 0, 3, "t", closed=True) pp.create_switch(net, 11, 3, "t", closed=True) pp.create_transformer(net, 0, 12, "0.63 MVA 20/0.4 kV") pp.create_buses(net, 2, 20) pp.create_impedance(net, 0, 13, 1, 1, 10) pp.create_impedance(net, 0, 14, 1, 1, 10, in_service=False) ub = top.unsupplied_buses(net) assert ub == {1, 2, 3, 7, 8, 9, 10, 14} ub = top.unsupplied_buses(net, respect_switches=False) assert ub == {14} def test_graph_characteristics(feeder_network): # adapt network net = feeder_network bus0 = pp.create_bus(net, vn_kv=20.0) bus1 = pp.create_bus(net, vn_kv=20.0) bus2 = pp.create_bus(net, vn_kv=20.0) bus3 = pp.create_bus(net, vn_kv=20.0) bus4 = pp.create_bus(net, vn_kv=20.0) bus5 = pp.create_bus(net, vn_kv=20.0) bus6 = pp.create_bus(net, vn_kv=20.0) bus7 = pp.create_bus(net, vn_kv=20.0) bus8 = pp.create_bus(net, vn_kv=20.0) bus9 = pp.create_bus(net, vn_kv=20.0) new_connections = [(3, bus0), (bus0, bus1), (bus0, bus2), (1, bus3), (2, bus4), (bus3, bus4), (bus4, bus5), (bus4, bus6), (bus5, bus6), (2, bus7), (bus7, bus8), (bus8, bus9), (bus9, bus7)] for fb, tb in new_connections: pp.create_line(net, fb, tb, length_km=1.0, std_type="NA2XS2Y 1x185 RM/25 12/20 kV") # get characteristics mg = top.create_nxgraph(net, respect_switches=False) characteristics = ["bridges", "articulation_points", "connected", "stub_buses", "required_bridges", "notn1_areas"] char_dict = top.find_graph_characteristics(mg, net.ext_grid.bus, characteristics) bridges = char_dict["bridges"] articulation_points = char_dict["articulation_points"] connected = char_dict["connected"] stub_buses = char_dict["stub_buses"] required_bridges = char_dict["required_bridges"] notn1_areas = char_dict["notn1_areas"] assert bridges == {(3, 4), (4, 5), (4, 6), (2, 11)} assert articulation_points == {8, 3, 4, 2, 11} assert connected == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} assert stub_buses == {4, 5, 6, 11, 12, 13} assert required_bridges == {4: [(3, 4)], 5: [(3, 4), (4, 5)], 6: [(3, 4), (4, 6)], 11: [(2, 11)], 12: [(2, 11)], 13: [(2, 11)]} assert notn1_areas == {8: {9, 10}, 3: {4, 5, 6}, 2: {11, 12, 13}} if __name__ == '__main__': pass # pytest.main(["test_graph_searches.py"])
40.446429
102
0.62443
36f9027be726a5817af930bcce359eae07b4a862
1,010
py
Python
dynamicArray.py
eagletusk/pythonPractice
4ac8d8c2f45072407b8f25514a3e54bddcd38a33
[ "MIT" ]
null
null
null
dynamicArray.py
eagletusk/pythonPractice
4ac8d8c2f45072407b8f25514a3e54bddcd38a33
[ "MIT" ]
null
null
null
dynamicArray.py
eagletusk/pythonPractice
4ac8d8c2f45072407b8f25514a3e54bddcd38a33
[ "MIT" ]
null
null
null
import ctypes import sys class DynamicArray(object): def __init__(self): self.n = 0 self.capacity = 1 self.A = self.make_array(self.capacity) def __len__(self): return self.n def __getitem__(self,k): if not 0 <= k < self.n: return IndexError('this is an index error') return self.A[k] def append(self,ele): if self.n == self.capacity: self._resize(2*self.capacity) #2x if capacity isn't enough self.A[self.n] = ele self.n +=1 def _resize(self,new_cap): B = self.make_array(new_cap) for k in range(self.n): B[k] = self.A[k] self.A = B self.capacity = new_cap print(sys.getsizeof(self.A), self.capacity,self.n) def make_array(self,new_cap): # make raw array return (new_cap * ctypes.py_object)() arr = DynamicArray() arr.append(3) arr.append(3) arr.append(3) arr.append(3) arr.append(3) arr.append(3) arr.append(3) arr.append(3) print(arr.capacity) print(sys.getsizeof(arr))
16.031746
64
0.630693
43dd52b92b3c64de56c0f3364f7b0d95ae9b79b9
46,710
py
Python
ZER0/022.py
applevinc/Project-Euler
2755a00df43e65b99b964587e29621cc8ebcc50a
[ "MIT" ]
null
null
null
ZER0/022.py
applevinc/Project-Euler
2755a00df43e65b99b964587e29621cc8ebcc50a
[ "MIT" ]
null
null
null
ZER0/022.py
applevinc/Project-Euler
2755a00df43e65b99b964587e29621cc8ebcc50a
[ "MIT" ]
1
2021-03-17T07:19:55.000Z
2021-03-17T07:19:55.000Z
names = ["MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN","BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY","CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE","CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS","GLORIA","EVELYN","JEAN","CHERYL","MILDRED","KATHERINE","JOAN","ASHLEY","JUDITH","ROSE","JANICE","KELLY","NICOLE","JUDY","CHRISTINA","KATHY","THERESA","BEVERLY","DENISE","TAMMY","IRENE","JANE","LORI","RACHEL","MARILYN","ANDREA","KATHRYN","LOUISE","SARA","ANNE","JACQUELINE","WANDA","BONNIE","JULIA","RUBY","LOIS","TINA","PHYLLIS","NORMA","PAULA","DIANA","ANNIE","LILLIAN","EMILY","ROBIN","PEGGY","CRYSTAL","GLADYS","RITA","DAWN","CONNIE","FLORENCE","TRACY","EDNA","TIFFANY","CARMEN","ROSA","CINDY","GRACE","WENDY","VICTORIA","EDITH","KIM","SHERRY","SYLVIA","JOSEPHINE","THELMA","SHANNON","SHEILA","ETHEL","ELLEN","ELAINE","MARJORIE","CARRIE","CHARLOTTE","MONICA","ESTHER","PAULINE","EMMA","JUANITA","ANITA","RHONDA","HAZEL","AMBER","EVA","DEBBIE","APRIL","LESLIE","CLARA","LUCILLE","JAMIE","JOANNE","ELEANOR","VALERIE","DANIELLE","MEGAN","ALICIA","SUZANNE","MICHELE","GAIL","BERTHA","DARLENE","VERONICA","JILL","ERIN","GERALDINE","LAUREN","CATHY","JOANN","LORRAINE","LYNN","SALLY","REGINA","ERICA","BEATRICE","DOLORES","BERNICE","AUDREY","YVONNE","ANNETTE","JUNE","SAMANTHA","MARION","DANA","STACY","ANA","RENEE","IDA","VIVIAN","ROBERTA","HOLLY","BRITTANY","MELANIE","LORETTA","YOLANDA","JEANETTE","LAURIE","KATIE","KRISTEN","VANESSA","ALMA","SUE","ELSIE","BETH","JEANNE","VICKI","CARLA","TARA","ROSEMARY","EILEEN","TERRI","GERTRUDE","LUCY","TONYA","ELLA","STACEY","WILMA","GINA","KRISTIN","JESSIE","NATALIE","AGNES","VERA","WILLIE","CHARLENE","BESSIE","DELORES","MELINDA","PEARL","ARLENE","MAUREEN","COLLEEN","ALLISON","TAMARA","JOY","GEORGIA","CONSTANCE","LILLIE","CLAUDIA","JACKIE","MARCIA","TANYA","NELLIE","MINNIE","MARLENE","HEIDI","GLENDA","LYDIA","VIOLA","COURTNEY","MARIAN","STELLA","CAROLINE","DORA","JO","VICKIE","MATTIE","TERRY","MAXINE","IRMA","MABEL","MARSHA","MYRTLE","LENA","CHRISTY","DEANNA","PATSY","HILDA","GWENDOLYN","JENNIE","NORA","MARGIE","NINA","CASSANDRA","LEAH","PENNY","KAY","PRISCILLA","NAOMI","CAROLE","BRANDY","OLGA","BILLIE","DIANNE","TRACEY","LEONA","JENNY","FELICIA","SONIA","MIRIAM","VELMA","BECKY","BOBBIE","VIOLET","KRISTINA","TONI","MISTY","MAE","SHELLY","DAISY","RAMONA","SHERRI","ERIKA","KATRINA","CLAIRE","LINDSEY","LINDSAY","GENEVA","GUADALUPE","BELINDA","MARGARITA","SHERYL","CORA","FAYE","ADA","NATASHA","SABRINA","ISABEL","MARGUERITE","HATTIE","HARRIET","MOLLY","CECILIA","KRISTI","BRANDI","BLANCHE","SANDY","ROSIE","JOANNA","IRIS","EUNICE","ANGIE","INEZ","LYNDA","MADELINE","AMELIA","ALBERTA","GENEVIEVE","MONIQUE","JODI","JANIE","MAGGIE","KAYLA","SONYA","JAN","LEE","KRISTINE","CANDACE","FANNIE","MARYANN","OPAL","ALISON","YVETTE","MELODY","LUZ","SUSIE","OLIVIA","FLORA","SHELLEY","KRISTY","MAMIE","LULA","LOLA","VERNA","BEULAH","ANTOINETTE","CANDICE","JUANA","JEANNETTE","PAM","KELLI","HANNAH","WHITNEY","BRIDGET","KARLA","CELIA","LATOYA","PATTY","SHELIA","GAYLE","DELLA","VICKY","LYNNE","SHERI","MARIANNE","KARA","JACQUELYN","ERMA","BLANCA","MYRA","LETICIA","PAT","KRISTA","ROXANNE","ANGELICA","JOHNNIE","ROBYN","FRANCIS","ADRIENNE","ROSALIE","ALEXANDRA","BROOKE","BETHANY","SADIE","BERNADETTE","TRACI","JODY","KENDRA","JASMINE","NICHOLE","RACHAEL","CHELSEA","MABLE","ERNESTINE","MURIEL","MARCELLA","ELENA","KRYSTAL","ANGELINA","NADINE","KARI","ESTELLE","DIANNA","PAULETTE","LORA","MONA","DOREEN","ROSEMARIE","ANGEL","DESIREE","ANTONIA","HOPE","GINGER","JANIS","BETSY","CHRISTIE","FREDA","MERCEDES","MEREDITH","LYNETTE","TERI","CRISTINA","EULA","LEIGH","MEGHAN","SOPHIA","ELOISE","ROCHELLE","GRETCHEN","CECELIA","RAQUEL","HENRIETTA","ALYSSA","JANA","KELLEY","GWEN","KERRY","JENNA","TRICIA","LAVERNE","OLIVE","ALEXIS","TASHA","SILVIA","ELVIRA","CASEY","DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE","SONJA","LILA","LANA","DARLA","MAY","MINDY","ESSIE","MANDY","LORENE","ELSA","JOSEFINA","JEANNIE","MIRANDA","DIXIE","LUCIA","MARTA","FAITH","LELA","JOHANNA","SHARI","CAMILLE","TAMI","SHAWNA","ELISA","EBONY","MELBA","ORA","NETTIE","TABITHA","OLLIE","JAIME","WINIFRED","KRISTIE","MARINA","ALISHA","AIMEE","RENA","MYRNA","MARLA","TAMMIE","LATASHA","BONITA","PATRICE","RONDA","SHERRIE","ADDIE","FRANCINE","DELORIS","STACIE","ADRIANA","CHERI","SHELBY","ABIGAIL","CELESTE","JEWEL","CARA","ADELE","REBEKAH","LUCINDA","DORTHY","CHRIS","EFFIE","TRINA","REBA","SHAWN","SALLIE","AURORA","LENORA","ETTA","LOTTIE","KERRI","TRISHA","NIKKI","ESTELLA","FRANCISCA","JOSIE","TRACIE","MARISSA","KARIN","BRITTNEY","JANELLE","LOURDES","LAUREL","HELENE","FERN","ELVA","CORINNE","KELSEY","INA","BETTIE","ELISABETH","AIDA","CAITLIN","INGRID","IVA","EUGENIA","CHRISTA","GOLDIE","CASSIE","MAUDE","JENIFER","THERESE","FRANKIE","DENA","LORNA","JANETTE","LATONYA","CANDY","MORGAN","CONSUELO","TAMIKA","ROSETTA","DEBORA","CHERIE","POLLY","DINA","JEWELL","FAY","JILLIAN","DOROTHEA","NELL","TRUDY","ESPERANZA","PATRICA","KIMBERLEY","SHANNA","HELENA","CAROLINA","CLEO","STEFANIE","ROSARIO","OLA","JANINE","MOLLIE","LUPE","ALISA","LOU","MARIBEL","SUSANNE","BETTE","SUSANA","ELISE","CECILE","ISABELLE","LESLEY","JOCELYN","PAIGE","JONI","RACHELLE","LEOLA","DAPHNE","ALTA","ESTER","PETRA","GRACIELA","IMOGENE","JOLENE","KEISHA","LACEY","GLENNA","GABRIELA","KERI","URSULA","LIZZIE","KIRSTEN","SHANA","ADELINE","MAYRA","JAYNE","JACLYN","GRACIE","SONDRA","CARMELA","MARISA","ROSALIND","CHARITY","TONIA","BEATRIZ","MARISOL","CLARICE","JEANINE","SHEENA","ANGELINE","FRIEDA","LILY","ROBBIE","SHAUNA","MILLIE","CLAUDETTE","CATHLEEN","ANGELIA","GABRIELLE","AUTUMN","KATHARINE","SUMMER","JODIE","STACI","LEA","CHRISTI","JIMMIE","JUSTINE","ELMA","LUELLA","MARGRET","DOMINIQUE","SOCORRO","RENE","MARTINA","MARGO","MAVIS","CALLIE","BOBBI","MARITZA","LUCILE","LEANNE","JEANNINE","DEANA","AILEEN","LORIE","LADONNA","WILLA","MANUELA","GALE","SELMA","DOLLY","SYBIL","ABBY","LARA","DALE","IVY","DEE","WINNIE","MARCY","LUISA","JERI","MAGDALENA","OFELIA","MEAGAN","AUDRA","MATILDA","LEILA","CORNELIA","BIANCA","SIMONE","BETTYE","RANDI","VIRGIE","LATISHA","BARBRA","GEORGINA","ELIZA","LEANN","BRIDGETTE","RHODA","HALEY","ADELA","NOLA","BERNADINE","FLOSSIE","ILA","GRETA","RUTHIE","NELDA","MINERVA","LILLY","TERRIE","LETHA","HILARY","ESTELA","VALARIE","BRIANNA","ROSALYN","EARLINE","CATALINA","AVA","MIA","CLARISSA","LIDIA","CORRINE","ALEXANDRIA","CONCEPCION","TIA","SHARRON","RAE","DONA","ERICKA","JAMI","ELNORA","CHANDRA","LENORE","NEVA","MARYLOU","MELISA","TABATHA","SERENA","AVIS","ALLIE","SOFIA","JEANIE","ODESSA","NANNIE","HARRIETT","LORAINE","PENELOPE","MILAGROS","EMILIA","BENITA","ALLYSON","ASHLEE","TANIA","TOMMIE","ESMERALDA","KARINA","EVE","PEARLIE","ZELMA","MALINDA","NOREEN","TAMEKA","SAUNDRA","HILLARY","AMIE","ALTHEA","ROSALINDA","JORDAN","LILIA","ALANA","GAY","CLARE","ALEJANDRA","ELINOR","MICHAEL","LORRIE","JERRI","DARCY","EARNESTINE","CARMELLA","TAYLOR","NOEMI","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA","TANISHA","KATY","JULIANNE","JOHN","LAKISHA","EDWINA","MARICELA","MARGERY","KENYA","DOLLIE","ROXIE","ROSLYN","KATHRINE","NANETTE","CHARMAINE","LAVONNE","ILENE","KRIS","TAMMI","SUZETTE","CORINE","KAYE","JERRY","MERLE","CHRYSTAL","LINA","DEANNE","LILIAN","JULIANA","ALINE","LUANN","KASEY","MARYANNE","EVANGELINE","COLETTE","MELVA","LAWANDA","YESENIA","NADIA","MADGE","KATHIE","EDDIE","OPHELIA","VALERIA","NONA","MITZI","MARI","GEORGETTE","CLAUDINE","FRAN","ALISSA","ROSEANN","LAKEISHA","SUSANNA","REVA","DEIDRE","CHASITY","SHEREE","CARLY","JAMES","ELVIA","ALYCE","DEIRDRE","GENA","BRIANA","ARACELI","KATELYN","ROSANNE","WENDI","TESSA","BERTA","MARVA","IMELDA","MARIETTA","MARCI","LEONOR","ARLINE","SASHA","MADELYN","JANNA","JULIETTE","DEENA","AURELIA","JOSEFA","AUGUSTA","LILIANA","YOUNG","CHRISTIAN","LESSIE","AMALIA","SAVANNAH","ANASTASIA","VILMA","NATALIA","ROSELLA","LYNNETTE","CORINA","ALFREDA","LEANNA","CAREY","AMPARO","COLEEN","TAMRA","AISHA","WILDA","KARYN","CHERRY","QUEEN","MAURA","MAI","EVANGELINA","ROSANNA","HALLIE","ERNA","ENID","MARIANA","LACY","JULIET","JACKLYN","FREIDA","MADELEINE","MARA","HESTER","CATHRYN","LELIA","CASANDRA","BRIDGETT","ANGELITA","JANNIE","DIONNE","ANNMARIE","KATINA","BERYL","PHOEBE","MILLICENT","KATHERYN","DIANN","CARISSA","MARYELLEN","LIZ","LAURI","HELGA","GILDA","ADRIAN","RHEA","MARQUITA","HOLLIE","TISHA","TAMERA","ANGELIQUE","FRANCESCA","BRITNEY","KAITLIN","LOLITA","FLORINE","ROWENA","REYNA","TWILA","FANNY","JANELL","INES","CONCETTA","BERTIE","ALBA","BRIGITTE","ALYSON","VONDA","PANSY","ELBA","NOELLE","LETITIA","KITTY","DEANN","BRANDIE","LOUELLA","LETA","FELECIA","SHARLENE","LESA","BEVERLEY","ROBERT","ISABELLA","HERMINIA","TERRA","CELINA","TORI","OCTAVIA","JADE","DENICE","GERMAINE","SIERRA","MICHELL","CORTNEY","NELLY","DORETHA","SYDNEY","DEIDRA","MONIKA","LASHONDA","JUDI","CHELSEY","ANTIONETTE","MARGOT","BOBBY","ADELAIDE","NAN","LEEANN","ELISHA","DESSIE","LIBBY","KATHI","GAYLA","LATANYA","MINA","MELLISA","KIMBERLEE","JASMIN","RENAE","ZELDA","ELDA","MA","JUSTINA","GUSSIE","EMILIE","CAMILLA","ABBIE","ROCIO","KAITLYN","JESSE","EDYTHE","ASHLEIGH","SELINA","LAKESHA","GERI","ALLENE","PAMALA","MICHAELA","DAYNA","CARYN","ROSALIA","SUN","JACQULINE","REBECA","MARYBETH","KRYSTLE","IOLA","DOTTIE","BENNIE","BELLE","AUBREY","GRISELDA","ERNESTINA","ELIDA","ADRIANNE","DEMETRIA","DELMA","CHONG","JAQUELINE","DESTINY","ARLEEN","VIRGINA","RETHA","FATIMA","TILLIE","ELEANORE","CARI","TREVA","BIRDIE","WILHELMINA","ROSALEE","MAURINE","LATRICE","YONG","JENA","TARYN","ELIA","DEBBY","MAUDIE","JEANNA","DELILAH","CATRINA","SHONDA","HORTENCIA","THEODORA","TERESITA","ROBBIN","DANETTE","MARYJANE","FREDDIE","DELPHINE","BRIANNE","NILDA","DANNA","CINDI","BESS","IONA","HANNA","ARIEL","WINONA","VIDA","ROSITA","MARIANNA","WILLIAM","RACHEAL","GUILLERMINA","ELOISA","CELESTINE","CAREN","MALISSA","LONA","CHANTEL","SHELLIE","MARISELA","LEORA","AGATHA","SOLEDAD","MIGDALIA","IVETTE","CHRISTEN","ATHENA","JANEL","CHLOE","VEDA","PATTIE","TESSIE","TERA","MARILYNN","LUCRETIA","KARRIE","DINAH","DANIELA","ALECIA","ADELINA","VERNICE","SHIELA","PORTIA","MERRY","LASHAWN","DEVON","DARA","TAWANA","OMA","VERDA","CHRISTIN","ALENE","ZELLA","SANDI","RAFAELA","MAYA","KIRA","CANDIDA","ALVINA","SUZAN","SHAYLA","LYN","LETTIE","ALVA","SAMATHA","ORALIA","MATILDE","MADONNA","LARISSA","VESTA","RENITA","INDIA","DELOIS","SHANDA","PHILLIS","LORRI","ERLINDA","CRUZ","CATHRINE","BARB","ZOE","ISABELL","IONE","GISELA","CHARLIE","VALENCIA","ROXANNA","MAYME","KISHA","ELLIE","MELLISSA","DORRIS","DALIA","BELLA","ANNETTA","ZOILA","RETA","REINA","LAURETTA","KYLIE","CHRISTAL","PILAR","CHARLA","ELISSA","TIFFANI","TANA","PAULINA","LEOTA","BREANNA","JAYME","CARMEL","VERNELL","TOMASA","MANDI","DOMINGA","SANTA","MELODIE","LURA","ALEXA","TAMELA","RYAN","MIRNA","KERRIE","VENUS","NOEL","FELICITA","CRISTY","CARMELITA","BERNIECE","ANNEMARIE","TIARA","ROSEANNE","MISSY","CORI","ROXANA","PRICILLA","KRISTAL","JUNG","ELYSE","HAYDEE","ALETHA","BETTINA","MARGE","GILLIAN","FILOMENA","CHARLES","ZENAIDA","HARRIETTE","CARIDAD","VADA","UNA","ARETHA","PEARLINE","MARJORY","MARCELA","FLOR","EVETTE","ELOUISE","ALINA","TRINIDAD","DAVID","DAMARIS","CATHARINE","CARROLL","BELVA","NAKIA","MARLENA","LUANNE","LORINE","KARON","DORENE","DANITA","BRENNA","TATIANA","SAMMIE","LOUANN","LOREN","JULIANNA","ANDRIA","PHILOMENA","LUCILA","LEONORA","DOVIE","ROMONA","MIMI","JACQUELIN","GAYE","TONJA","MISTI","JOE","GENE","CHASTITY","STACIA","ROXANN","MICAELA","NIKITA","MEI","VELDA","MARLYS","JOHNNA","AURA","LAVERN","IVONNE","HAYLEY","NICKI","MAJORIE","HERLINDA","GEORGE","ALPHA","YADIRA","PERLA","GREGORIA","DANIEL","ANTONETTE","SHELLI","MOZELLE","MARIAH","JOELLE","CORDELIA","JOSETTE","CHIQUITA","TRISTA","LOUIS","LAQUITA","GEORGIANA","CANDI","SHANON","LONNIE","HILDEGARD","CECIL","VALENTINA","STEPHANY","MAGDA","KAROL","GERRY","GABRIELLA","TIANA","ROMA","RICHELLE","RAY","PRINCESS","OLETA","JACQUE","IDELLA","ALAINA","SUZANNA","JOVITA","BLAIR","TOSHA","RAVEN","NEREIDA","MARLYN","KYLA","JOSEPH","DELFINA","TENA","STEPHENIE","SABINA","NATHALIE","MARCELLE","GERTIE","DARLEEN","THEA","SHARONDA","SHANTEL","BELEN","VENESSA","ROSALINA","ONA","GENOVEVA","COREY","CLEMENTINE","ROSALBA","RENATE","RENATA","MI","IVORY","GEORGIANNA","FLOY","DORCAS","ARIANA","TYRA","THEDA","MARIAM","JULI","JESICA","DONNIE","VIKKI","VERLA","ROSELYN","MELVINA","JANNETTE","GINNY","DEBRAH","CORRIE","ASIA","VIOLETA","MYRTIS","LATRICIA","COLLETTE","CHARLEEN","ANISSA","VIVIANA","TWYLA","PRECIOUS","NEDRA","LATONIA","LAN","HELLEN","FABIOLA","ANNAMARIE","ADELL","SHARYN","CHANTAL","NIKI","MAUD","LIZETTE","LINDY","KIA","KESHA","JEANA","DANELLE","CHARLINE","CHANEL","CARROL","VALORIE","LIA","DORTHA","CRISTAL","SUNNY","LEONE","LEILANI","GERRI","DEBI","ANDRA","KESHIA","IMA","EULALIA","EASTER","DULCE","NATIVIDAD","LINNIE","KAMI","GEORGIE","CATINA","BROOK","ALDA","WINNIFRED","SHARLA","RUTHANN","MEAGHAN","MAGDALENE","LISSETTE","ADELAIDA","VENITA","TRENA","SHIRLENE","SHAMEKA","ELIZEBETH","DIAN","SHANTA","MICKEY","LATOSHA","CARLOTTA","WINDY","SOON","ROSINA","MARIANN","LEISA","JONNIE","DAWNA","CATHIE","BILLY","ASTRID","SIDNEY","LAUREEN","JANEEN","HOLLI","FAWN","VICKEY","TERESSA","SHANTE","RUBYE","MARCELINA","CHANDA","CARY","TERESE","SCARLETT","MARTY","MARNIE","LULU","LISETTE","JENIFFER","ELENOR","DORINDA","DONITA","CARMAN","BERNITA","ALTAGRACIA","ALETA","ADRIANNA","ZORAIDA","RONNIE","NICOLA","LYNDSEY","KENDALL","JANINA","CHRISSY","AMI","STARLA","PHYLIS","PHUONG","KYRA","CHARISSE","BLANCH","SANJUANITA","RONA","NANCI","MARILEE","MARANDA","CORY","BRIGETTE","SANJUANA","MARITA","KASSANDRA","JOYCELYN","IRA","FELIPA","CHELSIE","BONNY","MIREYA","LORENZA","KYONG","ILEANA","CANDELARIA","TONY","TOBY","SHERIE","OK","MARK","LUCIE","LEATRICE","LAKESHIA","GERDA","EDIE","BAMBI","MARYLIN","LAVON","HORTENSE","GARNET","EVIE","TRESSA","SHAYNA","LAVINA","KYUNG","JEANETTA","SHERRILL","SHARA","PHYLISS","MITTIE","ANABEL","ALESIA","THUY","TAWANDA","RICHARD","JOANIE","TIFFANIE","LASHANDA","KARISSA","ENRIQUETA","DARIA","DANIELLA","CORINNA","ALANNA","ABBEY","ROXANE","ROSEANNA","MAGNOLIA","LIDA","KYLE","JOELLEN","ERA","CORAL","CARLEEN","TRESA","PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE","CARINA","NOVA","MELINA","MARQUERITE","MARGARETTE","JOSEPHINA","EVONNE","DEVIN","CINTHIA","ALBINA","TOYA","TAWNYA","SHERITA","SANTOS","MYRIAM","LIZABETH","LISE","KEELY","JENNI","GISELLE","CHERYLE","ARDITH","ARDIS","ALESHA","ADRIANE","SHAINA","LINNEA","KAROLYN","HONG","FLORIDA","FELISHA","DORI","DARCI","ARTIE","ARMIDA","ZOLA","XIOMARA","VERGIE","SHAMIKA","NENA","NANNETTE","MAXIE","LOVIE","JEANE","JAIMIE","INGE","FARRAH","ELAINA","CAITLYN","STARR","FELICITAS","CHERLY","CARYL","YOLONDA","YASMIN","TEENA","PRUDENCE","PENNIE","NYDIA","MACKENZIE","ORPHA","MARVEL","LIZBETH","LAURETTE","JERRIE","HERMELINDA","CAROLEE","TIERRA","MIRIAN","META","MELONY","KORI","JENNETTE","JAMILA","ENA","ANH","YOSHIKO","SUSANNAH","SALINA","RHIANNON","JOLEEN","CRISTINE","ASHTON","ARACELY","TOMEKA","SHALONDA","MARTI","LACIE","KALA","JADA","ILSE","HAILEY","BRITTANI","ZONA","SYBLE","SHERRYL","RANDY","NIDIA","MARLO","KANDICE","KANDI","DEB","DEAN","AMERICA","ALYCIA","TOMMY","RONNA","NORENE","MERCY","JOSE","INGEBORG","GIOVANNA","GEMMA","CHRISTEL","AUDRY","ZORA","VITA","VAN","TRISH","STEPHAINE","SHIRLEE","SHANIKA","MELONIE","MAZIE","JAZMIN","INGA","HOA","HETTIE","GERALYN","FONDA","ESTRELLA","ADELLA","SU","SARITA","RINA","MILISSA","MARIBETH","GOLDA","EVON","ETHELYN","ENEDINA","CHERISE","CHANA","VELVA","TAWANNA","SADE","MIRTA","LI","KARIE","JACINTA","ELNA","DAVINA","CIERRA","ASHLIE","ALBERTHA","TANESHA","STEPHANI","NELLE","MINDI","LU","LORINDA","LARUE","FLORENE","DEMETRA","DEDRA","CIARA","CHANTELLE","ASHLY","SUZY","ROSALVA","NOELIA","LYDA","LEATHA","KRYSTYNA","KRISTAN","KARRI","DARLINE","DARCIE","CINDA","CHEYENNE","CHERRIE","AWILDA","ALMEDA","ROLANDA","LANETTE","JERILYN","GISELE","EVALYN","CYNDI","CLETA","CARIN","ZINA","ZENA","VELIA","TANIKA","PAUL","CHARISSA","THOMAS","TALIA","MARGARETE","LAVONDA","KAYLEE","KATHLENE","JONNA","IRENA","ILONA","IDALIA","CANDIS","CANDANCE","BRANDEE","ANITRA","ALIDA","SIGRID","NICOLETTE","MARYJO","LINETTE","HEDWIG","CHRISTIANA","CASSIDY","ALEXIA","TRESSIE","MODESTA","LUPITA","LITA","GLADIS","EVELIA","DAVIDA","CHERRI","CECILY","ASHELY","ANNABEL","AGUSTINA","WANITA","SHIRLY","ROSAURA","HULDA","EUN","BAILEY","YETTA","VERONA","THOMASINA","SIBYL","SHANNAN","MECHELLE","LUE","LEANDRA","LANI","KYLEE","KANDY","JOLYNN","FERNE","EBONI","CORENE","ALYSIA","ZULA","NADA","MOIRA","LYNDSAY","LORRETTA","JUAN","JAMMIE","HORTENSIA","GAYNELL","CAMERON","ADRIA","VINA","VICENTA","TANGELA","STEPHINE","NORINE","NELLA","LIANA","LESLEE","KIMBERELY","ILIANA","GLORY","FELICA","EMOGENE","ELFRIEDE","EDEN","EARTHA","CARMA","BEA","OCIE","MARRY","LENNIE","KIARA","JACALYN","CARLOTA","ARIELLE","YU","STAR","OTILIA","KIRSTIN","KACEY","JOHNETTA","JOEY","JOETTA","JERALDINE","JAUNITA","ELANA","DORTHEA","CAMI","AMADA","ADELIA","VERNITA","TAMAR","SIOBHAN","RENEA","RASHIDA","OUIDA","ODELL","NILSA","MERYL","KRISTYN","JULIETA","DANICA","BREANNE","AUREA","ANGLEA","SHERRON","ODETTE","MALIA","LORELEI","LIN","LEESA","KENNA","KATHLYN","FIONA","CHARLETTE","SUZIE","SHANTELL","SABRA","RACQUEL","MYONG","MIRA","MARTINE","LUCIENNE","LAVADA","JULIANN","JOHNIE","ELVERA","DELPHIA","CLAIR","CHRISTIANE","CHAROLETTE","CARRI","AUGUSTINE","ASHA","ANGELLA","PAOLA","NINFA","LEDA","LAI","EDA","SUNSHINE","STEFANI","SHANELL","PALMA","MACHELLE","LISSA","KECIA","KATHRYNE","KARLENE","JULISSA","JETTIE","JENNIFFER","HUI","CORRINA","CHRISTOPHER","CAROLANN","ALENA","TESS","ROSARIA","MYRTICE","MARYLEE","LIANE","KENYATTA","JUDIE","JANEY","IN","ELMIRA","ELDORA","DENNA","CRISTI","CATHI","ZAIDA","VONNIE","VIVA","VERNIE","ROSALINE","MARIELA","LUCIANA","LESLI","KARAN","FELICE","DENEEN","ADINA","WYNONA","TARSHA","SHERON","SHASTA","SHANITA","SHANI","SHANDRA","RANDA","PINKIE","PARIS","NELIDA","MARILOU","LYLA","LAURENE","LACI","JOI","JANENE","DOROTHA","DANIELE","DANI","CAROLYNN","CARLYN","BERENICE","AYESHA","ANNELIESE","ALETHEA","THERSA","TAMIKO","RUFINA","OLIVA","MOZELL","MARYLYN","MADISON","KRISTIAN","KATHYRN","KASANDRA","KANDACE","JANAE","GABRIEL","DOMENICA","DEBBRA","DANNIELLE","CHUN","BUFFY","BARBIE","ARCELIA","AJA","ZENOBIA","SHAREN","SHAREE","PATRICK","PAGE","MY","LAVINIA","KUM","KACIE","JACKELINE","HUONG","FELISA","EMELIA","ELEANORA","CYTHIA","CRISTIN","CLYDE","CLARIBEL","CARON","ANASTACIA","ZULMA","ZANDRA","YOKO","TENISHA","SUSANN","SHERILYN","SHAY","SHAWANDA","SABINE","ROMANA","MATHILDA","LINSEY","KEIKO","JOANA","ISELA","GRETTA","GEORGETTA","EUGENIE","DUSTY","DESIRAE","DELORA","CORAZON","ANTONINA","ANIKA","WILLENE","TRACEE","TAMATHA","REGAN","NICHELLE","MICKIE","MAEGAN","LUANA","LANITA","KELSIE","EDELMIRA","BREE","AFTON","TEODORA","TAMIE","SHENA","MEG","LINH","KELI","KACI","DANYELLE","BRITT","ARLETTE","ALBERTINE","ADELLE","TIFFINY","STORMY","SIMONA","NUMBERS","NICOLASA","NICHOL","NIA","NAKISHA","MEE","MAIRA","LOREEN","KIZZY","JOHNNY","JAY","FALLON","CHRISTENE","BOBBYE","ANTHONY","YING","VINCENZA","TANJA","RUBIE","RONI","QUEENIE","MARGARETT","KIMBERLI","IRMGARD","IDELL","HILMA","EVELINA","ESTA","EMILEE","DENNISE","DANIA","CARL","CARIE","ANTONIO","WAI","SANG","RISA","RIKKI","PARTICIA","MUI","MASAKO","MARIO","LUVENIA","LOREE","LONI","LIEN","KEVIN","GIGI","FLORENCIA","DORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER","TOMIKA","SHARITA","RANA","NIKOLE","NEOMA","MARGARITE","MADALYN","LUCINA","LAILA","KALI","JENETTE","GABRIELE","EVELYNE","ELENORA","CLEMENTINA","ALEJANDRINA","ZULEMA","VIOLETTE","VANNESSA","THRESA","RETTA","PIA","PATIENCE","NOELLA","NICKIE","JONELL","DELTA","CHUNG","CHAYA","CAMELIA","BETHEL","ANYA","ANDREW","THANH","SUZANN","SPRING","SHU","MILA","LILLA","LAVERNA","KEESHA","KATTIE","GIA","GEORGENE","EVELINE","ESTELL","ELIZBETH","VIVIENNE","VALLIE","TRUDIE","STEPHANE","MICHEL","MAGALY","MADIE","KENYETTA","KARREN","JANETTA","HERMINE","HARMONY","DRUCILLA","DEBBI","CELESTINA","CANDIE","BRITNI","BECKIE","AMINA","ZITA","YUN","YOLANDE","VIVIEN","VERNETTA","TRUDI","SOMMER","PEARLE","PATRINA","OSSIE","NICOLLE","LOYCE","LETTY","LARISA","KATHARINA","JOSELYN","JONELLE","JENELL","IESHA","HEIDE","FLORINDA","FLORENTINA","FLO","ELODIA","DORINE","BRUNILDA","BRIGID","ASHLI","ARDELLA","TWANA","THU","TARAH","SUNG","SHEA","SHAVON","SHANE","SERINA","RAYNA","RAMONITA","NGA","MARGURITE","LUCRECIA","KOURTNEY","KATI","JESUS","JESENIA","DIAMOND","CRISTA","AYANA","ALICA","ALIA","VINNIE","SUELLEN","ROMELIA","RACHELL","PIPER","OLYMPIA","MICHIKO","KATHALEEN","JOLIE","JESSI","JANESSA","HANA","HA","ELEASE","CARLETTA","BRITANY","SHONA","SALOME","ROSAMOND","REGENA","RAINA","NGOC","NELIA","LOUVENIA","LESIA","LATRINA","LATICIA","LARHONDA","JINA","JACKI","HOLLIS","HOLLEY","EMMY","DEEANN","CORETTA","ARNETTA","VELVET","THALIA","SHANICE","NETA","MIKKI","MICKI","LONNA","LEANA","LASHUNDA","KILEY","JOYE","JACQULYN","IGNACIA","HYUN","HIROKO","HENRY","HENRIETTE","ELAYNE","DELINDA","DARNELL","DAHLIA","COREEN","CONSUELA","CONCHITA","CELINE","BABETTE","AYANNA","ANETTE","ALBERTINA","SKYE","SHAWNEE","SHANEKA","QUIANA","PAMELIA","MIN","MERRI","MERLENE","MARGIT","KIESHA","KIERA","KAYLENE","JODEE","JENISE","ERLENE","EMMIE","ELSE","DARYL","DALILA","DAISEY","CODY","CASIE","BELIA","BABARA","VERSIE","VANESA","SHELBA","SHAWNDA","SAM","NORMAN","NIKIA","NAOMA","MARNA","MARGERET","MADALINE","LAWANA","KINDRA","JUTTA","JAZMINE","JANETT","HANNELORE","GLENDORA","GERTRUD","GARNETT","FREEDA","FREDERICA","FLORANCE","FLAVIA","DENNIS","CARLINE","BEVERLEE","ANJANETTE","VALDA","TRINITY","TAMALA","STEVIE","SHONNA","SHA","SARINA","ONEIDA","MICAH","MERILYN","MARLEEN","LURLINE","LENNA","KATHERIN","JIN","JENI","HAE","GRACIA","GLADY","FARAH","ERIC","ENOLA","EMA","DOMINQUE","DEVONA","DELANA","CECILA","CAPRICE","ALYSHA","ALI","ALETHIA","VENA","THERESIA","TAWNY","SONG","SHAKIRA","SAMARA","SACHIKO","RACHELE","PAMELLA","NICKY","MARNI","MARIEL","MAREN","MALISA","LIGIA","LERA","LATORIA","LARAE","KIMBER","KATHERN","KAREY","JENNEFER","JANETH","HALINA","FREDIA","DELISA","DEBROAH","CIERA","CHIN","ANGELIKA","ANDREE","ALTHA","YEN","VIVAN","TERRESA","TANNA","SUK","SUDIE","SOO","SIGNE","SALENA","RONNI","REBBECCA","MYRTIE","MCKENZIE","MALIKA","MAIDA","LOAN","LEONARDA","KAYLEIGH","FRANCE","ETHYL","ELLYN","DAYLE","CAMMIE","BRITTNI","BIRGIT","AVELINA","ASUNCION","ARIANNA","AKIKO","VENICE","TYESHA","TONIE","TIESHA","TAKISHA","STEFFANIE","SINDY","SANTANA","MEGHANN","MANDA","MACIE","LADY","KELLYE","KELLEE","JOSLYN","JASON","INGER","INDIRA","GLINDA","GLENNIS","FERNANDA","FAUSTINA","ENEIDA","ELICIA","DOT","DIGNA","DELL","ARLETTA","ANDRE","WILLIA","TAMMARA","TABETHA","SHERRELL","SARI","REFUGIO","REBBECA","PAULETTA","NIEVES","NATOSHA","NAKITA","MAMMIE","KENISHA","KAZUKO","KASSIE","GARY","EARLEAN","DAPHINE","CORLISS","CLOTILDE","CAROLYNE","BERNETTA","AUGUSTINA","AUDREA","ANNIS","ANNABELL","YAN","TENNILLE","TAMICA","SELENE","SEAN","ROSANA","REGENIA","QIANA","MARKITA","MACY","LEEANNE","LAURINE","KYM","JESSENIA","JANITA","GEORGINE","GENIE","EMIKO","ELVIE","DEANDRA","DAGMAR","CORIE","COLLEN","CHERISH","ROMAINE","PORSHA","PEARLENE","MICHELINE","MERNA","MARGORIE","MARGARETTA","LORE","KENNETH","JENINE","HERMINA","FREDERICKA","ELKE","DRUSILLA","DORATHY","DIONE","DESIRE","CELENA","BRIGIDA","ANGELES","ALLEGRA","THEO","TAMEKIA","SYNTHIA","STEPHEN","SOOK","SLYVIA","ROSANN","REATHA","RAYE","MARQUETTA","MARGART","LING","LAYLA","KYMBERLY","KIANA","KAYLEEN","KATLYN","KARMEN","JOELLA","IRINA","EMELDA","ELENI","DETRA","CLEMMIE","CHERYLL","CHANTELL","CATHEY","ARNITA","ARLA","ANGLE","ANGELIC","ALYSE","ZOFIA","THOMASINE","TENNIE","SON","SHERLY","SHERLEY","SHARYL","REMEDIOS","PETRINA","NICKOLE","MYUNG","MYRLE","MOZELLA","LOUANNE","LISHA","LATIA","LANE","KRYSTA","JULIENNE","JOEL","JEANENE","JACQUALINE","ISAURA","GWENDA","EARLEEN","DONALD","CLEOPATRA","CARLIE","AUDIE","ANTONIETTA","ALISE","ALEX","VERDELL","VAL","TYLER","TOMOKO","THAO","TALISHA","STEVEN","SO","SHEMIKA","SHAUN","SCARLET","SAVANNA","SANTINA","ROSIA","RAEANN","ODILIA","NANA","MINNA","MAGAN","LYNELLE","LE","KARMA","JOEANN","IVANA","INELL","ILANA","HYE","HONEY","HEE","GUDRUN","FRANK","DREAMA","CRISSY","CHANTE","CARMELINA","ARVILLA","ARTHUR","ANNAMAE","ALVERA","ALEIDA","AARON","YEE","YANIRA","VANDA","TIANNA","TAM","STEFANIA","SHIRA","PERRY","NICOL","NANCIE","MONSERRATE","MINH","MELYNDA","MELANY","MATTHEW","LOVELLA","LAURE","KIRBY","KACY","JACQUELYNN","HYON","GERTHA","FRANCISCO","ELIANA","CHRISTENA","CHRISTEEN","CHARISE","CATERINA","CARLEY","CANDYCE","ARLENA","AMMIE","YANG","WILLETTE","VANITA","TUYET","TINY","SYREETA","SILVA","SCOTT","RONALD","PENNEY","NYLA","MICHAL","MAURICE","MARYAM","MARYA","MAGEN","LUDIE","LOMA","LIVIA","LANELL","KIMBERLIE","JULEE","DONETTA","DIEDRA","DENISHA","DEANE","DAWNE","CLARINE","CHERRYL","BRONWYN","BRANDON","ALLA","VALERY","TONDA","SUEANN","SORAYA","SHOSHANA","SHELA","SHARLEEN","SHANELLE","NERISSA","MICHEAL","MERIDITH","MELLIE","MAYE","MAPLE","MAGARET","LUIS","LILI","LEONILA","LEONIE","LEEANNA","LAVONIA","LAVERA","KRISTEL","KATHEY","KATHE","JUSTIN","JULIAN","JIMMY","JANN","ILDA","HILDRED","HILDEGARDE","GENIA","FUMIKO","EVELIN","ERMELINDA","ELLY","DUNG","DOLORIS","DIONNA","DANAE","BERNEICE","ANNICE","ALIX","VERENA","VERDIE","TRISTAN","SHAWNNA","SHAWANA","SHAUNNA","ROZELLA","RANDEE","RANAE","MILAGRO","LYNELL","LUISE","LOUIE","LOIDA","LISBETH","KARLEEN","JUNITA","JONA","ISIS","HYACINTH","HEDY","GWENN","ETHELENE","ERLINE","EDWARD","DONYA","DOMONIQUE","DELICIA","DANNETTE","CICELY","BRANDA","BLYTHE","BETHANN","ASHLYN","ANNALEE","ALLINE","YUKO","VELLA","TRANG","TOWANDA","TESHA","SHERLYN","NARCISA","MIGUELINA","MERI","MAYBELL","MARLANA","MARGUERITA","MADLYN","LUNA","LORY","LORIANN","LIBERTY","LEONORE","LEIGHANN","LAURICE","LATESHA","LARONDA","KATRICE","KASIE","KARL","KALEY","JADWIGA","GLENNIE","GEARLDINE","FRANCINA","EPIFANIA","DYAN","DORIE","DIEDRE","DENESE","DEMETRICE","DELENA","DARBY","CRISTIE","CLEORA","CATARINA","CARISA","BERNIE","BARBERA","ALMETA","TRULA","TEREASA","SOLANGE","SHEILAH","SHAVONNE","SANORA","ROCHELL","MATHILDE","MARGARETA","MAIA","LYNSEY","LAWANNA","LAUNA","KENA","KEENA","KATIA","JAMEY","GLYNDA","GAYLENE","ELVINA","ELANOR","DANUTA","DANIKA","CRISTEN","CORDIE","COLETTA","CLARITA","CARMON","BRYNN","AZUCENA","AUNDREA","ANGELE","YI","WALTER","VERLIE","VERLENE","TAMESHA","SILVANA","SEBRINA","SAMIRA","REDA","RAYLENE","PENNI","PANDORA","NORAH","NOMA","MIREILLE","MELISSIA","MARYALICE","LARAINE","KIMBERY","KARYL","KARINE","KAM","JOLANDA","JOHANA","JESUSA","JALEESA","JAE","JACQUELYNE","IRISH","ILUMINADA","HILARIA","HANH","GENNIE","FRANCIE","FLORETTA","EXIE","EDDA","DREMA","DELPHA","BEV","BARBAR","ASSUNTA","ARDELL","ANNALISA","ALISIA","YUKIKO","YOLANDO","WONDA","WEI","WALTRAUD","VETA","TEQUILA","TEMEKA","TAMEIKA","SHIRLEEN","SHENITA","PIEDAD","OZELLA","MIRTHA","MARILU","KIMIKO","JULIANE","JENICE","JEN","JANAY","JACQUILINE","HILDE","FE","FAE","EVAN","EUGENE","ELOIS","ECHO","DEVORAH","CHAU","BRINDA","BETSEY","ARMINDA","ARACELIS","APRYL","ANNETT","ALISHIA","VEOLA","USHA","TOSHIKO","THEOLA","TASHIA","TALITHA","SHERY","RUDY","RENETTA","REIKO","RASHEEDA","OMEGA","OBDULIA","MIKA","MELAINE","MEGGAN","MARTIN","MARLEN","MARGET","MARCELINE","MANA","MAGDALEN","LIBRADA","LEZLIE","LEXIE","LATASHIA","LASANDRA","KELLE","ISIDRA","ISA","INOCENCIA","GWYN","FRANCOISE","ERMINIA","ERINN","DIMPLE","DEVORA","CRISELDA","ARMANDA","ARIE","ARIANE","ANGELO","ANGELENA","ALLEN","ALIZA","ADRIENE","ADALINE","XOCHITL","TWANNA","TRAN","TOMIKO","TAMISHA","TAISHA","SUSY","SIU","RUTHA","ROXY","RHONA","RAYMOND","OTHA","NORIKO","NATASHIA","MERRIE","MELVIN","MARINDA","MARIKO","MARGERT","LORIS","LIZZETTE","LEISHA","KAILA","KA","JOANNIE","JERRICA","JENE","JANNET","JANEE","JACINDA","HERTA","ELENORE","DORETTA","DELAINE","DANIELL","CLAUDIE","CHINA","BRITTA","APOLONIA","AMBERLY","ALEASE","YURI","YUK","WEN","WANETA","UTE","TOMI","SHARRI","SANDIE","ROSELLE","REYNALDA","RAGUEL","PHYLICIA","PATRIA","OLIMPIA","ODELIA","MITZIE","MITCHELL","MISS","MINDA","MIGNON","MICA","MENDY","MARIVEL","MAILE","LYNETTA","LAVETTE","LAURYN","LATRISHA","LAKIESHA","KIERSTEN","KARY","JOSPHINE","JOLYN","JETTA","JANISE","JACQUIE","IVELISSE","GLYNIS","GIANNA","GAYNELLE","EMERALD","DEMETRIUS","DANYELL","DANILLE","DACIA","CORALEE","CHER","CEOLA","BRETT","BELL","ARIANNE","ALESHIA","YUNG","WILLIEMAE","TROY","TRINH","THORA","TAI","SVETLANA","SHERIKA","SHEMEKA","SHAUNDA","ROSELINE","RICKI","MELDA","MALLIE","LAVONNA","LATINA","LARRY","LAQUANDA","LALA","LACHELLE","KLARA","KANDIS","JOHNA","JEANMARIE","JAYE","HANG","GRAYCE","GERTUDE","EMERITA","EBONIE","CLORINDA","CHING","CHERY","CAROLA","BREANN","BLOSSOM","BERNARDINE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA","YON","YESSENIA","TOBI","TASIA","SYLVIE","SHIRL","SHIRELY","SHERIDAN","SHELLA","SHANTELLE","SACHA","ROYCE","REBECKA","REAGAN","PROVIDENCIA","PAULENE","MISHA","MIKI","MARLINE","MARICA","LORITA","LATOYIA","LASONYA","KERSTIN","KENDA","KEITHA","KATHRIN","JAYMIE","JACK","GRICELDA","GINETTE","ERYN","ELINA","ELFRIEDA","DANYEL","CHEREE","CHANELLE","BARRIE","AVERY","AURORE","ANNAMARIA","ALLEEN","AILENE","AIDE","YASMINE","VASHTI","VALENTINE","TREASA","TORY","TIFFANEY","SHERYLL","SHARIE","SHANAE","SAU","RAISA","PA","NEDA","MITSUKO","MIRELLA","MILDA","MARYANNA","MARAGRET","MABELLE","LUETTA","LORINA","LETISHA","LATARSHA","LANELLE","LAJUANA","KRISSY","KARLY","KARENA","JON","JESSIKA","JERICA","JEANELLE","JANUARY","JALISA","JACELYN","IZOLA","IVEY","GREGORY","EUNA","ETHA","DREW","DOMITILA","DOMINICA","DAINA","CREOLA","CARLI","CAMIE","BUNNY","BRITTNY","ASHANTI","ANISHA","ALEEN","ADAH","YASUKO","WINTER","VIKI","VALRIE","TONA","TINISHA","THI","TERISA","TATUM","TANEKA","SIMONNE","SHALANDA","SERITA","RESSIE","REFUGIA","PAZ","OLENE","NA","MERRILL","MARGHERITA","MANDIE","MAN","MAIRE","LYNDIA","LUCI","LORRIANE","LORETA","LEONIA","LAVONA","LASHAWNDA","LAKIA","KYOKO","KRYSTINA","KRYSTEN","KENIA","KELSI","JUDE","JEANICE","ISOBEL","GEORGIANN","GENNY","FELICIDAD","EILENE","DEON","DELOISE","DEEDEE","DANNIE","CONCEPTION","CLORA","CHERILYN","CHANG","CALANDRA","BERRY","ARMANDINA","ANISA","ULA","TIMOTHY","TIERA","THERESSA","STEPHANIA","SIMA","SHYLA","SHONTA","SHERA","SHAQUITA","SHALA","SAMMY","ROSSANA","NOHEMI","NERY","MORIAH","MELITA","MELIDA","MELANI","MARYLYNN","MARISHA","MARIETTE","MALORIE","MADELENE","LUDIVINA","LORIA","LORETTE","LORALEE","LIANNE","LEON","LAVENIA","LAURINDA","LASHON","KIT","KIMI","KEILA","KATELYNN","KAI","JONE","JOANE","JI","JAYNA","JANELLA","JA","HUE","HERTHA","FRANCENE","ELINORE","DESPINA","DELSIE","DEEDRA","CLEMENCIA","CARRY","CAROLIN","CARLOS","BULAH","BRITTANIE","BOK","BLONDELL","BIBI","BEAULAH","BEATA","ANNITA","AGRIPINA","VIRGEN","VALENE","UN","TWANDA","TOMMYE","TOI","TARRA","TARI","TAMMERA","SHAKIA","SADYE","RUTHANNE","ROCHEL","RIVKA","PURA","NENITA","NATISHA","MING","MERRILEE","MELODEE","MARVIS","LUCILLA","LEENA","LAVETA","LARITA","LANIE","KEREN","ILEEN","GEORGEANN","GENNA","GENESIS","FRIDA","EWA","EUFEMIA","EMELY","ELA","EDYTH","DEONNA","DEADRA","DARLENA","CHANELL","CHAN","CATHERN","CASSONDRA","CASSAUNDRA","BERNARDA","BERNA","ARLINDA","ANAMARIA","ALBERT","WESLEY","VERTIE","VALERI","TORRI","TATYANA","STASIA","SHERISE","SHERILL","SEASON","SCOTTIE","SANDA","RUTHE","ROSY","ROBERTO","ROBBI","RANEE","QUYEN","PEARLY","PALMIRA","ONITA","NISHA","NIESHA","NIDA","NEVADA","NAM","MERLYN","MAYOLA","MARYLOUISE","MARYLAND","MARX","MARTH","MARGENE","MADELAINE","LONDA","LEONTINE","LEOMA","LEIA","LAWRENCE","LAURALEE","LANORA","LAKITA","KIYOKO","KETURAH","KATELIN","KAREEN","JONIE","JOHNETTE","JENEE","JEANETT","IZETTA","HIEDI","HEIKE","HASSIE","HAROLD","GIUSEPPINA","GEORGANN","FIDELA","FERNANDE","ELWANDA","ELLAMAE","ELIZ","DUSTI","DOTTY","CYNDY","CORALIE","CELESTA","ARGENTINA","ALVERTA","XENIA","WAVA","VANETTA","TORRIE","TASHINA","TANDY","TAMBRA","TAMA","STEPANIE","SHILA","SHAUNTA","SHARAN","SHANIQUA","SHAE","SETSUKO","SERAFINA","SANDEE","ROSAMARIA","PRISCILA","OLINDA","NADENE","MUOI","MICHELINA","MERCEDEZ","MARYROSE","MARIN","MARCENE","MAO","MAGALI","MAFALDA","LOGAN","LINN","LANNIE","KAYCE","KAROLINE","KAMILAH","KAMALA","JUSTA","JOLINE","JENNINE","JACQUETTA","IRAIDA","GERALD","GEORGEANNA","FRANCHESCA","FAIRY","EMELINE","ELANE","EHTEL","EARLIE","DULCIE","DALENE","CRIS","CLASSIE","CHERE","CHARIS","CAROYLN","CARMINA","CARITA","BRIAN","BETHANIE","AYAKO","ARICA","AN","ALYSA","ALESSANDRA","AKILAH","ADRIEN","ZETTA","YOULANDA","YELENA","YAHAIRA","XUAN","WENDOLYN","VICTOR","TIJUANA","TERRELL","TERINA","TERESIA","SUZI","SUNDAY","SHERELL","SHAVONDA","SHAUNTE","SHARDA","SHAKITA","SENA","RYANN","RUBI","RIVA","REGINIA","REA","RACHAL","PARTHENIA","PAMULA","MONNIE","MONET","MICHAELE","MELIA","MARINE","MALKA","MAISHA","LISANDRA","LEO","LEKISHA","LEAN","LAURENCE","LAKENDRA","KRYSTIN","KORTNEY","KIZZIE","KITTIE","KERA","KENDAL","KEMBERLY","KANISHA","JULENE","JULE","JOSHUA","JOHANNE","JEFFREY","JAMEE","HAN","HALLEY","GIDGET","GALINA","FREDRICKA","FLETA","FATIMAH","EUSEBIA","ELZA","ELEONORE","DORTHEY","DORIA","DONELLA","DINORAH","DELORSE","CLARETHA","CHRISTINIA","CHARLYN","BONG","BELKIS","AZZIE","ANDERA","AIKO","ADENA","YER","YAJAIRA","WAN","VANIA","ULRIKE","TOSHIA","TIFANY","STEFANY","SHIZUE","SHENIKA","SHAWANNA","SHAROLYN","SHARILYN","SHAQUANA","SHANTAY","SEE","ROZANNE","ROSELEE","RICKIE","REMONA","REANNA","RAELENE","QUINN","PHUNG","PETRONILA","NATACHA","NANCEY","MYRL","MIYOKO","MIESHA","MERIDETH","MARVELLA","MARQUITTA","MARHTA","MARCHELLE","LIZETH","LIBBIE","LAHOMA","LADAWN","KINA","KATHELEEN","KATHARYN","KARISA","KALEIGH","JUNIE","JULIEANN","JOHNSIE","JANEAN","JAIMEE","JACKQUELINE","HISAKO","HERMA","HELAINE","GWYNETH","GLENN","GITA","EUSTOLIA","EMELINA","ELIN","EDRIS","DONNETTE","DONNETTA","DIERDRE","DENAE","DARCEL","CLAUDE","CLARISA","CINDERELLA","CHIA","CHARLESETTA","CHARITA","CELSA","CASSY","CASSI","CARLEE","BRUNA","BRITTANEY","BRANDE","BILLI","BAO","ANTONETTA","ANGLA","ANGELYN","ANALISA","ALANE","WENONA","WENDIE","VERONIQUE","VANNESA","TOBIE","TEMPIE","SUMIKO","SULEMA","SPARKLE","SOMER","SHEBA","SHAYNE","SHARICE","SHANEL","SHALON","SAGE","ROY","ROSIO","ROSELIA","RENAY","REMA","REENA","PORSCHE","PING","PEG","OZIE","ORETHA","ORALEE","ODA","NU","NGAN","NAKESHA","MILLY","MARYBELLE","MARLIN","MARIS","MARGRETT","MARAGARET","MANIE","LURLENE","LILLIA","LIESELOTTE","LAVELLE","LASHAUNDA","LAKEESHA","KEITH","KAYCEE","KALYN","JOYA","JOETTE","JENAE","JANIECE","ILLA","GRISEL","GLAYDS","GENEVIE","GALA","FREDDA","FRED","ELMER","ELEONOR","DEBERA","DEANDREA","DAN","CORRINNE","CORDIA","CONTESSA","COLENE","CLEOTILDE","CHARLOTT","CHANTAY","CECILLE","BEATRIS","AZALEE","ARLEAN","ARDATH","ANJELICA","ANJA","ALFREDIA","ALEISHA","ADAM","ZADA","YUONNE","XIAO","WILLODEAN","WHITLEY","VENNIE","VANNA","TYISHA","TOVA","TORIE","TONISHA","TILDA","TIEN","TEMPLE","SIRENA","SHERRIL","SHANTI","SHAN","SENAIDA","SAMELLA","ROBBYN","RENDA","REITA","PHEBE","PAULITA","NOBUKO","NGUYET","NEOMI","MOON","MIKAELA","MELANIA","MAXIMINA","MARG","MAISIE","LYNNA","LILLI","LAYNE","LASHAUN","LAKENYA","LAEL","KIRSTIE","KATHLINE","KASHA","KARLYN","KARIMA","JOVAN","JOSEFINE","JENNELL","JACQUI","JACKELYN","HYO","HIEN","GRAZYNA","FLORRIE","FLORIA","ELEONORA","DWANA","DORLA","DONG","DELMY","DEJA","DEDE","DANN","CRYSTA","CLELIA","CLARIS","CLARENCE","CHIEKO","CHERLYN","CHERELLE","CHARMAIN","CHARA","CAMMY","BEE","ARNETTE","ARDELLE","ANNIKA","AMIEE","AMEE","ALLENA","YVONE","YUKI","YOSHIE","YEVETTE","YAEL","WILLETTA","VONCILE","VENETTA","TULA","TONETTE","TIMIKA","TEMIKA","TELMA","TEISHA","TAREN","TA","STACEE","SHIN","SHAWNTA","SATURNINA","RICARDA","POK","PASTY","ONIE","NUBIA","MORA","MIKE","MARIELLE","MARIELLA","MARIANELA","MARDELL","MANY","LUANNA","LOISE","LISABETH","LINDSY","LILLIANA","LILLIAM","LELAH","LEIGHA","LEANORA","LANG","KRISTEEN","KHALILAH","KEELEY","KANDRA","JUNKO","JOAQUINA","JERLENE","JANI","JAMIKA","JAME","HSIU","HERMILA","GOLDEN","GENEVIVE","EVIA","EUGENA","EMMALINE","ELFREDA","ELENE","DONETTE","DELCIE","DEEANNA","DARCEY","CUC","CLARINDA","CIRA","CHAE","CELINDA","CATHERYN","CATHERIN","CASIMIRA","CARMELIA","CAMELLIA","BREANA","BOBETTE","BERNARDINA","BEBE","BASILIA","ARLYNE","AMAL","ALAYNA","ZONIA","ZENIA","YURIKO","YAEKO","WYNELL","WILLOW","WILLENA","VERNIA","TU","TRAVIS","TORA","TERRILYN","TERICA","TENESHA","TAWNA","TAJUANA","TAINA","STEPHNIE","SONA","SOL","SINA","SHONDRA","SHIZUKO","SHERLENE","SHERICE","SHARIKA","ROSSIE","ROSENA","RORY","RIMA","RIA","RHEBA","RENNA","PETER","NATALYA","NANCEE","MELODI","MEDA","MAXIMA","MATHA","MARKETTA","MARICRUZ","MARCELENE","MALVINA","LUBA","LOUETTA","LEIDA","LECIA","LAURAN","LASHAWNA","LAINE","KHADIJAH","KATERINE","KASI","KALLIE","JULIETTA","JESUSITA","JESTINE","JESSIA","JEREMY","JEFFIE","JANYCE","ISADORA","GEORGIANNE","FIDELIA","EVITA","EURA","EULAH","ESTEFANA","ELSY","ELIZABET","ELADIA","DODIE","DION","DIA","DENISSE","DELORAS","DELILA","DAYSI","DAKOTA","CURTIS","CRYSTLE","CONCHA","COLBY","CLARETTA","CHU","CHRISTIA","CHARLSIE","CHARLENA","CARYLON","BETTYANN","ASLEY","ASHLEA","AMIRA","AI","AGUEDA","AGNUS","YUETTE","VINITA","VICTORINA","TYNISHA","TREENA","TOCCARA","TISH","THOMASENA","TEGAN","SOILA","SHILOH","SHENNA","SHARMAINE","SHANTAE","SHANDI","SEPTEMBER","SARAN","SARAI","SANA","SAMUEL","SALLEY","ROSETTE","ROLANDE","REGINE","OTELIA","OSCAR","OLEVIA","NICHOLLE","NECOLE","NAIDA","MYRTA","MYESHA","MITSUE","MINTA","MERTIE","MARGY","MAHALIA","MADALENE","LOVE","LOURA","LOREAN","LEWIS","LESHA","LEONIDA","LENITA","LAVONE","LASHELL","LASHANDRA","LAMONICA","KIMBRA","KATHERINA","KARRY","KANESHA","JULIO","JONG","JENEVA","JAQUELYN","HWA","GILMA","GHISLAINE","GERTRUDIS","FRANSISCA","FERMINA","ETTIE","ETSUKO","ELLIS","ELLAN","ELIDIA","EDRA","DORETHEA","DOREATHA","DENYSE","DENNY","DEETTA","DAINE","CYRSTAL","CORRIN","CAYLA","CARLITA","CAMILA","BURMA","BULA","BUENA","BLAKE","BARABARA","AVRIL","AUSTIN","ALAINE","ZANA","WILHEMINA","WANETTA","VIRGIL","VI","VERONIKA","VERNON","VERLINE","VASILIKI","TONITA","TISA","TEOFILA","TAYNA","TAUNYA","TANDRA","TAKAKO","SUNNI","SUANNE","SIXTA","SHARELL","SEEMA","RUSSELL","ROSENDA","ROBENA","RAYMONDE","PEI","PAMILA","OZELL","NEIDA","NEELY","MISTIE","MICHA","MERISSA","MAURITA","MARYLN","MARYETTA","MARSHALL","MARCELL","MALENA","MAKEDA","MADDIE","LOVETTA","LOURIE","LORRINE","LORILEE","LESTER","LAURENA","LASHAY","LARRAINE","LAREE","LACRESHA","KRISTLE","KRISHNA","KEVA","KEIRA","KAROLE","JOIE","JINNY","JEANNETTA","JAMA","HEIDY","GILBERTE","GEMA","FAVIOLA","EVELYNN","ENDA","ELLI","ELLENA","DIVINA","DAGNY","COLLENE","CODI","CINDIE","CHASSIDY","CHASIDY","CATRICE","CATHERINA","CASSEY","CAROLL","CARLENA","CANDRA","CALISTA","BRYANNA","BRITTENY","BEULA","BARI","AUDRIE","AUDRIA","ARDELIA","ANNELLE","ANGILA","ALONA","ALLYN","DOUGLAS","ROGER","JONATHAN","RALPH","NICHOLAS","BENJAMIN","BRUCE","HARRY","WAYNE","STEVE","HOWARD","ERNEST","PHILLIP","TODD","CRAIG","ALAN","PHILIP","EARL","DANNY","BRYAN","STANLEY","LEONARD","NATHAN","MANUEL","RODNEY","MARVIN","VINCENT","JEFFERY","JEFF","CHAD","JACOB","ALFRED","BRADLEY","HERBERT","FREDERICK","EDWIN","DON","RICKY","RANDALL","BARRY","BERNARD","LEROY","MARCUS","THEODORE","CLIFFORD","MIGUEL","JIM","TOM","CALVIN","BILL","LLOYD","DEREK","WARREN","DARRELL","JEROME","FLOYD","ALVIN","TIM","GORDON","GREG","JORGE","DUSTIN","PEDRO","DERRICK","ZACHARY","HERMAN","GLEN","HECTOR","RICARDO","RICK","BRENT","RAMON","GILBERT","MARC","REGINALD","RUBEN","NATHANIEL","RAFAEL","EDGAR","MILTON","RAUL","BEN","CHESTER","DUANE","FRANKLIN","BRAD","RON","ROLAND","ARNOLD","HARVEY","JARED","ERIK","DARRYL","NEIL","JAVIER","FERNANDO","CLINTON","TED","MATHEW","TYRONE","DARREN","LANCE","KURT","ALLAN","NELSON","GUY","CLAYTON","HUGH","MAX","DWAYNE","DWIGHT","ARMANDO","FELIX","EVERETT","IAN","WALLACE","KEN","BOB","ALFREDO","ALBERTO","DAVE","IVAN","BYRON","ISAAC","MORRIS","CLIFTON","WILLARD","ROSS","ANDY","SALVADOR","KIRK","SERGIO","SETH","KENT","TERRANCE","EDUARDO","TERRENCE","ENRIQUE","WADE","STUART","FREDRICK","ARTURO","ALEJANDRO","NICK","LUTHER","WENDELL","JEREMIAH","JULIUS","OTIS","TREVOR","OLIVER","LUKE","HOMER","GERARD","DOUG","KENNY","HUBERT","LYLE","MATT","ALFONSO","ORLANDO","REX","CARLTON","ERNESTO","NEAL","PABLO","LORENZO","OMAR","WILBUR","GRANT","HORACE","RODERICK","ABRAHAM","WILLIS","RICKEY","ANDRES","CESAR","JOHNATHAN","MALCOLM","RUDOLPH","DAMON","KELVIN","PRESTON","ALTON","ARCHIE","MARCO","WM","PETE","RANDOLPH","GARRY","GEOFFREY","JONATHON","FELIPE","GERARDO","ED","DOMINIC","DELBERT","COLIN","GUILLERMO","EARNEST","LUCAS","BENNY","SPENCER","RODOLFO","MYRON","EDMUND","GARRETT","SALVATORE","CEDRIC","LOWELL","GREGG","SHERMAN","WILSON","SYLVESTER","ROOSEVELT","ISRAEL","JERMAINE","FORREST","WILBERT","LELAND","SIMON","CLARK","IRVING","BRYANT","OWEN","RUFUS","WOODROW","KRISTOPHER","MACK","LEVI","MARCOS","GUSTAVO","JAKE","LIONEL","GILBERTO","CLINT","NICOLAS","ISMAEL","ORVILLE","ERVIN","DEWEY","AL","WILFRED","JOSH","HUGO","IGNACIO","CALEB","TOMAS","SHELDON","ERICK","STEWART","DOYLE","DARREL","ROGELIO","TERENCE","SANTIAGO","ALONZO","ELIAS","BERT","ELBERT","RAMIRO","CONRAD","NOAH","GRADY","PHIL","CORNELIUS","LAMAR","ROLANDO","CLAY","PERCY","DEXTER","BRADFORD","DARIN","AMOS","MOSES","IRVIN","SAUL","ROMAN","RANDAL","TIMMY","DARRIN","WINSTON","BRENDAN","ABEL","DOMINICK","BOYD","EMILIO","ELIJAH","DOMINGO","EMMETT","MARLON","EMANUEL","JERALD","EDMOND","EMIL","DEWAYNE","WILL","OTTO","TEDDY","REYNALDO","BRET","JESS","TRENT","HUMBERTO","EMMANUEL","STEPHAN","VICENTE","LAMONT","GARLAND","MILES","EFRAIN","HEATH","RODGER","HARLEY","ETHAN","ELDON","ROCKY","PIERRE","JUNIOR","FREDDY","ELI","BRYCE","ANTOINE","STERLING","CHASE","GROVER","ELTON","CLEVELAND","DYLAN","CHUCK","DAMIAN","REUBEN","STAN","AUGUST","LEONARDO","JASPER","RUSSEL","ERWIN","BENITO","HANS","MONTE","BLAINE","ERNIE","CURT","QUENTIN","AGUSTIN","MURRAY","JAMAL","ADOLFO","HARRISON","TYSON","BURTON","BRADY","ELLIOTT","WILFREDO","BART","JARROD","VANCE","DENIS","DAMIEN","JOAQUIN","HARLAN","DESMOND","ELLIOT","DARWIN","GREGORIO","BUDDY","XAVIER","KERMIT","ROSCOE","ESTEBAN","ANTON","SOLOMON","SCOTTY","NORBERT","ELVIN","WILLIAMS","NOLAN","ROD","QUINTON","HAL","BRAIN","ROB","ELWOOD","KENDRICK","DARIUS","MOISES","FIDEL","THADDEUS","CLIFF","MARCEL","JACKSON","RAPHAEL","BRYON","ARMAND","ALVARO","JEFFRY","DANE","JOESPH","THURMAN","NED","RUSTY","MONTY","FABIAN","REGGIE","MASON","GRAHAM","ISAIAH","VAUGHN","GUS","LOYD","DIEGO","ADOLPH","NORRIS","MILLARD","ROCCO","GONZALO","DERICK","RODRIGO","WILEY","RIGOBERTO","ALPHONSO","TY","NOE","VERN","REED","JEFFERSON","ELVIS","BERNARDO","MAURICIO","HIRAM","DONOVAN","BASIL","RILEY","NICKOLAS","MAYNARD","SCOT","VINCE","QUINCY","EDDY","SEBASTIAN","FEDERICO","ULYSSES","HERIBERTO","DONNELL","COLE","DAVIS","GAVIN","EMERY","WARD","ROMEO","JAYSON","DANTE","CLEMENT","COY","MAXWELL","JARVIS","BRUNO","ISSAC","DUDLEY","BROCK","SANFORD","CARMELO","BARNEY","NESTOR","STEFAN","DONNY","ART","LINWOOD","BEAU","WELDON","GALEN","ISIDRO","TRUMAN","DELMAR","JOHNATHON","SILAS","FREDERIC","DICK","IRWIN","MERLIN","CHARLEY","MARCELINO","HARRIS","CARLO","TRENTON","KURTIS","HUNTER","AURELIO","WINFRED","VITO","COLLIN","DENVER","CARTER","LEONEL","EMORY","PASQUALE","MOHAMMAD","MARIANO","DANIAL","LANDON","DIRK","BRANDEN","ADAN","BUFORD","GERMAN","WILMER","EMERSON","ZACHERY","FLETCHER","JACQUES","ERROL","DALTON","MONROE","JOSUE","EDWARDO","BOOKER","WILFORD","SONNY","SHELTON","CARSON","THERON","RAYMUNDO","DAREN","HOUSTON","ROBBY","LINCOLN","GENARO","BENNETT","OCTAVIO","CORNELL","HUNG","ARRON","ANTONY","HERSCHEL","GIOVANNI","GARTH","CYRUS","CYRIL","RONNY","LON","FREEMAN","DUNCAN","KENNITH","CARMINE","ERICH","CHADWICK","WILBURN","RUSS","REID","MYLES","ANDERSON","MORTON","JONAS","FOREST","MITCHEL","MERVIN","ZANE","RICH","JAMEL","LAZARO","ALPHONSE","RANDELL","MAJOR","JARRETT","BROOKS","ABDUL","LUCIANO","SEYMOUR","EUGENIO","MOHAMMED","VALENTIN","CHANCE","ARNULFO","LUCIEN","FERDINAND","THAD","EZRA","ALDO","RUBIN","ROYAL","MITCH","EARLE","ABE","WYATT","MARQUIS","LANNY","KAREEM","JAMAR","BORIS","ISIAH","EMILE","ELMO","ARON","LEOPOLDO","EVERETTE","JOSEF","ELOY","RODRICK","REINALDO","LUCIO","JERROD","WESTON","HERSHEL","BARTON","PARKER","LEMUEL","BURT","JULES","GIL","ELISEO","AHMAD","NIGEL","EFREN","ANTWAN","ALDEN","MARGARITO","COLEMAN","DINO","OSVALDO","LES","DEANDRE","NORMAND","KIETH","TREY","NORBERTO","NAPOLEON","JEROLD","FRITZ","ROSENDO","MILFORD","CHRISTOPER","ALFONZO","LYMAN","JOSIAH","BRANT","WILTON","RICO","JAMAAL","DEWITT","BRENTON","OLIN","FOSTER","FAUSTINO","CLAUDIO","JUDSON","GINO","EDGARDO","ALEC","TANNER","JARRED","DONN","TAD","PRINCE","PORFIRIO","ODIS","LENARD","CHAUNCEY","TOD","MEL","MARCELO","KORY","AUGUSTUS","KEVEN","HILARIO","BUD","SAL","ORVAL","MAURO","ZACHARIAH","OLEN","ANIBAL","MILO","JED","DILLON","AMADO","NEWTON","LENNY","RICHIE","HORACIO","BRICE","MOHAMED","DELMER","DARIO","REYES","MAC","JONAH","JERROLD","ROBT","HANK","RUPERT","ROLLAND","KENTON","DAMION","ANTONE","WALDO","FREDRIC","BRADLY","KIP","BURL","WALKER","TYREE","JEFFEREY","AHMED","WILLY","STANFORD","OREN","NOBLE","MOSHE","MIKEL","ENOCH","BRENDON","QUINTIN","JAMISON","FLORENCIO","DARRICK","TOBIAS","HASSAN","GIUSEPPE","DEMARCUS","CLETUS","TYRELL","LYNDON","KEENAN","WERNER","GERALDO","COLUMBUS","CHET","BERTRAM","MARKUS","HUEY","HILTON","DWAIN","DONTE","TYRON","OMER","ISAIAS","HIPOLITO","FERMIN","ADALBERTO","BO","BARRETT","TEODORO","MCKINLEY","MAXIMO","GARFIELD","RALEIGH","LAWERENCE","ABRAM","RASHAD","KING","EMMITT","DARON","SAMUAL","MIQUEL","EUSEBIO","DOMENIC","DARRON","BUSTER","WILBER","RENATO","JC","HOYT","HAYWOOD","EZEKIEL","CHAS","FLORENTINO","ELROY","CLEMENTE","ARDEN","NEVILLE","EDISON","DESHAWN","NATHANIAL","JORDON","DANILO","CLAUD","SHERWOOD","RAYMON","RAYFORD","CRISTOBAL","AMBROSE","TITUS","HYMAN","FELTON","EZEQUIEL","ERASMO","STANTON","LONNY","LEN","IKE","MILAN","LINO","JAROD","HERB","ANDREAS","WALTON","RHETT","PALMER","DOUGLASS","CORDELL","OSWALDO","ELLSWORTH","VIRGILIO","TONEY","NATHANAEL","DEL","BENEDICT","MOSE","JOHNSON","ISREAL","GARRET","FAUSTO","ASA","ARLEN","ZACK","WARNER","MODESTO","FRANCESCO","MANUAL","GAYLORD","GASTON","FILIBERTO","DEANGELO","MICHALE","GRANVILLE","WES","MALIK","ZACKARY","TUAN","ELDRIDGE","CRISTOPHER","CORTEZ","ANTIONE","MALCOM","LONG","KOREY","JOSPEH","COLTON","WAYLON","VON","HOSEA","SHAD","SANTO","RUDOLF","ROLF","REY","RENALDO","MARCELLUS","LUCIUS","KRISTOFER","BOYCE","BENTON","HAYDEN","HARLAND","ARNOLDO","RUEBEN","LEANDRO","KRAIG","JERRELL","JEROMY","HOBERT","CEDRICK","ARLIE","WINFORD","WALLY","LUIGI","KENETH","JACINTO","GRAIG","FRANKLYN","EDMUNDO","SID","PORTER","LEIF","JERAMY","BUCK","WILLIAN","VINCENZO","SHON","LYNWOOD","JERE","HAI","ELDEN","DORSEY","DARELL","BRODERICK","ALONSO"] names.sort() print(names[937]) def wordScore(name): score = 0 for c in name: score += ord(c) - ord('A') + 1 return score total_score = 0 for i in range(len(names)): total_score += (wordScore(names[i]) * (i+1)) print(total_score) # 871198282
2,595
46,457
0.666388
2817ea9f93b3564d2899cd722a2895a06f379b9f
10,839
py
Python
sdks/python/apache_beam/io/external/xlang_kinesisio_it_test.py
jzju/beam
d9876ea6bdef22b959ded2c16751057a418468bb
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
5,279
2016-12-29T04:00:44.000Z
2022-03-31T22:56:45.000Z
sdks/python/apache_beam/io/external/xlang_kinesisio_it_test.py
jzju/beam
d9876ea6bdef22b959ded2c16751057a418468bb
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
14,149
2016-12-28T00:43:50.000Z
2022-03-31T23:50:22.000Z
sdks/python/apache_beam/io/external/xlang_kinesisio_it_test.py
damondouglas/beam
4774ac713f427fefb38114f661516faef26d8207
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
3,763
2016-12-29T04:06:10.000Z
2022-03-31T22:25:49.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Integration test for Python cross-language pipelines for Java KinesisIO. If you want to run the tests on localstack then run it just with pipeline options. To test it on a real AWS account you need to pass some additional params, e.g.: python setup.py nosetests \ --tests=apache_beam.io.external.xlang_kinesisio_it_test \ --test-pipeline-options=" --use_real_aws --aws_kinesis_stream=<STREAM_NAME> --aws_access_key=<AWS_ACCESS_KEY> --aws_secret_key=<AWS_SECRET_KEY> --aws_region=<AWS_REGION> --runner=FlinkRunner" """ # pytype: skip-file import argparse import logging import time import unittest import uuid import apache_beam as beam from apache_beam.io.kinesis import InitialPositionInStream from apache_beam.io.kinesis import ReadDataFromKinesis from apache_beam.io.kinesis import WatermarkPolicy from apache_beam.io.kinesis import WriteToKinesis from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import StandardOptions from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to # pylint: disable=wrong-import-order, wrong-import-position, ungrouped-imports try: import boto3 except ImportError: boto3 = None try: from testcontainers.core.container import DockerContainer except ImportError: DockerContainer = None # pylint: enable=wrong-import-order, wrong-import-position, ungrouped-imports LOCALSTACK_VERSION = '0.11.3' NUM_RECORDS = 10 MAX_READ_TIME = 5 * 60 * 1000 # 5min NOW_SECONDS = time.time() NOW_MILLIS = NOW_SECONDS * 1000 REQUEST_RECORDS_LIMIT = 1000 RECORD = b'record' + str(uuid.uuid4()).encode() @unittest.skipUnless(DockerContainer, 'testcontainers is not installed.') @unittest.skipUnless(boto3, 'boto3 is not installed.') @unittest.skipUnless( TestPipeline().get_pipeline_options().view_as(StandardOptions).runner, 'Do not run this test on precommit suites.') class CrossLanguageKinesisIOTest(unittest.TestCase): @unittest.skipUnless( TestPipeline().get_option('aws_kinesis_stream'), 'Cannot test on real aws without pipeline options provided') def test_kinesis_io_roundtrip(self): # TODO: enable this test for localstack once BEAM-10664 is resolved self.run_kinesis_write() self.run_kinesis_read() @unittest.skipIf( TestPipeline().get_option('aws_kinesis_stream'), 'Do not test on localstack when pipeline options were provided') def test_kinesis_write(self): # TODO: remove this test once BEAM-10664 is resolved self.run_kinesis_write() records = self.kinesis_helper.read_from_stream(self.aws_kinesis_stream) self.assertEqual( sorted(records), sorted([RECORD + str(i).encode() for i in range(NUM_RECORDS)])) def run_kinesis_write(self): with TestPipeline(options=PipelineOptions(self.pipeline_args)) as p: p.not_use_test_runner_api = True _ = ( p | 'Impulse' >> beam.Impulse() | 'Generate' >> beam.FlatMap(lambda x: range(NUM_RECORDS)) # pylint: disable=bad-option-value | 'Map to bytes' >> beam.Map(lambda x: RECORD + str(x).encode()).with_output_types(bytes) | 'WriteToKinesis' >> WriteToKinesis( stream_name=self.aws_kinesis_stream, aws_access_key=self.aws_access_key, aws_secret_key=self.aws_secret_key, region=self.aws_region, service_endpoint=self.aws_service_endpoint, verify_certificate=(not self.use_localstack), partition_key='1', producer_properties=self.producer_properties, )) def run_kinesis_read(self): records = [RECORD + str(i).encode() for i in range(NUM_RECORDS)] with TestPipeline(options=PipelineOptions(self.pipeline_args)) as p: result = ( p | 'ReadFromKinesis' >> ReadDataFromKinesis( stream_name=self.aws_kinesis_stream, aws_access_key=self.aws_access_key, aws_secret_key=self.aws_secret_key, region=self.aws_region, service_endpoint=self.aws_service_endpoint, verify_certificate=not self.use_localstack, max_num_records=NUM_RECORDS, max_read_time=MAX_READ_TIME, request_records_limit=REQUEST_RECORDS_LIMIT, watermark_policy=WatermarkPolicy.ARRIVAL_TIME, watermark_idle_duration_threshold=MAX_READ_TIME, initial_position_in_stream=InitialPositionInStream.AT_TIMESTAMP, initial_timestamp_in_stream=NOW_MILLIS, ).with_output_types(bytes)) assert_that(result, equal_to(records)) def set_localstack(self): self.localstack = DockerContainer('localstack/localstack:{}' .format(LOCALSTACK_VERSION))\ .with_env('SERVICES', 'kinesis')\ .with_env('KINESIS_PORT', '4568')\ .with_env('USE_SSL', 'true')\ .with_exposed_ports(4568)\ .with_volume_mapping('/var/run/docker.sock', '/var/run/docker.sock', 'rw') # Repeat if ReadTimeout is raised. for i in range(4): try: self.localstack.start() break except Exception as e: # pylint: disable=bare-except if i == 3: logging.error('Could not initialize localstack container') raise e self.aws_service_endpoint = 'https://{}:{}'.format( self.localstack.get_container_host_ip(), self.localstack.get_exposed_port('4568'), ) def setUp(self): parser = argparse.ArgumentParser() parser.add_argument( '--aws_kinesis_stream', default='beam_kinesis_xlang', help='Kinesis stream name', ) parser.add_argument( '--aws_access_key', default='accesskey', help=('Aws access key'), ) parser.add_argument( '--aws_secret_key', default='secretkey', help='Aws secret key', ) parser.add_argument( '--aws_region', default='us-east-1', help='Aws region', ) parser.add_argument( '--aws_service_endpoint', default=None, help='Url to external aws endpoint', ) parser.add_argument( '--use_real_aws', default=False, dest='use_real_aws', action='store_true', help='Flag whether to use real aws for the tests purpose', ) parser.add_argument( '--expansion_service', help='Url to externally launched expansion service.', ) pipeline = TestPipeline() argv = pipeline.get_full_options_as_args() known_args, self.pipeline_args = parser.parse_known_args(argv) self.aws_kinesis_stream = known_args.aws_kinesis_stream self.aws_access_key = known_args.aws_access_key self.aws_secret_key = known_args.aws_secret_key self.aws_region = known_args.aws_region self.aws_service_endpoint = known_args.aws_service_endpoint self.use_localstack = not known_args.use_real_aws self.expansion_service = known_args.expansion_service self.producer_properties = { 'CollectionMaxCount': str(NUM_RECORDS), 'ConnectTimeout': str(MAX_READ_TIME), } if self.use_localstack: self.set_localstack() self.kinesis_helper = KinesisHelper( self.aws_access_key, self.aws_secret_key, self.aws_region, self.aws_service_endpoint.replace('https', 'http') if self.aws_service_endpoint else None, ) if self.use_localstack: self.kinesis_helper.create_stream(self.aws_kinesis_stream) def tearDown(self): if self.use_localstack: self.kinesis_helper.delete_stream(self.aws_kinesis_stream) try: self.localstack.stop() except: # pylint: disable=bare-except logging.error('Could not stop the localstack container') class KinesisHelper: def __init__(self, access_key, secret_key, region, service_endpoint): self.kinesis_client = boto3.client( service_name='kinesis', region_name=region, endpoint_url=service_endpoint, aws_access_key_id=access_key, aws_secret_access_key=secret_key, ) def create_stream(self, stream_name): # localstack could not have initialized in the container yet so repeat retries = 10 for i in range(retries): try: self.kinesis_client.create_stream( StreamName=stream_name, ShardCount=1, ) time.sleep(2) break except: # pylint: disable=bare-except if i == retries - 1: logging.error('Could not create kinesis stream') raise # Wait for the stream to be active self.get_first_shard_id(stream_name) def delete_stream(self, stream_name): self.kinesis_client.delete_stream( StreamName=stream_name, EnforceConsumerDeletion=True, ) def get_first_shard_id(self, stream_name): retries = 10 stream = self.kinesis_client.describe_stream(StreamName=stream_name) for i in range(retries): if stream['StreamDescription']['StreamStatus'] == 'ACTIVE': break time.sleep(2) if i == retries - 1: logging.error('Could not initialize kinesis stream') raise stream = self.kinesis_client.describe_stream(StreamName=stream_name) return stream['StreamDescription']['Shards'][0]['ShardId'] def read_from_stream(self, stream_name): shard_id = self.get_first_shard_id(stream_name) shard_iterator = self.kinesis_client.get_shard_iterator( StreamName=stream_name, ShardId=shard_id, ShardIteratorType=InitialPositionInStream.AT_TIMESTAMP, Timestamp=str(NOW_SECONDS), ) result = self.kinesis_client.get_records( ShardIterator=shard_iterator['ShardIterator'], Limit=NUM_RECORDS, ) return [record['Data'] for record in result['Records']] if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
33.978056
104
0.69499
660646e541153b0568548f56a37ea99a055103d6
2,319
py
Python
tests/contrib/operators/test_redis_publish_operator.py
dyna-dot/airflow
02ef974e4b7c2a91b3074ddd8abcf4cd31d09e6f
[ "Apache-2.0" ]
2
2020-09-30T01:06:15.000Z
2021-08-07T09:16:21.000Z
tests/contrib/operators/test_redis_publish_operator.py
dyna-dot/airflow
02ef974e4b7c2a91b3074ddd8abcf4cd31d09e6f
[ "Apache-2.0" ]
22
2019-12-09T23:22:07.000Z
2021-05-12T23:15:40.000Z
tests/contrib/operators/test_redis_publish_operator.py
dyna-dot/airflow
02ef974e4b7c2a91b3074ddd8abcf4cd31d09e6f
[ "Apache-2.0" ]
5
2019-11-18T13:19:29.000Z
2020-03-25T13:20:29.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from airflow import DAG, configuration from airflow.contrib.operators.redis_publish_operator import RedisPublishOperator from airflow.contrib.hooks.redis_hook import RedisHook from airflow.utils import timezone from mock import MagicMock DEFAULT_DATE = timezone.datetime(2017, 1, 1) class TestRedisPublishOperator(unittest.TestCase): def setUp(self): configuration.load_test_config() args = { 'owner': 'airflow', 'start_date': DEFAULT_DATE } self.dag = DAG('test_redis_dag_id', default_args=args) self.mock_context = MagicMock() self.channel = 'test' def test_execute_hello(self): operator = RedisPublishOperator( task_id='test_task', dag=self.dag, message='hello', channel=self.channel, redis_conn_id='redis_default' ) hook = RedisHook(redis_conn_id='redis_default') pubsub = hook.get_conn().pubsub() pubsub.subscribe(self.channel) operator.execute(self.mock_context) context_calls = [] self.assertTrue(self.mock_context['ti'].method_calls == context_calls, "context calls should be same") message = pubsub.get_message() self.assertEquals(message['type'], 'subscribe') message = pubsub.get_message() self.assertEquals(message['type'], 'message') self.assertEquals(message['data'], b'hello') pubsub.unsubscribe(self.channel)
32.661972
110
0.693834
2c7db60ae54e81e174eaa430d9280b2be5e6a01f
108
py
Python
datafiles/__init__.py
sjml/synacor-challenge
b965e7c6330bcd3e4d4c9f6914720ecb67bbdf4f
[ "Unlicense" ]
null
null
null
datafiles/__init__.py
sjml/synacor-challenge
b965e7c6330bcd3e4d4c9f6914720ecb67bbdf4f
[ "Unlicense" ]
null
null
null
datafiles/__init__.py
sjml/synacor-challenge
b965e7c6330bcd3e4d4c9f6914720ecb67bbdf4f
[ "Unlicense" ]
null
null
null
def get(name): reader = __loader__.get_resource_reader(__name__) return reader.open_resource(name)
21.6
53
0.759259
be56834f99d37619308cab91f487b06d6dd4c6a8
1,202
py
Python
lib/ansiblelint/rules/SudoRule.py
eahlstrom/ansible-lint
abc946f378a3690a4cb06eb9a7e9d60fb46fb35d
[ "MIT" ]
1
2020-11-09T09:32:08.000Z
2020-11-09T09:32:08.000Z
lib/ansiblelint/rules/SudoRule.py
eahlstrom/ansible-lint
abc946f378a3690a4cb06eb9a7e9d60fb46fb35d
[ "MIT" ]
5
2020-02-26T20:10:50.000Z
2021-09-23T23:23:18.000Z
lib/ansiblelint/rules/SudoRule.py
eahlstrom/ansible-lint
abc946f378a3690a4cb06eb9a7e9d60fb46fb35d
[ "MIT" ]
2
2019-01-18T07:15:27.000Z
2019-01-18T08:04:45.000Z
from ansiblelint import AnsibleLintRule class SudoRule(AnsibleLintRule): id = '103' shortdesc = 'Deprecated sudo' description = 'Instead of ``sudo``/``sudo_user``, use ``become``/``become_user``.' severity = 'VERY_HIGH' tags = ['deprecated', 'ANSIBLE0008'] version_added = 'historic' def _check_value(self, play_frag): results = [] if isinstance(play_frag, dict): if 'sudo' in play_frag: results.append(({'sudo': play_frag['sudo']}, 'Deprecated sudo feature')) if 'sudo_user' in play_frag: results.append(({'sudo_user': play_frag['sudo_user']}, 'Deprecated sudo_user feature')) if 'tasks' in play_frag: output = self._check_value(play_frag['tasks']) if output: results += output if isinstance(play_frag, list): for item in play_frag: output = self._check_value(item) if output: results += output return results def matchplay(self, file, play): return self._check_value(play)
32.486486
86
0.542429
3815cd4e4f4b3c1afe5db340336f88e3d75868cc
2,250
py
Python
tx_salaries/utils/transformers/allen_isd.py
texastribune/tx_salaries
197d8da4e1783216830b8d0a5adb23c0200fd3e8
[ "Apache-2.0" ]
6
2016-05-18T05:53:44.000Z
2019-06-13T18:27:50.000Z
tx_salaries/utils/transformers/allen_isd.py
texastribune/tx_salaries
197d8da4e1783216830b8d0a5adb23c0200fd3e8
[ "Apache-2.0" ]
64
2015-02-13T18:29:04.000Z
2018-06-15T19:48:56.000Z
tx_salaries/utils/transformers/allen_isd.py
texastribune/tx_salaries
197d8da4e1783216830b8d0a5adb23c0200fd3e8
[ "Apache-2.0" ]
2
2015-05-08T19:22:12.000Z
2016-07-11T16:57:49.000Z
from . import base from . import mixins from .. import cleaver from datetime import date import string class TransformedRecord( mixins.GenericCompensationMixin, mixins.GenericDepartmentMixin, mixins.GenericIdentifierMixin, mixins.GenericJobTitleMixin, mixins.GenericPersonMixin, mixins.MembershipMixin, mixins.OrganizationMixin, mixins.PostMixin, mixins.RaceMixin, mixins.LinkMixin, base.BaseTransformedRecord): MAP = { 'full_name': 'Full Name', 'department': 'Position Building Desc', 'job_title': 'Position Group Desc', 'hire_date': 'Hire Date', 'compensation': 'Position Contract Amt', 'gender': 'Gender', 'race': 'Race Desc', 'employee_type': 'Position FTE' } ORGANIZATION_NAME = 'Allen ISD' ORGANIZATION_CLASSIFICATION = 'School District' compensation_type = 'FT' description = 'Position contract amount' DATE_PROVIDED = date(2018, 5, 1) URL = ('http://raw.texastribune.org.s3.amazonaws.com/' 'allen_isd/salaries/2018-04/request.xlsx') gender_map = {'Female': 'F', 'Male': 'M'} @property def is_valid(self): # Adjust to return False on invalid fields. For example: return self.full_name.strip() != '' @property def hire_date(self): raw_date = self.get_mapped_value('hire_date') return '-'.join([raw_date[-4:], raw_date[:2], raw_date[3:5]]) @property def compensation(self): return self.get_mapped_value('compensation').replace(',', '') @property def compensation_type(self): employee_type = self.get_mapped_value('employee_type') if float(employee_type) >= 1: return 'FT' return 'PT' @property def person(self): name = self.get_name() r = { 'family_name': name.last, 'given_name': name.first, 'additional_name': name.middle, 'name': unicode(name), 'gender': self.gender_map[self.gender.strip()] } return r def get_name(self): return cleaver.EmployeeNameCleaver( self.get_mapped_value('full_name')).parse() transform = base.transform_factory(TransformedRecord)
27.108434
71
0.632889
0725e45152165b81bc0c10ae77eedb66090b61e1
574
py
Python
examples/full-stack-example/api/todo-python-django/todos/migrations/__init__.py
riddopic/opta
25fa6435fdc7e2ea9c7963ed74100fffb0743063
[ "Apache-2.0" ]
null
null
null
examples/full-stack-example/api/todo-python-django/todos/migrations/__init__.py
riddopic/opta
25fa6435fdc7e2ea9c7963ed74100fffb0743063
[ "Apache-2.0" ]
null
null
null
examples/full-stack-example/api/todo-python-django/todos/migrations/__init__.py
riddopic/opta
25fa6435fdc7e2ea9c7963ed74100fffb0743063
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 BigBitBus # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
41
74
0.763066
1f4418c728158668491893f34af02eedbdfbf231
1,558
py
Python
megago/precompute_frequency_counts.py
MEGA-GO/Mega-GO
8921c1b220d24c53947c81b3c16b835f3e31f685
[ "MIT" ]
4
2021-03-05T14:56:38.000Z
2021-08-19T18:16:10.000Z
megago/precompute_frequency_counts.py
MEGA-GO/Mega-GO
8921c1b220d24c53947c81b3c16b835f3e31f685
[ "MIT" ]
14
2020-01-29T16:46:59.000Z
2020-06-12T10:11:25.000Z
megago/precompute_frequency_counts.py
MEGA-GO/Mega-Go
8921c1b220d24c53947c81b3c16b835f3e31f685
[ "MIT" ]
3
2021-03-09T11:01:31.000Z
2022-01-13T10:53:42.000Z
import json import os from goatools.anno.idtogos_reader import IdToGosReader from goatools.obo_parser import GODag from goatools.semantic import TermCounts from progress.bar import IncrementalBar from .constants import FREQUENCY_COUNTS_FILE_PATH, UNIPROT_ASSOCIATIONS_FILE_PATH, GO_DAG_FILE_PATH def _precompute_term_frequencies(): print("Start precomputations of term frequencies...") go_freq_dict = dict() go_dag = GODag(GO_DAG_FILE_PATH, prt=open(os.devnull, 'w')) associations = IdToGosReader(UNIPROT_ASSOCIATIONS_FILE_PATH, godag=go_dag).get_id2gos('all') term_counts = TermCounts(go_dag, associations) for i in go_dag.values(): go_freq_dict[i.id] = term_counts.get_count(i.id) for alt_id in i.alt_ids: go_freq_dict[alt_id] = term_counts.get_count(i.id) # write frequency dict to JSON file with open(FREQUENCY_COUNTS_FILE_PATH, 'w') as json_file: json.dump(go_freq_dict, json_file) def get_frequency_counts(): """ This function precomputes the term frequency counts if these are outdated or not present. If they are present and valid, it will directly return the frequency counts. Returns ------- A dictionary that maps each GO-term onto it's frequency counts. """ if not os.path.isfile(FREQUENCY_COUNTS_FILE_PATH): _precompute_term_frequencies() frequency_dict = json.load(open(FREQUENCY_COUNTS_FILE_PATH)) return frequency_dict if __name__ == "__main__": get_frequency_counts()
33.869565
122
0.725931
168c853fd2396c97b06e241eef5977c336152d83
781
py
Python
alembic/versions/20220322-2253_.py
marutoraman/fastapi-awesome-template
65613e2227e02633491f582625d9611af9235975
[ "MIT" ]
null
null
null
alembic/versions/20220322-2253_.py
marutoraman/fastapi-awesome-template
65613e2227e02633491f582625d9611af9235975
[ "MIT" ]
null
null
null
alembic/versions/20220322-2253_.py
marutoraman/fastapi-awesome-template
65613e2227e02633491f582625d9611af9235975
[ "MIT" ]
null
null
null
"""empty message Revision ID: 6d4151b10c3e Revises: 5d2779598260 Create Date: 2022-03-22 22:53:12.719557 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "6d4151b10c3e" down_revision = "5d2779598260" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column("jobs", sa.Column("deleted_at", sa.DateTime(), nullable=True)) op.add_column("users", sa.Column("deleted_at", sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("users", "deleted_at") op.drop_column("jobs", "deleted_at") # ### end Alembic commands ###
25.193548
81
0.691421
ab6b94ebba07c371af3a43adf5033efc0ed41135
8,089
py
Python
models/unet3d.py
DSciLab/TDDA
193e5dc26c5c0b291c6323e2607a6eb77b2e067e
[ "MIT" ]
null
null
null
models/unet3d.py
DSciLab/TDDA
193e5dc26c5c0b291c6323e2607a6eb77b2e067e
[ "MIT" ]
null
null
null
models/unet3d.py
DSciLab/TDDA
193e5dc26c5c0b291c6323e2607a6eb77b2e067e
[ "MIT" ]
null
null
null
import importlib import torch.nn as nn from .unet3d_part import DoubleConv, ExtResNetBlock, create_encoders, \ create_decoders from .utils import number_of_features_per_level class Abstract3DUNet(nn.Module): """ Base class for standard and residual UNet. Args: in_channels (int): number of input channels out_channels (int): number of output segmentation masks; Note that that the of out_channels might correspond to either different semantic classes or to different binary segmentation mask. It's up to the user of the class to interpret the out_channels and use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class) or BCEWithLogitsLoss (two-class) respectively) f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4 final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the final 1x1 convolution, otherwise apply nn.Softmax. MUST be True if nn.BCELoss (two-class) is used to train the model. MUST be False if nn.CrossEntropyLoss (multi-class) is used to train the model. basic_module: basic model for the encoder/decoder (DoubleConv, ExtResNetBlock, ....) layer_order (string): determines the order of layers in `SingleConv` module. e.g. 'crg' stands for Conv3d+ReLU+GroupNorm3d. See `SingleConv` for more info num_groups (int): number of groups for the GroupNorm num_levels (int): number of levels in the encoder/decoder path (applied only if f_maps is an int) is_segmentation (bool): if True (semantic segmentation problem) Sigmoid/Softmax normalization is applied after the final convolution; if False (regression problem) the normalization layer is skipped at the end testing (bool): if True (testing mode) the `final_activation` (if present, i.e. `is_segmentation=true`) will be applied as the last operation during the forward pass; if False the model is in training mode and the `final_activation` (even if present) won't be applied; default: False conv_kernel_size (int or tuple): size of the convolving kernel in the basic_module pool_kernel_size (int or tuple): the size of the window conv_padding (int or tuple): add zero-padding added to all three sides of the input """ def __init__(self, in_channels, out_channels, final_sigmoid, basic_module, f_maps=64, layer_order='gcr', num_groups=8, num_levels=4, is_segmentation=True, testing=False, conv_kernel_size=3, pool_kernel_size=2, conv_padding=1, **kwargs): super(Abstract3DUNet, self).__init__() self.testing = testing if isinstance(f_maps, int): f_maps = number_of_features_per_level(f_maps, num_levels=num_levels) assert isinstance(f_maps, list) or isinstance(f_maps, tuple) assert len(f_maps) > 1, "Required at least 2 levels in the U-Net" # create encoder path self.encoders = create_encoders(in_channels, f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, pool_kernel_size) # create decoder path self.decoders = create_decoders(f_maps, basic_module, conv_kernel_size, conv_padding, layer_order, num_groups, upsample=True) # in the last layer a 1×1 convolution reduces the number of output # channels to the number of labels self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1) if is_segmentation: # semantic segmentation problem if final_sigmoid: self.final_activation = nn.Sigmoid() else: self.final_activation = nn.Softmax(dim=1) else: # regression problem self.final_activation = None def forward(self, x): # encoder part encoders_features = [] for encoder in self.encoders: x = encoder(x) # reverse the encoder outputs to be aligned with the decoder encoders_features.insert(0, x) # remove the last encoder's output from the list # !!remember: it's the 1st in the list encoders_features = encoders_features[1:] # decoder part for decoder, encoder_features in zip(self.decoders, encoders_features): # pass the output from the corresponding encoder and the output # of the previous decoder x = decoder(encoder_features, x) x = self.final_conv(x) # apply final_activation (i.e. Sigmoid or Softmax) only during prediction. During training the network outputs # logits and it's up to the user to normalize it before visualising with tensorboard or computing validation metric if self.testing and self.final_activation is not None: x = self.final_activation(x) return x class UNet3D(Abstract3DUNet): """ 3DUnet model from `"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" <https://arxiv.org/pdf/1606.06650.pdf>`. Uses `DoubleConv` as a basic_module and nearest neighbor upsampling in the decoder """ # def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', # num_groups=8, num_levels=4, is_segmentation=True, conv_padding=1, **kwargs): def __init__(self, opt): super(UNet3D, self).__init__(in_channels=opt.image_chan, out_channels=opt.num_classes, final_sigmoid=opt.get('final_sigmoid', True), basic_module=DoubleConv, f_maps=opt.get('f_maps', 64), layer_order=opt.get('layer_order', 'gcr'), num_groups=opt.get('num_groups', 8), num_levels=opt.get('num_levels', 4), pool_kernel_size=tuple(opt.get('pool_kernel_size', [2, 2, 2])), is_segmentation=opt.get('is_segmentation', True), conv_padding=opt.get('conv_padding', 1)) class ResidualUNet3D(Abstract3DUNet): """ Residual 3DUnet model implementation based on https://arxiv.org/pdf/1706.00120.pdf. Uses ExtResNetBlock as a basic building block, summation joining instead of concatenation joining and transposed convolutions for upsampling (watch out for block artifacts). Since the model effectively becomes a residual net, in theory it allows for deeper UNet. """ # def __init__(self, in_channels, out_channels, final_sigmoid=True, f_maps=64, layer_order='gcr', # num_groups=8, num_levels=5, is_segmentation=True, conv_padding=1, **kwargs): def __init__(self, opt): super(ResidualUNet3D, self).__init__(in_channels=opt.in_channels, out_channels=opt.num_classes, final_sigmoid=opt.get('final_sigmoid', True), basic_module=ExtResNetBlock, f_maps=opt.get('f_maps', 64), layer_order=opt.get('layer_order', 'gcr'), num_groups=opt.get('num_groups', 8), num_levels=opt.get('num_levels', 5), pool_kernel_size=tuple(opt.get('pool_kernel_size', [2, 2, 2])), is_segmentation=opt.get('is_segmentation', True), conv_padding=opt.get('conv_padding', 1))
52.869281
123
0.617629
8575961db0065271f1df6098396d77a99295fcb5
2,981
py
Python
selfdrive/sentry.py
powerscv1/openpilot
7290f5886db367a68c18ff64fad660b3a593bd96
[ "MIT" ]
2
2020-10-20T12:44:16.000Z
2020-11-17T16:21:54.000Z
selfdrive/sentry.py
powerscv1/openpilot
7290f5886db367a68c18ff64fad660b3a593bd96
[ "MIT" ]
1
2022-02-13T07:28:46.000Z
2022-02-13T07:40:59.000Z
selfdrive/sentry.py
powerscv1/openpilot
7290f5886db367a68c18ff64fad660b3a593bd96
[ "MIT" ]
1
2022-02-27T06:04:07.000Z
2022-02-27T06:04:07.000Z
"""Install exception handler for process crash.""" import os import traceback import sentry_sdk from enum import Enum from sentry_sdk.integrations.threading import ThreadingIntegration from common.params import Params from selfdrive.athena.registration import is_registered_device from selfdrive.hardware import HARDWARE, PC from selfdrive.swaglog import cloudlog from selfdrive.version import get_branch, get_commit, get_origin, get_version, \ is_comma_remote, is_dirty, is_tested_branch class SentryProject(Enum): # python project SELFDRIVE = "https://6f3c7076c1e14b2aa10f5dde6dda0cc4@o33823.ingest.sentry.io/77924" # native project SELFDRIVE_NATIVE = "https://3e4b586ed21a4479ad5d85083b639bc6@o33823.ingest.sentry.io/157615" def report_tombstone(fn: str, message: str, contents: str) -> None: cloudlog.error({'tombstone': message}) with sentry_sdk.configure_scope() as scope: scope.set_extra("tombstone_fn", fn) scope.set_extra("tombstone", contents) sentry_sdk.capture_message(message=message) sentry_sdk.flush() def capture_exception(*args, **kwargs) -> None: # opkr save_exception(traceback.format_exc()) cloudlog.error("crash", exc_info=kwargs.get('exc_info', 1)) try: sentry_sdk.capture_exception(*args, **kwargs) sentry_sdk.flush() # https://github.com/getsentry/sentry-python/issues/291 except Exception: cloudlog.exception("sentry exception") def set_tag(key: str, value: str) -> None: sentry_sdk.set_tag(key, value) # opkr def save_exception(exc_text): if not ("athenad.py" in exc_text or "mapd.py" in exc_text): # ignore athenad.py or mapd.py error if not os.path.exists('/data/log'): os.makedirs('/data/log') log_file = '/data/log/error.txt' with open(log_file, 'w') as f: f.write(exc_text) f.close() def init(project: SentryProject) -> None: # forks like to mess with this, so double check comma_remote = is_comma_remote() and "commaai" in get_origin(default="") if not comma_remote or not is_registered_device() or PC: return env = "release" if is_tested_branch() else "master" dongle_id = Params().get("DongleId", encoding='utf-8') integrations = [] if project == SentryProject.SELFDRIVE: integrations.append(ThreadingIntegration(propagate_hub=True)) else: sentry_sdk.utils.MAX_STRING_LENGTH = 8192 sentry_sdk.init(project.value, default_integrations=False, release=get_version(), integrations=integrations, traces_sample_rate=1.0, environment=env) sentry_sdk.set_user({"id": dongle_id}) sentry_sdk.set_tag("dirty", is_dirty()) sentry_sdk.set_tag("origin", get_origin()) sentry_sdk.set_tag("branch", get_branch()) sentry_sdk.set_tag("commit", get_commit()) sentry_sdk.set_tag("device", HARDWARE.get_device_type()) if project == SentryProject.SELFDRIVE: sentry_sdk.Hub.current.start_session()
33.122222
98
0.719222
5266bd11e7dd8915232c19158100191b25f30ae6
797
py
Python
Django-ArquivosEstaticos/Static/urls.py
DjCod3r/PythonScripts
95e70ebb81d2bc37b0283daff8ee723c5d2a382c
[ "MIT" ]
null
null
null
Django-ArquivosEstaticos/Static/urls.py
DjCod3r/PythonScripts
95e70ebb81d2bc37b0283daff8ee723c5d2a382c
[ "MIT" ]
null
null
null
Django-ArquivosEstaticos/Static/urls.py
DjCod3r/PythonScripts
95e70ebb81d2bc37b0283daff8ee723c5d2a382c
[ "MIT" ]
null
null
null
"""Static URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/4.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path , include urlpatterns = [ path('', include('paginas.urls')), path('admin/', admin.site.urls), ]
34.652174
77
0.70138
c750776ec9ca0fe9993a493b0650285a6b3f1ec3
3,742
py
Python
plugins/action/sg_to_vn_to_vlan_info.py
steinzi/ansible-ise
0add9c8858ed8e0e5e7219fbaf0c936b6d7cc6c0
[ "MIT" ]
null
null
null
plugins/action/sg_to_vn_to_vlan_info.py
steinzi/ansible-ise
0add9c8858ed8e0e5e7219fbaf0c936b6d7cc6c0
[ "MIT" ]
null
null
null
plugins/action/sg_to_vn_to_vlan_info.py
steinzi/ansible-ise
0add9c8858ed8e0e5e7219fbaf0c936b6d7cc6c0
[ "MIT" ]
null
null
null
from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.plugins.action import ActionBase try: from ansible_collections.ansible.utils.plugins.module_utils.common.argspec_validate import ( AnsibleArgSpecValidator, ) except ImportError: ANSIBLE_UTILS_IS_INSTALLED = False else: ANSIBLE_UTILS_IS_INSTALLED = True from ansible.errors import AnsibleActionFail from ansible_collections.cisco.ise.plugins.module_utils.ise import ( ISESDK, ise_argument_spec, ) # Get common arguements specification argument_spec = ise_argument_spec() # Add arguments specific for this module argument_spec.update(dict( id=dict(type="str"), page=dict(type="int"), size=dict(type="int"), filter=dict(type="list"), filterType=dict(type="str"), )) required_if = [] required_one_of = [] mutually_exclusive = [] required_together = [] class ActionModule(ActionBase): def __init__(self, *args, **kwargs): if not ANSIBLE_UTILS_IS_INSTALLED: raise AnsibleActionFail("ansible.utils is not installed. Execute 'ansible-galaxy collection install ansible.utils'") super(ActionModule, self).__init__(*args, **kwargs) self._supports_async = True self._result = None # Checks the supplied parameters against the argument spec for this module def _check_argspec(self): aav = AnsibleArgSpecValidator( data=self._task.args, schema=dict(argument_spec=argument_spec), schema_format="argspec", schema_conditionals=dict( required_if=required_if, required_one_of=required_one_of, mutually_exclusive=mutually_exclusive, required_together=required_together, ), name=self._task.action, ) valid, errors, self._task.args = aav.validate() if not valid: raise AnsibleActionFail(errors) def get_object(self, params): new_object = dict( id=params.get("id"), page=params.get("page"), size=params.get("size"), filter=params.get("filter"), filter_type=params.get("filterType"), ) return new_object def run(self, tmp=None, task_vars=None): self._task.diff = False self._result = super(ActionModule, self).run(tmp, task_vars) self._result["changed"] = False self._check_argspec() ise = ISESDK(params=self._task.args) id = self._task.args.get("id") name = self._task.args.get("name") if id: response = ise.exec( family="security_group_to_virtual_network", function='get_security_groups_to_vn_to_vlan_by_id', params=self.get_object(self._task.args) ).response['SgtVNVlanContainer'] self._result.update(dict(ise_response=response)) self._result.update(ise.exit_json()) return self._result if not name and not id: response = [] generator = ise.exec( family="security_group_to_virtual_network", function='get_security_groups_to_vn_to_vlan_generator', params=self.get_object(self._task.args), ) for item in generator: tmp_response = item.response['SearchResult']['resources'] if isinstance(tmp_response, list): response += tmp_response else: response.append(tmp_response) self._result.update(dict(ise_response=response)) self._result.update(ise.exit_json()) return self._result
35.301887
128
0.632015
c961983efd65b76f091dd18dbab2af3269c7b66a
8,359
py
Python
decoder.py
PRRAG/DeepSpeech-PyTorch
cc65e008dacce794309b55bc4d3d75e909731b56
[ "MIT" ]
1
2020-05-31T13:41:44.000Z
2020-05-31T13:41:44.000Z
decoder.py
PRRAG/DeepSpeech-PyTorch
cc65e008dacce794309b55bc4d3d75e909731b56
[ "MIT" ]
null
null
null
decoder.py
PRRAG/DeepSpeech-PyTorch
cc65e008dacce794309b55bc4d3d75e909731b56
[ "MIT" ]
null
null
null
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright 2015-2016 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- # Modified to support pytorch Tensors """ This file contains different decoder classes for decoding the output after training """ import Levenshtein as Lev import torch from six.moves import xrange class Decoder(object): """ Basic decoder class from which all other decoders inherit. Implements several helper functions. Subclasses should implement the decode() method. Arguments: labels (string): mapping from integers to characters. blank_index (int, optional): index for the blank '_' character. Defaults to 0. space_index (int, optional): index for the space ' ' character. Defaults to 28. """ def __init__(self, labels, blank_index=0): # e.g. labels = "_'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrs' '#" self.labels = labels self.int_to_char = dict([(i, c) for (i, c) in enumerate(labels)]) self.blank_index = blank_index space_index = len(labels) # To prevent errors in decode, we add an out of bounds index for the space if ' ' in labels: space_index = labels.index(' ') self.space_index = space_index def wer(self, s1, s2): """ Computes the Word Error Rate, defined as the edit distance between the two provided sentences after tokenizing to words. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ # build mapping of words to integers b = set(s1.split() + s2.split()) word2char = dict(zip(b, range(len(b)))) # map the words to a char array (Levenshtein packages only accepts # strings) w1 = [chr(word2char[w]) for w in s1.split()] w2 = [chr(word2char[w]) for w in s2.split()] return Lev.distance(''.join(w1), ''.join(w2)) def cer(self, s1, s2): """ Computes the Character Error Rate, defined as the edit distance. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ s1, s2, = s1.replace(' ', ''), s2.replace(' ', '') return Lev.distance(s1, s2) def decode(self, probs, sizes=None): """ Given a matrix of character probabilities, returns the decoder's best guess of the transcription Arguments: probs: Tensor of character probabilities, where probs[c,t] is the probability of character c at time t sizes(optional): Size of each sequence in the mini-batch Returns: string: sequence of the model's best guess for the transcription """ raise NotImplementedError class BeamCTCDecoder(Decoder): def __init__(self, labels, lm_path=None, alpha=0, beta=0, cutoff_top_n=40, cutoff_prob=1.0, beam_width=100, num_processes=4, blank_index=0): super(BeamCTCDecoder, self).__init__(labels) try: from ctcdecode import CTCBeamDecoder except ImportError: raise ImportError("BeamCTCDecoder requires paddledecoder package.") self._decoder = CTCBeamDecoder(labels, lm_path, alpha, beta, cutoff_top_n, cutoff_prob, beam_width, num_processes, blank_index) ## convert output integer to corresponding strings def convert_to_strings(self, out, seq_len): results = [] for b, batch in enumerate(out): utterances = [] for p, utt in enumerate(batch): size = seq_len[b][p] if size > 0: transcript = ''.join(map(lambda x: self.int_to_char[x.item()], utt[0:size])) else: transcript = '' utterances.append(transcript) results.append(utterances) return results def convert_tensor(self, offsets, sizes): results = [] for b, batch in enumerate(offsets): utterances = [] for p, utt in enumerate(batch): size = sizes[b][p] if sizes[b][p] > 0: utterances.append(utt[0:size]) else: utterances.append(torch.tensor([], dtype=torch.int)) results.append(utterances) return results def decode(self, probs, sizes=None): """ Decodes probability output using ctcdecode package. Arguments: probs: Tensor of character probabilities, where probs[c,t] is the probability of character c at time t sizes: Size of each sequence in the mini-batch Returns: string: sequences of the model's best guess for the transcription """ probs = probs.cpu() out, scores, offsets, seq_lens = self._decoder.decode(probs, sizes) strings = self.convert_to_strings(out, seq_lens) offsets = self.convert_tensor(offsets, seq_lens) return strings, offsets class GreedyDecoder(Decoder): def __init__(self, labels, blank_index=0): super(GreedyDecoder, self).__init__(labels, blank_index) """ This decoder takes the highest-likelihood output label """ def convert_to_strings(self, sequences, sizes=None, remove_repetitions=False, return_offsets=False): """Given a list of numeric sequences, returns the corresponding strings""" strings = [] offsets = [] if return_offsets else None for x in xrange(len(sequences)): seq_len = sizes[x] if sizes is not None else len(sequences[x]) string, string_offsets = self.process_string(sequences[x], seq_len, remove_repetitions) strings.append([string]) # We only return one path if return_offsets: offsets.append([string_offsets]) if return_offsets: return strings, offsets else: return strings def process_string(self,sequence, size, remove_repetitions=False): string = '' offsets = [] for i in range(size): char = self.int_to_char[sequence[i].item()] if char != self.int_to_char[self.blank_index]: # if this char is a repetition and remove_repetitions=true, then skip if remove_repetitions and i != 0 and char == self.int_to_char[sequence[i - 1].item()]: pass elif char == self.labels[self.space_index]: string += ' ' offsets.append(i) else: string = string + char offsets.append(i) return string, torch.tensor(offsets, dtype=torch.int) def decode(self, probs, sizes=None): """ Returns the argmax decoding given the probability matrix. Removes repeated elements in the sequence, as well as blanks. Arguments: probs: Tensor of character probabilities from the network. Expected shape of batch x seq_length x output_dim sizes(optional): Size of each sequence in the mini-batch Returns: strings: sequences of the model's best guess for the transcription on inputs offsets: time step per character predicted """ _, max_probs = torch.max(probs, 2) strings, offsets = self.convert_to_strings(max_probs.view(max_probs.size(0), max_probs.size(1)), sizes, remove_repetitions=True, return_offsets=True) return strings, offsets
40.57767
120
0.601986
f73dc04e73c6d5fd2b38b1c5b4f62630509cf49b
7,886
py
Python
tests/serializer/test_dumps.py
QueoLda/django-unicorn
01573cd65282c467bfb0925542b180ffa9efba05
[ "MIT" ]
null
null
null
tests/serializer/test_dumps.py
QueoLda/django-unicorn
01573cd65282c467bfb0925542b180ffa9efba05
[ "MIT" ]
null
null
null
tests/serializer/test_dumps.py
QueoLda/django-unicorn
01573cd65282c467bfb0925542b180ffa9efba05
[ "MIT" ]
null
null
null
import json from decimal import Decimal from django.db import models from django.utils.timezone import now import pytest from django_unicorn import serializer from django_unicorn.utils import dicts_equal from example.coffee.models import Flavor class SimpleTestModel(models.Model): name = models.CharField(max_length=10) class Meta: app_label = "tests" class ComplicatedTestModel(models.Model): name = models.CharField(max_length=10) parent = models.ForeignKey("self", blank=True, null=True, on_delete=models.SET_NULL) class Meta: app_label = "tests" def test_int(): expected = '{"name":123}' actual = serializer.dumps({"name": 123}) assert expected == actual def test_decimal(): expected = '{"name":"123.1"}' actual = serializer.dumps({"name": Decimal("123.1")}) assert expected == actual def test_string(): expected = '{"name":"abc"}' actual = serializer.dumps({"name": "abc"}) assert expected == actual def test_list(): expected = '{"name":["abc","def"]}' actual = serializer.dumps({"name": ["abc", "def",]}) assert expected == actual def test_simple_model(): simple_test_model = SimpleTestModel(id=1, name="abc") expected = '{"simple_test_model":{"name":"abc","pk":1}}' actual = serializer.dumps({"simple_test_model": simple_test_model}) assert expected == actual def test_model_with_datetime(db): datetime = now() flavor = Flavor(name="name1", datetime=datetime) expected = { "flavor": { "name": "name1", "label": "", "parent": None, "float_value": None, "decimal_value": None, "uuid": str(flavor.uuid), "date": None, "datetime": datetime.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3], "time": None, "duration": None, "pk": None, } } actual = serializer.dumps({"flavor": flavor}) assert dicts_equal(expected, json.loads(actual)) def test_model_with_datetime_as_string(db): datetime = now().strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] flavor = Flavor(name="name1", datetime=datetime) expected = { "flavor": { "name": "name1", "label": "", "parent": None, "float_value": None, "decimal_value": None, "uuid": str(flavor.uuid), "date": None, "datetime": datetime, "time": None, "duration": None, "pk": None, } } actual = serializer.dumps({"flavor": flavor}) assert dicts_equal(expected, json.loads(actual)) def test_model_with_time_as_string(db): time = now().strftime("%H:%M:%S.%f")[:-3] flavor = Flavor(name="name1", time=time) expected = { "flavor": { "name": "name1", "label": "", "parent": None, "float_value": None, "decimal_value": None, "uuid": str(flavor.uuid), "date": None, "datetime": None, "time": time, "duration": None, "pk": None, } } actual = serializer.dumps({"flavor": flavor}) assert dicts_equal(expected, json.loads(actual)) def test_model_with_duration_as_string(db): duration = "-1 day, 19:00:00" flavor = Flavor(name="name1", duration=duration) expected = { "flavor": { "name": "name1", "label": "", "parent": None, "float_value": None, "decimal_value": None, "uuid": str(flavor.uuid), "date": None, "datetime": None, "time": None, "duration": "-1 19:00:00", "pk": None, } } actual = serializer.dumps({"flavor": flavor}) assert dicts_equal(expected, json.loads(actual)) def test_model_foreign_key(): test_model_one = ComplicatedTestModel(id=1, name="abc") test_model_two = ComplicatedTestModel(id=2, name="def", parent=test_model_one) expected = '{"test_model_two":{"name":"def","parent":1,"pk":2}}' actual = serializer.dumps({"test_model_two": test_model_two}) assert expected == actual def test_model_foreign_key_recursive_parent(): test_model_one = ComplicatedTestModel(id=1, name="abc") test_model_two = ComplicatedTestModel(id=2, name="def", parent=test_model_one) test_model_one.parent = test_model_two expected = '{"test_model_two":{"name":"def","parent":1,"pk":2}}' actual = serializer.dumps({"test_model_two": test_model_two}) assert expected == actual @pytest.mark.django_db def test_dumps_queryset(db): flavor_one = Flavor(name="name1", label="label1") flavor_one.save() flavor_two = Flavor(name="name2", label="label2", parent=flavor_one) flavor_two.save() flavors = Flavor.objects.all() expected_data = { "flavors": [ { "name": "name1", "label": "label1", "parent": None, "float_value": None, "decimal_value": None, "uuid": str(flavor_one.uuid), "date": None, "datetime": None, "time": None, "duration": None, "pk": 1, }, { "name": "name2", "label": "label2", "parent": 1, "float_value": None, "decimal_value": None, "uuid": str(flavor_two.uuid), "date": None, "datetime": None, "time": None, "duration": None, "pk": 2, }, ] } actual = serializer.dumps({"flavors": flavors}) assert expected_data == json.loads(actual) def test_get_model_dict(): flavor_one = Flavor(name="name1", label="label1") actual = serializer._get_model_dict(flavor_one) expected = { "pk": None, "name": "name1", "label": "label1", "parent": None, "decimal_value": None, "float_value": None, "uuid": str(flavor_one.uuid), "date": None, "datetime": None, "time": None, "duration": None, } assert expected == actual def test_float(): expected = '{"name":"0.0"}' actual = serializer.dumps({"name": 0.0}) assert expected == actual def test_dict_float(): expected = '{"name":{"another":"0.0"}}' actual = serializer.dumps({"name": {"another": 0.0}}) assert expected == actual def test_list_float(): expected = '{"name":[1,2,"0.0"]}' actual = serializer.dumps({"name": [1, 2, 0.0]}) assert expected == actual def test_nested_list_float(): expected = '{"name":{"blob":[1,2,"0.0"]}}' actual = serializer.dumps({"name": {"blob": [1, 2, 0.0]}}) assert expected == actual def test_nested_list_float_complicated(): expected = '{"name":{"blob":[1,2,"0.0"]},"more":["1.9",2,5],"another":[{"great":"1.0","ok":["1.6","0.0",4]}]}' actual = serializer.dumps( { "name": {"blob": [1, 2, 0.0]}, "more": [1.9, 2, 5], "another": [{"great": 1.0, "ok": [1.6, 0.0, 4]}], } ) assert expected == actual def test_nested_list_float_less_complicated(): expected = '{"another":[{"great":"1.0","ok":["1.6","0.0",4]}]}' actual = serializer.dumps({"another": [{"great": 1.0, "ok": [1.6, 0.0, 4]}],}) assert expected == actual def test_pydantic(): from pydantic import BaseModel class Book(BaseModel): title = "The Grapes of Wrath" author = "John Steinbeck" expected = '{"title":"The Grapes of Wrath","author":"John Steinbeck"}' actual = serializer.dumps(Book()) assert expected == actual
25.603896
114
0.546031
641e222b25567c7063f788d0dd05c35211d3af39
4,031
py
Python
LogSystem_JE/venv/Lib/site-packages/pygments/lexers/chapel.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
LogSystem_JE/venv/Lib/site-packages/pygments/lexers/chapel.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
LogSystem_JE/venv/Lib/site-packages/pygments/lexers/chapel.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ pygments.lexers.chapel ~~~~~~~~~~~~~~~~~~~~~~ Lexer for the Chapel language. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.lexer import RegexLexer, bygroups, words from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation __all__ = ['ChapelLexer'] class ChapelLexer(RegexLexer): """ For `Chapel <https://chapel-lang.org/>`_ source. .. versionadded:: 2.0 """ name = 'Chapel' filenames = ['*.chpl'] aliases = ['chapel', 'chpl'] # mimetypes = ['text/x-chapel'] tokens = { 'root': [ (r'\n', Text), (r'\s+', Text), (r'\\\n', Text), (r'//(.*?)\n', Comment.Single), (r'/(\\\n)?[*](.|\n)*?[*](\\\n)?/', Comment.Multiline), (r'(config|const|in|inout|out|param|ref|type|var)\b', Keyword.Declaration), (r'(false|nil|none|true)\b', Keyword.Constant), (r'(bool|bytes|complex|imag|int|nothing|opaque|range|real|string|uint|void)\b', Keyword.Type), (words(( 'align', 'as', 'atomic', 'begin', 'borrowed', 'break', 'by', 'catch', 'cobegin', 'coforall', 'continue', 'defer', 'delete', 'dmapped', 'do', 'domain', 'else', 'enum', 'except', 'export', 'extern', 'for', 'forall', 'forwarding', 'if', 'import', 'index', 'init', 'inline', 'label', 'lambda', 'let', 'lifetime', 'local', 'locale' 'new', 'noinit', 'on', 'only', 'otherwise', 'override', 'owned', 'pragma', 'private', 'prototype', 'public', 'reduce', 'require', 'return', 'scan', 'select', 'serial', 'shared', 'single', 'sparse', 'subdomain', 'sync', 'then', 'this', 'throw', 'throws', 'try', 'unmanaged', 'use', 'when', 'where', 'while', 'with', 'yield', 'zip'), suffix=r'\b'), Keyword), (r'(iter)((?:\s)+)', bygroups(Keyword, Text), 'procname'), (r'(proc)((?:\s)+)', bygroups(Keyword, Text), 'procname'), (r'(class|module|record|union)(\s+)', bygroups(Keyword, Text), 'classname'), # imaginary integers (r'\d+i', Number), (r'\d+\.\d*([Ee][-+]\d+)?i', Number), (r'\.\d+([Ee][-+]\d+)?i', Number), (r'\d+[Ee][-+]\d+i', Number), # reals cannot end with a period due to lexical ambiguity with # .. operator. See reference for rationale. (r'(\d*\.\d+)([eE][+-]?[0-9]+)?i?', Number.Float), (r'\d+[eE][+-]?[0-9]+i?', Number.Float), # integer literals # -- binary (r'0[bB][01]+', Number.Bin), # -- hex (r'0[xX][0-9a-fA-F]+', Number.Hex), # -- octal (r'0[oO][0-7]+', Number.Oct), # -- decimal (r'[0-9]+', Number.Integer), # strings (r'"(\\\\|\\"|[^"])*"', String), (r"'(\\\\|\\'|[^'])*'", String), # tokens (r'(=|\+=|-=|\*=|/=|\*\*=|%=|&=|\|=|\^=|&&=|\|\|=|<<=|>>=|' r'<=>|<~>|\.\.|by|#|\.\.\.|' r'&&|\|\||!|&|\||\^|~|<<|>>|' r'==|!=|<=|>=|<|>|' r'[+\-*/%]|\*\*)', Operator), (r'[:;,.?()\[\]{}]', Punctuation), # identifiers (r'[a-zA-Z_][\w$]*', Name.Other), ], 'classname': [ (r'[a-zA-Z_][\w$]*', Name.Class, '#pop'), ], 'procname': [ (r'([a-zA-Z_][.\w$]*|\~[a-zA-Z_][.\w$]*|[+*/!~%<>=&^|\-]{1,2})', Name.Function, '#pop'), ], }
35.672566
95
0.392707
381b0fed467665516906aae53361958744425a77
755
py
Python
video.py
jamesGadoury/slack-alert
cd690ab9bf294ecbc2c015e4910c2c401aba2869
[ "MIT" ]
null
null
null
video.py
jamesGadoury/slack-alert
cd690ab9bf294ecbc2c015e4910c2c401aba2869
[ "MIT" ]
null
null
null
video.py
jamesGadoury/slack-alert
cd690ab9bf294ecbc2c015e4910c2c401aba2869
[ "MIT" ]
null
null
null
import cv2 class VideoCaptureWindow: QUIT_BUTTON = 'quit' PAUSE_BUTTON = 'pause' def __init__(self, name='VideoCapture', width=1280, height=720): self.name = name self.width = width self.height = height def generate(self): cv2.namedWindow(self.name, cv2.WINDOW_NORMAL) cv2.resizeWindow(self.name, self.width, self.height) def update_frame(self, frame): cv2.imshow(self.name, frame) def handle_button_event(self): key = cv2.waitKey(1) if key == ord('q'): return VideoCaptureWindow.QUIT_BUTTON if key == ord('p'): return VideoCaptureWindow.PAUSE_BUTTON return None def destroy(self): cv2.destroyWindow(self.name)
27.962963
68
0.62649
c1d80650d5f4bc467983be6252ff40b231731a26
3,234
py
Python
tests/operators/ci_gpu/test_fused_bn_reduce.py
xqdan/akg
e28501611d73d3957a1f3c58eeb6b028f2f2765d
[ "Apache-2.0" ]
null
null
null
tests/operators/ci_gpu/test_fused_bn_reduce.py
xqdan/akg
e28501611d73d3957a1f3c58eeb6b028f2f2765d
[ "Apache-2.0" ]
null
null
null
tests/operators/ci_gpu/test_fused_bn_reduce.py
xqdan/akg
e28501611d73d3957a1f3c58eeb6b028f2f2765d
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from __future__ import absolute_import import numpy as np from gen_random import random_gaussian from akg.utils import kernel_exec as utils from akg.utils.result_analysis import gpu_profiling from akg.utils.format_transform import to_tvm_nd_array from akg.ops.poly_gpu import fused_bn_reduce_manual, fused_bn_reduce_auto def compute_fused_bn_reduce(data, layout, out_dtype): if layout == "NCHW": data = np.transpose(data, axes=(0, 2, 3, 1)) n, h, w, c = data.shape inter_dtype = 'float32' if data.dtype != inter_dtype: data = data.astype(inter_dtype) data = np.reshape(data, (n * h * w, c)) output1 = np.sum(data, axis=0) output1 = output1.astype(out_dtype) squared = np.multiply(data, data) output2 = np.sum(squared, axis=0) output2 = output2.astype(out_dtype) return [output1, output2] def gen_data(in_shape, in_dtype, layout, out_dtype): support_list = {"float16": np.float16, "float32": np.float32} data = random_gaussian(in_shape, miu=1, sigma=0.1).astype(support_list[in_dtype]) expect = compute_fused_bn_reduce(data, layout, out_dtype) output = np.full(expect[0].shape, np.nan, out_dtype) output = [output, output] return data, output, expect def test_fused_bn_reduce(in_shape, in_dtype='float16', layout='NHWC', out_dtype='float32', poly_sch=False): if layout != "NHWC" and layout != "NCHW": raise NotImplementedError( 'Layout not supported {} '.format(layout)) op_attrs = [layout, out_dtype] if poly_sch: mod = utils.op_build_test( fused_bn_reduce_auto, [in_shape], [in_dtype], kernel_name="fused_bn_reduce_auto", op_attrs=op_attrs, attrs={ "target": "cuda", "enable_akg_reduce_lib": True}) else: mod = utils.op_build_test( fused_bn_reduce_manual, [in_shape], [in_dtype], kernel_name="fused_bn_reduce_manual", op_attrs=op_attrs) data, outputs, expect = gen_data(in_shape, in_dtype, layout, out_dtype) inputs = [data] arglist = inputs + outputs output = utils.mod_launch(mod, arglist, outputs=tuple(range(-len(outputs), 0)), expect=expect) res = np.allclose(output, expect, rtol=5e-03, atol=1.e-8) print("Test {}".format("Pass" if res else "Fail")) if not res: print("Error cuda:========================") print(mod.imported_modules[0].get_source()) raise AssertionError("Test fail") inputs = to_tvm_nd_array(inputs) expect = to_tvm_nd_array(expect) return True
35.933333
107
0.671305
0cceb13271728e47715f6a399bb5272e3e451ec4
681
py
Python
7-assets/past-student-repos/LambdaSchool-master/m6/63c1/recipe_batches/test_recipe_batches.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
7-assets/past-student-repos/LambdaSchool-master/m6/63c1/recipe_batches/test_recipe_batches.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
7-assets/past-student-repos/LambdaSchool-master/m6/63c1/recipe_batches/test_recipe_batches.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
import unittest from recipe_batches import recipe_batches class Test(unittest.TestCase): def test_recipe_batches(self): self.assertEqual(recipe_batches( {'milk': 100, 'flour': 4, 'sugar': 10, 'butter': 5}, { 'milk': 1288, 'flour': 9, 'sugar': 95 }), 0) self.assertEqual(recipe_batches( {'milk': 100, 'butter': 50, 'cheese': 10}, { 'milk': 198, 'butter': 52, 'cheese': 10 }), 1) self.assertEqual(recipe_batches( {'milk': 2, 'sugar': 40, 'butter': 20}, { 'milk': 5, 'sugar': 120, 'butter': 500 }), 2) self.assertEqual(recipe_batches( {'milk': 2}, { 'milk': 200}), 100) if __name__ == '__main__': unittest.main()
30.954545
58
0.591777
6a9de5eaace353499572daaff22cbef4217c0e9f
260
py
Python
MQ/main/urls.py
A-a2008/MasterQuiz
25c516f4029c5936ffe2e77bf21a63309aaf3cf1
[ "MIT" ]
null
null
null
MQ/main/urls.py
A-a2008/MasterQuiz
25c516f4029c5936ffe2e77bf21a63309aaf3cf1
[ "MIT" ]
null
null
null
MQ/main/urls.py
A-a2008/MasterQuiz
25c516f4029c5936ffe2e77bf21a63309aaf3cf1
[ "MIT" ]
null
null
null
from cgi import test from django.urls import path from .views import * create_paper = CreatePaper() urlpatterns = [ path("", home, name="home"), path("test/", test1, name="test"), path("create/", create_paper.create_paper_1, name="view_paper") ]
21.666667
67
0.680769
15907712004a58c2de3ee73d4ab51d9121837d9d
1,227
py
Python
import.py
danrneal/books
2f933745aee9194a58c19f44703677e0f9dcea4d
[ "MIT" ]
null
null
null
import.py
danrneal/books
2f933745aee9194a58c19f44703677e0f9dcea4d
[ "MIT" ]
null
null
null
import.py
danrneal/books
2f933745aee9194a58c19f44703677e0f9dcea4d
[ "MIT" ]
null
null
null
import csv import os from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker # Check for environment variable if not os.getenv("DATABASE_URL"): raise RuntimeError("DATABASE_URL is not set") # Set up database engine = create_engine(os.getenv("DATABASE_URL")) db = scoped_session(sessionmaker(bind=engine)) def main(): with open('books.csv') as csvfile: reader = csv.reader(csvfile) next(reader) for isbn, title, author, year in reader: author_id = db.execute( "INSERT INTO authors (name) VALUES(:name) ON CONFLICT (name) DO UPDATE SET name = EXCLUDED.name RETURNING id", { "name": author } ).fetchone()[0] db.execute( "INSERT INTO books (isbn, title, author_id, year) VALUES(:isbn, :title, :author_id, :year) ON CONFLICT (isbn) DO NOTHING", { "isbn": isbn, "title": title, "author_id": author_id, "year": year } ) print(f"Added book: {isbn}, {title}, {author}, {year}") db.commit() if __name__ == "__main__": main()
30.675
140
0.568052
97f69381dc5f71b32069099a5c9932fdf36f9897
264
py
Python
18/pizzeria/pizzerias/urls.py
liqiwa/python_work
3d1198d5616b28a37fee7dfba5bbef0e1d489c2d
[ "Apache-2.0" ]
null
null
null
18/pizzeria/pizzerias/urls.py
liqiwa/python_work
3d1198d5616b28a37fee7dfba5bbef0e1d489c2d
[ "Apache-2.0" ]
null
null
null
18/pizzeria/pizzerias/urls.py
liqiwa/python_work
3d1198d5616b28a37fee7dfba5bbef0e1d489c2d
[ "Apache-2.0" ]
null
null
null
"""定义pizzerias的url模式""" from . import views from django.conf.urls import url urlpatterns = [ #主页 url(r'^$',views.index,name = 'index'), #显示所有主题 url(r'^pizzas/$',views.pizzas,name = 'pizzas'), url(r'^pizzas/(?P<pizza_id>\d+)/$',views.pizza,name = 'pizza'), ]
22
64
0.647727
882140064ddda301a6892e6f7827b44e46d29a6c
6,363
py
Python
NodeGraphQt/base/commands.py
wow2006/NodeGraphQt
e083c32ece3261a29155ff2cefe538c1131216c1
[ "MIT" ]
null
null
null
NodeGraphQt/base/commands.py
wow2006/NodeGraphQt
e083c32ece3261a29155ff2cefe538c1131216c1
[ "MIT" ]
null
null
null
NodeGraphQt/base/commands.py
wow2006/NodeGraphQt
e083c32ece3261a29155ff2cefe538c1131216c1
[ "MIT" ]
1
2018-11-05T14:21:21.000Z
2018-11-05T14:21:21.000Z
#!/usr/bin/python from PySide2.QtWidgets import QUndoCommand class PropertyChangedCmd(QUndoCommand): """ Node property changed command. """ def __init__(self, node, name, value): QUndoCommand.__init__(self) self.setText('set {} ({})'.format(name, node.name())) self.node = node self.name = name self.old_val = node.get_property(name) self.new_val = value def set_node_prop(self, name, value): # set model data. model = self.node.model if name in model.properties.keys(): setattr(model, name, value) elif name in model.custom_properties.keys(): model.custom_properties[name] = value else: raise KeyError('No property "{}"'.format(name)) # set view data. view = self.node.view # view widgets. if hasattr(view, 'widgets') and name in view.widgets.keys(): view.widgets[name].value = value # view properties. if name in view.properties.keys(): setattr(view, name, value) def undo(self): if self.old_val != self.new_val: self.set_node_prop(self.name, self.old_val) def redo(self): if self.old_val != self.new_val: self.set_node_prop(self.name, self.new_val) class NodeMovedCmd(QUndoCommand): """ Node moved command. """ def __init__(self, node, pos, prev_pos): QUndoCommand.__init__(self) self.node = node self.pos = pos self.prev_pos = prev_pos def undo(self): self.node.view.pos = self.prev_pos self.node.model.pos = self.prev_pos def redo(self): if self.pos == self.prev_pos: return self.node.view.pos = self.pos self.node.model.pos = self.pos class NodeAddedCmd(QUndoCommand): """ Node added command. """ def __init__(self, graph, node, pos=None): QUndoCommand.__init__(self) self.setText('added node') self.graph = graph self.node = node self.pos = pos def undo(self): self.pos = self.pos or self.node.pos() self.graph.model.nodes.pop(self.node.id) self.node.view.delete() def redo(self): self.graph.model.nodes[self.node.id] = self.node self.graph.viewer().add_node(self.node.view, self.pos) class NodeRemovedCmd(QUndoCommand): """ Node deleted command. """ def __init__(self, graph, node): QUndoCommand.__init__(self) self.setText('deleted node') self.graph = graph self.node = node self.inputs = [] self.outputs = [] if hasattr(self.node, 'inputs'): input_ports = self.node.inputs().values() self.inputs = [(p, p.connected_ports()) for p in input_ports] if hasattr(self.node, 'outputs'): output_ports = self.node.outputs().values() self.outputs = [(p, p.connected_ports()) for p in output_ports] def undo(self): self.graph.model.nodes[self.node.id] = self.node self.graph.scene().addItem(self.node.view) for port, connected_ports in self.inputs: [port.connect_to(p) for p in connected_ports] for port, connected_ports in self.outputs: [port.connect_to(p) for p in connected_ports] def redo(self): for port, connected_ports in self.inputs: [port.disconnect_from(p) for p in connected_ports] for port, connected_ports in self.outputs: [port.disconnect_from(p) for p in connected_ports] self.graph.model.nodes.pop(self.node.id) self.node.view.delete() class PortConnectedCmd(QUndoCommand): """ Port connected command. """ def __init__(self, src_port, trg_port): QUndoCommand.__init__(self) self.source = src_port self.target = trg_port def undo(self): src_model = self.source.model trg_model = self.target.model src_id = self.source.node().id trg_id = self.target.node().id port_names = src_model.connected_ports.get(trg_id) if port_names is []: del src_model.connected_ports[trg_id] if port_names and self.target.name() in port_names: port_names.remove(self.target.name()) port_names = trg_model.connected_ports.get(src_id) if port_names is []: del trg_model.connected_ports[src_id] if port_names and self.source.name() in port_names: port_names.remove(self.source.name()) self.source.view.disconnect_from(self.target.view) def redo(self): src_model = self.source.model trg_model = self.target.model src_id = self.source.node().id trg_id = self.target.node().id src_model.connected_ports[trg_id].append(self.target.name()) trg_model.connected_ports[src_id].append(self.source.name()) self.source.view.connect_to(self.target.view) class PortDisconnectedCmd(QUndoCommand): """ Port disconnected command. """ def __init__(self, src_port, trg_port): QUndoCommand.__init__(self) self.source = src_port self.target = trg_port def undo(self): src_model = self.source.model trg_model = self.target.model src_id = self.source.node().id trg_id = self.target.node().id src_model.connected_ports[trg_id].append(self.target.name()) trg_model.connected_ports[src_id].append(self.source.name()) self.source.view.connect_to(self.target.view) def redo(self): src_model = self.source.model trg_model = self.target.model src_id = self.source.node().id trg_id = self.target.node().id port_names = src_model.connected_ports.get(trg_id) if port_names is []: del src_model.connected_ports[trg_id] if port_names and self.target.name() in port_names: port_names.remove(self.target.name()) port_names = trg_model.connected_ports.get(src_id) if port_names is []: del trg_model.connected_ports[src_id] if port_names and self.source.name() in port_names: port_names.remove(self.source.name()) self.source.view.disconnect_from(self.target.view)
30.3
75
0.616533
7d6cb622036128f0eb9aa283a9868191158ee1a1
2,918
py
Python
alephclient/tests/test_tasks.py
mynameisfiber/alephclient
02ca43da406151034ac30433c2fa734933af21f8
[ "MIT" ]
null
null
null
alephclient/tests/test_tasks.py
mynameisfiber/alephclient
02ca43da406151034ac30433c2fa734933af21f8
[ "MIT" ]
null
null
null
alephclient/tests/test_tasks.py
mynameisfiber/alephclient
02ca43da406151034ac30433c2fa734933af21f8
[ "MIT" ]
null
null
null
import os from pathlib import Path from alephclient.tasks.crawldir import crawl_dir from alephclient.api import AlephAPI class TestCrawldir(object): def setup_method(self): self.api = AlephAPI( host="http://aleph.test/api/2/", api_key="fake_key" ) def test_new_collection(self, mocker): mocker.patch.object(self.api, "filter_collections", return_value=[]) mocker.patch.object(self.api, "create_collection") mocker.patch.object(self.api, "update_collection") mocker.patch.object(self.api, "ingest_upload") crawl_dir(self.api, "alephclient/tests/testdata", "test153", {}) self.api.create_collection.assert_called_once_with({ 'category': 'other', 'foreign_id': 'test153', 'label': 'test153', 'languages': [], 'summary': '', 'casefile': False }) def test_ingest(self, mocker): mocker.patch.object(self.api, "ingest_upload", return_value={"id": 42}) mocker.patch.object(self.api, "load_collection_by_foreign_id", return_value={"id": 2}) mocker.patch.object(self.api, "update_collection") crawl_dir(self.api, "alephclient/tests/testdata", "test153", {}) base_path = os.path.abspath("alephclient/tests/testdata") assert self.api.ingest_upload.call_count == 5 expected_calls = [ mocker.call( 2, Path(os.path.join(base_path, "feb")), metadata={ 'foreign_id': 'feb', 'file_name': 'feb' } ), mocker.call( 2, Path(os.path.join(base_path, "jan")), metadata={ 'foreign_id': 'jan', 'file_name': 'jan' } ), mocker.call( 2, Path(os.path.join(base_path, "feb/2.txt")), metadata={ 'parent_id': 42, 'foreign_id': 'feb/2.txt', 'file_name': '2.txt' } ), mocker.call( 2, Path(os.path.join(base_path, "jan/week1")), metadata={ 'parent_id': 42, 'foreign_id': 'jan/week1', 'file_name': 'week1' } ), mocker.call( 2, Path(os.path.join(base_path, "jan/week1/1.txt")), metadata={ 'parent_id': 42, 'foreign_id': 'jan/week1/1.txt', 'file_name': '1.txt' } ), ] for call in expected_calls: assert call in self.api.ingest_upload.mock_calls
34.329412
76
0.47464
bea7e2d5940a386fd4a6447e41cd156e4ee2d257
2,538
py
Python
paddlenlp/datasets/experimental/lcqmc.py
Steffy-zxf/PaddleNLP
0c9681e88e6e2115ed894876a69c5140ddbbfa29
[ "Apache-2.0" ]
null
null
null
paddlenlp/datasets/experimental/lcqmc.py
Steffy-zxf/PaddleNLP
0c9681e88e6e2115ed894876a69c5140ddbbfa29
[ "Apache-2.0" ]
null
null
null
paddlenlp/datasets/experimental/lcqmc.py
Steffy-zxf/PaddleNLP
0c9681e88e6e2115ed894876a69c5140ddbbfa29
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import json import os from paddle.dataset.common import md5file from paddle.utils.download import get_path_from_url from paddlenlp.utils.env import DATA_HOME from . import DatasetBuilder __all__ = ['LCQMC'] class LCQMC(DatasetBuilder): """ LCQMC:A Large-scale Chinese Question Matching Corpus More information please refer to `https://www.aclweb.org/anthology/C18-1166/` """ URL = "https://bj.bcebos.com/paddlehub-dataset/lcqmc.tar.gz" MD5 = "62a7ba36f786a82ae59bbde0b0a9af0c" META_INFO = collections.namedtuple('META_INFO', ('file', 'md5')) SPLITS = { 'train': META_INFO( os.path.join('lcqmc', 'train.tsv'), '2193c022439b038ac12c0ae918b211a1'), 'dev': META_INFO( os.path.join('lcqmc', 'dev.tsv'), 'c5dcba253cb4105d914964fd8b3c0e94'), 'test': META_INFO( os.path.join('lcqmc', 'test.tsv'), '8f4b71e15e67696cc9e112a459ec42bd'), } def _get_data(self, mode, **kwargs): default_root = DATA_HOME filename, data_hash = self.SPLITS[mode] fullname = os.path.join(default_root, filename) if not os.path.exists(fullname) or (data_hash and not md5file(fullname) == data_hash): fullname = os.path.join(default_root, filename) return fullname def _read(self, filename): """Reads data.""" with open(filename, 'r', encoding='utf-8') as f: head = None for line in f: data = line.strip().split("\t") if not head: head = data else: query, title, label = data yield {"query": query, "title": title, "label": label} def get_labels(self): """ Return labels of the LCQMC object. """ return ["0", "1"]
33.394737
81
0.621749
ed1a6681a34f65cd9cf35dabc263ac11bd167455
23,199
py
Python
malandro/gui/assignMentTransferTab.py
jorenretel/Malandro
d03bd12b894b314a55662b8002c2d6fc396d375a
[ "MIT" ]
null
null
null
malandro/gui/assignMentTransferTab.py
jorenretel/Malandro
d03bd12b894b314a55662b8002c2d6fc396d375a
[ "MIT" ]
null
null
null
malandro/gui/assignMentTransferTab.py
jorenretel/Malandro
d03bd12b894b314a55662b8002c2d6fc396d375a
[ "MIT" ]
null
null
null
'''This module contains only one class: the class describing the tab in the GUI where assignments can be transferred in bulk to the ccpn analysis project. A difference is made between two types of assignments: 1) spin systems to residues, which also implies resonanceSets to atomSets. 2) resonances to peak dimensions. The user is able to configure which assignments should be transferred to the project. ''' from memops.gui.CheckButton import CheckButton from memops.gui.Label import Label from memops.gui.RadioButtons import RadioButtons from memops.gui.LabelFrame import LabelFrame from memops.gui.FloatEntry import FloatEntry from memops.gui.IntEntry import IntEntry from memops.gui.PulldownList import PulldownList from memops.gui.ButtonList import ButtonList from ccpnmr.analysis.core.AssignmentBasic import assignResToDim from Tkinter import VERTICAL from malandro.gui.assignmentFunctions import assignSpinSystemstoResidues class AssignMentTransferTab(object): '''the tab in the GUI where assignments can be transferred in bulk to the ccpn analysis project. A difference is made between two types of assignments: 1) spin systems to residues, which also implies resonanceSets to atomSets. 2) resonances to peak dimensions. The user is able to configure which assignments should be transferred to the project. Attributes: guiParent: gui object this tab is part of. frame: the frame in which this element lives. dataModel(src.cython.malandro.DataModel): dataModel object describing the assignment proposed by the algorithm. selectedSolution (int): The index of the solution/run that is used asa the template to make the assignments. resonanceToDimension (bool): True if resonances should be assigned to peak dimensions. False if not. spinSystemToResidue (bool): True if spin system to residue assignment should be carried out. minScore (float): The minimal score of a spin system assignment to a residue to be allowed to transfer this assignment to the project intra (bool): True if intra-residual peaks should be assigned. sequential (bool): True if sequential peaks should be assigned. noDiagonal (bool): If True, purely diagonal peaks are ignored during the transfer of assignments. allSpectra (bool): If True, all spectra will be assigned. If False, one specified spectrum will be assigned. spectrum (src.cython.malandro.Spectrum): The spectrum that should be assigned. ''' def __init__(self, parent, frame): '''Init. args: parent: the guiElement that this tab is part of. frame: the frame this part of the GUI lives in. ''' self.guiParent = parent self.frame = frame # Buttons and fields, # will be set in body(): self.peaksCheckButton = None self.residuesCheckButton = None self.intraCheckButton = None self.sequentialCheckButton = None self.noDiagonalCheckButton = None self.spinSystemTypeSelect = None self.minScoreEntry = None self.solutionNumberEntry = None self.spectrumSelect = None self.spectraPullDown = None self.assignedResidueStrategySelect = None self.transferButton = None # Settings that determine how assignments # are transferred to the analysis project: self.minScore = 80.0 self.dataModel = None self.spectrum = None self.selectedSolution = 1 self.body() self.resonanceToDimension = True self.spinSystemToResidue = True self.intra = True self.sequential = True self.noDiagonal = True self.allSpectra = True self.spinSystemType = 0 self.strategy = 0 def body(self): '''Describes the body of this tab. It consists out of a number of radio buttons, check buttons and number entries that allow the user to indicate which assignments should be transferred. ''' # self.frame.expandColumn(0) self.frame.expandGrid(8, 0) self.frame.expandGrid(8, 1) typeOfAssignmentFrame = LabelFrame( self.frame, text='type of assignment') typeOfAssignmentFrame.grid(row=0, column=0, sticky='nesw') # typeOfAssignmentFrame.expandGrid(0,5) peakSelectionFrame = LabelFrame( self.frame, text='which peaks to assign') peakSelectionFrame.grid(row=0, column=1, sticky='nesw', rowspan=2) spinSystemSelectionFrame = LabelFrame(self.frame, text='Which spin-systems to use') spinSystemSelectionFrame.grid(row=2, column=0, sticky='nesw') tipText = 'What to do when a residue has already a spin system assigned to it.' assignedResidueFrame = LabelFrame(self.frame, text='if residue already has spin-system', tipText=tipText) assignedResidueFrame.grid(row=2, column=1, sticky='nesw') spectrumSelectionFrame = LabelFrame(self.frame, text='spectra') spectrumSelectionFrame.grid(row=1, column=0, sticky='nesw') row = 0 Label(typeOfAssignmentFrame, text='Resonances to Peak Dimensions', grid=(row, 0)) self.peaksCheckButton = CheckButton(typeOfAssignmentFrame, selected=True, grid=(row, 1)) row += 1 Label(typeOfAssignmentFrame, text='SpinSystems to Residues', grid=(row, 0)) self.residuesCheckButton = CheckButton( typeOfAssignmentFrame, selected=True, grid=(row, 1)) row = 0 Label(peakSelectionFrame, text='Intra-Residual', grid=(row, 0)) self.intraCheckButton = CheckButton( peakSelectionFrame, selected=True, grid=(row, 1)) row += 1 Label(peakSelectionFrame, text='Sequential', grid=(row, 0)) self.sequentialCheckButton = CheckButton( peakSelectionFrame, selected=True, grid=(row, 1)) row += 1 Label(peakSelectionFrame, text='Do not assign diagonal peaks', grid=(row, 0)) self.noDiagonalCheckButton = CheckButton( peakSelectionFrame, selected=True, grid=(row, 1)) entries = ['Only assigned spin systems', 'All that have a score of at least: ', 'User Defined', 'Solution number:'] tipTexts = ['Only assign resonances of spin systems that already have a sequential assignment for the assignment of peak dimensions. Spin system to residue assignment is not relevant in this case.', 'Assign all spin systems that have a score of at least a given percentage. 50% or lower is not possible, because than spin systems might have to be assigned to more than 1 residue, which is impossible.', "As defined in the lower row of buttons in the 'results' tab.", 'One of the single solutions of the annealing.'] self.spinSystemTypeSelect = RadioButtons(spinSystemSelectionFrame, entries=entries, grid=(0, 0), select_callback=None, direction=VERTICAL, gridSpan=(4, 1), tipTexts=tipTexts) tipText = 'The minimal amount of colabelling the different nuclei should have in order to still give rise to a peak.' self.minScoreEntry = FloatEntry(spinSystemSelectionFrame, grid=(1, 1), width=7, text=str(self.minScore), returnCallback=self.changeMinScore, tipText=tipText) self.minScoreEntry.bind('<Leave>', self.changeMinScore, '+') self.solutionNumberEntry = IntEntry(spinSystemSelectionFrame, grid=(3, 1), width=7, text=1, returnCallback=self.solutionUpdate, tipText=tipText) self.solutionNumberEntry.bind('<Leave>', self.solutionUpdate, '+') #self.solutionPullDown = PulldownList(spinSystemSelectionFrame, None, grid=(3,1), sticky='w') entries = ['all spectra', 'only:'] tipTexts = ['Assign peaks in all the spectra that where selected before the annealing ran.', 'Only assign peaks in one particular spectrum. You can of course repeat this multiple times for different spectra.'] self.spectrumSelect = RadioButtons(spectrumSelectionFrame, entries=entries, grid=(0, 0), select_callback=None, direction=VERTICAL, gridSpan=(2, 1), tipTexts=tipTexts) self.spectraPullDown = PulldownList(spectrumSelectionFrame, self.changeSpectrum, grid=(1, 1), sticky='w') entries = ['skip this residue', 'de-assign old spin system from residue', 'assign, but never merge', 'warn to merge'] tipTexts = ["Don't assign the new spin system to the residue. The residue is not skipped when the old spin system does not contain any resonances", "De-assign old spin system from residue, unless the old spin system is a spin system without any resonances.", "Don't merge any spin systems, merging can be performed later if nescesary in the Resonance --> SpinSystems window.", "Ask to merge individually for each spin system, this might result in clicking on a lot of popups."] self.assignedResidueStrategySelect = RadioButtons(assignedResidueFrame, entries=entries, grid=(0, 0), select_callback=None, direction=VERTICAL, gridSpan=(2, 1), tipTexts=tipTexts) texts = ['Transfer Assignments'] commands = [self.transferAssignments] self.transferButton = ButtonList( self.frame, commands=commands, texts=texts) self.transferButton.grid(row=5, column=0, sticky='nsew', columnspan=2) def update(self): '''Update the nescesary elements in the tab. Is called when the algorithm has produced possible assignments. The only thing that has to be updated in practice in this tab is the pulldown with spectra. ''' self.dataModel = self.guiParent.connector.results self.updateSpectra() def setDataModel(self, dataModel): '''Here the dataModel, which is the dataModel containing the suggested assignments body the algorithm, can be set. ''' self.dataModel = dataModel self.update() def updateSpectra(self, *opt): '''Updates the spectra shown in the spectra pulldown. These are only the spectra that were used by the algorithm. All other spectra in the project are not relevant since for those no simulated peaks have been matched to real peaks. ''' if not self.dataModel: return spectrum = self.spectrum spectra = self.dataModel.getSpectra() if spectra: names = [spectrum.name for spectrum in spectra] index = 0 if self.spectrum not in spectra: self.spectrum = spectra[0] else: index = spectra.index(self.spectrum) self.spectraPullDown.setup(names, spectra, index) def changeSpectrum(self, spectrum): '''Select a spectum to be assigned.''' self.spectrum = spectrum def solutionUpdate(self, event=None, value=None): '''Select a solution. A solution is a one to one mapping of spin systems to residues produced by one run of the algorithm. args: event: event object, this is one of the values the number entry calls his callback function with. value: the index of the solution/run. ''' if not self.dataModel: return Nsolutions = len(self.dataModel.chain.residues[0].solutions) if value is None: value = self.solutionNumberEntry.get() if value == self.selectedSolution: return else: self.selectedSolution = value if value < 1: self.solutionNumberEntry.set(1) self.selectedSolution = 1 elif value > Nsolutions: self.selectedSolution = Nsolutions self.solutionNumberEntry.set(self.selectedSolution) else: self.solutionNumberEntry.set(self.selectedSolution) def fetchOptions(self): '''Fetches user set options from the gui in one go and stores them in their corresponding instance variables. ''' self.resonanceToDimension = self.peaksCheckButton.get() self.spinSystemToResidue = self.residuesCheckButton.get() self.intra = self.intraCheckButton.get() self.sequential = self.sequentialCheckButton.get() self.noDiagonal = self.noDiagonalCheckButton.get() self.spinSystemType = self.spinSystemTypeSelect.getIndex() self.strategy = ['skip', 'remove', 'noMerge', None][ self.assignedResidueStrategySelect.getIndex()] self.allSpectra = [True, False][self.spectrumSelect.getIndex()] def changeMinScore(self, event=None): '''Set the minimal score for which a spin system to residue assignment gets transferred to the ccpn analysis project. ''' newMinScore = self.minScoreEntry.get() if self.minScore != newMinScore: if newMinScore <= 50.0: self.minScore = 51.0 self.minScoreEntry.set(51.0) elif newMinScore > 100.0: self.minScore = 100.0 self.minScoreEntry.set(100.0) else: self.minScore = newMinScore def transferAssignments(self): '''Transfer assignments to project depending on the settings from the GUI. ''' self.fetchOptions() if not self.dataModel or (not self.resonanceToDimension and not self.spinSystemToResidue): return strategy = self.strategy lookupSpinSystem = [self.getAssignedSpinSystem, self.getBestScoringSpinSystem, self.getUserDefinedSpinSystem, self.getSelectedSolutionSpinSystem][self.spinSystemType] residues = self.dataModel.chain.residues spinSystemSequence = [lookupSpinSystem(res) for res in residues] ccpnSpinSystems = [] ccpnResidues = [] # if self.spinSystemType == 0 it means that it for sure already # assigned like this if self.spinSystemToResidue and not self.spinSystemType == 0: for spinSys, res in zip(spinSystemSequence, residues): if spinSys and res: ccpnSpinSystems.append(spinSys.getCcpnResonanceGroup()) ccpnResidues.append(res.getCcpnResidue()) assignSpinSystemstoResidues(ccpnSpinSystems, ccpnResidues, strategy=strategy, guiParent=self.guiParent) if self.resonanceToDimension: allSpectra = self.allSpectra if self.intra: for residue, spinSystem in zip(residues, spinSystemSequence): if not spinSystem: continue intraLink = residue.getIntraLink(spinSystem) for pl in intraLink.getPeakLinks(): peak = pl.getPeak() if not allSpectra and peak.getSpectrum() is not self.spectrum: continue if not peak: continue resonances = pl.getResonances() if self.noDiagonal and len(set(resonances)) < len(resonances): continue for resonance, dimension in zip(resonances, peak.getDimensions()): ccpnResonance = resonance.getCcpnResonance() ccpnDimension = dimension.getCcpnDimension() assignResToDim(ccpnDimension, ccpnResonance) if self.sequential: for residue, spinSystemA, spinSystemB in zip(residues, spinSystemSequence, spinSystemSequence[1:]): if not spinSystemA or not spinSystemB: continue link = residue.getLink(spinSystemA, spinSystemB) for pl in link.getPeakLinks(): peak = pl.getPeak() if not allSpectra and peak.getSpectrum() is not self.spectrum: continue if not peak: continue resonances = pl.getResonances() if self.noDiagonal and len(set(resonances)) < len(resonances): continue for resonance, dimension in zip(resonances, peak.getDimensions()): ccpnResonance = resonance.getCcpnResonance() ccpnDimension = dimension.getCcpnDimension() assignResToDim(ccpnDimension, ccpnResonance) self.guiParent.resultsTab.update() def getAssignedSpinSystem(self, residue): '''Get the spinSystem that is assigned in the project to a residue. args: residue (src.cython.malandro.Residue) return: spinSystem (src.cython.malandro.SpinSystem) ''' ccpCode = residue.ccpCode seqCode = residue.getSeqCode() spinSystems = self.dataModel.getSpinSystems()[ccpCode] ccpnResidue = residue.getCcpnResidue() if ccpnResidue: assignedResonanceGroups = ccpnResidue.getResonanceGroups() if len(assignedResonanceGroups) > 1: print 'There is more than one spin system assigned to residue %s, did not know which one to use to assign peaks. Therefor this residue is skipped.' % (seqCode) return assignedResonanceGroup = ccpnResidue.findFirstResonanceGroup() if assignedResonanceGroup: for spinSystem in spinSystems: if spinSystem.getSerial() == assignedResonanceGroup.serial: # Just checking to make sure, analysis project could # have changed if not self.skipResidue(residue, spinSystem): return spinSystem def getBestScoringSpinSystem(self, residue): '''Get the spinSystem that scores the highest, i.e. is assigned in most of the runs to the given residue. args: residue (src.cython.malandro.Residue) return: spinSystem (src.cython.malandro.SpinSystem) ''' solutions = residue.solutions weigth = 1.0 / len(solutions) score, bestSpinSystem = max([(solutions.count(solution) * weigth * 100.0, solution) for solution in solutions]) if score >= self.minScore and not bestSpinSystem.getIsJoker() and not self.skipResidue(residue, bestSpinSystem): return bestSpinSystem return None def getUserDefinedSpinSystem(self, residue): '''Get the spinSystem that is defined by the user (probably in the resultsTab) as the correct assignment of the given residue. args: residue (src.cython.malandro.Residue) return: spinSystem (src.cython.malandro.SpinSystem) ''' userDefinedSpinSystem = residue.userDefinedSolution if userDefinedSpinSystem and not userDefinedSpinSystem.getIsJoker() and not self.skipResidue(residue, userDefinedSpinSystem): return userDefinedSpinSystem return None def getSelectedSolutionSpinSystem(self, residue): '''I a solution corresponding to one specific run of the algorithm is defined, return which spinSystem in that run got assigned to the given residue. args: residue (src.cython.malandro.Residue) return: spinSystem (src.cython.malandro.SpinSystem) ''' solutions = residue.solutions spinSystem = solutions[self.selectedSolution - 1] if not spinSystem.getIsJoker() and not self.skipResidue(residue, spinSystem): return spinSystem return None def skipResidue(self, residue, spinSystem): '''One strategy is to skip all residues that already have a spin system assignment. If that is the case determine whether to skip the given residue. args: residue (src.cython.malandro.Residue) spinSystem (src.cython.malandro.SpinSystem) return: boolean, True if residue should be skipped. ''' if self.strategy == 0: assignedGroups = residue.getCcpnResidue().getResonanceGroups() assignedSerials = set([spinSys.serial for spinSys in assignedGroups]) if assignedSerials and spinSystem.getSerial() not in assignedSerials: return True return False
37.906863
223
0.575628
32015a9e5781c041089fabb183941cb6321fcf06
2,013
py
Python
athena/convert_main.py
leixiaoning/Athena-Giga
d599cee4027126fc4efd27cefd69ce89b77530e0
[ "Apache-2.0" ]
null
null
null
athena/convert_main.py
leixiaoning/Athena-Giga
d599cee4027126fc4efd27cefd69ce89b77530e0
[ "Apache-2.0" ]
null
null
null
athena/convert_main.py
leixiaoning/Athena-Giga
d599cee4027126fc4efd27cefd69ce89b77530e0
[ "Apache-2.0" ]
1
2021-03-15T08:04:15.000Z
2021-03-15T08:04:15.000Z
# coding=utf-8 # Copyright (C) ATHENA AUTHORS # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Only support tensorflow 2.0 # pylint: disable=invalid-name, no-member, redefined-outer-name """ starting point for conversion of VC models """ import sys import json import tensorflow as tf from absl import logging from athena import ConvertSolver from athena.stargan_main import ( parse_config, build_model_from_jsonfile_stargan, SUPPORTED_DATASET_BUILDER ) def convert(jsonfile): """ entry point for speech conversion, do some preparation work """ p, model, checkpointer = build_model_from_jsonfile_stargan(jsonfile) checkpointer.restore_from_best() assert p.testset_config is not None dataset_builder = SUPPORTED_DATASET_BUILDER[p.dataset_builder](p.testset_config) solver = ConvertSolver(model, dataset_builder, config=p.convert_config) solver.convert(dataset_builder.as_dataset(batch_size=1)) if __name__ == "__main__": logging.set_verbosity(logging.INFO) if len(sys.argv) < 2: logging.warning('Usage: python {} config_json_file'.format(sys.argv[0])) sys.exit() tf.random.set_seed(1) jsonfile = sys.argv[1] with open(jsonfile) as file: config = json.load(file) p = parse_config(config) ConvertSolver.initialize_devices(p.solver_gpu) convert(jsonfile)
35.315789
85
0.695976
4ef504d9081e22d2a445b4c0d4a8f86422daef0a
1,589
py
Python
tests/lib/pg_tools.py
opbro/postgres-elasticsearch-fdw
d79155bd275b998b4976878816e5f3b4ed933ea7
[ "MIT" ]
87
2016-09-20T19:58:55.000Z
2022-03-05T02:50:11.000Z
tests/lib/pg_tools.py
opbro/postgres-elasticsearch-fdw
d79155bd275b998b4976878816e5f3b4ed933ea7
[ "MIT" ]
31
2016-09-20T19:19:37.000Z
2021-12-22T13:01:54.000Z
tests/lib/pg_tools.py
opbro/postgres-elasticsearch-fdw
d79155bd275b998b4976878816e5f3b4ed933ea7
[ "MIT" ]
22
2016-10-03T15:05:07.000Z
2022-03-05T02:50:01.000Z
""" Commands for interacting with PostgreSQL """ # pylint: disable=broad-except, no-member from os.path import join import io import psycopg2 import sh from lib.tools import TEST_FOLDER def pg_is_available(): """ Test if PostgreSQL is running """ try: return sql("select 1 + 1;")[0][0] == 2 except Exception: return False def load_sql_file(filename): """ Load SQL file into PostgreSQL """ path = join(TEST_FOLDER, "data", filename) with open(path, "r") as handle: sh.psql( "postgres", "--no-psqlrc", host="localhost", port="5432", username="postgres", _in=handle, ) def run_sql_test(filename): """ Run SQL test file """ path = join(TEST_FOLDER, "test", filename) with open(path, "r") as handle: with io.StringIO() as out, io.StringIO() as err: sh.psql( "postgres", "--no-psqlrc", "--tuples-only", host="localhost", port="5432", username="postgres", quiet=True, _in=handle, _out=out, _err=err, ) return out.getvalue().strip(), err.getvalue().strip() def sql(statement): """ Execute SQL statement """ with psycopg2.connect( host="localhost", port=5432, user="postgres", dbname="postgres" ) as conn: with conn.cursor() as cursor: cursor.execute(statement) return cursor.fetchall()
23.716418
71
0.528634
67a7e6b794291916ae9a585fedf57d04005bf5c4
22,036
py
Python
dependencies/panda/Panda3D-1.10.0-x64/direct/tkwidgets/AppShell.py
CrankySupertoon01/Toontown-2
60893d104528a8e7eb4aced5d0015f22e203466d
[ "MIT" ]
3
2018-03-09T12:07:29.000Z
2021-02-25T06:50:25.000Z
direct/src/tkwidgets/AppShell.py
Sinkay/panda3d
16bfd3750f726a8831771b81649d18d087917fd5
[ "PHP-3.01", "PHP-3.0" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
direct/src/tkwidgets/AppShell.py
Sinkay/panda3d
16bfd3750f726a8831771b81649d18d087917fd5
[ "PHP-3.01", "PHP-3.0" ]
2
2019-12-02T01:39:10.000Z
2021-02-13T22:41:00.000Z
""" AppShell provides a GUI application framework. This is an adaption of AppShell.py found in Python and Tkinter Programming by John E. Grayson which is a streamlined adaptation of GuiAppD.py, originally created by Doug Hellmann (doughellmann@mindspring.com). """ __all__ = ['AppShell'] from direct.showbase.DirectObject import DirectObject from direct.showbase.TkGlobal import * from tkFileDialog import * from Tkinter import * import Pmw import Dial import Floater import Slider import EntryScale import VectorWidgets import ProgressBar """ TO FIX: Radiobutton ordering change """ # Create toplevel widget dictionary try: __builtins__["widgetDict"] except KeyError: __builtins__["widgetDict"] = {} # Create toplevel variable dictionary try: __builtins__["variableDict"] except KeyError: __builtins__["variableDict"] = {} def resetWidgetDict(): __builtins__["widgetDict"] = {} def resetVariableDict(): __builtins__["variableDict"] = {} # Inherit from MegaWidget instead of Toplevel so you can pass in a toplevel # to use as a container if you wish. If no toplevel passed in, create one class AppShell(Pmw.MegaWidget, DirectObject): appversion = '1.0' appname = 'Generic Application Frame' copyright = ('Copyright 2004 Walt Disney Imagineering.' + ' All Rights Reserved') contactname = 'Mark R. Mine' contactphone = '(818) 544-2921' contactemail = 'Mark.Mine@disney.com' frameWidth = 450 frameHeight = 320 padx = 5 pady = 5 usecommandarea = 0 usestatusarea = 0 balloonState = 'none' panelCount = 0 def __init__(self, parent = None, **kw): optiondefs = ( ('title', self.appname, None), ('padx', 1, Pmw.INITOPT), ('pady', 1, Pmw.INITOPT), ('framewidth', self.frameWidth, Pmw.INITOPT), ('frameheight', self.frameHeight, Pmw.INITOPT), ('usecommandarea', self.usecommandarea, Pmw.INITOPT), ('usestatusarea', self.usestatusarea, Pmw.INITOPT), ) self.defineoptions(kw, optiondefs) # If no toplevel passed in, create one if parent == None: self.parent = Toplevel() else: self.parent = parent # Initialize the base class Pmw.MegaWidget.__init__(self, self.parent) # Set window size self.parent.geometry('%dx%d' % (self.frameWidth, self.frameHeight)) self.parent.title(self['title']) # Create unique id AppShell.panelCount += 1 self.id = self.appname + '-' + repr(AppShell.panelCount) # Create a dictionary in the widgetDict to hold this panel's widgets self.widgetDict = widgetDict[self.id] = {} # And one to hold this panel's variables self.variableDict = variableDict[self.id] = {} # Get handle to the toplevels hull self._hull = self.component('hull') # Initialize the application self.appInit() # create the interface self.__createInterface() # Set focus to ourselves self.focus_set() # initialize our options self.initialiseoptions(AppShell) self.pack(fill = BOTH, expand = 1) def __createInterface(self): self.__createBalloon() self.__createMenuBar() self.__createDataArea() self.__createCommandArea() self.__createMessageBar() self.__createAboutBox() # Add binding for panel cleanup code self.interior().bind('<Destroy>', self.onDestroy) # # Create the parts of the interface # which can be modified by subclasses # self.createMenuBar() self.createInterface() def __createBalloon(self): # Create the balloon help manager for the frame. # Create the manager for the balloon help self.__balloon = self.createcomponent('balloon', (), None, Pmw.Balloon, (self._hull,)) self.__balloon.configure(state = self.balloonState) def __createMenuBar(self): self.menuFrame = Frame(self._hull) self.menuBar = self.createcomponent('menubar', (), None, Pmw.MenuBar, (self.menuFrame,), hull_relief=FLAT, hull_borderwidth=0, balloon=self.balloon()) self.menuBar.addmenu('Help', 'About %s' % self.appname, side = 'right') self.menuBar.addmenu('File', 'File commands and Quit') self.menuBar.pack(fill=X, side = LEFT) # Force some space between pull down menus and other widgets spacer = Label(self.menuFrame, text = ' ') spacer.pack(side = LEFT, expand = 0) self.menuFrame.pack(fill = X) def __createDataArea(self): # Create data area where data entry widgets are placed. self.dataArea = self.createcomponent('dataarea', (), None, Frame, (self._hull,), relief=GROOVE, bd=1) self.dataArea.pack(side=TOP, fill=BOTH, expand=YES, padx=self['padx'], pady=self['pady']) def __createCommandArea(self): # Create a command area for application-wide buttons. self.__commandFrame = self.createcomponent('commandframe', (), None, Frame, (self._hull,), relief=SUNKEN, bd=1) self.__buttonBox = self.createcomponent('buttonbox', (), None, Pmw.ButtonBox, (self.__commandFrame,), padx=0, pady=0) self.__buttonBox.pack(side=TOP, expand=NO, fill=X) if self['usecommandarea']: self.__commandFrame.pack(side=TOP, expand=NO, fill=X, padx=self['padx'], pady=self['pady']) def __createMessageBar(self): # Create the message bar area for help and status messages. frame = self.createcomponent('bottomtray', (), None, Frame, (self._hull,), relief=SUNKEN) self.__messageBar = self.createcomponent('messagebar', (), None, Pmw.MessageBar, (frame,), #entry_width = 40, entry_relief=SUNKEN, entry_bd=1, labelpos=None) self.__messageBar.pack(side=LEFT, expand=YES, fill=X) self.__progressBar = ProgressBar.ProgressBar( frame, fillColor='slateblue', doLabel=1, width=150) self.__progressBar.frame.pack(side=LEFT, expand=NO, fill=NONE) self.updateProgress(0) if self['usestatusarea']: frame.pack(side=BOTTOM, expand=NO, fill=X) self.__balloon.configure(statuscommand = \ self.__messageBar.helpmessage) def __createAboutBox(self): Pmw.aboutversion(self.appversion) Pmw.aboutcopyright(self.copyright) Pmw.aboutcontact( 'For more information, contact:\n %s\n Phone: %s\n Email: %s' %\ (self.contactname, self.contactphone, self.contactemail)) self.about = Pmw.AboutDialog(self._hull, applicationname=self.appname) self.about.withdraw() def toggleBalloon(self): if self.toggleBalloonVar.get(): self.__balloon.configure(state = 'both') else: self.__balloon.configure(state = 'status') def showAbout(self): # Create the dialog to display about and contact information. self.about.show() self.about.focus_set() def quit(self): self.parent.destroy() ### USER METHODS ### # To be overridden def appInit(self): # Called before interface is created (should be overridden). pass def createInterface(self): # Override this method to create the interface for the app. pass def onDestroy(self, event): # Override this method with actions to be performed on panel shutdown pass def createMenuBar(self): # Creates default menus. Can be overridden or simply augmented # Using button Add below self.menuBar.addmenuitem('Help', 'command', 'Get information on application', label='About...', command=self.showAbout) self.toggleBalloonVar = IntVar() if self.balloonState == 'none': self.toggleBalloonVar.set(0) else: self.toggleBalloonVar.set(1) self.menuBar.addmenuitem('Help', 'checkbutton', 'Toggle balloon help', label='Balloon help', variable = self.toggleBalloonVar, command=self.toggleBalloon) self.menuBar.addmenuitem('File', 'command', 'Quit this application', label='Quit', command=self.quit) # Getters def interior(self): # Retrieve the interior site where widgets should go. return self.dataArea def balloon(self): # Retrieve the panel's balloon widget return self.__balloon def buttonBox(self): # Retrieve the button box. return self.__buttonBox def messageBar(self): # Retieve the message bar return self.__messageBar # Utility functions def buttonAdd(self, buttonName, helpMessage=None, statusMessage=None, **kw): # Add a button to the button box. newBtn = self.__buttonBox.add(buttonName) newBtn.configure(kw) if helpMessage: self.bind(newBtn, helpMessage, statusMessage) return newBtn def alignbuttons(self): """ Make all buttons wide as widest """ self.__buttonBox.alignbuttons() def bind(self, child, balloonHelpMsg, statusHelpMsg=None): # Bind a help message and/or status message to a widget. self.__balloon.bind(child, balloonHelpMsg, statusHelpMsg) def updateProgress(self, newValue=0, newMax=0): # Used to update progress bar self.__progressBar.updateProgress(newValue, newMax) ## WIDGET UTILITY FUNCTIONS ## def addWidget(self, category, text, widget): self.widgetDict[category + '-' + text] = widget def getWidget(self, category, text): return self.widgetDict.get(category + '-' + text, None) def addVariable(self, category, text, variable): self.variableDict[category + '-' + text] = variable def getVariable(self, category, text): return self.variableDict.get(category + '-' + text, None) def createWidget(self, parent, category, text, widgetClass, help, command, side, fill, expand, kw): # Update kw to reflect user inputs kw['text'] = text # Create widget widget = apply(widgetClass, (parent,), kw) # Do this after so command isn't called on widget creation widget['command'] = command # Pack widget widget.pack(side = side, fill = fill, expand = expand) # Bind help self.bind(widget, help) # Record widget self.addWidget(category, text, widget) return widget def newCreateLabeledEntry(self, parent, category, text, help = '', command = None, value = '', width = 12, relief = SUNKEN, side = LEFT, fill = X, expand = 0): """ createLabeledEntry(parent, category, text, [options]) """ # Create labeled entry frame = Frame(parent) variable = StringVar() variable.set(value) label = Label(frame, text = text) label.pack(side = LEFT, fill = X, expand = 0) entry = Entry(frame, width = width, relief = relief, textvariable = variable) entry.pack(side = LEFT, fill = X, expand = 1) frame.pack(side = side, fill = X, expand = expand) if command: entry.bind('<Return>', command) # Add balloon help self.bind(label, help) self.bind(entry, help) # Record widgets and variable self.addWidget(category, text, entry) self.addWidget(category, text + '-Label', label) self.addVariable(category, text, variable) return entry def newCreateButton(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): """ createButton(parent, category, text, [options]) """ # Create the widget widget = self.createWidget(parent, category, text, Button, help, command, side, fill, expand, kw) return widget def newCreateCheckbutton(self, parent, category, text, help = '', command = None, initialState = 0, anchor = W, side = LEFT, fill = X, expand = 0, **kw): """ createCheckbutton(parent, category, text, [options]) """ # Create the widget widget = self.createWidget(parent, category, text, Checkbutton, help, command, side, fill, expand, kw) # Perform extra customization widget['anchor'] = anchor variable = BooleanVar() variable.set(initialState) self.addVariable(category, text, variable) widget['variable'] = variable return widget def newCreateRadiobutton(self, parent, category, text, variable, value, command = None, help = '', anchor = W, side = LEFT, fill = X, expand = 0, **kw): """ createRadiobutton(parent, category, text, variable, value, [options]) """ # Create the widget widget = self.createWidget(parent, category, text, Radiobutton, help, command, side, fill, expand, kw) # Perform extra customization widget['anchor'] = anchor widget['value'] = value widget['variable'] = variable return widget def newCreateFloater(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, Floater.Floater, help, command, side, fill, expand, kw) return widget def newCreateDial(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, Dial.Dial, help, command, side, fill, expand, kw) return widget def newCreateSider(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, Slider.Slider, help, command, side, fill, expand, kw) return widget def newCreateEntryScale(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, EntryScale.EntryScale, help, command, side, fill, expand, kw) return widget def newCreateVector2Entry(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, VectorWidgets.Vector2Entry, help, command, side, fill, expand, kw) def newCreateVector3Entry(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, VectorWidgets.Vector3Entry, help, command, side, fill, expand, kw) return widget def newCreateColorEntry(self, parent, category, text, help = '', command = None, side = LEFT, fill = X, expand = 0, **kw): # Create the widget widget = self.createWidget(parent, category, text, VectorWidgets.ColorEntry, help, command, side, fill, expand, kw) return widget def newCreateOptionMenu(self, parent, category, text, help = '', command = None, items = [], labelpos = W, label_anchor = W, label_width = 16, menu_tearoff = 1, side = LEFT, fill = X, expand = 0, **kw): # Create variable variable = StringVar() if len(items) > 0: variable.set(items[0]) # Update kw to reflect user inputs kw['items'] = items kw['label_text'] = text kw['labelpos'] = labelpos kw['label_anchor'] = label_anchor kw['label_width'] = label_width kw['menu_tearoff'] = menu_tearoff kw['menubutton_textvariable'] = variable # Create widget widget = apply(Pmw.OptionMenu, (parent,), kw) # Do this after so command isn't called on widget creation widget['command'] = command # Pack widget widget.pack(side = side, fill = fill, expand = expand) # Bind help self.bind(widget.component('menubutton'), help) # Record widget and variable self.addWidget(category, text, widget) self.addVariable(category, text, variable) return widget def newCreateComboBox(self, parent, category, text, help = '', command = None, items = [], state = DISABLED, history = 0, labelpos = W, label_anchor = W, label_width = 16, entry_width = 16, side = LEFT, fill = X, expand = 0, **kw): # Update kw to reflect user inputs kw['label_text'] = text kw['labelpos'] = labelpos kw['label_anchor'] = label_anchor kw['label_width'] = label_width kw['entry_width'] = entry_width kw['scrolledlist_items'] = items kw['entryfield_entry_state'] = state # Create widget widget = apply(Pmw.ComboBox, (parent,), kw) # Bind selection command widget['selectioncommand'] = command # Select first item if it exists if len(items) > 0: widget.selectitem(items[0]) # Pack widget widget.pack(side = side, fill = fill, expand = expand) # Bind help self.bind(widget, help) # Record widget self.addWidget(category, text, widget) return widget def transformRGB(self, rgb, max = 1.0): retval = '#' for v in [rgb[0], rgb[1], rgb[2]]: v = (v/max)*255 if v > 255: v = 255 if v < 0: v = 0 retval = "%s%02x" % (retval, int(v)) return retval class TestAppShell(AppShell): # Override class variables here appname = 'Test Application Shell' usecommandarea = 1 usestatusarea = 1 def __init__(self, parent = None, **kw): # Call superclass initialization function AppShell.__init__(self) self.initialiseoptions(TestAppShell) def createButtons(self): self.buttonAdd('Ok', helpMessage='Exit', statusMessage='Exit', command=self.quit) def createMain(self): self.label = self.createcomponent('label', (), None, Label, (self.interior(),), text='Data Area') self.label.pack() self.bind(self.label, 'Space taker') def createInterface(self): self.createButtons() self.createMain() if __name__ == '__main__': test = TestAppShell(balloon_state='none')
39.279857
79
0.527274
11bfc267931dfd1ff5b4dc7571e2f7bd36ec8b8d
3,687
py
Python
senteval/binary.py
idavidrein/SentEval
fcac5a5c0598f2cad4239cc98ed3415671372b58
[ "BSD-3-Clause" ]
null
null
null
senteval/binary.py
idavidrein/SentEval
fcac5a5c0598f2cad4239cc98ed3415671372b58
[ "BSD-3-Clause" ]
null
null
null
senteval/binary.py
idavidrein/SentEval
fcac5a5c0598f2cad4239cc98ed3415671372b58
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # ''' Binary classifier and corresponding datasets : MR, CR, SUBJ, MPQA ''' from __future__ import absolute_import, division, unicode_literals import io import logging import os import numpy as np import logging from tqdm import tqdm from senteval.tools.validation import InnerKFoldClassifier class BinaryClassifierEval(object): def __init__(self, pos, neg, seed=1111): self.seed = seed self.samples, self.labels = pos + neg, [1] * len(pos) + [0] * len(neg) self.n_samples = len(self.samples) def do_prepare(self, params, prepare): # prepare is given the whole text return prepare(params, self.samples) # prepare puts everything it outputs in "params" : params.word2id etc # Those output will be further used by "batcher". def loadFile(self, fpath): with io.open(fpath, 'r', encoding='latin-1') as f: return [line.split() for line in f.read().splitlines()] def run(self, params, batcher): enc_input = [] # Sort to reduce padding sorted_corpus = sorted(zip(self.samples, self.labels), key=lambda z: (len(z[0]), z[1])) sorted_samples = [x for (x, y) in sorted_corpus] sorted_labels = [y for (x, y) in sorted_corpus] print('Generating sentence embeddings') for ii in tqdm(range(0, self.n_samples, params.batch_size)): batch = sorted_samples[ii:ii + params.batch_size] embeddings = batcher(params, batch) enc_input.append(embeddings) enc_input = np.vstack(enc_input) print('Generated sentence embeddings') config = { 'nclasses': 2, 'seed': self.seed, 'usepytorch': params.usepytorch, 'classifier': params.classifier, 'nhid': params.nhid, 'kfold': params.kfold } clf = InnerKFoldClassifier(enc_input, np.array(sorted_labels), config) devacc, testacc = clf.run() print('Dev acc : {0} Test acc : {1}\n'.format(devacc, testacc)) return {'devacc': devacc, 'acc': testacc, 'ndev': self.n_samples, 'ntest': self.n_samples} class CREval(BinaryClassifierEval): def __init__(self, task_path, seed=1111): print('***** Transfer task : CR *****\n\n') pos = self.loadFile(os.path.join(task_path, 'custrev.pos')) neg = self.loadFile(os.path.join(task_path, 'custrev.neg')) super(self.__class__, self).__init__(pos, neg, seed) class MREval(BinaryClassifierEval): def __init__(self, task_path, seed=1111): print('***** Transfer task : MR *****\n\n') pos = self.loadFile(os.path.join(task_path, 'rt-polarity.pos')) neg = self.loadFile(os.path.join(task_path, 'rt-polarity.neg')) super(self.__class__, self).__init__(pos, neg, seed) class SUBJEval(BinaryClassifierEval): def __init__(self, task_path, seed=1111): print('***** Transfer task : SUBJ *****\n\n') obj = self.loadFile(os.path.join(task_path, 'subj.objective')) subj = self.loadFile(os.path.join(task_path, 'subj.subjective')) super(self.__class__, self).__init__(obj, subj, seed) class MPQAEval(BinaryClassifierEval): def __init__(self, task_path, seed=1111): print('***** Transfer task : MPQA *****\n\n') pos = self.loadFile(os.path.join(task_path, 'mpqa.pos')) neg = self.loadFile(os.path.join(task_path, 'mpqa.neg')) super(self.__class__, self).__init__(pos, neg, seed)
36.147059
98
0.638459
b959e05a9d9c7e07e71fe81f1f4204f27fcf4364
13,046
py
Python
Tester/RCube.py
AthulJoseph27/Thistlewaites_Algorithm
904d0a889d86be6191335aef66f36938a621cff2
[ "MIT" ]
null
null
null
Tester/RCube.py
AthulJoseph27/Thistlewaites_Algorithm
904d0a889d86be6191335aef66f36938a621cff2
[ "MIT" ]
null
null
null
Tester/RCube.py
AthulJoseph27/Thistlewaites_Algorithm
904d0a889d86be6191335aef66f36938a621cff2
[ "MIT" ]
null
null
null
import os import sys import time cube = [] def R(): global cube t = cube[0][5] cube[0][5] = cube[3][5] cube[3][5] = cube[6][5] cube[6][5] = cube[9][5] cube[9][5] = t t = cube[2][5] cube[2][5] = cube[5][5] cube[5][5] = cube[8][5] cube[8][5] = cube[11][5] cube[11][5] = t t = cube[1][5] cube[1][5] = cube[4][5] cube[4][5] = cube[7][5] cube[7][5] = cube[10][5] cube[10][5] = t t = cube[3][6] cube[3][6] = cube[5][6] cube[5][6] = cube[5][8] cube[5][8] = cube[3][8] cube[3][8] = t t = cube[4][6] cube[4][6] = cube[5][7] cube[5][7] = cube[4][8] cube[4][8] = cube[3][7] cube[3][7] = t def r(): global cube t = cube[0][5] cube[0][5] = cube[9][5] cube[9][5] = cube[6][5] cube[6][5] = cube[3][5] cube[3][5] = t t = cube[1][5] cube[1][5] = cube[10][5] cube[10][5] = cube[7][5] cube[7][5] = cube[4][5] cube[4][5] = t t = cube[2][5] cube[2][5] = cube[11][5] cube[11][5] = cube[8][5] cube[8][5] = cube[5][5] cube[5][5] = t t = cube[3][6] cube[3][6] = cube[3][8] cube[3][8] = cube[5][8] cube[5][8] = cube[5][6] cube[5][6] = t t = cube[3][7] cube[3][7] = cube[4][8] cube[4][8] = cube[5][7] cube[5][7] = cube[4][6] cube[4][6] = t def F(): global cube t = cube[3][4] cube[3][4] = cube[4][3] cube[4][3] = cube[5][4] cube[5][4] = cube[4][5] cube[4][5] = t b = cube[3][5] cube[3][5] = cube[3][3] cube[3][3] = cube[5][3] cube[5][3] = cube[5][5] cube[5][5] = b c = cube[2][4] cube[2][4] = cube[4][2] cube[4][2] = cube[6][4] cube[6][4] = cube[4][6] cube[4][6] = c d = cube[2][5] cube[2][5] = cube[3][2] cube[3][2] = cube[6][3] cube[6][3] = cube[5][6] cube[5][6] = d h = cube[2][3] cube[2][3] = cube[5][2] cube[5][2] = cube[6][5] cube[6][5] = cube[3][6] cube[3][6] = h def f(): global cube t = cube[3][4] cube[3][4] = cube[4][5] cube[4][5] = cube[5][4] cube[5][4] = cube[4][3] cube[4][3] = t b = cube[3][5] cube[3][5] = cube[5][5] cube[5][5] = cube[5][3] cube[5][3] = cube[3][3] cube[3][3] = b c = cube[2][4] cube[2][4] = cube[4][6] cube[4][6] = cube[6][4] cube[6][4] = cube[4][2] cube[4][2] = c d = cube[2][5] cube[2][5] = cube[5][6] cube[5][6] = cube[6][3] cube[6][3] = cube[3][2] cube[3][2] = d h = cube[2][3] cube[2][3] = cube[3][6] cube[3][6] = cube[6][5] cube[6][5] = cube[5][2] cube[5][2] = h def L(): global cube t = cube[0][3] cube[0][3] = cube[9][3] cube[9][3] = cube[6][3] cube[6][3] = cube[3][3] cube[3][3] = t c = cube[2][3] cube[2][3] = cube[11][3] cube[11][3] = cube[8][3] cube[8][3] = cube[5][3] cube[5][3] = c b = cube[1][3] cube[1][3] = cube[10][3] cube[10][3] = cube[7][3] cube[7][3] = cube[4][3] cube[4][3] = b d = cube[3][0] cube[3][0] = cube[5][0] cube[5][0] = cube[5][2] cube[5][2] = cube[3][2] cube[3][2] = d h = cube[3][1] cube[3][1] = cube[4][0] cube[4][0] = cube[5][1] cube[5][1] = cube[4][2] cube[4][2] = h def l(): global cube t = cube[0][3] cube[0][3] = cube[3][3] cube[3][3] = cube[6][3] cube[6][3] = cube[9][3] cube[9][3] = t c = cube[2][3] cube[2][3] = cube[5][3] cube[5][3] = cube[8][3] cube[8][3] = cube[11][3] cube[11][3] = c b = cube[1][3] cube[1][3] = cube[4][3] cube[4][3] = cube[7][3] cube[7][3] = cube[10][3] cube[10][3] = b d = cube[3][0] cube[3][0] = cube[3][2] cube[3][2] = cube[5][2] cube[5][2] = cube[5][0] cube[5][0] = d h = cube[3][1] cube[3][1] = cube[4][2] cube[4][2] = cube[5][1] cube[5][1] = cube[4][0] cube[4][0] = h def U(): global cube t = cube[3][0] cube[3][0] = cube[3][3] cube[3][3] = cube[3][6] cube[3][6] = cube[11][5] cube[11][5] = t c = cube[3][2] cube[3][2] = cube[3][5] cube[3][5] = cube[3][8] cube[3][8] = cube[11][3] cube[11][3] = c b = cube[3][1] cube[3][1] = cube[3][4] cube[3][4] = cube[3][7] cube[3][7] = cube[11][4] cube[11][4] = b d = cube[2][3] cube[2][3] = cube[2][5] cube[2][5] = cube[0][5] cube[0][5] = cube[0][3] cube[0][3] = d h = cube[2][4] cube[2][4] = cube[1][5] cube[1][5] = cube[0][4] cube[0][4] = cube[1][3] cube[1][3] = h def u(): global cube t = cube[3][0] cube[3][0] = cube[11][5] cube[11][5] = cube[3][6] cube[3][6] = cube[3][3] cube[3][3] = t c = cube[3][2] cube[3][2] = cube[11][3] cube[11][3] = cube[3][8] cube[3][8] = cube[3][5] cube[3][5] = c b = cube[3][1] cube[3][1] = cube[11][4] cube[11][4] = cube[3][7] cube[3][7] = cube[3][4] cube[3][4] = b d = cube[2][3] cube[2][3] = cube[0][3] cube[0][3] = cube[0][5] cube[0][5] = cube[2][5] cube[2][5] = d h = cube[2][4] cube[2][4] = cube[1][3] cube[1][3] = cube[0][4] cube[0][4] = cube[1][5] cube[1][5] = h def B(): global cube b = cube[0][5] cube[0][5] = cube[5][8] cube[5][8] = cube[8][3] cube[8][3] = cube[3][0] cube[3][0] = b c = cube[0][4] cube[0][4] = cube[4][8] cube[4][8] = cube[8][4] cube[8][4] = cube[4][0] cube[4][0] = c d = cube[0][3] cube[0][3] = cube[3][8] cube[3][8] = cube[8][5] cube[8][5] = cube[5][0] cube[5][0] = d t = cube[9][4] cube[9][4] = cube[10][3] cube[10][3] = cube[11][4] cube[11][4] = cube[10][5] cube[10][5] = t h = cube[9][3] cube[9][3] = cube[11][3] cube[11][3] = cube[11][5] cube[11][5] = cube[9][5] cube[9][5] = h def b(): global cube b = cube[0][5] cube[0][5] = cube[3][0] cube[3][0] = cube[8][3] cube[8][3] = cube[5][8] cube[5][8] = b c = cube[0][4] cube[0][4] = cube[4][0] cube[4][0] = cube[8][4] cube[8][4] = cube[4][8] cube[4][8] = c d = cube[0][3] cube[0][3] = cube[5][0] cube[5][0] = cube[8][5] cube[8][5] = cube[3][8] cube[3][8] = d t = cube[9][4] cube[9][4] = cube[10][5] cube[10][5] = cube[11][4] cube[11][4] = cube[10][3] cube[10][3] = t h = cube[9][3] cube[9][3] = cube[9][5] cube[9][5] = cube[11][5] cube[11][5] = cube[11][3] cube[11][3] = h def D(): global cube t = cube[5][0] cube[5][0] = cube[9][5] cube[9][5] = cube[5][6] cube[5][6] = cube[5][3] cube[5][3] = t c = cube[5][2] cube[5][2] = cube[9][3] cube[9][3] = cube[5][8] cube[5][8] = cube[5][5] cube[5][5] = c b = cube[5][1] cube[5][1] = cube[9][4] cube[9][4] = cube[5][7] cube[5][7] = cube[5][4] cube[5][4] = b d = cube[6][3] cube[6][3] = cube[8][3] cube[8][3] = cube[8][5] cube[8][5] = cube[6][5] cube[6][5] = d h = cube[6][4] cube[6][4] = cube[7][3] cube[7][3] = cube[8][4] cube[8][4] = cube[7][5] cube[7][5] = h def d(): global cube t = cube[5][0] cube[5][0] = cube[5][3] cube[5][3] = cube[5][6] cube[5][6] = cube[9][5] cube[9][5] = t c = cube[5][2] cube[5][2] = cube[5][5] cube[5][5] = cube[5][8] cube[5][8] = cube[9][3] cube[9][3] = c b = cube[5][1] cube[5][1] = cube[5][4] cube[5][4] = cube[5][7] cube[5][7] = cube[9][4] cube[9][4] = b d = cube[6][3] cube[6][3] = cube[6][5] cube[6][5] = cube[8][5] cube[8][5] = cube[8][3] cube[8][3] = d h = cube[6][4] cube[6][4] = cube[7][5] cube[7][5] = cube[8][4] cube[8][4] = cube[7][3] cube[7][3] = h def U2(): U() U() def D2(): D() D() def F2(): F() F() def B2(): B() B() def R2(): R() R() def L2(): L() L() def display_cube(a, sol): import pygame global cube cube = [rows[:] for rows in a] pygame.font.init() moves = ['R', 'L', 'F', 'B', 'U', 'D', 'r', 'l', 'f', 'b', 'u', 'd', 'R2', 'L2', 'F2', 'B2', 'U2', 'D2'] movesq = ['R()', 'L()', 'F()', 'B()', 'U()', 'D()', 'r()', 'l()', 'f()', 'b()', 'u()', 'd()', 'R2()', 'L2()', 'F2()', 'B2()', 'U2()', 'D2()'] clock = pygame.time.Clock() STAT_FONT = pygame.font.SysFont("comicsans", 30) gameExit = False try: pygame.quit() finally: gameDisplay = pygame.display.set_mode((500, 500)) pygame.display.set_caption("Cube") while not gameExit: clock.tick(3) nxt_x = 150 nxt_y = 10 if len(sol) != 0: if sol[0] != ' ': eval(movesq[moves.index(sol[0])]) sol.pop(0) a = [rows[:] for rows in cube] for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() gameExit = True if gameExit: break # pygame.draw.rect(gameDisplay,(173,216,230),[nxt_x,nxt_y,30,30]) gameDisplay.fill((0, 0, 0)) for i in range(0, 3): for j in range(3, 6): if a[i][j] == 'B': pygame.draw.rect(gameDisplay, (70, 216, 255), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'R': pygame.draw.rect(gameDisplay, (225, 0, 0), [nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'G': pygame.draw.rect(gameDisplay, (0, 255, 0), [nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'Y': pygame.draw.rect(gameDisplay, (255, 255, 0), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'W': pygame.draw.rect(gameDisplay, (255, 255, 255), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'O': pygame.draw.rect(gameDisplay, (255, 165, 0), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 nxt_y += 40 nxt_x = 150 nxt_x = 30 for i in range(3, 6): for j in range(0, 9): if a[i][j] == 'B': pygame.draw.rect(gameDisplay, (70, 216, 255), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'R': pygame.draw.rect(gameDisplay, (225, 0, 0), [nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'G': pygame.draw.rect(gameDisplay, (0, 255, 0), [nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'Y': pygame.draw.rect(gameDisplay, (255, 255, 0), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'W': pygame.draw.rect(gameDisplay, (255, 255, 255), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'O': pygame.draw.rect(gameDisplay, (255, 165, 0), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 nxt_y += 40 nxt_x = 30 nxt_x = 150 for i in range(6, 12): for j in range(3, 6): if a[i][j] == 'B': pygame.draw.rect(gameDisplay, (70, 216, 255), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'R': pygame.draw.rect(gameDisplay, (225, 0, 0), [nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'G': pygame.draw.rect(gameDisplay, (0, 255, 0), [nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'Y': pygame.draw.rect(gameDisplay, (255, 255, 0), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'W': pygame.draw.rect(gameDisplay, (255, 255, 255), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 elif a[i][j] == 'O': pygame.draw.rect(gameDisplay, (255, 165, 0), [ nxt_x, nxt_y, 30, 30]) nxt_x += 40 nxt_y += 40 nxt_x = 150 pygame.display.update()
24.661626
82
0.389085
4860577c3e812a6e87bdcaf70cad66e843a69e03
1,484
py
Python
tribolium_clustering/data_visualisation/_plot_predictions_onto_UMAP.py
Cryaaa/tribolium-clustering
f5751ec8c007e95e8a9688d2d8e34508b04f0822
[ "BSD-3-Clause" ]
null
null
null
tribolium_clustering/data_visualisation/_plot_predictions_onto_UMAP.py
Cryaaa/tribolium-clustering
f5751ec8c007e95e8a9688d2d8e34508b04f0822
[ "BSD-3-Clause" ]
null
null
null
tribolium_clustering/data_visualisation/_plot_predictions_onto_UMAP.py
Cryaaa/tribolium-clustering
f5751ec8c007e95e8a9688d2d8e34508b04f0822
[ "BSD-3-Clause" ]
null
null
null
def plot_predictions_onto_UMAP(embedding, prediction, title = ' ', HDBSCAN = True): import matplotlib.pyplot as plt import seaborn as sns import numpy as np np.random.rand np.random.seed(42) rand_colours = np.random.rand((max(prediction)+3)) plt.figure(figsize = (10,10)) if HDBSCAN: clustered = (prediction >= 0) plt.scatter(embedding[~clustered, 0], embedding[~clustered, 1], c=(0.6, 0.6, 0.6), s=10, alpha=0.3) try: plt.scatter(embedding[clustered, 0], embedding[clustered, 1], c=[sns.color_palette()[int(x)] for x in prediction[clustered]], s=10); except IndexError: plt.scatter(embedding[clustered, 0], embedding[clustered, 1], c=[rand_colours[x] for x in prediction[clustered]], s=10); else: try: plt.scatter(embedding[:, 0], embedding[:, 1], c=[sns.color_palette()[int(x)] for x in prediction], s=10); except IndexError: plt.scatter(embedding[:, 0], embedding[:, 1], c=[rand_colours[x] for x in prediction], s=10); plt.gca().set_aspect('equal', 'datalim') plt.title(title, fontsize=18)
37.1
87
0.481806
d356c6507be91d9c4e98cea34d64b47bc41d9cd0
714
py
Python
run/old_scripts/run_iteration.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
null
null
null
run/old_scripts/run_iteration.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
20
2019-07-15T21:49:29.000Z
2020-01-09T14:35:03.000Z
run/old_scripts/run_iteration.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
null
null
null
from libs.iteration_manager import IterationManager from libs.index import IndexManager import libs.dirs as dirs iterFolder = Path(dirs.iter_folder) / "test_loop/iteration_1/" indexPath = testFolder / "sampled_images.csv" newLabelsPath = testFolder / "sampled_images_labels.csv" # Sample images # Label images w/ interface # Create sampled_images_labels.csv # Add frame hash to labels file # add_frame_hash_to_labels_file # Merge interface labels file with index file ind = IndexManager(indexPath) newLabelsIndex = translate_interface_labels_file(newLabelsPath) ind.merge_annotations(newLabelsIndex) # Merge sampled_images index with existing labeled dataset
29.75
71
0.768908
4fb4834d0dd0b5f89cfcae47f21c371372995501
313
py
Python
tasks/zadanie_3.py
DIMITRY-GALYAS1/Rabota-10
fb9f84352af23a7324db9c332f6e11661777d53d
[ "MIT" ]
null
null
null
tasks/zadanie_3.py
DIMITRY-GALYAS1/Rabota-10
fb9f84352af23a7324db9c332f6e11661777d53d
[ "MIT" ]
null
null
null
tasks/zadanie_3.py
DIMITRY-GALYAS1/Rabota-10
fb9f84352af23a7324db9c332f6e11661777d53d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- def main(): q = 1 while True: z = int(input("Введите число: ")) q *= z if q == 0: print("Произведение = 0") break else: print(f"Прозведение = {q}") if __name__ == '__main__': main()
16.473684
41
0.440895
24be616cb9a3dc57a259d5a2a5d4313f5c44776a
5,774
py
Python
src/cowrie/commands/uname.py
GreyNoise-Intelligence/cowrie
d2a9b30f5fd23428baf32e2de1d24e944cf8cde7
[ "BSD-3-Clause" ]
null
null
null
src/cowrie/commands/uname.py
GreyNoise-Intelligence/cowrie
d2a9b30f5fd23428baf32e2de1d24e944cf8cde7
[ "BSD-3-Clause" ]
null
null
null
src/cowrie/commands/uname.py
GreyNoise-Intelligence/cowrie
d2a9b30f5fd23428baf32e2de1d24e944cf8cde7
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2010 Upi Tamminen <desaster@gmail.com> # See the COPYRIGHT file for more information """ uname command """ from cowrie.core.config import CowrieConfig from cowrie.shell.command import HoneyPotCommand commands = {} def hardware_platform(): return CowrieConfig().get("shell", "hardware_platform", fallback="x86_64") def kernel_name(): return CowrieConfig().get("shell", "kernel_name", fallback="Linux") def kernel_version(): return CowrieConfig().get("shell", "kernel_version", fallback="3.2.0-4-amd64") def kernel_build_string(): return CowrieConfig().get( "shell", "kernel_build_string", fallback="#1 SMP Debian 3.2.68-1+deb7u1" ) def operating_system(): return CowrieConfig().get("shell", "operating_system", fallback="GNU/Linux") def uname_help(): return """Usage: uname [OPTION]... Print certain system information. With no OPTION, same as -s. -a, --all print all information, in the following order, except omit -p and -i if unknown: -s, --kernel-name print the kernel name -n, --nodename print the network node hostname -r, --kernel-release print the kernel release -v, --kernel-version print the kernel version -m, --machine print the machine hardware name -p, --processor print the processor type (non-portable) -i, --hardware-platform print the hardware platform (non-portable) -o, --operating-system print the operating system --help display this help and exit --version output version information and exit GNU coreutils online help: <http://www.gnu.org/software/coreutils/> Full documentation at: <http://www.gnu.org/software/coreutils/uname> or available locally via: info '(coreutils) uname invocation'\n """ def uname_get_some_help(): return "Try 'uname --help' for more information." def uname_fail_long(arg): return f"uname: unrecognized option '{arg}'\n{uname_get_some_help()}\n" def uname_fail_short(arg): return f"uname: invalid option -- '{arg}'\n{uname_get_some_help()}\n" def uname_fail_extra(arg): # Note: These are apostrophes, not single quotation marks. return f"uname: extra operand ‘{arg}’\n{uname_get_some_help()}\n" class command_uname(HoneyPotCommand): def full_uname(self): return "{} {} {} {} {} {}\n".format( kernel_name(), self.protocol.hostname, kernel_version(), kernel_build_string(), hardware_platform(), operating_system(), ) def call(self): opts = { "name": False, "release": False, "version": False, "os": False, "node": False, "machine": False, } flags = [ (["a", "all"], "__ALL__"), (["s", "kernel-name"], "name"), (["r", "kernel-release"], "release"), (["v", "kernel-version"], "version"), (["o", "operating-system"], "os"), (["n", "nodename"], "node"), (["m", "machine", "p", "processor", "i", "hardware-platform"], "machine"), ] if not self.args: # IF no params output default self.write(f"{kernel_name()}\n") return # getopt-style parsing for a in self.args: a = a.strip() arg_block = [] was_long = False if a == "--help": # Help overrides invalid args following --help # There's no -h, invalid args before --help still fail. self.write(uname_help()) return elif a.startswith("--"): # arg name w/o -- was_long = True arg_block.append(a[2:]) elif a.startswith("-"): # letter by letter a = a[1:] if len(a) == 0: self.write(uname_fail_extra("-")) return for split_arg in a: arg_block.append(split_arg) else: self.write(uname_fail_extra(a)) return for arg in arg_block: arg_parsed = False # Find a possible flag for each arg. for possible_args, target_opt in flags: if arg not in possible_args: continue arg_parsed = True # Got a hit! # Set all opts for -a/--all, single opt otherwise: if target_opt == "__ALL__": for key, value in opts.items(): opts[key] = True else: opts[target_opt] = True break # Next arg please if not arg_parsed: self.write( uname_fail_long(a) if was_long else uname_fail_short(arg) ) return # All the options set, let's get the output output = [] if opts["name"]: output.append(kernel_name()) if opts["node"]: output.append(self.protocol.hostname) if opts["release"]: output.append(kernel_version()) if opts["version"]: output.append(kernel_build_string()) if opts["machine"]: output.append(hardware_platform()) if opts["os"]: output.append(operating_system()) if len(output) < 1: output.append(kernel_name()) self.write(" ".join(output) + "\n") commands["/bin/uname"] = command_uname commands["uname"] = command_uname
30.389474
86
0.537929
bdfe981baf3cf3b1b244f014b51d29757fa69945
40,038
py
Python
tensorflow/contrib/tensor_forest/python/tensor_forest.py
monokrome/tensorflow
2533ada7dd45b84d60677b8735e013d21044651a
[ "Apache-2.0" ]
1
2019-06-12T09:23:29.000Z
2019-06-12T09:23:29.000Z
tensorflow/contrib/tensor_forest/python/tensor_forest.py
monokrome/tensorflow
2533ada7dd45b84d60677b8735e013d21044651a
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/tensor_forest/python/tensor_forest.py
monokrome/tensorflow
2533ada7dd45b84d60677b8735e013d21044651a
[ "Apache-2.0" ]
1
2019-11-05T19:10:32.000Z
2019-11-05T19:10:32.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Extremely random forest graph builder. go/brain-tree.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import random import sys from tensorflow.contrib.framework.python.ops import variables as framework_variables from tensorflow.contrib.losses.python.losses import loss_ops from tensorflow.contrib.tensor_forest.python import constants from tensorflow.contrib.tensor_forest.python.ops import data_ops from tensorflow.contrib.tensor_forest.python.ops import tensor_forest_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as tf_variables from tensorflow.python.platform import tf_logging as logging # A convenience class for holding random forest hyperparameters. # # To just get some good default parameters, use: # hparams = ForestHParams(num_classes=2, num_features=40).fill() # # Note that num_classes can not be inferred and so must always be specified. # Also, either num_splits_to_consider or num_features should be set. # # To override specific values, pass them to the constructor: # hparams = ForestHParams(num_classes=5, num_trees=10, num_features=5).fill() # # TODO(thomaswc): Inherit from tf.HParams when that is publicly available. class ForestHParams(object): """A base class for holding hyperparameters and calculating good defaults.""" def __init__(self, num_trees=100, max_nodes=10000, bagging_fraction=1.0, num_splits_to_consider=0, feature_bagging_fraction=1.0, max_fertile_nodes=0, split_after_samples=250, min_split_samples=5, valid_leaf_threshold=1, dominate_method='bootstrap', dominate_fraction=0.99, **kwargs): self.num_trees = num_trees self.max_nodes = max_nodes self.bagging_fraction = bagging_fraction self.feature_bagging_fraction = feature_bagging_fraction self.num_splits_to_consider = num_splits_to_consider self.max_fertile_nodes = max_fertile_nodes self.split_after_samples = split_after_samples self.min_split_samples = min_split_samples self.valid_leaf_threshold = valid_leaf_threshold self.dominate_method = dominate_method self.dominate_fraction = dominate_fraction for name, value in kwargs.items(): setattr(self, name, value) def values(self): return self.__dict__ def fill(self): """Intelligently sets any non-specific parameters.""" # Fail fast if num_classes or num_features isn't set. _ = getattr(self, 'num_classes') _ = getattr(self, 'num_features') self.bagged_num_features = int(self.feature_bagging_fraction * self.num_features) self.bagged_features = None if self.feature_bagging_fraction < 1.0: self.bagged_features = [random.sample( range(self.num_features), self.bagged_num_features) for _ in range(self.num_trees)] self.regression = getattr(self, 'regression', False) # Num_outputs is the actual number of outputs (a single prediction for # classification, a N-dimenensional point for regression). self.num_outputs = self.num_classes if self.regression else 1 # Add an extra column to classes for storing counts, which is needed for # regression and avoids having to recompute sums for classification. self.num_output_columns = self.num_classes + 1 # Our experiments have found that num_splits_to_consider = num_features # gives good accuracy. self.num_splits_to_consider = self.num_splits_to_consider or min( self.num_features, 1000) self.max_fertile_nodes = (self.max_fertile_nodes or int(math.ceil(self.max_nodes / 2.0))) # We have num_splits_to_consider slots to fill, and we want to spend # approximately split_after_samples samples initializing them. num_split_initializiations_per_input = max(1, int(math.floor( self.num_splits_to_consider / self.split_after_samples))) self.split_initializations_per_input = getattr( self, 'split_initializations_per_input', num_split_initializiations_per_input) # If base_random_seed is 0, the current time will be used to seed the # random number generators for each tree. If non-zero, the i-th tree # will be seeded with base_random_seed + i. self.base_random_seed = getattr(self, 'base_random_seed', 0) return self def get_epoch_variable(): """Returns the epoch variable, or [0] if not defined.""" # Grab epoch variable defined in # //third_party/tensorflow/python/training/input.py::limit_epochs for v in tf_variables.local_variables(): if 'limit_epochs/epoch' in v.op.name: return array_ops.reshape(v, [1]) # TODO(thomaswc): Access epoch from the data feeder. return [0] # A simple container to hold the training variables for a single tree. class TreeTrainingVariables(object): """Stores tf.Variables for training a single random tree. Uses tf.get_variable to get tree-specific names so that this can be used with a tf.learn-style implementation (one that trains a model, saves it, then relies on restoring that model to evaluate). """ def __init__(self, params, tree_num, training): self.tree = variable_scope.get_variable( name=self.get_tree_name('tree', tree_num), dtype=dtypes.int32, shape=[params.max_nodes, 2], initializer=init_ops.constant_initializer(-2)) self.tree_thresholds = variable_scope.get_variable( name=self.get_tree_name('tree_thresholds', tree_num), shape=[params.max_nodes], initializer=init_ops.constant_initializer(-1.0)) self.end_of_tree = variable_scope.get_variable( name=self.get_tree_name('end_of_tree', tree_num), dtype=dtypes.int32, initializer=constant_op.constant([1])) self.start_epoch = variable_scope.get_variable( name=self.get_tree_name('start_epoch', tree_num), dtype=dtypes.int32, shape=[params.max_nodes], initializer=init_ops.constant_initializer(0)) if training: self.node_to_accumulator_map = variable_scope.get_variable( name=self.get_tree_name('node_to_accumulator_map', tree_num), shape=[params.max_nodes], dtype=dtypes.int32, initializer=init_ops.constant_initializer(-1)) self.accumulator_to_node_map = variable_scope.get_variable( name=self.get_tree_name('accumulator_to_node_map', tree_num), shape=[params.max_fertile_nodes], dtype=dtypes.int32, initializer=init_ops.constant_initializer(-1)) self.candidate_split_features = variable_scope.get_variable( name=self.get_tree_name('candidate_split_features', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider], dtype=dtypes.int32, initializer=init_ops.constant_initializer(-1)) self.candidate_split_thresholds = variable_scope.get_variable( name=self.get_tree_name('candidate_split_thresholds', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider], initializer=init_ops.constant_initializer(0.0)) # Statistics shared by classification and regression. self.node_sums = variable_scope.get_variable( name=self.get_tree_name('node_sums', tree_num), shape=[params.max_nodes, params.num_output_columns], initializer=init_ops.constant_initializer(0.0)) if training: self.candidate_split_sums = variable_scope.get_variable( name=self.get_tree_name('candidate_split_sums', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider, params.num_output_columns], initializer=init_ops.constant_initializer(0.0)) self.accumulator_sums = variable_scope.get_variable( name=self.get_tree_name('accumulator_sums', tree_num), shape=[params.max_fertile_nodes, params.num_output_columns], initializer=init_ops.constant_initializer(-1.0)) # Regression also tracks second order stats. if params.regression: self.node_squares = variable_scope.get_variable( name=self.get_tree_name('node_squares', tree_num), shape=[params.max_nodes, params.num_output_columns], initializer=init_ops.constant_initializer(0.0)) self.candidate_split_squares = variable_scope.get_variable( name=self.get_tree_name('candidate_split_squares', tree_num), shape=[params.max_fertile_nodes, params.num_splits_to_consider, params.num_output_columns], initializer=init_ops.constant_initializer(0.0)) self.accumulator_squares = variable_scope.get_variable( name=self.get_tree_name('accumulator_squares', tree_num), shape=[params.max_fertile_nodes, params.num_output_columns], initializer=init_ops.constant_initializer(-1.0)) else: self.node_squares = constant_op.constant( 0.0, name=self.get_tree_name('node_squares', tree_num)) self.candidate_split_squares = constant_op.constant( 0.0, name=self.get_tree_name('candidate_split_squares', tree_num)) self.accumulator_squares = constant_op.constant( 0.0, name=self.get_tree_name('accumulator_squares', tree_num)) def get_tree_name(self, name, num): return '{0}-{1}'.format(name, num) class ForestStats(object): def __init__(self, tree_stats, params): """A simple container for stats about a forest.""" self.tree_stats = tree_stats self.params = params def get_average(self, thing): val = 0.0 for i in range(self.params.num_trees): val += getattr(self.tree_stats[i], thing) return val / self.params.num_trees class TreeStats(object): def __init__(self, num_nodes, num_leaves): self.num_nodes = num_nodes self.num_leaves = num_leaves class ForestTrainingVariables(object): """A container for a forests training data, consisting of multiple trees. Instantiates a TreeTrainingVariables object for each tree. We override the __getitem__ and __setitem__ function so that usage looks like this: forest_variables = ForestTrainingVariables(params) ... forest_variables.tree ... """ def __init__(self, params, device_assigner, training=True, tree_variables_class=TreeTrainingVariables): self.variables = [] # Set up some scalar variables to run through the device assigner, then # we can use those to colocate everything related to a tree. self.device_dummies = [] with ops.device(device_assigner): for i in range(params.num_trees): self.device_dummies.append(variable_scope.get_variable( name='device_dummy_%d' % i, shape=0)) for i in range(params.num_trees): with ops.device(self.device_dummies[i].device): self.variables.append(tree_variables_class(params, i, training)) def __setitem__(self, t, val): self.variables[t] = val def __getitem__(self, t): return self.variables[t] class RandomForestGraphs(object): """Builds TF graphs for random forest training and inference.""" def __init__(self, params, device_assigner=None, variables=None, tree_variables_class=TreeTrainingVariables, tree_graphs=None, training=True): self.params = params self.device_assigner = ( device_assigner or framework_variables.VariableDeviceChooser()) logging.info('Constructing forest with params = ') logging.info(self.params.__dict__) self.variables = variables or ForestTrainingVariables( self.params, device_assigner=self.device_assigner, training=training, tree_variables_class=tree_variables_class) tree_graph_class = tree_graphs or RandomTreeGraphs self.trees = [ tree_graph_class(self.variables[i], self.params, i) for i in range(self.params.num_trees) ] def _bag_features(self, tree_num, input_data): split_data = array_ops.split( value=input_data, num_or_size_splits=self.params.num_features, axis=1) return array_ops.concat( [split_data[ind] for ind in self.params.bagged_features[tree_num]], 1) def training_graph(self, input_data, input_labels, num_trainers=1, trainer_id=0, **tree_kwargs): """Constructs a TF graph for training a random forest. Args: input_data: A tensor or dict of string->Tensor for input data. input_labels: A tensor or placeholder for labels associated with input_data. num_trainers: Number of parallel trainers to split trees among. trainer_id: Which trainer this instance is. **tree_kwargs: Keyword arguments passed to each tree's training_graph. Returns: The last op in the random forest training graph. Raises: NotImplementedError: If trying to use bagging with sparse features. """ processed_dense_features, processed_sparse_features, data_spec = ( data_ops.ParseDataTensorOrDict(input_data)) if input_labels is not None: labels = data_ops.ParseLabelTensorOrDict(input_labels) data_spec = data_spec or self.get_default_data_spec(input_data) tree_graphs = [] trees_per_trainer = self.params.num_trees / num_trainers tree_start = int(trainer_id * trees_per_trainer) tree_end = int((trainer_id + 1) * trees_per_trainer) for i in range(tree_start, tree_end): logging.info('training graph for tree: %d' % i) with ops.device(self.variables.device_dummies[i].device): seed = self.params.base_random_seed if seed != 0: seed += i # If using bagging, randomly select some of the input. tree_data = processed_dense_features tree_labels = labels if self.params.bagging_fraction < 1.0: # TODO(gilberth): Support bagging for sparse features. if processed_sparse_features is not None: raise NotImplementedError( 'Bagging not supported with sparse features.') # TODO(thomaswc): This does sampling without replacment. Consider # also allowing sampling with replacement as an option. batch_size = array_ops.strided_slice( array_ops.shape(processed_dense_features), [0], [1]) r = random_ops.random_uniform(batch_size, seed=seed) mask = math_ops.less( r, array_ops.ones_like(r) * self.params.bagging_fraction) gather_indices = array_ops.squeeze( array_ops.where(mask), squeeze_dims=[1]) # TODO(thomaswc): Calculate out-of-bag data and labels, and store # them for use in calculating statistics later. tree_data = array_ops.gather(processed_dense_features, gather_indices) tree_labels = array_ops.gather(labels, gather_indices) if self.params.bagged_features: if processed_sparse_features is not None: raise NotImplementedError( 'Feature bagging not supported with sparse features.') tree_data = self._bag_features(i, tree_data) initialization = self.trees[i].tree_initialization() with ops.control_dependencies([initialization]): tree_graphs.append(self.trees[i].training_graph( tree_data, tree_labels, seed, data_spec=data_spec, sparse_features=processed_sparse_features, **tree_kwargs)) return control_flow_ops.group(*tree_graphs, name='train') def inference_graph(self, input_data, **inference_args): """Constructs a TF graph for evaluating a random forest. Args: input_data: A tensor or dict of string->Tensor for input data. **inference_args: Keyword arguments to pass through to each tree. Returns: The last op in the random forest inference graph. Raises: NotImplementedError: If trying to use feature bagging with sparse features. """ processed_dense_features, processed_sparse_features, data_spec = ( data_ops.ParseDataTensorOrDict(input_data)) probabilities = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): tree_data = processed_dense_features if self.params.bagged_features: if processed_sparse_features is not None: raise NotImplementedError( 'Feature bagging not supported with sparse features.') tree_data = self._bag_features(i, tree_data) probabilities.append(self.trees[i].inference_graph( tree_data, data_spec, sparse_features=processed_sparse_features, **inference_args)) with ops.device(self.variables.device_dummies[0].device): all_predict = array_ops.stack(probabilities) return math_ops.div( math_ops.reduce_sum(all_predict, 0), self.params.num_trees, name='probabilities') def average_size(self): """Constructs a TF graph for evaluating the average size of a forest. Returns: The average number of nodes over the trees. """ sizes = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): sizes.append(self.trees[i].size()) return math_ops.reduce_mean(math_ops.to_float(array_ops.stack(sizes))) # pylint: disable=unused-argument def training_loss(self, features, labels, name='training_loss'): return math_ops.negative(self.average_size(), name=name) # pylint: disable=unused-argument def validation_loss(self, features, labels): return math_ops.negative(self.average_size()) def average_impurity(self): """Constructs a TF graph for evaluating the leaf impurity of a forest. Returns: The last op in the graph. """ impurities = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): impurities.append(self.trees[i].average_impurity()) return math_ops.reduce_mean(array_ops.stack(impurities)) def get_stats(self, session): tree_stats = [] for i in range(self.params.num_trees): with ops.device(self.variables.device_dummies[i].device): tree_stats.append(self.trees[i].get_stats(session)) return ForestStats(tree_stats, self.params) def feature_importances(self): tree_counts = [self.trees[i].feature_usage_counts() for i in range(self.params.num_trees)] total_counts = math_ops.reduce_sum(array_ops.stack(tree_counts, 0), 0) return total_counts / math_ops.reduce_sum(total_counts) def one_hot_wrapper(num_classes, loss_fn): """Some loss functions take one-hot labels.""" def _loss(probs, targets): if targets.get_shape().ndims > 1: targets = array_ops.squeeze(targets, squeeze_dims=[1]) one_hot_labels = array_ops.one_hot( math_ops.to_int32(targets), num_classes, on_value=1., off_value=0., dtype=dtypes.float32) return loss_fn(probs, one_hot_labels) return _loss class TrainingLossForest(RandomForestGraphs): """Random Forest that uses training loss as the termination criteria.""" def __init__(self, params, loss_fn=None, **kwargs): """Initialize. Args: params: Like RandomForestGraphs, a ForestHParams object. loss_fn: A function that takes probabilities and targets and returns a loss for each example. **kwargs: Keyword args to pass to superclass (RandomForestGraphs). """ self.loss_fn = loss_fn or one_hot_wrapper(params.num_classes, loss_ops.log_loss) self._loss = None super(TrainingLossForest, self).__init__(params, **kwargs) def _get_loss(self, features, labels): """Constructs, caches, and returns the inference-based loss.""" if self._loss is not None: return self._loss def _average_loss(): probs = self.inference_graph(features) return math_ops.reduce_sum(self.loss_fn( probs, labels)) / math_ops.to_float(array_ops.shape(labels)[0]) self._loss = control_flow_ops.cond( self.average_size() > 0, _average_loss, lambda: constant_op.constant(sys.maxsize, dtype=dtypes.float32)) return self._loss def training_graph(self, input_data, input_labels, **kwargs): loss = self._get_loss(input_data, input_labels) with ops.control_dependencies([loss.op]): return super(TrainingLossForest, self).training_graph( input_data, input_labels, **kwargs) def training_loss(self, features, labels, name='training_loss'): return array_ops.identity(self._get_loss(features, labels), name=name) class RandomTreeGraphs(object): """Builds TF graphs for random tree training and inference.""" def __init__(self, variables, params, tree_num): self.variables = variables self.params = params self.tree_num = tree_num def tree_initialization(self): def _init_tree(): return state_ops.scatter_update(self.variables.tree, [0], [[-1, -1]]).op def _nothing(): return control_flow_ops.no_op() return control_flow_ops.cond( math_ops.equal( array_ops.squeeze( array_ops.strided_slice(self.variables.tree, [0, 0], [1, 1])), -2), _init_tree, _nothing) def _gini(self, class_counts): """Calculate the Gini impurity. If c(i) denotes the i-th class count and c = sum_i c(i) then score = 1 - sum_i ( c(i) / c )^2 Args: class_counts: A 2-D tensor of per-class counts, usually a slice or gather from variables.node_sums. Returns: A 1-D tensor of the Gini impurities for each row in the input. """ smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1]) sums = math_ops.reduce_sum(smoothed, 1) sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1) return 1.0 - sum_squares / (sums * sums) def _weighted_gini(self, class_counts): """Our split score is the Gini impurity times the number of examples. If c(i) denotes the i-th class count and c = sum_i c(i) then score = c * (1 - sum_i ( c(i) / c )^2 ) = c - sum_i c(i)^2 / c Args: class_counts: A 2-D tensor of per-class counts, usually a slice or gather from variables.node_sums. Returns: A 1-D tensor of the Gini impurities for each row in the input. """ smoothed = 1.0 + array_ops.slice(class_counts, [0, 1], [-1, -1]) sums = math_ops.reduce_sum(smoothed, 1) sum_squares = math_ops.reduce_sum(math_ops.square(smoothed), 1) return sums - sum_squares / sums def _variance(self, sums, squares): """Calculate the variance for each row of the input tensors. Variance is V = E[x^2] - (E[x])^2. Args: sums: A tensor containing output sums, usually a slice from variables.node_sums. Should contain the number of examples seen in index 0 so we can calculate expected value. squares: Same as sums, but sums of squares. Returns: A 1-D tensor of the variances for each row in the input. """ total_count = array_ops.slice(sums, [0, 0], [-1, 1]) e_x = sums / total_count e_x2 = squares / total_count return math_ops.reduce_sum(e_x2 - math_ops.square(e_x), 1) def training_graph(self, input_data, input_labels, random_seed, data_spec, sparse_features=None, input_weights=None): """Constructs a TF graph for training a random tree. Args: input_data: A tensor or placeholder for input data. input_labels: A tensor or placeholder for labels associated with input_data. random_seed: The random number generator seed to use for this tree. 0 means use the current time as the seed. data_spec: A data_ops.TensorForestDataSpec object specifying the original feature/columns of the data. sparse_features: A tf.SparseTensor for sparse input data. input_weights: A float tensor or placeholder holding per-input weights, or None if all inputs are to be weighted equally. Returns: The last op in the random tree training graph. """ epoch = math_ops.to_int32(get_epoch_variable()) serialized_input_spec = data_spec.SerializeToString() if input_weights is None: input_weights = [] if input_data is None: input_data = [] sparse_indices = [] sparse_values = [] sparse_shape = [] if sparse_features is not None: sparse_indices = sparse_features.indices sparse_values = sparse_features.values sparse_shape = sparse_features.dense_shape # Count extremely random stats. (node_sums, node_squares, splits_indices, splits_sums, splits_squares, totals_indices, totals_sums, totals_squares, input_leaves) = (tensor_forest_ops.count_extremely_random_stats( input_data, sparse_indices, sparse_values, sparse_shape, input_labels, input_weights, self.variables.tree, self.variables.tree_thresholds, self.variables.node_to_accumulator_map, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, self.variables.start_epoch, epoch, input_spec=serialized_input_spec, num_classes=self.params.num_output_columns, regression=self.params.regression)) node_update_ops = [] node_update_ops.append( state_ops.assign_add(self.variables.node_sums, node_sums)) splits_update_ops = [] splits_update_ops.append( tensor_forest_ops.scatter_add_ndim(self.variables.candidate_split_sums, splits_indices, splits_sums)) splits_update_ops.append( tensor_forest_ops.scatter_add_ndim(self.variables.accumulator_sums, totals_indices, totals_sums)) if self.params.regression: node_update_ops.append(state_ops.assign_add(self.variables.node_squares, node_squares)) splits_update_ops.append( tensor_forest_ops.scatter_add_ndim( self.variables.candidate_split_squares, splits_indices, splits_squares)) splits_update_ops.append( tensor_forest_ops.scatter_add_ndim(self.variables.accumulator_squares, totals_indices, totals_squares)) # Sample inputs. update_indices, feature_updates, threshold_updates = ( tensor_forest_ops.sample_inputs( input_data, sparse_indices, sparse_values, sparse_shape, input_weights, self.variables.node_to_accumulator_map, input_leaves, self.variables.candidate_split_features, self.variables.candidate_split_thresholds, input_spec=serialized_input_spec, split_initializations_per_input=( self.params.split_initializations_per_input), split_sampling_random_seed=random_seed)) update_features_op = state_ops.scatter_update( self.variables.candidate_split_features, update_indices, feature_updates) update_thresholds_op = state_ops.scatter_update( self.variables.candidate_split_thresholds, update_indices, threshold_updates) # Calculate finished nodes. with ops.control_dependencies(splits_update_ops): # Passing input_leaves to finished nodes here means that nodes that # have become stale won't be deallocated until an input reaches them, # because we're trying to avoid considering every fertile node for # performance reasons. finished, stale = tensor_forest_ops.finished_nodes( input_leaves, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, self.variables.start_epoch, epoch, num_split_after_samples=self.params.split_after_samples, min_split_samples=self.params.min_split_samples, dominate_method=self.params.dominate_method, dominate_fraction=self.params.dominate_fraction) # Update leaf scores. # TODO(thomaswc): Store the leaf scores in a TopN and only update the # scores of the leaves that were touched by this batch of input. children = array_ops.squeeze( array_ops.slice(self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1]) is_leaf = math_ops.equal(constants.LEAF_NODE, children) leaves = math_ops.to_int32( array_ops.squeeze( array_ops.where(is_leaf), squeeze_dims=[1])) non_fertile_leaves = array_ops.boolean_mask( leaves, math_ops.less(array_ops.gather( self.variables.node_to_accumulator_map, leaves), 0)) # TODO(gilberth): It should be possible to limit the number of non # fertile leaves we calculate scores for, especially since we can only take # at most array_ops.shape(finished)[0] of them. with ops.control_dependencies(node_update_ops): sums = array_ops.gather(self.variables.node_sums, non_fertile_leaves) if self.params.regression: squares = array_ops.gather(self.variables.node_squares, non_fertile_leaves) non_fertile_leaf_scores = self._variance(sums, squares) else: non_fertile_leaf_scores = self._weighted_gini(sums) # Calculate best splits. with ops.control_dependencies(splits_update_ops): split_indices = tensor_forest_ops.best_splits( finished, self.variables.node_to_accumulator_map, self.variables.candidate_split_sums, self.variables.candidate_split_squares, self.variables.accumulator_sums, self.variables.accumulator_squares, regression=self.params.regression) # Grow tree. with ops.control_dependencies([update_features_op, update_thresholds_op, non_fertile_leaves.op]): (tree_update_indices, tree_children_updates, tree_threshold_updates, new_eot) = (tensor_forest_ops.grow_tree( self.variables.end_of_tree, self.variables.node_to_accumulator_map, finished, split_indices, self.variables.candidate_split_features, self.variables.candidate_split_thresholds)) tree_update_op = state_ops.scatter_update( self.variables.tree, tree_update_indices, tree_children_updates) thresholds_update_op = state_ops.scatter_update( self.variables.tree_thresholds, tree_update_indices, tree_threshold_updates) # TODO(thomaswc): Only update the epoch on the new leaves. new_epoch_updates = epoch * array_ops.ones_like(tree_threshold_updates, dtype=dtypes.int32) epoch_update_op = state_ops.scatter_update( self.variables.start_epoch, tree_update_indices, new_epoch_updates) # Update fertile slots. with ops.control_dependencies([tree_update_op]): (n2a_map_updates, a2n_map_updates, accumulators_cleared, accumulators_allocated) = (tensor_forest_ops.update_fertile_slots( finished, non_fertile_leaves, non_fertile_leaf_scores, self.variables.end_of_tree, self.variables.accumulator_sums, self.variables.node_to_accumulator_map, stale, self.variables.node_sums, regression=self.params.regression)) # Ensure end_of_tree doesn't get updated until UpdateFertileSlots has # used it to calculate new leaves. with ops.control_dependencies([n2a_map_updates.op]): eot_update_op = state_ops.assign(self.variables.end_of_tree, new_eot) updates = [] updates.append(eot_update_op) updates.append(tree_update_op) updates.append(thresholds_update_op) updates.append(epoch_update_op) updates.append( state_ops.scatter_update(self.variables.node_to_accumulator_map, n2a_map_updates[0], n2a_map_updates[1])) updates.append( state_ops.scatter_update(self.variables.accumulator_to_node_map, a2n_map_updates[0], a2n_map_updates[1])) cleared_and_allocated_accumulators = array_ops.concat( [accumulators_cleared, accumulators_allocated], 0) # Calculate values to put into scatter update for candidate counts. # Candidate split counts are always reset back to 0 for both cleared # and allocated accumulators. This means some accumulators might be doubly # reset to 0 if the were released and not allocated, then later allocated. split_values = array_ops.tile( array_ops.expand_dims(array_ops.expand_dims( array_ops.zeros_like(cleared_and_allocated_accumulators, dtype=dtypes.float32), 1), 2), [1, self.params.num_splits_to_consider, self.params.num_output_columns]) updates.append(state_ops.scatter_update( self.variables.candidate_split_sums, cleared_and_allocated_accumulators, split_values)) if self.params.regression: updates.append(state_ops.scatter_update( self.variables.candidate_split_squares, cleared_and_allocated_accumulators, split_values)) # Calculate values to put into scatter update for total counts. total_cleared = array_ops.tile( array_ops.expand_dims( math_ops.negative(array_ops.ones_like(accumulators_cleared, dtype=dtypes.float32)), 1), [1, self.params.num_output_columns]) total_reset = array_ops.tile( array_ops.expand_dims( array_ops.zeros_like(accumulators_allocated, dtype=dtypes.float32), 1), [1, self.params.num_output_columns]) accumulator_updates = array_ops.concat([total_cleared, total_reset], 0) updates.append(state_ops.scatter_update( self.variables.accumulator_sums, cleared_and_allocated_accumulators, accumulator_updates)) if self.params.regression: updates.append(state_ops.scatter_update( self.variables.accumulator_squares, cleared_and_allocated_accumulators, accumulator_updates)) # Calculate values to put into scatter update for candidate splits. split_features_updates = array_ops.tile( array_ops.expand_dims( math_ops.negative(array_ops.ones_like( cleared_and_allocated_accumulators)), 1), [1, self.params.num_splits_to_consider]) updates.append(state_ops.scatter_update( self.variables.candidate_split_features, cleared_and_allocated_accumulators, split_features_updates)) updates += self.finish_iteration() return control_flow_ops.group(*updates) def finish_iteration(self): """Perform any operations that should be done at the end of an iteration. This is mostly useful for subclasses that need to reset variables after an iteration, such as ones that are used to finish nodes. Returns: A list of operations. """ return [] def inference_graph(self, input_data, data_spec, sparse_features=None): """Constructs a TF graph for evaluating a random tree. Args: input_data: A tensor or placeholder for input data. data_spec: A TensorForestDataSpec proto specifying the original input columns. sparse_features: A tf.SparseTensor for sparse input data. Returns: The last op in the random tree inference graph. """ if input_data is None: input_data = [] sparse_indices = [] sparse_values = [] sparse_shape = [] if sparse_features is not None: sparse_indices = sparse_features.indices sparse_values = sparse_features.values sparse_shape = sparse_features.dense_shape return tensor_forest_ops.tree_predictions( input_data, sparse_indices, sparse_values, sparse_shape, self.variables.tree, self.variables.tree_thresholds, self.variables.node_sums, input_spec=data_spec.SerializeToString(), valid_leaf_threshold=self.params.valid_leaf_threshold) def average_impurity(self): """Constructs a TF graph for evaluating the average leaf impurity of a tree. If in regression mode, this is the leaf variance. If in classification mode, this is the gini impurity. Returns: The last op in the graph. """ children = array_ops.squeeze(array_ops.slice( self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1]) is_leaf = math_ops.equal(constants.LEAF_NODE, children) leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf), squeeze_dims=[1])) counts = array_ops.gather(self.variables.node_sums, leaves) gini = self._weighted_gini(counts) # Guard against step 1, when there often are no leaves yet. def impurity(): return gini # Since average impurity can be used for loss, when there's no data just # return a big number so that loss always decreases. def big(): return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000. return control_flow_ops.cond(math_ops.greater( array_ops.shape(leaves)[0], 0), impurity, big) def size(self): """Constructs a TF graph for evaluating the current number of nodes. Returns: The current number of nodes in the tree. """ return self.variables.end_of_tree - 1 def get_stats(self, session): num_nodes = self.variables.end_of_tree.eval(session=session) - 1 num_leaves = array_ops.where( math_ops.equal(array_ops.squeeze(array_ops.slice( self.variables.tree, [0, 0], [-1, 1])), constants.LEAF_NODE) ).eval(session=session).shape[0] return TreeStats(num_nodes, num_leaves) def feature_usage_counts(self): features = array_ops.slice(self.variables.tree, [0, 1], [-1, 1]) # One hot ignores negative values, which is the default for unused nodes. one_hots = array_ops.one_hot( array_ops.squeeze(features), self.params.num_features) return math_ops.reduce_sum(one_hots, 0)
40.118236
84
0.690569
4eae4206d626433625f3b1fd6dcef542b9ecaf25
1,982
py
Python
office365/runtime/client_query.py
xdanw/xlr-sharepoint-fileoperations
636114462145e3d9e0425a7f2c5337ec5f90c363
[ "Apache-2.0" ]
null
null
null
office365/runtime/client_query.py
xdanw/xlr-sharepoint-fileoperations
636114462145e3d9e0425a7f2c5337ec5f90c363
[ "Apache-2.0" ]
null
null
null
office365/runtime/client_query.py
xdanw/xlr-sharepoint-fileoperations
636114462145e3d9e0425a7f2c5337ec5f90c363
[ "Apache-2.0" ]
null
null
null
from office365.runtime.action_type import ActionType from office365.runtime.odata.odata_path_parser import ODataPathParser # Fixes some issues with TLS import os os.environ['REQUESTS_CA_BUNDLE'] = 'ca.pem'; class ClientQuery(object): """Client query""" def __init__(self, url, action_type=ActionType.ReadEntry, payload=None): self.__url = url self.__actionType = action_type self.__payload = payload @staticmethod def read_entry_query(client_object): qry = ClientQuery(client_object.url, ActionType.ReadEntry) return qry @staticmethod def create_entry_query(parent_client_object, parameters): qry = ClientQuery(parent_client_object.url, ActionType.CreateEntry, parameters) return qry @staticmethod def update_entry_query(client_object): qry = ClientQuery(client_object.url, ActionType.UpdateEntry, client_object.convert_to_payload()) return qry @staticmethod def delete_entry_query(client_object): qry = ClientQuery(client_object.url, ActionType.DeleteEntry) return qry @staticmethod def service_operation_query(client_object, action_type, method_name, method_params=None, payload=None): url = client_object.url + "/" + ODataPathParser.from_method(method_name, method_params) qry = ClientQuery(url, action_type, payload) return qry @property def url(self): return self.__url @property def action_type(self): return self.__actionType @property def payload(self): return self.__payload @property def id(self): return id(self) def execute(self, context, client_object=None): from office365.runtime.client_request import ClientRequest return ClientRequest(context).execute_single_query(self, client_object) def __hash__(self): return hash(self.url) def __eq__(self, other): return self.url == other.url
29.58209
107
0.705348
630cb3eaf62ad1e668afec938512f44d250a0c49
2,144
py
Python
corehq/pillows/tasks.py
satyaakam/commcare-hq
233f255ff20ab3a16013e9fdfdb9c1dcf632e415
[ "BSD-3-Clause" ]
null
null
null
corehq/pillows/tasks.py
satyaakam/commcare-hq
233f255ff20ab3a16013e9fdfdb9c1dcf632e415
[ "BSD-3-Clause" ]
1
2021-06-02T04:45:16.000Z
2021-06-02T04:45:16.000Z
corehq/pillows/tasks.py
satyaakam/commcare-hq
233f255ff20ab3a16013e9fdfdb9c1dcf632e415
[ "BSD-3-Clause" ]
null
null
null
from datetime import timedelta from celery.schedules import crontab from celery.task import periodic_task from corehq.apps.es import FormES from corehq.apps.es.aggregations import CardinalityAggregation from corehq.form_processor.interfaces.dbaccessors import FormAccessors from corehq.form_processor.utils.xform import resave_form from corehq.pillows.utils import get_user_type_deep_cache_for_unknown_users, UNKNOWN_USER_TYPE from corehq.util.decorators import serial_task from corehq.util.metrics import metrics_gauge from corehq.util.quickcache import quickcache @periodic_task(run_every=timedelta(minutes=10)) @quickcache([], timeout=9 * 60) # Protect from many runs after recovering from a backlog def send_unknown_user_type_stats(): metrics_gauge('commcare.fix_user_types.unknown_user_count', _get_unknown_user_type_user_ids_approx_count()) metrics_gauge('commcare.fix_user_types.unknown_user_form_count', FormES().user_type(UNKNOWN_USER_TYPE).count()) @periodic_task(run_every=crontab(minute=0, hour=0)) def fix_user_types(): unknown_user_ids = _get_unknown_user_type_user_ids() for user_id in unknown_user_ids: user_type = get_user_type_deep_cache_for_unknown_users(user_id) if user_type != UNKNOWN_USER_TYPE: resave_es_forms_with_unknown_user_type.delay(user_id) @serial_task('{user_id}', queue='background_queue') def resave_es_forms_with_unknown_user_type(user_id): domain_form_id_list = ( FormES().user_type(UNKNOWN_USER_TYPE).user_id(user_id) .values_list('domain', '_id', scroll=True) ) for domain, form_id in domain_form_id_list: form = FormAccessors(domain).get_form(form_id) resave_form(domain, form) def _get_unknown_user_type_user_ids(): return (FormES().user_type(UNKNOWN_USER_TYPE).user_aggregation().run() .aggregations.user.keys) def _get_unknown_user_type_user_ids_approx_count(): agg = CardinalityAggregation('users_count', 'form.meta.userID') return (FormES().user_type(UNKNOWN_USER_TYPE).aggregation(agg).run() .aggregations.users_count.value)
39.703704
94
0.777052
c656d2ab53ed98f422ac218379a61a5468dd7dab
47,068
py
Python
python/ccxt/async_support/bitfinex2.py
z-brain/ccxt
dde32cfb5e0e2e2889ead60687d6fd0fdf5e3f02
[ "MIT" ]
4
2021-01-10T09:14:17.000Z
2022-02-15T19:09:52.000Z
python/ccxt/async_support/bitfinex2.py
z-brain/ccxt
dde32cfb5e0e2e2889ead60687d6fd0fdf5e3f02
[ "MIT" ]
null
null
null
python/ccxt/async_support/bitfinex2.py
z-brain/ccxt
dde32cfb5e0e2e2889ead60687d6fd0fdf5e3f02
[ "MIT" ]
4
2021-06-02T16:40:35.000Z
2022-03-14T04:50:31.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.bitfinex import bitfinex import hashlib import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce class bitfinex2(bitfinex): def describe(self): return self.deep_extend(super(bitfinex2, self).describe(), { 'id': 'bitfinex2', 'name': 'Bitfinex', 'countries': ['VG'], 'version': 'v2', 'certified': False, 'pro': False, # new metainfo interface 'has': { 'CORS': False, 'cancelAllOrders': True, 'createDepositAddress': True, 'createLimitOrder': True, 'createMarketOrder': True, 'createOrder': True, 'cancelOrder': True, 'deposit': False, 'editOrder': False, 'fetchDepositAddress': True, 'fetchClosedOrders': False, 'fetchFundingFees': False, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': False, 'fetchOpenOrder': True, 'fetchClosedOrder': True, 'fetchOrderTrades': True, 'fetchStatus': True, 'fetchTickers': True, 'fetchTradingFee': False, 'fetchTradingFees': False, 'fetchTransactions': False, 'withdraw': True, }, 'timeframes': { '1m': '1m', '5m': '5m', '15m': '15m', '30m': '30m', '1h': '1h', '3h': '3h', '6h': '6h', '12h': '12h', '1d': '1D', '1w': '7D', '2w': '14D', '1M': '1M', }, 'rateLimit': 1500, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/27766244-e328a50c-5ed2-11e7-947b-041416579bb3.jpg', 'api': { 'v1': 'https://api.bitfinex.com', 'public': 'https://api-pub.bitfinex.com', 'private': 'https://api.bitfinex.com', }, 'www': 'https://www.bitfinex.com', 'doc': [ 'https://docs.bitfinex.com/v2/docs/', 'https://github.com/bitfinexcom/bitfinex-api-node', ], 'fees': 'https://www.bitfinex.com/fees', }, 'api': { 'v1': { 'get': [ 'symbols', 'symbols_details', ], }, 'public': { 'get': [ 'conf/{config}', 'conf/pub:{action}:{object}', 'conf/pub:{action}:{object}:{detail}', 'conf/pub:map:{object}', 'conf/pub:map:{object}:{detail}', 'conf/pub:map:currency:{detail}', 'conf/pub:map:currency:sym', # maps symbols to their API symbols, BAB > BCH 'conf/pub:map:currency:label', # verbose friendly names, BNT > Bancor 'conf/pub:map:currency:unit', # maps symbols to unit of measure where applicable 'conf/pub:map:currency:undl', # maps derivatives symbols to their underlying currency 'conf/pub:map:currency:pool', # maps symbols to underlying network/protocol they operate on 'conf/pub:map:currency:explorer', # maps symbols to their recognised block explorer URLs 'conf/pub:map:tx:method', 'conf/pub:list:{object}', 'conf/pub:list:{object}:{detail}', 'conf/pub:list:currency', 'conf/pub:list:pair:exchange', 'conf/pub:list:pair:margin', 'conf/pub:list:competitions', 'conf/pub:info:{object}', 'conf/pub:info:{object}:{detail}', 'conf/pub:info:pair', 'conf/pub:info:tx:status', # [deposit, withdrawal] statuses 1 = active, 0 = maintenance 'conf/pub:fees', 'platform/status', 'tickers', 'ticker/{symbol}', 'trades/{symbol}/hist', 'book/{symbol}/{precision}', 'book/{symbol}/P0', 'book/{symbol}/P1', 'book/{symbol}/P2', 'book/{symbol}/P3', 'book/{symbol}/R0', 'stats1/{key}:{size}:{symbol}:{side}/{section}', 'stats1/{key}:{size}:{symbol}:{side}/last', 'stats1/{key}:{size}:{symbol}:{side}/hist', 'stats1/{key}:{size}:{symbol}/{section}', 'stats1/{key}:{size}:{symbol}/last', 'stats1/{key}:{size}:{symbol}/hist', 'stats1/{key}:{size}:{symbol}:long/last', 'stats1/{key}:{size}:{symbol}:long/hist', 'stats1/{key}:{size}:{symbol}:short/last', 'stats1/{key}:{size}:{symbol}:short/hist', 'candles/trade:{timeframe}:{symbol}/{section}', 'candles/trade:{timeframe}:{symbol}/last', 'candles/trade:{timeframe}:{symbol}/hist', 'status/{type}', 'status/deriv', 'liquidations/hist', 'rankings/{key}:{timeframe}:{symbol}/{section}', 'rankings/{key}:{timeframe}:{symbol}/hist', ], 'post': [ 'calc/trade/avg', 'calc/fx', ], }, 'private': { 'post': [ # 'auth/r/orders/{symbol}/new', # outdated # 'auth/r/stats/perf:{timeframe}/hist', # outdated 'auth/r/wallets', 'auth/r/wallets/hist', 'auth/r/orders', 'auth/r/orders/{symbol}', 'auth/w/order/submit', 'auth/w/order/update', 'auth/w/order/cancel', 'auth/w/order/multi', 'auth/w/order/cancel/multi', 'auth/r/orders/{symbol}/hist', 'auth/r/orders/hist', 'auth/r/order/{symbol}:{id}/trades', 'auth/r/trades/{symbol}/hist', 'auth/r/trades/hist', 'auth/r/ledgers/{currency}/hist', 'auth/r/ledgers/hist', 'auth/r/info/margin/{key}', 'auth/r/info/margin/base', 'auth/r/info/margin/sym_all', 'auth/r/positions', 'auth/w/position/claim', 'auth/r/positions/hist', 'auth/r/positions/audit', 'auth/w/deriv/collateral/set', 'auth/r/funding/offers', 'auth/r/funding/offers/{symbol}', 'auth/w/funding/offer/submit', 'auth/w/funding/offer/cancel', 'auth/w/funding/offer/cancel/all', 'auth/w/funding/close', 'auth/w/funding/auto', 'auth/w/funding/keep', 'auth/r/funding/offers/{symbol}/hist', 'auth/r/funding/offers/hist', 'auth/r/funding/loans', 'auth/r/funding/loans/hist', 'auth/r/funding/loans/{symbol}', 'auth/r/funding/loans/{symbol}/hist', 'auth/r/funding/credits', 'auth/r/funding/credits/hist', 'auth/r/funding/credits/{symbol}', 'auth/r/funding/credits/{symbol}/hist', 'auth/r/funding/trades/{symbol}/hist', 'auth/r/funding/trades/hist', 'auth/r/info/funding/{key}', 'auth/r/info/user', 'auth/r/logins/hist', 'auth/w/transfer', 'auth/w/deposit/address', 'auth/w/deposit/invoice', 'auth/w/withdraw', 'auth/r/movements/{currency}/hist', 'auth/r/movements/hist', 'auth/r/alerts', 'auth/w/alert/set', 'auth/w/alert/price:{symbol}:{price}/del', 'auth/w/alert/{type}:{symbol}:{price}/del', 'auth/calc/order/avail', 'auth/w/settings/set', 'auth/r/settings', 'auth/w/settings/del', ], }, }, 'fees': { 'trading': { 'maker': 0.1 / 100, 'taker': 0.2 / 100, }, 'funding': { 'withdraw': { 'BTC': 0.0004, 'BCH': 0.0001, 'ETH': 0.00135, 'EOS': 0.0, 'LTC': 0.001, 'OMG': 0.15097, 'IOT': 0.0, 'NEO': 0.0, 'ETC': 0.01, 'XRP': 0.02, 'ETP': 0.01, 'ZEC': 0.001, 'BTG': 0.0, 'DASH': 0.01, 'XMR': 0.0001, 'QTM': 0.01, 'EDO': 0.23687, 'DAT': 9.8858, 'AVT': 1.1251, 'SAN': 0.35977, 'USDT': 5.0, 'SPK': 16.971, 'BAT': 1.1209, 'GNT': 2.8789, 'SNT': 9.0848, 'QASH': 1.726, 'YYW': 7.9464, }, }, }, 'options': { 'precision': 'R0', # P0, P1, P2, P3, P4, R0 # convert 'EXCHANGE MARKET' to lowercase 'market' # convert 'EXCHANGE LIMIT' to lowercase 'limit' # everything else remains uppercase 'exchangeTypes': { # 'MARKET': None, 'EXCHANGE MARKET': 'market', # 'LIMIT': None, 'EXCHANGE LIMIT': 'limit', # 'STOP': None, # 'EXCHANGE STOP': None, # 'TRAILING STOP': None, # 'EXCHANGE TRAILING STOP': None, # 'FOK': None, # 'EXCHANGE FOK': None, # 'STOP LIMIT': None, # 'EXCHANGE STOP LIMIT': None, # 'IOC': None, # 'EXCHANGE IOC': None, }, # convert 'market' to 'EXCHANGE MARKET' # convert 'limit' 'EXCHANGE LIMIT' # everything else remains as is 'orderTypes': { 'market': 'EXCHANGE MARKET', 'limit': 'EXCHANGE LIMIT', }, 'fiat': { 'USD': 'USD', 'EUR': 'EUR', 'JPY': 'JPY', 'GBP': 'GBP', }, }, 'exceptions': { 'exact': { '10020': BadRequest, '10100': AuthenticationError, '10114': InvalidNonce, '20060': OnMaintenance, }, 'broad': { 'address': InvalidAddress, 'available balance is only': InsufficientFunds, 'not enough exchange balance': InsufficientFunds, 'Order not found': OrderNotFound, 'symbol: invalid': BadSymbol, 'Invalid order': InvalidOrder, }, }, }) def is_fiat(self, code): return(code in self.options['fiat']) def get_currency_id(self, code): return 'f' + code async def fetch_status(self, params={}): # # [1] # operative # [0] # maintenance # response = await self.publicGetPlatformStatus(params) status = self.safe_value(response, 0) formattedStatus = 'ok' if (status == 1) else 'maintenance' self.status = self.extend(self.status, { 'status': formattedStatus, 'updated': self.milliseconds(), }) return self.status async def fetch_markets(self, params={}): response = await self.v1GetSymbolsDetails(params) result = [] for i in range(0, len(response)): market = response[i] id = self.safe_string_upper(market, 'pair') baseId = None quoteId = None if id.find(':') >= 0: parts = id.split(':') baseId = parts[0] quoteId = parts[1] else: baseId = id[0:3] quoteId = id[3:6] base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote id = 't' + id baseId = self.get_currency_id(baseId) quoteId = self.get_currency_id(quoteId) precision = { 'price': self.safe_integer(market, 'price_precision'), 'amount': self.safe_integer(market, 'price_precision'), } limits = { 'amount': { 'min': self.safe_float(market, 'minimum_order_size'), 'max': self.safe_float(market, 'maximum_order_size'), }, 'price': { 'min': math.pow(10, -precision['price']), 'max': math.pow(10, precision['price']), }, } limits['cost'] = { 'min': limits['amount']['min'] * limits['price']['min'], 'max': None, } result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': True, 'precision': precision, 'limits': limits, 'info': market, 'swap': False, 'spot': False, 'futures': False, }) return result async def fetch_balance(self, params={}): # self api call does not return the 'used' amount - use the v1 version instead(which also returns zero balances) await self.load_markets() response = await self.privatePostAuthRWallets(params) balanceType = self.safe_string(params, 'type', 'exchange') result = {'info': response} for b in range(0, len(response)): balance = response[b] accountType = balance[0] currency = balance[1] total = balance[2] available = balance[4] if accountType == balanceType: if currency[0] == 't': currency = currency[1:] code = self.safe_currency_code(currency) account = self.account() # do not fill in zeroes and missing values in the parser # rewrite and unify the following to use the unified parseBalance account['total'] = total if not available: if available == 0: account['free'] = 0 account['used'] = total else: account['free'] = total else: account['free'] = available account['used'] = account['total'] - account['free'] result[code] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() precision = self.safe_value(self.options, 'precision', 'R0') request = { 'symbol': self.market_id(symbol), 'precision': precision, } if limit is not None: request['len'] = limit # 25 or 100 fullRequest = self.extend(request, params) orderbook = await self.publicGetBookSymbolPrecision(fullRequest) timestamp = self.milliseconds() result = { 'bids': [], 'asks': [], 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'nonce': None, } priceIndex = 1 if (fullRequest['precision'] == 'R0') else 0 for i in range(0, len(orderbook)): order = orderbook[i] price = order[priceIndex] amount = abs(order[2]) side = 'bids' if (order[2] > 0) else 'asks' result[side].append([price, amount]) result['bids'] = self.sort_by(result['bids'], 0, True) result['asks'] = self.sort_by(result['asks'], 0) return result def parse_ticker(self, ticker, market=None): timestamp = self.milliseconds() symbol = None if market is not None: symbol = market['symbol'] length = len(ticker) last = ticker[length - 4] return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': ticker[length - 2], 'low': ticker[length - 1], 'bid': ticker[length - 10], 'bidVolume': None, 'ask': ticker[length - 8], 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': ticker[length - 6], 'percentage': ticker[length - 5] * 100, 'average': None, 'baseVolume': ticker[length - 3], 'quoteVolume': None, 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() request = {} if symbols is not None: ids = self.market_ids(symbols) request['symbols'] = ','.join(ids) else: request['symbols'] = 'ALL' tickers = await self.publicGetTickers(self.extend(request, params)) result = {} for i in range(0, len(tickers)): ticker = tickers[i] id = ticker[0] if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] result[symbol] = self.parse_ticker(ticker, market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } ticker = await self.publicGetTickerSymbol(self.extend(request, params)) return self.parse_ticker(ticker, market) def parse_symbol(self, marketId): if marketId is None: return marketId marketId = marketId.replace('t', '') baseId = None quoteId = None if marketId.find(':') >= 0: parts = marketId.split(':') baseId = parts[0] quoteId = parts[1] else: baseId = marketId[0:3] quoteId = marketId[3:6] base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) return base + '/' + quote def parse_trade(self, trade, market=None): # # fetchTrades(public) # # [ # ID, # MTS, # timestamp # AMOUNT, # PRICE # ] # # fetchMyTrades(private) # # [ # ID, # PAIR, # MTS_CREATE, # ORDER_ID, # EXEC_AMOUNT, # EXEC_PRICE, # ORDER_TYPE, # ORDER_PRICE, # MAKER, # FEE, # FEE_CURRENCY, # ... # ] # tradeLength = len(trade) isPrivate = (tradeLength > 5) id = str(trade[0]) amountIndex = 4 if isPrivate else 2 amount = trade[amountIndex] cost = None priceIndex = 5 if isPrivate else 3 price = trade[priceIndex] side = None orderId = None takerOrMaker = None type = None fee = None symbol = None timestampIndex = 2 if isPrivate else 1 timestamp = trade[timestampIndex] if isPrivate: marketId = trade[1] if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] else: symbol = self.parse_symbol(marketId) orderId = str(trade[3]) takerOrMaker = 'maker' if (trade[8] == 1) else 'taker' feeCost = trade[9] feeCurrency = self.safe_currency_code(trade[10]) if feeCost is not None: feeCost = -feeCost if symbol in self.markets: feeCost = self.fee_to_precision(symbol, feeCost) else: currencyId = 'f' + feeCurrency if currencyId in self.currencies_by_id: currency = self.currencies_by_id[currencyId] feeCost = self.currency_to_precision(currency['code'], feeCost) fee = { 'cost': float(feeCost), 'currency': feeCurrency, } orderType = trade[6] type = self.safe_string(self.options['exchangeTypes'], orderType) if symbol is None: if market is not None: symbol = market['symbol'] if amount is not None: side = 'sell' if (amount < 0) else 'buy' amount = abs(amount) if cost is None: if price is not None: cost = amount * price return { 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'side': side, 'type': type, 'takerOrMaker': takerOrMaker, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, 'info': trade, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) sort = '-1' request = { 'symbol': market['id'], } if since is not None: request['start'] = since sort = '1' if limit is not None: request['limit'] = limit # default 120, max 5000 request['sort'] = sort response = await self.publicGetTradesSymbolHist(self.extend(request, params)) # # [ # [ # ID, # MTS, # timestamp # AMOUNT, # PRICE # ] # ] # trades = self.sort_by(response, 1) return self.parse_trades(trades, market, None, limit) async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=100, params={}): await self.load_markets() market = self.market(symbol) if limit is None: limit = 100 # default 100, max 5000 if since is None: since = self.milliseconds() - self.parse_timeframe(timeframe) * limit * 1000 request = { 'symbol': market['id'], 'timeframe': self.timeframes[timeframe], 'sort': 1, 'start': since, 'limit': limit, } response = await self.publicGetCandlesTradeTimeframeSymbolHist(self.extend(request, params)) return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_order_status(self, status): if status is None: return status parts = status.split(' ') state = self.safe_string(parts, 0) statuses = { 'ACTIVE': 'open', 'PARTIALLY': 'open', 'EXECUTED': 'closed', 'CANCELED': 'canceled', 'INSUFFICIENT': 'canceled', 'RSN_DUST': 'rejected', 'RSN_PAUSE': 'rejected', } return self.safe_string(statuses, state, status) def parse_order(self, order, market=None): id = self.safe_string(order, 0) symbol = None marketId = self.safe_string(order, 3) if marketId in self.markets_by_id: market = self.markets_by_id[marketId] else: symbol = self.parse_symbol(marketId) if (symbol is None) and (market is not None): symbol = market['symbol'] # https://github.com/ccxt/ccxt/issues/6686 # timestamp = self.safe_timestamp(order, 5) timestamp = self.safe_integer(order, 5) remaining = abs(self.safe_float(order, 6)) amount = abs(self.safe_float(order, 7)) filled = amount - remaining side = 'sell' if (order[7] < 0) else 'buy' orderType = self.safe_string(order, 8) type = self.safe_string(self.safe_value(self.options, 'exchangeTypes'), orderType) status = None statusString = self.safe_string(order, 13) if statusString is not None: parts = statusString.split(' @ ') status = self.parse_order_status(self.safe_string(parts, 0)) price = self.safe_float(order, 16) average = self.safe_float(order, 17) cost = price * filled clientOrderId = self.safe_string(order, 2) return { 'info': order, 'id': id, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'average': average, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': None, 'trades': None, } async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) orderTypes = self.safe_value(self.options, 'orderTypes', {}) orderType = self.safe_string(orderTypes, type, type) amount = -amount if (side == 'sell') else amount request = { 'symbol': market['id'], 'type': orderType, 'amount': self.number_to_string(amount), } if type != 'market': request['price'] = self.number_to_string(price) clientOrderId = self.safe_value_2(params, 'cid', 'clientOrderId') if clientOrderId is not None: request['cid'] = clientOrderId params = self.omit(params, ['cid', 'clientOrderId']) response = await self.privatePostAuthWOrderSubmit(self.extend(request, params)) # # [ # 1578784364.748, # Millisecond Time Stamp of the update # "on-req", # Purpose of notification('on-req', 'oc-req', 'uca', 'fon-req', 'foc-req') # null, # Unique ID of the message # null, # Ignore # [ # [ # 37271830598, # Order ID # null, # Group ID # 1578784364748, # Client Order ID # "tBTCUST", # Pair # 1578784364748, # Millisecond timestamp of creation # 1578784364748, # Millisecond timestamp of update # -0.005, # Positive means buy, negative means sell # -0.005, # Original amount # "EXCHANGE LIMIT", # Order type(LIMIT, MARKET, STOP, TRAILING STOP, EXCHANGE MARKET, EXCHANGE LIMIT, EXCHANGE STOP, EXCHANGE TRAILING STOP, FOK, EXCHANGE FOK, IOC, EXCHANGE IOC) # null, # Previous order type # null, # Millisecond timestamp of Time-In-Force: automatic order cancellation # null, # Ignore # 0, # Flags(see https://docs.bitfinex.com/docs/flag-values) # "ACTIVE", # Order Status # null, # Ignore # null, # Ignore # 20000, # Price # 0, # Average price # 0, # The trailing price # 0, # Auxiliary Limit price(for STOP LIMIT) # null, # Ignore # null, # Ignore # null, # Ignore # 0, # 1 - hidden order # null, # If another order caused self order to be placed(OCO) self will be that other order's ID # null, # Ignore # null, # Ignore # null, # Ignore # "API>BFX", # Origin of action: BFX, ETHFX, API>BFX, API>ETHFX # null, # Ignore # null, # Ignore # null # Meta # ] # ], # null, # Error code # "SUCCESS", # Status(SUCCESS, ERROR, FAILURE, ...) # "Submitting 1 orders." # Text of the notification # ] # status = self.safe_string(response, 6) if status != 'SUCCESS': errorCode = response[5] errorText = response[7] raise ExchangeError(self.id + ' ' + response[6] + ': ' + errorText + '(#' + errorCode + ')') orders = self.safe_value(response, 4, []) order = self.safe_value(orders, 0) return self.parse_order(order, market) async def cancel_all_orders(self, symbol=None, params={}): request = { 'all': 1, } response = await self.privatePostAuthWOrderCancelMulti(self.extend(request, params)) orders = self.safe_value(response, 4, []) return self.parse_orders(orders) async def cancel_order(self, id, symbol=None, params={}): cid = self.safe_value_2(params, 'cid', 'clientOrderId') # client order id request = None if cid is not None: cidDate = self.safe_value(params, 'cidDate') # client order id date if cidDate is None: raise InvalidOrder(self.id + " canceling an order by clientOrderId('cid') requires both 'cid' and 'cid_date'('YYYY-MM-DD')") request = { 'cid': cid, 'cid_date': cidDate, } params = self.omit(params, ['cid', 'clientOrderId']) else: request = { 'id': int(id), } response = await self.privatePostAuthWOrderCancel(self.extend(request, params)) order = self.safe_value(response, 4) return self.parse_order(order) async def fetch_open_order(self, id, symbol=None, params={}): request = { 'id': [int(id)], } orders = await self.fetch_open_orders(symbol, None, None, self.extend(request, params)) order = self.safe_value(orders, 0) if order is None: raise OrderNotFound(self.id + ' order ' + id + ' not found') return order async def fetch_closed_order(self, id, symbol=None, params={}): request = { 'id': [int(id)], } orders = await self.fetch_closed_orders(symbol, None, None, self.extend(request, params)) order = self.safe_value(orders, 0) if order is None: raise OrderNotFound(self.id + ' order ' + id + ' not found') return order async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} market = None response = None if symbol is None: response = await self.privatePostAuthROrders(self.extend(request, params)) else: market = self.market(symbol) request['symbol'] = market['id'] response = await self.privatePostAuthROrdersSymbol(self.extend(request, params)) return self.parse_orders(response, market, since, limit) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): # returns the most recent closed or canceled orders up to circa two weeks ago await self.load_markets() request = {} market = None response = None if symbol is None: response = await self.privatePostAuthROrdersHist(self.extend(request, params)) else: market = self.market(symbol) request['symbol'] = market['id'] response = await self.privatePostAuthROrdersSymbolHist(self.extend(request, params)) if since is not None: request['start'] = since if limit is not None: request['limit'] = limit # default 25, max 2500 return self.parse_orders(response, market, since, limit) async def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrderTrades() requires a symbol argument') await self.load_markets() market = self.market(symbol) orderId = int(id) request = { 'id': orderId, 'symbol': market['id'], } # valid for trades upto 10 days old response = await self.privatePostAuthROrderSymbolIdTrades(self.extend(request, params)) return self.parse_trades(response, market, since, limit) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() market = None request = { 'end': self.milliseconds(), } if since is not None: request['start'] = since if limit is not None: request['limit'] = limit # default 25, max 1000 method = 'privatePostAuthRTradesHist' if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] method = 'privatePostAuthRTradesSymbolHist' response = await getattr(self, method)(self.extend(request, params)) return self.parse_trades(response, market, since, limit) async def create_deposit_address(self, code, params={}): await self.load_markets() request = { 'op_renew': 1, } response = await self.fetch_deposit_address(code, self.extend(request, params)) return response async def fetch_deposit_address(self, code, params={}): await self.load_markets() # todo rewrite for https://api-pub.bitfinex.com//v2/conf/pub:map:tx:method name = self.getCurrencyName(code) request = { 'method': name, 'wallet': 'exchange', # 'exchange', 'margin', 'funding' and also old labels 'exchange', 'trading', 'deposit', respectively 'op_renew': 0, # a value of 1 will generate a new address } response = await self.privatePostAuthWDepositAddress(self.extend(request, params)) # # [ # 1582269616687, # MTS Millisecond Time Stamp of the update # 'acc_dep', # TYPE Purpose of notification 'acc_dep' for account deposit # null, # MESSAGE_ID unique ID of the message # null, # not documented # [ # null, # PLACEHOLDER # 'BITCOIN', # METHOD Method of deposit # 'BTC', # CURRENCY_CODE Currency code of new address # null, # PLACEHOLDER # '1BC9PZqpUmjyEB54uggn8TFKj49zSDYzqG', # ADDRESS # null, # POOL_ADDRESS # ], # null, # CODE null or integer work in progress # 'SUCCESS', # STATUS Status of the notification, SUCCESS, ERROR, FAILURE # 'success', # TEXT Text of the notification # ] # result = self.safe_value(response, 4, []) poolAddress = self.safe_string(result, 5) address = self.safe_string(result, 4) if (poolAddress is None) else poolAddress tag = None if (poolAddress is None) else self.safe_string(result, 4) self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': response, } def parse_transaction(self, transaction, currency=None): # # withdraw # # [ # 1582271520931, # MTS Millisecond Time Stamp of the update # "acc_wd-req", # TYPE Purpose of notification 'acc_wd-req' account withdrawal request # null, # MESSAGE_ID unique ID of the message # null, # not documented # [ # 0, # WITHDRAWAL_ID Unique Withdrawal ID # null, # PLACEHOLDER # "bitcoin", # METHOD Method of withdrawal # null, # PAYMENT_ID Payment ID if relevant # "exchange", # WALLET Sending wallet # 1, # AMOUNT Amount of Withdrawal less fee # null, # PLACEHOLDER # null, # PLACEHOLDER # 0.0004, # WITHDRAWAL_FEE Fee on withdrawal # ], # null, # CODE null or integer Work in progress # "SUCCESS", # STATUS Status of the notification, it may vary over time SUCCESS, ERROR, FAILURE # "Invalid bitcoin address(abcdef)", # TEXT Text of the notification # ] # # todo add support for all movements, deposits and withdrawals # data = self.safe_value(transaction, 4, []) timestamp = self.safe_integer(transaction, 0) code = None if currency is not None: code = currency['code'] feeCost = self.safe_float(data, 8) if feeCost is not None: feeCost = abs(feeCost) amount = self.safe_float(data, 5) id = self.safe_value(data, 0) status = 'ok' if id == 0: id = None status = 'failed' tag = self.safe_string(data, 3) return { 'info': transaction, 'id': id, 'txid': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'addressFrom': None, 'address': None, # self is actually the tag for XRP transfers(the address is missing) 'addressTo': None, 'tagFrom': None, 'tag': tag, # refix it properly for the tag from description 'tagTo': tag, 'type': 'withdrawal', 'amount': amount, 'currency': code, 'status': status, 'updated': None, 'fee': { 'currency': code, 'cost': feeCost, 'rate': None, }, } async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() currency = self.currency(code) # todo rewrite for https://api-pub.bitfinex.com//v2/conf/pub:map:tx:method name = self.getCurrencyName(code) request = { 'method': name, 'wallet': 'exchange', # 'exchange', 'margin', 'funding' and also old labels 'exchange', 'trading', 'deposit', respectively 'amount': self.number_to_string(amount), 'address': address, } if tag is not None: request['payment_id'] = tag response = await self.privatePostAuthWWithdraw(self.extend(request, params)) # # [ # 1582271520931, # MTS Millisecond Time Stamp of the update # "acc_wd-req", # TYPE Purpose of notification 'acc_wd-req' account withdrawal request # null, # MESSAGE_ID unique ID of the message # null, # not documented # [ # 0, # WITHDRAWAL_ID Unique Withdrawal ID # null, # PLACEHOLDER # "bitcoin", # METHOD Method of withdrawal # null, # PAYMENT_ID Payment ID if relevant # "exchange", # WALLET Sending wallet # 1, # AMOUNT Amount of Withdrawal less fee # null, # PLACEHOLDER # null, # PLACEHOLDER # 0.0004, # WITHDRAWAL_FEE Fee on withdrawal # ], # null, # CODE null or integer Work in progress # "SUCCESS", # STATUS Status of the notification, it may vary over time SUCCESS, ERROR, FAILURE # "Invalid bitcoin address(abcdef)", # TEXT Text of the notification # ] # text = self.safe_string(response, 7) if text != 'success': self.throw_broadly_matched_exception(self.exceptions['broad'], text, text) transaction = self.parse_transaction(response, currency) return self.extend(transaction, { 'address': address, }) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): request = '/' + self.implode_params(path, params) query = self.omit(params, self.extract_params(path)) if api == 'v1': request = api + request else: request = self.version + request url = self.urls['api'][api] + '/' + request if api == 'public': if query: url += '?' + self.urlencode(query) if api == 'private': self.check_required_credentials() nonce = str(self.nonce()) body = self.json(query) auth = '/api/' + request + nonce + body signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha384) headers = { 'bfx-nonce': nonce, 'bfx-apikey': self.apiKey, 'bfx-signature': signature, 'Content-Type': 'application/json', } return {'url': url, 'method': method, 'body': body, 'headers': headers} async def request(self, path, api='public', method='GET', params={}, headers=None, body=None): response = await self.fetch2(path, api, method, params, headers, body) if response: if 'message' in response: if response['message'].find('not enough exchange balance') >= 0: raise InsufficientFunds(self.id + ' ' + self.json(response)) raise ExchangeError(self.id + ' ' + self.json(response)) return response elif response == '': raise ExchangeError(self.id + ' returned empty response') return response def handle_errors(self, statusCode, statusText, url, method, responseHeaders, responseBody, response, requestHeaders, requestBody): if statusCode == 500: # See https://docs.bitfinex.com/docs/abbreviations-glossary#section-errorinfo-codes errorCode = self.number_to_string(response[1]) errorText = response[2] feedback = self.id + ' ' + errorText self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) self.throw_exactly_matched_exception(self.exceptions['exact'], errorText, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], errorText, feedback) raise ExchangeError(self.id + ' ' + errorText + '(#' + errorCode + ')')
41.801066
207
0.472954
7f3084213fc3d835ef0ef6e6cbf51a3d6ceea689
11,567
py
Python
labyrinthe.py
erwanaubry/Labyrinthe_Python
3a49c3ca9da3b8252d14bf72d6cf821c066e6b0a
[ "Unlicense" ]
1
2020-03-15T11:11:43.000Z
2020-03-15T11:11:43.000Z
labyrinthe.py
erwanaubry/Labyrinthe_Python
3a49c3ca9da3b8252d14bf72d6cf821c066e6b0a
[ "Unlicense" ]
null
null
null
labyrinthe.py
erwanaubry/Labyrinthe_Python
3a49c3ca9da3b8252d14bf72d6cf821c066e6b0a
[ "Unlicense" ]
null
null
null
from listeJoueurs import * from plateau import * def Labyrinthe(nomsJoueurs=["joueur1","joueurs2"],nbTresors=24, nbTresorsMax=0): """ permet de créer un labyrinthe avec nbJoueurs joueurs, nbTresors trésors chacun des joueurs aura au plus nbTresorMax à trouver si ce dernier paramètre est à 0, on distribuera le maximum de trésors possible à chaque joueur en restant équitable un joueur courant est choisi et la phase est initialisée paramètres: nomsJoueurs est la liste des noms des joueurs participant à la partie (entre 1 et 4) nbTresors le nombre de trésors différents il en faut au moins 12 et au plus 49 nbTresorMax le nombre de trésors maximum distribué à chaque joueur résultat: le labyrinthe crée """ labyrinthe={} labyrinthe['joueurs']=[] labyrinthe['phase']=1 labyrinthe['joueurs']=ListeJoueurs(nomsJoueurs) initAleatoireJoueurCourant(labyrinthe['joueurs']) distribuerTresors(labyrinthe['joueurs'],nbTresors,nbTresorsMax) labyrinthe['plateau']=Plateau(len(nomsJoueurs),nbTresors) return labyrinthe def getPlateau(labyrinthe): """ retourne la matrice représentant le plateau de jeu paramètre: labyrinthe le labyrinthe considéré résultat: la matrice représentant le plateau de ce labyrinthe """ return labyrinthe['plateau'] def getNbParticipants(labyrinthe): """ retourne le nombre de joueurs engagés dans la partie paramètre: labyrinthe le labyrinthe considéré résultat: le nombre de joueurs de la partie """ return getNbJoueurs(labyrinthe['joueurs']) def getNomJoueurCourant(labyrinthe): """ retourne le nom du joueur courant paramètre: labyrinthe le labyrinthe considéré résultat: le nom du joueurs courant """ return nomJoueurCourant(labyrinthe['joueurs']) def getNumJoueurCourant(labyrinthe): """ retourne le numero du joueur courant paramètre: labyrinthe le labyrinthe considéré résultat: le numero du joueurs courant """ return numJoueurCourant(labyrinthe['joueurs']) def getPhase(labyrinthe): """ retourne la phase du jeu courante paramètre: labyrinthe le labyrinthe considéré résultat: le numéro de la phase de jeu courante """ return labyrinthe['phase'] def changerPhase(labyrinthe): """ change de phase de jeu en passant la suivante paramètre: labyrinthe le labyrinthe considéré la fonction ne retourne rien mais modifie le labyrinthe """ if labyrinthe['phase']==1: labyrinthe['phase']=2 elif labyrinthe['phase']==2: labyrinthe['phase']=1 def getNbTresors(labyrinthe): """ retourne le nombre de trésors qu'il reste sur le labyrinthe paramètre: labyrinthe le labyrinthe considéré résultat: le nombre de trésors sur le plateau """ res=0 for i in range(len(labyrinthe['joueurs'])): res+=nbTresorsRestantsJoueur(labyrinthe['joueurs'],i) return res def getListeJoueurs(labyrinthe): """ retourne la liste joueur structures qui gèrent les joueurs et leurs trésors paramètre: labyrinthe le labyrinthe considéré résultat: les joueurs sous la forme de la structure implémentée dans listeJoueurs.py """ return labyrinthe['joueurs'] def enleverTresor(labyrinthe,lin,col,numTresor): """ enleve le trésor numTresor du plateau du labyrinthe. Si l'opération s'est bien passée le nombre total de trésors dans le labyrinthe est diminué de 1 paramètres: labyrinthe: le labyrinthe considéré lig: la ligne où se trouve la carte col: la colonne où se trouve la carte numTresor: le numéro du trésor à prendre sur la carte la fonction ne retourne rien mais modifie le labyrinthe """ prendreTresor(getVal(labyrinthe['plateau'],lin,col)) def prendreJoueurCourant(labyrinthe,lin,col): """ enlève le joueur courant de la carte qui se trouve sur la case lin,col du plateau si le joueur ne s'y trouve pas la fonction ne fait rien paramètres: labyrinthe: le labyrinthe considéré lig: la ligne où se trouve la carte col: la colonne où se trouve la carte la fonction ne retourne rien mais modifie le labyrinthe """ prendrePionPlateau(labyrinthe['plateau']['matrice'],lin,col,getNumJoueurCourant(labyrinthe['joueurs'])) def poserJoueurCourant(labyrinthe,lin,col): """ pose le joueur courant sur la case lin,col du plateau paramètres: labyrinthe: le labyrinthe considéré lig: la ligne où se trouve la carte col: la colonne où se trouve la carte la fonction ne retourne rien mais modifie le labyrinthe """ poserPionPlateau(labyrinthe['plateau']['matrice'], lin, col, getNumJoueurCourant(labyrinthe['joueurs'])) def getCarteAJouer(labyrinthe): """ donne la carte à jouer paramètre: labyrinthe: le labyrinthe considéré résultat: la carte à jouer """ return labyrinthe['plateau']['CA'] def coupInterdit(labyrinthe,direction,rangee): """ retourne True si le coup proposé correspond au coup interdit elle retourne False sinon paramètres: labyrinthe: le labyrinthe considéré direction: un caractère qui indique la direction choisie ('N','S','E','O') rangee: le numéro de la ligne ou de la colonne choisie résultat: un booléen indiquant si le coup est interdit ou non """ CP=[0,2,4,6] if rangee in CP: return True else: return False def jouerCarte(labyrinthe,direction,rangee): """ fonction qui joue la carte amovible dans la direction et sur la rangée passées en paramètres. Cette fonction - met à jour le plateau du labyrinthe - met à jour la carte à jouer - met à jour la nouvelle direction interdite paramètres: labyrinthe: le labyrinthe considéré direction: un caractère qui indique la direction choisie ('N','S','E','O') rangee: le numéro de la ligne ou de la colonne choisie Cette fonction ne retourne pas de résultat mais mais à jour le labyrinthe """ if direction=='N': res=decalageColonneEnHaut(labyrinthe, rangee, labyrinthe['CA']) labyrinthe['CA']=res elif direction=='E': res = decalageLigneADroite(labyrinthe, rangee, labyrinthe['CA']) labyrinthe['CA'] = res elif direction=='S': res = decalageColonneEnBas(labyrinthe, rangee, labyrinthe['CA']) labyrinthe['CA'] = res elif direction=='O': res = decalageLigneAGauche(labyrinthe, rangee, labyrinthe['CA']) labyrinthe['CA'] = res def tournerCarte(labyrinthe,sens='H'): """ tourne la carte à jouer dans le sens indiqué en paramètre (H horaire A antihoraire) paramètres: labyritnthe: le labyrinthe considéré sens: un caractère indiquant le sens dans lequel tourner la carte Cette fonction ne retourne pas de résultat mais mais à jour le labyrinthe """ if sens=='H': tournerHoraire(labyrinthe['plateau']['CA']) elif sens=='A': tournerAntiHoraire(labyrinthe['plateau']['CA']) def getTresorCourant(labyrinthe): """ retourne le numéro du trésor que doit cherche le joueur courant paramètre: labyritnthe: le labyrinthe considéré resultat: le numéro du trésor recherché par le joueur courant """ prochainTresorJoueur(labyrinthe['joueurs'],getNumJoueurCourant(labyrinthe)) def getCoordonneesTresorCourant(labyrinthe): """ donne les coordonnées du trésor que le joueur courant doit trouver paramètre: labyritnthe: le labyrinthe considéré resultat: les coordonnées du trésor à chercher ou None si celui-ci n'est pas sur le plateau """ getCoordonneesTresor(labyrinthe['plateau'], tresorCourant(labyrinthe['joueurs'])) def getCoordonneesJoueurCourant(labyrinthe): """ donne les coordonnées du joueur courant sur le plateau paramètre: labyritnthe: le labyrinthe considéré resultat: les coordonnées du joueur courant ou None si celui-ci n'est pas sur le plateau """ return getCoordonneesJoueur(labyrinthe['plateau'],numJoueurCourant(labyrinthe['joueurs'])) def executerActionPhase1(labyrinthe,action,rangee): """ exécute une action de jeu de la phase 1 paramètres: labyrinthe: le labyrinthe considéré action: un caractère indiquant l'action à effecter si action vaut 'T' => faire tourner la carte à jouer si action est une des lettres N E S O et rangee est un des chiffre 1,3,5 => insèrer la carte à jouer à la direction action sur la rangée rangee et faire le nécessaire pour passer en phase 2 résultat: un entier qui vaut 0 si l'action demandée était valide et demandait de tourner la carte 1 si l'action demandée était valide et demandait d'insérer la carte 2 si l'action est interdite car l'opposée de l'action précédente 3 si action et rangee sont des entiers positifs 4 dans tous les autres cas """ if action=='T': tournerCarte(labyrinthe, sens='H') return 0 elif str(action) in 'NESO' and coupInterdit(labyrinthe['plateau'],action,rangee)==False: jouerCarte(labyrinthe['plateau'], action, rangee) changerPhase(labyrinthe) return 1 elif coupInterdit(labyrinthe,action,rangee)==True: return 2 elif action>0 and rangee>0: return 3 else: return 4 def accessibleDistJoueurCourant(labyrinthe, ligA,colA): """ verifie si le joueur courant peut accéder la case ligA,colA si c'est le cas la fonction retourne une liste représentant un chemin possible sinon ce n'est pas le cas, la fonction retourne None paramètres: labyrinthe le labyrinthe considéré ligA la ligne de la case d'arrivée colA la colonne de la case d'arrivée résultat: une liste de couples d'entier représentant un chemin que le joueur courant atteigne la case d'arrivée s'il existe None si pas de chemin """ x,y=getCoordonneesJoueur(labyrinthe['plateau'],numJoueurCourant(labyrinthe['joueurs'])) return accessibleDist(labyrinthe['plateau'],x,y,ligA,colA) def finirTour(labyrinthe): """ vérifie si le joueur courant vient de trouver un trésor (si oui fait le nécessaire) vérifie si la partie est terminée, si ce n'est pas le cas passe au joueur suivant paramètre: labyrinthe le labyrinthe considéré résultat: un entier qui vaut 0 si le joueur courant n'a pas trouvé de trésor 1 si le joueur courant a trouvé un trésor mais la partie n'est pas terminée 2 si le joueur courant a trouvé son dernier trésor (la partie est donc terminée) """ changerPhase(labyrinthe) if getCoordonneesJoueur(labyrinthe['plateau'],numJoueurCourant(labyrinthe['joueurs']))!=getCoordonneesTresor(labyrinthe['plateau'],tresorCourant(labyrinthe['joueurs'])) and joueurCourantAFini(labyrinthe['joueurs'])==False: return 0 if getCoordonneesJoueur(labyrinthe['plateau'],numJoueurCourant(labyrinthe['joueurs']))==getCoordonneesTresor(labyrinthe['plateau'],tresorCourant(labyrinthe['joueurs'])): if joueurCourantAFini(labyrinthe['joueurs'])==False: return 1 if joueurCourantAFini(labyrinthe['joueurs'])==True: return 2
38.556667
226
0.689634
c13e614b5b7c8b191fe493ea9e416c10dcb77d67
2,001
py
Python
IMLearn/metrics/loss_functions.py
OmriBenbenisty/IML.HUJI
18ca1b8086b8aaa149dca95f96de26750ea0497f
[ "MIT" ]
null
null
null
IMLearn/metrics/loss_functions.py
OmriBenbenisty/IML.HUJI
18ca1b8086b8aaa149dca95f96de26750ea0497f
[ "MIT" ]
null
null
null
IMLearn/metrics/loss_functions.py
OmriBenbenisty/IML.HUJI
18ca1b8086b8aaa149dca95f96de26750ea0497f
[ "MIT" ]
null
null
null
import numpy as np def mean_square_error(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculate MSE loss Parameters ---------- y_true: ndarray of shape (n_samples, ) True response values y_pred: ndarray of shape (n_samples, ) Predicted response values Returns ------- MSE of given predictions """ return np.square(y_true - y_pred).mean() def misclassification_error(y_true: np.ndarray, y_pred: np.ndarray, normalize: bool = True) -> float: """ Calculate misclassification loss Parameters ---------- y_true: ndarray of shape (n_samples, ) True response values y_pred: ndarray of shape (n_samples, ) Predicted response values normalize: bool, default = True Normalize by number of samples or not Returns ------- Misclassification of given predictions """ prod = y_true * y_pred return np.sum((prod < 0).astype(int)) / prod.shape[0] if normalize\ else np.sum((prod < 0).astype(int)) # return np.linalg.norm(y_true - y_pred) / y_true.shape[0] if normalize \ # else np.linalg.norm(y_true - y_pred) def accuracy(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculate accuracy of given predictions Parameters ---------- y_true: ndarray of shape (n_samples, ) True response values y_pred: ndarray of shape (n_samples, ) Predicted response values Returns ------- Accuracy of given predictions """ return ((y_true - y_pred) == 0).astype(int).mean() def cross_entropy(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculate the cross entropy of given predictions Parameters ---------- y_true: ndarray of shape (n_samples, ) True response values y_pred: ndarray of shape (n_samples, ) Predicted response values Returns ------- Cross entropy of given predictions """ raise NotImplementedError()
24.703704
101
0.625187
e434ab5a365836201daf8d646868331ae66e721e
344
py
Python
modules/random_dog.py
ChaseBosman/chatbot
a39e655e6d586fa596471cd20617dff5f9795a96
[ "Unlicense" ]
3
2019-10-19T12:07:06.000Z
2020-10-05T17:24:56.000Z
modules/random_dog.py
ChaseBosman/chatbot
a39e655e6d586fa596471cd20617dff5f9795a96
[ "Unlicense" ]
17
2019-10-05T12:30:17.000Z
2021-07-25T20:06:33.000Z
modules/random_dog.py
ChaseBosman/chatbot
a39e655e6d586fa596471cd20617dff5f9795a96
[ "Unlicense" ]
26
2018-10-19T05:43:12.000Z
2020-10-02T05:27:48.000Z
import requests import json def random_dog_pic(): try: url = 'https://dog.ceo/api/breeds/image/random' response = requests.get(url) response_json = json.loads(response.text) return "Here's a super cute doc pic: " + response_json.get('message') except: return "No dogs available today :/"
26.461538
77
0.627907
ec8d8fb43d9a801e49858c37f0222540c8c913f8
13,979
py
Python
ansible/modules/network/netvisor/pn_trunk.py
EnjoyLifeFund/py36pkgs
0ac677fbbfa7b6d8c527fe2c759ba05117b07fd2
[ "MIT", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
ansible/modules/network/netvisor/pn_trunk.py
EnjoyLifeFund/py36pkgs
0ac677fbbfa7b6d8c527fe2c759ba05117b07fd2
[ "MIT", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
ansible/modules/network/netvisor/pn_trunk.py
EnjoyLifeFund/py36pkgs
0ac677fbbfa7b6d8c527fe2c759ba05117b07fd2
[ "MIT", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python """ PN CLI trunk-create/trunk-delete/trunk-modify """ # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = """ --- module: pn_trunk author: "Pluribus Networks (@amitsi)" version_added: "2.2" short_description: CLI command to create/delete/modify a trunk. description: - Execute trunk-create or trunk-delete command. - Trunks can be used to aggregate network links at Layer 2 on the local switch. Use this command to create a new trunk. options: pn_cliusername: description: - Provide login username if user is not root. required: False pn_clipassword: description: - Provide login password if user is not root. required: False pn_cliswitch: description: - Target switch(es) to run the cli on. required: False state: description: - State the action to perform. Use 'present' to create trunk, 'absent' to delete trunk and 'update' to modify trunk. required: True choices: ['present', 'absent', 'update'] pn_name: description: - Specify the name for the trunk configuration. required: true pn_ports: description: - Specify the port number(s) for the link(s) to aggregate into the trunk. - Required for trunk-create. pn_speed: description: - Specify the port speed or disable the port. choices: ['disable', '10m', '100m', '1g', '2.5g', '10g', '40g'] pn_egress_rate_limit: description: - Specify an egress port data rate limit for the configuration. pn_jumbo: description: - Specify if the port can receive jumbo frames. pn_lacp_mode: description: - Specify the LACP mode for the configuration. choices: ['off', 'passive', 'active'] pn_lacp_priority: description: - Specify the LACP priority. This is a number between 1 and 65535 with a default value of 32768. pn_lacp_timeout: description: - Specify the LACP time out as slow (30 seconds) or fast (4seconds). The default value is slow. choices: ['slow', 'fast'] pn_lacp_fallback: description: - Specify the LACP fallback mode as bundles or individual. choices: ['bundle', 'individual'] pn_lacp_fallback_timeout: description: - Specify the LACP fallback timeout in seconds. The range is between 30 and 60 seconds with a default value of 50 seconds. pn_edge_switch: description: - Specify if the switch is an edge switch. pn_pause: description: - Specify if pause frames are sent. pn_description: description: - Specify a description for the trunk configuration. pn_loopback: description: - Specify loopback if you want to use loopback. pn_mirror_receive: description: - Specify if the configuration receives mirrored traffic. pn_unknown_ucast_level: description: - Specify an unknown unicast level in percent. The default value is 100%. pn_unknown_mcast_level: description: - Specify an unknown multicast level in percent. The default value is 100%. pn_broadcast_level: description: - Specify a broadcast level in percent. The default value is 100%. pn_port_macaddr: description: - Specify the MAC address of the port. pn_loopvlans: description: - Specify a list of looping vlans. pn_routing: description: - Specify if the port participates in routing on the network. pn_host: description: - Host facing port control setting. """ EXAMPLES = """ - name: create trunk pn_trunk: state: 'present' pn_name: 'spine-to-leaf' pn_ports: '11,12,13,14' - name: delete trunk pn_trunk: state: 'absent' pn_name: 'spine-to-leaf' """ RETURN = """ command: description: The CLI command run on the target node(s). returned: always type: str stdout: description: The set of responses from the trunk command. returned: always type: list stderr: description: The set of error responses from the trunk command. returned: on error type: list changed: description: Indicates whether the CLI caused changes on the target. returned: always type: bool """ import shlex TRUNK_EXISTS = None def pn_cli(module): """ This method is to generate the cli portion to launch the Netvisor cli. It parses the username, password, switch parameters from module. :param module: The Ansible module to fetch username, password and switch :return: returns the cli string for further processing """ username = module.params['pn_cliusername'] password = module.params['pn_clipassword'] cliswitch = module.params['pn_cliswitch'] if username and password: cli = '/usr/bin/cli --quiet --user %s:%s ' % (username, password) else: cli = '/usr/bin/cli --quiet ' if cliswitch == 'local': cli += ' switch-local ' else: cli += ' switch ' + cliswitch return cli def check_cli(module, cli): """ This method checks for idempotency using the trunk-show command. If a trunk with given name exists, return TRUNK_EXISTS as True else False. :param module: The Ansible module to fetch input parameters :param cli: The CLI string :return Global Booleans: TRUNK_EXISTS """ name = module.params['pn_name'] show = cli + ' trunk-show format switch,name no-show-headers' show = shlex.split(show) out = module.run_command(show)[1] out = out.split() # Global flags global TRUNK_EXISTS if name in out: TRUNK_EXISTS = True else: TRUNK_EXISTS = False def run_cli(module, cli): """ This method executes the cli command on the target node(s) and returns the output. The module then exits based on the output. :param cli: the complete cli string to be executed on the target node(s). :param module: The Ansible module to fetch command """ cliswitch = module.params['pn_cliswitch'] state = module.params['state'] command = get_command_from_state(state) cmd = shlex.split(cli) # 'out' contains the output # 'err' contains the error messages result, out, err = module.run_command(cmd) print_cli = cli.split(cliswitch)[1] # Response in JSON format if result != 0: module.exit_json( command=print_cli, stderr=err.strip(), msg="%s operation failed" % command, changed=False ) if out: module.exit_json( command=print_cli, stdout=out.strip(), msg="%s operation completed" % command, changed=True ) else: module.exit_json( command=print_cli, msg="%s operation completed" % command, changed=True ) def get_command_from_state(state): """ This method gets appropriate command name for the state specified. It returns the command name for the specified state. :param state: The state for which the respective command name is required. """ command = None if state == 'present': command = 'trunk-create' if state == 'absent': command = 'trunk-delete' if state == 'update': command = 'trunk-modify' return command def main(): """ This portion is for arguments parsing """ module = AnsibleModule( argument_spec=dict( pn_cliusername=dict(required=False, type='str'), pn_clipassword=dict(required=False, type='str', no_log=True), pn_cliswitch=dict(required=False, type='str', default='local'), state=dict(required=True, type='str', choices=['present', 'absent', 'update']), pn_name=dict(required=True, type='str'), pn_ports=dict(type='str'), pn_speed=dict(type='str', choices=['disable', '10m', '100m', '1g', '2.5g', '10g', '40g']), pn_egress_rate_limit=dict(type='str'), pn_jumbo=dict(type='bool'), pn_lacp_mode=dict(type='str', choices=[ 'off', 'passive', 'active']), pn_lacp_priority=dict(type='int'), pn_lacp_timeout=dict(type='str'), pn_lacp_fallback=dict(type='str', choices=[ 'bundle', 'individual']), pn_lacp_fallback_timeout=dict(type='str'), pn_edge_switch=dict(type='bool'), pn_pause=dict(type='bool'), pn_description=dict(type='str'), pn_loopback=dict(type='bool'), pn_mirror_receive=dict(type='bool'), pn_unknown_ucast_level=dict(type='str'), pn_unknown_mcast_level=dict(type='str'), pn_broadcast_level=dict(type='str'), pn_port_macaddr=dict(type='str'), pn_loopvlans=dict(type='str'), pn_routing=dict(type='bool'), pn_host=dict(type='bool') ), required_if=( ["state", "present", ["pn_name", "pn_ports"]], ["state", "absent", ["pn_name"]], ["state", "update", ["pn_name"]] ) ) # Accessing the arguments state = module.params['state'] name = module.params['pn_name'] ports = module.params['pn_ports'] speed = module.params['pn_speed'] egress_rate_limit = module.params['pn_egress_rate_limit'] jumbo = module.params['pn_jumbo'] lacp_mode = module.params['pn_lacp_mode'] lacp_priority = module.params['pn_lacp_priority'] lacp_timeout = module.params['pn_lacp_timeout'] lacp_fallback = module.params['pn_lacp_fallback'] lacp_fallback_timeout = module.params['pn_lacp_fallback_timeout'] edge_switch = module.params['pn_edge_switch'] pause = module.params['pn_pause'] description = module.params['pn_description'] loopback = module.params['pn_loopback'] mirror_receive = module.params['pn_mirror_receive'] unknown_ucast_level = module.params['pn_unknown_ucast_level'] unknown_mcast_level = module.params['pn_unknown_mcast_level'] broadcast_level = module.params['pn_broadcast_level'] port_macaddr = module.params['pn_port_macaddr'] loopvlans = module.params['pn_loopvlans'] routing = module.params['pn_routing'] host = module.params['pn_host'] command = get_command_from_state(state) # Building the CLI command string cli = pn_cli(module) if command == 'trunk-delete': check_cli(module, cli) if TRUNK_EXISTS is False: module.exit_json( skipped=True, msg='Trunk with name %s does not exist' % name ) cli += ' %s name %s ' % (command, name) else: if command == 'trunk-create': check_cli(module, cli) if TRUNK_EXISTS is True: module.exit_json( skipped=True, msg='Trunk with name %s already exists' % name ) cli += ' %s name %s ' % (command, name) # Appending options if ports: cli += ' ports ' + ports if speed: cli += ' speed ' + speed if egress_rate_limit: cli += ' egress-rate-limit ' + egress_rate_limit if jumbo is True: cli += ' jumbo ' if jumbo is False: cli += ' no-jumbo ' if lacp_mode: cli += ' lacp-mode ' + lacp_mode if lacp_priority: cli += ' lacp-priority ' + lacp_priority if lacp_timeout: cli += ' lacp-timeout ' + lacp_timeout if lacp_fallback: cli += ' lacp-fallback ' + lacp_fallback if lacp_fallback_timeout: cli += ' lacp-fallback-timeout ' + lacp_fallback_timeout if edge_switch is True: cli += ' edge-switch ' if edge_switch is False: cli += ' no-edge-switch ' if pause is True: cli += ' pause ' if pause is False: cli += ' no-pause ' if description: cli += ' description ' + description if loopback is True: cli += ' loopback ' if loopback is False: cli += ' no-loopback ' if mirror_receive is True: cli += ' mirror-receive-only ' if mirror_receive is False: cli += ' no-mirror-receive-only ' if unknown_ucast_level: cli += ' unknown-ucast-level ' + unknown_ucast_level if unknown_mcast_level: cli += ' unknown-mcast-level ' + unknown_mcast_level if broadcast_level: cli += ' broadcast-level ' + broadcast_level if port_macaddr: cli += ' port-mac-address ' + port_macaddr if loopvlans: cli += ' loopvlans ' + loopvlans if routing is True: cli += ' routing ' if routing is False: cli += ' no-routing ' if host is True: cli += ' host-enable ' if host is False: cli += ' host-disable ' run_cli(module, cli) # Ansible boiler-plate from ansible.module_utils.basic import AnsibleModule if __name__ == '__main__': main()
30.85872
81
0.618141
adc72902e0bdd4ca39e68a4015381e449d728f74
334
py
Python
pset6/greedy.py
NelsonVides/CS50
132b4b60f8bfc6775a7075744975a86f3e53a5ce
[ "MIT" ]
null
null
null
pset6/greedy.py
NelsonVides/CS50
132b4b60f8bfc6775a7075744975a86f3e53a5ce
[ "MIT" ]
null
null
null
pset6/greedy.py
NelsonVides/CS50
132b4b60f8bfc6775a7075744975a86f3e53a5ce
[ "MIT" ]
null
null
null
while True: #print("Tell me how many rows you want") dollars = float(input("How much do I owe you? ")) if dollars > 0: break cents = int(dollars * 100) coins = 0; coins += cents // 25 cents = cents % 25 coins += cents // 10 cents = cents % 10 coins += cents // 5 cents = cents % 5 coins += cents print(coins)
15.904762
53
0.598802
9756459115989f769f19a8a111663dcf9c8761b6
759
py
Python
ch3/test_autouse.py
ujuc/python_testing_with_python
645700582773532c3520f97a299e2944563b113d
[ "Beerware" ]
1
2018-08-15T16:26:32.000Z
2018-08-15T16:26:32.000Z
ch3/test_autouse.py
ujuc/python_testing_with_pytest
645700582773532c3520f97a299e2944563b113d
[ "Beerware" ]
null
null
null
ch3/test_autouse.py
ujuc/python_testing_with_pytest
645700582773532c3520f97a299e2944563b113d
[ "Beerware" ]
null
null
null
"""Demonstrate autouse fixtures.""" import pytest import time @pytest.fixture(autouse=True, scope='session') def footer_session_scope(): """Report the time at the end of a session.""" yield now = time.time() print('--') print('finished : {}'.format(time.strftime('%d %b %X', time.localtime(now)))) print('--------------') @pytest.fixture(autouse=True) def footer_function_scope(): """Report test durations after each function.""" start = time.time() yield stop = time.time() delta = stop - start print('\ntest duration : {:0.3} seconds'.format(delta)) def test_1(): """Simulate long-ish running test.""" time.sleep(1) def test_2(): """Simulate slightly longer test.""" time.sleep(1.23)
21.685714
81
0.621871
670d4154568911583c99386168b5c454456e559d
1,031
py
Python
configs/mirnet_train.py
soumik12345/enhance-me
c0f9bcb6d4eb46030e90d47e58059f8624f5cf7a
[ "MIT" ]
1
2022-02-01T23:20:19.000Z
2022-02-01T23:20:19.000Z
configs/mirnet_train.py
soumik12345/enhance-me
c0f9bcb6d4eb46030e90d47e58059f8624f5cf7a
[ "MIT" ]
2
2021-11-27T08:45:47.000Z
2021-11-28T08:45:59.000Z
configs/mirnet_train.py
soumik12345/enhance-me
c0f9bcb6d4eb46030e90d47e58059f8624f5cf7a
[ "MIT" ]
null
null
null
import ml_collections def get_config() -> ml_collections.ConfigDict: config = ml_collections.ConfigDict() config.experiment_name = "lol_dataset_256" # Experiment Name config.image_size = 128 # Image Size config.dataset_label = "lol" # Dataset Label config.apply_random_horizontal_flip = True # Flag: Apply Random Horizontal Flip config.apply_random_vertical_flip = True # Flag: Apply Random Vertical Flip config.apply_random_rotation = True # Flag: Apply Random Rotation config.use_mixed_precision = True # Flag: Use Mixed-precision config.val_split = 0.1 # Validation Split config.batch_size = 4 # Batch Size config.num_recursive_residual_groups = 3 # Number of recursive residual groups in MIRNet config.num_multi_scale_residual_blocks = 2 # Number of multi-scale residual blocks in MIRNet config.learning_rate = 1e-4 # learning rate config.epsilon = 1e-3 # Constant for Charbonnier Loss config.epochs = 50 # Number of training epochs return config
49.095238
97
0.744908
72c238e688b079fce4ecfa3678350798aa83538e
2,211
py
Python
keepmealive/folders/tests.py
kymy86/keepmealive
fcca7cb825ae947978ca3251dc0331207cec2527
[ "Apache-2.0" ]
null
null
null
keepmealive/folders/tests.py
kymy86/keepmealive
fcca7cb825ae947978ca3251dc0331207cec2527
[ "Apache-2.0" ]
null
null
null
keepmealive/folders/tests.py
kymy86/keepmealive
fcca7cb825ae947978ca3251dc0331207cec2527
[ "Apache-2.0" ]
null
null
null
from rest_framework import status from rest_framework.test import APITestCase from folders.models import Folder from django.contrib.auth.models import User class FolderTests(APITestCase): def setUp(self): self.users = User.objects.create_user( username='test', email='test@test.com', password='testpwd' ) url = '/api/auth/token/' data = { 'username': 'test', 'password': 'testpwd' } response = self.client.post(url, data, format='json') self.token = response.data['token'] """ Test folder creation """ def test_create_folder(self): url = '/api/folders/folder/' data = { 'name': 'test folder', 'idparent': 0, } header = { 'HTTP_AUTHORIZATION': 'JWT {}'.format(self.token) } response = self.client.post(url, data, format='json', **header) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(Folder.objects.count(), 1) self.assertEqual(Folder.objects.get().name, 'test folder') """ Test folder updating """ def test_update_folder(self): folder = Folder.objects.create(name='test folder', idparent=0) url = '/api/folders/folder/'+str(folder.id)+"/" data = { 'name': 'Test folder updated', 'idparent': str(folder.idparent) } header = { 'HTTP_AUTHORIZATION': 'JWT {}'.format(self.token) } response = self.client.put(url, data, format='json', **header) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(Folder.objects.get().name, 'Test folder updated') """ Test folder deletion """ def test_delete_folder(self): folder = Folder.objects.create(name='test folder', idparent=0) url = '/api/folders/folder/'+str(folder.id)+"/" header = { 'HTTP_AUTHORIZATION': 'JWT {}'.format(self.token) } response = self.client.delete(url, format='json', **header) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
32.514706
74
0.585708
daff3ef70ba198c2f8a4fa57f72129090a20def0
5,659
py
Python
test/functional/p2p-instantsend.py
INTICOIN/SolD
cfa2f3a96b0f8831fee63c70203af17732181fe5
[ "MIT" ]
null
null
null
test/functional/p2p-instantsend.py
INTICOIN/SolD
cfa2f3a96b0f8831fee63c70203af17732181fe5
[ "MIT" ]
null
null
null
test/functional/p2p-instantsend.py
INTICOIN/SolD
cfa2f3a96b0f8831fee63c70203af17732181fe5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018-2020 The SolD Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import SolDTestFramework from test_framework.util import isolate_node, sync_mempools, reconnect_isolated_node, assert_equal, \ assert_raises_rpc_error ''' p2p-instantsend.py Tests InstantSend functionality (prevent doublespend for unconfirmed transactions) ''' class InstantSendTest(SolDTestFramework): def set_test_params(self): self.set_sold_test_params(7, 3, fast_dip3_enforcement=True) # set sender, receiver, isolated nodes self.isolated_idx = 1 self.receiver_idx = 2 self.sender_idx = 3 def run_test(self): self.nodes[0].spork("SPORK_17_QUORUM_DKG_ENABLED", 0) self.wait_for_sporks_same() self.mine_quorum() self.nodes[0].spork("SPORK_2_INSTANTSEND_ENABLED", 0) self.nodes[0].spork("SPORK_3_INSTANTSEND_BLOCK_FILTERING", 0) self.wait_for_sporks_same() self.test_mempool_doublespend() self.test_block_doublespend() def test_block_doublespend(self): sender = self.nodes[self.sender_idx] receiver = self.nodes[self.receiver_idx] isolated = self.nodes[self.isolated_idx] # feed the sender with some balance sender_addr = sender.getnewaddress() self.nodes[0].sendtoaddress(sender_addr, 1) self.bump_mocktime(1) self.nodes[0].generate(2) self.sync_all() # create doublespending transaction, but don't relay it dblspnd_tx = self.create_raw_tx(sender, isolated, 0.5, 1, 100) # isolate one node from network isolate_node(isolated) # instantsend to receiver receiver_addr = receiver.getnewaddress() is_id = sender.sendtoaddress(receiver_addr, 0.9) # wait for the transaction to propagate connected_nodes = self.nodes.copy() del connected_nodes[self.isolated_idx] self.sync_mempools(connected_nodes) for node in connected_nodes: self.wait_for_instantlock(is_id, node) # send doublespend transaction to isolated node isolated.sendrawtransaction(dblspnd_tx['hex']) # generate block on isolated node with doublespend transaction self.bump_mocktime(1) isolated.generate(1) wrong_block = isolated.getbestblockhash() # connect isolated block to network reconnect_isolated_node(isolated, 0) # check doublespend block is rejected by other nodes timeout = 10 for i in range(0, self.num_nodes): if i == self.isolated_idx: continue res = self.nodes[i].waitforblock(wrong_block, timeout) assert (res['hash'] != wrong_block) # wait for long time only for first node timeout = 1 # send coins back to the controller node without waiting for confirmations receiver.sendtoaddress(self.nodes[0].getnewaddress(), 0.9, "", "", True) assert_equal(receiver.getwalletinfo()["balance"], 0) # mine more blocks # TODO: mine these blocks on an isolated node self.bump_mocktime(1) # make sure the above TX is on node0 self.sync_mempools([n for n in self.nodes if n is not isolated]) self.nodes[0].generate(2) self.sync_all() def test_mempool_doublespend(self): sender = self.nodes[self.sender_idx] receiver = self.nodes[self.receiver_idx] isolated = self.nodes[self.isolated_idx] # feed the sender with some balance sender_addr = sender.getnewaddress() self.nodes[0].sendtoaddress(sender_addr, 1) self.bump_mocktime(1) self.nodes[0].generate(2) self.sync_all() # create doublespending transaction, but don't relay it dblspnd_tx = self.create_raw_tx(sender, isolated, 0.5, 1, 100) dblspnd_txid = bytes_to_hex_str(hash256(hex_str_to_bytes(dblspnd_tx['hex']))[::-1]) # isolate one node from network isolate_node(isolated) # send doublespend transaction to isolated node isolated.sendrawtransaction(dblspnd_tx['hex']) # let isolated node rejoin the network # The previously isolated node should NOT relay the doublespending TX reconnect_isolated_node(isolated, 0) for node in self.nodes: if node is not isolated: assert_raises_rpc_error(-5, "No such mempool or blockchain transaction", node.getrawtransaction, dblspnd_txid) # instantsend to receiver. The previously isolated node should prune the doublespend TX and request the correct # TX from other nodes. receiver_addr = receiver.getnewaddress() is_id = sender.sendtoaddress(receiver_addr, 0.9) # wait for the transaction to propagate self.sync_mempools() for node in self.nodes: self.wait_for_instantlock(is_id, node) assert_raises_rpc_error(-5, "No such mempool or blockchain transaction", isolated.getrawtransaction, dblspnd_txid) # send coins back to the controller node without waiting for confirmations receiver.sendtoaddress(self.nodes[0].getnewaddress(), 0.9, "", "", True) assert_equal(receiver.getwalletinfo()["balance"], 0) # mine more blocks self.bump_mocktime(1) self.nodes[0].generate(2) self.sync_all() if __name__ == '__main__': InstantSendTest().main()
42.231343
126
0.675208
497f0a9332e116705731e2b8fc418c02b33d2026
2,223
py
Python
tensorflow/python/ops/ragged/ragged_eager_test.py
wainshine/tensorflow
dc7a8dc8546c679b9c7b3df7494ce4506bfc1a6d
[ "Apache-2.0" ]
54
2017-06-17T14:07:48.000Z
2022-03-29T02:11:20.000Z
tensorflow/python/ops/ragged/ragged_eager_test.py
wainshine/tensorflow
dc7a8dc8546c679b9c7b3df7494ce4506bfc1a6d
[ "Apache-2.0" ]
19
2021-12-28T12:44:55.000Z
2022-01-13T08:11:28.000Z
tensorflow/python/ops/ragged/ragged_eager_test.py
wainshine/tensorflow
dc7a8dc8546c679b9c7b3df7494ce4506bfc1a6d
[ "Apache-2.0" ]
11
2018-04-19T22:36:01.000Z
2021-08-02T08:44:43.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.ragged in eager execution mode.""" from absl.testing import parameterized import numpy as np from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.platform import googletest class RaggedTensorTest(test_util.TensorFlowTestCase, parameterized.TestCase): @parameterized.parameters([ dict(pylist=[[b'a', b'b'], [b'c']]), dict(pylist=[[[1, 2], [3]], [[4, 5, 6], [], [7]]]), dict(pylist=[[[1, 2], [3, 4]], [[5, 6], [], [7, 8]]], ragged_rank=1), ]) def testRaggedTensorToList(self, pylist, ragged_rank=None): rt = ragged_factory_ops.constant(pylist, ragged_rank) self.assertAllEqual(rt, pylist) @parameterized.parameters([ dict(pylist=[[b'a', b'b'], [b'c']], expected_str="[[b'a', b'b'], [b'c']]"), dict(pylist=[[[1, 2], [3]], [[4, 5, 6], [], [7]]], expected_str='[[[1, 2], [3]], [[4, 5, 6], [], [7]]]'), dict(pylist=[[0, 1], np.arange(2, 2000)], expected_str='[[0, 1], [2, 3, 4, ..., 1997, 1998, 1999]]'), dict(pylist=[[[0, 1]], [np.arange(2, 2000)]], expected_str='[[[0, 1]],\n [[2, 3, 4, ..., 1997, 1998, 1999]]]'), ]) def testRaggedTensorStr(self, pylist, expected_str): rt = ragged_factory_ops.constant(pylist) self.assertEqual(str(rt), f'<tf.RaggedTensor {expected_str}>') if __name__ == '__main__': ops.enable_eager_execution() googletest.main()
39.696429
80
0.625281
2c3394aa27d16be303570da47d86bc6fa7ce1642
1,146
py
Python
tests/test_utils.py
Badger-Finance/badger-utils
e6cc5cf22f24840486f4a762eab024f87da83c18
[ "MIT" ]
1
2021-09-29T10:04:50.000Z
2021-09-29T10:04:50.000Z
tests/test_utils.py
Badger-Finance/badger-utils
e6cc5cf22f24840486f4a762eab024f87da83c18
[ "MIT" ]
11
2021-10-17T15:52:22.000Z
2022-01-18T15:10:36.000Z
tests/test_utils.py
SHAKOTN/badger-utils
e6cc5cf22f24840486f4a762eab024f87da83c18
[ "MIT" ]
1
2021-11-25T14:04:39.000Z
2021-11-25T14:04:39.000Z
import pytest from brownie import accounts from badger_utils.utils import approx from badger_utils.utils import is_address_eoa from badger_utils.utils import val @pytest.mark.parametrize( "actual, expected, threshold", [ (1, 1, 1), (90, 99, 99), (75, 100, 75) ] ) def test_approx_match(actual, expected, threshold): assert approx(actual, expected, threshold) @pytest.mark.parametrize( "actual, expected, threshold", [ (1, 2, 1), (90, 99, 1), (75, 100, 25) ] ) def test_approx_no_match(actual, expected, threshold): assert not approx(actual, expected, threshold) @pytest.mark.parametrize( "amount, decimals, expected", [ (0, 18, "0.000000000000000000"), (1000000000, 18, "0.000000001000000000"), (1000000000000000000, 18, "1.000000000000000000"), ] ) def test_val(amount, decimals, expected): result = val(amount, decimals) assert result == expected def test_is_address_eoa_accounts(): for account in accounts: assert is_address_eoa(account.address) def test_is_address_eoa_token(token): assert not is_address_eoa(token.address)
23.875
58
0.686736
cc62d90caf3e5a31e5d9185c3b32cce03f49dcc0
24,628
py
Python
bnlearn/structure_learning.py
khuyentran1401/bnlearn
ce2c856337ce058205b09ee36ae2b8741b93cb5d
[ "MIT" ]
2
2022-01-03T21:01:27.000Z
2022-01-04T00:14:08.000Z
bnlearn/structure_learning.py
khuyentran1401/bnlearn
ce2c856337ce058205b09ee36ae2b8741b93cb5d
[ "MIT" ]
null
null
null
bnlearn/structure_learning.py
khuyentran1401/bnlearn
ce2c856337ce058205b09ee36ae2b8741b93cb5d
[ "MIT" ]
null
null
null
"""Structure learning. Given a set of data samples, estimate a DAG that captures the dependencies between the variables.""" # ------------------------------------ # Name : structure_learning.py # Author : E.Taskesen # Contact : erdogant@gmail.com # Licence : See licences # ------------------------------------ # %% Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt from pgmpy.estimators import BDeuScore, K2Score, BicScore from pgmpy.estimators import ExhaustiveSearch, HillClimbSearch, TreeSearch from pgmpy.models import NaiveBayes import pgmpy from packaging import version if version.parse(pgmpy.__version__)>=version.parse("0.1.13"): from pgmpy.estimators import PC as ConstraintBasedEstimator else: from pgmpy.estimators import ConstraintBasedEstimator import bnlearn # %% Structure Learning def fit(df, methodtype='hc', scoretype='bic', black_list=None, white_list=None, bw_list_method=None, max_indegree=None, tabu_length=100, epsilon=1e-4, max_iter=1e6, root_node=None, class_node=None, fixed_edges=None, return_all_dags=False, verbose=3): """Structure learning fit model. Description ----------- Search strategies for structure learning The search space of DAGs is super-exponential in the number of variables and the above scoring functions allow for local maxima. To learn model structure (a DAG) from a data set, there are three broad techniques: 1. Score-based structure learning (BIC/BDeu/K2 score; exhaustive search, hill climb/tabu search) * exhaustivesearch * hillclimbsearch * chow-liu * Tree-augmented Naive Bayes (tan) * NaiveBayesian 2. Constraint-based structure learning (PC) a. chi-square test 3. Hybrid structure learning (The combination of both techniques) (MMHC) Score-based Structure Learning. This approach construes model selection as an optimization task. It has two building blocks: A scoring function sD:->R that maps models to a numerical score, based on how well they fit to a given data set D. A search strategy to traverse the search space of possible models M and select a model with optimal score. Commonly used scoring functions to measure the fit between model and data are Bayesian Dirichlet scores such as BDeu or K2 and the Bayesian Information Criterion (BIC, also called MDL). BDeu is dependent on an equivalent sample size. Parameters ---------- df : pd.DataFrame() Input dataframe. methodtype : str, (default : 'hc') String Search strategy for structure_learning. 'hc' or 'hillclimbsearch' (default) 'ex' or 'exhaustivesearch' 'cs' or 'constraintsearch' 'cl' or 'chow-liu' (requires setting root_node parameter) 'nb' or 'naivebayes' (requires <root_node>) 'tan' (requires <root_node> and <class_node> parameter) scoretype : str, (default : 'bic') Scoring function for the search spaces. 'bic', 'k2', 'bdeu' black_list : List or None, (default : None) List of edges are black listed. In case of filtering on nodes, the nodes black listed nodes are removed from the dataframe. The resulting model will not contain any nodes that are in black_list. white_list : List or None, (default : None) List of edges are white listed. In case of filtering on nodes, the search is limited to those edges. The resulting model will then only contain nodes that are in white_list. Works only in case of methodtype='hc' See also paramter: `bw_list_method` bw_list_method : list of str or tuple, (default : None) A list of edges can be passed as `black_list` or `white_list` to exclude or to limit the search. * 'edges' : [('A', 'B'), ('C','D'), (...)] This option is limited to only methodtype='hc' * 'nodes' : ['A', 'B', ...] Filter the dataframe based on the nodes for `black_list` or `white_list`. Filtering can be done for every methodtype/scoretype. max_indegree : int, (default : None) If provided and unequal None, the procedure only searches among models where all nodes have at most max_indegree parents. (only in case of methodtype='hc') epsilon: float (default: 1e-4) Defines the exit condition. If the improvement in score is less than `epsilon`, the learned model is returned. (only in case of methodtype='hc') max_iter: int (default: 1e6) The maximum number of iterations allowed. Returns the learned model when the number of iterations is greater than `max_iter`. (only in case of methodtype='hc') root_node: String. (only in case of chow-liu, Tree-augmented Naive Bayes (TAN)) The root node for treeSearch based methods. class_node: String The class node is required for Tree-augmented Naive Bayes (TAN) fixed_edges: iterable, Only in case of HillClimbSearch. A list of edges that will always be there in the final learned model. The algorithm will add these edges at the start of the algorithm and will never change it. return_all_dags : Bool, (default: False) Return all possible DAGs. Only in case methodtype='exhaustivesearch' verbose : int, (default : 3) 0: None, 1: Error, 2: Warning, 3: Info (default), 4: Debug, 5: Trace Returns ------- dict with model. Examples -------- >>> # Import bnlearn >>> import bnlearn as bn >>> >>> # Load DAG >>> model = bn.import_DAG('asia') >>> >>> # plot ground truth >>> G = bn.plot(model) >>> >>> # Sampling >>> df = bn.sampling(model, n=10000) >>> >>> # Structure learning of sampled dataset >>> model_sl = bn.structure_learning.fit(df, methodtype='hc', scoretype='bic') >>> >>> # Compute edge strength using chi-square independence test >>> model_sl = bn.independence_test(model_sl, df) >>> >>> # Plot based on structure learning of sampled data >>> bn.plot(model_sl, pos=G['pos']) >>> >>> # Compare networks and make plot >>> bn.compare_networks(model, model_sl, pos=G['pos']) """ out = [] # Set config config = {'method': methodtype, 'scoring': scoretype, 'black_list': black_list, 'white_list': white_list, 'bw_list_method': bw_list_method, 'max_indegree': max_indegree, 'tabu_length': tabu_length, 'epsilon': epsilon, 'max_iter': max_iter, 'root_node': root_node, 'class_node': class_node, 'fixed_edges': fixed_edges, 'return_all_dags': return_all_dags, 'verbose': verbose} # Make some checks config = _make_checks(df, config, verbose=verbose) # Make sure columns are of type string df.columns = df.columns.astype(str) # Filter on white_list and black_list df = _white_black_list_filter(df, white_list, black_list, bw_list_method=config['bw_list_method'], verbose=verbose) # Lets go! if config['verbose']>=3: print('[bnlearn] >Computing best DAG using [%s]' %(config['method'])) # ExhaustiveSearch can be used to compute the score for every DAG and returns the best-scoring one: if config['method']=='nv' or config['method']=='naivebayes': out = _naivebayes(df, root_node=config['root_node'], estimator_type=None, feature_vars=None, dependent_var=None, verbose=3) # ExhaustiveSearch can be used to compute the score for every DAG and returns the best-scoring one: if config['method']=='ex' or config['method']=='exhaustivesearch': out = _exhaustivesearch(df, scoretype=config['scoring'], return_all_dags=config['return_all_dags'], verbose=config['verbose']) # HillClimbSearch if config['method']=='hc' or config['method']=='hillclimbsearch': out = _hillclimbsearch(df, scoretype=config['scoring'], black_list=config['black_list'], white_list=config['white_list'], max_indegree=config['max_indegree'], tabu_length=config['tabu_length'], bw_list_method=bw_list_method, epsilon=config['epsilon'], max_iter=config['max_iter'], fixed_edges=config['fixed_edges'], verbose=config['verbose'], ) # Constraint-based Structure Learning if config['method']=='cs' or config['method']=='constraintsearch': """Constraint-based Structure Learning A different, but quite straightforward approach to build a DAG from data is this: Identify independencies in the data set using hypothesis tests Construct DAG (pattern) according to identified independencies (Conditional) Independence Tests Independencies in the data can be identified using chi2 conditional independence tests.""" out = _constraintsearch(df, verbose=config['verbose']) # TreeSearch-based Structure Learning if config['method']=='chow-liu' or config['method']=='tan': """TreeSearch based Structure Learning.""" out = _treesearch(df, config['method'], config['root_node'], class_node=config['class_node'], verbose=config['verbose']) # Store out['model_edges'] = list(out['model'].edges()) out['adjmat'] = bnlearn._dag2adjmat(out['model']) out['config'] = config # return return(out) # %% Make Checks def _make_checks(df, config, verbose=3): assert isinstance(pd.DataFrame(), type(df)), 'df must be of type pd.DataFrame()' if not np.isin(config['scoring'], ['bic', 'k2', 'bdeu']): raise Exception('"scoretype=%s" is invalid.' %(config['scoring'])) if not np.isin(config['method'], ['naivebayes', 'nb', 'tan', 'cl', 'chow-liu', 'hc', 'ex', 'cs', 'exhaustivesearch', 'hillclimbsearch', 'constraintsearch']): raise Exception('"methodtype=%s" is invalid.' %(config['method'])) if isinstance(config['white_list'], str): config['white_list'] = [config['white_list']] if isinstance(config['black_list'], str): config['black_list'] = [config['black_list']] if (config['white_list'] is not None) and len(config['white_list'])==0: config['white_list'] = None if (config['black_list'] is not None) and len(config['black_list'])==0: config['black_list'] = None if (config['method']!='hc') and (config['bw_list_method']=='edges'): raise Exception('[bnlearn] >The "bw_list_method=%s" does not work with "methodtype=%s"' %(config['bw_list_method'], config['method'])) if (config['method']=='tan') and (config['class_node'] is None): raise Exception('[bnlearn] >The treeSearch method TAN requires setting the <class_node> parameter: "%s"' %(str(config['class_node']))) if ((config['method']=='nb') | (config['method']=='naivebayes')) and (config['root_node'] is None): raise Exception('[bnlearn] >The <%s> method requires setting the "root_node" parameter: "%s"' %(config['method'], str(config['class_node']))) if config['method']=='cl': config['method'] = 'chow-liu' if config['fixed_edges'] is None: config['fixed_edges']=set() # Remove this block in future (21-10-2021) if config['bw_list_method']=='filter': if verbose>=2: print('[bnlearn] >Warning: The parameter bw_list_method="filter" is changed into bw_list_method="nodes". The old naming will be removed in future releases.') config['bw_list_method'] = "nodes" if config['bw_list_method']=='enforce': if verbose>=2: print('[bnlearn] >Warning: The parameter bw_list_method="enforce" is changed into bw_list_method="edges". The old naming will be removed in future releases.') config['bw_list_method'] = "edges" # End remove block # Show warnings if (config['bw_list_method'] is None) and ((config['black_list'] is not None) or (config['white_list'] is not None)): raise Exception('[bnlearn] >Error: The use of black_list or white_list requires setting bw_list_method.') if df.shape[1]>10 and df.shape[1]<15: if verbose>=2: print('[bnlearn] >Warning: Computing DAG with %d nodes can take a very long time!' %(df.shape[1])) if (config['max_indegree'] is not None) and config['method']!='hc': if verbose>=2: print('[bnlearn] >Warning: max_indegree only works in case of methodtype="hc"') if (config['class_node'] is not None) and config['method']!='tan': if verbose>=2: print('[bnlearn] >Warning: max_indegree only works in case of methodtype="tan"') return config # %% TreeSearch methods def _naivebayes(df, root_node, estimator_type=None, feature_vars=None, dependent_var=None, verbose=3): """Naive Bayesian model. Description ----------- Naive Bayes is a special case of Bayesian Model where the only edges in the model are from the feature variables to the dependent variable. Parameters ---------- df : pandas DataFrame object A DataFrame object with column names same as the variable names of network. root_node : str Parent node of the model. estimator_type : TYPE, optional Any pgmpy estimator. If nothing is specified, the default ``MaximumLikelihoodEstimator`` would be used. * 'MaximumLikelihoodEstimator' (default) * 'BayesianEstimator' feature_vars: list (array-like) A list of variable predictor variables (i.e. the features) in the model. dependent_var: hashable object The dependent variable (i.e. the variable to be predicted) in the model. verbose : int, (default : 3) 0:None, 1:Error, 2:Warning, 3:Info (default), 4:Debug, 5:Trace Returns ------- None. References ---------- * https://pgmpy.org/models/naive.html * https://pgmpy.org/_modules/pgmpy/models/NaiveBayes.html#NaiveBayes """ model = NaiveBayes(feature_vars=feature_vars, dependent_var=dependent_var) model.fit(df, parent_node=root_node, estimator=estimator_type) # Store out={} out['model']=model # Return return(out) # %% white_list and black_list def _white_black_list_filter(df, white_list, black_list, bw_list_method='edges', verbose=3): # if bw_list_method=='edges': # # Keep only edges that are in white_list. # if white_list is not None: # if verbose>=3: print('[bnlearn] >Filter variables on white_list..') # parent = [ u for (u, v) in white_list] # child = [ v for (u, v) in white_list] # white_list_node = [x.lower() for x in set(parent+child)] # Iloc = np.isin(df.columns.str.lower(), white_list_node) # df = df.loc[:, Iloc] if bw_list_method=='nodes': # Keep only variables that are in white_list. if white_list is not None: if verbose>=3: print('[bnlearn] >Filter variables (nodes) on white_list..') white_list = [x.lower() for x in white_list] Iloc = np.isin(df.columns.str.lower(), white_list) df = df.loc[:, Iloc] # Exclude variables that are in black_list. if black_list is not None: if verbose>=3: print('[bnlearn] >Filter variables (nodes) on black_list..') black_list = [x.lower() for x in black_list] Iloc = ~np.isin(df.columns.str.lower(), black_list) df = df.loc[:, Iloc] if (white_list is not None) or (black_list is not None): if verbose>=3: print('[bnlearn] >Number of features after white/black listing: %d' %(df.shape[1])) if df.shape[1]<=1: raise Exception('[bnlearn] >Error: [%d] variables are remaining. A minimum of 2 would be nice.' %(df.shape[1])) return df # %% TreeSearch methods def _treesearch(df, estimator_type, root_node, class_node=None, verbose=3): """Tree search methods. Description ----------- The TreeSearch methods Chow-liu and TAN (Tree-augmented Naive Bayes) searches for DAGs with attempts to find a model with optimal score. """ out={} est = TreeSearch(df, root_node=root_node) model = est.estimate(estimator_type=estimator_type, class_node=class_node) # Store out['model']=model # Return return(out) # %% Constraint-based Structure Learning def _constraintsearch(df, significance_level=0.05, verbose=3): """Contrain search. PC PDAG construction is only guaranteed to work under the assumption that the identified set of independencies is *faithful*, i.e. there exists a DAG that exactly corresponds to it. Spurious dependencies in the data set can cause the reported independencies to violate faithfulness. It can happen that the estimated PDAG does not have any faithful completions (i.e. edge orientations that do not introduce new v-structures). In that case a warning is issued. test_conditional_independence() returns a tripel (chi2, p_value, sufficient_data), consisting in the computed chi2 test statistic, the p_value of the test, and a heuristig flag that indicates if the sample size was sufficient. The p_value is the probability of observing the computed chi2 statistic (or an even higher chi2 value), given the null hypothesis that X and Y are independent given Zs. This can be used to make independence judgements, at a given level of significance. DAG (pattern) construction With a method for independence testing at hand, we can construct a DAG from the data set in three steps: 1. Construct an undirected skeleton - `estimate_skeleton()` 2. Orient compelled edges to obtain partially directed acyclid graph (PDAG; I-equivalence class of DAGs) - `skeleton_to_pdag()` 3. Extend DAG pattern to a DAG by conservatively orienting the remaining edges in some way - `pdag_to_dag()` The first two steps form the so-called PC algorithm, see [2], page 550. PDAGs are `DirectedGraph`s, that may contain both-way edges, to indicate that the orientation for the edge is not determined. """ out = {} # Set search algorithm model = ConstraintBasedEstimator(df) # Some checks for dependency # print(_is_independent(est, 'Sprinkler', 'Rain', significance_level=significance_level)) # print(_is_independent(est, 'Cloudy', 'Rain', significance_level=significance_level)) # print(_is_independent(est, 'Sprinkler', 'Rain', ['Wet_Grass'], significance_level=significance_level)) # Estimate using chi2 [skel, seperating_sets] = model.build_skeleton(significance_level=significance_level) if verbose>=4: print("Undirected edges: ", skel.edges()) pdag = model.skeleton_to_pdag(skel, seperating_sets) if verbose>=4: print("PDAG edges: ", pdag.edges()) dag = pdag.to_dag() if verbose>=4: print("DAG edges: ", dag.edges()) out['undirected'] = skel out['undirected_edges'] = skel.edges() out['pdag'] = pdag out['pdag_edges'] = pdag.edges() out['dag'] = dag out['dag_edges'] = dag.edges() # Search using "estimate()" method provides a shorthand for the three steps above and directly returns a "BayesianModel" best_model = model.estimate(significance_level=significance_level) out['model'] = best_model if verbose>=4: print(best_model.edges()) return(out) # %% hillclimbsearch def _hillclimbsearch(df, scoretype='bic', black_list=None, white_list=None, max_indegree=None, tabu_length=100, epsilon=1e-4, max_iter=1e6, bw_list_method='edges', fixed_edges=set(), verbose=3): """Heuristic hill climb searches for DAGs, to learn network structure from data. `estimate` attempts to find a model with optimal score. Description ----------- Performs local hill climb search to estimates the `DAG` structure that has optimal score, according to the scoring method supplied in the constructor. Starts at model `start` and proceeds by step-by-step network modifications until a local maximum is reached. Only estimates network structure, no parametrization. Once more nodes are involved, one needs to switch to heuristic search. HillClimbSearch implements a greedy local search that starts from the DAG "start" (default: disconnected DAG) and proceeds by iteratively performing single-edge manipulations that maximally increase the score. The search terminates once a local maximum is found. For details on scoring see Koller & Friedman, Probabilistic Graphical Models, Section 18.4.3.3 (page 818). If a number `max_indegree` is provided, only modifications that keep the number of parents for each node below `max_indegree` are considered. A list of edges can optionally be passed as `black_list` or `white_list` to exclude those edges or to limit the search. """ out={} # Set scoring type scoring_method = _SetScoringType(df, scoretype, verbose=verbose) # Set search algorithm model = HillClimbSearch(df) # Compute best DAG if bw_list_method=='edges': if (black_list is not None) or (white_list is not None): if verbose>=3: print('[bnlearn] >Filter edges based on black_list/white_list') # best_model = model.estimate() best_model = model.estimate(scoring_method=scoring_method, max_indegree=max_indegree, tabu_length=tabu_length, epsilon=epsilon, max_iter=max_iter, black_list=black_list, white_list=white_list, fixed_edges=fixed_edges, show_progress=False) else: # At this point, variables are readily filtered based on bw_list_method or not (if nothing defined). best_model = model.estimate(scoring_method=scoring_method, max_indegree=max_indegree, tabu_length=tabu_length, epsilon=epsilon, max_iter=max_iter, fixed_edges=fixed_edges, show_progress=False) # Store out['model']=best_model # Return return(out) # %% ExhaustiveSearch def _exhaustivesearch(df, scoretype='bic', return_all_dags=False, verbose=3): """Exhaustivesearch. Description ------------ The first property makes exhaustive search intractable for all but very small networks, the second prohibits efficient local optimization algorithms to always find the optimal structure. Thus, identifiying the ideal structure is often not tractable. Despite these bad news, heuristic search strategies often yields good results if only few nodes are involved (read: less than 5). Parameters ---------- df : pandas DataFrame object A DataFrame object with column names same as the variable names of network. scoretype : str, (default : 'bic') Scoring function for the search spaces. 'bic', 'k2', 'bdeu' return_all_dags : Bool, (default: False) Return all possible DAGs. verbose : int, (default : 3) 0:None, 1:Error, 2:Warning, 3:Info (default), 4:Debug, 5:Trace Returns ------- None. """ if df.shape[1]>15 and verbose>=3: print('[bnlearn] >Warning: Structure learning with more then 15 nodes is computationally not feasable with exhaustivesearch. Use hillclimbsearch or constraintsearch instead!!') # noqa out={} # Set scoring type scoring_method = _SetScoringType(df, scoretype, verbose=verbose) # Exhaustive search across all dags model = ExhaustiveSearch(df, scoring_method=scoring_method) # Compute best DAG best_model = model.estimate() # Store out['model']=best_model # Compute all possible DAGs if return_all_dags: out['scores']=[] out['dag']=[] # print("\nAll DAGs by score:") for [score, dag] in reversed(model.all_scores()): out['scores'].append(score) out['dag'].append(dag) # print(score, dag.edges()) plt.plot(out['scores']) plt.show() return(out) # %% Set scoring type def _SetScoringType(df, scoretype, verbose=3): if verbose>=3: print('[bnlearn] >Set scoring type at [%s]' %(scoretype)) if scoretype=='bic': scoring_method = BicScore(df) elif scoretype=='k2': scoring_method = K2Score(df) elif scoretype=='bdeu': scoring_method = BDeuScore(df, equivalent_sample_size=5) return(scoring_method) # %% def _is_independent(model, X, Y, Zs=[], significance_level=0.05): return model.test_conditional_independence(X, Y, Zs)[1] >= significance_level
47
377
0.667289
2f72a8ab83efe475c38b562981e4f04f9ee82ac5
30,103
py
Python
client/python/lib/tests/test_tensors.py
Xaenalt/model_server
f977dbf1246ebf85e960ca058e814deac7c6a16c
[ "Apache-2.0" ]
305
2018-10-01T12:41:28.000Z
2020-04-24T10:36:08.000Z
client/python/lib/tests/test_tensors.py
Xaenalt/model_server
f977dbf1246ebf85e960ca058e814deac7c6a16c
[ "Apache-2.0" ]
199
2020-04-29T08:43:21.000Z
2022-03-29T09:05:52.000Z
client/python/lib/tests/test_tensors.py
Xaenalt/model_server
f977dbf1246ebf85e960ca058e814deac7c6a16c
[ "Apache-2.0" ]
80
2020-04-29T14:54:41.000Z
2022-03-30T14:50:29.000Z
# # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from tensorflow.core.framework.tensor_shape_pb2 import TensorShapeProto from tensorflow.core.framework.tensor_pb2 import TensorProto from tensorflow.core.framework.types_pb2 import DataType from ovmsclient.tfs_compat.grpc.tensors import TENSOR_TO_NP_MAP, make_ndarray, make_tensor_proto import numpy as np shape = TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]) def test_make_ndarray_valid_int(): tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_INT8, tensor_content=bytes([1, 2, 3])) array = make_ndarray(tensor_proto) assert array.tolist() == [1, 2, 3] assert array.dtype == np.int8 def test_make_ndarray_valid_float(): content = [1.0, 2.0, 3.0] np_content = np.array(content, dtype=np.float32) tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_FLOAT, tensor_content=np_content.tobytes()) array = make_ndarray(tensor_proto) assert array.tolist() == [1.0, 2.0, 3.0] assert array.dtype == np.float32 def test_make_ndarray_valid_3_dims_shape(): content = [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]] np_content = np.array(content, dtype=np.float32) _shape = TensorShapeProto(dim=[TensorShapeProto.Dim(size=1), TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]) tensor_proto = TensorProto(tensor_shape=_shape, dtype=DataType.DT_FLOAT, tensor_content=np_content.tobytes()) array = make_ndarray(tensor_proto) assert array.tolist() == [[[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]] assert array.dtype == np.float32 dtype_4_bytes = 'S4' def test_make_ndarray_valid_string(): hex_string = "11111111" tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_STRING, string_val=[bytes.fromhex(hex_string)]) array = make_ndarray(tensor_proto) assert array.tolist() == [b'\x11\x11\x11\x11', b'\x11\x11\x11\x11', b'\x11\x11\x11\x11'] assert array.dtype == dtype_4_bytes def test_make_ndarray_valid_no_content(): tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_INT8) array = make_ndarray(tensor_proto) assert array.tolist() == [0, 0, 0] assert array.dtype == np.int8 dtype_1_byte = 'S1' def test_make_ndarray_valid_no_content_string(): tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_STRING) array = make_ndarray(tensor_proto) assert array.tolist() == [b'', b'', b''] assert array.dtype == dtype_1_byte def test_make_ndarray_valid_no_content_string_with_other_type_content(): tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_STRING) array = make_ndarray(tensor_proto) assert array.tolist() == [b'', b'', b''] assert array.dtype == dtype_1_byte def test_make_ndarray_invalid_type(): tensor_proto = TensorProto(tensor_shape=shape) tensor_proto.dtype = 0 with pytest.raises(TypeError) as exception_info: make_ndarray(tensor_proto) exception = exception_info.value assert str(exception) == "Unsupported tensor type: 0" def test_make_ndarray_invalid_no_shape(): tensor_proto = TensorProto(dtype=DataType.DT_INT8, tensor_content=bytes([1, 2, 3])) with pytest.raises(ValueError) as exception_info: make_ndarray(tensor_proto) exception = exception_info.value assert str(exception) == "cannot reshape array of size 3 into shape ()" def test_make_ndarray_invalid_shape_does_not_match(): tensor_proto = TensorProto(tensor_shape=shape, dtype=DataType.DT_INT8, tensor_content=bytes([1, 2, 3, 4])) with pytest.raises(ValueError) as exception_info: make_ndarray(tensor_proto) exception = exception_info.value assert str(exception) == "cannot reshape array of size 4 into shape (3,)" @pytest.mark.parametrize("params, expected_shape, expected_dtype", [ ({"values": [1, 2, 3]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT32 ), ({"values": [1, 2, 3], "shape": [3]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT32 ), ({"values": [1, 2, 3], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT8 ), ({"values": [1, 2, 3], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT ), ({"values": [1, 2, 3], "shape": [3], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT8 ), ({"values": np.array([1, 2, 3])}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT64 ), ({"values": np.array([1, 2, 3]), "shape": [3]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT64 ), ({"values": np.array([1, 2, 3]), "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT8 ), ({"values": np.array([1, 2, 3]), "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT ), ({"values": np.array([1, 2, 3]), "shape": [3], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT8 ), ({"values": np.array([1, 2, 3], dtype=np.int64), "shape": [3], "dtype": DataType.DT_INT16}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT16 ), ({"values": np.array([1, 2, 3], dtype=np.int16), "shape": [3], "dtype": DataType.DT_INT64}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT64 ), ]) def test_make_tensor_proto_valid_int(params, expected_shape, expected_dtype): tensor_proto = make_tensor_proto(**params) np_dtype = TENSOR_TO_NP_MAP.get(expected_dtype) np_values = np.array(params["values"], dtype=np_dtype) assert tensor_proto.tensor_content == np_values.tobytes() assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape @pytest.mark.parametrize("params, expected_shape, expected_dtype", [ ({"values": []}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [], "shape": []}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [], "shape": [0]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_INT8 ), ({"values": [], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [], "shape": [], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_INT8 ), ({"values": [], "shape": [0], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=0)]), DataType.DT_INT8 ), ]) def test_make_tensor_proto_valid_empty_list(params, expected_shape, expected_dtype): tensor_proto = make_tensor_proto(**params) np_dtype = TENSOR_TO_NP_MAP.get(expected_dtype) np_values = np.array(params["values"], dtype=np_dtype) assert tensor_proto.tensor_content == np_values.tobytes() assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape @pytest.mark.parametrize("params, expected_shape, expected_dtype", [ ({"values": [[], [], []]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3), TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [[], [], []], "shape": [3, 0]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3), TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [[], [], []], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3), TensorShapeProto.Dim(size=0)]), DataType.DT_INT8 ), ({"values": [[], [], []], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3), TensorShapeProto.Dim(size=0)]), DataType.DT_FLOAT ), ({"values": [[], [], []], "shape": [3, 0], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3), TensorShapeProto.Dim(size=0)]), DataType.DT_INT8 ), ]) def test_make_tensor_proto_valid_empty_list_of_empty_lists(params, expected_shape, expected_dtype): tensor_proto = make_tensor_proto(**params) np_dtype = TENSOR_TO_NP_MAP.get(expected_dtype) np_values = np.array(params["values"], dtype=np_dtype) assert tensor_proto.tensor_content == np_values.tobytes() assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape @pytest.mark.parametrize("params, expected_shape, expected_dtype", [ ({"values": [1.0, 2.0, 3.0]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT ), ({"values": [1.0, 2.0, 3.0], "shape": [3]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT ), ({"values": [1.0, 2.0, 3.0], "dtype": DataType.DT_INT16}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT16 ), ({"values": [1.0, 2.0, 3.0], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT ), ({"values": [1.0, 2.0, 3.0], "shape": [3], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_INT8 ), ({"values": [1.0, 2.0, 3.0], "shape": [3], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT ), ]) def test_make_tensor_proto_valid_float(params, expected_shape, expected_dtype): tensor_proto = make_tensor_proto(**params) np_dtype = TENSOR_TO_NP_MAP.get(expected_dtype) np_values = np.array(params["values"], dtype=np_dtype) assert tensor_proto.tensor_content == np_values.tobytes() assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape @pytest.mark.parametrize("params, expected_shape, expected_dtype, expected_field", [ ({"values": 5.0}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": 5.0, "shape": [1]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": 5.0, "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_INT32, "int_val" ), ({"values": 5.0, "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": 5.0, "shape": [1], "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_INT32, "int_val" ), ({"values": 5.0, "shape": [1], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": np.float32(5.0)}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": np.float32(5.0), "shape": [1]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": np.float32(5.0), "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_INT32, "int_val" ), ({"values": np.float32(5.0), "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": np.float32(5.0), "shape": [1], "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_INT32, "int_val" ), ({"values": np.float32(5.0), "shape": [1], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_FLOAT, "float_val" ), ({"values": np.float32(5.0), "shape": [1], "dtype": DataType.DT_DOUBLE}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_DOUBLE, "double_val" ), ]) def test_make_tensor_proto_valid_scalar(params, expected_shape, expected_dtype, expected_field): tensor_proto = make_tensor_proto(**params) np_dtype = TENSOR_TO_NP_MAP.get(expected_dtype) np_values = np.array(params["values"], dtype=np_dtype) assert tensor_proto.__getattribute__(expected_field) == np_values assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape @pytest.mark.parametrize("params, expected_shape, expected_dtype, expected_field", [ ({"values": bytes([0x13, 0x00, 0x00, 0x00, 0x08])}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_STRING, "string_val" ), ({"values": bytes([0x13, 0x00, 0x00, 0x00, 0x08]), "shape": [1]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_STRING, "string_val" ), ({"values": bytes([0x13, 0x00, 0x00, 0x00, 0x08]), "dtype": DataType.DT_STRING}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_STRING, "string_val" ), ({"values": bytes([0x13, 0x00, 0x00, 0x00, 0x08]), "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=5)]), DataType.DT_INT8, "int_val" ), ({"values": bytes([0x13, 0x00, 0x00, 0x00, 0x08]), "shape": [5], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=5)]), DataType.DT_INT8, "int_val" ), ({"values": bytes([0x13, 0x00, 0x00, 0x00, 0x08]), "shape": [1], "dtype": DataType.DT_STRING}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=1)]), DataType.DT_STRING, "string_val" ), ]) def test_make_tensor_proto_valid_string(params, expected_shape, expected_dtype, expected_field): tensor_proto = make_tensor_proto(**params) if expected_field == "string_val": assert tensor_proto.__getattribute__(expected_field) == [params["values"]] else: assert (tensor_proto.__getattribute__(expected_field) == np.frombuffer(params["values"], dtype=TENSOR_TO_NP_MAP.get(expected_dtype)).tolist()) assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape def test_make_tensor_proto_valid_string_to_float_dtype(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) tensor_proto = make_tensor_proto(values=values, shape=[3], dtype=DataType.DT_INT16) np_values = np.frombuffer(np.array(values).tobytes(), dtype=np.int16).tolist() assert tensor_proto.int_val == np_values assert tensor_proto.dtype == DataType.DT_INT16 assert tensor_proto.tensor_shape == TensorShapeProto(dim=[TensorShapeProto.Dim(size=3)]) @pytest.mark.parametrize("params, expected_shape, expected_dtype, expected_field", [ ({"values": [bytes([0x13, 0x00, 0x00, 0x00, 0x08]), bytes([0x13, 0x00, 0x00, 0x00, 0x08])]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2)]), DataType.DT_STRING, "string_val" ), ({"values": [bytes([0x13, 0x00, 0x00, 0x00, 0x08]), bytes([0x13, 0x00, 0x00, 0x00, 0x08])], "shape": [2]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2)]), DataType.DT_STRING, "string_val" ), ({"values": [bytes([0x13, 0x00, 0x00, 0x00, 0x08]), bytes([0x13, 0x00, 0x00, 0x00, 0x08])], "dtype": DataType.DT_STRING}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2)]), DataType.DT_STRING, "string_val" ), ({"values": [bytes([0x13, 0x00, 0x00, 0x00, 0x08]), bytes([0x13, 0x00, 0x00, 0x00, 0x08])], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=10)]), DataType.DT_INT8, "tensor_content" ), ({"values": [bytes([0x13, 0x00, 0x00, 0x00, 0x08]), bytes([0x13, 0x00, 0x00, 0x00, 0x08])], "shape": [10], "dtype": DataType.DT_INT8}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=10)]), DataType.DT_INT8, "tensor_content" ), ({"values": [bytes([0x13, 0x00, 0x00, 0x00, 0x08]), bytes([0x13, 0x00, 0x00, 0x00, 0x08])], "shape": [2], "dtype": DataType.DT_STRING}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2)]), DataType.DT_STRING, "string_val" ), ]) def test_make_tensor_proto_valid_string_batch_size_2(params, expected_shape, expected_dtype, expected_field): tensor_proto = make_tensor_proto(**params) np_values = np.array(params["values"]) if expected_field == "string_val": assert tensor_proto.__getattribute__(expected_field) == params["values"] elif expected_field == "tensor_content": assert tensor_proto.__getattribute__(expected_field) == np_values.tobytes() assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape @pytest.mark.parametrize("params, expected_shape, expected_dtype", [ ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "shape": [2, 3]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "shape": [6]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=6)]), DataType.DT_FLOAT, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_INT32, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "shape": [2, 3], "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_INT32, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "shape": [2, 3], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT, ), ({"values": [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "shape": [6], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=6)]), DataType.DT_FLOAT, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]])}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_DOUBLE, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "shape": [2, 3]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_DOUBLE, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "shape": [6]}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=6)]), DataType.DT_DOUBLE, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_INT32, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "shape": [2, 3], "dtype": DataType.DT_INT32}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_INT32, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "shape": [2, 3], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_FLOAT, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), "shape": [6], "dtype": DataType.DT_FLOAT}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=6)]), DataType.DT_FLOAT, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], dtype=np.float32), "dtype": DataType.DT_HALF}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_HALF, ), ({"values": np.array([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], dtype=np.float16), "dtype": DataType.DT_DOUBLE}, TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]), DataType.DT_DOUBLE, ), ]) def test_make_tensor_proto_valid_2_dims_shape(params, expected_shape, expected_dtype): tensor_proto = make_tensor_proto(**params) np_dtype = TENSOR_TO_NP_MAP.get(expected_dtype) np_values = np.array(params["values"], dtype=np_dtype) assert tensor_proto.tensor_content == np_values.tobytes() assert tensor_proto.dtype == expected_dtype assert tensor_proto.tensor_shape == expected_shape def test_make_tensor_proto_valid_make_ndarray_valid(): values = [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]] np_values = np.array(values, dtype=np.float32) _shape = TensorShapeProto(dim=[TensorShapeProto.Dim(size=2), TensorShapeProto.Dim(size=3)]) tensor_proto = TensorProto(tensor_shape=_shape, dtype=DataType.DT_FLOAT, tensor_content=np_values.tobytes()) array = make_ndarray(tensor_proto) tensor_proto = make_tensor_proto(values=array, dtype=DataType.DT_FLOAT) assert tensor_proto.tensor_content == np_values.tobytes() assert tensor_proto.dtype == DataType.DT_FLOAT assert tensor_proto.tensor_shape == _shape def test_make_tensor_proto_valid_string_reshape(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) tensor_proto = make_tensor_proto(values=[[values, values], [values, values]], shape=[4], dtype=DataType.DT_STRING) assert all(val == np.array(values) for val in tensor_proto.string_val) assert tensor_proto.dtype == DataType.DT_STRING assert tensor_proto.tensor_shape == TensorShapeProto(dim=[TensorShapeProto.Dim(size=4)]) def test_make_tensor_proto_valid_2D_array_to_bytes(): values = [[1, 2, 3], [4, 5, 6]] tensor_proto = make_tensor_proto(values=values, shape=[6], dtype=DataType.DT_STRING) assert tensor_proto.string_val == np.array(values, dtype=np.bytes_).reshape([6]).tolist() assert tensor_proto.dtype == DataType.DT_STRING assert tensor_proto.tensor_shape == TensorShapeProto(dim=[TensorShapeProto.Dim(size=6)]) def test_make_tensor_proto_invalid_shape_element_values(): values = [1, 2, 3] with pytest.raises(TypeError) as exception_info: make_tensor_proto(values=values, shape=[-3], dtype=None) exception = exception_info.value assert str(exception) == "shape type should be list or tuple with unsigned integers" @pytest.mark.causes_deprecation_warning def test_make_tensor_proto_invalid_dimensions(): values = [[1.0, 2.0], [1.0, 2.0, 3.0]] with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=[2, 3], dtype=DataType.DT_FLOAT) exception = exception_info.value assert str(exception) == ("argument must be a dense tensor: [[1.0, 2.0], [1.0, 2.0, 3.0]] " "- got shape [2], but wanted [2, 2]") def test_make_tensor_proto_invalid_string_to_float_dtype(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=None, dtype=DataType.DT_FLOAT) exception = exception_info.value assert str(exception) == ("could not cast bytes to <class 'numpy.float32'>. " "buffer size must be a multiple of element size") @pytest.mark.causes_deprecation_warning def test_make_tensor_proto_invalid_string_dimensions(): values = bytes([0x13, 0x00]) with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=[[values, values, values], [values, values]], shape=None, dtype=DataType.DT_STRING) exception = exception_info.value assert str(exception) == ("argument must be a dense tensor: " f"{[[values, values, values], [values, values]]} " "- got shape [2], but wanted [2, 3]") @pytest.mark.causes_deprecation_warning def test_make_tensor_proto_invalid_dimensions_2(): values = [[(1, 2, 3)], [(1, 2)], [(1, 2, 3)]] with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=[2, 3], dtype=DataType.DT_FLOAT) exception = exception_info.value assert str(exception) == ("could not cast values to <class 'numpy.float32'>. " "setting an array element with a sequence.") @pytest.mark.causes_deprecation_warning def test_make_tensor_proto_invalid_dimensions_no_shape_provided(): values = [[1, 2, 3], [4, 5]] with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=None, dtype=DataType.DT_INT8) exception = exception_info.value assert str(exception) == ("argument must be a dense tensor: [[1, 2, 3], [4, 5]] " "- got shape [2], but wanted [2, 3]") def test_make_tensor_proto_invalid_shape_type(): values = 5.0 with pytest.raises(TypeError) as exception_info: make_tensor_proto(values=values, shape=0, dtype=DataType.DT_FLOAT) exception = exception_info.value assert str(exception) == "shape type should be list or tuple with unsigned integers" def test_make_tensor_proto_invalid_values_dtype(): values = [np.float128(2.5)] with pytest.raises(TypeError) as exception_info: make_tensor_proto(values=values, shape=None, dtype=None) exception = exception_info.value assert str(exception) == "provided values type is not valid" def test_make_tensor_proto_invalid_dtype_value(): values = [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]] with pytest.raises(TypeError) as exception_info: make_tensor_proto(values=values, shape=None, dtype=int) exception = exception_info.value assert str(exception) == "<class 'int'> is not valid dtype value" def test_make_tensor_proto_invalid_values_type(): values = (1, 2, 3) with pytest.raises(TypeError) as exception_info: make_tensor_proto(values=values, shape=None, dtype=None) exception = exception_info.value assert str(exception) == "values type should be (list, np.ndarray, scalar), but is tuple" def test_make_tensor_proto_invalid_string_2D_array(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=[[values, values], [values, values]], shape=None, dtype=DataType.DT_STRING) exception = exception_info.value assert str(exception) == "bytes values with dtype DT_STRING must be in shape [N]" def test_make_tensor_proto_invalid_string_reshape(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=[6], dtype=DataType.DT_STRING) exception = exception_info.value assert str(exception) == "cannot reshape array of size 1 into shape (6,)" def test_make_tensor_proto_invalid_string_reshape_2(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=[2, 3], dtype=DataType.DT_STRING) exception = exception_info.value assert str(exception) == "bytes values with dtype DT_STRING must be in shape [N]" def test_make_tensor_proto_invalid_string_2D_array_with_shape(): values = bytes([0x13, 0x00, 0x00, 0x00, 0x08, 0x00]) with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=[[values, values], [values, values]], shape=[2, 2], dtype=DataType.DT_STRING) exception = exception_info.value assert str(exception) == "bytes values with dtype DT_STRING must be in shape [N]" def test_make_tensor_proto_invalid_int_reshape(): values = [1, 2, 3] with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=[4], dtype=DataType.DT_INT8) exception = exception_info.value assert str(exception) == "cannot reshape array of size 3 into shape (4,)" def test_make_tensor_proto_invalid_empty_list_of_empty_lists_reshape(): values = [[], [], []] with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=[4, 2], dtype=DataType.DT_INT8) exception = exception_info.value assert str(exception) == "cannot reshape array of size 0 into shape (4,2)" def test_make_tensor_proto_invalid_dtype_provided(): values = [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]] with pytest.raises(ValueError) as exception_info: make_tensor_proto(values=values, shape=None, dtype=DataType.DT_STRING) exception = exception_info.value assert str(exception) == "bytes values with dtype DT_STRING must be in shape [N]"
44.204112
99
0.67196
5603d47cbe5ce5946b8e055c4cc8ce051e7100ea
1,320
py
Python
app/core/models.py
aliplutus/recipe-app-api
0d5cd9263616152d7d5ec495c4e5bc31660b8383
[ "MIT" ]
null
null
null
app/core/models.py
aliplutus/recipe-app-api
0d5cd9263616152d7d5ec495c4e5bc31660b8383
[ "MIT" ]
null
null
null
app/core/models.py
aliplutus/recipe-app-api
0d5cd9263616152d7d5ec495c4e5bc31660b8383
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): # note: **extra_fields # this is in order to make our function more flexible # so when we add more filds we don't need to explisitly write them. """create and save new user""" if not email: raise ValueError('users must have email.') user = self.model(email=self.normalize_email(email), **extra_fields) # Q Q QQQ user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """create + save new superuser""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model (email instead of user name). """ email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email'
35.675676
90
0.674242
8f9fca02f76f3e64bcd613e7d0d57f79e3dacfc9
6,386
py
Python
seekr2/tests/test_matrix_stability.py
seekrcentral/seekr2
45154d477147f9278b97491a6270ff31435c837b
[ "MIT" ]
1
2021-07-14T16:13:17.000Z
2021-07-14T16:13:17.000Z
seekr2/tests/test_matrix_stability.py
seekrcentral/seekr2
45154d477147f9278b97491a6270ff31435c837b
[ "MIT" ]
10
2021-05-26T15:29:46.000Z
2021-09-20T18:23:20.000Z
seekr2/tests/test_matrix_stability.py
seekrcentral/seekr2
45154d477147f9278b97491a6270ff31435c837b
[ "MIT" ]
1
2021-05-22T01:15:46.000Z
2021-05-22T01:15:46.000Z
""" test_matrix_stability.py For systems with very slow kinetics, the conventional matrix solvers seem to have trouble computing first passage times due to poor matrix conditioning. Recreates the problem and test matrix solutions that will remain stable for milestoning matrices with long timescales. """ import os import pytest import numpy as np import seekr2.prepare as prepare import seekr2.toy.smoluchowski as smol import seekr2.tests.create_model_input as create_model_input import seekr2.tests.test_analyze as test_analyze def make_unstable_matrix_smoluchowski_mmvt_model(rootdir, num_input_anchors): """ Create a milestoning model that will result in an unstable matrix """ smol_input = create_model_input.create_smoluchowski_mmvt_model_input( rootdir, num_input_anchors+1) os.chdir(rootdir) smol_model, model_xml_path = prepare.prepare( smol_input, force_overwrite=False) model_dir = os.path.dirname(model_xml_path) smol_model.anchor_rootdir = os.path.abspath(model_dir) return smol_model def make_mmvt_smol_model(rootdir, num_input_anchors): """ Obtain two Smoluchowski models: One as an exact system to act as a benchmark, and the second as a milestoning system with an unstable matrix. """ model = make_unstable_matrix_smoluchowski_mmvt_model(rootdir, num_input_anchors) return model def make_unstable_matrix_smoluchowski_elber_model(rootdir, num_input_anchors): """ Create a milestoning model that will result in an unstable matrix """ smol_input = create_model_input.create_smoluchowski_elber_model_input( rootdir, num_input_anchors+1) os.chdir(rootdir) smol_model, model_xml_path = prepare.prepare( smol_input, force_overwrite=False) model_dir = os.path.dirname(model_xml_path) smol_model.anchor_rootdir = os.path.abspath(model_dir) return smol_model def make_elber_smol_model(rootdir, num_input_anchors): """ Obtain two Smoluchowski models: One as an exact system to act as a benchmark, and the second as a milestoning system with an unstable matrix. """ model = make_unstable_matrix_smoluchowski_elber_model(rootdir, num_input_anchors) return model def get_benchmark_time(potential_energy_function, num_input_anchors): """ Find the exact solution for a Smoluchowski system for comparison with matrix results. """ milestones = [1.0] absorbing_boundary = num_input_anchors calc = smol.SmoluchowskiCalculation1d( potential_energy_function, milestones=milestones, absorbing_boundary=absorbing_boundary, n=401) outer_surface_flux = 4.0 * np.pi * absorbing_boundary**2 \ * calc.regions[1].J_outward w_a = calc.potential_energy_function.evaluate_energy(calc.regions[1].a) inner_region_height = smol.expBetaW(w_a, calc.beta) outer_region_height = calc.regions[1].u_r_outward[0] inner_region_volume = calc.regions[0].partition_function \ * (outer_region_height / inner_region_height) outer_region_volume = 1.0 time = (inner_region_volume + outer_region_volume) / outer_surface_flux return time def make_analytic_pi_alpha(num_regions, potential_energy_function): milestones = list(range(1, num_regions)) absorbing_boundary = num_regions calc = smol.SmoluchowskiCalculation1d( potential_energy_function, milestones=milestones, absorbing_boundary=absorbing_boundary) pi_alpha = np.zeros((1, len(calc.regions))) for i, region in enumerate(calc.regions): pi_alpha[0,i] = region.partition_function / calc.partition_function return pi_alpha def compare_solvers_analytical_calculated(tmpdir, potential_energy_function): lowest = 5 # 55 highest = 10 # 60 interval = 5 pre_equilibrium_approx = False print("i benchmark_time mmvt_time") for i in range(lowest, highest+interval, interval): mmvt_rootdir = os.path.join( tmpdir, "smol_mmvt_matrix_problem_{}".format(i)) os.mkdir(mmvt_rootdir) elber_rootdir = os.path.join( tmpdir, "smol_elber_matrix_problem_{}".format(i)) os.mkdir(elber_rootdir) num_input_anchors = i mmvt_model = make_mmvt_smol_model(mmvt_rootdir, num_input_anchors) analytic_pi_alpha = make_analytic_pi_alpha(i, potential_energy_function) elber_model = make_elber_smol_model(elber_rootdir, num_input_anchors) benchmark_time = get_benchmark_time( potential_energy_function, num_input_anchors) mmvt_model.k_on_info = None mmvt_time, dummy, mmvt_analysis = \ test_analyze.make_smoluchowski_mmvt_analysis( mmvt_model, potential_energy_function, pre_equilibrium_approx=pre_equilibrium_approx) elber_model.k_on_info = None #elber_time, dummy, elber_analysis = \ # test_analyze.make_smoluchowski_elber_analysis( # elber_model, potential_energy_function) elber_time = 0.0 #print(i, benchmark_time, elber_time, mmvt_time) assert np.isclose(benchmark_time, mmvt_time, rtol=1e-2) return def test_make_method_comparison_data_for_plotting(tmpdir): potential_energy_function = smol.LinearPotentialEnergyFunction(a=1.0) compare_solvers_analytical_calculated(tmpdir, potential_energy_function) @pytest.mark.skip() def test_scipy_matrix_solver(tmpdir): #potential_energy_function = smol.FlatPotentialEnergyFunction() potential_energy_function = smol.LinearPotentialEnergyFunction(a=1.0) rootdir = os.path.join(tmpdir, "smol_matrix_problem") os.mkdir(rootdir) num_input_anchors = 5 #model = make_mmvt_smol_model(rootdir, num_input_anchors) model = make_elber_smol_model(rootdir, num_input_anchors) benchmark_time = get_benchmark_time( potential_energy_function, num_input_anchors) #print("benchmark_time:", benchmark_time) model.k_on_info = None #mmvt_time, dummy1, my_analysis_mmvt = test_analyze.make_smoluchowski_mmvt_analysis( # model, potential_energy_function) elber_time, dummy2, my_analysis_elber = test_analyze.make_smoluchowski_elber_analysis( model, potential_energy_function) #print(benchmark_time, elber_time, mmvt_time) assert np.isclose(benchmark_time, elber_time, rtol=1e-2)
40.675159
90
0.74632
161369473860afb8abed3dac64752fe56d260a8d
513
py
Python
Level1/Lessons12944/12944_njy.py
StudyForCoding/ProgrammersLevel
dc957b1c02cc4383a93b8cbf3d739e6c4d88aa25
[ "MIT" ]
null
null
null
Level1/Lessons12944/12944_njy.py
StudyForCoding/ProgrammersLevel
dc957b1c02cc4383a93b8cbf3d739e6c4d88aa25
[ "MIT" ]
null
null
null
Level1/Lessons12944/12944_njy.py
StudyForCoding/ProgrammersLevel
dc957b1c02cc4383a93b8cbf3d739e6c4d88aa25
[ "MIT" ]
1
2021-04-05T07:35:59.000Z
2021-04-05T07:35:59.000Z
#평균구하기 def solution(arr): return sum(arr)/len(arr) ''' 테스트 1 〉 통과 (0.00ms, 10.2MB) 테스트 2 〉 통과 (0.01ms, 10.2MB) 테스트 3 〉 통과 (0.01ms, 10.1MB) 테스트 4 〉 통과 (0.00ms, 10.2MB) 테스트 5 〉 통과 (0.01ms, 10.1MB) 테스트 6 〉 통과 (0.00ms, 10.2MB) 테스트 7 〉 통과 (0.00ms, 10.2MB) 테스트 8 〉 통과 (0.00ms, 10.2MB) 테스트 9 〉 통과 (0.00ms, 10MB) 테스트 10 〉 통과 (0.00ms, 10.2MB) 테스트 11 〉 통과 (0.00ms, 10.2MB) 테스트 12 〉 통과 (0.01ms, 10MB) 테스트 13 〉 통과 (0.00ms, 10.2MB) 테스트 14 〉 통과 (0.00ms, 10.2MB) 테스트 15 〉 통과 (0.00ms, 10.1MB) 테스트 16 〉 통과 (0.01ms, 10.1MB) '''
24.428571
28
0.580897
4af55c82e1e50ac6f4b642dd3db9faf2bf109e51
674
py
Python
project/forms/tFA.py
DenisZhmakin/VK-Music-Downloader
217d54f462b2da74776eec47bf1c355c54b017ab
[ "Unlicense" ]
null
null
null
project/forms/tFA.py
DenisZhmakin/VK-Music-Downloader
217d54f462b2da74776eec47bf1c355c54b017ab
[ "Unlicense" ]
1
2021-12-20T03:42:21.000Z
2021-12-20T09:57:57.000Z
project/forms/tFA.py
DenisZhmakin/VK-Music-Downloader
217d54f462b2da74776eec47bf1c355c54b017ab
[ "Unlicense" ]
null
null
null
from PyQt5 import uic from PyQt5.QtWidgets import QWidget from PyQt5.QtCore import pyqtSignal from PyQt5.QtGui import QIntValidator class TwoFactorAuth(QWidget): code_received = pyqtSignal(str) def __init__(self): QWidget.__init__(self) uic.loadUi("designs/tFA.ui", self) self.ok_button.clicked.connect(self.ok_button_click) self.code_lineedit.setValidator( QIntValidator(100000, 999999, self) ) def ok_button_click(self): auth_code = self.code_lineedit.text() if len(auth_code) == 6: self.code_received.emit(auth_code) self.close() else: pass
24.962963
60
0.654303
960043c6cf866c107c8ab2b75473178741cc79ed
6,242
py
Python
pymc3_ext/smc/sample_smc.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
pymc3_ext/smc/sample_smc.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
pymc3_ext/smc/sample_smc.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
from .smc import SMC import logging def sample_smc( draws=1000, kernel="metropolis", n_steps=25, parallel=False, start=None, cores=None, tune_steps=True, p_acc_rate=0.99, threshold=0.5, epsilon=1.0, dist_func="absolute_error", sum_stat=False, progressbar=False, model=None, random_seed=-1, ): """ Sequential Monte Carlo based sampling Parameters ---------- draws : int The number of samples to draw from the posterior (i.e. last stage). And also the number of independent chains. Defaults to 1000. kernel : str Kernel method for the SMC sampler. Available option are ``metropolis`` (default) and `ABC`. Use `ABC` for likelihood free inference togheter with a ``pm.Simulator``. n_steps : int The number of steps of each Markov Chain. If ``tune_steps == True`` ``n_steps`` will be used for the first stage and for the others it will be determined automatically based on the acceptance rate and `p_acc_rate`, the max number of steps is ``n_steps``. parallel : bool Distribute computations across cores if the number of cores is larger than 1. Defaults to False. start : dict, or array of dict Starting point in parameter space. It should be a list of dict with length `chains`. When None (default) the starting point is sampled from the prior distribution. cores : int The number of chains to run in parallel. If ``None`` (default), it will be automatically set to the number of CPUs in the system. tune_steps : bool Whether to compute the number of steps automatically or not. Defaults to True p_acc_rate : float Used to compute ``n_steps`` when ``tune_steps == True``. The higher the value of ``p_acc_rate`` the higher the number of steps computed automatically. Defaults to 0.99. It should be between 0 and 1. threshold : float Determines the change of beta from stage to stage, i.e.indirectly the number of stages, the higher the value of `threshold` the higher the number of stages. Defaults to 0.5. It should be between 0 and 1. epsilon : float Standard deviation of the gaussian pseudo likelihood. Only works with `kernel = ABC` dist_func : str Distance function. Available options are ``absolute_error`` (default) and ``sum_of_squared_distance``. Only works with ``kernel = ABC`` sum_stat : bool Whether to use or not a summary statistics. Defaults to False. Only works with ``kernel = ABC`` progressbar : bool Flag for displaying a progress bar. Defaults to False. model : Model (optional if in ``with`` context)). random_seed : int random seed Notes ----- SMC works by moving through successive stages. At each stage the inverse temperature :math:`\beta` is increased a little bit (starting from 0 up to 1). When :math:`\beta` = 0 we have the prior distribution and when :math:`\beta` =1 we have the posterior distribution. So in more general terms we are always computing samples from a tempered posterior that we can write as: .. math:: p(\theta \mid y)_{\beta} = p(y \mid \theta)^{\beta} p(\theta) A summary of the algorithm is: 1. Initialize :math:`\beta` at zero and stage at zero. 2. Generate N samples :math:`S_{\beta}` from the prior (because when :math `\beta = 0` the tempered posterior is the prior). 3. Increase :math:`\beta` in order to make the effective sample size equals some predefined value (we use :math:`Nt`, where :math:`t` is 0.5 by default). 4. Compute a set of N importance weights W. The weights are computed as the ratio of the likelihoods of a sample at stage i+1 and stage i. 5. Obtain :math:`S_{w}` by re-sampling according to W. 6. Use W to compute the covariance for the proposal distribution. 7. For stages other than 0 use the acceptance rate from the previous stage to estimate the scaling of the proposal distribution and `n_steps`. 8. Run N Metropolis chains (each one of length `n_steps`), starting each one from a different sample in :math:`S_{w}`. 9. Repeat from step 3 until :math:`\beta \ge 1`. 10. The final result is a collection of N samples from the posterior. References ---------- .. [Minson2013] Minson, S. E. and Simons, M. and Beck, J. L., (2013), Bayesian inversion for finite fault earthquake source models I- Theory and algorithm. Geophysical Journal International, 2013, 194(3), pp.1701-1726, `link <https://gji.oxfordjournals.org/content/194/3/1701.full>`__ .. [Ching2007] Ching, J. and Chen, Y. (2007). Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. J. Eng. Mech., 10.1061/(ASCE)0733-9399(2007)133:7(816), 816-832. `link <http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399 %282007%29133:7%28816%29>`__ """ smc = SMC( draws=draws, kernel=kernel, n_steps=n_steps, parallel=parallel, start=start, cores=cores, tune_steps=tune_steps, p_acc_rate=p_acc_rate, threshold=threshold, epsilon=epsilon, dist_func=dist_func, sum_stat=sum_stat, progressbar=progressbar, model=model, random_seed=random_seed, ) _log = logging.getLogger("pymc3_ext") _log.info("Sample initial stage: ...") stage = 0 smc.initialize_population() smc.setup_kernel() smc.initialize_logp() while smc.beta < 1: smc.update_weights_beta() _log.info( "Stage: {:3d} Beta: {:.3f} Steps: {:3d} Acce: {:.3f}".format( stage, smc.beta, smc.n_steps, smc.acc_rate ) ) smc.resample() smc.update_proposal() if stage > 0: smc.tune() smc.mutate() stage += 1 if smc.parallel and smc.cores > 1: smc.pool.close() smc.pool.join() trace = smc.posterior_to_trace() return trace
38.770186
100
0.644665
9a13b36b35c2aca975b304db4bb5cd1876e89eca
916
py
Python
src/piece.py
proceduraljigsaw/ImpactPuzzle
42a76d52056ed84d52a2e7eeb171c579671c9c0d
[ "MIT" ]
3
2020-12-27T18:46:30.000Z
2021-04-13T11:17:48.000Z
src/piece.py
proceduraljigsaw/ImpactPuzzle
42a76d52056ed84d52a2e7eeb171c579671c9c0d
[ "MIT" ]
null
null
null
src/piece.py
proceduraljigsaw/ImpactPuzzle
42a76d52056ed84d52a2e7eeb171c579671c9c0d
[ "MIT" ]
null
null
null
# Copyright (c) 2020 ProceduralJigsaw # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import numpy as np from tab import Tab from point import Point class Piece(): def __init__(self, tabs: Tab): self.tabs = [tab for tab in tabs if tab] self.__calc_centroid() self.neigbors = set([]) def __calc_centroid(self): cx = [tab.centroid.x for tab in self.tabs] cy = [tab.centroid.y for tab in self.tabs] self.centroid = Point(np.mean(cx), np.mean(cy)) def border(self): return list({tab for tab in self.tabs for neighbor in self.neigbors if tab in neighbor.tabs or (not tab.radial and tab.rad_pos == 0)}) def addtab(self, tab): if not tab in self.tabs: self.tabs.append(tab) self.__calc_centroid() def addneighbor(self, neighbor): self.neigbors.add(neighbor)
29.548387
142
0.646288
ab466b5c34a12a7b5caeca126eb9e29f9fc8a871
18,496
py
Python
module_sample_name.py
openmindednewby/Tool-for-creating-lip-recognition-datasets
d8bd97cfa112e8e2fb1f4cca20a7093493e3ed9d
[ "MIT" ]
4
2020-07-22T16:10:55.000Z
2021-11-25T08:32:34.000Z
module_sample_name.py
openmindednewby/Tool-for-creating-lip-recognition-datasets
d8bd97cfa112e8e2fb1f4cca20a7093493e3ed9d
[ "MIT" ]
null
null
null
module_sample_name.py
openmindednewby/Tool-for-creating-lip-recognition-datasets
d8bd97cfa112e8e2fb1f4cca20a7093493e3ed9d
[ "MIT" ]
2
2020-12-30T22:07:54.000Z
2021-02-02T01:12:13.000Z
''' This function which will print the random name sample variable''' #------------------------- # Random password generator function def passw_gen(MODE=3,LENGTH=10): ''' passw_gen(MODE=3,LENGTH=10) The first argument MODE determins the characters which will be used in the random name generation MODE=0 for letters: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' MODE=1 for digits: 0123456789 MODE=2 for special characters: !"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ MODE=3 for letters and digits (defult): abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 MODE=4 for letters and special characters: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ MODE=5 for digits and special characters: 0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ MODE=6 for digits, letters and special characters: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ The second argument LENGTH determins the length of the random generated password''' import string import random # create a character list which contains all possible character generation modes characters=['1','2','3','4','5','6','7'] characters[0] = string.ascii_letters characters[1] = string.digits characters[2] = string.punctuation characters[3] = string.ascii_letters + string.digits characters[4] = string.ascii_letters + string.punctuation characters[5] = string.digits + string.punctuation characters[6] = string.ascii_letters + string.digits + string.punctuation MODE=int(MODE)# convert input into an int LENGTH=int(LENGTH)# convert input into an int password = "".join(random.choice(characters[MODE]) for x in range(LENGTH)) # The join() method takes all items in an iterable and joins them into one string. return password #--------------------------- # name generator fuction from datetime import date def name_gen(TYPE=1,WORD_LENGTH=0,WORD=0,POSITION='X',YEAR=str(date.today())): ''' name_gen(TYPE=1,WORD_LENGTH=0,WORD=0,POSITION='X',YEAR=str(date.today())): The TYPE argument accepts either values of 0 or 1 and is use to add the 'V' for a video file or 'A' for an audio file and 'W' for the file containing the word infront of the random generated name. The defult value is 1 which coresponds to video format. The WORD_LENGTH argument accepts any integer between 0 to (length of word -1). It determins how many letters starting from the first letter to include in the file name from the WORD argument. If the argument 'a' is passed, the whole length of the word is added to the file name. If any other string is passed the vlaue is set to 0 and only the first letter is printed. If a float is passed, if it is of the format 1.0 2.0 0.0 it is intepred as an intiger otherwise WORD_LENGTH=0. The WORD argument accepts any STR input and extracts the first letter of the word and assignes it to INDEX_1 The POSITION argument is used to assign the position of the word in a sentence. For example in the sentence 'Where is Bob', the word Bob is the 3rd word i the sentence there for its position is 3. If no argument is used the 'XX' will be assigned in the 14 and 15 index values of the name. The YEAR argument should correspond to the current year the file was created in an integer format of YYYY, if no argument is passed the current year the machine is set at the machine is used. ''' #TYPE # Checks to see what argument is passed to TYPE and makes sure the INDEX+0 variable is assigned with The correct argument if TYPE == 0: INDEX_0 ='A' elif TYPE == 1: INDEX_0 = 'V' elif TYPE ==2: INDEX_0 = 'W' else: INDEX_0 = 'V' # WORD_LENGTH if (str(type(WORD_LENGTH))==str(str)) and (WORD_LENGTH!='a'):# if integer is input WORD_LENGTH=0 elif (str(type(WORD_LENGTH))==str(float)) and WORD_LENGTH-int(WORD_LENGTH)==0: WORD_LENGTH=int(WORD_LENGTH) elif (str(type(WORD_LENGTH))==str(float)) and WORD_LENGTH-int(WORD_LENGTH)!=0: WORD_LENGTH=0 else: pass # WORD # Checks to see what argument is passed to WORD and makes sure the INDEX+1 variable is assigned with the first letter of the word if str(type(WORD))==str(int):# if integer is input WORD=0 INDEX_1='0' elif str(type(WORD))==str(float):# if float input WORD=0 INDEX_1='0' elif (str(type(WORD))==str(str) and WORD_LENGTH=='a'): INDEX_1=WORD elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==0): INDEX_1=WORD[0] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==1): INDEX_1=WORD[0:2] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==2): INDEX_1=WORD[0:3] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==3): INDEX_1=WORD[0:4] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==4): INDEX_1=WORD[0:5] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==5): INDEX_1=WORD[0:6] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==6): INDEX_1=WORD[0:7] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==7): INDEX_1=WORD[0:8] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==8): INDEX_1=WORD[0:9] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==9): INDEX_1=WORD[0:10] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==10): INDEX_1=WORD[0:11] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==11): INDEX_1=WORD[0:12] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==12): INDEX_1=WORD[0:13] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==13): INDEX_1=WORD[0:14] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==14): INDEX_1=WORD[0:15] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==15): INDEX_1=WORD[0:16] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==16): INDEX_1=WORD[0:17] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==17): INDEX_1=WORD[0:18] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==18): INDEX_1=WORD[0:19] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==19): INDEX_1=WORD[0:20] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==20): INDEX_1=WORD[0:21] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==21): INDEX_1=WORD[0:22] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==22): INDEX_1=WORD[0:23] else: WORD='0' INDEX_1='0' #POSITION # If a string argument is passed insted of an integer. The value is ignored and the default value 'X' is used FOR BOTH INDEX_14 and INDEX_15 if str(type(POSITION)) == str(str): POSITION= 'X' INDEX_15='X' INDEX_16='X' #if an integer value is passed if str(type(POSITION))==str(int): POSITION=str(POSITION) # convert int to str to allow indexing and len() function if len(POSITION)==2:# and if its length is equal to 2 transform it into an integer and assign the first value to variable INDEX_14 and second value to variable INDEX_15 INDEX_15=POSITION[0] INDEX_16=POSITION[1] elif len(POSITION)==1:# if the legth of the integer passed is equal to 1 convert input into a strign assing 0 for INDEX_14 and the input value for INDEX_15 INDEX_15='0' INDEX_16=POSITION[0] # since no sentence can be longer than 100 words, the length passes should be 1 or 2 else: POSITION= 'X' INDEX_15='X' INDEX_16='X' # If a float argument is passed AND its value remains the same if it is converted into an integer. It is accepted if float is of the format 9.0 5.0 3.0 etc if (str(type(POSITION)) == str(float) and POSITION-int(POSITION)==0): POSITION=int(POSITION) POSITION=str(POSITION) # convert to string if len(POSITION)==2: INDEX_15=POSITION[0] INDEX_16=POSITION[1] elif len(POSITION)==1: INDEX_15='0' INDEX_16=POSITION[0] else: POSITION='X' INDEX_15='X' INDEX_16='X' elif (str(type(POSITION)) == str(float) and POSITION-int(POSITION)!=0): POSITION='X' INDEX_15='X' INDEX_16='X' # YEAR if str(type(YEAR)) == str(int): YEAR=str(YEAR)# converts int objects to a string to allow indexing if str(type(YEAR)) == str(float): # if a float object is passed the output will be the current date of the system which is the defualt value YEAR=str(date.today()) if len(YEAR) != 4: # checks to see whater a 4 digit value is passed as it should, other wise the argument is ingored and the defult value is print which is the current date of the system YEAR=str(date.today()) YEAR=YEAR[1:4] # selects the last 3 values of the expected YYYY format name = INDEX_0+INDEX_1+YEAR+INDEX_15+INDEX_16 return name #--------------------------- # Random name and password generator function from datetime import date def name_and_pass_gen(PASS_GEN_MODE=3,PASS_GEN_LENGTH=10,TYPE=1,WORD_LENGTH=0,WORD=0,POSITION='X',YEAR=str(date.today())): ''' name_and_pass_gen(PASS_GEN_MODE=3,PASS_GEN_LENGTH=10,TYPE=1,WORD_LENGTH=0,WORD=0,POSITION='X',YEAR=str(date.today())): PASS_GEN_MODE and PASS_GEN_LENGTH are arguments of the passw_gen function. The TYPE argument accepts either values of 0 or 1 and is use to add the 'V' for a video file or 'A' for an audio file and 'W' for the file containing the word infront of the random generated name. The defult value is 1 which coresponds to video format. The WORD_LENGTH argument accepts any integer between 0 to (length of word -1). It determins how many letters starting from the first letter to include in the file name from the WORD argument. If the argument 'a' is passed, the whole length of the word is added to the file name. If any other string is passed the vlaue is set to 0 and only the first letter is printed. If a float is passed, if it is of the format 1.0 2.0 0.0 it is intepred as an intiger otherwise WORD_LENGTH=0. The WORD argument accepts any STR input and extracts the first letter of the word and assignes it to INDEX_1 The POSITION argument is used to assign the position of the word in a sentence. For example in the sentence 'Where is Bob', the word Bob is the 3rd word i the sentence there for its position is 3. If no argument is used the 'XX' will be assigned in the 14 and 15 index values of the name. The YEAR argument should correspond to the current year the file was created in an integer format of YYYY, if no argument is passed the current year the machine is set at the machine is used. ''' # generate a random password password=passw_gen(PASS_GEN_MODE,PASS_GEN_LENGTH) #TYPE # Checks to see what argument is passed to TYPE and makes sure the INDEX+0 variable is assigned with The correct argument if TYPE == 0: INDEX_0 ='A' elif TYPE == 1: INDEX_0 = 'V' elif TYPE ==2: INDEX_0 = 'W' else: INDEX_0 = 'V' # WORD_LENGTH if (str(type(WORD_LENGTH))==str(str)) and (WORD_LENGTH!='a'):# if integer is input WORD_LENGTH=0 elif (str(type(WORD_LENGTH))==str(float)) and WORD_LENGTH-int(WORD_LENGTH)==0: WORD_LENGTH=int(WORD_LENGTH) elif (str(type(WORD_LENGTH))==str(float)) and WORD_LENGTH-int(WORD_LENGTH)!=0: WORD_LENGTH=0 else: pass # WORD # Checks to see what argument is passed to WORD and makes sure the INDEX+1 variable is assigned with the first letter of the word if str(type(WORD))==str(int):# if integer is input WORD=0 INDEX_1='0' elif str(type(WORD))==str(float):# if float input WORD=0 INDEX_1='0' elif (str(type(WORD))==str(str) and WORD_LENGTH=='a'): INDEX_1=WORD elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==0): INDEX_1=WORD[0] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==1): INDEX_1=WORD[0:2] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==2): INDEX_1=WORD[0:3] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==3): INDEX_1=WORD[0:4] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==4): INDEX_1=WORD[0:5] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==5): INDEX_1=WORD[0:6] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==6): INDEX_1=WORD[0:7] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==7): INDEX_1=WORD[0:8] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==8): INDEX_1=WORD[0:9] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==9): INDEX_1=WORD[0:10] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==10): INDEX_1=WORD[0:11] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==11): INDEX_1=WORD[0:12] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==12): INDEX_1=WORD[0:13] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==13): INDEX_1=WORD[0:14] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==14): INDEX_1=WORD[0:15] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==15): INDEX_1=WORD[0:16] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==16): INDEX_1=WORD[0:17] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==17): INDEX_1=WORD[0:18] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==18): INDEX_1=WORD[0:19] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==19): INDEX_1=WORD[0:20] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==20): INDEX_1=WORD[0:21] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==21): INDEX_1=WORD[0:22] elif (str(type(WORD))==str(str) and int(WORD_LENGTH)==22): INDEX_1=WORD[0:23] else: WORD='0' INDEX_1='0' #POSITION # If a string argument is passed insted of an integer. The value is ignored and the default value 'X' is used FOR BOTH INDEX_14 and INDEX_15 if str(type(POSITION)) == str(str): POSITION= 'X' INDEX_15='X' INDEX_16='X' #if an integer value is passed if str(type(POSITION))==str(int): POSITION=str(POSITION) # convert int to str to allow indexing and len() function if len(POSITION)==2:# and if its length is equal to 2 transform it into an integer and assign the first value to variable INDEX_14 and second value to variable INDEX_15 INDEX_15=POSITION[0] INDEX_16=POSITION[1] elif len(POSITION)==1:# if the legth of the integer passed is equal to 1 convert input into a strign assing 0 for INDEX_14 and the input value for INDEX_15 INDEX_15='0' INDEX_16=POSITION[0] # since no sentence can be longer than 100 words, the length passes should be 1 or 2 else: POSITION= 'X' INDEX_15='X' INDEX_16='X' # If a float argument is passed AND its value remains the same if it is converted into an integer. It is accepted if float is of the format 9.0 5.0 3.0 etc if (str(type(POSITION)) == str(float) and POSITION-int(POSITION)==0): POSITION=int(POSITION) POSITION=str(POSITION) # convert to string if len(POSITION)==2: INDEX_15=POSITION[0] INDEX_16=POSITION[1] elif len(POSITION)==1: INDEX_15='0' INDEX_16=POSITION[0] else: POSITION='X' INDEX_15='X' INDEX_16='X' elif (str(type(POSITION)) == str(float) and POSITION-int(POSITION)!=0): POSITION='X' INDEX_15='X' INDEX_16='X' # YEAR if str(type(YEAR)) == str(int): YEAR=str(YEAR)# converts int objects to a string to allow indexing if str(type(YEAR)) == str(float): # if a float object is passed the output will be the current date of the system which is the defualt value YEAR=str(date.today()) if len(YEAR) != 4: # checks to see whater a 4 digit value is passed as it should, other wise the argument is ingored and the defult value is print which is the current date of the system YEAR=str(date.today()) YEAR=YEAR[1:4] # selects the last 3 values of the expected YYYY format name = INDEX_0+INDEX_1+password+YEAR+INDEX_15+INDEX_16 return name #--------------------------- # Random name and password generator function from datetime import date def add_name_and_pass(FILE_NAME='', PASSWORD=''): ''' add_name_and_pass(FILE_NAME='', PASSWORD='') FILE_NAME corresponds to the name of the file generated from the name_gen function PASSWORD the random string of integers generated from the pass_gen function This fanction preserves the same format of function name_and_pass_gen regardless of the FILE_NAME or PASSWORD ''' if (str(type(FILE_NAME))==str(int)) or (str(type(FILE_NAME)) == str(float)) or (str(type(PASSWORD))==str(int)) or (str(type(PASSWORD)) == str(float)): return print('Only string inputs are accepted for function add_name_and_pass') LENGTH=len(FILE_NAME) name = FILE_NAME[0:int(LENGTH-5)] + PASSWORD + FILE_NAME[int(LENGTH-5):] return name #--------------------- # Create a folder and assign with the input name def folder_gen(RANDOM_STRING, FILE_PERMISION = '777'): ''' RANDOM_STRING ---> is the name of the folder to be generated FILE_PERMISION ---> The rights to the folder ''' import os import subprocess # create the folder command = 'mkdir -m' + str(FILE_PERMISION) +' ' + str(RANDOM_STRING) # + ' >/dev/null 2>&1' subprocess.call(command, shell=True) # get the full path as an output FOLDER_PATH = os.path.abspath(str(RANDOM_STRING)) FOLDER_PATH = str(FOLDER_PATH) return FOLDER_PATH
42.324943
484
0.639598
199c0c07de1cf878f559d0710e901e7fc78988a4
5,806
py
Python
runtime/Python3/src/antlr4/Recognizer.py
charwliu/antlr4
1c987e77eaa2baf786023cfff437a409f4623221
[ "BSD-3-Clause" ]
null
null
null
runtime/Python3/src/antlr4/Recognizer.py
charwliu/antlr4
1c987e77eaa2baf786023cfff437a409f4623221
[ "BSD-3-Clause" ]
null
null
null
runtime/Python3/src/antlr4/Recognizer.py
charwliu/antlr4
1c987e77eaa2baf786023cfff437a409f4623221
[ "BSD-3-Clause" ]
null
null
null
# # Copyright (c) 2012-2016 The ANTLR Project. All rights reserved. # Use of this file is governed by the BSD 3-clause license that # can be found in the LICENSE.txt file in the project root. # from antlr4.RuleContext import RuleContext from antlr4.Token import Token from antlr4.error.ErrorListener import ProxyErrorListener, ConsoleErrorListener # need forward delcaration RecognitionException = None class Recognizer(object): tokenTypeMapCache = dict() ruleIndexMapCache = dict() def __init__(self): self._listeners = [ ConsoleErrorListener.INSTANCE ] self._interp = None self._stateNumber = -1 def extractVersion(self, version): pos = version.find(".") major = version[0:pos] version = version[pos+1:] pos = version.find(".") if pos==-1: pos = version.find("-") if pos==-1: pos = len(version) minor = version[0:pos] return major, minor def checkVersion(self, toolVersion): runtimeVersion = "4.6" rvmajor, rvminor = self.extractVersion(runtimeVersion) tvmajor, tvminor = self.extractVersion(toolVersion) if rvmajor!=tvmajor or rvminor!=tvminor: print("ANTLR runtime and generated code versions disagree: "+runtimeVersion+"!="+toolVersion) def addErrorListener(self, listener): self._listeners.append(listener) def removeErrorListener(self, listener): self._listeners.remove(listener) def removeErrorListeners(self): self._listeners = [] def getTokenTypeMap(self): tokenNames = self.getTokenNames() if tokenNames is None: from antlr4.error.Errors import UnsupportedOperationException raise UnsupportedOperationException("The current recognizer does not provide a list of token names.") result = self.tokenTypeMapCache.get(tokenNames, None) if result is None: result = zip( tokenNames, range(0, len(tokenNames))) result["EOF"] = Token.EOF self.tokenTypeMapCache[tokenNames] = result return result # Get a map from rule names to rule indexes. # # <p>Used for XPath and tree pattern compilation.</p> # def getRuleIndexMap(self): ruleNames = self.getRuleNames() if ruleNames is None: from antlr4.error.Errors import UnsupportedOperationException raise UnsupportedOperationException("The current recognizer does not provide a list of rule names.") result = self.ruleIndexMapCache.get(ruleNames, None) if result is None: result = zip( ruleNames, range(0, len(ruleNames))) self.ruleIndexMapCache[ruleNames] = result return result def getTokenType(self, tokenName:str): ttype = self.getTokenTypeMap().get(tokenName, None) if ttype is not None: return ttype else: return Token.INVALID_TYPE # What is the error header, normally line/character position information?# def getErrorHeader(self, e:RecognitionException): line = e.getOffendingToken().line column = e.getOffendingToken().column return "line "+line+":"+column # How should a token be displayed in an error message? The default # is to display just the text, but during development you might # want to have a lot of information spit out. Override in that case # to use t.toString() (which, for CommonToken, dumps everything about # the token). This is better than forcing you to override a method in # your token objects because you don't have to go modify your lexer # so that it creates a new Java type. # # @deprecated This method is not called by the ANTLR 4 Runtime. Specific # implementations of {@link ANTLRErrorStrategy} may provide a similar # feature when necessary. For example, see # {@link DefaultErrorStrategy#getTokenErrorDisplay}. # def getTokenErrorDisplay(self, t:Token): if t is None: return "<no token>" s = t.text if s is None: if t.type==Token.EOF: s = "<EOF>" else: s = "<" + str(t.type) + ">" s = s.replace("\n","\\n") s = s.replace("\r","\\r") s = s.replace("\t","\\t") return "'" + s + "'" def getErrorListenerDispatch(self): return ProxyErrorListener(self._listeners) # subclass needs to override these if there are sempreds or actions # that the ATN interp needs to execute def sempred(self, localctx:RuleContext, ruleIndex:int, actionIndex:int): return True def precpred(self, localctx:RuleContext , precedence:int): return True @property def state(self): return self._stateNumber # Indicate that the recognizer has changed internal state that is # consistent with the ATN state passed in. This way we always know # where we are in the ATN as the parser goes along. The rule # context objects form a stack that lets us see the stack of # invoking rules. Combine this and we have complete ATN # configuration information. @state.setter def state(self, atnState:int): self._stateNumber = atnState del RecognitionException import unittest class Test(unittest.TestCase): def testVersion(self): major, minor = Recognizer().extractVersion("1.2") self.assertEqual("1", major) self.assertEqual("2", minor) major, minor = Recognizer().extractVersion("1.2.3") self.assertEqual("1", major) self.assertEqual("2", minor) major, minor = Recognizer().extractVersion("1.2-snapshot") self.assertEqual("1", major) self.assertEqual("2", minor)
36.062112
113
0.650017
0678fc0f3e9f5895976f569be0122508b5733884
2,062
py
Python
directkeys.py
ewertonhm/Pong-Py
214542d8509a6ea1bacea3f7b189e59063d40b84
[ "Unlicense" ]
null
null
null
directkeys.py
ewertonhm/Pong-Py
214542d8509a6ea1bacea3f7b189e59063d40b84
[ "Unlicense" ]
null
null
null
directkeys.py
ewertonhm/Pong-Py
214542d8509a6ea1bacea3f7b189e59063d40b84
[ "Unlicense" ]
null
null
null
# direct inputs # source to this solution and code: # http://stackoverflow.com/questions/14489013/simulate-python-keypresses-for-controlling-a-game # http://www.gamespp.com/directx/directInputKeyboardScanCodes.html import ctypes import time SendInput = ctypes.windll.user32.SendInput W = 0x11 A = 0x1E S = 0x1F D = 0x20 NP_2 = 0x50 NP_4 = 0x4B NP_6 = 0x4D NP_8 = 0x48 # C struct redefinitions PUL = ctypes.POINTER(ctypes.c_ulong) class KeyBdInput(ctypes.Structure): _fields_ = [("wVk", ctypes.c_ushort), ("wScan", ctypes.c_ushort), ("dwFlags", ctypes.c_ulong), ("time", ctypes.c_ulong), ("dwExtraInfo", PUL)] class HardwareInput(ctypes.Structure): _fields_ = [("uMsg", ctypes.c_ulong), ("wParamL", ctypes.c_short), ("wParamH", ctypes.c_ushort)] class MouseInput(ctypes.Structure): _fields_ = [("dx", ctypes.c_long), ("dy", ctypes.c_long), ("mouseData", ctypes.c_ulong), ("dwFlags", ctypes.c_ulong), ("time",ctypes.c_ulong), ("dwExtraInfo", PUL)] class Input_I(ctypes.Union): _fields_ = [("ki", KeyBdInput), ("mi", MouseInput), ("hi", HardwareInput)] class Input(ctypes.Structure): _fields_ = [("type", ctypes.c_ulong), ("ii", Input_I)] # Actuals Functions def PressKey(hexKeyCode): extra = ctypes.c_ulong(0) ii_ = Input_I() ii_.ki = KeyBdInput( 0, hexKeyCode, 0x0008, 0, ctypes.pointer(extra) ) x = Input( ctypes.c_ulong(1), ii_ ) ctypes.windll.user32.SendInput(1, ctypes.pointer(x), ctypes.sizeof(x)) def ReleaseKey(hexKeyCode): extra = ctypes.c_ulong(0) ii_ = Input_I() ii_.ki = KeyBdInput( 0, hexKeyCode, 0x0008 | 0x0002, 0, ctypes.pointer(extra) ) x = Input( ctypes.c_ulong(1), ii_ ) ctypes.windll.user32.SendInput(1, ctypes.pointer(x), ctypes.sizeof(x)) if __name__ == '__main__': PressKey(0x11) time.sleep(1) ReleaseKey(0x11) time.sleep(1)
28.246575
95
0.616877
e9fa21e951fb4c10b2e69c60bc131020aa867f13
23
py
Python
src/postmarker/__init__.py
joveice/postmarker
e2c6f1ab4d5d3dd6fa3760959a626adb4a135199
[ "MIT" ]
13
2016-07-08T14:52:16.000Z
2018-04-17T23:56:17.000Z
src/postmarker/__init__.py
joveice/postmarker
e2c6f1ab4d5d3dd6fa3760959a626adb4a135199
[ "MIT" ]
22
2016-06-24T19:44:33.000Z
2018-09-27T13:43:04.000Z
src/postmarker/__init__.py
joveice/postmarker
e2c6f1ab4d5d3dd6fa3760959a626adb4a135199
[ "MIT" ]
4
2017-04-12T08:01:56.000Z
2018-06-28T15:37:31.000Z
__version__ = "0.18.1"
11.5
22
0.652174
984c95789a5636f19492385c293e3b27e560ad9e
551
py
Python
cogs/roleAssign.py
hexoserver1/discord_bot
a6d5b9da017803063eac61f2e20b246f4d96ba39
[ "MIT" ]
122
2016-08-05T02:27:31.000Z
2022-03-21T07:53:10.000Z
cogs/roleAssign.py
hexoserver1/discord_bot
a6d5b9da017803063eac61f2e20b246f4d96ba39
[ "MIT" ]
15
2017-12-07T14:28:20.000Z
2021-11-19T13:03:37.000Z
cogs/roleAssign.py
hexoserver1/discord_bot
a6d5b9da017803063eac61f2e20b246f4d96ba39
[ "MIT" ]
100
2016-08-21T18:12:29.000Z
2022-02-19T11:21:23.000Z
import discord from discord.ext import commands import loadconfig class roleAssign(discord.Client): '''Fügt eine Rolle neuen Benutzern beim joinen des Server hinzu''' def __init__(self, bot): self.bot = bot async def on_member_join(self, member): if member.server.id == loadconfig.__botserverid__ or True: role = discord.utils.get(member.server.roles, name=loadconfig.__selfassignrole__) await self.bot.add_roles(member, role) def setup(bot): bot.add_cog(roleAssign(bot))
29
94
0.682396
817010b677a0d7e0e4ab7529cca369bafc559e87
808
py
Python
cpu.py
Terraminator/Rasperry_Cooldown
6edff7fefc469d051da8d77359441dffbc6f4849
[ "BSD-2-Clause" ]
1
2021-08-31T19:17:01.000Z
2021-08-31T19:17:01.000Z
cpu.py
Terraminator/Rasperry_Cooldown
6edff7fefc469d051da8d77359441dffbc6f4849
[ "BSD-2-Clause" ]
null
null
null
cpu.py
Terraminator/Rasperry_Cooldown
6edff7fefc469d051da8d77359441dffbc6f4849
[ "BSD-2-Clause" ]
null
null
null
from gpiozero import CPUTemperature import RPi.GPIO as GPIO import time import os normal = 30 warm = 35 high = 40 veryhigh = 45 cpu = CPUTemperature() GPIO.setmode(GPIO.BCM) GPIO.setup(17, GPIO.OUT) GPIO.output(17, GPIO.LOW) while True: cpu = CPUTemperature() if cpu.temperature >= veryhigh or cpu.temperature == veryhigh: GPIO.output(17, GPIO.HIGH) os.system("sudo shutdown -h 0") elif cpu.temperature >= high or cpu.temperature == high: GPIO.output(17, GPIO.HIGH) elif cpu.temperature <= hoch and cpu.temperature >= warm: GPIO.output(17, GPIO.HIGH) elif cpu.temperature <= normal or cpu.temperature == normal: GPIO.output(17, GPIO.LOW) elif cpu.temperature <= warm or cpu.temperature == warm: GPIO.output(17, GPIO.LOW) time.sleep(1) GPIO.cleanup()
23.764706
64
0.691832
8a7f1a8c9f7c7f0225b06e12d80e1703b6af7a63
1,293
py
Python
docker_ws/src/calibrate/input_fn.py
Pomiculture/GAN-Vitis-AI
148da346c3ec882f24a98b8231800a94c54cc709
[ "Apache-2.0" ]
null
null
null
docker_ws/src/calibrate/input_fn.py
Pomiculture/GAN-Vitis-AI
148da346c3ec882f24a98b8231800a94c54cc709
[ "Apache-2.0" ]
null
null
null
docker_ws/src/calibrate/input_fn.py
Pomiculture/GAN-Vitis-AI
148da346c3ec882f24a98b8231800a94c54cc709
[ "Apache-2.0" ]
null
null
null
############################################################################################################### # Calibrate graph for quantization step ############################################################################################################### import os import tensorflow as tf import numpy as np ############################################################################################################### # Get the environment variables (number of images in the batch, input resolution) num_batch_images = int(os.environ['CALIB_BATCH_SIZE']) codings_size = int(os.environ['CODINGS_SIZE']) num_iter = int(os.environ['NB_ITER']) input_tensor = os.environ['INPUT_NODE_NAME'] # Log total number of images to process print("Processing {} images...".format(num_iter * num_batch_images)) def calib_input(iter): ''' Input of the GAN generator algorithm for calibration during the quantization process. ''' # Set seed for random values generation tf.compat.v1.set_random_seed(iter) # Generate noisy input of size 'num_batch_images' images noise = tf.random.normal([num_batch_images, codings_size, 1, 1]) # Convert tensor to numpy array noise = noise.eval(session=tf.compat.v1.Session()) # Link input noise to input node name return {input_tensor : noise}
38.029412
111
0.563032
fb0dcbc07101b58c69af6ad966999c2000c06f62
2,650
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/onyx/test_onyx_wjh.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/onyx/test_onyx_wjh.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/onyx/test_onyx_wjh.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
# # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible_collections.community.general.tests.unit.compat.mock import patch from ansible_collections.community.general.plugins.modules.network.onyx import onyx_wjh from ansible_collections.community.general.tests.unit.modules.utils import set_module_args from ..onyx_module import TestOnyxModule, load_fixture class TestOnyxWJHModule(TestOnyxModule): module = onyx_wjh def setUp(self): self.enabled = False super(TestOnyxWJHModule, self).setUp() self.mock_get_config = patch.object( onyx_wjh.OnyxWJHModule, "_get_wjh_config") self.get_config = self.mock_get_config.start() self.mock_load_config = patch( 'ansible_collections.community.general.plugins.module_utils.network.onyx.onyx.load_config') self.load_config = self.mock_load_config.start() def tearDown(self): super(TestOnyxWJHModule, self).tearDown() self.mock_get_config.stop() self.mock_load_config.stop() def load_fixtures(self, commands=None, transport='cli'): config_file = 'onyx_wjh_show.cfg' self.get_config.return_value = load_fixture(config_file) self.load_config.return_value = None def test_wjh_no_change(self): set_module_args(dict(group='forwarding', enabled=False)) self.execute_module(changed=False) def test_wjh_enable(self): set_module_args(dict(group='forwarding', enabled=True)) commands = ['what-just-happened forwarding enable'] self.execute_module(changed=True, commands=commands) def test_wjh_export_no_change(self): set_module_args(dict(export_group='forwarding', auto_export=False)) self.execute_module(changed=False) def test_wjh_export_enable(self): set_module_args(dict(export_group='forwarding', auto_export=True)) commands = ['what-just-happened auto-export forwarding enable'] self.execute_module(changed=True, commands=commands) def test_wjh_export_disable(self): set_module_args(dict(export_group='all', auto_export=False)) commands = ['no what-just-happened auto-export all enable'] self.execute_module(changed=True, commands=commands) def test_wjh_clear(self): set_module_args(dict(clear_group='all')) commands = ['clear what-just-happened pcap-files all'] self.execute_module(changed=True, commands=commands)
39.552239
103
0.728679
1522a36ed5cb39591bd497ba958bc407c24f78da
541
py
Python
products/migrations/0001_initial.py
OjureFred/BlazeMarketplace
e207d538e25dfa8866b01e74886d8e91a54c53fe
[ "MIT" ]
null
null
null
products/migrations/0001_initial.py
OjureFred/BlazeMarketplace
e207d538e25dfa8866b01e74886d8e91a54c53fe
[ "MIT" ]
null
null
null
products/migrations/0001_initial.py
OjureFred/BlazeMarketplace
e207d538e25dfa8866b01e74886d8e91a54c53fe
[ "MIT" ]
null
null
null
# Generated by Django 3.1.4 on 2020-12-09 05:40 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=120)), ('description', models.TextField()), ], ), ]
23.521739
114
0.567468
6aae89b56bc757f98c51d3d3665f0f64e58fb84a
35
py
Python
discord/types/widget.py
Harukomaze/disnake
541f5c9623a02be894cd1015dbb344070700cb87
[ "MIT" ]
null
null
null
discord/types/widget.py
Harukomaze/disnake
541f5c9623a02be894cd1015dbb344070700cb87
[ "MIT" ]
null
null
null
discord/types/widget.py
Harukomaze/disnake
541f5c9623a02be894cd1015dbb344070700cb87
[ "MIT" ]
null
null
null
from disnake.types.widget import *
17.5
34
0.8
37d896b1ce285001c2362b684c811ebd33ff8790
22,111
py
Python
tests/test_path_operations.py
Darkheir/s3path
238f6ff0abf1a3199c8f17d58c778d72b03f10a2
[ "Apache-2.0" ]
null
null
null
tests/test_path_operations.py
Darkheir/s3path
238f6ff0abf1a3199c8f17d58c778d72b03f10a2
[ "Apache-2.0" ]
null
null
null
tests/test_path_operations.py
Darkheir/s3path
238f6ff0abf1a3199c8f17d58c778d72b03f10a2
[ "Apache-2.0" ]
null
null
null
import sys from pathlib import Path from io import UnsupportedOperation from tempfile import NamedTemporaryFile import boto3 from botocore.exceptions import ClientError import pytest from s3path import PureS3Path, S3Path, StatResult # todo: test samefile/touch method # todo: test security and boto config changes # todo: test open method check R/W bytes/unicode def test_path_support(): assert PureS3Path in S3Path.mro() assert Path in S3Path.mro() def test_stat(s3_mock): path = S3Path('fake-bucket/fake-key') with pytest.raises(ValueError): path.stat() path = S3Path('/fake-bucket/fake-key') with pytest.raises(ClientError): path.stat() s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/Test.test') stat = path.stat() assert isinstance(stat, StatResult) assert stat == StatResult( size=object_summary.size, last_modified=object_summary.last_modified, ) with NamedTemporaryFile() as local_file: local_file.write(path.read_bytes()) local_file.flush() local_path = Path(local_file.name) local_stat = local_path.stat() s3_stat = path.stat() assert s3_stat.st_size == local_stat.st_size == s3_stat.size assert s3_stat.last_modified.timestamp() == s3_stat.st_mtime assert s3_stat.st_mtime < local_stat.st_mtime with pytest.raises(UnsupportedOperation): path.stat().st_atime path = S3Path('/test-bucket') assert path.stat() is None def test_exists(s3_mock): path = S3Path('./fake-key') with pytest.raises(ValueError): path.exists() path = S3Path('/fake-bucket/fake-key') with pytest.raises(ClientError): path.exists() s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') assert not S3Path('/test-bucket/Test.test').exists() path = S3Path('/test-bucket/directory/Test.test') assert path.exists() for parent in path.parents: assert parent.exists() def test_glob(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') assert list(S3Path('/test-bucket/').glob('*.test')) == [] assert list(S3Path('/test-bucket/directory/').glob('*.test')) == [S3Path('/test-bucket/directory/Test.test')] assert list(S3Path('/test-bucket/').glob('**/*.test')) == [S3Path('/test-bucket/directory/Test.test')] object_summary = s3.ObjectSummary('test-bucket', 'pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'setup.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'test_pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'build/lib/pathlib.py') object_summary.put(Body=b'test data') assert sorted(S3Path.from_uri('s3://test-bucket/').glob('*.py')) == [ S3Path('/test-bucket/pathlib.py'), S3Path('/test-bucket/setup.py'), S3Path('/test-bucket/test_pathlib.py')] assert sorted(S3Path.from_uri('s3://test-bucket/').glob('*/*.py')) == [S3Path('/test-bucket/docs/conf.py')] assert sorted(S3Path.from_uri('s3://test-bucket/').glob('**/*.py')) == [ S3Path('/test-bucket/build/lib/pathlib.py'), S3Path('/test-bucket/docs/conf.py'), S3Path('/test-bucket/pathlib.py'), S3Path('/test-bucket/setup.py'), S3Path('/test-bucket/test_pathlib.py')] assert sorted(S3Path.from_uri('s3://test-bucket/').glob('*cs')) == [ S3Path('/test-bucket/docs/'), ] def test_rglob(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') assert list(S3Path('/test-bucket/').rglob('*.test')) == [S3Path('/test-bucket/directory/Test.test')] assert list(S3Path('/test-bucket/').rglob('**/*.test')) == [S3Path('/test-bucket/directory/Test.test')] object_summary = s3.ObjectSummary('test-bucket', 'pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'setup.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'test_pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'build/lib/pathlib.py') object_summary.put(Body=b'test data') assert sorted(S3Path.from_uri('s3://test-bucket/').rglob('*.py')) == [ S3Path('/test-bucket/build/lib/pathlib.py'), S3Path('/test-bucket/docs/conf.py'), S3Path('/test-bucket/pathlib.py'), S3Path('/test-bucket/setup.py'), S3Path('/test-bucket/test_pathlib.py')] def test_is_dir(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'setup.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'test_pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'build/lib/pathlib.py') object_summary.put(Body=b'test data') assert not S3Path('/test-bucket/fake.test').is_dir() assert not S3Path('/test-bucket/fake/').is_dir() assert S3Path('/test-bucket/directory').is_dir() assert not S3Path('/test-bucket/directory/Test.test').is_dir() assert not S3Path('/test-bucket/pathlib.py').is_dir() assert not S3Path('/test-bucket/docs/conf.py').is_dir() assert S3Path('/test-bucket/docs/').is_dir() assert S3Path('/test-bucket/build/').is_dir() assert S3Path('/test-bucket/build/lib').is_dir() assert not S3Path('/test-bucket/build/lib/pathlib.py').is_dir() def test_is_file(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'setup.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'test_pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'build/lib/pathlib.py') object_summary.put(Body=b'test data') assert not S3Path('/test-bucket/fake.test').is_file() assert not S3Path('/test-bucket/fake/').is_file() assert not S3Path('/test-bucket/directory').is_file() assert S3Path('/test-bucket/directory/Test.test').is_file() assert S3Path('/test-bucket/pathlib.py').is_file() assert S3Path('/test-bucket/docs/conf.py').is_file() assert not S3Path('/test-bucket/docs/').is_file() assert not S3Path('/test-bucket/build/').is_file() assert not S3Path('/test-bucket/build/lib').is_file() assert S3Path('/test-bucket/build/lib/pathlib.py').is_file() def test_read_line(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data\ntest data') with S3Path('/test-bucket/directory/Test.test').open("r") as fp: assert fp.readline() == "test data" assert fp.readline() == "test data" assert fp.readline() == "" def test_read_lines(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data\ntest data') with S3Path('/test-bucket/directory/Test.test').open("r") as fp: assert len(fp.readlines()) == 2 def test_read_lines_hint(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data\ntest data') with S3Path('/test-bucket/directory/Test.test').open("r") as fp: assert len(fp.readlines(1)) == 1 def test_iter_lines(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data\ntest data') with S3Path('/test-bucket/directory/Test.test').open("r") as fp: for line in fp: assert line == "test data" def test_write_lines(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') path = S3Path('/test-bucket/directory/Test.test') with path.open("w") as fp: fp.writelines(["line 1\n", "line 2\n"]) res = path.read_text().splitlines() assert len(res) == 2 def test_iterdir(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'setup.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'test_pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'build/lib/pathlib.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/make.bat') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/index.rst') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/Makefile') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_templates/11conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_build/22conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_static/conf.py') object_summary.put(Body=b'test data') s3_path = S3Path('/test-bucket/docs') assert sorted(s3_path.iterdir()) == [ S3Path('/test-bucket/docs/Makefile'), S3Path('/test-bucket/docs/_build'), S3Path('/test-bucket/docs/_static'), S3Path('/test-bucket/docs/_templates'), S3Path('/test-bucket/docs/conf.py'), S3Path('/test-bucket/docs/index.rst'), S3Path('/test-bucket/docs/make.bat'), ] def test_iterdir_on_buckets(s3_mock): s3 = boto3.resource('s3') for index in range(4): s3.create_bucket(Bucket='test-bucket{}'.format(index)) s3_root_path = S3Path('/') assert sorted(s3_root_path.iterdir()) == [ S3Path('/test-bucket{}'.format(index)) for index in range(4) ] def test_open_for_reading(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/directory/Test.test') file_obj = path.open() assert file_obj.read() == 'test data' def test_open_for_write(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') bucket = s3.Bucket('test-bucket') assert sum(1 for _ in bucket.objects.all()) == 0 path = S3Path('/test-bucket/directory/Test.test') file_obj = path.open(mode='bw') assert file_obj.writable() file_obj.write(b'test data\n') file_obj.writelines([b'test data']) assert sum(1 for _ in bucket.objects.all()) == 1 object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') streaming_body = object_summary.get()['Body'] assert list(streaming_body.iter_lines()) == [ b'test data', b'test data' ] def test_open_binary_read(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/directory/Test.test') with path.open(mode='br') as file_obj: assert file_obj.readlines() == [b'test data'] with path.open(mode='rb') as file_obj: assert file_obj.readline() == b'test data' assert file_obj.readline() == b'' assert file_obj.readline() == b'' @pytest.mark.skipif(sys.version_info < (3, 5), reason="requires python3.5 or higher") def test_read_bytes(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/directory/Test.test') assert path.read_bytes() == b'test data' def test_open_text_read(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/directory/Test.test') with path.open(mode='r') as file_obj: assert file_obj.readlines() == ['test data'] with path.open(mode='rt') as file_obj: assert file_obj.readline() == 'test data' assert file_obj.readline() == '' assert file_obj.readline() == '' @pytest.mark.skipif(sys.version_info < (3, 5), reason="requires python3.5 or higher") def test_read_text(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/directory/Test.test') assert path.read_text() == 'test data' def test_owner(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'directory/Test.test') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/directory/Test.test') assert path.owner() == 'webfile' def test_rename_s3_to_s3(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/make.bat') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/index.rst') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/Makefile') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_templates/11conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_build/22conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_static/conf.py') object_summary.put(Body=b'test data') s3.create_bucket(Bucket='target-bucket') S3Path('/test-bucket/docs/conf.py').rename('/test-bucket/docs/conf1.py') assert not S3Path('/test-bucket/docs/conf.py').exists() assert S3Path('/test-bucket/docs/conf1.py').is_file() path = S3Path('/test-bucket/docs/') path.rename(S3Path('/target-bucket') / S3Path('folder')) assert not path.exists() assert S3Path('/target-bucket/folder/conf1.py').is_file() assert S3Path('/target-bucket/folder/make.bat').is_file() assert S3Path('/target-bucket/folder/index.rst').is_file() assert S3Path('/target-bucket/folder/Makefile').is_file() assert S3Path('/target-bucket/folder/_templates/11conf.py').is_file() assert S3Path('/target-bucket/folder/_build/22conf.py').is_file() assert S3Path('/target-bucket/folder/_static/conf.py').is_file() def test_replace_s3_to_s3(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/make.bat') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/index.rst') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/Makefile') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_templates/11conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_build/22conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_static/conf.py') object_summary.put(Body=b'test data') s3.create_bucket(Bucket='target-bucket') S3Path('/test-bucket/docs/conf.py').replace('/test-bucket/docs/conf1.py') assert not S3Path('/test-bucket/docs/conf.py').exists() assert S3Path('/test-bucket/docs/conf1.py').is_file() path = S3Path('/test-bucket/docs/') path.replace(S3Path('/target-bucket') / S3Path('folder')) assert not path.exists() assert S3Path('/target-bucket/folder/conf1.py').is_file() assert S3Path('/target-bucket/folder/make.bat').is_file() assert S3Path('/target-bucket/folder/index.rst').is_file() assert S3Path('/target-bucket/folder/Makefile').is_file() assert S3Path('/target-bucket/folder/_templates/11conf.py').is_file() assert S3Path('/target-bucket/folder/_build/22conf.py').is_file() assert S3Path('/target-bucket/folder/_static/conf.py').is_file() def test_rmdir(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'docs/conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/make.bat') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/index.rst') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/Makefile') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_templates/11conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_build/22conf.py') object_summary.put(Body=b'test data') object_summary = s3.ObjectSummary('test-bucket', 'docs/_static/conf.py') object_summary.put(Body=b'test data') conf_path = S3Path('/test-bucket/docs/_templates') assert conf_path.is_dir() conf_path.rmdir() assert not conf_path.exists() path = S3Path('/test-bucket/docs/') path.rmdir() assert not path.exists() def test_mkdir(s3_mock): s3 = boto3.resource('s3') S3Path('/test-bucket/').mkdir() assert s3.Bucket('test-bucket') in s3.buckets.all() S3Path('/test-bucket/').mkdir(exist_ok=True) with pytest.raises(FileExistsError): S3Path('/test-bucket/').mkdir(exist_ok=False) with pytest.raises(FileNotFoundError): S3Path('/test-second-bucket/test-directory/file.name').mkdir() S3Path('/test-second-bucket/test-directory/file.name').mkdir(parents=True) assert s3.Bucket('test-second-bucket') in s3.buckets.all() def test_write_text(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'temp_key') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/temp_key') data = path.read_text() assert isinstance(data, str) path.write_text(data) assert path.read_text() == data def test_write_bytes(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'temp_key') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/temp_key') data = path.read_bytes() assert isinstance(data, bytes) path.write_bytes(data) assert path.read_bytes() == data def test_unlink(s3_mock): s3 = boto3.resource('s3') s3.create_bucket(Bucket='test-bucket') object_summary = s3.ObjectSummary('test-bucket', 'temp_key') object_summary.put(Body=b'test data') path = S3Path('/test-bucket/temp_key') subdir_key = S3Path('/test-bucket/fake_folder/some_key') subdir_key.write_text("some text") assert path.exists() is True assert subdir_key.exists() is True path.unlink() assert path.exists() is False with pytest.raises(FileNotFoundError): S3Path("/test-bucket/fake_subfolder/fake_subkey").unlink() with pytest.raises(IsADirectoryError): S3Path("/test-bucket/fake_folder").unlink() with pytest.raises(IsADirectoryError): S3Path("/fake-bucket/").unlink()
38.122414
113
0.684727
1635935aee5fd2cb6b374335bc705e887135a440
12,648
py
Python
src/opserver/overlay_to_underlay_mapper.py
biswajit-mandal/contrail-controller
80c4a7e8515f7296b18ba4c21a439bd3daefcc4a
[ "Apache-2.0" ]
3
2019-01-11T06:16:40.000Z
2021-02-24T23:48:21.000Z
src/opserver/overlay_to_underlay_mapper.py
biswajit-mandal/contrail-controller
80c4a7e8515f7296b18ba4c21a439bd3daefcc4a
[ "Apache-2.0" ]
null
null
null
src/opserver/overlay_to_underlay_mapper.py
biswajit-mandal/contrail-controller
80c4a7e8515f7296b18ba4c21a439bd3daefcc4a
[ "Apache-2.0" ]
18
2017-01-12T09:28:44.000Z
2019-04-18T20:47:42.000Z
# # Copyright (c) 2014 Juniper Networks, Inc. All rights reserved. # # # Overlay To Underlay Mapper # # Utility to get the Underlay information for the Overlay flow(s). # import json from sandesh.viz.constants import * from opserver_util import OpServerUtils class OverlayToUnderlayMapperError(Exception): """Base Exception class for this module. All the Exceptions defined in this module should be derived from this class. The application/module that calls any method in the OverlayToUnderlayMapper class should catch this base Exception. """ pass class OverlayToUnderlayMapper(object): def __init__(self, query_json, analytics_api_ip, analytics_api_port, logger): self.query_json = query_json self._analytics_api_ip = analytics_api_ip self._analytics_api_port = analytics_api_port self._logger = logger if self.query_json is not None: self._start_time = self.query_json['start_time'] self._end_time = self.query_json['end_time'] # If the start_time/end_time in the query is specified as # relative time, then the actual start_time/end_time for the # FlowRecordTable query and UFlowData query would be different. # Since the FlowRecordTable is queried first and the result of # which is used to query the UFlowData table, the result may # not be correct if the start_time/end_time is different for # FlowRecord and UFlowData queries. Therefore, convert the # relative start/end time to absolute time. if not str(self._start_time).isdigit(): self._start_time = \ OpServerUtils.convert_to_utc_timestamp_usec(self._start_time) if not str(self._end_time).isdigit(): self._end_time = \ OpServerUtils.convert_to_utc_timestamp_usec(self._end_time) # end __init__ def process_query(self): """Process the OverlayToUnderlay Flow query and returns the response.""" flow_record_data = self._get_overlay_flow_data() uflow_data = self._get_underlay_flow_data(flow_record_data) return self._send_response(uflow_data) # end process_query def _overlay_to_flowrecord_name(self, oname): try: fname = OverlayToFlowRecordFields[oname] except KeyError: raise _OverlayToFlowRecordFieldsNameError(oname) return fname # end _overlay_to_flowrecord_name def _flowrecord_to_uflowdata_name(self, fname): try: ufname = FlowRecordToUFlowDataFields[fname] except KeyError: raise _FlowRecordToUFlowDataFieldsNameError(fname) return ufname # end _flowrecord_to_uflowdata_name def _underlay_to_uflowdata_name(self, uname): try: ufname = UnderlayToUFlowDataFields[uname] except KeyError: raise _UnderlayToUFlowDataFieldsNameError(uname) return ufname # end _underlay_to_uflowdata_name def _get_overlay_flow_data(self): """Fetch the overlay flow data from the FlowRecord Table. Convert the where clause in the OverlayToUnderlay query according to the schema defined for the FlowRecord Table. Get the overlay flow data [source vrouter, destination vrouter, flowtuple hash, encapsulation] from the FlowRecord Table required to query the underlay data. """ # process where clause try: where_or_list = self.query_json['where'] except KeyError: where_or_list = [] flow_record_where = [] for where_and_list in where_or_list: flow_record_where_and_list = [] for match_term in where_and_list: fname = self._overlay_to_flowrecord_name(match_term['name']) match = OpServerUtils.Match(name=fname, value=match_term['value'], op=match_term['op'], value2=match_term.get('value2')) flow_record_where_and_list.append(match.__dict__) if match_term.get('suffix') is not None: fname = self._overlay_to_flowrecord_name( match_term['suffix']['name']) match = OpServerUtils.Match(name=fname, value=match_term['suffix']['value'], op=match_term['suffix']['op'], value2=match_term['suffix'].get('value2')) flow_record_where_and_list.append(match.__dict__) flow_record_where.append(flow_record_where_and_list) # populate the select list flow_record_select = [ FlowRecordNames[FlowRecordFields.FLOWREC_VROUTER_IP], FlowRecordNames[FlowRecordFields.FLOWREC_OTHER_VROUTER_IP], FlowRecordNames[FlowRecordFields.FLOWREC_UNDERLAY_SPORT], FlowRecordNames[FlowRecordFields.FLOWREC_UNDERLAY_PROTO] ] flow_record_query = OpServerUtils.Query(table=FLOW_TABLE, start_time=self._start_time, end_time=self._end_time, select_fields=flow_record_select, where=flow_record_where, dir=1) return self._send_query(json.dumps(flow_record_query.__dict__)) # end _get_overlay_flow_data def _get_underlay_flow_data(self, flow_record_data): """Fetch the underlay data from the UFlowData table. Construct the Where clause for the UFlowData query from the FlowRecord query response. Convert the select clause, sort_fields, filter clause in the OverlayToUnderlay query according to the schema defined for the UFlowData table. """ if not len(flow_record_data): return [] # populate where clause for Underlay Flow query uflow_data_where = [] for row in flow_record_data: # if any of the column value is None, then skip the row if any(col == None for col in row.values()): continue uflow_data_where_and_list = [] ufname = self._flowrecord_to_uflowdata_name( FlowRecordNames[FlowRecordFields.FLOWREC_VROUTER_IP]) val = row[FlowRecordNames[FlowRecordFields.FLOWREC_VROUTER_IP]] sip = OpServerUtils.Match(name=ufname, value=val, op=OpServerUtils.MatchOp.EQUAL) uflow_data_where_and_list.append(sip.__dict__) ufname = self._flowrecord_to_uflowdata_name( FlowRecordNames[FlowRecordFields.FLOWREC_OTHER_VROUTER_IP]) val = \ row[FlowRecordNames[FlowRecordFields.FLOWREC_OTHER_VROUTER_IP]] dip = OpServerUtils.Match(name=ufname, value=val, op=OpServerUtils.MatchOp.EQUAL) uflow_data_where_and_list.append(dip.__dict__) ufname = self._flowrecord_to_uflowdata_name( FlowRecordNames[FlowRecordFields.FLOWREC_UNDERLAY_SPORT]) val = row[FlowRecordNames[FlowRecordFields.FLOWREC_UNDERLAY_SPORT]] sport = OpServerUtils.Match(name=ufname, value=val, op=OpServerUtils.MatchOp.EQUAL) ufname = self._flowrecord_to_uflowdata_name( FlowRecordNames[FlowRecordFields.FLOWREC_UNDERLAY_PROTO]) val = row[FlowRecordNames[FlowRecordFields.FLOWREC_UNDERLAY_PROTO]] # get the protocol from tunnel_type val = OpServerUtils.tunnel_type_to_protocol(val) protocol = OpServerUtils.Match(name=ufname, value=val, op=OpServerUtils.MatchOp.EQUAL, suffix=sport) uflow_data_where_and_list.append(protocol.__dict__) uflow_data_where.append(uflow_data_where_and_list) # if the where clause is empty, then no need to send # the UFlowData query if not len(uflow_data_where): return [] # populate UFlowData select uflow_data_select = [] for select in self.query_json['select_fields']: uflow_data_select.append(self._underlay_to_uflowdata_name(select)) # sort_fields specified in the query? uflow_data_sort_fields = None if self.query_json.get('sort_fields'): uflow_data_sort_fields = [] for field in self.query_json['sort_fields']: uflow_data_sort_fields.append( self._underlay_to_uflowdata_name(field)) uflow_data_sort_type = self.query_json.get('sort') # does the query contain limit attribute? uflow_data_limit = self.query_json.get('limit') # add filter if specified uflow_data_filter = None if self.query_json.get('filter') is not None: uflow_data_filter = list(self.query_json['filter']) if len(uflow_data_filter): if not isinstance(uflow_data_filter[0], list): uflow_data_filter = [uflow_data_filter] for filter_and in uflow_data_filter: for match_term in filter_and: match_term['name'] = self._underlay_to_uflowdata_name( match_term['name']) uflow_data_query = OpServerUtils.Query( table='StatTable.UFlowData.flow', start_time=self._start_time, end_time=self._end_time, select_fields=uflow_data_select, where=uflow_data_where, sort=uflow_data_sort_type, sort_fields=uflow_data_sort_fields, limit=uflow_data_limit, filter=uflow_data_filter) return self._send_query(json.dumps(uflow_data_query.__dict__)) # end _get_underlay_flow_data def _send_query(self, query): """Post the query to the analytics-api server and returns the response.""" self._logger.debug('Sending query: %s' % (query)) opserver_url = OpServerUtils.opserver_query_url(self._analytics_api_ip, str(self._analytics_api_port)) resp = OpServerUtils.post_url_http(opserver_url, query, True) try: resp = json.loads(resp) value = resp['value'] except (TypeError, ValueError, KeyError): raise _QueryError(query) self._logger.debug('Query response: %s' % str(value)) return value # end _send_query def _send_response(self, uflow_data): """Converts the UFlowData query response according to the schema defined for the OverlayToUnderlayFlowMap table.""" underlay_response = {} underlay_data = [] for row in uflow_data: underlay_row = {} for field in self.query_json['select_fields']: name = self._underlay_to_uflowdata_name(field) underlay_row[field] = row[name] underlay_data.append(underlay_row) underlay_response['value'] = underlay_data return json.dumps(underlay_response) # end _send_response # end class OverlayToUnderlayMapper class _OverlayToFlowRecordFieldsNameError(OverlayToUnderlayMapperError): def __init__(self, field): self.field = field def __str__(self): return 'No mapping for <%s> in "OverlayToFlowRecordFields"' \ % (self.field) # end class _OverlayToFlowRecordFieldsNameError class _FlowRecordToUFlowDataFieldsNameError(OverlayToUnderlayMapperError): def __init__(self, field): self.field = field def __str__(self): return 'No mapping for <%s> in "FlowRecordToUFlowDataFields"' \ % (self.field) # end class _FlowRecordToUFlowDataFieldsNameError class _UnderlayToUFlowDataFieldsNameError(OverlayToUnderlayMapperError): def __init__(self, field): self.field = field def __str__(self): return 'No mapping for <%s> in "UnderlayToUFlowDataFields"' \ % (self.field) # end class _UnderlayToUFlowDataFieldsNameError class _QueryError(OverlayToUnderlayMapperError): def __init__(self, query): self.query = query def __str__(self): return 'Error in query processing: %s' % (self.query) # end class _QueryError
42.019934
81
0.633381
b6f6c2406563bc3349ab47fc254cffeef441f7a3
26,266
py
Python
tagging/models.py
weijia/django-tagging-ng
e60116896f090b0c32d6f372839a7933dd76fcfe
[ "BSD-3-Clause" ]
null
null
null
tagging/models.py
weijia/django-tagging-ng
e60116896f090b0c32d6f372839a7933dd76fcfe
[ "BSD-3-Clause" ]
null
null
null
tagging/models.py
weijia/django-tagging-ng
e60116896f090b0c32d6f372839a7933dd76fcfe
[ "BSD-3-Clause" ]
null
null
null
""" Models and managers for generic tagging. """ # Python 2.3 compatibility try: set except NameError: from sets import Set as set import logging logger = logging.getLogger('tagging.models') # from django.contrib.contenttypes import generic from compat import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import connection, models, IntegrityError from django.db.models.query import QuerySet from django.utils.translation import ugettext_lazy as _ from tagging import settings from tagging.utils import calculate_cloud, get_tag_list, get_queryset_and_model, parse_tag_input from tagging.utils import LOGARITHMIC qn = connection.ops.quote_name if settings.MULTILINGUAL_TAGS: import multilingual BaseManager = multilingual.Manager else: BaseManager = models.Manager ############ # Managers # ############ class TagManager(BaseManager): def update_tags(self, obj, tag_names, tag_app=None): """ Update tags associated with an object. Old tags that not in the tag_names will be removed """ ctype = ContentType.objects.get_for_model(obj) current_tags = list(self.filter(items__content_type__pk=ctype.pk, items__object_id=obj.pk)) updated_tag_names = parse_tag_input(tag_names) if settings.FORCE_LOWERCASE_TAGS: updated_tag_names = [t.lower() for t in updated_tag_names] # Remove tags which no longer apply tags_for_removal = [tag for tag in current_tags \ if tag.name not in updated_tag_names] if len(tags_for_removal): TaggedItem._default_manager.filter(content_type__pk=ctype.pk, object_id=obj.pk, tag__in=tags_for_removal).delete() # Add new tags current_tag_names = [tag.name or tag.name_any for tag in current_tags] for tag_name in updated_tag_names: if tag_name not in current_tag_names: tag, created = self.get_or_create(name=tag_name) TaggedItem._default_manager.create(tag=tag, object=obj, tag_app=tag_app) def add_tag(self, obj, tag_name, tag_app=None): """ Associates the given object with a tag. """ tag_names = parse_tag_input(tag_name) if not len(tag_names): raise AttributeError(_('No tags were given: "%s".') % tag_name) if len(tag_names) > 1: raise AttributeError(_('Multiple tags were given: "%s".') % tag_name) tag_name = tag_names[0] if settings.FORCE_LOWERCASE_TAGS: tag_name = tag_name.lower() tag, created = self.get_or_create(name=tag_name) ctype = ContentType.objects.get_for_model(obj) TaggedItem._default_manager.get_or_create( tag=tag, content_type=ctype, object_id=obj.pk, tag_app=tag_app) def get_for_object(self, obj): """ Create a queryset matching all tags associated with the given object. """ ctype = ContentType.objects.get_for_model(obj) return self.filter(items__content_type__pk=ctype.pk, items__object_id=obj.pk) def _get_usage(self, model, counts=False, min_count=None, extra_joins=None, extra_criteria=None, params=None): """ Perform the custom SQL query for ``usage_for_model`` and ``usage_for_queryset``. """ if min_count is not None: counts = True model_table = qn(model._meta.db_table) model_pk = '%s.%s' % (model_table, qn(model._meta.pk.column)) query = """ SELECT DISTINCT %(tag)s.id%(count_sql)s FROM %(tag)s INNER JOIN %(tagged_item)s ON %(tag)s.id = %(tagged_item)s.tag_id INNER JOIN %(model)s ON %(tagged_item)s.object_id = %(model_pk)s %%s WHERE %(tagged_item)s.content_type_id = %(content_type_id)s %%s GROUP BY %(tag)s.id %%s""" % { 'tag': qn(self.model._meta.db_table), 'count_sql': counts and (', COUNT(%s)' % model_pk) or '', 'tagged_item': qn(TaggedItem._meta.db_table), 'model': model_table, 'model_pk': model_pk, 'content_type_id': ContentType.objects.get_for_model(model).pk, } min_count_sql = '' if min_count is not None: min_count_sql = 'HAVING COUNT(%s) >= %%s' % model_pk params.append(min_count) cursor = connection.cursor() cursor.execute(query % (extra_joins, extra_criteria, min_count_sql), params) tags = [] # TODO add ordering by name right here for row in cursor.fetchall(): t = self.model.objects.get(pk=row[0]) if counts: t.count = row[1] tags.append(t) tags.sort() return tags def usage_for_model(self, model, counts=False, min_count=None, filters=None): """ Obtain a list of tags associated with instances of the given Model class. If ``counts`` is True, a ``count`` attribute will be added to each tag, indicating how many times it has been used against the Model class in question. If ``min_count`` is given, only tags which have a ``count`` greater than or equal to ``min_count`` will be returned. Passing a value for ``min_count`` implies ``counts=True``. To limit the tags (and counts, if specified) returned to those used by a subset of the Model's instances, pass a dictionary of field lookups to be applied to the given Model as the ``filters`` argument. """ if filters is None: filters = {} queryset = model._default_manager.filter() for f in filters.items(): queryset.query.add_filter(f) usage = self.usage_for_queryset(queryset, counts, min_count) return usage def usage_for_queryset(self, queryset, counts=False, min_count=None): """ Obtain a list of tags associated with instances of a model contained in the given queryset. If ``counts`` is True, a ``count`` attribute will be added to each tag, indicating how many times it has been used against the Model class in question. If ``min_count`` is given, only tags which have a ``count`` greater than or equal to ``min_count`` will be returned. Passing a value for ``min_count`` implies ``counts=True``. """ if getattr(queryset.query, 'get_compiler', None): # Django 1.2 and up compatible (multiple databases) compiler = queryset.query.get_compiler(using='default') extra_joins = ' '.join(compiler.get_from_clause()[0][1:]) where, params = queryset.query.where.as_sql(compiler.quote_name_unless_alias, compiler.connection) else: # Django 1.1 and down compatible (single database) extra_joins = ' '.join(queryset.query.get_from_clause()[0][1:]) where, params = queryset.query.where.as_sql() if where: extra_criteria = 'AND %s' % where else: extra_criteria = '' return self._get_usage(queryset.model, counts, min_count, extra_joins, extra_criteria, params) def related_for_model(self, tags, model, counts=False, min_count=None): """ Obtain a list of tags related to a given list of tags - that is, other tags used by items which have all the given tags. If ``counts`` is True, a ``count`` attribute will be added to each tag, indicating the number of items which have it in addition to the given list of tags. If ``min_count`` is given, only tags which have a ``count`` greater than or equal to ``min_count`` will be returned. Passing a value for ``min_count`` implies ``counts=True``. """ if min_count is not None: counts = True tags = get_tag_list(tags) tag_count = len(tags) tagged_item_table = qn(TaggedItem._meta.db_table) query = """ SELECT %(tag)s.id%(count_sql)s FROM %(tagged_item)s INNER JOIN %(tag)s ON %(tagged_item)s.tag_id = %(tag)s.id WHERE %(tagged_item)s.content_type_id = %(content_type_id)s AND %(tagged_item)s.object_id IN ( SELECT %(tagged_item)s.object_id FROM %(tagged_item)s, %(tag)s WHERE %(tagged_item)s.content_type_id = %(content_type_id)s AND %(tag)s.id = %(tagged_item)s.tag_id AND %(tag)s.id IN (%(tag_id_placeholders)s) GROUP BY %(tagged_item)s.object_id HAVING COUNT(%(tagged_item)s.object_id) = %(tag_count)s ) AND %(tag)s.id NOT IN (%(tag_id_placeholders)s) GROUP BY %(tag)s.id %(min_count_sql)s""" % { 'tag': qn(self.model._meta.db_table), 'count_sql': counts and ', COUNT(%s.object_id)' % tagged_item_table or '', 'tagged_item': tagged_item_table, 'content_type_id': ContentType.objects.get_for_model(model).pk, 'tag_id_placeholders': ','.join(['%s'] * tag_count), 'tag_count': tag_count, 'min_count_sql': min_count is not None and ('HAVING COUNT(%s.object_id) >= %%s' % tagged_item_table) or '', } params = [tag.pk for tag in tags] * 2 if min_count is not None: params.append(min_count) cursor = connection.cursor() cursor.execute(query, params) related = [] for row in cursor.fetchall(): tag = self.model.objects.get(pk=row[0]) if counts is True: tag.count = row[1] related.append(tag) related.sort() return related def cloud_for_model(self, model, steps=4, distribution=LOGARITHMIC, filters=None, min_count=None): """ Obtain a list of tags associated with instances of the given Model, giving each tag a ``count`` attribute indicating how many times it has been used and a ``font_size`` attribute for use in displaying a tag cloud. ``steps`` defines the range of font sizes - ``font_size`` will be an integer between 1 and ``steps`` (inclusive). ``distribution`` defines the type of font size distribution algorithm which will be used - logarithmic or linear. It must be either ``tagging.utils.LOGARITHMIC`` or ``tagging.utils.LINEAR``. To limit the tags displayed in the cloud to those associated with a subset of the Model's instances, pass a dictionary of field lookups to be applied to the given Model as the ``filters`` argument. To limit the tags displayed in the cloud to those with a ``count`` greater than or equal to ``min_count``, pass a value for the ``min_count`` argument. """ tags = list(self.usage_for_model(model, counts=True, filters=filters, min_count=min_count)) return calculate_cloud(tags, steps, distribution) def process_rules(self, rules): for line in rules.split('\n'): self._process_line(line) return True def _process_line(self, line): logger.debug('processing line "%s"' % line) def join(tags): self.join([tag[0] for tag in tags if tag]) if '==' in line: names = [name.strip() for name in line.split('==')] try: tag = self.get(name=names[0]) except Tag.DoesNotExist: return for syn_name in names[1:]: try: syn = Synonym(name=syn_name, tag=tag) syn.save() except IntegrityError: pass join([self.filter(name=name)[:1] for name in names]) elif '=' in line: join([self.filter(name=name.strip())[:1] \ for name in line.split('=')]) elif ':' in line: parts = line.split(';') if len(parts) > 0: changed = False head = [p.strip() for p in parts[0].split(':')][:2] tag_from = head[0] tag_to = (len(head) == 2) and head[1] or head[0] try: tag = self.get(name=tag_from) except Tag.DoesNotExist: return if tag.name != tag_to: tag.name = tag_to changed = True names = [tuple(i.strip() for i in p.split(':')) for p in parts[1:]] for name in names: if len(name) == 2 and getattr(tag, 'name_%s' % name[0], None) != name[1]: setattr(tag, 'name_%s' % name[0], name[1]) changed = True if changed: tag.save() def dumpAsText(self): tags = self.all() return '\n'.join(filter(lambda x: x, \ [self.dumpSynonymsAsText(t) for t in tags] + \ [self.dumpTagAsText(t) for t in tags])) def dumpTagAsText(self, tag): parts = [tag.name, ] for id, code in multilingual.languages.get_language_choices(): name = tag.get_translation(id, 'name').name if name: parts.append('%s: %s' % (code, name)) return '; '.join(parts) def dumpSynonymsAsText(self, tag): synonyms = tag.synonyms.all() if len(synonyms) > 0: return ' == '.join([tag.name, ] + [s.name for s in synonyms]) return '' def join(self, query): """This method joins multiple tags together.""" from tagging.utils import merge logger.info('Joining %s' % ','.join([unicode(obj) for obj in query])) tags = list(query) if len(tags) < 2: return first = tags[0] tags = tags[1:] for t in tags: merge(first, t) class TaggedItemManager(models.Manager): """ FIXME There's currently no way to get the ``GROUP BY`` and ``HAVING`` SQL clauses required by many of this manager's methods into Django's ORM. For now, we manually execute a query to retrieve the PKs of objects we're interested in, then use the ORM's ``__in`` lookup to return a ``QuerySet``. Now that the queryset-refactor branch is in the trunk, this can be tidied up significantly. """ def get_by_model(self, queryset_or_model, tags): """ Create a ``QuerySet`` containing instances of the specified model associated with a given tag or list of tags. """ tags = get_tag_list(tags) tag_count = len(tags) if tag_count == 0: # No existing tags were given queryset, model = get_queryset_and_model(queryset_or_model) return model._default_manager.none() elif tag_count == 1: # Optimisation for single tag - fall through to the simpler # query below. tag = tags[0] else: return self.get_intersection_by_model(queryset_or_model, tags) queryset, model = get_queryset_and_model(queryset_or_model) content_type = ContentType.objects.get_for_model(model) opts = self.model._meta tagged_item_table = qn(opts.db_table) return queryset.extra( tables=[opts.db_table], where=[ '%s.content_type_id = %%s' % tagged_item_table, '%s.tag_id = %%s' % tagged_item_table, '%s.%s = %s.object_id' % (qn(model._meta.db_table), qn(model._meta.pk.column), tagged_item_table) ], params=[content_type.pk, tag.pk], ) def get_intersection_by_model(self, queryset_or_model, tags): """ Create a ``QuerySet`` containing instances of the specified model associated with *all* of the given list of tags. """ tags = get_tag_list(tags) tag_count = len(tags) queryset, model = get_queryset_and_model(queryset_or_model) if not tag_count: return model._default_manager.none() model_table = qn(model._meta.db_table) # This query selects the ids of all objects which have all the # given tags. query = """ SELECT %(model_pk)s FROM %(model)s, %(tagged_item)s WHERE %(tagged_item)s.content_type_id = %(content_type_id)s AND %(tagged_item)s.tag_id IN (%(tag_id_placeholders)s) AND %(model_pk)s = %(tagged_item)s.object_id GROUP BY %(model_pk)s HAVING COUNT(%(model_pk)s) = %(tag_count)s""" % { 'model_pk': '%s.%s' % (model_table, qn(model._meta.pk.column)), 'model': model_table, 'tagged_item': qn(self.model._meta.db_table), 'content_type_id': ContentType.objects.get_for_model(model).pk, 'tag_id_placeholders': ','.join(['%s'] * tag_count), 'tag_count': tag_count, } cursor = connection.cursor() cursor.execute(query, [tag.pk for tag in tags]) object_ids = [row[0] for row in cursor.fetchall()] if len(object_ids) > 0: return queryset.filter(pk__in=object_ids) else: return model._default_manager.none() def get_union_by_model(self, queryset_or_model, tags): """ Create a ``QuerySet`` containing instances of the specified model associated with *any* of the given list of tags. """ tags = get_tag_list(tags) tag_count = len(tags) queryset, model = get_queryset_and_model(queryset_or_model) if not tag_count: return model._default_manager.none() model_table = qn(model._meta.db_table) # This query selects the ids of all objects which have any of # the given tags. query = """ SELECT %(model_pk)s FROM %(model)s, %(tagged_item)s WHERE %(tagged_item)s.content_type_id = %(content_type_id)s AND %(tagged_item)s.tag_id IN (%(tag_id_placeholders)s) AND %(model_pk)s = %(tagged_item)s.object_id GROUP BY %(model_pk)s""" % { 'model_pk': '%s.%s' % (model_table, qn(model._meta.pk.column)), 'model': model_table, 'tagged_item': qn(self.model._meta.db_table), 'content_type_id': ContentType.objects.get_for_model(model).pk, 'tag_id_placeholders': ','.join(['%s'] * tag_count), } cursor = connection.cursor() cursor.execute(query, [tag.pk for tag in tags]) object_ids = [row[0] for row in cursor.fetchall()] if len(object_ids) > 0: return queryset.filter(pk__in=object_ids) else: return model._default_manager.none() def get_related(self, obj, queryset_or_model, num=None): """ Retrieve a list of instances of the specified model which share tags with the model instance ``obj``, ordered by the number of shared tags in descending order. If ``num`` is given, a maximum of ``num`` instances will be returned. """ queryset, model = get_queryset_and_model(queryset_or_model) model_table = qn(model._meta.db_table) content_type = ContentType.objects.get_for_model(obj) related_content_type = ContentType.objects.get_for_model(model) query = """ SELECT %(model_pk)s, COUNT(related_tagged_item.object_id) AS %(count)s FROM %(model)s, %(tagged_item)s, %(tag)s, %(tagged_item)s related_tagged_item WHERE %(tagged_item)s.object_id = %%s AND %(tagged_item)s.content_type_id = %(content_type_id)s AND %(tag)s.id = %(tagged_item)s.tag_id AND related_tagged_item.content_type_id = %(related_content_type_id)s AND related_tagged_item.tag_id = %(tagged_item)s.tag_id AND %(model_pk)s = related_tagged_item.object_id""" if content_type.pk == related_content_type.pk: # Exclude the given instance itself if determining related # instances for the same model. query += """ AND related_tagged_item.object_id != %(tagged_item)s.object_id""" query += """ GROUP BY %(model_pk)s ORDER BY %(count)s DESC %(limit_offset)s""" query = query % { 'model_pk': '%s.%s' % (model_table, qn(model._meta.pk.column)), 'count': qn('count'), 'model': model_table, 'tagged_item': qn(self.model._meta.db_table), 'tag': qn(self.model._meta.get_field('tag').rel.to._meta.db_table), 'content_type_id': content_type.pk, 'related_content_type_id': related_content_type.pk, # Hardcoding this for now just to get tests working again - this # should now be handled by the query object. 'limit_offset': num is not None and 'LIMIT %s' or '', } cursor = connection.cursor() params = [obj.pk] if num is not None: params.append(num) cursor.execute(query, params) object_ids = [row[0] for row in cursor.fetchall()] if len(object_ids) > 0: # Use in_bulk here instead of an id__in lookup, because id__in would # clobber the ordering. object_dict = queryset.in_bulk(object_ids) return [object_dict[object_id] for object_id in object_ids \ if object_id in object_dict] else: return [] ########## # Models # ########## class Tag(models.Model): """ A tag. """ if settings.MULTILINGUAL_TAGS: class Translation(multilingual.Translation): name = models.CharField(_('name'), max_length=50, unique=True, db_index=True) else: name = models.CharField(_('name'), max_length=50, unique=True, db_index=True) objects = TagManager() class Meta: if not settings.MULTILINGUAL_TAGS: ordering = ('name',) verbose_name = _('tag') verbose_name_plural = _('tags') app_label = 'tagging' def __unicode__(self): return self.name or 'tag-with-id: %d' % self.id def __lt__(self, other): return self.name < other.name def delete(self, update=True): if update: self._updateLinkedObjects(remove_this=True) return super(Tag, self).delete() def save(self, *args, **kwargs): result = super(Tag, self).save(*args, **kwargs) self._updateLinkedObjects() return result def _updateLinkedObjects(self, remove_this=False): """Updates TagField's for all objects with this tag.""" for item in TaggedItem.objects.filter(tag=self): item._updateLinkedObjects(remove_this=remove_this) if settings.MULTILINGUAL_TAGS: """Monkey-patching for translation getter, to fallback to another translation.""" from multilingual.translation import getter_generator _orig_name_getter = Tag.get_name def _my_get_name(self, language_id=None, fallback=False): value = _orig_name_getter(self, language_id, fallback) if value is None and language_id is None: # print 'BLAH BLAH for lang_id: %s' % language_id value = _orig_name_getter(self, settings.FALLBACK_LANGUAGE, fallback) # print 'New value for lang_id=%s is %s' % (settings.FALLBACK_LANGUAGE, value) return value _my_get_name.short_description = getattr(Tag.name, 'verbose_name', 'name') setattr(Tag, 'get_name', _my_get_name) class TaggedItem(models.Model): """ Holds the relationship between a tag and the item being tagged. """ tag = models.ForeignKey(Tag, verbose_name=_('tag'), related_name='items') content_type = models.ForeignKey(ContentType, verbose_name=_('content type')) object_id = models.PositiveIntegerField(_('object id'), db_index=True) object = GenericForeignKey('content_type', 'object_id') timestamp = models.DateTimeField(_('date published'), auto_now_add=True) tag_app = models.CharField(_(u"Tag creator"), help_text=_(u"Tag creator"), max_length=50, null=True, blank=True) objects = TaggedItemManager() class Meta: # Enforce unique tag association per object unique_together = (('tag', 'content_type', 'object_id'),) verbose_name = _('tagged item') verbose_name_plural = _('tagged items') app_label = 'tagging' def __unicode__(self): return u'%s [%s]' % (self.object, self.tag) def _updateLinkedObjects(self, remove_this=False): from tagging.fields import TagField object_tags = [tag.name or tag.name_any \ for tag in Tag.objects.get_for_object(self.object) \ if not remove_this or tag.id != self.tag_id] tags_as_string = ', '.join(object_tags) for field in self.object._meta.fields: if isinstance(field, TagField): setattr(self.object, field.attname, tags_as_string) self.object.save() break def delete(self, update=True): if update: self._updateLinkedObjects(remove_this=True) return super(TaggedItem, self).delete() class Synonym(models.Model): name = models.CharField(max_length=50, unique=True, db_index=True) tag = models.ForeignKey(Tag, related_name='synonyms') def __unicode__(self): return u'%s, synonym for %s' % (self.name, self.tag) class Meta: verbose_name = _("Tag's synonym") verbose_name_plural = _("Tags' synonyms") ordering = ('name',) app_label = 'tagging'
38.56975
119
0.594799
158d508ef2cca90b4e6a3130faaa7ff632dce1c3
489
py
Python
examples/idioms/programs/179.2689-get-center-of-a-rectangle.py
laowantong/paroxython
4626798a60eeaa765dbfab9e63e04030c9fcb1d0
[ "MIT" ]
31
2020-05-02T13:34:26.000Z
2021-06-06T17:25:52.000Z
examples/idioms/programs/179.2689-get-center-of-a-rectangle.py
laowantong/paroxython
4626798a60eeaa765dbfab9e63e04030c9fcb1d0
[ "MIT" ]
108
2019-11-18T19:41:52.000Z
2022-03-18T13:58:17.000Z
examples/idioms/programs/179.2689-get-center-of-a-rectangle.py
laowantong/paroxython
4626798a60eeaa765dbfab9e63e04030c9fcb1d0
[ "MIT" ]
4
2020-05-19T08:57:44.000Z
2020-09-21T08:53:46.000Z
"""Get center of a rectangle. Return the center _c of the rectangle with coördinates(_x1,_y1,_x2,_y2) Source: Bart """ # Implementation author: random # Created on 2019-09-26T13:37:07.573535Z # Last modified on 2019-09-26T13:37:07.573535Z # Version 1 # center is a namedtuple, that can be accessed either using x and y or an index (0,1) # # e.g. center.x or center[0] from collections import namedtuple Point = namedtuple("Point", "x y") center = Point((x1 + x2) / 2, (y1 + y2) / 2)
23.285714
85
0.705521
ee6e99bf0fca4b072e82f77b45a29419986844b5
344
py
Python
docs/cours/developpement/programmation-objet/code/ui/dice.py
FrancoisBrucker/cours_informatique
8e693adefa84770850291fe4562c66d36d77cefa
[ "MIT" ]
3
2021-09-15T12:34:56.000Z
2021-12-14T09:29:17.000Z
docs/cours/developpement/programmation-objet/code/ui/dice.py
FrancoisBrucker/cours_informatique
8e693adefa84770850291fe4562c66d36d77cefa
[ "MIT" ]
1
2020-09-29T14:44:09.000Z
2020-09-29T15:39:01.000Z
docs/cours/developpement/programmation-objet/code/ui/dice.py
FrancoisBrucker/cours_informatique
8e693adefa84770850291fe4562c66d36d77cefa
[ "MIT" ]
4
2020-10-01T09:12:32.000Z
2021-12-14T09:29:09.000Z
import random class Dice: NUMBER_FACES = 6 def __init__(self, position=1): self._position = position def get_position(self): return self._position def set_position(self, new_position): self._position = new_position def roll(self): self.set_position(random.randint(1, self.NUMBER_FACES))
20.235294
63
0.668605
a8c477819732ba1d9ba54aba2f19b3657b32f95f
13,524
py
Python
tools/Polygraphy/polygraphy/comparator/struct.py
borisfom/TensorRT
42805f078052daad1a98bc5965974fcffaad0960
[ "Apache-2.0" ]
1
2022-03-05T08:46:19.000Z
2022-03-05T08:46:19.000Z
tools/Polygraphy/polygraphy/comparator/struct.py
maxpark/TensorRT
46253b644142a1d9632ba463422abfc5dcefc371
[ "Apache-2.0" ]
null
null
null
tools/Polygraphy/polygraphy/comparator/struct.py
maxpark/TensorRT
46253b644142a1d9632ba463422abfc5dcefc371
[ "Apache-2.0" ]
1
2022-03-19T16:03:30.000Z
2022-03-19T16:03:30.000Z
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time from collections import OrderedDict from polygraphy import config, mod, util from polygraphy.common.interface import TypedDict, TypedList from polygraphy.json import Decoder, Encoder, add_json_methods, load_json, save_json from polygraphy.logger import G_LOGGER np = mod.lazy_import("numpy") class LazyNumpyArray(object): """ Represents a lazily loaded NumPy array. For example, large NumPy arrays may be serialized to temporary files on the disk to save memory. """ def __init__(self, arr): """ Args: arr (np.ndarray): The NumPy array. """ self.arr = None self.tmpfile = None if config.ARRAY_SWAP_THRESHOLD_MB >= 0 and arr.nbytes > (config.ARRAY_SWAP_THRESHOLD_MB << 20): self.tmpfile = util.NamedTemporaryFile(suffix=".json") G_LOGGER.extra_verbose( "Evicting large array ({:.3f} MiB) from memory and saving to {:}".format( arr.nbytes / (1024.0 ** 2), self.tmpfile.name ) ) save_json(arr, self.tmpfile.name) else: self.arr = arr def numpy(self): """ Get the NumPy array, deserializing from the disk if it was stored earlier. Returns: np.ndarray: The NumPy array """ if self.arr is not None: return self.arr assert self.tmpfile is not None, "Path and NumPy array cannot both be None!" return load_json(self.tmpfile.name) @Encoder.register(LazyNumpyArray) def encode(lazy_arr): return { "values": lazy_arr.numpy(), } @Decoder.register(LazyNumpyArray) def decode(dct): return LazyNumpyArray(dct["values"]) @mod.export() class IterationResult(TypedDict(lambda: str, lambda: LazyNumpyArray)): """ An ordered dictionary containing the result of a running a single iteration of a runner. This maps output names to NumPy arrays, and preserves the output ordering from the runner. NOTE: The ``POLYGRAPHY_ARRAY_SWAP_THRESHOLD_MB`` environment variable can be set to enable the arrays to be swapped to the disk. Also includes additional fields indicating the name of the runner which produced the outputs, and the time required to do so. """ @staticmethod def _to_lazy(nparray): if isinstance(nparray, LazyNumpyArray): return nparray return LazyNumpyArray(nparray) @staticmethod def _to_lazy_dict(nparray_dict): if nparray_dict is None: return None # Converts a Dict[str, np.ndarray] to a Dict[str, LazyNumpyArray] lazy = OrderedDict() for name, out in nparray_dict.items(): lazy[name] = IterationResult._to_lazy(out) return lazy def __init__(self, outputs=None, runtime=None, runner_name=None): """ Args: outputs (Dict[str, np.array]): The outputs of this iteration, mapped to their names. runtime (float): The time required for this iteration, in seconds. Only used for logging purposes. runner_name (str): The name of the runner that produced this output. If this is omitted, a default name is generated. """ if outputs and config.ARRAY_SWAP_THRESHOLD_MB < 0: total_size_gb = sum(arr.nbytes for arr in outputs.values() if isinstance(arr, np.ndarray)) / (1024.0 ** 3) if total_size_gb >= 1: G_LOGGER.warning( "It looks like the outputs of this network are very large ({:.3f} GiB).\n" "To reduce memory usage, you may want to allow Polygraphy to swap these arrays to the disk using " "the POLYGRAPHY_ARRAY_SWAP_THRESHOLD_MB environment variable.".format(total_size_gb) ) super().__init__(IterationResult._to_lazy_dict(outputs)) self.runtime = runtime self.runner_name = util.default(runner_name, "custom_runner") # Convenience methods to preserve np.ndarray in the interface. def update(self, other): return super().update(IterationResult._to_lazy_dict(other)) def __setitem__(self, name, arr): return super().__setitem__(name, IterationResult._to_lazy(arr)) def values(self): for arr in super().values(): yield arr.numpy() def items(self): for name, arr in super().items(): yield name, arr.numpy() def __getitem__(self, name): return super().__getitem__(name).numpy() def __eq__(self, other): if self.runtime != other.runtime or self.runner_name != other.runner_name: return False for key, val in self.items(): if key not in other: return False if not np.array_equal(val, other[key]): return False return True @Encoder.register(IterationResult) def encode(iter_result): return { "outputs": iter_result.dct, "runtime": iter_result.runtime, "runner_name": iter_result.runner_name, } @Decoder.register(IterationResult) def decode(dct): return IterationResult(outputs=dct["outputs"], runtime=dct["runtime"], runner_name=dct["runner_name"]) @mod.export() @add_json_methods("inference results") class RunResults(TypedList(lambda: tuple)): """ Maps runners to per-iteration outputs (in the form of a ``List[IterationResult]``). For example, if ``results`` is an instance of ``RunResults()``, then to access the outputs of the first iteration from a specified runner, do: :: iteration = 0 runner_name = "trt-runner" outputs = results[runner_name][iteration] # `outputs` is a `Dict[str, np.ndarray]` Note: Technically, this is a ``List[Tuple[str, List[IterationResult]]]``, but includes helpers that make it behave like an OrderedDict that can contain duplicates. """ def items(self): """ Creates a generator that yields ``Tuple[str, List[IterationResult]]`` - runner names and corresponding outputs. """ for name, iteration_results in self.lst: yield name, iteration_results def keys(self): """ Creates a generator that yields runner names (str). """ for name, _ in self.lst: yield name def values(self): """ Creates a generator that yields runner outputs (List[IterationResult]). """ for _, iteration_results in self.lst: yield iteration_results def update(self, other): """ Updates the results stored in this instance. Args: other (Union[Dict[str, List[IterationResult]], RunResults]): A dictionary or RunResults instance from which to update this one. """ for name, iteration_results in other.items(): self.lst[name] = iteration_results return self def add(self, out_list, runtime=None, runner_name=None): """ A helper to create a ``List[IterationResult]`` and map it to the specified runner_name. This method cannot be used to modify an existing entry. Calling this method is equivalent to: :: results[runner_name] = [] for out in out_list: results[runner_name].append(IterationResult(out, runtime, runner_name)) Args: out_list (List[Dict[str, np.array]]): One or more set of outputs where each output is a dictionary of output names mapped to NumPy arrays. runtime (float): The time required for this iteration, in seconds. Only used for logging purposes. runner_name (str): The name of the runner that produced this output. If this is omitted, a default name is generated. """ runner_name = util.default(runner_name, "custom_runner") iter_results = [IterationResult(out, runtime, runner_name) for out in out_list] self[runner_name] = iter_results def __getitem__(self, key): if isinstance(key, int): return self.lst[key] for name, iteration_results in self.lst: if name == key: return iteration_results G_LOGGER.critical( "{:35} does not exist in this RunResults instance. Note: Available runners: {:}".format( key, list(self.keys()) ) ) def __setitem__(self, key, value): if isinstance(key, int): self.lst[key] = value return for index, name in enumerate(self.keys()): if name == key: self.lst[index] = (key, value) break else: self.append((key, value)) def __contains__(self, val): if isinstance(val, str) or isinstance(val, bytes): return val in list(self.keys()) return val in self.lst def __eq__(self, other): for (r0, its0), (r1, its1) in zip(self.lst, other.lst): if r0 != r1: return False if its0 != its1: return False return True @Encoder.register(RunResults) def encode(results): return {"lst": results.lst} @Decoder.register(RunResults) def decode(dct): return RunResults(list(map(tuple, dct["lst"]))) @mod.export() class AccuracyResult(TypedDict(lambda: tuple, lambda: list)): """ An ordered dictionary including details about the result of ``Comparator.compare_accuracy``. More specifically, it is an ``OrderedDict[Tuple[str, str], List[OrderedDict[str, bool]]]`` which maps a runner pair (a tuple containing both runner names) to a list of dictionaries of booleans (or anything that can be converted into a boolean, such as an ``OutputCompareResult``), indicating whether there was a match in the outputs of the corresponding iteration. The ``List[OrderedDict[str, bool]]`` is constructed from the dictionaries returned by ``compare_func`` in ``compare_accuracy``. For example, to see if there's a match between ``runner0`` and ``runner1`` during the 1st iteration for an output called ``output0``: :: runner_pair = ("runner0", "runner1") iteration = 0 output_name = "output0" match = bool(accuracy_result[runner_pair][iteration][output_name]) If there's a mismatch, you can inspect the outputs from the results of ``Comparator.run()``, assumed here to be called ``run_results``: :: runner0_output = run_results["runner0"][iteration][output_name] runner1_output = run_results["runner1"][iteration][output_name] """ def __bool__(self): """ Whether all outputs matched for every iteration. You can use this function to avoid manually checking each output. For example: :: if accuracy_result: print("All matched!") Returns: bool """ return all([bool(match) for outs in self.values() for out in outs for match in out.values()]) def _get_runner_pair(self, runner_pair): return util.default(runner_pair, list(self.keys())[0]) def percentage(self, runner_pair=None): """ Returns the percentage of iterations that matched for the given pair of runners, expressed as a decimal between 0.0 and 1.0. Always returns 1.0 when the number of iterations is 0, or when there are no runner comparisons. Args: runner_pair (Tuple[str, str]): A pair of runner names describing which runners to check. Defaults to the first pair in the dictionary. """ if not list(self.keys()): return 1.0 # No data in this result. matched, _, total = self.stats(runner_pair) if not total: return 1.0 # No iterations return float(matched) / float(total) def stats(self, runner_pair=None): """ Returns the number of iterations that matched, mismatched, and the total number of iterations. Args: runner_pair (Tuple[str, str]): A pair of runner names describing which runners to check. Defaults to the first pair in the dictionary. Returns: Tuple[int, int, int]: Number of iterations that matched, mismatched, and total respectively. """ runner_pair = self._get_runner_pair(runner_pair) outs = self[runner_pair] matched = sum([all([match for match in out.values()]) for out in outs]) total = len(outs) return matched, total - matched, total
33.979899
121
0.622375
4cd4eec79ee21ee313cbc8002f6576c87147d7ca
6,136
py
Python
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/ssl/sslpolicy_csvserver_binding.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/ssl/sslpolicy_csvserver_binding.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
nitro-python/nssrc/com/citrix/netscaler/nitro/resource/config/ssl/sslpolicy_csvserver_binding.py
culbertm/NSttyPython
ff9f6aedae3fb8495342cd0fc4247c819cf47397
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2008-2016 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class sslpolicy_csvserver_binding(base_resource) : """ Binding class showing the csvserver that can be bound to sslpolicy. """ def __init__(self) : self._boundto = None self._priority = None self._activepolicy = None self._gotopriorityexpression = None self._labeltype = None self._labelname = None self._name = None self.___count = None @property def name(self) : r"""Name of the SSL policy for which to display detailed information.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : r"""Name of the SSL policy for which to display detailed information.<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e @property def boundto(self) : r"""The entity name to which policy is bound. """ try : return self._boundto except Exception as e: raise e @boundto.setter def boundto(self, boundto) : r"""The entity name to which policy is bound. """ try : self._boundto = boundto except Exception as e: raise e @property def priority(self) : try : return self._priority except Exception as e: raise e @property def gotopriorityexpression(self) : r"""Expression specifying the priority of the next policy which will get evaluated if the current policy rule evaluates to TRUE. """ try : return self._gotopriorityexpression except Exception as e: raise e @property def labeltype(self) : r"""Type of policy label invocation.<br/>Possible values = vserver, service, policylabel. """ try : return self._labeltype except Exception as e: raise e @property def activepolicy(self) : try : return self._activepolicy except Exception as e: raise e @property def labelname(self) : r"""Name of the label to invoke if the current policy rule evaluates to TRUE. """ try : return self._labelname except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(sslpolicy_csvserver_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.sslpolicy_csvserver_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : r""" Use this API to fetch sslpolicy_csvserver_binding resources. """ try : if not name : obj = sslpolicy_csvserver_binding() response = obj.get_resources(service, option_) else : obj = sslpolicy_csvserver_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : r""" Use this API to fetch filtered set of sslpolicy_csvserver_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = sslpolicy_csvserver_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : r""" Use this API to count sslpolicy_csvserver_binding resources configued on NetScaler. """ try : obj = sslpolicy_csvserver_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : r""" Use this API to count the filtered set of sslpolicy_csvserver_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = sslpolicy_csvserver_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class Labeltype: vserver = "vserver" service = "service" policylabel = "policylabel" class sslpolicy_csvserver_binding_response(base_response) : def __init__(self, length=1) : self.sslpolicy_csvserver_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.sslpolicy_csvserver_binding = [sslpolicy_csvserver_binding() for _ in range(length)]
27.63964
130
0.718546
23ed45e8337c8f85c89f513117e00ebd19372d5c
279
py
Python
appyter/profiles/default/fields/__init__.py
MaayanLab/jupyter-template
dd05bfcb95c9eafb1a9df845b5d8fecae1d6b9d5
[ "Apache-2.0" ]
null
null
null
appyter/profiles/default/fields/__init__.py
MaayanLab/jupyter-template
dd05bfcb95c9eafb1a9df845b5d8fecae1d6b9d5
[ "Apache-2.0" ]
24
2020-04-07T17:04:47.000Z
2020-05-27T00:51:25.000Z
appyter/profiles/default/fields/__init__.py
MaayanLab/jupyter-template
dd05bfcb95c9eafb1a9df845b5d8fecae1d6b9d5
[ "Apache-2.0" ]
null
null
null
''' ```eval_rst Filters represent classes derived from :class:`appyters.fields.Field` implementing more specific field types and are rendered in :mod:`appyters.profiles.default.templates`. The various other profiles can be used to extend or override those definitions. ``` '''
46.5
71
0.777778
8034d6a3b540bf81e1aae129f54d2687d3b5d773
985
py
Python
flask_app/schemas.py
ahtesham11/flask-sentimental-deploy
a4ebb1214e4cb8aa85f99960739ebf1e49a74adc
[ "MIT" ]
1
2021-01-03T11:30:35.000Z
2021-01-03T11:30:35.000Z
flask_app/schemas.py
ahtesham11/flask-sentimental-deploy
a4ebb1214e4cb8aa85f99960739ebf1e49a74adc
[ "MIT" ]
3
2021-03-31T19:44:40.000Z
2021-09-08T01:46:44.000Z
flask_app/schemas.py
nbroad1881/sentimentr
cb4f57ce48a43a104d2e56f792a04e667b5e7c88
[ "MIT" ]
null
null
null
from flask_app.db_models import DBArticle, DBScore, Weekly, Tabulator from flask_app import ma from marshmallow import fields class ScoreSchema(ma.SQLAlchemySchema): class Meta: model = DBScore bert = fields.Float() lstm = fields.Float() vader = fields.Float() textblob = fields.Float() class WeeklySchema(ma.SQLAlchemySchema): class Meta: model = Weekly index = ma.auto_field() candidate = ma.auto_field() news_co = ma.auto_field() datetime = ma.auto_field() bert = ma.auto_field() lstm = ma.auto_field() vader = ma.auto_field() textblob = ma.auto_field() class TabulatorSchema(ma.SQLAlchemySchema): class Meta: model = Tabulator title = ma.auto_field() url = ma.auto_field() candidate = ma.auto_field() news_co = ma.auto_field() datetime = ma.auto_field() bert = ma.auto_field() lstm = ma.auto_field() vader = ma.auto_field() textblob = ma.auto_field()
22.386364
69
0.659898
021da90bf48b40b7dfea764f112310c133801988
341
py
Python
Libraries/AnimatSimPy/Scripts/ErrorTesting2.py
NeuroRoboticTech/AnimatLabPublicSource
c5b23f8898513582afb7891eb994a7bd40a89f08
[ "BSD-3-Clause" ]
8
2015-01-09T21:59:50.000Z
2021-04-14T14:08:47.000Z
Libraries/AnimatSimPy/Scripts/ErrorTesting2.py
NeuroRoboticTech/AnimatLabPublicSource
c5b23f8898513582afb7891eb994a7bd40a89f08
[ "BSD-3-Clause" ]
null
null
null
Libraries/AnimatSimPy/Scripts/ErrorTesting2.py
NeuroRoboticTech/AnimatLabPublicSource
c5b23f8898513582afb7891eb994a7bd40a89f08
[ "BSD-3-Clause" ]
2
2018-12-21T02:58:30.000Z
2020-08-12T11:44:39.000Z
import sys import traceback def my_excepthook(type, value, tb): print type.__name__ print value print "".join(traceback.format_exception(type, value, tb)) sys.excepthook = my_excepthook # see http://docs.python.org/library/sys.html#sys.excepthook # some code to generate a naturalistic exception a = "text" b = 5 error = a + b
24.357143
91
0.733138
36d59991f833e606843060cc8e6f945ccb30801c
6,126
py
Python
python/todoapp/rptodo/cli.py
imjoseangel/sandbox
bc4ff74981faf91eb1a1f777d01fcfd13d6f5147
[ "MIT" ]
null
null
null
python/todoapp/rptodo/cli.py
imjoseangel/sandbox
bc4ff74981faf91eb1a1f777d01fcfd13d6f5147
[ "MIT" ]
null
null
null
python/todoapp/rptodo/cli.py
imjoseangel/sandbox
bc4ff74981faf91eb1a1f777d01fcfd13d6f5147
[ "MIT" ]
null
null
null
"""This module provides the RP To-Do CLI.""" # rptodo/cli.py # -*- coding: utf-8 -*- from pathlib import Path from typing import List, Optional import typer from rptodo import ( ERRORS, __app_name__, __version__, config, database, rptodo ) app = typer.Typer() @app.command() def init( db_path: str = typer.Option( str(database.DEFAULT_DB_FILE_PATH), "--db-path", "-db", prompt="to-do database location?", ), ) -> None: """Initialize the to-do database.""" app_init_error = config.init_app(db_path) if app_init_error: typer.secho( f'Creating config file failed with "{ERRORS[app_init_error]}"', fg=typer.colors.RED, ) raise typer.Exit(1) db_init_error = database.init_database(Path(db_path)) if db_init_error: typer.secho( f'Creating database failed with "{ERRORS[db_init_error]}"', fg=typer.colors.RED, ) raise typer.Exit(1) else: typer.secho(f"The to-do database is {db_path}", fg=typer.colors.GREEN) def get_todoer() -> rptodo.Todoer: if config.CONFIG_FILE_PATH.exists(): db_path = database.get_database_path(config.CONFIG_FILE_PATH) else: typer.secho( 'Config file not found. Please, run "rptodo init"', fg=typer.colors.RED, ) raise typer.Exit(1) if db_path.exists(): return rptodo.Todoer(db_path) else: typer.secho( 'Database not found. Please, run "rptodo init"', fg=typer.colors.RED, ) raise typer.Exit(1) @app.command() def add( description: List[str] = typer.Argument(...), priority: int = typer.Option(2, "--priority", "-p", min=1, max=3), ) -> None: """Add a new to-do with a DESCRIPTION.""" todoer = get_todoer() todo, error = todoer.add(description, priority) if error: typer.secho( f'Adding to-do failed with "{ERRORS[error]}"', fg=typer.colors.RED ) raise typer.Exit(1) else: typer.secho( f"""to-do: "{todo['Description']}" was added """ f"""with priority: {priority}""", fg=typer.colors.GREEN, ) @app.command(name="list") def list_all() -> None: """List all to-dos.""" todoer = get_todoer() todo_list = todoer.get_todo_list() if len(todo_list) == 0: typer.secho( "There are no tasks in the to-do list yet", fg=typer.colors.RED ) raise typer.Exit() typer.secho("\nto-do list:\n", fg=typer.colors.BLUE, bold=True) columns = ( "ID. ", "| Priority ", "| Done ", "| Description ", ) headers = "".join(columns) typer.secho(headers, fg=typer.colors.BLUE, bold=True) typer.secho("-" * len(headers), fg=typer.colors.BLUE) for id, todo in enumerate(todo_list, 1): desc, priority, done = todo.values() typer.secho( f"{id}{(len(columns[0]) - len(str(id))) * ' '}" f"| ({priority}){(len(columns[1]) - len(str(priority)) - 4) * ' '}" f"| {done}{(len(columns[2]) - len(str(done)) - 2) * ' '}" f"| {desc}", fg=typer.colors.BLUE, ) typer.secho("-" * len(headers) + "\n", fg=typer.colors.BLUE) @app.command(name="complete") def set_done(todo_id: int = typer.Argument(...)) -> None: """Complete a to-do by setting it as done using its TODO_ID.""" todoer = get_todoer() todo, error = todoer.set_done(todo_id) if error: typer.secho( f'Completing to-do # "{todo_id}" failed with "{ERRORS[error]}"', fg=typer.colors.RED, ) raise typer.Exit(1) else: typer.secho( f"""to-do # {todo_id} "{todo['Description']}" completed!""", fg=typer.colors.GREEN, ) @app.command() def remove( todo_id: int = typer.Argument(...), force: bool = typer.Option( False, "--force", "-f", help="Force deletion without confirmation.", ), ) -> None: """Remove a to-do using its TODO_ID.""" todoer = get_todoer() def _remove(): todo, error = todoer.remove(todo_id) if error: typer.secho( f'Removing to-do # {todo_id} failed with "{ERRORS[error]}"', fg=typer.colors.RED, ) raise typer.Exit(1) else: typer.secho( f"""to-do # {todo_id}: '{todo["Description"]}' was removed""", fg=typer.colors.GREEN, ) if force: _remove() else: todo_list = todoer.get_todo_list() try: todo = todo_list[todo_id - 1] except IndexError: typer.secho("Invalid TODO_ID", fg=typer.colors.RED) raise typer.Exit(1) delete = typer.confirm( f"Delete to-do # {todo_id}: {todo['Description']}?" ) if delete: _remove() else: typer.echo("Operation canceled") @app.command(name="clear") def remove_all( force: bool = typer.Option( ..., prompt="Delete all to-dos?", help="Force deletion without confirmation.", ), ) -> None: """Remove all to-dos.""" todoer = get_todoer() if force: error = todoer.remove_all().error if error: typer.secho( f'Removing to-dos failed with "{ERRORS[error]}"', fg=typer.colors.RED, ) raise typer.Exit(1) else: typer.secho("All to-dos were removed", fg=typer.colors.GREEN) else: typer.echo("Operation canceled") def _version_callback(value: bool) -> None: if value: typer.echo(f"{__app_name__} v{__version__}") raise typer.Exit() @app.callback() def main( version: Optional[bool] = typer.Option( None, "--version", "-v", help="Show the application's version and exit.", callback=_version_callback, is_eager=True, ) ) -> None: return
27.594595
79
0.544727
ea71a3408fa25c39c74fab894f08d7cb1119d3cd
1,924
py
Python
authors/apps/authentication/backends.py
dev-jey/ah-the-phoenix
985d216210c0c81ec06e223c6952b0c69fabdcfa
[ "BSD-3-Clause" ]
1
2019-04-04T23:49:42.000Z
2019-04-04T23:49:42.000Z
authors/apps/authentication/backends.py
dev-jey/ah-the-phoenix
985d216210c0c81ec06e223c6952b0c69fabdcfa
[ "BSD-3-Clause" ]
21
2019-01-29T17:41:36.000Z
2022-03-11T23:43:20.000Z
authors/apps/authentication/backends.py
dev-jey/ah-the-phoenix
985d216210c0c81ec06e223c6952b0c69fabdcfa
[ "BSD-3-Clause" ]
1
2019-11-23T18:27:55.000Z
2019-11-23T18:27:55.000Z
import jwt from django.conf import settings from rest_framework import authentication, exceptions from .models import User class JWTAuthentication(authentication.BaseAuthentication): """Token authentication using JWT.""" authentication_header_prefix = 'token' def authenticate(self, request): """Checks authorization on every request.""" request.user = None auth_header = authentication.get_authorization_header(request).split() if not auth_header: return None if len(auth_header) == 1: message = "Invalid token header. No credentials provided." raise exceptions.AuthenticationFailed(message) if len(auth_header) > 2: message = "Invalid token header. "\ "Token should not contain whitespaces." raise exceptions.AuthenticationFailed(message) prefix = auth_header[0].decode('utf-8') token = auth_header[1].decode('utf-8') if prefix.lower() != self.authentication_header_prefix: message = "Invalid token header. Token header should" \ " include the word `token` followed by a whitespace" raise exceptions.AuthenticationFailed(message) return self.authenticate_credentials(request, token) def authenticate_credentials(self, request, token): """Authenticate the provided credentials.""" try: payload = jwt.decode(token, settings.SECRET_KEY) except exceptions.AuthenticationFailed: message = "Could not decode token" raise exceptions.AuthenticationFailed(message) try: user = User.objects.get(username=payload['username']) except exceptions.AuthenticationFailed: message = "No user matching this token was found" raise exceptions.AuthenticationFailed(message) return (user, token)
33.172414
78
0.659563
307a40c8083bc57bc5b8de098510032da7b286a8
159
py
Python
tests/dummy_django_project/urls.py
grejppi/django-wsgi
7880d800718d608f7d14f8d2c838f146ed1bc59d
[ "BSD-3-Clause" ]
7
2015-12-04T14:15:02.000Z
2020-08-04T05:18:40.000Z
tests/dummy_django_project/urls.py
grejppi/django-wsgi
7880d800718d608f7d14f8d2c838f146ed1bc59d
[ "BSD-3-Clause" ]
8
2015-12-01T11:16:32.000Z
2021-01-29T16:30:59.000Z
tests/dummy_django_project/urls.py
grejppi/django-wsgi
7880d800718d608f7d14f8d2c838f146ed1bc59d
[ "BSD-3-Clause" ]
4
2018-04-18T17:00:31.000Z
2021-01-29T16:30:20.000Z
from django.conf.urls import patterns from django.http import HttpResponse urlpatterns = patterns( '', ('^$', lambda request: HttpResponse()), )
17.666667
43
0.679245
bccab0b4d5b5b439da4d8bfe755097b4a88a5569
847
py
Python
lib3to2/fixes/fix_division.py
hajs/lib3to2_fork
4a2c734398493c5ff72857f3b849895aecdfc3f7
[ "Apache-2.0" ]
3
2021-03-29T19:21:08.000Z
2021-12-31T09:30:11.000Z
VisionAPI/lib/python3.8/site-packages/lib3to2/fixes/fix_division.py
aniruddhakj/AnswerScriptEvaluation
7b039b84355ecda1d55dc037ccfc4a4d661ad5e3
[ "BSD-3-Clause" ]
1
2019-05-07T11:15:34.000Z
2019-05-07T11:15:34.000Z
env/lib/python2.7/site-packages/lib3to2/fixes/fix_division.py
Eric-Muthemba/qontroverse
1f12d0e3bbdee628a88bac77dc53426ded220755
[ "MIT" ]
2
2019-01-22T01:05:22.000Z
2019-09-27T12:32:22.000Z
""" Fixer for division: from __future__ import division if needed """ from lib2to3 import fixer_base from lib3to2.fixer_util import token, future_import def match_division(node): """ __future__.division redefines the meaning of a single slash for division, so we match that and only that. """ slash = token.SLASH return node.type == slash and not node.next_sibling.type == slash and \ not node.prev_sibling.type == slash class FixDivision(fixer_base.BaseFix): def match(self, node): """ Since the tree needs to be fixed once and only once if and only if it matches, then we can start discarding matches after we make the first. """ return match_division(node) def transform(self, node, results): future_import("division", node)
30.25
78
0.664699
d7585fba08c2c20e30436a235bcee7a90a834b42
210
py
Python
wiki/wiki/doctype/wiki_sidebar/test_wiki_sidebar.py
fproldan/wiki
f384223ab2e3551339894c2b727e0e6e68953405
[ "MIT" ]
60
2021-05-23T08:33:20.000Z
2022-03-28T11:54:58.000Z
wiki/wiki/doctype/wiki_sidebar/test_wiki_sidebar.py
fproldan/wiki
f384223ab2e3551339894c2b727e0e6e68953405
[ "MIT" ]
49
2021-05-21T10:00:38.000Z
2022-03-31T08:22:23.000Z
wiki/wiki/doctype/wiki_sidebar/test_wiki_sidebar.py
fproldan/wiki
f384223ab2e3551339894c2b727e0e6e68953405
[ "MIT" ]
46
2021-05-23T08:33:21.000Z
2022-03-31T15:36:24.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2021, Frappe and Contributors # See license.txt from __future__ import unicode_literals # import frappe import unittest class TestWikiSidebar(unittest.TestCase): pass
19.090909
45
0.761905
518251b0503a2f77f38c16d4c908fb7dcb1c98a5
20,708
py
Python
transformers/data/processors/glue.py
mandubian/transformers
0cb163865a4c761c226b151283309eedb2b1ca4d
[ "Apache-2.0" ]
3,255
2016-08-18T17:53:27.000Z
2022-03-29T19:53:43.000Z
transformers/data/processors/glue.py
mandubian/transformers
0cb163865a4c761c226b151283309eedb2b1ca4d
[ "Apache-2.0" ]
141
2017-07-17T09:14:37.000Z
2022-03-14T00:00:19.000Z
transformers/data/processors/glue.py
mandubian/transformers
0cb163865a4c761c226b151283309eedb2b1ca4d
[ "Apache-2.0" ]
2,580
2017-05-14T14:33:41.000Z
2022-03-31T15:04:14.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ import logging import os from .utils import DataProcessor, InputExample, InputFeatures from ...file_utils import is_tf_available if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def glue_convert_examples_to_features(examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if is_tf_available() and isinstance(examples, tf.data.Dataset): is_tf_dataset = True if task is not None: processor = glue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = glue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d" % (ex_index)) if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, ) input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label)) if is_tf_available() and is_tf_dataset: def gen(): for ex in features: yield ({'input_ids': ex.input_ids, 'attention_mask': ex.attention_mask, 'token_type_ids': ex.token_type_ids}, ex.label) return tf.data.Dataset.from_generator(gen, ({'input_ids': tf.int32, 'attention_mask': tf.int32, 'token_type_ids': tf.int32}, tf.int64), ({'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None]), 'token_type_ids': tf.TensorShape([None])}, tf.TensorShape([]))) return features class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['premise'].numpy().decode('utf-8'), tensor_dict['hypothesis'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence'].numpy().decode('utf-8'), None, str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence'].numpy().decode('utf-8'), None, str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[7] text_b = line[8] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['question1'].numpy().decode('utf-8'), tensor_dict['question2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['question'].numpy().decode('utf-8'), tensor_dict['sentence'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples glue_tasks_num_labels = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } glue_processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, } glue_output_modes = { "cola": "classification", "mnli": "classification", "mnli-mm": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", }
37.446655
130
0.571953
c3bf06adf56465c5650d1f09e7e685c2c81a42c4
1,221
py
Python
tools/create_xml_annotations.py
krohitm/Faster-RCNN_TF-1
fb5edac39a85b8c2b805319a739bf2375847abb2
[ "MIT" ]
null
null
null
tools/create_xml_annotations.py
krohitm/Faster-RCNN_TF-1
fb5edac39a85b8c2b805319a739bf2375847abb2
[ "MIT" ]
null
null
null
tools/create_xml_annotations.py
krohitm/Faster-RCNN_TF-1
fb5edac39a85b8c2b805319a739bf2375847abb2
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue May 16 14:48:19 2017 @author: krohitm """ import numpy as np from xml.etree import ElementTree as ET from xml import etree if __name__=='__main__': tree = ET.parse('000007.xml') root = tree.getroot() bbox = np.array(np.loadtxt( '/data0/krohitm/object_boundaries/person_extrapol.csv', dtype=str, delimiter=',', skiprows=1, )) data_dict = {} data_dict['flickrid'] = 'krm' data_dict['name'] = 'krohitm' data_dict['pose'] = 'unknown' data_dict['width'] = '1280' data_dict['height'] = '720' data_dict['depth'] = '3' num_imgs = len(bbox[:,0]) for i in range(num_imgs): flag = 0 data_dict['filename'] = '{0}.jpg'.format(str(i+1).zfill(7)) data_dict['xmin'] = bbox[i,1] data_dict['ymin'] = bbox[i,2] data_dict['xmax'] = bbox[i,3] data_dict['ymax'] = bbox[i,4] for node in root.iter(): if node.tag in data_dict: node.text = data_dict[node.tag] root[6][0].text = 'person' tree.write('/home/krohitm/code/Faster-RCNN_TF/data/VOCdevkit2007/VOC2007/Annotations/{0}.xml'.format( str(i+1).zfill(7)))
28.395349
109
0.591319
a54f7fa58c4f9e59a1f859803fe2780ad4bf886d
2,869
py
Python
unit-tests/test_subfolder.py
Keeper-Security/commander
93fee5d2ba56f2288e00ab33003597d00a302b5c
[ "MIT" ]
151
2015-11-02T02:04:46.000Z
2022-01-20T00:07:01.000Z
unit-tests/test_subfolder.py
Keeper-Security/commander
93fee5d2ba56f2288e00ab33003597d00a302b5c
[ "MIT" ]
145
2015-12-31T00:11:35.000Z
2022-03-31T19:13:54.000Z
unit-tests/test_subfolder.py
Keeper-Security/commander
93fee5d2ba56f2288e00ab33003597d00a302b5c
[ "MIT" ]
73
2015-10-30T00:53:10.000Z
2022-03-30T03:50:53.000Z
#!/usr/bin/env python3 """Test keepercommander.subfolder.""" from unittest.mock import Mock import pytest import keepercommander.subfolder as subfolder def BFN(*, type, uid, parent_uid, name, subfolders): """Build a mock BaseFolderNode.""" result = Mock(name=name) result.type = type result.uid = uid result.parent_uid = parent_uid result.name = name # A list of UID's, not folders. assert all(isinstance(subfolder, str) for subfolder in subfolders) result.subfolders = subfolders return result def folder_cache(): """Build a two-node folder_cache. Return it and the root uid.""" cd_tests_uid = 'b' * 22 cd_tests_bfn = BFN(type='user_folder', uid=cd_tests_uid, parent_uid=None, name='cd-tests', subfolders=[]) root_uid = 'a' * 22 root_bfn = BFN(type='/', uid=None, parent_uid=None, name='root', subfolders=[cd_tests_uid]) dict_ = { root_uid: root_bfn, cd_tests_uid: cd_tests_bfn, } return dict_, root_bfn, cd_tests_bfn def create_fake_params(): """Create a fake params instance for testing.""" params = Mock() (params.folder_cache, root_bfn, cd_tests_bfn) = folder_cache() params.current_folder = '' params.root_folder = root_bfn return params, root_bfn, cd_tests_bfn (global_params, global_root_bfn, global_cd_tests_bfn) = create_fake_params() global_test_params = ( ('a', global_root_bfn, 'a'), ('/a', global_root_bfn, 'a'), ('/a/b', global_root_bfn, 'a/b'), ('/cd-tests/a', global_cd_tests_bfn, 'a'), ('/cd-tests', global_cd_tests_bfn, ''), ('a//b', global_root_bfn, 'a//b'), ('//a', global_root_bfn, '//a'), ('//a//b', global_root_bfn, '//a//b'), ('/cd-tests/a//b//c', global_cd_tests_bfn, 'a//b//c'), ('/cd-tests/..', global_root_bfn, ''), ('/cd-tests/.', global_cd_tests_bfn, ''), ('/..', global_root_bfn, ''), ('/.', global_root_bfn, ''), ('/./cd-tests', global_cd_tests_bfn, ''), ('/./cd-tests/nonexistent', global_cd_tests_bfn, 'nonexistent'), ('/./cd-tests/./nonexistent', global_cd_tests_bfn, 'nonexistent'), # The next three were complicating tab completion, so they no longer work. # ('/./cd-tests/ ', global_cd_tests_bfn, ''), # ('/ cd-tests', global_cd_tests_bfn, ''), # ('/ cd-tests ', global_cd_tests_bfn, ''), # This is a corner case we are willing to ignore # ('/ /a', global_root_bfn, '//a'), ('/', global_root_bfn, ''), ('//', global_root_bfn, '//'), ) @pytest.mark.parametrize('input_, expected_folder, expected_final', global_test_params) def test_subfolder_try_resolve_path(input_, expected_folder, expected_final): """Test try_resolve_path.""" actual_folder, actual_final = subfolder.try_resolve_path(global_params, input_) assert actual_folder is expected_folder assert actual_final == expected_final
33.752941
109
0.655978
d810f87ca800fa805ffbaead4783dd581c546dcd
700
py
Python
common/src/stack/command/stack/commands/sync/dhcpd/__init__.py
khanfluence/stacki-cumulus-switch
df54afb20f6ea6a3a136b3c09b30df54ea79ffcc
[ "BSD-3-Clause" ]
null
null
null
common/src/stack/command/stack/commands/sync/dhcpd/__init__.py
khanfluence/stacki-cumulus-switch
df54afb20f6ea6a3a136b3c09b30df54ea79ffcc
[ "BSD-3-Clause" ]
null
null
null
common/src/stack/command/stack/commands/sync/dhcpd/__init__.py
khanfluence/stacki-cumulus-switch
df54afb20f6ea6a3a136b3c09b30df54ea79ffcc
[ "BSD-3-Clause" ]
null
null
null
# # @copyright@ # Copyright (c) 2006 - 2018 Teradata # All rights reserved. Stacki(r) v5.x stacki.com # https://github.com/Teradata/stacki/blob/master/LICENSE.txt # @copyright@ # # import stack.commands import subprocess class Command(stack.commands.sync.command): """ Rebuild the DHCPD configuration files on the frontend and restart the DHCPD service <example cmd='sync dhcpd'> Rebuild the DHCPD configuration files on the frontend and restar t the DHCPD service </example> """ def run(self, params, args): self.notify('Sync DHCP\n') self.report('report.dhcpd') subprocess.call(['/sbin/service', 'dhcpd', 'restart'], stdout=open('/dev/null'), stderr=open('/dev/null'))
20.588235
70
0.711429
5ee7aee767417c33cd57bd00abdbb8045a173bae
4,563
py
Python
scout/parse/variant/clnsig.py
eriksjolund/scout
b2723735916e0052d4ef092c9de6c2493b932018
[ "BSD-3-Clause" ]
null
null
null
scout/parse/variant/clnsig.py
eriksjolund/scout
b2723735916e0052d4ef092c9de6c2493b932018
[ "BSD-3-Clause" ]
null
null
null
scout/parse/variant/clnsig.py
eriksjolund/scout
b2723735916e0052d4ef092c9de6c2493b932018
[ "BSD-3-Clause" ]
null
null
null
import logging LOG = logging.getLogger(__name__) def parse_clnsig(variant, transcripts=None): """Get the clnsig information The clinvar format has changed several times and this function will try to parse all of them. The first format represented the clinical significance terms with numbers. This was then replaced by strings and the separator changed. At this stage the possibility to connect review stats to a certain significance term was taken away. So now we can only annotate each significance term with all review stats. Also the clinvar accession numbers are in some cases annotated with the info key CLNACC and sometimes with CLNVID. This function parses also Clinvar annotations performed by VEP (CSQ field, parsed transcripts required) Args: variant(cyvcf2.Variant) transcripts(iterable(dict)) Returns: clnsig_accsessions(list(dict)): A list with clnsig accessions """ transcripts = transcripts or [] acc = variant.INFO.get("CLNACC", variant.INFO.get("CLNVID", "")) sig = variant.INFO.get("CLNSIG", "").lower() revstat = variant.INFO.get("CLNREVSTAT", "").lower() clnsig_accessions = [] if acc == "" and transcripts: if transcripts[0].get("clnsig"): clnsig = set() for transcript in transcripts: for annotation in transcript.get("clnsig", []): clnsig.add(annotation) for annotation in clnsig: clnsig_accessions.append({"value": annotation}) return clnsig_accessions # VEP 97+ annotated clinvar info: if transcripts[0].get("clinvar_clnvid"): acc = transcripts[0]["clinvar_clnvid"] sig = transcripts[0].get("clinvar_clnsig") revstat = transcripts[0].get("clinvar_revstat") # There are some versions where clinvar uses integers to represent terms if isinstance(acc, int) or acc.isdigit(): revstat_groups = [] if revstat: revstat_groups = [rev.lstrip("_") for rev in revstat.replace("&", ",").split(",")] sig_groups = [] for significance in sig.split(","): for term in significance.lstrip("_").split("/"): sig_groups.append("_".join(term.split(" "))) for sig_term in sig_groups: clnsig_accession = { "value": sig_term, "accession": int(acc), "revstat": ",".join(revstat_groups), } clnsig_accessions.append(clnsig_accession) # Test to parse the older format if acc and not clnsig_accessions: acc_groups = acc.split("|") sig_groups = sig.split("|") revstat_groups = revstat.split("|") for acc_group, sig_group, revstat_group in zip(acc_groups, sig_groups, revstat_groups): accessions = acc_group.split(",") significances = sig_group.split(",") revstats = revstat_group.split(",") for accession, significance, revstat in zip(accessions, significances, revstats): clnsig_accessions.append( { "value": int(significance), "accession": accession, "revstat": revstat, } ) return clnsig_accessions def is_pathogenic(variant): """Check if a variant has the clinical significance to be loaded We want to load all variants that are in any of the predefined categories regardless of rank scores etc. Args: variant(cyvcf2.Variant) Returns: bool: If variant should be loaded based on clinvar or not """ load_categories = set( [ "pathogenic", "likely_pathogenic", "conflicting_interpretations_of_pathogenicity", "conflicting_interpretations", ] ) # check if VEP-annotated field contains clinvar pathogenicity info vep_info = variant.INFO.get("CSQ") if vep_info: for category in load_categories: if category in vep_info.lower(): return True # Otherwise check if clinvar pathogenicity status is in INFO field clnsig_accessions = parse_clnsig(variant) for annotation in clnsig_accessions: clnsig = annotation["value"] if clnsig in load_categories: return True if isinstance(clnsig, int): if clnsig == 4 or clnsig == 5: return True return False
34.832061
107
0.61407
b819ae9a8acf0c2158c54fed2da4b7a9b01e9e9a
35
py
Python
docpub/api/yuque/__init__.py
altairwei/WizPublishTool
fe67523266ef10719af5f836c17821dc61ecc40a
[ "MIT" ]
null
null
null
docpub/api/yuque/__init__.py
altairwei/WizPublishTool
fe67523266ef10719af5f836c17821dc61ecc40a
[ "MIT" ]
null
null
null
docpub/api/yuque/__init__.py
altairwei/WizPublishTool
fe67523266ef10719af5f836c17821dc61ecc40a
[ "MIT" ]
null
null
null
LARK_HOST = 'https://www.yuque.com'
35
35
0.714286
cd6237510fb3cc6657ed522cb1fe131854c75b9b
2,580
py
Python
hma_slave.py
Lord-of-the-Galaxy/heroku-multi-account
9f2d8f7455ed954cc25ed905a966a6326b4d2967
[ "MIT" ]
1
2020-06-02T10:42:23.000Z
2020-06-02T10:42:23.000Z
hma_slave.py
Lord-of-the-Galaxy/heroku-multi-account
9f2d8f7455ed954cc25ed905a966a6326b4d2967
[ "MIT" ]
null
null
null
hma_slave.py
Lord-of-the-Galaxy/heroku-multi-account
9f2d8f7455ed954cc25ed905a966a6326b4d2967
[ "MIT" ]
null
null
null
import os, os.path import psycopg2 from flask import Flask, send_file, request import hma_conf # You shouldn't need to modify anything here app = Flask(__name__) DB_URL = os.environ['DATABASE_URL'] HMA_KEY = os.environ['HMA_SHARED_KEY'] TABLES = hma_conf.PG_TABLES conn = psycopg2.connect(DB_URL) @app.route('/') def index(): return f"Index, tables: {TABLES}" @app.route('/pull_db/<tname>', methods=['GET', 'POST']) def pull_db(tname): if request.method == 'POST' and 'key' in request.form and request.form['key'] == HMA_KEY: if tname in TABLES: if os.path.isfile(f'{tname}.db'): return send_file(f'{tname}.db', as_attachment=True) else: return "Prepare first", 409 else: return "No such table", 404 elif request.method == 'POST': if 'key' in request.form: print("Incorrect key:", request.form['key']) return "Incorrect Key!", 403 else: return "Supply shared key!", 403 else: return "Only POST!", 405 @app.route('/prepare_pull') def prepare_pull(): cur = conn.cursor() try: for tname in TABLES: with open(f'{tname}.db', 'w') as f: print(f"Copying {tname}") cur.copy_to(f, f'"{tname}"') return "Success" except IOError: print("IO ERROR") return "IO ERROR", 500 finally: cur.close() @app.route('/push_db/<tname>', methods=['GET', 'POST']) def push_db(tname): if request.method == 'POST' and 'key' in request.form and request.form['key'] == HMA_KEY: if tname not in TABLES: return "No such table", 404 if 'file' not in request.files: return "Upload a DB file", 400 f = request.files['file'] if f.filename == '': return "Upload non-empty file", 400 if f and f.filename == f'{tname}.db': print(f"got new DB: {tname}") cur = conn.cursor() cur.execute(f'DELETE FROM {tname}') cur.copy_from(f, f'"{tname}"') conn.commit() cur.close() return "Success!" else: return "Use correct name", 400 elif request.method == 'POST': if 'key' in request.form: print("Incorrect key:", request.form['key']) return "Incorrect Key!", 403 else: return "Supply shared key!", 403 else: return "Only POST!", 405 if __name__=='__main__': app.run('0.0.0.0', port=8080, debug=True)
28.351648
93
0.555814
efe343ac07c05d238b64d12c94d873affa314689
449
py
Python
opencvpydemo/target_tracking/hist.py
SosonHuang/opencvPy
5bddb9e6d9e2e4aff4e5afbe720fbe9389e1d919
[ "MIT" ]
1
2018-11-14T02:54:24.000Z
2018-11-14T02:54:24.000Z
opencvpydemo/target_tracking/hist.py
SosonHuang/opencvPy
5bddb9e6d9e2e4aff4e5afbe720fbe9389e1d919
[ "MIT" ]
null
null
null
opencvpydemo/target_tracking/hist.py
SosonHuang/opencvPy
5bddb9e6d9e2e4aff4e5afbe720fbe9389e1d919
[ "MIT" ]
1
2018-04-16T13:57:14.000Z
2018-04-16T13:57:14.000Z
import cv2 import numpy as np from matplotlib import pyplot as plt camera = cv2.VideoCapture(0) while True: ret, img = camera.read() color = ('b','g','r') for i,col in enumerate(color): histr = cv2.calcHist([img],[i],None,[256],[0,256]) plt.plot(histr,color = col) plt.xlim([0,256]) plt.show() #cv2.imshow("frame", img) # k = cv2.waitKey(30) & 0xff # if k == 27: # break camera.release() cv2.destroyAllWindows()
20.409091
54
0.621381
ef5288dd7d7c3e62adf6d0b574ed5353905779a5
412
py
Python
Section_10_Quotes_Scraping/pages/quotes_page.py
rodrigoarenas456/CompletePythonGuide
505ac20c33856a53f1ffe12809ad78161c78a325
[ "MIT" ]
null
null
null
Section_10_Quotes_Scraping/pages/quotes_page.py
rodrigoarenas456/CompletePythonGuide
505ac20c33856a53f1ffe12809ad78161c78a325
[ "MIT" ]
null
null
null
Section_10_Quotes_Scraping/pages/quotes_page.py
rodrigoarenas456/CompletePythonGuide
505ac20c33856a53f1ffe12809ad78161c78a325
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup from Section_10_Quotes_Scraping.locators.quotes_page_locators import QuotesPageLocators from Section_10_Quotes_Scraping.parsers.quote import QuoteParser class QuotesPage: def __init__(self, page): self.soup = BeautifulSoup(page, 'html.parser') @property def quotes(self): return [QuoteParser(e) for e in self.soup.select(QuotesPageLocators.QUOTE)]
25.75
87
0.771845
75989dae85ade9cd2552f33e5f2ec728be072874
6,214
py
Python
00_data_import.py
koenlab/template_eeg_pipeline
67bb8bdb52dad0ecb1559e4ec617b31b7b8cdf42
[ "BSD-3-Clause" ]
null
null
null
00_data_import.py
koenlab/template_eeg_pipeline
67bb8bdb52dad0ecb1559e4ec617b31b7b8cdf42
[ "BSD-3-Clause" ]
null
null
null
00_data_import.py
koenlab/template_eeg_pipeline
67bb8bdb52dad0ecb1559e4ec617b31b7b8cdf42
[ "BSD-3-Clause" ]
null
null
null
""" Script: 00_data_import.py Creator: Joshua D. Koen Description: This script imports data from sourcedata to bids format. """ # Import Libraries import os os.chdir(os.path.split(__file__)[0]) import numpy as np import pandas as pd import shutil import json from random import (randrange, seed) from mne.io import read_raw_brainvision from mne import events_from_annotations import mne from mne_bids import (BIDSPath, write_raw_bids, mark_bad_channels) from config import (bids_dir, source_dir, deriv_dir, task, cols_to_keep, cols_to_add, cols_to_rename, rename_events, unchanged_markers, bad_chans, preprocess_opts) from functions import get_sub_list # Get subject list to process sub_list = get_sub_list(source_dir, allow_all=True) study_seed = int(input('Enter digits for study/project id: ')) # Get Subject List for sub in sub_list: # STEP 1: SUBJECT INFORMATION DEFINITION # Define the Subject and Source Path sub_id = sub.replace('sub-', '') source_sub_dir = source_dir / sub # Handle Bids Path and ID for EEG data bids_id = sub[-3:] bids_sub_dir = BIDSPath(subject=bids_id, task=task, datatype='eeg', root=bids_dir) # Derivative Paths deriv_sub_dir = deriv_dir / f'sub-{bids_id}' deriv_sub_dir.mkdir(parents=True, exist_ok=True) # Print Info to Screen print(f'Making BIDS data for sub-{bids_id} ({sub_id}) for task-{task}') print(f' Source Path: {source_sub_dir}') print(f' BIDS Path: {bids_sub_dir.directory}') print(f' Derivative Path: {deriv_sub_dir}') # Ask for info to specify subject_info age = int(input('Enter age: ')) sex = int(input('Enter sex/gender (0=unknown, 1=male, 2=female): ')) hand = int(input('Enter handedness (1=right, 2=left, 3=ambidextrous): ')) # STEP 2: BIDS-FY EEG DATA # Define the source data file source_vhdr = source_sub_dir / f'{sub_id}_1back.vhdr' # Read in raw bv from source and anonymize raw = read_raw_brainvision( source_vhdr, misc=[preprocess_opts['photosensor_chan']], eog=['VEOG', 'HEOG']) # Update line frequency to 60 Hz and indicate it is properly referenced raw.info['line_freq'] = 60.0 # Anonymize seed(a=study_seed) raw.anonymize( daysback=(365 * randrange(100, 110)) + (randrange(-120, 120))) # Update subject_info bdate = raw.info['meas_date'].date() bdate = bdate.replace(year=bdate.year-age) subject_info = { 'id': int(bids_id), 'his_id': f'sub-{bids_id}', 'birthday': (bdate.year, bdate.month, bdate.day), 'sex': sex, 'hand': hand, 'last_name': 'mne_anonymize', 'first_name': 'mne_anonymize', 'middle_name': 'mne_anonymize', } raw.info['subject_info'] = subject_info # Extract Events and remove annotations events, event_id = events_from_annotations(raw) # Write BIDS Output if bids_sub_dir.directory.is_dir(): shutil.rmtree(bids_sub_dir.directory) bids_sub_dir = write_raw_bids( raw, bids_path=bids_sub_dir, overwrite=True, verbose=False) # UPDATE CHANNELS.TSV # Get bad channels and update sub_bad_chans = bad_chans.get(bids_id) if sub_bad_chans is not None: print(f'{bids_id} has bad channels.') mark_bad_channels( sub_bad_chans['channels'], sub_bad_chans['reason'], bids_path=bids_sub_dir) # Load *channels.tsv file bids_sub_dir.update(suffix='channels', extension='.tsv') chans_data = pd.read_csv(bids_sub_dir.fpath, sep='\t') # Add EEG Reference chans_data['reference'] = 'FCz' # Remove online reference from auxillary channels for chan in ['VEOG', 'HEOG', 'Photosensor']: chans_data.loc[chans_data['name'] == chan, ['reference']] = 'n/a' # Overwrite file chans_data.to_csv(bids_sub_dir.fpath, sep='\t', index=False) # STEP 3: PROCESS BEHAVIORAL DATA FILE # Read in the *beh.tsv behavioral file beh_source_file = source_sub_dir / f'{sub_id}_1back_beh.tsv' beh_data = pd.read_csv(beh_source_file, sep='\t')[cols_to_keep] beh_data.rename(columns=cols_to_rename, inplace=True) # Replace NaN and -99 with 'n/a' for resp and rt, respectively beh_data['resp'].fillna('n/a', inplace=True) beh_data['rt'].replace(-99.0, 'n/a', inplace=True) # Replace subject id and select needed data columns beh_data['id'] = bids_id # Fil in some more values beh_data.replace(['None', '', '--'], 'n/a', inplace=True) # Save behavioral data bids_sub_dir.update(datatype='beh') bids_sub_dir.directory.mkdir(parents=True, exist_ok=True) beh_save_file = bids_sub_dir.directory / \ f'sub-{bids_id}_task-{task}_beh.tsv' beh_data.to_csv(beh_save_file, sep='\t', index=False) # STEP 4: UPDATE *_EVENTS.TSV WITH BEHAVIORAL DATA # Load *events.tsv bids_sub_dir.update(datatype='eeg', suffix='events') events_data = pd.read_csv(bids_sub_dir.fpath, sep='\t') # Add new columnas as "n/a" values events_data[cols_to_add] = 'n/a' # Update with values counter = 0 # Keep track of current row in beh_data for index, row in events_data.iterrows(): trial_type = rename_events[row['trial_type']] events_data.at[index, 'trial_type'] = trial_type if trial_type not in unchanged_markers: this_trial = beh_data.iloc[counter] for col in cols_to_add: events_data.at[index, col] = this_trial[col] counter += 1 # Overwrite *events.tsv events_data.to_csv(bids_sub_dir.fpath, sep='\t', index=False) # STEP 5: UPDATE *eeg_json # Load JSON bids_sub_dir.update(suffix='eeg', extension='json') with open(bids_sub_dir.fpath, 'r') as file: eeg_json = json.load(file) # Update keys eeg_json['EEGReference'] = 'FCz' eeg_json['EEGGround'] = 'Fpz' eeg_json['EEGPlacementScheme'] = \ [x for x in raw.ch_names if x not in ['VEOG', 'HEOG', 'Photosensor']] # Save EEG JSON with open(bids_sub_dir.fpath, 'w') as file: json.dump(eeg_json, file)
33.229947
77
0.660766